
SESS~ON REPORT · ~SHARE~

67 0317 Setting a Campnter 1 s Clock Correctly
HARE NO. SESSION NO. SESSION TITLE ATTENDANCE

;-1vs SCP Bi11 Choate CAG

PROJECT SESSION CHAIRMAN INST. CODE

Contel Cprporation, 400 Embassy Row, Atlanta, GA 30328 (404) 393-0866

ABSTRAC'f:

SESSION CHAIRMAN'S COMPANY, ADDRESS, .,d PHONE NUMBER

Setting a Computer's Clock Correctly:
Does .anybody know what time it is?

Dave Crow
TUCC, Box 12076
Research Triangle Park, NC 27709
Installation Code: TUC
MVS System Control Program (MVS SCP)
Session 0317

Keeping a clock set to the correct time is a problem'that has been
with us for thousands of years, and the technology exists to com­
pletly solve the problems that we face in the computer industry.
A brief summary of this technology and its history will be presented
followed by some examples of how it has been applied to present day
operating systems. These examples range from simple validity checks
to systems that must keep their clocks within a micro-second of
each other. The material is equally applicable to both VM and MVS
systems, and should be useful to any installation that has ever
worried about what can happen if their clock is set wrong.

SHRM-730-1/81

INTRODUCTION

About three years ago, my boss walked into my off ice and asked if
we could use a box that received the National Bureau of Standards
time signal to eliminate the possibility of setting the computer's
clock wrong. We now have a system in place that assures the clock
on our system is within a few seconds of the correct time, and our
operators haven't set the time for over a year. In this paper I
will present some background material and then describe what we as
users of MVS and VM systems can do to avoid errors in the TOD
clock. At the end of the paper I will describe how my company
uses an external clock to achieve accuracy of a few seconds, and
will also describe a system in use at NASA in Houston that keeps
their clocks within a few milliseconds of the correct time.

·Setting the time wrong costs money.
- Twenty years ago, an error in the date didn't cost too much

because very little code expected the date to be right in the
first place. But lately, more and more applications assume the
time is correct. Disk and tape management systems, automated
production control ~ystems, billing algorithms and so on all
depend on a correct date and time. As this happens, we are
hearing more and more stories about things gone wrong. These
stories tell of major outages while people are called in and the
damage is repaired or at least minimized. Of course, even if
you get the correct date, there is still the problem with the
correct time. Many. billing systems give reduced rates for off­
peak usage, and.a mistake of setting 0100 instead of 1300 can be
very expensive even if it causes no other trouble. Today's
computer systems need the correct date and time in order to
function correctly, and we can be sure that the cost of a
mistake will only increase as time goes on.

The operator is not the problem.
So what can we do about it? Are we totally at the mercy of the
operator to set the date and time correctly? No. And in fact,
it really isn't fair to put that kind of load on the operator in
the first place. The computer clock is always set when things
are very confusing. Usually there has been a major failure, or
at the very least, the machine has been down for maintenance and
there is some doubt.about how well the system will work. The
operator is always under a lot of pressure to set the clock
quickly, and there is no verification of what the operator
enters. The system does not make any reasonability checks of
any kind, it just accepts the value of the date and time without
question. Simply put, that is bad design. Adding code to
verify that a reasonably correct date and time has been set is
not expensive, can be done without modification to the system,
and doesn't even require PLMs or microfiche.

-1-

Before we look specifically at computer systems~ we will first
cover some basic concepts:

* The Calendar
* The Clock
* Time of Day
* GMT and Time Zones
* How Long is a Second?

CALENDAR

The Egyptian calendar. .
The Gregorian calendar of today evolved from the 365-day
calendar of the ancient Egyptians that was in use in 4000 BC.
Since the Egyptian'calendar didn't have a leap year, the first
day of the year drifted slowly through the seasons, completing a
cycle every 1460 y~ars, which the Egyptians called a Sothic
cycle.

The Julian calendar.
The ancient Roman calendar was not a very good one, it only had
ten months, and needed constant adjustment to keep it in step
with the solar year. Over the years, some improvements were
made, but the calendar was never satisfactory. So, in 46 BC,
Julius Caesar decreed a replacement. The new calendar was based
on the Egyptian calendar and included a leap year every four
years to correct for the Sothic cycle. The new calendar had
month names based 9n the old Roman calendar, which is why the
last four months are named for the numbers seven through ten:
September, October, November, and December. A few years later,
because of mistakes made in calculating leap year, Caesar
Augustus ordered another calendar correction, and in honor of
himself changed the name of the month Sextilus to August. The
Romans did not have days of the week as we know them, and years
were always known in relation to the current emperor. Between
300-400 AD, the Christians brought the idea of days of week over
from the Jewish tradition, and renumbered the years in honor of
Jesus. This calendar was used for the next 1000 years, and is
called the Julian calendar.

The Gregorian reform.
The Julian calendar has an average year of 365.25 days, but the
solar year is a little shorter than that. Therefore, every four
years is too often to have a leap year. By the 14th century,
the Catholic Church was getting worried: Easter was slipping
toward summer, while Passover was staying put in spring. This
was bad because the Last Supper was a Passover celebration.
(The Jewish religious calendar is very complicated, but it keeps
the correct relationship to the solar year). In 1582, Pope
Gregory XIII issued a papal bull that, among other things,

-2-

included a 10-day correction in the calendar, and changed the
rules so that cent~ry years that are not a multiple of 400 are
not leap years. Thus in the Gregorian calendar 1700, 1800, and
1900 were not leap years, but 2000 will be.

As you might expect, changing the calendar is a rather emotional
issue, and was not adopted everywhere immediately. Britain (and
her colonies) did not change until 1750, Russia adopted it in
1918, and Greece did not change until 1923!

So for historical purposes, dates between 1582 and 1923 must be
checked to be sure which calendar is being used. But for today,
it means that we now have a single calendar in use throughout
the world. It might not be as good as it could be, but
hopefully nobody will try to change it any time soon. Getting
the date right is hard enough without having to worry about
which calendar to use.

Julian dates.
You might think that Julian dates have something to do with the
Julian calendar, but they don't. Julian dates were invented in
the 14th century by a French scholar named Joseph Justus
Scaliger. He wanted to correlate events that had been recorded
by different cultures, but because so many different calendars
had been used, it was nearly impossible.

Scaliger's system as it is used today is the number of days
since noon, January 1, 4713 BC. For purposes of eliminating the
confusion caused by multiple calendars nothing could be simpler;­
you just translate all calendars to this one. Unfortunately,
Scaliger named his calendar in honor of his father Julius, so a
date in his scheme is called a Julian date! For example, the
Julian date for August 10 is 2,446,653.

In the computer industry, the date is sometimes written in the
form yy.ddd, and some people call that the Julian date. That
usage does not seem to exist outside the computer world.

