ICON/UXV
Programmer
Guide

ICON
INTERNATIONAL

764 East Timpanogos Parkway
Orem, Utah 84057
(801) 225-6888

A

PROGRAMMER GUIDE

ICON/UXV
Operating
System

© Copyright 1988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without pnor written approval from Icon
International, Inc.

Icon International, Inc. reserves the right to make changes, without notice, to the specifications
and materials contained herein, and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical, arithmetic, and listing errors.

The UNIX® Software and Text Source for this manual is under license from AT&T.
Copyright © 1984 AT&T Technologies

Order No. 172-036-005 A0 (Manual Assembly)
Order No. 171-063-006 A0 (Manual Pages only)

This manual was set on an IMAGEN 8/300 laser printer driven by the IROFF formatter
operating under the ICON/UXV system.

Trademarks

The ICON logo is a registered trademark and ICON/UXYV is a trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.

3B, WE, and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.
AUSTEC is a trademark of Austec International, Ltd. (Australia)

DEC, PDP, VAX, UNIBUS, SBI, and MASSBUS are trademarks of Digital Equipment Corp.
DIABLO and Ethernet are trademarks of Xerox Corporation.

HP is a trademark of Hewlett-Packard, Inc.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a trademark of International Business Machines Corporation.

TEKTRONIX is a registered trademark of Tektronix, Inc.

TELETYPE is a trademark of AT&T Teletype Corporation.

Versatec is a registered trademark of Versatec Corporation.

i ICON INTERNATIONAL

&

Change Record Page

ICON/UXV Programmer Guide

Manual Pages Part No. 171-063-006
Date Revision Description Pages Affected
Apr. 1988 AO Initial production release | All
Aug. 1988 A1 Add Chapter 26 “A Fast TOC, Chapter 26 - all
File System For UNIX” :

PROGRAMMER GUIDE

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

PROGRAMMER GUIDE

° ® N E DD~

S T~ T - T T T N = O ~ U
= T L B O

CONTENTS -

INTRODUCTION

C LANGUAGE

C LIBRARIES

THE OBJECT AND MATH LIBRARIES
COMPILER AND C LANGUAGE

A C PROGRAM CHECKER — “LINT”
SYMBOLIC DEBUGGING PROGRAM — “SDB”
ICON/UXV SYSTEM FORTRAN COMMANDS
FORTRAN 77

- RATFOR

THE PROGRAMMING LANGUAGE EFL

THE CURESES AND TERMINFO PACKAGE

CURSES EXAMPLES

(make) FOR MAINTAINING COMPUTER PROGRAMS
SOURCE CODE CONTROL SYSTEM USER GUIDE
THE M4 MACRO PROCESSOR

THE AWK PROGRAMMING LANGUAGE

THE LINK EDITOR

THE COMMON OBJECT FILE FORMAT

SYSTEM V/68 ASSEMBLER USER’S GUIDE

ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE (BC)

f ~

CHAPTER 22.
CHAPTER 23.
CHAPTER 24.
CHAPTER 25.
CHAPTER 26.

vi

INTERACTIVE DESK CALCULATOR (DC)
LEXICAL ANALYZER GENERATOR (LEX)

YET ANOTHER COMPEER-COMPILER (YACCO)
UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP)
A FAST FILE SYSTEM FOR UNIX

ICON INTERNATIONAL

ICON INTERNATIONAL

(/ Chapter 1

INTRODUCTION

This volume describes two main programming languages supported in the ICON/UXV
operating system. It is also describes the various software “tools” that aid the ICON/UXV
operating system user. The user should have at least 2 years of specialized training in
computer-related fields such as programming or UNIX® system use primarily for software
system development. The following paragraphs contain brief descriptions of the contents of the
chapter in this manual.

e C Language — A medium-level programming language which was used to write most of
the ICON/UXV operating system. Chapter 2 describes the C language. Chapters 3
through 7 describe the libraries and support tools available with the ICON/UXV
operating system for the benefit of the C language programmer. These chapters contain
the following:

C LANGUAGE— Chapter 2 provides a summary of the grammar and rules of
the C programming language.

LIBRARIES— Chapters 3 and 4 describe functions and declarations that support
the C Language and how to use these functions. Chapter 3 describes the C Library
and Chapter 4 describes the Object File and Math Libraries.

THE “‘cc”” COMMAND— Chapter 5 describes the command used to compile C
language programs, produce assembly language programs, and produce executable
programs.

A C PROGRAM CHECKER - “lint”— Chapter 6 describes a program that

attempts to detect compile-time bugs and non-portable features in C programs.

A SYMBOLIC DEBUGGER - “sdb” — Chapter 7 describes a symbolic
debugging program that is used to debug compiled C language programs.

o Fortran — Fortran 77, a rational Fortran preprocessor (Ratfor), and EFL are described
as follows:

ICON/UXV SYSTEM COMMANDS FOR FORTRAN-— Chapter 8 describes
the various commands that may be used with Fortran under an ICON/UXV
operating system.

FORTRAN 77 — Chapter 9 describes the implementation of Fortran 77 under the
ICON/UXV operating system in terms of the variations from the American
National Standard.

) 0. UNIX is a registered trademark of AT&T

PROGRAMMER GUIDE 1-1

INTRODUCTION

RATFOR— Chapter 10 describes the Ratfor preprocessor. This preprocessor
provides a means for writing Fortran in a fashion similar to the C language. This
preprocessor provides (among other things) simplified control-flow statements.

EFL— Chapter 11 describes the programming language EFL.

Chapter 12 describes the curses and terminfo package that provides the programmer with
screen-oriented programming capabilities. Chapter 13 provides examples of curses programs.

Chapters 8, 9, 10 and 11 assume that the user is already familiar with Fortran 77. If not

familiar, review one of the many texts that describes Fortran 77. The following texts are
suggested:

FORTRAN 77
Harry Katzan, Jr.
Van Nostrand Reinhold

FORTRAN 77 - FEATURING STRUCTURED PROGRAMMING
Loren P. Meissner and Elliot 1. Organick
Addison-Wesly

AMERICAN NATIONAL STANDARD PROGRAMMING
LANGUAGE FORTRAN

ANSI x3.9 - 1978

American National Standards Institute

Chapter 14, (make) FOR MAINTAINING COMPUTER PROGRAMS, describes a software tool
for maintaining, updating, and regenerating groups of computer programs. The many
activities of program development and maintenance are made simpler by the make program.

Chapter 15, SOURCE CODE CONTROL SYSTEM (SCCS) USER’S GUIDE, describes the

collection of SCCS programs under the ICON/UXV operating system. The SCCS programs act
as a “custodian” over the ICON/UXYV system files.

Chapter 16, THE M4 MACRO PROCESSOR, describes a general purpose macro processor that
may be used as a front end for rational Fortran, C, and other programming languages.

Chapter 17, THE "awk"” PROGRAMMING LANGUAGE, describes a software tool designed to

make many common information retrieval and text manipulation tasks easy to state and to
perform.

Chapter 18, THE LINK EDITOR, describes a software tool (1d) that creates load files by
combining object files, performing relocation, and resolving internal references.

1-2 ICON INTERNATIONAL

(a\
h

C

INTRODUCTION

Chapter 19, THE COMMON OBIJECT FILE FORMAT (COFF), describes the output file
produced on some ICON/UXYV systems by the assembler and the link editor.

Chapter 20, SYSTEM V/68 ASSEMBLER USER’S GUIDE, describes the ICON/UX resident

assembler, as. The as program allows programmers familiar with the MC68000 family of
processors to be able to program in as.

Chapter 21, ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC), describes a
compiler for doing arbitrary precision arithmetic on the ICON/UXV operating system.

Chapter 22, INTERACTIVE DESK CALCULATOR (DC), describes a program implemented on
the ICON/UXV operating system to do arbitrary-precision integer arithmetic.

Chapter 23, LEXICAL ANALYZER GENERATOR (Lex), describes a software tool that
lexically processes character input streams.

Chapter 24, YET ANOTHER COMPILER-COMPILER (yacc), describes the yace program.

The yacc program provides a general tool for imposing structure on the input to a computer
program.

Chapter 25, UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP), describes a network that

provides information exchange (between UNIX systems) over the direct distance dialing
network.

Throughout this document, each reference of the form name(1M), name(7), or name(8) refers
to entries in the ICONJ/UXV Administrator Reference Manual. Each reference of the form
name(l) and name(6) refers to entries in the JCON/UXV Reference Manual. All other
references to entries of the form name(N), where possibly followed by a letter, refer to entry
name in section N of the JCON/UXV Programmer Reference Manual.

