
--------- - ---- - -- - ---- - - ----------- ·-

I

Systems Application Architecture

Common Programming Interface
Communications Reference

I I
I 'D' I
I I I I

SC26-4399-1

I

--------- ----- - -- --. ---- -- -----------·-
Systems Application Architecture

Common Programming Interface
Communications Reference

SC26-4399-1

Second Edition (October 1988)

This edition applies to IBM's Systems Application Architecture as announced in March 1987, and expanded
in October of that year.

Summary of Changes

The major change of this book over the SC26-4399-0 version is the inclusion of Appendixes E and F, which
provide, respectively, VM-specific information and example COBOL programs. Minor changes to the text
and illustrations have been indicated by a vertical line to the left of the change. Editorial changes that have
no technical significance are not noted.

Before using this publication in connection with the operation of IBM systems, consult the latest IBM
System/370, 30xx, and 4300 Processors Bibliography, GC20-0001, or IBM AS/400 Information Directory,
GC21-9678, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not of itself constitute or imply a grant of (i) any license under any
patents, patent applications, trade_marks, copyrights, or other similar rights of IBM or of any third party; or
(ii) any right to refer to IBM in any advertising or other promotional or marketing activities. IBM assumes
no responsibility for any infringement of patents or other rights that may result from use of the subject
matter described in this document or for the manufacture, use, lease, or sale of machines or programs
described herein, outside of the responsibilities assumed via the agreement for purchase of IBM machines
and the agreement for licensed programs.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and
conditions. IBM does not grant licenses under its appearance design patents. Inquiries relative to
licensing should be directed in writing to the IBM Director of Commercial Relations, International Business
Machines Corporation, Armonk, New York, 10504.

The following sentence does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: International Business Machines provides this publication "As Is" without
warranty of any kind, either express or implied, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Within the United States, some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore, this statement may not apply
to you.

Requests for IBM-publications should be made to your IBM representative or to the IBM branch office
serving your locality. If you request publications from the address given below, your order will be delayed
because publications are not stocked there.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Dept G60, P.O. Box 6, Endicott,
NY, U.S.A., 13760. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1988
All Rights Reserved.

Contents

Chapter 1. Introduction .
Purpose and Structure
Who Shot.lid Read This Book . 2
What Is Systems Application Architecture . 2

Supported Environments . 2
Common Programming Interface . 3

How to Use This Book . 3
General Path through the Manual . 4

Related Publications . 5
For Systems Application Architecture . 5
For Implementing Products . 5
For LU 6.2 . 5

Interface Definition Table . 6

Chapter 2. CPI Communications Terms and Concepts 7
Communication across an SNA Network . 8
Program Partners and Conversations . 9
Operating Environment 10

Side Information ... 11
Node Services .. 12
Operating System . 12

Program Calls .. 13
Conversation Characteristics 14

Modifying and Viewing Characteristics 17
Program Flow - States and Transitions 17
Naming Conventions - Calls and Characteristics, Variables and Values 19

Chapter 3. Program-to-Program Communication Tutorial 21
Starter-Set Flows . 22

Example 1: Data Flow in One Direction 23
Example 2: Data Flow in Both Directions 26

Advanced-Function Flows 29
Data Buffering and Transmission 29
Example 3: The Sending Program Changes the Data Flow Direction 30
Example 4: Validation and Confirmation of Data Reception 32
Example 5: The Receiving Program Changes the Data Flow Direction 34
Example 6: Reporting Errors 36
Example 7: Error Direction and Send-Pending State 38

Chapter 4. Reference Section . 41
Cal I Syntax . 42
How to Use the Call References . 43
Locations of Key Topics 43
Accept_Conversation (CMACCP) 47
Allocate (CMALLC) . 49
Confirm (CMCFM) .. 52
Confirmed (CMCFMD) 54
Deallocate (CMDEAL) . 56
Extract_ Conversation_ Type (CMECT) 59
Extract_Mode_Name (CMEMN) 60
Extract_Partner_LU_Name (CMEPLN) 62

Contents iii

Extract_Sync_Level (CMESL) 64
Flush (CMFLUS) -. 66
lnitialize_Conversation (CMINIT) 68
Prepare_To_Receive (CMPTR) 71
Receive (CMRCV) .. 74
Request_To_Send (CMRTS) 81
Send_Data (CMSEND) 83
Send_Error (CMSERR) ~ 88
Set_ Conversation_ Type (CMSCT) . 93
Set_Deallocate_Type (CMSDT) 95
Set_Error_Direction (CMSED) 98
Set_Fill (CMSF) . 100
Set_Log_Data (CMSLD) . 102
Set_Mode_Name (CMSMN) . 104
Set_Partner_LU_Name (CMSPLN) 106
Set_Prepare_To_Receive_Type (CMSPTR) 108
Set_Receive_Type (CMSRT) 110
Set_Return_Control (CMSRC) . 112
Set_Send_Type (CMSST) 114
Set_Sync_Level (CMSSL) 116
Set_ TP _Name (CMSTPN) . 118
Test_Request_To_Send_Received (CMTRTS) . 120

Appendix A. Variables and Characteristics 123
Pseudonyms and Integer Values 123
Character Sets . 126
Variable Types ... 128

Integers . 128
Character Strings . 128

Appendix 8. Return Codes 131

Appendix C. State Table . 137
Explanation of State-Table Abbreviations 137

Conversation Characteristics () . 138
Return Code Values [] . 139
data_received and status_received { , } . 140
Table Symbols ... 140

How to Use the State Table 141

Appendix D. CPI Communications and LU 6.2 . 147
Send-Pending State and the error_direction Characteristic 148
Can CPI-Communications Programs Communicate with APPC Programs? . 149
SNA Service Transaction Programs . 149

Appendix E. CMS VM/SP-Extension Information 153
Invoking CPI-Communications Routines in VM/SP 153
Special VM/SP Notes . 154

Side Information .. 154
Interrupts . 155
VM/SP-Specific Errors . 155
Other VM/SP-Specific Notes for CPI-Communications Routines 156

Overview of VM/SP Extension Routines 157
Security . 157

iv SAA CPI Communications Reference

Resource Manager Programs . 157
Intermediate Servers . 157
Summary . 158

Extract_Conversation_Security_User_ID (XCECSU) 160
ldentify_Resource_Manager (XCIDRM) 162
Set_Conversation_Security_Password (XCSCSP) 165

Set_Conversation_Security_Type (XCSCST) 167
Set_Conversation_Security_User_ID (XCSCSU) 169
Set_Client_Security_User_ID (XCSCUI) 171
Terminate_Resource_Manager (XCTRRM) . 173

Wait_on_Event (XCWOE) . 174
Programming Language Considerations . 177

c .. 177
COBOL .. 177
CSP (Application Generator) . 178
FORTRAN . 178
REXX (SAA Procedures Language) 178
Pascal ... 179
PL/I . 179

Variables and Characteristics . 179

Appendix F. Sample Programs 181
SALESRPT (Initiator of the Conversation) . 182
CREDRPT (Acceptor of the Conversation) . 186
Pseudonym File for COBOL 191
Results of Successful Program Execution . 194

Glossary 195

Index 197

Contents V

Vi SAA CPI Communications Reference

Figures

1. Programs Using CPI Communications to Converse Through an SNA
Network . 8

2. Operating Environment of CPI-Communications Program 10
3. Data Flow in One Direction 25
4. Data Flow in Both Directions 27
5. The Sending Program Changes the Data Flow Direction 31
6. Validation and Confirmation of Data Reception 33
7. The Receiving Program Changes the Data Flow Direction 35
8. Reporting Errors 37
9. Error Direction and Send-Pending State 39

Figures Vii

Viii SAA CPI Communications Reference

Tables

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.

Major Elements of the Communications Interface
Breakdown of Calls between Starter Set and Advanced Function
Characteristics and Their Default Values
Variables/Characteristics and Their Possible Values
Character Sets 01134 and 00640 .
Variable Types and Lengths
States and Transitions for CPI-Communications Calls ·
Relationship of LU 6.2 Verbs to CPI-Communications Calls
Contents of a CMS Communications Directory File
Overview of VM/SP Extension routines
VM/SP Variables/Characteristics and their Possible Values
VM/SP Variable Types and Lengths

·5

14
16

124
126
129
142
150
154
158
180
180

Tables ix

X SAA CPI Communications Reference

Introduction

Chapter 1. Introduction

This introductory chapter:

• Identifies the book's purpose, structure, and audience
• Gives a brief overview of Systems Application Architecture™ (SAA)
• Explains how to use the book.

Purpose and Structure
This book defines the Communications element of SAA's Common Programming
Interface (CPI). CPI Communications provides a programming interface that allows
program-to-program communications using IBM's Systems Network Architecture
(SNA) logical unit 6.2 (LU 6.2). In addition to this chapter, this book contains the
following sections:

• Chapter 2, "CPI Communications Terms and Concepts"

This chapter describes basic terms and concepts used in CPI Communications.

• Chapter 3, "Program-to-Program Communication Tutorial"

This chapter provides a number of sample flows that show how a program can
combine CPI-Communications calls for program-to-program communication.

• Chapter 4, "Reference Section"

This chapter describes format and function of each of the CPI-Communications
calls.

• Appendix A, "Variables and Characteristics"

This appendix describes the CPI-Communications variables and conversation
characteristics.

• Appendix B, "Return Codes"

This appendix describes the return codes that may be returned when
CPI-Communications calls are executed.

• Appendix C, "State Table"

This appendix explains when and where the CPI-Communications calls can be
issued.

