
ICON/UXV
Programmer
Guide

ICON
INTERNATIONAL
764 East Timpanogos Parkway
Orem. Utah 84057
(801) 225-6888

1

c

PROGRAMMER GUIDE

ICON/UXV
Operating
System

© Copyright 1988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without prior written approval from Icon
International, Inc. .

Icon International, Inc. reserves the right to make changes, without notice, to the specifications
and materials contained herein, and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical, arithmetic, and listing errors.

The UNIX(8l Software and Text Source for this manual is under license from AT&T.
Copyright © 1984 AT&T Technologies

Order No. 172·036·005 AO (Manual Assembly)
Order No. 171·063·006 AO (Manual Pages only)

This manual was set on an IMAGEN 81300 laser printer driven by the IROFF formatter
operating under the ICONIUXV system.

Trademarks

The ICON logo is a registered trademark and ICON/UXV is a trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.
3B, WE, and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.
AUSTEC is a trademark of Austec International, Ltd. (Australia)
DEC, PDP, VAX, UNIBUS, SBI, and MASSBUS are trademarks of Digital Equipment Corp.
DIABLO and Ethernet are trademarks of Xerox Corporation.
HP is a trademark of Hewlett-Packard, Inc.
HYPERchannel is a trademark of Network Systems Corporation.
mM is a trademark of International Business Machines Corporation.
TEKTRONIX is a registered trademark of Tektronix, Inc.
TELETYPE is a trademark of AT&T Teletype Corporation.
Versatec is a registered trademark of Versatec Corporation. ("-

o
i ICON INTERNATIONAL

(----
\ , ,
/

ICON/UXV Programmer Guide

Manual Pages Part No. 171-063-006

Date Revision Description Pages Affected

Apr. 1988 AO Initial production release All

Aug. 1988 A1 Add Chapter 26 "A Fast TOC. Chapter 26 - all
File System For UNIX"

PROGRAMMER GUIDE iii

---------------- ------ ---- --- - --~--

CONTENTS

CHAPTER 1. INTRODUCTION

CHAPTER 2. C LANGUAGE

CHAPTER 3. C LmRARIES

CHAPTER 4. THE OBJECT AND MATH LmRARIES

CHAPTER 5. COMPILER AND C LANGUAGE

CHAPTER 6. A C PROGRAM CHECKER - "LINT"

CHAPTER 7. SYMBOLIC DEBUGGING PROGRAM - "SDB"

CHAPTER 8. ICON/UXV SYSTEM FORTRAN COMMANDS

CHAPTER 9. FORTRAN 77

CHAPTER 10. RATFOR

CHAPTER 11. THE PROGRAMMING LANGUAGE EFL
~

CHAPTER 12. THE CURESES AND TERMINFO PACKAGE

CHAPTER 13. CURSES EXAMPLES

CHAPTER 14. (make) FOR MAINTAINING COMPUTER PROGRAMS

CHAPTER 15. SOURCE CODE CONTROL SYSTEM USER GUIDE

CHAPTER 16. THE M4 MACRO PROCESSOR

CHAPTER 17. THE A WK PROGRAMMING LANGUAGE

CHAPTER 18. THE LINK EDITOR

CHAPTER 19. THE COMMON OBJECT FILE FORMAT

CHAPTER 20. SYSTEM V/68 ASSEMBLER USER'S GUIDE

CHAPTER 21. ARBITRARY PRECISION DESK CALCULATOR
LANGUAGE (BC)

PROGRAMMER GUIDE v

C ' CHAPTER 22.

c

CHAPTER 23.

CHAPTER 24.

CHAPTER 25.

CHAPTER 26.

vi

INTERACTIVE DESK CALCULATOR (DC)

LEXICAL ANALYZER GENERATOR (LEX)

~--- ----~-~~-

YET ANOTHER COMPILER·COMPILER (YACC)

UNIX SYSTEM TO UNIX SYSTEM COpy (UUCP)

A FAST FILE SYSTEM FOR UNIX

ICON INTERNATIONAL

-- --- -- ------------~'"-.----

iv ICON INTERNATIONAL

c

c·

Chapter 1

INTRODUCTION
This volume describes two main programming languages supported in the ICONjUXV
operating system. It is also describes the various software "tools" that aid the ICON/VAry
operating system user. The user should have at least 2 years of specialized training in
computer-related fields such as programming or UNIX~ system use primarily for software
system development. The following paragraphs contain brief descriptions of the contents of the
chapter in this manual.

• C Language - A medium-level programming language which was used to write most of
the ICON/UXV operating system. Chapter 2 describes the C language. Chapters 3
through 7 describe the libraries and support tools available with the ICON/UXV
operating system for the benefit of the C language programmer. These chapters contain
the following:

C LANGUAGE- Chapter 2 provides a summary of the grammar and rules of
the C programming language.

LmRARIES- Chapters 3 and 4 describe functions and declarations that support
the C Language and how to use these functions. Chapter 3 describes the C Library
and Chapter 4 describes the Object File and Math Libraries.

THE "cc" COMMAND- Chapter 5 describes the command used to compile C
language programs, produce assembly language programs, and produce executable
programs.

A C PROGRAM CHECKER - "lint"- Chapter 6 describes a program that
attempts to detect compile-time bugs and non-portable features in C programs.

A SYMBOLIC DEBUGGER - "sdb" - Chapter 7 describes a symbolic
debugging program that is used to debug compiled C language programs .

• Fortran - Fortran 77, a rational Fortran preprocessor (Ratfor), and EFL are described
as follows:

ICON/UXV SYSTEM COMMANDS FOR FORTRAN- Chapter 8 describes
the various commands that may be used with Fortran under an ICON/UA"
operating system.

FORTRAN 77 - Chapter 9 describes the implementation of Fortran 77 under the
ICON/UXV operating system in terms of the variations from the American
National Standard.

O. UNIX is a registered trademark of AT&T

PROGRAMMER GUIDE 1-1

INTRODUCTION

RATFOR- Chapter 10 describes the Ratfor preprocessor. This preprocessor
provides a means for writing Fortran in a fashion similar to the C language. This
preprocessor provides (among other things) simplified control-ftow statements.

EFL- Chapter 11 describes the programming language EFL.

Chapter 12 describes the curses and terminfo package that provides the programmer with
screen-oriented programming capabilities. Chapter 13 provides examples of curses programs.

Chapters 8, 9, 10 and 11 assume that the user is already familiar with Fortran 77. If not
familiar, review one of the many texts that describes Fortran 77. The following texts are
suggested:

FORTRAN 77
Harry Katzan, Jr.
Van Nostrand Reinhold

FORTRAN 77 - FEATURING STRUCTURED PROGRAMMING
Loren P. Meissner and Elliot I. Organick
Addison-Wesly

AMERICAN NATIONAL STANDARD PROGRAMMING
LANGUAGE FORTRAN

ANSI x3.9 - 1978
American National Standards Institute

Chapter 14, (make) FOR MAINTAINING COMPUTER PROGRAMS, describes a software tool
for maintaining, updating, and regenerating groups of computer programs. The many
activities of program development and maintenance are made simpler by the make program.

Chapter 15, SOURCE CODE CONTROL SYSTEM (SCCS) USER'S GUIDE, describes the
collection of SCCS programs under the ICONjUXV operating system. The SCCS programs act
as a "custodian" over the ICONjUXV system files.

Chapter 16, THE M4 MACRO PROCESSOR, describes a general purpose macro processor that
may be used as a front end for rational Fortran, C, and other programming languages.

Chapter 17, THE Itawk" PROGRAMMING LANGUAGE, describes a software tool designed to
make many common information retrieval and text manipulation tasks easy to state and to
perform.

Chapter 18, THE LINK EDITOR, describes a software tool (ld) that creates load files by
combining object files, performing relocation, and resolving internal references.

1-2 ICON INTERNATIONAL

) ('\ I

r
I. ,

"--/

INTRODUCTION

() Chapter 19, THE COMMON OBJECT FILE FORMAT (COFF), describes the output file
produced on some ICON/UXV systems by the assembler a.nd the link editor.

(

()

Cha.pter 20, SYSTEM V 168 ASSEMBLER USER'S GUIDE, describes the ICON/UX resident
assembler, as. The as program allows programmers fa.miliar with the MC68000 family of
processors to be able to program in as.

Chapter 21, ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC), describes a
compiler for doing arbitrary precision arithmetic on the ICON/UXV operating system.

Chapter 22, INTERACTIVE DESK CALCULATOR (DC), describes a program implemented on
the ICON/UXV operating system to do arbitrary-precision integer arithmetic.

Chapter 23, LEXICAL ANALYZER GENERATOR (Lex), describes a software tool that
lexically processes character input streams.

Chapter 24, YET ANOTHER COMPILER-COMPILER (yacc), describes the yacc program.
The yacc program provides a general tool for imposing structure on the input to a computer
program.

Chapter 25, UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP) , describes a network that
provides information exchange (between UNIX systems) over the direct distance dialing
network.

Throughout this document, each reference of the form name(IM}, name(7), or name(8) refers
to entries in the ICONIUXV Administrator Reference Manual. Each reference of the form
name(l) and name(6) refers to entries in the ICON/UXV Reference Manual. All other
references to entries of the form name(N), where possibly followed by a letter, refer to entry
name in section N of the ICONIUXV Programmer Reference Manual.

PROGRAMMER GUIDE 1-3

,

Chapter 2

CLANGUAGE

PAGE

LEXICAL CONVENTIONS .. 2-1

SYNTAX NOTATION .. 2-4

NAMES... 2-4

OBJECTS AND LVALUES ... 2-6

CONVERSIONS , 2-0

EXPRESSIONS................. 2-8

DECLARATIONS ... 2-10

STATEMENTS ... 2-28

EXTERNAL DEFINITIONS .. ;.................... 2-32

SCOPE RULES 2-34

COMPILER CONTROL LINES __ 2-36

IMPLICIT DECLARATIONS _.. 2-38

('. ' . TYPES REVISITED ... :.. 2-38

CONSTANT EXPRESSIONS .. 2-41

PORTABILITY CONSIDERATIONS , ... 2.42

SYNTAX SUMMARY .. :.................... 2-43

,(.
-<

f

(

Chapter 2

CLANGUAGE

LEXICAL CONVENTIONS

There are six classes of tokens - identifiers, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, "white space") as described
below are ignored except as they serve to separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token IS

taken to include the longest string of characters which could possibly constitute a token.

Comments

The characters 1* introduce a comment which terminates with the characters • f. Comments
do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The
underscore (_) counts as a letter. Uppercase and lowercase letters are different. Although
there is no limit on the length of a name, only initial characters are significant: at least eight
characters of a non-external name, and perhaps fewer for external names. Moreover, some
implementations may collapse case distinctions for external names. The external name sizes
include:

PDP-l1
VAX-l1
AT&T 39 20

7 characters, 2 cases
> 100 characters, 2 cases
> 100 characters, 2 cases

Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

auto do for return typeder
break double goto short union
case else if sizeor unsigned
char enum int static void
continue external long struct while
default float register switch

(~_~,' Some implementations also reserve the words fortran and asm.

PROGRAMMER GUIDE 2-1

CLANGUAGE

Constants

There are several kinds of constants. Each has a type; an introduction to types is given in
"NAMES." Hardware characteristies that affect sizes are summarized in "Hardware
Characteristics" under "LEXICAL CONVENTIONS."

Integer am.tarrt.

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0
(digit zero). An octal constant consists of the digits 0 through 7 only. A sequence of digits
preceded by Ox or OX (digit zero) is taken to be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds the largest signed machine
integer is taken to be long; an octal or hex constant which exceeds the largest unsigned
machine integer is likewise taken to be long. Otherwise, integer constants are into

&:plieit Loru:J O:mstantB

A decimal, octal, or hexadecimal integer constant immediately followed by I (letter ell) or L is
a long constant. As discussed below, on some machines integer and long values may be
considered identical.

Oaaraeter O:mstantB

A character constant is a character enclosed in single quotes, as in 'x'. The value of a
character constant is the numerical value of the character in the machine's character set.

Certain nongraphic characters, the single quote (') and the backslash (\), may be represented
according to the following table of escape sequences:

new-II ne No. (LF) \n
hor I lonta I tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \"
bit pattern ddd \ddd

'>

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is \0 (not
followed by a digit), which indicates the character NUL. If the character following a
backslash is not one of those specified, the behavior is undefined. A new-line character is illegal
in a character constant. The type of a character constant is into

2-2 ICON INTERNATIONAL

(

CLANGUAGE

ProatingO:mstanta

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and
an optionally signed integer exponent. The integer and fraction parts both consist of a
sequence of digits. Either the integer part or the fraction part (not both) may be missing.
Either the decimal point or the e and the exponent (not both) may be missing. Every floating
constant has type double.

Bnumeration O:mstanta

Names declared as enumerators (see "Structure, Union, and Enumeration Declarations" under
"DECLARATIONS") have type into

Strings

A string is a sequence of characters surrounded by double quotes, as in " ••• ". A string has type
"array of char" and storage class static (see "NAMES") and is initialized with the given
characters. The compiler places a null byte (\0) at the end of each string so that programs
which scan the string can find its end. In a string, the double quote character (tI) must be
preceded by a \; in addition, the same escapes as described for character constants may be
used.

A \ and the immediately following new-line are ignored. All strings, even when written
iden tic ally , are distinct.

Hardware Characteristics

The following figure summarizes certain ICON system hardware properties.

ICON properties
(ASCII)

char 8 bits
int 32
short 16
long 32
float 32
double 64

float range ±1O :38

double range ±10 :38

Figure 2-1. ICON HARDWARE CHARACTERISTICS

PROGRAMMER GUIDE 2-3

CLANOUAGE

SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and characters in bold type.
Alternative categories are listed on separate lines. An optional terminal or nonterminal
symbol is indicated by the subscript "opt," so that

. { expression opt }

indicates an optional expression enclosed in braces. The syntax is summarized in "SYNTAX
SUMMARY".

NAMES

The C language bases the interpretation of an identifier upon two attributes of the identifier -
its storage class and its type. The storage class determines the location and lifetime of the
storage associated with an identifier; the type determines the meaning of the values found in
the identifier's storage.

Storage Class

There are four declarable storage classes:

• Automatic
• Static
• External
• Register.

Automatic variables are local to each invocation of a block (see "Compound Statement or
Block" in "STATEMENTS") and are discarded upon exit from the. block. Static variables are
local to a block but retain their values upon reentry to a block even after control has left the
block. External variables exist and retain their values throughout the execution of the entire
program and may be used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast registers of the machine; like
automatic variables, they are local to each block and disappear on exit from the block.

Type

The C language supports several fundamental types of objects. Objects declared as characters
(char) are large enough to store any member of the implementation's character set. If a
genuine character from that character set is stored in a char variable, its value is equivalent
to the integer code for that character. Other quantities may be stored into character
variables, but the implementation is machine dependent. In particular, char may be signed or
unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either

2-4 ICON INTERNATIONAL

CLANGUAGE

short integers or long integers, or both, equivalent to plain integers. "Plain" integers have the
natural size suggested by the host machine architecture. The other sizes are provided to meet
special needs.

The properties of enum types (see "Structure, Union, and Enumeration Declarations" under
"DECLARATIONS") are identical to those of some integer types. The implementation may
use the range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2n where n is the
number of bits in the representation.

Single-precision floating point (Boat) and double precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be
referred to as arithmetic types. Char, int of all sizes whether unsigned or not, and enum will
collectively be called integral types. The Boat and double types will collectively be called
floating types.

The void type specifies an empty set of values. It is used as the type returned by functions
that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types
constructed from the fundamental types in the following ways:

• Arrays of objects of most types
• Functions which return objects of a given type
• Pointers to objects of a given type
• Structures containing a sequence of objects of various types
• Unions capable of containing anyone of several objects of various types.

In general these methods of constructing objects can be applied recursively.

OBJECTS AND LVALUES

An object is a manipulatable region of storage. An Ivalue is an expression referring to an
object. An obvious example of an Ivalue expression is an identifier. There are operators which
yield lvalues: for example, if E is an expression of pointer type, then *E is an lvalue expression
referring to the object to which E points. The name "lvalue" comes from the assignment
expression El = E2 in which the left operand El must be an Ivalue expression. The discussion
of each operator below indicates whether it expects lvalue operands and whether it yields an
lvalue.

PROGRAMMER GUIDE 2-5

CLANGUAGE

CONVERSIONS

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This part explains the result to be expected from such
conversions. The conversions demanded by most ordinary operators are summarized under
"Arithmetic Conversions." The summary will be supplemented as required by the discussion of
each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the
value is converted to an integer. Conversion of a shorter integer to a longer preserves sign.
Whether or not sign-extension occurs for characters is machine dependent, but it is guaranteed
that a member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII set are all non
negative. However, a character constant specified with an octal escape suffers sign extension
and may appear negative; for example, '\377' has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is truncated on the
left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an
expression it is lengthened to double by zero padding its fraction. When a double must be
converted to float, for example by an assignment, the double is rounded before truncation to
float length. This result is undefined if it cannot be represented as a float.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In particular,
the direction of truncation of negative numbers varies. The result is undefined if it will not fit
in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of accuracy occurs
if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case,
the first is converted as specified in the discussion of the addition operator. Two pointers to
objects of the same type may be subtracted; in this case, the result is converted to an integer
as specified in the discussion of the subtraction operator.

2-6 ICON INTERNATIONAL

()

o

(_i

CLANGUAGE

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted
to unsigned and the result is unsigned. The value is the least unsigned integer congruent to the
signed integer (modulo 2wordsize). In a 2's complement representation, this conversion is
conceptual; and there is no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the same
numerically as that of the unsigned integer. Thus the conversion amounts to padding with
zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This
pattern will be called the "usual arithmetic conversions."

1.

2.

3.

4.

5.

6.

7.

First, any operands of type char or short are converted to int,and any operands of
type unsigned char or unsigned short are converted to unsigned into

Then, if either operand is double, the other is converted to double and that is the type
of the result.

Otherwise, if either operand is unsigned long, the other is converted to unsigned long
and that is the type of the result.

Otherwise, if either operand is long, the other is converted to long and that is the type
of the result.

Otherwise, if one operand is long, and the other is unsigned int, they are both
converted to unsigned long and that is the type of the result.

Otherwise, if either operand is unsigned, the other is converted to unsigned and that
is the type of the result.

Otherwise, both operands must be int, and that is the type of the result.

Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversion may be applied. Because a void expression denotes a nonexistent value,
such an expression may be used only as an expression statement (see "Expression Statement"
under "STATEMENTS") or as the left operand of a comma expression (see "Comma
Operator" under "EXPRESSIONS").

An expression may be converted to type void by use of a cast. For example, this makes
explicit the discarding of the value of a function call used as an expression statement.

PROGRAMMER GUIDE 2-7

CLANGUAGE

EXPRESSIONS

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands
of + (see "Additive Operators") are those expressions defined under "Primary Expressions",
"Unary Operators", and "Multiplicative Operators". Within each subpart, the operators have
the same precedence. Left- or right-associativity is specified in each subsection for the
operators discussed therein. The precedence and associativity of all the expression operators
are summarized in the grammar of "SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular, the compiler
considers itself free to compute subexpressions in the order it believes most efficient even if the
subexpressions involve side effects. The order in which subexpression evaluation takes place is
unspecified. Expressions involving a commutative and associative operator ("', +, &, I, ..) may
be rearranged arbitrarily even in the presence of parentheses; to force a particular order of
evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is undefined. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point
exceptions varies between machines and is usually adjustable by a library function.

Primary Expressions

Primary expressions involving " ->, subscripting,and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression}
primary-expression (expression-list t)
primary-expression. identifier op
primary-expression -> identifier

expression-list:
expression
expression-list, expression

An identifier is a primary expression provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is "array of ... ", then the
value of the identifier expression is a pointer to the first object in the array; and the type of
the expression is "pointer to ... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared "function returning ... ", when used except in the
function-name position of a call, is converted to "pointer to function returning ... ".

A constant is a primary expression. Its type may be int, long, or double depending on its
form. Character constants have type int and floating constants have type double.

2-8 ICON INTERNATIONAL

/
I
~.

o

(j

('~'\

.. j

CLANGUAGE

A string is a primary expression. Its type is originally "array of char", but following the same
rule given above for identifiers, this is modified to "pointer to char" and the result is a pointer
to the first character in the string. (There is an exception in certain initializers; see
"Initialization" under "DECLARATIONS.")

A parenthesized expression is a primary expression whose type and value are identical to those
of the unadorned expression. The presence of parentheses does not affect whether the
expression is an Ivalue.

A primary expression followed by an expression in square brackets is a primary expression.
The intuitive meaning is that of a subscript. Usually, the primary expression has type "pointer
to ... ", the subscript expression is int, and the type of the result is " ... ". The expression
El[E2] is identical (by definition) to *«El)+(E2)). All the clues needed to understand this
notation are contained in this subpart together with the discussions in "Unary Operators" and
"Additive Operators" on identifiers, * and +, respectively. The implications are summarized
under "Arrays, Pointers, and Subscripting" under "TYPES REVISITED."

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function.
The primary expression must be of type "function returning ... ," and the result of the function
call is of type" ... ". As indicated below, a hitherto unseen identifier followed immediately by
a left parenthesis is contextually declared to represent a function returning an integer; thus in
the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char
or short are converted to into Array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual
arguments with those of formal arguments. If conversion is needed, use a cast; see "Unary
Operators" and "Type Names" under "DECLARATIONS."

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all
argument passing in C is strictly by value. A function may change the values of its formal
parameters, but these changes cannot affect the values of the actual parameters. It is possible
to pass a pointer on the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order of evaluation of
arguments is undefined by the language; take note that the various compilers differ. Recursive
calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first
expression must be a structure or a union, and the identifier must name a member of the
structure or union. The value is the named member of the structure or union, and it is an
lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from - and>) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier
must name a member of that structure or union. The result is an lvalue referring to the
named member of the structure or union to which the pointer expression points. Thus the

PROGRAMMER GUIDE 2-9

CLANGUAGE

/'~\

expression EI->MOS is the same as (-EI).MOS. Structures and unions are discussed lD ',,-.-/

"Structure, Union, and Enumeration Declarations" under "DECLARATIONS."

Unary Operators

Expressions with unary operators group right to left.

unary-expression:
* expression
f!! lvalue
- expression
! expression

expression
++ Ivalue
--lvalue
Ivalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary - operator means indirection; the expression must be a pointer, and the result is an
lvalue referring to the object to which the expression points. If the type of the expression is
"pointer to ... ," the type of the result is " ... ".

The result of the unary &. operator is a pointer to the object referred to by the lvalue. If the
type of the lvalue is " ... ", the type of the result is "pointer to ... ".

The result of the unary - operator is the negative of its operand. The usual arithmetic
conversions are ,performed. The negative of an unsigned quantity is computed by subtracting
its value from 2 where n is the number of bits in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its operand is zero, zero if
the value of its operand is nonzero. The type of the result is into It is applicable to any
arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual arithmetic conversions
are performed. The type of the operand must be integral.

The object referred .to by the lvalue operand of prefix ++ is incremented. The value is the new
value of the operand but is not an lvalue. The expression ++x is equivalent to x=x+l. Se'e
the discussions "Additive Operators" and "Assignment Operators" for information on
conversions.

2-10 ICON INTERNATIONAL

- .---_._---- -~ ---.-.---~------------- - ----"-

CLANGUAGE

(~, The lvalue operand of prefix - is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the
lvalue. After the result is noted, the object is incremented in the same manner as for the prefix
++ operator. The type of the result is the same as the type of the lvalue expression.

When postfix - is applied to an lvalue, the result is the value of the object referred to by the
lvahre. After the result is noted, the object is decremented in the manner as for the prefix -
operator. The type of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the
value of the expression to the named type. This construction is called a cast. Type names are
described in "Type Names" under "Declarations."

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the
language except in terms of the value of sizeof. However, in all existing implementations, a
byte is the space required to hold a char.) When applied to an :array, the result is the total
number of bytes in the array. The size is determined from the declarations of the objects in
the expression. This expression is semantically an unsigned constant and may be used
anywhere a constant is required. Its major use is in communication with routines like storage
allocators and I/O systems.

(/ The sizeof operator may also be applied to a parenthesized type name. In that case it yields
the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type)-2 is the
same as (sizeof(type »-2.

Multiplicative Operators

The multiplicative operators ., /, and % group left to right. The usual arithmetic conversions
are performed.

multiplicative expression:
expression .. expression
expression / expression
expression % expression

The binary • operator indicates multiplication. The· operator is associative, and expressions
with several multiplications at the same level may be rearranged by the compiler. The binary
/ operator indicates division.

The binary % operator yields the remainder from the division of the first expression by the
second. The operands must be integral.

PROGRAMMER GUIDE 2-11

CLANGUAGE

1\
When positive integers are divided, truncation is toward 0; but the form of truncation is '0
machine-dependent if either operand is negative. On all machines covered by this manual, the
remainder has the same sign as the 'dividend. It is always true that (a/b)*b + a%b is equal
to a (if b is not 0).

Additive Operators

The additive operators + and - group left to right. The usual arithmetic conversions are
performed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an object in an array
and a value of any integral type may be added. The latter is in all cases converted to an
address offset by multiplying it by the length of the object to which the pointer points. The
result is a pointer of the same type as the original pointer which points to another object in
the same array, appropriately offset from the original object. Thus if P is a pointer to an
object in an array, the expression P+l is a pointer to the next object in the array. No further
type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer,
and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division
by the length of the object) to an int representing the number of objects separating the
pointed-to objects. This conversion will in general give unexpected results unless the point.ers
point to objects in the same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

Shift Operators

The shift operators « and » group left to right. Both perform the usual arithmetic
conversions on their operands, each of which must be integral. Then the right operand is
converted to inti the type of the result is that of the left operand. The result is undefined if
the right operand is negative or greater than or equal to the length of the object in bits.

shift-expression:

2-12

expression «expression
expression > > expression

ICON INTERNATIONAL

CLANGUAGE

(~) The value of El<<E2 is El (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits
are 0 filled. The value of El> >E2 is El right-shifted E2 bit positions. The right shift is
guaranteed to be logical (0 fill) if El is unsigned; otherwise, it may be arithmetic.

Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression> expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater
than or equal to) all yield 0 if the specified relation is false and 1 if it is true. The type of the
result is into The usual arithmetic conversions are performed. Two pointers may be
compared; the result depends on the relative locations in the address space of the pointed-to
objects. Pointer comparison is portable only when the pointers point to objects in the same
array.

equality-expression:
expression === expression
expression! expression

Equality Operators

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus a<b = c<d is 1 whenever a<b and c<d
have the same truth value).

A pointer may be compared to an integer only if the integer is the constant o. A pointer to
which 0 has been assigned is guaranteed not to point to any object and will appear to be equal
to o. In conventional usage, such a pointer is considered to be null.

Bitwise AND Operator

and-expression:
expression & expression

The /it, operator is associative, and expressions involving /it, may be rearranged. The usual
arithmetic conversions are performed. The result is the bitwise AND function of the operands.

("/\ The operator applies only to integral operands.

PROGRAMMER GUIDE 2-13

CLANGUAGE

Bitwise Exclusive OR Operator

exclusive-or-expression:
expression A expression

The .. operator is associative, and expressions involving .. may be rearranged. The usual
arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may be rearranged. The usual
arithmetic conversions are performed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral operands.

logic al- and- expression:
expression && expression

Logical AND Operator

The && operator groups left to right. It returns 1 if both its operands evaluate to nonzero, 0
otherwise. Unlike &, && guarantees left to right evaluation; moreover, the second operand is
not evaluated if the first operand is O.

The operands need not have the same type, but each must have one of the fundamental types
or be a pointer. The result is always into

logical-or-expression:
expression II expression

Logical OR Operator

The II operator groups left to right. It returns 1 if either of its operands evaluates to nonzero,
o otherwise. Unlike I, II guarantees left to right evaluation; moreover, the second operand is not
evaluated if the value of the first operand is nonzero.

The operands need not have the same type, but each must have one of the fundamental types ('\
or be a pointer. The result is always into .. ~ .. ~

2-14 ICON INTERNATIONAL

(

c

CLANGUAGE

Conditional Operator

C onditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is
nonzero, the result is the value of the second expression, otherwise that of third expression. If
possible, the usual arithmetic conversions are performed to bring the second and third
expressions to a common type. If both are structures or unions of the same type, the result has
the type of the structure or union. If both pointers are of the same type, the result has the
common type. Otherwise, one must be a pointer and the other the constant 0, and the result
has the type of the pointer. Only one of the second and third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an
lvalue as their left operand, and the type of an assignment expression is that of its left
operand. The value is the value stored in the left operand after the assignment has taken
place. The two parts of a compound assignment operator are separate tokens.

assignment- expression:
lvalue = expression
lvalue += expression
lvalue -= expression
lvalue *:- expression
lvalue /= expression
Ivalue % expression
lvalue > >= expression
lvalue < <= expression
lvalue 8= expression
lvalue .. = expression
lvalue \= expression

In the simple assignment with =, the value of the expression replaces that of the object
referred to by the lvalue. If both operands have arithmetic type, the right operand is
converted to the type of the left preparatory to the assignment. Second, both operands may
be structures or unions of the same type. Finally, if the left operand is a pointer, the right
operand must in general be a pointer of the same type. However, the constant 0 may be
assigned to a pointer; it is guaranteed that this value will produce a null pointer
distinguishable from a pointer to any object.

The behavior of an expression of the form El op = E2 may be inferred by taking it as
equivalent to El = El op (E2); however, El is evaluated only once. In += and -=, the left
operand may be a pointer; in which case, the (integral) right operand is converted as explained
in "Additive Operators." All right operands and all nonpointer left operands must have
arithmetic type.

PROGRAMMER GUIDE 2-15

CLANGUAGE

comma-expression:
expres8ion I expression

Comma Operator

A pair of expressions separated by a comma. is evaluated left to right, and the value of ~he left
expression is discarded. The type and value of the result are the type and value of the right
operand. This operator groups left to right. In contexts where comma is given a special
meaning, e.g., in lists of actual arguments to functions (see "Primary Expressions") and lists of
initializers (see "Initialization" under "DECLARATIONS"), the comma operator as described
in this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

DECLARATIONS

Declarations are used to specify the interpretation which C gives to each. identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form (

declaration:
decl-specifiers declarator-list t;

op

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers
consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-8pecifier decl-specifiers t
sc-specifier decl-specifiers °tP

op

The list must be self-consistent in a way described below.

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

2-16

Storage Class Specifiers

ICON INTERNATIONAL

\" j

c

c

(

o

CLANGUAGE

The typedef specifier does not reserve storage and is called a "storage class specifier" only for
syntactic convenience. See "Typedef" for more information. The meanings of the various
storage classes were discussed in "Names."

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case, there must be an external
definition (see "External Definitions") for the given identifiers somewhere outside the function
in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the
compiler that the variables declared will be heavily used. Only the first few such declarations
in each function are effective. Moreover, only variables of certain types will be stored in
registers; on the PDP-H, they are int or pointer. One other restriction applies to register
variables: the address-of operator 8£. cannot be applied to them. Smaller, faster programs can
be expected if register declarations are used appropriately, but future improvements in code
generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is missing from a
declaration, it is taken to be auto inside a function, extern outside. Exception: functions are
never automatic.

The type-specifiers are

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic- type-specifier:
basic-type

Type Specifiers

basic-type basic-type-specifiers
basic-type:

char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction with int; the meaning
is the same as if int were not mentioned. The word long may be specified in conjunction with
float; the meaning is the same as double. The word unsigned may be specified alone, or in
conjunction with int or any of its short or long varieties, or with char.

PROGRAMMER GUIDE 2-17

CLANGUAGE

Otherwise, at most on type-specifier may be given in a declaration. In particular, adjectival
use of long, short, or unsigned is not permitted with typedef names. If the type-specifier is
missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in "Structure, Union, and
Enumeration Declarations." Declarations with typedet names are discussed in "Typedef."

Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of de clara tors,
each of which may have an initializer.

declarator-list:
init-declarator
init· declarator , declarator-list

init-declarator:
declarator initializer t op

Initializers are discussed in "Initialization". The specifiers in the declaration indicate the type
and storage class of the objects to which the declarators refer. Declarators have the syntax: (

declarator:
identifier
(declarator)
'" declarator
declarator ()
declarator / constant-expression t J op

The grouping is the same as in expressions.

Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an
unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of
complex declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

2-18 ICON INTERNATIONAL

~/

C·""
, \

.... . J

(~

(

CLANGUAGE

TDI

where T is a type-specifier (like int, etc.) and Dl is a declarator. Suppose this declaration
makes the identifier have type " ... T ," where the " ... " is empty if Dl is just a plain
identifier (so that the type of x in lint XU is just int). Then if Dl has the form

*D

the type of the contained identifier is " ... pointer to T ."

If D 1 has the form

DO

then the contained identifier has the type" ... function returning T."

If Dl has the form

D [constant-expression]

or

then the contained identifier has type "... array of T." In the first case, the constant
expression is an expression whose value is determinable at compile time, whose type is int, and
whose value is positive. (Constant expressions are defined precisely in "Constant Expressions.")
When several "array of" specifications are adjacent, a multidimensional array is created; the
constant expressions which specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant expression may also
be omitted when the declarator is followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions
are as follows: functions may not return arrays or functions although they may return
pointers; there are no arrays of functions although there may be arrays of pointers to
functions. Likewise, a structure or union may not contain a function; but it may contain a
pointer to a function.

PROGRAMMER GUIDE 2-19

CLANGUAGE

As an example, the declaration

int i, ·ip, f(), ·fipO, (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function
fip returning a pointer to an integer, and a pointer pfi to a function which returns an integer.
It is especially useful. to compare the last two. The binding of *fipO is ·(fipO). The
declaration suggests, and the same construction in an expression requires, the calling of a
function fip. Using indirection through the (pointer) result to yield an integer. In the
declarator (*pfi)O, the extra parentheses are necessary, as they are also in an expression, to
indicate that indirection through a pointer to a function yields a function, which is then called;
it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,

static int x3d [3] [5] [7];

declares a static 3-dimensional array of integers, with rank 3X5X7. In complete detail, x3d is
an array of three items; each item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions x3d, x3d[i], x3d[i]ul, x3d[i]UHk] may
reasonably appear in an expression. The first three have type "array" and the last has type
into

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each member may have
any type. A union is an object which may, at a given time, contain anyone of several
members. Structure and union specifiers have the same forni.

struct- or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

2-20 ICON INTERNATIONAL

c
CLANGUAGE

The struct-decl-list is a sequence of declar.a.tions for the members of the structure or union:

struct-decl-list:
Btruct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-rleclarator-list ,.

struct-dedarator-nBt:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union.
A structure member may also consist of a specified number of bits. Such a member is also
called a field; its length, a non-negative constant expression, is set oif from the field name by a
colon.

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses which iincrease as the declarations are
read left to right. Each nonfield member of a structure begins on an addressing boundary
appropriate to its type; therefore, there may be unnamed holes in a structure. Field members
are packed into machine integers; they do not straddle words. A field which does not fit into
the space remaining in a word is put into the next word. No .field may be wider than a word.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field
useful for padding to conform to externally-imposed layouts. As a special case, a field with a
width of 0 specifies alignment of the next field at an implementation dependant boundary.

The language does not restrict the types of things that aTe declared as fields, but
implementations are not required to support any but integer fields. Moreover, even int fields
may be considered to be unsigned. For these reasons, it is strongly recommended that fields be
declared as unsigned. In all implementations, there are no arrays of fields, and the address-of
operator & may not be applied to them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size
is sufficient to contain any of its members. At most, one of the members can be stored in a
union at any time.

(- / A structure or union specifier of the second form, that is, one of

PROGRAMMER GUIDE 2-21

CLANGUAGE

struct identifier { 8truct·dec/·li8t }
union identifier { 8truct-dec/-list }

declares the identifier to be the 8tructure tag (or union tag) of the structure specified by the
list. A subsequent declaration may then use the third form of specifier, one of

atruct identifier
union identifier

Structure tags allow definition of self·referential structures. Structure tags also permit the long
part of the declaration to be given once and used several times. It is illegal to declare a
structure or union which contains an instance of itself, but a structure or union may contain a
pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration which gives
the complete specification of the structure or union in situations in which the size of the
structure or union is unnecessary. The size is unnecessary in two situations: when a pointer to
a structure or union is being declared and when a typedef name is declared to be a synonym
for a structure or union. This, for example, allows the declaration of a pair of structures which
contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary variables. A
particular name may not be used twice in the same structure, but the same name may be used
in several different structures in the same scope.

A simple but important example of a structure declaration is the following binary tree
structure:

atruct tnode
{

};

char tword[20];
int count;
atruct tnode *left;
atruct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the declaration

atruct tnode a, *api

declares a to be a structure of the given sort and ap to be a pointer to a structure of the give'n
sort. With these declarations, the expression

2-22 ICON INTERNATIONAL

o

()

()

Bp->count

refers to the count field of the structure to which Bp pointsj

B.left

refers to the left subtree pointer of the structure Bj and

B.right->tword[O]

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

CLANGUAGE

The identifiers in an enum-list are declared as constants and may appear wherever constants
are required. If no enumerators with = appear, then the values of the corresponding constants
begin at 0 and increase by 1 as the declaration is read from left to right. An enumerator with
= gives the associated identifier the value indicatedj subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other and from
those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag
in a struct-specifierj it names a particular enumeration. For example,

PROGRAMMER GUIDE 2-23

CLANGUAGE

enum color { chartreuse, burgundy, claret 20, winedark };

enum color *cp, col;

col- claret;
cp - &col;

it (*cp -- burgundy) •.•

makes color the enumeration-tag of a type describing various colors, and then declares cp as a
pointer to an object of that type, and eol as an object of that type. The possible values are
drawn from the set {O,1,20,21}. .

Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is
preceded by - and consists of an expression or a list of values nested in braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
im'tializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant
expressions, which are described in "CONSTANT EXPRESSIONS", or expressions which
reduce to the address of a previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary expressions involving constants
and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as zero.
Automatic and register variables that are not initialized are guaranteed to start off as
garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of
a single expression, perhaps in braces. The initial value of the object is taken from the
expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate written in
increasing subscript or member order. If the aggregate contains subaggregates, this rule

2-24 ICON INTERNATIONAL

(

CLANGUAGE

applies recursively to the members of the aggregate. If there are fewer initializers in the list
than there are members of the aggregate, then the aggregate is padded with zeros .. It is not
permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted.· If the initializer begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace, then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive
characters of the string initialize the members of the array.

For example,

int xD = { 1, 3, 5 };

declares and initializes x as a one-dimensional array which has three members, since no Size
was specified and there are three initializers.

float y[4][3] =
{

};

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[OJ,
namely y[O][O], y[O][I], and y[O][2]. Likewise, the next two lines initialize Y[I] and Y[2). The
initializer ends early and therefore y[3] is initialized with O. Precisely, the same effect could
have been achieved by

float y[4][3] =
{

1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace but that for y[O] does not; therefore, three
elements from the list are used. Likewise, the next three are taken successively for y[l] and
y[2]. Also,

PROGRAMMER GUIDE 2-25

CLANGUAGE

float y[4][3] =
{

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest o.

Finally,

char msgD == "Syntax error on line %s \n to;

shows a character array whose members are initialized with a string.

Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument
of sizeof), it is desired to supply the name of a data type. This is accomplished using a "type
name", which in essence is a declaration for an object of that type which omits the name of
the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression t 1 op

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to
identify uniquely the location in the abstract-declarator where the identifier would appear if
the construction were a declarator in a declaration. The named type is then the same as the
type of the hypothetical identifier. For example,

2-26 ICON INTERNATIONAL

(
\,J

o

(

int
int*
int *[3)
int (*)[3)
int*O
int (*)0
int (*[3))0

CLANGUAGE

name respectively the types "integer," "pointer to integer," "array of three pointers to
integers," "pointer to an array of three integers," "function returning pointer to integer,"
"pointer to function returning an integer," and "array of three pointers to functions returning
an integer."

Typedef

Declarations whose "storage class" is typedef do not define storage but instead define
identifiers which can be used later as if they were type keywords naming fundamental or
derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type
associated with the identifier in the way described in "Meaning of Declarators." For example,
after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is "pointer to int, " and
that of z is the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types which could be
specified in another way. Thus in the example above distance is considered to have exactly
the same type as any other int object.

PROGRAMMER GUIDE 2-27

CLANGUAGE

STATEMENTS

Except as indicated, statements are executed in sequence.

Expression Statement

Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also,
and equivalently, called "block") is provided:

compound-statement:
{declaration-list t statement-list t} op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered
at the top. It is currently possible (but a bad practice) to transfer into a block; in that case
the initializations are not performed. Initializations of static variables are performed only
once when the program begins execution. Inside a block, extern declarations do not reserve
storage so initialization is not permitted.

Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

2-28 ICON INTERNATIONAL

c

(

CLANGUAGE

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is
executed. In the second case, the second substatement is executed if the expression is O. The
"else" ambiguity is resolved by connecting an else with the last encountered else-less if.

While Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remams
nonzero. The test takes place before each execution of the statement.

Do Statement

The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes O. The test
takes place after each execution of the statement.

For Statement

The for statement has the form:

for (exp-l t; exp-I! t; exp-9 t) statement op op op

Except for the behavior of continue, this statement is equivalent to

exp-l ;
while (exp-I!)
{

}

statement
exp-9 ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration, such that the loop is exited when the expression becomes O. The third
expression often specifies an incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-I! makes the implied while clause
equivalent to while(l); other missing expressions are simply dropped from the expansion above.

PROGRAMMER GUIDE 2-29

CLANGUAGE

Switch Statement

The switch statement ca.uses control to be transferred to one of several statements depending
on the value of an expression. It has the form

switch (expression) 8tatement

The usual arithmetic conversion is performed on the expression, but the result must be into
The statement is typically compound. Any statement within the statement may be labeled
with one or more case prefixes as follows:

case constant-expression:

where the constant expression must be into No two of the case constants in the same switch
may have the same value. Constant expressions are precisely defined in "CONSTANT
EXPRESSIONS."

There may also be at most one statement prefix of the form

default:

When the switch statement is executed, its expression is evaluated and compared with each C /
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case prefix. If no case constant matches the
expression and if there is a default, prefix, control passes to the prefixed statement. If no case
matches and if there is no default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the How of control, which continues unimpeded
across such prefixes. To exit from a switch, see "Break Statement."

Usually, the statement that is the subject of a switch is compound. Declarations may appear
at the head of this statement, but initializations of automatic or register variables are
ineffective.

Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch statement; control
passes to the statement following the terminated statement.

2-30 ICON INTERNATIONAL

CLANGUAGE

Continue Statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or
for statement; that is to the end of the loop. More precisely, in each of the statements

while (•.•) do for (•••)
{ { {

contin: ; contin: ; contin: ;
} } while (••.); }

a continue is equivalent to goto contino (Following the contin: is a null statement, see
"Null Statement".)

Return Statement

A function returns to its caller by means of the return statement which has one of the forms

return;
return expression;

In the first case, the returned value is undefined. In the second case, the value of the
expression is returned to the caller of the function. If required, the expression is converted, as
if by assignment, to the type of function in which it appears. Flowing off the end of a function
is equivalent to a return with no returned value. The expression may be parenthesized.

Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see "Labeled Statement") located in the current function.

Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier :

PROGR.AM:MER GUIDE 2-31

CLANGUAGE

which serve to declare the identifier as a label. The only use of a label is as a target of a goto.
The scope of a label is the current function, excluding any subblocks in which the same
identifier has been redeclared.See "SCOPE RULES."

Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to
supply a null body to a looping statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type.
The type-specifier (see "Type Specifiers" in "DECLARATIONS") may also be empty, in which
case the type is taken to be into The scope of external definitions persists to the end of the file
in which they are declared just as the effect of declarations persists to the end of a block. The
syntax of external definitions is the same as that of all declarations except that only at this
level may the code for functions be given.

External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers t function-declarator function-body

op

The only sc-specifiers allowed among the decl-specifiers are extern or static; see "Scope of
Externals" in "SCOPE RULES" for the distinction between them. A function declarator is
similar to a declarator for a "function returning ... " except that it lists the formal parameters
of the function being defined.

function- declarator:
declarator (parameter-list t) op

parameter-list:
identifier
identifier, parameter-list

The function-body has the form

2-32 ICON INTERNATIONAL

()

(

".'.' '-,

function-body:
declaration-list t compound-statement op

CLANGUAGE

The identifiers in the parameter list, and only those identifiers, may be declared in the
declaration list. Any identifiers whose type is not given are taken to be into The only storage
class which may be specified is register; if it is specified, the corresponding actual parameter
will be copied, if possible, into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, c)
int a, b, c;

{

}

int m;

m := (a > b) r a : b;
return«m > c) ! m : c);

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c; is the
declaration-list for the formal parameters; { ••• } is the block giving the code for the statement,

The C program converts all Hoat actual parameters to double, so formal parameters declared
Hoat have their declaration adjusted to read double. All char and short formal parameter
declarations are similarly adjusted to read into Also, since a reference to an array in any
context (in particular as an actual parameter) is taken to mean a pointer to the first element
of the array, declarations of formal parameters declared "array of ... " are adjusted to read
"poin ter to "

External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or
register.

PROGRAMMER GUIDE 2-33

CLANGUAGE

SCOPE RULES

A C program need not all be compiled a.t the sa.me time. The source text of the program may
be kept in several files, a.nd precompiled routines may be loaded from libraries.
Communication a.mong the functions of a progra.m may be carried out .both through explicit
calls and through manipulation of external data.

Therefore, there a.re two kinds of scopes to consider: first, what may be called the lexical scope
of a.n identifier, which is essentially the region of a. program during which it may be used
without drawing "undefined identifier" diagnostics; and second, the scope a.ssociated with
external identifiers, which is cha.racterized by the rule that references to the same external
identifier a.re references to the same object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition
through the end of the source file in which they appear. The lexical scope of identifiers which
a.re formal parameters persists through the function with which they are a.ssociated. The
lexical scope of identifiers declared at the head of a block persists until the end of the block.
The lexical scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the
block constituting a function, any declaration of that identifier outside the block is suspended (' \.
until the end of the block. /

Remember also (see "Structure, Union, and Enumeration Declarations" m
"DECLARATIONS") that tags, identifiers a.ssociated with ordinary variables, and identities
a.ssociated with structure and union members form three disjoint classes which do not conflict.
Members and tags follow the same scope rules as other identifiers. The enum constants are in
the same class as ordinary variables and follow the same scope rules. The typedef names are
in the same class as ordinary identifiers. They may be redeclared in inner blocks, but an
explicit type must be given in the inner declaration:

typedef float distance;

{
auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration
with no declarators and type distance.

2--34 ICON INTERNATIONAL

rf'\
\.L)

()

(-

o

CLANGUAGE

Scope ot Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be at least one external definition for
the identifier. All functions in a given program which refer to the sam.e external identifier refer
to the same object, so care must be taken that the type and size specified in the definition are
compatible with those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the set of files and
libraries comprising a multi-file program. It is legal to have more than one data definition for
any external non-function identifier; explicit use of extern does not change the meaning of an
external declaration.

In restricted environments, the use of the extern storage class takes on an additional meaning.
In these environments, the explicit appearance of the extern keyword in external data
declarations of identities without initialization indicates that the storage for the identifiers is
allocated elsewhere, either in this file or another file. It is required that there be exactly one
definition of each external identifier (without extern) in the set of files and libraries comprising
a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution, conditional compilation,
and inclusion of named files. Lines beginning with # communicate with this preprocessor.
There may be any number of blanks and horizontal tabs between the # and the directive.
These lines have syntax independent of the rest of the language; they may appear anywhere
and have effect which lasts (independent of scope) until the end of the source program file.

Token Replacement

A compiler-control line of the form

#define identifier token-string t
op

causes the preprocessor to replace subsequent instances of the identifier with the given string of
tokens. Semicolons in or at the end of the token-string are part of that string. A line of the
form

#define identifier(identifier, ...)token-string t
op

where there is no space between the first identifier and the C is a macro definition with
arguments. There may be zero or more formal parameters. Subsequent instances of the first
identifier followed by a C a sequence of tokens delimited by commas, and a) are replaced by

PROGRAMMER GUIDE 2-35

CLANGUAGE

the token string in the definition. Each occurrence of an identifier mentioned in the formal
parameter list of the definition is replaced by the corresponding token string from the call.
The actual arguments in the call are token strings separated by commas; however, commas in
quoted strings or protected by parentheses do not separate arguments. The number of formal
and actual parameters must be the same. Strings and character constants in the token-string
are scanned for formal parameters, but strings and character constants in the rest of the
program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by writing \ at the end of the line to be
continued.

This facility is most valuable for definition of "manifest constants," as in

#define TABSIZE 100

int table[TABSIZEj;

A control line of the form

#Under identifier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening #undef,
then the two token-strings are compared textually. If the two token-strings are not identical
(all white space is considered as equivalent), then the identifier is considered to be redefined.

File Inclusion

A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file
is searched Cor first in the directory oC the file containing the #include, and then in a sequence
of specified or standard places. Alternatively, a control line of the Corm

#include <filename>

searches only the specified or standard places and not the directory of the #include. (How the
places are specified is not part of the language.)

2-36 ICON INTERNATIONAL

o

()

(

#includes may be nested.

Conditional Compilation

A compiler control line of the form

#if restricted-constant-expression

CLANGUAGE

checks whether the restricted-constant expression evaluates to nonzero. (Constant expressions
are discussed in "CONSTANT EXPRESSIONS"; the following additional restrictions apply
here: the constant expression may not contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary expression

defined identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in the preprocessor and zero if it is
not.

All currently defined identifiers in restricted-constant-expressions are replaced by their token
strings (except those identifiers modified by defined) just as in normal text. The restricted
constant expression will be evaluated only after all expressions have finished. During this
evaluation, all undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been
the subject of a #define control line. It is equivalent to #ifdef(identifier). A control line of
the form

#ifndef identifier

checks whether the identifier is currently undefined In the preprocessor. It IS equivalent to
#iftdefined(identifier).

All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

PROGRAMMER GUIDE 2-37

CLANGUAGE

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the
checked condition is false, then any lines between the test and a #else or, lacking a #else, the
#endif are ignored.

These constructions may be nested.

Line Control

For the benefit of other preprocessors which generate C programs, a line of the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the
next source line is given by the constant and the current input file is named by "filename". If
"filename" is absent, the remembered file name does not change.

IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of identifiers in a
declaration. The storage class is supplied by the context in external definitions and in
declarations of formal parameters and structure members. In a declaration inside a function,
if a storage class but no type is given, the identifier is assumed to be inti if a type but no
storage class is indicated, the identifier is assumed to be auto. An exception to the latter rule
is made for functions because auto functions do not exist. If the type of an identifier is
"function returning ... ," it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared
to be "function returning into ' ,

TYPES REVISITED

This part summarizes the operations which can be performed on objects of certain types.

2-38 ICON INTERNATIONAL

c

(

CLANGUAGE

Struetures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by
functions. Other plausible operators, such as equality comparison and structure casts, are not
implemented.

In a reference to a structure or union member, the name on the right of the -> .or the. must
specify a member of the aggregate named or pointed to by the expression on the left. In
general, a member of a union may not be inspected unless the value of the union has been
assigned using that same member. However, one special guarantee is made by the language in
order to simplify the use of unions: if a union contains several structures that share a common
initial sequence and if the union currently contains one of these structures, it is permitted to
inspect the common initial part of any of the contained structures. For example, the following
is a legal fragment:

union
{

} u;

struct
{

int type;
} n;
struct
{

int
int

} ni;
struct
{

int
float

} nf;

type;
intnode;

type;
floatnode;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type = FLOAT)
... sin(u.nf.floatnode) ...

Functions

There are only two things that can be done with a function m call it or take its address. If the
name of a function appears in an expression not in the function-name position of a call, a
pointer to the function is generated. Thus, to pass one function to another, one might say

int fO;

g(f);

PROGRAMMER GUIDE 2-39

CLANGUAGE

Then the definition of g might read

g(funcp)
int (*funcp)0;

{

(*funcp)O;

}

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was
not followed by (.

Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer
to the first member of the array. Because of this conversion, arrays are not lvalues. By
definition, the subscript operator D is interpreted in such a way that El[E2] is identical to
*«El)+(E2». Because of the conversion rules which apply to +, if El is an array and E2 an
integer, then El[E2] refers to the E2 -th member of El. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

(~.

<J I
'1

,/

A consistent rule is followed in the case of multidimensional arrays. If E is an n-dimensional ~ ./
array of rank iXjX ... Xk, then E appearing in an expression is converted to a pointer to an (n
I)-dimensional array with rank jx ... Xk. If the * operator, either explicitly or implicitly as a
result of subscripting, is applied to this pointer, the result is the pointed-to (n-l}-dimensional
array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Here x is a 3X5 array of integers. When x appears in an expression, it is converted to a
pointer to (the first of three) 5-membered arrays of integers. In the expression xli], which is
equivalent to * (x +i) , x is first converted to a pointer as described; then i is converted to the
type of x, which involves mUltiplying i by the length the object to which the pointer points,
namely 5-integer objects. The results are added and indirection applied to yield an array (of
five integers) which in turn is converted to a pointer to the first of the integers. If there is
a.nother subscript, the same argument applies again; this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first subscript in the
declaration helps determine the amount of storage consumed by an array. Arrays play no
other part in subscript calculations.

2-40 ICON INTERNATIONAL

o

o

(

CLANGUAGE

Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent
aspects. They are all specified by means of an explicit type-conversion operator, see "Unary
OperatorsH under"EXPRESSIONSH and "Type Names"under "DECLARATIONS."

A pointer may be converted to any of the integral types large enough to hold it. Whether an
int or long is required is machine dependent. The mapping function is also machine dependent
but is intended to be unsurprising to those who know the addressing structure of the machine.
Details for some particular machines are given below. .

An object of integral type may be explicitly converted to a pointer. The mapping always
carries an integer converted from a pointer back to the same pointer but is otherwise machine
dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer
may cause addressing exceptions upon use if the subject pointer does not refer to an object
suitably aligned in storage. It is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to
allocate, and return a char pointer; it might be used in this way.

extern char *alloeO;
double *dp;

dp = (double *) alloe(sizeof(double»;
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for
conversion to a pointer to double; then the use of the function is portable.

CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after ease, as array
bounds, and in initializers. In the first two cases, the expression can involve only integer
constants, character constants, casts to integral types, enumeration constants, and sizeof

PROGRAMMER GUIDE 2-41

CLANGUAGE

expressions, possibly connected by the binary operators

+ _ * / % & I A < < > > != < > <= >= && II

or by the unary operators

or by the ternary operator

1:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one
c~n also use floating constants and arbitrary casts and can also apply the unary &; operator to
external or static objects and to external or static arrays subscripted with a constant
expression. The unary k can also be applied implicitly by appearance of unsubscripted arrays
and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant. ('

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and
integer division have proven in practice to be not much of a problem. Other facets of the
hardware are reflected in differing implementations. Some of these, particularly sign extension
(converting a negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the others are only
minor problems.

The number of register variables that can actually be placed in registers varies from machine
to machine as does the set of valid types. Nonetheless, the compilers all do things properly for
their own machine; excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

~<-)

The order of evaluation of function arguments is not specified by the language. The order in C:J ... '\

which side effects take place is also unspecified. ' . ..

2-42 ICON INTERNATIONAL

(

CLANGUAGE

•

Since character constants are really objects of type int, multicharacter character constants
may be permitted. The specific implementation is very machine dependent because the order
in which characters are assigned to a word varies from one machine to another.

Fields 'are assigned to words and characters to integers right to left on some machines and left
to right on other machines. These differences are invisible to isolated programs that do not
indulge in type punning (e.g., by converting an int pointer to a char pointer and inspecting the
pointed-to storage) but must be accounted for when conforming to externally-imposed storage
layouts.

SYNTAX SUMMARY

This summary of C syntax IS intended more for aiding comprehension than as an exact
statement of the language,

The basic expressions are:

expressIon:
primary
'" expression
&lvalue
- expression
! expression

expressIon
++ Ivalue
--lvalue
lvalue ++
Ivalue --
sizeof expression
sizeof (type-name)
(type-name) expression

Expressions

expression binop expression
expression ? expression: expression
lualue csgnop expression . .
expreSSIOn, expressIon

PROGRAMMER GUIDE 2-43

CLANGUAGE

pramary:
identifier
constant
string
(ezpression)
primary (expression-list t)
primary ! expression j op
primary . identifier
primary -> identifier

Ivalue:
identifier
primary! expression j
Ivalue . identifier
primary -> identifier
'* expression
(lvalue)

The primary-expression operators

o 0 . ->

have highest priority and group left to right. The unary operators

* & - ! - ++ -- sizeof (type-name)

have priority below the primary operators but higher than any binary operator and group
right to left. Binary operators group left to right; they have priority decreasing as indicated
below.

binop:

*
+

/ %

» «
<><=>=
- !=
&

I
I
&&
II
II

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

2-44 ICON INTERNATIONAL

1-

o

(

asgnop: .
= += -= *= /= %= »= «= &= ~= 1=

The comma operator has the lowest priority and groups left to right.

Declarations

declaration:
decl-specifiers init-declarator-list t;

op

decl-specifiers:
type-specifier decl-specifiers t
sc-specifier decl-specifiers °tP

op

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

enum-specifier:
en um { enum-list }
enum identifier { enum-list }
enum identifier

PROGR.AM:MER GUIDE

CLANGUAGE

2-45

CLANGUAGE

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer t op

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression t J op

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

struct-declarator:
declarator

2-46

declarator: constant-expression
: constant-expression

ICON INTERNATIONAL

(

()

initializer:
= expression
= { initializer-list }
= { initializer-list 1 }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator I constant-expression t J op

typedef-name:
identifier

compound-statement:

Statements

{declaration-list t statement-list t} op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

PROGRAMMER GUIDE

CLANGUAGE

2-47

CLANGUAGE

statement:
compound·statement
expression;
if (expression) statement
it (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp op'; exp op'; exp optl statement
switch (expre88ion) slatement
case constant·expre88ion: 8tatement
default : statement
break;
continue;
return;
return expre8sion ;
goto identifier ;
identifier : statement

External definitions

program:
external· definition
external· definition program

external· definition:
Junction. definition
data· definition

Junction· definition:
decl.specifier t Junction· declarator Junction-body op

Junction. declarator :
declarator (parameter-li8t t) op

parameter·li8t:
identifier
identifier, parameter·li8t

Junction· body:
decLaration·li8t t compound·8tatement op

data-definition:

2-48

extern declaration;
static declaration; .()

ICON INTERNATIONAL

(

Preprocessor

#define identifier token-stringo t
#define identifier(identifier, •••)foken-string t
#Undef identifier op
#include "filename"
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#else
#endif
#line constant "filename"

PROGRAMMER GUIDE

CLANGUAGE

2-49

(

c

Chapter 3

CLmRARIES

PAGE

GENERAL .. 3-1
Ineludlng Funetlollll .. 3-1
Ineludlng Deelaratlons 3-2

THE C LmRARy.. 3-2
Input/Output Control... 3-3
File Aeeess Funetlons... 3·3
File Status Funetlons 3-4
Input'Funetlons .. 3-4
Output Funetlons 3-5
Miseellaneous Funetlons.. 3-8
String Manipulation Funetlons.................... 3-8
Charaeter Manipulation................................ 3-8
Charaeter Testing Funetlons .. 3-8
Charaeter Translation Funetlons.. 3-9
Time Funetlons 3-9
Miscellaneous Funetlons.. 3-10
Numerleal Conversion 3-10
DES Algorithm Aeeess 3-11
Group File Aeeess ... 3-11
Password File Aeeess .. 3-12
Parameter Aeeess ... 3-13
Hash Table Management 3-13
Binary Tree Management ... 3-14
Table Management... 3-14
Memory A1loeatlon 3-15
Pseudorandom Number Generation .. 3-18
Signal Handllng Funetlons .. ,... 3-18
Miseellaneous.. 3-17

(

Chapter 3

CLmRARIES

GENERAL

This chapter and Chapter 4 describe the libraries that are supported on the ICON/UXV
system. A library is a collection of related functions and/or declarations that simplify
programming effort by linking only what is needed, allowing use of locally produced functions,
etc. All of the functions described are also described in Part 3 of the ICON/UXV Programmer
Reference Manual. Most of the declarations described are in Part 5 of the ICON/UXV
Programmer Reference Manual. The three main libraries on the ICONjUXV system are:

C library

Object file

Math library

This is the basic library for C language programs. The C library is
composed of functions and declarations used for file access, string testing
and manipulation, character testing and manipulation, memory
allocation, and other functions. This library is described later in this
chapter.

This library provides functions for the access and manipulation of object
files. This library is described in Chapter 4.

This library provides exponential, bessel functions, logarithmic,
hyperbolic, and trigonometric functions. This library is described in
Chapter 4.

Some libraries consist of two portions - functions and declarations. In some cases, the user
must request that the functions (and/or declarations) of a specific library be included in a
program being compiled. In other cases, the functions (and/or declarations) are included
automatically.

Including Functions

When a program is being compiled, the compiler will automatically search the C language
library to locate and include functions that are used in the program. This is the case only for
the C library and no other library. In order for the compiler to locate and include functions
from other libraries, the user must specify these libraries on the command line for the compiler.
For example, when using functions of the math library, the user must request that the math
library be searched by including the argument -1m on the command line, such as:

cc file.c -1m

The argument -1m must come after all files that reference functions in the math library in
order for the link editor to know which functions to include in the a.out file.

PROGRAMMER GUIDE 3-1

CLmRARIES

This method should be used for all functions that are not part of the C language library.

Including Declarations

Some functions require a set of declarations in order to operate properly. A set of declarations
is stored in a file under the /usr/include directory. These files are referred to as header files.
In order to include a certain header file, the user must specify this request within the C
language program. The request is in the form:

#include <file.h>

where file.h is the name of the file. Since the header files define the type of the functions and
various preprocessor constants, they must be included before invoking the functions they
declare.

The remainder of this chapter describes the functions and header files of the C Library. The
description of the library begins with the actions required by the user to include the functions
and/or header files in a program being compiled (if any). Following the description of the
actions required is information in three-column format of the form:

function reference{N) Brief description.

The functions are grouped by type while the reference refers to section 'N' in the ICON/UXV
Programmer Reference Manual. Following this, are descriptions of the header files associated
with these functions (if any).

THECLmRARY

The C library consists of several types of functions. All the functions of the C library are
loaded automatically by the compiler. Various declarations must sometimes be included by the
user as required. The functions of the C library are divided into the following types:

• Input/output control
• String manipulation
• Character manipulation
• Time functions
• Miscellaneous functions.

3-2 ICON INTERNATIONAL

o

(

CLIBRARIES

Input/Output Control

These functions of the C library are automatically included as needed during the compiling of a
C language program. No command line request is needed.

The header file required by the input/output functions should be included in the program being
compiled. This is accomplished by including the line:

#include <stdio.h>

near the beginning of each file that references an input or output function.

The input/output functions are grouped into the following categories:

• File access
• File status
• Input
• Output
• Miscellaneous.

File Access Functions

FUNCTION REFERENCE

fclose fclose(3S)

fdopen fopen(3S)

fileno ferror(3S)

fopen fopen(3S)

freopen fopen(3S)

fseek fseek(3S)

PROGRAMMER GUIDE

BRIEF DESCRIPTION

Close an open stream.

Associate stream with
an open(2) ed file.

File descriptor associated
with ali open stream.

Open a file with
specified permissions.
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

Substitute named file
in place of open
stream.

Reposition the file
pointer.

3-3

CLIBRARIES

(\
pCI08e popen(3S) Close a stream opened ",-_J

by popen.

popen popen(3S) Create pipe as a stream
between calling process
and command.

rewind fseek(3S) Reposition file
pointer at beginning
of file.

eetbuf eetbuf(3S) Assign buffering to
stream.

vsetbuf setbuf(3S) Similar to setbuf, but
allowing finer control.

File Status Funetions

FUNC'I10N REFERENCE BRIEF DESCRIPTION

clearerr ferror(3S) Reset error condition on ('\
stream. \ ',,- /

feof ferror(3S) Test for "end of file"
on stream.

ferror ferror(3S) Test for error condition
on stream.

ftell fseek(3S) Return current position
in the file.

Input Funetions

FUNC'I10N REFERENCE BRIEF D~CRIPTION

fgetc getc(3S) True function for getc
(3S).

fgets gets (3S) Read string from stream.

fread fread(3S) General buffered read
from stream.

~"
fscanf scanf(aS) Formatted read from 0

stream.

3-4 ICON INTERNATIONAL

CLmRARIES

(
getc getc(3S) Read character from

stream.

getchar getc(3S) Read character from
standard input.

gets gets (3S) Read string from standard input.

getw getc(3S) Read word from stream.

scanf scanf(3S) Read using format from
standard input.

sscanf scanf(3S) Formatted from
string.

ungetc ungetc(3S) Put back one character on
stream.

Output Functions

(
FUNCTION REFERENCE BRIEF DESCRIPTION

fclose(3S) mush Write all currently buffered
characters from stream.

fprintf printf(3S) Formatted write to
stream.

fputc putc(3S) True function for putc
(3S).

fputs puts (3S) Write string to stream.

fwrite fread(3S) General buffered write to
stream.

printf printf(3S) Print using format to
standard output.

putc putc(3S) Write character to
standard output.

putchar putc(3S) Write character to
standard output.

(j puts puts (3S) Write string to
standard output.

PROGRAMMER GUIDE 3-5

-- --.-------.-~-" .. -. <------.,-.. ~ -_."._- .. _-

CLmRARIES

putw

sprintf

vfprintf

vprintf

vsprintf

FUNCTION

etermid

euserid

system

tempnam

tmpnam

tmpfile

pute(3S)

printf(3S)

vprint(3C)

vprint(3C)

vprintf(3C)

Miscellaneous Functions

REFERENCE

etermid(3S)

euserid(3S)

system (3S)

tempnam(3S)

tmpnam(3S)

tmpfile(3S)

String Manipulation Functions

Write word to stream.

Formatted write to
string.

Print using format to
stream by varargs(5)
argument list.

Print using format to
standard output by
varargs(5) argument list.

Print using format to
stream string by
varargs(5) argument list.

BRIEF DESCRIPTION

Return file name for
con trolling terminal.

Return login name for
owner of current process.

Execute shell command.

Create temporary file
name using directory and
prefix.

Create temporary file
name.

Create temporary file.

These functions are used to locate characters within a string, copy, concatenate, and compare
strings. These functions are automatically located and loaded during the compiling of a C
language program. No command line request is needed since these functions are part of the C
library. The string manipulation functions are declared in a header file that may be included
in the program being compiled. This is accomplished by including the line:

#include <string.h>

3-6 ICON INTERNATIONAL

.~ ·°1·

('\
oj

(/' near the beginning of each file that uses one of these functions.

FUNClION

streat

strehr

stremp

strcpy

strespn

strlen

strneat

strnemp

strnepy

strpbrk

strrehr

strspn

strtok

(-

PROGRAMMER GUIDE

string (3C)

string (3C)

string (3C)

string (3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

string(3C)

.... -.~. _ _. __ . -~-

CLmRARIES

BRIEF DESCRIPI.10N

Concatenate two strings.

Search string for
character.

Compares two strings.

Copy string.

Length of initial string
not containing set of
characters.

Length of string.

Concatenate two strings
with a maximum length.

Compares two strings
with a maximum length.

Copy string over string
with a maximum length.

Search string for any
set of characters.

Search string backwards
for character.

Length of initial string
containing set of
characters.

Search string for token
separated by any of a
set of characters.

3-7

CLmRARIES

Character Manipulation

The following functions and declarations are used for ~esting and translating ASCII characters.
These functions are located and loaded automatically during the compiling of a C language
program. No command line request is needed since these functions are part of the C library.

The declarations associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <ctype.h>

near the beginning of the file being compiled.

Character Testing Functions

These functions can be used to identify characters as uppercase or lowercase letters, digits,
punctuation, etc.

FUNCTION

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

3-8

REFERENCE

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

ctype(3C)

BRIEF DESCRJPTION

Is character
alphanumeric?

Is character alphabetic?

Is integer ASCII
character?

Is character a control
character?

Is character a digit?

Is character a printable
character?

Is character a
lowercase letter?

Is character a printing
character including
space?

Is character a
punctuation character?

Is character a white
space character?

ICON INTERNATIONAL

/' "

(

(j

iaupper ctype(3C)

iaxdigit ctype(3C)

Character Translation Functions

CLmRARIES

Is character an uppercase
letter?

Is character a hex digit?

These functions provide translation of uppercase to lowercase, lowercase to uppercase, and
integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION

toascii conv(3C) Convert integer to
ASCII character.

to lower conv(3C) Convert character to
lowercase.

toupper conv(3C) Convert character to
uppercase.

Time Functions

These functions are used for accessing and reformatting the systems idea of the current date
and time. These functions are located and loaded automatically during the compiling of a C
language program. No command line request is needed since these functions are part of the C
library.

The header file associated with these functions should be included In the program being
compiled. This is accomplished by including the line:

#include <time.h>

near the beginning of any file using the time functions.

These functions (except tzset) convert a time such as returned by time(2).

FUNCTION

asctime ctime(3C)

PROGRAWvffiR GUIDE

-- -_.--.-_. ---.-.-.-----~.

BRIEF DESCRIPTION

Return string
representation
of date and time.

3-9

CLmRARIES

ctime

gmtime

localtime

tzset

ctime(3C)

ctime(3C)

ctime(3C)

ctime(3C)

Miscellaneous Functions

Return string
representation of
date and time, given
integer form.

Return Greenwich
Mean Time.

Return local time.

Set time zone field
from environment
variable.

These functions support a wide variety of operations. Some of these are numerical conversion,
password file and group file access, memory allocation, random number generation, and table
management. These functions are automatically located and included in a program being
compiled. No command line request is needed since these functions are part of the C library.

Some of these functions require declarations to be included. These are described following the
descriptions of the functions.

Numerical Conversion

The following functions perform numerical conversion.

FUNC710N REFERENCE lJRIEF DIfSCRlPTION

a641 a641(3C) Convert string to
base 64 ASCII.

atof atof(3C) Convert string to
floating.

atoi atof(3C) Convert string to
integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into
mantissa and exponent.

13tol 13tol(3C) Convert 3-byte integer
to long.

3-10 ICON INTERNATIONAL

o

0

(-~' ...

(

(' ..

j

lto13 13tol(3C)

Jdex:p frex:p(3C)

164a a641(3C)

modf frex:p(3C)

DES Algorithm Access

CLmRARlES

Convert long to 3-byte
integer.

Combine mantissa and
exponent.

Convert base 64 ASCII
to string.

Split mantissa into
integer and fraction.

The following functions allow access to the Data Encryption Standard (DES) algorithm used in
the ICON/UXV operating system. The DES algorithm is implemented with variations to
frustrate use of hardware implementations of the DES for key search.

FUNCT10N REFERENCE BRIEF DESCRIP'lION

crypt crypt (3C) Encode string.

encrypt crypt (3C) Encode/decode string of
Os and Is.

setkey crypt(3C) Initialize for subsequent
use of encrypt.

Group File Access

The following functions are used to obtain entries from the group file. Declarations for these
functions must be included in the program being compiled with the line:

#include <grp.h>

FUNCT10N

endgrent

getgrent

getgrgid

PROGRAMMER GUIDE

REFERENCE

getgrent(3C)

getgrent(3C)

getgrent(3C)

BRIEF DESCRIPTION

Close group file being
processed.

Get next group file
entry.

Return next group with·
matching gid.

3-11

CLmRARJES

getgrnam

setgrent

fgetgrent

getgrent(3C)

getgrent(3C)

getgrent(3C)

Password File Aeeess

Return next group with
matching name.

Rewind group file being
processed.

Get next gtoup file entry
from a specified file.

These functions are used to search and access information stored in the password file
(jetc/passwd). Some functions require declarations that can be included in the program being
compiled by adding the line:

#include <pwd.h>

FUNCTION REFERENCE BRIEF DESCRIPIION

endpwent getpwent(3C) Close password file
b.eing processed.

getpw getpw(3C) Search password file
for uid.

getpwent getpwent(3C) Get next password file
entry.

getpwnam getpwent(3C) Return next entry with
matching name.

getpwuid getpwent(3C) Return next entry with
matching uid.

putpwent putpwent(3C) Write entry on stream.

setpwent getpwent(3C) Rewind password file
being accessed.

fgetpwent getpwent(3C) Get next password file
entry from a specified
file.

3-12 ICON INTERNATIONAL

/'/ ---"',
-,~ /

o

(

(;
_/

CLmRARIES

Parameter Access

The following functions provide access to several different types of paramenters. None require
any declarations.

FUNCIION

getopt getopt(3C)

getewd getewd(3C)

getenv getenv(3C)

getpass getpass(3C)

putenv putenv(3C)

Hash Table Management

BRIEF'DESCRIP110N

Get next option from
option list.

Return string
representation of
current working directory.

Return string value
associated with
environment variable.

Read string from terminal
without echoing.

Change or add value
of an environment
variable.

The following functions are used to manage hash search tables. The header file associated with
these functions should be included in the program being compiled. This is accomplished by
including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCIION REFERENCE BRIEF DESCRIP110N

hereate hseareh(3C) Create hash table.

hdestroy hseareh(3C) Destroy hash table.

hseareh hseareh(3C) Search hash table for
entry.

PROGRAMMER GUIDE 3-13

-~,.=~::--.,.,.,.--.:-'---

-- -_. ---_. ~ ... --.----. - -~~--' ~.~ -

CLmRARIES

Binary Tree Management

The following functions are used to manage a binary tree. The header file associated with
these functions should be included in the program being compiled. This is accomplished by
including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNarION

tdelete tsearch{3C)

tfind tsear.ch{3C)

tsearch tsearch(3C)

twalk tsearch{3C)

Table Management

BRIEF DESCRIPTION

Deletes nodes from
binary tree.

Find element in
binary tree.

Look for and add
element to binary
tree.

Walk binary tree.

The following functions are used to manage a table. Since none of these functions allocate
storage, sufficient memory must be allocated before using these functions. The header file
associated with these functions should be included in the program being compiled. This is
accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNarION RP.FERENCE

bsearch bsearch(3C)

lfind Jsearch(3C)

3-14

BRIEF DESCRIPTION

Search table using
binary search.

Find element in
library tree.

ICON INTERNATIONAL

o

(

c

Jaearcb Jaearcb(3C)

qsort qaort(3C)

Memory Allocation

CLmRARIES

Look for and add
element in binary
tree.

Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can be dynamically allocated or
freed.

FUNCI10N REFERENCE BRIEF DESCRIPTION

calloe malloe(3C) Allocate zeroed storage.

free malloe(3C) Free previously allocated
storage.

malloe malloe(3C) Allocate storage.

realloe malloe(3C) Change size of allocated
storage.

The following is another set of memory allocation functions available.

FUNCI10N REFERENCE BRIEF DESCRIPTION

ealloe malloc(3X) Allocate zeroed storage.

free malloe(3X) Free previously allocated
storage.

malloe malloc(3X) Allocate storage.

mallopt malloc(3X) Control allocation
algorithm.

mallinfo malloe(3X) Space usage.

realoe malloc(3X) Change size of
allocated storage.

PROGRAMMER GUIDE 3-15

CLIBRARIES

Pseudorandom Number Generation

The following functions a.re used to genera.te pseudorandom numbers. The functions that end
with 48 are a family of interfaces to a pseudorandom number generator based upon the linear
congruent algorithm and 48-bit integer arithmetic. The rand and Brand functions provide an
interface to a mUltiplicative congruential random number generator with period of 232.

FUNCTION

drand48 drand48 (3C)

lcong48 drand48 (3C)

Irand48 drand48{3C)

mrand48 drand48(3C)

rand rand(3C)

Beed48 drand48 (3C)

Brand rand(3C)

srand48 drand48{3C)

Signal Handling Functions

BRIEF DESCRIPTION

Random double over
the interval [0 to 1).

Set parameters for
drand48, lrand48,
and mrand48.

Random long over the
interval [0 to 231).

Random long over the
interval [_231 to 231).

Random integer over the
interval [0 to 32767).

Seed the generator for
drand48, lrand48, and
mrand48.

Seed the generator
for rand.

Seed the generator for
drand48, lrand48, and
mrand48 using a long.

The functions gsignal and ssignal implement a software facility similar to signal(2) in the
IGON/UXV Programmer Reference Manual. This facility enables users to indicate the
disposition of error conditions and allows users to handle signals for their own purposes. The

o

./

declarations associated with these functions can be included in the program being complied by U. -_----."\

the line

3-16 ICON INTERNATIONAL

(-

o

#include <Signal.h>

These declarations define ASCII names for the 15 software signals.

FUNCTION

gsignal

88ignal

REFERENCE

8si,nal(3C)

8signal(3C)

Miscellaneous

CLmRARIES

BRIEF DESCRIP'110N

Send a software signal.

Arrange for handling
of software signals.

The following functions do not fall into any previously described category.

FUNCTION REFERENCE

abort abort (3C)

abs abs(3C)

ecvt ecvt(3C)

fcvt ecvt(3C)

gcvt ecvt(3C)

isatty ttyname(3C)

mktemp mktemp(3C)

monitor monitor (3C)

PROGRAMMER GUIDE

BRIEF DESCRIPTION

Cause an lOT signal
to be sent to the
process.

Return the absolute
integer value.

Convert double to
string.

Convert double to
string using Fortran
Format.

Convert double to
string using Fortran
For E format.

Test whether integer
file descriptor is
associated with a
terminal.

Create file name
using template.

Cause process to record
a histogram of program
counter location.

3-17

CLmRARIES

swab

ttyname

3-18

Bwab(3C)

ttyname(30)

Swap and copy bytes.

Return pathname of
terminal associated with
integer file descriptor.

ICON INTERNATIONAL

(

~ ...

,Chapter 4

THE OBJECT AND MATH LmRARIES

PAGE

GENERAL .. 4-1

THE OBJECT Fn..E LmRARY ... 4-1
Common ObJect File Interrace Macros (Idrcn.h) 4-4

THE MATH LmRARY ... 4-4
Trigonometric Functions.... 4-0
Be.sel Function... ... 4-0
Hyperbollc Functions.. 4-6
Mlscellaneo'us Functions 4-6

o

o

(

o

Chapter 4

THE OBJECT AND MATH LmRARIES

GENERAL

This chapter describes the Object and Math Libraries that are supported on the ICONjUXV
operating system. A library is a collection of related functions and/or declarations that
simplify programming effort. All of the functions described are also described in Part 3 of the
IOON/UXV Programmer Reference Manual. Most of the declarations described are in Part 5
of the IOON/UXV Programmer Reference Manual. The three main libraries on the
ICONjUXV system are:

C library

Object file

Math library

This is the basic library for C language programs. The C library is
composed of functions and declarations used for file access, string testing
and manipulation, character testing and manipulation, memory
allocation, and other functions. This library is described in Chapter 3.

This library provides functions for the access and manipulation of object
files. This library is described later in this chapter ..

This library provides exponential, bessel functions, logarithmic,
hyperbolic, and trigonometric functions. This library is also described
later in this chapter.

THE OBJECT FILE LmRARY

The object file library provides functions for the access and manipulation of object files. Some
functions locate portions of an object file such as the symbol table, the file header, sections,
and line number entries associated with a function. Other functions read these types of entries
into memory. For a description of the format of an object file, see "The Common Object File
Format" in the ICON/UXV Support Tools Guide.

This library consists of several portions. The functions reside in /usr/lib/libld.a and are
located and loaded during the compiling of a C language program by a command line request.
The form of this request is:

cc file -lld

which causes the link editor to search the object file library. The argument -lld must appear
after all files that reference functions in libld.a.

PROGRAMMER GUIDE 4-1

THE OBJECT AND MATH LIBRARIES

I~
In addition, various header files must be included. This is accomplished by including the line: 0

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

FUNCTION

Idaclose

ldahread

ldaopen

Idclose

ldfhread

ldgetname

ldlinit

Idlitem

Idlread

ldlseek

Idnlseek

4-2

REFERENCE

Idcl08e(3X)

Idahread (3X)

Idopen(3X)

Idclose(3X)

ldfhread (3X)

Idgetname(3X)

ldlread (3X)

Idlread(3X)

Idlread (3X)

Idlseek(3X)

Idlseek(3X)

BRIEF DESCRIPTION

Close object file being
processed.

Read archive header.

Open object file for
reading.

Close object file being
processed.

Read file header of
object file being
processed.

(' ",
\ '

Retrieve the name of '''-_/

an object file symbol
table entry.

Prepare object file for
reading line number
entries via ldlitem.

Read line number entry
from object file after
Idlinit.

Read line number entry
from object file.

Seeks to the line number
entries of the object
file being processed.

Seeks to the line number
entries of the object file
being processed given
the name of a section.

0
ICON INTERNATIONAL

THE OBJECT AND MATH LmRARIES

(:! Idnrseek Idrseek(3X) Seeks to the relocation
./

entries of the object file
being processed given
the name of a section.

ldnshread Idshread(3X) Read section header of
the named section of the
object file being
processed.

Idnsseek Idsseek (3X) Seeks to the section of
the object file being
processed given the
name of a section.

ldohseek Idohseek (3X) Seeks to the optional
file header of the object
file being processed.

Idopen Idopen(3X) Open object file for
reading.

ldrseek Idrseek(3X) Seeks to the relocation

(
entries of the object file
being processed.

ldshread Idshread(3X) Read section header of
an object file being
processed.

Idsseek Idsseek (3X) Seeks to the section of
the object file being
processed.

Idtbindex Idt bindex (3X) Returns the long index
of the symbol table entry
at the current position of
the object file being
processed.

Idtbread Idtbread(3X) Reads a specific
symbol table entry
of the object file
being processed.

ldtbseek Idtbseek(3X) Seeks to the symbol
table of the object file

(~~:
being processed.

PROGRAMMER GUIDE 4-3

THE OBJECT AND MATH LmRARIES

sgetl sputl(3X)

sputl • put1(3X)

Access long integer data
in a machine independant
format .

Translate a long integer
into a machine
independant format.

Common Object File Interrace Macros (ldfcn.h)

The interface between the calling program ll.nu the object file access routines is based on the
defined type LDFILE which is defined in the header file ldfcn.h (see Idfcn(4)). The primary
purpose of this structure is to provide uniform access to both simple object files and to object
files that are members of an archive file.

The function Idopen(3X) allocates and initializes the LDFILE structure and returns a pointer
to the structure to the calling program. The fields of the LDFILE structure may be accessed
individually through the following macros: the type macro returns the magic number of the
file, which is used to distinguish between archive files and simple object files. The IOPTR
macro returns the file pointer which was opened by Idopen(3X) and is used by the
input/output functions of the 0 library. The OFFSET macro returns the file address of the
beginning of the object file. This value is non-zero only if the object file is a member of the
archive file. The HEADER macro accesses the file header structure of the object file.

Additional macros are provided to aceessanobject file. These macros parallel the
input/output functions in the 0 library; each macro translates a reference to an LDFILE
structure into a reference to its file descriptor field. The available macros are described in
Idfcn{4} in the ICON/UXV System Reference Manual.

THE MATH LmRARY

The math library consists of functions and a header file. The functions are located and loaded
during the compiling of a 0 language program by a command line request. The form of this
request is:

cc file -1m

which causes the link editor to search the math library. In addition to the request to load the
functions, the hea.der file of the math library should be included in the program being compiled.
This is accomplished by including the line:

#include <math.h>

near the beginning of the (first) file being compiled.

lOON INTERNATIONAL

\

~. /

()

THE OBJECT AND MATH LIBRARIES

(-.\ The functions are grouped into the following categories:

(

()

• Trigonometric functions

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions.

Trigonometric Functioll8

These functions are used to compute angles (in radian measure), sines, cosines, and tangents.
All of these values are expressed in double precision.

FUNCTION

acos

asin

atan

atan2

cos

sin

tan

REFERENCE

trig (3M)

trig (3M)

trig(3M)

trig(3M)

trig(3M)

trig(3M)

trig(3M)

Bessel Functioll8

BRIEF DESCRIPTION

Return arc cosine.

Return arc sine.

Return arc tangent.

Return arc tangent of
a ratio.

Return cosine.

Return sine.

Return tangent.

These functions calculate bessel functions of the first and second kinds of several orders for real
values. The bessel functions are jO, jl, jn, yO, yl, and yn. The functions are located in
section bessel(3M).

PROGRAMMER GUIDE 4-5

THE OBJECT AND MATH LmRARIES

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent for real values.

FUNCIJON

cosh

sinh

tanh

RIJFmENCE

sinh (3M)

sinh (3M)

sinh (3M)

Miscellaneous Functions

BRIEF D1J8CRIPTION

Return hyperbolic cosine.

Return hyperbolic sine.

Return hyperbolic tangent.

These functions cover a wide variety of operations, such as natural logarithm, exponential, and
absolute value. In addition, several are provided to truncate the integer portion of double
precision numbers.

FUNC1ION REFERENCE

ceil floor (3M)

exp exp(3M)

fabs floor (3M)

floor floor (3M)

fmod floor (3M)

gamma gamma(3M)

hypot hypot(3M)

4-6

BRIEF DESCRlPTlON

Returns the smallest
integer not less than a
given value.

Returns the exponential
function of a given value.

Returns the absolute value
of a given value.

Returns the largest integer
not greater than a given
value.

Returns the remainder
produced by the division of
two given values.

Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

Return the square root
of the sum of the squares
of two numbers.

ICON INTERNATIONAL

THE OBJECT AND MATH LmRARIES

0 log exp(3M) Returns the natural
logarithm of a given
value.

log10 exp(3M) Returns the lorarithm base
ten of a giveI). value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

o
PROGRAMMER GUIDE 4-7

THE OBJECT AND MATH LmRARlES

4-8 ICON INTERNATIONAL

()
.. /

Chapter 5

COMPll.,ER AND C LANGUAGE

PAGE

USE OF THE COMPB.ER .. 6-1

COMPB.ER OPTIONS ... 6-2

'. C',

.- ... --.. ----.--.-----.-.- .. ----.---~-~-~~.

C)

()

c

Chapter 5

COMPILER AND C LANGUAGE

This chapter describes the ICON/UXV Operating System's C compiler, ee, and the C
programming language tha.t the compiler translates. The compiler is part of the ICONjUXV
System Software Generation System (SGS).

The SGS is a package of tools used to create and test programs for UNIX Systems. These
tools allow high-level program coding and source-level testing of code. The C language is
implemented for high-level programming; it contains many control and structuring facilities
that greatly simplify the task of algorithm construction. Within the SGS, a C compiler
converts C programs into assembly language programs that are ultimately translated into
object files by the assembler, as. The link editor, ld, collects and merges object files into
executable load modules. Each of these tools preserves all symbolic information necessary for
meaningful symbolic testing at C-Ianguage source level. In addition, a utility package aids in
testing and debugging.

The current manual page for the C compiler can be obtained with the SGS command:

man cc

USE OF THE COMPILER

The main command of the SGS is cc; it operates much like the ICON/UXV ec command. To
use the compiler, first creat a file (typically by using the ICON/UXV text editor) containing C
source code. The name of the file created must have a special format; the last two characters
of the file name must be .c as in filel.c.

Next, enter the SGS command

cc options file. c

to invoke the compiler on the C source file file.c with the appropriate options selected. The
compilation process creates an absolute binary file named a.out that reflects the contents of
file.c and any referenced library routines. The resulting binary file, a.out, can then be
executed on the target system.

Options can control the steps in the compilation process. When none of the controlling options
are used, and only one file is named, cc automatically calls the assembler, as, and the link
editor, Id, thus resulting in an executable file, named a.out. If more than one file is named in
a command,

cc filel.c file2.c file9.c

PROGRAMMER GUIDE 5-1

COMPn.ER AND C LANGUAGE

then the output will be placed on files file1.o, filet.a, and fileS.o. These files can then be linked
and executed through the Id command.

The ee compiler also accepts input file names with the last two characters.s. The.s signifies a
source file in assembly language. The ee compiler passes this type of file directly to as, which
assembles the file and places the output on a file of the same name with .0 substituted for .8.

Ce is based on a portable C compiler and translates C source files into assembly code.
Whenever the command ec is used, the standard C preprocessor (which resides on the file
/lib/cpp) is called. The preprocessor performs file inclusion and macro substitution. The
preprocessor is always invoked by ee and need not be called directly by the programmer.
Then, unless the appropriate Bags are set, ec calls the assembler and the link editor to produce
an executable file.

COMPILER OPTIONS

. A-ll options recognized by the ec command are listed below:

Option

-c none

-g none

-p none

-D identifier {-constant]

-E none

-I directory

5-2

Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is
compiled.

Produce symbolic debugging
information.

Reserved for invoking a profiler.

Define the external symbol Identifier
to the preprocessor, and
give it the value constant
(if specified).

Same as the -P option except
output is directed to the
standard output.

Change the algorithm that searches
for #include files whose names
do not begin with / to look in the
named directory before looking in
the directories on the standard list.
Thus, #include files whose names are
enclosed in "" are searched for

ICON INTERNATIONAL

(\
i I

~)

o

-0 none

-p none

-U identifier

-v none

-w c,argl/,arg£ ... j

COMPILER AND C LANGUAGE

first in the directory of the file
being compiled, then in directories
named by the -I options, and last
in directories on the standard list.
For #include files whose names are
enclosed in <>, the directory of the
file argument is not searched.

Invoke an object code optimizer.

Suppress compilation and loading;
i.e., invoke only the preprocessor
and leave out the output on
corresponding files suffixed .i.

Undefine the named a'dentifier to
the preprocessor.

Print the version of the assembler
that is invoked.

Pass along the argument(s) arga'
to pass c, where c is one of
[po 12al], indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

This part provides additional information for those options not completely desc~ibed above.

By using appropriate options, compilation can be terminated early to produce one of several
intermediate translations such as relocatable object files (-c option), assembly source
expansions for C code (-S option), or the output of the preprocessor (-P option). In general,
the intermediate files may be saved and later resubmitted to the cc command, with other files
or libraries included as necessary.

When compiling C source files, the most common practice is to use the -c option to save
relocatable files. Subsequent changes to one file do not then require that the others be
recompiled. A separate call to cc without the -c option then creates the linked executable
a.out file. A relocatable object file created under the -c option is named by adding a .0 suffix
to the source file name.

The -W option provides the mechanism to specify options for each step that is normally
invoked from the cc command line. These steps are preprocessing, the first pass of the
compiler, the second pass of the compiler, optimization, assembly, and link editing. At this
time, only assembler and link editor options can be used with the -W option. The most
common example of use of the -W option is "-Wa,-m)), which passes the -m option to the
assembler. Specifying "-wl,-m" passes the -m option to the link editor.

PROGRAMMER GUIDE 5-3

COMPR.ER AND C LANGUAGE

When the -P option is used, the compilation process stops after only preprocessing, with output
left on file.i. This file will be unsuitable for subsequent processing by cc.

The -0 option decreases the size and increases the execution speed of programs by moving,
merging, and deleting code. However, line numbers used for symbolic debugging may be
transposed when the optimizer is used.

The -g option produces informa.tion for a. symbolic debugger. The SOS currently supports the
SOB symbolic debugger.

5-4 ICON INTERNATIONAL

Chapter 6

A C PROGRAM CHECKER-"Unt"

PAGE

GENERAL 8-1
Usage ... 8-1

TYPES OF MESSAGES 8-2
Unused Variables and Functions ... 8-3
Set/Used Information 8-4
Flow of Control... 8-4
Function Values.. 8-5
Type Checking. 8-8
Type Casts ... 8-1
Nonportable Character Use 8-1
A.sslgnments or "Ionp" to "Ints" .. 8-8
Strange Constructions.. 8-8
Old Syntax ... 8-9
Pointer Alignment 8-10

(
MUltiple Uses and Side Ettects... 8-10

(~\

'. ,/

c

(

c

Chapter 6

A C PROGRAM CHECKER-"lint"

GENERAL

The lint progra.m exa.mines 0 la.ngua.ge source progra.ms detecting a. number of bugs a.nd
obscurities. It enforces the type rules of C la.ngua.ge more strictly tha.n the 0 compiler. It may
a.lso be used to enforce a. number of porta.bility restrictions involved in moving programs
between different ma.chines a.nd/or opera.ting systems. Another option detects a. number of
wa.steful or error prone constructions which nevertheless are legal. The lint progra.m a.ccepts
multiple input files a.nd library specifica.tions a.nd checks them for consistency.

Usage

The lint command ha.s the form:

lint [options] files ... libra.ry-descriptors ...

where options are optional flags to control lint checking and messages; files are the files to be
checked which end with .c or .In; and library-descriptors are the na.mes of libra.ries to be used
in checking the program.

The options that are currently supported by the lint comma.nd a.re:

-a

-b

-c

-h

-n

-0 name

-p

-u

Suppress messages about a.ssignments of long va.lues to va.ria.bles that are not
long.

Suppress messages about break sta.tements tha.t cannot be reached.

Only check for intra.-file bugs; leave externa.l information in files suffixed with .In.

Do not apply heuristics (which a.ttempt to detect bugs, improve style, a.nd reduce
wa.ste).

Do not check for compatibility with either the standard or the portable lint
libra.ry.

Oreate a. lint libra.ry from input files na.med llib-lname.ln.

Attempt to check porta.bility to other dialects of C language.

Suppress messages about function and external variables used and not defined or
defined and not used.

PROGRAMMER GUIDE 6-1

A C PROGRAM CHECKER-"Unt"

-v Suppress messages about unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

When more than one option is used, they should be combined into a single argument, such as,
-ab or -xha.

The names of files that contain 0 language programs should end with the suffix .c which IS

mandatory or lint and the 0 compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used in the 0 language program. The
source code is tested for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library arguments. These files all begin
with the comment:

1* LINTLIBRARY * /

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and
ARGSUSED comments can be used to specify features of the library functions.

The lint library files are processed almost exactly like ordinary source files. The only
difference is that functions which are defined on a library file but are not used on a source file
do not result in messages. The lint program does not simulate a full library search algorithm
and will print messages if the source files contain a redefinition of a library routine ..

By default, lint checks the programs it is given against a standard library file which contains
descriptions of the programs which are normally loaded when a 0 language program is run.
When the -p option is used, another file is checked containing descriptions of the standard
library routines which are expected to be portable across various machines. The -n option
can be used to suppress all library checking.

TYPES OF MESSAGES

The following paragraphs describe the major categories of messages printed by lint.

6-2 lOON INTERNATIONAL

" \

(' .. 1 ~

()

------ ---------

A C PROGRAM CHECKER-"lint"

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused. It is not uncommon for external variables or even entire functions to
become unnecessary and yet not be removed from the source. These types of errors rarely
cause working programs to fail, but are a source of inefficiency and make programs harder to
understand and change. Also, information about such unused variables and. functions can
occasionally serve to discover bugs.

The lint program prints messages about variables and functions which are defined but not
otherwise mentioned. An exception is variables which are declared through explicit extern
statements but are never referenced; thus the statement

extern double sinO;

will evoke no comment if sin is never u!!!ed. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest and can
be discovered by using the -x option with the lint command.

Certain styles of programming require many functions to be written with similar interfaces;
frequently, some of the arguments may be unused in many of the calls. The -v option is
available to suppress the printing of messages about unused arguments.' When -v is in effect,
no messages are produced about unused arguments except for those arguments which are
unused and also declared as register arguments. This can be considered an active (and
preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by adding the comment:

1* ARGSUSED * /

to the program before the function. This has the effect of the -v option for only one function.
Also, the comment:

1* V ARARGS * /

can be used to suppress messages about variable number of arguments in calls to a function.
The comment should be added before the function definition. In some cases, it is desirable to
check the first several arguments and leave the later arguments unchecked. This can be done
with a digit giving the number of arguments which should be checked. For example:

1* V ARARGS2 * /

will cause only the first two arguments to' be checked.

PROGRAMMER GUIDE 6-3

A C PROGRAM CBECKER-"lint"

There is one case where information about unused or undefined variables is more distracting
than helpful. This is when nnt is applied to some but not all files out of a collection which are
to be loaded together. In this case, many of the functions and variables defined may not be
used. Conversely, many functions and variables defined elsewhere may be used. The -u option
may be used to suppress the spurious messages which might otherwise appear.

SetjUsed Information

The lint program attempts to detect eases where a variable is used before it is set. The lint
program detects local variables (automatic and register storage classes) whose first use appears
physically earlier in the input file than the first assignment to the variable. It assumes that
taking the address of a variable constitutes a "use", since the actual use may occur at any
later time, in a data dependent fashion ..

The restriction to the physical appearance of variables in the file makes the algorithm very
simple and quick to implement since the true flow of control need not be discovered. It does
mean that lint can print messages about some programs which are legal, but these programs
would probably be considered bad on stylistic grounds. Because static and external variables
are initialized to zero, no meaningful information can be discovered about their uses. The lint
program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables which are set and
never used. These form a frequent source of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the programs which it processes.
It will print messages about unlabeled statements immediately following goto, break,
continue, or return statements. An attempt is made to detect loops which can never be left
at the bottom and to recognize the special cases while(l) and fore;;) as infinite loops. The
lint program also prints messages about loops which cannot be entered at the top. Some valid
programs may have such loops which are considered to be bad style at best and bugs at worst.

The lint program has no way of detecting functions which are called and never returned.
Thus, a call to exit may cause an unreachable code which lint does not detect. The most
serious effects of this are in the determination of returned function values (see "Function
Values"). If a particular place in the program cannot be reached but it is not apparent to
lint, the comment

1* NOTREACHED * /

can be added at the appropriate place. This comment will inform lint that a portion of the
program cannot be reached.

"\
\ ")

The lint program will not print a message about unreachable break statements. Programs (f-; .. i

generated by yacc and especially lex may have hundreds of unreachable break statements. '-../
The -0 option in the 0 compiler will often eliminate the resulting object code inefficiency.

lOON INTERNATIONAL

(-

-c)
'../

A C PROGRAM CHECKER-"lint"

Thus, these unreached statements are of little importance. There is typically nothing the user
can do about them, and the resulting messages would clutter up the lint output. If these
messages are desired, lint can be invoked with the -b option.

Function Values

Sometimes functions return values that are never used. Sometimes programs incorrectly use
function "values" that have never been returned. The lint program addresses this problem in a
number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return;

statements is cause for alarm; the lint program will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f (a) {
if (a) return (3);
gO;
}

Notice that, if a tests false, ! will call 9 and then return with no defined return value; this will
trigger a message from lint. If 9, like exit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is sometimes or
never used. When the value is never used, it may constitute an inefficiency in the function
definition. When the value is sometimes unused, it may represent bad style (e.g., not testing
for error conditions).

The dual problem, using a function va.lue when the function does not return one, is also
detected. This is a serious problem.

PROGRAMMER GUIDE 6-5

A C PROGRAM CHECKER-"llnt"

Type Checking

The lint program enforces the type checking rules of 0 language more strictly than the
compilers do. The additional checking is in four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (r:), and relational operators have this property. The
argument of a return statement and expressions used in initialization suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types
may be freely intermixed. The types of pointers must agree exactly except that arrays of x's
can, of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left operand of the -> be
a pointer to structure, the left operand of the. be a structure, and the right operand of these
operators be a member of the structure implied by the left operand. Similar checking is done
for references to unions.

Strict rules apply to function argument and return value matching. The types float and
double may be freely matched, as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside from this, all actual arguments
must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed
with other types or other enumerations and that the only operations applied are =,
initialization, =, !=, and function arguments and return values.

If it is desired to turn off strict type checking for an expression, the comment

1* NOSTRIOT * /

should be added to the program immediately before the expression. This comment will prevent
strict type checking for only the next line in the program.

6-6 lOON INTERNATIONAL

o

C)

A C PROGRAM CHECKER-"lint"

Type Cuts

The type cast feature in C language was introduced largely as an aid to producing more
portable programs. Consider the assignment

p = 1;

where p is a character pointer. The lint program will print a message as a result of detecting
this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this and has clearly signaled his intentions. It
seems harsh for lint to continue to print messages about this. On the other hand, if this code
is moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assignments subject to messages; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

Nonportable Charaeter Use

On some systems, characters are signed quantities with a range from -128 to 127. On other
C language implementations, characters take on only positive values. Thus, lint will print
messages about certain comparisons and assignments as being illegal or nonportable. For
example, the fragment

char c;

ire (c = getchar()) < 0) ...

will work on one machine but will fail on machines where characters always take on positive
values. The real solution is to declare c as an integer since getchar is actually returning
integer values. In any case, lint will print the message "nonportable character comparison".

A similar issue arises with bit fields. When assignments of constant values are made to bit
fields, the field may be too small to hold the value. This is especially true because on some
machines bit fields are considered as signed quantities. While it may seem logical to consider
that a two-bit field declared of type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned

PROGRAMMER GUIDE 6-7

A C PROGRAM CHECKER-uUnt"

Assignments or "longs" to "ints"

Bugs may arise from the a.ssignment of long to an int, which will truncate the contents. This
may happen in programs which have been incompletely converted to use typedefs. When a
typedef variable is changed from int to long, the program can stop working because some
intermediate results may be assigned to ints, which are truncated. Since there are a number
of legitimate reasons for assigning longs to ints, the detection of these assignments is enabled
by the -a option.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by Unt. The
messages hopefully encourage better code quality, clearer style, and may even point out bugs.
The -h option is used to supress these checks. For example, in the statement

*p++;

the * does nothing. This provokes the message "null effect" from lint. The following program
fragment:

unsigned x;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x>O) ...

is equivalent to

if(x != 0)

which may not be the intended action. The lint program will print the message "degenerate
unsigned comparison" in these cases. If a program contains something similar to

if(1 != 0) ...

lint will print the message "constant in conditional context" since the comparison of 1 with 0
gives a constant result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For example, the statement

8-8 ICON INTERNATIONAL

o

/
i",-

(,
!

~_/

(-

(;

A C PROGRAM CHECKER-"lint"

if(x&077 = 0) ...

or

x«2 +40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the -h option has not been used, lint prints messages about variables which are
redeclared in inner blocks in a way that conflicts with their use in outer blocks. This is legal
but is considered to be bad style, usually unnecessary, and frequently a bug.

Old Syntax

Several forms of older syntax are now illegal. These fall into two classes - assignment
operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) could cause ambiguous expressions,
such as:

a =-1;

which could be taken as either

a =-1;

or

a =-1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer and preferred operators (e.g., +=, -=, ...) have no such ambiguities.
To encourage the abandonment of the older forms, lint prints messages about these old
fashioned operators.

A similar issue arises with initialization. The older language allowed

int xl;

PROGRAMMER GUIDE 6-9

A C PROGRAM CHECKER-"lint"

to initialize :t to 1. This also caused syntactic difficulties. For example, the initialization

int x (-1) ;

looks somewhat like the beginning of a. function definition:

int x (y) { ...

and the compiler must read past:t in order to determine the correct meaning. Again, the
problem is even more perplexing when the initializer involves a macro. The current syntax
places an equals sign between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Oertain pointer assignments may be reasonable on some machines and illegal on others due
entirely to alignment restrictions. The lint program tries to detect cases where pointers are
assigned to other pointers and such alignment problems might arise. The message "possible
pointer alignment problem" results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines in which the stack runs backwards, function
arguments will probably be best evaluated from right to left. On machines with a stack
running forward, left to right seems most attractive. Function calls embedded as arguments of
other functions mayor may not be treated similarly to ordinary arguments. Similar issues
arise with other operators which have side effects, such as the assignment operators and the
increment and decrement operators.

hi order that the efficiency of 0 language on a particular machine not be unduly compromised,
the 0 language leaves the order of evaluation of complicated expressions up to the local
compiler. In fact, the various 0 compilers have considerable differences in the order in which
they will evaluate complicated expressions. In particular, if any variable is changed by a side
effect and also used elsewhere in the same expression, the result is explicitly undefined.

The lint program checks for the important special case where a simple scalar variable IS

affected. For example, the statement

ali] = b[i++l;

6-10 lOON INTERNATIONAL

o

A C PROGRAM CHECKER-"lint"

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

(

c
PROGRAMMER GUIDE 6-11

A C PROGRAM CHECKER-uHnt"

6-12 ICON INTERNATIONAL

Chapter 7

SYMBOLIC DEBUGGING PROGRAM-"sdb"

PAGE

GENERAL .. '1-1

USAGE ... '1-1
Printing a Stack Trace ... '1-2
Examining Variables .. '1-2

SOURCE FD..E DISPLAY AND MANIPULATION.. 7-5
Displaying the Source Ftle... 7-6
Changing the Current Source Ftle or Function .. 7-6
Changing the Current Line in the Source FlIe ... 7-6

A CONTROLLED ENVIRONMENT FOR PROGRAM TESTING.. '1-'1
Setting and Deleting Breakpoints.. '1-7
Running the Program ... '1-8
Calling Functions ... 7-0

MACHINE LANGUAGE DEBUGGING .. 7-10
Displaying Machine Language Statements... 7-10

(ManipUlating Registers............... .. 7-10

OTHER COMMANDS ... 7-11

(

>-"\ ,
j

~
(

o

(

Chapter 7

SYMBOLIC DEBUGGING PROGRAM-"sdb"

GENERAL

This chapter describes the symbolic debugger sdb(l) as implemented for the C language and
Fortran 77 programs on ICON/UXV. The .db program is useful both for examining "core
images" of aborted programs and for providing an environment in which execution of a
program can be monitored and controlled.