PROGRAMMER GUIDE 1-3

Chapter 2
C LANGUAGE

PAGE
LEXICAL CONVENTIONS 21
SYNTAX NOTATIONoooeeeeeeeeeeeeeeeeeeeseseresssssesssseseseessseessesseresssesesss e se s semseeeseeasesasesasesssseeessssesseresseesnen 2.4
NAMEScoveeeeereeeeereresessseeseseen e ee et et e et st s e et et et re e ee s 24
OBJECTS AND LVALUESo..cooooeveeseeeeeseeesaesesesessesesesesseesaesesseseseseessessssesseeesesesesseseeseessasessessssssessssessensens 2.5
CONVERSIONS.......oooo vt eeeeeeee v eeeeeseesesseeeseeseseseeseseseeesseseessessesessessseesee e s s ee s sesesesessesesasseeessaeeseessessseeeseeeses 2.6
EXPRESSIONSoooeveoeeeeeeoeeeeseeeseseeseseeesesseeeeoeeeeeseeeseeseeeeesseessaesseessessseeeeseeesess e s esseessesesseeseessseeresesereees 2.8
DECLARATIONSoooooeoeeveoeeeeeseee e eeseeses oo eeseeee e eseeeessoesseeeseses s e s e ssss e seseseseseeesesesssaeeseseraseraseseseseesseseseessnns 2-16
STATEMENTSoooeoevveeeeseeeeeeeosseeeeseeesseeesseseseseseesesseessesesesessasessasesssmeesssessese s seseseseserasessesseseeeessseeseseseeeseeees 2.8
EXTERNAL DEFINITIONSocoouomtvueeeeenseosseesssesesessssesesesesseeessessesesseseseseseesssesseessssessesseseeseeeeseseesseeesereees 2.32
SCOPE RULESeeoeeoeeeeeeeeeeeeeseeeeserersesereesees e 2.34
COMPILER CONTROL LINESooootuniveoeeeeeeemeeresesesseeesesesessessssseseesessesesesessesssesssessessessssssoesseessesseseseeoes 2.35
IMPLICIT DECLARATIONS ... oooooeooteoeeeeeeeeeeeem s essemseeeseeeeeeseseseesessese e e e es e ss e eseeeeeeesesseees e eeseessenereseseoe 238
TYPES REVISITED...........eoooooveseeoeeeeeseeesesesesesseeesseeseseesseseseesssesesesseeseseens et 2.38

Chapter 2
C LANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, “white space”) as described
below are ignored except as they serve to separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is
taken to include the longest string of characters which could possibly constitute a token.

Comments

The characters /* introduce a comment which terminates with the characters */. Comments
do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The
underscore (_) counts as a letter. Uppercase and lowercase letters are different. Although
there is no limit on the length of a name, only initial characters are significant: at least eight
characters of a non-external name, and perhaps fewer for external names. Moreover, some

implementations may collapse case distinctions for external names. The external name sizes
include:

PDP-11 7 characters, 2 cases

VAX-11 >100 characters, 2 cases

AT&T 3B 20 > 100 characters, 2 cases
Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct ~ while
default float register switch

Some implementations also reserve the words fortran and asm.

PROGRAMMER GUIDE 2-1

C LANGUAGE

Constants

There are several kinds of constants. Each has a type; an introduction to types is given in
“NAMES.” Hardware characteristics that affect sizes are summarized in “Hardware
Characteristics” under “LEXICAL CONVENTIONS.”

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit zero). An octal constant consists of the digits O through 7 only. A sequence of digits
preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds the largest signed machine
integer is taken to be long; an octal or hex constant which exceeds the largest unsigned
machine integer is likewise taken to be long. Otherwise, integer constants are int.

Explicit Long Constards

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is

a long constant. As discussed below, on some machines integer and long values may be
considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in “x’. The value of a
character constant is the numerical value of the character in the machine’s character set.

Certain nongraphic characters, the single quote (*) and the backslash (\), may be represented
according to the following table of escape sequences:

A3

new-line NL (LF) \n
horizontal tab HT \t
vertical tab vT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ’ \’
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specifly the value of the desired character. A special case of this construction is \0 (not
followed by a digit), which indicates the character NUL. If the character following a
backslash is not one of those specified, the behavior is undefined. A new-line character is illegal
in a character constant. The type of a character constant is int.

2-2 ICON INTERNATIONAL

N

N

C LANGUAGE

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and
an optionally signed integer exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part (not both) may be missing.

Either the decimal point or the e and the exponent (not both) may be missing. Every floating
constant has type double. .

Enumeration Constants

Names declared as enumerators (see “Structure, Union, and Enumeration Declarations” under

“DECLARATIONS”) have type int.

Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type
“array of char” and storage class static (see “NAMES”) and is initialized with the given
characters. The compiler places a null byte (\0) at the end of each string so that programs
which scan the string can find its end. In a string, the double quote character (") must be

preceded by a \; in addition, the same escapes as described for character constants may be
used.

A \ and the immediately following new-line are ignored. All strings, even when written
identically, are distinct.

Hardware Characteristics

The following figure summarizes certain ICON system hardware properties.

ICON properties
(ASCII)
char - 8 bits
int 32
short 16
long 32
float 32
double 64
float range +10 38
double range +10 38

Figure 2-1. ICON HARDWARE CHARACTERISTICS

C LANGUAGE

SYNTAX NOTATION

Syntactic categories are indicated by t¢talic type and literal words and characters in bold type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal
symbol is indicated by the subscript “opt,” so that

{ eapression, , }

indicates an optional expression enclosed in braces. The syntax is summarized in “SYNTAX
SUMMARY?™.

NAMES

The C language bases the interpretation of an identifier upon two attributes of the identifier -
its storage class and its type. The storage class determines the location and lifetime of the
storage associated with an identifier; the type determines the meaning of the values found in
the identifier’s storage.

Storage Class

There are four declarable storage classes:

Automatic
Static
External
Register.

Automatic variables are local to each invocation of a block (see “Compound Statement or
Block” in “STATEMENTS”) and are discarded upon exit from the block. Static variables are
local to a block but retain their values upon reentry to a block even after control has left the
block. External variables exist and retain their values throughout the execution of the entire
program and may be used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast registers of the machine; like
automatic variables, they are local to each block and disappear on exit from the block.

Type

The C language supports several fundamental types of objects. Objects declared as characters
(char) are large enough to store any member of the implementation’s character set. If a
genuine character from that character set is stored in a char variable, its value is equivalent
to the integer code for that character. Other quantities may be stored into character

variables, but the implementation is machine dependent. In particular, char may be signed or
unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either

2-4 ICON INTERNATIONAL

TN

_/

o

C LANGUAGE

short integers or long integers, or both, equivalent to plain integers. “Plain” integers have the
natural size suggested by the host machine architecture. The other sizes are provided to meet
special needs.

The properties of enum types (see “Structure, Union, and Enumeration Declarations” under
“DECLARATIONS”) are identical to those of some integer types. The implementation may
use the range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2™ where n is the
number of bits in the representation.

Single-precision floating point (float) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will
collectively be called integral types. The float and double types will collectively be called
floating types.

The void type specifies an empty set of values. It is used as the type returned by functions
that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types
constructed from the fundamental types in the following ways:

o Arrays of objects of most types

o Functions which return objects of a given type

e Pointers to objects of a given type

e Structures containing a sequence of objects of various types

e Unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

OBJECTS AND LVALUES

An object is a manipulatable region of storage. An lvalue is an expression referring to an
object. An obvious example of an lvalue expression is an identifier. There are operators which
yield lvalues: for example, if E is an expression of pointer type, then *E is an Ivalue expression
referring to the object to which E points. The name “lvalue” comes from the assignment
expression E1 = E2 in which the left operand E1 must be an lvalue expression. The discussion

of each operator below indicates whether it expects lvalue operands and whether it yields an
lvalue.

PROGRAMMER GUIDE 2.5

C LANGUAGE

CONVERSIONS

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such
conversions. The conversions demanded by most ordinary operators are summarized under

“Arithmetic Conversions.” The summary will be supplemented as required by the discussion of
each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign.
Whether or not sign-extension occurs for characters is machine dependent, but it is guaranteed
that a member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII set are all non-
negative. However, a character constant specified with an octal escape suffers sign extension
and may appear negative; for example, “\377 * has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on the
left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an
expression it is lengthened to double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double is rounded before truncation to
float length. This result is undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular,
the direction of truncation of negative numbers varies. The result is undefined if it will not fit
in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occurs
if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case,
the first is converted as specified in the discussion of the addition operator. Two pointers to
objects of the same type may be subtracted; in this case, the result is converted to an integer
as specified in the discussion of the subtraction operator.

2-6 ICON INTERNATIONAL

S

C LANGUAGE

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value is the least unsigned integer congruent to the
signed integer (modulo 2‘”°’d5‘.“). In a 2’s complement representation, this conversion is
conceptual; and there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the same

numerically as that of the unsigned integer. Thus the conversion amounts to padding with
zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This
pattern will be called the “usual arithmetic conversions.”

1. First, any operands of type char or short are converted to int, and any operands of
type unsigned char or unsigned short are converted to unsigned int.

2. Then, if either operand is double, the other is converted to double and that is the type
of the result.

3. Otherwise, if either operand is unsigned long, the other is converted to unsigned long
and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and that is the type
of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are both
converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to unsigned and that
is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the result.

Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversion may be applied. Because a void expression denotes a nonexistent value,
such an expression may be used only as an expression statement (see “Expression Statement”
under “STATEMENTS”) or as the left operand of a comma expression (see “Comma
Operator” under “EXPRESSIONS”).

An expression may be converted to type void by use of a cast. For example, this makes
explicit the discarding of the value of a function call used as an expression statement.

PROGRAMMER GUIDE 2-7

C LANGUAGE

EXPRESSIONS

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands
of + (see “Additive Operators”) are those expressions defined under “Primary Expressions”,
“Unary Operators”, and “Multiplicative Operators”. Within each subpart, the operators have
the same precedence. Left- or right-associativity is specified in each subsection for the
operators discussed therein. The precedence and associativity of all the expression operators
are summarized in the grammar of “SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler
considers itself free to compute subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which subexpression evaluation takes place is
unspecified. Expressions involving a commutative and associative operator (*, +, &, |,) may
be rearranged arbitrarily even in the presence of parentheses; to force a particular order of
evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by a library function.