• Appendix D, "CPI Communications and LU 6.2"

For programmers who are familiar with the LU 6.2 application programming
interface, this appendix explains the relationship between LU 6.2 verbs and
CPI-Communications calls ..

• Appendix E, "CMS VM/SP-Extenslon Information"

This appendix contains information about VM/SP extensions to CPI
Communications.

Systems Application Architecture is a trademark of International Business Machines Corporation.

Chapter 1. Introduction 1

Introduction

• Appendix F, "Sample Programs"

This appendix contains two sample COBOL programs using CPI
Communications.

Who Should Read This Book
This book is intended for programmers who want to write applications that adhere
to the Communications interface. Although the book is designed as a reference,
Chapter 3, "Program-to-Program Communication Tutorial" provides a tutorial on
designing application programs using CPI-Communications concepts and calls.

What Is Systems Application Architecture
SAA is a definition - a set of software interfaces, conventions, and protocols that
provide a framework for designing and developing applications with cross-system
consistency.

Systems Application Architecture:

• Defines a common programming Interface that can be used to design
applications easily integrated with other applications and made to run in
multiple SAA environments

• Defines common communications support for connection of applications,
systems, networks, and devices

• Defines a common user access that allows consistency in panel layout and
user interaction techniques.

• Offers some common applications written by IBM using the above.

Supported Environments
SAA provides a framework across these IBM computing environments:

• TSO/E in the Enterprise Systems Architecture/370™

• CMS in the VM/System Product or VM/Extended Architecture

• Operating System/400™(0S/400™)

• Operating System/2™(0S/2™) Extended Edition

• IMS/VS Data Communications in the Enterprise Systems Architecture/370™

• CICS/MVS in the Enterprise Systems Architecture/370™.

Operating System/2, Operating System/400, Enterprise Systems Architecture/370, OS/2, and OS/400 are
trademarks of the International Business Machines Corporation.

2 SAA CPI Communications Reference

Introduction

Common Programming Interface
As its name implies, the CPI provides languages, commands, and calls that allow
development of applications that will take advantage of the consistency offered by
SAA. These applications are then more easily integrated and transported across
the supported environments.

The components of the interface currently fall into two general categories:

• Languages

Application Generator
c
COBOL
FORTRAN
Procedures Language
RPG

• Services

Communications Interface (defined by this book)
Database Interface
Dialog Interface
Presentation Interface
Query Interface

The CPI is defined by this manual and the other CPI reference books. It is not, in
itself, a product or a piece of code. But- as a definition - it does establish and
control how IBM products are being implemented, as well as providing a common
base across the SAA environments.

In addition to the CPI, the other elements of SAA should be considered when
designing an application. A list of SAA books can be found under "Related
Publications" on page 5 and on the back cover of this book.

How to Use This Book
This section describes the relationship between SAA CPI Communications and the
operating systems on which it is implemented, explains how that relationship is
indicated in this book, and provides a general path through the book for a more
comprehensive understanding of SAA CPI Communications.

Relationship to Products
SAA CPI Communications defines the elements that are consistent across the SAA
environments. Preparing and running programs requires the use of a
CPI-Communications product that implements SAA on one of those systems. CMS
is the current implementing product for CPI Communications.

CMS has its own set of product documentation, which will be required in addition
to this one. The product documentation describes additional system-dependent
elements, such as, for example, how to prepare and run a program in that
particular environment.

See "Related Publications" on page 5 for a list of the product documentation
currently available.

Chapter 1. Introduction 3

Introduction

How Product Implementations Are Designated

Syntax

Because SAA is still evolving, complete and consistent products may not be
available yet on all systems. Some interface elements may not be implemented
everywhere. Others may be implemented, but differ slightly in their syntax or
semantics (how they are coded or how they behave at run time).

These conditions are identified in this book in two ways:

• A system checklist precedes each interface element. If the interface element is
implemented on a particular system, that column is marked with an X. If it is
not yet implemented on a particular system, that column is blank. In the
following example, an implementation is available on CMS, but not on TSO/E,
OS/400, OS/2, IMS, or CICS.

TSO/EI c:s I OS/400 I OS/2 IMS CICS

• The SAA Communications Interface definition is printed in black ink. If the
implementation of an interface element in an operating environment differs in
its syntax or semantics, the text states that fact and is printed in green - as is
this sentence.

A discussion of the conventions used specifically by CPI Communications within
this manual can be found in "Naming Conventions - Calls and Characteristics,
Variables and Values" on page 19.

General Path through the Manual
This book contains both tutorial and reference information. Use the path identified
below to achieve the most benefit.

• Read Chapter 2, "CPI Communications Terms and Concepts" for an overview
of the terms and concepts used in CPI Communications. It is required to
understand the sample program flows shown in
Chapter 3, "Program-to-Program Communication Tutorial."

• Chapter 3, "Program-to-Program Communication Tutorial" explains how to
use the CPI-Communications calls and provides examples. When reading this
chapter, use Chapter 4, "Reference Section" to obtain additional information
about the function of and required parameters for the CPI-Communications
calls.

• Use Chapter 4, "Reference Section" and the appendixes for specific functional
information on how to code applications.

4 SAA CPI Communications Reference

Introduction

Related Publications
The following manuals provide additional information on SAA and the operating
systems on which it is implemented.

For Systems Application Architecture
CPI reference manuals describe each component of the common programming
interface:

Application Generator Reference (SC26-4355)
C Reference (SC26-4353)
COBOL Reference (SC26-4354)
Communications Reference (SC26-4399)
Database Reference (SC26-4348)
Dialog Reference (SC26-4356)
FORTRAN Reference (SC26-4357)
Presentation Reference (SC26-4359)
Procedures Language Reference (SC26-4358)
Query Reference (SC26-4349).

The following publications may also prove useful:

Systems Application Architecture: An Overview (GC26-4341)

Introduces SAA concepts, and identifies the environments and elements that
participate.

Common User Access: Panel Design and User Interaction (SC26-4351)

Defines the common user access for Personal Computers and System/370 and
AS/400™ terminals, including panel layout and user interaction techniques.

Writing Applications: A Design Guide (SC26-4362)

Provides guidance on developing application programs that are consistent and
portable across the SAA environments. These applications will use the
common programming interfaces and implement the common user access
specification.

For Implementing Products
• VMISP Connectivity Programming Guide and Reference, SC24-5337
• VMISP Connectivity, Planning, Administration, and Operation, SC24-5338.

For LU 6.2
• SNA Formats, GA27-3136
• Systems Network Architecture Concepts and Products, GC30-3072
• Systems Network Architecture Technical Overview, GC30-3073.
• SNA Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084
• SNA LU 6.2 Reference: Peer Protocols, SC31-6808

AS/400 is a trademark of the International Business Machines Corporation.

Chapter 1. Introduction 5

Introduction

Interface Definition Table
Table 1 lists the calls currently defined in the communications interface for SAA.
An Xis used to indicate which systems already have an IBM licensed program
announced or available that implements a particular communications call.

Table 1. Major Elements of the Communications Interface

Call Name TSO/E CMS OS/400 OS/2 IMS CICS

Starter Set
Accept_ Conversation x
Allocate x
Deallocate x
Initialize_ Conversation x
Receive x
Send_Data x

Advanced Function

for synchronization and
control:
Confirm x
Confirmed x
Flush x
Prepare_ To_Receive x
Request_ To_Send x
Send_Error x

x
Test_Request_ To_Send_Received

for modifying conversation
characteristics:
Set_ Conversation_ Type x
Set_ Deallocate_ Type x
Set_Error_Direction x
Set_Fill x
Set_ Log_ Data x
Set_Mode_Name x
Set_Partner_LU_Name x
Set_Prepare _To_ Receive_ Type x
Set_ Receive_ Type x
Set_ Return_ Control x
Set_ Send_ Type x
Set_Sync_Level x
Set_TP _Name x

for examining conversation
characteristics:
Extract_ Conversation_ Type x
Extract_Mode_Name x
Extract_Partner_LU_Name x
Extract_ Sync_ Level x

6 SAA CPI Communications Reference

Terms and Concepts

Chapter 2. CPI Communications Terms and Concepts

CPI Communications provides a consistent application programming interface for
applications that require program-to-program communication. The interface
makes use of SNA's LU 6.2 to create a rich set of inter-program services, including:

• Sending and receiving data

• Synchronizing processing between programs

• Notifying a partner of errors in the communication.

This chapter describes the major terms and concepts used in CPI Communications.

Chapter 2. CPI Communications Terms and Concepts 7

Terms and Concepts

Communication across an SNA Network
Figure 1 illustrates the logical view of an example SNA network. It consists of
three logical units (LUs): LUX, LUY, and LUZ. Each LU is involved in two
sessions (the gray portions of Figure 1). A session is the logical connection
between two LUs. The network shown in Figure 1 is a simple one. In a real
network, the number of LUs can be in the thousands.

[Program A]

Conversation
with Program C

CPI

l Program B]

Conversation
with Program D

Communications SNA Network
r---------------+-i ----------11- --------------

Lu X
(type 6.2)

LU-LU Session LU-LU Session

LU-LU Session

LU Y LU Z
(type 6.2) (type 6.2)

-- t-- ----------+------------! ___________ ,__, ___ J
CPI CPI
Communications Communications

r Program C J ~ Program D J

Figure 1. Programs Using CPI Communications to Converse Through an SNA Network

The LUs and the sessions shown in Figure 1 are of type 6.2. Although SNA defines
many types of LUs, CPI Communications only uses LU 6.2 sessions.