WHAT'S A CLOCK?

A clock is a gadget used to tell time. It has a frequency source
to measure a time interval, a counting mechanism, and a display.
In ancient times, clocks were either sundials or water clocks.
Today they are electrical or mechanical, but the principles are
the same.

The earliest clocks.
The movement of the stars and the sun has always been used for
determining time of: day or day of year, and our calendars and
clocks simply keep track of those motions. Up until the 12th
century, time of day meant time as indicated by a sundial, and

-3-

on a sundial the length of an hour varies from season to season.
When the clock was first invented, some clock makers tried to
make their clock's hour match the sundial, but as clocks became
accepted the hour began to be regarded as a fixed length of
time, so sundials started showing the correction instead. Today
the idea of an hour as a fixed length of time is so widely
accepted that most people find the idea of a variable hour a
little quaint.

The evolution of accurate clocks.
In the 12th century, Christian monks invented the mechanical
clock (with an alar~) to keep them from sleeping through matins
(midnight prayer). In the 15th century, astronomers used
pendulum clocks accurate to a second a day to measure the motion
of celestial bodies. In the 17th century, spring-driven clocks
accurate to better than a second a day were invented for use in
navigation. Today, atomic clocks (clocks that use atomic
oscillations as their frequency source) gain or lose only a few
nanoseconds a day, and we have many applications in geophysics,
astronomy, navigation, and other fields that require that kind
of precision. The motion of the earth is much too irregular for
these applications, in fact, one of the applications for
accurate clocks is to measure the irregularities in the earth's
motion. However, not every application needs an atomic clock.
Figure 1 shows some examples of what kind of precision is needed
for various application.

Errors in clocks.
One of the most accGrate clocks that we have in daily life is
the normal electric wall clock. It will stay very close to the
correct time indefinitely (as long as the power stays on). But
that doesn't happen.by accident. It happens because somewhere
back in the plant where the power is generated there is an
electric clock. Whenever that clock gets too far ahead they
slow down the generators. Whenever it gets too far behind they
speed them up. So the apparent accuracy of a wall clock comes
from a very determined effort to keep it adjusted to the correct
time.

Clocks always have some error built into them. The clock can
simply be set wrong to begin with. The frequency source will
have some irregularity, and it can be fast or slow. The counter
may not always count properly, and lastly, there is always some
uncertainty in the display.

Clocks always have some error, so when choosing a clock, you
must answer the question "How much error can be tolerated?'' The
clock that Captain Bligh took with him on the H.M.S. Bounty in
1789 was better than the one on a 3081. But then nobody tries
to navigate using the clock on a 3081. That doesn't mean that
there aren't requirements for more accurate clocks on a
mainframe CPU. If a data base is being updated from two CPUs in
a shared DASO environment, it would be very simple to maintain a
transaction log if the clocks were known to be within a

-4-

millisecond of each other. Studies of corrununications networks
would be much easier if each site could simply log the time a
packet was handled. Instead, in both cases, very elaborate
schemes are needed to reconstruct event sequences.

l

Gross errors in a clock cause problems that everyone recognizes.
Small errors have a more subtle effect: applications simply are
not done. If an application requires that two independent
computers have clocks set within a second (or less) of each
other, or if it needs to measure a very precise interval of
elapsed time, then the application cannot work and is never
developed in the f~rst place.

STANDARD TIME, TIME ZONES, and GMT

GMT was developed for celestial navigation.
Historically, the first real requirement for a standard time was
for celestial navigation. Prior to the availability of good
clocks on board ship, navigation was very much hit or miss.
Ships had no good idea of their east-west location so they set
sail to the proper.north-south latitude and they turned east or
west until they saw land. This took a lot longer than sailing a
true course, but it was a lot safer. If you have a good clock,
you can set it to local time at a known location (say Greenwich,
England). Then at an unknown location you can measure the local
time based on observations of the sun or stars, and calculate
your east-west location from the difference between the clock
and local time. Once chronometers were invented, navigators
could choose any course they wished without fear of getting
lost.

Because of England's dependence on ocean travel, they were the
first to produce chronometers capable of accurate navigation,
and as a result, developed navigation tables based on the
location of the observatory at Greenwich, England. Navigators
from other countries simply adopted the British work as a
standard.

Time zones were needed by railroads.
Time zones developed a little later, for different reasons. As
long as everyone stays around a small town, a single clock in
the town square will serve quite nicely as a standard. All you
have to do is keep the clock more or less on time with a
sundial, and everybody can go about their business with no
confusion. That is, there will be no confusion as long as
travel between two such towns is slow.

With the coming of 'the railroad, also came confusion about the
time. People couldn't keep track of schedules because they
couldn't keep up with which clock was being used. With the
invention of the telegraph it was a simple matter for all

-5-

stations on a line to use the same time. No longer should the
town clock be set by a sundial, instead it should be set to
railroad time. This will work for a whole country, unless the
country is very wide like the United States, in which case you
need to divide the country into a few time zones just to keep
some semblance of local time.

Standard time and time zone agreements.
By the end of 1884, international agreements had been reached
that established Greenwich, England as the location of the zero
degree longitude line, established 24 time zones at 15 degree
intervals in international waters, and established GMT as the
standard time zone for navigational purposes. Within national
boundaries, however, countries are still free to use any time
they wish. Most keep the one hour intervals and move the
boundaries east or west to accommodate local interests, but some
use half hour offsets, and others sti~l use true local time so
their offset from GMT is hours, minutes and seconds. Many
countries also use daylight savings at times during the year.
Figure 2 shows the time zones on a world map so you can see how
imaginative local politicians have been.

HOW LONG IS A SECOND?

How long is a day?
One of the famous programming mistakes of all time was by the
programmer who thought the earth revolved on its axis once every
24 hours and used that fact to calculate landing sites for the
Mercury space flights. Our first astronauts spent a lot more
time in the water than they should have because of that. Our
day is a solar day. That is the time the sun takes to return to
the same position in the sky, and is around 4 minutes longer
than the time the earth takes for one revolution on its axis.
The extra time is because the earth has moved in its orbit
around the sun. However, since the earth's orbit is an ellipse,
the solar day has different lengths at different times of the
year. That's easy for a sundial to account for, but very
difficult for a mechanical clock to handle. So the idea of mean
solar day was developed. In a mean solar day, the length of a
second is picked so:that a 24 hour period is equal to the
average solar day for the year.

The definition of a second.
Prior to 1972, a second was defined so there were exactly 24
hours of 3600 seconds each in a mean.solar day. Unfortunately,
the mean solar day changes slightly from year to-year, and that
meant the second and everything based on the se~ond had to
change slightly. For instance, the transmitters that transmit
standard frequency signals had to be adjusted slightly so their
frequency would stay the same. This presented all kinds of
problems so the definition of a second was changed to

-6-

9,192,631,770 oscillations of a cesium atom. This solved the
problem of a variable length second, but raised the problem that
a mean solar day is not an integral number of seconds. To keep
standard time about the same as mean solar time, the idea of a
leap second was invented.