Primary Expressions

Primary expressions involving ., ->, subscripting, and function calls group left to right.

primary-expression:
tdentifier
constant
string
(expression)
primary-ezpression [expression |
primary-expression expression-list p)
primary-ezxpression . tdentifier
primary-ezxpression -> identifier

expression-list:
expression
expresston-list , expression

An identifier is a primary expression provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is “array of ...”, then the
value of the identifier expression is a pointer to the first object in the array; and the type of
the expression is “pointer to ...”. Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared “function returning ...”, when used except in the

function-name position of a call, is converted to “pointer to function returning ...”.

A constant is a primary expression. Its type may be int, long, or double depending on its
form. Character constants have type int and floating constants have type double.

2.8 ICON INTERNATIONAL

C LANGUAGE

A string is a primary expression. Its type is originally “array of char”, but following the same
rule given above for identifiers, this is modified to “pointer to char” and the result is a pointer

to the first character in the string. (There is an exception in certain initializers; see
“Initialization” under “DECLARATIONS.”)

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The presence of parentheses does not affect whether the
expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary expression.
The intuitive meaning is that of a subscript. Usually, the primary expression has type “pointer
to ...”, the subscript expression is int, and the type of the result is “...”. The expression
E1[E2] is identical (by definition) to *((E1)+(E2)). All the clues needed to understand this
notation are contained in this subpart together with the discussions in “Unary Operators” and
“Additive Operators” on identifiers, * and +, respectively. The implications are summarized
under “Arrays, Pointers, and Subscripting” under “TYPES REVISITED.”

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function.
The primary expression must be of type “function returning ...,”” and the result of the function
call is of type “...”. As indicated below, a hitherto unseen identifier followed immediately by
a left parenthesis is contextually declared to represent a function returning an integer; thus in
the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char
or short are converted to int. Array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual
arguments with those of formal arguments. If conversion is needed, use a cast; see “Unary
Operators” and “Type Names” under “DECLARATIONS.”

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all
argument passing in C is strictly by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the actual parameters. It is possible
to pass a pointer on the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order of evaluation of
arguments is undefined by the language; take note that the various compilers differ. Recursive
calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first
expression must be a structure or a union, and the identifier must name a member of the
structure or union. The value is the named member of the structure or union, and it is an
lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier
must name a member of that structure or union. The result is an lvalue referring to the
named member of the structure or union to which the pointer expression points. Thus the

PROGRAMMER GUIDE 2-9

C LANGUAGE

expression E1->MOS is the same as (*E1).MOS. Structures and unions are discussed in
“Structure, Union, and Enumeration Declarations” under “DECLARATIONS.”

Unary Operators

Expressions with unary operators group right to left.

unary-ezrpression:
* expression
& lvalue
- expression
! expression
" ezpression
++ lvalue
~--lvalue
lvalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means tndirection ; the expression must be a pointer, and the result is an
lvalue referring to the object to which the expression points. If the type of the expression is
“pointer to ...,” the type of the result is “...”.

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the
type of the lvalue is “...”, the type of the result is “pointer to ...”.

The result of the unary - operator is the negative of its operand. The usual arithmetic
conversions are ,Performed. The negative of an unsigned quantity is computed by subtracting
its value from 2" where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! 1is one if the value of its operand is zero, zero if
the value of its operand is nonzero. The type of the result is int. It is applicable to any
arithmetic type or to pointers.

The ~ operatior yields the one’s complement of its operand. The usual arithmetic conversions
are performed. The type of the operand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new
value of the operand but is not an Ivalue. The expression +-+x is equivalent to x=x+1. See

the discussions ‘‘Additive Operators” and “Assignment Operators” for information on
conversions.

2-10 ICON INTERNATIONAL

P

C LANGUAGE

The lvalue operand of prefix - is decremented analogously to the prefix ++ operatdr.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the
Ivalue. After the result is noted, the object is incremented in the same manner as for the prefix
++ operator. The type of the result is the same as the type of the lvalue expression.

When postfix — is applied to an lvalue, the result is the value of the object referred to by the
lvalue. After the result is noted, the object is decremented in the manner as for the prefix --
operator. The type of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the
value of the expression to the named type. This construction is called a cast. Type names are
described in “Type Names” under “Declarations.”

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the
language except in terms of the value of sizeof. However, in all existing implementations, a
byte is the space required to hold a char.) When applied to an array, the result is the total
number of bytes in the array. The size is determined from the declarations of the objects in
the expression. This expression is semantically an unsigned constant and may be used
anywhere a constant is required. Its major use is in communication with routines like storage
allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields
the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type)-2 is the
same as (sizeof(type))-2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual arithmetic conversions
are performed.

multiplicative expression:
ezxpression * expression
ezpression [expression
expression % expression

The binary * operator indicates multiplication. The * opérator is associative, and expressions
with several multiplications at the same level may be rearranged by the compiler. The binary
/ operator indicates division.

The binary % operator yields the remainder from the division of the first expression by the
second. The operands must be integral.

PROGRAMMER GUIDE 2-11

C LANGUAGE

When positive integers are divided, truncation is toward O; but the form of truncation is
machine-dependent if either operand is negative. On all machines covered by this manual, the

remainder has the same sign as the dividend. It is always true that (a/b)*b + a%b is equal
to a (if b is not 0).

Additive Operators

The additive operators + and - group left to right. The usual arithmetic conversions are
performed. There are some additional type possibilities for each operator.

additive-ezpression:
ezpression + expression
erpression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array
and a value of any integral type may be added. The latter is in all cases converted to an
address offset by multiplying it by the length of the object to which the pointer points. The
result is a pointer of the same type as the original pointer which points to another object in
the same array, appropriately offset from the original object. Thus if P is a pointer to an

object in an array, the expression P+1 is a pointer to the next object in the array. No further
type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer,
and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division
by the length of the object) to an int representing the number of objects separating the
pointed-to objects. This conversion will in general give unexpected results unless the pointers
point to objects in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is
converted to int; the type of the result is that of the left operand. The result is undefined if
the right operand is negative or greater than or equal to the length of the object in bits.

shift-expression:
expression << ezpression
expression >> expression

2-12 ICON INTERNATIONAL

C LANGUAGE

The value of E1I<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits
are O filled. The value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift is
guaranteed to be logical (0 fill) if E1 is unsigned; otherwise, it may be arithmetic.

Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
ezpression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater
than or equal to) all yield O if the specified relation is false and 1 if it is true. The type of the
result is int. The usual arithmetic conversions are performed. Two pointers may be
compared; the result depends on the relative locations in the address space of the pointed-to

objects. Pointer comparison is portable only when the pointers point to objects in the same
array.

Equality Operators

equality-ezpression:
ETPression == erpression
expression /= ezxpression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational

operators except for their lower precedence. (Thus a<b == ¢<d is 1 whenever a<b and ¢<d
have the same truth value).

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to
which O has been assigned is guaranteed not to point to any object and will appear to be equal
to 0. In conventional usage, such a pointer is considered to be null.

Bitwise AND Operator

and-ezpression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual
arithmetic conversions are performed. The result is the bitwise AND function of the operands.
The operator applies only to integral operands.

PROGRAMMER GUIDE 2-13

C LANGUAGE

Bitwise Exclusive OR Operator

ezxclusive-or-ezxpression:
ezpression ~ erpression

The “ operator is associative, and expressions involving “ may be rearranged. The usual
arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator

inclustve-or-expression:
ezpression | expression

The | operator is associative, and expressions involving | may be rearranged. The usual
arithmetic conversions are performed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral operands.

Logical AND Operator

logical-and-expression:
expression 8& expression

The & & operator groups left to right. It returns 1 if both its operands evaluate to nonzero, 0

otherwise. Unlike &, && guarantees left to right evaluation; moreover, the second operand is
not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types
or be a pointer. The result is always int.

Logical OR Operator

logical-or-ezpression:
ezpression || expression

The |} operator groups left to right. It returns 1 if either of its operands evaluates to nonzero,
0 otherwxse Unlike }, § guarantees left to nght evaluation; moreover, the second operand is not
evaluated if the value of the first operand 1s nonzero.

The operands need not have the same type, but each must have one of the fundamental types
or be a pointer. The result is always int.

2-14 ICON INTERNATIONAL

C LANGUAGE

Conditional Operator

conditional-ezxpression:
ezpression ¢ expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is
nonzero, the result is the value of the second expression, otherwise that of third expression. If
possible, the usual arithmetic conversions are performed to bring the second and third
expressions to a common type. If both are structures or unions of the same type, the result has
the type of the structure or union. If both pointers are of the same type, the result has the
common type. Otherwise, one must be a pointer and the other the constant O, and the result
has the type of the pointer. Only one of the second and third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an
lvalue as their left operand, and the type of an assignment expression is that of its left
operand. The value is the value stored in the left operand after the assignment has taken
place. The two parts of a compound assignment operator are separate tokens.

assignment-ezxpression:
lvalue = ezpression
lvalue += expression
lvalue -= expression
lvalue *= expression
lvalue [= expression
lvalue %= ezpression
lvalue >»>= ezxpression
lvalue <<= ezpression
lvalue 8= expression
lvalue "= expression
lvalue |= expression

In the simple assignment with =, the value of the expression replaces that of the object
referred to by the lvalue. If both operands have arithmetic type, the right operand is
converted to the type of the left preparatory to the assignment. Second, both operands may
be structures or unions of the same type. Finally, if the left operand is a pointer, the right
operand must in general be a pointer of the same type. However, the constant 0 may be
assigned to a pointer; it is guaranteed that this value will produce a null pointer
distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as
equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In += and -=, the left
operand may be a pointer; in which case, the (integral) right operand is converted as explained
in “Additive Operators.” All right operands and all nonpointer left operands must have
arithmetic type.