Note: The physical network, which consists of nodes (processors) and data links
between nodes, is not shown in Figure 1 because a program using CPI
Communications does not "see" these resources. A CPI-Communications program
uses the logical network of LUs, which in turn communicates with, and uses, the
physical network. For more information on SNA networks, refer to Systems
Network Architecture Concepts and Products and Systems Network Architecture
Technical Overview.

8 SAA CPI Communications Reference

Terms and Concepts

Program Partners and Conversations
Just as two LUs communicate using LU-6.2 sessions, two CPI-Communications
programs exchange data using a conversation. For example, the conversation
between Program A and Program C is shown in Figure 1 as a single bold line
between the two programs. The line indicating the conversation is shown on top of
the session because a conversation connects programs "over" a session.

CPI Communications supports two types of conversations:

• Mapped conversations allow programs to exchange arbitrary data records in
data formats agreed upon by the application programmers.

• Basic conversations allow programs to exchange data in a standardized
format. This format is a stream of data containing 2-byte length fields (referred
to as LLs) that specify the amount of data to follow before the next length field.
The typical data pattern is "LL, data, LL, data." Each grouping of "LL, data" is
referred to as a logical record.

Note: Because of the detailed manipulation of data and resulting complexity of
error conditions, the use of basic conversations should be regarded as
intended for advanced programmers. A more complete discussion of basic
and mapped conversations is provided in the "Usage Notes" section of
"Send_Data (CMSEND)" on page 83.

For further information on basic and mapped conversations, refer to SNA LU 6.2
Reference: Peer Protocols and SNA Transaction Programmer's Reference Manual
for LU Type 6.2.

Two programs involved in a conversation are called partners in the conversation.
If an LU-LU session exists, or can be made to exist, between the nodes containing
the partner programs, two CPI-Communications programs can communicate
through an SNA network over a conversation.

The terms local and remote are used to differentiate between different ends of a
conversation. If a program is being discussed as local, its partner program is said
to be the remote program for that conversation. For example, if Program A is
being discussed, Program A is the local program and Program C is the remote
program. Similarly, if Program C is being discussed as the local program,
Program A is the remote program. Thus, a program can be both local and remote
for a given conversation, depending on the context.

Chapter 2. CPI Communications Terms and Concepts 9

Terms and Concepts

Operating Environment
Figure 2 provides a more detailed view of Program A's operating environment,
focusing on the node of the network that contains Program A. Lines showing
services and connections to different generic components of the node indicate the
components used by Program A to establish communication with another program.

In Figure 2, there are two lines connected to the bottom of the Program A block.
The line on the right indicates the conversation as previously shown in Figure 1 on
page 8. The new line on the left shows Program A's communication with the
communications element itself. This line represents a specific set of program calls
that can be made using the local system's library of common code. The different
types of CPI-Communications calls that a program may make are discussed later in
this chapter in "Program Calls."

Node Environment
--~

Node
Services

Side
Information

l
I Program AJ l1-----+·- Operating
L l System

CPI
Communications

LU X
(Type 6.2)

f-- CPU Cycles
1- DASO
1- Memory
I-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

------------------------~------------------~

Conversation
with Program C

Figure 2. Operating Environment of CPI-Communications Program

In addition to the new line with CPI Communications, Figure 2 shows three new
generic elements in communication with Program A:

• Side information

• Node services
• Operating system.

These new elements are discussed in the following sections.

10 SAA CPI Communications Reference

Side Information

Terms and Concepts

For a program to establish a conversation with a partner program, CPI
Communications requires a certain amount of initialization information, such as the
name of the partner program and the name of the LU at the partner's node. CPI
Communications provides a way to use system-defined values for these required
fields; these system-defined values are called side information.

System administrators supply and maintain the side information for all
CPI-Communications programs. The side information is accessed by a symbolic
destination name. The symbolic destination name, referred to as sym_dest_name
in this book, corresponds to an entry in the side information containing the
following three pieces of information:

• partner_LU_name

Indicates the name of the LU where the partner program is located. This LU
name is any name for the remote LU recognized by the local LU for the
purpose of allocating a conversation.

• mode name

Used by LU 6.2 to designate the properties for the session that will be allocated
for the conversation. The properties include, for example, the class of service
to be used on the conversation.

The system administrator defines a set of mode names for each partner LU
with which the local LU communicates. This set of mode names can differ from
one partner LU to another.

• TP name

Specifies the name of the remote program. See Appendix D, "CPI
Communications and LU 6.2" on page 147 for details of how a
CPI-Communications program can interact with non-CPI-Communications
programs.

Note: TP _name stands for "transaction program name," which comes from
the LU 6.2 application programming interface where the programs are referred
to as transaction programs. In this manual, transaction program, application
program, and program are synonymous, all denoting a program using CPI
Communications.

Chapter 2. CPI Communications Terms and Concepts 11

Terms and Concepts

Node Services
Node services represents a number of "utility" type functions within the local
system environment that are available for CPI Communications, as well as other
elements of the CPI. These functions are not related to the actual sending and
receiving of CPI-Communications data, and specific implementations differ from
product to product. Node services include the following general functions:

• Setting and accessing of side information by system administrators

This function is required to set up the initial values of the side information and
allow subsequent modification. It does not refer to individual program
modification of the program's copy of the side information using Set calls as
described in "Conversation Characteristics" on page 14. (Refer to specific
product information for details.)

• Program-start-up processing

A program is started either by receipt of notification that the remote program
has issued an Allocate call for the conversation (discussed in greater detail in
"Starter-Set Flows" on page 22) or by local (operator) action. In either case,
node services sets up the required data paths and operating environment
required by the program and then allows the program to begin execution. In
the former case, node services receives the notification, retrieves the name of
the program to be started, and then proceeds as if starting a program by local
action.

• Program-termination processing (both normal and abnormal)

The program should terminate all conversations before the end of the program.
However, if the program does not terminate all conversations, node services is
responsible for deallocating any dangling conversations.

On VM, facilities such as nucleus extensions and discontiguous saved
segments, which permit programs to be memory resident and "runnable" even
after returning control to CMS, prevent CMS from determining that a
conversation has been abandoned. Therefore, in a VM environment,
conversations are immediately deallocated only in the case of an abnormal
return to CP or CMS.

If the program finishes normally and has not terminated all conversations, the
conversations will be deallocated only if the user enters an HX command,
resets the virtual machine (using IPL), or logs-off. If a program in a VM
environment does not explicitly deallocate all active conversations, SNA
network resources will be unavailable (for use by other programs) for longer
periods of time than is required.

See "Deallocate (CMDEAL)" on page 56 for more information on deallocating
conversations. -

Operating System
CPI Communications depends on the operating system for the normal execution
and operation of the program. Activities such as linking, invoking, and compiling
programs are all described in product documentation.

12 SAA CPI Communications Reference

Program Calls

Terms and Concepts

CPI Communications programs communicate with each other by making program
calls. These calls are used to establish the characteristics of the conversation
(conversation characteristics are discussed in greater detail in the next section,
"Conversation Characteristics") and to exchange data and control information
between the programs. The function provided by the CPI-Communications calls
can be categorized into two groups:

• Starter-Set Calls

The starter-set calls allow for simple communication of data between two
programs and assume the program uses the initial values for the CPI
Communications conversation characteristics. Example flows for use of these
calls is provided in "Starter-Set Flows" on page 22.

• Advanced-Function Calls

The advanced-function calls are used to do more specialized processing than
that provided by the default set of characteristic values. The
advanced-function calls provide more careful synchronization and monitoring
of data. For example, the Set calls allow a program to modify conversation
characteristics, and the Extract calls allow a program to examine the
conversation characteristics that have been assigned to a given conversation.
Example flows for use of these calls is provided in "Advanced-Function Flows"
on page 29.

Note: The breakdown of function between starter-set and advanced-function calls
is not intended to imply a restriction on how the calls may be combined or used.
Starter-set calls, for example, will often be used together with advanced-function
calls. The distinction between the two types of calls is intended solely as a
documentation aid for the CPI-Communications programmer.

Table 2 on page 14 lists the two groups of CPI-Communications calls.

Chapter 2. CPI Communications Terms and Concepts 13

Terms and Concepts

Table 2. Breakdown of Calls between Starter Set and Advanced Function

Starter Set

Initialize_ Conversation

Accept_ Conversation
Allocate

Send_Data
Receive
Deallocate

Advanced Function

Confirm
Confirmed
Flush

Prepare_To_Receive

Request_To_Send

Send_Error

Test_Request_To_Send_Received

Extract_ Conversation_ Type

Extract_ Mode_ Name

Extract_Partner_LU_Name

Extract_ Sync_ Level

Set_ Conversation_ Type

Set_ Deallocate_ Type

Set_ Error _Direction

Set_Fill

Set_ Log_ Data

Set_ Mode_ Name

Set_Partner _LU_ Name

Set_ Prepare_ To_ Receive_ Type

Set_ Receive_ Type

Set_ Return_ Control

Set_ Send_ Type

Set_Sync_Level

Set_ TP _Name

A list of the calls and a brief description of each call's function is provided at the
front of Chapter 4, "Reference Section" on page 44.

Conversation Characteristics
As discussed already in "Program Calls," CPI Communications maintains a set of
characteristics for each conversation used by a program. These characteristics
are established for each program on a per-conversation basis. The initial values
assigned to the characteristics depend on the program's role in starting the
conversation.