The sdb program allows interaction with a debugged program at the source language level.
When debugging a core image from an aborted program, sdb reports which line in the source
program caused the error and allows all variables to be accessed symbolically and to be
displayed in the correct format.

Breakpoints may be placed at selected statements or the program may be single stepped on a
line-by-line basis. To facilitate specification of lines in the program without a source listing,
sdb provides a mechanism for examining the source text. Procedures may be called directly
from the debugger. This feature is useful both for testing individual procedures and for calling
user-provided routines which provided formatted printout of structured data.

USAGE

In order to use sdb to its full capabilities, it is necessary to compile the. source program with
the -g option. This causes the compiler to generate additional information about the variables
and statements of the compiled program. When the -g option has been specified, sdb can be
used to obtain a trace of the called functions at the time of the abort and interactively display
the values of variables.

A typical sequence of shell commands for debugging a core image is

$ cc -g prgm.c -0 prgm
$prgm
Bus error - core dumped
$ sdb prgm
main:25: xli] = 0;
*

The program prgm was compiled with the -g option and then executed. An error occurred
which caused a core dump. The sdb program is then invoked to examine the core dump to
determine the cause of the error. It reports that the bus error occurred in function main at
line 25 (line numbers are always relative to the beginning of the file) and outputs the source
text of the offending line. The sdb program then prompts the user with an ... indicating that it
awaits a command.

PROGRAMMER GUIDE 7-1

sdb

It is useful to know that sdb has a notion of current function and current line. In this
example, they are initially set to main and "25", respectively.

In the above example, sdb was called with one argument, prgm. In general, it takes three
arguments on the command line. The first is the name of the executable file which is to be
debugged; it defaults to a.out when not specified. The second is the name of the core file,
defaulting to core; and the third is the name of the directory containing the source of the
program being debugged. The sdb program currently requires all source to reside in a single
directory. The default is the working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

It is possible that the error occurred in a function which was not compiled with the -g option.
In this case, sdb prints the function name and the address at which the error occurred. The
current line and function are set to the first executable line in main. The sdb program will
print an error message if main was not compiled with the -g option, but debugging can
continue for those routines compiled with the -g option. Figure 7-1 shows a typical example of
sdb usage.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which led to the error. This IS

obtained with the t command. For example:

*t
sub(x-2,y=3) [prgm.c:25]
inter(i=16012) [prgm.c:96]
main(argc=l,argv==Ox7fffff54,envp==Ox7fffff5c)[prgm.c:15]

This indicates that the error occurred within the function Bub at line 25 in file prgm.c. The Bub
function was called with the arguments x 2 and y=3 from inter at line 96. The inter function
was called from main at line 15. The main function is always called by the shell with three
arguments often referred to as argc, argu, and enup. Note that argu and envp are pointers, so
their values are printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped program. Variables are
displayed by typing their name followed by a slash, so

*errfiag/

causes sdb to display the value of variable errjlag. Unless otherwise specified, variables are
assumed to be either local to or accessible from the current function. To specify a different
function, use the form

7-2 ICON INTERNATIONAL

c

()

sdb

*sub:i/

to display variable i in function 8ub. F77 users can specify a common block variable in the
same manner.

The sdb program supports a limited form of pattern matching for variable and function
names. The symbol • is used to match any sequence of characters of a variable name and r to
match any single character. Consider the following commands

x/
*sub:y?/
**/

The first prints the values of all variables beginning with x, the second prints the values of all
two letter variables in function sub beginning with y, and the last prints all variables. In the
first and last examples, only variables accessible from the current function are printed. The
command

**:*/

__ displays the variables for each function on the call stack.

(;

The sdb program normally displays the variable in a format determined by its type as
declared in the source program. To request a different format, a specifier is placed after the
slash. The specifier consists of an optional length specification followed by the format. The
length specifiers are:

b One byte

h Two bytes (half word)

1 Four bytes (long word).

The lengths are effective only with the formats d, 0, x, and u. If no length is specified, the
word length of the host machine is used. A numeric length specifier may be used for the 8 or a
commands. These commands normally print characters until either a null is reached or 128
characters are printed. The number specifies how many characters should be printed.

There are a number of format specifiers available:

e Character.

d Decimal.

PROGRAMMER GUIDE 7-3

.db

u

o

x

r

g

8

a

p

i

Decimal unsigned.

Octal.

Hexadecimal.

32-bit single-precision floating point.

54-bit double-precision floating point.

Assume variable is a string pointer and print characters starting at the address
pointed to by the variable until a null is reached.

Print characters starting at the variable's address until a null is reached.

Pointer to function.

Interpret as a machine-language instruction.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

The .db program also knows about structures, arrays, and pointers so that all of the
following commands work.

*arraY[2}[3J/
*sym.id/
*psym->usage/
*xsym [20J.p->usage /

The only restriction is that array subscripts must be numbers. Depending on your machine,
accessing arrays may be limited to I-dimensional arrays. Note that as a special case:

*psym->/d

displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute addresses. The command

*1024/

7-4 ICON INTERNATIONAL

o

C)
sdb

displays location 1024 in decimal. As in C language, numbers may also be specified in octal or
hexadecimal so the above command is equivalent to both

*02000/

and

*Ox4oo/

It is possible to mix numbers and variables so that

*1000.x/

refers to an element of a structure starting at address 1000, and

*100a->x/

refers to an element of a structure whose address is at 1000. For commands of the type
*1000.x/ and *l()()()">x/. the sdb program uses the structure template of the last structured

(referenced.

The address of a variable is printed with the =, so

*i=

displays the address of i. Another feature whose usefulness will become apparent later is the
command

*.f

which redisplays the last variable typed.

SOURCE FILE DISPLAY AND MANIPULATION

The sdb program has been designed to make it easy to debug a program without constant
reference to a current source listing. Facilities are provided which perform context searches
within the source files of the program being debugged and to display selected portions of the
source files. The commands are similar to those of the system text editor ed(l). Like the
editor, sdb has a notion of current file and line within the file. The sdb program also knows
how the lines of a file are partitioned into functions, so it also has a notion of current function.
As noted in other parts of this document, the current function is used by a number of sdb
commands.

PROGRAMMER GUIDE 7-5

sdb

DiapJaYin& the Source File

Four commands exist for displaying lines in the source file. They are useful for perusing the
source program and for determining the context of the current line. The commands are:

p

w

z

Prints the current line.

Window; prints a window of ten lines around the current line.

Prints ten lines starting at the current line. Advances the current line by
ten.

control-d Scrolls; prints the next ten lines and advances the current line by ten. This
command is used to cleanly display long segments of the program.

'When a line from a file is printed, it is preceded by its line number. This not only gives an
indication of its relative position in the file but is also used as input by some sdb commands.

Changing the Current Source File or Funetion

The e command is used to change the current source file. Either of the forms

*e function
*e file.c

may be used. The first causes the file containing the named function to become the current
file, and the current line becomes the first line of the function. The other form causes the
named file to become current. In this case, the current line is set to the first line of the named
file. Finally, an e command with no argument causes the current function and file named to be
printed.

Changing the Current Line in the SoureeFile

The z and control-d commands have a side effect of changing the current line in the source
file. The following paragraphs describe other commands that change the current line.

There are two commands for searching for instances of regular expressions in source files. They
are

* /regular expression!
*?regular expression?

The first command searches forward through the file for a line containing a string that
matches the regular expression and the second searches backwards. The trailing / and ! may
be omitted from these commands. Regular expression matching is identical to that of ed(l).

7-6 ICON INTERNATIONAL

-- /

(~/

(

.db

The + and - commands may be used to move the current line forwards or backwards by a
specified number of lines. Typing a new-line advances the ~TreD.t line by one, and typing a
number causes that line to become the current line in the file. These commands may be
combined with the display commands so that

*+15z

advances the current line by 15 and then prints ten lines.

A CONTROLLED ENVIRONMENT FOR PROGRAM TESTING

One very useful feature of sdb is breakpoint debugging. After entering sdb, certain lines in
the source program may be specified to be breakpoints. The program is then started with a
sdb command. Execution of the program proceeds as normal until it is about to execute one of
the lines at which a breakpoint has been set. The program stops and .db reports the
breakpoint where the program stopped. Now, .db commands may be used to display the trace
of function calls and the values of variables. H the user is satisfied the program is working
correctly to this point, some bTeakpoints can be deleted and others set; then program execution
may be continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. The sdb program can be
requested to execute the next line of the program .and then stop. This feature is especially
useful for testing new programs, so they can be verified on a statement-by-statement basis. If
an attempt is made to single step through a function which has not been compiled with the -g
option, execution proceeds until a statement in a function compiled with the -g option is
reached. It is also possible to have the program execute one machine level instruction at a
time. This is particularly useful when the program has not been eompiled with the -g option.

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains executable code. The
command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line numbers are relative to
the beginning of the file as printed by the source file display commands. The second form sets
a breakpoint at line 12 of function proc, and the third sets a breakpoint at the first line of
proc. The last sets a breakpoint at the current line.

Breakpoints are deleted similarly with the commands

PROGRAMMER GUIDE 7-7

.db

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted interactively. Each
breakpoint location is printed, and a line is read from the user. If the line begins with a y or
d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and the D command
deletes all breakpoints. It is sometimes desirable to have sdb automatically perform a
sequence of commands at a breakpoint and then have execution continue. This is achieved
with another form of the b command.

*12b t;x/

causes both a trace back and the value of x to be printed each time execution gets to line 12.
The a command is a variation of the above command. There are two forms:

*proc:a
*proc:12a

I '\

The first prints the function name and its arguments each time it is called, and the second ~.)
prints the source line each time it is about to be executed. For both forms of the a command,
execution continues after the function name or source line is printed.

Running the Program

The r command is used to begin program execution. It restarts the program as if it were
invoked from the shell. The command

*r args

runs the program with the given arguments as if they had been typed on the shell command
line.]f no arguments are specified, then the arguments from the last execution of the program
are used. To run a program with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is encountered, a signal
such as INTERRUPT or QUIT occurs, or the program terminates. In all cases after an
appropriate message is printed, control returns to .db.

The c command may be used to continue execution of a stopped program. A line number may
be specified, as in:

7-8 ICON INTERNATIONAL

(

sdb

*proc:12c

This places a temporary breakpoint at the named line. The breakpoint is deleted when the c
command finishes. There is also a c command which continues but passes the signal which
stopped the program back to the program. This is· useful for testing user-written signal
handlers. Execution may be continued at a specified line with the g command. For example:

*17 g

continues at line 17 of the current function. A use for this command is to avoid executing a
section of code which is known to be bad. The user should not attempt to continue execution
in a function different than that of the breakpoint.

The 8 command is used to run the program for a single line. It is useful for slowly executing
the program to examine its behavior in detail. An important alternative is the S command.
This command is like the 8 command but does not stop within called functions. It is often used
when one is confident that the called function works correctly but is interested in testing the
calling routine.

The i command is used to run the program one machine level instruction at a time while
ignoring the signal which stopped the program. Its uses are similar to the 8 command. There is

, also an I command which causes the program to execute one machine level instruction at a
time, but also passes the signal which stopped the program back to the program.

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature is useful both
for testing individual functions with different arguments and for calling a function which prints
structured data in a nice way. There are two ways to call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, .. .)/m

The first simply executes the function. The second is intended for calling functions (it executes
the function and prints the value that it returns). The value is printed in decimal unless some
other format is specified by m. Arguments to functions may be integer, character or string
constants, or values of variables which are accessible from the current function.

An unfortunate bug in the current implementation is that if a function is called when- the
program is not stopped at a breakpoint (such as when a core image is being debugged) all
variables are initialized before the function is started. This makes it impossible to use a
function which formats data from a dump.

PROGRAMMER GUIDE 7-9

.db

MACBINE LANGUAGE DEBUGGING
The .db program has facilities for exa~ining programs at the machine language level. It is
possible to print the machine language statements associated with a line in the source and to
place breakpoints at arbitrary addresses. The .db program can also be used to display or
modify the contents of the machine registers.

Displaying Machine Language Statements

To display the machine language statements associated with line 25 in function main, use the
command

*main:25?

The r command is identical to the / command except that it displays from text space. The
default format for printing text space is the i format which interprets the machine language
instruction. The control-d command may be used to print the next ten instructions.

Absolute addresses may be specified instead of line numbers by appending a: to them so that

*Oxl024:?

displays the contents of address Oxl024 in text space. Note that the command

*Oxl024?

displays the instruction corresponding to line Oxl024 in the current function. It is also possible
to set or delete a. breakpoint by specifying its absolute address;

*Oxl024:b

sets a breakpoint at address Oxl024.

ManipUlating Registers

The x command prints the values of all the registers. Also, individual registers may be named
instead of va.riables by appending a % to their name so that

*r3%

displays the value of register r9.

7-10 ICON INTERNATIONAL

(:

o

(")

sdb

OTHER COMMANDS

To exit sdb, use the q command.

The! command is identical to that in ed(l) and is used to have the shell, execute a command.

It is possible to change the values of variables when the program is stopped at a breakpoint.
This is done with the command .

*variable!value

which sets the variable to the given value. The value may be a number, character constant,
register, or the name of another variable. If the variable is of type float or double, the value
can also be a floating-point constant.

$ cat testdiv2.c
main(argc, argv, envp)
char **argv, **envp; {

int ij
i = div2(-I);
printf("-1/2 = %d\n", i);

}
div2(i) {

int j;

}

j = i»I;
return(j);

$ cc -g testdiv2.c
$ a.out
-1/2 =-1
$ sdb
No core image
* rdiv2
7: div2(i) {

Warning message from sdb
Search for function "div2"

It starts on line 7
*z # Print the next few lines
7: div2(i) {
8: int j;
9: j = i»I;
10: return(j);
11: }
*div2:b # Place breakpoint at beginning of "div2"
div2:9 b # Sdb echoes proc name and line number
*r # Run the function
a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j = i»I;
*t # Print trace of subroutine calls
div2(i=-I) [testdiv2.c:9]

PROGRAMMER GUIDE 7-11

sdb

main(argc=l ,argv=Ox7fffff50,envp=Ox7fffff58) [testdiv2.c:4]
*i/ # Print i
-1
*s # Single step
div2:10: return(j); :#: Execution stops before line 10
*j/ # Print j
-1
*9d # Delete the breakpoint
*div2(1)/ # Try running "div2" with different arguments
o
*div2(-2)/
-1
*div2(-3)/
-2
*q
$

Figure 7-1. EXAMPLE OF sdb USAGE

7-12 ICON INTERNATIONAL

~.- ./

Chapter 8

ICONjUXV FORTRAN SYSTEM COMMANDS
An ICON/UXV Fortran 77 user should be familiar with the following commands:

• rT7 [options] files - This command invokes the ICON/UXV Fortran 77 compiler

• ratfor [options] [files]- This command invokes the Ratfor preprocessor

• eft [options] [files] - This command compiles a program written in Extended Fortran Language
(EFL) into clean Fortran

• asa [files] - This command interprets the output of Fortran programs that utilize ASA
carriage control characters

• fsplit options files - This command splits the named file(s) into separate files, with one
procedure per file.

For more information about the above commands, see the ICON/UXV User Reference Manual.

PROGR.AM:MER GUIDE 8-1

(

Chapter 9

FORTRAN 77

PAGE

USAGE ... CI-l

LANGUAGE EXTENSIONS ... Cl-l

Double Complex Data Type. CI-%

Internal FUes CI-%

Implicit Undefined Statement.... CI-%

Reeurslon ... CI-%

Automatic Storage... CI-2

Variable Length Input Lines ... Cl-2

Include Statement... CI-3
Binary initialization Constants ,. CI-3
Character Strings.. Cl-3

Hollerith.. ... Cl-4

Equivalence Statements.. .. Cl-4

One-Trip DO Loops .. CI-4

Commas In Formatted Input....... CI-5

Short Integers.. CI-5

Addltlonallntrlnslc: Functions........ CI-5

VIOLATIONS OF THE STANDARD Cl-8

Double Precision Alignment..................... CI-8

Dummy Procedure Arguments ... ,.................... Cl-8

T and TL Formats '" CI-8

INTERPROCEDURE INTERFACE.. Cl-CI

Procedure Names ... Cl-CI

Data Representations. CI-CI

Return Values .. Cl-CI

Argument Llsts... Cl-I0

FILE FORMATS ... CI-ll

Structure or Fortran Files... CI-ll

Preconneeted Flies and File POIIltlons.. CI-ll

(

(

c

--- --~--~~-

Chapter 9

FORTRAN 77
This chapter describes the compiler and run-time system for Fortran 77 as implemented in
ICON/UXV. This chapter also describes the interfaces between procedures and the file
formats assumed by the I/O system.

USAGE

The command to run the compiler is

r17 options file

The r17(1) command is a general purpose command for compiling and loading Fortran and
Fortran-related files into an executable module. EFL (compiler) and Ratfor (preprocessor)
source files will be translated into Fortran before being presented to the Fortran compiler. The
r17 command invokes the C compiler to translate C source files and invokes the assembler to
translate assembler source files. Object files will be link edited. [The r17(1) and cc(l)
commands have slightly different link editing sequences. Fortran programs need two extra
libraries (libI77.a, libF77.a) and an additional startup routine.] The following file name suffixes
are understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.c C language source file

.s Assembler source file

• 0 Object file .

LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. The most important additions are a
character string data type, file-oriented input/output statements, and random access I/O.
Also, the language has been cleaned up considerably.

In addition to implementing the language specified in the Fortran 77 American National
Standard, this compiler implements a few extensions. Most are useful- additions to the
language. The remainder are extensions to make it easier to communicate with C language
procedures or to permit compilation of old (1966 Standard Fortran) programs.

PROGRAMMER GUIDE 9-1

FORTRAN 11

Double Complex Data Type

The data type double complex is added. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided.

Internal Files

The Fortran 77 American National Standard introduces internal files (memory arrays) but
restricts their use to formatted sequential I/O statements. This I/O system also permits
internal files to be used in direct and unformatted reads and writes.

Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in a type statement is
jnteger if its first letter is i, i, k, I, m or n. Otherwise, it is u.aJ.. Fortran 77 has an implicjt
statement for overriding this rule. An additional type statement, undefined, is permitted. The
statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for
each variable that is used but does not appear in a type statement. Specifying the -u compiler
option is equivalent to beginning each procedure with this statement.

Recursion

Procedures may call themselves directly or through a chain of other procedures.

Automatic Storage

Two new keywords recognized are static and automatic. These keywords may. appear as
"types" in type statements and in implicit statements. Local variables are static by default;
there is exactly one copy of the datum, and its value is retained between calls. There is one
copy of each variable declared automatic for each invocation of the procedure. Automatic
variables may not appear in equivalence, data, or save statements.

Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to be in a 72-
column format: except in comment lines, the first five characters are the statement number,
the next is the continuation character, and the next 66 are the body of the line. (If there are
fewer than 72 characters on a line, the compiler pads it with blanks; characters after the first
72 are ignored.) In order to make it easier to type Fortran programs, this compiler also
accepts input in variable length lines. An ampersand (&:) in the first position of a line
indicates a continuation line; the remaining characters form the body of the line. A tab
character in one of the first six positions of a line signals the end of the statement number and
continuation part of the line; the remaining characters form the body of the line. A tab
elsewhere on the line is treated as another kind of blank by the compiler.

9-2 ICON INTERNATIONAL

./

()

(

(~

FORTRAN 77

In the Fortran 77 Standard, there are only 26 letters.

- Fortran is a one-case language. Consistent with ordinary system usage, the new compiler
expects lowercase input. By default, the compiler converts all uppercase characters to
lowercase except those inside character constants. However, if the -U compiler option is
specified, uppercase letters are not transformed. In this mode, it is possible to specify external
names with uppercase letters in them and to have distinct variables differing only in case. In
this mode only lowercase keywords are recognized.

Include Statement

The statement

include "stuff"

is replaced by the contents of the file stuff. Includes may be nested to a reasonable depth,
currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a da.t.a. statement by a binary
constant, denoted by a letter followed by a quoted string. If the letter is b, the string is binary,
and only zeroes and ones are permitted. If the letter is 0, the string is octal with digits zero
through seven. If the letter is .z. or x, the string is hexadecimal with digits zero through nine, a
through f. Thus, the statements

integer a(3)
data a/b'lOlO',o'12',z'a'/

initialize all three elements of a to ten.

Character Strings

For compatibility with C language usage, the following backslash escapes are recognized:

\n New-line

\t Tab

\b Backspace

\f Form feed

\0 Null

PROGRAMMER GUIDE 9-3

FORTRAN '1'1

\' Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\x Where x is any other character.

Fortran 77 only has one quoting character - the apostrophe ('). This compiler and I/O
system recognize both the apostrophe and the double quote (tt). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated quote
or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on an jnteger word boundary. Each character string constant appearing outside a da1a.
statement is followed by a null character to ease communication with C language routines.

Hollerith

Fortran 77 does not have the old Hollerith (nb) notation though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility with old
programs. In this compiler, Hollerith data may be used in place of character string constants
and may also be used to initialize non-character variables in da.ta statements.

Equivalence Statements

This compiler permits single subscripts in equivalence statements under the interpretation
that all missing subscripts are equal to 1. A warning message is printed for each such
incomplete subscript.

One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do loop not be
performed if the initial value is already past the limit value, as in

do 10 i == 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order to
accommodate old programs in violation of the 1966 Standard, the -onetrip compiler option
causes nonstandard loops to be generated.

9-4 ICON INTERNATIONAL

o

(

FORTRAN 77

Commas in F01'JD8tted Input

The I/O system attempts to be more lenient than the Fortn.n 77 American National Standard
when it seems worthwhile. When doinf; a formatted read of non-character variables, commas
may be used as value sepan;tors in the input record overriding the field lengths given in the
format statement. Thus, the format

(i10, f20.IO, i4)

will read the record

-345,.05e-3,12

correctly.

Short Integers

On machines that support half word integers, the compiler accepts declarations of type
integer * 2. (Ordinary integers follow the Fortran rules about occupying the same space as a
REAL variable; they are assumed to be of C language type long int; half word integers are of
C language type short int.) An expression involving only objects of type integer*2 is of that
type. Generic functions return short or long integers depellding on the actual types of their
arguments. If a procedure is compiled using the -12 flag, all small integer constants will be of
type integer*2. If the precision of an integer-valued intrinsic function is not determined by
the generic function rules, one will be chosen that returns the pTevailing length (integer*2
when the -12 command flag is in effect). When the -12 option is in effect, all quantities of type
logical will be short. Note that these short integer and logical quantities do not obey the
standard rules for storage association.

AdditionallDtrinsie Functions

This compiler supports all of the intrinsic funetions specified in the Fortran 77 Standard. In
addition, there are functions for performing bitwise Boolean operations (or, and, xor, and
not) and for accessing the commandaTf;uments (getaTg and iaTgc).

The following lists the Fortran intrinsic function library plus some additional functions. These
functions are automatically available to the Fortran 'Programmer and require no special
invocation of the compiler. The asteTisk (*) beside some of the commands indicates they are
not part of standard F77. In parenthesis beside each function description listed below is the
location for the command in the ICON/UXV Programmer Reference Manual.

The following is a revised list that includes the additional F77 1.1 functions:

PROGRAMMER GUIDE 0-5

FORTRAN 77

abort· Terminate program (abol't(3F)]
abs Absolute value [max(3F)]
acos Arccosine (acos{3F»)
aimag Imaginary part of complex argument. [aimag(3F)]
alnt. Integer part (aint(3F»)
alog Nat.ural logarit.hm [log(3F)]
aloglO Common logarit.hm (logI0(3F»)
amaxO Maximum value (max(3F)]
,maxl Maximum value (max(3F)]
aminO Minimum value [min(3F»)
aminl Minimum value (min(3F»)
amod Remaindering [mod(3F)]
and* Bitwise Boolean (bool(3F»)
anint Nearest. integer [l'ound(3F)]
asin Arcsine (asin(3F)]
atan Arctangent [atan(3F)]
atan2 Arctangent [atan2(3F)]
btest· Bit. field manipulat.ion function

Imil(3F»)
cabs Complex absolute value [abs(3F)]
ccos Complex cosine ICos{3F)1
cexp Complex exponential [exp(3F)]
char Explicit type conversion [Ftype(3F)1
clog Complex natural logarithm [log(3F)]
cmplx Explicit type conversion IFtype(3F)]
conjg Complex conjugate [conjg(3F)]
cos Cosine [cos(3F)]
cosh Hyperbolic cosine [cosh(3F)]
csin Complex sine [ein(3F)]
cSQrt Complex square root leql't(3F)]
dabs Absolute value [abs(3F)]
dacos Arccosine [acoe(3F)]
dasin Arcsine [uin(3F)1
datan Arctangent [atan(3F)1
datan2 Double precision arctangent [atan2(3F)]
dble Explicit type conversion Ittype(3F)]
dcmplx* Explicit type conversion [ttype(3F)]
dconjg* Complex conjugate [conjg(3F)]
dcos Cosine [dcos(3F)]
dcosh Hyperbolic cosine [cosh(3F)]
ddim Positive difference [dim(3F)1
dexp Exponential [exp(3F)]
dim Positive difference [dim(3F)]
dimag· Imaginary part of complex argument [aimag(3F)]
dint Integer part [aint(3F)]
dlog Natural logarithm Ilog(3F}]
dloglO Common logarithm [loglO(3F)]
dmaxl Maximum value [max(3F)]
dminl Minimum value [min(3F)]
dmod Remaindering [dmod(3F)]
dnint Nearest integer [l'ound(3F)]
dprod Double precision product. [dpl'od(3F)]
dsign Transfer of sign [sign(3F)]
dsin Sine [ain(3F)]
dsinh Hyperbolic sine [sinh(3F)]
dSQrt Square root Isqrt(3F)]
dtan Tangent [tan(3F)]
dtanh Hyperbolic tangent Itanh(3F)]
exp Exponential [exp(3F)]
float Explicit type conversion (ttype(3F)] .
getarg· Return command-line argument [getal'g(3F)]

(

~ /

ICON INTERNATIONAL

FORTRAN 77

(-" getenv* Ret.urn environment variable Igetenv(3F)]
iabs Absolute value [abs(3F)]
iand* Bit field manipulation int.rinsic functions

(mil(3F)]
iargc Ret.urn number of argument.s liargc(3F)]
ibclr* Bit field manipulation int.rinsic functions

(mil(3F)]
Ibits* Bit field manipulation int.rinsic funct.ions

[mil(3F)]
ibset.* Bit. field manipulation int.rinsic functions

[mil(3F)]
ichar Explicit. type conversion Iftype(3F)]
idim Positive difference Idim(3F}]
idint Explicit type conversion Iftype(3F)]
idnint. Nearest. integer [round(3F)]
leor* Bit. field manipulat.ion int.rinsic functions

[mil(3F)]
ifix Explicit. type conversion Iftype(3F)]
index Return location of substring [index(3F}]
int explicit type conversion [ftype(3F»)
lor* Bit field manipulat.ion int.rinsic function

(mil(3F)]
irand* Random number generator [rand(3F»)
ishft.* Bit. field manipulation Int.rinsic function

[mil(3F)]
ishft.c* Bit field manipulation intrinsic function

[mil(3F)]
isign Transfer of sign [sign(3F)]
len Ret.urn location of string [len(3F)]

(Ige St.ring comparison [strcmp(3F)]
Igt. String comparison [strcmp(3F)]
lie String comparison [strcmp(3F)]
lit String comparison [strcmp(3F)]
log Natural logarit.hm [log(3F)]
log10 Common logarithm [loglO(3F)]
Ishift* Bitwise Boolean [bool(3F)]
max Maximum value [max(3F)]
maxO Maximum value [max(3F)]
maxI Maximum value [max(3F)]
mclock* Ret.urn Fort.ran time accounting [mclock(3F)]
min Minimum value [min(3F)]
minO Minimum value [min(3F)]
mint Minimum value [min(3F)]
mod Remaindering Imod(3F)]
nint Nearest. integer Ibool(3F)]
not* Bitwise Boolean [bool(3F)]
or* Bitwise Boolean [bool(3F}]
rand* Random number generator Irand(3F)]
real Explicit type conversion [ftype(3F)]
rShift* Bit.wise Boolean [bool(3F)]
sign Transfer of sign Isign(3F)]
signal* Specify action on receipt. of system signal

[signal(3F)1
sin Sine [sine(3F)]
sinh Hyperbolic sine [sinh(3F)]
sngl Explicit type conversion Iftype(3F)]
sqrt Square root [sqrt(3F)]

(~,\
srand* Random number generat.or Irand(3F)]
st.rcmp St.ring comparison Istrcmp(3F)]
system* Issue a shell command !system(3F)]
tan Tangent Itan(3F}]

PROGRAMMER GUIDE 9·7

FORTRAN '1'1

tanh
xor*
zabs*

Hyperbolic tangent (tanh{3F)]
Bitwise Boolean Ibool(3F)J
Complex absolute value (abs(3F)J.

For more information on the Fortran intrinsic function commands, see the IOONI u.xv Programmer
Reference Manual.

VIOLATIONS OF THE STANDARD
The following paragraphs describe only three known ways in which this implementation of Fortran 77
violates the new American National Standard.

Double Precision Alignment

The Fortran 77 American National Standard permits common or equivalence statements to force a
double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,c
equivalence (a(l),b), (a(4),c)

Some machines require that double precision quantities be on double word boundaries; other machines
run inefficiently if this alignment rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but every double-precision argument would have
to be assumed on a bad boundary. To load such a quantity on some machines, it would be necessary to
use two separate operations. The first operation would be to move the upper and lower halves into the
halves of an aligned temporary. The second would be to load that double-precision temporary. The
reverse would be needed to store a result. All double-precision real and complex quantities are required
to fall on even word boundaries on machines with corresponding hardware requirements and to issue a
diagnostic if the source code demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that procedure
must be declared in an external statement. This requirement arises as a subtle corollary of the way we
represent character string arguments. A warning is printed if a dummy procedure is not declared
external. Code is correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These codes
allow rereading or rewriting part of the record which has already been processed. The implementation
uses "seeks"; so if the unit is not one which allows seeks (such as a terminal) the program is in error. A
benefit of the implementation chosen is that there is no upper limit on the length of a record nor is it
necessary to predeclare any record lengths except where specifically required by Fortran or the
operating system.

9-8 ICON INTERNATIONAL

o

(

(~

FORTRAN 77

INTERPROCEDUREINTERFACE
To be able to write C language procedures that call or are called by Fortran procedures, it is necessary
to know the conventions for procedure names, data representation, return values, and argument lists
that the compiled code obeys.

Procedure Names

Under ICONjUXV operating systems, the name of a common block or a Fortran procedure has an
underscore appended to it by the compiler to distinguish it from a C language procedure or external
variable with the same user-assigned name. Fortran library procedure names have embedded
underscores to avoid clashes with user-assigned subroutine names.

Data Representations

The following is a table of corresponding Fortran and C language declarations:

Fortran C Language

integer*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct { float r, i; } x;
double complex x struct { double dr, di; } x;
character*S x char x[s];

By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.

Return Values

A function of type integer, logical, real, or double precision declared as a C language function
returns the corresponding type. A complex or double complex function is equivalent to a C language
routine with an additional initial argument that points to the place where the return value is to be
stored. Thus, the following:

complex function f(...)

is equivalent to

struct { float r, i; } temp;
L(&temp, ...)

A character-valued function is equivalent to a C language routine with two extra initial arguments -
a data address and a length. Thus,

character*lS function g(...)

PROGRAMMER GUIDE 9-9

FORTRAN '1'1

is equivalent to

char result[};
long int length;
s.-(result, length, ...)

and could be invoked in C language by

char chars[15};

s.-(chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which alternate
return to use. Alternate return arguments (statement labels) are not passed to the function but are
used to do an indexed branch in the calling procedure. (If the subroutine has no entry points with
alternate return arguments, the returned value is undefined.) The statement

call nret(*I, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of type character
or that is a dummy procedure, an argument giving the length of the value is passed. (The string lengths
are long int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument.

Thus, the call in

external f
character*7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

0-10 ICON INTERNATIONAL

o

(

int CO;
char s[7);
long int b[3];

saDL(C, &b[l], s, OL, 7L);

FORTRAN 7'1

Note that the first element oC a C language array always has subscript 0, but Fortran arrays begin at 1
by deCault. Fortran arrays are stored in column-major order; C language arrays are stored in row
major order.

FILE FORMATS

Structure or Fortran Files

Fortran requires four kinds of external files: aequentialformatted and unformatted, and direct formatted
and unformatted. Under ICONjUXV operating systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/O is based on "records." When a direct file is opened in a Fortran program, the record length
of the records must be given; and this is used by the Fortran I/O system to make the file look as if it is
made up of records of the given length. In the special case that the record length is given as 1, the files
are not considered to be divided into records but are treated as byte-addressable byte strings; i.e., as
ordinary files under the ICONjUXV operating system. (A read or write request on such a file keeps
consuming bytes until satisfied rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be read
or written by any means except Fortran I/O statements. Each record is preceded arid followed by an
integer containing the record's length in bytes.

The Fortran I/O system breaks sequential formatted files into records while reading by using each
new-line as a record separator. The result of reading off the end of a record is undefined according to
the Fortran 77 American National Standard. The I/O system is permissive and treats the record as
being extended by blanks. On output, the I/O system will write a new-line at the end of each record.
It is also possible Cor programs to write new-lines for themselves. This is an error, but the only effect
will be that the single record the user thought was written will be treated as more than one record when
being read or backspaced over.

Preconnected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the standard input,
unit 6 is connected to the standard output, and unit 0 is connected to the standard error unit. All are
connected for sequential formatted I/O.

All the other units are also preconnected when execution begins. Unit n is connected to a file named
lort.n. These files need not exist nor will they be created unless their units are used without first
executing an open. The default connection is for sequential formatted I/O.

PROGRAMMER GUIDE 9-11

FORTRAN 77

The Fortran 77 Standard does not specify where a file which has been explicitly opened for sequential
I/O is initially positioned. In fact, the I/O system attempts to position the file at the end. A write will
append to the file and a read will result in an "end of file)) indication. To position a file to its
beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as they come
from the parent process.

9-12 ICON INTERNATIONAL

o

(
Chapter 10

RATFOR

PAGE

GENERAL .. 10-1

USAGE.. 10-1

STATEMENT GROUPING... 10-1

THE "If-else" CONSTRUCTION 10-2
Nested "Ir' Statements... 10-3

THE "switch" STATEMENT .. 10-4

THE "do" STATEMENT .. 10-6

THE "break" AND "next" STATEMENTS... 10-6

THE "while" STATEMENT.. 10-6

THE "for" STATEMENT ... 10-7

THE "repeat-until" STATEMENT.. 10-8

THE "return" STATEMENT .. 10-8

THE "define" STATEMENT... 10-0

THE "Inelude" STATEMENT ... 10-0

FREE-FORM INPUT .. 10-10

TRANSLATIONS.. 10-10

WARNINGS .. 10-11

EXAMPLE OF RATFOR CONVERSION.. 10-12

Ot

/ '\
\

\)

(~

(

Chapter 10

RATFOR

GENERAL

This chapter describes the Ratfor(l) preprocessor. It is assumed that the user is familiar with
the current implementation of Fortran 77 in the ICON/UXV operating system.

The Ratfor language allows users to write Fortran programs in a fashion similar to C
language. The Ratfor program is implemented as a preprocessor that translates this
"simplified" language into Fortran. The facilities provided by Ratfor are:

• Statement grouping
• if-else and switch for decision making
• while, for, do, and repeat-until for looping
• break and next for controlling loop exits
• Free form input such as multiple statements/lines and automatic continuation
• Simple comment convention
• Translation of >, >=, etc., into .gt., .ge., etc.
• return statement for functions
• define statement for symbolic parameters
• liiC'iUde statement for including source files.

USAGE

The Ratfor program takes either a list of file names or th~ standaTd input and writes Fortran
on the standard output. Options include -6x, which uses x as a continuation character in
column 6 (the ICONjUXV system uses (1 in column 1), -h, which causes quoted strings to be
turned into nil constructs and -0, which causes Ratfor comments to be copied into the
generated Fortran.

STATEMENT GROUPING

The Ratfor language provides a statement grouping facility. A group of statements can be
treated as a unit by enclosing them in the braces { and}. For example, the Ratfor code

if (x> 1(0)
{ call error("x>I00"); err = 1; return }

will be translated by the Ratfor preproc~ssor into Fortran equivalent to

PROGRAMMER GUIDE 10-1

-- -------~------ --------~--

RATFOR

10

if (x .Ie. 100) goto 10
call error(5hx>I00)
err == 1
return

which should simplify programming effort. By using { and} J a group of statements can be used
instead of a single statement.

Also note in the previous Ratfor example that the character > was used instead of .G T. in
the if statement. The Ratfor preprocessor translates this 0 language type operator to the
appropriate Fortran operator. More on relationship operators later.

In addition, many Fortran compilers permit character strings in quotes (like "x> 100"). But
others, like ANSI Fortran 66, do not. Ratfor converts it into the right number of Hs.

The Ratfor language is free form. Statements may appear anywhere on a line, and several
may appear on one line if they are separated by semicolons. The previous example could also
be written as

if (x > 100) {

}

call error("x>l00")
err = 1
return

which shows grouped statements spread over several lines. In this case, no semicolon is needed
at the end of each line because Ratfor assumes there is one statement per line unless told
otherwise.

Of course, if the statement that follows the if is a single statement, no braces are needed.

THE "if-else" CONSTRUCTION

The Ratfor language provides an else statement. The syntax of the if-else construction is:

if (legal Fortran condition)
ratfor statement

else
ratfor statement

o

where the else part is optional. The legal Fortran condition is anything that can legally go (t'
into a Fortran Logical IF statement. The Ratfor preprocessor does not check this clause since "'-~
it does not know enough Fortran to know what is permitted. The "ratfor" statement is any

10-2 lOON INTERNATIONAL

c:

c

Ratfor or Fortran statement or any collection of them in braces. For example:

if (a <= b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

RATFOR

is a valid Ratfor if-elae construction. This writes out the smaller of ~ and £., then the larger,
and sets ~ appropriately.

AJ5 before, if the statement following an if or an else is a single statement, no braces are
needed.

Nested "if" Statements

The statement that follows an if or an else can be any Ratfor statement including another if
or else statement. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor language also provides a switch
statement which could be used instead, under certain conditions.) The last else handles the
"default" condition. If there is no default action, this final else can be omitted. Thus, only the
actions associated with the valid condition are performed. For example:

if(x < 0)
x=O

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In Ratfor when there are more
if statements than else statements, else statements are associated with the closest previous if
statement that currently does not have an associated else statement. For example:

if (x> 0)
if(y > 0)
write(6,1) x, y
else
write(6,2) y

PROGRAMMER GUIDE 10-3

RATFOR

is interpreted by the Ratfor preprocessor as

if (x> 0) {
if (y > 0)

}

write(6, 1) x, y
else

write(6, 2) y

in which the braces are assumed. If the other association is desired it must be written as

if(x > 0) {
if (y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

with the braces specified.

THE "switch" STATEMENT

The switch statement provides a way to express multiway branches which branch on the value
of some integer-valued expression. The syntax is

switch (expression) {
case exprl :
statements

}

case expr~, expr9:
statements

default:
statements

where each case is followed by an integer' expression (or several integer expressions separated
by commas). The switch expression is compared to each case expr until a match is found.
Then the statements following that ease are executed. If no eases match expression, then the
statements following default are executed. The default section of a switch is optional.

When the statements associated with a ease are executed, the entire switch is exited
immediately. This is different from C language.

10-4 ICON INTERNATIONAL

/

('" ~.' : i
.~

RATFOR

THE "do" STATEMENT

The do statement in Ratfor is quite similar to the DO statement in Fortran except that it
uses no statement number (braces are used to mark the end of the do instead of a statement
number). The syntax of the ratfor do statement is

do legal-Fortran-DO-text {
rat/or 8tatement8

}

The legal-Fortran-DO-text must be something that can legally be used in a Fortran DO
statement. Thus if a local version of Fortran allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran 66), they can be used in a ratfor do statement. The
rat/or 8tatement8 are enclosed in braces; but as with the if, a single statement need not have
braces around it. For example, the following code sets an array to zero:

do i = 1, n
x(i) = 0.0

and the code

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire array m to zero.

THE "break" AND "next" STATEMENTS

The Ratfor break and next statements provide a means for leaving a loop early and one for
beginning the next iteration. The break causes an immediate exit from the do; in effect, it is
a branch to the statement after the do. The next is a branch to the bottom of the loop, so it
causes the next iteration to be done. For example, this code skips over negative values in an
array

do i = 1, n {
if (x(i) < 0.0)

next
proce88 p08itive element

}

The break and next statements will also work in the other Ratfor looping constructions and
will be discussed with each looping construction.

PROGRAMMER GUIDE 10-5

RATFOR

The break and next can be followed by an integer to indicate breaking or iterating that level
of enclosing loop. For example:

break 2

exits from two levels of enclosing loops, and

break 1

is equivalent to break. The

next 2

iterates the second enclosing loop.

THE "while" STATEMENT

The Ratfor language provides a while statement. The syntax of the while statement is

while (legal-Fortran-condition)
ratfor statement

As with the if, legal-Fortran-condition is something that can go into a Fortran Logical IF,
and ratfor statement is a single statement which may be multiple statements enclosed in
braces:--

For example, suppose nextch is a function which returns the next input character. both as a
function value and in its argument. Then a while loop to find the first nonblank character
could be

while (nextch(ich) iblank}

where a semicolon by itself is a null statement (which is necessary here to mark the end of the
while). If the semicolon were not present, the while would control the next statement. When
the loop is exited, ich contains the first nonblank.

10-6 ICON INTERNATIONAL

o

/ " ('
i
''")

(

RATFOR

THE "for" STATEMENT

The for statement is another Ratfor loop. A for statement allows explicit initialization and
increment steps as part of the statement.

The syntax of the for statement is

for (init ; condition ; increment)
rat/or 8tatement

where init is any single Fortran statement which is executed once before the loop begins. The
increment is any single Fortran statement that is executed at the end of each pass through the
loop before the test. The condition is again anything that is legal in a Fortran Logical IF.
Any of init, condition, and increment may be omitted although the semicolons must always be
present.A nonexistent condition is treated as always true, so --

for (;;)

is an infinite loop.

For example, a Fortran DO loop could be written as

for (i = 1; i <= n; i = i + 1) ...

which is equivalent to

i = 1
while (i <= n) {

i=i+l
}

The initialization and increment of i have been moved into the for statement.

The for, do, and while versions have the advantage that they will be done zero times if n is
less than 1. In addition, the break and next statements work in a for loop.

The increment in a for need not be an arithmetic progression. The program

sum =0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

PROGRAMMER GUIDE 10-7

RATFOR

steps through a list (stored in an integer array ptr) until a zero pointer is found while adding
up elements from a parallel array of values. Notice that the code also works correctly if the
list is empty.

:rHE "J'epeat-untll" STATEMENT

There are times when a test needs to be performed at the bottom of a loop after one pass
through. This facility is provided by the repeat-until statement. The syntax for the repeat
until statement is

repeat
ratfor statement

until (legal-Fortran-condition)

where ratfor-statement is done once, then the condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat-until loop can be
exited by the use of a stop, return, or break statement or an implicit stop such as running
out of input with a READ statement. .

As stated before, a break statement causes an immediate exit from the enclosing repeat
until loop. A next statement will cause a skip to the bottom of a repeat-until loop (i.e., to
the until part).

THE "J'eturn" STATEMENT

The standard Fortran mechanism for returning a value from a routine uses the name of the
routine as a variable. This variable can be assigned a value. The last value stored in it is the
value returned by the function. For example, in a Fortran routine named equal, the
statements

equal = 0
return

cause equal to return zero.

The Ratfor language provides a return statement similar to the C language return
statement. In order to return a value from any routine, the return statement has the syntax

return (expression)

10-8 ICON INTERNATIONAL

(..•

(

(:

RATFOR

where expression is the value to be returned.

If there is no parenthesized expression after return, no value is returned.

THE "define" STATEMENT

The Ratfor language provides a define statement similar to the C language version. Any
string of alphanumeric characters can be defined as a name. Whenever that name occurs in
the input (delimited by nonalphanumerics), it is replaced by the rest of the definition line.
(Comments and trailing white spaces are stripped off.) A defined name can be arbitrarily long
and must begin with a letter.

Usually the define statement IS used for symbolic parameters. The syntax of the define
statement is

define name value

where name is a symbolic name that represents the quantity of value. For example:

define ROWS 100
define CLOS 50
dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

causes the preprocessor to replace the name ROWS with the value 100 and the name GOLS
with the value 50. Alternately, definitions may be written as

define(ROWS, 100)

in which case the defining text is everything after the comma up to the right parenthesis. This
allows multiple-line definitions.

THE "include" STATEMENT

The Ratfor language provides an include statement similar to the #include < ... > statement
in C language. The syntax for this statement is

include file

which inserts the contents of the named file into the Ratfor input file in place of the include
statement. The standard usage is to place COMMON blocks on a file and use the include
statement to include the common code whenever needed.

PROGRAMMER GUIDE 10-9

RATFOR

FREE-FORM INPUT

In Ratfor, statements can be placed anywhere on a line. Long statements are continued
automatically as are long conditions in if, for, and until statements. Blank lines are ignored.
Multiple statements may appear on one line if they are separated by semicolons. No semicolon
is needed at the end of a line if Ratfor can make some reasonable guess about whether the
statement ends there. Lines ending with any of the characters

=+-*,1&(-

are assumed to be continued on the next line. Underscores are discarded wherever they occur.
All other characters remain as part of the statement.

Any statement that begins with an all-numeric field IS assumed to be a Fortran label and
placed in columns 1 through 5 upon output. Thus:

write(6, 100); 100 format(tthello")

is converted into

100
write(6, 100)
format(5hhello)

TRANSLATIONS

When the -h option is chosen, text enclosed in matching single or double quotes is con'\'erted to
nH... but is otherwise unaltered (except for formatting - it may get split across card
boundaries during the reformatting process). Within quoted strings, the backslash (\) serves as
an escape character; i.e., the next character is taken literally. This provides a way to get
quotes and the backslash itself into quoted strings. For example:

"""
is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.) -

Any line that begins with the character % is left absolutely unaltered except for stripping off
the % and moving the line one position to the left. This is useful for inserting control cards
and other things that should not be preprocessed (like an existing Fortran program). Use %
only for ordinary statements not for the condition parts of if, while, etc., or the output may
come out in an unexpected place.

The following character translations are made (except within single or double quotes or on a
line beginning with a %):

10-10 ICON INTERNATIONAL

(.~

(

c

RATFOR

=== .eq.

1-. - .ne .

> .gt.

>= .ge.

< .It.

<= .Ie .

& . and.

.or .

. not.

In addition, the following translations are provided for input devices with restricted character
sets:

{

}

${ {

$) }

WARNINGS

The Ratfor preprocessor catches certain syntax errors (such as missing braces), else statements
without if statements, and most errors involving missing parentheses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the Fortran compiler
prints messages in terms of generated Fortran code and not in terms of the Ratfor code. This
makes it difficult to locate Ratfor statements that contain errors.

The keywords are deserved. Using if, else, while, etc., as variable names will cause
considerable problems. Likewise, spaces within keywords and use of the Arithmetic IF will
cause problems.

The Fortran nH convention is not recognized by Ratfor. Use quotes instead.

PROGRAMMER GUIDE 10-11

RATFOR

EXAMPLE OF RATFOR CONVERSION

As an example of how to use the Ratfor program, the following program prog.r (where the .r
indicates a Ratfor source program), is written in the Ratfor la.nguage:

ICNT=O
10 WRITE(6,81)
81 FORMAT("INPUT FIRST NUMBER")

READ(&,82) A
82 FORMAT(Fl0.2)

WRITE(6,88)
88 FORMAT("INPUT SECOND NUMBER")

READ(S,84) B
84 FORMAT(Fl0.2)

IF(A<B)
WRITE(6,86) A,B

ELSE WRITE(6,87)A,B
86 FORMAT(Fl0.2," < ",Fl0.2)
87 FORMAT(Fl0.2," >= ",Fl0.2)

ICNT: ICNT+l
IF(ICNT.EQ.&)

GOTO 100
GOTO 10

100 END

The command

ratfor prog.r > progJ

causes the Fortran translation program prog.f to be produced. (The Ratfor program prog.r
remains intact.) The Fortran pTogram prog.f follows:

10-12 ICON INTERNATIONAL

(\

'..)

I cnt=O
10 wrlte(6,31)
31 format("INPUT FIRST NUMBER")

read(5,32) a
32 format(fl0.2)

wrlte(6,33)
33 format("INPUT SECOND NUMBER")

read(5,34) b
34 format(fl0.2)

If(.not.(a.lt.b»goto 23000
wrlte(6,36) a,b
goto 23001

23000 continue
wrlte(6,37)a,b

23001 continue
36 format(fl0.2," < ",fl0.2)
37 format(fl0.2," >= ",fl0.2)

I cnt=1 cnt+l
If(.not.(lcnt.eq.&»goto 23002
goto 100

23002 continue
goto 10

100 end

The Fortran program prog.f is compiled using the command

f77 progJ

RATFOR

An object program file prog.o and a final output file a.out are produced. Since the output file
a.out is an executable file, the command

a.out

causes the program to run.

The Ratfor program prog.r can also be translated and compiled with the single command

f77 prog.r

where the .r indicates a Ratfor source program. An object file prog.o and a final output file
a.out are produced.

PROGRAMMER GUIDE 10-13

RATFOR

NOTES

..

10-14 ICON INTERNATIONAL

(
Chapter 11

THEPROG~GLANGUAGEEFL

PAGE

INTRODUCTION ... 11-1

LEXICAL FORM... 11-2

PROGRAM FORM.. 11-8

DATA TYPES AND VARlABLES... 11-8

EXPRESSIONS ... 11-10

DECLARATIONS ... 11-17

EXECUTABLE STATEMENTS .. 11-20

PROCEDURES ... 11-20

ATAVISMS ... 11-32

COMPILER OPTIONS....................................... 11-35

EXAMPLES .. 11-37

PORTABILITY ... 11-40

DIFFERENCES BETWEEN RATFOR AND EFL ... 11-41

COMPILER 11-42

CONSTRAINTS ON EFL .. 11-44

-.--------------.~-~-

/

rf"-"
I~/

(

Chapter 11

THE PROGRAMMING LANGUAGE EFL

INTRODUCTION

EFL is a clean, general purpose computer language intended to encourage portable
programming. It has a uniform and readable syntax and good data and control flow
structuring. EFL programs can be translated into efficient Fortran code, so the EFL
programmer can take advantage of the ubiquity of Fortra.n, the valuable libraries of software
written in that language, and the portability that comes with the use of a standardized
language, without suffering from Fortran's many failings a.s a language. It is especially useful
for numeric programs. Thus, the EFL language permits the programmer to express
complicated ideas in a comprehensible way, while permitting access to the power of the
Fortran environment.

The name EFL originally stood for "Extended Fortran Language." The current compiler is
much more than a simple preprocessor: it attempts to diagnose all syntax errors, to provide
readable Fortran output, and to avoid a number of niggling restrictions.

In examples and syntax specifications, boldface type is used to indicate literal words and
punctuation, such as while. Words in italic type indicate an item in a category, such as an
expression. A construct surrounded by double brackets represents a list of one or more of those
items, separated by commas. Thus, the notation

[item]

could refer to any of the following:

item
item, item
item, item, item

The reader should have a fair degree of familiarity with some procedural language. There will
be occasional references to Ratfor and to Fortran which may be ignored if the reader is
unfamiliar with those languages.

PROGRAMMER GUIDE 11-1

EFL

LEXICAL FORM

Character Set

The following characters are legal in an EFL program:

letters

digits
white space
quotes
sharp
continuation
braces
parentheses
other

abedet'ghijklm
Dopqrstuvwxyz
0123456789
blank tab
I ..

#:

{ }
()
, ; : . +
= < > 8r.

* / - I $

Letter case (upper or lower) is ignored except within strings, so "a" and "A" are treated as the
same character. All of the examples below are printed in lower case. An exclamation mark
("!") may be used in place of a tilde ("-"). Square brackets ("[" and "J") may be used in place
of braces ("{" and "}").

Lines

EFL is a line-oriented language. Except in special cases (discussed below), the end of a line
marks the end of a token and the end of a statement. The trailing portion of a line may be
used for a comment. There is a mechanism for diverting input from one source file to another,
so a single line in the program may be replaced by a number of lines from the other file.
Diagnostic messages are labeled with the line number of the file on which they are detected.

lihite Spat;e

Outside of a character string or comment, any sequence of one or more spaces or tab
characters acts as a single space. Such a space terminates a token.

COmments

A comment may appear at the end of any line. It is introduced by a sharp (#) character, and
continues to the end of the line. (A sharp inside of a quoted string does not mark a comment.)
The sharp and succeeding characters on the line are discarded. A blank line is also a
comment. Comments have no effect on execution.

11-2 ICON INTERNATIONAL

o

--------.~--~----~~~~~

(

(

EFL

IndudeFilu

It is possible to insert the contents of a file at a point in the source text, by referencing it in a
line like

include joe

No statement or comment may follow an include on a line. In effect, the include line is
replaced by the lines in the named file, but diagnostics refer to the line number in the included
file. Includes may be nested at least ten deep. .

amtinuation

Lines may be continued explicitly by using the underscore (_) character. If the last character
of a line (after comments and trailing white space have been stripped) is an underscore, the
end of a line and the initial blanks on the next line are ignored. Underscores are ignored in
other contexts (except inside of quoted strings). Thus

equals @10 sup 9@.

There are also rules for continuing lines automatically: the end of line is ignored whenever it is
obvious that the statement is not complete. To be specific, a statement is continued if the last
token on a line is an operator, comma, left brace, or left parenthesis. (A statement is not
continued just because of unbalanced braces or parentheses.) Some compound statements are
also continued automatically; these points are noted in the sections on executable statements.

Mdtiple Statement. on a Line

A semicolon terminates the current statement. Thus, it is possible to write more than one
statement on a line. A line consisting only of a semicolon, or a semicolon following a semicolon,
forms a null statement.

Tokens

A program is made up of a sequence of tokens. Each token is a sequence of characters. A
blank terminates any token other than a quoted string. End of line also terminates a token
unless explicit continuation (see above) is signaled by an underscore.

PROGRAMMER GUIDE 11-3

EFL

I~B

An identifier is a letter or a letter followed by letters or digits. The following is a list of the
reserved words that have special meaning in EFL. They will be discussed later.

array
automatic
break
call
ease
character
common
complex
continue
debug
default
define
dimension
do
double
dou bleprecision
else
end
equivalence

exit
external
false
field
for
function
go
goto
if
implicit
include
initial
integer
internal
length of
logical
long
next
option

precision
procedure
read
read bin
real
repeat
return
select
short
sizeof
static
struct
subroutine
true
until
value
while
write
writebin

The use of these words is discussed below. These words may not be used for any other purpose.

Strings

A character string is a sequence of characters surrounded by quotation marks. If the string is
bounded by single-quote marks (,), it may contain double quote marks ("), and vice versa. A
quoted string may not be broken across a line boundary.

'hello there'
"ain't misbehavin'"

Integer CbnstantB

An integer constant is a sequence of one or more digits.

11-4

o
57
123456

ICON INTERNATIONAL

c

/ '\
\

,

\..,., ~//

(

(

(,/

j

EFL

Jiloating Point a:m.tant.

A floating point constant contains a dot and/or an exponent field. An exponent field is a letter
d or e followed by an optionally signed integer constant. If I and J are integer constants and E
is an exponent field, then a floating constant has one of the following forms:

Pu.nt:tuation.

.1
I.
I.J
IE
I.E
.IE
I.JE

Certain characters are used to group or separate objects in the language. These are

parentheses ()
braces { }
comma
semicolon
colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither blank nor continued.

Operators

The EFL operators are written as sequences of one or more non-alphanumeric characters.

+ - * / **
< <= > >= == -=
&& II & I
+= -= /= **=
&&= 11= &= 1=
-> . $

A dot (" .") is an operator when it qualifies a structure element name, but not when it acts as a
decimal point in a numeric constant. There is a special mode (see "ATAVISMS") in which
some of the operators may be represented by a string consisting of a dot, an identifier, and a
dot (e.g., .It.).

PROGRAMMER GUIDE 11-5

EFL

Macros

EFL has a simple macro substitution facility. An identifier may be defined to be equal to a
string of tokens; whenever that name appears as a token in the program, the string replaces it.
A macro name is given a value in a define statement like

define count n += 1

Any time the name count appears in the program, it is replaced by the statement

n+=1

A define statement must appear alone on a line; the form is

define name re8t-oJ-line

Trailing comments are part of the string.

PROGRAM FORM

Files

A file is a sequence of lines. A file is compiled as a single unit. It may contain one or more
procedures. Declarations and options that appear outside of a procedure affect the succeeding
procedures on that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each procedure has a name by
which it is invoked. (The first procedure invoked during execution, known as the main
procedure, has the null name.) Procedure calls and argument passing are discussed in
"PROCEDURES."

Blocks

Statements may be formed into groups inside of a procedure. To describe the scope of names,
it is convenient to introduce the ideas of block and of nesting level. The beginning of a program
file is at nesting level zero. Any options, macro definitions, or variable declarations are also at
level zero. The text immediately following a procedure statement is at level 1. After the
declarations, a left brace marks the beginning of a new block and increases the nesting level by
1; a right brace drops the level by 1. (Braces inside declarations do not mark blocks.) (See

\
,/

"Blocks" under ''EXECUTABLE STATEMENTS.") An end statement marks the end of the Uf' .. ··.'\
procedure, levell, and the return to level O. A name (variable or macro) that is defined at
level K is defined throughout that block and in all deeper nested levels in which that name is

11-6 ICON INTERNATIONAL

(-

(

not redefined or redeclared. Thus, a procedure might look like the following:

#= block 0
procedure george
real x
x=2

it(x > 2)
{ #= new block
integer x #= a dift"erent variable
do x = 1,7

write(,x)

} #= end of block
end #= end of procedure, return to block 0

Statements

EFL

A statement is terminated by end of line or by a semicolon. Statements are of the following
types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The include, define, and end
statements have been described above; they may not be followed by another statement on a
line. Each procedure begins with a procedure statement and finishes with an end statement;
these are discussed in "PROCEDURES". Declarations describe types and values of variables
and procedures. Executable statements cause specific actions to be taken. A block is an
example of an executable statement; it is made up of declarative and executable statements.

Labels

An executable statement may have a label which may be used in a branch statement. A label
is an identifier followed by a colon, as in

reade, x)
if(x < 3) goto error

error: fatal(ltbad inputtl)

PROGRAMMER GUIDE 11-7

EFL

DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The programmer may define objects
made up of variables of basic type; other aggregates may then be defined in terms of previously
defined aggregates.

The basic types are

Basic Types

logical
integer
6eld(m:n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer may take on any
whole number value in some machine-dependent range. A field quantity is an integer restricted
to a particular closed interval @[m:n])@. A "real" quantity is a floating point approximation
to a real or rational number. A long real is a more precise approximation to a rational. (Real
quantities are represented as single precision floating point numbers; long reals are double
precision floating point numbers.) A complex quantity is an approximation to a complex
number, and is represented as a pair of reals. A character quantity is a fixed-length string of n
characters.

Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by a plus or minus
sign, as in

17
-94
+8
o

A long real ("double precision") constant is a floating point constant containing an exponent
field that begins with the letter d. A real ("single precision") constant is any other floating

11-8 ICON INTERNATIONAL

C)

(

()

EFL

point constant. A real or long real constant may be preceded by a plus or minus sign. The
following are valid real constants:

17.3
-.4
7.ge-6 @'C=-7.9 times 10 sup -6)@

14e9 @r=-1.4 times 10 sup 10)@

The following are valid long real constants

7.9d-6 @C=-7.9 times 10 sup -6)@
5d3

A character constant is a quoted string.

Variables

A variable is a quantity with a name and a location. At any particular time the variable may
also have a value. (A variable is said to be undefined before it is initialized or assigned its first
value, and after certain indefinite operations are performed.) Each· variable has certain
attributes:

StorOlJe QQ88

The association of a name and a location is either transitory or permanent. Transitory
association is achieved when arguments are passed to procedures. Other associations are
permanent (static). (A future extension of EFL may include dynamically allocated variables.)

Scope oj Namu

The names of common areas are global, as are procedure names: these names may be used
anywhere in the program. All other names are local to the block in which they are declared.

Preciaicm.

Floating point variables are either of normal or long precision. This attribute may be stated
independently of the basic type.

Arrays

It is possible to declare rectangular arrays (of any dimension) of values of the same type. The
index set is always a cross-product of intervals of integers. The lower and upper bounds of the
intervals must be constants for arrays that are local or common. A formal argument array
may have intervals that are of length equal to one of the other formal arguments. An element
of an array is denoted by the array name followed by a parenthesized comma-separated list of
integer values, each of which must lie within the corresponding interval. (The intervals may
include negative numbers.) Entire arrays may be passed as procedure arguments or in

PROGRAMMER GUIDE 11-9

EFL

input/output lists, or they may be initialized; all other array references must be to individual 0
elements.

Structures

It is possible to define new types which are made up of elements of other types. The compound
object is known as a structure; its constituents are called members of the structure. The
structure may be given a name, which acts as a type name in the remaining statements within
the scope of its declaration. The elements of a structure may be of any type (including
previously defined structures), or they may be arrays of such objects. Entire structures may be
passed to procedures or be used in input/output lists; individual elements of structures may be
referenced. The uses of structures will be detailed below. The following structure might
represent a symbol table: .

struct tableentry
{
character(S) name
integer hashvalue
integer numberofelements
field(O:l) initialized, used, set
field(0:10) type
}

EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression may have any of the
following forms, recursively applied:

primary
(expression) .
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have equal precedence and have
higher precedence than operators on later lines. The meanings of these operators are described
in "Unary Operators" and ''Binary Operators" under ''EXPRESSIONS''.

11-10

-> .
** * / unary + - ++ -
+
< <= > >= =-=
&; &;&;
I II
I II
$
= += -= *= /= **= &;= 1= &;&;= 11=

ICON INTERNATIONAL

C)

EFL

Examples of expressions are

a<b&& b<c
-(a + sin(x» I (5+cos(x»**2

Primaries

Primaries are the basic elements of expressions. They include constants, variables, array
elements, structure members, procedure invocations, input/output expressions, coercions, and
sizes.

• am.tantB

Constants are described in "Constants" under "DATA TYPES AND VARIABLES".

Variablu

Scalar variable names are primaries. They may appear on the left or the right side of an
assignment. Unqualified names of aggregates (structures or arrays) may appear only as
procedure arguments and in input/output lists.

(An-OI/l!lemt:rrl8

c

An element of an array is denoted by the array name followed by a parenthesized list of
subscripts, one integer value for each declared dimension:

Structure Mm1ber.

a(5)
b(6,-3,4)

A structure name followed by a dot followed by the name of a member of that structure
constitutes a reference to that element. If that el~ment is itself a structure, the reference may
be further qualified.

a.b
x(3).y(4).z(5)

Procedvre Irwocatiorv

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-l, ... , expression-n)

PROGRAMMER GUIDE 11-11

EFL

The procedurename is either the name of a variable declared external or it is the name of a
function known to the EFL compiler (see ''Known Functions" under "PROCEDURES"), or it is
the actual name of a procedure, as it appears in a procedure statement. If a procedurename
is declared external and is an argument of the current procedure, it is associated with the
procedure name passed as actual argumentj otherwise it is the actual name of a procedure.
Each e:rpression in the above is called an actual argument. Examples of procedure invocations
are

f{x)
work()
g(x, y+3, 'xx')

When one of these procedure invocations is to be performed, each of the actual argument
expressions is first evaluated. The types, precisions, and bounds of actual and formal
arguments should agree. If an actual argument is a variable name, array element, or structure
member, the called procedure is permitted to use the corresponding formal argument as the
left side of an assignment or in an input listj otherwise it may only use the value. After the
fqrmal and actual arguments are associated, control is passed to the first executable statement
of the procedure. When a return statement is executed in that procedure, or when control
reaches the end statement of that procedure, the function value is made available as the value
of the procedure invocation. The type of the value is determined by the attributes of the

o

procedurename that are declared or implied in the calling procedure, which must agree with '\
the attributes declared for the function in its procedure. In the special case of a generic)
function, the type of the result is also affected by the type of the argument. See
"PROCEDURES".

Input/ Output E:z:pre8tJionB

The EFL input/output syntactic forms may be used as integer primaries that have a non-zero
value if an error occurs during the input or output. See "Input/Output Statements" under
"EXECUTABLE STATEMENTS".

Cbercions

An expression of one precision or type may be converted to another by an expression of the
form

attributes (e:rpression)

At present, the only attributes permitted are precision and basic types. Attributes are
separated by white space. An arithmetic value of one type may be coerced to any other
arithmetic typej a character expression of one length may be coerced to a character expression
of another length; logical expressions may not be coerced to a nonlogical type. As a special
case, a quantity of complex or long complex type may be constructed from two integer or
real quantities by passing two expressions (separated by a comma) in the coercion. Examples C)
and equivalent values are

11-12 ICON INTERNATIONAL

(integer(S.3) = S
IODg real(S) = S.OdO
complex(S,3) = S+3i

EFL

Most conversions are done implicitly, since most binary operators permit operands of different
arithmetic types. Explicit coercions are of most use when it is necessary to convert the type of
an actual argument to match that of the corresponding formal parameter in a procedure call.

Size8

There is a notation which yields the amount of memory required to store a datum or an item
of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or structure member.
The value of sizeof is an integer, which gives the size in arbitrary units. If the size is needed
in terms of the size of some specific unit, this can be computed by division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal sizeof because certain
data types require final padding on some machines. The lengthof operator gives this larger
value, again in arbitrary units. The syntax is

lengthof (leftside)
length of (attributes)

Parentheses

An expression surrounded by parentheses is itself an expression. A parenthesized expression
must be evaluated before an expression of which it is a part is evaluated.

Unary Operators

All of the unary operators in EFL are prefix operators. The result of a unary operator has the
same type as its operand.

PROGRAMMER GUIDE 11-13

EFL

.ArithmIltie

Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator - subtracts one from
its operand. The value of either expression is the result of the addition or subtraction. For
these two operators, the operand must be a scalar, array element, or structure member of
arithmetic type. (As a side effect, the operand value is changed.)

Logical

The only logical unary operator is complement (-). This operator is defined by the equations

- true = false
- false = true

Binary Operators

Most EFL operators have two operands, separated by the operator. Because the character set
must be limited, some of the operators are denoted by strings of two or three special
characters. All binary operators except exponentiation are left associative.

A,ithmetic

The binary arithmetic operators are

+ addition
@@ subtraction
* multiplication
/ division
** exponentiation

Exponentiation is right associative: a**b**c = a**(b**c) = @a sup {(b sup c.)}@ The
operations have the conventional meanings: @8+2-=-1O@, @8-2 -=- 6@, @8* 2 -=- 16@,
@8/2-=- 4@, @8 ** 2 -=- 8 sup 2 -=- 64@.

The type of the result of a binary operation @A-op-B@ is determined by the types of its
operands:

Type ofB

T e of A r 1 r c I c
1 r 1 r c I c
r r r 1 r c I c

I r 1 r I r 1 r 1 c 1 c
c c c I c c 1 c

I c I c 1 c I c 1 c I c

11-14 ICON INTERNATIONAL

,/ '\

j

(

(

i = integer
r = real
I r = long real
c = complex
I c = long complex

EFL

If the type of an operand differs from the type of the result, the calculation is done as if the
operand were first coerced to the type of the result. If both operands are integers, the result is
of type integer, and is computed exactly. (Quotients are truncated toward zero, so @Ji3/3 =
2@.)

Logical

The two binary logical operations in EFL, and and or, are defined by the truth tables:

A
false
false
true
true

B
false
true
false
true

A and B
false
false
false
true

AorB
false
true
true
true

Each of these operators comes in two forms. In one form, the order of evaluation is specified.
The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression IS false and b IS not
evaluated; otherwise, the expression has the value of b. The expression

allb II

is evaluated by first evaluating a; if it is true then the expression is true and b is not
evaluated; otherwise, the expression has the value of b. The other forms of the operators (&
for and and I for or) do not imply an order of evaluation. With the latter operators, the
compiler may speed up the code by evaluating the operands in any order.

Relational Operators

There are six relations between arithmetic quantities. These operators are not associative.

EFL Opera tor
<
<=

-=
>
>=

PROGRAMMER GUIDE

<
@<-@
@=@
@=@
>
@>=@

Meaning
less than
less than or equal to
equal to
not equal to
greater than
greater than or equal

11-15

EFL

Since the complex numbers are not ordered, the only relational operators that may take
complex operands are = and -=. The character collating sequence is not defined.

~Operatora

All of the assignment operators are right associative. The simple form of assignment is

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure member of basic type.
This statement computes the expression on the right side, and stores that value (possibly after
coercing the value to the type of the left side) in the location named by the left side. The
value of the assignment expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary arithmetic and logical
operator. In each case, @a -op = - b@ is equivalent to @a - = - a - op - b@. (The operator
and equal sign must not be separated by blanks.) Thus, n+ 2 adds 2 to n. The location of
the left side is evaluated only once.

Dynamic Structures

EFL does not have an address (pointer, reference) type. However, there IS a notation for
dynamic structures,

leftside -> 8tructurename

This expression is a structure with the shape implied by structurename but starting at the
location of leftside. In effect, this overlays the structure template at the specified location.
The leftside must be a variable, array, array element, or structure member. The type of the
leftside must be one of the types in the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) -> st.elt

refers to the elt member of the st structure starting at the @ sup th@ element of the array
place.

Repetition Operator

Inside of a list, an element of the form

integer-constant-expression S constant-expression

is equiyalent to the appearance of the expression a number of times equal to the first
expression. Thus,

11-16 ICON INTERNATIONAL

o

C)

(

(

c

EFL

(3,3$4,5)

is equivalent to

(3, 4, 4, 4, 5)

ConStant Expressions

If an expression is built up out of operators (other than functions) and constants, the value of
the expression is a constant, and may be used anywhere a constant is required.

DECLARATIONS

Declarations statement describe the meaning, shape, and size of named objects in the EFL
language.

Syntax

A declaration statement is made up of attributes and variables. Declaration statements are of
two forms:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes. In the second, each
name in the declarations also has the specified attributes. A variable name may appear in
more than one variable list, so long as the attributes are not contradictory. Each name of a
non argument variable may be accompanied by an initial value specification. The declarations
inside the braces are one or more declaration statements. Examples of declarations are

PROGRAMMER GUIDE

integer k 2

long real b(7,3)

common(cname)
{
integer i
long real array(5,O:3) x, y
cbaracter(7) cb
}

11-17

EFL

Attributes

.l1taie 7ltPu
The following are basic types in declarations

logical
integer
field(@m:n@)
character(@k@)
real
complex

In the above, the quantities @k@, @m@, and @n@ denote integer constant expressions with
the properties @k>O@ and @n>m@.

A,n-CJtIB

The dimensionality may be declared by an array attribute

o

Each of the @b sub i@ may either be a single integer expression or a pair of integer "
expressions separated by a colon. The pair of expressions form a lower and an upper bound; ./
the single expression is an upper bound with an implied lower bound of 1. The number of
dimensions is equal to @n,@ the number of bounds. All of the integer expressions must be
constants. An exception is permitted only if all of the variables associated with an array
declarator are formal arguments of the procedure; in this case, each bound must have the
property that @Upper - lower + 1@ is equal to a formal argument of the procedure. (The
compiler has limited ability to simplify expressions, but it will recognize important cases such
as (O:n-l). The upper bound for the last dimension @(b sub n)@ may be marked by an
asterisk (*) if the size of the array is not known. The following are legal @bold array@
attributes:

Stn&ctures

A structure declaration is of the form

array(5)
array(5, 1:5, -3:0)
array(5, *)
array(O:m-l, m)

struct structname { declaration statements}

The structname is optional; if it is present, it acts as if it were the name of a type in the rest of C, -~\
its scope. Each name that appears inside the declarations is a member of the structure, and
has a special meaning when used to qualify any variable declared with the structure type. A

11-18 ICON INTERNATIONAL

(

-------- --- -------

EFL

name may appear as a member of any number of structures, and may also be the name of an
ordinary variable, since a structure member name is used only in contexts where the parent
type is known. The following are valid structure attributes

struct xx
{
integer a, b
real x(5)
}

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three @bold xx 's@ and a character
string.

PreciBion

Variables of floating point (@bold real@ or @bold complex@) type may be declared to be
@bold long@ to ensure they have higher precision than ordinary floating point variables. The
default precision is short.

Certain objects called common areas have external scope, and may be referenced by any
procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute are in the same
block; the order in which they are declared is significant. Declarations for the same block in
differing procedures must have the variables in the same order and with the same types,
precision, and shapes, though not necessarily with the same names.

External

If a name is used as the procedure name in a procedure invocation, it is implicitly declared to
have the external attribute. If a procedure name is to be passed as an argument, it is
necessary to declare it in a statement of the form

external [name ~

If a name has the external attribute and it is a formal argument of the procedure, then it is
associated with a procedure identifier passed as an actual argument at each call. If the name
is not a formal argument, then that name is the actual name of a procedure, as it appears in
the corresponding procedure statement.

PROGRAMMER GUIDE 11-19

EFL

Variable List

The elements of a variable list in a declaration consist of a name, an optional dimension
specification, and an optional initial value specification. The name follows the usual rules.
The dimension specification is the same form and meaning as the parenthesized list in an
array attribute. The initial value specification is an equal sign () followed by a constant
expression. If the name is an array, the right side of the equal sign may be a parenthesized list
of constant expressions, or repeated elements or lists; the total number of elements in the list
must not exceed the number of elements of the array, which are filled in column-major order.

The Initial Statement

An initial value may also be specified for a simple variable, array, array element, or member of
a structure using a statement of the form

initial n var = val]

The @Var@ may be a variable name, array element specification, or member of structure.
The right side follows the same rules as for an initial value specification in other declaration
statements.

EXECUTABLE STATEMENTS
Every useful EFL program contains executable statements, otherwise it would not do anything

. and would not need to be run. Statements are frequently made up of other statements. Blocks
are the most obvious case, but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can be broken without
an explicit continuation. A square (D) in the syntax represents a point where the end of a line
will be ignored.

Expression Statements

SubroutiN OIll

A procedure invocation that returns no value is known as a subroutine call. Such an
invocation is a statement. Examples are

work(in, out)
rune)

Input/output statements (see "Input/Output Statements" under "EXECUTABLE

o

/ '\
j

STATEMENTS") resemble procedure invocations but do not yield a value. If an error occurs (-"
the program stops. • ,J

11-20 ICON INTERNATIONAL

(

o

EFL

Aaaignment Statements

An expression that is a simple assignment () or a compound assignment (+= etc.) is a
statement:

a=b
a = sin(x)/6
x*=y

Blocks

A block is a compound statement that acts as a statement. A block begins with a left brace,
optionally followed by declarations, optionally followed by executable statements, followed by a
right brace. A block may be used anywhere a statement is permitted. A block is not an
expression and does not have a value. An example of a block is

{
integer i :# this variable is unknown

'# outside the braces

big =0
do i = 1,n

if(big < a(i»
big = a(i)

}

Test Statements

Test statements permit execution of certain statements conditional on the truth of a predicate.

If Statement

The simplest of the test statements is the if statement, of form

if (logical-expression) 0 statement

The logical expression is evaluated; if it is true, then the statement is executed.

lJ-Else

A more general statement is of the form

if (logical-expression) 0 statement-l 0
else 0 statement- f

If the expression is true then statement-l is executed, otherwise, statement-f is executed.
Either of the consequent statements may itself be an if-else so a completely nested test

PROGRAMMER GUIDE 11-21

EFL

sequence is possible:

if{X<y)
jf(a<b)

k=1
e1ae

k=2
else

it'{a<b)
m=1

else
m=2

An else applies to the nearest preceding un-elsed if. A more common use is as a sequential
test:

if(x-:-l)
k==l

else if(x 3 x==5)
k=2

else

o

k=3 \

Select Statement

A multiway test on the value of a quantity is succinctly stated as a select statement, which
has the general form

select(expression) 0 block

Inside the block two special types of labels are recognized. A prefix of the form

case [constant D :

marks the statement to which contTol is passed if the expression in the select has a value equal
to one of the case constants. If the expression equals none of these constants, but there is a
label default inside the select, a branch is taken to that point; otherwise the statement
following the right brace is executed. Once execution begins at a case or default label, it
continues until the next case or defa.ult is encountered. The else-if example above is better
written as

11-22 ICON INTERNATIONAL

/

(."~\'
:.)

(

(

aelect(x)
{
case 1:

k=1
case 3,5:

k=2
default:

k=3
}

Note that control does not "fall through" to the next case.

Loops

EFL

The loop forms provide the best way of repeating a statement or sequence of operations. The
simplest (while) form is theoretically sufficient, but it is very convenient to have the more
general loops available, since each expresses a mode of control that arises frequently in
practice.

Wiile Statement

This construct has the form

while (logical-expression) 0 statement

The expression is evaluated; if it is true, the statement is executed, and then the test IS

performed again. If the expression is false, execution proceeds to the next statement.

For Statement

The for statement is a more elaborate looping construct. It has the form

for (initial-statement, 0 logical-expression,
o iteration-statement) 0 body-statement

Except for the behavior of the next statement (see "Branch Statement" under "EXECUTABLE
STATEMENTS"), this construct is equivalent to

initial-statement
while (logical-expression)

{
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations, and for various pointer-type operations.

PROGRAMMER GUIDE 11-23

EFL

The sum of the integers from 1 to 100 can be computed by the fragmertt

11-==0
lor{i ==~, i<- 100, i +== 1)

Jl+=i

Alternatively, the computation could be dOM by the single statement

fore { n == 0 ; i == 1 } , i<==I00 , { n +== i i ++1 })
;

Note that the body of the for loop is a null statement in this case. An example of following a
linked list will be given later.

Repeat StcrUmmt

The statement

repeat 0 statement

executes the statement, then does it again, without any termination test. Obviously, a test
inside the statement is needed to stop the loop.

Repeat ••• Until Statement

The while loop performs a test before each i~ration. The statement

repeat D statement 0 until (logical-expression)

executes the statement, then evaluates the logical; if the logical is true the loop is complete;
otherwise, control returns to the statement. Thus, the body is always executed at least once.
The until refers to the nearestpreeeding repeat that has not been paired with an until. In
practice, this appears to be the least trequentlyused looping construct.

Do Loop

The simple arithmetic progression is a very common one in numerical applications. EFL has a
special loop form for ranging over an ascending a.rithmetic sequence

do variable = exprefJ8ion-l, expression-f, expression-8
statement

The variable is first given the value expression-1. The statement is executed, then expression-8
is added to the variable. The loop is repeated until the variable exceeds expression-f. If

11-24 ICON INTERNATIONAL

---- - -----------

(

c

EFL

expression-S and the preceding comma are omitted, the increment is taken to be 1. The loop
above is equivalent to

t2 = expression-2
t3 = expression-3
for(variable=expression-l, variable<-t2, variable+ t3)

statement

(The compiler translates EFL do statements into Fortran DO statements, which are in turn
usually compiled into excellent code.) The do variable may not be changed inside of the loop,
and expression-l must not exceed expression-~. The sum of the first hundred positive integers
could be computed by

n =0
do i = 1, 100

n +=i

Branch Statements

Most of the need for branch statements in programs can be averted by using the loop and test
constructs, but there are programs where they are very useful.

Goto Statement

The most general, and most dangerous, branching statement is the simple unconditional

goto label

Alter executing this statement, the next statement performed is the one following the given
label. Inside of a select the case labels of that block may be used as labels, as in the following
example:

aeleet(k)
{
ease 1:

error(7)

case 2:
k=2
goto ease 4

ease 3:
k=5
goto ease 4

ease 4:
fixup(k)

PROGRAMMER GUIDE 11-25

EFL

goto default

default:
prmsg("ouch ")

}

(If two select statements are nested, the case labels of the outer select are not accessible from
the inner one.)

Break Statement

A safer statement is one which transfers control to the statement following the current select
or loop form. A statement of this sort is almost always needed in a repeat loop:

repeat
{
do a computation
if(finished)

break
}

More general forms permit controlling a branch out of more than one construct.

break 3

transfers control to the statement following the third loop and/or select surrounding the
statement. It is possible to specify which type of construct (for, while, repeat, do, or select)
is to be counted. The statement

break while

breaks out of the first surrounding while statement. Either of the statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

The next statement causes the first surrounding loop statement to go on to the next iteration:
the next operation performed is the test of a while, the iteration-statement of a for, the body
of a repeat, the test of a repeat ••• until, or the increment of a do. Elaborations similar to
those for break are available:

ICON INTERNATIONAL

C,:

'" :
,/

('" ,-",' , I
j

(,

(

()

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

Return

EFL

The last statement of a procedure is followed by a return of control to the caller. If it IS

desired to effect such a return from any other point in the procedure, a

return

statement may be executed. Inside a function procedure, the function value is specified as an
argument of the 'statement:

return (expression)

Input/Output Statements

EFL has two input statements (read and readbin), two output statements (write and
writebin), and three control statements (endfile, rewind, and backspace). These forms may
be used either as a primary with a integer value or as a statement. If an exception occurs
when one of these forms is used as a statement, the result is undefined but will probably be
treated as a fatal error. If they are used in a context where they return a value, they return
zero if no exception occurs. For the input forms, a negative value indicates end-of-file and a
positive value an error. The input/output part of EFL very strongly reflects the facilities of
Fortran.

Input/ Output U1it8

Each I/O statement refers to a "unit," identified by a small positive integer. Two special units
are defined by EFL, the standard input unit and the standard output unit. These particular
units are assumed if no unit is specified in an I/O transmission statement.

The data on the unit are organized into records. These records may be read or written in a
fixed sequence, and each transmission moves an integral number of records. Transmission
proceeds from the first record until the end of file.

Bit1lJl1lInput/ Output

The readbin and writebin statements transmit data in a machine-dependent but swift
manner. The statements are of the form

PROGRAMMER GUIDE 11-27

EFL

writebin(unit, binary-output-list)
readbin(unit, binary-input-list)

Each statement moves one unCormatted record between storage and the device. The unit is an
integer expression. A binary-output-list is an iolist (see below) without any Corm at specifiers. A
binary-input-list is an iolist without Corm at specifiers in which each of the expressions is a
variable name, array element, or structure member.

Formalted Input/ Output

The read and write statements transmit data in the Corm oC lines of characters. Each
statement moves one or more records (lines). Numbers are translated into decimal notation.
The exact form of the lines is determined by format specifications, whether provided explicitly
in the statement or implicitly. The syntax of the statements is

write(unit, formatted-output-list)
read(unit, formatted-input-list)

The lists are of the same form as for binary I/O, except that the lists may include format
specifications. If the unit is omitted, the standard input or output unit is used.

[olists

An iolist specifies a set of values to be written or a set of variables into which values are to be
read .. An iolist is a list of one or more ioexpressions of the form

expresslon
{ iolist}
do-specification { iolist }

For formatted I/O, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in the
braces are transmitted repeatedly until the do execution is complete.

FormotB

The following are permissible format-specifiers. The quantities @w@, @d@, and @k@ must
be integer constant expressions.

11-28

i(w)
r(w,d)

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.

ICON INTERNATIONAL

o

('\

\ ..)

(; e(w,d)

lew)

c

c(w)
.(k)
x(k)
" "

floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked
with the letter e
logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively
character string of width equal to
the length of the datum
character string of width w
skip k lines
skip k spaces
use the characters inside the
string as a Fortran format

EFL

If no format is specified for an item in a formatted input/output statement, a default form is
chosen.

If an item in a list is an array name, then the entire array is transmitted as a sequence of
elements, each with its own format. The elements are transmitted in column-major order, the
same order used for array initializations.

(1vf:rn:ipulation. Statements

The three input/output statements

backspace(@Unit@)
rewind(@Unit@)
endfile(@Unit@)

look like ordinary procedure calls, but may be used either as statements or as integer
expressions which yield non-zero if an error is detected. backspace causes the specified unit to
back up, so that the next read will re-read the previous record, and the next write will over
write it. rewind moves the device to its beginning, so that the next input statement will read
the first record. endfile causes the file to be marked so that the record most recently written
will be the last record on the file, and any attempt to read past is an error.

PROCEDURES
Procedures are the basic unit of an EFL program, and provide the means of segmenting a
program into separately compilable and named parts.

PROGRAMMER GUIDE 11-29

EFL

Procedures Statement

Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename (R name])

The first case specifies the main procedure, where execution begins. In the two other cases, the
attributes may specify precision and type, or they may be omitted entirely. The precision and
type of the procedure may be declared in an ordinary declaration statement. If no type is
declared, then the procedure is called a subroutine and no value may be returned for it.
Otherwise, the procedure is a function and a value of the declared type is returned for each
call. Each name inside the parentheses in the last form above is called a formal argument of
the procedure.

End Statement

Each procedure terminates with a statement

end

Argument Association

When a procedure is invoked, the actual arguments are evaluated. If an actual argument is
the name of a variable, an array element, or a structure member, that entity becomes
associated with the formal argument, and the procedure may reference the values in the
object, and assign to it. Otherwise, the value of the actual is associated with the formal
argument, but the procedure may not attempt to change the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is not permitted that the
corresponding actual argument be associated with another formal argument or with a
common element that is referenced in the procedure.

Execution and Return Values

After actual and formal arguments have been associated, control passes to the first executable
statement of the procedure. Control returns to the invoker either when the end statement of
the procedure is reached or when a return statement is executed. If the procedure is a
function (has a declared type), and a @bold return(value)@ is executed, the value is coerced
to the correct type and precision and returned.

11-30 ICON INTERNATIONAL

EFL

Known Functions

A number of functions are known to EFt, and need not be declared. The compiler knows the
types of these functions. Some of them are generic; i.e., they name a family of functions that
differ in the types of their arguments and return values. The compiler chooses which element
of the set to invoke based upon the attributes of the actual arguments.

Mnimum and M:tamum FunctionB

The generic functions are min and max. The min calls return the value of their smallest
argument; the max calls return the value of their largest argument. These are the only
functions that may take different numbers of arguments in different calls. If any of the
arguments are long real then the result is long real. Otherwise, if any of the arguments are
real then the result is real; otherwise all the arguments and the result must be integer.
Examples are

Abaolute Value

min(S, x, -3.20)
max(i, z)

The abs function is a generic function that returns the magnitude of its argument. For integer
and real arguments the type of the result is identical to the type of the argument; for complex

(arguments the type of the result is the real of the same precision.

o

ElementCIrJI Fu.ndions

The following generic functions take arguments of real, long real, or complex type and return
a result of the same type:

sin
cos
exp
log
log10
sqrt

sine function
cosine function
exponential function «@e sup x@).
natural (base e) logarithm
common (base 10) logarithm
square root function (@lsqrt x@).

In addition, the following functions accept only real or long real arguments:

atan
atan2

PROGRAMMER GUIDE

@a.tan(x) = tan sup -1 x@
@a.tan2(x,y) = tan sup -1 x over y@

11-31

EFL

0tIu:r Generic JiWdionB

The sign functions takes two arguments of identical type; @bold sign (x,y) -== - sgn(y) Ixl@.
The mod function yields the remainder of its first argument when divided by its second. These
functions accept integer and real arguments.

ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of old Fortran or
Ratfor programs to EFL.

Escape Lines

In order to make use of nonstandard features of the local Fortran compiler , it is occasionally
necessary to pass a particular line through to the EFL compiler output. A line that begins with
a percent sign ("%") is copied through to the output, with the percent sign removed but no
other change. Inside of a procedure, each escape line is treated as an executable statement. If
a sequence of lines constitute a continued Fortran statement, they should be enclosed in braces.

Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work(17)

Obsolete Keywords

The following keywords are recognized as synonyms of EFL keywords:

Fortran

double precision
function
subroutine .

EFL

long real
procedure
procedure (untyped)

Numeric Labels

Standard statement labels are identifiers. A numeric (positive integer constant) label is also
permitted; the colon is optional following a numeric label.

Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives a warning and
assumes a declaration for it. If it is used in the context of a procedure invocation, it is

c~

'\

)

assumed to be a procedure name; otherwise it is assumed to be a local variable defined at Coo)

nesting level 1 in the current procedure. The assumed type is determined by the first letter of 7'

the name. The association of letters and types may be given in an implicit statement, with

11-32 ICON INTERNATIONAL

(

o

EFL

syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of letters separated by a minus
sign). If no implicit statement appears, the following rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

Computed Goto

Fortran contains an indexed multi-way branch; this facility may be used in EFL by the
computed GOTO:

goto (U label D), expression

The expression must be of type integer and be positive but be no larger than the number of
labels in the list. Control is passed to the statement marked by the label whose position in the
list is equal to the expression.

Goto Statement

In unconditional and computed goto statements, it is permissible to separate the go and to
words, as in

go to xyz

Dot Names

Fortran uses a restricted character set, and represents certain operators by multi-character

PROGRAMMER GUIDE 11-33

EFL

sequences. There is an option (dots=on; see "COMPILER OPTIONS") which forces the
compiler to recognize the forms in the second column below:

< .It.
<= .le.
> .gt.
>= .ge •
=== .eq.
-= .ne.
I!. .and.
I .or . • I!.I!. .andand.
II .oror. II

.not.
true .true.
false .false.

In this mode, no structure element may be named It, Ie, etc. The readable forms in the left
column are always recognized.

Complex Constants

A complex constant may be written as a parenthesized list of real quantities, such as

(1.5, 3.0)

The preferred notation is by a type coercion,

complex(1.5, 3.0)

Function Values

The preferred way to return a value from a function in EFL is the @bold return (value)@
construct. However, the name of the function acts as a variable to which values may be
assigned; an ordinary @bold return@ statement returns the last value assigned to that name
as the function value.

Equivalence

A statement of the form

declares that each of the @V sub i@ starts at the same memory location. Each of the @V sub
i@ may be a variable name, array element name, or structure member.

11-34 ICON INTERNATIONAL

(/

(

()

EFL

Minimum and Maximum Funetions

There are a number of non-generic functions in this category, which differ in the required types
of the arguments and the type of the return value. They may also have variable numbers of
arguments, but all the arguments must have the same type.

Function Argument Type Result Type
aminO integer real
aminl real real
minO integer integer
mini real integer
dminl long real long real

amaxO integer real
amaxl real real
maxO integer integer
maxI real integer
dmaxl long real long real

COMPILER OPTIONS

A number of options can be used to control the output and to tailor it for various compilers
and systems. The defaults chosen are conservative, but it is sometimes necessary to change
the output to match peculiarities of the target environment.

Options are set with statements of the form

option n opt]

where each opt is of one of the forms

optionname
optionname = optionvalue

The optionvalue is either a constant (numeric or string) or a name associated with that option.
The two names yes and no apply to a number of options.

Default Options

Each option has a default setting. It is possible to change the whole set of defaults to those
appropriate for a particular environment by using the system option. At present, the only
valid values are system =unix and system=gc08.

PROGRAMMER GUIDE 11-35

EFL

lDput L""IP'aae OptioDS

The dots option determines w.heter the eompilel'reeogni2es .It. a.nd similar forms. The
default setting is nei.

·lDputJOSpat.Error Be;nd1i ..

The ioerror option can be given three values: .llOlle means that none of the I/O statements
may be used in expressions, since there is noway to detect errors. The implementation of the
ibm form uses ERR= and END= clauses. The implementation of the fortran77 form uses
IOSTAT= clauses.

Continuation ConventioDS

By default, continued Fortran statements are indicated by a character in column 6 (Standard
Fortran). The option eontinue==eobmmJ puts an ampersaud (&)in the first column of the
continued lines instead.

Default Formats

If no format is specified for a datum in an iolist for a read or write statement, a default is
provided. The default formats can be changed by setting cert.ai.n options

Option
Dorm at
rformat
dformat
zformat
zdformat
Hormat

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option .rfarmat-=f22.6

.Alignments and SUes

In order to implement character varia.bles, stl'uctmes, and the sizeof and lengthof operators,
it is necessary to know how much space various Fortran data types require, and what
boundary alignment properties they demand. The relevant options are

11-36

Fortran Type
integer
real
long real
complex
logical

Size Option
isize
raise
dsize
zsize
)size

Alignment Option
ialign
ralign
dalign
zalign
la.lign

ICON INTERNATIONAL

o

'\
)

o

EFL

The sizes are given in terms of an arbitrary unit; the alignment is given in the same units. The
option charperint gives the number of characters per integer variable.

Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input and output units. The
default values are ftnin=5 and ftnout=6.

Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded by the value of the
procheader option.

No Hollerith strings will be passed as subroutine arguments if hollincall=no is specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is possible to change
the increment value by using the deltutno option.

EXAMPLES
In order to show the flavor or programming in EFL, we present a few examples. They are
short, but show some of the convenience of the language.

File Copying

The following short program copies the standard input to the standard output, provided that
the input is a formatted file containing lines no longer than a hundred characters.

procedure =# main program
character(lOO) line

while(read(, line) = 0)
write(, line)

end

Since read returns zero until the end of file (or a read error), this program keeps reading and
writing until the input is exhausted.

Matrix Multiplication

The following procedure multiplies the @m times n@ matrix a by the @n times p@ matrix b
to give the @m times p@ matrix c. The calculation obeys the formula @: sub ij -=- sum a
sub ik b sub kj@.

PROGRAMMER GUIDE 11-37

EFL

procedure matmul(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do i = I,m
doj = 1,p

{
c(iJ) =0
do k = 1,n

c(iJ) += a(i,k) * b(kJ)
}

end

Searching a Linked List

Assume we have a list of pairs of numbers @,(x,y)@. The list is stored as a linked list sorted in
ascending order of @x@ values. The following procedure searches this list for a particular
value of @x@ and returns the corresponding @Y@ value.

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

#: list is an array of structures.
#: Each structure contains a thread index value,
#: an x, and a y value.

struct
{
integer nextindex
integer x, y
} list(*)

integer first, p, arg

for(p = first, p- LAST &:.&:. list(p).x<=x ,
p = list(p).nextindex)

if(list(p).x = x)
return(list(p).y)

return(NOTFOUND)
end

The search is a single for loop that begins with the head of the list and examines items until
either the list is exhausted (p LAST) or until it is known that the specified value is not on
the list (list(p).x > x). The two tests in the conjunction must be performed in the specified
order to avoid using an invalid subscript in the list(p) reference. Therefore, the &:.&:. operator
is used. The next element in the chain is found by the iteration statement (-",,:
p list(p).nextindex. ,j
11-38 ICON INTERNATIONAL

(

o

EFL

Walking. Tree

As an example of a more complicated problem, let us imagine we have an expression tree
stored in a common area, and that we want to print out an infix form of the tree. Each node
is either a leaf (containing a numeric value) or it is a binary operator, pointing to a left and a
right descendant. In a recursive language, such a tree walk would be implement by the
following simple pseudocode:

il this node is a leal
print its value

otherwise
print a lelt parenthesis
print the lelt node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep track
of the current state of the computation. The following procedure calls a procedure outch to
print a single character and a procedure outval to print a value.

procedure walk (first) '# print an expression tree

integer first '# index of root node
integer currentnode
integer stackdepth
common(nodes) struct

struct

{
character(l) op
integer leftp, rightp
real val
} tree(I00) '# array or structures

{
integer nextstate
integer nodep
} stackrrame(I00)

define NODE
define STACK

tree(currentnode)
stackframe(stackdepth)

'# nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

PROGRAMMER GUIDE 11·39

EFL

'* initialize stack with root node
stackdepth == 1
STACK.nextstate == DOWN
STACK.nodep == first

while(stack depth > 0)

end

{
currentnode == STACK.nodep
select(STACK.nextstate)

}

{
case DOWN:

If(NODE.op W W) '* a leal
{
outval(NODE.val)
stackdepth -== 1
}

else { '* a binary operator node
outch("(")
STACK.nextstate == LEFT
stackdepth +== 1
STACK.nextstate == DOWN
STACK.nodep == ~ODE.leltp
}

case LEFT:
outch(NODE.op)
STACK.nextstate == RIGHT
stack depth +== 1
STACK.nextstate == DOWN
STACK.nodep == NODE.rightp

case RIGHT:

}

outch(")")
stack depth -== 1

PORTABILITY

One of the major goals of the EFL language is to make it easy to write portable programs.
The output of the EFL compiler is intended to be accepta.ble to a.ny Standard Fortran compiler
(unless the lortran77 option is specified).

11-40 ICON INTERNATIONAL

.----~~-----~-~.-------

o

f

o

EFL

Primitives

Certain EFL operations cannot be implemented in portable Fortran, so a few machine
dependent procedures must be provided in each environment.

Ouracter String Q,pying

The subroutine ettasc is called to copy ODe character string to another. If the target string is
shorter than the source, the final cbaracteTS are not copied. If the target string is longer, its
end is padded with blanks. The calling sequence is

subroutine ettasc(a, la, b, Ib)
integer a(*), la, b(*}, lb

and it must copy the first Ib characters from b to the first la characters of &.

Ouroder String CbmpcriBons

The function ettcmc is invoked to determine the order of two character strings. The
declaration is

integer function ef1cmc(a, la, b, lb)
integer a(*), la, b(*), Ib

The function returns· a negative value if the string a of length la precedes the string b of
length lb. It returns zero if the strings are equal, and a positive value otherwise. If the strings
are of differing length, the comparison is carried out as if the end of the shorter string were
padded with blanks.

DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratfor and EFL, since EFL is a defined language
while Ratfor is the union of the special control structures and the language accepted by the
underlying Fortran compiler. Ratfor running over Standard Fortran is almost a subset of EFL.
Most of the features described in the "ATAVISMS" are present to ease the conversion of Ratfor
programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly different in the
two languages: the three clauses are separated by semicolons in Ratfor, but by commas in
EFL. (The initial and iteration statements may be compound statements in EFL because of
this change). The input/output syntax is quite different in the two languages, and there is no
FORMAT statement in EFL. There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored declaration syntax, block structure,
assignment and sequential test operators, generic functions, and data structures. EFL permits

PROGRAMMER GUIDE 11-41

EFL

more general forms for expressions, and provides a more uniform syntax. (One need not worry
about the Fortran/Ratfor restrictions on subscript or DO expression forms, for example.)

COMPILER

Current Version

The current version of the EFL compiler is a two-pass translator written in portable C. It
implements all of the features of the language described above except for long complex
numbers.

•

Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and file name (if known) on
which the error was detected. Warnings a.re given for variables that are used but not explicitly
declared.

Quality of Fortran Produced

The Fortran produced by EFL is quite clean and readable. To the extent possible, the variable
names that appear in the EFL program are used in the Fortran code. The bodies of loops and
test constructs are indented. Statement numbers are consecutive. Few unneeded GOTO and
CONTINUE statements are used. It is considered a compiler bug if incorrect Fortran is
produced (except for escaped lines). The following is the Fortran procedure produced by the
EFL compiler for the matrix multiplication example (See "EXAMPLES".)

11-42

subroutine matmul(a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), ben, p), c(m, p)
integer i, j, k
do 3 i = 1, m

do 2 j = 1, p
c(i, j) = 0
do 1 k = 1, n

c(i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

ICON INTERNATIONAL

0,

/\

(

o

The following is the procedure for the tree walk:
subroutine walk(first)
integer first
common /nodes/ tree
integer tree(4, 100)
real treel(4, 100)
integer staame(2, 100), stapth, curode
integer constl(l)
equivalence (tree(I,I), treel(I,I»
data constl(I)/4h /

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = I
staame(l, stapth) = I
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)
goto 7

2 if (tree(l, curode) .ne. const1(I» goto 3

c a leaf
call outval(treel(4, curode»

stapth = stapth-I
goto 4

3 call outch(lhO
c a binary operator node

staame(l, stapth) = 2
stapth = stapth+l
staame(l, stapth) = 1
staame(2, stapth) = tree(2, curode)

4 goto 8
5 call outch(tree(l, curode»

staame(l, stapth) = 3
stapth = stapth+1
staame(l, stapth) = 1
staame(2, stapth) = tree(3, curode)
goto 8

6 call outch(lh»
stapth = stapth-I
goto 8

7 if (staame(l, stapth) .eq. 3) goto 6
if (staame(l, stapth) .eq. 2) goto 5
if (staame(l, stapth) .eq. I) goto 2

8 continue
goto I

9 continue
end

PROGRAMMER GUIDE

------~

EFL

11-43

EFL

CONSTRAINTS ON EFL

Although Fortran can be used to simulate any finite computation, there are realistic limits on
the generality of a language that can be translated into Fortran. The design of EFL was
constrained by the implementation strategy. Certain of the restrictions are petty (six
character external names), but others are sweeping (lack of pointer variables). The following
paragraphs describe the major limitations imposed by Fortran.

External Names

External names (procedure and COMMON block names) must be no longer than six characters
in Fortran. Further, an external name is global to the entire program. Therefore, EFL can
support block structure within a procedure, but it can have only one level of external name if
the EFL procedures are to be compilable separately, as are Fortran procedures.

Proeedure Interface

The Fortran standards, in effect, permit arguments to be passed between Fortran procedures
either by reference or by copy-in/copy-out. This indeterminacy of specification shows through
into EFL. A program that depends on the method of argument transmission is illegal in either
language.

There are no procedure-valued variables in Fortran: a procedure name may only be passed as
an argument or be invoked; it cannot be stored. Fortran (and EFL) would be noticeably
simpler if a procedure variable mechanism were available.

Pointers

The most grievous problem with Fortran is its lack of a pointer-like data type. The
implementation of the compiler would have been far easier if certain hard cases could have
been handled by pointers. Further, the language could have been simplified considerably if
pointers were accessible in Fortran. (There are several ways of simulating pointers by using
subscripts, but they founder on the problems of external variables and initialization.)

Reeursion

Fortran procedures are not recursive, so it was not practical to permit EFL procedures to be
recursive. (Recursive procedures with arguments can be simulated only with great pain.)

Storage Alloeation

The definition of Fortran does not specify the lifetime of variables. It would be possible but
cumbersome to implement stack or heap storage disciplines by using COMMON blocks.

11-44 ICON INTERNATIONAL

(-,
..)
\,--,/

Chapter 12

THE CURSES AND TERMINFO PACKAGE

PAGE

INTRODUCTION ... 1%-1
Output.. 12-1
Input .. 12-3
Highlighting........... I%-4
Multiple Windows.. 12-5
Multiple Terminals 12-6
Low Level Termlnfo Usage. 12-8
A Larger Example 12·0

LIST OF ROUTINES ... 1%-11
Structure... 1%-11
Inltlallzatlon ... 12-12
Option Setting 12-12
TermInal Mode SettIng ... 12-14
Window ManIpulation... 12-15
CausIng Output to the Terminal 12-16
WrIting on Window Structures ... 12-17
Input trom a Window.. 12-10
Input trom the Terminal............ 12-10
Video Attributes 12-20
Bells and Flashing LIghts .. 12-21
PortabIllty Functions.. 12-21
Delays i.. 12-21
Lower Level Functlons 12-22

OPERATION DETAILS .. 12-25
Insert and Delete LIne and Character.................................. 12-25
Additional Terminals.. 12-25
Multiple Terminals 12-26
Video Attributes 12-26
Special Keys 12-27
Scrolling RegIon.. 12-28
Mini-Curses 12-28
TTY Mode Functions.... 12-20
Typeahead Check 12-30
getstr 12-30
longname 12-30
Nodelay Mode... 12-30
Portability .. 12·30

c

c

(

(

c

Chapter 12

THE CURSES AND TERMINFO PACKAGE

INTRODUCTION

This chapter is an introduction to curses(3X) and terminfo(4). It is intended for the
programmer who must write a screen-oriented program using the curses package. Several
example programs are discussed. The example programs can be found in Chapter 13. This
chapter also documents each curses function. It is intended as a reference.

For curses to be able to produce terminal dependent output, it has to know what kind of
terminal you have. The UNIX system convention for this is to put the name of the terminal in
the variable TERM in the environment. Thus, a user on a VT100 would set TERM=vt100
when logging in. Curses uses this convention.