PROGRAMMER GUIDE f 2-15

C LANGUAGE

Comma Operator

comma-ezxpression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left
expression is discarded. The type and value of the result are the type and value of the right
operand. This operator groups left to right. In contexts where comma is given a special
meaning, e.g., in lists of actual arguments to functions (see “Primary Expressions”) and lists of
* initializers (see “Initialization” under “DECLARATIONS”), the comma operator as described
in this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), ¢)

has three arguments, the second of which has the value 5.

DECLARATIONS

Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:

decl-specifiers declarator-lzstopt ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-speczﬁerso ;

sc-specifier decl—speczﬁersopt

The list must be self-consistent in a way described below.

Storage Class Specifiers

The sc-specifiers are:

sc-spectfier:
auto
static
extern
register
typedef

2-16 ICON INTERNATIONAL

C LANGUAGE

The typedef specifier does not reserve storage and is called a “storage class specifier” only for
syntactic convenience. See ‘“Typedef” for more information. The meanings of the various
storage classes were discussed in ‘“Names.”

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case, there must be an external

definition (see “External Definitions”) for the given identifiers somewhere outside the function
in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the
compiler that the variables declared will be heavily used. Only the first few such declarations
in each function are effective. Moreover, only variables of certain types will be stored in
registers; on the PDP-11, they are int or pointer. One other restriction applies to register
variables: the address-of operator & cannot be applied to them. Smaller, faster programs can
be expected if register declarations are used appropriately, but future 1mprovements in code
generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are
never automatic.

Type Specifiers
The type-specifiers are

type-specifier:

struct-or-union-spectfier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-spectfiers
basic-type:

char

short

int

long

unsigned

float

double

void

At most one of the words long or short may be specified in conjunction with int; the meaning
is the same as if int were not mentioned. The word long may be specified in conjunction with
float; the meaning is the same as double. The word unsigned may be specified alone, or in
conjunction with int or any of its short or long varieties, or with char.

PROGRAMMER GUIDE 2-17

C LANGUAGE

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival
use of long, short, or unsigned is not permitted with typedef names. If the type-specifier is
missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in “Structure, Union, and
Enumeration Declarations.” Declarations with typedef names are discussed in “Typedef.”

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:

declarator initializer
opt

Initializers are discussed in “Initialization”. The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the syntax:

declarator:
tdentifier
(declarator)
* declarator
declarator ()
declarator [canstant-ezpressionopt/

The grouping is the same as in expressions.

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an

unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of
complex declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

2-18 ICON INTERNATIONAL

C LANGUAGE

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration
makes the identifier have type “... T ,” where the “...” is empty if D1 is just a plain
identifier (so that the type of x in ‘int x”’ is just int). Then if D1 has the form

*D
the type of the contained identifier is “... pointer to T .”

If D1 has the form

D()

then the contained identifier has the type ... function returning T.”

If D1 has the form
D|constant-ezpression)
or
D[

then the contained identifier has type “... array of T.” In the first case, the constant
expression is an expression whose value is determinable at compile time , whose type is int, and
whose value is positive. (Constant expressions are defined precisely in “Constant Expressions.”)
When several “array of” specifications are adjacent, a multidimensional array is created; the
constant expressions which specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant expression may also
be omitted when the declarator is followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions
are as follows: functions may not return arrays or functions although they may return
pointers; there are no arrays of functions although there may be arrays of pointers to
functions. Likewise, a structure or union may not contain a function; but it may contain a
pointer to a function.

PROGRAMMER GUIDE 2-19

C LANGUAGE

As an example, the declaration
int i, *ip, f(), *fir(), (*pf)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function
fip returning a pointer to an integer, and a pointer pfi to a function which returns an integer.
It is especially useful to compare the last two. The binding of *fip() is *(fip()). The
declaration suggests, and the same construction in an expression requires, the calling of a
function fip. Using indirection through the (pointer) result to yield an integer. In the
declarator (*pfi)(), the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a function, which is then called;
it returns an integer.

As another example,
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank 3X5X7. In complete detail, x3d is
an array of three items; each item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i][i](k] may
reasonably appear in an expression. The first three have type “array” and the last has type
int.

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain any one of several
members. Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union tdentifier

struct-or-union:
struct
union

2-20 ICON INTERNATIONAL

N

C

C LANGUAGE

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-lsst

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union.
A structure member may also consist of a specified number of bits. Such a member is also

called a field ; its length, a non-negative constant expression, is set off from the field name by a
colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are
read left to right. Each nonfield member of a structure begins on an addressing boundary
appropriate to its type; therefore, there may be unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field which does not fit into
the space remaining in a word is put into the next word. No field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field
useful for padding to conform to externally-imposed layouts. As a special case, a field with a
width of O specifies alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as fields, but
implementations are not required to support any but integer fields. Moreover, even int fields
may be considered to be unsigned. For these reasons, it is strongly recommended that fields be
declared as unsigned. In all implementations, there are no arrays of fields, and the address-of
operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most, one of the members can be stored in a
union at any time. ‘

A structure or union specifier of the second form, that is, one of

PROGRAMMER GUIDE 2-21

C LANGUAGE

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the
list. A subsequent declaration may then use the third form of specifier, one of

struct identifier
union tdentifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long
part of the declaration to be given once and used several times. It is illegal to declare a
structure or union which contains an instance of itself, but a structure or union may contain a
pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration which gives
the complete specification of the structure or union in situations in which the size of the
structure or union is unnecessary. The size is unnecessary in two situations: when a pointer to
a structure or union is being declared and when a typedef name is declared to be a synonym
for a structure or union. This, for example, allows the declaration of a pair of structures which
contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary variables. A

particular name may not be used twice in the same structure, but the same name may be used
in several different structures in the same scope.

A simple but important example of a structure declaration is the following binary tree
structure:

struct tnode

{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of the given
sort. With these declarations, the expression

2-22 ICON INTERNATIONAL

«

C LANGUAGE

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right->tword|[0]

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

enum-spectfier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
tdentifier
tdentifier = constant-ezpression

The identifiers in an enum-list are declared as constants and may appear wherever constants
are required. If no enumerators with = appear, then the values of the corresponding constants
begin at O and increase by 1 as the declaration is read from left to right. An enumerator with

= gives the associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other and from
those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag
in a struct-specifier; it names a particular enumeration. For example,

PROGRAMMER GUIDE ' 2-23

C LANGUAGE

enum color { chartreuse, burgundy, claret=20, winedark };

enum color *cp, col;
col = claret;
cp = &col;

if (*cp == burgundy) ...

makes color the enumeration-tag of a type describing various colors, and then declares cp as a

pointer to an object of that type, and col as an object of that type. The possible values are
drawn from the set {0,1,20,21}. ‘

Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is
preceded by = and consists of an expression or a list of values nested in braces.

tnitializer:
= ezpression
= { instializer-list }
= { tnitializer-list , }

initializer-list:
expression
initializer-list | tnitializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in “CONSTANT EXPRESSIONS”, or expressions which
reduce to the address of a previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary expressions involving constants
and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.

Automatic and register variables that are not inmitialized are guaranteed to start off as
garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of
a single expression, perhaps in braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in
increasing subscript or member order. If the aggregate contains subaggregates, this rule

2-24 ICON INTERNATIONAL

/'/ o \‘.
N/

A—

C LANGUAGE

applies recursively to the members of the aggregate. If there are fewer initializers in the list
than there are members of the aggregate, then the aggregate is padded with zeros. It is not
permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. - If the initializer begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive
characters of the string initialize the members of the array.

For example,
intx[]={1,3,5};

declares and initializes x as a one-dimensional array which has three members, since no size
was specified and there are three initializers.

float y[4][3] =

-
-
-

-

-

P SN
0N -
mgmw
L -)

-
-

b

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0],
namely y[0][0], y[0][1], and y[0][2]. Likewise, the next two lines initialize y[1] and y[2]. The
initializer ends early and therefore y[3] is initialized with 0. Precisely, the same effect could
have been achieved by

float y[4][3] =

1,3,5,2,4,6,3,5,7
b

The initializer for y begins with a left brace but that for y[0] does not; therefore, three
elements from the list are used. Likewise, the next three are taken successively for y[1] and
y[2]. Also,

PROGRAMMER GUIDE 2-25

C LANGUAGE

float y[4][3] = -

{1h{2} {3}, {4}

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.