Here is a simple example of how Program A starts a conversation with Program C:

1. Program A issues the lnitialize_Conversation call to start the conversation. It
uses a sym_dest_name to designate Program C as its partner program and
receives back a unique conversation identifier, the conversation_ID. Program
A will use the conversation_ID in all future calls intended for that conversation.

2. Program A issues an Allocate call to start the conversation.

3. CPI Communications tells the node containing Program C that Program C
needs to be started by sending a conversation start-up request to the partner
LU.

4. Program C is started and issues the Accept_ Conversation call. It receives
back a unique conversation_ID (not necessarily the same as the one provided
to Program A), which Program C will use in all future calls intended for that
conversation.

14 SAA CPI Communications Reference

Terms and Concepts

After issuing their respective lnitialize_Conversation and Accept_Conversation
calls, both Program A and C have a set of default conversation characteristics set
up for the conversation. Table 3 provides a comparison of the conversation
characteristics and initial values as set by the lnitialize_Conversation call
(described on ll>age 68) and the Accept_Conversation call (described on page 47).
The values shown in the figure are pseudoynms that represent integer values.

The CPI Communications naming conventions for these characteristics, as well as
for calls, variables, and characteristic values, are discussed in "Naming
Conventions - Calls and Characteristics, Variables and Values" on page 19.

Chapter 2. CPI Communications Terms and Concepts 15

Terms and Concepts

Table 3. Characteristics and Their Default Values

Name of Characteristic

conversation_type

deallocate _type

error _direction

fill

log_data

log_data_Jength

mode_name

mode_ name _length

partner LU name

partner_ LU_ name _length

prepare _to _receive _type

receive_ type

return_ control

send_type

sync_level

TP_name

TP _name _length

lnltlallze_Conversatlon sets
It to:

CM_MAPPED _CONVERSATION

CM_DEALLOCATE_SYNC_LEVEL

CM_RECEIVE_ERROR

CM_FILL_LL

Null

0

The mode name from side
information referenced by
sym_dest_name

The length of mode_name

The partner LU name from
side information referenced
by sym_dest_name

The length of
partner_ LU_ name

CM_PREP _TO_RECEIVE_SYNC_LEVEL

CM_RECEIVE_AND_WAIT

CM_WHEN_SESSION_ALLOCATED

CM_BUFFER_DATA

CM_NONE

The program name from
side information referenced
by sym_dest_name

The length of TP _name

Accept_ Conversation sets It
to:

The value received on the
conversation start-up request

CM_DEALLOCATE_SYNC_LEVEL

CM_RECEIVE_ERROR

CM_FILL_LL

Null

0

The mode name for the
session on which the
conversation start-up request
arrived

The length of mode_name

The partner LU name for the
session on which the
conversation start-up request
arrived

The length of
partner _LU_name

CM_PREP _TO_RECEIVE_SYNC_LEVEL

CM_RECEIVE_AND_WAIT

Null

CM_BUFFER_DATA

The value received on the
conversation start-up request

Null

0

Note: When the local program issues lnitialize_Conversation, the default
characteristics established include the three pieces of side information previously
discussed: partner_LU_name, mode_name, and TP _name. For the remote
program's characteristics, however, CPI Communications determines the
partner_LU_name and mode_name from the session and conversation information
provided by the LU in the conversation start-up request.

16 SAA CPI Communications Reference

Terms and Concepts

Modifying and Viewing Characteristics
In the previous example, the programs used the initial set of program
characteristics provided by CPI Communications as defaults. However, CPI
Communications provides calls that allow a program to modify and view the
conversation characteristics for a particular conversation. Restrictions on when a
program can issue one of these calls are discussed in the individual call
descriptions in Chapter 4, "Reference Section."

Note: As already stated, CPI Communications maintains conversation
characteristics on a per-conversation basis. Changes to a characteristic will affect
only the conversation indicated by the conversation_ID. Changes made to a
characteristic do not affect future default values assigned, nor do the changes (in
the case of values derived from the side information) affect the initial system
values.

For example, consider the conversation characteristic that defines what type of
conversation the initiating program will have, the conversation_type characteristic.
CPI Communications initially sets this characteristic to CM_MAPPED_CONVERSATION

and stores this characteristic value for use in maintaining the conversation. A
program can issue the Extract_ Conversation_ Type call to view this value.

A program can issue the Set_Conversation_Type call (after issuing
lnitialize_Conversation but before issuing Allocate) to change this value. The
change remains in effect until the conversation ends or until the program issues
another Set_ Conversation_ Type.

The Set calls are also used to prevent programs from attempting incorrect
syntactic or semantic changes to conversation characteristics. For example, if a
program attempts to change the conversation_type after the conversation has
already been established (an illegal change), CPI Communications informs the
program of its error and disallows the change. Details of this type of checking are
provided in the individual call descriptions in Chapter 4, "Reference Section."

Program Flow - States and Transitions
As implied throughout the discussion so far, a program written to make use of CPI
Communications is written with the remote program in mind. The local program
issues a CPI-Communications call for a particular conversation with the knowledge
that, in response, the remote program will issue another CPI-Communications call
for that same conversation. To explain this two-sided programming scenario, CPI
Communications uses the concept of a conversation state. The state that a
conversation is in determines what the next set of actions may be. When a
conversation leaves a state, it makes a transition from that state to another.

Chapter 2. CPI Communications Terms and Concepts 17

Terms and Concepts

A CPI-Communications conversation can be in one of the following states:

State

Reset

lnltlallze

Send

Receive

Send-Pending

Confirm

Confirm-Send

Confirm-Deallocate

Description

There is no conversation for this conversation_ID.

Initialize_ Conversation has completed successfully and
a conversation_ID has been assigned for this
conversation.

The program is able to send data on this conversation.

The program is able to receive data on this
conversation.

The program has received both data and send
capability on the same Receive call. See "Example 7:
Error Direction and Send-Pending State" on page 38 for
a discussion of Send-Pending state.

A confirmation request has been received on this
conversation; that is, the remote program issued a
Confirm call and is waiting for the local program to
issue Confirmed. After responding with Confirmed, the
local program enters Receive state.

A confirmation request and permission-to-send have
both been received on this conversation; that is, the
remote program issued a Prepare_To_Receive call with
the prepare _to _receive _type set to
CM_PREP _TO_RECEIVE_SYNC_LEVEL and the sync_level for
this conversation is CM_CONFIRM. After responding with
Confirmed, the local program enters Send state.

A confirmation request and deallocation notification
have both been received on this conversation; that is,
the remote program issued a Deallocate call with the
deal/ocate_type set to CM_DEALLOCATE_SYNC_LEVEL and
the sync_level for this conversation is CM_CONFIRM.

After responding with Confirmed, the conversation is
deallocated.

A conversation starts out in Reset state and progresses through the different states
listed, depending on the calls made by the program for that conversation and the
information received from the remote program. The current state of a conversation
determines what calls the program can or cannot make.

Since there are two programs for each conversation (one at each end), the state of
the conversation as seen by each program may be different. The state of the
conversation depends on which end of the conversation is being discussed.
Consider a conversation where Program A is sending data to Program C. Program
A's end of the conversation is in Send state, but Program C's end is in Receive
state.

18 SAA CPI Communications Reference

Terms and Concepts

Notes:

1. CPI Communications keeps track of a conversation's current state, as should
the program. When the two are out of sync, a run-time error condition arises.
This may be caused by an invalid program call or state transition. This error
condition is indicated by a return_code value of CM_PROGRAM_STATE_CHECK.

2. When the meaning is unambiguous, this book sometimes refers to a program
as being in a particular state. This means that one of the program's
conversations (the one under discussion) is in a particular state.

For a complete listing of program calls and possible states and state transitions,
see Appendix C, "State Table."

Naming Conventions - Calls and Characteristics, Variables and
Values

Pseudonyms for the actual calls, characteristics, variables, states, and
characteristic values that make up CPI Communications are used throughout this
book to simplify understanding and readability. Where possible, underscores U
and complete names are used in the pseudonyms. Any phrase in the book that
contains an underscore is a pseudonym.

For example, Send_Data is the pseudonym for the program call, CMSEND, which is
used by a program to send information to its conversation partner.

Note: The first two characters of all CPI Communications calls are a prefix of CM
to aid in recognizing actual call names.

The book uses the following conventions to aid in distinguishing between the four
types of pseudonyms:

• Calls begin with capital letters, as will each underscore-separated portion of
the call's name. For example, Accept_Conversation is the pseudonym for the
actual call name of CMACCP.

• Characteristics and variables used to hold the values of characteristics are in
italics (for example, conversation_type) and contain no capital letters except
those used for abbreviations (for example, TP _name).

In most cases, the parameter used on a call, which corresponds to a program
variable, has the same name as the conversation characteristic. Whether a
name refers to a parameter, a program variable, or a characteristic is
determined by context. In all cases, the value used for the three remains the
same.

To indicate that a characteristic has been set to a particular value, the book
will either say so explicitly or use "function" notation. For example, a
sync_level of CM_NONE may also appear as sync_/eve/(cM_NONE).

• Values used for characteristics and variables appear in all small uppercase
letters (such as CM_OK) and represent actual integer values that will be placed
into the variable. For a list of the integer values that are placed in the
variables, see Table 4 on page 124 in Appendix A, "Variables and
Characteristics."

Chapter 2. CPI Communications Terms and Concepts 19

Terms and Concepts

• States are used to determine the next set of actions that can be taken in a
conversation. States begin with capital letters and appear in bold type, such
as, Reset state.