Leap seconds.
Leap seconds work like this: Several governments maintain
departments that keep track of standard time using atomic
clocks. Periodically they compare the time as measured by the
atomic clocks to mean solar time as determined by an
observatory. Whenever the difference exceeds 0.5 seconds, the
International Time Bureau (BIH) in France directs that a leap
second be inserted or dropped. Leap seconds pose a problem if
you know the date and time of two events and need to know the
elapsed time. To solve this problem, you must either keep
tables that show when leap seconds~occurred, or you must include
leap second information in the time stamps.

Coordinated Universal Time.
I

The introduction of leap seconds means that standard time can
now differ from Greenwich Mean Time by up to a second, so
standard time is now called UTC (Coordinated Universal Time).
UTC can be obtained·to an accuracy of a few milliseconds world­
wide using inexpensive radio equipment, and microsecond accuracy
can be achieved at modest cost. For most purposes, the
difference between UTC and GMT is not important, so the GMT name
survives.

370 TOD CLOCKS AND RELATED CALCULATIONS

What is the TOD clock?
The Time of Day (TOD) clock on the 370 computer is at first an
imposing design. It is a 64-bit unsigned number that is
incremented so that· bit position 51 has a value of 1
microsecond. The clock cycles every 143 years. According to
the Principles of Operation manual, it should be set so that the
current time is measured as an interval from 00:00 January 1,
1900 GMT, ignoring leap seconds.

Figuring out what that definition means requires knowing most of
the seemingly unrelated material that has been covered so far.
You will also see that the TOD clock value is a fiction. The
length of a second wasn't even fixed until 1972, and the
Principles of Operation manual says not to use leap seconds.

Calculating a TOD value.
Nevertheless, if you assume uniform days, hours, minutes, and
seconds, calculating a TOD clock value is fairly easy. Figure 5
shows code that converts the year, day of year and time of day
to a TOD clock value. The key to this code is the DAY-OF-

-7-

CENTURY calculation. That turns out to be a handy result, so it
will be described in depth. The rest of the example is just
some tricky code to do arithmetic with results that go over 31
bits.

Calculating the Day of Century.
Loosely speaking, you get the number of days in this century by
multiplying the number of years times the days per year and
adding that to the day of the year. However, the days per year
is a fraction (365.25) so that complicates matters. It is a
pretty safe bet to guess that the floor or ceiling functions
will get involved, and a few minutes of playing with a
calculator gives the formula:

day of century = CEIL(yy X 365.25) - 1 + ddd
(The -1 comes in because 1900 wasn't a leap year)

Since the TOD clock started at zero on January 1, to get a TOD
clock value, you subtract 1 from the day of century, multiply by
the microseconds in a day, add in the microseconds since
midnight, and shift left 12 places.

Calculating the Day of Week..
If instead you want day of week, you take the remainder after
dividing by 7. January 1, 1900, was a Monday, so the remainder
corresponds to day of week as follows:

O - Sunday
1 - Monday
2 - Tuesday
3 - Wednesday
4 - Thursday
5 - Friday
6 - Saturday

For instance, August 10, 1986:

(Sun's day)
(Moon's day)
(Tiw's day)
(Woden's day)
(Thor's day)
(Frigg's day)
(Saturn's day)

CEIL(86 X 365.25) - 1 + 222 = 31633
31633 divided by 7 = 4Sl9 r 0
So August 10 must be a Sunday.

Figure Sb shows code to implement this. Other date calculations
are simple extensions of this; Figure Sa shows how you can go
about calculating the last Sunday in October.

Using the TOD value for a time stamp.
The TOD clock format turns out to be extremely easy to work
with, and is a very useful way to time stamp an. event. The low
order bit in the first word is in units of about a second, so
for human type actions, only the first word is important and
double precision arithmetic is not needed. The TOD clock simply
times a very long interval, so you can readily calculate the
length of time between two events by just subtracting without
having to worry about year end, leap days and all the other

-a-

stuff that makes working with dates tricky. Likewise, if you
want to know the date 100 days from now you simply add the TOP
equivalent of 100 days to the current TOD value and convert that
to a date. In working with the TOD value, it is usually best to
convert it to units of microseconds since 1900 by shifting right
12 bits.

HOW MVS ANO VM USE THE TOD CLOCK

Both MVS and VM set the TOD clock using GMT, but they both
recognize the need to have local time available, so they maintain
local time as an offset from GMT. Both systems have problems in
the way they handle the two times, so installations that have no
need for using GMT frequently r~n local time in the TOD clock, and
use a local off set of· zero.

VM support for local time.
In VM the nucleus assembly specifies the difference between
local time and GMT in hours, minutes, and seconds, and whether
the zone is east or west of GMT. This is assembled as a signed
number of seconds that must be added to GMT to get local time.
When the operator sets the clock under VM, he specifies the time
and date in local time. VM subtracts out the offset to get GMT
and uses that to set the TOD clock. The operator does not need
to know about GMT.

Problems with VM •
When you need local time VM does not simply add the local off set
back in, instead it keeps track of the TOD value at midnight and
subtracts that from the TOD value to get the interval into the
day. This approach:makes changing the local offset difficult,
and VM requires a nucleus assembly and an IPL to change from
daylight time to standard time. That's two IPL's a year just to
change a constant that should have been a variable.

In displaying the time, VM always uses local time, except for
the EXEC 2 system functions that return the GMT date and time
and make no provision for determining the local time. Many
sites have had EXECs quit working when they changed to using GMT
in the TOD clock instead of local time.

RSCS can also cause trouble with time zones. When you define a
site to RSCS you specify the offset in hours from GMT. RSCS
deduces whether you are in daylight savings time (based on U.S.
law) and adjusts the time and time zone label accordingly. But
not everybody in this country uses daylight savings time, and
not everyone uses hour offsets from GMT. The RSCS support is
very nice if it fits your situation, but it needs to allow
exceptions.

-9-

MVS support for local time.
MVS uses a slightly different strategy to provide local time.
The TOD clock is still set to the GMT time, but the offset from
GMT is maintained in units that correspond to the first word of
the TOD clock (1.04 ... seconds). To convert a TOD clock value
to local time, you need only do a single ADD LOGICAL.

The local offset may be specified in PARMLIB member PARMTZ, and
the local offset (but not the TOD clock) can be updated while
the system is running by using the SET CLOCK command.

In general, the MVS strategy is very good, but the MVS
implementation has a whole host of problems.

Problems with MVS support.