Finally,
char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument
of sizeof), it is desired to supply the name of a data type. This is accomplished using a “type
name”’, which in essence is a declaration for an object of that type which omits the name of
the object.

type-name: / .
type-specifier abstract-declarator N

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator | constant-ezprcssionop ;]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to
identify uniquely the location in the abstract-declarator where the identifier would appear if
the construction were a declarator in a declaration. The named type is then the same as the
type of the hypothetical identifier. For example,

2-26 ICON INTERNATIONAL

C LANGUAGE

int (*[3)0)

name respectively the types “integer,” “pointer to integer,” “array of three pointers to
integers,” ‘“pointer to an array of three integers,” ‘“function returning pointer to integer,”
‘“pointer to function returning an integer,” and ‘“array of three pointers to functions returning
an integer.”

Typedef

Declarations whose ‘“‘storage class” is typedef do not define storage but instead define
identifiers which can be used later as if they were type keywords naming fundamental or
derived types.

typedef-name:
tdentifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type
associated with the identifier in the way described in ‘“‘Meaning of Declarators.” For example,
after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is “pointer to int, ”’ and
that of z is the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly
the same type as any other int object.

PROGRAMMER GUIDE 2-27

C LANGUAGE

o
STATEMENTS ~ l

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form
ezTpression ;

Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called “block”) is provided:

compound-statement:

{ declaration-list
opt

statement-list _, }
opt
declaration-list: o
declaration O
declaration declaration-list e

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered
at the top. It is currently possible (but a bad practice) to transfer into a block; in that case
the initializations are not performed. Initializations of static variables are performed only
once when the program begins execution. Inside a block, extern declarations do not reserve
storage so initialization is not permitted.

Conditional Statement

The two forms of the conditional statement are

if (ezpression) statement
if (ezpression) statement else statement

2-28 ICON INTERNATIONAL

C LANGUAGE

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is.
executed. In the second case, the second substatement is executed if the expression is 0. The
“else” ambiguity is resolved by connecting an else with the last encountered else-less if.

While Statement
The while statement has the form

while (ezpression) statement

The substatement is executed repeatedly so long as the value of the expression remains
nonzero. The test takes place before each execution of the statement.

Do Statement

The do statement has the form

do statement while (ezpression) ;

The substatement is executed repeatedly until the value of the expression becomes 0. The test
takes place after each execution of the statement.

For Statement

The for statement has the form:

for (exp-lopt ; exp-.?opt ; e:zp-3opt) statement

Except for the behavior of continue, this statement is equivalent to

exp-1;
while (ezp-2)

statement
exp-8 ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes 0. The third
expression often specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing ezp-2 makes the implied while clause
equivalent to while(1); other missing expressions are simply dropped from the expansion above.

PROGRAMMER GUIDE 2-29

C LANGUAGE

Switch Statement

The switch statement causes control to be transferred to one of several statements depending
on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int.

The statement is typically compound. Any statement within the statement may be labeled
with one or more case prefixes as follows:

case constant-ezxpression :

where the constant expression must be int. No two of the case constants in the same switch

may have the same value. Constant expressions are precisely defined in “CONSTANT
EXPRESSIONS.”

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and compared with each
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If no case constant matches the
expression and if there is a default, prefix, control passes to the prefixed statement. If no case
matches and if there is no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded
across such prefixes. To exit from a switch, see “Break Statement.”

Usually, the statement that is the subject of a switch is compound. Declarations may appear

at the head of this statement, but initializations of automatic or register variables are
ineffective.

Break Statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control
passes to the statement following the terminated statement.

2-30 ICON INTERNATIONAL

N

Y

C LANGUAGE

Continue Statement

The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or
for statement; that is to the end of the loop. More precisely, in each of the statements

while (...) { do for (...)

contin: ; contin: ; contin: ;

} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, see
“Null Statement”.)

Return Statement

A function returns to its caller by means of the return statement which has one of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of the
expression is returned to the caller of the function. If required, the expression is converted, as
if by assignment, to the type of function in which it appears. Flowing off the end of a function
is equivalent to a return with no returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see “Labeled Statement”) located in the current function.

Labeled Statement
Any statement may be preceded by label prefixes of the form

identifier :

PROGRAMMER GUIDE | 2-31

C LANGUAGE

which serve to declare the identifier as a label. The only use of a label is as a target of a goto.
The scope of a label is the current function, excluding any subblocks in which the same

identifier has been redeclared. See “SCOPE RULES.”

Null Statement
The null statement has the form

e

A null statement is useful to carry a label just before the } of a compound statement or to
supply a null body to a looping statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type.
The type-specifier (see “Type Specifiers” in “DECLARATIONS”) may also be empty, in which
case the type is taken to be int. The scope of external definitions persists to the end of the file
in which they are declared just as the effect of declarations persists to the end of a block. The
syntax of external definitions is the same as that of all declarations except that only at this
level may the code for functions be given.

External Function Definitions

Function definitions have the form

function-definition:
decl-spcczﬁersop : function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see ‘“Scope of
Externals” in “SCOPE RULES” for the distinction between them. A function declarator is

similar to a declarator for a “function returning ...” except that it lists the formal parameters
of the function being defined.

function-declarator:
declarator (parameter-listop ;)

parameter-list:
tdentifier
tdentifier , parameter-list

The function-body has the form

2-32 ICON INTERNATIONAL

C

C LANGUAGE

Junction-body:

declaration-listo

ot compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the
declaration list. Any identifiers whose type is not given are taken to be int. The only storage
class which may be specified is register; if it is specified, the corresponding actual parameter
will be copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;
{

int m;

m=(a>b)la:b;
return((m > ¢) ? m : c);

Here int is the type-specifier; max(a, b, ¢) is the function-declarator; int a, b, ¢; is the
declaration-list for the formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared
float have their declaration adjusted to read double. All char and short formal parameter
declarations are similarly adjusted to read imt. Also, since a reference to an array in any
context (in particular as an actual parameter) is taken to mean a pointer to the first element
of the array, declarations of formal parameters declared “array of ...” are adjusted to read
“pointer to”

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or
register.

PROGRAMMER GUIDE 2-33

C LANGUAGE

SCOPE RULES

A C program need not all be compiled at the same time. The source text of the program may
be kept in several files; and precompiled routines may be loaded from libraries.

Communication among the functions of a program may be carried out both through explicit
calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called the lexical scope
of an identifier, which is essentially the region of a program during which it may be used
without drawing ‘“undefined identifier” diagnostics; and second, the scope associated with
external identifiers, which is characterized by the rule that references to the same external
identifier are references to the same object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the source file in which they appear. The lexical scope of identifiers which
are formal parameters persists through the function with which they are associated. The
lexical scope of identifiers declared at the head of a block persists until the end of the block.
The lexical scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the

block constituting a function, any declaration of that identifier outside the block is suspended
until the end of the block.

Remember also (see “Structure, Union, and Enumeration Declarations” in
“DECLARATIONS”) that tags, identifiers associated with ordinary variables, and identities
associated with structure and union members form three disjoint classes which do not conflict.
Members and tags follow the same scope rules as other identifiers. The enum constants are in
the same class as ordinary variables and follow the same scope rules. The typedef names are
in the same class as ordinary identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

{
auto int distance;

eoe

The int must be present in the second declaration, or it would be taken to be a declaration
with no declarators and type distance.

2-34 ICON INTERNATIONAL

NS

C LANGUAGE

Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be at least one external definition for
the identifier. All functions in a given program which refer to the same external identifier refer
to the same object, so care must be taken that the type and size specified in the definition are
compatible with those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the set of files and
libraries comprising a multi-file program. It is legal to have more than one data definition for

any external non-function identifier; explicit use of extern does not change the meaning of an
external declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning.
In these environments, the explicit appearance of the extern keyword in external data
declarations of identities without initialization indicates that the storage for the identifiers is
allocated elsewhere, either in this file or another file. It is required that there be exactly one
definition of each external identifier (without extern) in the set of files and libraries comprising
a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named files. Lines beginning with # communicate with this preprocessor.
There may be any number of blanks and horizontal tabs between the # and the directive.
These lines have syntax independent of the rest of the language; they may appear anywhere
and have effect which lasts (independent of scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form
#define identifier token-stringop ;

causes the preprocessor to replace subsequent instances of the identifier with the given string of

tokens. Semicolons in or at the end of the token-string are part of that string. A line of the
form

#define idéntzﬁer(identzﬁer,)token-stringopt

where there is no space between the first identifier and the (, is a macro definition with
arguments. There may be zero or more formal parameters. Subsequent instances of the first
identifier followed by a (, a sequence of tokens delimited by commas, and a) are replaced by

PROGRAMMER GUIDE 2-35

C LANGUAGE

N
Lo
the token string in the definition. Each occurrence of an identifier mentioned in the formal S
parameter list of the definition is replaced by the corresponding token string from the call.
The actual arguments in the call are token strings separated by commas; however, commas in
quoted strings or protected by parentheses do not separate arguments. The number of formal
and actual parameters must be the same. Strings and character constants in the token-string
are scanned for formal parameters, but strings and character constants in the rest of the
program are not scanned for defined identifiers to replacement.
In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by writing \ at the end of the line to be
continued.
This facility is most valuable for definition of “manifest constants,” as in
#define TABSIZE 100
int table[TABSIZE];
A control line of the form
#undef identifier ~
causes the identifier’s preprocessor definition (if any) to be forgotten.
If a #defined identifier is the subject of a subsequent #define with no intervening #undef,
then the two token-strings are compared textually. If the two token-strings are not identical
(all white space is considered as equivalent), then the identifier is considered to be redefined.
File Inclusion
A compiler control line of the form
#include "filename"
causes the replacement of that line by the entire contents of the file filename. The named file
is searched for first in the directory of the file containing the #include, and then in a sequence
of specified or standard places. Alternatively, a control line of the form
#include <filename>
searches only the specified or standard places and not the directory of the #include. (How the
places are specified is not part of the language.) Py
N

2-36 ICON INTERNATIONAL

C LANGUAGE

#includes may be nested.