As a complete example of how pseudonyms are used in this book, suppose a
program uses the Set_Return_Control call to set the conversation characteristic of
return_ control to a value of CM_IMMEDIATE.

• Chapter 4, "Reference Section" contains the syntax and semantics of the
variables used for the call. It explains that the real name of the program call
for Set_Return_Control is CMSRC (see "Set_Return_Control (CMSRC)" on
page 112) and that CMSRC has a parameter list of conversation_ID,
return_control, and return_code.

• Appendix A, "Variables and Characteristics" provides a complete description
of all variables used in the book and shows that the return_control variable that
goes into the call as a parameter is a 32-bit integer. This information is
provided in Table 6 on page 129.

• Table 4 on page 124 in Appendix A, "Variables and Characteristics" shows
that the value of CM_IMMEDIATE that is placed into the return_control parameter
on the call to CMSRC is defined as an integer value of 1.

• Finally, the meaning of the return_code value CM_OK that is returned to the
program on the call is provided in Appendix 8, "Return Codes." It means that
the call completed successfully.

Notes:

1. Pseudonym value names are not actually passed to CPI Communications as a
string of characters. Instead, the pseudonyms represent the integer values
that are passed on the program calls. The pseudonym value names are used
to aid readability of the text. Similarly, programs should use translates and
equates (depending on the language) to aid the readability of the code. In the
above example, for instance, a program equate could be used to define
CM_IMMEDIATE as meaning an integer value of 1. The actual program code
would then read as described above, namely, that return_control is replaced
with CM_IMMEDIATE. The end result, however, is that an integer value of 1 is
placed into the variable.

2. "Programming Language Considerations" on page 177 in Appendix E, "CMS
VM/SP-Extension Information" provides information on system files that can
be used to establish pseudonyms for the program.

20 SAA CPI Communications Reference

Tutorial

Chapter 3. Program-to-Program Communication Tutorial

This chapter provides example flows of how two programs using CPI
Communications can exchange information and data in a controlled manner.

The examples are broken up into two sections:

• "Starter-Set Flows" on page 22

• "Advanced-Function Flows" on page 29.

In addition to these sample flows, a simple COBOL application using
CPI-Communications calls is provided in Appendix F, "Sample Programs" on
page 181.

A Word about the Flow Diagrams
In the flow diagrams shown in this chapter (for example Figure 3 on page 25),
vertical dotted lines indicate the components involved in the exchange of
information between systems. The horizontal arrows indicate the direction of the
flow for that step. The numbers lined up on the left side of the flow are reference
points to the flow and indicate the progression of the calls made on the
conversation. These same numbers correspond to the numbers under the Step
heading of the text description for each example.

The call parameter lists shown in the flows are not complete; only the parameters
of particular interest to the flows being discussed are shown. A complete
description of each CPI-Communications call and the required parameters can be
found in Chapter 4, "Reference Section."

A complete discussion of all possible timing scenarios is beyond the scope of the
chapter. Where appropriate, such discussion is provided in the individual call
descriptions in Chapter 4, "Reference Section."

Note: When the meaning is unambiguous, this book sometimes refers to a
program as being in a particular state. This means that one of the program's
conversations (the one being discussed) is in a particular state.

Chapter 3. Program-to-Program Communication Tutorial 21

Tutorial

Starter-Set Flows
This section provides examples of programs using the CPI-Communications
starter-set calls:

• "Example 1: Data Flow in One Direction" on page 23 demonstrates a flow of
data in only one direction (only the initiating program sends data).

• "Example 2: Data Flow in Both Directions" on page 26 describes a
bidirectional flow of data (the initiating program sends data, and then allows
the partner program to send data).

22 SAA CPI Communications Reference

Tutorial

Example 1: Data Flow in One Direction

Step

D

Figure 3 on page 25 shows an example of a conversation where the flow of data is
in only one direction.

The steps shown in Figure 3 are described below:

Description

To communicate with its partner program, Program A must first establish a
conversation. Program A uses the lnitialize_Conversation call to tell CPI
Communications that it wants to:

• Initialize a conversation
• Identify the conversation partner (using sym_dest_name)
• Ask CPI Communications to establish the identifier that the program will use

when referring to the conversation (the conversation_ID).

Upon successful completion of the lnitialize_Conversation call, CPI
Communications provides the conversation_ID and returns it to Program A. The
program must store the conversation_ID and use it on all subsequent calls
intended for that conversation.

No errors were found on the lnitialize_Conversation call, and the return_code is set
to CM_OK.

Two major tasks are now accomplished:

• CPI Communications has established a set of conversation characteristics for
the conversation, based on the sym_dest_name, and uniquely associated them
with the conversation_ID.

• The default values for the conversation characteristics, as listed in
"lnitialize_Conversation (CMINIT)" on page 68, have been assigned to the
characteristics. (For example, the conversation now has conversation_type set
to CM _MAPPED_ CONVERSATION.)

Program A asks that a conversation be started with an Allocate call (see "Allocate
(CMALLC)" on page 49) using the conversation_ID previously assigned by the
Initialize_ Conversation call.

If a session between the LUs is not already available, one is activated. Program A
and Program C can now have a conversation.

A return_code of CM_OK indicates that the Allocate call was successful and the LU
has allocated the necessary resources to the program for its conversation.
Program A's conversation is now in Send state and Program A can begin to send
data.

Note: In this example, the error conditions that can arise, such as no sessions
available, are not discussed. See "Allocate (CMALLC)" on page 49 for more
information about the error conditions that can result.

Chapter 3. Program-to-Program Communication Tutorial 23

Tutorial

Step

II and fJ

m and IJ

DJandm

m

mandm

Description

Program A sends data with the Send_Data call (described in "Send_Data
(CMSEND)" on page 83) and receives a return_code of CM_OK. Until now, the
conversation may not have been established because the conversation start-up
request may not be sent until the first flow of data. In fact, any number of
Send Data calls can be issued before CPI Communications actually has a full
buffe~ which causes it to send the start-up request and data. Step II shows a
case where the amount of data sent by the first Send_ Data is greater than the size
of the local LU's send buffer (a system dependent property), which is one of the
conditions that triggers the sending of data. The request for a conversation is sent
at this time.

Note: Some products may choose to transmit the conversation start-up request as
part of the Allocate processing. See the specific product documentation for
details.

For a complete discussion of transmission conditions and how to ensure the
immediate establishment of a conve~sation and transmission of data, see "Data
Buffering and Transmission" on page 29.

Once the conversation is established, the remote program's system takes care of
starting Program C. The conversation on Program C's side is in Reset state and
Program C issues a call to Accept_ Conversation, which places the conversation
into Receive state. The Accept_ Conversation call is similar to the
lnitialize_Conversation call in that it equates a conversation_ID with a set of
conversation characteristics (see "Accept_ Conversation (CMACCP)" on page 47
for details). Program C, like Program A in Step 11. receives a unique
conversation_ID that it will use in all future CPI-Communications calls for that
particular conversation. As discussed in "Conversation Characteristics" on
page 14, some of Program C's defaults are based on information contained in the
conversation start-up request.

Once in Receive state, Program C begins whatever processing role it and Program
A have agreed upon. In this case, Program C accepts data with a Receive call (as
described in "Receive (CMRCV)" on page 74).

Program A could continue to make Send_Data calls (and Program C continue to
make Receive calls), but, for the purposes of this example, assume that Program A
only wanted to send the data in its initial Send_Data.

Program A issues a Deallocate call (see "Deallocate (CMDEAL)" on page 56) to
send any data buffered in the local LU and release the conversation. Program C
issues a final Receive, shown here in the same step as the Deallocate, to check
that it has all the received data.

The return_ code of CM_DEALLOCATED_NORMAL tells Program C that the conversation
is deallocated. Both Program C and Program A finish normally.

Note: Only one program should issue Deallocate; in this case it was Program A.
If Program Chad issued Deallocate after receiving CM_DEALLOCATED_NORMAL, an
error would have resulted.

24 SAA CPI Communications Reference

Tutorial

System X System Y

[~roraml IPror~] CPI CPI
Co11111unications Co11111unications

... ~ .
.___ -__ -

Initialize_Conversation (sym_dest_name) o.-----.
conversation ID, return code=CM OK fl . - - . -

.Allocate(conversation_ID).
11.-----

II .
return_code=CM_OK

11.-----
.Send_Data(conversation_ID,

data)

session set-up, if session
not already available

conversation start-up request,.
data

II.~-------------------------.-------------------------------------
return_code=cM_oK

1 . .-------

m.
IJ .

DJ.
111.

remainder of data,

.(Program C is started by.
node services)

Accept_ Conversation

conversation_ID, return_code=CM_OK

• Receive(conversation_ID).

• data, return_code=CM_OK •

.Deallocate(conversation ID) conversation end • Receive(conversation_ID). m. - .--------------. ,._ _______ _
return_code=CM_OK m .,.____ ___ _

m . (Program A comp 1 etes
normally)

Figure 3. Data Flow in One Direction

data,
return_code=CM_DEALLOCATED_NORMAL

(Program C completes
normally)

Chapter 3. Program-to-Program Communication Tutorial 25

Tutorial

Example 2: Data Flow in Both Directions

Step

II through II

m through DJ

Figure 4 shows a conversation in which the flow of data is in both directions. It
describes how two programs using starter-set calls can initiate a change of control
over who is sending the data.

The steps shown in Figure 4 are described below:

Description

Program A is sending data and Program C is receiving data.

Note: The conversation in this example is already established with the default
characteristics. Program A's end of the conversation is in Send state, and
Program C's is in Receive state.