Output

A program using curses always starts by calling initscrO. (See Figure 12-1.) Other modes
can then be set as needed by the program. Possible modes include cbreakO, and
idlok(stdscr, TRUE). These modes will be explained later. During the execution of the
program, output to the screen is done with routines such as addch(ch) and printw(fmt,args).
(These routines behave just like putchar and printr except that they go through curses.)
The cursor can be m.oved with the call move(row,col). These routines only output to a data
structure called a window, not to the actual screen. A window is a representation of a CRT
screen, containing such things as an array of characters to be displayed on the screen, a cursor,
a current set of video attributes, and various modes and options. You don't need to worry
about windows unless you use more than one of them, except to realize that a window is
buffering your requests to output to the screen.

To send all accumulated output, it is necessary to call refreshO. (This can be thought of as a
flush.) Finally, before the program exits, it should call endwinO, which restores all terminal
settings and positions the cursor at the bottom of the screen.

PROGRAMMER GUIDE 12-1

THE CURSES AND TERMINFO PACKAGE

#lnelude <eurses.h>

InltserOi /* Initialization * /

cbreakOi /* Various optional mode settings * /
nonlOi
noechoOi

while (!dOne) { 1* Main body of program * /

}

1* Sample calls to draw on sereen * /
move(row, col);
addch(ch);
prlntw("Formatted print with value "d\n", value);

1* Flush output * /
refreshOi

endwln()i 1* Clean up * /
eXlt(O);
Figure 12-1 - Framework of a Curses Program

See the program scatter in Chapter 13 for an example program. This program reads a file,
and displays the file in a random order on the screen. Some programs assume all screens are
24 lines by 80 columns. It is important to understand that many are not. The variables
LINES and COLS are defined by initscr with the current screen size. Programs should use
them instead of assuming a 24x80 screen.

No output to the terminal actually happens until refresh is called. Instead, routines such as
move and addch draw on a window data structure called stdscr (standard screen). Curses
always keeps track of what is on the physical screen, as well as what is in stdscr.

When refresh is called, curses compares the two screen images and sends a stream of
characters to the terminal that will turn the current screen into what is desired. Curses
considers many different ways to do this, taking into account the various capabilities of the
terminal, and similarities between what is on the screen and what is desired. It usually
outputs as few characters as is possible. This function is called cursor optimization and is the
source of the name of the curses package.

NOTE: Due to the hardware scrolling of terminals, writing to the lower righthand 0
character position is impossible.

12-2 ICON INTERNATIONAL

c

THE CURSES AND TERMINFO PACKAGE

Input

Curses can do more than just draw on the screen. Functions are also provided for input from
the keyboard. The primary function is getchQ which waits for the user to type a character on
the keyboard, and then returns that character. This function is like getchar except that it
goes through curses. Its use is recommended for programs using the chreakO or noechoO
options, since several terminal or system dependent options become available that are not
possible with getchar.

Options available with getch include keypad which allows extra keys such as arrow keys,
function keys, and other special keys that transmit escape sequences, to be treated as just
another key. (The values returned for these keys are listed below.) KEY..LEFT in curses.h.
The values for these keys are over octal 400, so they should be stored in a variable larger than
a char.) nodelay mode causes the value -1 to be returned if there is no input waiting.
Normally, getch will wait until a chara"cter is typed. Finany, the routine getstr(str) can be
called, allowing input of an entire line, up to a newline. This routine handles echoing and the
erase and kill characters of the user. Examples of the use of these options are in later example
programs.

The following function keys might be returned by getch if keypad has been enabled. Note
that not all of these are currently supported, due to lack of definitions in terminro or the
terminal not transmitting a unique code when the key is pressed.

Name Value
KEY..BREAK 0401
KEYJ)OWN 0402
KEY_UP 0403
KEY -LEFT 0404
KEY JUGHT 0405
KEYJIOME 0406
KEY..BACKSPACE 0407
KEYJ'O 0410

Key name
Break key (unreliable)
The four arrow keys ...

Home key (upward+left arrow)
Backspace (unreliable)
Function keys. Space for
64 keys is reserved.

KEYJ'(n) (KEYJ'O+(n)) Formula for fn.
KEYJ)L 0510 Delete line
KEYJL 0511 Insert line
KEY J)C 0512 Delete character
KEY JC 0513 Insert char or enter insert mode
KEY-EIC 0514 Exit insert char mode
KEY_CLEAR 0515 Clear screen
KEY -EOS 0516 Clear to end of screen
KEY -EOL 0517 Clear to end of line
KEy....sF 0520 Scroll 1 line forward
KEy....sR 0521 Scroll 1 line backwards (reverse)
KEY -.NP AGE 0522 Next page
KEY..PPAGE 0523 Previous page
KEy....sTAB 0524 Set tab
KEY _CT AB 0525 Clear tab
KEY_CAT AB 0526 Clear all tabs
KEY -ENTER 0527 Enter or send (unreliable)
KEy....sRESET 0530 Soft (partial) reset (unreliable)

PROGR.AM:MER GUIDE 12-3

THE CURSES AND TERMlNFO PACKAGE

KEY..RESET
KEY..,PRINT
KEYJ,.L

0531
0532
0533

Reset or hard reset (unreliable)
Print or copy
Home down or bottom
(lower left)

See the program show in Chapter 13 for an example use of getch. Show pages ·through a file,
showing one screen full each time the user presses the space bar. By creating an input file for
show made up of 24 line pages, each segment varying slightly from the previous page, nearly
any exercise for euraea can be created. Such input files are called shoUJ scripts.

In the show program, cbreak is called so that the user can press the space bar without having
to hit return. The Doecho function is called to prevent the space from echoing in the middle
of a refresh, messing up the screen. The DODI function is called to enable more screen
optimization. The idiok function is called to allow insert and delete line, since many show
scripts are constructed to duplicate bugs caused by that feature. The clrtoeol and clrtobot
functions clear from the cursor to the end of the line and screen, respectively.

Highlighting

The function addch always draws two things on a window. In addition to the character itself,
a set of attributes is associated with the character. These attributes cover various forms of
highlighting of the character. For example, the character can be put in 'reverse video, bold, or
be underlined. You can think of the attributes as the color of the ink used to draw the
character.

A window always has a set of current attributes associated with it. The current attributes are
associated with each character as it is written to the window. The current attributes can be
changed with a call to attrset(attrs). (Think of this as dipping the window's pen in a
particular color ink.) The names of the attributes are A-STANDOUT, A...REVERSE,
A...BOLD, A...DIM:, A...INVIS, and A-UNDERLINE. For example, to put a word in bold,
the code in Figure 12-2 might be used. The word "boldface" will be shown in bold.

prlntW("A word In H);
attrset(A_BOLD);
pr I ntw("bo I dface");
attrset(o);
prlntW(" really stands out.\n");

refresh();

Figure 12-2 - Use of attributes.

Not all terminals are capable of displaying all attributes. If a particular terminal cannot
display a requested attribute, curaes will attempt to find a substitute attribute. If none is

12-4 ICON INTERNATIONAL

(

o

THE CURSES AND TERMINFO PACKAGE

possible, the attribute is ignored.

One particular attribute is called standout. This attribute is used to make text attract the
attention of the user. The particular hardware attribute used for standout varies from
terminal to terminal, and is chosen to be the most visually pleasing attribute the terminal has.
Standout is typically implemented as reverse video or bold. Many programs don't really need
a specific attribute, such as bold or inverse video, but instead just need to highlight some text.
For such applications, the A....STANDOUT attribute is recommended. Two convenient
functions, atandoutO and standendO turn on and off this attribute.

Attributes can be turned on in combination. Thus, to turn on blinking bold text, use
attrset(A..BLINKIA-BOLD). Individual attributes can be turned on and off with attron
and attroff without affecting other attributes.

For an example program using attributes, see highlight. The program takes a text file as
input and allows embedded escape sequences to control attributes. In this example program,
\U turns on underlining, \B turns on bold, and \N restores normal text. Note the initial call
to scrollok. This allows the terminal to scroll if the file is longer than one screen. When an
attempt is made to draw past the bottom of the screen, curses will automatically scroll the
terminal up a line and call refresh.

Highlight comes about as close to being a filter as is possible with curses. It is not a true
filter, because curses must "take over" the CRT screen. In order to determine how to update
the screen, it must know what is on the screen at all times. This requires curses to clear the
screen in the first call to refresh, and to know the cursor position and screen contents at all
times.

Multiple Windows

A window is a data structure representing all or part of the CRT screen. It has room for a
two dimensional array of characters, attributes for each character (a total of ~6 bits per
character: 7 for text and 9 for attributes) a cursor, a set of current attributes, and a number of
flags. Curses provides a full screen window, called stdscr, and a set of functions that use
atdscr. Another window is provided called curscr, representing the physical screen.

It is important to understand that a window is only a data structure. Use of more than one
window does not imply use of more than one terminal, nor does it involve more than one
process. A window is merely an object which can be copied to all or part of the terminal
screen. The current implementation of curses does not allow windows which are bigger than
the screen.

The programmer can create additional windows with the function newwin(lines, coIs,
beginJow, begin_col) will return a pointer to a newly created window. The window will be
lines by cola, and the upper left corner of the window will be at screen position (beginJ'ow,
begin_col). All operations that affect stdscr have corresponding functions that affect an
arbitrary named window. Generally, these functions have names formed by putting a "w" on
the front of the stdscr function, and the window name is added as the first parameter. Thus,

PROGRAMMER GUIDE 12-5

THE CURSES AND TERMINFO PACKAGE

waddch(mywin, c) would write the character c to window my win. The wrefresh(win)
function is used to flush the contents of a window to the screen.

Windows are useful for maintaining several different screen images, and alternating the user
among them. Also, it is possible to subdivide the screen into several windows, refreshing each
of them as desired. When windows overlap, the contents of the screen will be the more
recently refreshed window.

In all cases, the non-w version of the function calls the w version of the function, using stdscr
as the additional argument. Thus, a call to addch(c) results in a call to waddch(stdscr, c).

The program window is an example of the use of multiple windows. The main display is kept
in stdscr. When the user temporarily wants to put something else on the screen, a new
window is created covering part of the screen. A call to wrefresh on that window causes the
window to be written over stdscr on the screen. Calling refresh on stdscr results in the
original window being redrawn on the screen. Note the calls to touchwin before writing out
an overlapping window. These are necessary to defeat an optimization in curses. If you have
trouble refreshing a new window which overlaps an old window, it may be necessary to call
touchwin on the new window to get it completely written out.

For convenience, a set of "move" functions are also provided for most of the common functions.
These result in a call to move before the other function. For example, mvaddch(row, col, c)
is the same as move(row, col); addch(c). Combinations, e.g. mvwaddch(row, col, win, c)
also exist.

Multiple Terminals

Curses can produce output on more than one terminal at once. This is useful for single process
programs that access a common database, such as multi-player games. Output to multiple
terminals is a difficult business, and curses does not solve all the problems for the
programmer. It is the responsibility of the program to determine the file name of each
terminal line, and what kind of terminal is on each of those lines. The standard method,
checking $TERM in the environment, does not work, since each process can only examine its
own environment. Another problem that must be solved is that of multiple programs reading
from one line. This situation produces a race condition and should be avoided. Nonetheless, a
program wishing to take over another terminal cannot just shut off whatever program is
currently running on that line. (Usually, security reasons would also make this inappropriate.
However, for some applications, such as an inter-terminal communication program, or a
program that takes over unused tty lines, it would be appropriate.) A typical solution requires
the user logged in on each line to run a program that notifies the master program that the user
is interested in joining the master program, telling it the notification program's process id, the
name of the tty line and the type of terminal being used. Then the program goes to sleep until
the master program finishes. When done, the master program wakes up the notification
program, and all programs exit.

Curses handles multiple terminals by always having a current terminal. All function calls
always affect the current terminal. The master program should set up each terminal, saving a
reference to the terminals in its own variables. When it wishes to affect a terminal, it should

12-6 ICON INTERNATIONAL

C)

'\

/

o

THE CURSES AND TERMINFO PACKAGE

(set the current terminal as desired, and then call ordinary curses routines.

(

c

References to terminals have type struct screen *. A new terminal is initialized by calling
newterm(type, fd). newterm returns a screen reference to the terminal being set up. type
is a character string, naming the kind of terminal being used. fd is a stdio file descriptor to be
used for input and output to the terminal. (If only output is needed, the file can be open for
output only.) This call replaces the normal call to mitscr, which calls
newterm(getenv("TERM"), stdout).

To change the current terminal, call "set_term(sp)" where sp is the screen reference to be
made current. set_term returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows and options. Each
terminal must be initialized separately with newterm. Options such as cbreak and noecho
must be set separately for each terminal. The functions endwm and refresh must be called
separately for each terminal. See Figure 12-3 for a typical scenario to output a message to
each terminal.

for (l:=Oj I<ntermj 1++) {
set_term(terms[I])j

}

mvaddstr(O, 0, "Important message")j
ref res h () j

Figure 12-3 - Sending a message to several terminals

See the sample program two for a full example. This program pages through a file, showing
one page to the first terminal and the next page to the second terminal. It then waits for a
space to be typed on either terminal, and shows the next page to the terminal typing the
space. Each terminal has to be separately put into nodelay mode. Since no standard
multiplexor is available in current versions of the ICON/UXV operating system, it is necessary
to either busy wait, or call sleep(!);, between each check for keyboard input. This program
sleeps for a second between checks.

The two program is just a simple example of two terminal curses. It does not handle
notification, as described above, instead it requires the name and type of the second terminal
on the command line. As written, the command sleep 100000 must be typed on the second
terminal to put it to sleep while the program runs, and the first user must have both read and
write permission on the second terminal.

PROGRAMMER GUIDE 12-7

THE CURSES AND TERMINFO PACKAGE

Low Level Terminfo Usage

Some programs need to use lower level primitives than those offered by curses. For such
programs, the terminfo level interface is offered. This interface does not manage your CRT
screen, but rather gives you access to strings and capabilities which you can use yourself to
manipulate the terminal.

Programmers are discouraged from using this level. Whenever possible, the higher level curses
routines should be used. This will make your program more portable to other UNIX systems
and to a wider class of terminals. Curses takes care of all the glitches and misfeatures present
in physical terminals, but at the terminfo level you must deal with them yourself. Also, it
cannot be guaranteed that this part of the interface will not change or be upward compatible
with previous releases.

There are two circumstances when it is proper to use terminfo. The first is when you are
writing a special purpose tool that sends a special purpose string to the terminal, such as
programming a function key, setting tab stops, sending output to a printer port, or dealing
with the status line. The second situation is when writing a filter. A typical filter does one
transformation on the input stream without clearing the screen or addressing the cursor. If
this transformation is terminal dependent and clearing the screen is inappropriate, use of
term info is indicated.

A program writing at the terminfo level Uses the framework shown in Figure 12-4.

#Include <curses.h>
#Include <term.h>

setupterm(o, 1, 0);

putp(clear_screen);

reset_shell_mOde();
exlt(O);

Figure 12-4 - Terminfo level framework

Initialization is done by calling setupterm. Passing the values 0, I, and 0 invoke reasonable
defaults. If setupterm can't figure out what kind of terminal you are on, it will print an error
message and exit. The program should call reset helLmode before it exits.

Global variables with names like c1ear creen and cursorJ,ddress are defined by the call to
setupterm. They can be output using putp, or also using tputs, which allows the O. \."
programmer more control. These strings should not be directly output to the terminal using
printr since they contain padding information. A program that dircectly outputs strings will

12-8 ICON INTERNATIONAL

(

c

THE CURSES AND TERMINFO PACKAGE

fail on terminals that require padding, or that use the xon/xoff flow control protocol.

In the terminfo level, the higher level routines described previously are not available. It is up
to the programmer to output whatever is needed. For a list of capabilities and a description of
what they do, see terminro(4).

The example program termhl shows simple use of terminfo. It is a version of highlight that
uses term info instead of curses. This version can be used as a filter. The strings to enter bold
and underline mode, and to turn off all attributes, are used .

. This program is more complex than it need be in order to illustrate some properties of
terminfo. The routine vidattr could have been used instead of directly outputting
enter_holdJllode, enter_underlineJllode, and exit.-attrihuteJllode. In fact, the program
would be more robust if it did since there are several ways to change video attribute modes.
This program was written to illustrate typical use of terminfo.

The function tputs(cap, aft'cnt, outc) applies padding information. Some capabilities contain
strings like $<20>, which means to pad for 20 milliseconds. tputs generates enough pad
characters to delay for the appropriate time. The first parameter is the string capability to be
output. The second is the number of lines affected by the capability. (Some capabilities may
require padding that depends on the number of lines affected. For example, insertJine may
have to copy all lines below the current line, and may require time proportional to the number
of lines copied. By convention aft'cnt is 1 if no lines are affected. The value 1 is used, rather
than 0, for safety, since aft'cnt is multiplied by the amount of time per item, and anything
multiplied by 0 is 0.) The third parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always just calls putchar. For these
programs, the routine putp(cap) is a convenient abbreviation. termhl could be simplified by
using putp.

Note also the special check for the underline_char capability. Some terminals, rather than
having a code to start underlining and a code to stop underlining, have a code to underline the
current character. termhl keeps track of the current mode, and if the current character is
supposed to be underlined, will output underline_char if necessary. Low level details such as
this are precisely why the curses level is recommended over the terminfo level. Curses takes
care of terminals with different methods of underlining and other CRT functions. Programs at
the terminfo level must handle such details themselves.

A Larger Example

For a final example, see the program editor. This program is a very simple screen editor,
patterned after the vi editor. The program illustrates how to use curses to write a screen
editor. This editor keeps the buffer in stdscr to keep the program simple - obviously a real
screen editor would keep a separate data structure. Many simplifications have been made here
- no provision is made for files of any length other than the size of the screen, for lines longer
than the width of the screen, or for control characters in the file.

PROGRAMMER GUIDE 12-9

THE CURSES AND TERMINFO PACKAGE

Several points about this program are worth making. The routine to write out the file
illustrates the use of the mvinch function, which returns the character in a window at a given
position. The data structure used here does not have a provision for keeping track of the
number of characters in a line, or the number of lines in the file, so trailing blanks are
eliminated when the file is written out.

The program uses built-in curses functions insch, delch, insertln, and deleteln. These
(unctions behave much as the similar functions on intelligent terminals behave, inserting and
deleting a character or line.

The command interpreter accepts not only ASCII characters, but also special keys. This is
important - a good program will accept both. (Some editors are modeless, using nonprinting
characters for commands. This is largely a matter of taste - the point being made here is
that both arrow keys and ordinary ASCII characters should be handled.) It is important to
handle special keys because this makes it easier for a new user to learn to use your program if
he can use the arrow keys, instead of having to memorize that "h" means left, "j" means
down, "k" means up, and "1" means right. On the other hand, not all terminals have arrow
keys, so your program will be usable on a larger class of terminals if there is an ASCII
character which is a synonym for each special key. Also, experienced users dislike having to
move their hands from the "home row" position to use special keys, since they can work faster
with alphabetic keys.

Note the call to mvaddstr in the input routine. addstr is roughly like the C fputs function,
which writes out a string of characters. Like fputs, addstr does not add a trailing newline. It
is the same as a series of calls to addch using the characters in the string. mvaddstr is the
mv version of addstr, which moves to the given location in the window before writing.

The control-L command illustrates a feature most programs using curses should add. Often
some program beyond the control of curses has written something to the screen, or some line
noise has messed up the screen beyond what curses can keep track of. In this case, the user
usually types control-L, causing the screen to be cleared and redrawn. This is done with the
call to clearok(curscr), which sets a flag causing the next refresh to first clear the screen.
Then refresh is called to force the redraw.

Note also the call to flash(), which flashes the screen if possible, and otherwise rings the bell.
Flashing the screen is intended as a bell replacement, and is particularly useful if the bell
bothers someone within earshot of the user. The routine beepO can be called when a real beep
is desired. (If for some reason the terminal is unable to beep, but able to flash, a call to beep
will flash the screen.)

Another important point is that the input command is terminated by control-D, not escape. It
is very tempting to use escape as a command, since escape is one of the few special keys which
is available on every keyboard. (Return and break are the only others.) However, using escape
as a separate key introduces an ambiguity. Most terminals use sequences of characters
beginning with escape ("escape sequences") to control the terminal, and have special keys tha-t

/ "'-
)

send escape sequences to the computer. If the computer sees an escape coming from the r----'\
terminal, it cannot tell for sure whether the user pushed the escape key, or whether a special U
key was pressed. Curses handles the ambiguity by waiting for up to one second. If another

12-10 ICON INTERNATIONAL

(-

(j

THE CURSES AND TERMINFO PACKAGE

character is received dllring this second, and if that character might be the beginning of a
special key, more input is read (waiting for up to one second for each character) until either a
full special key is read, one second passes, or a character is received that could not have been
generated by a special key. While this strategy works most of the time, it is not foolproof. It
is possible for the user to press escape, then to type another key quickly, which causes curses
to think a special key has been pressed. Also, there is a one second pause until the escape can
be passed to the user program, resulting in slower response to the escape key. Many existing
programs use escape as a fundamental command, which cannot be changed without infuriating
a large class of users. Such programs cannot make use of special keys without dealing with
this ambiguity, and at best must resort to a timeout solution. The moral is clear: when
designing your program, avoid the escape key.

LIST OF ROUTINES

This section describes all the routines available to the programmer in the curses package.
The routines are organized by function. For an alphabetical list, see curBes(3X).

Structure

All programs using curBes should include the file <curses.h>. This file defines several curses
functions as macros, and defines several global variables and the datatype WINDOW.
References to windows are always of type WINDOW *. Curses also defines WINDOW *
constants stdscr (the standard screen, used as a default to routines expecting a window), and
curscr (the current screen, used only for certain low level operations like clearing and
redrawing a garbaged screen). Integer constants LINES and COLS are defined, containing
the size of the screen. Constants TRUE and FALSE are defined, with values 1 and 0,
respectively. Additional constants which are values returned from most curses functions are
ERR and OK. OK is returned if the function could be properly completed, and ERR is
returned if there was some error, such as moving the cursor outside of a window.

The include file <curses.h> automatically includes <stdio.h> and an appropriate tty driver
interface file, currently either <Bgtty.h*> or <termio.h>. Including <stdio.h> agam IS

harmless but wasteful, includinf? <Bgtty.h> again will usually result in a fatal error.

A program using curses should include the loader option -lcurses in the makefile. This is
true for both the terminfo level and the curses level. The compilation flag
-DMINICURSES can be included if you restrict your program to a small subset of curses
concerned primarily with screen output and optimization. The routines possible with mini
curses are listed in ''Mini-Curses'' under "OPERATION DETAILS."

• The driver interface <sgtty.h> is a tty driver interface used in other versions of UNIX systems.

PROGRAMMER GUIDE 12-11

THE CURSES AND TERMINFO PACKAGE

Initialbatlon

These functions are called when initializing a program.

initscrO
The first function called should always be initacr. This will determine the terminal type and
initialize curses data structures. initscr also arranges that the first call to refresh will clear
the screen.

endwinO
A program should always call endwin before exiting. This function will restore tty modes,
move the cursor to the lower left corner of the screen, reset the terminal into the proper non
visual mode, and tear down all appropriate data structures.

newterm(type, fd)
A program which outputs to more than one terminal should use newterm instead of initscr.
newterm should be called once for each terminal. It returns a variable of type SCREEN *
which should be saved as a reference to that terminal. The arguments are the type of the
terminal (a string) and a stdio file descriptor (Fn..E*) for output to the terminal. The file
descriptor should be open for both reading and writing if input from the terminal is desired.
The program should also call endwin for each terminal being used (see set_term below). If an
error occurs, the value NULL is returned.

set_term(new)
This function is used to switch to a different terminal. The screen reference new becomes the
new current terminal. The previous terminal is returned by the function. All other calls affect
only the current terminal.

10ngnameO
This function returns a pointer to a static area containing a verbose description of the current
terminal. It is defined only after a call to initscr, newterm, or setupterm.

Option Setting

These functions set options within curses. In each case, win is the window affected, and bf is
a boolean Bag with value TRUE or FALSE indicating whether to enable or disable the
option. All options are initially FALSE. It is not necessary to turn these options off before
calling endwin.

clearok(win,bf')
If set, the next call to wrefresh with this window will clear the screen and redraw the entire
screen. If win is .curscr, the next call to wrefresh with any window will cause the screen to
be cleared. This is useful when the contents of the screen are uncertain, or in some cases for a
more pleasing visual effect.