- Setting GMT.
When the MVS operator sets the TOD clock during IPL, MVS
displays both GMT and local time in nearly identical formats
on successive lines. If the TOD clock (GMT) is wrong, the
operator must enter the current date and time using GMT, not
local time, and specify 11 ,GMT" in his reply. Since the GMT
date changes several hours before the local date does, the
operator really has to be sharp to avoid a mistake. In
addition to having to know GMT, the date must be entered in
the yy.ddd format and nobody knows what that is without
looking at a calendar.

- Setting local time.
Once the GMT date is correct, a separate set of replies are
then used to set the local time. Since local time is
maintained as an offset from GMT, there are usually only two
possible valid values for the local offset. Yet MVS not only
makes it easy to set a bad value for the local offset, it is
nearly impossible to set the local off set exactly because the
value is calculated based on when you enter the reply.

The possibilities for mistakes are endless, and MVS does all
this when the operator is in a very confusing situation and
under a lot of pressure to hurry instead of being careful.

Probably the most common mistake is to set GMT wrong, but
local time correctly so that the bad GMT and the bad local
offset add to the correct local time. The whole mess is so
confusing that people who have run MVS for years get confused.

- The daylight savings change.
Once you get the GMT time and local offset set correctly the
other problem is the daylight savings change. Unlike. VM, MVS
allows you to change the local time without an IPL so you
should be able to make the daylight savings change on the fly.
We even did it once in production. SMF data uses local time
for time stamps, so it really got messed up. JES2 automatic

-10-

commands also use local time and they were halted. There are
probably other problems, but those were enough for us. We IPL
for the daylight savings change.

- Local offset error.
Since local offset's are in seconds, but the system records it
in units of 1.04 seconds, the local offset can never be exact
(unless it's zero). For Eastern time, the local offset always
has an error of at least 0.14 seconds, so an MVS DISPLAY TIME
command usually shows a difference in the seconds position
between GMT and local time. This should not cause any trouble
until the accuracy of the TOD clock is improved substantially.

Since most folks are able to run their systems, it is clear that
the problems with the date and time are not insurmountable, but it
is also clear that botn MVS and VM need to start making
improvements in their time-of-day support. Already the IPLs
needed for the daylight savings change are a significant fraction
of the IPLs for a year in many shops. But for today, the risk of
setting the date or time wrong is probably the worst problem that
most shops face.

VERIFYING THE DATE AND TIME

Both MVS and VM accept a bad date with no questions. That makes
absolutely no sense. Code to verify that the TOD clock and local
offset are correct can be run early in the IPL sequence. For VM _
this could be in the AUTOLOGl PROFILE EXEC, and for MVS it can run
as a started task either prior to or just after bringing up JES.
Any mistake that you discover this early can usually be corrected
without any damage.

Verifying the date.
A program that runs at each IPL, shutdown, and at least once a
day in between can record the current date and time. This
program can then verify that the date at IPL is correct to
within a day or tw6 by requiring that an IPL be after the last
recorded time, and not more than a couple of days later. That
will eliminate most of the really pyrotechnic mistakes.

Use the day of the week.
Of course, if the operator has simply turned the calendar two

·pages instead of one you are probably still going to get the
date wrong. However, operators usually know the day of week
without using a calendar, so if you ask for the day of week you
can usually detect errors that come from looking at the wrong
day in the calendar.

Ask dumb questions, get dumb answers.
The design of verification routines deserve some care. If all

· they do is ask "is this right?", operators will get into the

-11-

habit of replying "yes". If you care about accurate
information, all replies have to require thought. (ask "What
day is it?", instead of "Is it Tuesday?"), and if the
verification routine thinks the date is wrong, a reply like "USE
BAD DATE" should be required in order to force the system to
continue. I would not want to be the operator who made that
reply with the date set wrong.

Verifying the time.
This technique for verifying the date works because most
mainframe systems run at least a little every day, but the time
of day can't be done that way. Gross checks on the time can be
made by asking what shift is running. This will detect an error
in which the operator forgets to use 24 hour time in setting the
clock (0100 instead of 1300). Most other errors such as
misreading the computer room clock or transposing digits can be
detected by asking the operator to re-enter the time a couple of
minutes after it·was first set. For instance, if 12:15 was
entered instead of 12:51, two minutes later the correct response
would be 12:53, while the validation routine would be expecting
12:17. If the times match up, the operator is probably setting
the clock correctly if the clock being used as a source is
correct.

Don't trust an electric clock.
The computer room clock has been the source of a bad time more
than once. If you use a regular electric wall clock, and have a
power failure you have a pretty good chance of getting the
computer clock set before somebody corrects the wall clock.
Throw it out. Battery powered wall clocks that are accurate to
a few seconds a year are not expensive, or you can get a wrist
watch, take off the band and glue the watch to the console. In
any event, make sure the clock has a 24-hour display.

Let the computer read the clock.
The easiest way to ensure an accurate time is with a clock the
computer can read. For purposes of getting the time set
reliably, probably the best clock is one that is physically
separate from a computer. This can either be set once and
forgotten, or it can include a radio that periodically sets
itself to the standard time via satelite or radio broadcasts.
However, any external source of the time will work. Some
installations use other CPUs that they access via shared DASO.
If you connect to another site via a TP line, you might be able
to get the time from that site.

Check the local offset.
Once the TOD clock is set correctly, it is usually easy to
verify that the local offset .is corr~ct. Most sites use only
two local offset values: one for standard time, the other for
daylight time. The change between them is made on predetermined
dates, so given ~ correct GMT, a program can determine which of
the two values should be in effect. Because of the ease with
which MVS allows the local offset to be set to total garbage,

-12-

this check is much more important for MVS than it is for VM.
l

TUCC EXPERIENCE WITH AN EXTERNAL CLOCK

As I described at the beginning of this paper, a while back, my
boss walked into my office with a HEATHKIT catalog, pointed to a
funny gadget and said, "Can you hook it up?" The funny gadget was
a radio that receives the National Bureau of Standards time signal
and puts it out on a standard ASCII interface. As we talked about
it, several things became clear. If we could get this thing
working, we could at least verify that the TOD clock was set
properly. We might even be able to set the TOD clock
automatically and:take it out of the hands of the operators
completely. Furthermore, we had wanted to change to running GMT
in the TOD clock but had never had the nerve to try it because we
were afraid of getting things fouled up, especially at night when
the local and GMT date are different. With an independent source
of the time, that would be no problem.

We got the clock, and eventually did all of this. Figure 7 shows
a diagram of how the clock is hooked up today.

Antenna
The antenna is outside the computer room in order to get away
from all the electrical noise. We have frequent thunderstorms
in our area so the antenna is grounded to the building frame.
Nevertheless, a nearby strike did knock the clock out one time,
so we now disconnect the antenna during thunderstorm season.