After sending some amount of data {an indeterminate number of Send_Data calls),
Program A issues the Receive call while in Send state. As described in "Receive
(CMRCV)" on page 74, this call causes the remaining data buffered at System X to
be sent and permission to send to be given to Program C. Program A is placed in
Receive state and waits until a response from Program C is received.

Note: See "Example 3: The Sending Program Changes the Data Flow Direction"
on page 30 for alternate methods that allow Program A to continue processing.

Program C issues a Receive call in the same way it issued the two prior Receive
calls.

Program C receives not only the last of the data from Program A, but also a
status_received parameter set to cM_sEND_RECEIVED. The value of CM_SEND_RECEIVED

notifies Program C that the conversation is now in Send state.

As a result of the status_received value, Program C issues a Send_ Data call. The
data from this call, on arrival at System X, is returned to Program A as a response
to the Receive it issued in Step II .
At this point, the flow of data has been completely reversed and the two programs
can continue whatever processing their logic dictates.

To give control of the conversation back to Program A, Program C would simply
follow the same procedure that Program A executed in Step II.
Program A and Program C continue processing. Program C sends data and
Program A receives the data.

26 SAA CPI Communications Reference

Tutorial

System X System Y

[Pro~raml CPI CPI I Pro~ram]
Conmunications Conmunications

.__ -
Programs A and C are in

conversation

....._

.Send_Data(conversation_ID, data) data • Receive(conversation_ID).
II .~--------------· --

return_code=CM_OK
FJ.-----

. data, return_code=CM_OK •

.Send_Data(conversation_ID, data) data • Receive(conversation_ID).
II .------------ -------------------------- 4-------------------

return_code=CM_OK
11.-----

II
• Receive(conversation_ID).

permission to send,
remainder of data, if any

. data, return_code=CM_OK .

• Receive(conversation_ID) •

-

II .

(Program A waits for
data from C)

data,
status_received=CM_SEND_RECEIVED

• data, return_code=CM_OK • data Send_Data(conversation_ID, data)
IJ .-------------------- ·----------------------~---------------------

m . return_code=CM_OK

• Receive(conversation_ID). data Send_Data(conversation_ID, data)
IJ .------------ ---------------------- 4------------------

data, return_code=CM_OK •
DJ.4--------------~

return_code=CM_OK

(further processing by both programs)

Figure 4. Data Flow in Both Directions

Chapter 3. Program-to-Program Communication Tutorial 27

Tutorial

28 SAA CPI Communications Reference

Tutorial

Advanced-Function Flows
This section provides examples of programs using the advanced-function calls:

• "Example 3: The Sending Program Changes the Data Flow Direction" shows
how to use the Prepare_ To_Receive call to change direction of data flow.

• "Example 4: Validation and Confirmation of Data Reception" shows how to use
the Confirm and Confirmed calls to validate data reception. The Flush call is
also shown.

• "Example 5: The Receiving Program Changes the Data Flow Direction" shows
how to use the Request_To_Send call to request a change in the direction of
data flow.

• "Example 6: Reporting Errors" shows how to use the Send_Error call to report
errors in the data flow.

• "Example 7: Error Direction and Send-Pending State" shows how to use the
Send-Pending state and the error _direction characteristic to resolve an
ambiguous error condition that can occur when a program receives both a
change-of-direction indication and data on a Receive call.

This section begins with a discussion of how a program can exercise control over
when the LU actually transmits the data.

Data Buffering and Transmission
If a program uses the initial set of conversation characteristics, data is not
automatically sent to the remote program after a Send_Data has been issued,
except when the send buffer at the local LU overflows. As shown in the starter-set
flows, the start-up of the conversation and subsequent data flow can occur any time
after the program call to Allocate. This is because the LU stores the data in
internal buffers and groups transmissions together for efficiency.

A program can exercise explicit control over the transmission of data by using one
of the following calls to cause the buffered data's immediate transmission:

• Confirm
• Deallocate
• Flush
• Prepare_To_Receive
• Receive (in Send state) with receive_type set to CM_RECEIVE_AND_WAIT

(receive_type's default setting)
• Send_Error.

The use of Receive in Send state or Deallocate has already been shown in the
starter-set flows. The other calls are discussed in the following examples.

Chapter 3. Program-to-Program Communication Tutorial 29

Tutorial

Example 3: The Sending Program Changes the Data Flow Direction

Step

11 through II

B through DJ

ID through m

m through m

Figure 5 is a variation on the function provided by the flow shown in "Example 2:
Data Flow in Both Directions" on page 26. When the data flow direction changes,
Program A can continue processing instead of waiting for data to arrive.

The steps shown in Figure 5 are described below:

Description

The program begins the same as "Example 1: Data Flow in One Direction" on
page 23. Program A establishes the conversation and makes the initial
transmission of data.

Program A makes use of an advanced-function call, Prepare_To_Receive,
(described in "Prepare_To_Receive (CMPTR)" on page 71), which sends an
indication to Program C that Program A is ready to receive data. This call also
flushes the data buffer and places Program A into Receive state. It does not, as
did the Receive call when used with the initial conversation characteristics in
effect, force Program A to pause and wait for data from Program C to arrive.
Program A continues processing while data is sent to Program C.

Program C, started by System Y's reception of the conversation start-up request
and buffered data, makes the Accept_ Conversation and Receive calls.

Program A finishes its processing and issues its own Receive call. It will now wait
until data is received (Step DI).
The status_received on the Receive call made by Program C, which is set to
CM_SEND_RECEtVED, tells Program C that the conversation is in Send state. Program
C can now issue the Send_Data call.

Program A receives the data.

Note: There is a way for Program A to check periodically to see if the data has
arrived, without waiting (not shown in the figure). After issuing the
Prepare_To_Receive call, Program A can use the Set_Receive_Type call to set the
receive_type conversation characteristic equal to CM_RECEIVE_IMMEDIATE. This call
changes the nature of all subsequent Receives issued by Program A (until a further
call to Set_Receive_Type is made). If a Receive is issued with the receive_type set
to CM_RECEIVE_IMMEDIATE, the program retains control of processing without waiting.
It receives data back if data is present, and a return_code of CM_UNSUCCESSFUL if no
data has arrived.

For further discussion of this alternate flow, see "Set_Receive_Type (CMSRT)" on
page 110 and "Receive (CMRCV)" on page 74.

30 SAA CPI Communications Reference

Tutorial

System X System Y

[Proraml IProram] CPI CPI
Co111Tiunications Communications . ~

.___ - .__

Initialize_Conversation (sym_dest_name)
11.------

conversation ID, return code=CM OK B . - - . -
session set-up, if session

.Allocate(conversation_ID). not already available
&.------~~~~-~----

return_code=CM_OK
11.-----

.Send_Data(conversation_ID, data) n.------
return_code=CM_OK

II .---------- permission to send,
• conversation start-up request, .

Prepare To Receive(conversation ID) all buffered data n. - - .--~~~-~--
return_code=cM_oK

11.-----
IJ .

DJ.

(Program A continues
to process while
data is sent to

Program C)

.(Program C is started by •
node services)

Accept_Conversation

---'

m.
m. conversation_ID, return_code=CM_OK

Receive(conversation_ID). m.----- . Receive(conversation_ID).

m.
data,

status_received=CM_SEND_RECEIVED

data, return_code=CM_OK • data Send_Data(conversation_ID, data)
111.--~ -----------------

m. return_code=CM_OK

(further processing by both programs)

Figure 5. The Sending Program Changes the Data Flow Direction

Chapter 3. Program-to-Program Communication Tutorial 31

Tutorial

Example 4: Validation and Confirmation of Data Reception

Step

II and FJ

IJ and II

II and II
IJ and m

IJand rm

m

l!landDJ

Dlandm

m

Figure 6 on page 33 shows how a program can use the Confirm and Confirmed
calls to verify receipt of its sent data. The Flush call is also shown.

The steps shown in Figure 6 are described below:

Description

As before, Program A issues the lnitialize_Conversation call to initialize the
conversation.

Program A issues a new call, Set_Sync_Level(cM_CONFIRM) to set the sync_level
characteristic.

Note: Program A must set the sync_level characteristic before issuing the
Allocate call (Step II) for the value to take effect. Changing the sync_level after
the conversation is allocated results in an error condition. See "Set_Sync_Level
(CMSSL)" on page 116 for a detailed discussion of the sync_level characteristic
and the meaning of CM_ CONFIRM.

Program A issues the Allocate call to start the conversation.

Program A uses the Flush call (see "Flush (CMFLUS)" on page 66) to make sure
that the conversation is immediately established. If data is present, the local LU
buffer is emptied and the contents sent to the remote LU. Since no data is present,
only the LU 6.2 conversation start-up request is sent to establish the conversation.

At System Y, the conversation start-up request is received. Program C is started
and begins processing.

Program A issues a Send_Data call. Program C issues· an Accept_ Conversation
call.

Program A issues a Confirm call to make sure that Program C has received the
data, and is forced to wait for a reply. As a result of the Confirm call, the local LU
flushes its send buffer and the data is immediately transmitted to the remote LU.

Program C issues a Receive call and receives the data with status_received set to
CM_CONFIRM_RECEIVED.

Because status_received is set to CM_CONFIRM_RECEIVED, indicating a confirmation
request, the conversation has been placed into Confirm state. Program C must
now issue a Confirmed call. After Program C makes the Confirmed call (see
"Confirmed (CMCFMD)" on page 54), the conversation returns to Receive state.
Meanwhile, at System X, the confirmation reply arrives and the CM_OK return_code
is sent back to Program A.