o

~~~ C·~.l If enabled, curses will consider using the hardware insert/delete line feature of terminals so . 
equipped. If disabled, curses will never use this feature. The insert/delete character feature is 

12-12 ICON INTERNATIONAL 



(/ 

( 

THE CURSES AND TERMINFO PACKAGE 

always considered. ~nable this option only if your application needs insert/delete line, for 
example, for a screen editor. It is disabled by default because insert/delete line tends to be 
visually annoying when used in applications where it isn't really needed. If insert/delete line 
cannot be used, curses will redraw the changed portions of all lines that do not match the 
desired line. 

keypad(win,bt) 
This option enables the keypad of the users terminal. If enabled, the user can press a function 
key (such as an arrow key) and getch will return a single value representing the function key. 
If disabled, curses will not treat function keys specially. If the keypad in the terminal can be 
turned on (made to transmit) and off (made to work locally), turning on this option will turn on 
the terminal keypad. 

leaveok(win,bf) 
Normally, the hardware cursor is left at the location of the window cursor being refreshed. 
This option allows the cursor to be left wherever the update happens to leave it. It is useful 
for applications where the cursor is not used, since it reduces the need for cursor motions. If 
possible, the cursor is made invisible when this option is enabled. 

meta(win,bf) 
If enabled, characters returned by getch are transmitted with all 8 bits, instead of stripping 
the highest bit. The value OK is returned if the request succeeded, the value ERR is returned 
if the terminal or system is not capable of 8-bit input. 

Meta mode is useful for extending the non-text command set in applications where the 
terminal has a meta shift key. Curses takes whatever measures are necessary to arrange for 
8-bit input. On other versions of UNIX systems, raw mode will be used. On our systems, the 
character size will be set to 8, parity checking disabled, and stripping of the 8th bit turned off. 

Note that 8-bit input is a fragile mode. Many programs and networks only pass 7 bits. If any 
link in the chain from the terminal to the application program strips the 8th bit, 8-bit input is 
impossible. 

nodelay(win,bt} 
This option causes getch to be a non-blocking call. If no input is ready, getch will return -1. 
If disabled, getch will hang until a key is pressed. 

intrflush(win,bt} 
If this option is enabled when an interrupt key is pressed on the keyboard (interrupt, quit, 
suspend), all output in the tty driver queue will be Hushed, giving the effect of faster response 
to the interrupt but causing curses to have the wrong idea of what is on the screen. Disabling 
the option prevents the Hush. The default is for the option to be -enabled. This option depends 
on support in the underlying teletype driver. 

typeahead (fd) 
Sets the file descriptor for typeahead check. fd should be an integer returned from open or 
fileno. Setting typeahead to -1 will disable typeahead check. By default, file descriptor 0 

PROGRAMMER GUIDE 12-13 



THE CURSES AND TERMINFO PACKAGE 

(~, 

(stdin) is used. Typeahead is checked independently for each screen, and for multiple ~. 
interactive terminals it should probably be set to the appropriate input for each screen. A call 
to typeahead always affects only the current screen. 

8crollok( win,bf) 
This option controls what happens when the cursor of a window is moved off the edge of the 
window, either from a newline on the bottom line, or typing the last character of the last line. 
If disabled, the cursor is left on the bottom line. If enabled, wrefresh is called on the window, 
and then the physical terminal and window are scrolled up one line. Note that in order to get 
the physical scrolling effect on the terminal, it is also necessary to call idlok. 

aetscrreg(t,b) 
wsetscrreg(win,t,b) 
These functions allow the user to set a software scrolling region in a window win or stdscr. t 
and b are the line numbers of the top and bottom margin of the scrolling region. (Line 0 is the 
top line of the window.) If this option and scrollok are enabled, an attempt to move off the 
bottom margin line will cause all lines in the scrolling region to scroll up one line. Note that 
this has nothing to do with use of a physical scrolling region capability in the terminal, like 
that in the VT100. Only the text of the window is scrolled. If idlok is enabled and the 
terminal has either a scrolling region or insert/delete line capability, they will probably be used 
by the output routines. 

\. 
Terminal Mode Setting "/ 

These functions are used to set modes iIi the tty driver. The initial mode usually depends on 
the setting when the program was called: the initial modes documented here represent the 
normal situation. 

cbreakO 
nocbreakO 
These two functions put the terminal into and out of CBREAK mode. In this mode, 
characters typed by the user are immediately available to the program. When out of this 
mode, the teletype driver will buffer characters typed until newline is typed. Interrupt and 
flow control characters are unaffected by this mode. Initially the terminal is not in CBREAK 
mode. Most interactive programs using curses will set this mode. 

echoO 
noechoO 
These functions control whether characters typed by the user are echoed as typed. Initially, 
characters typed are echoed by the teletype driver. Authors of many interactive programs 
prefer to do their own echoing in a controlled area of the screen, or not to echo at all, so they 
disable echoing. 

12-14 ICON INTERNATIONAL 

() 



( 

o 

THE CURSES AND TERMINFO PACKAGE 

DIO 
DODIO 
These functions control whether newline is translated into carriage return and linefeed on 
output, and whether return is translated into newline on input. Initially, the translations do 
occur. By disabling these translations, curses is able to make better use of the linefeed 
capability, resulting in faster cursor motion. 

rawO 
DorawO 
The terminal is placed into or out of raw mode. Raw mode is similar to cbreak mode in that 
characters typed are immediately passed through to the user program. The differences are 
that in RAW mode, the interrupt, quit, and suspend characters are passed through 
uninterpreted instead of generating a signal. RAW mode also causes 8 bit input and output. 
The behavior of the BREAK key may be different on different systems. 

resettyO 
savettyO 
These functions save and restore the state of the tty modes. savetty saves the current state 
in a buffer, resetty restores the state to what it was at the last call to savetty. 

Window Manipulation 

newwin(numJines, num_cola, beg...row, beg..col) 
Create a new window with the given number of lines and columns. The upper left corner of the 
window is at line beg...row column beg..col. If either DumJines or Dum_cols is zero, they 
will be defaulted to LINES-beg...row and COLS-beg..col. A new full-screen window is 
created by calling newwin(O,O,O,O). 

Dewpad(numJines, DUM-cols) 
Creates a new pad data structure. A pad is like a window, except that it is not restricted by 
the screen size, and is not associated with a particular part of the screen. Pads can be used 
when a large window is needed, and only a part of the window will be on the screen at one 
time. Automatic refreshes of pads (e.g. from scrolling or echoing of input) do not occur. It is 
not legal to call refresh with a pad as an argument, the routines prefresh or pDoutrefresh 
should be called instead. Note that these routines require additional parameters to specify the 
part of the pad to be displayed and the location on the screen to be used for display. 

subwin(orig, DumJines, Dum_cols, begy, begx) 
Create a new window with the given number of lines and columns. The window is at position 
(begy, begx) on the screen. (It is relative to the screen, not orig.) The window is made in the 
middle of the window orig, so that changes made to one window will affect both windows. 
When using this function, often it will be necessary to call touchwin before calling wrefresh. 

delwin(win) 
Deletes the named window, freeing up all memory associated with it. In the case of 
overlapping windows, subwindows should be deleted before the main window. 

PROGRAMMER GUIDE 12-15 



THE CURSES AND TERMINFO PACKAGE 

mvwin(win, br, be) 
Move the window so that the upper left corner will be at position (br, be). If the move would 
cause the window to be off the screen, it is an error and the window is not moved. 

touchwin{win ) 
Throwaway all optimization information about which parts of the window have been touched, 
by pretending the entire window has been drawn on. This is sometimes necessary when using 
overlapping windows, since a change to one window will affect the other window, but the 
records of which lines have been cha.nged in the other window will not reflect the change. 

overlay(winl, win2) 
overwrite(winl, win2) 
These functions overlay winl on top of win2; that is, all text in winl is copied into win2. 
The difference is that overlay is nondestructive (blanks are not copied) while overwrite is 
destructive. 

retresh() 
wrefresh(win) 

Causing Output to the Terminal 

These functions must be called to get any output on the terminal, as other routines merely 
manipulate data structures. wretresh copies the named window to the physical terminal 
screen, taking into account what is already there in order to do optimizations. refresh is the 
same, using stdser as a default screen. Unless leaveok has been enabled, the physical cursor 
of the terminal is left at the location of the window's cursor. 

doupdateO 
wnoutretresh(win) 
These two functions allow multiple updates with more efficiency than wrefresh. To use them, 
it is important to understand how curses works. In addition to all the window structures, 
curses keeps two data structures representing the terminal screen: a physical screen, 
describing what is actually on the screen, and a virtual screen, describing what the programmer 
wants to have on the screen. wrefresh works by first copying the named window to the virtual 
screen (wnoutretresh), and then calling the routine to update the screen (doupda.te). If the 
programmer wishes to output several windows at once, a series of calls to wrefresh will result 
in alternating calls to wnoutrefresh and doupdate, causing several bursts of output to the 
screen. By calling wnoutrefresh for each window, it is then possible to call doupdate once, 
resulting in only one burst of output, with probably fewer total characters transmitted. 

pretresh(pad,pminrow ,pmincol,sminrow ,smincol,smaxrow ,smaxeol) 
pnoutrefresh(pad,pminrow ,pmineol,sminrow ,smincol,smaxrow ,smaxcol) 
These routines are analogous to wrefresh and wnoutrefresh except that pads, instead of 
windows, a.re involved. The additional parameters are needed to indicate what part of the pad 
and screen are involved. pminrow and pmincol specify the upper left corner, in the pad, of 
the rectangle to be displayed. sminrow, smineol, smaxrow, and smaxeol specify the edges, 
on the screen, of the rectangle to be displayed in. The lower right corner in the pad of the 
rectangle to be displayed is calculated from the screen coordinates, since the rectangles must 

12-16 ICON INTERNATIONAL 

'\, 

) 

(~) 

_1 



( 

o 

THE CURSES AND TERMINFO PACKAGE 

be the same size. Both rectangles must be entirely contained within their respective 
structures. 

Writing on Wmdow Structures 

These routines are used to "draw" text on windows. In all cases, a missing win is taken to be 
stdscr. y and x are the row and column, respectively. The upper left corner is always (0,0), 
not (1,1). The mv functions imply a call to move before the call to the other function. 

IdMng tM au-.or 
move(y, x) 
wmove(win, y, x) 
The cursor associated with the window is moved to the given location. This does not move the 
physical cursor of the terminal until refresh is called. The position specified is relative to the 
upper left corner of the window. 

l\fiting One au.ader 

addch(ch) 
waddch(win, ch) 
mvaddch(y, x, ch) 
mvwaddch(win, y, x, ch) 
The character ch is put in the window at the current cursor position of the window. If ch is a 
tab, newline, or backspace, the cursor will be moved appropriately in the window. If ch is a 
different control character, it will be drawn in the ~X notation. The position of the window 
cursor is advanced. At the right margin, an automatic newline is performed. At the bottom of 
the scrolling region, if scrollok is enabled, the scrolling region will be scrolled up one line. 

The ch parameter is actually an integer, not a character. Video attributes can be combined 
with a character by or-ing them into the parameter. This will result in these attributes also 
being set. (The intent here is that text, including attributes, can be copied from one place to 
another with inch and addch.) 

"""ng a. String 

addstr(str) 
waddstr(win,str) 
mvaddstr(y ,x,str) 
mvwaddstr(win,y ,x,str) 
These functions write all the characters of the null terminated character string str on the 
given window. They are identical to a series of calls to addch. 

PROGRAMMER GUIDE 12-17 



THE CURSES AND TERMINFO PACKAGE 

aearing Areas of the Screen 

eraseO 
werase(win) 
These functions copy blanks to every position in the window. 

clearO 
wclear(win) 
These functions are like erase and werase but they also call clearok, 
screen will be cleared on the next call to refresh for that window. 

c1rtobotO 
wclrtobot(win) 

arranging that the 

All lines below the cursor in this window are erased. Also, the current line to the right of the 
cursor is erased. 

elrtoeolO 
wclrtoeol(win) 
The current line to the right of the cursor is erased. 

I'f1Bemng and Deleting Text 

delchO / '\. 
wdelch(win) i\, j 
mvdelch (y ,x) 
mvwdelch(win,y,x) 
The character under the cursor in the window is deleted. All characters to the right on the 
same line are moved to the left one position. This does not imply use of the hardware delete 
character feature. 

deletemO 
wdeleteln(win ) 
The line under the cursor in the window is deleted. All lines below the current line are moved 
up one line. The bottom line of the window is cleared. This does not imply use of the 
hardware delete line feature. 

insch(c) 
winsch(win, c) 
mvinsch(y,x,c) 
mvwinsch(win,y ,x,c) 
The character c is inserted before the character under the cursor. All characters to the right 
are moved one space to the right, possibly losing the rightmost character on the line. This 
does not imply use of the hardware insert character feature. 

insertlnO 
winsertln(win) 
A blank line is inserted above the current line. The bottom line is lost. This does not imply C· 
use of the hardware insert line feature. 

12-18 ICON INTERNATIONAL 



( - Formotted Output 

printw(fmt, args) 
wprintw(win, fmt, args) 
mvprintw(y, x, f'mt, args) 
mvwprintw(win, y, x, f'mt, args) 

THE CURSES AND TERMINFO PACKAGE 

These functions correspond to printf. The characters which would be output by printf are 
instead output using waddch on the given window. 

A&cellaneoua 

box(win, vert, hor) 
A box is drawn around the edge of the window. vert and h~r are the characters the box is to 
be drawn with. 

scroll( win) 
The window is scrolled up one line. This involves moving the lines in the window data 
structure. As an optimization, if the window is stdscr and the scrolling region is the entire 
window, the physical screen will be scrolled at the same time. 

Input from a Window 

getyx(win ,y ,x) 
The cursor position of the window is placed in the two integer variables y and x. Since this is 
a macro, no & is necessary. 

inchO 
wineh(win) 
mvinch(y,x) 
mvwinch(win,y,x) 
The character at the current position in the named window is returned. If any attributes are 
set for that position, their values will be or-ed into the value returned. The predefined 
constants A..ATTRmUTES and A-CHARTEXT can be used with the & operator to 
extract the character or attributes alone. 

getchO 
wgetch(win) 
mvgetch(y,x) 
mvwgetch(win,y,x) 

Input from the Terminal 

A character is read from the terminal associated with the window. In nodelay mode, if there is 
no input waiting, the value -1 is returned. In delay mode, the program will hang until the 
system passes text through to the program. Depending on the setting of cbreak, this will be 
after one character, or after the first newline. 

If keypad mode is enabled, and a fundion key is pressed, the code for that function key will 
be returned instead of the raw characters. Possible function keys are defined with integers 
beginning with 0401, whose names begin with KEY_. These are listed in "Input" under 

PROGRAMMER GUIDE 12·19 

~~- ---"---, .. ~----~~ _ ... --"----. --- .-- --.---.----~- -- - . ---- ---------- -~-------- ------



THE CURSES AND TERMINFO PACKAGE 

'1NTRODUCTION." If a character is received that could be the beginning of a function key 
(such as escape), curses will set a I-second timer. If the remainder of the sequence does not 
come in within 1 second, the character will be passed through, otherwise the function key value 
will be returned. For this reason, on many terminals, there will be a one second delay after a 
user presses the escape key. (Use by a programmer of the escape key for a single character 
function is discouraged.) 

getstr(str) 
wgetstr(win,str) 
mvgetstr(y ,x,str) 
mvwgetstr(win,y ,x,str) 
A series of calls to getch is made, until a newline is received. The resulting value is placed in 
the area pointed at by the character pointer str. The users' erase and kill characters are 
in terpreted. 

sca.nw(fmt, args) 
w8canw(win, tmt, arga) 
mvscanw(y, x, tmt, arga) 
mvwscanw(win, y, x, tmt, args) 
This function corresponds to scant. wgetstr is called on the window, and the resulting line is 
used as input for the scan. 

attroff(at) 
wattroff(win, attrs) 
attron(at) 
wattron(win, attrs) 
attrset( at) 
wa.ttrset(win, attrs) 
standoutO 
standendO 
wstandout(win) 

Video Attributes 

wstandend(win) ~ 
These functions set the current attributes of the named window. These attributes can be any 
combination of A-S TAND OUT, A.REVERSE, A...BOLD, A-DIM, A...BLINK, and 
A-UNDERLINE. These constants are defined in <curss.h> and can be combined with the 
C I (or) operator. 

The current attributes of a window are applied to all characters that are written into the 
window with waddch. Attributes are a property of the character, and move with the 
character through any scrolling and insert/delete line/character operations. To the extent 
possible on the particular terminal, they will be displayed as the graphic rendition of 
characters put on the screen. 

attrset(at} sets the current attributes of the given window to at. attroff(at} turns off the 
named attributes without affecting any other attributes. attron(at) turns on the named 

12-20 ICON INTERNATIONAL 

o 



( 

o 

THE CURSES AND TERMINFO PACKAGE 

attributes without affecting any others. standout is the same as attron(A....STANDOUT) 
standend is the same as attrset(O), that is, it turns off all attributes. 

beepO 
flashO 

Bells and Flashing Lights 

These functions are used to signal the programmer. beep will sound the audible alarm on the 
terminal, if possible, and if not, will flash the screen (visible bell), if that is possible. flash will 
flash the screen, and if that is not possible, will sound the audible signal. If neither signal is 
possible nothing will happen. Nearly all terminals have an audible signal (bell or beep) but 
only some can flash the screen. 

Portability Functions 

These functions do not directly involve terminal dependent character output but tend to be 
needed by programs that use curses. Unfortunately, their implementation varies from one 
version of the UNIX system to another. They have been included here to enhance the 
portability of programs using curses. 

baudrateO 
baudrate returns the output speed of the terminal. The number returned is the integer baud 
rate, for example, 9600, rather than a table index such as B9600. 

erasecharO 
The erase character chosen by the user is returned. This is the character typed by the user to 
erase the character just typed. 

killcharO 
The line kill character chosen by the user is returned. This is the character typed by the user 
to forget the entire line being typed. 

flushinpO 
flushinp throws away any typeahead that has been typed by the user and has not yet been 
read by the program. 

Delays 

These functions are highly unportable, but are often needed by programs that use curses, 
especially real time response programs. Some of these functions require a particular operating 
system or a modification to the operating system to work. In all cases, the routine will compile 
and return an error status if the requested action is not possible. It is recommended that 
programmers avoid use of these functions if possible. 

draino(ms) The program is suspended until the output queue has drained enough to complete 
in ms additional milliseconds. Thus, draino(50) at 1200 baud would pause until there are no 
more than 6 characters in the output queue, because it would take 50 milliseconds to output 
the additional 6 characters. The purpose of this routine is to keep the program (and thus the 
PROGRAMMER GUIDE 12-21 



THE CURSES AND TERMINFO PACKAGE 

keyboard) from getting ahead of the screen. If the operating system does not support the ioctls 
needed to implement dramo, the value ERR is returned; otherwise, OK is returned. 

napms(ms) This function suspends the program for ms milliseconds. It is similar to sleep 
except with -higher resolution. The resolution actually provided will vary with the facilities 
available in the operating system, and often a change to the operating system wUl be necessary 
to produce good results. If resolution of at least .1 second is not possible, the routine will 
round to the next higher second, call sleep, and return ERR. Otherwise, the va.lue OK is 
returned. Often the resolution provided is 1/60th second. 

Lower Level Functions 

These functions are provided for programs not needing the screen optimization capabilities of 
curses. Programs are discouraged from working at this level, since -they must handle various 
glitches in certain terminals. However, a program can be smaller if it only brings in the low 
level routines. 

au-.or .M:Jtion 

mvcur( old row , old col, newrow, newcol) 
This routine optimally moves the cursor from (oldrow, old col) to (newrow, newcol). The user 
program is expected to keep track of the current cursor position. Note that unless a full screen 

o 

image is kept, curses will have to make pessimistic assumptions, sometimes resulting in less -, 
than optimal cursor motion. For example, moving the cursor a few spaces to the right can be " / 
done by transmitting the characters being moved over, but if curses does not have access to 
the screen image, it doesn't know what these characters are. 

Tennin/o Level 

These routines are called by low level programs that need access to specific capabilities of 
terminfo. A program working at this level should include both <curses.h> and <term.h> 
in that order. After a call to setupterm, the capabilities will be available with macro names 
defined in <term.h>. See termmfo(4) for a detailed description of the capabilities. 

Boolean valued capabilities will have the value 1 if the capability is present, 0 if it is not. 
Numeric capabilities have the value -1 if the capability is missing, and have a value at least 0 
if it is present. String capabilities (both those with and without parameters) have the value 
NULL if the capability is missing, and otherwise have type char ... and point to a character 
string containing the capability. The special character codes involving the \ and A characters 
(such as \r for return, or A A for control A) are translated into the appropriate ASCII 
characters. Padding information (of the form S<time» and parameter information (beginning 
with %) a.re left uninterpreted at this stage. The routine tputs interprets padding 
information, and tparm interprets parameter information. 

If the program only needs to handle one terminal, the definition -DSINGLE can be passed to 
the C compiler, resulting in static references t9 capabilities instead of dynamic references. (,-" 
This can result in smaller code, but prevents use of more than one terminal at a time. Very ~_j 
few programs use more than one terminal, so almost all programs can use this flag. 

12-22 ICON INTERNATIONAL 



(-/ 

( 

THE CURSES AND TERMINFO PACKAGE 

Betupterm(term, filenum, err ret ) 
This routine is called to initialize a terminal. term is the character string representing the 
name of the terminal being used. filenum is the ICON/UXV operating system file descriptor 
of the terminal being used for output. errret is a pointer to an integer, in which a success or 
failure indication is returned. The values returned can be 1 (all is well), ° (no such terminal), 
or -1 (some problem locating the termmfo database). 

The value of term can be given as 0, which will cause the value of TERM in the environment 
to be used. The errret pointer can also be given as 0, meaning no error code is wanted. If 
errret is defaulted, and something goes wrong, Betupterm will print an appropriate error 
message and exit, rather than returning. Thus, a simple program can call Betupterm(O, 1,0) 
and not worry about initialization errors. 

If the variable TERMINFO is set in the environment to a path name, Betupterm will check 
for a compiled terminfo description of the terminal under that path, before checking 
/etc/term. Otherwise, only /etc/term is checked. 

Betupterm will check the tty driver mode bits, using filenum, and change any that might 
prevent the correct operation of other low level routines. Currently, the mode that expands 
tabs into spaces is disabled, because the tab character is sometimes used for different functions 
by different terminals. (Some terminals use it to move right one space. Others use it to 
address the cursor to row or column 9.) If the system is expanding tabs, Betupterm will 
remove the definition of the tab and backtab functions, making the assumption that since the 
user is not using hardware tabs, they may not be properly set in the terminal. Other system 
dependent changes, such as disabling a virtual terminal driver, may be made here. 

AJ5 a side effect, Betupterm initializes the global variable ttytype, which is an array of 
characters, to the value of the list of names for the terminal. This list comes from the 
beginning of the terminfo description. 

After the call to Betupterm, the global variable cur_term is set to point to the current 
structure of terminal capabilities. By calling Betupterm for each terminal, and saving and 
restoring cur_term, it is possible for a program to use two or more terminals at once. 

The mode that turns newlines into CRLF on output is not disabled. Programs that use 
curBor _down or BcrolUorward should avoid these capabilities if their value is linefeed 
unless they disable this mode. Betupterm calls reaet_prog...mode after any changes it makes. 

reaet_prog...mode() 
reset..JIhelLmodeO 
def_prog...modeO 
def..JIhelLmodeO 
These routines can be used to change the tty modes between the two states: shell (the mode 
they were in before the program was started) and program (the mode needed by the program). 
deCprog...mode saves the current terminal mode as program mode. setupterm and initscr 
call def....shelLmode automatically. reset_progJIlode puts the terminal into program mode, 
and reset..JIhelLmode puts the terminal into normal mode. 

PROGRAMMER GUIDE 12-23 



THE CURSES AND TERMINFO PACKAGE 

A typical calling sequence is for a program to call initscr (or setupterm if a terminfo level 
program), then to set the desired program mode by calling routines such as cbreak and 
noecho, then to call def-prog..:mode to save the current state. Before a shell escape or 
control-Z suspension, the program aouldcall reset .... helLmode, to restore normal mode for 
the shell. Then, when the program resumes, it should call reset_prog-IDode. Also, all 
programs must call reset .... helLmode before they exit. (The higher level routine endwin 
automatically calls reset .... helLmode.) 

Normal mode is stored in eur_term->Ottyb, and program mode is in eur_term->Nttyb. 
These structures are both of type SGTTYB (which varies depending on the system). 
Currently the possible types are 8M:uet 8gttyb (on some other systems) and struct termio 
(on this version of the ICON/UXV system). def_prog-IDode should be called to save the 
current state in Nttyb. 

vidputs{newmode, putc) 
newmode is any combination of attributes, defined in <curses.h>. putc is a putchar-like 
function. The proper string to put the terminal in the given video mode is output. The 
previous mode is remembered by this. routine. The result characters are passed through putc. 

vidattr(newmode) 
The proper string to put the terminal in the given video mode is output to stdout. 

C) 

/ \ 
tparm{instring, pi, p2, p3, p4, po, pS, p7, p8, p9) j 

tparm is used to instantiate a parameterized string. The character string returned has the 
given parameters applied, and is suitable for tputs. Up to 9 parameters can be passed, in 
addition to the parameterized string. 

tputs(cp, aft'cnt, oute) 
A string capability, possibly containing padding information, is processed. Enough padding 
characters to delay for the specified time replace the padding specification, and the resulting 
string is passed, one character at a time, to the routine oute, which should expect one 
character parameter. (This routine often just calls putehar.) ep is the capability string. 
aft'cnt is the number of units affected by the capability, which varies with the particular 
capability. (For example, the aft'ent for insertJine is the number of lines below the inserted 
line on the screen, that is, the number of lines that will have to be moved by the terminal.) 
afJent is used by the padding information of some terminals as a multiplication factor. If the 
capability does not have a factor, the value 1 should be passed. 

putp(str) 
This is a convenient function to output a capability with no aft'cnt. The string is output to 
putchar with an aft'cnt of 1. It can be used in simple applications that do not need to process 
the output of tputs. 

delay _output(ms) 
A delay is inserted into the output stream for the given number of milliseconds. The current (.' '.')-\ .. ' 
implementation inserts sufficient pad characters for the delay. This should not be used in place 
of a high resolution sleep, but rather for delay effects in the output. Due to buffering in the 

12-24 ICON INTERNATIONAL 



( 

( 

o 

THE CURSES AND TERMINFO PACKAGE 

system, it is unlikely that this call will result in the process actually sleeping. Since large 
numbers of pad characters can be output, it is recommended that ms not exceed 500. 

OPERATION DETAILS 

These paragraphs describe many of the details of how the curses and terminfo package 
operates. 

Insert and Delete Line and Character 

The algorithm used by curses takes into account insert and delete line and character 
functions, if available, in the terminal. Calling the routine 

IdIOk(stdscr, TRUE); 

will enable insert/delete line. By default, curses will not use insert/delete line. This was not 
done for performance reasons, since there is no speed penalty involved. Rather, experience has 
shown that some programs do not need this facility, and that if curses uses insert/delete line, 
the result on the screen can be visually annoying. Since many simple programs using curses 
do not need this, the default is to avoid insert/delete line. Insert/delete character is always 
considered. 

Additional Terminals 

Curses will work even if absolute cursor addressing is not possible, as long as the cursor can be 
moved from any location to any other location. It considers local motions, parameterized 
motions, home, and carriage return. 

Curses is aimed at full duplex, alphanumeric, video terminals. No attempt is made to handle 
half-duplex, synchronous, hard copy, or bit mapped terminals. Bitmapped terminals can be 
handled by programming the bitmapped terminal to emulate an ordinary alphanumeric 
terminal. This does not take advantage of the bitmap capabilities, but it is the fundamental 
nature of curses to deal with alphanumeric terminals. 

The curses handles terminals with the "magic cookie glitch" in their video attributes. The 
term "magic cookie" means that a change in video attributes is implemented by storing a 
"magic cookie" in a location on the screen. This "cookie" takes up a space, preventing an 
exact implementation of what the programmer wanted. Curses takes the extra space into 
account, and moves part of the line to the right, as necessary. In some cases, this will 
unavoidably result in losing text from the right hand edge of the screen. Advantage is taken of 
existing spaces. 

PROGRAMMER GUIDE 12-25 



THE CURSES AND TERMINFO PACKAGE 

Multiple Terminals 

Some applications need to display text on more than one terminal, controlled by the same 
process. Even if the terminals are of different types, curses can handle this. 

, 

All information about the current terminal is kept in a global variable 

struct screen *SPi 

Although the screen structure is hidden from the user, the 0 compiler will accept declarations 
of variables which are pointers. The user program should declare one screen pointer variable 
for each terminal it wishes to handle. The routine 

struct screen * 
newterm(type, fd) 

will set up a new terminal of the given terminal type which does output on file descriptor fd. A 
call to initscr is essentially newterm(getenv("TERM"),stdout). A program wishing to use 
more than one terminal should use newterm for each terminal and save the value returned as 
a reference to that terminal. 

To switch to a different terminal, call 

set_te rm( te rm) 

The old value of SP will be returned. The programmer should not assign directly to SP 
because certain other global variables must also be changed. 

All curses routines always affect the current terminal. To handle several terminals, switch to 
each one in turn with set_term, and then access it. Each terminal must be set up with 
newterm, and closed down with endwin. 

Video Attributes 

Video attributes can be displayed in any combination on terminals with this capability. They 
are treated as an extension of the standout capability, which is still present. 

Each character position on the screen has 16 bits of information associated with it. Seven of 
these bits are the character to be displayed, leaving separate bits for nine video attributes. 
These bits are used' for standout, underline, reverse video, blink, dim, bold, blank, protect, and 
alternate character set. Standout is taken to be whatever highlighting works best on the 
terminal, and should be used by any program that does not need specific or combined 
attributes. Underlining, reverse video, blink, dim, and bold are the usual video attributes. 
Blank means that the character is displayed as a space, for security reasons. Protected and C' .... " . ., 
alternate character set depend on the particular terminal. The use of these last three bits is 
subject to change and not recommended. Note also that not all terminals implement all 

12-26 lOON INTERNATIONAL 



( 

( 

() 

THE CURSES AND TERMINFO PACKAGE 

attributes - in particular, no current terminal implements both dim and bold. 

The routines to use these attributes include 

attrset(attrs) 
attron(attrs) 
attrof'f'(attrs) 
standout() 
standend() 

wattrset(wln, attrs) 
wattron(wln, attrs) 
wattrof'f'(wln, attrs) 
wstandout(wln) 
wstandend(wln) 

Attributes, if given, can be any combination of A-STAND OUT , A-UNDERLINE, 
A...REVERSE, A-BLINK, A...DIM, A-BOLD, AJNVIS, A.PROTECT, and 
A-ALTCHARSET. These constants, defined in curses.h, can be combined with the C I (or) 
operator to get multiple attributes. attrset sets the current attributes to the given attrs; 
attron turns on the given attrs in addition to any attributes that are already on; attroff 
turns off the given attributes, without affecting any others. standout and standend are 
equivalent to attron(A-STANDOUT) and attrset(A-NORMAL). 

If the particular terminal does not have the particular attribute or combination requested, 
curses will attempt to use some other attribute in its place. If the terminal has no 
highlighting at all, all attributes will be ignored. 

Special Keys 

Many terminals have special keys, such as arrow keys, keys to erase the screen, insert or delete 
text, and keys intended for user functions. The particular sequences these terminals send 
differs from terminal to terminal. Curses allows the programmer to handle these keys. 

A program using special keys should turn on the keypad by calling 

keypad(stdscr, TRUE) 

at initialization. This will cause special characters to be passed through to the program by the 
function getch. These keys have constants which are listed in "Input" under 
"INTRODUCTION." They have values starting at 0401, so they should not be stored in a 
char variable, as significant bits will be lost. 

A program using special keys should avoid using the escape key, since most sequences start 
with escape, creating an ambiguity. Curses will set a one second alarm to deal with this 
ambiguity, which will cause delayed response to the escape key. It is a good idea to avoid 
escape in any case, since there is eventually pressure for nearly any screen oriented program to 

PROGRAMMER GUIDE 12-27 



THE CURSES AND TERMINFO PACKAGE 

accept a.rrow key input. 

Scrolling Region 

There is a programmer accessible scrolling region. Normally, the scrolling region is set to the 
entire window, but the calls 

setserreg(top. bot) 
wletserrag(wln. toP. bot) 

set the scrolling region for atdscr or the given window to any combination of top and bottom 
margins. When scrolling past the bottom margin of the scrolling region, the lines in the region 
will move up one line, destroying the top line of the region. If scrolling has been enabled with 
scrollok, scrolling will take place only within that window. Note that the scrolling region is a 
software feature, and only causes a window data structure to scroll. This mayor may not 
translate to use of the hardware scrolling region feature of a terminal, or insert/delete line. 

Mini-CUl"Se8 

Curses copies from the current window to an internal screen image for every call to refresh. If 
the programmer is only interested in screen output optimization, and does not want the 
windowing or input functions, an interface to the lower level routines is available. This will 
make the program somewhat smaller and faster. The interface is a subset of full curses, so 
that conversion between the levels is not necessary to switch from mini-curses to full curses. 

The following functions of curses and terminfo are available to the user of minicurses: 

addch(ch) 
attrset(at) 
move(y, x) 
refreshO 

12-28 

addstr(str) 
clearO 
mvaddch(y ,x,ch) 
standendO 

attroff( at) 
eraseO 
mvaddstr(y ,x,str) 
standoutO 

attron(at) 
initscr 
newterm 

ICON INTERNATIONAL 

C) 

/ '\ 
j 

() 



( 

() 

THE CURSES AND TERMINFO PACKAGE 

The following functions of curses and terminfo are not available to the user of minicurses: 

box clrtobot clrtoeol delch 
deleteln delwin getch getstr 
inch insch insertln longname 
makenew mvdelch mvgetch mvgetstr 
mvinch mvinsch mvprintw mvscanw 
mvwaddch mvwaddstr. mvwdelch mvwgetch 
mvwgetstr mvwin mvwinch mvwinsch 
mvwprintw mvwscanw newwin overlay 
overwrite printw putp scanw 
scroll setscrreg subwin touchwin 
vidattr waddch waddstr wclear 
wclrtobot wclrtoeol wdelch wdeleteln 
werase wgetch wgetstr winsch 
winsertln wmove wprintw wrefresh 
wscanw wsetscrreg 

The subset mainly requires the programmer to avoid use of more than the one window stdscr. 
Thus, all functions beginning with "w" are generally undefined. Certain high level functions 
that are convenient but not essential are also not available, including printw and scanw. 
Also, the input routine geteh cannot be used with mini-curses. Features implemented at a low 
level, such as use of hardware insert/delete line and video attributes, are available in both 
versions. Also, mode setting routines such as crmode and noecho are allowed. 

To access mini-curses, add -DMINICURSES to the CFLAGS in the makefile. If routines are 
requested that are not in the subset, the loader will print error messages such as 

Undefined: 
rTLgetch 
rTLwaddch 

to tell you that the routines geteh and waddeh were used but are not available in the subset. 
Since the preprocessor is involved in the implementation of mini-curses, the entire program 
must be recompiled when changing from one version to the other. 

TTY Mode Functions 

In addition to the save/restore routines savettyO and resettyO, standard routines are 
available for going into and out of normal tty mode. These routines are resettermO, which 
puts the terminal back in the mode it was in when curses was started; fixtermO, which 
undoes the effects of resetterm, that is, restores the "current curses mode"; and s&vetermO, 
which saves the current state to be used by fixtermO. endwin automatically calls 
resetterm, and the routine to handle control-Z (on other systems that have process control) 
also uses resetterm and fixterm. Programmers should use these routines before and after 
shell escapes, and also if they write their own routine to handle control-Z. These routines are 

PROGRAMMER GUIDE 12-29 



THE CURSES AND TERMINFO PACKAGE 

also available at the terminfo level. 

Typeahead Check 

If the user types something during an update, the update will stop, pending a future update. 
This is useful when the user hits several keys, each of which causes a good deal of output. For 
example, in a screen editor, if the user presses the "forward screen" key, which draws the next 
screen full of text, several times rapidly, rather than drawing several screens of text, the 
updates will be cut short, a.nd only the last screen full will actually be displayed. This feature 
is automatic and cannot be disabled. The feature only works on versions of the ICONjUXV 
operating system with the necessary support in the operating system. 

getstr 

No matter what the setting of echo is, strings typed in here are echoed at the current cursor 
location. The users erase and kill characters are understood and handled. This makes it 
unnecessary for an interactive program to deal with erase, kill, and echoing when the user IS 

typing a line of text. 

longname 

The longna.me function does not need any arguments. It returns a pointer to a static area 
containing the actual long name of the terminal. / \ 

Nodelay Mode 

The call 

nodelay{stdscr, TRUE) 

will put the terminal in "node lay mode". While in this mode, any call to geteh will return -1 
if there is nothing waiting to be read immediately. This is useful for writing programs 
requiring "real time" behavior where the users watch action on the screen and press a key 
when they want something to happen. For example, the cursor can be moving across the 
screen, in real time. When it reaches a certain point, the user can press an arrow key to 
change direction at that point. 

Portability 

Several useful routines are provided to improve portability. The implementation of these 
routines is different from system to system, and the differences can be isolated from the user 
program by including them in curses. 

12-30 ICON INTERNATIONAL 

'-- ,/ 



o 

( 

c 

THE CURSES AND TERMINFO PACKAGE 

Functions eraseehar{} and killehar{} return the characters which erase one character, and 
kill the entire input line, respectively. The function baudrate{} will return the current baud 
rate, as an integer. (For example, at 9600 baud, the integer 9600 will be returned, not the 
value B9600 from <sgtty.h>.) The routine flushinp{} will cause all typeahead to be thrown 
away. 

PROGRAMMER GUIDE 12-31 



\ ~j 



f 

c 

Chapter 13 

CURSES EXAMPLES 

PAGE 

EXAMPLE PROGRAM 'ecl1tor' .....•............................................................................................................... 13-1 

EXAMPLE PROGRAM 'hlghllght' ....... ..... ... ...... ............... ......... .......... ...... ....... ........ ............. .......... ... ...... .... 13-6 

EXAMPLE PROGRAM 'aeatter' ................................................................................................................... 13-1) 

EXAMPLE PROGRAM '.how· ................................................................................. ..................................... 13-8 

EXAMPLE PROGRAM ·termhl· .................................................................................................................... 13-10 

EXAMPLE PROGRAM 'two' ................................................................................................. ~...................... 13-12 

EXAMPLE PROGRAM 'wlndow' .................................................................................................................. 13-16 



\ 



( 

( 

o 

Chapter 13 

CURSES EXAMPLES 
The following examples are provided to demonstrate uses of curses. They are for illustration 
purposes only. A good programmer would expand the programs presented here before using 
them. 

EXAMPLE PROGRAM 'editor' 

1* 
* editor: A screen-oriented editor. The user 
* interface is similar to a subset of vi. 
* The buffer is kept in stdscr itself to simplify 
* the program. 
*/ 

#include <curses.h> 

#define CTRL(c) ('e' & 037) 

main(argc, argyl 
char **argv; 
{ 

int i, n, 1; 
int e; 
FILE *fd; 

if(argc != 2) { 

} 

CprintC(stderr, "Usage: edit fileD); 
exit(l); 

Cd = fopen(argvll], "r"); 
if (Cd = NULL) { 

perror( argv 11]); 
exit(2); 

} 

initserO; 
cbreakO; 
nonl0; 
noeehoO; 
idlok(stdser, TRUE); 
keypad(stdser, TRUE); 

1* Read in the file * / 
while «e = getc(fd)) != EOF) 

addch(e); 

PROGRAMMER GUIDE 13-1 



CURSES EXAMPLES 

} 

fclose(fd)i 

move(O,O); 
refreshO; 
editO; 

1* Write out the file * / 
fd = fopen(argv!I], "w"); 
for (1==0; 1<23; 1++) { 

n = len(l}; 
for (i==O; i<n; itt) 

putc(mvinch{l, i}, fd}; 
putc('O, fd)i 

} 
fclose(fd); 

endwinO; 
exiteD); 

len(lineno) 
int line no; 
{ 

} 

int linelen = COLS-l; 

while (linelen >==0 && mvinch(lineno, linelen) == ' ') 
linelen--; 

return linelen + 1; 

1* Global value of current cursor position * / 
int row, col; 

editO 
{ 

int c; 

for (;;) { 

13-2 

move(row, col}; 
refreshO; 
c = getchOi 
switch (c) { 1* Editor commands * / 

1* hjkl and arrow keys: move cursor * / 
1* in direction indiated * / 
case 'h': 
case KEY -LEFT: 

if (col> 0) 
col--; 

break; 

ICON INTERNATIONAL 



( 

c 

f case 'j': 
case KEY..DOWN: 

if (row < LINES-I) 
row++; 

break; 

case 'k': 
case KEY_UP: 

if (row> 0) 
row-; 

break; 

case '1': 
case KEY -RIGHT: 

if (col < COLS-I) 
col++; 

break; 

1* i: enter input mode * / 
case KEYJC: 
case 'i': 

inputO; 
break; 

1* x: delete current character * / 
case KEY..DC: 
case 'x': 

delchO; 
break; 

1* 0: open up a new line and enter input mode * / 
case KEYJL: 
case '0': 

move(++row, col==O); 
insertlnO; 
inputO; 
break; 

1* d: delete current line * / 
case KEY..DL: 
case 'd': 

deletelnO; 
break; 

/* AL: redraw screen * / 
case KEY_CLEAR: 
case CTRL(L): 

clearok( curser); 
refreshO; 
break; 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-3 



CURSES EXAMPLES 

} 
} 

1* 

1* w: write and quit • / 
case 'w': 

return; 

1* q: quit without writing • / 
case 'q': 

endwin(); 
exit(l); 

default: 

} 

fiashO; 
break; 

* Insert mode: accept characters and insert them. 
• End with AD or EIO 
*/ 

inputO 
{ 

} 

int c; 

standoutO; 
mvaddstr(LINES-l, 00L8-20, "INPUT MODE"); 
standendO; 
move(row, col); 
refreshO; 
for (;;) { 

c = getchO; 
if (c = OTRL(D) U c = KEY...EIO) 

break; 
insch(c); 
move(row, ++Col); 
refreshO; 

} 
move(LINE8-1,00L8-20); 
clrtoeolO; 
move(row, col); 
refreshO; 

13-4 

(~ 

ICON INTERNATIONAL 



o 

EXAMPLE PROGRAM 'highlight' 

1* 
* highlight: a program to turn U, B, and 
* equences into highlighted 
* output, allowing words to be 
* displayed underlined or in bold. 
*/ 

#include <curses.h> 

maine argc, argv) 
char **argv; 
{ 

FILE *fd; 
int c, c2; 

if (argc != 2) { 

} 

fprintf(stderr, "Usage: highlight fileO); 
exit(l ); 

fd = fopen(argv[l], "r"); 
if (fd = NULL) { 

perror(argv[l]); 
exit(2); 

} 

initscrO; 
scrollok(stdscr, TRUE); 

for (;;) { 
c = getc(fd); 
if(c = EOF) 

break; 
if (c = 'V) { 

} 

c2 = getc(fd); 
switch (c2) { 
case 'B': 

attrset(A..BOLD); 
continue; 

case 'U': 
attrset(A-UNDERLINE); 
continue; 

case 'N': 
attrset(O); 
continue; 

} 
addch(c); 
addch(c2); 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-5 

.------------~- --"-------- - - - ---~--,-.. -- -~-



CURSES EXAMPLES 

} 

/* 

else 
addch(c)j 

} 
fclose(fd); 
refreshO; 
endwinO; 
exit(O); 

EXAMPLE PROGRAM 'seatter' 

* SCA TIER. This program takes the first 
* 23 lines from the standard 
* input and displays them on the 
* VDU screen, in a random manner. 
*/ 

#include <curses.h> 

#define MAXLINES 120 
#define MAXCOLS 160 
char s[MAXLINESjIMAXCOLSj;/* Screen Array * / 

mainO 
{ 

register int row=O,col=O; 
register char c; 
int char_count=O; 
long t; 
char buf[BUFSIZ]; 

initscrO; 
fore row=O;row<MAXLINESjrow++) 

fore col=O;col<MAXCOLS;col++) 
s[row][col]=' '; 

row =0; 
/* Read screen in * / 
while( (c=getchar()) != EOF && row < LINES) { 

if(c != '0) { 
/* Place char in screen array * / 
sIrow][col++] = c; 
if(e != ' ') 

char_count++; 
} else { 

eol=O; 
row++; 

13-6 

o 

(j 
ICON INTERNATIONAL 



o 

} 

} 
} 

time(&t); r Seed the random number generator * / 
srand«int )(t&0177777L»; 

while(char_count) { 

} 

row-randO % LINES; 
col=(randO»2) % COLS; 
if(s[row][col] !== ' ') 
{ 

} 

move(row, col); 
addch(s[row] [col]); 
s[row][col] EOF; 
char_count--; 
refreshO; 

endwinO; 
exit(O); 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-7 



CURSES EXAMPLES 

EXAMPLE PROGRAM 'show' 

#include <curses.h> 
#include <signal.h> 

main( argc, argv) 
int argc; 
char *argvD; 
{ 

} 

FILE *fd; 
char linebuf[BUFSIZ]; 
int line; 
void doneO, perrorO, exitO; 

if(argc 1= 2) 
{ 

} 

fprintf(stderr,"usage: %s fileO, argv[O]); 
exit(l); 

if«fd fopen(argv[l],"r"» == NULL) 
{ 

} 

perror(argv!l]); 
exit(2); 

signaI(SIGINT, done); 

initscrO; 
noechoO; 
cbreakO; 
nonIO; 
idlok(stdscr, TRUE); 

while(l} 
{ 

} 

move(O,O); 
for(line=O; line<LINES; line++) 
{ 

} 

if(fgets(linebuf, sizeof linebuf, fd} = NULL) 
{ 

} 

clrtobotO; 
doneO; 

move(line, 0); 
printw("%s", linebuf}; 

refreshO; 
if(getchO = 'q') 

doneO; 

13-8 

o 

o 
ICON INTERNATIONAL 



( 

c 

void 
doneO 
{ 

} 

move(LINES-l,O)i 
clrtoeolO; 
refreshO; 
endwinO; 
exit(O); 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-9 



CURSES EXAMPLES 

EXAMPLE PROGRAM 'termhl' 

1* 
* A term info level version of bighlight. 
*/ 

#include <curses.h> 
#include <term.h> 

int ulmode = 0; /* Currently underlining * / 

main(arge, argv) 
char **argv; 
{ 

FILE *fdj 
int e, c2; 
int outehO; 

if (arge > 2) { 

} 

fprintf(stderr, "Usage: termhl [file]O); 
eXit(I); 

if(arge = 2) { 
fd = fopen(argv[I], "r"); 
if (fd == NULL) { 

perror( argv [1])j 
exit(2); 

} 
} else { 

fd = stdin; 
} 

setupterm(O, 1,0); 

for (;;) { 

13-10 

e = gete(fd}; 
if(e = EOF) 

break; 
if (e = 'V) { 

c2 = gete(fd); 
switch (e2) { 
case 'B': 

tputs(enter_boldJIlode, 1, outeh); 
continue; 

case 'U': 
tputs( enter_underlineJIlode, 1, outeh); 
ulmode = 1; 
continue; 

case 'N': 
tputs(exit.-attributeJIlode, 1, outch}; 
ulmode =0; 
continue; 

ICON INTERNATIONAL 



( 

() 

} 

1* 

} 

} 
else 

} 

putch(c); 
putch(c2); 

putch(c); 

fclose(fd); 
fIlush(stdout ); 
resettermO; 
exit(O); 

* This function is like putchar, but it checks for underlining. 
*/ 

putch(c) 
int c; 
{ 

) 

} 

1* 

outch(c); 
if (ulmode && underline_char) { 

outch(' 
tputs(underline_char, 1, outch); 

} 

* Outchar is a function version of putchar that can be passed to 
* tputs as a routine to call. 
*/ 

outch(c) 
int c; 
{ 

putchar(c); 
} 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-11 



CURSES EXAMPLES 

EXAMPLE PROGRAM 'two' 

#include <curses.h> 
#include <signa.l.h> 

struct screen *me, *you; 
struct screen *seLtermO; 

FILE *fd, *fdyou; 
cha.r linebuf[S12]; 

ma.in( a.rgc, a.rgv) 
cha.r **a.rgv; 
{ 

int doneO; 
int c; 

if{a.rgc != 4) { 

} 

fprintf(stderr, "Usa.ge: two othertty otherttytype inputfileO); 
exit(l}; 

fd = fopen(a.rgv[3], Itrlt); 
fdyou = fopen(a.rgv[l}, "w+"); 
signal(SIGINT, done}; /* die gracefully * / 

me = newterm(getenv("TERM"), stdout );/* initialize my tty * / 
you = newterm(argv[2J, fdyou);/* Initialize his terminal * / 

set_term( me); /* Set modes for my terminal * / 
noechoO; /* turn off tty echo * / 
cbreakO; /* enter cbreak mode * / 
nonlO; /* Allow linefeed * / 
nodelay(stdscr,TRUE);/* No hang on input * / 

set_term(you); /* Set modes for other terminal * / 
noechoO; 
cbreakO; 
nonl0; 
nodela.y(stdscr,TRUE}; 

1* Dump first screen full on my terminal * / 
dump_page(me ); 

1* Dump second screen full on his terminal * / 
dump_pa.ge(you); 

for (;;) { /* for ea.ch screen full * / 
set_term(me }; 
c = getchO; 
if (c = 'q') /* wait for user to read it * / 

doneO; 
13-12 ICON INTERNATIONAL 



o 

} 

if(c =") 
dump_page(me); 

} 

set_term(you ); 
c = getchO; 
if (c = 'q') 1* wait for user to read it * / 

doneO; 
if(c =") 

dump_page(you); 
sleep(l); 

dump_page(term) 
struct screen *term; 
{ 

} 

/* 

int line; 

set_term( term); 
move(O, 0); 
for (line=O; line<LINES-l; line++) { 

} 

if (fgets(linebuf, sizeof linebuf, fd) = NULL) { 
clrtobotO; 
doneO; 

} 
mvprintw(line, 0, "%s", linebuf); 

standoutO; 
mvprintw(LINES-l, 0, "--More--"); 
standendO; 
refreshO; 1* sync screen * / 

* Clean up and exit. 
*/ 

doneO 
{ 

/* Clean up first terminal * / 
seLterm(you ); 
move(LINES-l,O);/* to lower left corner * / 
clrtoeolO; /* clear bottom line * / 
refreshO; 1* flush out everything * / 
endwinO; 1* curses cleanup * / 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-13 



CURSES EXAMPLES 

} 

/* Clean up second terminal·, 
seLterm(me)j 
move(LINES-l,O)j/* to lower left corner *' 
clrtoeolOj /* clear bottom line * / 
refreshOj /* flush out everything * / 
endwinOj /* curses cleanup * / 

exit(O)j 

13-14 ICON INTERNATIONAL 

\. 
/ 

() 



( 

o 

EXAMPLE PROGRAM 'window' 

#include <curses.h> 

WINDOW *cmdwin; 

mainO 
{ 

} 

int i, Cj 
char buf[120]; 

initscrO; 
nonlOj 
noechoOj 
cbreakO; 

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines * / 
for (i=(); i<LINES; i++) 

mvprintw(i, 0, "This is line %d of stdscr", i); 

for (;;) { 
refreshO; 

} 

c = getchO; 
switch (c) { 
case 'c': /* Enter command from keyboard * / 

werase(cmdwin); 
wprintw( cmdwin, "Enter command:"); 
wmove(cmdwin, 2, 0); 
for (i=O; i<COLS; i++) 

waddch(cmdwin, '-'); 
wmove(cmdwin, 1,0); 
touchwin( cmdwin); 
wrefresh{ cmdwin); 
wgetstr(cmdwin, buf); 
touchwin(stdscr ); 
1* 
* The command is now in buf. 
* It should be processed here. 
*/ 

break; 
case 'q': 

endwinO; 
exit{O); 

} 

PROGRAMMER GUIDE 

CURSES EXAMPLES 

13-15 





Chapter 14 

(make) FOR MAINTAINING COMPUTER PROGRAMS 

PAGE 

GENERAL .................................................................................................................................................... 14-1 

BASIC FEATURES ....................................................................................................................................... 14-2 

DESCRIPTION Fn.ES AND SUBSTITUTIONS ........................................................................... ...... ........... 14-7 

OUTPUT TRANSLATIONS.......................................................................................................................... 14-9 

COMMAND USAGE ......................... ............................................... ........................... .................... ... .... ....... 14-9 

THE ENVIRONMENT VARIABLES ............................................................................................................. 14-11 

RECURSIVE MAKEFILES............................................................................................................................ 14-16 

SUFFIA~S AND TRANSFORMATION RULES ............................................................................................ 14-16 

IMPLICIT RULES .............................................. :.......................................................................................... 14-18 

FORMAT OF SHELL COMMANDS WITHIN make ...................................................................................... 14-19 

ARCHIVE LmRARIES.................................................................................................................................. 14-HI 

SOURCE CODE CONTROL SYSTEM Fn.E NAMES: THE TILDE .. ...... ............. ....... ................. .... ..... ........ 14-24 

THE NULL SUFFIX..... .... ....... ........ ........... .... ......................................... .... .............. ................. ... ...... ...... .... 14-26 

INCLUDE FILES........................................................................................................................................... 14-26 

INVISmLE SCCS MAKEFn.ES ..................................................................................................................... 14-26 

DYNAMIC DEPENDENCY PARAMETERS ................................................................................................. 14-26 



I 



o 

Chapter 14 

(make) FOR MAINTAINING COMPUTER PROGRAMS 

GENERAL 

In a programming project, a common practice is to divide large programs into smaller pieces 
that are more manageable. The pieces may require several different treatments such as being 
processed by a macro processor or sophisticated program generators (e.g., Yaee or Lex). The 
project continues to become more complex as the output of these generators are compiled with 
special options and with certain definitions and declarations. A sequence of code 
transformations develops which is difficult to remember. The resulting code may need further 
transformation by loading the code with certain libraries under control of special options. 
Related maintenance activities also complicate the process further by running test scripts and 
installing validated modules. Another activity that complicates program development is a long 
editing session. A programmer may lose track of the files changed and the object modules still 
valid especially when a change to a declaration can make a dozen other files obsolete. The 
programmer must also remember to compile a routine that has been changed or that uses 
changed declarations. 

The "make" command is a software tool that maintains, updates, and regenerates groups of 
computer programs. 

A programmer can easily forget 

• Files that are dependent upon other files. 

• Files that were modified recently. 

• Files that need to be reprocessed or recompiled after a change in the source. 

• The exact sequence of operations needed to make and exercise a new version of the 
program. 

The many activities of program development and maintenance are made simpler by the make 
program. 

The make program provides a method for maintaining up-to-date versions of programs that 
result from many operations on a number of files. The make program keeps track of the 
sequence of commands that create certain files and the list of files that require other files to be 
current before the operations can be done. Whenever a change is made in any part of a 
program, the make command creates the proper files simply, correctly, and with a minimum 
amount of effort. The make program also provides a simple macro substitution facility and 
the ability to encapsulate commands in a single file for convenient administration. 

PROGRAMMER GUIDE 14-1 



MAKE 

The basic operation of make is to 

• Find the name of the needed target file in the description. 

• Ensure that all of the files, on which it depends, exist and are up to date. 

• Create the target file if it has not been modified since its generators were modified. 

The descriptor file really defines the graph of dependencies. The make program determines the 
necessary work by performing a depth-first search of the graph of dependencies. 

If the information on interfile dependencies and command sequences is stored in a file (makefile 
or Makefile), the simple command 

make 

is frequently sufficient to update the interesting files regardless of the number edited since the 
last make. In most cases, the description file is easy to write and changes infrequently. It is 
usually easier to type the make command than to issue even one of the needed operations, so 
the typical cycle of program development operations becomes 

think - edit - make - test ... 

The make program is most useful for medium-sized programming projects. The make 
program does not solve the problems of maintaining multiple source versions. or of describing 
huge programs. 

BASIC FEATURES 

The basic operation of make is to update a target file by ensuring that all of the files on which 
the target file depends exist and are up to date. The target file is created if it has not been 
modified since the dependents were modified. The make program does a depth-first search of 
the graph of dependencies. The operation of the command depends on the ability to find the 
date and time that a file was last modified. 

To illustrate, consider a simple example in which a program named prog is made by compiling 
and loading three C language files z.c, y.c, and z.c with the Id library. By convention, the 
output of the C language compilations will be found in files named x.o, y.o, and z.o. Assume 
that the files x.e and y.c share some declarations in a file named de/s, but that z.c does not. 
That is, x.c and g.c have the line 

#include "defs·' 

The following text describes the relationships and operations: 

14-2 ICON INTERNATIONAL 



( 

( 

o 

MAKE 

prog: x.o y.o z.o 
cc x.o y.o z.o -lld -0 prog 

x.o y.o: defs 

If this information were stored in a file named makefile, the command 

make 

would perform the operations needed to recreate prog after any changes had been made to any 
of the four source files z.c, y.c, z.c, or de/so 

The make program operates using the following three sources of information: 

• A user-supplied description file 

.• File names and "last-modified" times from the file system 

• Built-in rules to bridge some of the gaps. 

In the example, the first line states that prog depends on three ".0" files. Once these object 
files are current, the second line describes how to load them to create prog. The third line 
states that z.o and y.o depend on the file de/so From the file system, make discovers that 
there are three ".c" files corresponding to the needed ".0" files and uses built-in information on 
how to generate an object from a source file (i.e., issue a "cc -e" command). 

By not taking advantage of make's innate knowledge, the following longer descriptive file 
results. 

prog: X.O y.o Z.O 

cc X.O y.o z.o -lld -0 prog 
x.o: x.c defs 

cc -e x.c 
y.o: y.c defs 

cc -e y.c 
z.o: z.c 

cc -e z.c 

If none of the source or object files have changed since the last time prog was made, all of the 
files are current, and the command 

make 

announces this fact and stops. If, however, the de/s file has been edited, z.c and y.c (but not z.c 
) are recompiled; and then prog is created from the new" .0" files. If only the file y.c had 

PROGRAMMER GUIDE 14-3 



MAKE 

(" 

changed, only it is recompiled; but it is still necessary to reload prog. If no target name is U 
given on the make command line, the first target mentioned in the description is created; 
otherwise, the specified targets are made. The command 

make x.o 

would recompile :t.O if :t.C or de/s had changed. 

A method, often useful to programmers, is to include rules with mnemonic names and 
commands that do not actually produce a file with that name. These entries can take 
advantage of make's ability to generate files and substitute macros. Thus, an entry "save" 
might be included to copy a certain set of files, or an entry "cleanup" might be used to throw 
away unneeded intermediate files. 

If the file exists after the commands are executed, the file's time of last modification is used in 
further decisions. If the file does not exist after the commands are executed, the current time 
is used in making further decisions. 

You may maintain a zere>-length file purely to keep track of the time at which certain actions 
were performed. This technique is useful for maintaining remote archives and listings. 

'\ 

A simple macro mechanism for substituting in dependency lines and command strings is used, ~ 
by the ma.ke program. Macros are defined by command arguments or description file lines 
with embedded equal signs. A macro is invoked by preceding the name by a dollar sign. 
Macro names longer than one character must be parenthesized. The name of the macro is 
either the single character after the dollar sign or a name inside parentheses. The following 
are valid macro invocations: 

$(CFLAGS) 
$2 
$(xy) 
$Z 
$(Z) 

The last two invocations are identical. A $$ is a dollar sign. 

The $*, $@, $1, and $< are four special macros which change values during the execution of 
the command. (These four macros are described in the part "DESCRIPTION FILES AND 
SUBSTITUTIONS".) The following fragment shows assignment and use of some macros: 

14-4 ICON INTERNATIONAL 



(/ 
OBJECTS = x.o y.o z.o 
LIBES = -lid 
prog: $(OBJECTS) 

cc $(OBJECTS) $(LIBES) --<> prog 

The command 

make "LIBES= -11 -lId" 

MAKE 

loads the three objects with the Lex (-11) library since macro definitions on the command line 
override definitions in the description. Arguments must be quoted with embedded blanks in 
ICONjUXV software commands. 

As an example of the use of make, the description file used to maintain the make command is 
given. The code for make is spread over a number of C language source files and a Yacc 
grammar. The description file contains: 

# Description file for the Make command 

p = lp 
FILES = Makefile version.c defs main.c doname.c misc.c 

files.c dosys.c gram.y lex.c gcos.c 
OBJECTS = version.o main.o doname.o misc.o files.o 

dosys.o gram.o 
LIBES= -lld 
LINT = lint -p 
CFLAGS =-0 

make: $(OBJECTS) 
ec $(CFLAGS) $(OBJECTS) $(LIBES) -Q make 
@Size make 

$(OBJECTS): defs 
gram.o: lex.c 

cleanup: 
-rm *.0 gram.c 
-du 

install: 
@Size make /usr /bin/make 
cp make /usr /bin/make j rm make 

print: $(FILES) 
pr $? I $P 
touch print 

PROGRAMMER GUIDE 

# print recently changed files 

14-5 



MAKE 

test: 
make -dp I grep -v TIME >lzap 
/usr /bin/make -dp I grep -v TIME >2zap 
diff lzap 2zap 
rm !zap 2zap 

lint: dosys.c doname.c files.c main.c misc.c vetsion.c \ 
gram.c 

arch: 

$(LINT) dosys.c doname.c files.c main.c misc.c \ 
version.c gram.c 

ar uv /sys/source/s2/make.a $(FILES) 

The make program usually prints out each command before issuing it. 

The following output results from typing the simple command make in a directory containing 
only the source and description files: 

cc -0 -c version.c 
cc -0 -c main.c 
cc -0 -c doname.c 
cc -0 -c misc.c 
cc -0 -c files.c 
cc -0 -c dosys.c 
yacc gram.y 
mv y.tab.c gram.c 
cc -0 -c gram.c 
cc version.o main.o doname.o misc.o files.o dosys.o 

gram.o -lld -0 make 
13188+3348+3044 = 19580b = 046174b 

Although none of the source files or grammars were mentioned by name in the description file, 
make found them using its suffix rules and issued the needed commands. The string of digits 
results from the size make command. The printing of the command line itself was suppressed 
by an @ sign. The @ sign on the size command in the description file suppressed the printing 
of the command, so only the sizes are written. 

The last few entries in the description file are useful maintenance sequences. The "print" entry 
prints only the files changed since the last make print command. A zero-length file print is 
maintained to keep track of the time of the printing. The $f macro in the command line then 
picks up only the names of the files· changed since print was touched. The printed output can 
be sent to a different printer or to a file by changing the definition of the P macro as follows: 

make print"P= cat >zap" 

14-6 ICON INTERNATIONAL 

'\ 

-',- ./ 



( 

MAKE 

DESCRIPTION FILES AND SUBSTITUTIONS 

A description file contains the following information: 

• Comments 
The comment convention is that a sharp (#) and all characters on the same line after a 
sharp are ignored. Blank lines and lines beginning with a sharp (#) are totally ignored. If 
a noncomment line is too long, the line can be continued by using a backslash .. If the last 
character of a line is a backslash, then the backslash, the new line, and all following 
blanks and tabs are replaced by a single blank . 

• Macro definitions 
A macro definition is a line containing an equal sign not preceded by a colon or a tab. 
The name (string of letters and digits) to the left of the equal sign (trailing blanks and 
tabs are stripped) is assigned the string of characters following the equal sign (leading 
blanks and tabs are stripped). The following are valid macro definitions: 

2 =xyz 
abc = -ll -ly -lId 
LIBES = 

The last definition assigns LIBES the null string. A macro that is never explicitly defined 
has the null string as the macro's value. 

Macro definitions may also appear on the make command line while other lines give 
information about target files. The general form of an entry is 

target! [target2 .. J :[:J [dependent! .. ] [i commands1 
[# .. J [(tab) commands] [# ... ] 

Items inside brackets may be omitted and targets and dependents are strings of letters, 
digits, periods, and slashes. Shell metacharacters such as "*,, and "?" are expanded. 
Commands may appear either after a semicolon on a dependency line or on lines beginning 
with a tab immediately following a dependency line. A command is any string of 
characters not including a sharp (#) except when the sharp is in quotes or not including a 
new line. 

• Dependency information 
A dependency line may have either a single or a double colon. A target name may appear 
on more than one dependency line, but all of those lines must be of the same (single or 
double colon) type. For the usual single-colon case, a command sequence may be 
associated with at most one dependency line. If the target is out of date with any of the 
dependents on any of the lines and a command sequence is specified (even a null one 
following a semicolon or tab), it is executed; otherwise, a default creation rule may be 
invoked. In the double-colon case, a command sequence may be associated with each 
dependency line; if the target is out of date with any of the files on a particular line, the 
associated commands are executed. A built-in rule may also be executed. This detailed 

PROGRAMMER GUIDE 14-7 



MAKE 

form is of particular value in updating archive-type files. 

• Executable commands 
If a target must be created, the sequence of commands is executed. Normally, each 
command line is printed and then passed to a separate invocation of the shell after 
substituting for macros. The printing is suppressed in the silent mode or if the command 
line begins with an @ sign. Make normally stops if any command signals an error by 
returning a nonzero error code. Errors are ignored if the -i flags have been specified on 
the make command line, if the fake target name ".IGNORE" appears in the description 
file, or if the command string in the description file begins with a hyphen. Some 
ICON/UXV software commands return meaningless status. Because each command line is 
passed to a separate invocation of the shell, care must be taken· with certain commands 
(e.g., ed and shell control commands) that have meaning only within a single shell process. 
These results are forgotten before the next line is executed. 

Before issuing any command, certain internally maintained macros are set. The $@ macro 
is set to the full target name of the current target. The $@ macro is evaluated only for 
explicitly named dependencies. The $1 macro is set to the string of names that were found 
to be younger than the target. The $1 macro is evaluated when explicit rules from the 
makefile are evaluated. If the command was generated by an implicit rule, the $< macro is 
the name of the related file that caused the action; and the $* macro is the prefix shared 
by the current and the dependent file names. If a file must be made but there are no 
explicit commands or relevant built-in rules, the commands associated with the name 
".DEFAULT" are used. If there is no such name, make prints a message and stops. 

In addition, a description file also contains the following related macros: $(@D), $(@F), 
$(*D), $(*F), $«D), and $«F). The "D" refers to the directory part of the single letter 
macro. The "F" refers to the file name part of the single letter macro. These additions 
are useful when building hierarchical makefiles. They allow access to directory names for 
purposes of using the cd command of the shell. Thus, a shell command can be 

cd $«D); $(MAKE) $«F) 

The following command forces a complete rebuild of the operating system: 

FRC FRC make -f 70.mk 

where the current directory is ucb. The FRC is a convention for FoRCing make to 
completely rebuild a target starting from scratch. 

14-8 ICON INTERNATIONAL 

\J. (\ I 



o 

MAKE 

OUTPUT TRANSLATIONS 

Macros in shell commands can now be translated when evaluated. The form is as follows: 

$( macro:stringl =string2) 

The meaning of $(macro) is evaluated. For each appearance of stringl in the evaluated 
macro, stringe is substituted. The meaning of finding stringl in $(macro) is that the 
evaluated $(macro) is considered as a bunch of string each delimited by white space (blanks or 
tabs). Thus, the occurrence of stringl in $(macro) means that a regular expression of the 
following form has been found: 

.*<stringl>[TABlBLANKj 

This particular form was chosen because make usually concerns itself with suffixes. A more 
general regular expression match could be implemented if the need arises. The usefulness of 
this type of translation occurs when maintaining archive libraries. Now, all that is necessary is 
to accumulate the out-of-date members and write a shell script which can handle all the 0 
language programs (i.e., those files ending in ".c"). Thus, the following fragment optimizes the 
executions of make for maintaining an archive library: 

$(LIB): $(LIB)(a.o) $(LIB)(b.o) $(LIB)c.o) 
$(00) -e $(OFLAGS) $(?:.o=.c) 
ar rv $(LIB) $? 
rm $? 

A dependency of the preceding form is necessary for each of the different types of source files 
(suffices) which define the archive library. These translations are added in an effort to make 
more general use of the wealth of information which make generates. 

COMMAND USAGE 

The make command takes macro definitions, flags, description file names, and target file 
names as arguments in the form: 

make [ flags 1 [macro definitions 1 [targets 1 

The following summary of command operations explains how these arguments are interpreted. 

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and 
the assignments made. Command-line macros override corresponding definitions found in the 
description files. Next, the flag arguments are examined. The permissible flags are as follows: 

PROGRAMMER GUIDE 14-9 



MAKE 

-i 

-s 

-r 

-D 

-t 

-q 

-p 

-m 

-b 

-k 

• DEFAULT 

.PRECIOUS 

--d 

-f 

Ignore error codes returned by invoked commands. This mode is entered 
if the Cake target name ".IGNOREtI appears in the description file. 

Silent mode. Do not print command lines before executing. This mode is 
also entered if the Cake target name ".SILENT" appears in the 
description file. 

Do not use the built-in rules. 

No execute mode~ Print commands, but do not execute them. Even lines 
beginning with an u@" sign are printed. 

Touch the target files (causing them to be up to date) rather than issue 
the usual commands. 

Question. The make command returns a zero or nonzero status code 
depending on whether the target file is or is not up to date. 

Print out the complete set of macro definitions and target descriptions. 

Print a memory map showing text, data, and stack. This option is a 
no-operation on systems without the get'll system call. 

Compatibility mode for old makefiles. 

Abandon work on the current entry but continue on other branches that 
do not depend on the current entry . 

If a file must be made but there are no explicit commands or relevant 
built-in rules, the commands associated with the name DEF AUL Tare 
used if it exists. 

Environment variables override assignments within makefiles. 

Dependents on this target are not removed when quit or interrupt IS 

pressed. 

Debug mode. Print out detailed information on files and times examined. 

Description file name. The next argument is assumed to be the name of 
a description file. A file name of "-" denotes the standard input. If 
there are no "-I' arguments, the file named makefile or Makefile in the 
current directory is read. The contents of the description files override 
the built-in rules if they are present. 

Finally, the remaining arguments are assumed to be the names of targets to be made and the 
arguments are done in left-to-right order. If there are no such arguments, the first name in the 

" \ 

description files that does not begin with a period is "made". C 
14-10 ICON INTERNATIONAL 



(/ 

(j 

MAKE 

THE ENVIRONMENT VARIABLES 

Environment variables are read and added to the macro definitions each time make executes. 
Precedence is a prime consideration in doing this properly. The following describes make's 
interaction with the environment. A new macro, MAKEFLAGS, is maintained by make. 
The new macro is defined as the collection of all input flag arguments into a string (without 
minus signs). The new macro is exported and thus accessible to further invocations of make. 
Command line flags and assignments in the makefile update MAKEFLAGS. Thus, to 
describe how the environment interacts with make, the MAKEFLAGS macro (environment 
variable) must be considered. 

When executed, make assigns macro definitions in the following order: 

1. 

2. 

3. 

4. 

Read the MAKEFLAGS environment variable. If it is not present or null, the internal 
make variable MAKEFLAGS is set to the null string. Otherwise, each letter in 
MAKEFLAGS is assumed to be an input flag argument and is processed as such. (The 
only exceptions are the -I, -p, and -r flags.) 

Read and set the input flags from the command line. The command line adds to the 
previous settings from the MAKEFLAGS environment variable. 

Read macro definitions from the command line. These are made not resettable. Thus, 
any further assignments to these names are ignored. 

Read the internal list of macro definitions. These are found in the file rules.c of the 
source for make. Figure 14-1 contains the complete makefile that represents the 
internally defined macros and rules of the current version of make. Thus, if make -r 
•.• is typed and a makefile includes the makefile in Figure 14-1, the results would be 
identical to excluding the -r option and the include line in the makefile. The Figure 14-1 
output can be reproduced by the following: 

make -fp - < /dev /null 2> /dev /null 

The output appears on the standard output. 
They give default definitions for the C language compiler 
(CC=cc), the assembler (AS=as), etc. 

5. Read the environment. The environment variables are treated as macro definitions and 
marked as exported (in the shell sense). However, since MAKEFLAGS'" is not an 
internally defined variable (in rules. c), this has the effect of doing the same assignment 
twice. The exception to this is when MAKEFLAGS is assigned on the command line. 
(The reason it was read previously was to turn the debug flag on before anything else 
was done.) 

., MAKEFLAGS are read and set again. 

PROGRAMMER GUIDE 14-11 



MAKE 

6. Read the makefile{s). The assignments in the makefile{s} overrides the environment. 
This order is chosen so that when a makefile is read and executed, you know what to 
expect. That is, you get what is seen unless the -e flag is used. The -e is an additional 
command line flag which tells make to have the environment override the makefile 
assignments. Thus, if make -e ... is typed, the variables in the environment override 
the definitions in the makefile*. Also MAKEFLAGS override the environment if 
assigned. This is useful for further invocations of make from the current make file. 

# LIST OF SUFFIXES 

.sUFFIXES: .0 .c .c- .y .Y- .1 r .s .s-
.sh .sh- .h .h-

# PRESET VARIABLES 

MAKE=make 
YACC=yacc 
YFLAGS= 
LEX lex 
LFLAGS= 
LD-Id 
LDFLAGS= 
CC=cc 
CFLAGS:=.o 
AS=as 
ASFLAGS= 
GET :get 
GFLAGS= 

Figure 14-1. Example of Internal Definitions (Sheet 1 of 4) 

* There is no way to override the command line "assignments" 

14-12 ICON INTERNATIONAL 

c 



MAKE 

# SINGLE SUFFIX RULES 

.c: 
$(00) -n -0 $< -0 $@ 

.C : 

$(GET) $(GFLAGS) -p $< > $*.c 
$(00) -n -0 $* .c -0 $* 
-rm -f $*.c 

.sh: 
cp$<@ 

.sh-: 

$(GET) &(GFLAGS) -p $< > .sh 
cp $* .sh $* 
-rm -f $* .sh 

# DOUBLE SUFFIX RULES 

.c.o: 
$(00) $(OFLAGs) -c $< 

.c-.o: 

Figure 14-1. Example of Internal Definitions (Sheet 2 of 4) 

PROGRAMlv1ER GUIDE 14-13 



MAKE 

c 
$(GET) $(CFLAGS) -p $< > $*.c 
$(CC) $(CFLAGS) -c $*.c 
-rm -f r.c 

.c· .c: 
$(GET) $(GFLAGS) -I> $< >$*.c 

.S.o: 
$(AS_L$(ASFLAGS) -0 $@ $< 

.S .0: 
$(GET) $(GFLAGS) -p $< > $*.8 
$(AS) $(ASFLAGS) -0 $* .0 $* .S 
-rm -c $*.8 

.y.o: 
$(YACC) $(YFLAGS) $< 
$(CC) $(CFLAGS) -c y.tab.c 
rm y.tab.o$@ 

.y·.o: 
$(GET) $(GFLAG) -p $< > $*.y 
$(YACC) $(YFLAGS) $*.y 
$(CC) $(CFLAG) -c y.tab.c 
rm -f y.tab $*.y 
mv y.tab.o $*.0 

.1.0: 
$(LEX) $(LFLAGS) $< 
$(CC) $(CFLAGS) -c lex.yy.c 
rm lex.yy.c 
mv lex.yy.o $@ 

Figure 14-1. Example of Internal Definitions (Sheet 3 of 4) 

l 
14-14 ICON INTERNATIONAL 



MAKE 

r.o: 
$(GET) $(GFLAGS) -p $< > $*.1 
$(LEX) $(GFLAG) $*.1 
$(CC) $(CFLAGS) -c lex.yy.c 
rm -f lex.yy.c $*.1 
my lex.yy.o $*.0 
$(YACC)~YFLAGS)$< 
my v.tah.c $@ . 

. y-.c: 

$(GET) ~ GFLAGS) -p $< > $*.y 
$(YACC) ~YFLAGS) $*.y 
my -C $*.c 
-rm -f $*.y 

.I.e: 

~LEX) $< 
my lex.yy.c$@ 

.c.a: 
$(CC) -c ~FLAGS) $< 
ar ry $@ $*.0 
rm -f $*.0 

.C .a: 
$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) -c $(CFLAGS) $*.c 
ar ry $@ $*.0 

.s-.a: 
$(GET) $(GFLAGS) -p $< > $*.s 
$(AS) $(ASFLAGS) -0 $*.0 $*.8 
ar ry $@$*.o 
-rm -C $*.[801 

.h-.h 
$(GET) $(GFLAGS) -p $< > $*.h 

Figure 14-1. Example of Internal Definitions (Sheet 4 of 4) 

o 
PROGRAMMER GUIDE 14-15 



MAKE 

It may be clearer to list the precedence of assignments. Thus, in order from least binding to 
most binding, the precedence of assignments is as follows: 

1. internal definitions (from rules.c) 

2. environment 

3. makejile{s} 

4. command line. 

The --i! flag has the effect of changing the order to: 

1. internal definitions (from rules.c) 

2. makejile{s} 

3. environment 

4. command line. 

This order is general enough to allow a programmer to define a makefile or set of makejiles 
whose parameters are dynamically definable. 

RECURSIVE MAKEFll..ES 

Another feature was added to make concerning the environment and recursive invocations. If 
the sequence "$(MAKE)" appears anywhere in a shell command line, the line is executed even 
if the -n flag is set. Since the -n flag is exported across invocations of make (through the 
MAKEFLAGS variable), the only thing that actually gets executed is the make command 
itself. This feature is useful when a hierarchy of makejile{s} describes a set of software 
subsystems. For testing purposes, make -n •.. can be executed and everything that would 
have been done will get printed out including output from lower level invocations of make. 

SUFFIXES AND TRANSFORMATION RULES 

The make program does not know what file name suffixes are interesting or how to transform 
a file with one suffix into a file with another suffix. This information is stored in an internal 
table that has the form of a description file. If the -r flag is used, the internal table is not 
used. 

14-16 ICON INTERNATIONAL 

c 

o 



c 

MAKE 

The list of suffixes is actually the dependency list for the name ".SUFFIXES". The make 
program searches for a file with any of the suffixes on the list. If such a file exists and if there 
is a transformation rule for that combination, make transforms a file with one suffix into a file 
with another suffix. The transformation rule names are the concatenation of the two suffixes. 
The name of the rule to transform a .r file to a .0 file is thus .r.o. If the rule is present and no 
explicit command sequence has been given in the user's description files, the command sequence 
for the rule .r.o is used. If a command is generated by using one of these suffixing rules, the 
macro $* is given the value of the stem (everything but the suffix) of the name of the file to be 
made; and the macro $< is the name of the dependent that caused the action. 

The order of the suffix list is significant since the list is scanned from left to right. The first 
name formed that has both a file and a rule associated with it is used. If new names are to be 
appended, the user can add an entry for ".SUFFIXES" in his own description file. The 
dependents are added to the usual list .. A ".SUFFIXES" line without any dependents deletes 
the current list. It is necessary to clear the current list if the order of names is to be changed. 
The following is an excerpt from the default rules file: 

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s 
YACC = yacc 
YACCR = yacc -r 
YACCE = yacc -e 
YFLAGS = 
LEX = lex 
LFLAGS = 
CC =cc 
AS =as-
CFLAGS = 
RC =ec 
RFLAGS = 
EC =ec 
EFLAGS = 
FFlags = 
.C.o: 

$(CC) $(CFLAGS) -c $< 
.e.o .r.o .f.o : 

.5.0 : 

.y.o: 

.y.c: 

$(EC)$(RFLAGS)$(EFLAGS)$(FFLAGS)-c$< 

$(AS) -0 $@ $< 

$(YACC)$(YFLAGS)$< 
$(CC) $(CFLAGS) -c y.tab.c 
rm y.tab.c 
mv y.tab.o $@ 

$(YACC)$(YFLAGS)$< 
mv y.tab.c $@ 

PROGRAMMER GUIDE 14-17 



MAKE 

IMPLICIT RULES 

The make program uses a table of interesting suffixes and a set of transformation rules to 
supply default dependency information and implied commands. The default suffix list is as 
follows: 

.0 Object file 

.0 sees Object file 

.C C source file 

.C sees e source file 

.$ Assembler source file 

.$ sees Assembler source file 

.y Yacc-C source grammar 

.y sees Yacc e source grammar 

.h Header file 

.h - sees Header file 

.$h Shell file 

.$h - sees Shell file 

.1 Lex source grammar . 

. r sees Lex source grammar . 

Figure 14-2 summarizes the default transformation paths. If there are two paths connecting a 
pair of suffixes, the longer one is used only if the intermediate file exists or is named in the 
description. 

If the file x.o were needed and there were an x.c in the description or directory, the x.a file 
would be compiled. If there were also an x.l, that grammar would be run through Lex before 
compiling the result. However, if the·re were no x.c but there were an x.l, make would discard 
the intermediate C language file and use the direct link as shown in Figure 14-3. 

It is possible to change the names of some of the compilers used in the default or the flag 
arguments with which they are invoked by knowing the macro names used. The compiler 
names are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The 
command 

14-18 ICON INTERNATIONAL 

c 

/ " 
"-,/ 



( 

o 

TP A-695889-I 
24WX I6H 

Figure 14-2. Summary of Default Transformation Path 

make CC=newcc 

MAKE 

will cause the newee command to be used instead of the usual C language compiler. The 
macros CFLAGS, RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause 
these commands to be issued with optional flags. Thus 

make "CFLAGS=-O" 

causes the optimizing C language compiler to be used. 

FORMAT OF SHELL COMMANDS WITHIN make 

The make program remembers embedded newlines and tabs in shell command sequences. 
Thus, if the programmer puts a Jor loop in the makefile with indentation, when make prints it 
out, it retains the indentation and backslashes. The output can still be piped to the shell and 
is readable. This is obviously a cosmetic change; no new function is gained. 

ARCHIVE LmRARIES 

The make program has an improved interface to archive libraries. Due to a lack of 
documentation, most people are probably not aware of the current syntax of addressing 
members of archive libraries. The previous version of make allows a user to name a member 
of a library in the following manner: 

PROGRAMMER GUIDE 14-19 



MAKE 

lib(object.o) 
or 

lib«Jocaltime )) 

where the second method actually refers to an entry point of an object file within the library. 
(Make looks through the library, locates the entry point, and translates it to the correct 
object file name.) 

To use this procedure to maintain an archive library, the following type of makefile is required: 

lib:: lib( ctime.o) 
$(CC) -<: -0 ctime.c 
ar rv lib ctime.o 
rm ctime.o 

lib:: lib(fopen.o) 
$(CC) -<: -0 fopen.c 
ar rv lib fopen.o 
rm fopen.o 

... and so on for each object ... 

This is tedious and error prone. Obviously, the command sequences for adding a C language 
file to a library are the same for each invocation; the file name being the only difference each 
time. (This is true in most cases.) 

The current version gives the user access to a rule for building libraries. The handle for the 
rule is the ".a" suffix. Thus, a ".c.a" rule is the rule for compiling a C language source file, 
adding it to the library, and removing the ".0" cadaver. Similarly, the ".y.a", the ".s.a", and 
the ".1.80" rules rebuild YACC, assembler, and LEX files, respectively. The current archive 
rules defined internally are ".c.a", ".c-.a", and ".s-.a". [The tilde C) syntax will be described 
shortly.J The user may define in makefile other rules needed. 

The above 2-member library is then maintained with the following shorter makefile: 

lib: lib(ctime.o) lib(fopen.o) 
echo lib up-to-date. 

The internal rules are already defined to complete the preceding library maintenance. The 
actual ".c.a" rules are as follows: 

.c.a: 

14-20 

$(CC) -<: $(CFLAGS) $< 
ar rv $@$*.o 
rm -f $*.0 

ICON INTERNATIONAL 



( 

( 

o 

MAKE 

Thus, the $@ macro is the ".a" target (lib); the $< and $* macros are set to the out-of-date C 
language file; and the file name scans the suffix, respectively (ctime.c and ctime). The $< 
macro (in the preceding rule) could have been changed to $*.c. 

It might be useful to go into some detail about exactly what make does when it sees the 
construction 

lib: lib( ctime.o) 
@!echo lib up-t~date 

Assume the object in the library is out of date with respect to ctime.c. Also, there is no 
ctime.o file. 

1. Do lib. 

2. To do lib, do each dependent of lib. 

3. Do lib( ctime. 0). 

4. To do lib(ctime.o}, do each dependent of lib(ctime.o}. (There are none.) 

5. Use internal rules to try to build lib( ctime. 0). (There is no explicit rule.) Note that 
lib ( ctime. 0) has a parenthesis in the name to identify the target suffix as ".a". This is 
the key. There is no explicit ".a" at the end of the lib library name. The parenthesis 
forces the" .a" suffix. In this sense, the" .a" is hard wired into make. 

6. Break the name lib( ctime. 0) up into lib and ctime. o. Define two macros, $@ (=lib) and 
$* (=ctime). 

7. Look for a rule ".X.a" and a file $*.x. The first ".X" (in the .SUFFIXES list) which 
fulfills these conditions is ".c" so the rule is ".c.a", and the file is ctime. c. Set $< to be 
ctime.c and execute the rule. In fact, make must then do ctime.c. However, the search 
of the current directory yields no other candidates, and the search ends. 

8. The library has been updated. Do the rule associated with the "lib:" dependency; 
namely 

echo lib up-tcrdate 

It should be noted that to let ctime.o have dependencies, the following syntax is required: 

lib( ctime.o): $(INCDIFl)/stdio.h 

Thus, explicit references to .0 files are unnecessary. There is also a new macro for referencing 
the archive member name when this form is used. The $% macro is evaluated each time $@ 

PFlOGFlAMMEFl GUIDE 14-21 



MAKE 

is evaluated. If there is no current archive member, $% is null. If an archive member exists, 
then $% evaluates to the expression between the parenthesis. 

An example makefile for a larger library is given in Figure 14-3. 

:#: @:#:)/usr/src/cmd/make/make.tm 3.2 
LIB -lsxlib 
PR Ip 
INSDIR = /rl/flopO I 
INS = eval 
lsx: $(LIB) low.o mch.o 

ld -x low.o mch.o $(LIB) 
mv a.out Isx 
@Size lsx 

:#: Here $(INS) as either ... " or "eval". 
lsx: 

$(INS)'cp lsx $(INSDIR)lsx .. 
strip ${INSDIR)lsx .. 
Is -I $(INSDIR)lsx' 

print: 
$(PR) header.slow.smch.s*.h*.c Makefile 

Figure 14-3. Example of Library Makefile (Sheet 1 of 3) 

14-22 ICON INTERNATIONAL 

Ct 



MAKE 

Figure 14-3. Example of Library Makefile (Sheet 2 of 3) 

PROGRAMMER GUIDE 14-23 



MAKE 

$(LIB)(bio.o) 
$(LIB)( decfd.o) 
$(LIB)(sip.o) 
$(LIB)(space.o) 
$(LIB)( puts.o) 
@lecho $(LIB) now up to date . 

. s.o: 
as -0 $*.0 header.s $*.s 

.o.a: 
ar rv $@$< 
rm -f $< 

.s.a: 
as -0 $*.0 header.s $*.s 
ar rv $@ $*.0 
rm -f $*.0 

.PRECIODS:$(LIB) 

Figure 14-3. Example of Library Makefile (Sheet 3 of 3) 

The reader will note also that there are no lingering "*.0" files left around. The result is a 
library maintained directly from the source files (or more generally from the SCCS files). 

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE TILDE 

The syntax of make does not directly permit referencing of prefixes. For most types of files on 
ICON/UXV machines, this is acceptable since nearly everyone uses a suffix to distinguish 
different types of files. The SCCS files are the exception. Here, "s." precedes the file name 
part of the complete pathname. 

To allow make easy access to the prefix "s." requires either a redefinition of the rule naming 
syntax of make or a trick. The trick is to use the tilde C) as an identifier of SCCS files. 
Hence, ".c-.o" refers to the rule which transforms an SCCS C language source file into an 
object. Specifically, the internal rule is 

.c .0: 

14-24 

$(GET) $(GFLAGS) -p $< > $*.c 
$(CC) $(CFLAGS) -c $*.c 
-rm -f $*.c 

ICON INTERNATIONAL 

C) 

( \ 

-j 



o 

MAKE 

Thus, the tilde appended to any suffix transforms the file search into an SCCS file name search 
with the actual suffix named by the dot and all characters up to (but not including) the tilde. 

The following SCCS suffixes are internally defined: 

The following rules involving SCCS transformations are internally defined: 

.c : 

.sh-: 

.c .0: 

.s .0: 

.y .0: 
r.o: 
.y .c: 
.c .a: 
.s .a: 
.h-.h: 

Obviously, the user can define other rules and suffixes which may prove useful. The tilde gives 
him a handle on the SCCS file name format so that this is possible. 

THE NULL SUFFIX 

In the ICONfUXV operating system source code, there are many commands which consist of a 
single source file. It was wasteful to maintain an object of such files for make. The current 
implementation supports single suffix rules (a null suffix). Thus, to maintain the program cat, a 
rule in the make file of the following form is needed: 

.c: 
$(CC) -n -0 $< -0 $@ 

In fact, this ".c:" rule is internally defined so no makefile is necessary at all. The user only 
needs to type 

make cat dd echo date 

PROGRAMMER GUIDE 14-25 



MAKE 

(these are notable single file programs) and all four 0 language source files are passed through 
the above shell command line associated with the H.C:" rule. The internally defined single suffix 
rules are 

.c: 

.c-: 

.sh: 

.sh-: 

Others may be added in the malcefile by the user. 

INCLUDE FILES 

The make program has an include file capability. If the string include appears as the first 
seven letters of a line in a makefile and is followed by a blank or a tab, the string is assumed to 
be a file name which the current invocation of make will read. The file descriptors are stacked 
for reading include files so that no more than about 16 levels of nested includes are supported. 

INVIsmLE SCCS MAKEFILES 

The SOCS makefiles are invisible to make. That is, if make is typed and only a file named 
s.makefile exists, make will do a get on the file, then read and remove the file. Using the -f, 
make will get, read, and remove arguments and include files. 

DYNAMIC DEPENDENCY PARAMETERS 

A new dependency parameter has been defined. The parameter has meaning only on the 
dependency line in a makefile. The $$@ refers to the current "thing" to the left of the colon 
(which is $@). Also the form $$(@F) exists which allows access to the file part of $@. Thus, 
in the following: 

cat: $$@.c 

the dependency is translated at execution time to the string "cat.c". This is useful for building 
a large number of executable files, each of which has only one source file. For instance, the 
ICON/UXV software command directory could have a make file like: 

14-26 lOON INTERNATIONAL 

o 



( 

MAKE 

CMDS = cat dd echo date cc cmp comm ar ld chown 

$( CMDS): $$@.c 
$( CC) -0 $? -0 $@ 

Obviously, this is a subset of all the single file programs. For multiple file programs, a 
directory is usually allocated and a separate makefile is ma.de. For a.ny particular file that has 
a peculiar compilation procedure, a specific entry must be ma.de in the makefile. 

The second useful form of the dependency parameter is $$(@F). It represents the file name 
part of $$@. Again, it is evaluated at execution time. Its usefulness becomes evident when 
trying to maintain the /usr/include directory from a make file in the /usr/src/head directory. 
Thus, the /usr/src/head/makefile would look like 

INCDIR = /usr /include 

INCLUDES = \ 
$(INCDIR)/stdio.h \ 
$(INCDIR)/pwd.h \ 
$(INCIDR)/dir.h \ 
$(INCDIR)/a.out.h 

$(INCLUDES): $$(@F) 
cp $? $@ 
chmod 0444 $@ 

This would completely maintain the /usr/include directory whenever one of the above files in 
/usr/src/head was updated. H 2 "SUGGESTIONS AND WARNINGS" 

The most common difficulties arise from make's specific meaning of dependency. If file x. c has 
a "#include "defs"" line, then the object file x.o depends on defs; the source file x. c does not. If 
defs is changed, nothing is done to the file x. c while file x.o must be recreated. 

To discover what make would do, the -n option is very useful. The command 

make -n 

orders make to print out the commands which make would issue without actually taking the 
time to execute them. If a change to a file is absolutely certain to be mild in character (e.g., 
adding a new definition to an include file), the -t (touch) option can save a lot of time. 
Instead of issuing a large number of superfluous recompilations, make updates the modification 
times on the affected file. Thus, the command 

e,1 make -ts 

PROGRAMMER GUIDE 14-27 



MAKE 

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary 
since this mode of operation subverts the intention of make and destroys all memory of the 
previous relationships. 

The debugging flag (-el) causes make to print out a very detailed description of what it is 
doing including the file times. The output is verbose and recommended only as a·last resort. 

14-28 ICON INTERNATIONAL 



( -

'. ' .. ' 

Chapter 15 

SOURCE CODE CONTROL SYSTEM USER GUIDE 

PAGE 

GENERAL ................................................................................................. ................................................... IS-1 

sccs FOR BEGINNERS............................................................................................................................... IS-2 

DELTA NUMBERING .................................................................................................................................. IS-7 

SCCS COMMAND CONVENTIONS ............................................................................. ..... .......... ................. IS-U 

SCCS COMMANDS ....................................................................................................................................... Iii-II 

SCCS FILES.............. ....................... ... ...... ......................... ........................................................................... lli-34 

AN SCCS INTERFACE PROGRAM ........................................................ ... ................................ .................. lli-37 

c 





" 

Chapter 15 

SOURCE CODE CONTROL SYSTEM USER GUIDE 

GENERAL 

The Source Code Control System (SCCS) is a collection of ICON/UXV software commands 
that help individuals or projects control and account for changes to files of text. The source 
code and documentation of software systems are typical examples of files of text to be changed. 
The SCCS is a collection of programs that run under ICONjUXV. It is convenient to conceive 
of SCCS as a custodian of files. The sees provides facilities for 

• Storing files of text 

• Retrieving particular versions of the files 

• Controlling updating privileges to files 

• Identifying the version of a retrieved file 

• Recording when, where, and why the change was made and who made each change to a 
file. 

These types of facilities are important when programs and documentation undergo frequent 
changes because of maintenance and/or enhancement work. It is often desirable to regenerate 
the version of a program or document as it existed before changes were applied to it. This can 
be done by keeping copies (on paper or other media), but this method quickly becomes 
unmanageable and wasteful as the number of programs and documents increa.ses. The secs 
provides an attractive solution because the original file is stored on disk. Whenever changes are 
made to the file, the SCCS stores only the changes. Each set of changes is called a "delta". 

This chapter, together with relevant portions of the ICON/UXV User Reference Manual is a 
complete user's guide to secs. The following topics are covered: 

• SCCS for Beginners: How to make an SCCS file, how to update it, and how to retrieve a 
version thereof. 

• How Deltas Are Numbered: How versions of secs files are numbered and named. 
I 

• SCCS Command Conventions: Conventions and rules generally applicable to all SCCS 
commands. 

• SCCS Commands: Explanation of all secs commands with discussions of the more useful C) arguments. 

PROGRAMMER GUIDE 15-1 



sees 

• sees Files: Protection, format, and auditing of sees files including a discussion of the 
differences between using sees as an individual and using it as a member of a group or 
project. The role of a "project sees administrator" is introduced. 

Neither the implementation of sees nor the installation procedure for sees is described in 
this section. 

Throughout this section, each reference of the form name(lM), name(7), or name(S) refers to 
entries in the ICON/UXV Administrator Reference Manual. All other references to entries of 
the form name(N), where UN" is a number (1 through 6) possibly followed by a letter, refer to 
entry name in section N of the IOON/UXV User Reference Manual. 

sees FOR BEGINNERS 

It is assumed that the reader knows how to log onto a Icon computer system, create files, and 
use the text editor. A number of terminal-session fragments are presented. All of them should 
be tried since the best way to learn sees is to use it. 

To supplement the material in this section, the detailed sees command descriptions in the 
ICON/UXV User Reference Manual should be consulted. 

A. Terminology 

Each sees file is composed of one or more sets of changes applied to the null (empty) version 
of the file, with each set of changes usually depending on all previous sets. Each set of changes 
is called a "delta" and is assigned a name, called the sees IDentification string (SID). The 
SID is composed of at most four components. The first two components are the "release" and 
"level" numbers which are separated by a period. Hence, the first delta (for the original file) is 
called "1.1", the second "1.2", the third "1.3", etc. The release number can also be changed 
allowing, for example, deltas "2.1", "3.1 ", etc. The change in the release number usually 
indicates a major change to the file. 

Each delta of an sees file defines a particular version of the file. For example, delta 1.5 
defines version 1.5 of the sees file, obtained by applying to the null (empty) version of the file 
the changes that constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that 
order. 

B. Creating an SCCS File via "aclmin" 

Consider, for example, a file called lang that contains a list of programming languages. 

15-2 leON INTERNATIONAL 

c 



( 

c 
pili 
fortran 
cobol 
algol 

sees 

Custody of the lang file can be given to sees. The following admin command (used to 
"administer" sees files) creates an sees file and initializes delta 1.1 from the file lang: 

admin -Hang s.lang 

All sees files must have names that begin with "5.", hence, s.lang. The -i keyletter, together 
with its value lang, indicates that admin is to create a new sees file and "initialize" the new 
sees file with the contents of the file lang. This initial version is a set of changes (delta 1.1) 
applied to the null sees file. 

The admin command replies 

No id keywords (cm7) 

This is a warning message (which may also be issued by other sees commands) that is to be 
ignored for the purposes of this section. Its significance is described under the get command in 
the part "sees eOMlv.1ANDs." In the following examples, this warning message is not shown 
although it may actually be issued by the various commands. The file lang should now be 
removed (because it can be easily reconstructed using the get command) as follows: 

rm lang 

C. Retrieving a File via "get" 

The lang file can be reconstructed by using the following get command: 

get s.lang 

The command causes the creation (retrieval) of the latest version of file 8.lang and prints the 
following messages: . 

1.1 
5 lines 

This means that get retrieved version 1.1 of the file, which is made up of five lines of text. The 
retrieved text is placed in a file whose name is formed by deleting the "s." prefix from the 
name of the sees file. Hence, the file lang is created. 

PROGRAMMER GUIDE 15-3 



sees 

The "get s.lang" command simply creates the file lang (read-only) and keeps no information 
regarding its creation. On the other hand, in order to be able to subsequently apply changes to 
an sees file with the delta command, the get command must be informed of your intention to 
do so. This is done as follows: 

get -e s.lang 

The -e key letter causes get to create a file lang for both reading and writing (so it may be 
edited) and places certain information about the sees file in another new file. The new file, 
called the p-file, will be read by the delta command. The get command prints the same 
messages as before except that the SID of the version to be created through the use of delta is 
also issued. For example, 

get -e s.lang 
1.1 
new delta 1.2 
5 lines 

The file lang may now be changed, for example, by 

ed lang 
27 
$a 
snobol 
ratfor 

w 
41 
q 

D. Reeording Changes via "delta" 

In order to record within the sees file the changes that have been applied to lang, execute the 
following command: 

delta s.lang 

Delta prompts with 

comments? 

The response should be a description of why the changes were made. For example, 

15-4 ICON INTERNATIONAL 

c 



( 

sees 

comments? added more languages 

The delta command then reads the p-file and determines what changes were made to the file 
lang. The delta command does this by doing its own get to retrieve the original version and 
by applying the dift'(l) command to the original version and the edited version. 

When this process is complete, at which point the changes to lang have been stored in s.lang, 
delta outputs 

1.2 
2 inserted 
o deleted 
5 unchanged 

The number "1.2" is the name of the delta just created, and the next three lines of output 
refer to the number of lines in the file s.lang. 

E. Additional Information About "get" 

As shown in the previous example, the command 

get s.lang 

retrieves the latest version (now 1.2) of the file s.lang. This is done by starting with the 
original version of the file and successively applying deltas (the changes) in order until all have 
been applied. 

In the example chosen, the following commands are all equivalent: 

get s.lang 
get -rl s.lang 
get -r1.2 s.lang 

The numbers following the -r keyletter are SIDs. Note that omitting the level number of the 
SID (as in "get -rl s.lang") is equivalent to specifying the highest level number that exists 
within the specified release. Thus, the second command requests the retrieval of the latest 
version in release 1, namely 1.2. The third command specifically requests the retrieval of a 
particular version, in this case, also 1.2. 

Whenever a truly major change is made to a file, the significance of that change is usually 
indicated by changing the release number (first component of the SID) of the delta being made. 
Since normal automatic numbering of deltas proceeds by incrementing the level number 
(second component of the SID), the user must indicate to sees the need to change the release 
number. This is done with the get command. 

PROGRAMMER GUIDE 15-5 



sees 

get -e -r2 s.lang 

Because release 2 does not exist, get retrieves the latest version be/ore release 2. The get 
command also interprets this as a request to change the release number of the delta which the 
user desires to create to 2, thereby causing it to be named 2.1, rather than 1.3. This 
information is conveyed to delta. via the p-file. The get command then outputs 

1.2 
new delta 2.1 
7 lines 

which indicates that version 1.2 has been retrieved and that 2.1 18 the version delta. will 
create. If the file is now edited, for example, by 

ed lang 
41 
/cobol/d 
w 
35 
q 

and delta executed 

delta s.lang 
comments? deleted cobol from list of languages 

the user will see by delta's output that version 2.1 is indeed created. 

2.1 
o inserted 
1 deleted 
6 unchanged 

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be 
created in a similar manner. This process may be continued as desired. 

F. The "help" Command 

If the command 

get abc 

15-6 ICON INTERNATIONAL 



( 

c 

sees 

is executed, the following message will be output: 

ERROR [abc]: not an sees file (col) 

The string "col" is a code for the diagnostic message and may be used to obtain a fuller 
explanation of that message by use of the help command. 

help col 

This produces the following output: 

col: 
"not an sees file" 
A file that you think is an sees file 
does not begin with the characters "s.". 

Thus, help is a useful command to use whenever there is any doubt about the meaning of an 
sees message. Detailed explanations of almost all sees messages may be found in this 
manner. 

DELTA NUMBERING 

It is convenient to conceive of the deltas applied to an sees file as the nodes of a tree in which 
the root is the initial version of the file. The root delta (node) is normally named "1.1" and 
successor deltas (nodes) are named "1.2", "1.3", etc. The components of the names of the 
deltas are called the "release" and the "level" numbers, respectively. Thus, normal naming of 
successor deltas proceeds by incrementing the level number, which is performed automatically 
by sees whenever a delta is made. In addition, the user may wish to change the release 
number when making a delta to indicate that a major change is being made. When this is 
done, the release number also applies to all successor deltas unless specifically changed again. 
Thus, the evolution of a particular file may be represented as in Figure 15-1. 

PROGRAMMER GUIDE 

TP A-695890-1 
22WX 5H 

Figure 15-1. Evolution of an sees File 

-----~-~ ---------~-----~~~~ 

15-7 



sees 

Such a structure may be termed the "trunk" of the sees tree. Figure 15-1 represents the 
normal sequential development of an sees file in which changes that are part of any given 
delta are dependent upon all the preceding deltas. 

However, there are situations in which it is necessary to cause a branching in the tree in that 
changes applied as part of a given delta are not dependent upon all previous deltas. AB an 
example, consider a program which is in production use at version 1.3 and for which 
development work on release 2 is already in progress. Thus, release 2 may already have some 
deltas precisely as shown in Figure 4-1. Assume that a production user reports a problem in 
version 1.3 and that the nature of the problem is such that it cannot wait to be repaired in 
release 2. The changes necessary to repair the trouble will be applied as a delta to version 1.3 
(the version in production use). This creates a new version that will then be released to the 
user but will not affect the changes being applied for release 2 (i.e., deltas lA, 2.1, 2.2, etc.). 

The new delta. is a node on a branch of the tree. Its name consists of four components; the 
release number and the level number (as with trunk deltas) plus the "branch" number and the 
"sequence" number. The delta name appears as follows: 

release.level.branch.sequence 

The branch number is assigned to each branch that is a descendant of a particular trunk delta 
with the first such branch being 1, the next one 2, etc. The sequence number is assigned, in 
order, to each delta on a particular branch. Thus, 1.3.1.2 identifies the second delta of the first 
branch that derives from delta 1.3. This is shown in Figure 15-2. 

TPA-695891-1 
22WX 8H 

Figure 15-2. Tree Structure With Branch Deltas 

The concept of branching may be extended to any delta in the tree. The naming of the 
resulting deltas proceeds in the manner just illustrated. 

Two observations are of importance with regard to naming deltas. First, the names of trunk 
deltas contain exactly two components, and the names of branch deltas contain exactly four 
components. Second, the first two components of the name of branch deltas are always those 
of the ancestral trunk delta, and the branch component is assigned in the order of creation of 
the branch independently of its location relative to the trunk delta. Thus, a branch delta may O. ." 
always be identified as such from its name. Although the ancestral trunk delta may be 
identified from the branch delta's name, it is not possible to determine the entire path leading 

15-8 ICON INTERNATIONAL 



( 

SCCS 

Crom the trunk delta to the branch delta. For example, iC delta 1.3 has one branch emanating 
Crom it, all deltas on that branch will be named 1.3.1.n. If a delta on this branch then has 
another branch emanating Crom it, all deltas 0Jl the new branch will be named 1.3.2.n (see 
Figure 15-3). The only inCormation that may be derived Crom the name oC delta 1.3.2.2 is that 
it is the chronologically second delta on the chronologically second branch whose trunk 
ancestor is delta 1.3. In particular, it is not possible to determine Crom the name of delta 
1.3.2.2 all the deltas between it and trunk ancestor 1.3. 

TP A-695892-1 
27WX8H 

Figure 15-3. Extending the Branching Concept 

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree 
structures. Although this capability has been provided for certain specialized uses, it is 
strongly recommended that the sees tree be kept as simple as possible because comprehension 
of its structure becomes extremely difficult as the tree becomes more complex. 

SCCS COMMAND CONVENTIONS 

This part discusses the conventions and rules that apply to sees commands. These rules and 
conventions are generally applicable to "all sees commands with exceptions indicated. The 
sees commands accept two types of arguments: 

• Keyletter arguments 

• File arguments. 

Keyletter arguments (hereafter called simply "key letters") begin with a minus sign (-), 
followed by a lowercase alphabetic character, and in some cases, followed by a value. These 
key letters control the execution of the command to which they are supplied. 

File arguments (names of files and/or directories) specify the file(s) that the given sees 
command is to process. Naming a directory is equivalent to naming all the secs files within 
the directory. Non-SeeS files and unreadable files [because of permission modes via chmod(l)] 
in the named directories are silently ignored. 

PROGRAMMER GUIDE 15-9 



sees 
(\ 
I I 

In general, file arguments may not begin with a minus sign. However, if the name "-" (a lone ~/ 
minus sign) is specified as an argument to a command, the command reads the standard input 
for lines and takes each line as the name of an sees file to be processed. The standard input 
is read until end-of-file. This feature is often used in pipelines with, for example, the ftnd(l) or 
.(1) commands. Again, names of non-SeeS files and of unreadable files are silently ignored. 

All keyletters specified for a given command apply to all file arguments of that command. All 
keyletters are processed before any file arguments with the result that the placement of 
keyletters is arbitrary (i.e., keyletters may be interspersed with file arguments). File 
arguments, however, are processed left to right. Somewhat different argument conventions 
apply to the help, what, 8CC8diff, and val commands. 

Certain actions of various sees commands are controlled by flags appearing in sees files. 
Some of these flags are discussed in this part. For a complete description of all such flags, see 
admin(l) section in the ICON/UXV User Reference Manual. 

The distinction between the real user [see p&88wd(I)] and the effective user of a Icon computer 
system is of concern in discussing various actions of sees commands. For the present, it is 
assumed that both the real user and the effective user are one and the same (i.e., the user who 
is logged into IeONfUXV). This subject is discussed further in "sees FILES." 

All sees commands that modify an sees file do so by writing a temporary copy, called the 
x-file. This file ensures that the sees file is not damaged if processing should terminate 
abnormally. The name of the x-file is formed by replacing the "s." of the sees file name with 
"x.". When processing is complete, the old sees file is removed and the x-file is renamed to be 
the sees file. The x-file is created in the directory containing the sees file, given the same 
mode [see chmod(l)] as the sees file, and owned by the effective user. 

To prevent simultaneous updates to an sees file, commands that modify sees files create a 
lock-file, called the z-jile, whose name is formed by replacing the "s." of the sees file name 
with "z.". The z-jile contains the process number of the command that creates it, and its 
existence is an indication to other commands that the sees file is being updated. Thus, other 
commands that modify sees files do not process an sees file if the corresponding z-file exists. 
The z-jile is created with mode 444 (read-only) in the directory containing the sees file and is 
owned by the effective user. This file exists only for the duration of the execution of the 
command that creates it. In general, users can ignore x-file8 and z-file8. The files may be 
useful in the event of system crashes or similar situations. 

The sees commands produce diagnostics (on the diagnostic output) of the form: 

ERROR [name-of-file-being-processed]: message text (code) 

The code in parentheses may be used as an argument to the help command to obtain a further 
explanation of the diagnostic message. Detection of a fatal error during the processing of a fil~ 
causes the sees command to terminate processing of that file and to proceed with the next f'\ 
file, in order, if more than one file has been named. ~~ 

15-10 ICON INTERNATIONAL 



( 

sees 

sees COMMANDS 

This part describes the major features of all the sees commands. Detailed descriptions of the 
commands and of all their arguments are given in the ICON/UXV User Reference Manual and 
should be consulted for further information. The discussion below covers only the more 
common arguments of the various sees commands. 

The commands follow in approximate order of importance. The following is a summary of all 
the sees commands and of their major functions: 

get 

delta 

admin 

prs 

help 

rmdel 

cdc 

what 

sccsdiff 

comb 

val 

Retrieves versions of sees files. 

Applies changes (deltas) to the text of sees files, Le., creates new 
versions. 

Creates sees files and applies changes to parameters of sees files. 

Prints portions of an sees file in user specified format. 

Gives explanations of diagnostic messages. 

Removes a delta from an sees file; allows the removal of deltas that 
were created by mistake. 

Changes the commentary associated with a delta . 

. Searches any IeONjUXV system file(s) for all occurrences of a special 
pattern and prints out what follows it; is useful in finding identifying 
information inserted by the get command. 

Shows the differences between any two versions of an sees file. 

Combines two or more consecutive deltas of an sees file into a single 
delta; often reduces the size of the sees file. 

Validates an sees file. 

A. The "get" Command 

The get command creates a text file that contains a particular version of an sees file. The 
particular version is retrieved by beginning with the initial version and then applying deltas, in 
order, until the desired version is obtained. The created file is called the g-file. The g-file 
name is formed by removing the "s." from the sees file name. The g-file is created in the 
current directory and is owned by the real user. The mode assigned to the g-file depends on 
how the get command is invoked. 

The most common invocation of get is 

PROGRAMMER GUIDE 15-11 



• 

sees 

get s.abc 

which normally retrieves the latest version on the trunk of the sees file tree and produces (for 
example) on the standard output 

1.3 
67 lines 
No id keywords (cm7) 

which indicates that 

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta). 

2. This version has 67 lines of text. 

3. No ID keywords were substituted in the file. 

The generated g-file (file "abc") is given mode 444 (read-only). This particular way of invoking 
get is intended to produce g-files only for inspection, compilation, etc. It is not intended for 
editing (i.e., not for making deltas). 

In the case of several file arguments (or directory-name arguments), similar information is 
given for each file processed, but the sees file name precedes it. For example, 

get s.abc s.def 

produces 

s.abc: 
1.3 
67 lines 
No id keywords (cm7) 

s.def: 
1.7 
85 lines 
No id keywords (cm 7) 

ID KeyworcIB 

In generating a g-file to be used for compilation, it is useful and informative to record the date 
and time of creation, the version retrieved, the module's name, etc. within the g-file. This 
information appears in a load module when one is eventually created. The sees provides a (~'\ 
convenient mechanism for doing this automatically. Identification (ID) keywords appearing ~/ 
anywhere in the generated file are replaced by appropriate values according to the definitions 

15-12 ICON INTERNATIONAL 



<. 

( 

(.\, 
, , 

sees 

of these ID keywords. The format of an ID keyword is an uppercase letter enclosed by percent 
signs (%). For example, 

%1% 

is defined as the ID keyword that is replaced by the SID of the retrieved version of a file. 
Similarly, %H% is defined as the ID keyword for the current date (in the form "mm/dd/yy"), 
and %M% is defined as the name of the g-Jile. Thus, executing get on an SCCS file that 
contains the PL/I declaration, 

DCL ID CHAR(lOO) V AR INIT('%M% %1% %H%'); 

gives (for example) the following: 

DCL ID CHAR(lOO) V AR INIT('MODNAME 2.3 07/07/77'); 

When no ID keywords are substituted by get, the following message is issued: 

No id keywords (cm7) 

This message is normally treated as a warning by get, although the presence of the i flag in 
the SCCS file causes it to be treated as an error. For a complete list of the approximately 20 
ID keywords provided, see get(l) in the ICON/UXV User Reference Manual . 

.R.dneool 0/ Different Veraions 

Various keyletters are provided to allow the retrieval of other than the default version of an 
SCCS file. Normally, the default version is the most recent delta of the highest-numbered 
release on the trunk of the SCCS file tree. However, if the SCCS file being processed has a d 
(default SID) flag, the SID specified as the value of this flag is used as a default. The default 
SID is interpreted in exactly the same way as the value supplied with the -r keyletter of get. 

The -r keyletter is used to specify an SID to be retrieved, in which case the d (default SID) 
flag (if any) is ignored. For example, 

get -r1.3 s.abc 

retrieves version 1.3 of file 8.abc and produces (for example) on the standard output 

1.3 
64 lines 

A branch delta may be retrieved similarly, 

PROGRAMMER GUIDE 15-13 



sees 

get -rl.5.2.3 s.abc 

which produces (for example) on the standard output 

1.5.2.3 
234 lines 

When a 2- or 4-component SID is specified as a value for the -r keyletter (as above) and the 
particular version does not exist in the sees file, an error message results. Omission of the 
level number, as in 

get -r3 s.abc 

causes retrieval of the trunk delta with the highest level number within the given release if the 
given release exists. Thus, the above command might output, 

3.7 
213 lines 

If the given release does not exist, get retrieves the trunk delta with the highest level number 
within the highest-numbered existing release that is lower than the given release. For example, 
assuming release 9 does not exist in file s.abc and that release 7 is actually the highest
numbered release below 9, execution of 

get -r9 s.abc 

might produce 

7.6 
420 lines 

which indicates that trunk delta 7.6 is the latest version of file 8.abc below release 9. Similarly, 
omission of the sequence number, as in 

get -r4.3.2 s.abc 

results in the retrieval of the branch delta with the highest sequence number on the given 
branch if it exists. (If the given branch does not exist, an error message results.) This might 
result in the following output: 

4.3.2.8 
89 lines 

15-14 ICON INTERNATIONAL 

/ 



sees 

The -t keyletter is used to retrieve the latest (top) version in a particular release (i.e., when 
no -r keyletter is supplied or when its value is simply a release number). The latest version is 
defined as that delta which was produced most recently, independent of its location on the 
sees file tree. Thus, if the most recent delta in release 3 is 3.5, 

get -r3 -t s.abc 

might produce 

3.5 
59 lines 

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same 
command might produce 

3.2.1.5 
46 lines 

Retrieval mth. Intent to .MzA2 a Delta 

Specification of the -e keyletter to the get command is an indication of the intent to make a 
delta, and as such, its use is restricted. The presence of this keyletter causes get to check 

1. The user list (a list of login names and/or group IDs of users allowed to make deltas) to 
determine if the login name or group ID of the user executing get is on that list. Note 
that a null (empty) user list behaves as if it contained all possible login names. 

2. The release (R) of the version being retrieved satisfies the relation: 

floor is < or = to R which is 
< or = to ceiling 

to determine if the release being accessed is a protected release. The "floor" and 
"ceiling" are specified as flags in the sees file. 

3. The R is not locked against editing. The "lock" is specified as a flag in the sees file. 

4. Whether or not multiple concurrent edits are allowed for the sees file as specified by 
the j flag in the sees file. 

A failure of any of the first three conditions causes the processing of the corresponding sees 
file to terminate. 

If the above checks succeed, the -e keyletter causes the creation of a g-file in the current 
directory with mode 644 (readable by everyone, writable only by the owner) owned by the real 
PROGRAMMER GUIDE 15-15 



sees 

user. If a writable g-Jile already exists, get terminates with an error. This is to prevent 
inadvertent destruction of a g-Jile that already exists and is being edited for the purpose of 
making a delta. 

Any 10 keywords appearing in the g-file are not substituted by get (when the -e keyletter is 
specified) because the generated g-Jile is subsequently used to create another delta. 
Replacement of ID keywords cause them to be permanently changed within the sees file. In 
view of this, get does not need to check for the presence of 10 keywords within the g-Jile, so 
the message 

No id keywords (cm7) 

is never output when get is invoked with the -e key letter . 

In addition, the -e key letter causes the creation (or updating) of a p-file which is used to pass 
information to the delta command. 

The following is an example of the use of the -e keyletter: 

get -e s.abc 

which produces (for example) on the standard output 

1.3 
new delta 1.4 
67 lines 

If the -r and/or -t keyletters are used together with the -e keyletter, the version retrieved 
for editing is as specified by the -r and/or -t key letters. 

The keyletters -i and -x may be used to specify a list [see get{l) in the ICON/UXV User 
Reference Manual for the syntax of such a list] of deltas to be included and excluded, 
respectively, by get. Including a delta means forcing the changes that constitute the 
particular delta to be included in the retrieved version. This is useful if one wants to apply the 
same changes to more than one version of the sees file. Excluding a delta means forcing it 
not to be applied. This may be used to undo (in the version of the sees file to be created) the 
effects of a previous delta. Whenever deltas are included or excluded, get checks for possible 
interference between such deltas and those deltas that are normally used in retrieving the 
particular version of the sees file. Two deltas can interfere, for example, when each one 
changes the same line of the retrieved g-file. Any interference is indicated by a warning that 
shows the range of lines within the retrieved g-file in which the problem may exist. The user is 
expected to examine the g-file to determine whether a problem actually exists and to take 
whatever corrective measures (if any) are deemed necessary (e.g., edit the file). 

Warning: The -i and -x key letters should be used with extreme care. 

15-16 ICON INTERNATIONAL 

./ 



( 

o 

sees 

The -k keyletter is provided to facilitate regeneration of a g-file that may have been 
accidentally removed or ruined subsequent to the execution of get with the -e keyletter or to 
simply generate a g-Jile in which the replacement of ID keywords has been suppressed. Thus, a 
g-file generated by the -k key letter is identical to one produced by get and executed with the 
-e keyletter. However, no processing related to the p-file takes place. 

OmctllTent &Ats of Different SID 

The ability to retrieve different versions of an sees file allows a number of deltas to be "in 
progress" at any given time. This means that a number of get commands with the -e 
keyletter may be executed on the same file provided that no two executions retrieve the same 
version (unless mult~ple concurrent edits are allowed). 

The p-file (created by the get command invoked with the -e keyletter) is named by replacing 
the "s." in the sees file name with "p.". It is created in the directory containing the sees 
file, given mode 644 (readable by everyone, writable only by the owner), and owned by the 
effective user. The p-file contains the following information for each delta that is still "in 
progress": 

• The SID of the retrieved version. 

• The SID that is given to the new delta when it is created. 

• The login name of the real user executing get. 

The first execution of get -e causes the creation of the p-file for the corresponding sees file. 
Subsequent executions only update the p-file with a line containing the above information. 
Before updating, however, get checks to assure that no entry (already in the p-file) specifies 
that the SID (of the version to be retrieved) is already retrieved (unless multiple concurrent 
edits are allowed). 

If both checks succeed, the user is informed that other deltas are in progress and processing 
continues. If either check fails, an error message results. It is important to note that the 
various executions of get should be carried out from different directories. Otherwise, only the 
first execution succeeds since subsequent executions would attempt to overwrite a writable g
file, which is an sees error condition. In practice, such multiple executions are performed by 
different users so that this problem does not arise since each user normally has a different 
working directory. See "Protection" under the part "sees FILES" for a discussion of how 
different users are permitted to use sees commands on the same files. 

Figure 15-4 shows, for the most useful cases, the version of an sees file retrieved by get, as 
well as the SID of the version to be eventually created by delta, as a function of the SID 
specified to get. 

PROGRAMMER GUIDE 15-17 



SCCS 

SID -b KEY- OTHER 
SPECI- LETTER CONDI-
FlED'" USEDt TIONS 

nonet no R default 
tomR 

nonet yes R default 
tomR 

R no R>mR 
R no R=mR 
R yes R>mR 
R yes R=mR 
R R<mR 

R R<mR 
and 
does 
not 
exist 

R Trunk 
successor 
in release 
> Rand 
R exists 

See footnotes on sheet 3 of 3. 

SID 
RETRI
EVED 

mRmL 

mRmL 

mRmL 
mRmL 
mRmL 
mR.mL 

hR.mL** 

R.mL 

SID OF 
DATA 
TO BE 
CREATED 

mR{mL+l} 

mRmL.(mB+l) 

R.l§ 
mR.(mL+l) 
mR.mL.{mB+l}.l 
mR.mL.(mB+l).l 

hR.mL.(mB+l).l 

R.mL.(mB+l).l 

Figure 15-4. Determination of New SID (Sheet 1 of 3) 

15-18 ICON INTERNATIONAL 

o 

/,..- -', 

c 



(" 

( 

o 

SID 
SPECI 
FlED * 

R.L. 

R.L. 

R.L 

R.L.b 

R.L.B 

R.L.B.S 

R.L.B.S 

R.L.B.S 

-b KEY- OTHER 
LETTER CONDI-
USEDt TIONS 

no No trunk 
successor 

yes No trunks 
successor 

Trunk 
in release 
>=R 

no No branch 
successor 

yes No branch 
successor 

no No branch 
successor 

no No branch 
successor 

Branch 
successor 

See footnotes on sheet 3 of 3. 

SID 
RETRI
EVED 

R.L 

R.L 

R.L 

R.L.B.mS 

R.L.B.mS 

R.L.B.S 

R.L.B.S 

R.L.B.S 

SID OF 
DATA 
TO BE 
CREATED 

R.(L+l) 

R.L.(mB+l).l 

R.L.(mS+l).l 

R.L.B.(mS+l) 

R.L.(mB+l).l 

R.L.B.(S+ 1) 

R.L.(mB+l).l 

R.L.(mB+l).l 

Figure 15-4. Determination or New SID (Sheet 2 or 3) 

PROGRAMMER GUIDE 

SCCS 

15-19 



sees 

Footnotes: 

... "R", "L", ''B'', and "S" are "release", "level", "branch", and "sequence" components of the SID, 
respectively; "m" means "maximum". Thus, for example, "R.mL"means "the maximum level 
number within release R"; "R.L.(mB+l).I" means "the first sequence number on the (i.e., 
maximum branch number plus 1) of level L within release R". Also note that if the SID 
specified is of the form "R.L", "R.L.B", or "R.L.B.S", each of the specified components must 
exist. 

t The -b keyletter is effective only if the b flag [see admin(l)] is present in the file. In this 
state, an entry of "-" means "irrelevant". 

+ This case applies if the d (default SID) flag is not present in the file. If the d flag is present 
in the file, the SID obtained from the d flag is interrupted as if it had been specified on the 
command line. Thus, one of the other cases in this figure applies. 

§ This case is used to force the creation of the first delta in the new release. 

** "hR" is the highest existing relea.se tha.t is lower tha.n the specified, nonexisting, relea.se R. 

Figure 15-4. Determination of New SID (Sheet 3 of 3) 

Cbn.eurrent EtAt. 0/5cJrM. SID 

Under norma.l conditions, gets for editing (--e keyletter is specified) ba.sed on the sa.me SID a.re 
not permitted to occur concurrently. Tha.t is, delta must be executed before a subsequent get 
for editing is executed at the same SID as the previous get. However, multiple concurrent 
edits (defined to be two or more successive executions of get for editing ba.sed on the same 
retrieved SID) are allowed if the j fla.g is set in the SCCS file. Thus: 

get --e s.abc 
1.1 
new delta 1.2 
5 lines 

ma.y be immediately followed by 

get --e s.abc 
1.1 
new delta 1.1.1.1 
5 lines 

without an intervening execution of delta. In this case, a delta command corresponding to the 
first get produces delta 1.2 [assuming 1.1 is the latest (most recent) trunk delta], and the delta 
command corresponding to the second get produces delta 1.1.1.1. 
15-20 ICON INTERNATIONAL 

o 



sces 

( .. ' Keyld:terB 7hat .AJ!ect Output 

Specification of the -p key letter causes get to write the retrieved text to the standard output 
rather than to a g-Jile. In addition, all output normally directed to the standard output (such 
as the SID of the version retrieved and the number of lines retrieved) is directed instead to the 
diagnostic output. This may be used, for example, to create g-files with arbitrary names. 

get -p s.abc > arbitrary-file-name 

The -p keyletter is particularly useful when used with the "!" or "$" arguments of the 
send(IC) command. For example, 

send MOD=s.abc REL=3 compile 

given that file compile contains 

Ilplicomp job job-card-information 
Ilstepl exec plickc 