Heath Clock.
The HEATH clock receives radio station WWV from Boulder,
Colorado. WWV transmits the day of year and the time of day
once a minute, and can be used to get within a few milliseconds
of the correct time. When the receiver decodes four consecutive
times that match each other it updates its internal clock with
the correct date and time. Since the WWV signal does not
include the year it is maintained manually with switches that
must be changed each year. Once the clock is set, the time may
be read on demand through the ASCII interface. The clock is
accurate to a tenth of a second when it has been set recently,
but because we disconnect the antenna for several weeks at a
time, it is sometimes off by several seconds.

One note of caution: The HEATH company has an outstanding
reputation as a builder of home electronic gear. However, that
is their market, and a customer used to the care that a
mainframe vendor gives may find their support lacking. There
are other clocks on the market that are more suitable for a

-13-

mainframe environment. Some like ours, receive radio broadcasts
to set themselves, others are set manually.

Battery Backup
Without the battery backup the clock would be nearly useless.
We do not have a UPS, so we need the clock most after a power
failure. The HEATH clock can take up to a day to initially set
itself given our antenna and location, so without the backup it
will not be available after a power failure.

RS-232 Interface
The clock provides a terminal interface (DTE) and the Memorex
1270 requires a modem interface. The RS-232 interface cable
performs that conversion and sets up the interface so a write
from the 1270 triggers the clock to send its time out.

Memorex 1270
The 1270 is a TP box that provides a 2703 type interface. The
programs that read the clock allocate the Memorex port directly
without any TP access method such as TCAM. A 37X5 running EP
can do the same thing, but because the 37X5 is loaded by the
operating system you cannot always get to the clock at the
appropriate time.

Experiences With the External Clock.
The clock arrived in kit form (you can also get it assembled),
and like all HEATHKITs, the assembly was straightforward. The
clock worked the first time I turned it on, but with the indoor
whip antenna it too~ about a week to set itself. By then we had
a program working that could read the clock. We first used that
to measure how fast the TOD clock drifts from the correct time,
and determined it was almost a second a day. None of the CEs
believed that it could be that bad and were going to fix it
until they found specifications that said up to a 2-second error
is acceptable.

I went to work on a verification program that uses the ideas I
outlined earlier, while another prograrruner, Frank Schubert,
started working on a program to set the clock. We weren't sure
what the system would think if its TOD clock changed while it
was up and running, so Frank took the approach of writing a
stand-alone utility to set the clock. That makes the job
extremely complicated, but it definitely inv6lves no mods to the
system.

By August, 1984, I had the validation programs written and in
production, and we had installed the external antenna and
battery backup. Once we were confident that we could depend on
the clock, we got brave and made a change to use GMT in the TOD
clock. Much to our surprise, that change went off without a
hitch. A couple of ·months later, Frank got his TODSET program
working and we have been using it for almost two years. For
much of that time, we also ran a 370/168. To keep the CPUs set
to the same time, we used a signal splitter to allow both

-14-

machines to access the external clock.

At the August, 1984 SHARE, Jack Schudel of the Northeast
Regional Data Center in Florida became interested in the project
and within a few months they had gotten their own HEATH clock
and were using it with our software. Jack made significant
enhancements to the programs we sent him, and those improvements
are now part of the programs that we run. One of the big
surprises came when Jack noticed that their clock didn't always
show the correct time. He developed a monitoring program which
we picked up and used to determine that we had the same problem.
In fact, we had a whole host of problems, including reporting a
date of November 31, and spurious garbage in the output. Of
course the worst problem was setting itself incorrectly. We
observed an error of 3 days, and Jack saw one of 100 days. The
HEATH people.eventually resolved the problems and sent us new
chips. We have not seen any significant problems in almost a
year of continuous monitoring.

On a couple of occasions, the clock has broken and once had to
be sent back to HEATH for repairs. For such times we have a
small wrist watch glued to the 3081 service console that is set
to display the GMT date, time and day of week.

Programs to use the clock.
We have developed three programs for use with the clock:

GMTREAD - A diagnostic aid that simply reads the clock
TIMECHK - Verifies the TOD clock and local offset are correct
TODSET - Sets the clock (stand-alone)

GMTREAD
GMTREAD was written solely to test the read logic. We still
use it as a diagn~stic aid to see if the clock is working.

TIMECHK
TIMECHK runs under MVS/TSO or MVS/XA. It first reads the
external clock and verifies that the TOD clock is set
correctly. It also handles the year change and verifies that
the HEATH clock switches are set correctly. Once the TOD
clock has been verified, it determines if we are in daylight
time or not, calculates the correct local offset, and checks
that against the system value.

Once the TOD clock and local offset have been verified,
TIMECHK updates a dataset with the date and time of this run.
This data is then used in the next run to verify the date.
The date verifiqation logic requires that it be run at least
once a day. We run it at 2 AM so we will be· able to warn the
operators when the daylight savings change takes place.

TIMECHK can be run as a normal started task or as a subsystem
prior to starting JES. TIMECHK also has the monitor function
that was used to chase down the bugs in the HEATH clock, and

-15-

can be used to set the TOD clock if the computer only has one
TOD clock.

TOD SET
TODSET runs stand-alone and sets the TOD clock on a 370 mode
CPU. It uses a 3270 or 3066 console for operator
communication. When it is loaded it reads the external clock,
calculates the new TOD clock value and requests that the
operator press the TOD ENABLE switch. The program uses the
CPU timer to measure the delay in enabling the TOD SET, so
that the clock will be set correctly. Once set, it records
the date so that it can properly handle a year change. TODSET
supports multiple TOD clocks, and does not lose any accuracy
due to the time it takes to synchronize the clocks.

Once the time has been set, TODSET selects an IPL unit based
on the CPU serial number, displays the volume serial and waits
for the operator to press enter. When that occurs, it loads
the IPL text from the IPL unit and proceeds with the IPL of
the true system. If the operator wishes, a different load
unit can be requested for loading a different system. The new
load address can be a temporary change, such as for loading a
test system, or a permanent update can be made.

TODSET recognizes a VM system in need of a warm start, and
bypasses the set logic in order to avoid damaging any warm
start data. Once VM has saved warm start data and gone into a
wait state, TODSET can be.reloaded to set the TOD clock.

SOLVING THE TOD DRIFT PROBLEM -- THE NASA APPROACH

If you ask most people how close the TOD clock needs to be they
will usually say a couple of minutes, but as we have learned, the
accuracy really depends on the application. When I asked a
programmer who works ·on the NASA ground control system what their
TOD clock requirements were, he said, "Oh, they're pretty loose,
only about 10 milliseconds or so." Our 3081 loses 10 milliseconds
in 15 minutes. Setting the clock is only half their problem.
They also have to maintain an accurate value.