Conditional Compilation

A compiler control line of the form
#if restricted-constant-ezxpression

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions
are discussed in “CONSTANT EXPRESSIONS”; the following additional restrictions apply
here: the constant expression may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expression

defined :identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is
not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token-
strings (except those identifiers modified by defined) just as in normal text. The restricted
constant expression will be evaluated only after all expressions have finished. During this
evaluation, all undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been

the subject of a #define control line. It is equivalent to #ifdef(identifier). A control line of
the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is equivalent to
#ifldefined(identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a control line

Felse

PROGRAMMER GUIDE ' 2-37

C LANGUAGE

and then by a control line
#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the
checked condition is false, then any lines between the test and a #else or, lacking a #else, the
#endif are ignored.

These constructions may be nested.

Line Control

For the benefit of other preprocessors which generate C programs, a line of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the
next source line is given by the constant and the current input file is named by "filename". If
"filename" is absent, the remembered file name does not change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. The storage class is supplied by the context in external definitions and in
declarations of formal parameters and structure members. In a declaration inside a function,
if a storage class but no type is given, the identifier is assumed to be int; if a type but no
storage class is indicated, the identifier is assumed to be auto. An exception to the latter rule
is made for functions because auto functions do not exist. If the type of an identifier is
“function returning ...,” it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared
to be “function returning int.””

TYPES REVISITED

This part summarizes the operations which can be performed on objects of certain types.

2-38 ICON INTERNATIONAL

C LANGUAGE

Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by
functions. Other plausible operators, such as equality comparison and structure casts, are not
implemented.

In a reference to a structure or union member, the name on the right of the -> or the . must
specify a member of the aggregate named or pointed to by the expression on the left. In
general, a member of a union may not be inspected unless the value of the union has been
assigned using that same member. However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several structures that share a common
initial sequence and if the union currently contains one of these structures, it is permitted to

inspect the common initial part of any of the contained structures. For example, the following
is a legal fragment:

union
{
struct
{
int type;
} n;
struct

{
int type;
int intnode;
} ni;
struct
{
int type;
float floatnode;
} nf;
}u;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)

... sin(u.nf.floatnode) ...

Functions

There are only two things that can be done with a function m call it or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another, one might say

int £();

soe

g(f);

PROGRAMMER GUIDE 2-39

C LANGUAGE

Then the definition of g might read

g(funcp)
(int (*funcp)();

oo

(*funcp)();

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was
not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer
to the first member of the array. Because of this conversion, arrays are not lvalues. By
definition, the subscript operator [} is interpreted in such a way that E1[E2] is identical to
*((E1)+(E2)). Because of the conversion rules which apply to +, if E1 is an array and E2 an
integer, then E1[E2] refers to the E2 -th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional
array of rank iXjX...Xk, then E appearing in an expression is converted to a pointer to an (n-
1)}-dimensional array with rank jX...Xk. If the * operator, either explicitly or implicitly as a
result of subscripting, is applied to this pointer, the result is the pointed-to (n-1)-dimensional
array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Here x is a 3X5 array of integers. When x appears in an expression, it is converted to a
pointer to (the first of three) 5-membered arrays of integers. In the expression x[i], which is
equivalent to *(x-+i), x is first converted to a pointer as described; then i is converted to the
type of x, which involves multiplying i by the length the object to which the pointer points,
namely 5-integer objects. The results are added and indirection applied to yield an array (of
five integers) which in turn is converted to a pointer to the first of the integers. If there is
another subscript, the same argument applies again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the

declaration helps determine the amount of storage consumed by an array. Arrays play no
other part in subscript calculations.

2-40 ICON INTERNATIONAL

TN

A

C LANGUAGE

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent
aspects. They are all specified by means of an explicit type-conversion operator, see ‘“Unary
Operators” under EXPRESSIONS” and “Type Names”under “DECLARATIONS.”

A pointer may be converted to any of the integral types large enough to hold it. Whether an
int or long is required is machine dependent. The mapping function is also machine dependent
but is intended to be unsurprising to those who know the addressing structure of the machine.
Details for some particular machines are given below. '

An object of integral type may be explicitly converted to a pointer. The mapping always
carries an integer converted from a pointer back to the same pointer but is otherwise machine
dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer
may cause addressing exceptions upon use if the subject pointer does not refer to an object
suitably aligned in storage. It is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to
allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for
conversion to a pointer to double; then the use of the function is portable.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after case, as array
bounds, and in initializers. In the first two cases, the expression can involve only integer
constants, character constants, casts to integral types, enumeration constants, and sizeof

PROGRAMMER GUIDE 2-41

C LANGUAGE

expressions, possibly connected by the binary operators
+-*/%&|"<K>>=1=<><=>=88&

or by the unary operators
or by the ternary operator

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one
can also use floating constants and arbitrary casts and can also apply the unary & operator to
external or static objects and to external or static arrays subscripted with a constant
expression. The unary & can also be applied implicitly by appearance of unsubscripted arrays
and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and
integer division have proven in practice to be not much of a problem. Other facets of the
hardware are reflected in differing implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the order in which bytes are

placed in a word, are nuisances that must be carefully watched. Most of the others are only
minor problems.

The number of register variables that can actually be placed in registers varies from machine
to machine as does the set of valid types. Nonetheless, the compilers all do things properly for
their own machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. The order in
which side effects take place is also unspecified.

2-42 ICON INTERNATIONAL

C LANGUAGE

(/,' Since character constants are really objects of type int, multicharacter character constants
' may be permitted. The specific implementation is very machine dependent because the order
in which characters are assigned to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some machines and left
to right on other machines. These differences are invisible to isolated programs that do not
indulge in type punning (e.g., by converting an int pointer to a char pointer and inspecting the

pointed-to storage) but must be accounted for when conforming to externally-imposed storage
layouts.

SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension than as an exact
statement of the language.

Expressions

The basic expressions are:

expression:
primary
* expression
&lvalue
- expression
! expression
" expresstion
++ lvalue
--lvalue
lvalue ++
lvalue --
sizeof ezpression
sizeof (type-name)
(type-name) expression
ezpression binop expression
expresston ? expression @ expression
lvalue asgnop ezxpression
expression , expression

=

PROGRAMMER GUIDE 2-43

C LANGUAGE

//«\
primary: R
identifier
constant
string
(expression)
primary (ezpression-list ¢)
primary [ezpression |
primary . identifier
primary -> identifier
lvalue:
tdentifier
primary [ezpression |
lvalue . identifier
primary -> identifier
* expression
(lvalue)
The primary-expression operators
0fn.->
J'/V’ A
have highest priority and group left to right. The unary operators N
* & - ! 7 4+ --sizeof (type-name)
have priority below the primary operators but higher than any binary operator and group
right to left. Binary operators group left to right; they have priority decreasing as indicated
below.
binop:
* | %
+ -
>> <L
< > <= >=
== |=
&
]
]
&&
I
1
The conditional operator groups right to left.
: A’

Assignment operators all have the same priority and all group right to left.

2-44 ICON INTERNATIONAL

C LANGUAGE

= = .= *= /= %: >>= <<= &: f= {:

The comma operator has the lowest priority and groups left to right.

Declarations

declaration:
decl-specifiers init-declarator—listop ¢
decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-spec{ﬁersOPt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int

long

unsigned

float

double

void

enum-specifier:
enum { enum-list }

enum identifier { enum-list }
enum :dentifier

C

PROGRAMMER GUIDE 2-45

C LANGUAGE

2-46

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-ezpression

init-declarator-list:
init-declarator
tnit-declarator , init-declarator-list

init-declarator:

declarator initializer
opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-ezpressz’onopt]

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator

struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-ezpression
: constant-expression

ICON INTERNATIONAL

C LANGUAGE

(snitializer:

= ezpression
= { initializer-list }
= { initializer-list , }

tnitializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ tnitializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
¥ abstract-declarator
abstract-declarator ()
abstract-declarator [constant-ezprcssionop ; /

E‘ 7 typedef-name:
tdentifier

Statements

compound-statement:

{ declaration-list
opt

statement-list t}
declaration-list:

declaration

declaration declaration-list

statement-list:
statement
statement statement-list

PROGRAMMER GUIDE 2-47

C LANGUAGE

statement:
compound-statement
ezpression ;
if (expression) statement
if (ezpression) statement else statement
while (ezpression) statement
do statement while (ezpression) ;
for {expopt;ezpop_t;ezpo ¢/ statement
switch (“ezpression) sgatcment
case constant-ezpression : statement
default : statement
break ;
continue ;
return ;
return ezpression ;
goto identifier ;
tdentifier : statement

;
External definitions

program:
external-definition
ezternal-definition program

ezternal-definition:
Junction-definition
data-definition

function-definition:
dccl—speciﬁeropt function-declarator function-body

function-declarator:
declarator (parameter-listop :)

parameter-list:
tdentifier
tdentifier , parameter-list

Junction-body:

declaration-listo

ot compound-statement

data-definition:
extern declaration ;
static declaration ;