Ilpli.sysin dd * 
-s 
!get -p -rREL MOD 

1* 
II 

will send the highest level of release 3 of file s.abc. Note that the line ,,--s" (that causes send 
to make ID keyword substitutions before detecting and interpreting control lines) is necessary 
if send is to substitute "s.abc" for MOD and "3" for REL in the line "-!get -p -rREL 
MOD". 

The -s keyletter suppresses all output that is normally directed to the standard output. Thus, 
the SID of the retrieved version, the number of lines retrieved, etc., are not output. This does 
not, however, affect messages to the diagnostic output. This keyletter is used to prevent 
nondiagnostic messages from appearing on the user's terminal and is often used in conjunction 
with the -p key letter to "pipe" the output of get, as in 

get -p -s s.a.bc I nroff 

The --g keyletter is supplied to suppress the actual retrieval of the text of a version of the 
sces file. This may be useful in a number of ways. For example, to verify the existence of a 
particular SID in an sces file, one may execute 

get -g -r4.3 s.abc 

This outputs the given SIn if it exists in the sees file or it generates an error message if it 
does not. Another use of the -g key letter is in regenerating a p-file that may have been 

PROGRAMMER GUIDE 15-21 



sees 

accidentally destroyed. 

get -e -g s.abc 

The -1 keyletter causes the creation of an I-file, which is named by replacing the "s." of the 
sees file name with "l.". This file is created in the current directory with mode 444 (read
only) and is owned by the real user. It contains a table Iwhose format is described in get{l) in 
the ICON/UXV User Reference Manua~ showing the deltas used in constructing a particular 
version of the sees file. For example, 

get -r2.3 -I s.abc 

generates an I-file showing the deltas applied to retrieve verSIon 2.3 of the sees file. 
Specifying a value of "p" with the -1 keyletter, as in 

get -lp -r2.3 s.abc 

causes the generated output to be written to the standard output rather than to the I-file. 
The -g key letter may be used with the -1 keyletter to suppress the actual retrieval of the 
text. 

The -m keyletter is of use in identifying, line by line, the changes applied to an sees file. 
Specification of this key letter causes each line of the generated g-file to be preceded by the SID 
of the delta that caused that line to be inserted. The SID is separated from the text of the line 
by a tab character. 

The -n keyletter causes each line of the generated g-Jile to be preceded by the value of the 
sces! ID keyword and a tab character. The -n keyletter is most often used in a pipeline with 
grep(l). For example, to find all lines that match a given pattern in the latest version of each 
sees file in a directory, the following may be executed: 

get -p -n -s directory I grep pattern 

If both the -m and -n key letters are specified, each line of the generated g-file is proceded by 
the value of the %M% ID keyword and a tab (this is the effect of the -n keyletter) and 
followed by the line in the format produced by the -m keyletter. Because use of the -m 
keyletter and/or the -n keyletter causes the contents of the g-file to be modified, such a g-file 
must not be used for creating a delta. Therefore, neither the -m keyletter nor the -n 
keyletter may be specified together with the -e keyletter. 

See get(l) in the ICON/UXV User Reference Manual for a full description of additional get 
keyletters. 

15-22 ICON INTERNATIONAL 



( 

sees 

B. The "delta" Command 

The delta command is used to incorporate the changes made to a g-Jile into the corresponding 
sees file, i.e., to create a delta, and therefore, a new version of the file. 

Invocation of the delta command requires the existence of a p-file. The delta command 
examines the p-file to verify the presence of an entry containing the user's login name. If none 
is found, an error message results. The delta command performs the same permission checks 
that get performs when invoked by the -e keyletter. If all checks are successful, delta 
determines what has been changed in the g-file by comparing it via diff{l) with its own 
temporary copy of the g-file as it was before editing. This temporary copy of the g-file is called 
the d-file (its name is formed by replacing the "s." of the sees file name with "d.") and is 
obtained by performing an internal get at the SID specified in the p-file entry. 

The required p-file entry is the one containing the login name of the user executing delta 
because the user who retrieved the g-Jile must be the one who creates the delta. However, if 
the login name of the user appears in more than one entry, the same user has executed get 
with the -e keyletter more than once on the same sees file. The -r key letter must then be 
used with delta to specify the SID that uniquely identifies the p-file entry. This entry is the 
one used to obtain the SID of the delta to be created. 

In practice, the most common invocation of delta is 

delta s.abc 

which prompts on the standard output (but only if it is a terminal) 

comments? 

to which the user replies with a description of why the delta is being made, terminating the 
reply with a newline character. The user's response may be up to 512 characters long with 
newlines (not intended to terminate the response) escaped by backslashes "\". 

If the sees file has a v flag, delta first prompts with 

MRs? (Modification Requests) 

on the standard output. (Again, this prompt is printed only if the standard output is a 
terminal.) The standard input is then read for MR numbers, separated by blanks and/or tabs, 
terminated in the same manner as the response to the prompt "comments?". In a tightly 
controlled environment, it is expected that deltas are created only as a result of some trouble 
report, change request, trouble ticket, etc., collectively called [MRs]. It is desirable (or 
necessary) to record such MR number(s) within each delta. 

The -y and/or -m keyletters may be used to supply the commentary (comments and MR 
numbers, respectively) on the command line rather than through the standard input. 

PROGRAMMER GUIDE 15-23 



sees 

delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc 

In this case, the corresponding prompts are not printed, and the standard input is not read. 
The -m keyletter is allowed only if the sees file has a v flag. These keyletters are useful 
when delta is executed from within a shell procedure (see sh(l) in the ICON/UXV User 
Reference Manual]' 

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via 
keyletters, is recorded as part of the entry for the delta being created and applies to all sees 
files processed by the same invocation of delta. This implies that (if delta is invoked with 
more than one file argument and the first file named has a v flag) all files named must have 
this flag. Similarly, if the first file named does not have this flag, then none of the files named 
may have it. Any file that does not conform to these rules is not processed. 

When processing is complete, delta outputs (on the standard output) the SID of the created 
delta (obtained from the p-ftle entry) and the counts of lines inserted, deleted, and left 
unchanged by the delta. Thus, a typical output might be 

1.4 
14 inserted 
7 deleted 
345 unchanged 

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do 
not agree with the user's perception of the changes applied to the g-ftle. The reason for this is 
that there usually are a number of ways to describe a set of such changes, especially if lines are 
moved around in the g-ftle, and delta is likely to find a description that differs from the user's 
perception. However, the total number of lines of the new delta (the number inserted plus the 
number left unchanged) should agree with the number of lines in the edited g-ftle. 

If (in the process of making a delta) delta finds no ID keywords in the edited g-file, the 
message 

No id keywords (cm7) 

is issued after the prompts for commentary but before any other output. This indicates that 
any ID keywords that may have existed in the sees file have been replaced by their values or 
deleted during the editing process. This could be caused by creating a delta from a g-ftle that 
was created by a get without the -e keyletter (recall that ID keywords are replaced by get in 
that case). This could also be caused by accidentally deleting or changing the ID keywords 
during the editing of the g-fi/e. Another possibility is that the file had no ID keywords. In any 
case, it is left up to the user to determine what remedial action is necessary. However, the 
delta is made unless there is an i flag in the secs file indicating that this should be treated as 
a fatal error. In this last case, the delta is not created. 

15-24 ICON INTERNATIONAL 



( 

( \ 

/ 

sees 

Mter the processing of an sees file is complete, the corresponding p-file entry is removed from 
the p-file. All updates to the p-file are made to a temporary copy, the q-file, whose use is 
similar to the use of the z-file which is described in the part "sees eO:tvfMAND 
CONVENTIONS". If there is only one entry in the p-fiie, then the p-file itself is removed. 

In addition, delta removes the edited g-file unless the -n keyletter is specified. Thus: 

delta -n s.abc 

will keep the g-file upon completion of processing. 

The -s (silent) keyletter suppresses all output that is normally directed to the standard 
output, other than the prompts "comments?" and "MRs?". Thus, use of the -s keyletter 
together with the -y keyletter (and possibly, the -m keyletter) causes delta neither to read 
the standard input nor to write the standard output. 

The differences between the g-file and the d-file (see above), constitute the delta and may be 
printed on the standard output by using the -p keyletter. The format of this output is similar 
to that produced by diff(l). 

C. The "admin" Command 

The admin command is used to administer sees files, that is, to create new sees files and to 
change parameters of existing ones. When an sees file is created, its parameters are 
initialized by use of key letters or are assigned default values if no keyletters are supplied. The 
same keyletters are used to change the parameters of existing files. 

Two keyletters are supplied for use in conjunction with detecting and correcting "corrupted" 
sees files (see "Auditing" in part "sees FILES"). Newly created sees files are given mode 
444 (read-only) and are owned by the effective user. Only a user with write permission in the 
directory containing the sees file may use the admin command upon that file. 

Geation of scx:B Files 

An sees file may be created by executing the command 

admin -ifirst s.abc 

in which the value "first" of the -i keyletter specifies the name of a file from which the text of 
the initial delta of the sees file 8.abc is to be taken. Omission of the value of the -i keyletter 
indicates that admin is to read the standard input for the text of the initial delta. Thus, the 
command 

admin -1 s.abc < first 

PROGRAMMER GUIDE 15-25 



sees 

is equivalent to the previous example. If the text of the initial delta does not contain ID 
keywords, the message 

No id keywords (cm7) 

is issued by admin as a warning. However, if the same invocation of the command also sets 
the i flag (not to be confused with the -i keyletter), the message is treated as an error and the 
sees file is not created. Only one sees file may be created at a time using the -i keyletter. 

When an sees file is created, the release number assigned to its first delta is normally "1", 
and its level number is always "1". Thus, the first delta of an sees file is normally "1.1". 
The -r keyletter is used to specify the release number to be assigned to the first delta. Thus: 

admin -ifirst -r3 s.abc 

indicates that the first delta should be named "3.1" rather than "1.1". Because this keyletter 
is only meaningful in creating the first delta, its use is only permitted with the -i keyletter. 

Inserting Cbm:mentartl/or tM InUial Delta 

When an sees file is created, the user may choose to supply commentary stating the reason 
for creation of the file. This is done by supplying comments (-y keyletter) and/or MR 
numbers (-m keyletter) in exactly the same manner as for delta. The creation of an sees 
file may sometimes be the direct result of an MR. If comments (-y keyletter) are omitted, a 
comment line of the form 

date and time created YY /MM/DD HH:MM:SS by logname 

is automatically generated. 

If it is desired to supply MR numbers (-m keyletter), the v flag must also be set (using the -f 
keyletter described below). The v flag simply determines whether or not MR numbers must be 
supplied when using any sees command that modifies a "delta commentary" [see sccsfile(4) in 
the ICON/UXV User Reference Manual} in the sees file. Thus: 

admin -ifirst -mmrnum1 -fv s.abc 

Note that the -y and -m key letters are only effective if a new sees file is being created. 

15-26 ICON INTERNATIONAL 

f' 
, ) "'--, 

/ " 

c 



'sees 

('- Initialization and M:xJifo:aticm of SCX;S File Parameter. 

() 

The portion of the sees file reserved for descriptive text may be initialized or changed 
through the use of the -t keyletter. The descriptive text is intended as a summary of the 
contents and purpose of the sees file. 

When an sees file is being created and the -t keyletter is supplied, it must be followed by the 
name of a file from which the descriptive text is to be taken. For example, the command 

admin -ifirst -tdesc s.abc 

specifies that the descriptive text is to be taken from file desc;. 

When processing an existing sees file, the -t keyletter specifies that the descriptive text (if 
any) currently in the file is to be replaced with the text in the named file. Thus: 

admin -tdesc s.abc 

specifies that the descriptive text of the sees file is to be replaced by the contents of dese; 
omission of the file name after the -t keyletter as in 

admin -t s.abc 

causes the removal of the descriptive text from the sees file. 

The flags of an sees file may be initialized, changed, or deleted through the use of the -f and 
-d keyletters, respectively. The flags of an sees file are used to direct certain actions of the 
various commands. See admin(l) in the IOON/UXV User Reference Manual for a description 
of all the flags. For example, the i flag specifies that the warning message (stating that there 
are no ID keywords contained in the sees file) should be treated as an error. Also the d 
(default SID) flag specifies the default version of the sees file to be retrieved by the get 
command. The -f keyletter is used to set a flag and, possibly, to set its value. For example, 

admin -ifirst -fi -fmmodname s.abc 

sets the i flag and the m (module name) flag. The value "modname" specified for the m flag is 
the value that the get command will use to replace the %M% ID keyword. (In the absence of 
the m flag, the name of the g-file is used as the replacement for the %M% ID keyword.) Note 
that several -f key letters may be supplied on a single invocation of admin and that -f 
key letters may be supplied whether the command is creating a new sees file or processing an 
existing one. 

The -d keyletter is used to delete a flag from an sees file and may only be specified when 
processing an existing file. As an example, the command 

PROGRAMMER GUIDE 15-27 

-- --- - --~~---------- ~~~~ 



sees 

admin -dm s.abc 

removes the m flag from the sees file. Several -d key letters may be supplied on a single 
invocation of admin and may be intermixed with -f keyletters. 

The sees files contain a list (user list) of login names and/or group IDs of. users who are 
allowed to create deltas. This list is empty by default which implies that anyone may create 
deltas. To add login names and/or group IDs to the list, the -a keyletter is used. For 
example, 

admin -axyz -awql -a1234 s.abc 

adds the login names "xyz" and "wql" and the group 10 "1234" to the list. The -a keyletter 
may be used whether admin is creating a new sees file or processing an existing one and may 
appear several times. The -e keyletter is used in an analogous manner if one wishes to remove 
(erase) login names or group IDs from the list. 

D. The "prs" Command 

The prs command is used to print on the standard output all or parts of an sees file in a 
format, called the output "data specification," supplied by the user via the -d keyletter. The 
data specification is a string consisting of sees file data keywords (not to be confused with 
get 10 keywords) interspersed with optional user text. 

Data keywords are replaced by appropriate values according to their definitions. For example, 

:1: 

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is 
defined as the data keyword for the sees file name currently being processed, and :C: is 
defined as the comment line associated with a specified delta. All parts of an sees file have 
an associated data keyword. For a complete list of the data keywords, see prs(l) in the 
ICON/ UXV User Reference Manual. 

There is no limit to the number of times a data keyword may appear in a data specification. 
Thus, for example, 

prs -d":I: this is the top delta for :F: :1:" s.abc 

may produce on the standard output 

2.1 this is the top delta for s.abc 2.1 

15-28 ICON INTERNATIONAL 



(-

o 

sees 

Information may be obtained from a single delta by specifying the SID of that delta using the 
-r keyletter. For example, 

prs -d":F:::1: comment line is: :C:" -rI.4 s.abc 

may produce the following output: 

s.abc: 1.4 comment line is: THIS IS A CO:M:MENT 

If the -r key letter is not specified, the value of the SID defaults to the most recently created 
delta. 

In addition, information from a range of deltas may be obtained by specifying the -lor -e 
keyletters. The -e keyletter substitutes data keywords for the SID designated via the -r 
keyletter and all deltas created earlier. The -1 keyletter substitutes data keywords for the 
SID designated via the -r keyletter and all deltas created later. Thus, the command 

prs -d:I: -rl.4 -e s.abc 

may output 

1.4 
1.3 
1.2.1.1 
1.2 
1.1 

and the command 

prs -d:I: -rl.4 -1 s.abc 

may produce 

3.3 
3.2 
3.1 
2.2.1.1 
2.2 
2.1 
1.4 

Substitution of data keywords for all deltas of the SCCS file may be obtained by specifying 
both the -e and -1 key letters. 

PROGRAMMER GUIDE 15-29 



sees 

E. The "help" Command 

The help command prints explanations of sees commands and of messages that these 
commands may print. Arguments to help, zero or more of which may be supplied, are simply 
the names of sees commands or the code numbers that appear in parentheses after sees 
messages. If no argument is given, help prompts for one. The help command has no concept 
of keyletter arguments or file arguments. Explanatory information related to an argument, if 
it exists, is printed on the standard output. If no information is found, an error message is 
printed. Note that each argument is processed independently, and an error resulting from one 
argument will not terminate the processing of the other arguments. 

Explanatory information related to a command is a synopsis of the command. For example, 

help geS rmdel 

produces 

geS: 
"nonexistent sid" 
The specified sid does not exist in the 
given file. 
Check for typos. 

rmdel: 
rmdel -rSID name ... 

F. The "rmdel" Command 

The rmdel command is provided to allow removal of a delta from an sees file. Its use should 
be reserved for those cases in which incorrect global changes were made a part of the delta to 
be removed. 

The delta to be removed must be a "leaf" delta. That is, it must be the latest (most recently 
created) delta on its branch or on the trunk of the sees file tree. In Figure 15-3, only deltas 
1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 can 
be removed, etc. 

To be allowed to remove a delta, the effective user must have write permission in the directory 
containing the sees file. In addition, the real user must either be the one who created the 
delta being removed or be the owner of the sees file and its directory. 

The -r keyletter, which is mandatory, is used to specify the complete SID of the delta to be 
removed (i.e., it must have two components for a trunk delta and four components for a 
branch delta). Thus: 

rmdel -r2.3 s.abc 

15-30 ICON INTERNATIONAL 

c 

c 



sees 

specifies the removal of (trunk) delta "2.3" of the sees file. Before removal of the delta, 
rmdel checks that the release number (R) of the given SID satisfies the relation. 

floor <= R <= ceiling 

The rmdel command also checks that the SID specified is not that of a version for which a get 
for editing has been executed and whose associated delta has not yet been made. In addition, 
the login name or group ID of the user must appear in the file's "user list", or the "user list" 
must be empty. Also, the release specified cannot be locked against editing. That is, if the I 
flag is set [see admin(l) in the ICON/UXV User Reference Manual}, the release specified must 
not be contained in the list. If these conditions are not satisfied, processing is terminated, and 
the delta is not removed. After the specified delta has been removed, its type indicator in the 
"delta table" of the sees file is changed from "D" ("delta") to "R" ("removed"). 

G. The "cdc" Command 

The cdc command is used to change a delta's commentary that was supplied when that delta 
was created. Its invocation is analogous to that of the rmdel command, except that the delta 
to be processed is not required to be a leaf delta. For example, 

cdc -r3.4 s.abc 

(- specifies that the commentary of delta "3.4" of the sees file is to be changed. 

() 

The new commentary is solicited by cdc in the same manner as that of delta. The old 
commentary associated with the specified delta is kept, but it is preceded by a comment line 
indicating that it has been changed (i.e., superseded), and the new commentary is entered 
ahead of this comment line. The "inserted" comment line records the login name of the user 
executing cdc and the time of its execution. 

The cdc command also allows for the deletion of selected MR numbers associated with the 
specified delta. This is specified by preceding the selected MR numbers by the character "I". 
Thus: 

cdc -rl.4 s.abc 
MRs? mrnum3 lmrnuml 
comments? deleted wrong MR number and inserted 

correct MR number 

inserts "mrnum3" and deletes "mrnuml" for delta 1.4. 

PROGRAMMER GUIDE 15-31 



sees 

H. The "what" Command 

The what command is used to find identifying information within any ICON/UXV system file 
whose name is given as an argument to what. Directory names and a name of "-" (a Jone 
minus sign) are not treated specially as they are by other SCCS commands and no keyletters 
are accepted by the command. 

The what command searches the given file(s) for all occurrences of the string "@#)", which is 
the replacement for the @)(#) ID keyword [see get(l)!, and prints (on the standard output) the 
balance following that string until the first doubJe quote ("), greater than (», backslash (\), 
newline, or (nonprinting) NUL character. For example, if the SCCS file 8.prog.c (a C language 
program) contains the following line: 

char id[] "@#)sccs2:5.1"; 

and then the command 

get -r3.4 s.prog.c 

is executed, the resulting g-file 18 compiled to produce "prog.o" and "a.out". Then the 
command 

what prog.c prog.o a.out 

produces 

prog.c: 
prog.c:3.4 

prog.o: 
prog.c:3.4 

a.out: 
prog.c:3.4 

The string searched for by what need not be inserted via an ID keyword of get; it may be 
inserted in any convenient manner. 

I. The "seesdiff" Command 

The sccsdHf command determines (and prints on the standard output) the differences between 
two specified versions of one or more SCCS files. The versions to be compared are specified by 
using the -r keyletter, whose format is the same as for the get command. The two versions 
must be specified as the first two arguments to this command in the order they were created, 
i.e., the older version is specified first. Any following key letters are interpreted as arguments to 
the pr(l) command (which actually prints the differences) and must appear before any file 
names. The SCCS files to be processed are named last. Directory names and a name of "-" (a 
lone minus sign) are not acceptable to sccsdiff. 

15-32 ICON INTERNATIONAL 



( 

sees 

The differences are printed in the form generated by diff{l). The following is an example of the 
invocation of sccsdiff: 

sccsdiff -r3A -r5.6 s.abc 

J. The "comb" Command 

The comb command generates a "shell procedure" [see sh(l) in the ICON/UXV User 
Reference Manual} which attempts to reconstruct the named sees files so that the 
reconstructed files a.re smaller than the originals. The generated shell procedure is written on 
the standard output. Named sees files are reconstructed by discarding unwanted deltas and 
combining other specified deltas. The sees files that contain deltas no longer useful should be 
discarded. It is not recommended that comb be used as a matter of routine; its use should be 
restricted to a very small number of times in the life of an sees file. 

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of 
ancestor deltas necessary to preserve the "shape" of the sees file tree. The effect of this is to 
eliminate middle deltas on the trunk and on all branches of the tree. Thus, in Figure 15-3, 
deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are summarized as 
follows: 

The -p keyletter specifies the oldest delta that is to be preserved in the reconstruction. 
All older deltas are discarded. 

The -c keyletter specifies a list [see get(l) in the ICON/UXV User Reference Manual for 
the syntax of such a list] of deltas to be preserved. All other deltas are discarded. 

The -s key letter causes the generation of a shell procedure, which when run, produces 
only a report summarizing the percentage space (if any) to be saved by reconstructing 
each named sees file. It is recommended that comb be run with this keyletter (in 
addition to any others desired) before any actual reconstructions. 

It should be noted that the shell procedure generated by comb is not guaranteed to save 
space. In fact, it is possible for the reconstructed file to be larger than the original. Note, too, 
that the shape of the sees file tree may be altered by the reconstruction process. 

K. The "val" Command 

The val command is used to determine if a file is an sees file meeting the characteristics 
specified by an optional list of keyletter arguments. Any characteristics not met are 
considered errors. 

The val command checks for the existence of a particular delta when the SID for that delta is 
explicitly specified via the -r keyletter. The string following the -y or -m keyletter is used 
to check the value set by the t or m flag, respectively [see admin(l) in the ICON/U),.'1' User 
Reference Manual for a description of the flags]. 

PROGRAMMER GUIDE 15-33 



sees 

The val command treats the special argument "-" differently from other sees commands. 
This argument allows val to read the argument list from the standard input as opposed to 
obtaining it from the command line. The standard input is read until end of file. This 
capability allows for one invocation of val with different values for the keyletter and file 
a.rguments. For example, 

val -
-yc -mabc s.abc 
-mxyz -ypll s.xyz 

first checks if file 8.abc has a value "c" for its "type" flag and value "abc" for the "module 
name" flag. Once processing of the first file is completed, val then processes the remaining 
files, in this case, 8.%YZ, to determine if they meet the characteristics specified by the keyletter 
arguments associated with them. 

The val command returns an 8-bit code; each bit set indicates the occurrence of a specific 
error [see val(l} for a description of possible errors and the codes]. In addition, an appropriate 
diagnostic is printed unless suppressed by the -s keyletter. A return code of "0" indicates all 
named files met the characteristics specified. 

sees FILES 

This part discusses several topics that must be considered before extensive use is made of 
sees. These topics deal with the protection mechanisms relied upon by sees, the format of 
sees files, and the recommended procedures for auditing sees files. 

A. Proteetion 

The sees relies on the capabilities of the IeONjUXV software for most of the protection 
mechanisms required to prevent unauthorized changes to sees files (i.e., changes made by 
non-SeeS commands). The only protection features provided directly by sees are the 
"release lock" flag, the "release floor" and "ceiling" flags, and the "user list". 

New sees files created by the admin command are given mode 444 (read-only). It is 
recommended that this mode remain unchanged as it prevents any direct modification of the 
files by non-SeeS commands. It is further recommended that the directories containing sees 
files be given mode 755 which allows only the owner of the directory to modify its contents. 

The sees files should be kept in directories that contain only sees files and any temporary 
files created by sees commands. This simplifies protection and auditing of sees files. The 
contents of directories should correspond to convenient logical groupings, e.g., subsystems of a 
large project. 

The sees files must have only one link (name) because the commands that modify sees files 
do so by creating a copy of the file (the %-file, see "sees eO:M.MAND CONVENTIONS"). 
Upon completion of processing, remove the old file and rename the %-file. If the old file has 

15-34 ICON INTERNATIONAL 

C· ~. . ) 
./ 



( 

( 

sees 

more than one link, this would break such additional links. Rather than process such files, 
sees commands produce an error message. All sees files must have names that begin with 
"s." . 

When only one user uses sees, the real and effective user IDs are the same; and the user ID 
owns the directories containing sees files. Therefore, sees may be used directly without any 
preliminary preparation. 

However, in those situations 10 which several users with unique user IDs are assigned 
responsibility for one sees file (e.g., in large software development projects), one user 
(equivalently, one user ID) must be chosen as the "owner" of the sees files and be the one who 
will "administer" them (e.g., by using the admin command). This user is termed the "sees 
administrator" for that project. Because other users of sees do not have the same privileges 
and permissions as the sees administrator, they are not able to execute directly those 
commands that require write permission in the directory containing the sees files. Therefore, 
a project-dependent program is required to provide an interface to the get, delta, and if 
desired, rmdel and cdc commands. 

The interface program must be owned by the sees administrator and must have the "set user 
ID on execution" bit "on" [see chmod(l) in the ICON/UXV User Reference Manual)' This 
assures that the effective user 10 is the user ID of the administrator. This program invokes the 
desired sees command and causes it to inherit the privileges of the interface program for the 
duration of that command's execution. Thus, the owner of an sees file can modify it at will. 
Other users whose login names or group IDs are in the "user list" for that file (but are not the 
owner) are given the necessary permissions only for the duration of the execution of the 
interface program. Other users are thus able to modify the sees files only through the use of 
delta and, possibly, rmdel and cdc. The project-dependent interface program, as its name 
implies, must be custom-built for each project. 

B. Formatting 

The sees files are composed of lines of ASCII text arranged in six parts as follows: 

Checksum 

Delta Table 

User Names 

Flags 

Descriptive Text 

Body 

A line containing the "logical" sum of all the characters of the file (not 
including this checksum itself). 

Information about each delta, such as type, SID, date and time of 
creation, and commentary. 

List of login names and/or group IDs of users who are allowed to modify 
the file by adding or removing deltas. 

Indicators that control certain actions of various sees commands. 

Arbitrary text provided by the user; usually a summary of the contents 
and purpose of the file. 

Actual text that is being administered by sees, intermixed with 
internal sees control lines. 

PROGRAMMER GUIDE 15-35 



sees 

Detailed information about the contents of the various sections of the file may be found in 
8ccsfile(5). The checksum is the only portion of the file that is of interest below. 

It is important to note that because sees files are ASCII files they may be processed by 
various IeON/UXV software commands, such as ed(l), grep(l), and cat(l}. This is very 
convenient in those instances in which an sees file must be modified manually (e.g., when the 
time and date of a delta was recorded incorrectly because the system clock was set incorrectly) 
or when it is desired to simply look at the file. 

Caution: Extreme care should be exercised when modifying sees files with non
sees commands. 

c. Auditing 

On rare occasions, perhaps due to an operating system or hardware malfunction, an sees file 
or portions of it (i.e., one or more "blocks") can be destroyed. The secs commands (like most 
ICONjUXV software commands) issue an error message when a file does not exist. In addition, 
SCCS commands use the checksum stored in the sces file to determine whether a file has been 
corrupted since it was last accessed [possibly by having lost one or more blocks or by having 
been modified with ed(l)J. No sces command will process a corrupted secs file except the 
admin command with the -h or -z keyletters, as described below. 

It is recommended that sees files be audited for possible corruptions on a regular basis. The 
simplest and fastest way to perform an audit is to execute the admin command with the -h 
key letter on all SCCS files. 

admin -h s.filel s.file2 
or 

admin -h directoryl directory2 

If the new checksum of any file is not equal to the checksum in the first line of that file, the 
message 

corrupted file (c06) 

is produced for that file. This process continues until all the files have been examined. When 
examining directories (as in the second example above), the process just described will not 
detect missing files. A simple way to detect whether any files are missing from a directory is to 
periodically execute the ls(l) command on that directory and compare the outputs of the most 
current and the previous executions. Any file whose name appears in the previous output but 
not in the current one has been removed by some means. 

Whenever a file has been corrupted, the manner in which the file is restored depends upon the 
extent of the corruption. If damage is extensive, the best solution is to contact the local 
ICONjUXV system operations group and request that the file be restored from a backup copy. 
In the case of minor damage, repair through use of the editor ed(l) may be possible. In the 
latter case after such repair, the following command must be executed: 

15-36 ICON INTERNATIONAL 



t( 

o 

sees 

admin -z s.file 

The purpose of this is to recompute the checksum to bring it into agreement with the actual 
contents of the file. After this command is executed on a file, any corruption that existed in 
the file will no longer be detectable. 

AN SCCS INTERFACE PROGRAM 

A. General 

In order to permit IeONjUXV users [with different user identification numbers (user IDs)] to 
use sees commands upon the same files, an sees interface program is provided. It 
temporarily grants the necessary file access permissions to these users. This part discusses the 
creation and use of such an interface program. The sees interface program may also be used 
as a preprocessor to sees commands since it can perform operations upon its arguments. 

B. Funetion 

When only one user uses sees, the real and effective user IDs are the same; and that user's ID 
owns the directories containing sees files. However, there are situations (e.g., in large 
software development projects) in which it is practical to allow more than one user to make 
changes to the same set of sees files. In these cases, one user must be chosen as the "owner" 
of the sees files and be the one who will "administer" them (e.g., by using the admin 
command). This user is termed the "sees administrator" for that project. Since other users 
of sees do not have the same privileges and permissions as the sees administrator, the other 
users are not able to execute directly those commands that require write permission in the 
directory containing the sees files. Therefore, a project-dependent program is required to 
provide an interface to the get, delta, and if desired, rmdel, cdc, and unget commands. 
Other sees commands either do not require write permission in the directory containing 
sees files or are (generally) reserved for use only by the administrator. 

The interface program 

• Must be owned by the sees administrator 

• Must be executable by the new owner 

• Must have the" set user on execution" bit "on" [see chmod(l) in the ICON/UJt..'V Users 
Manua~. 

Then when executed, the effective user ID is the user ID of the administrator. This program's 
function is to invoke the desired sees command and to cause it to inherit the privileges of the 
sees administrator for the duration of that command's execution. In this manner, the owner 
of an sees file (the administrator) can modify it at will. Other users whose login names are in 
the user list for that file (but who are not its owners) are given the necessary permissions only 
for the duration of the execution of the interface program. They are thus able to modify the 

PROGRAMMER GUIDE 15-37 



sees 

SCCS files only through the use of delta and, possibly, rmdel and cdc. 

C. Basic Program 

When a ICON/UXV system program is executed, the program is passed as argument 0, which 
is the name that invoked the program, and followed by any additional user-supplied 
arguments. Thus, if a program is given a number of links (names), the program may alter its 
processing depending upon which link invokes the program. This mechanism is used by an 
SCCS interface program to determine the SCCS command it should subsequently invoke [see 
exec(2) in the ICON/UXV User Reference Manual]. 

A generic interface program (inter.c, written in e language) is shown in Figure 15-5. Note the 
reference to the (unsupplied) function "filearg". This is intended to demonstrate that the 
interface program may also be used as a preprocessor to secs commands. For example, 
function "filearg" could be used to modify file arguments to be passed to the SCCS command 
by supplying the full pathname of a file, thus avoiding extraneous typing by the user. Also, the 
program could supply any additional (default) keyletter arguments desired. 

D. Linking and Use 

In general, the following demonstrates the steps to be performed by the SCCS administrator to 
create the sees interface program. It is assumed, for the purposes of the discussion, that the 
interface program inter.c resides in directory "/xl/xyz/sccs". Thus, the command sequence 

cd /xl /xyz /sccs 
cc ... inter.c -0 inter ... 

compiles inter.c to produce the executable module inter (the " ... " represents other arguments 
that may be required). The proper mode and the "set user ID on execution" bit are set by 
executing 

chmod 4755 inter 

For example, new links are created by 

In inter get 
In inter delta 
In inter rmdel 

The names of the links may be arbitrary if the interface program is able to determine from 
them the names of sees commands to be invoked. Subsequently, any user whose shell 
parameter PATH [see sh(l) in the ICON/UXV User Reference Manual] specifies directory 
"/xl/xyz/sccs" as the one to be searched first for executable commands may execute 

get -e /xl/xyz/sccs/s.abc 

15-38 ICON INTERNATIONAL 

C) 

c 



o 

sees 

from any directory to invoke the interface program (via its link "get"). The interface program 
then executes "/usr/bin/get" (the actual sees get command) upon the named file. As 
previously mentioned, the interface program could be used to supply the path name 
"/xl/xyz/sccs" so that the user would only have to specify 

get --e s.abc 

to achieve the same results. 

PROGRAMMER GUIDE 15-39 

-- -- -- --- -------------------------_._--------_._-



sees 

NOTES 

15-40 ICON INTERNATIONAL 



(-

( , 
) 

Chapter 16 

THE M4 MACRO PROCESSOR 

PAGE 

GENERAL .................................................................................................................................................... 16-1 

DEFINING MACROS .................................................................................................................................... 16-6 

ARGUMENTS............................................................................................................................................... 16-0 

ARITHMETIC BUn..T-INS............................................................................................................................ 16-10 

FILE MANIPULATION................................................................................................................................. 16-11 

SYSTEM COMMAND .... ......... ................................................................................ ........ ..... ......................... 16-12 

CONDITIONALS .......................................................................................................................................... 16-12 

STRING MANIPULATION ........................................................................................................................... 16-13 

PRINTING.................................................................................................................................................... 16-14 





(~.\ 

( 

o 

Chapter 16 

THE M4 MACRO PROCESSOR 

GENERAL 

The M4 macro processor is a front end for rational Fortran (Ratfor) and the C programming 
languages. The "#define" statement in C language and the analogous "define" in Ratfor are 
examples of the basic facility provided by any macro processor. 

At the beginning of a program, a symbolic name or symbolic constant can be defined as a 
particular string of characters. The compiler will then replace later unquoted occurrences of 
the symbolic name with the corresponding string. Besides the straightforward replacement of 
one string of text by another, the M4 macro processor provides the following features: 

• arguments 

• arithmetic capabilities 

• file manipulation 

• conditional macro expansion 

• string and substring functions. 

The basic operation of M4 is to read every alphanumeric token (string of letters and digits) 
input and determine if the token is the name of a macro. The name of the macro is replaced by 
its defining text, and the resulting string is pushed back onto the input to be rescanned. Macros 
may be called with arguments. The arguments are collected and substituted into the right 
places in the defining text before the defining text is rescanned. 

The user also has the capability to define new macros. Built-ins and user-defined macros work 
exactly the same way except that some of the built-in macros have side effects on the state of 
the process. A list of 21 built-in macros provided by the M4 macro processor can be found in 
Figure 16-1. 

PROGRAMMER GUIDE 16-1 



M4MACROS 

Macro Function 
Name 

changequote Restores original 
characters or 
makes new quote 
characters the 
left and right 
brackets. 

changescom Changes left and right 
comment markers from 
the default # and new 
line. 

deer Returns the value of 
its argument decremented 
by l. 

define Defines new macros. 
defn Returns the quoted 

definition of its 
argument(s). 

divert Diverts output to 
l-out-of-lO 
diversions. \,,- j 

Figure 16-1. Built-in Macros (Sheet 1 of 4) 

16-2 ICON INTERNATIONAL 



M4MACROS 

Macro Function 
Name 

divnum Returns the number 
of the currently 
active diversion. 

dnl Reads and discards 
characters up to 
and including the 
next new line. 

dumpdef Dumps the current 
names and definitions 
of items named as 
arguments. 

errprint Prints its arguments 
on the standard 
error file. 

eval Prints arbitrary 
arithmetic on 
integers. 

ifdef Determines if a 

( 
macro is currently 
defined. 

ifelse Performs arbitrary 
conditional testing;. 

include Returns the contents 
of the file named 
in the argument. A 
fatal error occurs 
if the file name 
cannot be accessed. 

Figure 16-1. Built-in Macros (Sheet 2 or 4) 

PROGRAMMER GUIDE 16-3 



M4MACROS 

) 
Macro Function 
Name 

iner Returns the value of 
its argument 
incremented by 1. 

index Returns the position 
where the second 
argument begins in 
the first argument 
pf index. 

len Returns the number of 
characters that makes 
its argument. 

m4exit Causes immediate 
exit from M4. 

m4wrap Pushes the exit code 
back at final EOF. 

maketemp Facilitates making 
unique file names. 

popdef Removes current 
definition of its 
argument(s) 
exposing any previous 
definitions. 

pushdef Defines new macros 
but saves any 
previous definition. 

Figure 16-1. Built-in Macros (Sheet 3 of 4) 

16-4 ICON INTERNATIONAL 



( 

c 

M4MACROS 

Macro Function 
Name 

shift Returns all arguments 
of shift except the 
first ar~ument. 

sinclude Returns the contents 
of the file named 
in the arguments. 
The macro remains 
silent and continues 
if the file is 
inaccessible. 

substr Produces substrings 
of strin~s. 

syscmd Executes the ICON/UXV System 
command given in 
the first argument. 

traceoff Turns macro trace off. 
traceon Turns the macro trace on. 
translit Performs character 

transliteration. 
undefine Removes user-defined 

or built-in macro 
definitions. 

undivert Discards the diverted 
text. 

Figure 16-1. Built-in Macros (Sheet 4 of 4) 

To use the M4 macro processor, input the following command: 

m4 [optional files] 

Each argument file is processed in order. If there are no arguments or if an argument is "-", 
the standard input is read at that point. The processed text is written on the standard output 
which may be captured for subsequent processing with the following input: 

m4 [files] >outputfile 

PROGRAMMER GUIDE 16-5 



M4MACROS 

DEFINING MACROS 

The primary built-in function of M4 is define. Define is used to define new macros. The 
following input: 

define(name, stuff) 

causes the string name to be defined as stuff. All subsequent occurrences of name will be 
replaced by stuff. Name must be alphanumeric and must begin with a letter (the underscore 
counts as a letter). Stuff is any text that contains balanced parentheses. Use of a slash may 
stretch stuff over multiple lines. Thus, as a typical example, 

define(N, 100) 

if (i > N) 

defines N to be 100 and uses the symbolic constant N in a later if statement. 

The left parenthesis must immediately follow the word define to signal that define has 
arguments. If a user-defined macro or built-in name is not followed immediately by "(", it is 
assumed to have no arguments. Macro calls have the following general form: 

name( argl ,arg2,,,.argn) 

A macro name is only recognized as such if it appears surrounded by nonalphanumerics. Using 
the following example: 

define(N, 100) 

if (NNN > 100) 

the variable NNN is absolutely unrelated to the defined macro N even though the variable 
contains a lot of Ns. 

Macros may be defined in terms of other names. For example, 

define(N, 100) 
define(M, N) 

defines both M and N to be 100. If N is redefined and subsequently changes, M retains the 
value of 100 not N. 

16-6 ICON INTERNATIONAL 



(~ 

( 

o 

M4MACROS 

The M4 macro processor expands macro names into their defining text as soon as possible. 
The string N is immediately replaced by 100. Then the string M is also immediately replaced 
by 100. The overall result is the same as using the following input in the first place: 

define(M, 1(0) 

The order of the definitions can be interchanged as follows: 

define(M, N) 
define(N, 1(0) 

Now M is defined to be the string N, so when the value of M is requested later, the result is the 
value of N at that time (because the M will be replaced by N which will be replaced by 100). 

The more general solution is to delay the expansion of the arguments of define by quoting 
them. Any text surrounded by left and right single quotes is not expanded immediately but 
has the quotes stripped off. The value of a quoted string is the string stripped of the quotes. If 
the input is 

define(N, 100) 
define(M, 'N') 

the quotes around the N are stripped off as the argument is being collected. The results of 
using quotes is to define M as the string N, not 100. The general rule is that M4 always strips 
off one level of single quotes whenever it evaluates something. This is true even outside of 
macros. If the word define is to appear in the output, the word must be quoted in the input as 
follows: 

'define' = 1; 

Another example of using quotes IS redefining N. To redefine N, the evaluation must be 
delayed by quoting 

define(N, 1(0) 

define('N', 200) 

In M4, it is often wise to quote the first argument of a macro. The following example will not 
redefine N 

PROGRAMMER GUIDE 16-7 



M4MACROS 

define(N, 100) 

define(N, 200) 

The N in the second definition is replaced by 100. The result is equivalent to the following 
statement: 

define(loo, 2(0) 

This statement is ignored by M4 since only things that look like names can be defined. 

If left and right single quotes are not convenient for some reason, the quote characters can be 
changed with the following built-in macro: 

changequote{[, ]) 

The built-in changequote makes the new quote characters the left and right brackets. The 
original characters can be restored by using changequote without arguments as follows: 

changequote 

There are two additional built-ins related to define. The undefine macro removes the 
definition of some macro or built-in as follows: 

undefine{'N') 

The macro removes the definition of N. Built-ins can be removed with undefine, as follows: 

undefine{'define') 

But once removed, the definition cannot be reused. 

The built-in ifdef provides a way to determine if a macro is currently defined. Depending on 
the system, a definition appropriate for the particular machine can be made as follows: 

ifdef('pdpll " 'define(wordsize,16)') 
ifdef('u3b', 'define{wordsize,32)') 

16-8 ICON INTERNATIONAL 



M4MACROS 

(~ Remember to use the quotes. 

( 

o 

The ifdef macro actually permits three arguments. If the first argument is defined, the value 
of ifdef is the second argument. If the first argument is not defined, the value of ifdef is the 
third argument. If there is no third argument, the value of ifdef is null. If the name is 
undefined, the value of ifdef is then the third argument, as in 

ifdef('unix', on ICON/UXV, not on ICON/UXV) 

ARGUMENTS 

So far the simplest form of macro processing has been discussed which is replacing one string 
by another (fixed) string. User-defined macros may also have arguments, so different 
invocations can have different results. Within the replacement text for a macro (the second 
argument of its define), any occurrence of $n is replaced by the nth argument when the macro 
is actually used. Thus, the macro bump defined as 

define(bump, $1 = $1 + 1) 

generates code to increment its argument by 1. The 'bump(x)' statement is equivalent to 'x = 
x + 1.' 

A macro can have as many arguments as needed, but only the first nine are accessible ($1 
through $9). The macro name is $0 although that is less commonly used. Arguments that are 
not supplied are replaced by null strings, so a macro can be defined which simply concatenates 
its arguments like this: 

define( cat, $1$2$3$4$5$6$7$8$9) 

Thus, 'cat(x, y, z)' is equivalent to 'xyz'. Arguments $4 thTough $9 are null since no 
corresponding arguments were provided. Leading unquoted blanks, tabs, or newlines that occur 
during argument collection are discarded. All other white space is retained. Thus: 

define( a, b c) 

defines 'a' to be 'b c'. 

Arguments are separated by commas; however, when commas are within parentheses, the 
argument is not terminated nor separated. For example, 

PROGRAMMER GUIDE 16-9 



M4MACROS 

define(a, (b,c» 

has only two arguments. The first argument is a. The second is literally (b,e). A bare comma 
or parenthesis can be inserted by quoting it. 

ARITHMETIC BUILT-INS 

The M4 provides three built-in functions for doing arithmetic on integers (only). The simplest 
is mer which increments its numeric argument by 1. The built-in deer decrements by 1. Thus 
to handle the common programming situation where a variable is to be defined as "one more 
than N', use the following: 

define(N, 100) 
define(N1, 'incr(N)') 

Then Nl is defined as one more than the current value of N. 

The more general mechanism for arithmetic is a built-in called eval which is capable of 
arbitrary arithmetic on integers. The operators in decreasing order of precedence are 

unary + and-
** or A (exponentiation) 
* / % (modulus) 
+
==!=«=»= 
! (not) 
& or && (logical and) 
I or" (logical or). 

Parentheses may be used to group operations where needed. All the operands of an expression 
given to eval must ultimately be numeric. The numeric value of a true relation (like 1>0) is 1 
and false is O. The precision in eval is 32 bits under the ICONjUXV operating system. 

As a simple example, define M to be "2 N+l" using eval as follows: 

define(N I 3) 
define(M, 'eval{2 N+1)') 

The defining text for a macro should be quoted unless the text is very simple. Quoting the 
defining text usually gives the desired result and is a good habit to get into. 

16-10 ICON INTERNATIONAL 

~--" r ' 
~) 



() 

M4MACROS 

FILE MANIPULATION 

A new file can be included in the input at any time by the built-in function include. For 
example, 

include(filename) 

inserts the contents of filename in place of the include command. The contents of the file is 
often a set of definitions. The value of include (include's replacement text) is the contents of 
the file. If needed, the contents can be captured in definitions, etc. 

A fatal error occurs if the file named in include cannot be accessed. To get some control over 
this situation, the alternate form sinclude can be used. The built-in sinclude (silent include) 
says nothing and continues if the file named cannot be accessed. 

The output of M4 can be diverted to temporary files during processing, and the collected 
material can be output upon command. The M4 maintains nine of these diversions, numbered 
1" through 9. If the built-in macro 

divert(n) 

is used, all subsequent output is put onto the end of a temporary file referred to as n. 
Diverting to this file is stopped by the divert or divert(O) command which resumes the normal 
output process. 

Diverted text is normally output all at once at the end of processing with the diversions output 
in numerical order. Diversions can be brought back at any time by appending the new 
diversion to the current diversion. Output diverted to a stream other than 0 through 9 is 
discarded. The built-in undivert brings back all diversions in numerical order. The built-in 
undivert with arguments brings back the selected diversions in the order given. The act of 
undiverting discards the diverted text (as does diverting) into a diversion whose number is not 
between 0 and 9, inclusive. 

The value of undivert is not the diverted text. Furthermore, the diverted material is not 
rescanned for macros. The built-in divnum returns the number of the currently active 
diversion. The current output stream is zero during normal processing. 

PROGRAMMER GUIDE 16-11 



M4MACROS 

SYSTEM COMMAND 

Any program in the local operating system can be run by using the syscmd built-in. For 
example, 

syscmd(date) 

on the ICON/UXV operating system runs the date command. Normally, syscmd would be 
used to create a file for a subsequent include. To facilitate making unique file names, the 
built-in maketemp is provided with specifications identical to the system function mktemp. 
The maketemp macro fills in a string of xxx:xx in the argument with the process id of the 
curren t process. 

CONDITIONALS 

Arbitrary conditional testing is performed via built-in ifelse. In the simplest form 

ifelse(a, b, c, d) 

compares the two strings a and b. If a and b are identical, ifelse returns the string c. 
Otherwise, string d is returned. Thus, a macro called compare can be defined as one which 
compares two strings and returns "yes" or "no" if they are the same or different as follows: 

define(compare, 'ifelse($l, $2, yes, no)') 

Note the quotes which prevents evaluation of ifelse occurring too early. If the fourth 
argument is missing, it is treated as empty. 

The built-in irelse can actually have any number of arguments and provides a limited form of 
multiway decision capability. In the input 

ifelse(a, b, c, d, e, f, g) 

if the string a matches the string b, the result is c. Otherwise, if d is the same as e, the result 
is f Otherwise, the result is g. If the final argument is omitted, the result is null, so 

ifelse(a, b,c) 

is c if a matches b, and null otherwise. 
16-12 ICON INTERNATIONAL 



C·: 
,j./ 

M4MACROS 

STRING MANIPULATION 

The built-in len returns the length of the string (number of characters) that makes up its 
argument. Thus: 

len( a bcdef) 

is 6, and len«a,b» is 5. 

The built-in substr can be used to produce substrings of strings. Using input, substr(s, i, n) 
returns the substring of 8 that starts at the ith position (origin zero) and is n characters long. 
If n is omitted, the rest of the string is returned. Inputting 

substr('now is the time',!) 

returns the following string: 

ow is the time. 

If i or n are out of range, various actions occur. 

The built-in index(s1, s2) returns the index (position) in 81 where the string 82 occurs or -1 if 
it does not occur. As with substr, the origin for strings is o. 

The built-in trans lit performs character transliteration and has the general form 

translit(s, f, t) 

which modifies 8 by replacing any character found in f by the corresponding character of t. 
Using input 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. If t is shorter than f, characters that do not 
have an entry in t are deleted. As a limiting case, if t is not present at all, characters from f 
are deleted from 8. So 

PROGRAMMER GUIDE 16-13 



M4MACROS 

translit(s, aeiou) 

would delete vowels from 8. 

There is also a built-in called dnl that deletes all characters that follow it up to and including 
the next new line. The dnl macro is useful mainly for throwing away empty lines that 
otherwise tend to clutter up M4 output. Using input 

define(N, 100) 
define(M, 200) 
define(L, 300) 

results in a new line at the end of each line that is not part of the definition. So the new line is 
copied into the output where it may not be wanted. If the built-in dnl is added to each of 
these lines, the newlines will disappear. Another method of achieving the same results is to 
input 

divert(-l) 
define( ... ) 

divert. 

PRINTING 

The built-in errprint writes its arguments out on the standard error file. An example would 
be 

errprint('fatal error') 

The built-in dumpdef is a debugging aid that dumps the current names and definitions of 
items named as arguments. If no arguments are given, then all current names and definitions 
are printed. Do not forget to quote the names. 

16-14 ICON INTERNATIONAL 

( 
, ) 
~./ 

/ 

!'~\, 

~~) 



Chapter 17 

THEawkPROG~GLANGUAGE 

PAGE 

GENERAL .................................................................................................................................................... 17-1 

PROGRAM STRUCTURE ............................................................................................................................ 17-1 

LEXICAL CONVENTION............................................................................................................................. 17-2 

PRIMARY EXPRESSIONS ........................................................................................................................... 17-8 

TERMS ......................................................................................................................................................... 17-12 

EXPRESSIONS ............................................................................................................................................. 17-13 

USING .wk..................................................................................................................................................... 17-14 

INPUT: RECORDS AND FIELDS ................................................................................................................. 17-18 

INPUT: FROM THE COMMAND LINE........................................................................................................ 17-17 

OUTPUT: PRINTING................................................................................................................................... 17-19 

OUTPUT: TO DIFFERENT FILES ........................................................................................................... .... 17-23 

OUTPUT: TO PIPES .................................................................................................................................... 17-24 

COMMENTS ................................................................................................................................................. 17-26 

PATTERNS .................................................................................................................................................. 17-26 

ACTIONS...................................................................................................................................................... 17-33 

BUILT IN FUNCTIONS ................................................................................................................................ 17-40 

FLOW OF CONTROL ................................................................................................................................... 17-43 

REPORT GENERATION ............................................................................................................................. 17-48 

COOPERATION WITH THE SHELL ............................................................................................................ 17-48 

MISCELLANEOUS HINTS............................................................................................................................ 17-49 



) 



(-; 

( 

Chapter 17 

THE awk PROGRAMMING LANGUAGE 

GENERAL 

The awk is a file-processing programming language designed to make many common 
information and retrieval text manipulation tasks easy to state and perform. The awk: 

• Generates reports 

• Matches patterns 

• Validates data 

• Filters data for transmission. 

PROGRAM STRUCTURE 
The awk program is a sequence of statements of the form 

pattern {action} 
pattern {action} 

The awk program is run on a set of input files. The basic operation of awk is to scan a set of 
input lines, in order, one at a time. In each line, awk searches for the pattern described in the 
awk program, then if that pattern is found in the input line, a corresponding action is 
performed. In this way, each statement of the awk program is executed for a given input line. 
When all the patterns are tested, the next input line is fetched; and the awk program is once 
again executed from the beginning. 

In the awk command, either the pattern or the action is omitted, but not both. If there is no 
action for a pattern, the matching line is simply printed. If there is no pattern for an action, 
then the action is performed for every input line. The null awk program does nothing. Since 
patterns and actions are both optional, actions are enclosed in braces to distinguish them from 
patterns. 

C\ " For example, this awk program 

PROGRAMMER GUIDE 17-1 



awk 

Ixl {print} 

prints every input line that has an "x" in it. 

An awk program has the following structure: 

- a <BEGIN> section 
- a <record> or main section 
- an <END> section. 

The <BEGIN> section is run before any input lines are read, and the <END> section is run 
after all the data files are processed. The <record> section is data driven. That is, it is the 
section that is run over and over for each separate line of input. 

Values are assigned to variables from the awk command line. The <BEGIN> section is run 
before these assignments are made. 

The words "BEGIN" and "END" are actually patterns recognized by awk. These are discussed 
further in the pattern section of this guide. / -, 

LEXICAL CONVENTION 

All awk programs are made up of lexical units called tokens. In awk there are eight token types: 

1. numeric constants 

2. string constants 

3. keywords 

4. identifiers 

5. operators 

6. record and file tokens 

7. comments 

8. separators. 

17-2 ICON INTERNATIONAL 



( 

awk 

Numeric Constants 

A numeric constant is either a decimal constant or a floating constant. A decimal constant is a 
nonnull sequence of digits containing at most one decimal point as in 12, 12., 1.2, and .12. A 
floating constant is a decimal constant followed by e or E followed by an optional + or - sign 
followed by a nonnull sequence of digits as in 12e3, 1.2e3, 1.2e-3, and 1.2E+3. The 
maximum size and precision of a numeric constant are machine dependent. 

String Constants 

A string constant is a sequence of zero or more characters surrounded by double quotes as in "," 
"a", "ab", and "12". A double quote is put in a string by proceeding it with \ as in "He said, \ 
Sit! \"". A newline is put in a string by using \n in its place. No other characters need to be 
escaped. Strings can be (almost) any length. 

Keywords 

Strings used as keywords are shown in Figure 17-1. 

Keywords 

begin break length 
end close log 
FILENAME continue next 
FS close number 
NF exit print 
NR exp printf 
OFS for split 
ORS getline sprintf 
OFMT if sqrt 
RS in string 

index substr 
int while 

Figure 17-1. Strings Used as Keywords 

Identifiers 

Identifiers in awk serve to denote variables and arrays. An identifier is a sequence of letters, 
digits, and underscores, beginning with a letter or an underscore. Uppercase and lowercase 
letters are different. 

PROGRAMMER GUIDE 17-3 



awk 

Operators 

The Q,wk has assignment, arithmetic, relational, and logical operators similar to those in the 0 
programming language and regular expression pattern matching operators similar to those in 
the IOON/UXV program egrep and lex. 

Assignment operators are shown in Figure 17-2. 

Ass~nment Operators 
Symbol Usage Description 

- assignment 
+= plus-equals X += Y is similar 

toX=X+Y 
-= minus-equals X- Y is similar 

toX=X-Y 
*= times-equals X *= Y is similar 

toX=X*Y 

/= divide-equals X = Y is similar 
toX=X!Y 

%= mod-equals X %= Y is similar 
toX=X%Y 

++ prefix and ++X and FBX++ are similar 
postfix toX X+l 
increments 

- prefix and - and X similar 
postfix toX=X-l 
decrements 

Figure 17-2. Symbols and Descriptions for Assignment Operators 

17-4 lOON INTERNATIONAL 



awk 

( Arithmetic operators are shown in Figure 17-3. 

Arithmetic Operators 

Symbol Description 
.R 

+ unary binary plus 
- unary and binary min us 

* multiplication 
/ division 
% modulus 
( ... ) grouping 

Figure 17-3. Symbols and Descriptions for Arithmetic Operators 

f Relational operators are shown in Figure 17-4. 

Relational Operators 

Symbol Description 

< less than 
<= less than or equal to 
- equal to 
!= not equal to 
>= greater than or equal to 
> greater than 

Figure 17-4. Symbols and Descriptions for Relational Operators 

PROGRAMMER GUIDE 17-5 



awk 

Logical operators are shown in Figure 17-5. 

Logical Operators 

Symbol Description 

8r.8r. and 
! ! or 
! not 

Figure 17-5. Symbols and Descriptions for Logical Operators 

Regular expression matching operators are shown in the Figure 17-6. 

Regular Expression Pattern Matching Operators 

Symbol Description 

- matches 
!- does not match 

Figure 17-6. Symbols and Descriptions for Regular Expression Pa.ttern 

Record and Field Tokens 

The $0 is a special variable whose value is that of the current input record. The $1, $2 •.. are 
special variables whose values are those of the first field, the second field , ... , respectively, of 
the current input record. The keyword NF (Number of Fields) is a special variable whose 
value is the number of fields in the current input records. Thus $NF has, as its value, the 
value of the last field of the current input records. Notice that the field of each record is 
numbered 1 and that the number of fields can vary from record to record. None of these 
variables is defined in the action associated with a BEGIN or END pattern, where there is n,o 
current input record. 

The keyword NR (Number of Records) is a variable whose value is the number of input records 
read so far. The first input record read is 1. 

17-6 ICON INTERNATIONAL 



( 

( 

o 

awk 

Record Separators 

The keyword RS (Record Separators) is a variable whose value is the current record separator. 
The value of RS is initially set to newline, indicating that adjacent input records are 
separated by a newline. Keyword RS is changed to any character c by including the 
assignment statement RS == "c" in an action. 

Field Separator 

The keyword FS (Field Separator) is a variable indicating the current field separator. Initially, 
the value of FS is a blank, indicating that fields are separated by white space, i.e., any nonnull 
sequence of blanks and tabs. Keyword FS is changed to any single character c by including the 
assignment statement F == "c" in an action or by using the optional command line argument 
-Fe. Two values of c have special meaning, space and t. The assignment statement FS == .... 
makes white space in field separator; and on the command line, -Ft makes tab the field 
separator. 

If the field operator is not a blank, then there is a field in the record on each side of the 
separator. For instance, if the field separator is 1, the record 1XXX1 has three fields. The first 
and last are null. If the field separator is blank, then fields are separated by white space, and 
none of the NF fields are null. 

Multiline Records 

The assignment RS == " .. makes an empty line the record separator and makes a nonnull 
sequence (consisting of blanks, tabs, and possibly a newline) the field separator. With this 
setting, none of the first NF fields of any record are null. 

Output Record and Field Separators 

The value of OFS (Output Field Separator) is the output field separator. It is put between 
fields by print. The value of ORS (Output Record Separators) is put after each record by 
print. Initially, ORS is set to a newline and OFS to a space. These values may change to any 
string by assignments such as ORS == "abc" and OFS = "xyz". 

Comments 

A comment is introduced by a # and terminated by a newline. For example: '* part of the line is a comment 

A comment can be appended to the end of any line of an awk program. 

Separators and Brackets 

Tokens in awk are usually separated by nonnull sequences of blank, tabs, and newlines, or by 
other punctuation symbols such as commas and semicolons. Braces { ... } surround actions, 
slashes /. . ./ surround regular expression patterns, and double quotes ..... " surround strings. 

PROGRAMMER GUIDE 17-7 



awk 

PRIMARY EXPRESSIONS 

In awk, patterns and actions are made up of expressions. The basic building blocks of 
expressions are the primary ezpressions: 

numeric constants 
string constant 
var 
function 

Each expression has both a numeric and a string value, one of which is usually preferred. The 
rules for determining the preferred value of an expression are explained below. 

Numeric Constants 

The format of a numeric constant was defined previously in LEXICAL CONVENTIONS. 
Numeric values are stored as floating point numbers. Both the numeric and string value of a 
numeric constant is the decimal number represented by the constant. The preferred value is 
the numeric value. 

Numeric values for string constants are in Figure 17-7. 

Numeric Constants 

Numeric Numeric String 
Constant Value Value 

0 0 0 
1 1 1 

.5 0.5 .5 

.5e2 50 50 

Figure 17-7. Numeric Values for String Constants 

Strine Constants 

The format of a string constant was defined previously in LEXICAL CONVENTIONS. The 
numeric value of a string constant is 0 unless the string is a numeric constant enclosed in 
double quotes. In this case, the numeric value is the number represented. The preferred value 
of a string constant is its string value. The string value of a string constant is always the 
string itself. 

17-8 ICON INTERNATIONAL 



( 

c 

String values for string constants are in Figure 17-8. 

String Constants 

String Numeric String 
Constant Value Value 

'''' 0 empty space 
" tt a 0 a 
''XYZ'' 0 xyz 
"0" 0 0 
"1" 1 1 
".5" 0.5 .5 
".5e2" 0.5 .5e2a 

Figure 17-8. String Values for String Constants 

A var is one of the following: 

identifier 
identifier{ expression} 
$term 

Yars 

The numeric value of any uninitialized var is 0, and the string value is the empty string. 

awk 

An identifier by itself is a simple variable. A var of the form identifier {expression} represents 
an element of an associative array named by identifier. The string value of expression is used 
as the index into the array. The preferred value of identifier or identifier {expression} is 
determined by context. 

The var $0 refers to the current input record. Its string and numeric values are those of the 
current input record. If the current input record represents a number, then the numeric value 
of $0 is the number and the string value is the literal string. The preferred value of $0 is 
string unless the current input record is a number. The $0 cannot be changed by assignment. 

The var $1, $2, ••• refer to fields 1, 2, ... of the current input record. The string and numeric 
value of $i for 1 <=i< NF are those of the ith field of the current input record. As with $0, if 
the ith field represents a number, then the numeric value of $i is the number and the string 
value is the literal string. The preferred value of $i is string unless the ith field is a number. 
The $i is changed by assignment. The $0 is then changed accordingly. 

PROGRAMlvIER GUIDE 17-9 



awk 

Function 

The awk has a number of built-in functions that perform common arithmetic and string 
operations. 

The arithmetic functions are in Figure 17-9. 

Functions 

exp (expression) 
int (expression) 
log (expression) 
sqrt (expression) 

Figure 17-9. Built-in Functions for Arithmetic and String Operations 

These functions (exp, int, log, and sqrt) compute the exponential, integer part, natural 
logarithm, and square root, respectively, of the numeric value of expression. The (expression) 
may be omitted; then the function is applied to $0. The preferred value of an arithmetic 
function is numeric. 

17-10 ICON INTERNATIONAL 



( 

{ 

awk 

String functions are shown in Figure 17-10. 

String Functions 

getline 
index (expresSionl, expression2) 
length (expression) 
split (expression, identifier, expression2) 
split (expression, identifier) 
sprintf (format, expressionl, expression2 ... ) 
substr (expressionl, expression2) 
substr (expressionl, expression2, expression3) 

Figure 17-10. Expressions for String Functions 

The function getline causes the next input record to replace the current record. It returns 1 if 
there is a next input record or a 0 if there is no next input record. The value of NR is 
updated. 

The function index (el,e2) takes the string value of expressions el and e2 and returns the first 
position of where e2 occurs as a substring in el. If e2 does not occur in el, index returns O. For 

I . d (" b " "b ") 2 d· d (" b ".. ")=0 examp e, m ex a c, c = an In ex a c, ac . 

The function length without an argument returns the number of characters in the current 
input record. With an expression argument, length (e) returns the number of characters in the 
string value of e. For example, length ("abc")=3 and length (17) 2. 

The function split (e array, sep) splits the string value of expression e into fields that are then 
stored in array [lJ, array [2J, ... , array [nJ using the string value of sep as the field separator. 
Split returns the number of fields found in e. The function split (e, array) uses the current 
value of FS to indicate the field separator. For example, after invoking n = split ($0), a[l], 
a[2, ... , a[n] is the same sequence of values as $1, $2 .•• , $NF. 

The function splitf (f, el, e2 ••• ) produces the value of expressions el, e2 ..• in the format 
specified by the string value of the expression f. The format control conventions are those of 
the printf statement in the C programming language [KR]. 

The function substr (string, pos) returns the suffix of string starting at position pos. The 
function substr (string, pos, length) returns the substring of string that begins at position pos 
and is length characters long. If pos + length is greater than the length of string then substr 
(string, pos, length) is equivalent to substr (string, pos). For example, substr ("abc", 2, 1) = 
"b", substr ("abc", 2, 2) = "bc", and subtr ("abc", 2, 3) = "bc". Positions less than 1 are taken 

PROGR.AM:MER GUIDE 17-11 



awk 

as 1. A negative or zero length produces!}. null result. 

The preferred value of sprintf and substr is string. The preferred value of the remaining string 
functions is numeric. 

TERMS 

Various arithmetic operators are applied to primary expressions to produce larger syntactic 
units called terms. All arithmetic is done in floating point. A term has one of the following 
forms: 

primary expression 
term binop term 
unop term 
incremented var 
(term) 

In a term of the form 

terml 
binop 
term2 

Binary Terms 

binop can be one of the five binary arithmetic operators +, -, * (multiplication), I(division), % 
(modulus). The binary operator is applied to the numeric value of the operand terml and 
term2, and the result is the usual numeric value. This numeric value is the preferred value, but 
it can be interpreted as a string value (see Numeric Consta.nts). The operators * , I, and % 
have higher precedence than + and -. All operators are left associative. 

Unary Term 

In a term of the form 

unop term 

unop can be unary + or -. The unary operator is applied to the numeric value of term, and the 
result is the usual numeric value which is preferred. However, it can be interpreted as a string 
value. Unary + and - have higher precedence than *, I, and % 

17-12 ICON INTERNATIONAL 



( 

c 

Incremented Vars 

An incremented var has one of the forms 

+ + var 
-- var 
var ++ 
var--

awk 

The + + var has the value var + 1 and has the effect of var = var + 1. Similarly, - - var has 
the value var - 1 and has the effect of var = var - 1. Therefore, var + + has the same value 
as var and has the effect of var = var + 1. Similarly, var - - has the same value as var and 
has the effect of var = var - 1. The preferred value of an incremented var is numeric. 

Parenthesized Terms 

Parentheses are used to group terms in the usual manner. 

EXPRESSIONS 

An awk expression is one of the following: 

term 
term term ... 
var asgnop expression 

Concatenation of Terms 

In an expression of the form term1 term£ ... , the string value of the terms are concatenated. 
The preferred value of the resulting expression is a string value that can be interpreted as a 
numeric value. Concatenation of terms has lower precedence than binary + and -. For 
example, 1+23=4 has the string (and numeric) value 37. 

Assignment Expressions 

An assignment expression is one of the forms 

var asgnop expreSSlon 

where asgnop is one of the six assignment operators: 

PROGRAMMER GUIDE 17-13 



awk 

= 
+= 
-= 
*= 
1= 
%= 

The preferred value of var is the same as that of ezpression. 

In an expression of the form 

var = ezpression 

the numeric and string value of var becomes those of ezpression. 

var op = ezpression 

is equivalent to 

var = var op ezpresslon 

where op is one of; +, -, *, I, %. The .asgnops are right associative and have the lowest 
precedence of any operator. Thus, a += b *= c-2 is equivalent to the sequence of assignments 

b = b * (0-2) 
a =a+2 

USING awk 

There are two ways in which to present your -(Jwk program of pattern-action statements to awk 
for processing: 

1. If the program is short (a line or two), it is often easiest to make the program the first 
argument on the command line: 

awk ' program ' files 

where "files" is an optional list of input files and "program" is your awk program. Note that 
there are single quotes around the program in order for the shell to accept the entire 
string (program) as the first argument to awk. For example, write to the shell 

17-14 ICON INTERNATIONAL 

/~-', 
~. . 
i I 

\,-j 



( 

o 

awk 

awk ) Ixl {print} ) files 

to run the awk script Ixl {print} on the input file "files". If no input files are specified, awk 
takes input from the standard input stdin. You can also specify that input comes from 
stdin by using "_" (the hyphen) as one of the files. The pattern-action statement 

awk 'program' files -

looks for input from "files" and from stdin and processes first from "files" and then from 
stdin. 

2. Alternately, if your awk program is long, it is more convenient to put the program in a 
separate file, awkprog, and tell awk to fetch it from there. This is done by using the "-f" 
option after the awk command as follows: 

awk -f awkprog files 

where "files" is an optional list of input files that may include stdin as is indicated by a 
hyphen (-). 

For example: 

awk) BEGIN { 

} 

prints 

hello, world 

print "hello, world" 
exit 

on the standard output when given to the shell. Recall that the word "BEGIN" is a special 
pattern indicating that the action following in braces is run before any data is read. Words 
"print" and "exit" are both discussed in later sections. 

This awk program could be run by putting 

BEGIN { 
print "hello, world" 
exit 
} 

in a file named awkprog , and then the command 

PROGRAMMER GUIDE 17-15 



awk 

awk -f awkprog 

given to the shell. This would have the same effect as the first procedure. 

INPUT: RECORDS AND FIELDS 

The awk reads its input one record at a time unless changed by you. A record is a sequence of 
characters from the input ending with a newline character or with an end of file. Thus, a 
record is a line of input. The awk program reads in characters until it encounters a newline or 
end of file. The string of characters, thus read, is assigned to the variable $0. You can change 
the character that indicates the end of a record by assigning a new character to the special 
variable RS (the record separator). Assignment of values to variables and these special 
variables such as RS are discussed later. 

Once awk has read in a record, it then splits the record into "fields". A field is a string of 
characters separated by blanks or tabs, unless you specify otherwise. You may change field 
separators from blanks or tabs to whatever characters you choose in the same way that record 
separators are changed. That is, the special variable FS is assigned B. different value. 

As an example, let us suppose that the file "countries" contains the aTea in thousands of square 
miles, the population in millions, and the continent for the ten laTgest countries in the world. 
(Figures are from 1978; Russia is placed in Asia.) 

Sample Input File " countries": 

Russia 8650 262 Asia 
Canada 3852 24 North America 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
Australia 68 14 Australia 
India 1269 637 Asia 
Argentina 72 26 South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

The wide spaces are tabs in the original input and a single blank separates North and South 
from America. We use this data as the input for many of the awk programs in this guide since 
it is typical of the type of material that awk is best at processing (a mixture of words and 
numbers separated into fields or columns separated by blanks and tabs). 

Each of these lines has either four or five fields if blanks and/or tabs separate the fields. This is ;if"" 
what awk assumes unless told otherwise. In the above example, the first record is ~-"' 

17-16 ICON INTERNATIONAL 



( 

c 

awk 

Russia 8650 262 Asia 

When this record is read by awk, it is assigned to the variable SO. If you want to refer to this 
entire record, it is done through the variable, SO. 

For example, the following input: 

{print $O} 

prints the entire record. Fields within a record are assigned to the variables $1, $2, $3, and so 
forth; that is, the first field of the present record is referred to as $1 by the awk program. The 
second field of the present record is referred to as $2 by the awk program. The ith field of the 
present record is referred to as $i by the awk program. Thus, in the above example of the file 
countries, in the first record; 

$1 is equal to the string "Russia" 
$2 is equal to the integer 8650 
$3 is equal to the integer 262 
$4 is equal to the string "Asia" 
$5 is equal to the null string 

... and so forth. 

To print the continent, followed by the name of the country, followed by its population, use the 
following awk script: 

{print $4, $1, $3} 

Note that awk does not require type declarations. 

INPUT: FROM THE COMMAND LINE 

It is possible to assign values to variables from within an awk program. Because you do not 
declare types of variables, a variable is created simply by referring to it. An example of 
assigning a value to a variable is: 

x=5 

This statement in an awk program assigns the value 5 to the variable x. It is also possible to 
assign values to variables from the command line. This provides another way to supply input 

PROGRAMMER GUIDE 17-17 



awk 

values to awk programs. 

For example 

awk ' {print x }' x==5 -

will print the value 5 on the standard output. The minus sign at the end. of this command is 
necessary to indicate that input is coming from stdin instead of a file called "x==5". Similarly if 
the input comes from a file named "file", the command is 

awk '{print x}' file 

It is not possible to assign values to variables used in the BEGIN section in this way. 

If it is necessary to change the record separator and the field separator, it is useful to do so 
from the command line as in the following example: 

awk -f aWk.program RS=":" file 

Here, the record separator is changed to the character ":". This causes your program in the 
file "awk.program" to run with records separated by the colon instead of the newline character 
and with input coming from the file, "file". It is similarly useful to change the field separator 
from the command line. 

This operation is so common that there is yet another way to change the field separator from 
the command line. There is a separate option "-Fx" that is placed directly after the command 
a wk. This changes the field separator from blank or tab to the character "x". 

For example 

awk -F: -f awk.program file 

changes the field separator FS to the character "." Note that if the field separator is 
specifically set to a tab, (that is, with the -F option or by making a direct assignment to FS) 
then blanks are recognized by awk as separating fields. However, even if the field separator is 
specifically set to a blank, tabs are STILL recognized by awk as separating fields. 

An exercise: 

Using the input file ("countries" described earlier) write an awk script that prints the name of a 
country followed by the continent that it is on. Do this in such a way that continents composed 
of two words (e. g., North America) are processed as only one field and not two. 

17-18 ICON INTERNATIONAL 

f' 
i J 
~/ 



( 

o 

awk 

OUTPUT: PRINTING 

An action may have no pattern; in this case, the action is executed for all lines as in the simple 
printing program 

{print} 

This is one of the simplest actions performed by awk. It prints each line of the input to the 
output. More useful is to print one or more fields from each line. For instance, using the file 
"countries", that was used earlier, 

awk '{ print $1, $3 }' countries 

prints the name of the country and the population: 

Russia 262 
Canada 24 
China 866 
USA 219 
Brazil 116 
Australia 14 
India 637 
Argentina 14 
Sudan 19 
Algeria 18 

Note that the use of a semicolon at the end of statements in awk programs is optional. Awk 
accepts 

{print $1 } 

and 

{print $1; } 

equally and takes them to mean the same thing. If you want to put two awk statements on 
the same Jine of an awk script, the semicolon is necessary. For example, the following 
semicolon is necessa.ry if you want the number 5 printed: 

{x=5; print x } 

Parentheses are also optional with the print statement. 

print $3, $2 

is the same as 

print ($3, $2 ) 

PROGRAMMER GUIDE 17-19 



awk 

Items separated by a comma in a print statement are separated by the current output field 
separators (normally spaces, even though the input is separated by tabs) when printed. The 
OFS is another special variable that can be changed by you. These special variables are 
summarized in a later section. 

An exercise: 

Using the input file, "countries", print the continent followed by the country followed by the 
population for each input record. Then pipe the output to the ICON/UXV operating system 
command "sort" so that all countries from a given continent are printed together. 

Print also prints strings directly from your programs with the awk script 

{print "hello, world" } 

from an earlier section. 

An exercise: 

Print a header to the output of the previous exercise that says "Population of Largest 
Countries" followed by headers to the columns that follow describing what is in that column, 
for example, Country or Population. 

As we have already seen, awk makes available a number of special variables with useful values, 
for example, FS and RS. We now introduce another special variable in the next example. NR 
and NF are both integers that contain the number of the present record and the number of 
fields in the present record, respectively. Thus, 

{print NR, NF, $O} 

prints each record number and the number of fields in each record followed by the record itself. 
Using this program on the file, "countries" yields: 

1 4 Russia 8650 262 Asia 
25 Canada 3852 24 North America 
34 China 3692 866 Asia 
45 USA 3615 219 North America 
55 Brazil 3286 116 South America 
6 4 Australia 2968 14 Australia 
74 India 1269 637 Asia 
8 5 Argentina 1072 26 South America 
94 Sudan 968 19 Africa 
104 Algeria 920 18 Africa 

17-20 ICON INTERNATIONAL 

(-~ 



( 

( 

and the program 

prints 

1 Russia 
2 Canada 
3 China 
4 USA 
5 Brazil 
6 Australia 
7 India 
8 Argentina 
9 Sudan 
10 Algeria 

awk 

{print NR, $1 } 

This is an easy way to supply sequence numbers to a list. Print, by itself, prints the input 
record. Use 

print .... 

to print the empty line. 

Awk also provides the statement printf so that you can format output as desired. Print uses 
the default format "%.6g" for each variable printed. 

printf format, expr, expr, ... 

formats the expressions in the list according to the specification in the string, format, and 
prints them. The format statement is exactly that of the printf in the C library. For example, 

{ printf "%10s %6dO, $1, $2, $3 } 

prints $1 as a string of 10 characters (right justified). The second and third fields (6-digit 
numbers) make a neatly columned table. 

PROGRAMMER GUIDE 17-21 



awk 

Russia 8650 262 
Canada 3852 244 

China 3692 866 
USA 3615 219 

Brazil 3286 116 
Australia 2968 14 

India 1269 637 
Argentina 1072 26 

Sudan 968 19 
Algeria 920 18 

With printf, no output separators or newlines are produced automatically. You must add them 
as in this example. In the C library version of printf, the various escape characters "\n", "\t", 
"\b" (backspace) and "\r" (carriage return) are valid with the awk printf. 

There is a third way that printing can occur on standard output when a pattern is specified 
but there is no action to go with it. In this case, the entire record $0 is printed. For example, 
the program 

/x/ 

prints any record that contains the character ··x". 

There are two special variables that go with printing, OFS and ORS. These are by default 
set to blank and the newline character, respectively. The variable OFS is printed on the 
standard output when a comma occurs in a print statement such as 

{ x="hello"; y-"world" 
print x,y 
} 

which prints 

hello world 

However, without the comma in the print statement as 

{ x="hello"; y="world" 
print x y 
} 

17-22 ICON INTERNATIONAL 

C) 

/ 



awk 

( you get 

( 

helloworld 

To get a comma on the output, you can either insert it in the print statement as in this case 

{ x-"hello"; y-"world" 
print x"," y 
} 

or you can change OFS in a BEGIN section as in 

BEGIN {OFS=", It} 
{ x="hello"; y="world" 
print x, y 
} 

both of these last two scripts yields 

hello, world 

Note that the output field separator is not used when $0 is printed. 

OUTPUT: TO DIFFERENT FaES 

The ICONjUXV shell allows you to redirect standard output to a file. The awk program also 
lets you direct output to many different files from within your awk program. For example, with 
our input file "countries", we want to print all the data from countries of Asia in a file called 
"ASIA", all the data from countries in Mrica in a file called "AFRIOA", and so forth. This is 
done with the following awk program: 

{ if ($4 = "Asia") print> "ASIA" 

} 

if ($4 == ''Europe'') print> ''EUROPE'' 
if ($4 = "North") print> "NORTH-AMERICA" 
if ($4 = "South") print> "SOUTH-AMERICA" 
if ($4 = "Australia") print> "AUSTRALIA" 
'f ($4 "M' ") . t > "AFRICA" I == rIca prIn 

(/~ The flow of control statements (for example, "if") are discussed later. 

PROGRAMMER GUIDE 17-23 



awk 

I~ 
In general, you may direct output into a file after a print or a printf statement by using a,,-) 
statement of the form 

print > 'TILE" 

where FILE is the name of the file receiving the data, and the print statement may have any 
legal arguments to it. 

Notice that the file names are quoted. Without quotes, the file names are treated as 
uninitialized variables and all output then goes to the same file. 

If> is replaced by», output is appended to the file rather than overwriting it. 

Users should also note that there is an upper limit to the number of files that are written in 
this way. At present it is ten. 

OUTPUT: TO PIPES 

It is also possible to direct printing into a pipe instead of a file. For example, 

{ 

} 
if ($2 = "XX") print I "mail mary" 

where "mary" is someone's login name, any record is sent (with the second field equal to ''XX'') 
to the user, mary, as mail. Awk waits until the entire program is run before it executes the 
command that was piped to, in this case the "mail" command. 

For example: 
{ 
print $1 I "sort" 
} 

takes the first field of each input record, sorts these fields, and then prints them. The command 
in parentheses is any ICON/UXV operating system command. 

An exercise: 

Write an awk script that uses the input file to 

17-24 ICON INTERNATIONAL 



( 

() 

awk 

• List countries that were used previously 

• Print the name of the countries 

• Print the population of each country 

• Sort the data so that countries with the largest population appear first 

• Mail the resulting list to yourself. 

Another example of using a pipe for output is the following idiom which guarantees that its 
output always goes to your terminal: 

print ... I "cat -u > /dev /tty" 

Only one output statement to a pipe is permitted in an awk program. In all output statements 
involving redirection of output, the files or pipes are identified by their names but they are 
created and opened only once in the entire run. 

COMMENTS 
Comments are placed in awk programs; they begin with the character # and end with the end 
of the line as in 

print x, Y # this is a comment 

PATTERNS 
A pattern in front of an action acts as a selector that determines if the action IS to be 
executed. A variety of expressions are used as patterns: 

• Regular expressions 

• Arithmetic relational expressions 

• String valued expressions 

• Combinations of these. 

PROGRAMMER GUIDE 17-25 



awk 

BEGIN and END 

The special pattern, BEGIN, matches the beginning of the input before the first record is read. 
The pattern, END, matches the end of the input after the last line is processed. BEGIN and 
END thus provide a way to gain control before and after processing for initialization and 
wrapping up. 

An example: 

As you have seen, you can use BEGIN to put column headings on the output 

BEGIN {print "Country", "Area", "Population", "Continent"} 
{print} 

which produces 

Country Area Population Continent 

Russia 8650 262 Asia 
Canada 3852 24 North America 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 ll6 South America 
Australia 2968 14 Australia 
India 1269 637 Asia 
Argentina 1072 26South America 
Sudan 968 19 Africa 
Algeria 920 18 Africa 

Formatting is not very good here; printfwould do a better job and is usually mandatory if you 
really care about appearance. 

Recall also, that the BEGIN section is a good place to change special variables such as FS or 
RS. 

Example: 

BEGIN {FS=" " 
print "Countries", "Area", "Population", "Continent" 
} 
{print} 

END {print "The number of records is", NR} 

17-26 ICON INTERNATIONAL 

' ". 
'I 

'" / 



( 

awk 

In this program, FS is set to a tab in the BEGIN section and as a result all records (in the file 
countries) have exactly four fields. 

Note that if BEGIN is present it is the first pattern; END is the last if it is used. 

Relational Expressions 

An awk pattern is any expression involving comparisons between strings of characters or 
numbers. For example, if you want to print only countries with more than 100 million 
population, use 

$3 >100 

This tiny awk program is a pattern without an action so it prints each line whose third field is 
greater than 100 as follows: 

Russia 8650 262 Asia 
China 3692 866 Asia 
USA 3615 219 North America 
Brazil 3286 116 South America 
India 1269 637 Asia 

To print the names of the countries that are in Asia, type 

$4 = "Asia" {print $1} 

which produces 

Russia 
China 
India 

The conditions tested are <, <=, =, !=, >=, and >. In such relational tests if both operands 
are numeric, a numerical comparison is made. Otherwise, the operands are compared as 
strings. Thus, 

PROGRAMMER GUIDE 17-27 



awk 

$1 >= "S" 

selects lines that begin with S, T, U, and so forth which in this case is 

USA 3615 219 North America 
Sudan 968 19 Africa 

In the absence of other information, fields are treated as strings, so the program 

$1 =$4 

compares the first and fourth fields as strings of characters and prints the single line 

Australia 2968 14 Australia 

If fields appear as numbers, the comparisons are done numerically. 

Regular Expressions 

Awk provides more powerful capabilities for searching for strings of characters than were 
illustrated in the previous section. These are regular expressions. The simplest regular 
expression is a literal string of characters enclosed in slashes. 

/Asia/ 

This is a complete awk program that prints all lines which contain any occurrence of the name 
"Asia". If a line contains "Asia" as part of a larger word like "Asiatic", it is also printed (but 
there are no such words in the countries file.) 

Awk regular expressions include 

• Regular expression forms found in the text editor 

• ed and the pattern finder 

17-28 ICON INTERNATIONAL 



awk 

• grep in which certain characters have special meanings. 

For example, we could print all lines that begin with A with 

rAj 

or all lines that begin with A, B, or C with 

r[ABC]/ 

or all lines that end with "ia" with 

/ia$/ 

In general, the circumflex (A) indicates the beginning of a line. The dollar sign ($) indicates the 
end of the line and characters enclosed in brackets ,n, match anyone of the characters 
enclosed. In addition, awk allows parentheses for grouping, the pipe (D for alternatives, + for 
" ,,' d?f" " F I one or more occurrences, an . or zero or one occurrences. or examp e, 

/xb' / {print} 

prints all records that contain either an "x" or a "y". 

/ax+b/ {print} 

prints all records that contain an "a" followed by one or more "x's" followed by a "b". For 
example, axb, Paxxxxxxxb, QaxxbR. 

/ax?b/ {print} 

prints all records that contain an "a" followed by zero or one "x" followed by a "b". For 
example: ab, axb, yaxbPPP, CabO. 

PROGRAMMER GUIDE 17 -29 



awk 

The two characters It." and It*" have the same meaning as they have in ed: namely, ..... can 
stand for any character and .. * .. means zero or more occurrences of the character preceding it. 
For example, 

la.bl 

matches any record that contains an "a" followed by any character followed by a "b". That is, 
the record must contain an "a" and a "b" separated by exactly one character. For example, 
la.bl matches axb, aPb and xxxxaXbxx, but NOT ab, axxb. 

lab*cl 

matches a record that contains an "a" followed by zero or more "b"'s followed by a "c". For 
example, it matches 

ac 
abc 
pqrabbbbbbbbbbc901 

Just as in ed, it is possible to turn off the special meaning of these metacharacters such as "~,, 
and .. * .. by preceding these characters with a backslash. An example of this is the pattern 

1;'*// 

which matches any string of characters enclosed in slashes. 

One can also specify that any field or variable matches a regular expression (or does not match 
it) by using the operators or I'. For example, with the input file countries as before, the 
program 

$1 - lia$1 {print $1} 

prints all countries whose name ends in "ia": 

17-30 lOON INTERNATIONAL 



o 

Russia 
Australia 
India 
Algeria 

that is indeed different from lines which end in "ian. 

Combinations of Patterns 

awk 

A pattern is made up of similar patterns combined with the operators II (OR), && (AND), ! 
(NOT), and parentheses. For example, 

$2 >= 3000 && $3 >=100 

selects lines where both area AND population are large. For example, 

Russia 
China 
USA 
Brazil 

while 

8650 
3692 
3615 
3286 

262 Asia 
866 Asia 
219 North America 
116 South America 

$4 "As·" " ~.. "Af·" == la \I ~ = rica 

selects lines with Asia or Africa as the fourth field. An alternate way to write this last 
expression is with a regular expression: 

$1 - r(AsialAfrica))$/ 

&& and II guarantee that their operands are evaluated from left to right; evaluation stops as 
soon as truth or falsehood is determined. 

PROGRAMMER GUIDE 17-31 



awk 

Pattern Ranges 

The "pattern" that selects an action may also consist of two patterns separated by a comma 
as in 

pattern1, pattern2 { .. , } 

In this case, the action is performed for each line between an occurrence of patternl and the 
next occurrence of pattern2 (inclusive), As an example with no action 

/Canada/,/Brazil/ 

prints all lines between the one containing "Canada" and the line containing "Brazil", For 
example, 

Canada 
China 
USA 
Brazil 

while 

3852 24 
3692 866 
3615 219 
3286 116 

North America 
Asia 
North America 
South America 

NR = 2, NR = 5 { ". } 

does the action for lines 2 through 5 of the input, Different types of patterns are mixed as in 

/Canada/, $4 = "Africa" 

and prints all lines from the first line containing "Canada" up to and including the next record 
whose fourth field is "Africa", 

C) 

Users should note that patterns in this form occur OUTSIDE of the action parts of the awk (. " 
programs (outside of the braces that define awk actions), If you need to check patterns inside 
an awk action (inside the braces), use a flow of control statement such as an "if" statement or 

17-32 ICON INTERNATIONAL 



( ... 

awk 

a "while" statement. Flow of control statements are discussed in the part "BUILT-IN 
FUNCTIONS". 

ACTIONS 

An awk action is a sequence of action statements separated by newlines or semicolons. These 
action statements do a variety of bookkeeping and string manipulating tasks. 

Variables, Expressions, and Assignments 

The awk provides the ability to do arithmetic and to store the results in variables for later use 
in the program. However, variables can also store strings of characters. You cannot do 
arithmetic on character strings, but you can stick them together and pull them apart as 
shown. As an example, consider printing the population density for each country in the file 
countries. 

{print $1, (1000000 * $3)/($2 * 1000) } 

(Recall that in this file the population is in millions and the area in thousands.) The result is 
population density in people per square mile. 

Russia 30.289 
Canada 6.23053 
China 234.561 
USA 60.5809 
Brazil 35.3013 
Australia 4.71698 
India 501.97 
Argentina 24.2537 
Sudan 19.6281 
Algeria 19.5652 

The formatting is bad; so using printf instead gives the program 

{printf "%10s %6.lfO, $1, (1000000 * $3)/($2 * 1000) } 

and the output 

PROGRAMMER GUIDE 17-33 



awk 

Russia 30.3 
Canada 6.2 

China 234.6 
USA 60.6 

Brazil 35.3 
Australia 4.7 

India 502.0 
Argentina 24.3 

Sudan 19.6 
Algeria 19.6 

Arithmetic is done internally in floating point. The arithmetic operators are +. -, *, / and % 
(mod or remainder). 

To compute the total population and number of countries from Asia, we could write 

/Asia/ 
END 

{ pop = pop + $3; n = n + 1 } 
{print "total population of", n, "Asian countries is", pop} 

which produces total population of three Asian countries is 1765. 

Actually, no experienced programmer would write 

{pop = pop + $3; n = n + 1 } 

since both assignments are written more clearly and concisely. The better way is 

{pop += $3; ++n } 

Indeed, these operators, ++, -, , /=, * =, +=, and %= are available in awk as they are in 
C. Operator x += y has the same effect as x = x + y but +- is shorter and runs faster. The 
same is true of the ++ operator; it adds one to the value of a variable. The increment 
operators ++ and - (as in C) is used as prefix or as postfix operators. These operators are 
also used in expressions. 

17-34 ICON INTERNATIONAL 

(' 
~/ 

(, ... " 
- ,j 



f 

awk 

Initiali .. ation or Variahles 

In the previous example, we did not initialize pop nor n; yet! everything worked properly. This 
is because (by default) variables are initialized to the null string which has a numerical value 
of O. This eliminates the need for most initialization of variables in BEGIN sections. We can 
use default initialization to advantage in this program which finds the country with the largest 
population. 

maxpop < $3 { 
maxpop = $3 
country = $1 
} 

END {print country, maxpop} 

which produces 

China 866 

Field Variables 

Fields in awk share essentially all of the properties of variables. They are used in arithmetic 
and string operations and may be assigned to and initialized to the null string. Thus, divide 
the second field by 1000 to convert the area to millions of square miles by 

{ $2 /= 1000; print} 

or process two fields into a third with 

BEGIN {FS = " "} 
{ $4 = 1000 * $3 / $2; print} 

or assign strings to a field as in 

/USA/ { $1 = "United States" ; print} 

PROGRAMMER GUIDE 17-35 



awk 

which replaces USA by United States and prints the effected line 

United States 3615 219 North America 

Fields are accessed by expressions; thus, $NF is the last field and $(NF-l) is the second to the 
last. Note that the parentheses are needed since $NF-l is 1 less than the values in the last 
field. 

String Concatenation 

Strings are concatenated by writing them one after the other as in the following example: 

{ x == "hello" 
x = x It, world" 
print x 

} 

prints the usual 

hello, world 

With input from the file "countries", the following program: 

/A/ { s = s " " $1 } 
END { print s } 

prints 

Australia Argentina Algeria 

Variables, string expressions, and numeric expressions may appear in concatenations; the 
numeric expressions are treated as strings in this case. 

17-36 ICON INTERNATIONAL 

o 



(-

(
-~ 

/ 

awk 

Special Variables 

Some variables in awk have special meanings. These are detailed here and the complete list 
given. 

NR Number of the current record. 

NF Number of fields in the current record. 

FS Input field separator, by default it is set to a blank or tab. 

RS Input record separator, by default it is set to the newline character. 

$i The ith input field of the current record. 

$0 The entire current input record. 

OFS Output field separator, by default it is set to a blank. 

ORS Output record separator, by default it is set to the newline character. 

OFMT The format for printing numbers, with the print statement, by default 1S 

"%6 " o. g . 

FILENAME The name of the input file currently being read. This is useful because awk 
commands are typically of the form 

awk -f program filel file2 file3 ... 

Type 

Variables (and fields) take on numeric or string values according to context. For example, in 

pop += $3 

pop is presumably a number, while in 

country = $1 

country is a string. In 

PROGRAMMER GUIDE 17-37 



awk 

maxpop < $3 

the type of maxpop depends on the data found in $3. It is determined when the program is run. 

In general, each variable and field is potentially a string or a number or both at any time. 
When a variable is set by the assignment 

v == expr 

its type is set to that of expr. (Assignment also includes +=, ++, -=, and so forth.) An 
arithmetic expression is of the type, "number"; a concatenation of strings is of type "string". If 
the assignment is a simple copy as in 

vI =v2 

then the type of vI becomes that of v2. 

In comparisons, if both operands are num~ric, the comparison is made numerically. Otherwise, 
operands are coerced to strings if necessary and the comparison is made on strings. 

The type of any expression is coerced to numeric by subterfuges such as 

expr + 0 

and to string by 

expr "" 

This last expression is string concatenated with the null string. 

17-38 ICON INTERNATIONAL 



( 

c 

awk 

Arrays 

.As well as ordinary variables, awk provides I-dimensional arrays. Array elements are not 
declared; they spring into existence by being mentioned. Subscripts may have any non-null 
value including non-numeric strings . 

.As an example of a conventional numeric subscript, the statement 

x[NR] = $0 

assigns the current input line to the NRth element of the array x. In fact, it is possible in 
principle (though perhaps slow) to process the entire input in a random order with the 
following awk program: 

{x[NR] = $O} 
END { ... program ... } 

The first line of this program records each input line into the array x. In particular, the 
following program 

{x[NR] = $1} 

(when run on the file countries) produces an array of elements with 

[1] "R ." x = USSla 

x[2] = "Canada" 
[3] ItCh· " x = ma 

... and so forth. 

Arrays are also indexed by non-numeric values that give awk a capability rather like the 
associative memory of Snobol tables. For example, we can write 

IAsial {pop ["Asia"] += $3 } 
IAfrica/{pop[Africa] += $3 } 
END . "As· " ["As· "] "Af· " ["Af· "]} prmt la= pop la, rIca= pop rIca 

PROGRAMMER GUIDE 17-39 



awk 

which produces 

Asia=1765 Africa=37 

Notice the concatenation. Also, any expression can be used as a subscript in an array 
reference. Thus, 

area[$l] = $2 

uses the first field of a line (as a string) to index the array area. 

BUILT IN FUNCTIONS 

The function 

length 

is provided by awk to compute the length of a string of characters. The following program 
prints each record preceded by its length: 

{print length, $0 } 

In this case (the variable) length means length($O), the length of the present record. In general, 
length(x) will return the length of x as a string. 

Example: 

With input from the file countries, the following awk program will print the longest country 
name: 

length($l) > max {max = length($l); name = $1 } 
END {print name} 

17-40 ICON INTERNATIONAL 



awk 

( The function 

( 

c 

split 

split (s, array) assigns the fields of the string "s" to successive elements of the array, "array". 

For example; 

split("Now is the time", w) 

assigns the value "Now" to w[l], "is" to w[2], "the" to w[3] and "time" to w[4]. All other 
elements of the array w[], if any, are set to the null string. It is possible to have a character 
other than a blank as the separator for the elements of w. For this, use split with three 
elements. 

n = split(s, array, sep) 

This splits the string s into array[l], ... , array[n]. The number of elements found is returned as 
the value of split. If the sep argument is present, its first character is used as the field 
separator; otherwise, FS is used. This is useful if in the middle of an awk script, it is necessary 
to change the record separator for one record. 

Also provided by the awk are the 

Math Functions 

sqrt, 
log, 
exp 
int, 

They provide the square root function, the base e logarithm function, exponential and integral 
part functions. This last function returns the greatest integer less than or equal to its 
argument. These functions are the same as those of the C library (int corresponds to the libc 
floor function) and so they have the same return on error as those in libc. (See ICONjUXV 
Users Reference Manual.) 

The subtract function 

substr 

PROGRAMMER GUIDE 17-41 



awk 

substr(s,m,n) produces the substring of s that begins at position m and is at most n characters 
long. If the third argument (n in this case) is omitted, the substring goes to the end of s. For 
example, we could abbreviate the country names in the file countries by 

{ $1 =: substr($I, 1, 3); print} 

which produces 

Rus 
Can 
Chi 
USA 
Bra 
Aus 
Ind 
Arg 
Sud 
Alg 

8650 
3852 
3692 
3615 
3286 
2968 
1269 
1072 
968 
920 

262 
24 

866 
219 
116 

14 
637 
26 
19 
18 

Asia 
North America 
Asia 
North America 
South America 
Australia 
Asia 
South America 
Africa 
Africa 

If s is a number, substr uses its printed image; substr(123456789,3,4)=3456. 

The function 

index: 

index (sl,s2) returns the leftmost position where the string s2 occurs in sl or zero if s2 does not 
occur in s1. 

The function 

sprintf 

formats expressions as theprintf statement does but will assign the resulting expression to a 
variable instead of sending the results to stdout. For example, 

x =: sprintf( "%10s %6d ", $1, $2 ) 

17-42 ICON INTERNATIONAL 



awk 

sets x to the string produced by formatting the values of $1 and $2. The x is then used m 
subsequent computations. 

The function 

getline 

immediately reads the next input record. Fields NR and $0 are all set but control is left at 
exactly the same spot in the awk program. Getline returns 0 for the end of file and a 1 for a 
normal record. 

FLOW OF CONTROL 

The awk provides the basic flow of control statements 

.• if-else 

• while/rR 

• for 

with statement grouping as in C language. 

The if statement is used as follows: 

if ( condition) statement! else statement2 

The condition is evaluated; and if it is true, statement! is executed; otherwise, statement2 is 
executed. The else part is optional. Several statements enclosed in braces ({,}) are treated as a 
single statement. Rewriting the maximum population computation from the pattern section 
with an if statement results in 

{ if (maxpop < $3) { 
maxpop= $3 
country= $1 
} } 

END { print country, maxpop } 

c) There is also a while statement in awk. 

PROGRAMMER GUIDE 17-43 



awk 

while ( condition) statement 

The condition is evaluated; if it is true, ·the statement is executed. The condition is evaluated 
a.gain, and if true, the statement is executed. The cycle repeats as long as the condition is true. 
For example, the following prints all input fields one per line: 

{ i = 1 
while (i <= NF) { 

pint $i 
++i 
} 

} 

Another example is the Euclidean algorithm for finding the greatest common divisor of $1 and 
$2: 

{printf "the greatest common divisor of" $1 "and ", $2, "is" 
while ($1 != $2) { 

if ($1 > $2) $1 = $1 - $2 
else $2 = $2 - $1 
} 

printf $1 "0 
} 

The for statement is like that of C. 

for ( expressionl ; condition; expression2 ) statement 

has the same effect as 

expressionl 
while (condition) { 

statement 
expression 2 
} 

17-44 ICON INTERNATIONAL 

() 

j 



( 

awk 

so 

{ for (i=l j i <= NFj i++) 
print $i 

} 

is another awk program that prints all input fields one per line. 

This is an alternate form of the or statement that is suited for accessing the elements of an 
associative array as is in awk. 

for (i in array) statement 

executes statement with the variable i set in turn to each subscript of array. The subscripts 
are each accessed once but in random order. Chaos will ensue if the variable i is altered or if 
any new elements are created within the loop. For example, you could use the "for" statement 
to print the record number followed by the record of all input records after the main program 
is executed. 

{x[NR) = $O} 
END { for(i in x) { print i, xli] } 

A more practical example is the following use of strings to index arrays to add the populations 
of countries by continents: 

BEGIN {FS=""} 
{population[$4] =+ $a} 

END {for(i in population) 
print i, population[i] 

} 

In this program, the body of the fc>r loop is executed for i equal to the string "Asia", then for £ 
equal to the string "North America", and so forth until all the possible values of i are 
exhaustedj that is, until all the strings of names of countries are used. Note, however, the order 
the loops are executed is not specified. If the loop associated with "Canada" is executed before 
the loop associated with the string "Russia", such a program produces 

PROGRAMMER GUIDE 17-45 



awk 

South America 26 
Africa 16 
Asia 637 
Australia. 14 
North America 219 

Note that the expression in the condition part of an if, while, or, for statement can include 
relational operators like <, <-, >, >-, =, and !=; it can include regular expressions that 
are used with the "matching" operators - and !-; it can include the logical operators II, &&, and 
!; and it also include parentheses for grouping. 

The break statement (when it occurs within a. while or for loop) causes an immediate exit 
from the while or for loop. 

The continue statement (when it occurs within a while or for loop) causes the next iteration 
of the loop to begin. 

The next statement in an awk pTOgTam causes awk to skip immediately to the next record and 
begin scanning patterns from the top of the program. (Note the difference between getline and 
next. Getline does not skip to the top of the awk program.) 

If an exit statement occurs in the BEGIN section of an awk program, the program stops 
executing and the END section is not executed (if there is one). 

An exit that occurs in the main body of the awk program causes execution of the main body of 
the awk program to stop. No mor~ records .are read, and the END section is executed. 

An exit in the END section causes execution to terminate at that point. 

REPORT GENERATION 

The flow of control statements in the last section are especially useful when awk is used as a 
report generator. Awk is useful for tabulating, summarizing, and formatting information. We 
have seen an example of awk t.abul.a.ting in the last section with the tabulation of populations. 
Here is another example of this. Suppose you have a file "prog.usage" that contains lines of 
three fields; name, program, and usage: 

17-46 ICON INTERNATIONAL 



(~ 

( 

awk 

Smith draw 3 
Brown eqn 1 
Jones nroft' 4 
Smith nroft' 1 
Jones spell 5 
Brown spell 9 
Smith draw 6 

The first line indicates that Smith used the draw program three times. If you want to create a 
program that has the total usage of each program along with the names in alphabetical order 
and the total usage, use the following program, called list.a: 

{ use[$l "" $2] += $a} 
END {for (np in use) 

print np " "use[np] I "sort -to +2nr" } 

This program produces the following output when used on the input file, prog.usage. 

Brown eqn 1 
Brown spell 9 
Jones nroft' 4 
Jones spell 5 
Smith draw 9 
Smith nroft' 1 

If you would like to format the previous output so that each name is printed only once, pipe 
the output of the previous awk program into the following program, called "format.a: 

{ if ($1 != prev) { 

} 

print $1 ":" 
rev = $1 
} 

print" .. $2 " " $3 

The variable prev prints the unique values of the first field. The command 

PROGRAMMER GUIDE 17-47 



awk 

awk -f list.a prog.usage I awk -f format.a 

gives the output 

Brown: 
eqn 1 
spell 9 

Jones: 
nroff 4 
spell 5 

Smith: 
draw 9 
nroff 1 

It is often useful to combine different awk scripts and other shell commands such as sort as was 
done in the last script. 

COOPERATION WITH THE SHELL 

Normally, an awk program is either contained in a file or enclosed within single quotes as in 

awk '{print $1}' ... 

Awk uses many of the same characters that the shell does, such as $ and the double quote. 
Surrounding the program by , ... ' ensures that the shell passes the awk program to awk intact. 

Consider writing an awk program to print the nth field, where n is a parameter determined 
when the program is run. That is, we want a program called field such that 

field n 

runs the awk program 

awk '{print $n}' 

17-48 ICON INTERNATIONAL 

rf .. · .. ". 
L 



awk 

How does the value of n get into the awk program? 

There are several ways to do this. One is to define field as follows: 

awk '{print $'$1'}' 

Spaces are critical here: as written there is only one argument, even though there are two sets 
of quotes. The $1 is outside the quotes, visible to the shell, and therefore substituted properly 
when field is invoked. 

Another way to do this job relies on the fact that the shell substitutes for $ parameters within 
double quotes. 

awk "{print $1}" 

Here the trick is to protect the first $ with a \ \; the $1 is again replaced by the number when 
field is invoked. 

This kind of trickery is extended in remarkable ways, but it is hard to understand quickly. 

MISCELLANEOUS HINTS 

You can simulate the effect of multidimensional arrays by creating your own subscripts. For 
example, 

for ( i = 1; i <= 10; i++) 
for ( j = 1; j <= 10; j++) 

I [. " " .] mu t 1 , J = ... 

creates an array whose subscripts have the form i,j; that is, 1,1; 1,2; and so forth and thus 
simulate a 2-dimensional array. 

PROGRAMMER GUIDE 17-49 





(-
Chapter 18 

THE LINK EDITOR 

PAGE 

GENERAL .................................................................................................................................................... 18-1 

USING THE LINK EDITOR.. ............... ...... ........... .................. .......... .................... ............... .... ........... .... ...... 18-3 

LINK EDITOR COMMAND LANGUAGE..................................................................................................... 18-8 

NOTES AND SPECIAL CONSIDERATIONS ................................................................................................ 18-10 

ERROR MESSAGES. ......... ........................... ................................................................................................ 18-28 

SYNTAX DIAGRAM FOR INPUT DmECTIVES .................................. ............... ........................................ 18-34 

( 



f' 
! . 
~) 



( Chapter 18 

THE LINK EDITOR 

GENERAL 

The link editor [/d(l)*] is an ICON/UXV support tool used on Icon computer systems. The ld 
creates executable object files by combining object files, performing relocation, and resolving 
external references. The Id also processes symbolic debugging information. The inputs to ld are 
relocatable object files produced either by the compiler [cc(l)], the assembler [as(l)], or by a 
previous Id run. The Id combines these object files to form either a relocatable or an absolute 
(i.e., executable) object file. 

The Id also supports a command language that allows users to control the Id process with great 
flexibility and precision. The ICON/UXV operating system ld shares most of its source with 
other Ids in-use on other processors and operating systems. Therefore, the ICON/UXV 
operating system ld provides many powerful features that mayor may not be useful on an 
ICON/UXV system. 

Although the link edit process is controlled in detail through use of the ld command language 
described later, most users do not require this degree of flexibility, and the manual page 

( obtained by typing 

o 

man ld 

is sufficient instruction in the use of ld. 

The command language (described later) supports the ability to 

• Specify the memory configuration of the machine 

• Combine object file sections in particular fashions 

• Cause the files to be bound to specific addresses or within specific portions of memory 

• Define or redefine global symbols at link edit time. 

There are several concepts and definitions with which you should familiarize yourself before 
proceeding further. 

* Part 1 of the ICONfUXV User Manual 

PROGRAMMER GUIDE 18-1 



LINK EDITOR 

Memory Configuration 

The virtual memory of the target machine is, for purposes of allocation, partitioned into 
configured and unconfigured memory. The default condition is to treat all memory as 
configured. It is common with microprocessor applications, however, to have different types of 
memory at different addresses. For example, an application might have 3K of PROM 
(Programmable Read-Only Memory) beginning at address 0, and 8K of RAM (Read-Only 
Memory) starting at 20K. Addresses in the range 3K to 20K-l are then not configured. 
Unconfigured memory is treated as "reserved" or "unusable" by the Id. Nothing can ever be 
linked into unconfigured memory. Thus, specifying a certain memory range to be unconfigured 
is one way of marking the addresses (in that range) "illegal" or "nonexistent" with respect to 
the linking process. Memory configurations other than the default must be explicitly specified 
by you (the user). 

Unless otherwise specified, all discussion in this document of memory, addresses, etc. are with 
respect to the configured sections of the address space. 

Section 

A section of an object file is the smallest unit of relocation and must be a contiguous block of 
memory. A section is identified by a starting address and a size. Information describing all 
the sections in a file is stored in "section headers" at the start of the file. Sections from input 
files are combined to form output sections that contain executable text, data, or a mixture of 

c 

both. Although there may be "holes" or gaps between input sections and between output 
sections, storage is allocated contiguously within each output section and may not overlap a·". 
hole in memory. 

Addresses 

The physical address of a section or symbol is the relative offset from address zero of the 
address space. The physical address of an object is not necessarily the location at which it is 
placed when the process is executed. For example, on a system with paging, the address is 
with respect to address zero of the virtual space, and the system performs another address 
translation. 

Binding 

It is often necessary to have a section begin at a specific, predefined address in the address 
space. The process of specifying this starting address is called "binding", and the section in 
question is said to be "bound to" or "bound at" the required address. While binding is most 
commonly relevant to output sections, it is also possible to bind global symbols with an 
assignment statement in the Id command language. 

18-2 ICON INTERNATIONAL 



c 

LINK EDITOR 

Object File 

Object files are produced both by the assembler (typically as a result of calling the compiler) 
and by the ld. The Id accepts relocatable object files as input and produces an output object 
file that mayor may not be relocatable. Under certain special circumstances, the input object 
files given to the Id can also be absolute files. 

Files produced from the compiler/assembler always contain three sections, called . text, .data, 
and .bss. The .text section contains the instruction text (for example, executable instructions), 
.data contains initialized data variables, and .bss contains uninitialized data variables. For 
example, if a C program contained the global (i.e., not inside a function) declarations 

int i = 100; 
char abc[200]; 

and the assignment 

abc[i] = 0; 

then compiled code from the C assignment is stored in . text. The variable i is located in .data, 
and abc is located in .bss. There is an exception to the rule however; both initialized and 
uninitialized statics are allocated into the .data section. The value of an uninitialized static in 
a . data section is zero. 

USING THE LINK EDITOR 

The ld is called by the command 

ld [options] filename! filename2 ... 

Files passed to the Id must be object files, archive libraries containing object files, or text 
source files containing ld directives. The ld uses the "magic number" (in the first two bytes of 
the file) to determine which type of file is encountered. If the Id does not recognize the magic 
number, it assumes the file is a text file containing Id directives and attempts to parse it. 

Input object files and archive libraries of object files are linked together to form an output 
object file. If there are no unresolved references, this file is executable on the target machine. 
An input file containing directives is referred to as an ifile in this document. Object files have 
the form "name.o" throughout the examples in this chapter. The names of actual input object 
files need not follow this convention. 

If you merely want to link the object files filel.o and file2.o, the following command is sufficient: 

ld filel.o file2.0 

PROGRAMMER GUIDE 18-3 



LINK EDITOR 

No directives to the Id are needed. If no errors are encountered during the link edit, the output 
is left on the default file a.out. The sections of the input files are combined in order. That is, 
if file1.o and file2.0 each contain the standard sections .text, .data, and .bs8, the output object 
file also contains these three sections. The output .text section is a concatenation of .text from 
file1.o and .text from file2.o. The .data and .b8s sections are formed similarly. The output .text 
section is then bound at address OXOOOOOO. The output .data and .6ss section~ are link edited 
together into contiguous addresses (the particular address depending on the particular 
processor). 

Instead of entering the names of files to be link edited (as well as Id options on the ld command 
line), this information can be placed into an ifile, and just the ifile passed to ld. For example, if 
you are going to frequently link the object files filel.o, file2.o, and file3.0 with the same options 
f1 and f2, then enter the command 

ld -fl -f2 filel.o file2.0 file3.0 

each time it is necessary to invoke ld. Alternatively, an ifile containing the statements 

-fl 
-f2 
filel.o 
file2.0 
file3.0 

could be created, and then the following ICON/UXV command would serve: 

ld ifilename 

Note that it is perfectly permissible to specify some of the object files to be link edited in the 
ifile and others on the command line-as well as some options in the ifile and others on the 
command line. Input object files are link edited in the order they are encountered, whether 
this occurs on the command line or in an ifile. As an example, if a command line were 

ld file1.o ifile file2.0 

and the ifile contained 

file3.0 
file4.0 

then the order of link editing would be: filel.o, file3.o, file4.0, and file2.0. Note from this 
example that an ifile is read and processed immediately upon being encountered in the (ff-~ 

command line. ~ 

18-4 ICON INTERNATIONAL 



LINK EDITOR 

(- / Options may be interspersed with file names both on the command line and in an ifile. The 
ordering of options is not significant, except for the "I" and "L" options for specifying libraries. 
The "I" option is a shorthand notation for specifying an archive library, and an archive library 
is just a collection of object files. Thus, as is the case with any object file, libraries are 
searched as they are encountered. The "L" specifies an alternative directory for searching for 
libraries. Therefore, to be effective, a "-L" option must appear before any "-1" options. 

( 

c 

All options for Id must be preceded by a hyphen (-) whether in the ifile or on the Id command 
line. Options that have an argument (except for the "-1" and "-L" options) are separated 
from the argument by white space (blanks or tabs). The following options (in alphabetical 
order) are supported, though not all options are available on each processor. 

-a 

-e ss 

-fbb 

Produces an absolute, executable file. Messages are issued when undefined symbols 
are found, and several special symbols (such as "_end") are defined. Unless 
overridden by the "-r" option, relocation information is stripped from the output 
file. If neither "-r" nor "-a" is specified, "-a" is assumed. 

Defines the primary entry point of the output file to be the symbol given by the 
argument "ss". See "Changing the Entry Point" in "NOTES AND SPECIAL 
CONSIDERATIONS" for a discussion of how the option is used. 

Sets the default fill value. This value is used to fill "holes" formed within output 
sections. Also, it is used to initialize input .b88 sections when they are combined 
with other non-.b88 input sections. The argument "bb" is a 2-byte constant. If the 
"-f" option is not used, the default fill value is zero. 

-Ix Specifies an ICONjUXV archive library file as Id input. The argument is a 
character string (less than 10 characters) immediately following the "-1" without 
any intervening white space. As an example, -lc refers to libc.a, -IC to libC.a, etc. 
The given archive library must contain valid object files as its members. 

-m Produces a map or listing of the input/output sections (including "holes") on the 
standard output. 

-0 name Names the output object file. The argument "name" is the name of the 
ICONjUXV file to be used as the output file. The default output object file name is 
"a.out". The "name" can be a full or partial ICON/UXV pathname. 

-r Retains relocation entries in the output object file. Relocation entries must be 
saved if the output file is to be used as an input file in a subsequent Id call. If the 
-r option is used, unresolved references do not prevent the creation of an output 
object file. 

-s Strips line number entries and symbol table information from the output object file. 
Relocation entries ("-r" option) are meaningless without the symbol table, hence 
use of "-s" precludes the use of "-r". All symbols are stripped, including global 
and undefined symbols. 

PROGRAMMER GUIDE 18-5 



LlNKEDITOR 

-t Disables checking that all instances of a multiply defined symbol are the same size. 

-u sym Introduces an unresolved external symbol into the output file's symbol table. The 
argument "sym" is the name of the symbol. This is useful for linking entirely from 
a library, since initially the symbol table is empty and an unresolved reference is 
needed to force the linking of an initial routine from the library. 

-x Does not preserve any local (nonglobal) symbols in the output symbol table; enter 
external and static symbols only. This option saves some space in the output file. 

-H Changes the type of all global symbols to "static". This option can be used to 
"hide" symbols since static symbols have different accessing rules from global 
symbols. 

-Ldir Changes the algorithm for searching for libraries to look in dir before looking in the 
default location. This option is for Id libraries as the -I option is for compiler 
#include files. The "-L" option is useful for finding libraries that are not in the 
standard library directory. To be useful, this option must appear before the "-1" 
option. 

-M Prints a warning message for all external variables that are multiply defined. 

-N Places the data section immediately following the text section in memory and stores 
the magic number 0407 in the ICONjUXV header. This prevents the text from 
being shared (the default). 

-S Requests a "silent" Id run. All error messages resulting from errors that do not 
immediately stop the Id run are suppressed. 

-v Prints on the standard error output a "version id" identifying the Id being run. 

-VS num Takes num as a decimal version number identifying the a.out file that is produced. 
The version stamp is stored in the ICON/UXV header. 

LINK EDITOR CO~ LANGUAGE 

Expressions 

Expressions may contain global symbols, constants, and most of the basic C language 
operators. (See Figure 7-2, "SYNTAX DlAGRAM FOR INPUT DIRECTIVES".) Constants are 
as in C with a number recognized as decimal unless preceded with "0" for octal or "Ox" for 
hexadecimal. All numbers are treated as long ints. Symbol names may contain uppercase or 
lowercase letters, digits, and the underscore ('_'). Symbols within an expression have the value 
of the address of the symbol only. The Id does not do symbol table lookup to find the contents 
of a symbol, the dimensionality of an array, structure elements declared in a C program, etc. 