The NASA system for maintaining the TOD clock uses an external
clock and hardware RPQs (available only on 303x and 308x machines)
to improve the TOD clock hardware. The RPQs allow the clock to be
set very precisely and keep the TOD clock on time by using the
external clock's frequency source. Once set, the TOD clock will
stay on time indefinitely. The external clock that NASA uses is
part of their overall system for keeping their various t~acking
stations synchronized, and should allow them to keep their TOD
clocks within a few microseconds of the correct time.

The programs that set: the clock run in a 370 or XA environment and

-16-

can handle CPUs with more than one TOD clock. They run as MVS
started tasks and set the clock after the system is up and
running. They should of course be run early in an IPL.

In essence, the NASA system solves all problems with maintaining
the correct time except for leap seconds. When a leap second
occurs, something has to give. Either you don't change your TOD
cl~ck and accept a 1 second error (when 10 milliseconds is the
goal), or you update the clock and give up the ability to do exact
interval calculations. To properly solve the leap second problem,
you need to be able to run the TOD clock without leap seconds, and
keep track of how many leap seconds must be added to the TOD clock
to get GMT.

SUMMARY

1. Calendars and clocks have evolved over the years to where there
is a body of international agreements to say how timekeeping
should be done. Computer people should not attempt to invent
their own methods (and funny names), but should simply adopt
what the rest of the world uses.

2. The TOD clock architecture is more than adequate for the needs
of VM and MVS, but the present hardware implementation is
inadequate for certain applications. Either hardware
improvements will be made, or these applications will be done
some other way.

3. Both MVS and VM make it much too easy to set the TOD clock
wrong. However, customer run verification routines can be used
to detect errors b~fore any real damage has been done.

4. Verifying the time.using an external clock is a reasonable way
to insure that the TOD clock is set properly, but maintaining
the time correct to better than a second a day requires
hardware improvements to the TOD clock.

-17-

BIBLIOGRAPHY

IBM Corporation. IBM System/370 Principles of Operation,
GA22-7000-9, May 1983, pp. 4.23-4.28

Karnas, George, and Ho~e, Sandra. "Time and Frequency Users'
Manual", National Bureau of Standards publication 559, 1979

Landes, David. Revolution in Time, Belknap Press, Cambridge,
Mass, 1983

Moyer, Gordon. "The Gregorian Calendar", Scientific American, (May
19 8 2) ' pp . 14 4 -15 2.

Readhead, Anthony. "Radio Astronomy by Very-Long Baseline
Interferometry", Scientific American, pp. 52-61 (June, 1982)

Ronan, Colin, et. al, "Calendar'', Encyclopaedia Britannica,
Macropaedia 3, 1986, pp. 595-612

Wardship, Schuyler, and Hocking, William. "NASA PTTI Programs:
Present and Future", Proc. 12th Annual Precise Time and Time
Interval (PTTI) Conference, Goddard Spaceflight Center,
Greenbelt MD, Dec.· 1980, pp. 151-198

-18-

Time Requirements for Various Applications

PRECISION

1 minute
1 second
1 millisecond
1 microsecond
10 nanosecond

SOURCE

Radio, TV
Telephone
HF radio (WWV)
LORAN-C
Satellite/LASER

APPLICATION

Human schedules
Celestial navigation
Power company records
Radio-astronomy (VLBI)
Spacecraft tracking

The precision of a clock measures how fast it gains or loses time.
The precision listed here is not an absolute number, but rather an
order of magnitud:e.· Lets look at these applications.

People in today's world can get by with a clock that is off by 5
minutes, but a 10 minute error begins to be noticable. You miss
planes, or you get out of a session late and all the Cokes are
gone. If your clock loses much more than a few minutes a day, you
will have problems.

~n celestial navigation, an error of 1 second per day in the
chronometer in the course of a 6 month voyage can amount to a 50
mile error. (I know that island is around here somewhere .•.)

Power companies use accurate clocks not only to
clock correct, but also to track down problems.
can cause a cascading sequence of failures, and
can require knowing the exact sequence in which
the system went down.

keep your wall
A major outage

locating the cause
various parts of

To me, one of the most fascinating uses of accurate times is in
Very-Long-Baseline-Interferometry. Here signals from widely
separated radiotelescopes are combined to provide an effective
resolving power of a telescope nearly as big as the separation of
the stations! Astronomers record what they receive at a rate of 4
million samples per second. They then combine the tapes from
different stations using digital signal processing. Although
final synchronization of the signals is done mathematically, the
initial time stamp on a sample needs to be within a fraction of a
microsecond to begin with.

Keeping track of satellites in orbit requires a worldwide network
of radar stations. Apparently state-of-the-art equipment requires
that each station be exactly on frequency. This correlates to
being able to maintain the time at remote sites accurate to a few
nanoseconds. Time transfer between remote sites at this level of
precision can be done ·with LASER transmission from a satellite
since the path time of the transmission is a constant.

FIGURE l

.,,
H
cp
c
;o
rn

1'J

10•

60°

40•

zo·

o•

20·

90•

:;!
·:i
111
::1
:'·;

.::;

14

ti DAY -I
12
u o•

i!1!i 1 · i ·'W "i'
'l!:;l.'. t

~:fii
:1;1: l '~i

.:l 1 ii:i1.~
'I" F'
I Ii! j1 i~'1

11
I 65"

:i
; ·~·ilf-·

,.'.! .•• ~,i.:!:.ii·:':
',;:::,I·~ I :::;·([-'

1 r, ·,hi•
•"': .!. ·i\·;;!,

lld~IH P1Clflt: nCEA/f

l,J~ J:J'i

9

u
£
u
c(
0..
8

I 20•

z
c(...
z
:>
0
:E
7

105.

.J
c(
a: ... z
w
u
6

z
a:
w ...
111
c(
w
s

75•

~
....
z
c(
.J ...

• c(

4 3 2 0 23 22 21 20 19
15• o• 15• 30° H• 90°

so•

60°

40°

20•

o•

20•

u·l-··J j·:':1'1!,.,1. ··111::1· Y·;''' _...;:,.::· 11·::1,::·· I'-~".!- "' 1
11 1!· .. 1 f'"· ., l.[.i..,,, (:l.,.,, 1 .. , ,.·: •'.•""'• ',.:'""' sobl#ArlA!fll ecfA ... 1,.1,.·,

. .:iil;!l 11 ;.t!~i:::; :;:'.~~~ .;!:;I~ ·/ii::W I::.:·\·:· ·,:::1 .. ·: ·I.:;':·)f:·. ,'..:-:; .•
40°

1j o ;.~1·;1;, 1 ii1Ij:;:' l .;!~lv.1 x :.I~[v :'!i'if 1 !';l~h P "'1i~i: N ·:
11.'zJ.' A

1!;0(c ·lbt E
, 6 • r :I i H • t .'j do 1' • 11 'j ii 2-! • 11 'I- i o, -' ."I- s :, • r ',~ -6 i1: · 5 • J ;tj - ii'. -1 , 1! o I:" • 1 '.;! • 2 h n I ; 4 \

1
• 5

'r
'6

60•1-: ""·':1~' i"ll'.[, 1.:.ri.1 'i'.,~' ':.•'j ,'"Ji .:.,'., c',, .:!:••!,' .'.·~· •;_ 60•

165° 150' 115° 15' I 05•

Q) ...
[]]EVEN NUMBERED ZON(DODD NUMBERED ZONE Llj HALF HOUR ZONE

CD ...
a COllNIRllS A!IO ARIAS WlllCfl fl~V£ NOi ADOPlfD

zorrr SYSl£M, OR WllFRI llME DlfHRS Olli[R lllAN
HALf llOUR fl!JJM NEIGllBORlllG ZONES.