Program A continues with further processing.

Note: Unlike the previous examples in which a program could bypass waiting, this
example demonstrates that use of the Confirm call forces the program to wait for a
reply.

32 SAA CPI Communications Reference

Tutorial

System X System Y

jProramj [~rormj CPI CPI
Co11111unications Communications

.
.___ ---__

Initialize_Conversation (sym_dest_name)
11.-----

conversation ID, return code=CM OK fl . - - . -

Set_Sync_Level(CM_CONFIRM).
11.-----+

return_code=CM_OK
11.-----

session set-up, if session
.Allocate(conversation_ID). not already available n.----------------------

return_code=CM_OK
11.-----

• Flush(conversation_ID) • conversation start-up request • IJ .~~~~~~~~~-+-~~~~~~~~~~~--.
return_code=CM_OK II_..._ ______ _

• Send_Data(conversation_ID, data)
IJ.------.

.(Program C is started by •
node services)

Accept_Conversation

return_code=CM_OK
DJ.--~~~~~~

conversation_ID, return_code=CM_OK

.Confirm(conversation ID) • m. -
• (Program A waits for

lfJ. a reply from
Program C)

m.

confirmation request, data

• Receive(conversation_ID).

data,
status_received=CM_CONFIRM_RECEIVED

return_code=CM_OK confirmation reply .Confirmed(conversation_ID)
111.4--~~~~~~~~~ 4-~~~~~~~~~~~---4'-~~~~~~~~--

m .
return_code=CM_OK

• Send_Data(conversation_ID, data) m.-----..
(further processing by both programs)

Figure 6. Validation and Confirmation of Data Reception

Chapter 3. Program-to-Program Communication Tutorial 33

Tutorial

Example 5: The Receiving Program Changes the Data Flow Direction

Step

D and fl
IJ and II

II and II

fJ and m

IJ and m

ID

m

Dlandm

Figure 7 shows how a program on the receiving side of a conversation can request
a change in the direction of data flow with the Request_To_Send call.· (See
"Request_To_Send (CMRTS)" on page 81'for more information.) In this example,
Programs A and C have already established a conversation using the default
conversation characteristics.

The steps shown in Figure 7 are described below:

Description

Program A is sending data and Program C is receiving the data.

Program C issues a Request_ To_Send call in order to begin sending data.
Program A will be notified of this request on the return value of the next call
(Send_ Data in this case, Step 11) issued by Program A.

Program A issues a Send_Data request, and the call returns with
request_to_send_received set equal to CM_REQUEST_TO_SEND_RECEIVED.

In reply to the Request_To_Send, Program A issues a Prepare_To_Receive call,
which allows Program A to continue its own processing and passes permission to
send to Program C. The call also forces the buffers at System X to be flushed. It
leaves the conversation in Receive state for Program A.

Note: Program A does not have to reply to the Request_To_Send call immediately
(as it does in this example). See "Example 3: The Sending Program Changes the
Data Flow Direction" on page 30 for other possible responses.

Program C continues with normal processing by issuing a Receive call and
receives Program A's acceptance of the Request_To_Send on the status_received
parameter, which is set to cM_SEND_RECEIVED. The conversation is now in Send
state for Program C.

Program C can now transmit data. Because Program Chas only one instance of
data to transmit, it first changes the send_type conversation characteristic by
issuing Set_Send_Type. Setting send_type to a value of
CM_SEND_AND_PREP_To_RECEIVE means that Program C will return to Receive state
after issuing a Send_Data call. It also forces a flushing of the LU's data buffer.

Program C issues the Send_Data call and is placed in Receive state. The data and
permission-to-send indication are transmitted from System Y to System X.

Program A, meanwhile, has finished its own processing and issued a
(perfectly-timed, in this diagram) Receive call.

Program A receives the data requested and, because of the value of the
status_received parameter (which is set to CM_SEND_RECEIVED), knows that the
conversation has been returned to Send state.

The original processing flow continues: Program A issues a Send_Data call and
Program C issues a Receive call.

34 SAA CPI Communications Reference

Tutorial

System X System Y

[~roraml JPro~ram] CPI CPI
Communications Communications

.
.....__ -

Programs A and C are in
conversation

.....__

.Send_Data(conversation_ID, data) data . Receive(conversation_ID).
II.-------------------------+---------~

return_code=CM_OK n.----- • data, return_code=CM_OK .

-

IJ .

II .

request for permission
to send Request_To_Send(conversation_ID)

return_code=CM_OK

. Send_Data(conversation_ID, data) data . Receive(conversation_ID).
II.-----------.-----------------------~

return_code=CM_OK,
request to send received=CM REQUEST TO SEND RECEIVED II . - - - -. - - - • data, return_code=CM_OK .

permission to send,
Prepare To Receive(conversation ID) data . Receive(conversation_ID).

B . - - .-------------

return_code=CM_OK m.-----

IJ .

DJ.

(Program A continues
local processing)

permission to send,

.data, return_code=CM_OK, .
status_received=CM_SEND_RECEIVED

Set_Send_Type(conversation_ID,
send_type=CM_SEND_AND_PREP_TO_RECEIVE)

return_code=CM_OK

Receive(conversation_ID). data Send_Data(conversation_ID, data)
111.-----------------------------------~

.data, return_code=CM_OK, .
status_received=CM_SEND_RECEIVED m.----- return_code=CM_OK

.Send Data(conversation ID, data) data • Receive(conversation_ID). m. - - .--------------
return_code=cM_oK . data, return_code=CM_OK .

111.+----------

(further processing by both programs)

Figure 7. The Receiving Program Changes the Data Flow Direction

Chapter 3. Program-to-Program Communication Tutorial 35

Tutorial

Example 6: Reporting Errors

Step

D and fJ

II and II

II and II

IJ and m

All the previous examples assumed that no errors were found in the data, and ~hat
the receiving program was able to continue receiving data. However, in some
cases the local program may detect an error in the data or may find that it is
unable to receive more data (for example, its buffers are full) and cannot wait for
the remote program to honor a request-to-send request. Figure 8 shows how to
use the Send_Error call in these situations.

Note: This example describes the simplest type of error-reporting, an error found
while receiving data. "Example 7: Error Direction and Send-Pending State" on
page 38 describes a more complicated use of Send_Error.

The steps shown in Figure 8 are described below:

Description

Program A is sending data and Program C is receiving data. The initial
characteristic values set by lnitialize_Conversation and Accept_Conversation are
in effect.

Program C encounters an error on the received data and issues the Send_Error
call. The local LU sends control information to the LU at System X indicating that
the Send_Error has been issued and purges all data contained in its buffer.

Meanwhile, Program A has sent more data. This data is lost because the LU at
System X knows that a Send_Error has been issued at System Y (the control
information sent in Step II). After the LU at System X sends control information
to System Y, a return_code of CM_OK is returned to Program C and the conversation
is left in Send state.

Program A learns of the error (and possibly lost data) when it receives back the
return_ code, which is set to CM_PROGRAM_ERROR_PURGING. Program A's end of the
conversation is also, in a parallel action to the now-new Send state of the
conversation for Program C, placed into Receive state.

Program C issues a Send_Data call, and Program A receives the data using the
Receive call.

Programs A and C continue processing normally.

36 SAA CPI Communications Reference

Tutorial

System X System Y

L;nk

[Pro~ramJ I Proram] CPI CPI
Co11111unications Co111T1unications

...__ .- ...___ - ---"

Programs A and C are in
conversation

.Send_Data(conversation_ID, data) data • Receive(conversation_ID).
II.-------------------.------------------------_.------------------~

return_code=CM_OK . data, return_code=CM_OK •
B .+-------

II .

II .

control information

.Send_Data(conversation_ID, data) control information
II .------------------· ---------------------------.

(data purged
by LU)

return_code=
..

.Send_Error(conversation_ID)

(data purged
by LU)

• CM_PROGRAM_ERROR_PURGING. return_code=CM_OK
II.------------------~--------------------------------------

error notification

• Receive(conversation_ID). data Send_Data(conversation_ID, data)
IJ .---~

return_code=CM_OK • data, return_code=CM_OK •
II.+------

(further processing by both programs)

Figure 8. Reporting Errors

Chapter 3. Program-to-Program Communication Tutorial 37

Tutorial

Example 7: Error Direction and Send-Pending State

Step

II and fJ

El and II

II and B

IJ through ID

Figure 9 on page 39 shows how to use the Send-Pending state and the
error _direction characteristic to resolve an ambiguous error condition that can
occur when a program receives both a change of direction indication and data on a
Receive call.

The steps shown in Figure 9 are described below:

Description

The conversation has already been established using the default conversation
characteristics. Program A is sending data in Send state and Program C is
receiving data in Receive state.

Program A issues the Receive call to begin receiving data and enters Receive
state.

Program C issues a Receive and is notified of the change in the conversation's
state by the status_received parameter, which is set to CM_SEND_RECEIVED. The
reception of both data and CM_SEND_RECEIVED on the same Receive call places
Program C into Send-Pending state. Two possible error conditions can now occur:

• Program C, while processing the data just received, discovers something
wrong with the data (as was discussed in "Example 6: Reporting Errors").
This is an error in the "receive" direction of the data.

• Program C finishes processing the data and begins its send processing.
However, it discovers that it cannot send a reply. For example, the received
data might contain a query for a particular data base. Program C successfully
processes the query but, on attempting to access that data base, finds that the
data base is not available. This is an error in the "send" direction of the data.