18-6 ICON INTERNATIONAL 



LINK EDITOR 

The Id uses a lex-generated input scanner to identify symbols, numbers, operators, etc. The 
current scanner design makes the following names reserved and unavailable as symbol names or 
section names: 

ALIGN DSECT MEMORY PHY SECTIONS 
ASSIGN GROUP NOLOAD RANGE SPARE 
BLOCK LENGTH ORIGIN REGION TV 

align group length origin spare 
assign 1 0 phy 
block len org range 

The operators that are supported, in order of precedence from high to low, are shown in Figure 
7-1: 

symbol 

!- -(UNARY Minus) 

* / % 
+ -(BINARY Minus) 
» « 
-- != > < <= >= 
& 
I 
&& 
1\ 

= += -= *= /= 

Figure 18-1. Symbols and Functions or Operators 

The above operators have the same meaning as in the C language. Operators on the same line 
have the same precedence. 

PROGRAMMER GUIDE 18-7 



LINK EDITOR 

Assignment Statements 

External symbols may be defined and assigned addresses via the assignment statement. The 
syntax of the assignment statement is 

symbol = expression; 

or 

symbol op= expression; 

where op is one of the operators +, -, *, or f. 

Assignment statements must be terminated by a semicolon. 

All assignment statements (with the exception of the one case described in the following 
paragraph) are evaluated after allocation has been performed. This occurs after all input-file
defined symbols are appropriately relocated but before the actual relocation of the text and 
data itself. Therefore, if an assignment statement expression contains any symbol name, the 
address used for that symbol in the evaluation of the expression reflects the symbol address in 
the output object file. References within text and data (to symbols given a value through an 
assignment statement) access this latest assigned value. Assignment statements are processed 
in the same order in which they are input to ld. 

Assignment statements are normally placed outside the scope of section-definition directive (see 
"Section Definition Directive" under ''LINK EDITOR CO:M:MAND LANGUAGE"). However, 
there exists a special symbol, called ".", that can occur only within a section-definition 
directive. This symbol refers to the current R address oj the ld's location counter. Thus, 
assignment expressions involving cc." are evaluated during the allocation phase oj ld. Assigning a 
value to the "." symbol within a section-definition directive increments/resets ld's location 
counter and can create "holes" within the section, as described in "Section Definition 
Directives". Assigning the value of the "." symbol to a conventional symbol permits the final 
allocated address (of a particular point within the link edit run) to be saved. 

Align is provided as a shorthand notation to allow alignment of a symbol to an n-byte 
boundary within an output section, where n is a power of 2. For example, the expression 

align(n) 

is equivalent to 

Link editor expressions may have either an absolute or a relocatable value. When the ld 
creates a symbol through an assignment statement, the symbol's value takes on that type of 

18-8 ICON INTERNATIONAL 



( 

( 

c 

LINK EDITOR 

expression. That type depends on the following rules: 

• An expression with a Bingle relocatable symbol (and zero or more constants or absolute 
symbols) is relocatable. The value is in relation to the section of the referenced symbol. 

• All other expressions have absolute values. 

Speeifying a Memory Configuration 

MEMORY directives are used to specify 

a. The total size of the virtual space of the target machine. 

b. The configured and unconfigured areas of the virtual space. 

If no directives are supplied, the ld assumes that all memory is configured. The size of the 
default memory is dependent upon the target machine. 

By means of MEMORY directives, an arbitrary name of up to eight characters is assigned to a 
virtual address range. Output sections can then be forced to be bound to virtual addresses 
within specifically named memory areas. Memory names may contain uppercase or lowercase 
letters, digits, and the special characters '$', '.', or '..!. Names of memory ranges are used by ld 
only and are not carried in the output file symbol table or headers. 

When MEMORY directives are used, all virtual memory not described in a MEMORY directive 
is considered to be unconfigured. Unconfigured memory is not used in the Id's allocation 
process, and hence nothing can be link edited, bound, or assigned to any address within 
unconfigured memory. 

As an option on the MEMORY directive, attributes may be associated with a named memory 
area. This restricts the memory areas (with specific attributes) to which an output section can 
be bound. The attributes assigned to output sections in this manner are recorded in the 
appropriate section headers in the output file to allow for possible error checking in the future. 
For example, putting a text section into writable memory is one potential error condition. 
Currently, error checking of this type is not implemented. 

The attributes currently accepted are 

a. R: readable memory. 

b. W: writable memory. 

c. X: executable, i.e., instructions may reside in this memory. 

d. I: initializable, i.e., stack areas are typically not initialized. 

Other attributes may be added in the future if necessary. If no attributes are specified on a 

PROGR.Al\.1MER GUIDE 18-9 



LlNKEDITOR 

MEMORY directive or if no MEMORY directives are supplied, memory areas assume the 
attributes of W, R, I, and X. 

The syntax of the MEMORY directive is 

MEMORY 
{ 

} 

name1 (attr) : 
name2 (attr) : 
etc. 

origin = n1, length = n2 
origin = n3, length = n4 

The keyword "origin" (or "org" or "0") must precede the ongm of a memory range, and 
"length" (or "len" or "I") must precede the length as shown in the above prototype. The origin 
operand refers to the virtual address of the memory range. Origin and length are entered as 
long integer constants in either decimal, octal, or hexadecimal (standard C syntax). Origin and 
length specifications, as well as individual MEMORY directives, may be separated by white 
space or a comma. 

By specifying MEMORY directives, the ld can be told that memory is configured in some 
manner other than the default. For example, if it is necessary to prevent anything from being 
linked to the first Ox10000 words of memory, a MEMORY directive can accomplish this. 

MEMORY 
{ 

valid: org = Ox 10000 , len = OxFEOOOO 
} 

Section Definition Directives 

The purpose of the SECTIONS directive is to describe how input sections are to be combined, 
to direct where to place output sections (both in relation to each other and to the entire 
virtual memory space), and to permit the renaming of output sections. 

In the default case where no SECTIONS directives are given, all input sections of the same 
name appear in an output section of that name. For example, if a number of object files from 
the compiler are linked, each containing the three sections . text, . data, and .bS8, the output 
object file also contains three sections, . text, . data, and .bss. If two object files are linked (one 
that contains sections sl and s2 and the other containing sections s3 and s4), the output object 
file contains the four sections sl, s2, s3, and s4. The order of these sections would depend on 
the order in which the link editor sees the input files. 

18-10 ICON INTERNATIONAL 

- -------------- ----~ 



( 

( 

c 

The basic syntax of the SECTIONS directive is 

SECTIONS 
{ 

secnamel: 

etc. 
} 

{ 

} 

fileJlpecifications, 
assignmentJltatements* 

secname2 : 
{ 

} 

fileJlpecifications, 
assignmen tJltatemen ts* 

LINK EDITOR 

The various types of section definition directives are discussed in the remainder of this section. 

File Specifo:atiC1l1B 

Within a section definition, the files and sections of files to be included in the output section 
are listed in the order in which they are to appear in the output section. Sections from an 
input file are specified by 

filename ( secname ) 

or 

filename ( secnaml secnam2 ... ) 

Sections of an input file are separated either by white space or commas as are the file 
specifications themselves. 

If a file name appears with no sections listed, then all sections from the file are linked into the 
current output section. For example, 

• These may be intermixed. 

PROGRAMMER GUIDE 18-11 

• 



LINK EDITOR 

SECTIONS 
{ 

outsecl: 
{ 

} 
} 

file1.o (sec1) 
file2.0 
file3.0 (sec1, sec2) 

The order in which the input sections appears in the output section "outsecl" is given by 

a. Section secl from file file1.o 

b. All sections from file2.0, in the order they appear in the file 

c. Section secl from file file3.0, and then section sec2 from file file3.0. 

If there are any additional input files that contained input sections also named "outsecl", 
these sections are linked following the last section named in the definition of "outsecl". If 
there are any other input sections in file1.0 or file3.0, they will be placed in output sections 
with the same names as the input sections unless they are included in other file specifications. 

Load a Section. at a Specifo.d Aclclreaa 

Bonding of an output section to a specific virtual address is accomplished by an ld option as 
shown on the following SECTIONS directive example: 

SECTIONS 
{ 

outsec addr: 
{ 

} 
etc. 

} 

The "addr" is the bonding address expressed as a C constant. If "outsec" does not fit at 
"addr" (perhaps because of holes in the memory configuration or because "outsec" is too large 
to fit without overlapping some other output section), Id issues an appropriate error message. 

So long as output sections do not overlap and there is enough space, they can be bound 
anywhere in configured memory. The SECTIONS directives defining output sections need not 
be given to ld in any particular order. 

18-12 ICON INTERNATIONAL 

c 

(~ 



( 

o 

LINK EDITOR 

The ld does not ensure that each section's size consists of an even number of bytes or that each 
section starts on an even byte boundary. The assembler ensures that the size (in bytes) of a 
section is evenly divisible by 4. The ld directives can be used to force a section to start on an 
odd byte boundary although this is not recommended. If a section starts on an odd byte 
boundary, the section's contents are either accessed incorrectly or are not executed properly. 
When a user specifies an odd byte boundary, the ld issues a warning message. 

Aligning an Output Seetion 

It is possible to request that an output section be bound to a virtual address that falls on an 
n-byte boundary, where n is a power of 2. The ALIGN option of the SECTIONS directive 
performs this function, so that the option 

ALIGN(n) 

is equivalent to specifying a bonding address of 

( . + n - 1) &-(n - 1) 

For example 

SECTIONS 
{ 

outsec ALIGN(Ox20000): 
{ 

} 
etc. 

} 

The output section "outsec" is not bound to any given address but is linked to some virtual 
address that is a multiple of Ox20000 (e.g., at address OxO, Ox20000, Ox40000, Ox 60000 , etc.). 

Grou.ping Secf.ian. Togdher 

The default allocation algorithm for ld 

a. Links all input .text sections together into one output section. This output 
section is called . text and is bound to an address of OxO. 

b. Links all input .data sections together into one output section. This output 
section is called .data and is bound to an address aligned to a machine dependent 
constant. 

c. Links all input .b88 sections together into one output section. This output section 
is called .b88 and is allocated so as to immediately follow the output section . data. 

PROGRAMMER GUIDE 18-13 



LINK EDITOR 

Note that the output section .688 is not given any particular address alignment. 

Specifying any SECTIONS directives results in this default allocation not being performed. 

The default allocation of ld is equivalent to supplying the following directive: 

SECTIONS 
{ 

} 

.text : { } 
GROUP ALIGN( aligfLvaiue ) : 
{ 

.data : { } 

.bss : { } 
} 

where aligfLvalue is a machine dependent constant. The GROUP command ensures that the 
two output sections, .data and .bss, are allocated (e.g., "grouped") together. Bonding or 
alignment information is supplied only for the group and not for the output sections contained 
within the group. The sections making up the group are allocated in the order listed in the 
directive. 

If .text, .data, and .bss are to be placed in the same segment, the following SECTIONS directive " 
is used: 

SECTIONS 
{ 

GROUP 
{ 

.text : { } 

.data : { } 

.bss : { } 
} 

} 

Note that there are still three output sections (.text, .data, and . b88) , but now they are 
allocated into consecutive virtual memory. 

This entire group of output sections could be bound to a starting address or aligned simply by 
adding a field to the GROUP directive. To bind to OxCOOOO, use 

GROUP OxCOOOO : { 

To align to Ox 1 0000, use 

18-14 ICON INTERNATIONAL 



( .. 

( 

o 

LINK EDITOR 

GROUP ALIGN{OxlOOOO) : { 

With this addition, first the output section .text is bound at OxCOOOO (or is aligned to OxlOOOO); 
then the remaining members of the group are allocated in order of their appearance into the 
next available memory locations. 

When the GROUP directive is not used, each output section 15 treated as an independent 
entity: 

SECTIONS 
{ 

} 

.text : { } 

.data ALIGN(Ox20000) : { } 

.bss : { } 

The . text section starts at virtual address OxO and the . data section at a virtual address aligned 
to Ox20000. The .b88 section follows immediately after the .text section if there i8 enough space. 
If there is not, it follows the .data section. 

The order in which output sections are defined to the ld cannot be used to force a certain 
allocation order in the output file. 

Qoeatiflg Holell 'Kithin Output Sections 

The special symbol dot (.) appears only within section definitions and assignment statements. 
When it appears on the left side of an assignment statement, "." causes the ld's location 
counter to be incremented or reset and a "hole" left in the output section. "Holes" built into 
output sections in this manner take up physical space in the output file and are initialized 
using a fill character (either the default fill character (OxOO) or a supplied fill character). See 
the definition of the "-f" option in "USING THE LINK EDITOR" and the discussion of filling 
holes in '1nitialized Section Holes or .bss Sections" under "LINK EDITOR COMMAND 
LANGUAGE", 

Consider the following section definition: 

outsec: 
{ 

} 

· +=OxlOOO; 
fLo (. text) 
· +=OxlOOj 
f2.0 (.text) 
· = align (4); 
f3.0 (.text) 

PROGRAMMER GUIDE 18-15 



LINK EDITOR 

The efl'ect of this command is as follows: 

a. A Ox 1 000 byte hole, filled with the default fill character, is left at the beginning of 
the section. Input file fLo{.text) is linked after this hole. 

b. The text of input file £2.0 begins at OxlOO bytes following the end of fLo(.text). 

c. The text of f3.0 is linked to start at the next full word boundary following the 
text of f2.0 with respect to the beginning of "outsec". 

For the purposes of allocating and aligning addresses within an output section, the Id treats the 
output section as if it began at address zero. As a result, if, in the above example, "outsec" 
ultimately is linked to start at an odd address, then the part of "outsec" built from f3.o( .text) 
also starts at an odd address-even though f3.0(.text) is aligned to a full word boundary. This 
is prevented by specifying an alignment factor for the entire output section. 

outsec ALIGN(4) : { 

It should be noted that the assembler, &8, always pads the sections it generates to a full word 
length making explicit alignment specifications unnecessary. This also holds true for the 
compiler. 

Expressions that decrement"." are illegal. For example, subtracting a value from the location 
counter is not allowed since overwrites are not allowed. The most common operators in 
expressions that assign a value to "." are "+=" and "align". 

Geating and Defining s"rmols at IAnJo.Ea"t lime 

The assignment instruction of the ld can be used to give symbols a value that is link-edit 
dependent. Typically, there are three types of assignments: 

a. Use of"." to adjust Id's location counter during allocation 

b. Use of "." to assign an allocation-dependent value to a symbol 

c. Assigning an allocation-independent value to a symbol. 

Case a) has already been discussed in the previous section. 

Case b) provides a means to assign addresses (known only after allocation) to symbols. For 
example 

18-16 ICON INTERNATIONAL 



(-

(-

SECTIONS 
{ 

outscl: { ... } 
outsc2: 
{ 

} 
} 

filel.o (51) 
s2...start = . ; 
file2.o (s2) 
s2_end = . - 1; 

LINK EDITOR 

The symbol "s2...start" is defined to be the address of file2.o(s2), and "s2_end" is the address of 
the last byte of file2.o(s2). 

Consider the following example: 

SECTIONS 
{ 

outsc1: 
{ 

} 
} 

filel.o (.data) 
mark =.; 
. +=4; 
file2.o (.data) 

In this example, the symbol "mark" is created and is equal to the address of the first byte 
beyond the end of filel.o's .data section. Four bytes are reserved for a future run-time 
initialization of the symbol mark. The type of the symbol is a long integer (32 bits). 

Assignment instructions involving"." must appear within SECTIONS definitions since they are 
evaluated during allocation. Assignment instructions that do not involve "." can appear within 
SECTIONS definitions but typically do not. Such instructions are evaluated after allocation is 
complete. Reassignment of a defined symbol to a different address is dangerous. For example, 
if a symbol within .data is defined, initialized, and referenced within a set of object files being 
link-edited, the symbol table entry for that symbol is changed to reflect the new, reassigned 
physical address. However, the associated initialized data is not moved to the new address. 
The ld issues warning messages for each defined symbol that is being redefined within an ifile. 
However, assignments of absolute values to new symbols are safe because there are no 
references or initialized data associated with the symbol. 

PROGRAMMER GUIDE 18-17 



LINK EDITOR 

Allocating CL Section Into Named Memory 

It is possible to specify that a section be linked (somewhere) within a specific named memory 
(as previously specified on a MEMORY directive). (The ">" notation is borrowed from the 
UNIX system concept of "redirected output".) 

For example 

MEMORY 
{ 

} 

meml: 
mem2 (RW): 
mem3 (RW): 
meml: 

SECTIONS 
{ 

o=OxOOOOOO l=OxlOOOO 
o=Ox020000 l=Ox40000 
o=Ox070000 1=Ox40000 

o=Oxl20000 1=Ox04000 

outsecl: {fl.o(.data) } > mem! 
outsec2: { f2.o(.data) } > mem3 

} 

This directs ld to place "outsecl" anywhere within the memory area named "meml" (i.e., 
somewhere within the address range OxO-OxFFFF or Ox12000O-Ox123FF). The "outsec2" is to 
be placed somewhere in the address range Ox70000-0xAFFFF. 

Initialized Section Holes or lBS Sec:tions 

When "holes" are created within a section (as in the example in "LINK EDITOR CO~1MAND 
LANGUAGE"), the ld normally puts out bytes of zero as "fill". By default, .b8S sections are 
not initialized at all; that is, no initialized data is generated for any .bS8 section by the 
assembler nor supplied by the link editor, not even zeros. 

Initialization options can be used in a SECTIONS directive to set such "holes" or output .bss 
sections to an arbitrary 2-byte pattern. Such initialization options apply only to .bS8 sections or 
"holes". As an example, an application might want an uninitialized data table to be initialized 
to a constant value without recompiling the ".0" file or a "hole" in the text area to be filled 
with a transfer to an error routine. 

Either specific areas within an output section or the entire output section may be specified as 
being initialized. However, since no text is generated for an uninitialized .6S8 section, if part of 
such a section is initialized, then the entire section is initialized. In other words, if a .b88 

section is to be combined with a .text or .data section (both of which are initialized) or if part 
of an output .688 section is to be initialized, then one of the following will hold: 

18-18 

a. Explicit initialization options must be used to initialize all .bss sections in the 
output section. 

ICON INTERNATIONAL 



( 

LINK EDITOR 

b. The ld will use tM default fill va.lue to initialize a.ll .688 sections in the output 
section. 

Consider the following ld ifUe: 

SECTIONS 
{ 

} 

sec1: 
{ 

fLo 
. -+Ox200; 
f2.0 (.text) 

} = OxDFFF 
sec2: 
{ 

fLo (.bss) 
f2.0 (.bss) = Ox1234 

} 
sec3: 
{ 

f3.0 (.bss) 

} = OxFFFF 
sec4: { f4.0 (.bss) } 

In the example above, the Ox200 byte "'''trole'' in section "secl" is filled with the value OxDFFF. 
In section "sec2", fl.o(.bss) is initialized to the default fill value of OxOO, and f2.0(.bss) is 
initialized to Ox1234. All .bss sections within "sec3" as well as all "holes" are initialized to 
OxFFFF. Section "sec4" is not initialized; that is, no data is written to the object file for this 
section. 

NOTES AND SPECIAL CONSIDERATIONS 

Chanai'o& the Entry Point 

The a.out header contains a fieidfoT the (primary) entTY point of the file. This field is set using 
one of the following rules (listed in the order they .are a.pplied): 

a. The value of the symbol specified with the "-e" option, if present, is used. 

b. The value of the symbol "Jtart", if present, is used. 

c. The value of the symbol "main", if present, is used. 

d. The value zero is used. 

PROGRAMMER GUIDE 18-19 



LINK EDITOR 

Thus, an explicit entry point can be assigned to this a.out header field through the "-e" option 
or by using an assignment instruction in an ifile oC the Corm 

Jtart = expression; 

If the Id is called through ee(l), a startup routine is automatically linked in. Then, when the 
program is executed, the routine sit(l) is called aCter the main routine finishes to close file 
descriptors and do other cleanup. The user must thereCore be careCul when calling the ld 
directly or when changing the entry point. The user must supply the startup routine or make 
sure that the program always calls exit rather than Calling through the end. Otherwise, the 
program will dump core. 

Use of Archive Libraries 

Each member of an archive library (e.g., libc.a) is a complete object file typically consisting of 
the standard three sections: . text, .data, and .bss. Archive libraries are created through the use 
of the ICONjUXV "ar" command Crom object files generated by running the ec or as. 

An archive library is always processed using selective inclusion: Only those members that 
resolve existing undefined-symbol references are taken from the library Cor link editing. 

Libraries can be placed both inside and outside section definitions. In both cases, a member of 

/ " l) 

a library is included for linking whenever j 

a. There exists a reference to a symbol defined in that member. 

b. The reference is found by the ld prior to the actual scanning of the library. 

When a library member is included by searching the library inside a SECTIONS directive, all 
input sections from the library member are included in the output section being defined. When 
a library member is included by searching the library outside of a SECTIONS directive, all 
input sections Crom the library member are included into the output section with the same 
name. That is, the .text section of the member goes into the output section named .text, the 
.data section of the member into . data, the .bas section of the member into .b88, etc. If 
necessary, new output sections are defined to provide a place to put the input sections. Note, 
however, that 

a. Specific members of a library cannot be referenced explicitly in an ifile. 

b. The default rules for the placement of members and sections cannot be 
overridden when they apply to archive library members. 

The "-1" option is a shorthand notation for specifying an input file coming from a predefined 
set of directories and having a predefined name. By convention, such files are archive libraries. 
However, they need not be so. Furthermore, archive libraries can be specified without using 
the "-1" option by simply giving the (full or relative) ICONjUXV file path. 

18-20 ICON INTERNATIONAL 

~----------. 



( 

LINK EDITOR 

The ordering of archive libraries is important since for a member to be extracted from the 
library it must satisfy a reference that is known to be unresolved at the time the library is 
searched. Archive libraries can be specified more than once. They are searched every time 
they are encountered. Archive files have a symbol table at the beginning of the archive. The 
ld will cycle through this symbol table until it has determined that it cannot resolve any more 
references from that library. 

Consider the following example: 

a. The input files file1.o and file2.o each contain a reference to the external function 
FCN. 

b. Input file1.o contains a reference to symbol ABC. 

c. Input file2.o contains a reference to symbol XYZ. 

d. Library liba.a, member 0, contains a definition of XYZ. 

e. Library libc.a, member 0, contains a definition of ABC. 

f. Both libraries have a member 1 that defines FCN. 

If the ld command were entered as 

ld file1.o -la file2.o -lc 

then the FCN references are satisfied by liba.a, member 1, ABC is obtained from libc.a, 
member 0, and XYZ remains undefined (since the library liba.a is searched before file2.o is 
specified). If the ld command were entered as 

ld file1.o file2.o -la -lc 

then the FCN references is satisfied by liba.a, member I, ABC is obtained from libc.a, member 
0, and XYZ is obtained from liba.a, member o. If the Id command were entered as 

ld file1.o file2.o -lc -la 

then the FCN references is satisfied by libc.a, member 1, ABC is obtained from libc.a, member 
0, and XYZ is obtained from liba.a, member o. 

The "-un option is used to force the linking of library members when the link edit run does not 
contain an actual external reference to the members. For example, 

ld -u routl -la 

PROGRAMMER GUIDE 18-21 



LINK EDITOR 

creates an undefined symbol called "routl" in the ld's global symbol table. If any member of 
library liba.a defines this symbol, it (and perhaps other members as well) is extracted. Without 
the "_u" option, there would have been no "trigger" to cause ld to search the archive library. 

Dealing With Holes in Physical Memory 

When memory configurations are defined such that unconfigured areas exist in the virtual 
memory, each application or user must assume the responsibility of forming output sections 
that will fit into memory. For example, assume that memory is configured as follows: 

MEMORY 
{ 

} 

mem1:· 
mem2: 
mern3: 

o =oxOOOOO 
o =Ox40000 
o =Ox20000 

1= 0x02000 
1= Ox05000 
1 = OxlOOOO 

Let the files fLo, f2.0, ... fn.o each contain the standard three sections . text, .data, and .b8s, 
and suppose the combined .text section is Ox12000 bytes. There is no configured area of 
memory in which this section can be placed. Appropriate directives must be supplied to break 
up the .text output section so ld may do allocation. For example, 

SECTIONS 
{ 

txt1: 
{ 

fLo (. text) 
f2.0 (. text) 
f3.0 (. text) 

} 
txt2: 
{ 

f4.0 (.text) 
f5.0 (.text) 
f6.0 (.text) 

} 
etc. 

} 

Allocation Algorithm 

An output section is formed either as a result of a SECTIONS directive or by combining input 
sections of the same name. An output section can have zero or more input sections comprising 
it. After the composition of an output section is determined, it must then be allocated into 
configured virtual memory. Ld uses an algorithm that attempts to minimize fragmentation of 

.. 
" 

.. . ~ 

memory, and hence increases the possibility that a link edit run will be able to allocate all ("" 
output sections within the specified virtual memory configuration. The algorithm proceeds as ~./ 
follows: 

18-22 ICON INTERNATIONAL 



( 

o 

LINK EDITOR 

a. Any output sections for which explicit bonding addresses were specified are 
allocated. 

b. Any output sections to be included in a specific named memory are allocated. In 
both this and the succeeding step, each output section is placed into the first 
available space within the (named) memory with any alignment taken into 
consideration. 

c. Output sections not handled by one of the above steps are allocated. 

If all memory is contiguous and configured (the default case), and no SECTIONS directives are 
given, then output sections are allocated in the order they appear to the Id, normally . text, 
. data, .6ss. Otherwise, output sections are allocated in the order they were defined or made 
known to the ld into the first available space they fit. 

Incremental Link Editing 

As previously mentioned, the output of the ld can be used as an input file to subsequent ld runs 
providing that the relocation information is retained ("-r" option). Large applications may find 
it desirable to partition their C programs into "subsystems", link each subsystem 
independently, and then link edit the entire application. For example, 

Step 1: 
Id -r -0 outfile1 ifile1 

1* ifile1 * / 
SECTIONS 
{ 

ss1: 
{ 

} 
} 

fLo 
f2.0 

fn.o 

PROGRAMMER GUIDE 18-23 



LINK EDITOR 

Step £: 
Id -r -ooutfile2 ifile2 

1* ifile2 * / 
SECTIONS 
{ 

852: 
{ 

} 
} 

Step 9: 

g1.o 
g2.0 

gn.o 

Id -a -m -0 final.out outfilel outfile2 

By judiciously forming subsystems, applications may achieve a form of "incremental link 
editing" whereby it is necessary to relink only a portion of the total link edit when a few 
programs are recompiled. 

To apply this technique, there are two simple rules 

a. Intermediate link edits should contain only SECTIONS declarations and be 
concerned only with the formation of output sections from input files and input 
sections. No binding of output sections should be done in these runs. 

b. All allocation and memory directives, as well as any assignment statements, are 
included only in the final ld call. 

DSECT, COPY, and NOLOAD Sections 

Sections may be given a "type" in a section definition as shown in the following example: 

SECTIONS 
{ 

} 

namel 0x200000 (DSECT) 
name2 Ox400000 (COPY) 
name3 Ox600000 (NOLOAD) 

: { file1.o } 
: { file2.0 } 

: { file3.0 } 

The DSECT option creates what is called a "dummy section". A "dummy section" has the 
following properties: 

18-24 ICON INTERNATIONAL 



( 

o 

LINK EDITOR 

a. It does not participate in the memory allocation for output sections. As a result, 
it takes up no memory and does not show up in the memory map (the "-m" 
option) generated by the ld. 

b. It may overlay other output sections and even unconfigured memory. DSECTs 
may overlay other DSECTs. 

c. The global symbols defined within the "dummy section" are relocated normally. 
That is, they appear in the output file's symbol table with the same value they 
would have had if the DSECT were actually loaded at its virtual address. 
DSECT-defined symbols may be referenced by other input sections. Undefined 
external symbols found within a DSECT cause specified archive libraries to be 
searched and any members which define such symbols are link edited normally 
(i.e., not in the DSECT or as a DSECT). 

d. None of the section contents, relocation information, or line number information 
associated with the section is written to the output file. 

In the above example, none of the sections from file1.o are allocated, but all symbols are 
relocated as though the sections were link edited at the specified address. Other sections could 
refer to any of the global symbols and they are resolved correctly. 

A "copy section" created by the COPY option is similar to a "dummy section". The only 
difference between a "copy section" and a "dummy section" is that the contents of a "copy 
section" and all associated information is written to the output file. 

A section with the "type" of NOLOAD differs in only one respect from a normal output 
section: its text and/or data is not written to the output file. A NOLOAD section is allocated 
virtual space, appears in the memory map, etc. 

Output File Blocking 

The BLOCK option (applied to any output section or GROUP directive) is used to direct ld to 
align a section at a specified byte offset in the output file. It has no effect on the address at 
which the section is allocated nor on any part of the link edit process. It is used purely to 
adjust the physical position of the section in the output file. 

SECTIONS 
{ 

.text BLOCK(Ox200) : { } 

.data ALIGN(Ox20000) BLOCK(Ox200) : { } 
} 

With this SECTIONS directive, ld assures that each section, .text and . data, is physically 
written at a file offset which is a multiple of Ox200 (e.g., at an offset of 0, Ox200, Ox400, ... , etc. 
in the file). 

PROGRAMMER GUIDE 18-25 



LINK EDITOR 

NODl'elocatable Input Files 

If a file produced by the Id is intended to. be used in a subsequent ld run, the first Id run has the 
"-r" option set. This preserves relocation information and permits the sections of the file to 
be relocated by the subsequent Id run. 

When the ld detects an input file (that does not have relocation or symbol table information), a 
warning message is given. Such information can be removed by the Id (see the "-a" and "-5" 
options in the part USING THE LINK EDITOR) or by the strip(l) program. However, the link 
edit run continues using the nonrelocatable input file. 

For such a link edit to be successful (i.e., to actually and correctly link edit all input files, 
relocate all symbols, resolve unresolved references, etc.), two conditions on the nonrelocatable 
input files must be met. 

a. Each input file must have no unresolved external references. 

b. Each input file must be bound to the exact same virtual address as it was bound 
to in the ld run that created it. 

Note that if these two conditions are not met for all nonrelocatable input files, no error 
messages are issued. Because of this fact, extreme care must be taken when supplying such 
input files to the ld. 

ERROR MESSAGES 

Corrupt Input Files 

The following error messages indicate that the input file is corrupt, nonexistent, or unreadable. 
The user should check that the file is in the correct directory with the correct permissions. If 
the object file is corrupt, try recompiling or reassembling it. 

• Can't open name 

• Can't read archive header from archive name 

• Can't read file header of archive name 

• Can't read 1st word of file name 

• Can't seek to the beginning of file name 

• Fail to read file header of name 

• Fail to read lnno of section sect of file name 

18-26 ICON INTERNATIONAL 



( 

LINK EDITOR 

• Fail to read magic number of file name 

• Fail to read section headers of file name 

• Fail to read section headers of library name member number 

• Fail to read symbol table of file name 

• Fail to read symbol table when searching libraries 

• Fail to read the aux entry of file name 

• Fail to read the field to be relocated 

• Fail to seek to symbol table of file name 

• Fail to seek to symbol table when searching libraries 

• Fail to seek to the end of library name member number 

• Fail to skip aux entries when searching libraries 

• Fail to skip the mem of struct of name 

• Illegal relocation type 

• No reloc entry found for symbol 

• Reloc entries out of order in section sect of file name 

• Seek to name section sect failed 

• Seek to name section sect Inno failed 

• Seek to name section sect reloc entries failed 

• Seek to relocation entries for section sect in file name failed. 

Errors During Output 

These errors occur because the ld cannot write to the output file. This usually indicates that 
the file system is out of space. 

• Cannot complete output file name. Write error. 

• Fail to copy the rest of section num of file name 

• Fail to copy the bytes that need no reloc of section num of file 

PROGRAMMER GUIDE 18-27 



LINK. EDITOR 

• name I/O error on output file name. 

Internal Errors 

These messages indicate that something is wrong with the Id internally. There is probably 
nothing the user can do except get help. 

• Attempt to free non allocated memory 

• Attempt to reinitialize the SDP aux space 

• Attempt to reinitialize the SDP slot space 

• Default allocation did not put .data and .6ss into the same region 

• Failed to close SDP symbol space 

• Failure dumping an AlDFNxxx data structure 

• Failure in closing SDP aux space 

• Failure to initialize the SDP aux space 

• Failure to initialize the SDP slot space 

• Internal error: audit...groups, address mismatch 

• Internal error: audit...group, finds a node failure 

• Internal error: fail to seek to the member of name 

• Internal error: in allocate lists, list confusion (num nurn) 

• Internal error: invalid aux table id 

• Internal error: invalid symbol table id 

• Internal error: negative aux table ld 

• Internal error: negative symbol table id 

• Internal error: no symtab entry for DOT 

• Internal error: split...scns, size of sect exceeds its new displacement. 

18-28 ICON INTERNATIONAL 

( ", 
j 



( 

o 

LINK EDITOR 

Allocation Errors 

These error messages appear during the alloca~ion phase of the link edit. They generally 
appear if a section or group does not fit at a certain address or if the given MEMORY or 
SECTION directives in some way conflict. If you are using an ifile, check that MEMORY and 
SECTION directives allow enough room for the sections to ensure that nothing overlaps and 
that nothing is being placed in unconfigured memory. For more information, see "LINK 
EDITOR COMMAND LANGUAGE" and "NOTES AND SPECIAL CONSIDERATIONS". 

• Bond address address for sect is not in configured memory 

• Bond address address for sect overlays previously allocated section sect at address 

• Can't allocate output section sect, of size num 

• Can't allocate section sect into owner mem 

• Default allocation failed: name is too large 

• GROUP containing section sect is too big 

• Memory types namel and name.e overlap 

• Output section sect not allocated into a region 

• Sect at address overlays previously alloca.ted section sect at address 

• Sect, bonded at address, won't fit into configured memory 

• Sect enters unconfigured memory at address 

• Section sect in file name is too big. 

Misuse or Link Editor Directives 

These errors arise from the misuse of an input directive. Please rev~w the appropriate section 
in the manual. 

• Adding name(sect) to multiple output sections. 

The input section is mentioned twice in the SECTION directive. 

• Bad attribute value in MEMORY directive: c. 

An attribute must be one of "R", "W", "X", or "I". 

• Bad flag value in SECTIONS directive, option. 

PROGRAMMER GUIDE 18-29 



LINK EDITOR 

Only the "-1" option is allowed inside of a SECTIONS directive 

• Bad fill value. 

The fill value must be a 2-byte constant. 

• Bonding excludes alignment. 

The section will be bound at the given address regardless of the alignment of that address. 

• Cannot align a section within a group 

• Cannot bond a section within a group 

• Cannot specify an owner for sections within a group. 

The entire group is treated as one unit, so the group may be aligned or bound to an address, 
but the sections making up the group may not be handled individually. 

• DSECT sect can't be given an owner 

• DSECT sect can't be linked to an attribute. 

Since dummy sections do not participate in the memory allocation, it is meaningless for a 
dummy section to be given an owner or an attribute. 

• Region commands not allowed 

The ICON/UXV link editor does not accept the REGION commands. 

• Section sect not built. 

The most likely cause of this is a syntax error in the SECTIONS directive. 

• Semicolon required after expression 

• Statement ignored. 

Caused by a syntax error in an expression. 

• Usage of unimplemented syntax. 

18-30 ICON INTERNATIONAL 



( 

LINK EDITOR 

The ICON/UXV operating system Id does not accept all possible ld commands. 

Misuse of Expressions 

These errors arise from the misuse of an input expression. Please review the appropriate 
section in the manual. 

• Absolute symbol name being redefined. 

An absolute symbol may not be redefined,. 

• ALIGN illegal in this context. 

Alignment of a symbol may only be done within a SECTIONS directive. 

• Attempt to decrement DOT 

• Illegal assignment of physical address to DOT. 

• Illegal operator in expression 

• Misuse of DOT symbol in assignment instruction. 

The DOT symbol (".") cannot be used in assignment statements that are outside SECTIONS 
directives. 

• Symbol name is undefined. 

All symbols referenced in an assignment statement must be defined. 

• Symbol name from file name being redefined. 

A defined symbol may not be redefined in an assignment statement. 

• Undefined symbol in expression. 

Misuse of Options 

These errors arise from the mlSuse of options. Please review the appropriate section of the 
manual. 

• Both -r and -s flags are set. The -s flag is turned off. 

PROGRAMMER GUIDE 18-31 

--------~----------.------- --------------------------- ---- ------ _.- "---_ .. - - .. 



LINK EDITOR 

Further relocation requires a symbol table. 

• Can't find library libx.a 

• -L path too long (string) 

• -0 file name too large (>128 char), truncated to (string) 

• Too many -L options, seven allowed. 

Some options require white space before the argument, some do not; see "USING THE LINK 
EDITOR". Including extra white space or not including the required white space is the most 
likely cause of the following messages. 

• option flag does not specify a number 

• option is an invalid flag 

• -e flag does not specify a legal symbol name name 

• -f flag does not specify a 2-byte number 

• No directory given with -L 

• -0 flag does not specify a valid file name: string 

• the -1 flag (specifying a default library) is not supported 

• -u flag does not specify a legal symbol name: name. 

Space Restraints 

The following error messages may occur if the ld attempts to allocate more space than is 
available. The user should attempt to decrease the amount of space used by the ld. This may 
be accomplished by making the ifile less complicated or by using the "-r" option to create 
intermediate files. 

• Fail to allocate num bytes for slotvec table 

• Internal error: aux table overflow 

• Internal error: symbol table overflow 

• Memory allocation failure on num-byte 'calloc' call 

• Memory allocation failure on realloc call 

• Run is too large and complex. 

18-32 ICON INTERNATIONAL 

/-", 

/ 

c 



( 

( 

o 

LINK EDITOR 

Miscellaneous Errors 

These errors occur for many reasons. Refer to the error message for an indication of where to 
look in the manual. 

• Archive symbol table is empty in archive name, execute 'ar ts name' to restore archive 
symbol table. 

On systems with a random access archive capability, the link editor requires that all archives 
have a symbol table. This symbol table may have been removed by strip. 

• Cannot create output file name. 

The user may not have write permission in the directory where the output file is to be written. 

• File name has no relocation information. 

See "NOTES AND SPECIAL CONSIDERATIONS". 

• File name is of unknown type, magic number = num 

• Ifile nesting limit exceeded with file name. 

Ifiles may be nested 16 deep. 

• Library name, member has no relocation information. 

• Line nbr entry (num num) found for nonrelocatable symbol. 

Section sect, file name 

This is generally caused by an interaction of yacc(l) and cC(l). Re-yacc the offending file with 
the "-I" option of yacc. 

See the part "NOTES AND SPECIAL CONSIDERATIONS". 

• Multiply defined symbol 8ym, in name has more than one size. 

A multiply defined symbol may not have been defined in the same manner in all files. 

• name( sect) not found. 

An input section specified in a SECTIONS directive was not found in the input file. 

PROGRAMMER GUIDE 18-33 



LINK EDITOR 

• Section sect starts on an odd byte boundary! 

This will happen only if the user specifically binds a section at an odd boundary. 

• Sections .text, .data, or .bs8 not found. Optional header may be useless. 

The ICONjUXV a.out header uses values found in the . text, .data, and .b88 section headers. 

• Undefined symbol 8ym first referenced in file name. 

Unless the -r option is used, the Id requires that all referenced symbols are defined. 

• Unexpected EOF (End Of File). 

Syntax error in the ifile. 

SYNTAX DIAGRAM FOR INPUT DIRECTIVES 

A syntax diagram for input directives is found in Figure 7-2. 
\ "' .......... / 

18-34 ICON INTERNATIONAL 



LINK EDITOR 

directives -> expanded directives 

<file> -> {<cmd> } 
<cmd> -> <memory> 

-> <sections> 
-> <assignment> 
-> <filename> 
-> <flags> 

<memory -> MEMORY {<memory...spec> 
{ [,l <memory...spec> }} 

<memory...spec> -> <name> [ <attributes> ] : 
<origin...spec> [,] <length...spec> 

<attributes> -> ({R!W!X!I}) 
<origin...spec> -> <origin> = <long> 
<lenth...spec> -> <length> = <long> 
<origin> -> ORIGIN! o! org I origin 
<length> -> LENGTH III len I length 

( <sections> -> SECTIONS { { <sec_or.-group> } } 
<sec_or.-group> -> <section> I <group> I <library> 
<group> -> GROUP <group_options> : { 

<sectionJist> } [<mem...spec>] 

<sectionJist> -> <section> { [,] <section> } 

Figure 18-2. Syntax Diagram for Input Directives (Sheet 1 of 4) 

PROGRAMMER GUIDE 18-35 



LINK EDITOR 

directives -> expanded directives 

<Section> -> <name> <sec_options> : { 
<statementJist> } 
[<fill>] [<memJlpec>] 

<group_options> -> [<addr > J [<align_option> J 

<sec_options> -> [<addr>] [<align..option>] 
[<block_option>] [<type_option>] 

<addr> -> <long> 
<align_option> -> <align> ( <long> ) 
<align> -> ALIGN I align 
<block_option> -> <block> ( <long> ) 
<block> -> BLOCK I block 
<type_option> -> (DSECT), (NOLOAD) I (COPY) 
<fiJI> -> . = <long> 
<memJlpec> -> > <name> 

-> > <attributes> 
<statement> -> <file-name> [ ( <nameJist> ) ] 

[<fill>] <library> <assignment> 

<nameJist> -> <name> { [,] <name> } 
<library> -> -l<name> 

<assignment> -> <lside> <assign_op> <expr> <end> 
<lside> -> <name> ,. 
<assign_op> -> = I += 1-= I *= II = 
<end> -> • I , I , 

<expr> -> <expr> <binary_op> <expr> 
-> <term> 

<binary _op> -> * lIl% 
-> +1-
-> »:« 

Figure 18-2. Syntax Diagram for Input Directives (Sheet 2 of 4) 

18-36 ICON INTERNATIONAL 



LINK EDITOR 

( 
directives -> expanded directives 

-> I != I > I < I <= I >= 
-> & 
-> I 

I 
-> && 
-> II 

II 
<term> -> <long> 

-> <name> 
-> <align> ( <term> ) 
-> «expr) 
-> <unary_op> <term> 

<unary_op> -> 11-
<flags> -> -e< wht..space><name> 

-> -f< wht..space><long> 
-> -h < wht..space><long> 
-> -l<name> 
-> -m 
-> -0< wht..space><filename> 
-> -r 
-> -8 

( -> -t 
-> -u<wht..space><name> 
-> -z 
-> -H 
-> -L<pathname> 
-> -M 
-> -N 
-> -S 
-> -V 
-> -VS< wht..space><long> 
-> -a 
-> -x 

Figure 18-2. Syntax Diagram for Input Directives (Sheet 3 of 4) 

PROGRAMMER GUIDE 18-37 



LINK EDITOR 

directives -> expanded directives 

<name> -> Any valid symbol name 
<long> -> Any valid long integer constant 
<wht..space> -> Blanks, tabs, and newlines 

<filename> -> Any valid ICON/UXV operating system 
filename. This may include a 
full or partial pathname. 

<path name> -> Any valid ICON/UXV operating system 
pathname (full or partial) 

Figure 18-2. Syntax Diagram for Input Directives (Sheet 4 of 4) 

18-38 ICON INTERNATIONAL 

/~" 
: \ . ) 
~ .. 



Chapter 10 

THE COMMON OBJECT FILE FORMAT 

PAGE 

GENERAL .................................................................................................................................................... 10-1 

DEFINITIONS AND CONVENTIONS .......................................................................................................... 10-2 

Fn.E HEADER.............................................................................................................................................. 10-3 

OPTIONAL HEADER INFORMATION .................................................. ...................................................... 10-8 

SECTION HEADERS ............................................. ................................................ ....... ...................... ..... ..... 10-11 

SECTIONS ............................................................................................................. ....... ........................... ..... 10-10 

RELOCATION INFORMATION ................................................................................................................... 10-10 

LINE NUMBERS ....................................... ,................................................................................................... 10-10 

SYMBOL TABLE .......................................................................................................................................... 10-20 

STRING TABLE ........................................................................................................................................... 10-47 

ACCESS ROUTINES .......................................................................................................... .......................... 10-47 

( 

, ' ;' C' 



) 



( 

() 

Chapter 19 

THE COMMON OBJECT FILE FORMAT 

GENERAL 

This chapter describes the Common Object File Format (COFF) used on the ICON/UXV 
operating systems. The COFF is simple enough to be easily incorporated into existing projects, 
yet flexible enough to meet the needs of most projects. The COFF is the output file produced 
on ICON/UXV B'Ystemss by the assembler (as) and the link editor (ld). This format is also used 
by other operating systems; hence, the word common is both descriptive and widely recognized. 
Some key features of COFF are 

• Applications may add system-dependent information to the object file without causing 
access utilities to become obsolete. 

• Space is provided for symbolic information used by debuggers and other applications 

• Users may make some modifications in the object file construction at compile time. 

The object file supports user-defined sections and contains extensive information for symbolic 
software testing. An object file contains 

• A file header 

• Optional header information 

• A table of section headers 

• Data corresponding to the section header 

• Relocation information 

• Line numbers 

• A symbol table 

• A string table. 

Figure 19-1 shows the overall structure. 

PROGRAMMER GUIDE 19-1 



COFF 

FILE HEADER 
Optional Information 

Section 1 Header 
... 

Section n Header 
Raw Data for Section 1 

... 
Raw Data for Section n 

Relocation Info for Sect. 1 
... 

Relocation Info for Sect. n 
Line Numbers for Sect. 1 

... 
Line Numbers for Sect. n 

SYMBOL TABLE 
STRING TABLE 

Figure 19-1. Object File Format 

The last four sections (relocation, line numbers, symbol table, and the string table) may be 
missing if the program is linked with the -fJ option of the ICON/UXV operating system link 
editor or if the line number information, symbol table, and string table are removed by the 
strip command. The line number information does not appear unless the program is compiled 
with the -g option of the compiler (CC) command. Also, if there are no unresolved external 
references after linking, the relocation information is no longer needed and is absent. The 
string table is also absent if the source file does not contain any symbols with names longer 
than eight characters. 

An object file that contains no errors or unresolved references can be executed on the target 
machine. 

DEFINITIONS AND CONVENTIONS 

Before proceeding further, you should become familiar with the following terms and 
conventions: 

19-2 ICON INTERNATIONAL 



( 

c 

COFF 

Sections 

A section is the smallest portion of a.n object file that is rdocated and treated as one separate 
and distinct entity. In the default case, there are three sections named .text, .data, and .baa. 
Additional sections accommodate mUltiple text or data segments, shared data segments, or 
user-specified sections. However,the ICON/UXV operating system loads only the . text, .data, 
and .bss into memory when the file is executed. 

Physica.l and Virtual Addresses 

The physical address of a section or symbol is the offset of that section or symbol from address 
zero of the address space. The tenn phy,sical&ddJ'~ss as used in COFF does not correspond to 
the general usage. The physical alhiress of an object is not necessarily the address at which the 
object is placed when the process is executed. For example, on a system with paging, the 
address is located with respect to address zero of virtual memory and the system performs 
another address translation. The section heading contains two address fields, a physical 
address, and a virtual address; but in all versions of COFF on ICON computer systems, the 
physical address is equivalent to the virtuol.o.ddress. 

FILE HEADER 

The file header contains the 20 bytes of information shown in Figure 19-2. The last 2 bytes are 
flags that .are .used. by Idand object DIe utilities. 

Bytes Declaration Name Description 

0-1 unsigned short Lmagic Magic number, see 
Fill:ure H~-3. 

2-3 unsigned "Short f....nscns Number of section 
headers (equals the 
number of 
sections) 

4-7 long int Ltimdat Time and date 
stamp indicating 
when the file was 
created relative to 
the number of 
elapsed seconds 
since 00:00:00 
GMT, January 1, 
1970. -

Figure ~9-2. File Header Contents (Sheet 1 of 2) 

PROGRAMMER GUIDE 19-3 



COFF 

Bytes DeelaratioD Name DeseriptioD 
8-11 long int f...~ymptr File pointer 

containing the 
starting address of 
the symbol table 

12·15 long int f..nsyms Number of entries 
in the symbol 
table 

16-17 unsigned short Lopthdr Number of bytes 
in the optional 
header 

18-19 unsigned short fJags Flags (see Figure 
19-4) 

Figure 19-2. File Header Contents (Sheet 2 of 2) 

The size of optional header information (f_opthdr) is used by all referencing programs that 
seek to the beginning of the section header table. This enables the same utility programs to 
work correctly on files targeted for different systems. /~ 

Magie Numbers 

The magic number specifies the target machine on which the object file is executable. The 
currently defined magic numbers are in Figure 19-3. 

19-4 ICON INTERNATIONAL 



c 

COFF 

Mnemonic Magie Number System 

N3BMAGIC 0550 3B20S Computers 
FBOMAGIC 0560 3B2 and 3B5 

Computers 
VAXWRMAGIC 0570 VAX-ll/750 and 

VAX-ll/780 
(writable text 
segments) 

V A.XROMAGIC 0575 V AX-ll/750 and 
VAX-11780 
(read-only text 
segments) 

U370WRMAGIC 0530 IBM 370 (writable 
text segments) 

U370ROMAGIC 0535 IBM 370 (read-only 
sharable text 
segments) 

Figure 19-3. Magie Numbers 

Flags 

The last 2 bytes of the file header are flags that describe the type of the object file. The 
currently defined flags are given in Figure 19-4. 

* Trademark of AT&T Technologies 

PROGRAMMER GUIDE 19-5 



COFF 

Mnemonic FlaK MeanmK 

F..RELFLG 00001 Relocation information 
stripped from the file 

F...EXEC 00002 File is executable (i.e., 
no unresolved external 
references) 

FJ,NNO 00004 Line numbers stripped 
from the file 

FJ,SYMS 00010 Local symbols stripped 
from the file 

F...MINMAL 00020 Not used by 
IOONjUXV 

F_UPDATE 00040 Not used by 
IOON/UXV 

F...5WABD 00100 Not used by 
IOON/UXV 

F-AR16WR 00200 File has the byte 
ordering used by the 
PDP*-1l/70 processor. 

Figure 19-4. File Header Flags (Sheet 1 of 2) 

• Trademark of Digital Equipment Corporation 

19-6 ICON INTERNATIONAL 



( 

c 

COFF 

Mnemonic Flag Meaning 
F.-AR32WR 00400 File has the byte 

ordering used by the 
VAX-ll/780 (i.e., 32 
bits per word, least 
significa.nt byte first). 

F.-AR32W 01000 File has the byte 
ordering used by the 3B 
computers (i.e., 32 bits 
per word, most 
significant byte first). 

FYATCH 02000 Not used by 
ICON/UXV 

FJJM32ID 0160000 WE 32000 processor ID 
field. 

Figure 19-4:. File Header Flags (Sheet 2 of 2) 

File Header Declaration 

The C structure declaration for the file header is given in Figure 19-5. This declaration may 
be found in the header file filehdr.h. 

PROGRAMMER GUIDE 19-7 



COFF 

struct filehdr { 

}j 

unsigned short Cmagic; 1* magic number • / 
unsigned short f-nscns; /* number of section • 

long Ctimdat; 1* time and data stamp 1* 

long f~ymptr; /* file ptr to symbol table ... / 

long f-nsyms; 1* number entries in the symbol table • / 

unsigned short Copthdrj /. size of optional header • / 

unsigned short f..flags; 1* flags • / 

#define FILHDR struct filehdr 
#define FILHSZ sizeof(FILHDR} 

Figure 19-5. File Header Declaration 

OPTIONAL HEADER INFORMATION 

The template for optional information varies among different systems that use the COFF. 
Applications place all system-dependent information into this record. This allows different 
operating systems access to information that only that operating system uses without forcing 
all COFF files to save space for that information. General utility programs (for example, the 
symbol table access library functions, the disassembler, etc.) are made to work properly on 
any common object file. This is done by seeking past this record using the size of optional 
header information in the file header Copthdr. 

Standard ICON/UXVa.out Header 

By default, files produced by the link editor for a ICON/UXV system always have a standard 
ICON/UXV a.out header in the optional header field. The ICON/UXV a.out header is 28 
bytes. There is one exception; files produced for the 3B20S Computers have an optional 
header of 36 bytes. The extra 8 bytes represent unused fields that are present for historical 
reasons. Therefore, the two formats contain functionally equivalent information. The fields of 
the optional header are described in Figure 19-6 and 19-7. 

19-8 ICON INTERNATIONAL 



c 

COFF 

Bytes Declaration Name Description 

0-1 short magic Magic number 
2-3 short vstamp Version stamp 
4-7 long int tsize Size of text 

in bytes 
8-11 long int dsize Size of initialized 

data in bytes 
12-15 long int bsize Size of uninitialized 

data in bytes 
16-19 long int duml Unused dummy field 
20-23 long int dum2 Unused dummy field 
24-27 long int entry Entry point 
27-31 long int textJltart Base address of text 
32-35 long int dataJltart Base address of data 

Figure 19-6. Optional Header Contents (3B20S Computers Only) 

Bytes Declaration Name Description 

0-1 short magic Magic number 
2-3 short vstamp Version stamp 
4-7 long int tsize Size of text in bytes 

8-11 long int dsize Size of initialized 
data in bytes 

12-15 long int bsize Size of uninitialized 
data in bytes 

16-19 long int entry Entry point 
20-23 long int textJltart Base address 

of text 
24-37 long int dataJltart Base address of data 

Figure 19-7. Optional Header Contents (processors other than the 3B20S) 

The magic number in the optional header supplies operating system dependent information 
about the object file. Whereas, the magic number in the file header specifies the machine on 
PROGRAMMER GUIDE 19-9 



COFF 

which the object file runs. The magic number in the optional header supplies information 
telling the operating system on that machine how that file should be executed. 

The magic numbers recognized by the ICON/UXV operating system are given in Figure 19-8. 

Value Meaning 

0407 The text segment is not write-
protected or sharable; the data 
segment is contiguous with the 
text segment. 

0410 The data segment starts at the 
next segment following the text 
segment and the text segment 
is write protected. 

0413 The data segment starts at a 
certain boundary within the 
next segment following the text 
segment. The text segment is 
write protected. 

Figure 19-8. ICON/UXVMagic Numbers 

Optional Header Declaration 

The C language structure declaration currently used for the ICON/UXV a.out file header is 
given in Figure 19-9. This declaration may be found in the header file aouthdr.h. 

19-10 ICON INTERNATIONAL 

~ 
I ) 
~ .. 

/ 



( 

( 

typedef struct aouthdr { 
short magic; 
short vstamp; 
long tsize; 

/ * magic number * / 
/ * version stamp * / 

/ * text size in bytes, padded * / 

/ * to full word boundary * / 

long dsize; / * initialized data size * / 

long bsize; / * uninitialized data size * / 

#if uSb 
long duml; / * unused dummy field * / 
long dumf; / * unused dummy field * / 

#endif 
long entry; / * entry point * / 
long texLstart; / * base of text for this file * / 

long data_start / * base of data for this file * / 

} AOUTHDR; 

Figure 19-9. Aouthdr Declaration 

SECTION HEADERS 

COFF 

Every object file has a table of section headers to specify the layout of data within the file. 
The section header table consists of one entry for every section in the file. The information in 
the section header is described in Figure 19-10. 

PROGRAMMER GUIDE 19-11 



COFF 

Bytes Declaration Name Description 

0-7 char 8..name 8-char null 
padded section 
name 

8-11 long int 8-fJaddr Physical 
address of section 

1e-15 long int 8_"addr Virtual 
address of section 

16-19 long int 8..size Section 
size in bytes 

eO-t9 long int s_scnptr File pointer 
to raw data 

e4-t7 long int s_re/ptr File ptr to 
relocation 
entries 

e8-91 long int s_lnnoptr File ptr to line 
number entries 

9f-99 unsigned s_nreloc Number of 
short entries 

94-95 unsigned s_nlnno Number of line 
short number entries 

96-99 long int s-flags Flags (see 
Figure 19-11) 

Figure 19·10. Section Header Contents 

The size of a section is padded to a multiple of 4 bytes. 

File pointers are byte offsets that can be used to locate the start of data, relocation, or line 
number entries for the section. They can be readily used with the ICON/UXV function 
fseek(3S). 

Flags 

The lower 4 bits of the flag field indicate a section type. The flags are described in Figure 19-
11. 

19·12 ICON INTERNATIONAL 

-------- -----



COFF 

( 
Mnemonic Flag Meauing 

STYP...REG OxOO Regular section 
{allocated, relocated, 
loaded} 

STYP .J)SECT OzOl Dummy section {not 
allocated, relo~a.ted, not 
loaded} 

STYP ...NOLOAD OxO£ Noload section 
(allocated, Telocated, 
not loaded) 

Figure 19-11. Section Header Flags (Sheet 1 or 2) 

Mnemonic Flag Meaning 

STYP_GROUP Ox04 Grouped section 
(formed from input 
sections) 

STYPYAD Ox08 Padding section {not 
allocated, not relocated, 
loaded} 

STYP_COPY Ox10 Copy section (for a 
decision function used 
in updating fields; not 
allocated, Mt relocated, 
loaded, rewcatitm and 
line number entries 
processed normally) 

STYP_TEXT oxeo Section contains 
executable text 

STYP.J)ATA Ox40 Section contains 
initialized data 

STYP....BSS Ox80 Section contains only 
uninitialized data 

Figure 19-11. Section Header Flags (Sheet 2 or 2) 

c 
PROGRA.M:MER GUIDE 19-13 



COFF 

Section Header Declaration 

The C structure declaration for the section headers is described in Figure 19-12. This 
declaration may be found in the header file scuhdr.h. 

struct scnhdr { 
char s_name/B}; 
long B-Paddr; 
long s_"addr; 
long s_size; 
long 8_scnptr; 

long 

long 

unsigned short s_nreloc; 

unsigned short s_nlnno; 

long s..Jlags; 

}; 

/* section name */ 
/ * physical address * / 
/ * virtual address * / 

/ * section size * / 
/ * file ptr to section raw data * / 

/ * file ptr to relocation * / 

/ * file ptr to line number * / 

/ * number oj relocation entries * / 

/ * number oj line number entries * / 

/* flags */ 

#define SCNHDR struct scnhdr 
#define SCNHSZ sizeoJ{SCNHDR) 

Figure 19-12. Section Header Declaration 

.bas Section Header 

The one deviation from the normal rule in the section header table is the entry for 
uninitialized data in a .bss section. A .blSs section has a size and symbols that refer to it, and 
symbols that are defined in it. At the same time, a .bss section has no relocation entries, no 
line number entries, and no data. Therefore, a .blSs section has an entry in the section header 
table but occupies no space elsewhere in the file. In this case, the number of relocation and 
line number entries, as well as all file pointers in a .bss section header, are O. 

19-14 ICON INTERNATIONAL 



(/ 

( 

c 

COFF 

SECTIONS 

Figure 19-1 shows that section headers are followed by the appropriate number of bytes of text 
or data. The raw data for each section begins on a full word boundary in the file. 

Files produced by the cc and the as always contain three sections, called .text, .data, and 
.bss. The .text section contains the instruction text (i.e., executable code), the .data section 
contains initialized data variables, and the .baa section contains uninitialized data variables. 

The link editor "SECTIONS directives" (see Chapter 7) allows users to 

• Describe how input sections are to be combined. 

• Direct the placement of output sections. 

• Rename output sections. 

If no SECTIONS directives are given, each input section appears in an output section of the 
same name. For example, if a number of object files from the "cc" are linked together (each 
containing the three sections .text, .data, and .bss), the output object file contains three 
sections, .text, .data, and .bss. 

RELOCATION INFORMATION 

Object files have one relocation entry for each relocatable reference in the text or data. The 
relocation information consists of entries with the format described in Figure 19-13. 

Bytes Declaration Name Description 

0-3 long int r--symndx (Virtual) 
address 
of reference 

4:-7 long int r--symndx Symbol 
table 
index 

8-9 unsigned short r_type Relocation 
type 

Figure 19-13. Relocation Section Contents 

PROGRAMMER GUIDE 19-15 



COFF 

The first 4 bytes of the entry are the virtual address of the text or data to which this entry 
applies. The next field is the index, counted from 0, of the symbol table entry that is being 
referenced. The type field indicates the type of relocation to be applied. 

As the link editor reads each input section and performs relocation, the relocation entries are 
read. They direct how references found within the input section are treated. 

The currently recognized relocation types are given in Figures 19-14 through 19-16. 

Mnemonic Flag Meaning 

R.-ABS 0 Reference IS absolute; 
no relocation is 
necessary. The entry 
will be ignored. 

R..Dm,24 04 Direct 24-bit reference 
to the symbol's virtual 
address. 

R....REL24 05 A "PC-relative" 24-bit 
reference to the 
symbol's virtual 
address. Actual 
address is calculated by 
adding a constant to 
the PC value. 

Figure 19-14. 3B20S Computers Relocation Types 

19-16 ICON INTERNATIONAL 



COFF 

Mnemonic Flag Meaning 

R...BS 0 Reference is absolute; 
no relocation is 
necessary. The entry 
will be ilr:nored. 

RJ)m32 06 Direct 32-bit reference 
to the symbol's virtual 
address 

R....Dm32S 012 Direct 32-bit reference 
to the symbol's virtual 
address, with the 32-bit 
value stored In the 
reverse order in the 
object file. 

Figure 19-15. 3B5 and 3B2 Relocation Types 

o 
PROGRAMMER GUIDE 19-17 



COFF 

Mnemonic Flag Meaning 

R..ABS 0 Reference 15 absolute; 
no relocation 15 

necessary. The entry 
will be ignored. 

R....RELBYTE 017 Direct 8-bit reference 
to the symbol's virtual 
address. 

R..RELWORD 020 Direct 16-bit reference 
to the symbol's virtual 
address. 

R..RELLONG 021 Direct 32-bit reference 
to the symbol's virtual 
address. 

R...PCRBYTE 022 A "PCJelative" 8-bit 
reference to the 
symbol's virtual 
address. 

R...PCRWORD 023 A "PCJelative" 16-bit 
reference to the 
symbol's virtual 
address. 

R...PCRLONG 024 A "PCJelative" 32-bit 
reference to the 
symbol's virtual 
address. 

Figure 19-16. VAX Relocation Types 

On the VAX processors, relocation of a symbol index of -1 indicates that the amount by which 
the section is being relocated is added to the relocatable address. 

The as automatically generates relocation entries which are then used by the link editor. The 
link editor uses this information to resolve external references in the file. 

Relocation Entry Declaration 

The structure declaration for relocation entries is given in Figure 19-17. This declaration may 
be found in the header file reloe.h. 

19-18 ICON INTERNATIONAL 



(-

( 

o 

COFF 

struct reloc { 
long r_vaddrj 1* virtual address of reference * / 

long r...$ymndx; 1* index into symbol table * / 

unsigned short r_typej 1* relocation type * / 
}j 

#define RELOC struct reloc 

#define RELSZ 10 
o 

Figure 19-17. Relocation Entry Declaration 

LINE NUMBERS 

When invoked with the -g option, ICON/UXV operating system ccs (ee, /71) generates an entry 
in the object file for every C language source line where a breakpoint can be inserted. You can 
then reference line numbers when using a software debugger like sdb. All line numbers in a 
section are grouped by function as shown in Figure 19-18. 

symbol index 0 
p_hysical address line number 
physical address line number 

symbol index 0 
phvsicaladdress line number 
physical address line number 

Figure 19-18. Line Number Grouping 

The first entry in a function grouping has line number 0 and has, in place of the physical 
address, an index into the symbol table for the entry containing the function name. 

PROGRAMMER GUIDE 19-19 



COFF 

Subsequent entries have actual line numbers and addresses of the text corresponding to the line 
numbers. The line number entries appear in increasing order of address. 

Line Number Declaration 

The structure declaration currently used for line number entries is given in Figure 19-19. 

struct line no { 
union 
{ 

long uymndx; 1* symtbl index of func name * / 

long Lpaddr; 1* paddr of line number * / 
} Laddr; 
unsigned short Unno; 1* line number * / 

}; 

#define LINENO 

#define LINESZ 
o 

struct lineno 

6 

Figure 19-19. Line Number Entry Declaration 

SYMBOL TABLE 

Because of symbolic debugging requirements, the order of symbols in the symbol table is very 
important. Symbols appear in the sequence shown in Figure 19-20. 

19-20 ICON INTERNATIONAL 

"----"""-"----



(/ 

( 

o 

COFF 

file name 1 
function 1 

local sym boIs 
for function 1 

function 2 
local symbols 
for function 2 

statics 

file name 2 
function 1 

local symbols 
for Cunction 1 

statics 

defined global 
symbols 

undefined global 
symbols 

Figure 19-20. COFF Global Symbol Table 

The word "statics" in Figure 19-20 means symbols defined in the C language storage class 
static outside any Cunction. The symbol table consists of at least one fixed-length entry per 
symbol with some symbols followed by auxiliary entries of the same size. The entry for each 
symbol is a structure that holds the value, the type, and other information. 

Special Symbols 

The symbol table contains some special symbols that are generated by the cc, as, and other 
tools. These symbols are given in Figure 19-21. 

PROGRAMMER GUIDE 19-21 



COFF 

Symbol Meaning;: 

.file file name 

.text address of .text section 

.data address of .data section 

.b8s address of .bas section 

.bb address of start of inner block 

.eb address of end of inner block 

.bf address of start of function 

.ef address of end of function 

.target pointer to the structure or 
union returned by a function 

.xf'ake dummy tag name for structure, 
union, or enumeran 

Figure 19-21. Special Symbols in the Symbol Table (Sheet 1 of 2) 

Symbol Meaning;: 
.eos end of members of structure, 

union or enumeration 
_etext,etext next available address after the 

end of the output section .text 

_edata,edata next available address after the 
end of the output section .data 

_end ,end next available address after the 
end of the output section . bss. 

Figure 19-21. Special Symbols in the Symbol Table (Sheet 2 of 2) 

Six of these special symbols occur in pairs. The .bb and .eb symbols indicate the boundaries of 
inner blocks. A .bf and .ef pair brackets each function; and a .xf'ake and .eos pair names and 
defines the limit of structures, unions, and enumerations that were not named. The .eos 
symbol also appears after named structures, unions, and enumerations. 

When a structure, union, or enumeration has no tag name, the cc invents a name to be used in 
the symbol table. The name chosen for the symbol table is .x.fake, where "x" is an integer. If 
there are three unnamed structures, unions, or enumerations in the source, their tag names are 
".Ofake", ".!fake", and ".2fake". (~, 

19-22 ICON INTERNATIONAL 



( 

COFF 

Each of the special symbols has different information stored in the symbol table entry as well 
as the auxiliary entry. 

l~rBocks 

The C language defines a block as a compound statement that begins and ends with braces ( { 
and}). An inner block is a block that occurs within a function (which is also a block). 

For each inner block that has local symbols defined, a special symbol .bb is put in the symbol 
table immediately before the first local symbol of that block. Also a special symbol, .eb is put 
in the symbol table immediately after the last local symbol of that block. The sequence is 
shown in Figure 19-22. 

.bb 
local symbols 
for that block 
.eb 

Figure 19-22. Special Symbols (.bb and .eb) 

Because inner blocks can be nested by several levels, the .bb-.eb pairs and associated symbols 
may also be nested. See Figure 19-23. 

PROGRAMMER GUIDE 19-23 

-- - -~- --~ -------~--_._---_._-_._-------_ .. _-



The symbol table would look like Figure 19-24. 

19-24 ICON INTERNATIONAL 



( 

COFF 

.bb for block 1 
1 

c 
.bb for block 2 

a 
.bb for block 3 

x 

.eb for block 3 

.eb for block 2 

.bb for block 4 
1 

.bb for block 4 

.eb for block 1 

Figure 19-24. Example of the Symbol Table 

Symbols and Functions 

For each function, a special symbol .bfis put between the function name and the first local 
symbol of the function in the symbol table. Also, a special symbol .ef is put immediately after 
the last local symbol of the function in the symbol table. The sequence is shown in Figure 19-
25. 

function name 
.bf 

local signal 
.ef 

Figure 19-25. Symbols for Functions 

If the return value of the function is a structure or union, a special symbol .target is put 
between the function name and the .bf. The sequence is shown in Figure 19-26. 

PROGRAMMER GUIDE 19-25 



COFF 

function name 
.target 

.bf 
local symbols 

.ef 

Figure 19-26. Special Symbol .Target 

The cc invents .target to store the function-return structure or union. The symbol .target is 
an automatic variable with "pointer" type. Its value field in the symbol is always O. 

Symbol Table Entries 

All symbols, regardless of storage class and type, have the same format for their entries in the 
symbol table. The symbol table entries each contain the 18 bytes of information. The meaning 
of each of the fields in the symbol table entry is described in Figure 19-27 

It should be noted that indices for symbol table entries begin at 0 and count upward. Each 
auxiliary entry also counts as one symbol. 

19-26 ICON INTERNATIONAL 

",', C
-~ 



COFF 

Bytes Declaration Name Description 
0-7 (see text below) -D These 8 bytes 

contain either the 
name of a pointer 
or the name of a 
symbol. 

8-11 long int JL.v.a.Jue Symbol value; 
storage class 
dependent 

12-13 short ILJ3Cnum Section number of 
symbol 

14-15 unsigned short L.type Basic and derived 
type specification 

16 char n.JSclass Storage class of 
symbol 

17 char llJlumaux Number of 
auxiliary entries. 

Figure 19-27. Symbol Table Entry Format 

Symbol Namu 

The first 8 bytes in the symbol table entry a-re a union of a character array and two longs. If 
the symbol name is eight characters or less, the (null-padded) symbol name is stored there. If 
the symbol name is longer than eight characters, then the entire symbol name is stored in the 
string table. In this case, the 8 bytes contain two long integers, the first is zero, and the 
second is the offset (relative to the beginning of tlMl string table) of the name in the string 
table. Since there can be no symbols with a null name, the zeroes on the first 4 bytes serve to 
distinguish a symbol table entry with an offset hom one with a name in the first 8 bytes as 
shown in Figure 19-28. 

PROGRAMMER GUIDE 19-27 



COFF 

Bytes Declaration Name Description 

0-7 char D..Jlam~ 8-character null-
padded symbol 
name 

0-3 long ll...Jeroes Zero in this field 
indica.tes the name 
IS In the string 
ta.ble 

4-7 long Loffset Offset of the name 
in the string table 

Figure 19-28. Name Field 

Some special symbols are generated by the cc and link editor as discussed in "special symbols". 
The VAX "cc" prepends an underscore ('_') to all the user defined symbols it generates. 

Stor-Q(Ie a088eB 

The storage class field has one of the values described in Figure 19-29. These "defines" may be 
found in the header file storclass.h. 

19-28 ICON INTERNATIONAL 

/ ' 



COFF 

Mnemonic Value Storage Class 

C...EFCN -1 physical end of a function 
C-lWLL 0 -
C.,.AUTO 1 automatic variable 
C...EXT 2 external symbol 
C.-STAT 3 static 
C..REG 4 register variable 
C...EXTDEF 5 external definition 
CJ..ABEL 6 label 
C_ULABEL 7 undefined label 
C..MOS 8 member of structure 
C...ARG 9 function argument 
C.-STRTAG 10 structure tag 
C..MOU 11 member of union 
C UNTAG 12 union tap; 
C_TPDEF 13 type definition 
C_USTATIC 14 uninitialized static 

( 
C...ENTAG 15 enumeration tap; 
C..MOE 16 member of enumeration 
C..REGPARM 17 rep;ister parameter 
CYIELD 18 bit field 

Figure 19-29. Storage Classes (Sheet 1 of 2) 

c 
PROGRAMMER GUIDE 19-29 



COFF 

Mnemonic Value Storage Class 

C..BLOCK 100 beginning and end of block 
C..FCN 101 beginning and end of function 
C..EOS 102 end of structure 
C..FILE 103 file name 
CJ.,INE 104 used only by utility programs 
C..ALIAS 105 duplicated tag 
CJlIDDEN 106 like static, used to avoid 

name conflicts 

Figure 19-29. Storage Classes (Sheet 2 of 2) 

All of these storage classes except for C..ALIAS and C-HIDDEN are generated by the "cc" or 
"as". The compress utility, cprs, generates the C..ALIAS mnemonic. This utility (described in 
the ICON/UXV System Reference ManuaQ removes duplicated structure, union, and 
enumeration definitions and puts ALIAS entries in their places. The storage class C-HIDDEN 
is not used by any ICON/UXVtools. 

Some of these storage classes are used only internally by the "cc" and the "as". These storage 
classes are C..EFCN, C..EXTDEF, C_ULABEL, C_USTATIC, and CJ.,INE. 

Storw;e Qaue8/or Special Svmbols 

Some special symbols are restricted to certain storage classes. They are given in Figure 19-30. 

19-30 ICON INTERNATIONAL 

-.-.-----~-----------------... --_._----



( 

( 

() 

COFF 

Special Symbol Storage Class 

.file CYILE 

.bb C-BLOCK 

.eb C-BLOCK 

.bf CYCN 

.ef CYCN 

.target C-AUTO 

.rl'ake C..5TRTAG C_UNTAG. C..ENTAG 

.eos C..EOS 
.text C..5TAT 
.data C..5TAT 
.bss C..5TAT 

Figure 19-30. Storage Class by Special Symbols 

Also some storage classes are used only for certain special symbols. They are summarized in 
Figure 19-31. 

Storage Class Special Symbol 

C-BLOCK .bb, .eb 
CYCN .br •• er 
C..EOS .eos 
CYILE .file 

Figure 19-31. Restricted Storage Classes 

Symbol Value Field 

The meaning of the "value" of a symbol depends on its storage class. This relationship is 
summarized in Figure 19-32. 

PROGRAMMER GUIDE 19-31 



COFF 

Storage Clae. Meaning 

C..AUTO stack of set in bytes 
C-EXT relocatable address 
C...8TAT relocatable address 
CJlEG reltister number 
C..LABEL relocatable address 
C...MOS of set in bytes 
C..ARG stack of set in bytes 
C...8TRTAG 0 
C...MOU 0 
C_UNTAG 0 
C_TPDEF 0 
C-ENTAG 0 

C...MOE enumeration value 
CJlEGPARM reltister number 
CYIELD bit displacement 
C..BLOCK relocatable address 
CYCN relocatable address 
C-EOS size 
CYILE (see text below) 
C-ALIAS talt index 
CJ.IIDDEN· relocatable address 

Figure 19-32. St,OTage Class and Value 

If a symbol has storage class CYILE, the value of that symbol equals the symbol table entry 
index of the next .file symbol. That is, the .file entries form a I-way linked list in the symbol 
table. If there are no more .file entries in the symbol table, the value of the symbol is the 
index of the first global symbol. 

Relocatable symbols have a value equal to the virtual address of that symbol. When the 
section is relocated by the link editor, the va.lue of these symbols changes. 

19-32 ICON INTERNATIONAL 



( 

(, 

COFF 

Section NuniJer Field. 

Section numbers are listed in Figure 19-33. 

Mnemonic Section Number Meaning 

N..DEBUG -2 Special symbolic 
debugging sJ'mbol 

N-ABS -1 Absolute symbol 
N_UNDEF 0 Undefined external 

symbol 
N-BCNUM 1-077777 Section number where 

symbol was defined 

Figure 19-33. Section Number 

A special section number (-2) marks symbolic debugging symbols, including 
structure/union/enumeration tag names, typedefs, and the name of the file. A section number 
of -1 indicates that the symbol has a value but is not relocatable. Examples of absolute
valued symbols include automatic and register variables, function arguments, and .eos 
symbols. The .text, .data., and .bsa symbols default to section numbers 1, 2, and 3, 
respectively. 

With one exception, a section number of 0 indicates a relocatable external symbol that is not 
defined in the current file. The one exception is a multiply defined external symbol (i.e., 
FORTRAN common or an un initialized variable defined external to a function in C). In the 
symbol table of each file where the symbol is defined, the section number of the symbol is 0 and 
the value of the symbol is a positive number giving the size of the symbol. When the files are 
combined, the link editor combines all the input symbols into one symbol with the section 
number of the .baa section. The maximum size of all the input symbols with the same name is 
used to allocate space for the symbol and the value becomes the address of the symbol. This is 
the only case where a symbol has a section number of 0 and a non-zero value. 

Section Number. and Storage QClNU 

Symbols having certain storage classes are also restricted to certain section numbers. They 
are summarized in Figure 19-34. 

PROGRAMMER GUIDE 19-33 



COFF 

Storage Class Section Number 

C-AUTO N-ABS 
C-EXT N-ABS N_UNDEF N-.SCNUM 
C..5TAT N..5CNUM 
C....REG N-ABS 
CJ.,ABEL N_UNDEF. N..5CNUM 
C..MOS N-ABS 
C..ARG N-ABS 
C..8TRTAG NJ)EBUG 
C...MOU N-ABS 
C UNTAG NJ)EBUG 
C_TPDEF NJ)EBUG 
C-ENTAG NJ)EBUG 
C...MOE N-ABS 
CJtEGPARM N-ABS 
CJ'IELD N-ABS 
C..BLOCK N..8CNUM 
CJ'CN N..8CNUM 
C-EOS N-ABS 
CJ'ILE NJ)EBUG 
C.-ALIAS N..DEBUG 

Figure 19-34. Section N um ber and Storage Class 

7lIPe Errtru 
The type field in the symbol table entry contains information about the basic and derived type 
for the symbol. This information is generated by the "cc". The VAX "cc" generates this 
information only if the -g option is used. Each symbol has exactly one basic or fundamental 
type but can have more than one derived type. The format of the 1S-bit type entry is 

I d61 dsl d41 d31 d21 dl I Iyp I 

19-34 ICON INTERNATIONAL 



o 

COFF 

Bits 0 through 3, called "typ", indicate one of the fundamental types given in Figure 19-35. 

Mnemonic Value Type 
T..NULL 0 type not assigned 
T_CHAR 2 character 
T-BHORT 3 short integer 
TJNT '4 integer 
T-LONG 5 long integer 
TJ'LOAT 6 Boating point 
T-DOUBLE 7 double word 
T-BTRUCT 8 structure 
T_UNION 9 union 
T-ENUM 10 enumeration 
T...MOE 11 member of enumeration 
T_UCHAR 12 unsigned character 
T_USHORT 13 unsigned short 
T_UINT 14 unsigned integer 
T_ULONG 15 unsigned long 

Figure 19-35. Fundamental Types 

Bits 4 through 15 are arranged as six 2-bit fields marked "dl" through "d6." These "d" fields 
represent levels of the derived types given in Figure 19-36. 

Mnemonic Value Type 
DT-.NON 0 no derived type 
DT...PTR 1 'POinter 
DTJ'CN 2 function 
DT-ARY 3 array 

Figure 19-36. Derived Types 

The following examples demonstrate the interpretation of the symbol table entry representin'g 
type. 

PROGRAMMER GUIDE 19-35 

- ------ --- ----~,-."--~-. -----_ .. - -.-~- ------------ ._- --------_ .. - --



COFF 

ehar *June(}; 

Here June is the name of a. function that returns a pointer to a. character. The fundamental 
type of June is 2 (character), the dl field is 2 (function), and the d2 field is 1 (pointer). 
Therefore, the type word in the symbol table for June contains the hexadecimal number Ox62, 
which is interpreted to mean "function that returns a pointer to a character." 

short *tabptrll0Jf~5J/SJ; 

Here tabptr is a 3-dimensional array of pointers to short integers. The fundamental type of 
tabptr is 3 (short integer); the dl, d2, and d3 fields each contains a 3 (array), and the d4 field is 
1 (pointer). Therefore, the type entry in the symbol table contains the hexadecimal number 
Ox7f3 indicating a "3-dimensional array of pointers to short integers." 

7\tpe .Entria and Star. Qa.u 

Figure 19-37 shows the type entries that are legal for each storage class. 

Storage - "d" entry- "typ" entry 

Class Function! Array! Pointer! Basic Type 
C-AUTO no yes yes Any except 

T..MOE 
C...EXT yes yes yes Any except 

T..MOE 
C..sTAT yes yes yes Any except 

T..MOE 
C..REG no no yes Any except 

T..MOE 
CJ.,ABEL no no no T..NULL 
C..MOS no yes yes Any except 

T..MOE 
C-ARG yes no yes Any except 

T..MOE 
C..sTRTAG no no no T..sTRUCT 
C..MOU no yes yes Any except 

T..MOE 
C_UNTAG no no no T_UNION 

Figure 19-37. Type Entries by Storage Class (Sheet 1 of 2) 

19-36 ICON INTERNATIONAL 



(-

( 

COFF 

Storage "d" entry "typ" entry 

Class Function! Array! Pointer! Basic Type 
C_TPDEF no yes yes Any except 

T..MOE 
C-ENTAG no no no T...ENUM 
C....MOE no no no T....MOE 
C..REGPARM no no yes Any except 

T..MOE 
CYIELD no no no T-ENUM, 

T_UCHAR, 
T_USHORT, 
T_UNIT, 
T_ULONG 

CJ3LOCK no no no T~ULL 

CYCN no no no T~ULL 

C...EOS no no no T~ULL 

CYILE no no no T~ULL 

C-ALIAS no no no T.-STRUCT, 
T_UNION<, 
T-ENUM 

Figure 19-37. Type Entries by Storage Class (Sheet 2 of 2) 

Conditions for the lid" entries apply to dl through d6, except that it is impossible to have two 
consecutive derived types of "function." 

Although function arguments can be declared as arrays, they are changed to pointers by 
default. Therefore, no function argument can have "array" as its first derived type. 

Stnu:ture lor Symbol Table Fmtrie.s 

The C language structure declaration for the symbol table entry is given in Figure 19-38. This 
declaration may be found in the header file syms.h. 

PROGRAMMER GUIDE 19-37 



COFF 

struet syment 
{ 

}; 

union 
{ 

char -IWlame\SYMNMLENI; 
,. symbol .ame·' 

struct 
{ 

long -lI-Ieroes; 
,. symbol .ame ., 

long -II_ofl'set; 
,. location in string table ., 

} -11-11; 
char -II-IIptrl2j; 

,. allows overlaying ., 
} -II; 
long n_value; r nlue or symbol • / 

sbort n...lcnum; 
r section number • / 

unsigned short n_type; r type and derived ., 

cha.r n...lclass; 
r storage class * / 

cha.r n-Dumaux; r number or aux entries * / 

*define n-Dame 
*define n..zeroes 
*define n_olJset 
*define n-Dptr 

-II.-II-Dame 
-II-!l-D.-II..zeroes 

-II.-D-D_n_olJset 
-II.-II-D p tr 11 J 

*define SYMNMLEN 8 
*define SYMESZ 18 r size of a symbol table entry * / 

Figure 19-38. Symbol Table Entry Deelaration 

Auxiliary Table Entries 

Currently, there is at most one auxiliary entry per symbol. The auxiliary table entry contains 
the same number of bytes as the symbol table entry. However, unlike symbo1 table entries, the 
format of an auxiliary table entry of a symbol depends on its type and storage class. They are 
summarized in Figure 19-39. 

19-38 ICON INTERNATIONAL 

c 



( 

o 

COFF 

Storage Type Entry Auxiliary 
Name 

Class dl typ Entry Format 

.file C..FILE DT-.NON T-.NULL file name 
.text,.data, C-.STAT DT-.NON T-.NULL section 
.bss 
tagname C-.STRTAG DT-.NON T-.NULL tag name 

C_UNTAG 
C-ENTAG 

.eos C-EOS DT-.NON T-.NULL end of 
structure 

fcname C-EXT DT..FCN (Note 1) function 
C-.STAT 

arrname (Note 2) DT-ARY (Note 1) array 
.bb C-BLOCK DT-.NON T-.NULL beginning 

of block 
.eb C-BLOCK DT-.NON T-.NULL end of block 
.bf,.ef C..FCN DT-.NON T-.NULL beginning 

and end of 
function 

name related (Note 2) DTJ>TR T-.STRUCT, name related 
to structure DT-ARR, T_UNION, to structure, 
union, DT~ON T-ENUM union, 
enumeration enumeration 

Notes: 
1. Any except T...MOE. 
2. C-A,UTO, C-.STAT, C...MOS, C...MOU, C_TPDEF. 

Figure 19-39. Auxiliary Symbol Table Entries 

In Figure 19-39, "tagname" means any symbol name including the special symbol . xfake , and 
"fcname" and "arrname" represent any symbol name. 

Any symbol that satisfies more than one condition in Figure 19-39 should have a union format 
in its auxiliary entry. Symbols that do not satisfy any of the above conditions should NOT 
have any auxiliary entry. 

PROGRAMMER GUIDE 19-39 



COFF 

, 
Each of the auxiliary table entries for a file name contains a 14-character file name in bytes 0 
through 13. The remaining bytes are 0, regardless of the size of the entry. 

SeetWns 

The auxiliary table entries for sections have the format as shown in Figure 19-40. 

Bytes Declaration Name Description 

0-3 long int XJ;cnlen section 
length 

4-6 unsigned short x..nreloc number of 
relocation 
entries 

6-7 unsigned short x..nlinno number of 
line numbers 

8-17 - - unused (filled 
with zeroes) 

Figure 19-40. Format for Auxiliary Table Entries 

TagNamu 

The auxiliary table entries for tag names have the format shown in Figure 19-41. 

19-40 ICON INTERNATIONAL 



COFF 

Bytes Declaration Name Description 

0-5 - - unused (filled 
with zeros) 

6-7 unsigned short XJize size of strucrt, 
union,and 
enumeration 

8-11 - - unused (filled 
with zeroes) 

12-15 long int x-endndx index of next 
entry beyond 
this structure, 
UnIon, or 
enumeration 

16-17 - - unused (filled 
with zeroes) 

Figure 19-41. Tag Names Table Entries 

End of Stru.ct1U'e8 

The auxiliary table entries for the end of structures have the format shown in Figure 19-42: 

Bytes Declaration Name Description 

0-3 long int x-tagndx tag index 
4-5 - - unused (filled 

with zeroes) 
6-7 unsigned short XJize size of struct, 

union, or 
enumeration 

8-17 - - unused (filled 
with zeroes) 

Figure 19-42. Table Entries for End of Structures 

PROGRAMMER GUIDE 19-41 



COFF 

Functions 

The auxiliary table entries for functions have the format shown in Figure 19-43: 

Bytes Declaration Name Description 

0-3 lonsz: int x..tasz:ndx tasz: index 
4-7 long int xJsize size of 

function 
(in bytes) 

8-11 long int x-Innoptr file pointer 
to line number 

12-15 long int x..endndx index of 
next entry 
beyond this 
point 

16-17 unsigned short x..tvndx index of the 
function's address 
in the transfer 
vector table (not 
used in ICON/UXV system) 

Figure 19·43. Table Entries for Functions 

An-ays 

The auxiliary table entries for arrays have the format shown in Figure 19-44: 

19·42 ICON INTERNATIONAL 



( 

COFF 

Bytes Declaration Name Description 

0-3 long int x-tagndx tag index 
4-5 unsigned short unno line number of 

declaration 
6-7 unsigned short )Ulize size of array 
8-9 unsil!:ned short x-dimenlOl first dimension 
10-11 unsigned short x-dimen[11 second dimension 
12-13 unsigned short x-dimen[21 third dimension 
14-15 unsil!:ned short x-dimenl31 fourth dimension 
16-17 - - unused (filled 

with zeroes) 

Figure 19-44. Table Entries for Arrays 

End of Bocks and FUnctions 

The auxiliary table entries for the end of blocks and functions have the format shown in Figure 
19-45: 

Bytes Declaration Name Description 

0-3 - - used (filled 
with zeroes) 

4-5 unsigned short unno C-source line 
number 

6-17 - - unused (filled 
with zeroes) 

Figure 19-45. End of Block and Function Entries 

PROGRAMMER GUIDE 19-43 



COFF 

&gimng of Boc:IaI and.F\&netions 

The auxiliary table entries for the beginning of blocks and functions have the format shown in 
Figure 19-46: 

Bytes Declaration Name Description 

0-3 - - unused (filled 
with zeroesl 

4-5 unsigned short xJnno C-source line 
number 

6-11 - - unused (filled 
with zeroes) 

12-15 long int x-endndx index of next 
entry past 
this block 

16-17 - - unused (filled 
with zeroes) 

Figure 19-46. Format for Beginning of Block and Function 

Narnu Rdate.d to Strut::turu, u.&onB/ and Enu.muations 

The auxiliary table entries for structure, union, and enumerations symbols have the format 
shown in Figure 19-47: 

19-44 ICON INTERNATIONAL 

o 



( 

Bytes Declaration Name Description 

0-3 long int lLtagndx tag index 
4-5 - - unused (filled 

with zeroes) 
6-7 unsigned short x....size size of the 

structure, union, 
or numeration 

8-17 - - unused (filled 
with zeroes) 

Figure 19-47. Entries for Structures, Unions, and Numera.tions 

Names defined by "typedef" mayor may not have auxiliary table entries. For example, 

typedef struct people STUDENT; 

struct people { 
char name[20]; 
long id; 
}; 

typedef struct people EMPLOYEE; 

COFF 

The symbol "EMPLOYEE" has an auxiliary table entry in the symbol table but symbol 
"STUDENT" will not. 

AuziliartJ EntrtJ Declaration 

The C language structure declaration for an auxiliary symbol table entry is given in Figure 
19-48. This declaration may be found in the header file syms.h. 

PROGRAMMER GUIDE 19-45 



COFF 

union auxent { 
struct { 

} 

union { 
struct { 

} xJnsz; 

} XJIlisc; 
union { 

struct { 

} xJcn; 
struct { 

} Lary; 
} xJcnary; 

} x-sym; 
struct { 

} ule; 
struct { 

} XJcn; 
struct { 

} Ltv; 

long Ltagndx; 

unsigned short xJnno; 
unsigned short XJize; 

long xJsize; 

long xJnnoptr; 
long Lendndx; 

unsigned short Ldimen[DIMNUM]; 

unsigned short Ltvndx; 

char xJname[FILNMLEN]; 

. long x-scnlen; 
unsigned short X-nreloc; 
unsigned short X-nlinno; 

long x_tvfill; 
unsigned short Ltvlen; 
unsigned short Ltvran[2]; 

#define FILNMLEN 14 
#define DIMNUM 4 
#define AUXENT union auxent 
#define AUXESZ 18 

Figure 19-48. Auxiliary Symbol Table Entry 

19-46 ICON INTERNATIONAL 

I. ') 
~/ 



( 
COFF 

STRING TABLE 

Symbol table names longer than eight characters are stored contiguously in the string table 
with each symbol name delimited by a null byte. The first four bytes of the string table are 
the size of the string table in bytes; offsets into the string table therefore are greater than or 
equal to 4. 

For example, given a file containing two symbols (with names longer then eight characters, 
long_name_l and another_one) the string table has the format as shown in Figure 19-49: 

28 

'1' '0' en' 'g' 

, -, 
'n' 'a' 'm' 

'e' 
, - , 

'I' '\0' 

'a' en' '0' It' 

'h' Ie' 'r' I - , 

'0' en' Ie' '\0' 

Figure 19-49. String Table 

The index of long_name_l in the string table is 4 and the index of another_one is 16. 

ACCESS ROUTINES 

Supplied with every standard ICON/UXV release is a set of access routines that are used for 
reading the various parts of a common object file. Although the calling program must know 
the detailed structure of the parts of the object file it processes, the routines effectively insulate 
the calling program from the knowledge of the overall structure of the object file. In this way, 
you can concern yourself with the section you are interested in without knowing all the object 
PROGRAMMER GUIDE 19-47 



COFF 

file details. 

The access routines can be divided into four categories: 

1. Functions that open or close an object file. 

2. Functions that read header or symbol table information. 

3. Functions that position an object file at the start of a particular section of the object file. 

4. A function that returns the symbol table index for a particular symbol. 

These routines can be found in the library libld.a and are listed in Section 3 of the ICON/UXV 
Programmer Reference Manual. A summary of what is available can be found in the 
ICON/UXV Programmer Reference Manual under LDFCN(4). 

19-48 ICON INTERNATIONAL 

/' 



Chapter 20 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

PAGE 

GENERAL .................................................................................................................................................... 20-1 

INTRODUCTION ......................................................................................................................................... 20-1 

WARNINGS .................................................................................................................................................. 20-2 
Comparleon lnatruetlons ..... ..... .... ...... ............................ ...... .... ........ ..... ...... ..... ..... .... ......... ........ ........... 10-2 
OverloadIng or Opeodes ......... ......... ...... ....... ................... ..... ................. ....... ............ .... ...... ................... 20-3 

USE OF THE ASSEMBLER ... ......... .... ....... ........ .... ...... .............................. .............. .................................... 20-3 

GENERAL SYNTAX RULES................... ............ ....... ..................... ............. ................................................ 20-3 
Format or Assembly Language LIne........... ........... ................................ ................................................ 20-3 
Comments .................................. ...... ............. ........................... ..... ....................................................... 20-4 
Identifiers........... ......... ...... ................... ..... ............................. ....... ...... ...... ........................................... 10-4 
Register Identifiers................................................................................................................................ 20-5 
Constants. ............. ....... ................................... .................................... ...... ..... ............... ....................... 20-6 
Other Syntaetle Details......................................................................................................................... 20-'7 

SEGMENTS, LOCATION COUNTERS, AND LABELS ................................................................................ 20-'7 
Segments .............................................................................................................................................. 20-'7 
Loeatlon Counters and Labels............ .......... ............................ ............................................................. 10-8 

TypES.......................................................................................................................................................... 20-8 

EXPRESSIONS ......................................................................................................................... ~................... 20-9 

PSEUDO-OPERATIONS............................................................................................................................... 20-10 
Data Initializatlon Operations....... ..... ...................................................................................... ............. 20-10 
Symbol Definltlon Operations................................................................................................................ 20-11 
Location Counter Control Operations: .................................................................................................. 20-11 
Symbolic Debugglng Operations .............................................................................................. .............. 20-12 
Switch Table Operatlon ...................................................... :................................................................. 20-14 

SPAN·DEPENDENT OPTIMiZATION ......................................................................................................... 20-14 

ADDRESS MODE SYNTAX.......................................................................................................................... 20-16 

MACmNE INSTRUCTIONS......................................................................................................................... 20-19 
instructions For The MCG8000/MCG8010/MCIl8020 .............................................................................. 20-10 
instructions For the MCG8881 .................... :.......................................................................................... 20-30 





(i 

c' 

Chapter 20 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

GENERAL 

This chapter was first published as a manual by the Motorola Corporation, first edition 1984. 
The current edition is reprinted by Icon International with permission by Motorola Inc. 

Icon makes no representation or warranties with respect to the contents of this manual and 
disclaims any implied warranties or fitness for any particular application. Icon reserves the 
right to revise this manual without obligation to notify any person or organization of such 
revision. 

The information in this document has been carefully checked and is believed to be entirely 
reliable. However, no responsibility is assumed for inaccuracies. 

INTRODUCTION 

This is a reference manual for the ICON/UX resident assembler, as. Programmers familiar 
with the M68000 family of processors should be able to program in as by referring to this 
manual, but this is not a manual for the processor itself. Details about the effects of 
instructions, meanings of status register bits, handling of interrupts, and many other issues are 
not dealt with here. This manual, therefore, should be used in conjunction with the following 
reference manuals: 

• M68000 16/32-Bit Microprocessor Programmer's Reference Manual, Fourth Edition; 
Englewood Cliffs, NJ: PRENTICE-HALL, 1984. This manual is also available from the 
Motorola Literature Distribution Center, P.O. Box 20912, Phoenix, AZ 85036, part number 
M68000UM. 

• MC68020 32-Bit Microprocessor User's Manual; Englewood Cliffs, NJ: PRENTICE-HALL, 
1984. This manual is also available from the Motorola Literature Distribution Center, 
part number MC68020UM. 

• M68000 Family Resident Structured Assembler Reference Manual, part number 
M68KMASM. 

Trademarks 
UNIX is a registered trademark of AT&T. 
EXORmacs, EXORterm, and SYSTEM V /68 are trademarks of Motorola, Inc. 
VAX is a trademark of Digital Equipment Corporation. 

PROGRAMMER GUIDE 20-1 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

• SYSTEM V /68 User's Manual, part number M68KUNUM . 

• SYSTEM V /68 VM04 System Manual, part number M68KVM4SYS. This document 
includes user manual pages to support the MC68881 floating point co-processor provided in 
SYSTEM V /68 Release 2, Version 2 from Motorola Corp. 

This guide also contains information for users of the SOS M68020 Cross Compilation System. 
For these users, references to as(l) and cc(l) should be read as aseO(!) and cceO(l). 
Information about these commands is provided in the SGS M68020 Cross Compilation System 
Reference Manual, part number M68KUNASX. 

WARNINGS 

A few important warnings to the as user should be emphasized at the outset. Though for the 
most part there is a direct correspondence between as notation and the notation used in the 
documents listed in the preceding section, several exceptions exist that could lead the 
unsuspecting user to write incorrect code. In addition to the exceptions described in the 
following paragraphs, refer also to sections 10 and 11 for information about address mode 
syntax and machine instructions. 

Comparison Instructions '." . ./ 

First, the order of the operands in compare instructions follows one convention in the M68000 
Programmer's Reference Manual and the opposite convention in as. Using the convention of 
the M68000 Programmer's Reference Manual, one might write 

CMP.W D5,D3 Is D3 less than D5! 
BLE IS-LESS Branch if less. 

Using the as convention, one would write 
cmp.w %d3,%d5 
ble isJess 

# Is d3 less than d5! 
# Branch if less. 

As follows the convention used by other assemblers supported in the UNIX8 operating system 
(both the 3B20S and the VAX follow this convention). This convention makes for 
straightforward reading of compare-and-branch instruction sequences, but does nonetheless lead 
to the peculiarity that if a compare instruction is replaced by a subtract instruction, the effect 
on the condition codes will be entirely different. This may be confusing to programmers who 
are used to thinking of a comparison as a subtraction whose result is not stored. Users of as 
who become accustomed to the convention will find that both the compare and subtract 
notations make sense in their respective contexts. 

UNIX is a registered tra.demark of AT&T. 

20-2 ICON INTERNATIONAL 



{ 

SYSTEM V /88 ASSEMBLER USER'S GUIDE 

Overloading or Opeodes 

Another issue that users must be aware of arises from the M68000 processors' use of several 
different instructions to do more or less the same thing. For example, the M68000 
Programmer's Reference Manual lists the instructions SUB, SUBA, SUBI, and SUBQ, which 
all have the effect of subtracting their source operand (rom their destination operand. As 
provides the convenience o( allowing all these operations to be specified by a single assembly 
instruction Bub. On the basis of the operands given to the Bub instruction, the as assembler 
selects the appropriate M68000 operation code. The danger created by this convenience is that 
it could leave the misleading impression that all forms of the SUB operation are semantically 
identical. In fact, they are not. The careful reader of the M68000 Programmer's Reference 
Manual will notice that whereas SUB, SUBI, and SUBQ all affect the condition codes in a 
consistent way, SUBA does not affect the condition codes at all. Consequently, the a8 user 
must be aware that when the destination of a Bub instruction is an address register (which 
causes the sub to be mapped into the operation code for SUBA) , the condition codes will not 
be affected. 

USE OF THE ASSEMBLER 

The SYSTEM V /68 command as invokes the assembler and has the following syntax: 
as [ -0 output J file 

When as is invoked with the -0 output flag, the output of the assembly is put in the file output. 
If the -0 flag is not specified, the output is left in a file whose name is formed by removing the 
.s suffix, if there is one, from the input filename and appending a .0 suffix. 

The M68020 cross assembler, a8.eO(l), is invoked with the same syntax as as(l). For 
information about additional options for these commands, refer to the SYSTEM V/68 User's 
Manual for as(l) and the SGS M680.eO Cro8s Compilation System Reference Manual for as£O(l). 

GENERAL SYNTAX RULES 

Format of Assembly Language Line 

Typical lines of a8 assembly code look like these: 
# Clear a block of memory at location %a3 

loop: 

init2: 

text 
move.w 
clr.1 
dbf 

2 
&const,%dl 
(%a3)+ 
%dl,loop # go back (or const 

# repetitions 

elr.! count; clr.l credit; clr.l debit; 

PROGRAMMER GUIDE 20-3 



SYSTEM V 168 ASSEMBLER USER'S GUIDE 

These general points about the example should be noted: 

- An identifier occurring at the beginning of a line and followed by a colon (:) is a label. One 
or more labels may precede any assembly langua.ge instruction or pseudo-operation. Refer 
to Section 5.2, "Loca.tion Counters and Labels." 

- A line of assembly code need not include an instruction. It may consist of a comment 
alone (introduced by #), a label alone (terminated by:), or it may be entirely blank. 

- It is good practice to use tabs to align assembly language operations and their operands 
into columns, but this is not a requirement of the assembler. An opcode may appear at 
the beginning of the line, if desired, and spaces may precede a label. A single blank or tab 
suffices to separate an opcode from its operands. Additional blanks and tabs are ignored 
by the assembler. 

- It is permissible to write several instructions on one line separating them by semicolons. 
The semicolon is syntactically equivalent to a newline character; however, a semicolon 
inside a comment is ignored. 

Comment. 

Comments are introduced by the character # and continue to the end of the line. Comments 
may appear anywhere and are completely disregarded by the assembler. 

Identifiers 

An identifier is a string of characters taken from the set a-z, A-Z, _, -, %, and 0-9. The first 
character of an identifier must be a letter (uppercase or lowercase) or an underscore. 
Uppercase and lowercase letters are distinguished; for example, con35 and CON35 are two 
distinct identifiers. 

There is no limit on the length of an identifier. 

The value of an identifier is established by the Bet pseudo-operation (refer to Section 8.2, 
"Symbol Definition Operations") or by .using it as a label. Refer to Section 5.2, "Location 
Counters and Labels". 

The tilde character C) has special significance to the assembler. A - used alone, as an 
identifier, means "the current location". A - used as the first character in an identifier 
becomes a period (.) in the symbol table, allowing symbols such as .eoB and .Drake to be 
entered into the symbol table, as required by the Common Object File format (COFF). 
Information about file formats is provided in the SYSTEM Vl68 User's Manual, Section 4. 

20-4 ICON INTERNATIONAL 

( 
~/ 



c 

SYSTEM V /68 ASSEMBLER USER '8 GUIDE 

Register Identifiers 

A register identifier is an identifier preceded by the character %, and represents one of the 
MC68000 processor's registers. The predefined register identifiers are; 

%dO 
%dl 
%d2 
%d3 

%d4 
%d5 
%d6 
%d7 

%aO 
%al 
%a2 
%a3 

%a4 
%a5 
%a6 
%a7 

%acc 
%pc 
%sp 
%sr 

%usp 
%fp 

Note: The identifiers %a7 and %sp represent the same machine register. Likewise, %a6 
and %fp are equivalent. Use of both %a7 and %sp, or %a6 and %fp, in the same program 
may result in confusion. 

The current version of the assembler will correctly assemble instructions intended for the 
M68010. There will be a warning message issued. The following additions will be flagged with 
warnmgs: 

REGISTERS ADDED FOR THE MC68010 
NAME DESCRIPTION 
%sfc Source Function Code Register 
%dfc Destination Function Code Register 
%vbr Vector Base Register 

The entire register set of the MC68000 and MC68010 is included in the MC68020 register set. 
The following are new control registers for the MC68020: 

MC68020 REGISTERS 
NAME DESCRIPTION 
%caar Cache Address ReJ;ister 
%cacr Cache Control Register 
%isp Interrupt Stack Pointer 
%msp Master Stack Pointer 

The following are suppressed registers (zero registers) used in various MC68020 addressing 
modes: 

PROGRAMMER GUIDE 20-5 



SYSTEM V 18S ASSEMBLER USER'S GUIDE 

MC68020 ZERO REGISTERS 
SUPPRESSED SUPPRESSED. SUPPRESSED 
ADDRESS REGISTERS DATA REGISTERS PROGRAM COUNTER 

%zaO %zdO %zpc 
%zal %zdl 
%za2 %zd2 
%za3 %zd3 
%za4 %zd4 
%za5 %zd5 
%za6 %zd6 
%za7 %zd7 

Constants 

As deals only with integer constants. They may be entered in decimal, octal, or hexadecimal, 
or they may be entered as character constants. Internally, as treats all constants as 32-b· . , 

Nu.ml:rieol Cbnstants 

A decimal constant is a string of digits beginning with a non-zero digit. An octal constant is a 
string of digits beginning with zero. A hexadecimal constant consists of the characters Ox or 
OX followed by a string of characters from the set 0-9, a-f, and A-F. In hexadeximal 

( 
~) 

constants, uppercase and lowercase letters are not distinguished. '" 

Examples: 

Owrcu:ter a:m.tanta 

set const,35 
mov.w &035,%dl 
set const, Ox35 
mov.w &Oxff, %dl 

:# Decimal 35 
:# Octal 35 (decimal 29) 
:# Hex 35 (decimal 53) 
:# Hex ff (decimal 255) 

An ordinary character constant consists of a single-quote character (') followed by an arbitrary 
ASCII character other than the backslash (\). The value of the constant is equal to the ASCII 
code for the character. Special meanings of characters are overridden when used in character 
constants; for example, if ':# is used, the :# is not treated as introducing a comment. 

A special character constant consists of '\ followed by another character. All the special 
character constants and examples of ordinary character constants are listed in the following 
table. 

20-6 ICON INTERNATIONAL 



( --" 

-" 

( 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

CONSTANT VALUE MEANING 

'\ b Ox08 Backspace 
'\ t Oz09 Horizontal Tab 
'\ n OxOa Newline (Line Feed) 
'\ v OxOb Vertical Tab 
'\ f OxOc Form Feed 
'\ r OxOd Carriage Return 
'\\ Ox5c Backslash , , 

Ox27 Single Quote 
'0 Ox30 Zero 
'A Ox41 Uppercase A 
'a Ox61 Lowercase a 

Other Syntaetie Details 

A discussion of expression syntax appears in Section 7 of this guide. Information about the 
syntax of specific components of as instructions and pseudc>-operations is given in Sections 8, 9, 
and 10. 

SEGMENTS, LOCATION COUNTERS, AND LABELS 

Segments 

A program in as assembly language may be broken into segments known as text, data and bS8 

segments. The convention regarding the use of these segments is to place instructions in text 
segments, initialized data in data segments, and uninitialized data in bS8 segments. However, 
the assembler does not enforce this convention; for example, it permits intermixing of 
instructions and data in a text segment. 

Primarily to simplify compiler code generation, the assembler permits up to four separate text 
segments and four separate data segments named 0, 1, 2, and 3. The assembly language 
program may switch freely between them by using assembler pseudo-operations (refer to 
Section 8.3, "Location Counter Control Operations"). When generating the object file, the 
assembler concatenates the text segments to generate a single text segment, and the data 
segments to generate a single data segment. Thus, the object file contains only one text 
segment and only one data segment. There is always only one bS8 segment and it maps directly 
into the object file. 

Because the assembler keeps together everything from a given segment when generating the 
object file, the order in which information appears in the object file may not be the same as in 
the assembly language file. For example, if the data for a program consisted of 

PROGRAMMER GUIDE 20-7 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

data 1 # segment 1 
short Oxl111 
data 0 # segment 0 
long Oxff ff ff ff 
data 1 # segment 1 
byte Oxff 

then equivalent object code would be generated by 

data 0 
long Oxffffffff 
short Ox1111 
byte Oxff 

Location Coullters and Labels 

The assembler maintains separate location counters for the bss segment and for each of the text 
and data segments. The location counter for a given segment is incremented by one for each 
byte generated in that segment. 

The location counters allow values to be assigned to labels. When an identifier is used as a 
label in the assembly language input, the current value of the current location counter is 
assigned to the identifier. The assembler also keeps track of which segment the label appeared 
in. Thus, the identifier represents a memory location relative to the beginning of a particular 
segment. Any label relative to the location counter should be within the text segment. 

TYPES 

Identifiers and expressions may have values of different types. 

- In the simplest case, an expression (or identifier) may have an absolute value, such as 29, 
-5000, or 262143. 

- An expression (or identifier) may have a value relative to the start of a particular 
segment. Such a value is known as a relocatable value. The memory location represented 
by such an expression cannot be known at assembly time, but the relative values of two 
such expressions (i.e., the difference between them) can be known if they refer to the same 
segment. 

Identifiers which appear as labels have relocatable values. 

- If an identifier is never assigned a value, it is assumed to be an undefined external. Such 
identifiers may be used with the expectation that their values will be defined in another 
program, and therefore known at load time; but the relative values of undefined externals 
cannot be known. 

20-8 ICON INTERNATIONAL 

/ 



( 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

EXPRESSIONS 

For conciseness, the following abbreviations are useful: 

aba absolute expression 
rei relocatable expression 
ext undefined external 

All constants are absolute expressions. An identifier may be thought of as an expression having 
the identifier's type. Expressions may be built up from lesser expressions using the operators 
+, -, ., and /, according to the following type rules: 

aba + aba = aba 
abs + rei = rei + aba = rei 
aba + ext = ext + aba = ext 

aba - abs = abs 
rei - aba = reI 
ext - aba = ext 
reI - reI = aba (provided that 
the two relocatable expressions are relative to the same segment)· 

aba • aba = aba 

aba / abs = abs 

-aba =abs 

Note: reI - reI expressions are permitted only within the context of a switch statement 
(refer to Section 8.5, "Switch Table Operation".) Use of a rei - reI expression is dangerous, 
particularly when dealing with identifiers from text segments. The problem is that the 
assembler will determine the value of the expression before it has resolved all questions 
concerning span-dependent optimizations. 

The unary minus operator takes the highest precedence; the next highest precedence is given to 
• and /, and lowest precedence is given to + and -. Parentheses may be used to coerce the 
order of evaluation. 

If the result of a division is a positive non-integer, it will be truncated toward zero. If the 
result is a negative non-integer, the direction of truncation cannot be guaranteed. 

PROGRAMMER GUIDE 20-9 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

PSEUDO-OPERATIONS 

Data Initialisation Operations 

byte a68,a68, ... 
One or more arguments, separated by commas, may be given. The values of the arguments 
are computed to produce successive bytes in the asse.mbly output. 

short a68,a68, ... 
One or more arguments, separated by commas, may be given. The values of the 
arguments are computed to produce successive 16-bit words in the assembly output. 

long expr,expr, ... 
One or more arguments, separated by commas, may be given. Each expression may be 
a6solute, relocatable, or undefined external. A 32-bit quantity is generated for each such 
argument (in the ease of relocata61e or undefined external expressions, the actual value may 
not be filled in until load time). 

Alternatively, the arguments may be bit-field expressions. A bit-field expression has the 
form 

n: value 

where both n and value denote absolute expressions. The quantity n represents a field 
width; the low-order n bits of value become the contents of the bit-field. Successive bit
fields fill up 32-bit long quantities starting with the high-order part. If the sum of the 
lengths of the bit-fields is less than 32 bits, the assembler creates a 32-bit long with zeroes 
filling out the low-order bits. For example, 

long 4: -1, 18: Ox7f, 12:0, 5000 

and 

long 4:-1, 16:Ox7~5000 

are equivalent to 

long OxfOO7fOOO, 5000 

Bit-fields may not span pairs of 32-bit longs. Thus, 

long 24: Oxa, 24: Oxb, 24:Oxc 

yields the same thing as 

20-10 ICON INTERNATIONAL 

(1'-. 

~j' 



( 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

long OxOOOOOaOO, OxOOOOObOO, OxOOOOOcOO 

space abs 
The value of abs is computed, and the resultant number of bytes of zero data is generated. 
For example, 

space 6 

is equivalent to 

byte 0,0,0,0,0,0 

Symbol Definition Operations 

set identifier, expr 
The value of identifier is set equal to expr, which may be absolute or relocatable. 

comm identifier,abs 
The named identifier is to be assigned to a common area of size abs bytes. If identifier is 
-not defined by another program, the loader will allocate space for it. 

lcomm identifier,abs 
The named identifier is assigned to a local common of size abs bytes. This results m 
allocation of space in the bss segment. 

The type of identifier becomes relocatable. 

global identifier 
This causes identifier to be externally visible. If identifier is defined in the current 
program, then declaring it global allows the loader to resolve references to identifier in 
other programs. 

If identifier is not defined in the current program, the assembler expects an external 
resolution; in this case, therefore, identifier is global by default. 

data abs 

text abs 

Location Counter Control Operations: 

The argument, if present, must evaluate to 0, 1, 2, or 3; this indicates the 
number of the data segment into which assembly is to be directed. If no 
argument is present, assembly is directed into data segment O. 

The argument, if present, must evaluate to 0, I, 2, or 3; this indicates the 
number of the text segment into which assembly is to be directed. If no 
argument is present, assembly is directed into text segment O. 

PROGRAMMER GUIDE 20-11 

--- -- -- --------~~~~~------- - - ---



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

org ezpr 

even 

Before the first text or data operation is encountered, assembly is by default 
directed into tezt segment o. 

The current location counter is.set to upr. Ezpr must represent a value in the 
current segment, and must not be less than the current location counter. 

The current location counter is rounded up to the next even value. 

Symbolic Debuuina Operations 

The assembler allows for symbolic debugging information to be placed into the object code file 
with special pseudo-operations. The information typically includes line numbers and 
information about 0 language symbols, such as their type and storage class. The 0 compiler 
(cc(l)) generates symbolic debugging information when the -g option is used. Assembler 
programmers may also include such information in source files. 

file and In 

The file pseudo-operation passes the name of the source file into the object file symbol table. 
It has the form 

file filename 

where filename consists of one to 14 characters enclosed in quotation marks. 

The In pseudo-operation makes a line number table entry in the object file. That is, it 
associates a line number with a memory location. Usually the memory location is the current 
location in text. The format is 

In liner, value] 

where line is the line number. The optional value is the address in tezt, data, or bss to 
associate with the line number. The default when value is omitted (which is usually the case) is 
the current location in text. 

Symbol Attribute OperationB 

The basic symbolic testing pseudo-operations are def and endef. These operations enclose 
other pseudo-operations that assign attributes to a symbol and must be paired. 

def name 

endef 

20-12 

# Attribute 
# Assigning 
# Operations 

lOON INTERNATIONAL 



(-

o 

SYSTEM V /88 ASSEMBLER USER'S GUIDE 

NOTES 

• def does not define the symbol, although it does create a symbol table entry. Because an 
undefined symbol is treated as external, a symbol which appears in a def, but which never 
acquires a value, will ultimately result in an error at link edit time . 

• to allow the assembler to calculate the sizes of functions for other tools, each def/endef 
pair that defines a function name must be matched by a def/endef pair after the function 
in which a storage class of -1 is assigned. 

The paragraphs below describe the attribute-assigning operations. Keep in mind that all of 
these operations apply to symbol name which appeared in the opening def pseudo-operation. 

val expr 
Assigns the value expr to name. the type of the expression expr determines with which 
section name is associated. If value is -, the current location in the text section is used. 

sel expr 
Declares the C language type of name. The expression expr must yield an ABSOLUTE 
value that corresponds to the C compiler's internal representation of a storage class. The 
special value -1 designates the physical end of a function. 

type expr 
Declares the C language type of name. The expression expr must yield an ABSOLUTE 
value that corresponds to the C comEiler's internal representation of a basic or derived 
type. 

tag str 
Associates name with the structure, enumeration, or union named str which must have 
already been declared with a def/endef pair. 

line expr 
Provides the line number of name, where name is a block symbol. The expression expr 
should yield an ABSOLUTE value that represents a line number. 

size expr 
Gives a size for name. The expression expr must yield an ABSOLUTE value. When name 
is a structure or an array with a predetermined extent, expr gives the size in bytes. For 
bit fields, the size is in bits. 

dim expr1,exprf, ... 
Indicates that name is an array. Each of the expressions must yield an ABSOLUTE value 
that provides the corresponding array dimension. 

PROGRAMMER GUIDE 20-13 

--- -- ------.- -------~~-



SYSTEM v/a8 ASSEMBLER USER'S GUIDE 

Switch Table Operation 

The C compiler generates a compact set of instructions. for the C language 8witch construct. 
An example is shown below. 

sub.l &1,%dO 
cmp.1 %dO,&4 
bhi L%21 
add.w %dO,%dO 
mov.w 10(%pc,%dO.w),%dO 
jmp 6(%pc,%dO.w) 
swbeg &5 

L%22: 
short L%I5-L%22 
short L%21-L%22 
short L%I6-L%22 
short L%21-L%22 
short L%17-L%22 

The special swbeg pseudo-operation communicates to the assembler that the lines following it 
contain reI-reI subtractions. Remember that ordinarily such subtractions are risky because of 
span-dependent optimization. In this case, however, the assembler makes special allowances 
for the subtraction because the compiler guarantees that both symbols will be defined in the 
current assembler file, and that one of the symbols is a fixed distance away from the current 
location. 

The swbeg pseudo-operation takes an argument that looks like an immediate operand. The 
argument is the number of lines that follow swbeg and that contain switch table entries. 
Swbeg inserts two words into text. The first is the ILLEGAL instruction code. The second is 
the number of table entries that follow. The disassembler dis(l) needs the ILLEGAL 
instruction as a hint that what follows is a switch table. Otherwise, it would get confused when 
it tried to decode the table entries, differences between two symbols, as instructions. 

SPAN-DEPENDENT OPTIMIZATION 

The assembler makes certain choices about the object code it generates based on the distance 
between an instruction and its operand(s). Span-dependent optimization occurs most obviously 
in the choice of object code for branches and jumps. It also occurs when an operand may be 
represented by the program counter relative address mode instead of as an absolute 2-word 
(long) address. The span-dependent optimization capability is normally enabled; the -n 
command line flag disables it. When this capability is disabled, the assembler makes worst
case assumptions about the types of object code that must be generated. Span-dependent 
optimizations are performed only within text segment O. Any reference outside text segment 0 
is assumed to be worst-case. 

20-14 ICON INTERNATIONAL 

) 

C: 



(/ 

o 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

The C compiler (cc(l» generates branch instructions without a specific offset size. When the 
optimizer is used, it identifies branches which could be represented by the short form, and it 
changes the operation accordingly. The assembler chooses only between long and very-long 
representations for branches. 

For the MC68000 and MC68010 processors, branch instructions, e.g., bra, bar, or bgt, can 
have either a byte or a word pc-relative address operand. A byte or word size specification 
should be used only when the user is sure that the address intended can be represented in the 
byte or word allowed. The assembler will take one of these instructions with a size 
specification and generate the byte or word form of the instruction without asking questions. 

Although the largest offset specification allowed for the M68000 and M68010 is a word,* large 
programs could conceivably have need for a branch to location not reachable by a word 
displacement. Therefore, equivalent long forms of these instructions might be needed. When 
the Assembler encounters a branch instructions without a size specification, it tries to choose 
between the long and very-long forms of the instruction. If the operand can be represented in 
a word, then the word form of the instruction will be generated. Otherwise, the very-long form 
will be generated. For unconditional branches, e.g., br, bra, and bsr, the very-long form is 
just the equivalent jump ( jmp and jsr ) with an absolute address operand (instead of pc
relative). For conditional branches, the equivalent very-long form is a conditional branch 
around a jump, where the conditional test has been reversed. 

The following table summarizes span-dependent optimizations. The assembler chooses only 
between the long form and the very-long form, while the optimizer chooses between the short 
and long forms for branches (but not bsr). 

ASSEMBLER SPAN-DEPENDENT OPTIMIZATIONS 
Instruction Short Form Long Form Very-Long Form 

br, bra, bsr byte offset word offset (See jmp or jsr with 
footnote for absolute long 
information about address 
M68020.) 

conditional branch byte offset word offset (See short conditional 
footnote for branch with 
information about reversed condition 
M68020.) around jmp with 

absolute long 
add res 

jmp, jsr pc-relative address absolute long 
address 

lea.l, pea.l pc-relative address absolute long 
address 

• The M68020 allows long word offset, as shown by the syntax for the branch instructions. 

PROGRAMMER GUIDE 20-15 



SYSTEM Vj68 ASSEMBLER USER'S GUIDE 

For the MC68020 processor, branch instructions can have either a byte, word, or long pc
relative address operand. The assembler still chooses between word and long representations 
for branches if no byte size specification is given; however, the long form is replaced by a 
branch long with pc-relative address instead of a jump with absolute long address. 

ADDRESS MODE SYNTAX 
The following table summarizes the as syntax for MC68000, MC68010, and MC68020 
addressing modes. New addressing modes for the MB68020 are shown with "MC68020 Only" in 
parentheses beneath the MC6800 notation; modes not specified in this way are for all three 
processors. 

In the table, the following abbreviations are used: 

an Address register, where n is any digit from 0 through 7. 
dn Data register, where n is any digit from 0 through 7. 
r~ Index register i may be any address or data register with an optional size designation 

(i.e., ri.w for 16 bits or ri.l for 32 bits); default size is .w. 
sel Optional scale factor that may be multipled time index register in some modes. Values 

for sci are I, 2, 4, or 8; default is 1. 
bd Two's complement base displacement that is added before indirection takes place; size 

can be 16 or 32 bits. 
od Outer displacement that is added as a part of effective address calculation after memory " 

indirection; size can be 16 or 32 bits. 
d Two's complement or sign-extended displacement that is added as part of effective 

address calculation; size may be 8 or 16 bits; when omitted, assembler uses value of zero. 
pc Program counter 
[] Grouping characters used to enclose an indirect expression; required characters. 

Addressing arguments can occur in any order within the brackets. 
() Grouping characters used to enclose an entire effective address; required characters. 

Addressing arguments can occur in any order within the parentheses. 
{} Indicate that a scale factor is optional; not required characters. 

It is important to note that expressions used for the absolute addressing modes need not be 
absolute expressions in the sense described in Section 6. Although the addresses used in those 
addressing modes must ultimately be filled in with constants, that can be done later by the 
loader. There is no need for the assembler to be able to compute them. Indeed, the Absolute 
Long addressing mode is commonly used for accessing undefined external addresses. 

20-16 ICON INTERNATIONAL 

( 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

( 
EFFECTIVE ADDRESS MODES 

M68000 as Effective Address Mode 
Family Notation Notation 
Dn %dn Data RelZ:ister Direct 
An %an Address RelZ:ister Direct 
(An) (%an) Address ReJ(ister Indirect 
(An)+ (%an)+ Address Register Indirect 

With Postincrement 
-(An) -(%an) Address Register Indirect 

With Predecrement 
deAn) d(%an) Address Register Indirect 

With Displacemen t (d 
signifies a signed 16-bit 
absolute displacement) 

d(An,Ri) d(%an,%ri.w) Address Register Indirect 
d(%an,%ri.l) With Index Plus 

Displacement (d signifies 
a signed 8-bit absolute 
displacement) 

(bd,An,Ri{*scl}) (bd,%an,%ri{*ri}) Address Register Direct 
(MC68020 Only) With Index Plus Base 

Displacement 
([bd,An,Ri{*scl}l,od) (bd,%an,%ri{*scI}l,od) Memory Indirect With 
(MC68020 Only) Pre indexing Plus Base 

and Outer Displacement 
([bd,An],Ri{*sc1 },od) ([bd,%an J,%ri {*scl} l,od) Memory Indire.ct With 
(MC68020 Only) Post indexing Plus Base 

and Outer Displacement 
d(PC) d(%pc) Program Counter 

Indirect With 
Displacement (d signifies 
16-bit displacement) 

d(PC,Ri) d(%pc,%rn.l) Program Counter Direct 
d(%pc,%rn.w) With Index and 

Displacement (d signifies 
8-bit displacement) 

(bd,PC,Ri{*scl} ) (bd,%pc,%ri{*scI} ) Program Counter Direct 
(MC68020 Only) With Index and Base 

Displacement 
([bd,PCl,Ri{*scl },od) ([bd,%pcl,%ri{*scl},od) Program counter 
(MC68020 Only) Memory Indirect With 

Postindexing Plus Base 
and Outer Displacement 

([bd,PC,Ri{*scl}],od) ([bd,%pc,%ri{*scl}],od) Program Counter 
(MC68020 Only) Memory Indirect With 

o Preindexing Plus Base 
and Outer Displacement 

PROGRAMMER GUIDE 20-17 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

EFFECTIVE ADDRESS MODES 
M68000 48 Effective Address Mode 
Familv Notation Notation 
d,PC,Ri*sclj,od) d,pc,ri*sclj,od) Program Counter 
(MCC68020 Only) Memory Indirect With 

Pre indexing Plus Base 
a.nd Outer 
Disolacement 

xxx.W xxx Absolute Short Address 
(.ux signifies an 
expression yielding a 
16-bit memory address) 

xxx.L xxx Absolute Long Address 
(xxx signifies an 
expression yielding a 
32-bit memory address) 

#Xxx &xxx Immediate Data (xxx 
signifies an absolute 
constant exoression) 

In the table above, the index register notation should be understood as ri.8ize*8cale, where 
both size and scale are optional. Refer to Chapter 2 of the M68000 Family Resident Structured 
Assembler Reference Manual for additional information about effectiv~ address modes. Section 

( .. " 
~) 

2 of the MC680£O Sf-Bit Microprocessor User's Manual also provides information about'· 
generating effective addresses and assembler syntax. 

Note that suppressed address register %zan can be used in place of %an, suppressed PC 
register %zpc can be used in place of %pc, and suppressed data register %zdn can be used in 
place of %dn, if suppression is desir~d. 

The new address modes for the MB68020 use two different formats of extension. The brief 
format provides fast indexed addressing, while the full format provides a number of options in 
size of displacement and indirection. The assembler will generate the brief format if the 
effective address expression is not memory indirect, value of displacement is within a byte, and 
no base or index suppression is specified; otherwise, the assembler will generate the full format. 

Some source code variations of the new modes may be redundant with the MC68000 address 
register indirect, address register indirect with displacement, and program counter with 
displacement modes. The assembler will select the more efficient mode when redundancy 
occurs. For example, when the assembler sees the form (An), it will generate address register 
indirect mode (mode 2). The assembler will generate address register indirect with 
displacement (mode 5) when seeing any of the following forms (as long as bd fits in 16 bits or 
less): 

bd(An) 
(bd,An) 
(An,bd) 

20-18 ICON INTERNATIONAL 



it 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

MAcmNE INSTRUCTIONS 

Instructions For The MCG8000{MCG8010{MCG8020 

The following table shows how MC68000/MC68010/MC68020 instructions should be written in 
order to be understood correctly by the G8 assembler. The entire instruction set can be used 
for the MC68020. Instructions that are MC68010/MC6802(}.only or MC6802(}.only are noted as 
such in the "OPERATION" column. 

Several abbreviations are used in the table: 

S The letter S, as in add.S, stands for one of the operation size attribute letters b, w, or 1, 
representing a byte, word, or long operation. 

A The letter A, as in add.A, stands for one of the address operation size attribute letters w 
or 1, representing a word or long operation. 

CC In the contexts bCC, dbCC, and sCC, the letters CC represent any of the following 
condition code designations (except that rand t may not be used in the bCC instruction): 

cc carry clear Is low or same 
cs carry set It less than 
eq equal mi minus 
f false ne not equal 
ge greater or equal pI plus 
gt greater than t true 
hi high vc overflow clear 
hs high or same (=cc) vs overflow set 
Ie less or equal 
10 low (=cs) 

PROGRAMMER GUIDE 20-19 



SYSTEM V /88 ASSEMBLER USERtS GUIDE 

EA This represents an arbitrary effective address. 

I An absolute expression, used as an immediate operand. 

Q An absolute expression evaluating to a number from 1 to 8. 

L A label reference, or any exp~ion representing a memory address in the current 
segment. 

d Two's complement or sign.extended displaeement that is adlhu as part of effective address 
calculation; size may be 8 by 16 bits; when omitted, assembler uses value of zero. 

%dx, %dy, %dn Represent data registers. 

%ax, %ay, %an Represent address registers. 

%rx, %ry, %rn Represent either data or address registers. 

%rc Represents control register (%sfc, %dfc, %caer, %u8r, %vbr, %caar, %msp, 