(Jl

+
f:)

::J
a_
p
-,
o_

-\
3
Ct>

N
0
::J
r>
tr)

I

Example 3: Converting to TOD clock format

*
*
*
*
*
*
*
*
*

*
TODl

*
*
*
*
*

THE VARIABLES ARE USED:
4 BYTE YEAR (BINARY)

FOLLOWING
ARGYY
ARGDDD
ARGHUN
ARGTOD

4 BYTE DAY OF YEAR (ODD BINARY)
4 BYTE TIME OF DAY (BINARY, .01 SEC)
8 BYTE OUTPUT TOD VALUE

FOR YEARS OTHER THAN ZERO, THE
DAY OF CENTURY = CEIL(YY*365.25)-l
FOR YEAR 0, ITS JUST DOD
L Rl,ARGYY
LTR Rl,Rl

+ DOD

BE TODl DAY OF YEAR 1 TOO HIGH UNLESS YEAR 0
M RO,=F'36525'
A -Rl,=F' 99' CEIL FUNCTION
D RO,=F'lOO'
SUBTRACT 1 TO GET CORRECT DAY OF CENTURY DUE TO YEARS
BCTR Rl,O (SINCE YEAR 0 ISNT A LEAP YEAR)
DS OH
A Rl,ARGDDD
BCTR Rl,O ARGDDD IS 1 ORIGIN, WE NEED 0 ORIGIN

CONVERT TO MICROSECONDS: MULT BY 24 * 60 * 60 * 10**6
THIS FACTOR WONT FIT IN 32 BITS,
SO CHANGE IT TO: 3*8 * 15*4 * 15*4 * 5**6 * 2**6

OR: (3 * 15 * 15 * 15 6 2 5) * 2**13
WHICH CAN BE DONE BY A MULTIPLY FOLLOWED BY A SHIFT OF 13 BITS

SPACE 1 _
M RO,=A(3*15*15*15625)
SLDL R0,13
L Rl5,ARGHUN
M Rl4,=A(l0000)
SPACE 1

TIME IN .01 SEC UNITS
NOW IN MICROSECONDS

* · NOW ADD IN TODAYS TIME
AR RO,Rl4

(DOUBLE PRECISION ADD LOGICAL)
ADD HIGH ORDER PART

ALR Rl,Rl5
BC 12,NOCARRY
A RO,=F'l'

ADD LOW ORDER PART
CC=8:0,NOCARRY. CC=4:~0,NOCARRY

PROPOGATE CARRY
NOCARRY DS OH

SPACE 1
* RO,Rl NOW HAS TIME IN MICROSECONDS

SLDL R0,12 CONVERT TO TOD FORMAT
STM RO,Rl,ARGTOD SAVE OUTPUT IN PARM LIST

FIGURE 3

Example 4. Converting from TOD clock format

The same variable names are used as in Example 3, but the
routine runs the other way. This routine truncates the time of
day to .01 second. To avoid that, save the bits dropped off in
the first SRDL, and catenate that to the remainder following the
divide by 10000.

*

*
*
*
*

*

*

FRTl

CONVERT TOD value TO YY,DDD,.OlSEC format
LM RO,Ri,ARGTOD GET INPUT VALUE
SRDL R0,12 CONVERT TO MICROSECONDS
STM RO,Rl,ARGMIC SAVE VALUE FOR LATER
SRDL R0,13 DO FIRST HALF OF DIVIDE
D RO,=A(3*15*15*15625) Rl IS DAYS IN CENTURY

This next statement is hard to convince yourself is true,
but if jou keep close track of the units, you can see it is:

RO AND THE LOW 13 BITS of ARGMIC IS MICSEC INTO THE DAY
DEAL WITH THE TIME OF DAY FIRST

LR R2,RO GET HIGH PART INTO EVEN REGISTER
L R3,ARGMIC+4 GET LOW PART INTO ODD
SLL R3,(32-13) BUMP THEM UP AGAINST EACH OTHER
SRDL R2,(32-13) AND BACK DOWN TO LOW BITS
D R2,=A(l0000) CONVERT TO .01 SEC
ST R3,ARGHUN (IGNORE REMAINDER)

NOW GET YYDDD FROM DAY PART IN Rl
A Rl,=F'l' CONVERT FROM 0 ORIGIN TO 1 ORIGIN
M RO,=F'lOO' AND DIVIDE BY 365.25 DAYS IN A
D RO,=F'36525' YEAR. Rl=#YEARS, RO IS ROUGHLY

LR
SR
D
LTR
BE
A
DS
ST
ST

R3,RO
R2,R2
R2,=F'l00'
Rl,Rl
FRTl
R3,=F'l'
OH :
Rl,ARGYY
R3,ARGDDD

lOO*DAY OF YEAR.

R3 HAS # DAYS-1, EXCEPT FOR YY=O
YEAR O?
YES, SKIP NONYRO CORRECTION

ARGMIC DS D WORKAREA TO HOLD TOD IN MICROSEC

FIGURE 4

Example Sa. Calculate date of last Sunday in October.

This code segment calculates the date of the last Sunday in
October in the format yy.ddd. It uses a subroutine that
converts a mrn/dd/yy date into a yy.ddd date and also returns the
day of week. Most people are familiar with code to convert from
mrn/dd/yy format to yy.ddd, so that code is not shown. Example
Sb shows how to get day of week from the yy.ddd date.