2-48

ICON INTERNATIONAL

C LANGUAGE

Preprocessor

#tdefine identifier token-string

#define identifier(identifier,... foken-string ;
#undef identifier op
#include "filename"

#include <filename>

#Af restricted-constant-ezxpression

#ifdef identifier

#ifndef tdentifier

Felse

#endif

#line constant "filename"

PROGRAMMER GUIDE 2-49

——

Chapter 3

C LIBRARIES

PAGE

GENERAL ...ttt ettt et e et tesereneaeanestasesnaasaessasermssenmsetsesnasstasssassonstesessssensessenreetnsteenssanesiases 3-1
INClUAINg FURCLIONSoiiiiiiiaiiiiiiiiiiieiieiieriaeieerrnonesssiesneensssasessssisesssenssssssssssontssssssessssnssssssnssensosasessscnsrns 3-1
Including Declarations 3-2

THE CLIBRARYcccooiiiiiiiiiiininneee 3-2
Input/Output Control 3-3

Flle Access FUNCUIONSoooiii it ettt e e et et b ea s et st e esnseasseastasanetanenetansernnns 3-3

Flle Status FUNCUIONS ...ttt et st e st et ettt ene e st s an et enensasanenses 3-4
INPUL FUNCTIONS ...ttt eetreet e e s e e euaaacassasaraerasanseestnssstastnnasnenssssseensnnsnstansnrnsennennens 3-4
Output Functions 3-5
Miscellaneous Functions 3-6
String Manipulation Functions.................... ettt —————t ettt et e e et et 3.6
Character ManipulBLIONoiiiiiiiiii it eee e e ettt e e et st saneansaneraastsasnnsensetasensansannsnnaraneen 3-8
Character Testing FUnCtIONScocoiiiiiiiiiiii e e e e aae s e et ane e s et st anssneseenaenaanns 3-8
Character Translation FUNCUIONSc..iviiiiiiiiiiiii e e et e e s er et e e et eae s sanaensetneaneannennaees 3-9

TIME FUNCEIONS ...ooiiiiiiiiiiiiii ittt ettt e ete e s et e e et e et e ae e eeaaeeansanaenseanesesansasesranssssenernnenntennesnnsnsennns
Miscellaneous Functlions
Numerical Conversion
DES Algorithm Access
(€3 713 O § L T PO S PPN

Password Flle Access

Parameter Access...........c..........

Hash Table Management

BInary Tree MBNAGEMENUToooiiiiiiiiiiiiiii i eeetieeeeennteaeetneeeerressetseentetnaetnsanossssstssanssnssnassassnnentsenassanns 3-14
Table MANAGEMIENTc.ocuuiiiiiiiiiiiiitii ittt et eriecta et ees et senserassarasatnesnnsasertnsrresenssnnsrasensenserssssnnneennsens 3-14
MemOPY ALIOCRUION ...ttt et et eee et et s etaensaatanranaeeanesnsanessasnsnessetnsansnssnsnsnssenenees 3-15
Pseudorandom Number Generatlonoiiuiiiiiiiiiiiiiiirciie e ieiiee et re et e vt eeneereeanatnseneenseansesrrtesennesns 3-16
Signal Handling Funetionsc..o.iiviiiiiiiiiiiiiii e eeieeteie e s et stesaesenreesesssnsnanssnsnssensssssssensnsnenssnnemnenens 3-16

Miscellaneous

<\
. //

Chapter 3

C LIBRARIES

GENERAL

This chapter and Chapter 4 describe the libraries that are supported on the ICON/UXV
system. A library is a collection of related functions and/or declarations that simplify
programming effort by linking only what is needed, allowing use of locally produced functions,
etc. All of the functions described are also described in Part 3 of the ICON/UXV Programmer
Reference Manual. Most of the declarations described are in Part 5 of the ICON/UXV
Programmer Reference Manual. The three main libraries on the ICON/UXV system are:

C library This is the basic library for C language programs. The C library is
composed of functions and declarations used for file access, string testing
and manipulation, character testing and manipulation, memory
allocation, and other functions. This library is described later in this
chapter.

Object file This library provides functions for the access and manipulation of object
files. This library is described in Chapter 4.

Math library This library provides exponential, bessel functions, logarithmic,
hyperbolic, and trigonometric functions. This library is described in
Chapter 4. '

Some libraries consist of two portions - functions and declarations. In some cases, the user
must request that the functions (and/or declarations) of a specific library be included in a

program being compiled. In other cases, the functions (and/or declarations) are included
automatically.

Including Functions

When a program is being compiled, the compiler will automatically search the C language
library to locate and include functions that are used in the program. This is the case only for
the C library and no other library. In order for the compiler to locate and include functions
from other libraries, the user must specify these libraries on the command line for the compiler.
For example, when using functions of the math library, the user must request that the math
library be searched by including the argument -lm on the command line, such as:

cc file.c -lm

The argument -lm must come after all files that reference functions in the math library in
order for the link editor to know which functions to include in the a.out file.

PROGRAMMER GUIDE 3-1

C LIBRARIES

This method should be used for all functions that are not part of the C language library.

Including Declarations

Some functions require a set of declarations in order to operate properly. A set of declarations
is stored in a file under the /usr/include directory. These files are referred to as header files.
In order to include a certain header file, the user must specify this request within the C
language program. The request is in the form:

#include <file.h>

where file.h is the name of the file. Since the header files define the type of the functions and

various preprocessor constants, they must be included before invoking the functions they
declare.

The remainder of this chapter describes the functions and header files of the C Library. The
description of the library begins with the actions required by the user to include the functions
and/or header files in a program being compiled (if any). Following the description of the
actions required is information in three-column format of the form:

function reference(N) Brief description.

The functions are grouped by type while the reference refers to section ‘N’ in the JCON/UXV

Programmer Reference Manual. Following this, are descnptxons of the header. files associated
with these functions (if any).

THE C LIBRARY

The C library consists of several types of functions. All the functions of the C library are
loaded automatically by the compiler. Various declarations must sometimes be included by the
user as required. The functions of the C library are divided into the following types:

o Input/output control

o String manipulation

e Character manipulation
e Time functions

o Miscellaneous functions.

3-2 ICON INTERNATIONAL

Input/Output Control

C LIBRARIES

These functions of the C library are automatically included as needed during the compiling of a
C language program. No command line request is needed.

The header file required by the input/outpﬁt functions should be included in the program being
compiled. This is accomplished by including the line:

#include <stdio.h>

near the beginning of each file that references an input or output function.

The input /output functions are grouped into the following categories:

o File access

e File status

e Input

¢ Output

e Miscellaneous.

FUNCTION
fclose

fdopen

fileno

fopen

freopen

fseek

PROGRAMMER GUIDE

File Access Functions

REFERENCE
fclose(3S)

fopen(3S)
ferror(3S)

fopen (3S)

fopen(3S)

fseek(3S)

BRIEF DESCRIPTION
Close an open stream.

Assoclate stream with
an open(2) ed file.

File descriptor associated
with an open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

C LIBRARIES

pclose

popen

rewind

setbuf

vsetbuf

FUNCTION

clearerr

feof

ferror

ftell

FUNCTION

fgetc

fgets

fread

fscanf

3-4

popen(3S)

popen(3S)

fseek(3S)

Close a stream opened
by popen.

Create pipe as a stream
between calling process

and command.

Reposition file

setbuf(3S)

setbuf(3S)

File Status Functions

REFERENCE

ferror(3S)

ferror(3S)

ferror(3S)

fseek(3S)

Input Functions

REFERENCE

getce(3S) -

gets(3S)

fread(3S)

scanf(3S)

pointer at beginning
of file.

Assign buffering to
stream.

Similar to setbuf, but
allowing finer control.

BRIEF DESCRIPTION

Reset error condition on
stream.

Test for “end of file”
on stream.

Test for error condition
on stream.

Return current position
in the file.

BRIFEF DESCRIPTION

True function for getc
(3S).

Read string from stream.

General buffered read
from stream.

Formatted read from
stream.

ICON INTERNATIONAL

getc

getchar

gets
getw

scanf

sscanf

ungetc

FUNCTION

fllush

fprintf

fputc

fputs

fwrite

printf

putc

putchar

puts

PROGRAMMER GUIDE

getc(3S)

getc(3S)

gets(3S)
getc(3S)

scanf(3S)

scanf(3S)

ungetc(3S)

Output Functions

REFERENCE

fclose(3S)

printf(3S)

putc(3S)

puts(3S)

fread(3S)

printf(3S)

putc(3S)

putc(3S)

puts(3S)

C LIBRARIES
Read character from
stream.

Read character from
standard input.

Read string from standard input.
Read word from stream.

Read using format from
standard input.

Formatted from
string.

Put back one character on
stream.

BRIEF DESCRIPTION

Write all currently buffered
characters from stream.

Formatted write to
stream.

True function for pute
(39).

Write string to stream.

General buffered write to
stream.

Print using format to
standard output.

Write character to
standard output.

Write character to
standard output.

Write string to
standard output.