%isp). 

offset Either an immediate operand or a data register. 

width Either an immediate operand or a data register. 

20-20 ICON INTERNATIONAL 

( ) 
"'-



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

( MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLER SYNTAX . OPERATION 
ABCD abcd.d %dy, %dx Add Decimal with Extend 

-l%ay)'-l%ax) 
ADD add.S EA,%dn Add Binary 

%dn,EA 

ADDA add.A EA,%an Add Address 

ADDI add.8 &I,EA Add Immediate 

ADDQ add.8 &Q,EA Add Quick 

ADDX addx.S %dy,%dx Add Extended 
-l%ay ),-l%ax) 

AND and.8 EA,%dn AND Logical 
%dn,EA 

ANDI and.s &I,EA AND Immediate 

ANDI and.b &I,%cc AND Immediate 
to CCR to Condition Codes 

ANDI and.w &I,%sr AND Immediate 
to SR to the Status Register 
ASL asl.S %dx,%dy Arithmetic Shift (Left) 

&Q,%dy 

als.w &l,EA 
als.w EA 

ASR asr.S %dx,%dy Arithmetic Shift (Right) 
&Q,%dy 

asr.w &l,EA 
asr.w EA 

Bcc bCC L Branch Conditionally 
(l6-bit Displacement) 

bCC.b L Branch Conditionally (Short) 
(8-bit Displacement) 

bCC.l L Branch Conditionally (Long) 
(32-bit Displacement) 
(MC68020 Only) 

PROGRAMMER GUIDE 20-21 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

f 

MC68000 INSTRUCTION FORMATS ~ ) 

MNEMONIC A~~:rRMRLER. SYNTAX OPERATION 
BCHG bchg O/o<in,EA Test a Bit and Change 

&I,EA 
NOTE: bchg should be written 
with no suffix. If the second 
operand is a data register, .1 is 
assumed· otherwise .b is. 

BCLR belr %dn,EA Test a Bit and Clear 
&I,EA 

NOTE: belr should be written with 
no suffix. If the second operand is a 
data register, .1 is assumed; 
otherwise .b is. 

BFCHG bfchg EA{offset:width} Complement Bit Field 
(MC68020 Only) 

BFCLR bfclr EA {offset :wid th} Clear Bit Field 
(MC68020 Only) 

BFEXTS bfexts EA{offset:width},%dn Extract Bit Field (Signed) 
(MC68020 Only) 

BFEXTU bfextu EA{offset:width},%dn Extract Bit Field (Unsigned) 
(MC68020 Only) 

BFFFO bfffo EA{offset:width},%dn Find First One in Bit Field 
(MC68020 Only) 

BFINS bfins %dn,EA{offset:width} Insert Bit Field 
(MC68020 Only) 

BFSET bfset EA{offset:width} Set Bit Field 
(MC68020 Only) 

BFTST bftst EA{offset:width} Test Bit Field 
(MC68020 Onlv) 

BKPT bkpt &1 Breakpoint 
(MC68020 Only) 

20-22 ICON INTERNATIONAL 



SYSTEM V/68 ASSEMBLER USER'S GUIDE 

( 
MC68000 INSTRUCTION FORMATS 

MNEMONIC ASSEMBLRR SYNTAX OPERATION 
BRA bra L Branch Always 

(IS-bit Displacement) 

bra.b L Branch Always (Short) 
(8-bit Displacement) 

br.l L Branch Always (Long) 
(32-bit Displacement) 
(MC68020 Only) 

br L Same as bra 
br.b L Same as bra.b 

BSET bset %dn,EA Test a Bit and Set 
&I,EA 

NOTE: bset should be written with 
no suffix. If the second operand is a 
data register, .1 is assumed; 
otherwise .b is. 

BSR bsr L Branch to Subroutine 
(IS-bit Displacement) 

bsr.b L Branch to Subroutine (Short) 
(8-bit Displacement) 

bsr.l L Branch to Subroutine (Long) 
(32-bit Displacement) 
(MC68020 Only) 

BTST btst %dn,EA Test a Bit and Set 
&I,EA 

NOTE: btst should be written with 
no suffix. If the second operand is a 
data register, .1 is assumed; 
otherwise .b is. 

CALLM callm &I,EA Call Module 
(MC68020 Onlv) 

CAS cas %ds,%dy,EA Compare and Swap Operands 
(MC68020 Only) 

CAS2 cas2 %dx:%dy ,%dx:%dy ,%rx:%ry Compare and Swap Dual 
Operands (MC68020 Only) 

PROGRAMMER GUIDE 20-23 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

MC88000 INSTRUCTION FORMATS 
MNEMONIC A.~~F.MRT .RR s\ NT AX OPERATION 
CHK chk.w EA,%dn Check Register Against Bounds 

chk.l EA,%dn Check Register Against Bounds 
(Long) (MC68020 Only) 

CHK2 chk2.s EA,%rn Check Register Against Bounds 
(MC68020 Only) 

CLR clr.s EA Clear an Operand 
CMP cmp.s %dn,EA Compare 

CMPA cmp.A %an,EA Compare Address 

CMPI cmp.s EA,&I Compare Immediate 

CMPM cmp.s (%ax)+,(%ay)+ Compare Memory 

CMP2 cmp.s %rn,EA Compare Register Against Bounds 
(MC68020 Only)'" 

DBcc dbCC %dn,L Test Condition, Decrement, 
and Branch 

dbra %dn,L Decrement and Branch Always 

dbr %dnL Same as dbra 
DIVS divs.w EA,%dx Signed Divide 

32/16 -+ 32 

tdivs.l EA,%dx Signed Divide (Long) 
divs.l EA,%dx 32/32 -+ 32 

(MC68020 Only) 

tdivs.l EA,%dx:%dy Signed Divide (Long) 
32/32 -+ 32r:32q 
(MC68020 Only) 

divs.l EA,%dx:%dy Signed Divide (Long) 
64/32 -+ 32r:32q 
(MC68020 Only)-

• Note: The order of operands in (U is the reverse of that in the M68000 Programmer's Reference Manual 

C-. ~ 
/ 

20-24 ICON INTERNATIONAL 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLER SYNTAX OPERATION 
DIVU divu.w EA,%dn Unsigned Divide 

32/16 -+ 32 

tdivu.l EA,%dx Unsigned Divide (Long) 
divu.l EA,%dx 32/32 -+ 32 

(MC68020 Only) 

tdivu.l EA,%dx:%dy Unsigned Divide (Long) 
32/32 -+ 32r:32q 
(MC68020 Only) 

divu.l EA,%dx:%dy Unsigned Divide (Long) 
64/32 -+ 32r:32q 
(MC68020 Only) 

EOR eor.S %dn,EA Exclusive OR Logical 

EORI eor.S &I,EA Exclusive OR Immediate 

EORI eor.b &I,%cc Exclusive OR Immediate to 
toCCR Condition Code Register 

EORI eor.w &I,%sr Exclusive OR Immediate to 
to SR the Status Register 
EXG eXl!: %rx %ry Exchanl!:e Registers 
EXT ext.w %dn Sign-Extend Low-Order Byte 

of Data to Word 

ext.l %dn Sign-Extend Low-Order Word 
of Data to Long 

extb.l %dn Sign-Extend Low-Order Byte 
of Data to Long 
(MC68020 Only) 

extw.l %dn Same as ext.l 
(MC68020 Only) 

JMP jmp EA Jump 

JSR jsr EA Jump to Subroutine 
LEA lea.l EA%an Load Effective Address 
LINK link %an &1 Link and Allocate 

c 
PROGRAMMER GUIDE 20-25 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

MC88000 INSTRUCTION FORMATS 
MNEMONIC A.!;;:!;;:F.M1U .F.R SYNTAX OPERATION 
LSL lsl.S %dx,%dy Logical Shift (Left) 

&Q,%dy 

lsl.w &l,EA 
lsl.w EA 

LSR lsr.S %dx,%dy Logical Shift (Right) 
&Q,&dy 

lsr.w &l,EA 
lsr.w EA 

MOVE mov.S EA,EA Move Data from Source 
to Destination 

NOTE: If the destination is an 
address register, the instruction 
generated is MOVEA. 

MOVE mov.w EA,%cc Move to Condition Codes 
toCCR 

MOVE mov.w %cc,EA Move from Condition Codes 
from CCR (MC68010/MC68020 Only) 

MOVE mov.w EA,%sr Move to the Status Register 
to SR 

MOVE mov.w %sr,EA Move from the Status Register 
from SR 

MOVE mov.l %usp,%an Move User Stack Pointer 
USP %an,%usp 

MOVEA mov.A EA,%an Move Address 

MOVEC mov.l %rn,%rc Move to Control Register 
toCCR (MC68010/MC68020 Only) 

MOVEC mov.l %rc,%rn Move from Control Register 
from CCR (MC68010/MC68020 OnlYJ 

20-26 ICON INTERNATIONAL 



( 

( 

SYSTEM V /68 ASSEMBLER USER'S GUIDE 

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSFMRT,ER SYNTAX OPERATION 
MOVEM movm.A &I,EA Move Multiple Registers* 

EA,&I (See footn~te) 

MOVEP movp.A %dx,d(%ay) Move Peripheral Dat~ 
d(%ay),%dx 

MOVEQ mov.l &I,%dn Move Quick 

MOVES movs.S %rn,EA Move to/form Address Space 
movs.S EA%rn (MC680101MC68020 OnlY) 

MULS muls.w EA,%dx Signed Multiply 
16*16 -+ 32 

tmuls.l EA,%dx Signed Multiply (Long) 
muls.l EA,%dx 32*32 -+ 32 

(MC68020 Only) 

muls.l EA,%dx:%dy Signed Multiply (Long) 
32*32 -+ 64 
(MC68020 Only) 

MULU mulu.w EA,%dx Unsigned Multiply 
16*16 -+ 32 

tmulu.l EA,%dx Unsigned Multiply (Long) 
mulu.l EA,%dx 32*32 -+ 32 

(MC68020 Only) 

mulu.l EA,%dx:%dy Unsigned Multiply (Long) 
32*32 -+ 64 
(MC68020 Only) 

NBCD nbcd.b EA Negate Decimal with Extend 
NEG neg.s EA Negate 
NEGX negx.s EA Negate with Extend 
NOP nop No Operation 
NOT not.S EA Logical Complement 

• The immediate operand is a mask designating which registers are to be moved to memory or which registers are 
to receive memory data. not all addressing modes are permitted, and the correspondence between mask bits and 
register numbers depends on the addressing mode used. Refer to the MC68000 Programmer's Reference Manual 
for details. 

PROGRAMMER GUIDE 20-27 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

MC88000 INSTRUCTION FORMATS 
MNEMONIC A ~~F.M'RT .F.R ~ Y N 'AX ut"~ttATION 

OR or.S EA,%dn Inclusive OR Logical 
%dn,EA 

OR! or.8 &I,EA Inclusive OR Immediate 

OR! or.h &I,%cc Inclusive OR Immediate 
toCCR to Condition Codes 

ORI or.w &I,%sr Inclusive OR Immediate 
toSR to the Status Reg:ister 
PACK pack --{%ax ),--{%ay ),&1 Pack BCD 

pack %dx%dy&I (MC68020 Only) 
PEA pea.l EA Push Effective Address 
RESET reset Reset External Devices 
ROL ro1.S %dx,%dy Rotate (without Extend) 

&Q,%dy (Left) 

rol.w &I,EA 
ro1.w EA 

ROR ror.S %dx,%dy Rotate (without Extend) 
&Q,%dy (Right) 

ror.w &I,EA 
ror.w EA 

ROXL roxl.S %dx,%dy Rotate with Extend (Left) 
&Q,%dy 

roxl.w &I,EA 
roxl.w EA 

ROXR roxr.S %dx,%dy Rotate with Extend (Right) 
&Q,%dy 

roxr.w &I,EA 
roxr.w EA 

RTD rtd &1 Return and Deallocate 
Parameters 
(MC680IO/MC68020 Only) 

RTE rte Return from Exception 

RTM rtm %rn Return from Module 
.(MC68020 OnlY) 

20-28 ICON INTERNATIONAL 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

( 
MC68000 INSTRUCTION FORMATS 

MNEMONIC AS~RMHT ER SYNTAX OPERATION 
RTR rtr Return and Restore 

Condition Codes 

RTS rts , Return from Subroutine 
SBCD sbcd.b %dy,%dx Subtract Decimal with Extend 

-l%ay).-l%ax) 
Scc sCC.b EA Set According to Condition 
STOP stop &1 Load Status Register and Stop 
SUB sub.S EA,%dn Subtract Binary 

%dn,EA 

SUBA sub.A EA,%an Subtract Address 

SUBI sub.s &I,EA Subtract Immediate 

SUBQ sub.S &Q,EA Subtract Quick 

SUBX subx.S %dy,%dx Subtract with Extend 
-l%ay ),-l%ax) 

SWAP swap.w %dn Swap Register Halves 
TAS tas.b EA Test and Set an Operand 
TRAP trap &1 Trap 

TRAPV trapv Trap on Overflow 

TRAPcc tCC Trap on Condition 
tpCC.A &1 (MC68020 Only) 

TST tst.S EA Test an Operand 
UNLK unlk %an Unlink 
UNPK unpk -(%ax ),-(%ay ),&1 Unpack BCD 

%dx,%dy,&1 (MC68020 Only) 

C: 
PROGRAMMER GUIDE 20-29 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

( '\. 

Instructions For the MC8SSS! ~) 

The following table shows how the ftoating point eo-processor (MC68881) instructions should be 
written to be understood by the as assembler. In the table, jpcc represents any of the following 
ftoating point condition code designations: 

TRAP ON UNORDERED 
jpcc MEANING' 

ge greater than or equal 
gl greater or less than 
gle greater or less than or equal 
gt greater than 
Ie less than or equal 
It less than 
ngt not greater than 
nge not greater than or equal 
nit not less than 
ngl not greater or less than 
nle not greater or less than or equal 
ngle not greater or less than or equal 
sneq not equal 
sf never 
seq equal 
st always 

NO TRAP ON UNORDERED 
jpcc MEANING 

eq equal 
oge greater than or equal 
ogl greater or less than 
ogt greater than 
ole less than or equal 
olt less than 
or ordered 
t always 
ule unordered or less or equal 
ult unordered less than 
uge unordered greater than or equal 
ueq unordered equal 
ugt unordered greater than 
un unordered 
neq unordered ore greater or less 
f never 

20-30 ICON INTERNATIONAL 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

( The designation ccc represents a group of constants in MC68881 constant ROM which have the 
following values: 

c 

ccc VALUE 
00 pi 
OB logI0(2) 
OC e 
OD log2(e) 
OD logI0(e) 
OF 0.0 
10 logn(2) 
11 logn(10) 
12 10**0 
13 10**1 
14 10**2 
15 10**4 
16 10**8 
17 10**16 
18 10**32 
19 10**64 
lA 10**128 
IB 10**256 
lC 10**512 
ID 10**1024 
IE 10**2048 
IF 10**4096 

Additional abbreviations used in the table are: 

EA 
L 

I 
%dn 
%fpm,%fpn,%fpq 
%control 
%status 
%iaddr 
SF 

A 
B 

PROGRAMMER GUIDE 

represents and effective address 
a label reference or any expression representing a memory 
address in the current segment 
represents an absolute expression, used as an immediate operand 
represents data register 
represents floating point data registers 
represents floating point control register 
represents floating point status register 
represents floating point instruction address register 
represents source format letters: 
b byte integer 
w word integer 
I long word integer 
s single precision 
d dou ble precision 
x extended precision 
p packed binary code decimal 

represents source format letters w or I 
represents source format letters b, w, I, s, or p 

20-31 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

NOTE: The source format must be specified if more than one source format is permitted or a 
default source format z is a.ssumed. Source format need not be specified if only one format is 
permitted by the operation. 

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLRR SYNTAX OPERATION 
FABS fabs.SF EA,%fpn absolute value function 

fabs.x %fpm,%fpn 
fabs.x %fpn 

FACOS facos.SF EA,%fpn arccosine function 
facos.x %fpm,%fpn 
facos.x %fpn 

FADD fadd.SF EA,%fpn floating point add 
fadd.x %fpm,%fpn 

FASIN fasin.SF EA,%fpn arcsine function 
fasin.x %fpm,%fpn 
fasin.x %fpn 

FATAN fatan.SF EA,%fpn arctangent function 
fatan.x %fpm,%fpn 
fatan.x %fpn 

FATANH fatanh.SF EA,%fpn hyperbolic arctangent 
fatanh.x %fpm,%fpn function 
fatanh.x %fpn 

FBfpcc fbfpcc.A L co-processor branch 
conditionally 

FCMP fcmp.SF %fpn,EA floating point compare 
fcmp.x %fpn,%fpm 

FCOS fcos.SF EA,%fpn cosine function 
fcos.x %fpm,%fpn 
fcos.x %fpn 

FCOSH fcosh.sF EA,%fpn hyperbolic cosine 
fcosh.x %fpm,%fpn function 
fcosh.x %fpn 

FDBfpcc fdbfpcc.w %dn,L decrement and branch 
on condition 

FDIV fdiv.SF EA,%fpn floating point divided 
fdiv.x %fpm %fpn 

20-32 ICON INTERNATIONAL 



SYSTEM V /68 ASSEMBLER USER'S GUIDE 

MC68000 INSTRUCTION FORMATS 
MNEMONIC ASSRMRT ER SYNTAX OPERATION 
FETOX fetox.8F EA,%fpn e**x function 

fetox.x %fpm,%fpn 
fatan.x %fpn 

FETOXMl fetoxml.SF EA,%fpn e**x(x-l) function 
fetoxml.x %fpm,%fpn 
fetoxml.x %fpn 

FGETEXP fgetexp.SF EA,%fpn get the exponent 
fgetexp.x %fpm,%fpn function 
fgetexp.x %fpn 

FGETMAN fgetman.8F EA,%fpn get the mantissa 
fgetman.x %fpm,%fpn function 
fgetman.x %fpn 

FINT fint.SF EA,%fpn integer part function 
fint.x %fpm,%fpn 
fint.x %fpn 

FLOG2 fiog2.8F EA,%fpn binary log function 
fiog2.x %fpm,%fpn 
fiog2.x %fpn 

FLOGIO fioglO.8F EA,%fpn common log function 
fioglO.x %fpm,%fpn 
fioglO.x %fpn 

FLOGN fiogn.SF EA,%fpn natural log function 
fiogn.x %fpm,%fpn 
fiogn.x %fpn 

FLOGNPI fiognpl.SF EA,%fpn natural log (x+l) 
fiognpl.x %fpm,%fpn function 
fiognpl.x %fpn 

FMOD fmod.SF EA,%fpn fioating point module 
fmod.x %fpm %fpn 

c 
PROGRAMMER GUIDE 20-33 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

MC88000 INSTRUCTION FORMATS 
MNEMONIC A~~RMRT.ER SYNTAX OPERATION 
FMOVE fmov.sF EA,%fpn move to floating point 

fmov.x %fpm,%fpn register 

fmov.sF %fpn,EA move from floating point 
fmov.p %fpn,EA{&I} register to memory 
fmov.p %fpn,EA{%dn} 

fmov.l EA,%control move from memory to 
fmov.l EA,%status special register 
fmov.l EA,%iaddr 

fmov.l %control,EA move to memory from 
fmov.l %statsu,EA special register 
fmov.l %iaddr,EA 

FMOVECR fmovcr.x &ccc,%fpn move a ROM-stored to a 
floating point register 

FMOVEM fmovm.x EA,&I move to multiple floating 
point register 

fmovm.x &I,EA move from multiple 
registers to memory 

fmovm.x EA,%dn move to a data register 

fmovm.x %dn,EA move a data register . 
to memory 

fmovm.l EA, %control/%sta- move to special 
tus/%iaddr registers 

fmovm.l %control/%status/ move from special 
%iaddr EA reltisters 

NOTE: The immediate operand is a mask designating which registers are to be moved to 
memory or which registers are to receive memory data. Not all addressing modes are 
permitted and the correspondence between mask bvits and register numbers depends on the 
addressing mode used. 

20-34 ICON INTERNATIONAL 

/ 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

MC88000 INSTRUCTION FORMATS 
MNEMONIC ASSEMBLER SYNTAX OPERATION 
FMUL fmul.SF EA,%fpn floating point multiply 

fmul.x %fpm,%fpn 

FNEG fneg.SF EA,%fpn negate function 
fneg.x %fpm,%fpn 
fneg.x %fpn 

FNOP fnop floating point no-op 

FREM frem.SF EA,%fpn floating point remainder 
frem.x %fpm,%fpn 

FRESTORE frestore EA restore internal state 
of co-processor 

FSAVE fsave EA co-processor save 

FSCALE fscale.SF EA,%fpn floating point scale 
fscale.x %fpm,%fpn exponent 

FSfpcc fsfpcc.b EA set on condition 

( FSGLDIV fsgldiv.B EA,%fpn floating point single 
fsgldiv.x %fpm,%fpn precision divide 

FSGLMUL fsglmul.B EA,%fpn floating point single 
fsglmul.s %fpm,%fpn precision multiply 

FSIN fsin.SF EA,%fpn sine function 
fsin.x %fpm,%fpn 
fsin.x %fpn 

FSINCOS fsincos.SF EA,%fpn sine/cosine function 
fsincos.x %fpm,%fpn:%fpq 

FSINH fsinh.SF EA,%fpn hyperbolic sine 
fsinh.x %fpm,%fpn function 
fsinh.x %fpn 

FSQRT fsqrt.SF EA,%fpn square root function 
Csqrt.x %fpm,%fpn 
fsart.x %fpn 

PROGRAMMER GUIDE 20-35 



SYSTEM V /88 ASSEMBLER USER'S GUIDE 

MC88000 INSTRUCTION FORMATS 
MNEMONIC AS~RMRT .RR SYNTAX OPERATION 
FSUB fsub.SF EA,%fpn square root function 

fsub.x %fpm,%fpn 

FTAN ftan.SF EA,%fpn tangent function 
ftan.x %fpm,%fpn 
ftan.x %fpn 

FTANH ftanh.SF EA,%fpn hyperbolic tangent 
ftanh.x %fpm,%fpn function 
ftanh.x %fpn 

FTENTOX ftentox.SF EA,%fpn lO**x function 
ftentox.x %fpm,%fpn 
ftentox.x %fpn 

FTfpcc ftfpcc trap on condition 
without a parameter 

FTPfpcc ftpfpcc.A &1 trap on condition with 
a parameter 

FTST ftest.SF EA floating point test 
ftest.x %fpm an operand 

FTWOTOX ftwotox.sF EA,%fpn 2**x function 
ftwotox.x %fpm,%fpn 
ftwotox.x %fpn 

FYTOX fytox.SF EA,%fpn floating point y**x 
fytox.x %fpm %fpn 

20-36 ICON INTERNATIONAL 



( 
Chapter 21 

ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC) 

PAGE 

GENERAL .................................................................................................................................................... 21-1 

BASES........................................................................................................................................................... 21-3 

SCALING ...................................................................................................................................................... 21-4 

FUNCTIONS................................................................................................................................................. 21-5 

SUBSCRIPTED VARIABLES ............................................................................................................... ......... 21-7 

CONTROL STATEMENTS ........................................................................................................................... 21-7 

ADDITIONAL FEATURES ........................................................................................................................... 21-10 

APPENDIX 9.1.............................................................................................................................................. 21-11 

o 





( 

Chapter 21 

ARBITRARY PRECISION DESK CALCULATOR LANGUAGE 
(BC) 

GENERAL 

The arbitrary precision desk calculator language (BC) is a language and compiler for doing 
arbitrary precision arithmetic under ICON/UXV. The output of the compiler is interpreted 
and executed by a collection of routines that can input, output, and do arithmetic on infinitely 
large integers and on scaled fixed-point numbers. These routines are based on a dynamic 
storage allocator. Overflow does not occur until all available core storage is exhausted. 

The BC language has a complete control structure as well as immediate-mode operation. 
Functions can be defined and saved for later execution. A small collection of library functions 
is also available, including sin, cos, arctan, log, exponential, and Bessel functions of integer 
order. 

The BC compiler was written to make conveniently available a collection of routines (called 
DC) that are capable of doing arithmetic on integers of arbitrary size: The compiler is not 
intended to provide a complete programming language. It is a minimal language facility. 

Some of the uses of this compiler are: 

• Compile large integers 

• Compute accurately to many decimal places 

• Convert numbers from one base to another base. 

There is a sca.ling provision that permits the use of decimal point notation. Provision is also 
made for input and output in bases other than decimal. Numbers can be converted from 
decimal to octal by simply setting the output base to equal eight. 

The actual limit on the number of digits that can be handled depends on the amount of core 
storage available. This is possible even on the smallest versions of ICONfUXV. 

The syntax of BC is very similar to that of the C language. This enables users who are 
familiar with C language to easily work with BC. 

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if 
you type in the addition of two numbers (with the + operator) such as 

PROGRAMMER GUIDE 21-1 



BO 

142857 + 285714 

the program responds immediately with the sum 

428571. 

The operators -, *, I, %, and" can also be used. They indicate subtraction, multiplication, 
division, remaindering, and integer result truncated toward zero. Division by zero produces an 
error comment. 

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated 
(the unary minus sign). The expression 

7+-3 

is interpreted to mean that -3 is to be added to 7. 

More complex expressions with several operators and with parentheses are interpreted just as 
in power, then *, %, and I, and finally, + and -. Contents of parentheses are evaluated 
before material outside the parentheses. Exponentiations are performed from right to left and 
the other operators from left to right. 

are equivalent as are the two expressions 

However, BC shares with Fortran and C language the undesirable convention that 

a/b*c is equivalent to (a/b)*c. 

Internal storage registers to hold numbers have single lowercase letter names. The value of an 
expression can be assigned to a register in the usual way. The statement 

has the effect of increasing by three the value of the contents of the register named x. When, 
as in this case, the outermost operator is an "-", the assignment is performed; but the result is 
not printed. Only 26 of these named storage registers are available. 

21-2 ICON INTERNATIONAL 

',,---



Be 

There is a built-in square root function whose result is truncated to an integer (see the part on 
"SCALING"). Entering the lines 

x == sqrt(191) 
x 

produces the printed result 

13 

BASES 

There are two special internal quantities; ibase (input base) and obase (output base). The 
contents of ibase, initially set to 10 (decimal), determines the base used for interpreting 
numbers read in. For example, the input lines 

ibase == 8 
11 

produces the output line 

9 

and the system is ready to do octal to decimal conversions. Beware, however, of trying to 
change the input base back to decimal by typing 

ibase = 10 

Because the number 10 is interpreted as octal, this statement has no effect. For dealing in 
hexadecimal notation, the characters A through F are permitted in numbers (regardless of 
what base is in effect) and are interpreted as digits having values 10 through 15, respectively. 
The statement 

ibase == A 

changes the base to decimal regardless of what the current input base is. Negative and large 
positive input bases are permitted but are useless. No mechanism has been provided for the 
input of arbitrary numbers in bases less than 1 and greater than 16. 

The content of obase, initially 10 (decimal), is used as the base for output numbers. The input 
lines 

PROGRAMMER GUIDE 21-3 



Be 

obase = 16 
1000 

produces the output line 

3E8 

which is to be interpreted as a 3-digit hexadecimal number; Very large output bases are 
permitted and are sometimes useful. For example, large numbers can be output in groups of 
five digits by setting obase to 100000. Strange output bases (i.e., 1,0, or negative) are handled 
appropriately. 

Very large numbers are split across lines with 70 characters per line. Lines which are 
continued end with a backslash (\). Decimal output conversion is practically instantaneous, 
but output of very large numbers (i.e., more than 100 digits) with other bases is rather slow. 
Nondecimal output conversion of a l00-digit number takes about 3 seconds. 

The ibase and obase have no effect on the course of internal computation or on the 
evaluation of expressions. They only affect input and output conversions, respectively. 

SCALING 

A third special internal quantity called scale is used to determine the scale of calculated 
quantities. The number of digits after the decimal point of a number is referred to as its scale. 
Numbers may have up to 99 decimal digits after the decimal point. This fractional part is 
retained in further computations. 

The contents of scale must be no greater than 99 and no less than O. It is initially set to O. 
However, appropriate scaling can be arranged when more than 99 fraction digits are' required. 

When two scaled numbers are combined by means of one of the arithmetic operations, the 
result has a scale determined by the following rules: 

• Addition and subtraction-The scale of the result is the larger of the scales of the two 
operands. In this case, there is never any truncation of the result. 

• Multiplication-The scale of the result is never less than the maximum of the two scales of 
the operands and never more than the sum of the scales of the operands. Subject to those 
two restrictions, the scale of the result is set equal to the contents of the internal quantity 
scale. 

• Division-The scale of a quotient is the contents of the internal quantity scale. The scale 
of a remainder is the sum of the scales of the quotient and the divisor. 

21-4 ICON INTERNATIONAL 

( 

\.. / 



( 

( 

(/ 

Be 

• Exponentiation-The result of an exponentiation is scaled as if the implied multiplications 
were performed. An exponent must be an integer . 

• Square root-The scale of a square root is set to the maximum of the scale of the 
argument and the contents of Bcale. 

All of the internal operations are actually carried out in terms of integers with digits being 
discarded when necessary. In every case where digits are discarded, truncation and not 
rounding is performed. 

The internal quantities Bcale, ibase, and obase can be used in expressions just like other 
variables. The input line 

scale = scale + 1 

increases the value of scale by one, and the input line 

scale 

causes the current value of Bcale to be printed. 

The value of scale retains its meaning as a number of decimal digits to be retained in internal 
computation even when ibase or obase are not equal to 10. The internal computations (which 
are still conducted in decimal regardless of the bases) are performed to the specified number of 
decimal digits, never hexadecimal, octal, or any other kind of digits. 

FUNCTIONS 

The name of a function is a single lowercase letter. Function names are permitted to coincide 
with simple variable names. Twenty-six different defined functions are permitted in addition to 
the 26 variable names. The input line 

define a(xH 

begins the definition of a function with one argument. This line must be followed by one or 
more statements which make up the body of the function ending with a right brace ( }). The 
general form of a function is 

PROGRAMMER GUIDE 21-5 



Be 

define a(x) { 

return 
} 

Return of control from a function occurs when a return statement is executed or when the end 
of the function is reached. The return statement can take either of the two forms: 

return 
return(x) 

In the first case, the value of the function is 0; and in the second, the value of the function is 
the expression in parentheses. 

Variables used in the function can be declared as automatic by a statement of the form 

auto x,y,z 

There can be only one auto statement in a function, and it must be the first statement in the 
definition. These automatic variables are allocated space and initialized to zero on entry to 
the function and thrown away on return (exit). The values of any variables with the same 
names outside the function are not disturbed. Functions may be called recursively and the 
automatic variables at each level of call are protected. The parameters named in a function 
definition are treated in the same way as the automatic variables of that function with the 
single exception that they are given a value on entry to the function. An example of a function 
definition is 

define a(x,y){ 
auto z 

} 

z -= x*y 
return(z) 

The value of this function a, when called, is the product of its two arguments, "x" and "y". 

A function is called by the appearance of its name followed by a string of arguments enclosed 
in parentheses and separated by commas. The result is unpredictable if the wrong number of 
<arguments is used. 

Functions with no arguments are defined and called using parentheses with nothing between 
them: O. 

If the function a above has been defined, then the line 

21-6 ICON INTERNATIONAL 

c 



(--

(j 

Be 

a(7,3.14) 

causes the result 21.98 to be printed, and the line 

z = a(a(3,4),5) 

causes the result 60 to be printed. 

SUBSCRIPTED VARIABLES 

A single lowercase letter variable name followed by an expression in brackets is called a 
subscripted variable (an array element). The variable name is called the array name, and the 
expression in brackets is called the subscript. Only I-dimensional arrays are permitted. The 
names of arrays are permitted to coincide with the names of simple variables and function 
names. Any fractional part of a subscript is discarded before use. Subscripts must be greater 
than or equal to 0 and less than or equal to 2047. 

Subscripted variables may be used in expressions, in function calls, and in return statements. 

An array name may be used as an argument to a function or may be declared as automatic in 
a function definition by the use of empty brackets: 

f(a[]) 
define f( a[]) 
auto an 

When an array name is so used, the whole contents of the array are copied for the use of the 
function and thrown away on exit from the function. Array names that refer to whole arrays 
cannot be used in any other contexts. 

CONTROL STATEMENTS 
The if, while, and tor statements may be used to alter the flow within programs or t.o cause 
iteration. The range of each of them is a statement or a compound statement consisting of a 
collection of statements enclosed in braces. They are written in the following way: 

if(relation) statement 
while(relation) statement 
for(expressionl; relation; expression2) statement 

PROGRAMMER GUIDE 21-7 



BC 

or 

if(relation) {statements} 
while(relation) {statements} 
fore expressionl; relation; expression2) {statements} 

A relation in one of the control statements is a.n expression of the form 

x>y 

where two expressions are related by one of the following six relational operators: 

< less than 
> greater than 
<= less than or equal to 
>= greater than or equal to 
= equal to 
!= not equal to 

Beware of using "=" instead of "=" as a relational operator. Unfortunately, both of these 
are legal, so there will be no diagnostic message, but "=" will not do a comparison. 

The if statement causes execution of its range if and only if the relation is true. Then control 
passes to the next statement in sequence. 

The while statement causes execution of its range repeatedly as long as the relation is true. 
The relation is tested before each execution of its range; and if the relation is false, control 
passes to the next statement beyond the range of the while statement. 

The for statement begins by executing expression 1. Then the relation is tested; and if true, 
the statements in the range of the for are executed. Then expression2 is executed. The 
relation is then tested, etc. The typical use of the for statement is for a controlled iteration, 
as in the statement 

for(i=l; i<=10; i=i+l) i 

which prints the integers from one to ten. The following are some examples of the use of the 
control statements: 

21-8 ICON INTERNATIONAL 

( 
\",-) 

"' .. 



( define f(n){ 
auto i, x 
x=1 
for(i=l; i<=n; i-i+l) x=x*i 
return(x) 
} 

The input line 

f(a) 

Be 

prints "a" factorial if "a" is a positive integer. The following is the definition of a function 
that computes values of the binomial coefficient (m and n are assumed to be positive integers): 

define b(n,m){ 
auto x, j 
x=1 
for(j=lj j<-m; j j+l) x=x*(n-j+l)/j 
return(x) 
} 

The following function computes values of the exponential function by summing the 
appropriate series without regard for possible truncation errors: 

scale = 20 
define e(x){ 

} 

auto a, b, c, d, n 
a=1 
b=1 
e=1 
d=O 
n=1 
while{I=I){ 

} 

a =a*x 
b =b*n 
c = c + a/b 
n=n+l 
if(e-=d) returnee) 
d =c 

PROGRAMMER GUIDE 21-9 



BC 

ADDITIONAL FEATURES 

There are some additional language features that every user should know. 

Normally, statements are typed one to a line. It is also permissible, however, to type several 
statements on a line by separa.ting the statements by semicolons. 

If an assignment statement is parenthesized, it then has a value; and it can be used anywhere 
that a.n expression can. For example, the input line 

(x=y+17) 

not only makes the indicated assignment, but also prints the resulting value. 

The following is an example of a use of the value of an assignment statement even when it is 
not parenthesized. The input line 

x = a[i=i+l] 

causes a value to be assigned to :r and also increments i before it is used as a subscript. 

The following constructs work in BC in exactly the same manner as they do in the 0 language. 
Refer to Appendix 7.1 or the C language programming documents for more details. 

x=y=z is the same as x=(y=z} 
x =+y " x =x+y 
x=-y " x =x-y 
x =* y " x =x*y 
x =/y •• x =x/y 
x %y " x=x%y 
X= 

~ y " X =XAy 
x++ tf (x=x+l)-l 
x-- tf (x=x-l}+1 
++x tf x =x+l 
-x tf x=x-l 

Warning: In BOrne 0/ thae constructionB, spaces are 
8ignificant. Th.ere is a real c1iJference between 
P=-'I/ and P= -Jl. The first replaces z by 
2'-'1/ and the second by -'1/. 

21-10 lOON INTERNATIONAL 



( 

( 

BC 

The following are three important things to remember when using BC programs: 

• To exit a BC program, type quit. 

• There is a comment convention identical to that of the C language. Comments begin with 
/* and end with */. 

• There is a library of math functions that may be obtained by typing at command level: 

be -1 

This command loads a set of library functions that includes sine (8), cosine (e), arctangent (a), 
natural logarithm (I), exponential (e), and Bessel functions of integer order U(n,x)]. The 
library sets the scale to 20, but it can be reset to another value. 

If you type 

bc file ... 

the BC program reads and executes the named file or files before accepting commands from the 
keyboard. In this way, programs and function definitions are loaded. 

APPENDIX 0.1 

NOTATION 

In the following pages, syntactic categories are in italics and literals are in bold. Material in 
brackets" []" is optional. 

TOKENS 

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators 
may be blanks, tabs, or comments. Newline characters or semicolons separate statements. 

Comments are introduced by the characters /* and terminated by */. 

There are three kinds of identifiers-ordinary, array, and function. All three types consist of 
single lowercase letters. Array identifiers are followed by square brackets, possibly enclosing an 
expression describing a subscript. Arrays are singly dimensioned and may contain up to 2048 
elements. Indexing begins at zero so an array may be indexed from 0 to 2047. Subscripts are 
truncated to integers. Function identifiers are followed by parentheses, possibly enclosing 
arguments. The three types of identifiers do not conflict. A program can have a variable 
named x, an array named x, and a function named x; all of which are separate and distinct. 

PROGRAMMER GUIDE 21-11 



BC 

The following are reserved keywords: 

ibase if 
obase break 
seale define 
sqrt auto 
length return 
while quit 
for 

Constants consist of arbitrarily long numbers with an optional decimal point. The 
hexadecimal digits A through F are also recognized a.s digits with values 10 through 15, 
respectively. 

EXPRESSIONS 

The value of an expression is printed unless the main operator is an assignment. Precedence is 
the same as the order of presentation here with highest appearing first. Left or right 
associativity, where applicable, is discussed with each operator. 

~d EqretJBiOf'lB 

Named expressions are places where values are stored. Simply stated, named expressions are 
legal on the left side of an assignment. The value of a named expression is the value stored in 
the place named. 

~m~r8 

Simple identifiers are named expressions. They have an initial value of zero. 

t.rrOfl-f1LImI![a:pruAon/ 

Array elements are named expressions. They have an initial value of zero. 

seale, iba8e, and obase 

The internal registers scale, ibase, and obase are all named expressions. The scale register is 
the number of digits after the decimal point to be retained in arithmetic operations. It has an 
initial value of zero. The ibase and obase registers are the input and output number radix, 
respectively. Both ibase and obase have initial values of ten. 

21-12 ICON INTERNATIONAL 



(~'\ 

, " 

Be 

fvnction name {/a;prUllion/,a;preuian..]]} 

A function call consists of a function name followed by parentheses containing a comma
separated list of expressions, which are the function arguments. A whole array passed as an 
argument is specified by the array name followed by empty square brackets. All function 
arguments are passed by value. As a result, changes made to the formal parameters have no 
effect on the actual arguments. If the function terminates by executing a return statement, 
the value of the function is the value of the expression in the parentheses of the return 
statement or is zero if no expression is provided or if there is no return statement . 

• qrt( a;preuion} 

The result is the square root of the expression. The result is truncated in the least significant 
decimal place. The scale of the result is the scale of the expression or the value of scale, 
whichever is larger. 

length( a;preBllion.} 

The result is the total number of significant decimal digits in the expression. The scale of the 
result is zero . 

• cale{ e:r:premon) 

The result is the scale of the expression. The scale of the result is zero. 

Constants are primitive expressions. 

Paref'llJuuJeIJ 

An expression surrounded by parentheses is a primitive expression. The parentheses are used 
to alter the normal precedence. 

The unary operators bind right to left. 

-a;premon 

The result is the negative of the expression. 

PROGRAMMER GUIDE 21-13 



Be 

++ named-e:z:preaion 

The named expression is incremented by one. The result is the value of the named expression 
after incrementing. 

--named-a:preuion 

The named expression is decremented by one. The result is the value of the named expression 
after decrementing. 

named-a:pre.uion.r+ 

The named expression is incremented by one. The result is the value of the named expression 
before incrementing. 

na.t7'le&.e:cpr'easicm--

The named expression is decremented by one. The result is the value of the named expression 
before decrementing. 

The exponentiation operator binds right to left. 

e:qweasion A a:preasion 

The result is the first expression raised to the power of the second expression. The second 
expression must be an integer. If a is the scale of the left expression and b is the absolute value 
of the right expression, then the scale of the result is 

min(aXb,max(scale,a)) 

The operators *, I, and % bind left to right. 

a:preuion * a:preasion 

The result is the product of the two expressions. If a and b are the scales of the two 
expressions, then the scale of the result is 

min( a+b,max(scale,a,b)) 

a:preasion I a:preuion 

The result is the quotient of the two expressions. The scale of the result is the value of scale. 

21-14 ICON INTERNATIONAL 



(-

( 

Be 

aprusion % apr_on 

The % operator produces the remainder of the division of the two expressions. More precisely, 
a%b is a-a/hb. 

The scale of the result is the sum of the scale of the divisor and the value of scale. 

The additive operators bind left to right. 

aprusion + apraeion 

The result is the sum of the two expressions. The scale of the result is the maximum of the 
scales of the expressions. 

aprusion - apr_on 

The result is the difference of the two expressions. The scale of the result is the maximum of 
the scales of the expressions. 

The assignment operators bind right to left. 

na.me~e:z:pr_on = ezpr-_on 

This expression results in assigning the value of the expreSSlon on the right to the named 
expression on the left. 

named-expression =+ expression 
named- expression =- expression 
named- expression =* expression 
named-expression / expression 
named- expression % expression 
named-expression =A expression 

The result of the above expressions is equivalent to "named expression = named expression OP 
expression", where OP is the operator after the = sign. 

RELATIONAL OPERATORS 

Unlike all other operators, the relational operators are only valid as the object of an if or 
while statement or inside a for statement. 

PROGRAMMER GUIDE 21-15 



BC 

expression < ezpru8ion 
expres8ion > ezpression 
expres8ion <== ezpre88ion 
ezpre8sion >== ezpression 
expres8ion ==== ezpres8ion 
expression!== expre8sion 

STORAGE CLASSES 

There are only two storage classes in BC-global and automatic (local). Only identifiers that 
are to be local to a function need be declared with the auto command. The arguments to a 
function are local to the function. All other identifiers are assumed to be global and available 
to all functions. All identifiers, global and local, have initial values of zero. Identifiers 
declared as auto are allocated on entry to the function and released on returning from the 
function. They therefore do not retain values between function calls. The auto arrays are 
specified by the array name followed by empty square brackets. 

Automatic variables in Be do not work in exactly the same way as in e language. On entry to 
a function, the old values of the names that appear as parameters and as automatic variables 
are pushed onto a stack. Until return is made from the function, reference to these names 
refers only to the new values. 

STATEMENTS 

Statements must be separated by a semicolon or newline. Except where altered by control 
statements, execution is sequential. 

When a statement is an expression unless the main operator is an assignment, the value of the 
expression is printed followed by a newline character. 

Statements may be grouped together and used when one statement is expected by surrounding 
them with braces { }. 

The following statement prints the string inside the quotes. 

"any string" 

if( relation )statement 

The substatement is executed if the relation is true. 

while { relation )statement 

The while statement is executed while the relation is true. The test occurs before each 
execution of the statement. 

21-16 ICON INTERNATIONAL 



( 

(~ 

for { expression; relation; expression )statement 

The for statement is the same as 

first-expression 
while { relation) { 

statement 
last- expression 

} 

All three expressions must be present. 

break 

The break statement causes termination of a for or while statement. 

auto identifier[, identifier] 

Be 

The auto statement causes the values of the identifiers to be pushed down. The identifiers can 
be ordinary identifiers or array identifiers. Array identifiers are specified by following the 
array name with empty square brackets. The auto statement must be the first statement in a 
function definition. 

define([parameter[,parameter ... ]]){ 
statements} 

The define statement defines a function. The parameters may be ordinary identifiers or array 
names. Array names must be followed by empty square brackets. 

return 
return{ expression) 

The return statement causes the following: 

• Termination of a function 

• Popping of the auto variables on the stack 

• Specifies the results of the function. 

The first form is equivalent to return(O). The result of the function is the result of the 
expression in parentheses. 

PROGRAMMER GUIDE 21-17 



BO 

r" 
The quit statement stops execution of a BC program and returns control to ICONjUXV \, __ ) 
software when it is first encountered. Because it is not treated as an executable statement, it 
cannot be used in a function definition or in an if, for, or while statement. 

21-18 ICON INTERNATIONAL 



( 

..... ,-,,",.,-.~ '"'-.. --" .... ~.-.-.-... --... - .. ---

Chapter 22 

INTERACTIVE DESK CALCULATOR (DC) 

PAGE 

GENERAL .................................................................................................................................................... 22-1 

DC COMMANDS........................................................................................................................................... 22-1 

INTERNAL REPRESENTATION OF NUMBERS ........................................................................................ 22-4 

THE ALLOCATOR........ ......... ............. ...... ..... .......... ........ ...... ........ ........... .......... ................ ......................... 22-5 

INTERNAL ARITHMETIC ...... .................. ......... ..... ..... ...... .......................................................................... 22-5 

ADDITION AND SUBTRACTION....... ...... .......... .... ................... ............. ................. ..................... ............... 22-6 

MULTIPLICATION ...................................................................................................................................... 22-6 

DMSION ........................................................... ;.......................................................................................... 22-6 

REMAINDER................................................................................................................................................ 22-7 

SQUARE ROOT ................................................. ......... ........................... ........... ........................... ........... ... ... 22-7 

EXPONENTlATION..................................................................................................................................... 22-7 

INPUT CONVERSION AND BASE............................................................................................................... 22-8 

,(~ ~ OUTPUT COMMANDS..................................................... ........................................................................... 22-8 

OUTPUT FORMAT AND BASE .......................... .................................................................. ............ ........... 22-8 

INTERNAL REGISTERS.............................................................................................................................. 22-8 

STACK COMMANDS ................................................................................................................................... 22-0 

SUBROUTINE DEFINITIONS AND CALLS..................................... .............................. ...................... ........ 22-0 

INTERNAL REGISTERS-PROGRAMMING DC ........................................................................................ 22-0 

PUSHDOWN REGISTERS AND ARRAYS. ......... ....... ....... ............... ........... ................................................. 22-0 

MISCELLANEOUS COMMANDS .................................................................................................. .......... ..... 22-10 

DESIGN CHOICES................................................................................................................ .... .................... 22-10 

(\ 



'-



( 

( 

Chapter 22 

INTERACTIVE DESK CALCULATOR (DC) 

GENERAL 

The DC program is an interactive desk calculator program implemented on ICONjUXV to do 
arbitrary-precision integer arithmetic. It has provisions for manipulating scaled fixed-point 
numbers and for input and output in bases other than decimal. 

The size of numbers that can be manipulated by DC is limited only by available core storage. 
On typical implementations of the UNIX system, the size of numbers that can be handled 
varies from several hundred on the smallest systems to several thousand on the largest. 

The DC program works like a stacking calculator using reverse Polish notation. Ordinarily, 
DC operates on decimal integers; but an input base, output base, and a number of fractional 
digits to be maintained can be specified. 

A language called BC has been developed which accepts programs written in the familiar style 
of higher-level programming languages and compiles the output which is interpreted by DC. 
Some of the commands described below were designed for the compiler interface and are not 
easy for a human user to manipulate. 

Numbers that are typed into DC are put on a pushdown stack. The DC commands work by 
taking the top number or two off the stack, performing the desired operation, and pushing the 
result on the stack. If an argument is given, input is taken from that file until its end, then it 
is taken from the standard input. 

DC COMMANDS 

Any number of commands are permitted on a line. Blanks and new-line characters are ignored 
except within numbers and in places where a register name is expected. 

The following constructions are recognized: 

number (e.g. 244) 

The value of a number is pushed onto the stack. A number is an unbroken string of digits 0 
through 9 and uppercase letters A through F (treated as digits with values 10 through 15, 
respectively). The number may be preceded by an underscore (_) to input a negative number 
and numbers may contain decimal points. 

PROGRAMMER GUIDE 22-1 



de 

The top two values on the stack' are added (+), subtracted (-), multiplied (*), divided (I), 
remaindered (%), or exponentiated C") by using 

The two entries are popped oft' the stack, and the result is pushed on the stack in their place. 
The result or a division is an integer truncated toward zero. An exponent must not have any 
digits after the decimal point. 

sx 

The top of the main stack is popped arid stored in a register named x (where x may be any 
character). If 8 is uppercase, x is treated as a stack; and the value is pushed onto it. Any 
character, even blank or newline, is a valid register name. 

The value of register x is pushed onto the stack. Register x is not altered. If the I in 

Ix 

is uppercase, register x is treated as a stack, and its top value is popped onto the main stack. 
All registers start with empty value which is treated as a zero by the command 1 and is 
treated as an error by the command L. 

The following characters perform the stated tasks: 

d 

The top value on the stack is duplicated. 

p 

The top value on the stack is printed. The top value remains unchanged. 

f 

All values on the stack and in registers are printed. 

x 

Treats the top element of the stack as a character string, removes it from the stack, and ( 
executes it as a string of DC commands. ~ . 

22-2 ICON INTERNATIONAL 



(-

( 

de 

I ... ] 

Puts the bracketed character string onto the top of the stack. 

q 

Exits the program. If executing a string, the recursion level is popped by two. If q is 
uppercase, the top value on the stack is popped; and the string execution level is popped by 
that value. 

<x >x =x !<x !>x !=x 

The top two elements of the stack are popped and compared. Register x is executed if they 
obey the stated relation. Exclamation point is negation. 

v 

Replaces the top element on the stack by its square root. The square root of an integer IS 

truncated to an integer. 

Interprets the rest of the line as an ICON/UXV software command. Control returns to DC 
when the command terminates. 

c 

All values on the stack are popped; the stack becomes empty. 

The top value on the stack is popped and used as the number radix for further input. If i is 
uppercase, the value of the input base is pushed onto the stack. No mechanism has been 
provided for the input of arbitrary numbers in bases less than 1 or greater than 16. 

o 

The top value on the stack is popped and used as the number radix for further output. If 0 is 
uppercase, the value of the output base is pushed onto the stack. 

k 

PROGRAMMER GUIDE 22-3 

----------- - ----- -------.---~-~~~~---"----- --



dc 

The top of the stack is popped, and tha.t value is used as a scale factor that influences the 
number of decimal places that are maintained during multiplication, division, and 
exponentiation. The scale factor must be greater than or equal to zero and less than 100. If k 
is uppercase, the value of the scale factor is pushed onto the stack. 

z 

The value of the stack level is pushed onto the stack. 

? 

A line of input is taken from the input source (usually the console) and executed. 

INTERNAL REPRESENTATION OF NUMBERS 

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the 
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The 
string is stored with the low-order digit at the beginning of the string. For example, the 
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that 
all digits are in the range 0 to 99 and that the number has no leading zeros. The number zero 
is represented by the empty string. 

Negative numbers are represented in the 1005 complement notation, which is analogous to twos 
complement notation for binary numbers. The high-order digit of a negative number is always 
-1 and all other digits are in the range 0 to 99. The digit preceding the high-order -1 digit is 
never a 99. The representation of -157 is 43,98,-1. This is called the canonical form of a 
number. The advantage of this kind of representation of negative numbers is ease of addition. 
When addition is performed digit by digit, the result is formally correct. The result need only 
be modified, if necessary, to put it into canonical form. 

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition 
can be carried out and the handling of carries done later when it is convenient. 

An additional byte is stored with each number beyond the high-order digit to indicate the 
number of assumed decimal digits after the decimal point. The representation of .001 is 1,9 
where the scale has been italicized to emphasize the fact that it is not the high-order digit. 
The value of this extra byte is called the scale factor of the number. 

22-4 ICON INTERNATIONAL 



( 

( 

--~------------

dc 

THE ALLOCATOR 

The DC program uses a dynamic string storage allocator (or all of its internal storage. All 
reading and writing of numbers internally is through the allocator. Associated with each string 
in the allocator is a 4-word header containing pointers to the beginning o( the string, the end of 
the string, the next place to write, and the next place to read. Communication between the 
allocator and DC is via pointers to these headers. 

The allocator initially has one large string on a list o( (ree strings. All headers except the one 
pointing to this string are on a list of free headers. Requests for strings are made by size. The 
size of the string actually supplied is the next higher power of two. When a request for a string 
is made, the allocator first checks the free list to see if there is a string of the desired size. If 
none is found, the allocator finds the next larger free string and splits it repeatedly until it has 
a string of the right size. Leftover strings are put on the free list. If there are no larger 
strings, the allocator tries to combine smaller free strings into larger ones. Since all strings are 
the result o( splitting large strings, each string has a neighbor that is next to it in core and, if 
free, can be combined with it to make a string twice as long. 

If a string of the proper length cannot be found, the allocator asks the system for more space. 
The amount of space on the system is the only limitation on the size and number of strings in 
DC. If the allocator runs out of headers at any time in the process of trying to allocate a 
string, it also asks the system for more space. 

There are routines in the allocator for reading, writing, copying, rewinding, forward spacing, 
and backspacing strings. All string manipulation is done using these routines. 

The reading and writing routines increment the read pointer or write pointer so that the 
characters of a string are read or written in succession by a series of read or write calls. The 
write pointer is interpreted as the end of the information-containing portion of a string and a 
call to read beyond that point returns an end of string indication. An attempt to write beyond 
the end of a string causes the allocator to allocate a larger space and then copy the old string 
into the larger block. 

INTERNAL ARITHMETIC 

All arithmetic operations are done on integers. The operands (or operand) needed for the 
operation are popped from the main stack and their scale factors stripped off. Zeros are added 
or digits removed as necessary to get a properly scaled result from the internal arithmetic 
routine. For example, if the scale of the operands is different and decimal alignment is 
required, as it is for addition, zeros are appended to the operand with the smaller scale. After 
performing the required arithmetic operation, the proper scale factor is appended to the end of 
the number before it is pushed on the stack. 

A register called scale plays a part in the results o( most arithmetic operations. The scale 
register limits the number of decimal places retained in arithmetic computations. The scale 
register may be set to the number on the top of the stack truncated to an integer with the k 

PROGRAMMER GUIDE 22-5 



dc 

~. 

command. The K command may be used to push the value of scale on the stack. The value ~ 
of scale must be greater than or equal to 0 and less than 100. The descriptions of the 
individual arithmetic operations includes the exact effect of scale on the computations. 

ADDITION AND SUBTRACTION 

The scales of the two numbers are compared and trailing zeros are supplied to the number 
with the lower scale to give both numbers the same scale. The number with the smaller scale 
is multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to 
the larger of the scales of the two operands. 

Subtraction is performed by negating the number to be subtracted and proceeding as in 
addition. 

The addition is performed digit by digit from the low-order end of the number. The carries are 
propagated in the usual way. The resulting number is brought into canonical form, which may 
require stripping of leading zeros, or for negative numbers, replacing the high-order 
configuration 99,-1 by the digit -1. In any case, digits that are not in the range 0 through 99 
must be brought into that range, propagating any carries or borrows that result. 

MULTIPLICATION 

The scales are removed from the two operands and saved. The operands are both made 
positive. Then multiplication is performed in a digit by digit manner that exactly follows the 
hand method of mUltiplying. The first number is multiplied by each digit of the second 
number, beginning with its low-order digit. The intermediate products are accumulated into a 
partial sum which becomes the final product. The product is put into the canonical form and 
its sign is computed from the signs of the original operands. 

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is 
larger than the internal register scale and also larger than both of the scales of the two 
operands, then the scale of the result is set equal to the largest of these three last quantities. 

DIVISION 

The scales are removed from the two operands. Zeros are appended, or digits are removed 
from the dividend to make the scale of the result of the integer division equal to the internal 
quantity scale. The signs are removed and saved. 

Division is performed much as it would be done by hand. The difference of the lengths of the C /' 
two numbers is computed. If the divisor is longer than the dividend, zero is returned. 

22-6 ICON INTERNATIONAL 



( 

( 

c 

dc 

Otherwise, the top digit of the divisor is divided into the top two digits of the dividend. The 
result is used as the first (high-order) digit of the quotient. If it turns out to be one unit too 
low, the next trial quotient is larger than 99; and this is adjusted at the end of the process. 
The trial digit is multiplied by the divisor, the result subtracted from the dividend, and the 
process is repeated to get additional quotient digits until the remaining dividend is smaller 
than the divisor. At the end, the digits of the quotient are put into the canonical form with 
propagation of carry as needed. The sign is set from the sign of the operands. 

REMAINDER 

The division routine is called, and division is performed exactly as described. The quantity 
returned is the remains of the dividend at the end of the divide process. Since division 
truncates toward zero, remainders have the same sign as the dividend. The scale of the 
remainder is set to the maximum of the scale of the dividend and the scale of the quotient plus 
the scale of the divisor. 

SQUARE ROOT 

The scale is removed from the operand. Zeros are added if necessary to make the integer 
result have a scale that is the larger of the internal quantity scale and the scale of the 
operand. The method used to compute the square root is Newton's method with successive 
approximations by the rule. 

The initial guess is found by taking the integer square root of the top two digits. 

EXPONENTIATION 

Only exponents with 0 scale factor are handled. If the exponent is 0, then the result is 1. If 
the exponent is negative, then it is made positive; and the base is divided into 1. The scale of 
the base is removed. 

The integer exponent is viewed as a binary number. The base is repeatedly squared, and the 
result is obtained as a product of those powers of the base that correspond to the positions of 
the one-bits in the binary representation of the exponent. Enough digits of the result are 
removed to make the scale of the result the same as if the indicated multiplication had been 
performed. 

PROGRAMMER GUIDE 22-7 



de 

INPUT CONVERSION AND BASE 

Numbers are converted to the internal representation as they are read in. The scale stored 
with a number is simply the number of fractional digits input. Negative numbers are indicated 
by preceding the number with an underscore (_). The hexadecimal digits A through F 
correspond to the numbers 10 through 15 regardless of input base. The i command can be used 
to change the base of the input numbers. This command pops the stack, truncates the 
resulting number to an integer, and uses it as the input base for all further input. The input 
base (ibase) is initialized to 10 (decimal) but may, for example, be changed to 8 or 16 for octal 
or hexadecimal to decimal conversions. The command I pushes the value of the input base on 
the stack. 

OUTPUT COMMANDS 

The command p causes the top of the stack to be printed. It does not remove the top of the 
stack. All of the stack and internal registers are output by typing the command f. The 0 

command is used to change the output base (obase). This command uses the top of the stack 
truncated to an integer as the base for all further output. The output base in initialized to 10 
(decimal). It works correctly for any base. The command 0 pushes the value of the output 
base on the stack. 

OUTPUT FORMAT AND BASE 

The input and output bases only affect the interpretation of numbers on input and output; 
they have no effect on arithmetic computations. Large numbers are output with 70 characters 
per line; a backslash (\) indicates a continued line. All choices of input and output bases work 
correctly, although not all are useful. A particularly useful output base is 100000, which has 
"the effect of grouping digits in fives. Bases of 8 and 16 are used for decimal-octal or decimal
hexadecimal conversions. 

INTERNAL REGISTERS 

Numbers or strings may be stored in internal registers or loaded on the stack from registers 
with the commands. and 1. The command 8X pops the top of the stack and stores the result 
in register x. The x can be any character. The command Ix puts the contents of register x on 
the top of the stack. The 1 command has no effect on the contents of register x. The 8 

command, however, is destructive. 

22-8 ICON INTERNATIONAL 



( 

o 

de 

STACK COMMANDS 

The command e clears the stack. The command d pushes a duplicate of the number on the 
top of the stack onto the stack. The command z pushes the stack size on the stack. The 
command X replaces the number on the top of the stack with its scale factor. The command 
Z replaces the top of the stack with its length. 

SUBROUTINE DEFINITIONS AND CALLS 

Enclosing a string in brackets "0" pushes the ASCII string on the stack. The q command quits 
or (in executing a string) pops the recursion levels by two. 

INTERNAL REGISTERS-PROGRAMMING DC 

The load and store commands, together with "0" to store strings, the x command to execute, 
and the testing commands «, >, =, !<, I>, !=), can be used to program DC. The x 
command assumes the top of the stack is a string of DC commands and executes it. The 
testing commands compare the top two elements on the stack and, if the relation holds, 
execute the register that follows the relation. For example, to print the numbers 0 through 9, 

[lipl+ si lilO>a]sa 
Osi lax 

PUSHDOWN REGISTERS AND ARRAYS 

These commands are designed for use by a compiler, not directly by programmers. They 
involve pushdown registers and arrays. In addition to the stack that commands work on, DC 
can be thought of as having individual stacks for each register. These registers are operated 
on by the commands Sand L. Sx pushes the top value of the main stack onto the stack for 
the register x. Lx pops the stack for register x and puts the result on the main stack. The 
commands sand 1 also work on registers but not as pushdown stacks. The command 1 does 
not affect the top of the register stack, but B destroys what was there before. 

The commands to work on arrays are: and;. The command :x pops the stack and uses this 
value as an index into the array x. The next element on the stack is stored at this index in x. 
An index must be greater than or equal to 0 and less than 2048. The command ;x loads the 
main stack from the array x. The value on the top of the stack is the index into the array x of 
the value to be loaded. 

PROGRAMMER GUIDE 22-9 



de 

The command! interprets the rest of the line as an ICONjUXV software command and passes 
it to ICONjUXV to execute. One other· compiler command is Q. This command uses the top 
of the stack as the number of levels of recursion to skip. 

DESIGN CHOICES 

The real reason for the use of a dynamic storage allocator is that a general purpose program 
can be used for a variety of other tasks. The allocator has some value for input and for 
compiling (i.e., the bracket [ ... J commands) where it cannot be known in advance how long a 
string will be. The result is that at a modest cost in execution time: 

• All considerations of string allocation and sizes of strings are removed from the remainder 
of the program. 

• Debugging is made easier. 

• The allocation method used wastes approximately 25 percent of available space. 

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet / 
the base cannot exceed 127 because of hardware limitations and at the cost of 5 percent in .. ,,-
space debugging was made a great deal easier, and decimal output was made much faster. 

The reason for a stack-type arithmetic design was to permit all DC commands from addition 
to subroutine execution to be implemented in essentially the same way. The result was a 
considerable degree of logical separation of the final program into modules with very little 
communication between modules. 

The rationale for the lack of interaction between the scale and the bases is to provide an 
understandable means of proceeding after a change of base or scale (when numbers had already 
been entered). An earlier implementation which had global notions of scale and base did not 
work out well. If the value of scale is interpreted in the current input or output base, then a 
change of base or scale in the midst of a computation causes great confusion in the 
interpretation of the results. The current scheme has the advantage that the value of the input 
and output bases are only used for input and output, respectively, and they are ignored in all 
other operations. The value of scale is not used for any essential purpose by any part of the 
program. It is used only to prevent the number of decimal places resulting from the arithmetic 
operations from growing beyond all bounds. 

The rationale for the choices for the scales of the results of arithmetic is that in no case should 
any significant digits be thrown away if, on appearances, the user actually wanted them. 
Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give them 
the result 5.017 without requiring to unnecessarily specify rather obvious requirements for 
precision. 

22-10 ICON INTERNATIONAL 



( 

de 

On the other hand, multiplication and exponentiation produce results with many more digits 
than their operands. It seemed reasonable to give as a minimum the number of decimal places 
in the operands but not to give more than that number of digits unless the user asked for them 
by specifying a value for scale. Square root can be handled in just the same way as 
multiplication. The operation of division gives arbitrarily many decimal places, and there is 
simply no way to guess how many places the user wants. In this case only, the user must 
specify a scale to get any decimal places at all. 

The scale of remainder was chosen to make it possible to recreate the dividend from the 
quotient and remainder. This is easy to implement; no digits are thrown away. 

PROGRAMMER GUIDE 22-11 



de 

NOTES 

22-12 ICON INTERNATIONAL 



(-

( 





( 

( 

Chapter 23 

LEXICAL ANALYZER GENERATOR (LEX) 

PAGE 

GENERAL .................................................................................................................................................... 23-1 

LEX SOURCE ...................................................................................... ......................................................... 23-3 

LEX REGULAR EXPRESSIONS ................................................................................................................... 23-4 

LEX ACTIONS.............................................................................................................................................. 23-9 

AMBIGUOUS SOURCE RULES ................................................................................. ................................... 23-13 

LEX SOURCE DEFINITIONS ............................................................................................................. .......... 23-16 

USAGE.......................................................................................................................................................... 23-17 

LEX AND YACC........................................................................................................................................... 23-17 

EXAMPLES .................................................................................................................................................. 23-18 

LEFT CONTEXT SENSITIVITY .......................................... ............................... ............................... .......... 23-19 

CHARACTER SET ....................................................................................................................................... 23-21 

SUMMARY OF SOURCE FORMAT .............................................................................................................. 23-21 

CAVEATS AND BUGS ................................................................................................................................. 23-23 



) 



( Chapter 23 

LEXICAL ANALYZER GENERATOR (LEX) 

GENERAL 

The Lex is a program generator that produces a program in a general purpose language that 
recognizes regular expressions. It is designed for lexical processing of character input streams. 
It accepts a high-level, problem oriented specification for character string matching. The 
regular expressions are specified by you (the user) in the source specifications given to Lex. 
The Lex program generator source is a table of regular expressions and corresponding program 
fragments. The table is translated to a program that reads an input stream, copies the input 
stream to an output stream, and partitions the input into strings that match the given 
expressions. As each such string is recognized, the corresponding program fragment is 
executed. The recognition of the expressions is performed by a deterministic finite automaton 
generated by Lex. The program fragments written by you are executed in the order in which 
the corresponding regular expressions occur in the input stream. 

The user supplies the additional code beyond expression matching needed to complete the 
tasks, possibly including codes written by other generators. The program that recognizes the 
expressions is generated in the general purpose programming language employed for your 
program fragments. Thus, a high-level expression language is provided to write the string 
expressions to be matched while your freedom to write actions is unimpaired. 

The Lex written code is not a complete language, but rather a generator representing a new 
language feature which can be added to different programming languages, called "host 
languages". Just as general purpose languages can produce code to run on different computer 
hardware, Lex can write code in different host languages. The host language is used for the 
output code generated by Lex and also for the program fragments added by the user. 
Compatible run-time libraries for the different host languages are also provided. This makes 
Lex adaptable to different environments and different users. Each application may be directed 
to the combination of hardware and host language appropriate to the task, the user's 
background, and the properties of local implementations. At present, the only supported host 
language is the C language, although Fortran (in the form of Ratfor) has been available in the 
past. The Lex generator exists on the ICON/UXV operating system, but the codes generated 
by Lex may be taken anywhere the appropriate compilers exist. 

The Lex program generator turns the user's expressions and actions (called source) into the 
host general purpose language; the generated program is named yylex. The yylex program 
recognizes expressions in a stream (called input) and performs the specified actions for each 
expression as it is detected. See Figure 23-1. 

For example, consider a program to delete from the input all blanks or tabs at the ends of 
lines. 

PROGRAMMER GUIDE 23-1 



.J 

LEX 

%% 
[ \t]+$ 

TPA695911-1 
12WX 12H 

Figure 23-1. Overview of Lex 

is all that is required. The program contains a %% delimiter to mark the beginning of the 
rules. This rule contains a regular expression that matches one or more instances of the 
characters blank or tab (written for visibility, in accordance with the C language convention) 
and occurs prior to the end of a line. The brackets indicate the character class made of blank 
and tab; the + indicates "one or more ... "; and the $ indicates "end of line," as in QED. No 
action is specified, so the program generated by Lex 1I111ex{} ignores these characters. 
Everything else is copied. To change any remaining string of blanks or tabs to a single blank, 
add another rule. 

%% 
[ \tJ+$ 
[ \t]+ 

, 
. f(" tt) prmt ; 

The coded instructions (generated for this source) scans for both rules at once, observes (at the 
termination of the string of blanks or tabs) whether or not there is a newline character, and 
then executes the desired rule action. The first rule matches all strings of blanks or tabs at the 
end of lines, and the second rule matches all remaining strings of blanks or tabs. 

The Lex program generator can be used alone for simple transformations or for analysis and 
statistics gathering on a lexical level. The Lex generator can also be used with a parser 
generator to perform the lexical analysis phase; it is particularly easy to interface Lex and 
yaee. The Lex program recognizes only regular expressions; yacc writes parsers that accept a 
large class of context free grammars but requires a lower level analyzer to recognize input 
tokens. Thus, a combination of Lex and yaec is often appropriate. When used as a 
preprocessor for a later parser generator, Lex is used to partition the input stream; and the 
parser generator assigns structure to the resulting pieces. The flow of control in such a case is 
shown in Figure 23.2. Additional programs, written by other generators or by hand, can be 
added easily to programs written by Lex. You will realize that the name yylex is what yaec 
expects its lexical analyzer to be named, so that the use of this name by Lex simplifies 
interfacing. 

23-2 ICON INTERNATIONAL 

i~) 

( 
I 

~ 



(-

( 

TPA695912-1 
20WX 20H 

Figure 23-2. Lex With Yacc 

LEX 

In the program written by Lex, the user's fragments (representing the actions to be performed 
as each regular expression is found) are gathered as cases of a switch. The automaton 
interpreter directs the control How. Opportunity is provided for the user to insert either 
declarations or additional statements in the routine containing the actions or to add 
subroutines outside this action routine. 

The Lex program generator is not limited to a source that can be interpreted on the basis of 
one character look-ahead. For example, if there are two rules, one looking for "ab" and 
another for "abcdefg" and the input stream is "abcdefh," Lex recognizes "ab" and leaves the 
input pointer just before "cd ... ". Such backup is more costly than the processing of simpler 
languages. 

The general format of Lex source is 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

LEX SOURCE 

where the definitions and the user subroutines are often omitted. The first %% is required to 
mark the beginning of the rules, but the second %% is optional. The absolute minimum Lex 
program IS 

PROGRAMMER GUIDE 23-3 



LEX 

%% 

(no definitions, no rules) which translates into a program that copies the input to the output 
unchanged. 

In the outline of Lex programs shown above, the rules represent your control decisions. They 
are in a table containing 

• A left column with regular expressions 

• A right column with actions and program fragments to be executed when the expressions 
are recognized. 

Thus an individual rule might be 

integer printf("found keyword INT"); 

to look for the string integer in the input stream and print the message "found keyword INT" 
whenever it appears. In this example, the host procedural language is C, and the C language 
library function printf is used to print the string. The end of the expression is indicated by 
the first blank or tab character. If the action is merely a single C language expression, it can 
just be given on the right side of the line; if it is compound or takes more than a line, it should 
be enclosed in braces. Ai; a more useful example, suppose you desire to change a number of 
words from British to American spelling. The Lex rules such as: 

colour 
mechanize 
petrol 

printf("color"); 
printf("mechanize "); 

printf("gas"); 

would be a start. These rules are not sufficient since the word "petroleum" would become 
.. tt gaseum . 

LEX REGULAR EXPRESSIONS 

The definitions of regular expressions are very similar to those in QED. A regular expression 
specifies a set of strings to be matched. It contains text characters (which match the 
corresponding characters in the strings being compared) and operator characters (which specify 
repetitions, choices, and other features). The letters of the alphabet and the digits are always 
text characters; the regular expression 

integer 

(' 
matches the string "integer" wherever it appears, and the expression ~ 

23-4 ICON INTERNATIONAL 



( 

( 

c 

LEX 

a57D 

looks for the string "a57D". 

Operators 

The operator characters are 

"\[]" -1. *+l()$/{}%<> 

and if they are to be used as text characters, an escape should be used. The quotation mark 
operator" indicates that whatever is contained between a pair of quotes is to be taken as text 
characters. Thus: 

xyz"++" 

matches the string xyz++ when it appears. Note that a part of a string may be quoted. It is 
harmless, but unnecessary, to quote an ordinary text character; the expression 

"xyz++" 

is equivalent to the one above. Thus, by quoting every nonalphanumeric character being used 
as a text character, the user can avoid remembering the list above of current operator 
characters and is safe should further extensions to Lex lengthen the list. 

An operator character may also be turned into a text character by preceding it with a 
backslash (\) as in 

xyz\+\+ 

which is another, less readable, equivalent of the above expressions. Another use of the quoting 
mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs 
end a rule. Any blank character not contained within D (see below) must be quoted. Several 
normal C language escapes with \ are recognized: \n is newline, \t is tab, and \b is 
backspace. To enter \ itself, use \ \. Since newline is illegal in an expression, \n must be used; 
it is not required to escape tab and backspace. Every character except blank, tab, newline, 
and the list of operator characters above is always a text character. 

PROGRAMMER GUIDE 23-5 



LEX 

Character Classes 

Classes of characters can be specified using the operator pair D. The construction [abc] 
matches a single character which may be "a", "b", or "c". Within square brackets, most 
operator meanings are ignored. Only three characters are special; these are \, -, and .... The 
- character indicates ranges. For example, 

[a-z0-9<> -1 

indicates the character class containing all the lowercase letters, the digits, the angle brackets, 
and underline. Ranges may be given in either order. Using - between any pair of characters 
which are not both uppercase letters, both lowercase letters, or both digits is implementation 
dependent and gets a warning message (e.g., [O-zl in ASCII is many more characters than is in 
EBCDIC). If it is desired to include the character - in a character class, it should be first or 
last; thus: 

[--+{)-9J 

matches all the digits and the two signs. 

In character classes, the ... operator must appear as the first character after the left bracket to 
indicate that the resulting string is complemented with respect to the computer character set. 
Thus: 

matches all characters except "a", "b", or "c", including all special or control characters; or 

["a-zA-Z} 

is any character that is not a letter. The \ character provides the usual escapes within 
character class brackets. 

Arbitrary Character 

To match almost any character, the operator character (dot) 

is the class of all characters except newline. Escaping into octal 18 possible although 
nonportable. 

[\40-\176J 

23-6 ICON INTERNATIONAL 



(-
LEX 

matches all printable ASCII characters from octal 40 (blank) to octal 176 (tilde). 

Optional Expressions 

The operator r indicates an optional element of an expression. Thus: 

ab?c 

matches either "ac" or "abc". 

Repeated Expressions 

Repetitions of classes are indicated by the operators * and +. For example, 

a* 

is any number of consecutive "a" characters, including zero; while 

a+ 

is one or more instances of "a". For example, 

[a-z]+ 

is all strings of lowercase letters. And 

!A-Za-z] [A-Za-zO-9] * 

indicates all alphanumeric strings with a leading alphabetic character. This IS a typical 
expression for recognizing identifiers in computer languages. 

Alternation and Grouping 

The operator: indicates alternation 

(ab:cd) 

matches either "ab" or "cd". Note that parentheses are used for grouping; although they are 
not necessary on the outside level, 

ab:cd 

PROGRAMMER GUIDE 23-7 



LEX 

would have sufficed. Parentheses can be used for more complex expressions. 

(ablcd+)?(ef)* 

matches such strings as uabefef", "efefef", "cdef', or "cddd"j but not "abc", "abed", or 
"abcdef". 

Context Sensitivity 

The Lex program recognizes a small amount of surrounding context. The two simplest 
operators for this are .. and $. If the first character of an expression is .. I the expression is only 
matched at the beginning of a line (after a newline character or at the beginning of the input 
stream). This never conflicts with the other meaning of .. (complementation of character 
classes) since that only applies within the D operators. If the very last character is $, the 
expression is only matched at the end of a line (when immediately followed by newline). The 
latter operator is a special case of the / operator character which indicates trailing context. 
The expression 

ab/cd 

matches the string "ab" but only if followed by "cd". Thus: 

ab$ 

is the same as 

ab/\n 

Left context is handled in Lex by "start conditions" as explained later. If a rule is only to be 
executed when the Lex automaton interpreter is in start condition x, the rule should be 
prefixed by 

<x> 

using the angle bracket operator characters. If we considered "being at the beginning of a 
line" to be start condition ONE, then the ... operator would be equivalent to 

<ONE> 

Start conditions are explained more fully later. 

23-8 ICON INTERNATIONAL 

( 
~. 



(-

( 

( "\. 
j 

LEX 

Repetitions and Definitions 

The operators {} specify either repetitions (if they enclose numbers) or definition expansion (if 
they enclose a name). For example, 

{digit} 

looks for a predefined string named "digit" and inserts it at that point in the expression. The 
definitions are given in the first part of the Lex input before the rules. In contrast, 

a{1,5} 

looks for 1 to 5 occurrences of "a". 

Finally, initial % is special being the separator for Lex source segments. 

LEX ACTIONS 

When an expression written as above is matched, Lex executes the corresponding action. This 
part describes some features of Lex that aid in writing actions. Note that there is a default 
action that consists of copying the input to the output. This is performed on all strings not 
otherwise matched. Thus, the Lex user who wishes to absorb the entire input, without 
producing any output, must provide rules to match everything. When Lex is being used with 
yacc, this is the normal situation. One may consider that actions are what is done instead of 
copying the input to the output; thus, in general, a rule that merely copies· can be omitted. 
Also, a character combination that is omitted from the rules and that appears as input is 
likely to be printed on the output, thus calling attention to the gap in the rules. 

One of the simplest things that can be done is to ignore the input. Specifying a C language 
null statement, ; as an action causes this result. A frequent rule is 

[ \t\n] 

which causes the three spacing characters (blank, tab, and newline) to be ignored. 

Another easy way to avoid writing actions is the action character l which indicates that the 
action for this rule is the action for the next rule. The previous example could also have been 
written 

t, .. 

"\tlt 

n'n" 

, 
I 
I , 

PROGRA.M:MER GUIDE 23-9 



LEX 

with the same result although in different style. The quotes around \n and \t are not required. 

In more complex actions, you may often want to know the actual text that matched some 
expression like "[a-z]+". The Lex program leaves this text in a.n external character array. 
Thus, to print the na.me found, a rule like 

[a-z]+ printf("o/os", yytext); 

prints the string in yytext!]. The C language function printf accepts a format argument and 
data to be printed; in this case, the format is "print string" (% indicating data conversion, 
and s indicating string type), and the data are the characters in 1/1/textl]' This places the 
matched string on the output. This action is so common that it may be written as ECHO. 

[a-z]+ ECHO; 

is the same as the above. Since the default action is just to print the characters found, one 
might ask why give a rule like this one which merely specifies the default action. Such rules 
are often required to avoid matching some other rule that is not desired. For example, if there 
is a rule that matches read, it normally matches the instances of read contained in bread or 
readjust. To avoid this, a rule of the form "[a-z]+" is needed. This is explained further 
below. 

Sometimes it is more convenient to know the end of what has been found; hence, Lex also 
provides a count yyleng of the number of characters matched. To count both the number of 
words and the number of characters in words in the input, write 

[a-zA-Z]+ {words++; chars += yyleng;} 

which accumulates in chars the number of characters in the words recognized. The last 
character in the string matched Can be accessed by 

yytext [yy leng-I] 

Occasionally, a Lex action may decide that a rule has not recognized the correct span of 
characters. Two routines are provided to aid with this situation. First, yymore() can be called 
to indicate that the next input expression recognized is to be tacked on to the end of this 
input. Normally, the next input string would overwrite the current entry in yytext. Second, 
yyless(n) may be called to indicate that not all the characters matched by the currently 
successful expression are wanted right now. The argument "n" indicates the number of 
characters in yytext to be retained. Further characters previously matched are returned to the 
input. This provides the same sort of look ahead offered by the / operator but in a different 
form. 

Example: 

23-10 ICON INTERNATIONAL 

(--" 

U 

c-



() 

LEX 

Consider a language that defines a string as a set of characters between quotation (") marks 
and provides that to include a (") in a string it must be preceded by a \. The regular 
expression which matches that is somewhat confusing, so that it might be preferable to write 

\'T"]* { 
if (yytext[yyleng-l] = '\\~ 

yymoreO; 
else 

... normal user processing 
} 

will, when faced with a string such as "abc\ "del", first match the five characters "abc\; then 
the call to 1I11more() will cause the next part of the string "del to be tacked on the end. Note 
that the final quote terminating the string should be picked up in the code labeled "normal 
processing" . 

The function 1I111ess() might be used to reprocess text in various circumstances. Consider the C 
language problem of distinguishing the ambiguity of "=-a". Suppose it is desired to treat this 
as "=- a" but also to print a message: a rule might be 

=-[a-zA-Z] { 
printf("Operator (=-) ambiguous\n"); 
yyless(yyleng-l ); 
... action for =- ... 
} 

which prints a message, returns the letter after the operator to the input stream, and treats 
the operator as "=-". Alternatively, it might be desired to treat this as "=-a". To do this, 
just return the minus sign as well as the letter to the input. 

=-[a-zA-Z] { 
printf("Operator (=-) ambiguous\n"); 
yyless(yyleng-2); 
... action for = ... 
} 

performs the other interpretation. Note that the expressions for the two cases might more 
easily be written 

=-/[A-Za-z] 

in the first case, and 

=/-[A-Za-z] 

PROGRAMMER GUIDE 23-11 



LEX 

in the second; no backup is required in the rule action. It is not necessary to recognize the 
whole identifier to observe the ambiguity. The possibility of "=-3", however, makes 

/ 

=-/r \t\n] 

a still better rule. 

In addition to these routines, Lex also permits access to the I/O routines it uses. They are as 
follows: 

1. input() returns the next input character. 

2. output(c) writes the character "c" on the output. 

3. unput(c) pushes the character "c" back onto the input stream to be read later by 
input(). 

By default, these routines are provided as macro definitions; but the user can override them 
and supply private versions. These routines define the relationship between external files and 
internal characters and must all be retained or modified consistently. They may be redefined 
to cause input or output to be transmitted to or from strange places including other programs 
or internal memory. The character set used must be consistent in all routines and a value of 
zero returned by input must mean end of file. The relationship between unput and input must 
be retained or the Lex look ahead will not work. The Lex program does not look ahead at all 
if it does not have to, but every rule ending in +, *, r, or $ or containing / implies look ahead. 
Look ahead is also necessary to match an expression that is a prefix of another expression. 
The standard Lex library imposes a l00-character limit on backup. 

Another Lex library routine that you may sometimes want to redefine is 1I11wrap() which is 
called whenever Lex reaches an end of file. If 1I11wrap returns a 1, Lex continues with the 
normal wrap up on end of input. Sometimes, however, it is convenient to arrange for more 
input to arrive from a new source. In this case, the user should provide a 1I11wrap which 
arranges for new input and returns O. This instructs Lex to continue processing. The default 
1I11wrap always returns 1. 

This routine is also a convenient place to print tables, summaries, etc., at the end of a 
program. Note that it is not possible to write a normal rule that recognizes end 'Of file; the 
only access to this condition is through 1I11wrap. In fact, unless a private version of input() is 
supplied, a file containing nulls cannot be handled since a value of 0 returned by input is taken 
to be end of file. 

23-12 ICON INTERNATIONAL 

( 



( 

( 

LEX 

AMBIGUOUS SOURCE RULES 

The Lex program can handle ambiguous specifications. When more than one expression can 
match the current input, Lex chooses as follows: 

1. The longest match is preferred. 

2. Among rules that matched the same number of characters, the rule given first IS 

preferred. 

Thus, suppose the rules 

integer 
[a-z]+ 

keyword action ... j 
identifier action ... j 

are to be given in that order. If the input is "integers", it is taken as an identifier because 

"[a-z]+" 

matches eight characters while "integer" matches only seven. If the input is "integer", both 
rules match seven characters; and the keyword rule is selected because it was given first. 
Anything shorter (e.g., "int") does not match the expression "integer" and so the identifier 
interpretation is used. 

The principle of preferring the longest match makes rules containing expressions like * 
dangerous. For example: 

, *, 

might appear to be a good way of recognizing a string in single quotes. However, it is an 
invitation for the program to read far ahead looking for a distant single quote. Presented with 
the input 

'first' quoted string here, 'second' here 

the above expression will match 

'first' quoted string here, 'second' 

which is probably not what was wanted. A better rule is of the form 

PROGRAMMER GUIDE 23-13 



LEX 

which, on the above input, stops after ('first'). The consequences of errors like this are 
mitigated by the fact that the dot (.) operator does not match newline. Thus expressions like 
.* stop on the current line. Do not try to defeat this with expressions like [.\n]+ or 
equivalents; the Lex generated program tries to read the entire input file causing internal 
buffer overflows. 

Note that Lex is normally partitioning the input stream not searching for all poSsible matches 
of each expression. This means that each character is accounted for once and only once. For 
example, suppose it is desired to count occurrences of both "she" and "he" in an input text. 
Some Lex rules to do this might be 

she 
he 
\n 

s++; 
h++; 
I 
I 

where the last two rules ignore everything besides "he" and "she". Remember that dot (.) 
does not include newline. Since "she" includes "he", Lex normally does not recognize the 
instances of "he" included in "she" since once it has passed a "she" those characters are gone. 

Sometimes the user desires to override this choice. The action REJECT means "go do the next 
alternative". It causes whatever rule was second choice after the current rule to be executed. 
The position of the input pointer is adjusted accordingly. Suppose you really want to count 
the included instances of "he". Use the following rule to change the previous example to 
accomplish the task. 

she 
he 
\n 

{s++; REJECT;} 
{h++; REJECT;} 
I 
I 

After counting each expression, it is rejected; whenever appropriate, the other expression is 
then counted. In this example, you could note that "she" includes "he" but not vice versa and 

/omit the REJECT action on "he". In other cases, it is not possible to state which input 
characters are in both classes. 

Consider the two rules 

a[bc]+ 
a[cd]+ 

{ ... ; REJECT;} 
{ ... ; REJECT;} 

If the input is "ab", only the first rule matches, and on "ad" only the second matches. The 
input string "accb" matches the first rule for four characters and then the second rule for three 
characters. In contrast, the input "aced" agrees with the second rule for four characters and 
then the first rule for three. 

ICON INTERNATIONAL 



:( 

( -\, 
./ 

LEX 

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream 
but to detect all examples of some items in the input, and the instances of these items may 
overlap or include each other. Suppose a digram table of the input is desired; normally, the 
digrams overlap, that is the word "the" is considered to contain both "th" and "he". 
Assuming a 2-dimensional array named digram!} to be incremented, the appropriate source is 

%% 
[a-z][a-z] 

\n 

{digram[yytext[OlJ[yytext[l)]++i REJECT;} 

where the REJECT is necessary to pick up a letter pair beginning at every character rather 
than at every other character. 

The action REJECT does not rescan the input; instead it remembers the results of the previous 
scan. This means that if a rule with trailing context is found and REJECT executed the user 
must not have used unput to change the characters forthcoming from the input stream. This is 
the only restriction on the user's ability to manipulate the not-yet-processed input. 

LEX SOURCE DEFINITIONS 

Recalling the format of the Lex source, 

{definitions} 
%% 
{rules} 
%% 
{user routines} 

So far, only the rules have been described. You need additional options to define variables for 
use in the program and for use by Lex. Variables can go either in the definitions section or in 
the rules section. 

Remember Lex is generating the rules into a program. Any source not intercepted by Lex is 
copied into the generated program. There are three classes of such things. 

1. Any line not part of a Lex rule or action that begins with a blank or tab is copied into 
the Lex generated program. Such source input prior to the first %% delimiter is 
external to any function in the code; if it appears immediately after the first %%, it 
appears in an appropriate place for declarations in the function written by Lex which 
contains the actions. This material must look like program fragments and should 
precede the first Lex rule. 

PROGRAMMER GUIDE 

._-- ~---------.
-~---------.------.. ---.-----~---- .~. 

23-15 

-~-.- -- --------



LEX 

(' -', 
Lines that begin with a blank or tab and that contain a comment are passed through to ~_) 
the generated program. This can be used to include comments in either the Lex source or 
the generated code; the comments should follow the host language convention. 

2. Anything included between lines containing only %{ and %} is copied out as above. 
The delimiters are discarded. This format permits entering text like preprocessor 
statements that must begin in column 1 or copying lines that do not look like programs. 

3. Anything after the third %% delimiter, regardless of formats, etc., is copied out after 
the Lex output. 

Definitions intended for Lex are given before the first %% delimiter. Any line in this section 
not contained between %{ and %} and beginning in column 1 is assumed to define Lex 
substitution strings. The format of such lines is 

name translation 

and it causes the string given as a translation to be associated with the name. The name and 
translation must be separated by at least one blank or tab, and the name must begin with a 
letter. The translation can then be called out by the {name} syntax in a rule. Using {D} for 
the digits and {E} for an exponent field, for example, abbreviate rules to recognize numbers 

D 
E 
%% 

[0-9J 
[DEdeJ[-+J?{D}+ 

{D}+ printf("integer"); 
{D}+"."{D}*({E})? 
{D}*"."{D}+({E})? I 

{D }+{E} printf("real"); 

Note the first two rules for real numbers; both require a decimal point and contain an optional 
exponent field. The first requires at least one digit before the decimal point, and the second 
requires at least one digit after the decimal point. To correctly handle the problem posed by a 
Fortran expression such as "35.EQ.I", which does not contain a real number, a context
sensitive rule such as: 

[0-9]+/"."EQ printf(tlinteger"); 

could be used in a.ddition to the normal rule for integers. 

The definitions section may also contain other commands including the selection of a host 
language, a chara.cter set table, a list of start conditions, or adjustments to the default size of 
arrays within Lex itself for larger source programs. These possibilities are discussed later. ( 

,-
23-16 ICON INTERNATIONAL 



( 

( 

LEX 

• 
USAGE 

There are two steps in compiling a Lex source program. First, the Lex source must be turned 
into a generated program in the host general purpose language. Then this program must be 
compiled and loaded usually with a library of Lex subroutines. The generated program is on a 
file named lex.yy.c. The I/O library is defined in terms of the C language standard library. 

On ICONjUXV, the library is accessed by the loader flag -11. So an appropriate set of 
commands is 

lex source 
cc lex.yy.c -11 

The resulting program is placed on the usual file a.out for later execution. To use Lex with 
yaee, see part ''LEX AND YACC". Although the default Lex I/O routines use the C language 
standard library, the Lex automata themselves do not do so; if private versions of inputl 

outputl and unput are given, the library is avoided. 

LEXANDYACC 

To use Lex with yaee, observe that Lex writes a program named yyiex{) (the name required 
by yaee for its analyzer). Normally, the default main program on the Lex library calls this 
routine; but if yacc is loaded and its main program is used, yaee calls yylex{}. In this case, 
each Lex rule ends with 

return( token); 

where the appropriate token value is returned. An easy way to get access to yace's names for 
tokens is to compile the Lex output file as part of the yaee output file by placing the line 

# include "lex.yy.c" 

in the last section of yaee input. If the grammar is to be named "good" and the lexical rules 
are to be named "better", the ICONjUXV software command sequence could be 

yacc good 
lex better 
cc y.tab.c -ly -11 

The yaee library (-ly) should be loaded before the Lex library to obtain a main program that 
invokes the yacc parser. The generations of Lex and yaec programs can be done in either 
order. 

PROGRAMMER GUIDE 23-17 



LEX 

EXAMPLES 
As a problem, consider copying an input file while adding three to every positive number 
divisible by seven. A suitable Lex source program follows: 

%% 
int kj 

[0-9]+ { 
k - atoi(yytext)j 
if (k%7 --0) 

printf("%d", k+3)j 
else 

printf("%d",k)j 
} 

The rule "[0-9]+" recognizes strings of digitsj atoi(} converts the digits to binary and stores the 
result in "k". The operator % (remainder) is used to check whether "k" is divisible by sevenj 
if it is, "k" is incremented by three as it is written out. It may be objected that this program 
alters such input items as "49.63" or "X7". Furthermore, it increments the absolute value of 
all negative numbers divisible by seven. To avoid this, add a few more rules after the active 
one, as here: 

%% 
int kj 

-1[0-9]+ { 
k - atoi(yytext)j 
printf("%d", k%7 = 0 1 k+3 : k); 
} 

-1[0-9.]+ ECHOj 
[A-Za-z][A-Za-zO-9]+ ECHOj 

Numerical strings containing a dot (.) or preceded by a letter will be picked up by one of the 
last two, rules and not changed. The "if-else" has been replaced by a C language conditional 
expression to save space; the form "a1b:c" means "if a then b else c". 

For an example of statistics gathering, here is a program that histograms the lengths of words, 
where a word is defined as a string of letters: 

23-18 ICON INTERNATIONAL 



(~ 

( 

%% 
[a-z] + 

\n 
%% 
yywrap() 
{ 
int i; 

int lengs[lOO]; 

lengs[yyleng]++; 

printf("Length No. words\n"); 
for(i=O; i<lOO; i++) 

if (lengs[i] > 0) 
printf("%5d%10d\n",i,lengs[i]); 

return(l); 
} 

LEX 

This program accumulates the histogram while producing no output. At the end of the input, 
it prints the table. The final statement "return(l};" indicates that Lex is to perform wrap up. 
If yywrap returns zero (false), it implies that further input is available and the program is to 
continue reading and processing. Providing a yywrap (that never returns true) causes an 
infinite loop. 

LEFT CONTEXT SENSITIVITY 

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in 
the input. For example, a compiler preprocessor might distinguish preprocessor statements and 
analyze them differently from ordinary statements. This requires sensitivity to prior context, 
and there are several ways of handling such problems. The" operator, for example, is a prior 
context operator recognizing immediately preceding left context just as $ recognizes 
immediately following right context. Adjacent left context could be extended to produce a 
facility similar to that for adjacent right context, but it is unlikely to be as useful since often 
the relevant left context appeared some time earlier such as at the beginning of a line. 

This part describes three means of dealing with different environments: a simple use of flags 
(when only a few rules change from one environment to another), the use of "start conditions" 
on rules, and the possibility of making multiple lexical analyzers all run together. In each case, 
there are rules that recognize the need to change the environment in which the following input 
text is analyzed and that set a parameter to reflect the change. This may be a flag explicitly 
tested by the user's action code; this is the simplest way of dealing with the problem since Lex 
is not involved at all. It may be more convenient, however, to have Lex remember the flags as 
initial conditions on the rules. Any rule may be associated with a start condition. It is only 
recognized when Lex is in that start condition. The current start condition may be changed at 
any time. Finally, if the sets of rules for the different environments are very dissimilar, clarity 
may be best achieved by writing several distinct lexical analyzers and switching from one to 
another as desired. 

Consider the following problem: copy the input to the output, changing the word "magic" to 
"first" on every line which began with the letter "att , changing "magic" to "second" on every line 

PROGRAMMER GUIDE 23-19 



LEX 

which began with the letter "bot, and changing "magic" to "third" on every line which began 
with the letter "cIt. All other words and all other lines are left unchanged. 

These rules are so simple that the easiest way to do this job is with a flag. 

int flag. 
%% 
"a {flag = 'a'; ECHO;} 
"b {flag = 'h'; ECHO;} 
"c {flag = 'c'; ECHO;} 
\n {flag = 0; ECHO;} 
magic { 

switch (flag) 
{ 
case 'a': printf("first"); break; 
case 'b': printf("second"); break; 
case 'c': printf("third"); break; 
default: ECHO; break; 
} 

} 

should be adequate. 

To handle the same problem with start conditions, each start condition must be introduced to 
Lex in the definitions section with a line reading 

%Start namel name2 ... 

where the conditions may be named in any order. The word "Start" may be abbreviated to 
"s" or "S". The conditions may be referenced at the head of a rule with <> brackets; 

<name 1 >expression 

is a rule that is only recognized when Lex is in the start condition namel. To enter a start 
condition, execute the action statement 

BEGIN namel; 

which changes the start condition to namel. To resume the normal state 

BEGIN 0; 

resets the initial condition of the Lex automaton interpreter. A rule may be active in several C_/, 
start conditions. 

23-20 ICON INTERNATIONAL 



( 
<name 1 ,name2,name3> 

is a legal prefix. Any rule not beginning with the <> prefix operator is always active. 

The same example as before can be written as follows: 

%START AA BB CC 
%% 

"c 
\n 
<AA>magic 
<BB>magic 
<CC>magic 

{ECHO; BEGIN AA;} 
{ECHO; BEGIN BB;} 
{ECHO; BEGIN CC;} 
{ECHO; BEGIN O;} 

prin tf(ltfirst It); 
printf("second It); 
printf(ltthird It); 

LEX 

where the logic is exactly the same as in the previous method of handling the problem, but Lex 
does the work rather than the user's code. 

CHARACTER SET 
The programs generated by Lex handle character I/O only through the routines input(), 
output(), and unput(). Thus, the character representation provided in these routines is 
accepted by Lex and used to return values in yytext(). For internal use, a character is 
represented as a small integer which, if the standard library is used, has a value equal to the 
integer value of the bit pattern representing the character on the host computer. Normally, 
the letter a is represented in the same form as the character constant 'a'. If this 
interpretation is changed by providing I/O routines that translate the characters, Lex must be 
given a translation table that is in the definitions section and must be bracketed by lines 
containing only %T; the translation table contains lines of the form 

{integer} {character string} 

which indicate the value associated with each character. 

S~YOFSOURCEFORMAT 

The general form of a Lex source file is 

PROGRAMMER GUIDE 23-21 



LEX 

{definitions} 
%% 
{rules} 
%% 
{user subroutines} 

The definitions section contains a combination of 

1. Definitions in the form "name space translation". 

2. Included code in the form "space code". 

3. Included code in the form: 

%{ 
code 
%} 

4. Start conditions given in the form: 

%S namel name2 ... 

5. Character set tables in the form: 

%T 
number space character-string 

%T 

6. Changes to internal array sizes in the form: 

%x nnn 

where "nnn" is a decimal integer representing an array size and "a" selects the parameter as 
follows: 

Letter 
p 
n 
e 
a 
k 
o 

23-22 

Parameter 
positions 
states 
tree nodes 
transitions 
packed character classes 
output array size 

ICON INTERNATIONAL 



( 

LEX 

Lines in the rules section have the form "expression action" where the action may be 
continued on succeeding lines by using braces to delimit it. 

Regular expressions in Lex use the following operators: 

x the character "x". 
" " an "x", even if x is an operator. x 
\x an "x", even if x is an operator. 
[xy] the character x or y. 
[x-z] the characters x, y, or z. 
[AX] any character but x. 

any character but newline. 
A x an x at the beginning of a line. 
<y>x an x when Lex is in start condition y. 
x$ an x at the end of a line. 
x? an optional x. 
x* 0,1,2, ... instances of x. 
x+ 1,2,3, ... instances of x. 
xlY an x or a y. 
(x) an x. 
x/y an x but only if followed by y. 
{xx} the translation of xx from 

the definitions section. 
x{m,n} m through n occurrences of x. 

CAVEATS AND BUGS 

There are pathological expressions that produce exponential growth of the tables when 
converted to deterministic machines; fortunately, they are rare. 

REJECT does not rescan the input; instead it remembers the results of the previous scan. This 
means that if a rule with trailing context is found and REJECT executed, the user must not 
have used unput to change the characters forthcoming from the input stream. This is the only 
restriction on the user's ability to manipulate the not-yet-processed input. 

PROGRAMMER GUIDE 23-23 



LEX 

23-24 ICON INTERNATIONAL 



(-
Chapter 24 

YET ANOTHER COMPILER-COMPILER (yaee) 

PAGE 

GENERAL .................................................................................................................................................... 24-1 

BASIC SPECIFICATIONS ............................................................................................................................ 24-3 

ACTIONS...................................................................................................................................................... 24-G 

LEXICAL ANALYSIS ................................................................................................................................... , 24-9 

PARSER OPERATION ................................................................................................................................. 24-11 

AMBIGUITY AND CONFLICTS ................................................................................................................... 24-16 

PRECEDENCE .................................................................................................. ,.......................................... 24-21 

ERROR HANDLING .. , .......... ............ ...... ... .... ........................... .............. ...... ....... .... ....... ........ ...... ..... .... ....... 24-23 

THE "yaee" ENVIRONMENT ...................................................................................................................... 24-2G 

HINTS FOR PREPARING SPECIFICATIONS ............................................................................................. 24-27 

ADVANCED TOPICS ............. .... ....... ....... ........ ........... ........................... ..... ....... ............... ........................... 24-30 

APPENDIX 12.1................................................................................................................. ..... ....... ............ ... 24-33 

APPENDIX 12.2............................ .............................................. .................................................................. 24-3G 

APPENDIX 12.3........................................ ................................. ................................................................... 24-38 

APPENDIX 12.4............... ................................ .................. .............................. ............ ................................. 24-47 



( 



( Chapter 24 

YET ANOTHER COMPILER-COMPILER (yacc) 

GENERAL 

The yacc program provides a general tool for imposing structure on the input to a computer 
program. The yacc user prepares a specification of the input process. This includes rules 
describing the input structure, code to be invoked when these rules are recognized, and a low
level routine to do the basic input. The yacc program then generates a function to control the 
input process. This function, called a parser, calls the user-supplied low-level input routine (the 
lexical analyzer) to pick up the basic items (called tokens) from the input stream. These tokens 
are organized according to the input structure rules, called grammar rules. When one of these 
rules has been recognized, then user code (supplied for this rule, an action) is invoked. Actions 
have the ability to return values and make use of the values of other actions. 

The yacc program is written in a portable dialect of the C language, and the actions and 
output subroutine are in the C language as well. Moreover, many of the syntactic conventions 
of yacc follow the C language. 

The heart of the input specification is a collection of grammar rules. Each rule describes an 
allowable structure and gives it a name. For example, one grammar rule might be 

date : month..name day',' year 

where "date", "monthJlame", "day", and "year" represent structures of interest in the input 
process; presumably, "month name'" "day", and "year" are defined elsewhere. The comma is 
enclosed in single quotes. This implies that the comma is to appear literally in the input. The 
colon and semicolon merely serve as punctuation in the' rule and have no significance in 
controlling the input. With proper definitions, the input 

July 4, 1776 

might be matched by the rule. 

An important part of the input process is carried out by the lexical analyzer. This user routine 
reads the input stream, recognizes the lower-level structures, and communicates these tokens 
to the parser. For historical reasons, a structure recognized by the lexical analyzer is called a 
"terminal symbol", while the structure recognized by the parser is called a "nonterminal 
symbol". To avoid confusion, terminal symbols will usually be referred to as "tokens". 

There is considerable leeway in deciding whether to recognize structures using the lexical C analyzer or grammar rules. For example, the rules 

PROGRAMMER GUIDE 24-1 



YACC 

month..name : 'J' 'a' 'n' 
month..name : 'F' 'e' 'b' 

month..name : 'D' 'e' 'c' 

might be used in the above example. The lexical analyzer only needs to recognize individual 
letters, and "month name" is a nonterminal symbol. Such low-level rules tend to waste time 
and space and may complicate the specification beyond the ability of yacc to deal with it. 
Usually, the lexical analyzer recognizes the month names and returns an indication that a 
"month name" is seen. In this case, "month name" is a "token". 

Literal characters such as a comma must also be passed through the lexical analyzer and are 
also considered tokens. 

Specification files are very flexible. It is relatively easy to add to the above example the rule 

date : month 'I' day'/, year 

allowing 

7 14 I 1776 

as a synonym for 

July 4, 1776 

on input. In most cases, this new rule could be "slipped in" to a working system with minimal 
effort and little danger of disrupting existing input. 

The input being read may not conform to the specifications. These input errors are detected 
as early as is theoretically possible with a left-to-right scan. Thus, not only is the chance of 
reading and computing with bad input data substantially reduced, but the bad data can 
usually be quickly found. Error handling, provided as part of the input specifications, permits 
the reentry of bad data or the continuation of the input process after skipping over the bad 
data. 

In some cases, yacc fails to produce a parser when given a set of specifications. For example, 
the specifications may be self-contradictory, or they may require a more powerful recognition 
mechanism than that available to yacc. The former cases represent design errors; the latter 
cases can often be corrected by making the lexical analyzer more powerful or by rewriting (' 
some of the grammar rules. While yacc cannot handle all possible specifications, its power {"'-
compares favorably with similar systems. Moreover, the constructions which are difficult for 
yaee to handle are also frequently difficult for human beings to handle. Some users have 

24-2 ICON INTERNATIONAL 



o 

YACC 

reported that the discipline of formulating valid yacc specifications for their input revealed 
errors of conception or design early in the program development. 

The yacc program has been extensively used in numerous practical applications, including lint, 
the Portable C Compiler, and a system for typesetting mathematics. 

The remainder of this document describes the following subjects as they relate to yaee 

• Basic process of preparing a yaee specification 

• Parser operation 

• Handling ambiguities 

• Handling operator precedences in arithmetic expressions 

• Error detection and recovery 

• The operating environment and special features of the parsers yaec produces 

• Suggestions to improve the style and efficiency of the specifications 

• Advanced topics. 

In addition, there are four appendices. Appendix 12.1 is a brief example, and Appendix 12.2 is 
a summary of the yace input syntax. Appendix 12.3 gives an example using some of the more 
advanced features of yaee, and Appendix 12.4 describes mechanisms and syntax no longer 
actively supported but provided for historical continuity with older versions of yaec. 

BASIC SPECIFICATIONS 

Names refer to either tokens or nonterminal symbols. The yaee program requires token names 
to be declared as such. In addition, it is often desirable to include the lexical analyzer as part 
of the specification file. It may be useful to include other programs as well. Thus, every 
specification file consists of three sections: the declarations, (grammar) rules, and programs. 
The sections are separated by double percent (%%) marks. (The percent symbol is generally 
used in yace specifications as an escape character.) 

In other words, a full specification file looks like 

PROGRAMMER GUIDE 24-3 



YACC 

declarations 
%% 
rules 
%% 
programs 

when each section is used. 

The declaration section may be empty, and if the programs section is omitted, the second %% 
mark may also be omitted. The smallest legal yacc specification is 

%% 
rules 

since the other two sections may be omitted. 

Blanks, tabs, and new lines are ignored, but they may not appear in names or multicharacter 
reserved symbols. Comments may appear wherever a name is legal. They are enclosed in 1* ... 
... I, as in C language. 

The rules section is made up of one or more grammar rules. A grammar rule has the form 

A : BODY; 

where "A" represents a nonterminal name, and "BODY" represents a sequence of zero or more 
names and literals. The colon and the semicolon are yacc punctuation. 

Names may be of arbitrary length and may be made up of letters, dots, underscores, and 
noninitial digits. Uppercase and lowercase letters are distinct. The names used in the body of 
a grammar rule may represent tokens or nonterminal symbols. 

A literal consists of a character enclosed in single quotes ('). As in C language, the backslash 
(\) is an escape character within literals, and all the C language escapes are recognized. Thus: 

24-4 

'\n' newline 
'\r' return 
'\" single quote ( , ) 
'\ \' backslash ( \ ) 
'\t' tab 
'\b' backspace 
'\f' form feed 
'\xxx' "xxx" in octal 

ICON INTERNATIONAL 



( 

c 

YACC 

are understood by yaee. For a number of technical reasons, the NUL character ('\0' or 0) 
should never be used in grammar rules. 

If there are several grammar rules with the same left-hand side, the vertical bar (I) can be used 
to avoid rewriting the left-hand side. In addition, the semicolon at the end of a rule can be 
dropped before a vertical bar. Thus the grammar rules 

A 
A 
A 

BCD 
E F 
G j 

can be given to yaee as 

A : BCD 
E F 
G 

by using the vertical bar. It is not necessary that all grammar rules with the same left side 
appear together in the grammar rules section although it makes the input much more readable 
and easier to change. 

If a nonterminal symbol matches the empty string, this can be indicated by 

empty: j 

which is understood by yaee. 

Names representing tokens must be declared. This is most simply done by writing 

%token namel name2 ... 

in the declarations section. Every name not defined in the declarations section is assumed to 
represent a nonterminal symbol. Every nonterminal symbol must appear on the left side of at 
least one rule. 

Of all the nonterminal symbols, the start symbol has particular importance. ·The parser is 
designed to recognize the start symbol. Thus, this symbol represents the largest, most general 
structure described by the grammar rules. By default, the start symbol is taken to be the left-
hand side of the first grammar rule in the rules section. It is possible and desirable to declare 
the start symbol explicitly in the declarations section using the %start keyword 

%start symbol 

PROGRAMMER GUIDE 24-5 



YACC 

to define the start symbol. 

The end of the input to the parser is signaled by a special token, called the end-marker. If the 
tokens up to but not including the end-marker form a structure that matches the start symbol, 
the parser function returns to its caller after the end-marker is seen and accepts the input. If 
the end-marker is seen in any other context, it is an error. 

It is the job of the user-supplied lexical analyzer to return the end-marker when appropriate. 
Usually the end-marker represents some reasonably obvious I/O status, such as "end of file" or 
"end of record". 

ACTIONS 

With each grammar rule, the user may associate actions to be performed each time the rule is 
recognized in the input process. These actions may return values and may obtain the values 
returned by previous actions. Moreover, the lexical analyzer can return values for tokens if 
desired. 

An action is an arbitrary C language statement and as such can do input and output, call 
subprograms, and alter external vectors· and variables. An action is specified by one or more 
statements enclosed in curly braces ({) and (}). For example: 

and 

A : '(' B ')' 
{ 

hello( 1, "abc" ); 
} 

xxx : yyy ZZZ 
{ 

} 

printf("a message\n"); 
flag = 25; 

are grammar rules with actions. 

To facilitate easy communication between the actions and the parser, the action statements 
are altered slightly. The dollar sign symbol ($) is used as a signal to yacc in this context. 

To return a value, the action normally sets the pseudo-variable $$ to some value. For ,( 
example, the action ~-

ICON INTERNATIONAL 



( 

o 

YACC 

{ $$ = 1; } 

does nothing but return the value of one. 

To obtain the values returned by previous actions and the lexical analyzer, the action may use 
the pseudo-variables $1, $2, ••• , which refer to the values returned by the components of the 
right side of a rule, reading from left to right. If the rule is 

A : BCD; 

then $2 has the value returned by C, and $3 the value returned by D. 

The rule 

expr : '(' expr ')' ; 

provides a more concrete example. The value returned by this rule is usually the value of the 
"expr" in parentheses. This can be indicated by 

expr : '(' expr ')' 
{ 

$$ = $2; 
} 

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules 
of the form 

A : B 

frequently need not have an explicit action. 

In the examples above, all the actions carne at the end of rules. Sometimes, it is desirable to 
get control before a rule is fully parsed. The yacc permits an action to be written in the 
middle of a rule as well as at the end. This rule is assumed to return a value accessible 
through the usual $ mechanism by the actions to the right of it. In turn, it may access the 
values returned by the symbols to its left. Thus, in the rule 

PROGRAMMER GUIDE 24-7 



YACC 

A B 
{ 

$$-1; 
} 
C 

{ 
x =$2; 
y =$3; 

} 

the effect is to set x to 1 and 11 to the value returned by C. 

Actions that do not terminate a rule are actually handled by yace by manufacturing a new 
nonterminal symbol name and a new rule matching this name to the empty string. The 
interior action is the action triggered off by recognizing this added rule. The yace program 
actually treats the above example as if it had been written 

$ACT 1* empty */ 
{ 

$$ = 1; 
} 

A B $ACT C 
{ 

x =$2; 
y =$3; 

} 

where $ACT is an empty action. 

In many appli.cations, output is not done directly by the actions. A data structure, such as a 
parse tree, is constructed in memory and transformations are applied to it before output is 
generated. Parse trees are particularly easy to construct given routines to build and maintain 
the tree structure desired. For example, suppose there is a C function node written so that the 
call 

node( L, nl, n2 ) 

creates a node with label L and descendants nl and n2 and returns the index of the newly 
created node. Then parse tree can be built by supplying actions such as 

24-8 ICON INTERNATIONAL 



( 

YACC 

expr : expr '+' expr 
{ 

$$ = node( '+', $1, $3 ); 
} 

in the specification. 

The user may define other variables to be used by the actions. Declarations and definitions 
can appear in the declarations section enclosed in the marks %{ and %}. These declarations 
and definitions have global scope, so they are known to the action statements and the lexical 
analyzer. For example: 

%{ int variable = 0; %} 

could be placed in the declarations section making "variable" accessible to all of the actions. 
The yaee parser uses only names beginning with yy. The user should avoid such names. 

In these examples, all the values are integers. A discussion of values of other types is found in 
the part "ADVANCED TOPICS". 

LEXICAL ANALYSIS 

The user must supply a lexical analyzer to read the input stream and communicate tokens 
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called 
yylex. The function returns an integer, the token number, representing the kind of token read. 
If there is a value associated with that token, it should be assigned to the external variable 
yylval. 

The parser and the lexical analyzer must agree on these token numbers in order for 
communication between them to take place. The numbers may be chosen by yaee or the user. 
In either case, the #define mechanism of C language is used to allow the lexical analyzer to 
return these numbers symbolically. For example, suppose that the token name DIGIT has been 
defined in the declarations section of the yaee specification file. The relevant portion of the 
lexical analyzer might look like 

PROGRAMMER GUIDE 24-9 



YACC 

yylexO 
{ 

extern int yylval; 
int c; 

c = getcharOi 

switch( c ) 
{ 

case '0': 
case'l': 

case '9': 

} 

yylval = c-'O'; 
return( DIGIT ); 

to return the appropriate token. 

The intent is to return a token number of DIGIT and a value equal to the numerical value of 
the digit. Provided that the lexical analyzer code is placed in the programs section of the 
specification file, the identifier DIGIT is defined as the token number associated with the token 
DIGIT. 

This mechanism leads to clear, easily modified lexical analyzers. The only pitfall to avoid is 
using any token names in the grammar that are reserved or significant in C language or the 
parser. For example, the use of token names if or while will almost certainly cause severe 
difficulties when the lexical analyzer is compiled. The token name error is reserved for error 
handling and should not be used naively. 

As mentioned above, the token numbers may be chosen by yaee or the user. In the default 
situation, the numbers are chosen by yaee. The default token number for a literal character is 
the numerical value of the character in the local character set. Other names are assigned 
token numbers starting at 257. 

To assign a token number to a token (including literals), the first appearance of the token 
name or literal in the declarations section can be immediately followed by a nonnegative 
integer. This integer is taken to be the token number of the name or literal. Names and 
literals not defined by this mechanism retain their default definition. It is important that all 
token numbers be distinct. 

/' 
For historical reasons, the end-marker must have token number 0 or negative. This token ~ 
number cannot be redefined by the user. Thus, all lexical analyzers should be prepared to 
return 0 or a negative number as a token upon reaching the end of their input. 

24-10 ICON INTERNATIONAL 



YACC 

A very useful tool for constructing lexical analyzers is the lex program. These lexical analyzers 
are designed to work in close harmony with yacc parsers. The specifications for these lexical 
analyzers use regular expressions instead of grammar rules. Lex can be easily used to produce 
quite complicated lexical analyzers, but there remain some languages (such as FORTRAN) 
which do not fit any theoretical framework and whose lexical analyzers must be crafted by 
hand. 

PARSER OPERATION 

The yacc program turns the specification file into a C language program, which parses the 
input according to the specification given. The algorithm used to go from the specification to 
the parser is complex and will not be discussed here. The parser itself, however, is relatively 
simple and understanding how it works will make treatment of error recovery and ambiguities 
much more comprehensible. 

The parser produced by yacc consists of a finite state machine with a stack. The parser is 
aiso capable of reading and remembering the next input token (called the look-ahead token). 
The current state is always the one on the top of the stack. The states of the finite state 
machine are given small integer labels. Initially, the machine is in state 0 (the stack contains 
only state 0) and no look-ahead token has been read. 

The machine has only four actions available-shift, reduce, accept, and error. A step of the 
parsor is done as follows: 

1. Based on its current state, the parser decides if it needs a look-ahead token to choose 
the action to be taken. If it needs one and does not have one, it calls yylex to obtain the 
next token. 

2. Using the current state and the look-ahead token if needed, the parser decides on its 
next action and carries it out. This may result in states being pushed onto the stack or 
popped off of the stack and in the look-ahead token being processed or left alone. 

The shift action is the most common action the parser takes. Whenever a shift action is taken, 
there is always a look-ahead token. For example, in state 56 there may be an action 

IF shift 34 

which says, in state 56, if the look-ahead token is IF, the current state (56) is pushed down on 
the stack, and state 34 becomes the current state (on the top of the stack). The look-ahead 
token is cleared. 

The reduce action keeps the stack from growing without bounds. Reduce actions are 
appropriate when the parser has seen the right-hand side of a grammar rule and is prepared to 
announce that it has seen an instance of the rule replacing the right-hand side by the left-hand 
side. It may be necessary to consult the look-ahead token to decide whether to reduce or not 

PROGRAMMER GUIDE 24-11 



YACC 

(usually it is not necessary). In Cact, the deCault action (represented by a dot) is often a reduce 
action. 

Reduce actions are associated with individual grammar rules. Grammar rules are also given 
small integer numbers, a.nd this leads to some confusion. The action 

• reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule 

A : x y z 

is being reduced. The reduce action depends on the left-hand symbol (A in this case) and the 
number of symbols on the right-hand side (three in this case). To reduce, first pop off the top 
three states from the stack. (In general, the number of states popped equals the number of 
symbols on the right side of the rule.) In effect, these states were the ones put on the stack 
while recognizing x, y, and z and no longer serve any useful purpose. Mter popping these 
states, a state is uncovered which was the state the parser was in before beginning to process 
the rule. Using this uncovered state and the symbol on the left side of the rule, perform what 
is in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing continues. 
There are significant differences between the processing of the left-hand symbol and an 
ordinary shift of a token, however, so this action is called a goto action. In particular, the 
look-ahead token is cleared by a shift but is not affected by a goto. In any case, the uncovered 
state contains an entry such as 

A goto 20 

causing state 20 to be pushed onto the stack and become the current state. 

In effect, the reduce action "turns back the clock" in the parse popping the states off the stack 
to go back to the state where the right-hand side of the rule was first seen. The parser then 
behaves as if it had seen the left side at that time. If the right-hand side of the rule is empty, 
no states are popped off of the stacks. The uncovered state is in fact the current state. 

The reduce action is also important in the treatment of user-supplied actions and values. 
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. C 
In addition to the stack holding the states, another stack running in parallel with it holds the . 
values returned from the lexical analyzer and the actions. When a shift takes place, the 

24-12 ICON INTERNATIONAL 



( 

C\ 
/ 

YACC 

external variable "yylval" is copied onto the value stack. Mter the return from the user code, 
the reduction is carried out. When the go to action is done, the external variable "yyval" is 
copied onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack. 

The other two parser actions are conceptually much simpler. The accept action indicates that 
the entire input has been seen and that it matches the specification. This action appears only 
when the look-ahead token is the end-marker and indicates that the parser has successfully 
done its job. The error action, on the other hand, represents a place where the parser can no 
longer continue parsing according to the specification. The input tokens it has seen (together 
with the look-ahead token) cannot be followed by anything that would result in a legal input. 
The parser reports an error and attempts to recover the situation and resume parsing. The 
error recovery (as opposed to the detection of error) will be discussed later. 

Consider: 

%token DING DONG DELL 
%% 
rhyme sound place 

sound DING DONG 

place DELL 

as a yaee specification. 