MVC
LA
BAL

FALLBACK+6(2),CURYY GET CURRENT YEAR INTO DATE
POINT TO PARM

*

Rl,FALLBACK
Rl4,MDYCNVT

HAS YYDDD AND
RO,OCTSUN

GET YYDDD AND WEEKDAY OF 10/31/YY
RlS HAS DAY OF WEEK (O=SUNDAY) NOW, RO

ST
CVD
SP

Rl5,DBLWORK CONVERT DAY # TO DECIMAL
OCTSUN,DBLWORK GET YYDDDC OF LAST SUNDAY IN OCT

FALLBACK DC
CURYY DC
DBLWORK DS

OCT SUN DC

C'l0/31/YY'
C'86'
D

F'O'

DATE DST FALLS BACK TO STD TIME
CURRENT YEAR
WORKAREA

OUT: YYDDDC OF LAST SUN IN OCT

Example Sb. Calculate day of week given yy.ddd date

*
*
*

DAY OF WEEK IS MOD(DAYOFCENT,7)
DAY OF CENTURY IS CEIL(365.25*YY)+DDD-l

MDYO

MDYYR
MD YD DD

MDYDOW

(EXCEPT FOR YY=O:
L Rl,MDYYR
LTR Rl,Rl
BE MDYO
M RO,=F'36525'
LA Rl,99(Rl)
D RO,=F'lOO'
OS OH
A Rl,MDYDDD
BCTR Rl,O
SR RO,RO
D RO,=F'7'
ST RO,MDYDOW

DS
OS

DS

F
F

F

DAY OF CENTURY = DOD

IF YEAR 0, ITS JUST ODD

DO CEIL

LESS 1 {1900 NOT LEAP YR)
DIVIDE DAY OF CENTURY BY

7. THE REMAINDER IS THE
DAY OF WEEK {SUNDAY=O)

BINARY YEAR (YY)
BINARY DAY OF YEAR (ODD)

OUTPUT: DAY OF WEEK

FIGURE 5

Example 6a. Double precision add logical

Note: The result of an add logical is the same as a two's
complement add except that overflow is not considered an error.

LM RO,Rl,ADDENDl
AL RO,ADDEND2 ADD HIGH ORDER PART
AL Rl,ADDEND2+4 ADD LOW ORDER PART
BC 12,NOCARRY CC=8:0,NOCARRY. CC=4:-.0,NOCARRY
A RO,=F'l' PROPOGATE CARRY

NOCARRY DS OH
STM RO,Rl,TOTAL TOTAL <- ADDENDl + ADDEND2

ADDENDl DS D FIRST ADDEND
ADDEND2 DS D SECOND ADDEND

TOTAL - OS D OUTPUT: ADDENDl + ADDEND2

Example 6b. Double precision subtract logical.

Note: The result of a subtract logical is the same as a two's
complement subtract except that overflow is not considered an
error.

LM R2,R3,MINUEND
SL R3,SUBTHEND+4 SUBTRACT LOW BITS.
BC 15-4,DELNOBOR CC=4 NEEDS A BORROW
SL R2,=F'l' BORROW ONE

DELNOBOR DS OH
SL R2,SUBTHEND SUBTRACT HI BITS
STM R2,RJ,DIP DIP <- MINUEND - SUBTHEND

MINUEND OS D FIRST NUMBER IN SUBTRACT
SUBTHEND DS D SECOND NUMBER IN SUBTRACT

DIP DS D DIP <- MINUEND - SUBTHEND

FIGURE 6

'):
:>

rn

='

)<

~
~

(b

..
,

::5

;
l

?
j)

p

-
~

(>
 :

r:

-
ft>

c

0
p

(
l

-
t-

n 0
~
~

I>

H
 ;o

0

:>

lf
l

~
·

"'"\

l"
-l

("
') x
-

-+
.>

V
J

~
fV

H

(0

:::>

~

CV

ln
 ;+
-

-
3

~
o
 ...,

-
O

fO

.P
 -+

">"
'

0 :J

(1

-u

c

The TIMECHK program

The TIMECHK program checks the TOD clock agains the GMT clock and
verifies that the local offset is correct. We run TIMECHK during
IPL and each morning at 2:00 AM. The daily run insures that there
will never be a big jump in the date, and allows detection of the
daylight savings change as soon as it occurs.

Highlights of this program are:

* It reads the HEATH clock and verifies that the time is correct
to within one minute. If the time doesn't check out, the

:operator must reply "USE BAD DATE" to continue.

* It records the date and time of execution and requires that
time not go backwards, nor jump forward by more than 30 hours.

* When the external clock is not available, and in a couple of
other conditions,· the operator is asked to supply the date and
day of week. They must be consistent to be considered valid.

* When the date changes from December to January, a new year is
assumed, and if verified by the operator, it will be recorded
for use in the next run. Following a year change, it requests
that the switches in the clock be corrected.

* It verifies that the local offset is correct. The local
offsets to be used for standard and daylight time are
specified as assembly parms, and can be zero if local time is
used in the TOD clock.

* TIMECHK runs as an MVS started task and can be run as a
subsystem prior to starting JES.

FIGURE 8

The TODSET Program

TODSET is a stand-alone utility that is IPLed to set the clock.
Once the time is set it can automatically IPL an MVS/370 or VM
system.

Highlights are:

* It reads the HEATH clock and sets the TOD clock to the correct
time. The operator must enable the TOD security switch when
requested, but is not responsible for doing it at a precise
instant.

*'The TOD clock can be set using GMT or local time.

* After setting the clock, TODSET displays a suggested IPL unit
and volume based on the CPU serial number. The operator can
change the unit if desired, and then press "ENTER" to cause
TODSET to IPL that system. The IPL unit change can be either
temporary (for a test system), or permanent. TODSET makes the
IPL unit making the selection based on CPU serial number, so
only one copy of the program is required if multiple CPUs can
access the same DASO volume.

* Console communication supports 3066 and 3270 consoles.

* When the date changes from December to January, a new year is
assumed and is recorded for use by the next run.

* TODSET supports 3jo mode CPUs, and will properly handle an MP
with more than one TOD clock. It does not support the XA
environment.

* It detects a VM system in need of a warm start, and
immediately gives control to the VM system so that the warm
start data is not damaged.

* TODSET does not require any modifications to the system, and
can be bypassed if bugs are encountered.

'

FIGURE 9

TOD clock RPQ features

The system that NASA uses to keep their clocks synchronized with
standard time requires two RPQs for their TOD clocks. As far as I
can determine, these are available only on 303x and 308x CPUs.
One RPQ simply adds a special DIAGNOSE code that allows the TOD
clock to be set without operator intervention. The other has
several features:

* Adds a READ EXTERNAL CLOCK instruction that reads the external
clock value directly into memory without using normal I/O.

* Provides the ability to use an "on-time" pulse from the
external clock so that the exact instant the TOD clock is set
can be determined by the external clock

* Provides the ability to use an external frequency source to
keep the TOD clock on time.

There is another TOD clock RPQ that is used by the airline
industry for the Airline Control Program. This RPQ hooks up two
CPUs and allows exact synchronization of their TOD clocks much
like multiple TOD clocks in an MP. Unfortunately, this RPQ is
mutually exclusive with the READ EXTERNAL CLOCK RPQ. The Airline
RPQ is preferable to the READ EXTERNAL CLOCK RPQ when exact
synchronization of. the clocks is more important than being able to
keep the clocks on time.

FIGURE 10