3-5

C LIBRARIES

putw putc(3S) Write word to stream.

sprintf printf(3S) Formatted write to
string.

viprintf vprint(3C) | Print using format to

stream by varargs(5)
argument list.

vprintf vprint(3C) "~ Print using format to
standard output by
varargs(5) argument list.

vsprintf vprintf(3C) Print using format to

stream string by
varargs(5) argument list.

Miscellaneous Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

ctermid ctermid(3S) Return file name for
controlling terminal.

cuserid cuserid(3S) Return login name for
owner of current process.

system system(3S) Execute shell command.

tempnam tempnam(3S) Create temporary file
name using directory and
prefix.

tmpnam tmpnam (3S) Create temporary file
name.

tmpfile tmpfile(3S) Create temporary file.

String Manipulation Functions

These functions are used to locate characters within a string, copy, concatenate, and compare
strings. These functions are automatically located and loaded during the compiling of a C
language program. No command line request is needed since these functions are part of the C
library. The string manipulation functions are declared in a header file that may be included
in the program being compiled. This is accomplished by including the line:

#include <string.h>

3-6 ICON INTERNATIONAL

near the beginning of each file that uses one of these functions.

' FUNCTION
strcat

strchr

stremp
strepy

strcspn

strlen
strncat
strncmp
strncpy
strpbrk

strrchr

strspn

strtok

PROGRAMMER GUIDE

REFERENCE

string(3C)

string(3C)

string(3C)
string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

C LIBRARIES

BRIEF DESCRIPTION
Concatenate two strings.

Search string for
character.

Compares two strings.
Copy string.

Length of initial string
not containing set of
characters.

Length of string.

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token

separated by any of a
set of characters.

3-7

C LIBRARIES

N
Character Manipulation —
The following functions and declarations are used for testing and translating ASCII characters.
These functions are located and loaded automatically during the compiling of a C language
program. No command line request is needed since these functions are part of the C library.
The declarations associated with these functions should be included in the program being
compiled. This is accomplished by including the line:
#include <ctype.h>
near the beginning of the file being compiled.
Character Testing Functions
These functions can be used to identify characters as uppercase or lowercase letters, digits,
punctuation, etc.
FUNCTION REFERENCE BRIEF DESCRIPTION
isalnum ctype(3C) Is character)
alphanumeric? I\
isalpha ctype(3C) Is character alphabetic?
isascii ctype(3C) Is integer ASCII
character?
iscntrl ctype(3C) Is character a control
character?
isdigit ctype(3C) Is character a digit?
isgraph ctype(3C) Is character a printable
character?
islower ctype(3C) Is character a
lowercase letter?
isprint ctype(3C) Is character a printing
character including
space?
ispunct ctype(3C) Is character a
punctuation character?
isspace ctype(3C) Is character a white N/

space character?

3-8 ICON INTERNATIONAL

C LIBRARIES

isupper ctype(3C) Is character an uppercase
letter?
isxdigit ctype(3C) Is character a hex digit?

Character Translation Functions

These functions provide translation of uppercase to lowercase, lowercase to uppercase, and
integer to ASCII. ‘

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

tolower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the systems idea of the current date
and time. These functions are located and loaded automatically during the compiling of a C

language program. No command line request is needed since these functions are part of the C
library.

The header file associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <time.h>
near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by time(2).

FUNCTION REFERENCE BRIEF DESCRIPTION
asctime ctime(3C) Return string
representation

of date and time.

PROGRAMMER GUIDE 3-9

C LIBRARIES

ctime ctime(3C) Return string
representation of
date and time, given
integer form. '

gmtime ctime(3C) Return Greenwich
Mean Time.

localtime ctime(3C) Return local time.

tzset ctime(3C) Set time zone field
from environment
variable.

Miscellaneous Functions

These functions support a wide variety of operations. Some of these are numerical conversion,
password file and group file access, memory allocation, random number generation, and table
management. These functions are automatically located and included in a program being
compiled. No command line request is needed since these functions are part of the C library.

Some of these functions require declarations to be included. These are described following the
descriptions of the functions.

Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

ab4l a641(3C) Convert string to
base 64 ASCII.

atof atof(3C) ' Convert string to.
floating.

atoi atof(3C) Convert string to
integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13t0l(3C) Convert 3-byte integer
to long.

3-10 ICON INTERNATIONAL

C LIBRARIES

Itol3 13tol(3C) Convert long to 3-byte
integer.

ldexp frexp(3C) Combine mantissa and
exponent.

164a a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into

integer and fraction.

DES Algorithm Access

The following functions allow access to the Data Encryption Standard (DES) algorithm used in
the ICON/UXV operating system. The DES algorithm is implemented with variations to
frustrate use of hardware implementations of the DES for key search.

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt(3C) Encode string.

encrypt crypt(3C) Eﬁcode /decode string of
Os and 1Is.

setkey crypt(3C) Initialize for subsequent

use of encrypt.

Group File Access

The following functions are used to obtain entries from the group file. Declarations for these
functions must be included in the program being compiled with the line:

#include <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent(3C) Close group file being
processed.

getgrent getgrent(3C) Get next group file
entry.

getgrgid getgrent(3C) Return next group with -

matching gid.

PROGRAMMER GUIDE 3-11

C LIBRARIES

N
(
getgrnam getgrent(3C) Return next group with N
matching name.
setgrent getgrent(3C) Rewind group file being
processed.
fgetgrent getgrent(3C) Get next group file entry
: from a specified file.
Password File Access
These functions are used to search and access information stored in the password file
(/etc/passwd). Some functions require declarations that can be included in the program being
compiled by adding the line:
#include <pwd.h>
FUNCTION REFERENCE BRIEF DESCRIPTION
endpwent getpwent(3C) Close password file
being processed.
getpw getpw(3C) Search password file o
for uid.
getpwent getpwent(3C) Get next password file
entry.
getpwnam getpwent(3C) Return next entry with
matching name.
getpwuid getpwent(3C) Return next entry with
matching uid.
putpwent putpwent(3C) Write entry on stream.
setpwent getpwent(3C) Rewind password file
being accessed.
fgetpwent getpwent(3C) Get next password file
entry from a specified
file.
/{”‘ \\
N

3-12 , ICON INTERNATIONAL

Parameter Access

C LIBRARIES

The following functions provide access to several different types of paramenters. None require

any declarations.

FUNCTION REFERENCE
getopt getopt(3C)
getcwd getewd(3C)
getenv getenv(3C)
getpass getpass(3C)
putenv putenv(3C)

Hash Table Management

BRIEF DESCRIPTION

Get next option from
option list.

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

The following functions are used to manage hash search tables. The header file associated with
these functions should be included in the program being compiled. This is accomplished by

including the line:
#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE
hcreate hsearch(3C)
hdestroy hsearch(3C)
hsearch hsearch(3C)

PROGRAMMER GUIDE

BRIEF DESCRIPTION
Create hash table.
Destroy hash table.

Search hash table for
entry.

3-13

C LIBRARIES

Binary Tree Management

The following functions are used to manage a binary tree. The header file associated with

these functions should be included in the program being compiled. This is accomplished by
including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION
tdelete tsearch(3C) Deletes nodes from
binary tree.
tfind tsearch(3C) Find element in
‘ binary tree.
tsearch tsearch(3C) Look for and add
element to binary
tree.
twalk tsearch(3C) Walk binary tree.

Table Management

The following functions are used to manage a table. Since none of these functions allocate
storage, sufficient memory must be allocated before using these functions. The header file
associated with these functions should be included in the program being compiled. This is
accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

bsearch bsearch(3C) Search table using
binary search.

lfind Isearch(3C) Find element in
library tree.

3-14 ICON INTERNATIONAL

lsearch Isearch(3C)
gsort geort(3C)

Memory Allocation

The following functions provide a means by which memory can be
freed. .

FUNCTION ‘ REFERENCE
calloc malloc(3C)
free malloc(3C)
malloc malloc(3C)
realloc malloc(3C)

The following is another set of memory allocation functions available.

FUNCTION REFERENCE
calloc malloc(3X)
free malloc(3X)
malloc malloc(3X)
mallopt malloc(3X)
mallinfo malloc(3X)
realoc malloc(3X)

PROGRAMMER GUIDE

C LIBRARIES

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

dynamically allocated or

BRIEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Change size of allocated
storage.

BRIFEF DESCRIPTION
Allocate zeroed storage.

Free previously allocated
storage.

Allocate storage.

Control allocation
algorithm.

Space usage.

Change size of
allocated storage.

3-15

C LIBRARIES

Pseudorandom Number Generation

The following functions are used to generate pseudorandom numbers. The functions that end
with 48 are a family of interfaces to a pseudorandom number generator based upon the linear
congruent algorithm and 48-bit integer arithmetic. The rand and srand functions provide an
interface to a multiplicative congruential random number generator with period of 232.

FUNCTION REFERENCE BRIEF DESCRIPTION

drand48 drand48(3C) Random double over
the interval [0 to 1).

lcong48 drand48(3C) Set parameters for

drand48, Irand48,
and mrand48.

Irand48 drand48(3C) Random long over the
interval [0 to 231).

mrand48 drand48(3C) Random long over the
interval [-231 to 231),

rand rand(3C) - Random integer over the
interval [0 to 32767).

seed48 drand48(3C) Seed the generator for
drand48, Irand48, and
mrand48.

srand rand(3C) Seed the generator
for rand.

srand48 drand48(3C) Seed the generator for

drand48, Irand48, and
mrand48 using a long.

Sign<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>