When yaee is invoked with the -v option, a file called y.output is produced with a human
readable description of the parser. The y.output file corresponding to the above grammar (with 
some statistics stripped off the end) is 

PROGRAMMER GUIDE 24-13 



YACC 

state 0 
$accept : ...rhyme Send 

DING shift 3 
• error 

rhyme goto 1 
sound goto 2 

state 1 
$accept : rhyme_Send 

Send accept 
• error 

state 2 
rhyme : sound_place 

DELL shift 5 
• error 

place goto 4 

state 3 
sound : DING...DONG 

DONG shift 6 
• error 

state 4 
rhyme : sound place_ (1) 

• reduce 1 

state 5 
place : DELL_ (3) 

• reduce 3 

state 6 
sound DING DONG_ (2) 

• reduce 2 

where the actions for each state are specified and there is a description of the parsing rules 
being processed in each state. The _ character is used to indicate what has been seen and 
what is yet to come in each rule. The following input 

24-14 ICON INTERNATIONAL 



( 

o 

YACC 

DING DONG DELL 

can be used to track the operations of the parser. Initially, the current state is state O. The 
parser needs to refer to the input in order to decide between the actions available in state 0, so 
the first token, DING, is read and becomes the look-ahead token. The action in state 0 on 
DING is shift 9, state 3 is pushed onto the stack, and the look-ahead token is cleared. State 3 
becomes the current state. The next token, DONG, is read and becomes the look-ahead token. 
The action in state 3 on the token DONG is shift 6, state 6 is pushed onto the stack, and the 
look-ahead is cleared. The stack now contains 0, 3, and 6. In state 6, without even consulting 
the look-ahead, the parser reduces by 

sound : DING DONG 

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering state O. 
Consulting the description of state 0 (looking for a goto on sound), 

sound goto 2 

is obtained. State 2 is pushed onto the stack and becomes the current state. 

In state 2, the next token, DELL, must be read. The action is shift 5, so state 5 is pushed onto 
the stack, which now has 0, 2, and 5 on it, and the look-ahead token is cleared. In state 5, the 
only action is to reduce by rule 3. This has one symbol on the right-hand side, so one state, 5, 
is popped off, and state 2 is uncovered. The goto in state 2 on place (the left side of rule 3) is 
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. 
There are two symbols on the right, so the top two states are popped off, uncovering state 0 
again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the 
input is read and the end-marker is obtained indicated by $end in the y.output file. The action 
in state 1 (when the end-marker is seen) successfully ends the parse. 

The reader is urged to consider how the parser works when confronted with such incorrect 
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes 
spent with this and other simple examples is repaid when problems arise in more complicated 
contexts. 

AMBIGUITY AND CONFLICTS 

A set of grammar rules is ambiguous if there is some input string that can be structured in two 
or more different ways. For example, the grammar rule 

expr : expr ,_, expr 

PROGRAMMER GUIDE 24-15 



YACC 

is a natural way of expressing the fact that one way of forming an arithmetic expression is to 
put two other expressions together with a minus sign between them. Unfortunately, this 
grammar rule does not completely specify the way that all complex inputs should be 
structured. For example, if the input is 

expr - expr - expr 

the rule allows this input to be structured as either 

( expr - expr ) - expr 

or as 

expr - ( expr - expr ) 

(The first is called "left association", the second "right association".) 

The yacc program detects such ambiguities when it is attempting to build the parser. Given 
the input 

expr - expr - expr 

consider the problem that confronts the parser. When the parser has read the second expr, the 
input seen 

expr - expr 

matches the right side of the grammar rule above. The parser could reduce the input by 
applying this rule. After applying the rule, the input is reduced to "expr" (the left side of the 
rule). The parser would then read the final part of the input 

- expr 

and again reduce. The effect of this is to take the left associative interpretation. 

Alternatively, if the parser sees 

expr - expr 

it could defer the immediate application of the rule and continue reading the input until 

24-16 ICON INTERNATIONAL 



( 

( 

YACC 

expr - expr - expr 

is seen. It could then apply the rule to the rightmost three symbols reducing them to "expr" 
which results in 

expr - expr 

being left. Now the rule can be reduced once more. The effect is to take the right associative 
interpretation. Thus, having read 

expr - expr 

the parser can do one of two legal things, a shift or a reduction. It has no way of deciding 
between them. This is called a "shift/reduce conflict". It may also happen that the parser has 
a choice of two legal reductions. This is called a "reduce/reduce conflict". Note that there are 
never any shift/shift conflicts. 

When there are shift/reduce or reduce/reduce conflicts, yaec still produces a parser. It does 
this by selecting one of the valid steps wherever it has a choice. A rule describing the choice to 
make in a given situation is called a "disambiguating rule". 

The yaec program invokes two disambiguating rules by default: 

1. In a shift/reduce conflict, the default is to do the shift. 

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the 
input sequence). 

Rule 1 implies that reductions are deferred in favor of shifts when there is a choice. Rule 2 
gives the user rather crude control over the behavior of the parser in this situation, but 
reduce/reduce conflicts should be avoided when possible. 

Conflicts may arise because of mistakes in input or logic or because the grammar rules (while 
consistent) require a more complex parser than yacc can construct. The use of actions within 
rules can also cause conflicts if the action must be done before the parser can be sure which 
rule is being recognized. In these cases, the application of disambiguating rules is 
inappropriate and leads to an incorrect parser. For this reason, yacc always reports the 
number of shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2. 

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it 
is also possible to rewrite the grammar rules so that the same inputs are read but there are no 
conflicts. For this reason, most previous parser generators have considered conflicts to be fatal 
errors. Our experience has suggested that this rewriting is somewhat unnatural and produces 
slower parsers. Thus, yaec will produce parsers even in the presence of conflicts. 

PROGRAMMER GUIDE 24-17 



YACC 

As an example of the power of disambiguating rules, consider 

stat : IF '(' eond ')' stat 
I IF '(' cond ')' stat ELSE stat 

which is a fragment from a programming language involving an "if-then-else" statement. In 
these rules, "IF" and "ELSE" are tokens, "eond" is a nonterminal symbol describing 
conditional (logical) expressions, and "stat" is a nonterminal symbol describing statements. 
The first rule will be called the "simple-if" rule and the second the "if-else" rule. 

These two rules form an ambiguous construction since input of the form 

IF ( 01 ) IF ( 02 ) SI ELSE S2 

can be structured according to these rules in two ways 

IF ( 01 ) 
{ 

IF ( 02) 
SI 

} 
ELSE 

S2 

or 

IF ( 01 ) 
{ 

IF (02) 
S1 

ELSE 
S2 

} 

where the second interpretation is the one given in most programming languages having this 
construct. Each "ELSE" is associated with the last preceding "un-ELSE'd" IF. In this 
example, consider the situation where the parser has seen 

IF ( 01 ) IF ( 02 ) SI 

and is looking at the "ELSE". It can immediately reduce by the simple-if rule to get 

24-18 ICON INTERNATIONAL 

( 



( 

o 

YACC 

IF ( 01 ) stat 

and then read the remaining input 

ELSE S2 

and reduce 

IF ( 01 ) stat ELSE S2 

by the if-else rule. This leads to the first of the above groupings of the input. 

On the other hand, the "ELSE" may be shifted, "S2" read, and then the right-hand portion of 

IF ( 01 ) IF ( 02 ) S1 ELSE S2 

can be reduced by the if-else rule to get 

IF ( 01 ) stat 

which can be reduced by the simple-if rule. This leads to the second of the above groupings of 
the input which is usually desired. 

Once again, the parser can do two valid things-there is a shift/reduce conflict. The 
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the 
desired grouping. 

This shift/reduce conflict arises only when there is a particular current input symbol, "ELSE", 
and particular inputs, such as 

IF ( 01 ) IF ( 02 ) S1 

have already been seen. In general, there may be many conflicts, and each one will be 
associated with an input symbol and a set of previously read inputs. The previously read 
inputs are characterized by the state of the parser. 

The conflict messages of yacc are best understood by exammmg the verbose (-v) option 
output file. For example, the output corresponding to the above conflict state might be 

PROGRAMMER GUIDE 24-19 



YACC 

23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat IF ( cond ) stat_ (18) 
stat IF ( cond ) stat..ELSE stat 

ELSE shift 45 
reduce 18 

where the first line describes the conflict-giving the state and the input symbol. The ordinary 
state description gives the grammar rules active in the state and the parser actions. Recall 
that the underline marks the portion of the grammar rules which has been seen. Thus in the 
example, in state 23 the parser has seen input corresponding to 

IF ( cond ) stat 

and the two grammar rules shown are active at this time. The parser can do two possible 
things. If the input symbol is "ELSE", it is possible to shift into state 45. State 45 will have, 
as part of its description, the line 

stat : IF ( cond ) stat ELSE...stat 

since the "ELSE" will have been shifted in this state. In state 23, the alternative action 
Idescribing a dot (.)] is to be done if the input symbol is not mentioned explicitly in the 
actions. In this case, if the input symbol is not "ELSE", the parser reduces to . 

stat : IF '(' cond ')' stat 

by grammar rule 18. 

Once again, notice that the numbers following "shift" commands refer to other states, while 
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output file, 
the rule numbers are printed after those rules which can be reduced. In most one states, there 
is reduce action possible in the state and this is the default command. The user who 
encounters unexpected shift/reduce conflicts will probably want to look at the verbose output 
to decide whether the default actions are appropriate. 

24-20 ICON INTERNATIONAL 

(" 
, ) 
~J 



(. 

( 

c 

YACC 

PRECEDENCE 
There is one common situation where the rules given above for resolving conflicts are not 
sufficient. This is in the parsing of arithmetic expressions. Most of the commonly used 
constructions for arithmetic exptaSions can be naturally described by the notion of precedence 
levels for operators, together with information about left or right associativity. It turns out 
that ambiguous grammars with appropriate disambiguating rules can be used to create parsers 
that are faster and easier to write than parsers constructed from unambiguous grammars. The 
basic notion is to write grammar yules of the form 

expr : expr OP expr 

and 

expr : UNARY expr 

for all binary and unary operators desired. This creates a very ambiguous grammar with 
many parsing conflicts. As disambiguating rules, the user specifies the precedence or binding 
strength of all the operators and the associativity of the binary operators. This information is 
sufficient to allow yacc to resolve the parsing conflicts in accordance with these rules and 
construct a parser that realizes the desired precedences and associativities. 

The precedences andassociativitres are attached to tokens in the declarations section. This is 
done by a series of lines beginning with a yacc keyword: %left, %right, or %nonassoc, 
followed by a list of tokens. All of the tokens on the same line are assumed to have the same 
precedence level and associativity; the lines are listed in order of increasing precedence or 
binding strength. Thus: 

%left '+' '-' 
%left '*' '/' 

describes the precedence and associativity of the four arithmetic operators. Plus and minus 
are left associative and have lower precedence than star and slash, which are also left 
associative. The keyword %right is used to describe right associative operators, and the 
keyword %nonassoc is used to tre5cribe operators, like the operator .LT. in FORTRAN, that 
may not associate with themselves. Thus: 

A .LT. B .LT. C 

is illegal in FORTRAN and such an operator would be described with the keyword 
%nonassoc in yacc. As an example of the behavior of these declarations, the description 

PROGRAMMER GUIDE 24-21 



YACC 

%right '=' 
%left '+' '-' 
%left '*' 'I' 

%% 

expr : expr '=' expr 
expr '+' expr 
expr '-' expr 
expr '*' expr 
expr 'I' expr 
NAME 

might be used to structure the input 

a = b = c*d - e - r*g 

as follows 

a = ( b = ( «c*d)-e) - (f*g) ) ) 

in order to perform the correct precedence of operators. When this mechanism is used, unary 
operators must, in general, be given a precedence. Sometimes a unary operator and a binary 
operator have the same symbolic representation but different precedences. An example is 
unary and binary "_". Unary minus may be given the same strength as multiplication, or even 
higher, while binary minus has a lower strength than multiplication. The keyword, %pree, 
changes the precedence level associated with a particular grammar rule. The keyword %prec 
appears immediately after the body of the grammar rule, before the action or closing 
semicolon, and is followed by a token name or literal. It causes the precedence of the grammar 
rule to become that of the following token name or literal. For example, the rules 

%left '+' '-' 
%left '*' '/' 

%% 

expr : expr '+' expr 
expr '-' expr 
expr '*' expr 
expr ' /' expr 
'-' expr %prec ,*, 
NAME 

might be used to give unary minus the same precedence as mUltiplication. 

24-22 ICON INTERNATIONAL 

( 
~/ 



( 

f 

o 

YACC 

A token declared by %left, %right, and %non&8soc need not be, but may be, declared by 
%token as well. 

The precedences and associativities are used by yacc to resolve parsing conflicts. They give rise 
to disambiguating rules. Formally, the rules work as follows: 

1. The precedences and associativities are recorded for those tokens and literals that have 
them. 

2. A precedence and associativity is associated with each grammar rule. It is the 
precedence and associativity of the last token or literal in the body of the rule. If the 
%prec construction is used, it overrides this default. Some grammar rules may have no 
precedence and associativity associated with them. 

3. When there is a reduce/reduce conflict or there is a shift/reduce conflict and either the 
input symbol or the grammar rule has no precedence and associativity, then the two 
disambiguating rules given at the beginning of the section are used, and the conflicts are 
reported. 

4. If there is a shift/reduce conflict and both the grammar rule and the input character 
have precedence and associativity associated with them, then the conflict is resolved in 
favor of the action (shift or reduce) associated with the higher precedence. If the 
precedences are the same, then the associativity is used; left associative implies reduce, 
right associative implies shift, and nonassociating implies error. 

Conflicts resolved by precedence are not counted in the number of shift/reduce and 
reduce/reduce conflicts reported by yacc. This means that mistakes in the specification of 
precedences may disguise errors in the input grammar. It is a good idea to be sparing with 
precedences and use them in an essentially "cookbook" fashion until some experience has been 
gained. The y.output file is very useful in deciding whether the parser is actually doing what 
was intended. 

ERROR HANDLING 

Error handling is an extremely difficult area, and many of the problems are semantic ones. 
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete 
or alter symbol table entries, and, typically, set switches to avoid generating any further 
output. 

It is seldom acceptable to stop all processing when an error is found. It is more useful to 
continue scanning the input to find further syntax errors. This leads to the problem of getting 
the parser "restarted" after an error. A general class of algorithms to do this involves 
discarding a number of tokens from the input string and attempting to adjust the parser so 
that input can continue. 

PROGRAMMER GUIDE 24-23 



YACC 

To allow the user some control over this process, yacc provides a simple, but rea.sonably 
general feature. The token name "error" is reserved for error handling. This name can be 
used in grammar rules. In efi'ect, it suggests places where errors are expected and recovery 
might take place. The parser pops its stack until it enters a state where the token "error" is 
legal. It then behaves as if the token "error" were the current look-ahead token and performs 
the action encountered. The look-ahead token is then reset to the token that caused the error. 
If no special error rules have been specified, the processing halts when an error is.detected. 

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in 
error state until three tokens have been successfully read and shifted. If an error is detected 
when the parser is already in error state, no message is given, and the input token is quietly 
deleted. 

As an example, a rule of the form 

stat : error 

means that on a syntax error the parser attempts to skip over the statement in which the 
error is seen. More precisely, the parser scans ahead, looking for three tokens that might 
legally follow a statement, and start processing at the first of these. If the beginnings of 
statements are not sufficiently distinctive, it may make a false start in the middle of a 
statement and end up reporting a second error where there is in fact no error. 

Actions may be used with these special error rules. These actions might attempt to reinitialize 
tables, reclaim symbol table space, etc. 

Error rules such as the above are very general but difficult to control. Rules such as 

stat : error ';' 

are somewhat easier. Here, when there is an error, the parser attempts to skip over the 
statement but does so by skipping to the next semicolon. All tokens after the error and before 
the next semicolon cannot be shifted and are discarded. When the semicolon is seen, this rule 
will be reduced and any "cleanup" action associated with it performed. 

Another form of error rule arises in interactive applications where it may be desirable to 
permit a line to be reentered after an error. The following example 

24-24 ICON INTERNATIONAL 



( 

o 

input 

{ 

} 

YACC 

error '\n' 
{ 

printf( "Reenter last line: " ); 
} 
input 

$$ = $4; 

is one way to do this. There is one potential difficulty with this approach. The parser must 
correctly process three input tokens before it admits that it has correctly resynchronized after 
the error. If the reentered line contains an error in the first two tokens, the parser deletes the 
offending tokens and gives no message. This is clearly unacceptable. For this reason, there is a 
mechanism that can force the parser to believe that error recovery has been accomplished. 
The statement 

yyerrok; 

in an action resets the parser to its normal mode. The last example can be rewritten as 

input : error '\n' 

{ 

} 

{ 
yyerrok; 
printf( "Reenter last line: .. ); 

} 
input 

$$ = $4; 

which is somewhat better. 

A!5 previously mentioned, the token seen immediately after the "error" symbol is the input 
token at which the error was discovered. Sometimes, this is inappropriate; for example, an 
error recovery action might take upon itself the job of finding the correct place to resume 
input. In this case, the previous look-ahead token must be cleared. The statement 

yyclearin ; 

in an action will have this effect. For example, suppose the action after error were to call some 
sophisticated resynchronization routine (supplied by the user) that attempted to advance the 
input to the beginning of the next valid statement. After this routine is called, the next token 
returned by yylex is presumably the first token in a legal statement. The old illegal token must 
be discarded and the error state reset. A rule similar to 

PROGRAMMER GUIDE 24-25 



YACC 

stat : error 
{ 

} 

resynchO; 
yyerrok ; 
yyclearin; 

could perform this. 

These mechanisms are admittedly crude but do allow for a simple, fairly effective recovery of 
the parser from many errors. Moreover, the user can get control to deal with the error actions 
required by other portions of the program. 

THE "yaee" ENVIRONMENT 

When the user inputs a specification to yacc, the output is a file of C language programs, 
called y.tab.c on most systems. (Due to local file system conventions, the names may differ 
from installation to installation.) The function produced by yacc is called yyparse(}; it is an 
integer valued function. When it is called, it in turn repeatedly calls yylex(} , the lexical 
analyzer supplied by the user (see "LEXICAL ANALYSIS"), to obtain input tokens. 
Eventually, an error is detected, yyparse(} returns the value 1, and no error recovery is 
possible, or the lexical analyzer returns the end-marker token and the parser accepts. In this 
case, yyparse() returns the value o. 

The user must provide a certain amount of environment for this parser in order to obtain a 
working program. For example, as with every C language program, a program called main(} 
must be defined that eventually calls yyparse(). In addition, a routine called yyerror() prints a 
message when a syntax error is detected. 

These two routines must be supplied in one form or another by the user. To ease the initial 
effort of using yacc, a library has been provided with default versions of main() and yyerror(}. 
The name of this library is system dependent; on many systems, the library is accessed by a 
-ly argument to the loader. The source codes 

mainO 
{ 

return ( yyparseO ); 
} 

and 

24-26 ICON INTERNATIONAL 



( 

c 

# include <stdio.h> 

yyerror(s) 

{ 

} 

char *s; 

fprintf( stderr, "%s\n", s ); 

YACC 

show the triviality of these default programs. The argument to yyerror(j is a string containing 
an error message, usually the string "syntax error". The average application wants to do 
better than this. Ordinarily, the program should keep track of the input line number and print 
it along with the message when a syntax error is detected. The external integer variable 
yychar contains the look-ahead token number at the time the error was detected. This may be 
of some interest in giving better diagnostics. Since the main() program is probably supplied by 
the user (to read arguments, etc.), the yacc library is useful only in small projects or in the 
earliest stages of larger ones. 

The external integer variable yydebug is normally set to O. It it is set to a nonzero value, the 
parser will output a verbose description of its actions including a discussion of the input 
symbols read and what the parser actions are. Depending on the operating environment, it 
may be possible to set this variable by using a debugging system. 

HINTS FOR PREPARING SPECIFICATIONS 

This part contains miscellaneous hints on preparing efficient, easy to change, and clear 
specifications. The individual subsections are more or less independent. 

Input Style 

It is difficult to provide rules with substantial actions and still have a readable specification 
file. The following are a few style hints. 

1. Use all uppercase letters for token names and all lowercase letters for nonterminal 
names. This rule comes under the heading of "knowing who to blame when things go 
wrong". 

2. Put grammar rules and actions on separate lines. This allows either to be changed 
without an automatic need to change the other. 

3. Put all rules with the same left-hand side together. Put the left-hand side in only once 
and let all following rules begin with a vertical bar. 

4. Put a semicolon only after the last rule with a given left-hand side and put the 
semicolon on a separate line. This allows new rules to be easily added. 

PROGRAMMER GUIDE 24-27 



YACC 

5. Indent rule bodies by two tab stops and action bodies by three tab stops. 

The example in Appendix 12.1 is written following this style, as are the examples in this section 
(where space permits). The user must make up his own mind about these stylistic questions. 
The central problem, however, is to make the rules visible through the morass of action code. 

Left Recursion 

The algorithm used by the yaee parser encourages so called "left recursive" grammar rules. 
Rules of the form 

name : name rest_ofJule 

match this algorithm. These rules such as 

list item 
list ',' item 

and 

seq item 
seq item 

frequently arise when writing specifications of sequences and lists. In each of these cases, the 
first rule will be reduced for the first item only; and the second rule will be reduced for the 
second and all succeeding items. 

With right recursive rules, such as 

seq item 
item seq 

the parser is a bit bigger; and the items are seen and reduced from right to left. More 
seriously, an internal stack in the parser is in danger of overflowing if a very long sequence is 
read. Thus, the user should use left recursion wherever reasonable. 

It is worth considering if a sequence with zero elements has any meaning, and if so, consider 
writing the sequence specification as 

24-28 ICON INTERNATIONAL 



( 

o 

seq /* empty */ 
seq item 

YACC 

using an empty rule. Once again, the first Tule would always be reduced exactly once before 
the first item was read, and then the second rule would be reduced once for each item read. 
Permitting empty sequences often leads to iDcreased generality. However, conflIcts might arise 
if yacc is asked to decide which empty sequence it has seen when it hasn't seen enough to 
know! 

Lexical Tie-ins 

Some lexical decisions depend on context. For example, the lexical analyzer might want to 
delete blanks normally but not within quoted strings, or names might be entered into a symbol 
table in declarations but not in expressions. 

One way of handling this situation is to create a global flag that is examined by the lexical 
analyzer and set by actions. For example, 

%{ 
int dflag; 

%} 
... other declarations ... 

%% 

prog decls stats 
.. , 

decls : 
{ 

} , , 

stats : 
{ 

} , , 

1* empty */ 

dflag = 1; 

decls declaration 

1* empty */ 

dflag = 0; 

stats statement 

other rules .. , 

specifies a program that consists of zero or more declarations followed by zero or more 
statements. The flag "dflag" 15 now 0 when reading statements and 1 when reading 

PROGRAMMER GUIDE 24-29 



YACC 

/\ 

declarations, ezcept lor the first token in the first statement. This token must be seen by the ~-) 
parser before it can tell that the declaration section has ended and the statements have begun. 
In many cases, this single token exception does not affect the lexical scan. 

This kind of "back-door" approach can be elabora.ted to a noxious degree. Nevertheless, it 
represents a way of doing some things that are difficult if not impossible to do otherwise. 

Reserved Words 

Some programming languages permit you to use words like "if", which are normally reserved as 
label or variable names, provided that such use does not conflict with the legal use of these 
names in the programming language. This is extremely hard to do in the framework of yacc. 
It is difficult to pass information to the lexical analyzer telling it "this instance of il is a 
keyword and that instance is a variable". The user can make a stab at it using the mechanism 
described in the last subsection, but it is difficult. 

A number of ways of making this easier are under advisement. Until then, it is better that the 
keywords be reserved, i.e., forbidden for use as variable names. There are powerful stylistic 
reasons for preferring this. 

ADVANCED TOPICS 

This part discusses a number of advanced features of yacc. 

Simulating Error and Accept in Actions 

The parsing actions of error and accept can be simulated in an action by use of macros 
YYACCEPT and YYERROR. The YYACCEPT macro causes yyparse() to return the 
value 0; YYERROR causes the parser to behave as if the current input symbol had been a 
syntax error; yyerror() is called, and error recovery takes place. These mechanisms can be 
used to simulate parsers with multiple end-markers or context sensitive syntax checking. 

Accessing Values in Enclosing Rules 

An action may refer to values returned by actions to the left of the current rule. The 
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit. 

24-30 ICON INTERNATIONAL 



(" 

i( 

c 

YACC 

sent adj noun verb adj noun 
{ 

look a.t the 8entence ... 
} 

adj THE 
{ 

$$=THE; 
} 
I YOUNG I 
{ 

$$ = YOUNG; 
} 

noun DOG 
{ 

$$=DOG; 
} 
I CRONE I 
{ 

if( $0 = YOUNG) 
{ 

printf( "what?\n" ); 
} 
$$=CRONE; 

} 

In this case, the digit may be 0 or negative. In the action following the word CRONE, a check 
is made that the preceding token shifted was not YOUNG. Obviously, this is only possible 
when a great deal is known about what might precede the symbol "noun" in the input. There 
is also a distinctly unstructured flavor about this. Nevertheless, at times this mechanism 
prevents a great deal of trouble especially when a few combinations are to be excluded from an 
otherwise regular structure. 

Support for Arbitrary Value Types 

By default, the values returned by actions and the lexical analyzer are integers. The yaec 
program can also support values of other types including structures. In addition, yacc keeps 
track of the types and inserts appropriate union member names so that the resulting parser is 
strictly type checked. The yaee value stack is declared to be a union of the various types of 
values desired. The user declares the union and associates union member names to each token 
and nonterminal symbol having a value. When the value is referenced through a $$ or $n 
construction, yaee will automatically insert the appropriate union name so that no unwanted 
conversions take place. In addition, type checking commands such as lint is far more silent. 

PROGRAMMER GUIDE 24-31 



YACC 

There are three mechanisms used to provide for this typing. First, there is a way of defining 
the union. This must be done by the user since other programs, notably the lexical analyzer, 
must know about the union member names. Second, there is a way of a.ssociating a union 
member name with tokens and non terminals. Finally, there is a mechanism for describing the 
type of those few values where yacc cannot ea.sily determine the type. 

To declare the union, the user includes 

%union 
{ 

body of union ... 
} 

in the declaration section. This declares the yacc value stack and the external variables yyIvai 
and lIyval to have type equal to this union. If yacc was invoked with the -d option, the union 
declaration is copied onto the lI.tab.h file .. Alternatively, the union may be declared in a header 
file, and a typedef used to define the varia.ble YYSTYPE to represent this union. Thus, the 
header file might have said 

typedef union 
{ 

body of union ... 
} 
YYSTYPE; 

instead. The header file must be included in the declarations section by use of %{ and %}. 

Once YYSTYPE is defined, the union member names must be associated with the various 
terminal and nonterminal names. The construction 

< name> 

is used to indicate a union member name. If this follows one of the keywords %token, % left , 
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus, 
saying 

%left <optype> '+' '-' 

causes any reference to values returned by these two tokens to be tagged with the union 
member name optype. Another keyword, %type, is used to associate union member names 
with nonterminals. Thus, one might say 

%type <nodetype> expr stat 

24-32 ICON INTERNATIONAL 



(-

( 

o 

YACC 

to associate the union member nodetgpe with the nonterminal symbols "expr" and "stat". 

There remains a couple of cases where these mechanisms are insufficient. If there is an action 
within a rule, the value returned by this action has no a priori type. Similarly, reference to left 
context values (such as $0) leaves yacc with no easy way of knowing the type. In this case, a 
type can be imposed on the reference by inserting a union member name between < and> 
immediately after the first $. The example 

rule : 

{ 

} 

aaa 
{ 

$<intval>$ = 3; 
} 
bbb 

fun( $<intval>2, $<other>O ); 

shows this usage. This syntax has little to recommend it, but the situation arises rarely. 

A sample specification is given in Appendix 12.3. The facilities in this subsection are not 
triggered until they are used. In particular, the use of %type will turn on these mechanisms. 
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to 
refer to something with no defined type is diagnosed. If these facilities are not triggered, the 
yacc value stack is used to hold int's, as was true historically. 

APPEND1X 12.1 

A Simple Example 

This example gives the complete yacc applications for a small desk calculator; the calculator 
has 26 registers labeled "a" through "z" and accepts arithmetic expressions made up of the 
operators +, -, .,/,% (mod operator), &. (bitwise and), : (bit wise or), and assignments. If an 
expression at the top level is an assignment, the value is printed; otherwise, the expression is 
printed. As in C language, an integer that begins with 0 (zero) is assumed to be octal; 
otherwise, it is assumed to be decimal. 

As an example of a yacc specification, the desk calculator does a reasonable job of showing 
how precedence and ambiguities are used and demonstrates simple recovery. The major 
oversimplifications are that the lexical analyzer is much simpler for most applications, and the 
output is produced immediately line by line. Note the way that decimal and octal integers are 
read in by grammar rules. This job is probably better done by the lexical analyzer. 

%{ 
# includes<stdio.h> 
# includes<ctype.h> 

PROGRAMMER GUIDE 24-33 



YACC 

int regs[26}; 
int base; 

%} 

'rostart list 

%token DIGIT LEITER 

%left'I' 
%left '&' 
%left '+' '.' 
%left '*' 'I' '%' 
%left UMINUS 1* supplies precedence for unary minus *1 

% % 1* beginning of rule section * I 

list 1* empty *1 
I list stat '\n' 
I list error '\n' 

{ 

yyerrork; 

} 

stat expr 

expr 

24-34 

{ 
printf( "%dn", $1 ); 

} 
I LEITER '=' expr 
{ 

regs[$I} = $3 
} 

'(' expr ')' 
{ 

$$ == $2; 
} 
I expr '+' expr 
{ 

} 
I expr '.' expr 
{ 

$$ = $1· $3 
{ 
I expr ,*, expr 

ICON INTERNATIONAL 



YACC 

( { 
$$ = $1 * $3; 

} 
I expr' I' expr 
{ 

$$ = $1/$3; 
} 
I exp '%' expr I 
{ 

$$ = $1 % $3 
} 
I expr '&' expr I 

{ 
$$ = $1 & $3; 

} 
I expr 'I' expr I 
{ 

$$ = $1 1$3 
} 
I '.' expr %prec UMINUS 
{ 

$$ =. $2; 
} 

i,( I LETTER 
{ 

$$ = reg[$1 J; 
} 
I number 

number DIGIT 
{ 

$$ = $1; base = ($1==0) ? 8 ; 10; 
} 
I number DIGIT I 
{ 

$$ = bas * $1 + $2 
} 

%% 1* start of program * / 

yylex( ) 1* lexical analysis routine * / 
{ 1* return LETTER for lowercase letter, 

yylval = 0 through 25*/ 

1* returns DIGIT for digit, yylval = 0 through 9*/ 

C 
1* all other characters are returned immediately * / 

int c; 

PROGRAMMER GUIDE 24-35 



YACC 

} 

/*skip blanks* / 
while (c==getchar( ) ) = = ") 

/* c is now nonblank • / 

if( islower( c » 
{ 

} 

yyIvaI = c- 'a'; 
return( LETI'ER ); 

if( isdigit( c » 
} 

} 

yyIvai == c-'O'; 
return( DIGIT ); 

return( c ); 

APPENDIX 12.2 

YAOO Input Syntax 

This appendix has a description of the yaee input systax as a yaee specification. Contex 
dependencies, etc. are not considered. Ironically, the yaec input specification language is most 
naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a 
rule immediately following an action. If this identifier is followed by a colon, it is the start of 
the next rule; otherwise, it is a continuation of the current rule which just happens to have an 
action embedded in it . .As implemented, the lexical analyzer looks ahead after seeing an 
identifier and decides whether the next token (skipping blanks, newlines, and comments, etc.) is 
a colon. If so, it returns the token CJDENTIFIER. Otherwise, it returns IDENTIFIER. 
Literals (quoted strings) are also returned as IDENTIFIERS but never as part of 
CJDENTIFIERs. 

/* grammar for the input to yacc * / 

/* basic entries * / 
%token IDENTIFIER /* includes identifiers and literals * / 
%token CJDENTIFIER /* identifier (but not literal) 

followed by a colon * / 
%token NUMBER /* 10-9]+ * / 

/* reserved words: %type > TYPE %left=>LEFT,etc. * / 

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION 

24-36 ICON INTERNATIONAL 

f' 
I, I "'- / 

c/ 



%token 
%token 
%token 

MARK 1* the %% mark * / 
LCURL 1* the % { mark * / 
RCURL 1* the % } mark * / 

1* ASCII character literals stand for themselves * / 

%token spec 

%% 

spec 

tail 
{ 

} 

defs MARK rules tail 

MARK 

In this action, eat up the rest oj the file 

1* empty: the second MARK is optional * / 

defs 1* empty * / 

defs 
I 
I 
{ 

} 

defs def 

START IDENTIFIER 
UNION 

Copy union definition to output 

I LCURL 
{ 

} 

Copy C code to output file 
RCURL 

I ndefs rword tag nlist 

rword : TOKEN 
LEFT 
RIGHT 
NONASSOC 
TYPE 

tag 1* empty: union tag is optional * / 
'<' IDENTIFIER '>' 

nlist : nmno 

PROGRAMMER GUIDE 

YACC 

24-37 



YACC 

nlist nmno 
nlist' , 'nmno 

nmno : IDENTIFIER /*Note: literal illegal with % type *1 
I IDENTIFIER NUMBER /* Note: illegal with % type *1 

/* rule section *1 

rules: CJDENTIFIER rbody proc 
I rules rule 

rule CJDENTIFIER rbody prec 
I 'I' rbody prec 

rbody : 1* empty *1 
. I rbody IDENTIFIER 

I rbodyact 

act : '{' 
{ 

Copy action translate $$' etc. 
} 

'}' 

Bprec /* empty *1 

.. , 

PREC IDENTIFIER 
PREC IDENTIFIER act 
prec';' 

APPENDIX 12.3 

An Advanced Example 

This appendix gives an example of a grammar using some of the advanced features. The desk 
calculator example in Appendix 12.1 is modified to provide a desk calculator that does floating 
point interval arithmetic. The calculator understands floating point constants; the arithmetic 
operations +,. *, I, unary· "a" through "z". Moreover, it also understands intervals written 

(X,Y) 

24-38 ICON INTERNATIONAL 



(' 

( 

() 

YACC 

where X is less than or equal to Y. There are 26 interval valued variables "A" through "z" that 
may also be used. The usage is similar to that in Appendix 12.1; assignments returns no value 
and prints nothing while expressions print the (floating or interval) value. 

This example explores a number of interesting features of yaee and C language. Intervals are 
represented by a structure consisting of the Jeft and right endpoint values stored as doubles. 
This structure is given a type name, INTERVAL, by using typedef The yaee value stack can 
also contain floating point scalars and integers (used to index into the arrays holding the 
variable values). Notice that the entire strategy depends strongly on being able to assign 
structures and unions in C language. In fact, many of the actions call functions that return 
structures as well. 

It is also worth noting the use of YYERROR to handle error conditions--division by an 
interval containing 0 and an interval presented in the wrong order. The error recovery 
mechanism of yaee is used to throwaway the rest of the offending line. 

In addition to the mixing of types on the value stack, this grammar also demonstrates an 
interesting use of syntax to keep track of the type (for example, scalar or interval) of 
intermediate expressions. Note that scalar can be automatically promoted to an interval if the 
context demands an interval value. This causes a large number of conflicts when the grammar 
is run through yaee-18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by 
looking at the two input lines. 

2.5+{3.5-4.} 

and 

2.5 + ( 3.5,4 ) 

Notice that the 2.5 is to be used in an interval value expression in the second example, but this 
fact is not known until the comma is read. By this time" 2.5 is finished, and the parser cannot 
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary 
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded 
by having two rules for each binary interval valued operator-one when the left operand is a 
scalar and one when the left operand is an interval. In the second case, the right operand must 
be an interval, so the conversion will be applied automatically. Despite this evasion, there are 
still many cases where the conversion may be applied or not, leading to the above conflicts. 
They are resolved by listing the rules that yield scalars first in the specification file; in this 
way, the conflict will be resolved in the direction of keeping scalar valued expressions scalar 
valued until they are forced to become intervals. 

This way of handling multiple types is very instructive but not very general. If there were 
many kinds of expression types instead of just two, the number of rules needed would increase 
dramatically and the conflicts even more dramatically. Thus, while this example is instructive, 
it is better practice in a more normal programming language environment to keep the type 
information as part of the value and not as part of the grammar. 

PROGRA.M:MER GUIDE 24-39 



YACC 

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating 
point constants. The C language library routine atof(} is used to do the actual conversion from 
a character string to a double precision value. If the lexical analyzer detects an error, it 
responds by returning a token that is illegal in the grammar provoking a syntax error in the 
parser and thence error recovery. 

%{ 

#include<stdio.h> 
#include<ctype.h> 

typedef struct interval 
{ 

double 10, hi; 
} INTERVAL; 

INTERVAL vmulO, vdiv( ); 

double atof( ); 

double dreg[ 26 J; 
INTERVAL vreg[26 J; 

%} 

%start line 

%union 
{ 

} 

int ivaI; 
double dval; 
INTERVAL vval; 

%token <ivaI> DREG VREG /*indices into dreg, vreg arrays * / 

%token <dval> CaNST /* floating point constant * / 

%type <dval> dexp /* expression * / 

%type <vval> vexp /* interval expression * / 

/* precedence information about the operators * / 

%left '+' '.' 
%left '*" I' 
%left UMINUS /* precedence for unary minus * / 

%% 

24-40 ICON INTERNATIONAL 



YACC 

( lines : 1* empty */ 
: lines line 

line dexp '\n' 
{ 

printf( "%15.8f\n ".$1 ); 
} 
I vexp '\n' 

{ 
printf( "(%15.8f , %15.8f )O,$1.10,$l.hi ); 

} 
I DREG '=' '\n' 
{ 

dreg[$1] = $3; 

} 
: VREG '=' vexp '\n' 
{ 

vreg[$1 J = $3; 

it } 
: error '\n' 
{ 

yyerrork; 

} 

dexp CONST 
: DREG 
{ 

$$ = dreg[$1] 

} 
I dexp '+' dexp 
{ 

$$ = $1 + $3 

} 
I dexp '-' dexp 

(~\ { 

$$ = $1 - $3 

PROGRAMMER GUIDE 24-41 



YACC 

} 
I dexp '*' dexp 
{ 

} 
I dexp' I' dexp 
{ 

} 
I I.' dexp %prec UMINUS 
{ 

$$ ==- $2 

} 
I 1(' dexp')' 
{ 

$$=$2 

} 

vexpp : dexp 
{ 

$$.hi = $$.10 = $1; 

} 
I 1(' dexp,,' dexp')' 
{ 

} 
I VREG 
{ 

} 

$$.10 = $2; 
$$.hi = $4; 
If( $$.10 > $$.hi ) 
{ 

} 

printf( "interval out of order not ); 
YYERROR; 

$$ = vreg[$I] 

I vexp 1+' vexp 

24-42 

c 

ICON INTERNATIONAL 

( 
~ .... 



YACC 

( { 

$$.hi = $1.hi + $3.hij 
$$.10 = $1.10 + $3.10 

} 
I dexp '+' vexp 
{ 

$$.hi = $1 + $3.hi; 
$$.10 = $1 + $3.10 

} 
I vexp '=' vexp 
{ 

$$.hi = $l.hi - $3.10; 
$$.10 = $1.10 - $3.hi 

} 
I dvep '-' vdep 

{ 

$$.hi = $1 - $3.10; 
$$.10 = $1 - $3.hi 

} 
I vexp '*' vexp 
{ 

$$ = vmul( $1.l0,$.hi,$3 ) 

} 
I dexp '*' vexp 
{ 

$$ = vmuI( $1, $1, $3 ) 

} 
I vexp' I' vexp 
{ 

if( dcheck( $3 ) ) YYERRORj 
$$ = vdiv( $1.10, $l.hi, $3 ) 

} 
I dexp' /' vexp 

C! 
if( dcheck( $3 ) ) YYERRORj 

PROGRAMMER GUIDE 24--43 



YACC 

$$ = vdiv( $1.10, $1.hi, $3 ) 
} 
I ,_, vexp %prec UMINUS 
{ 

$$.hi = -$2.10;$$.10 -$2.hi 
} 
I '(' vexp I)' 
} 

} 

%% 

# define BSZ 50 1* buffer size for Boating point number * / 

1* lexical analysis * / 

yylex( ) 
{-

register c; 

1* skip over blanks * / 

if( isupper( c ) ) 
{ 

} 

yylva1.ival = c - 'A' 
return( VREG ); 

if( islower( c ) ) 
{ 

} 

yylval.ival = c - 'a', 
return( DREG ); 

1* gobble up digits. points, exponents * / 
if( idigit( c ) II c '.' ) 
{ 

{ 

24-44 

char buf[BSZ+l], *cp = buf; 
int dot = 0, exp = 0; 

fore ; (cp-buf)<BSZ ; ++ep,c getchar()) 

*cp = c; 
if( isdigit( c ) ) 

ICON INTERNATIONAL 

1(
( 

~ 



(-

} 

} 

continue; 
if( c ==='.' 
{ 
if( dot++ II exp } 

} 

return( '.' };/* will cause syntax error * / 
continue; 

if( c = Ie') 
{ 

} 

if( exp++) 
return( Ie' ); * twill cause syntax error * / 

continue; 

1* end of number * / 
break; 

*cp = '\0'; 
if( cp-buff) >= BSZ ) 

printcf( "constant too long truncated\n" ); 
else 

ungetc( c, stdin ); 1* push back last char read * / 
yylval.dval = atof( buf ); 
return( CONST ); 
} 
return( c ); 

INTERVAL 
hilo( a, b, c, d ) 

{ 
double a, b, c, d; 

1* returns the smallest interval containing a, b, c, and d * / 

1* used by *,/ routine * / 
INTERVAL v; 

if( a>b ) 
{ 

} 
else 
{ 

} 

v.hi = a; 
v.lo = b; 

v.hi = b; 
v.lo = a; 

if( c>d ) 
{ 

PROGRAMMER GUIDE 

YACC 

24-45 



YACC 

} 

} 
else 
} 

} 

if( c>v.hi ) 
v.hi = c; 

if( d<v.lo ) 
v.lo = d; 

if( d>v.hi ) 
v.hi = d; 

if( c<v.lo ) 
v.lo = c; 

return( v )j 

INTERVAL vrnul( a, b, v ) 
double a, b; 
INTERVAL v; 

{ 

} 
return( hilo( a *v .hi, a *v ,10, b*v.hi, b*v.1o ) )j 

dcheck( v ) 
INTERVAL v; 

{ 

{ 

if( v.hi >=0.&& v.lo <=0. ) 
{ 

} 

printf( "divisor internal contains O.\n" )j 
return( 1); 

return( 0 )j 

INTERVAL vdiv( a, b, v ) 
double a, b; 
INTERVAL v; 

{ 
return( hilo( a/v.hi, a/v,lo, b/v.hi, b/v.lo ) )j 

} 

24-46 ICON INTERNATIONAL 



YACC 

APPENDIX 12.4 

Old Features Supported But Not Encouraged 

This appendix mentions synonyms and features that are supported for historical continuity 
but, for various reasons, are not encouraged. 

1. Literals may also be delimited by double quotes. 

2. Literals may be more that one character long. If all the characters are alphabetic, 
numeric, or _, the type number of the literal is defined just as if the literal did not have 
the quotes around it. Otherwise, it is difficult to find the value for such literal. 

3. 

4. 

5. 

The use of multicharacter literals is likely to mislead those unfamiliar with yacc since it 
suggests that yacc is doing a job which must be actually done by the lexical analyzer. 

Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same 
as %%, \left the same as % left, etc. 

There are a number of other synonyms: 

%< is the same as %left 
%> is the same as %right 
%binary and %2 are the same as %nonassoc 
%0 and %term are the same as %token 
%= is the same as %prec 

Action may also have the form 

={ ... } 

and the curly braces can be dropped if the action is a single C language statement. 

6. The C language code between %{ and %} use to be permitted at the head of the rules 
section as well as in the declaration section. 

PROGRAMMER GUIDE 24-47 



YACC 

NOTES 

24-48 ICON INTERNATIONAL 



( 

( 

Chapter 25 

UNIX SYSTEM TO UNIX SYSTEM COPY (UUCP) 

PAGE 

INTRODUCTION ......................................................................................................................................... 25-1 

THE UUCP NETWORK ............................................................................................................................... 25-1 
Network Hardware ............................................................................................................................... 25-1 
Network Topoiocy . .............................. ... ......... .......... ..................... ... ........ ..... ................... ......... ...... .... 25-2 
Forwarding.. ............. .......... .......... ....... .... ......... .................. ..... ........ .... ....... ....... .... ...... .... ...... ......... ...... 26-4 
Security.................................................................. .................. ............................................................ 26-4 
Software Structure... ........................................................................................... ................................. 26-6 
Rules or the Road.... ........ .... ........ ......... ...................... ..... ........ ............ ..... ....... .... ........ ............ .............. 25-6 
Special Placesl The Public Area ............... ..... ............ ........... ..... ........ .......... ...... ...... ..... ..... ..... ....... ........ 26-6 
Permissions............... .................................................................................................................. .......... 26-6 

NETWORK USAGE...................................................................................................................................... 26-7 
Name Space .......................................................................................................................................... 25-7 
Forwarding Syntax......... ..... ........... ............. ........ ...... ..... ....... ..... ....... ............... ..... ............ ...... ............. 25-8 
Types or Transrers................................................................................................................................ 26-9 

Remote Executions................................................................................................................................ 25-10 
Spoollng................................................................................................................................................ 25-10 
Notlftcatlon........................................................................................................................................... 26-11 
Tracking and Status ............................................................................................................................. 26-11 
Job Status.. ........................ ........................................................................................ ... .......... ........... ... 26-12 
Network Status..................................................................................................................................... 26-12 
Job Control ....................................................................................................................... :.................. 25-13 

UTILITIES THAT USE UUCP ...................................................................................................................... 25-13 
The StGekroom .................... ..................................................... ............................................................ 26-13 

Mall..................................................................... ............................................................................. .... 25-13 

Netnews................................................................................................................................................ 25-14 
Uuto ..................................................................................................................................................... 25-14 
Other Applications................................................................................................................................ 25-14 



( 



( 

( 

o 

Chapter 25 

UNlX SYSTEM TO UNlX SYSTEM COPY (UUCP) 

INTRODUCTION 

The uuep network has provided a means of information exchange between UNIX systems over 
the direct distant dialing network for several years. This chapter provides you with the 
background to make use of the network. 

The first half of the document discusses concepts. Understanding these basic principles helps 
the user make the best possible use of the uuep network. The second half explains the use of 
the user level interface to the network and provides numerous examples. 

There are several major uses of the network. Some of the uses are: 

• Distribution of software 

• Distribution of documentation 

• Personal communication (mail) 

• Data transfer between closely sited machines 

• Transmission of debugging dumps and data exposing bugs 

• Production of hard copy output on remote printers. 

THE UUCP NETWORK 

The uuep(l) network is a network of UNIX systems that allows file transfer and remote 
execution to occur on a network of UNIX systems. The extent of the network is a function of 
both the interconnection hardware and the controlling network software. Membership in the 
network is tightly controlled via the software to preserve the integrity of all members of the 
network. You cannot use the uuep facility to send files to systems that are not part of the 
uuep network. The following parts describe the topology, services, operating rules, etc., of the 
network to provide a framework for discussing use of the network. 

Network Hardware 

. The uucp was originally designed as a dialup network so that systems in the network could use 
the DDD network to communicate with each other. The three most common methods of 
connecting systems are: 

PROGRAMMER GUIDE 25-1 



UUCP 

~.", 

1. Connecting two UNIX systems directly by cross-coupling (via a null modem) two of the ~~) 
computers ports. This means of connection is useful for only short distances (several 
hundred feet can be achieved although the' RS232 standard specifies a much shorter 
distance) and 'is usually run at high speed (9600 baud). These connections run on 
asynchronous terminal ports. 

2. Using a modem (a private line or a limited distance modem) to direct.l), connect processors 
over a private line (using 103- or 212-type data sets). 

3. Connecting a processor to another system through a modem, an automatic calling unit 
(AOU), and the DOD network. This is by far the most common interconnection method, 
and it makes available the largest number of connections. 

Network Topology 

A large number of connections between systems are possible via the DDD network. The 
topology of the network is determined by both the hardware connections and the software that 
control the network. The next two parts deal with how that topology is controlled. 

Hord:ware 7bpoi09ll 

As discussed earlier, it is possible to build a network using permanent or dial up connections. 
In Figure 25-1, a group of systems (A, B, 0, D, and E) are shown connected via hard-wired 
lines. All systems are assumed to have some answer-only data sets so that remote users or 
systems can be connected. A few systems have automatic calling units (K, D, F, and G) and 
one system (H) has no capability for calling other systems. Users should be aware that the 
network consists of a series of point-to-point connections (A-B, B-C, D-B, E-B) even though it 
appears in Figure 25-1 that A and C are directly connected through B. The following 
observations are made: 

1. System H is isolated. It can be made part of the network by arranging for other systems 
to poll it at fixed intervals. This is an important concept to remember since transfers 
from systems that are po.l).e,d do not leave the system until that system is called by a 
polling system. 

2. Systems K, F, G, and D easily reach all other systems since they have calling units. 

a. If system A (E or G) wishes to send a file to H (K, F, or G), it must first send it to D (via 
system B) since D is the only system with a calling unit. 

So/tvxJJ"e 7bpoi09ll 

The hardware capability of systems in the network defines the rna.xjrnnrn number of 
connections in the network. The software at each node restricts the access by other systems 
and thereby defines the extent of the network. The systems of Figure 25-1 can be configured so 
that they appear as a network of systems that have equal access to each other or some 
restrictions can be applied. As part of the security mechanism used by uucp, the extent of (" 
access that other systems have can be controlled at each node. Figures 25-2 and 25-3 show ~ 
how the network might appear at one node. Access is available from all systems in Figure 

25-2 ICON INTERNATIONAL 



( 

( 

o 

TPA-696231-1 
19WX 24H 

Figure 25-1. UUCP Nodes 

TP A-696232-1 
24WX 14H 

Figure 25-2. UUCP Network Excluding One Node 

PROGRAMMER GUIDE 

UUCP 

25-3 



UUOP 

TP A-696233-1 
24WX 13H 

Figure 25-3. UUOP Network With Several Levels of Permissions 

25-2, however, in Figure 25-3 some of the systems have been configured to have greater or less 
access privileges than others (Le., systems C, E, and G have one set of access privileges, 
systems F and B have another set, etc.). 

The uucp uses the ICON/UXV password mechanism coupled with a system file 
(/usr/lib/uucp/L.sys) and a file system permission file (/usr/lib/uucp/USERFILE) to control 
access between systems. The password file entries for uucp (usually,.luucp, nuucp, uucp, 
etc.) allow only those remote systems that know the passwords for these IDs to access the 
local system. (Great care should be taken in revealing the password for these uucp logins 
since knowing the password allows a system to join the network.) The system file 
(/usr/lib/uucp/L.sys) defines the remote systems that a local host knows about. This file 
contains all information needed for a local host to contact a remote system (including system 
name, password, login sequence, etc.) and as such is protected from viewing by ordinary users. 

In summary, while the available hardware on a network of systems determines the connectivity 
of the systems, the combination of password file entries and the uucp system files determine 
the extent of the network. 

Forwarding 

One of the recent additions to uucp (for ICON/UXV) is a limited forwarding capability 
whereby systems that are part ()f the network can forward files through intermediate nodes. 
For example, in Figure 25-1, it is possible to send a file between node A and .c. through 
intermediate node B. For security reasons, when forwarding, files may only be transmitted to 
the public area or fetched from the remote systems public area. 

Security 

The most critical feature of any network is the security that it provides. Users are familiar 
with the security that UNIX system provides in protecting files from access by other users and 
in accessing the system via P8.:s.swordS. In building a network of processors, the notion of C .. /. 
security is widened because access by a wider community of users is granted. Access is granted . 
on a system basis (that is, access is granted to all. users on a remote system). This follows from 
the fact that the process of sending (receiving) a file to (from) another system is done via 

25-4 ICON INTERNATIONAL 



( 

c 

UUCP 

daemons that use one special user ID(s). This user ID(s) is granted (denied) access to the 
system via the uucp system file (/usr/lib/uucp/L.sys) and the areas that the system has access 
to is controlled by another file (/usr/lib/uucp/USERFILE). For example, access can be granted 
to the entire file system tree or limited to specific areas. 

Software Structure 

The uucp network is a batch network. That is, when a request is made, it is spooled for later 
transmission by a daemon. This is important to users because the success or failure of a 
command is only known at some later time via mall(l) notification. For most transfers, there 
is little trouble in transmitting files between systems, however, transmissions are occasionally 
delayed or fail because a remote system cannot be reached. 

Rules or the Road 

There are several rules by which the network runs. These rules are necessary to provide the 
smooth flow of data between systems and to prevent duplicate transmissions and lost jobs. 
The following chapters outline these rules and their influence on the network. 

Queuing 

Jobs submitted to the network are assigned a sequence number for transmission. Jobs are 
represented by a file (or files) in a common spool directory (/usr/spool/uucp). When a file 
transfer daemon (uueico) is started to transmit a job, it selects a system to contact and then 
transmits all jobs to that system. Before breaking off the conversation, any jobs to be received 
from that remote system are accepted. The system selected as the one to contact is randomly 
selected if there is work for more than one system. In releases of uucp prior to UNIX, the first 
system appearing in the spool directory is selected so preference is given to the most recently 
spawned jobs. Uucp may be sending to or receiving from many systems simultaneously. The 
number of incoming requests is only limited by the number of connections on the system, and 
the number of outgoing transfers is limited by the number of ACUs (or direct connections). 

Dialing and tM. DDD Network 

In order to transfer data between processors that are not directly connected, an auto dialer is 
used to contact the remote system. There are several factors that can make contacting a 
remote system difficult. 

1. All lines to the remote system may be busy. There is a mechanism within uucp that 
restricts contact with a remote system to certain times of the day (week) to minimize this 
problem. 

2. The remote system may be down. 

3. There may be difficulty in dialing the number (especially if a large sequence of numbers 
involving access through PBXs is involved). The dialing algorithm tries dialing a number 

twice and the algorithm used to dial remote systems is not perfect, particularly when 
intermediate dial tones are involved. 

PROGRAMMER GUIDE 25-5 



UUCP 

ScIuuIWif1(l and Pollif1(l 

When a job is submitted to the network, an attempt to contact that system is made 
immedja.teJy. Only one conversation at a time can exist between the same two systems. 

Systems that are pclkd ('an do nothing to force imml"diatc tran~mjssjon of data. Jobs will only 
be transmitted when the system is pollE'd (hourly, daily, etc.) by a remote system. 

Rdr~ andJ¥ter-

The uuep network is fairly persistent in its attempt to contact remote systems to complete a 
transmission. To prevent uuep from continually calling systems that are unavailable, 
hysteresis is built into the algorithm used to contact other systems. This mechanism forces a 
minimum fixed delay (specifiable on a per system basis) to occur before another transmission 
can take place to that system. 

Purgif1(l and Qeanup 

Transfers that cannot be completed after a defined period of time (72 hours is the value that is 
set when the system is distributed) are deleted and the user is notified. 

Special Places: The Public Area 

In order to allow the transfer of files to a system for which a user does not have a login on, the 
public directory (usually kept in /usr/spool/uucppublic) is available with general access 
privileges. When receiving files in the public area, the user should dispose of them quickly as 
the administrative portion of uucp purges this area on a regular basis. 

Permissions 

File Level Protection 

In transferring files between systems, users should make sure that the destination area is 
writable by uucp. The uucp daemons preserve execute permission between systems and assign 
permission 0666 to transferred files. 

Sustem Level Protection 

The system administrator at each site determines the global access permiSSions for that 
processor. Thus, access between systems may be confined by the administrator to only some 
sections of the file system. 

25-6 ICON INTERNATIONAL 



UUCP 

(. Forwarding PermiIJaionB 

The forwarding feature is a new addition to the uucp package. You should be aware that 

1. When forwarding is attempted through a node that is running an old version of uucp, the 
transmission fails. 

2. Nodes that allow forwarding can restrict the forwarding feature in several ways. 

a. Forwarding is allowed for only certain users. 

b. Forwarding to certain destination nodes (e.g., Australia) should be avoided. 

c. Forwarding for selected source nodes is allowed. 

3. The most important restriction is that forwarding is allowed only for files sent to or 
fetched from the public area. 

NETWORK USAGE 

The following parts discuss the user interface to the network and give examples of command 
usage. 

Name Space 

In order to reference files on remote systems, a syntax is necessary to uniquely identify a file. 
The notation must also have several defaults to allow the reference to be compact. Some 
restrictions must also be placed on pathnames to prevent security violations. For example, 
pathnames may not include " .. " as a component because it is difficult to determine whether 
the reference is to a restricted area. 

Naming GmvmtionB 

Uucp uses a special syntax to build references to files on remote systems. The basic syntax is 

system-name!pathname 

where the system-n 3,me is a system that uucp is aware of. The pathname part of the name 
may contain any of the following: 

1. A fully qualified pathname such as 

mhtsa!/usr /you/file 

The path name may also be a directory name as in 

PROGRAMMER GUIDE 25-7 



UUCP 

mhtsa!/usr /you/directory 

2. The login directory on a remote may be specified by use of the - character. The 
combination .::.use:t references the login directory of a user on the remote system. For 
example, 

mhtsa!-adm/file 

would expand to 

mhtsa!/usr /sys/adm/file 

if the login directory for user adm. on the remote system is /usr/sys/adm. 

3. The public area is referenced by a similar use of the prefix - ,hlser preceding the pathname. 
For example, 

mhtsa!- /you/file 

would expand to 

mh tsa! /usr /spool/uucp /you /file 

if /usr/spool/uucp is used as the spool directory. 

4. Pathnames not using any of the combinations or prefixes discussed above are prefixed with 
the current directory (or the login directory on the remote). For example, 

mhtsa!file 

would expand to 

mhtsa!/usr /you/file 

The naming convention can be used in reference to either the SQl1tce or dest.jna.tjoD file names. 

Forwarding Syntax 

The newest feature of uucp is the ability to allow files to be passed between systems via 
intermediate nodes. This is done via a variation of the hang (I) syntax that describes the path 

(\ 
~/ 

to be taken to reach that file. For example, a user on system a wishing to transmit a file to ( 
system :Co might specify the transfer as ~. 

25-8 ICON INTERNATIONAL 



( 

( 

c 

UUCP 

uucp file h!c!d!e!- /you/file 

if the user desires the request to he sent through h, c, and d hefore reaching e. Note that the 
pathname is the path that the file would take to reach node A. Note also that the destination 
DlllSt. he specified as the public area. Fetching a file from another system via intermediate 
nodes is done similarly. For example, 

uucp h!c!d!e!- /you/file x 

fetches 1iJ.e. from system ~ and renames it X on the local system. The forwarding prefix is the 
path 1i:am. the local system and not the path from the remote to the local system. The 
forwarding feature may also he used in conjunction with remote execution. For example, 

uux mhtsa!uucp mhtsb!mhrtc!/usr/spool/uucppublic/file x 

sends a request to mbtsa. to execute the uucp command to copy a file from m.hr.t..c. to x. on 
mbtsa .. 

Types of Transfers 

Uucp has a very flexible command syntax for file transmission. The following chapters give 
examples of different combinations of transfers. 

7l-a.nsm:i.ssions oj Files to a Remote 

Any number of files can he transferred to a remote system via uucp. The syntax supports the 
., ! and [ .• ] metacharacters. For example, 

uucp *.[ch] mhtsa!dir 

transfers .aJl files whose name ends in .c. or h. to the directory dir in the users login directory on 
mbtsa. 

Fetching Files Prom a. Remote 

Files can be fetched from a remote system in a similar manner. For example, 

uucp mhtsa!*.[ch] dir 

will fetch all files ending in .c. or h. from the users login directory on mhtsa and place the copies 
in the subdirectory dir on the local system. 

PROGRAMMER GUIDE 25-9 



UUCP 

SuJitehang 

Transmission of files can be arranged in such a. way that the local system effectively acts as a 
switch. For example, 

uucp mhtsb!files mhtsa!filed 

will fetch Jiles. from the users login directory on mbtsb, rename it as filed, and place it in the 
login directory on mbtsa. 

BrOt¥lcuting 

Broadcast capability (that is, copying a file to many systems) is llC1 supported by uucp, 
however, it can be simulated via a shell script as in 

for i in mhtsa mhtsb mhtsd 
do 

uucp file $i!broad 
done 

Unfortunately, one uuep command is spawned for each transmission so that it is not possible 
to track the transfer as a single unit. 

Remote Executions 

The remote execution facility allows commands to be executed remotely. For example, 

uux "!diff mhtsa!/etc/passwd mhtsd!/etc/passwd > !pass.diff" 

will execute the command diff{l) on the password file on rnhtsa and mhtsd and place the result 
in pa.ss cliff 

Spooling 

To continue modifying a file while a copy is being transmitted across the network, the -e 
option should be used. This forces a ~ of the file to be queued. The default for uucp is not 
to queue copies of the files since it is· wasteful of both Central Processing Unit time and 
storage. For example, the following command forces the file lmIk to be copied into the spool 
directory before it is transmitted. 

uucp -c work mhtsar /you/work 

25-10 ICON INTERNATIONAL 



(-

( 

UUCP 

Notiflcation 

The success or failure of a transmission is reported to users asynchronously via the mail{l) 
command. A new feature of uucp is to provide notification to the user in a file (of the users 
choice). The choices for notification are: 

1. Notification returned to the requesters system (via the -m option). This is useful when 
the requesting user is distributing files to other machines. Instead of logging onto the 
remote machine to read mail, mail is sent to the requester when the copy is finished. 

2. A variation of the -m option is to force notification in a file (using the -mfile option 
where file is a file name). For example, 

uucp -mans /etc/passwd mhtsb!/dev /null 

sends the file / etc/ passwd to system mbtsb and place the file in the bit bucket (/ dev/ nul~. 
The status of the transfer is reported in the file ans as, 

uucp job 0306 (8/20-23:08:09) (0:31:23) /etc/passwd copy succeeded 

3. Uux(l) always reports the exit status of the remote execution unless notification is suppressed (via 
the -n option). Notification can be sent to a different user on the remote system via the -nuser 
option. 

Tracking and Status 

The most pervasive change to the uucp package is revising the internal formatting of jobs so that each 
invocation of uucp or uux(J) corresponds to a single job. It is now possible to associate a single job 
number with each command execution so that the job can be terminated or its status obtained. 

~JobID 

The default for the uucp and uux command is D.Ot. to print the job number for each job. This was done 
for compatibility with previous versions of uucp and to prevent the many shell scripts built around 
uuep from printing job numbers. If the following environment variable 

JOBNO==ON 

is made part of the users environment and exported, uucp and uux prints the job number. Similarly, if 
the user wishes to turn the job numbers off, the environment variable is set as follows: 

JOBNO==OFF 

If you wish to force printing of job numbers without using the environment mechanism, use the -j 
option. For example, 

PROGRAMMER GUIDE 25-11 



UUCP 

uucp -j /etc/paaswd mhtsb!fdev /null 
uucp job 282 

Corces the job number (282) to be printed. If the -j option is not used, the IDs of the jobs (belonging to 
the user) are Cound by using the uustat(l) command. This provides the job number. For example, 

uustat 
0282 tom mhtsb 08/20-21:47 08/20-21:47 JOB IS QUEUED 
0272 tom mhtsb 08/20-21:46 08/20-21:46 JOB IS QUEUED 

shows that the user has two jobs (282 and 272) queued. 

Job Status 

The uustat command allows a user to check on one or all jobs that have been queued. The ID printed 
when a job is queued is used as a key to query status of the particular job. An example of a request for 
the status of a given job is 

uustat -j0711 

0711 tom mhtsb 07/30-02:18 07/30-02:18 JOB IS QUEUED 

There are several status messages that may be printed for a given job; the most frequent ones are JOB 
IS QUEUED and JOB COMPLETED (meanings are obvious). The manual page for uustat lists the 
other status messages. 

Network Status 

The status of the last transfer to each system on the network is found by using the uustat command. 
For example, 

uustat -mall 

reports the status of the last transfer to all of the systems known to the local system. The output might 
appear as 

mhb5c 
resear 
minimo 
austra 
ucbvax 

08/10-12:35 
08/20-17:01 
07/22-16:31 
08/20-18:36 
08/20-20:37 

CONVERSATION SUCCEEDED 
CONVERSATION SUCCEEDED 
DIAL FAILED 
WRONG TIME TO CALL 
LOGIN FAILED 

where the status indicates the time and state of the last transfer to each system. When sending files to 
a system that has not been contacted recently, it is a good idea to use uustat to see 3!ili.en the last 
access occurred (because the remote system may be down or out of service). 

25-12 ICON INTERNATIONAL 



\ 

UUCP 

Job Control 

With the unique job ID generated for each uucp or uux command, it is possible to control jobs in the 
following ways. 

Job Termination 

A job that consists of transferring many files from several different systems can be terminated using the 
-k option of uustat. If any part of the job has left the system, then only the remaining parts of the 
job on the local system is terminated. 

.R.equeuing a Job 

The uucp package clears out its working area of jobs on a regular basis (usually every 72 hours) to 
prevent the buildup of jobs that cannot be delivered. The -r option is used to force the date of a job to 
be changed to the current date, thereby lengthening the time that uucp attempts to transmit the job. 
It should be noted that the -r option does not impart jmmortaJjt,)' to a job. Rather, it only postpones 
deleting the job during housekeeping functions until the next cleanup. 

Network Namu 

Users may find the names of the systems on the network via the uuname(l) command. Only the na.mes 
of the systems in the network are printed. 

UTILITIES THAT USE UUCP 

There are several utilities that rely on uucp or uux(l) to transfer files to other systems. The following 
parts outline the more important of these functions. This increases awareness of the extent of the use of 
the network. 

The Stockroom 

The ICONfUXV stockroom is a facility whereby a library of source can be maintained at a central 
location for distribution of source or bug fixes. Access to and distribution of library entries is controlled 
by shell scripts that use uuep. 

Mail 

The mail(l) command uses uux to forward mail to other systems. For example, when a user types 

mail mhtsa!tom 

the mail command invokes uux to execute rmail on the remote system (rmail is a link to the mail 
command). Forwarding mail through several systems (e.g., mail a!b!tom) does not use the uucp 
forwarding feature but is simulated by the mail command itself. 

PROGRAMMER GUIDE 25-13 



UUOP 

Netnews 

The netnews(l) command that is locally supported on many systems uses uux in much the same way 
that mail does to broadcast network maiJ to systems subscribing to news categories. 

Uuto 

Theuuto(l) command uses the uucp facility to send files while allowing the local system to control the 
file access. Suppose your login is emsgene and you are on system aaaaa. You have a friend (David) on 
system bbbbb with a login name of wldmc. Also assume that both systems are networked to each other 
[See uuname{l)). To send files using uuto, enter the following: 

uUto filename aaaaa!wldmc 

where filename is the name of a file to be sent. The files are sent to a public directory defined in the 
uucp source. In this example, David will receive the following mail: 

From nuucp Tue Jan 2511:09:551983 
/usr/spooi/uucppubiic/receive/wldmc/a.a.aaa\ 
/ /filename from aaaaa!emsgene arrived 

See uuto(l) for more details. 

Other Applications 

The Office Automation System (OAS) uses uux to transmit electronic mail between systems in a manner 
similar to the standard mail command. Some sites have replaced utilities such as Ipr(l), opr(l), etc., 
with shell scripts that invoke uux or uucp. Other sites use the uucp ne. work as a backup for higher 
speed networks (e.g., PeL, NSC HYPERchannel, etc.). 

25-14 ICON INTERNATIONAL 



( 
Chapter 26 

A Fast File System for UNIX 

PAGE 

ABSTRACT ••.•.••••••.•.•••..••..••.••.•.•......•••.....•••.•• _ ••..•......•.•.••.•••.••••.•.. _ •.•.•.•......••••..•..••.•••...•.. 26-1 

IN"IRODUCI10N •••••••.••••••••••••.•.•••.••••••.••••••••••••••••••••••••••••.•...••.•.•••••• _......... .••.•••••. .••. .•••••..•.•. 26-2 

OLD FILE SYSTEM .••••••••••.•••• ; •.•.•.•.•..••••••••..•••••••••.••.•..........•.....•....•...•...•.•••..•....•................ 26-2 

NEW Fll..E SYSTEM ORGANIZATION .•..••.....•••.•.••..•.•..........••.•...•.•.••....•••............................. 26-4 
Optimizing Storage Utilization • ....... .......•..........• .••... ..•... ........... ..•.....•. •••............................ 26-4 
File System Parameterization ..•......•.•..•...••••.•.••.••.•••.••..••....•..•..•..•••••.•••••••••....••..•.........•.••.• 26-7 
Layout Policies ................................................................................................................ 26-8 

PERFORMANCE ............................................. _ .............................. __ ................................ 26-10 

FILE SYSTEM FUNCTIONAL ENHANCEMENTS ............................ __ ................................. 26-13 
Long File Names ....................................... _ .............................. __ ................................ 26-13 
File Locking .............................................. _ .............................. _ .................................. 26-13 
Symbolic Links ............................................................................................................... 26-14 
Rename ..................................................... _ ................................ _ ................................ 26-15 
Quotas ....................................................... _ ............................... _ ................................ 26-15 

ACKNOWl.EDGEMEN1'S ................................. _ ............................... _ ................................. 26-16 

REFERENCES ..................................................................................................................... 26-17 





( 

( 

Chapter 26 

A Fast File System for UNIX 

Marshtlll Kirk McKusick. WilliamN. IDyl, Samuel I. LejJler2. Roben S. Fabry 

Computer Systems Research Group 
Computer Science Division 

Department of Electrical Engineering and CompU1:r Science 
University of California, Berkeley 

Berkeley, CA 94720 

ABSTRACT 

A reimplementation of the UNIXQP file system is described. The reimplementation provides 
substantially higher throughput rates by using more flexible allocation policies that allow better 
locality of reference and can be adapted to a wide range of peripheral and processor 
characteristics. The new file system clusters data that is sequentially accessed and provides 
two block sizes to allow fast access to large files while not wasting large amounts of space for 
smaIl files. File access rates of up to ten times faster than the traditional UNIX file system are 
experienced. Long needed enhancements to the programmers' interface are discussed. These 
include a mechanism to place advisory locks on files, extensions of the name space across file 
systems, the ability to use long file names, and provisions for administrative control of 
resource usage. 

Revised February 18, 19843 

CR Categories and Subject Descriptors: 0.4.3 [Operating Systems]: File Systems 
Management -file organization. directory structures. access methods; 0.4.2 [Operating 
Systems]: Storage Management - allocation/dea/location strategies. secondary storage 
devices; 0.4.8 [Operating Systems]: Performance - measurements. operational analysis; 
H.3.2 [Information Systems1: Information Storage - file organizl.ztion 

Additional Keywords and Phrases: UNIX, file system organization, file system performance, 
file system design, application program interface. 

General Terms: file system, measurement, performance. 

INTRODUCTION 

® UNIX is a registf"Zed trademaIk of AT &tT. 
I William N. Joy is currently employed by : Sun Microsystems, Inc., 

2550 Garcia Avenue, Mountain View, CA 94043 
2 Samuel]. Leffier is cmrently employed by: Lucastilm Ltd .• PO Box 2009, San Rafael, CA 94912 
3 This work was done under grants from the National Science FOWldation Wlder if'3Jlt MCS80-05144, and the 

Defense Advance Research Projects Agency (DoD) Wlder ARPA Order No. 4031 monitored by Naval o Electronic System Command Wlder Conttact No. NOOO39-82-0235. 

PROGRAMMER GUIDE 26·1 



UNIX Fast File System 

This paper describes the changes from the original 512 byte UNIX tile system to the new one 
released with the 4.2 Berkeley Software Distribution. It presents the motivations for the 
changes, the methods used to effect these changes, the rationale behind the design decisions, . 
1Uld a description of the new implementation. This discussion is followed by a summary of the 
results that have been obtained, directions for future work, and the additions and changes that 
have been made to the facilities that are available to programmers. 

The original UNIX system that runs on the PDP-114 has simple and elegant tile system 
facilities. File system input/output is buffered by the kernel; there are no alignment constraints 
on data transfers and all operations are made to appear synchronous. All transfers to the disk 
are in 512 byte blocks, which can be placed arbitrarily within the data area of the flle system. 
Virtually no constraints other than available disk space are placed on file growth [Ritchie7 4], 
[Thompson78].s 

When used on the VAX-II together with other UNIX enhancements, the original 512 byte UNIX 
tile system is incapable of providing the data throughput rates that many applications require. 
For example, applications such as VLSI design and image processing do a small amount of 
processing on a large quantities of data and need to have a high throughput from the tile 
system. High throughput rates are also needed by programs that map tiles from the tIle system 
into large virtual address spaces. Paging data in and out of the tile system is likely to occur 
frequently [Ferrln82b]. This requires a tile system providing higher bandwidth than the 
original 512 byte UNIX one that provides only about two percent of the maximum disk 
bandwidth or about 20 kilobytes per second per arm [White80], [SmithSlb]. 

Modifications have been made to the UNIX file system to improve its performance. Since the 
UNIX tile system interface is well understood and not inherently slow, this development 
retained the abstraction and simply changed the underlying implementation to increase its 
throughput Consequently, users of the system have not been faced with massive software 
conversion. 

Problems with flle system performance have been dealt with extensively in the literature; see 
[Smith81a] for a survey. Previous work to improve the UNIX file system performance has 

-been done by [FerrinS2a]. The UNIX operating system drew many of its ideas from Multics, a 
large, high performance operating system [Feiertag71]. Other work includes Hydra 
[AImes7S], Spice [ThompsonSO], and a tile system for a LISP environment [SymbolicsSl]. A 
good introduction to the physical latencies of disks is described in [pechuraS3]. 

OLD FILE SYSTEM 

In the tile system developed at Bell Laboratories (the "traditional" file system), each disk drive 
is divided into one or more partitions. Each of these disk partitions may contain one tile 
system. A tile system never spans multiple partitions.6 A file system is described by its super
block, which contains the basic parameters of the file system. These include the number of 
data blocks in the tile system, a count of the maximum number of tiles, and a pointer to the free 
list, a linked list of all the free blocks in the file system. 

4 DEC. PDP. VAX, MASSBUS, and UNIBUS are ttademarks of Digital Equipment Corporation 
5 In practice, a file's size is constrained to be less than about one gigabyte. 
6 By "partition" here we refer to the subdivision of physical space on a disk drive. In the ttaditional fIle 

system, as in the new file system, file systems are really located in logical disk partitions that may overlap. 
This overlapping is made aVailable, for example, to allow programs to copy entire disk drives containing 
multiple fIle systems. 

16-1 ICON IN1ERNATIONAL 

( 



UNIX Fast File System 

Within the file system are files. Certain files are distinguished as directories and contain 
pointers to files that may themselves be directories. Every file has a descriptor associated with 
it called an inode. An inode contains information describing ownership of the file, time stamps 
marlcing last modification and access times for the file, and an may of indices that point to the 
data blocks for the file. For the purposes of this section, we assume that the first 8 blocks of 
the file are directly referenced by values stored in an inode itself.7 An inode may also contain 
references to indirect blocks containing further data block indices. In a file system with a 512 
byte block size, a singly indirect block contains 128 further block addresses, a doubly inclirect 
block contains 128 addresses of further singly indirect blocks, and a triply indirect block 
contains 128 addresses of further doubly indirect blocks. 

A 150 megabyte traditional UNIX file system consists of 4 megabytes of inodes followed by 
146 megabytes of data. This organization segregates the inode information from the data; thus
accessing a file normally incms a long seek from the file's inode to its data. Files in a single 
directory are not typically allocated consecutive slots in the 4 megabytes of inodes, causing 
many non-consecutive blocks of inodes to be accessed when executing operations on the 
inodes of several files in a directory. 

The allocation of data blocks to files is also suboptimum. The traditional fIle system never 
transfers more than 512 bytes per disk transaction and often finds that the next sequential data 
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination 
of the small block size, limited read-ahead in the system, and many seeks severely limits file 
system throughput. 

The first work: at Berkeley on the UNIX file system attempted to improve both reliability and 
throughput. The reliability was improved by staging modifications to critical file system 
infonnation so that they could either be completed or repaired cleanly by a program after a 
crash [Kowalski78]. The file system performance was improved by a factor of more than two 
by changing the basic block size from 512 to 1024 bytes. The increase was because of two 
factors: each disk transfer accessed twice as much data, and most files could be described 
without need to access indirect blocks since the clirect blocks contained twice as much data. 
The file system with these changes will henceforth be referred to as the oldfile system. 

This performance improvement gave a strong indication that increasing the block size was a 
good method for improving throughput Although the throughput had doubled, the old fIle 
system was still using only about four percent of the disk bandwidth. The main problem was 
that although the free list was initially ordered for optimal access, it quickly became scrambled 
as files were created and removed. Eventually the free list became entirely random, causing 
files to have their blocks allocated randomly over the disk. This forced a seek before every 
block access. Although old file systems provided transfer rates of up to 175 kilobytes per 
second when they were fmt created, this rate deteriorated to 30 kilobytes per second after a 
few weeks of moderate use because of this randomization of data block placement. There was 
no way of restoring the performance of an old file system except to dump, rebuild, and restore 
the file system. Another possibility, as suggested by [Maruyama76], would be to have a 
process that periodically reorganized the data on the disk to restore locality. 

NEW FILE SYSTEM ORGANIZATION 

In the new file system organization (as in the old file system organization), each disk drive 
contains one or more file systems. A file system is described by its super-block, located at the 
beginning of the file system's disk partition. Because the super-block contains critical data, it 

7 The actual number may vary from system to system, but is usually in the range 5·13. 

PROORAMMER GUIDE 26-3 



UNIX Fast File System 

is replicated to protect against catastrophic loss. This is done when the file system is created; 
since the super-block data does not change, the copies need not be referenced unless a head 
crash or other fwd disk error causes the default super-block to be unusable. 

To insure that it is possible to create files as large as $2 sup 32$ bytes with only two levels of 
indirection, the minimum size of a file system block is 4096 bytes. The size of file system 
blocks can be any power of two greater than or equal to 4096. The block size of a rue system 
is recorded in the file system's super-block so it is possible for file systems with different 
block sizes to be simultaneously accessible on the same system. The block size must be 
decided at the time that the file system is created; it cannot be subsequently changed without 
rebuilding the file system 

The new file system organization divides a disk partition into one or more areas called cylinder 
groups. A cylinder group is comprised of one or more consecutive cylinders on a disk. 
Associated with each cylinder group is some bookkeeping information that includes a 
redundant copy of the super-block, space for inodes, a bit map describing available blocks in 
the cylinder group, and summary information describing the usage of data blocks within the 
cylinder group. The bit map of available blocks in the cylinder group replaces the traditional 
file system's free list For each cylinder group a static number of inodes is allocated at file 
system creation time. The default policy is to allocate one inode for each 2048 bytes of space 
in the cylinder group, expecting this to be far more than will ever be needed. 

All the cylinder group bookkeeping information could be placed at the beginning of each 
. cylinder group. However if this approach were used, all the redundant information would be 
on the top platter. A single hardware failure that destroyed the top platter could cause the loss 
of all redundant copies of the super-block. Thus the cylinder group bookkeeping information 
begins at a varying offset from the beginning of the cylinder group. The offset for each 
successive cylinder group is calculated to be about one track further from the beginning of the 
cylinder group than the preceding cylinder group. In this way the redundant information 
spirals down into the pack so that any single track, cylinder, or platter can be lost without 
losing all copies of the super-block. Except for the fIrst cylinder group, the space between the 
beginning of the cylinder group and the beginning of the cylinder group information is used for 
data blocks. 8 

Optimizing Storage Utilization 

Data is laid out so that larger blocks can be transferred in a single disk transaction, greatly 
increasing file system throughput. As an example, consider a file in the new file system 
composed of 4096 byte data blocks. In the old file system this file would be composed of 
1024 byte blocks. By increasing the block size, disk accesses in the new file system may 
transfer up to four times as much information per disk transaction. In large files, several 4096 
byte blocks may be allocated from the same cylinder so that even larger data transfers are 
possible before requiring a seek. 

8 While it appears that the first cylinder group could be laid out with its super-block at the "known" location, 
this would not wOIk for file systems with blocks sizes of 16 kilobytes or greater. This is because of a 
requirement that the first 8 kilobytes of the disk be reserved for a bootstrap program and a separate 
requirement that the cylinder group infonnation begin on a file system block bouridary. To start the 
cylinder group on a file system block boundary. file systems with block sizes larger than 8 kilobytes would 
have to leave an empty space between the end of the boot block and the beginning of the cylinder group. 
Without knowing the size of the file system blocks, the system would not know what roundup function to 
use to find the beginning of the flfSt cylinder group. 

26·4 ICON INTERNATIONAL 



( 

( 

o 

UNIX Fast File System 

The main problem with larger blocks is that most UNIX file systems are composed of many 
small files. A uniformly large block size wastes space. Table 1 shows the effect of file system 
block size on the amount of wasted space in the file system. The files measured to obtain these 
figures reside on one of our time sharing systems that has roughly 1.2 gigabytes of on-line 
storage. The measurements are based on the active user file systems containing about 920 
megabytes of formatted space. 

Space used % waste Organization 
775.2Mb 0.0 Data only, DO separation between files 
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary 
828.7 Mb 6.9 Data + inodes. 512 byte block UNIX file system 
866.5Mb 11.8 Data + inodes. 1024 byte block UNIX file system 
948.5 Mb 22.4 Data '+ inodes. 2048 byte block UNIX file system 

1128.3 Mb 45.6 Data + inodes. 4096 byte block UNIX file system 

Table 1 - Amount of wasted space as a function of block size. 

_ . The space wasted is calculated to be the percentage of space on the disk not containing user 
data. As the block size on the disk increases, the waste rises quickly, to an intolerable 45.6% 
waste with 4096 byte file system blocks. 

To be able to use large blocks without undue waste, small files must be stored in a more 
efficient way. The new file system accomplishes this goal by allowing the division of a single 
file system block into one ormorefragments. The file system fragment size is specified at the 
time that the file system is created; each file system block can optionally be broken into 2, 4, or 
8 fragments, each of which is addressable. The lower bound on the size of these fragments is 
constrained by the disk sector size, typically 512 bytes. The block map associated with each 
cylinder group records the space available in a cylinder group at the fragment level; to 
determine if a block is available, aligned fragments are examined. Figure 1 shows a piece of a 
map from a 4096/1024 file system. 

Bits in map 
Fragment numbers 
Block numbers 

XXXX XXOO OOXX 
0-3 4-7 8-11 
012 

QCX)() 

12-15 
3 

Figure 1-Example layout of blocks and fragments in a 4096/1024 fIle system. 

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use, 
while a "0" shows that the fragment is available for allocation. In this example, fragments 0-
S, 10, and 11 are in use, while fragments 6-9, and 12-15 are free. Fragments of adjoining 
blocks cannot be used as a full block, even if they are large enough. In this example, 
fragments 6-9 cannot be allocated as a full block; only fragments 12-15 can be coalesced into a 
full block. 

PROGRAMMER GUIDE 26·5 



UNIX Fast File System 

On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is 
tqll'esented by zero or more 4096 byte blocks of data, and possibly a single fragmented block. 
If a file system block must be fragmented to obtain space for a small amount of data, the 
mnainjng fragments of the block are made available for allocation to other files. As an 
example consider an 11000 byte file stored on a 4096/1024 byte file system. This file would 
uses two full size blocks and one three fragment portion of another block. If no block with 
three aligned fragments is available at the time the file is created, a full size block is split 
yielding the necessary fragments and a single unused fragment. This remaining fragment can 
be allocated to another file as needed. 

Space is allocated to a file when a program does a write system call. Each time data is written 
to a file, the system checks to see if the size of the file has increased. 9 If the file needs to be 
expanded to hold the new data, one of three conditions exists: 

1) There is enough space left in an already allocated block or fragment to hold the new 
data. The new data is written into the available space. 

2) The file contains no fragmented blocks (and the last block in the file contains 
insufficient space to hold the new data). If space exists in a block already allocated, the 
space is filled with new data. If the remainder of the new data contains more than a full 
block of data, a full block is allocated and the first full block of new data is written 
there. This process is repeated until less than a full block of new data remains. If the 
remaining new data to be written will fit in less than a full block, a block with the 
necessary fragments is located, otherwise a full block is located. The remaining new 
data is written into the located space. 

3) The file contains one or more fragments (and the fragments contain insufficient space to 
hold the new data). If the size of the new data plus the size of the data already in the 
fragments exceeds the size of a full block, a new block is allocated. The contents of the 
fragments are copied to the beginning of the block and the remainder of the block is 
filled with new data. The process then continues as in (2) above. Otherwise, if the 
new data to be written will fit in less than a full block, a block with the necessary 
fragments is located, otherwise a full block is located. The contents of the existing 
fragments appended with the new data are written into the allocated space. 

The problem with expanding a file one fragment at a a time is that data may be copied many 
times as a fragmented block expands to a full block. Fragment reallocation can be minimized if 
the user program writes a full block at a time, except for a partial block at the end of the me. 
Since file systems with different block sizes may reside on the same system, the file system 
interface has been extended to provide application programs the optimal size for a read or write. 
For flies the optimal size is the block size of the file system on which the file is being accessed. 
For other objects, such as pipes and sockets, the optimal size is the underlying buffer size. 
This feature is used by the Standard Input/Output Library, a package used by most user 
programs. This feature is also used by certain system utilities such as archivers and loaders 
that do their own input and output management and need the highest possible file system 
bandwidth. 

The amount of wasted space in the 4096/1024 byte new file system organization is empirically 
observed to be about the same as in the 1024 byte old file system organization. A file system 
with 4096 byte blocks and 512 byte fragments has about the same amount of wasted space as 

9 A program may be overwriting data in the middle of an existing file in which case space would already have 
been allocated. 

26-6 ICON INTERNATIONAL 



( 

( 

UNIX Fast File System 

the S 12 byte block UNIX file system. The new file system uses less space than the S 12 byte or 
1024 byte file systems for indexing information for large files and the same amount of space 
for small files. These savings are offset by the need to use more space for keeping track of 
available free blocks. The net result is about the same disk utilization when a new file system's 
fragment size equals an old file system's block size. 

In order for the layout policies to be effective, a file system cannot be kept completely full. For 
each file system there is a parameter, termed the free space reserve, that gives the minimum 
acceptable percentage of file system blocks that should be free. If the number of free blocks 
drops below this level only the system administrator can continue to allocate blocks. The value 
of this parameter may be changed at any time, even when the file system is mounted and active. 
The transfer rates that appear in section 4 were measured on file systems kept less than 90% 
full (a reserve of 10%). If the number of free blocks falls to zero, the file system throughput' 
tends to be cut in half, because of the inability of the file system to localize blocks in a flle. If a 
file system's performance degrades because of overfilling, it may be restored by removing flles 
until the amount of free space once again reaches the minimum acceptable leveL Access rates 
for files created during periods of little free space may be restored by moving their data once 
enough space is available. The free space reserve must be added to the percentage of waste 
when comparing the organizations given in Table 1. Thus, the percentage of waste in an old 
1024 byte UNIX flle system is roughly comparable to a new 4096/512 byte flle system with the 
free space reserve set at 5%. (Compare 11.8% wasted with the old file system to 6.9% waste 
+ S% reserved space in the new flle system.) 

File System Parameterization 

Except for the initial creation of the free list, the old file system ignores the parameters of the 
underlying hardware. It has no information about either the physical characteristics of the mass 
storage device, or the hardware that interacts with it A goal of the new flle system is to 
parameterize the processor capabilities and mass storage characteristics so that blocks can be 
allocated in an optimum configuration-dependent way. Parameters used include the speed of 
the processor, the hardware support for mass storage transfers, and the characteristics of the 
mass storage devices. Disk technology is constantly improving and a given installation can 
have several different disk technologies running on a single processor. Each file system is 
parameterized so that it can be adapted to the characteristics of the disk on which it is placed. 

For mass storage devices such as disks, the new flle system tries to allocate new blocks on the 
same cylinder as the previous block in the same file. Optimally, these new blocks will also be 
rotationally well positioned. The distance between "rotationally optimal" blocks varies greatly; 
it can be a consecutive block or a rotationally delayed block depending on system 
characteristics. On a processor with an input/output channel that does not require any 
processor intervention between mass storage transfer requests, two consecutive disk blocks 
can often be accessed without suffering lost time because of an intervening disk revolution. 
For processors without input/output channels, the main processor must field an interrupt and 
prepare for a new disk transfer. The expected time to service this interrupt and schedule a new 
disk transfer depends on the speed of the main processor. 

The physical characteristics of each disk include the number of blocks per track and the rate at 
which the disk spins. The allocation routines use this information to calculate the number of 
milliseconds required to skip over a block. The characteristics of the processor include the 
expected time to service an interrupt and schedule a new disk transfer. Given a block allocated 
to a file. the allocation routines calculate the number of blocks to skip over so that the next 
block in the file will come into position under the disk head in the expected amount of time that 
it takes to start a new disk transfer operation. For programs that sequentially access large 

PROGRAMMER GUIDE 26·' 



UNIX Fast File System 

amounts of data, this strategy minimizes the amount of time spent waiting for the disk to 
position itself. 

To ease the calculation of finding rotationally optimal blocks, the cylinder group summary 
infonnation includes a count of the available blocks in a cylinder group at different rotational 
~itions. Eight rotational positions are distinguisbeds so the resolution of the summary 
infonnation is 2 mimseronds for a typical 3600 revolution per minute drive. The super-block 
contains a vector of lists called rotationtlliayout tables. The vector is indexed by rotational 
position. Each component of the vector lists the index into the block map for every data block 
contained in its rotational position. When looking for an allocatable blocks the system first 
looks through the summary counts for a rotational position with a non-zero block count. It 
then uses the index of the rotational position to find the appropriate list to use to index through 
only the relevant parts of the block map to find a free block. 

The parameter that defines the minimum number of milliseconds between the completion of a 
data transfer and the initiation of another data transfer on the same cylinder can be changed at 
any time, even when the file system is mounted and active. If a file system is parctmeterized to 
layout blocks with a rotational separation of 2 milliseconds, and the disk pack is then moved to 
a system that has a processor requiring 4 milliseconds to schedule a disk operation, the 
throughput will drop precipitously because of lost disk revolutions on nearly every block. If 
the eventual target machine is known, the file system can be parameterized for it even though it 
is initially created on a different processor. Even if the move is not known in advance, the 

.- rotational layout delay can be reconfigured after the disk is moved so that all further allocation 
is done based on the characteristics of the new host. 

Layout Policies 

The file system layout policies are divided into two distinct parts. At the top level are global 
policies that use file system. wide summary information to make decisions regarding the 
placement of new inodes and data blocks. These routines are responsible for deciding the 
placement of new directories and files. They also calculate rotationally optimal block layouts, 
and decide when to force a long seek to a new cylinder group because there are insufficient 
blocks left in the current cylinder group to do reasonable layouts. Below the global policy 
routines are the local allocation routines that use a locally optimal scheme to layout data blocks. 

Two methods for improving flle system. performance are to increase the locality of reference to 
minimize seek latency as described by [Trivedi80], and to improve the layout of data to make 
larger transfers possible as described by [Nevalainen77]. The global layout policies try to 
improve performance by clustering related information. They cannot attempt to localize all data 
references, but must also try to spread unrelated data among different cylinder groups. If too 
much localization is attempted, the local cylinder group may run out of space forcing the data to 
be scattered to non-local cylinder groups. Taken to an extreme, total localization can result in a 
single huge cluster of data resembling the old file system.. The global policies try to balance the 
two conflicting goals of localizing data that is concurrently accessed while spreading out 
unrelated data. 

One allocatable resource is inodes. Inodes are used to describe both files and directories. 
Inodes of files in the same directory are frequently accessed together. For example, the "list 
directory" command often accesses the inode for each file in a directory. The layout policy 
tries to place all the inodes of files in a directory in the same cylinder group. To ensure that 
files are distributed throughout the disk, a different policy is used for directory allocation. A 
new directory is placed in a cylinder group that has a greater than average number of free 
inodes, and the smallest number of directories already in it The intent of this policy is to allow 

26·8 ICON INTERNATIONAL 



( 

o 

UNIX Fast File System 

the inode clustering policy to succeed most of the time. The allocation of inodes within a 
qlinder group is done using a next free strategy. Although this allocates the inodes randomly 
within a cylinder group, all the inodes for a particular cylinder group can be read with 8 to 16 
disk transfers. (At most 16 disk transfers are required because a cylinder group may have no 
more than 2048 inodes.) This puts a small and constant upper bound on the number of disk 
transfers required to access the inodes for all the files in a directory. In contrast, the old file 
system typically requires one disk transfer to fetch the inode for each file in a directory. 

The other major resource is data blocks. Since data blocks for a file are typically accessed 
together, the policy routines try to place all data blocks for a file in the same cylinder group. 
preferably at rotationally optimal positions in the same cylinder. The problem with allocating 
all the data blocks in the same cylinder group is that large files will quickly use up available 
space in the cylinder grouP. forcing a spill over to other areas. Further. using all the space in a 
cylinder group causes future allocations for any file in the cylinder group to also spill to other 
areas. Ideally none of the cylinder groups should ever become completely full. The heuristic 
solution chosen is to redirect block allocation to a different cylinder group when a file exceeds 
48 kilobytes, and at every megabyte thereafter.lO The newly chosen cylinder group is selected 
from those cylinder groups that have a greater than average number of free blocks left. 
Although big files tend to be spread out over the disk, a megabyte of data is typically accessible 
before a long seek must be performed, and the cost of one long seek per megabyte is small. 

The global policy routines call local allocation routines with requests for specific blocks. The _
local allocation routines will always allocate the requested block if it is free, otherwise it -
allocates a free block of the requested size that is rotationally closest to the requested block. If 
the global layout policies had complete information, they could always request unused blocks 
and the allocation routines would be reduced to simple bookkeeping. However, maintaining 
complete information is costly; thus the implementation of the global layout policy uses 
heuristics that employ only partial information. 

If a requested block is not available, the local allocator uses a four level allocation strategy: 

1) Use the next available block rotationally closest to the requested block on the same 
cylinder. It is assumed here that head switching time is zero. On disk controllers 
where this is not the case, it may be possible to incorporate the time required to switch 
between disk platters when constructing the rotational layout tables. This, however, 
has not yet been tried. 

2) If there are no blocks available on the same cylinder, use a block within the same 
cylinder group. . 

3) If that cylinder group is entirely full, quadratically hash the cylinder group number to 
choose another cylinder group to look for a free block. 

4) Finally if the hash fails, apply an exhaustive search to all cylinder groups. 

Quadratic hash is used because of its speed in finding unused slots in nearly full hash tables 
[Knuth75]. File systems that are parameterized to maintain at least 10% free space rarely use 

lO The first spill over point at 48 kilobytes is the point at which a fde on a 4096 byte block me system ftrst 
requires a single indirect block. This appears to be a natural flI'St point at which to redirect block allocation. 
The other spillover points are chosen with the intent of forcing block allocation to be redirected when a me 
has used about 25% of the data blocks in a cylinder group. In observing the new me system in day to day 
use, the heuristics appear to work well in minimizing the number of completely filled cylinder groups. 

PROORAMMER GUIDE 26-9 



UNIX Fast File System 

this strategy. Flle systems that are run without maintaining any free space typically have so 
few free blocks that almost any allocation is random; the most important characteristic of the 
strategy used under such conditions is that the strategy be fast. 

PERFORMANCE 

Ultimately, the proof of the effectiveness of the algorithms described in the previous section is 
the long term performance of the new. file system. . 

Our empirical studies have shown that the inode layout policy has been effective. When 
ronning the "list directory" command on a large directory that itself contains many directories 
(to force the system to access inodes in multiple cylinder groups), the number of disk accesses 
for inodes is cut by a factor of two. The improvements are even more dramatic for large 
directories containing only files, disk accesses for inodes being cut by a factor of eight. This is 
most encouraging for programs such as spooling daemons that access many small fues, since 
these programs tend to flood the disk request queue on the old file system. 

Table 2 snmmarizes the measured throughput of the new file system. Several comments need 
to be made about the conditions under which these tests were run. The test programs measure 
the rate at which user programs can transfer data to or from a fue without performing any 
processing on it. These programs must read and write enough data to insure that buffering in 

. the operating system does not affect the results. They are also run at least three times in 
succession; the first to get the system into a known state and the second two to insure that the 
experiment has stabilized and is repeatable. The tests used and their results are discussed in 
detail in [Kridle83].11 The systems were running multi-user but were otherwise quiescent. 
There was no contention for either the CPU or the disk arm. The only difference between the 
UNIBUS and MASSBUS tests was the controller. All tests used an AMPEX Capricorn 330 
megabyte Winchester disk. As Table 2 shows, all file system test runs were on. a VAX 
lIn 50. All file systems had been in production use for at least a month before being 
measured. The same number of system calls were performed in all tests; the basic system call 
overhead was a negligible portion of the total running time of the tests. 

11 A UNIX command that is similar to the reading test that we used is "cp file Idev/null", where "me" is eight 
megabytes long. 

26·10 ICON IN1ERNATIONAL 

/" 
r 
~. 

/ 



UNIX Fast File System 

Type of Processor and Read 
File System Bus Measured Speed Bandwidth % CPU 

old 1024 750/UNIBUS 29 Kbytes/sec 29/9833% 11% 
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221198322% 43% 
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233198324% 29% 
new 4096/1024 7SO/MASSBUS 466 Kbytes/sec 466198347% 73% 
new 8192/1024 7SO/MASSBUS 466 Kbytes/sec 466198347% 54% 

Table 2a - Reading rates of the old and new UNIX file systems. 

Type of Processor and Read 
FIle System Bus Measured Speed Bandwidth % CPU 

old 1024 750/UNIBUS 48 Kbytes/sec 48/9835% 29% 
new 4096/1024 750/UN1BUS 142 Kbytes/sec 142/98314% 43% 
new 8192/1024 750/UN1BUS 215 Kbytes/sec 215198322% 46% 
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323198333% 94% 
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466198347% 95% 

Table 2b - Writing rates of the old and new UNIX fIle systems. 

Unlike the old file system, the transfer rates for the new file system do n~t appear to change 
over time. The throughput rate is tied much more strongly to the amount of free space that is 
maintained. The measurements in Table 2 were based on a file system with a 10% free space 
reserve. Synthetic work loads suggest that throughput deteriorates to about half·the rates given 
in Table 2 when the fIle systems are full. 

The percentage of bandwidth given in Table 2 is a measure of the effective utilization of the 
disk by the fIle system. An upper bound on the transfer rate from the disk is calculated by 
multiplying the number of bytes on a track by the number of revolutions of the disk per 
second. The bandwidth is calculated by comparing the data rates the file system is able to 
achieve as a percentage of this rate. Using this metric, the old file system is only able to use 
about 3-5% of the disk bandwidth, while the new file system uses up to 47% of the 
bandwidth. 

Both reads and writes are faster in the new system than in the old system. The biggest factor in 
this speedup is because of the larger block size used by the new file system. The overhead of 
allocating blocks in the new system is greater than the overhead of allocating blocks in the old 
system, however fewer blocks need to be allocated in the new system because they are bigger. 
The net effect is that the cost per byte allocated is about the same for both systems. 

In the new file system, the reading rate is always at least as fast as the writing rate. This is to 
be expected since the kernel must do more work when allocating blocks than when simply 
reading them. Note that the write rates are about the same as the read rates in the 8192 byte 
block file system; the write rates are slower than the read rates in the 4096 byte block file 
system. The slower write rates occur because the kernel has to do twice as many disk 
allocations per second, making the processor unable to keep up with the disk transfer rate. 

PROORAMMER GUIDE 26·11 



UNIX Fast File System 

In contrast the old file system is about 50% faster at writing files than reading them. This is 
, because the write system call is asynchronous and the kernel can generate disk transfer requests 
much faster than they can be serviced. hence disk transfers queue up in the disk buffer cache. 
Because the disk buffer cache is sorted by minimum seek distance, the average seek between 
the scheduled disk writes is much less than it would be if the data blocks were written out in 
the random disk order in which they me generated. However when the file is read, the read 
system call is processed synchronously so the disk blocks must be retrieved from the disk in 
the non-optimal seek order in which they me requested. This forces the disk scheduler to do 
long seeks resulting in a lower throughput rate. 

In the new system the blocks of a file me more optimally ordered on the disk. Even though 
reads me still synchronous, the requests are presented to the disk in a much better mder. Even 
though the writes me still asynchronous, they are already presented to the disk in minimum 
seek order so there is no gain to be had by reordering them. Hence the disk seek latencies that 
limited the old file system have little effect in the new file system. The cost of allocation is the 
'factor in the new system that causes writes to be slower than reads. 

The performance of the new file system is currently limited by memory to memory copy 
operations required to move data from disk buffers in the system's address space to data 
bufferS in the user's address space. These copy operations account for about 40% of the time 
spent performing an inputloutput operation. If the buffers in both address spaces were 
properly aligned, this transfer could be perf~ without copying by using the VAX virtual 
memory management hardware. This would be especially desirable when transferring large _ 
amounts of data. We did not implement this because it would change the user interface to the 
file system in two major ways: user programs would be required to allocate buffers on page 
boundaries, and data would disappear from buffers after being written . 

• -.-=. • .. , 'Greater disk throughput could be achieved by rewriting the disk drivers to chain together kernel 
buffers. This would allow contiguous disk blocks to be read in a single disk transaction. 
Many disks used with UNIX systems contain either 32 or 48 512 byte sectors per track. Each 
track holds exactly two or three 8192 byte file system blocks, or four or six 4096 byte me 
system blocks. The inability to use contiguous disk blocks effectively limits the performance 
on these disks to less than 50% of the available bandwidth. If the next block for a file cannot 
be laid out contiguously, then the minimum spacing to the next allocatable block on any platter 
is between a sixth and a half a revolution. The implication of this is that the best possible 
layout without contiguous blocks uses only half of the bandwidth of any given track. If each 
track contains an odd number of sectors, then it is possible to resolve the rotational delay to any 
number of sectors by rmding a block that begins at the desired rotational position on another 
track. The reason that block chaining has not been implemented is because it would require 
rewriting all the disk drivers in the system, and the current throughput rates are already limited 
by the speed of the available processors. . 

Currently only one block is allocated to a file at a time. A technique used by the DEMOS file 
system when it finds that a rue is growing rapidly, is to preallocate several blocks at once, 
releasing them when the file is closed if they remain unused. By batching up allocations, the 
system can reduce the overhead of allocating at each write, and it can cut down on the number 
of disk writes needed to keep the block pointers on the disk synchronized with the block 
allocation [Powe1l79]. This technique was not included because block allocation currently 
accounts for less than 10% of the time spent ina write system call and, once again, the current 
throughput rates are already limited by the speed of the available processors. 

26·12 ICON INTERNATIONAL 

/' 
( 

"'--.. 



( 

c' 

UNIX Fast File System 

FILE SYSTEM FUNCTIONAL ENHANCEMENTS 

The performance ~ to theUNJXiile system did DOt u:quire any changes to the 
semantics or data stnlCllD'eS visible to application pLogwns. However, several changes had 
been generally dtsht:d for some time but had DDt been introduced because they would require 
users to dump and 1eSlOle an their file systems. Since 1he new file system already required all 
existing file systems 10 be.d11mped and IeStr.:Jred, these functional enhancements were 
inttoduced at tbis nme. 

Long F'de Names 

Flle names can now be of nearly arbitrary length. Only programs that read directories are 
affected by thiI~ T-epmmete~1B:uNlX~thatare not running the new 
file system, a set of directory access routine! ilave been introduced to provide a consistent 
interface to directories on both old and new systems. 

Directories are allocated in 512 byte units called chunks. This size is chosen so that each 
allocation can be transferred to disk in a single operation. Chunks JIre broken up into variable 
length records termed ~ entries. Adirct::tory entry contains the information necessary to 
map the name of a file to its associated mode. No directory entty is allowed to span multiple 
chunks. The first three fields of a directory entry are fixed length and contain: an inode 
number, the size of the entry, and the length of the file name contained in the entry. The 
remainder of an entry is variable length and contains a null tenninated file name, padded to a 4 
byte boundary. The maximum length of a file name in a directoIy is currently 255 characters. 

Available space in a directory is recorded by having one or IDOIe entries accumulate the free 
. . space in their entry size fields. This results in directory entries that are larger than required to 

hold the entry name plus fixed length fields. Space allocated to a directory should always be 
completely accounted for by totaling up the sizes of its entries. When an entry is deleted from a 
directory, its space is returned to a previous entry in the same directory chunk by increasing the 
size of the previous entry by the size of the deleted entry. If the first entry of a directory chunk 
is free, then the entry~ mode number is set to zero to indicate that it is unallocated. 

'File Lcaiug 

The old flle system had no provision for locking files. Processes that needed to synchronize 
the updates of a file had to use a separate "lock" file. A process would try to create a "lock" 
file. If the creation succeeded,1hen the process could proceed with its update; if the creation 
failed, then the process 'Would wait and try again. This mechanism had three drawbacks. 
Processes consumed CPU time by looping over attempts to create locks. Locks left lying 
around because of system aashes had to be manual1y removed (normally in a system startup 
command script). Finally., -processes running as system administrator are always permitted to 
create files, so were forced to use a different mechanism. WJille it is possible to get around all 
these problems, the solutiODS JU'e not sttaigbt fmwanf, so Jl mechanism for locking files has 
been added. 

The most general schemes allow multiple processes to concmrently update a file. Several of 
these techniques are discussed in [peterson83]. A simpler technique is to serialize access to a 
file with locks. To attain reasonable dficiency~ certain applications require the ability to lock 
pieces of a file. Locking down to the byte level has been implemented in the Onyx file system 
by [Bass81]. However, for the standard system applications, a mechanism that locks at the 
granularity of a file is sufficient. 

PROGRAMMER GUIDE 26-13 



UNIX Fast File System 

. Locking schemes fall into two classes, those using hard locks and those using advisory locks. 
The primary difference between advisory locks and hard locks is the extent of enforcement A 
.bard lock is always enforced when a program tries to access a file; an advisory lock is only .~ 
applied when it is requested by a program. Thus advisory locks are only effective when all 
programs accessing a file use the locking scheme. With hard locks there must be some 
ovenide policy implemented in the kernel With advisory locks the policy is left to the user 
programs. In the UNIX system, programs with system admjnistrator privilege are allowed 
ovenide any protection scheme. Because many of the programs that need to use locks must 
also run as the system administrator, we chose to implement advisory locks rather than create 
an additional protection scheme that was inconsistent with the UNIX philosophy or could not be . 
used by system administration programs. 

The file locking facilities allow cooperating programs to apply advisory shared or exclusive 
locks on files. Only one process may have an exclusive lock on a fue while multiple shared 
locks may be present. Both shared and exclusive locks cannot be present on a file at the same 
time. If any lock is requested when another process holds an exclusive lock, or an exclusive 
lock is requested when another process holds any lock, the lock request will block until the 
lock can be obtained. Because shared and exclusive locks are advisory only, even if a process 
has obtained a lock on a file, another process may access the file. 

Locks are applied or removed only on open files. This means that locks can be manipulated 
without needing to close and reopen a file .. This is useful, for example, when a process wishes 

'. to apply a shared lock, read some information and determine whether an update is required, 
then apply an exclusive lock and update the file. . 

A request for a lock will cause a process to block if the lock can not be immediately obtained 
In certain instances this is unsatisfactory. For example, a process that wants only to check if a 
lock is present would require a separate mechanism to find out this information. Consequently, 
a process may specify that its locking request should rennn with an error if a lock can not be 
immediately obtained. Being able to conditionally request a lock is useful to "daemon" 
processes that wish to service a spooling area. If the first instance of the daemon locks the 
directory where spooling takes place, later daemon processes can easily check to see if an active 
daemon exists. Since locks exist only while the locking processes exist, lock flIes can never be 
left active after the processes exit or if the system crashes. 

Almost no deadlock detection is attempted. The only deadlock detection done by the system is 
that the file to which a lock is applied must not already have a lock of the same type (i.e. the 
second of two successive calls to apply a lock of the same type will fail). 

Symbolic Links 

The traditional UNIX file system allows multiple directory entries in the same file system to 
reference a single file. Each directory entry ''links'' a file's name to an inode and its contents. 
The link concept is fundamental; inodes do not reside in directories, but exist separately and are 
referenced by links. When all the links to an inode are removed, the inode is deallocated. This 
style of referencing an inode does not allow references across physical file systems, nor does it 
support inter-machine linkage. To avoid these limitations symbolic links similar to the scheme 
used by Multics [Feiertag71] have been added. 

A symbolic link is implemented as a file that contains a pathname. When the system 
encounters a symbolic link while interpreting a component of a patbname, the contents of the 
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield the 
resulting patbname. In UNlX, patbnames are specified relative to the root of the file system 

26-14 ICON INTERNATIONAL 



( 

c 

UNIX Fast File System 

hierarchy, or relative to a process's current working directory. Pathnames specified relative to 
the root are called absolute pathnames. Pathnames specified relative to the cmrent working 
directory are termed relative patbnames. If a symbolic link contains an absolute pathname, the 
absolute pathname is used, otherwise the contents of the symbolic link is evaluated relative to 
the location of the link in the file hierarchy. 0 

Normally programs do not want to be aware that there is a symbolic link in a pathname that 
they are using. However certain system utilities must be able to detect and manipulate 
symbolic links. Three new system calls provide the ability to detect, read, and write symbolic 
links; seven system utilities required changes to use these calls. 

In future Berkeley software distributions it may be possible to reference file systems located on 
remote machines using pathnames. When this occurs, it will be possible to create symbolic 
links that span machines. 

Rename 

Programs that create a new version of an existing file typically create the new version as a 
temporary rue and then rename the temporary file with the name of the target file. In the old 
UNIX file system renaming required three calls to the system. If a program were interrupted or 
the system crashed between these calls, the target file could ~ left with only its temporary 
name. To eliminate this possibility the rename system call has been added. The rename call 
does the rename operation in a fashion that guarantees the existence of the target name. 

Rename works both on data files and d.irectories. When renaming directories, the system must 
do special validation checks to insure that the directory tree structure is not corrupted by the 
creation of loops or inaccessible directories. Such cotrUpti~n would occur if a parent directory 
were moved into one of its descendants. The validation check requires tracing the descendents 
of the target directory to insure that it does not include the directory being moved. 

Quotas 

The UNIX system has traditionally attempted to share all available resources to the greatest 
extent possible. Thus any single user can allocate all the available space in the file system. In 
certain environments this is unacceptable. Consequently, a quota mechanism has been added 
for restricting the amount of rue system resources that a user can obtain. The quota mechanism 
sets limits on both the number of inodes and the number of disk blocks that a user may 
allocate. A separate quota can be set for each user on each file system. Resources are given 
both a hard and a soft limit When a program exceeds a soft limit, a warning is printed on the 
users terminal; the offending program is not terminated unless it exceeds its hard limit The 
idea is that users should stay below their soft limit between login sessions, but they may use 
more resources while they are actively working. To encourage this behavior, users are warned 
when logging in if they are over any of their soft limits. If users fails to correct the problem for 
too many login sessions, they are eventually reprimanded by having their soft limit enforced as 
their hard limit. 

PROORAMMER GUIDE 26·15 



UNIX Fast File System 

ACKNOWLEDGEMENTS 

We thank Robert BIz for his ongoing interest in the new file system. and for adding disk quotas 
in a rational and efficient manner. We also acknowledge Dennis Ritchie for his suggestions on 
the appropriate mOOifications to the user interface. We appreciate Michael Powell's 
explanations on how the DEMOS file system worked; many of his ideas were used in this 
implementation. Special commendation goes to Peter Kessler and Robert Henry for acting like 
real users dming the early debugging stage when file systems were less stable than they should 
have been. The criticisms and suggestions by the reviews contributed significantly to the 
coherence of the paper. Finally we thank our sponsors, the National Science Foundation under 
grant MCSS0-05144, and the Defense Advance Research Projects Agency (DoD) under ARPA 
Order No. 4031 monitored by Naval Electronic System Command under Contract No. . .. 
NOOO39-S2-C-023S. 

26-16 ICON INTERNATIONAL 



( 

c 

UNIX Fast File System 

REFERENCES 

[Almes78] 20 Almes. G .• and Robertson. G. "An Extensible File System for Hydra" 
Proceedings of the Third International Conference on Software Engineering, IEEE, May 1978. 

[Bass81] 20 Bass, J. ''Implementation Description for File Locking", Onyx Systems Inc, 73 
E. Trimble Rd, San Jose, CA 95131 Jan 1981. 

[Feiertag71] 20 Feiertag, R. J. and Organick, E. I., ''The Multics Input-Output System", 
Proceedings of the Third Symposium on Operating Systems Principles. ACM, Oct 1971. pp 
35-41 

[Ferrin82a] 20 Ferrin, T.E .• "Performance and Robustness Improvements in Version 7 
UNIX", Computer Graphics Laboratory Technical Report 2, School of Pharmacy. University . 
of California, San Francisco. January 1982. Presented at the 1982 Winter Usenix Conference, 
Santa Monica, California. 

[Ferrin82b] 20 Ferrin, T.E., "Performance Issuses ofVMUNIX Revisited", ;login: (The 
Usenix Association Newsletter), Vol 7, #5, November 1982. pp 3-6 

[Kridle83] 20 Kridle, R., and McKusick, M., "Performance Effects of Disk Subsystem 
Choices for V AX Systems Running 4.2BSD UNIX", Computer Systems Research Group, 
Dept of EECS, Berkeley, CA 94720, Technical Report #8. . '. . 

[Kowalski78] 20 Kowalski, T. "FSCK - The UNIX System Check Program", Bell 
Laboratory, Murray Hill, NJ 07974. March 1978 

[Knuth75] 20 Kunth, D. "The Art of Computer Programming", Volume 3 - Sorting and 
Searching, Addison-Wesley Publishing Company Inc, Reading, Mass, 1975. pp 506-549 

[Maruyama761 MarUyama, K., and Smith, S. "Optimal reorganization of Distributed Space 
Disk Files", CACM, 19, 11. Nov 1976. pp 634-642 

[Nevalainen77] 20 Nevalainen, 0., Vesterinen, M. "Determining Blocking Factors for 
Sequential Flles by Heuristic Methods", The Computer Journal, 20, 3. Aug 1977. pp 245-247 

[pechura83] 20 Pechura, M., and Schoeffler, J. "Estimating File Access Time of Floppy 
Disks", CACM, 26, 10. Oct 1983. pp 754-763 

[peterson83] 20 Peterson, G. "Concurrent Reading While Writing", ACM Transactions on 
Programming Languages and Systems, ACM, 5, 1. Jan 1983. pp 46-55 

[powe1l79] 20 Powell, M. ''The DEMOS File System", Proceedings of the Sixth Symposium 
on Operating Systems Principles, ACM, Nov 1977. pp 33-42 

[Ritchie74] 20 Ritchie, D. M. and Thompson, K., ''The UNIX Time-Sharing System", CACM 
17, 7. July 1974. pp 365-375 

[Smith8Ia] 20 Smith, A. "Input/Output Optimization and Disk Architectures: A Survey", 
Performance and Evaluation 1. Jan 1981. pp 104-117 

[Smith81b] 20 Smith, A ''Bibliography on File and I/O System Optimization and Related 
Topics", Operating Systems Review, 15,4. Oct 1981. pp 39-54 

PROGRAMMER GUIDE 26·17 



UNIX Fast File System 

[SymbolicsSl] 20 "Symbolics File System", Symbolics Inc, 9600 DeSoto Ave, Chatsworth. 
CA 91311 Aug 1981. 

{Thompson78] 20 Thompson, K. "UNIX Implementation", BeU System Technical Journal, 
57,6, part 2. pp 1931-1946 July-August 1975. 

[ThompsonSO] 20 Thompson, M. "Spice File System", Carnegie-Mellon University. 
Department of Computer Science. Pittsburg. PA 15213 ##CMU-CS-80~ Sept 1980. 

[Trivedi80] 20 Trivedi. K. "Optimal Selection of CPU SPeed. Device Capabilities. arid File 
Assignments", Journal of the ACM, 27. 3. July 19S0. pp 457-473 

[Whlte80] 20 White. R. M "Disk Storage Technology", Scientific American. 243(2). August 
19S0. 

26·18 ICON INTERNATIONAL 



Printed In the U.S.A. 

© Copyright1988 
Icon International, Inc. 

All rights reserved worldwide. 

171-063-006 A 1 



t . 

to 

, . 

.. 

\ 
J~ _ 

til . .. _. 