The error _direction characteristic is used to indicate which of these two conditions
has occurred. A program sets error _direction to CM_RECEIVE_ERROR for the first
case and sets error _direction to CM_SEND_ERROR for the second.

In this example, Program C encounters a send error and issues
Set_Error _Direction to set the error _direction characteristic to CM_SEND_ERROR.

Note: The error _direction characteristic was not set in the previous example
because the initial value is CM_RECEIVE_ERROR, which accurately describes the error
encountered in that example.

Program C issues Send_Error. Because CPI Communications knows the program
is in Send-Pending state, it checks the error _direction characteristic and notifies
the CPI-Communications component at System X which type of error has occurred.

Program A receives the error information in the return_code. The return_code is
set to CM_PROGRAM_NO_TRUNC be~ause Program C set error _direction to
CM_SEND_ERROR. If the error_direction had been set to CM_RECEIVE_ERROR, Program
A would have received a return_code of CM_PROGRAM_ERROR_PURGING (as in the
previous example).

Program C notifies Program A of the exact nature of the problem and both
programs continue processing.

38 SAA CPI Communications Reference

Tutorial

System X System Y

[~rorml IProra~] CPI CPI
Co11111unications Communications . .

.....__ ___. ...__ -

Programs A and C are in
conversation

.Send_Data(conversation_ID, data) data • Receive(conversation_ID).
II .-------------------------. ------------~

return_code=CM_OK . data, return_code=CM_OK . n.-----
• Receive(conversation_ID). rest of data • Receive(conversation_ID).

II .------------------------. -------------

II .
II .

II .
n.

data, return_code=

.data, return_code=CM_OK, .
status_received=CM_SEND_RECEIVED

.(program processes data, .

. acts on request, finds •
an error)

Set_Error_Direction(conversation_ID,
error_direction=CM_SEND_ERROR)

return_code=CM_OK

.CM_PROGRAM_ERROR_NO_TRUNC. error notification .Send_Error(conversation_ID)
II .--------------------------- ------------
IJ.

return_code=CM_OK

Receive(conversation_ID). data Send_Data(conversation_ID, data)
111.----------+4--------------4-----------

return_code=CM_OK m . .------ . data, return_code=CM_OK .

(further processing by both programs)

Figure 9. Error Direction and Send-Pending State

Chapter 3. Program-to-Program Communication Tutorial 39

Tutorial

40 SAA CPI Communications Reference

Reference Section

Chapter 4. Reference Section

This chapter describes the CPI-Communications calls. For each call, this chapter
provides the function of the call and any optional setup calls, which can be issued
before the call being described. In addition, the following information is provided if
it applies:

• Format

The format used to program the calls.

Note: The actual syntax used to program the calls in this chapter depends on
the programming language used. See "Call Syntax" on page 42 for specifics.

• Parameters

The parameters that are required for the calls.

• State Changes

The changes in the conversation state that can result from this call. See
"Program Flow - States and Transitions" on page 17 for more information on
program states.

Note: When the meaning is unambiguous, this book sometimes refers to a
program as being in a particular state. This means that one of the program's
conversations (the one being discussed) is in a particular state.

• Usage Notes

Additional information that applies to the call.

• Related Information

Where to find additional information related to the call.

Chapter 4. Reference Section 41

Reference Section

Call Syntax
CPI-Communications calls can be made· from application programs written in a
number of high-level programming languages:

• c
• COBOL
• FORTRAN
• REXX (SAA Procedures Language)·
• CSP (SAA Application Generator)

Specific syntax and library information for VM can be found in Appendix E, "CMS
VM/SP-Extension Information"

This book uses a general call format to show the name of the CPI-Communications
call and parameters used. An example of that format is provided below:

CALL CMPROG (parme,
parml,
parm2,

parmN)

where CMPROG is the name of the call, and parmO, parm1, parm2, and parmN
represent the parameter list described in the individual call descriptions.

This format would be translated into, for each of the supported languages, the
following syntaxes:

c
CMPROG (parm0,parml,parm2, •.• parmN)

COBOL
CALL 11 CMPROG 11 USING parm0,parml,parm2, ••• parmN

CSP
CALL CMPROG parm0,parml,parm2, .•. parmN

FORTRAN
CALL CMPROG (parm0,parml,parm2, ••• parmN)

REXX
ADDRESS CPICOMM 1 CMPROG parm0 parml parm2 ••• parmN'

"Programming Language Considerations" on page 177 in Appendix E, "CMS
VM/SP-Extension lnfor~ation" provides further information on the different
programming languages and how they can be used in the CMS environment.

42 SAA CPI Communications Reference

Reference Section

How to Use the Call References
Here is an example of how the information in this chapter can be used in
connection with the material in the rest of the book. The example describes how to
use the Set_Return_Control call to set the conversation characteristic of
return_control to a value of CM_IMMEDIATE.

• "Set_Return_Control (CMSRC)" on page 112 contains the semantics of the
variables used for the call. It explains that the real name of the program call
for Set_Return_Control is CMSRC and that CMSRC has a parameter list of
conversation_ID, return_contro/, and return_code.

• "Call Syntax" on page 42 shows the syntax for the programming language
being used.

• Appendix A, "Variables and Characteristics" provides a complete description
of all variables used in the book and shows that the return_control variable that
goes into the call as a parameter is a 32-bit integer. This information is
provided in Table 6 on page 129.

• Table 4 on page 124 in Appendix A, "Variables and Characteristics" shows
that the value of CM_IMMEDIATE that is placed into the return_control parameter
on the call to CMSRC is defined as an integer value of 1.

• Finally, the meaning of the return_code value CM_OK that is returned to the
program on the call is provided in Appendix B, "Return Codes." It means that
the call completed successfully.

Locations of Key Topics
A list of program calls by their call names - providing the call pseudonym, a brief
description, and the call's location in this chapter - is given on page 44. A list of
key-topic discussions and where they occur is provided below:

• "Naming Conventions - Calls and Characteristics, Variables and Values" on
page 19 describes the naming conventions used throughout the book.

• "Data Buffering and Transmission" on page 29 provides a discussion of
program control over data transmission.

• "Usage Notes" of "Request_To_Send (CMRTS)" on page 81 discusses how a
program enters Receive state.

• "Usage Notes" of "Send_Data (CMSEND)" on page 85 describes the use of
logical records and LL fields on basic conversations.

Chapter 4. Reference Section 43

Reference Section

Call Pseudonym Description Page

CMACCP Accept_ Conversation Used by a program to 47
accept an incoming
conversation.

CMALLC Allocate Used by a program to 49
establish a conversation.

CMCFM Confirm Used by a program to 52
send a confirmation
request to its partner.

CMCFMD Confirmed Used by a program to 54
send a confirmation reply
to its partner.

CM DEAL Deallocate Used by a program to end 56
a conversation.

CME CT Extract_ Conversation_ Type Used by a program to 59
view the current
conversation_ type
conversation
characteristic.

CME MN Extract_ Mode_ Name Used by a program to 60
view the current
mode_name conversation
characteristic.

CMEPLN Extract_ Partner_ LU_ Name Used by a program to 62
view the current
partner _LU _name
conversation
characteristic.

CM ESL Extract_ Sync_ Level Used by a program to 64
view the current
sync_level conversation
characteristic.

CM FLUS Flush Used by a program to 66
flush the LU's send buffer.

CMINIT Initialize_ Conversation Used by a program to 68
initialize the conversation
characteristics.

CMPTR Prepare_ To_ Receive Used by a program to 71
change a conversation
from Send to Receive
state in preparation to
receive data.

CMRCV Receive Used by a program to 74
receive data.

CMRTS Request_To_Send Used by a program to 81
notify its partner that it
would like to send data.

CMSCT Set _Conversation_ Type Used by a program to set 93
the conversation_type
conversation
characteristic.

44 SAA CPI Communications Reference

Reference Section

Call Pseudonym Description Page

CMSDT Set_ Dea I locate_ Type Used by a program to set 95
the deallocate _type
conversation
characteristic.

CMSED Set_ Error _Direction Used by a program to set 98
the error _direction
conversation
characteristic.

CMSEND Send_Data Used by a program to 83
send data.

CM SERR Send_Error Used by a program to 88
notify its partner of an
error that occurred during
the conversation.

CMSF Set_Fill Used by a program to set 100
the fill conversation
characteristic.

CMSLD Set_ Log_ Data Used by a program to set 102
the log_data conversation
characteristic.

CMSMN Set_Mode_Name Used by a program to set 104
the mode_name
conversation
characteristic.

CMSPLN Set_Partner_LU_Name Used by a program to set 106
the partner_ LU _name
conversation
characteristic.

CMSPTR Set_Prepare_ To_Receive_ Type Used by a program to set 108
the
prepare_to_receive_type
conversation
characteristic.

CMS RC Set_ Return_ Control Used by a program to set 112
the return_control
conversation
characteristic.

CMS RT Set_Receive_Type Used by a program to set 110
the receive _type
conversation
characteristic.

CM SSL Set_ Sync_ Level Used by a program to set 116
the sync _level
conversation
characteristic.

CM SST Set_ Send_ Type Used by a program to set 114
the send_type
conversation
characteristic.

Chapter 4. Reference Section- 45

Reference Section

Call Pseudonym Description Page

CMSTPN Set_TP _Name Used by a program to set 118

the TP_Name
conversation
characteristic.

CMTRTS Test_Request_To_Send_Received Used by a program to 120
determine whether or not
the remote program is
requesting to send data.

46 SAA CPI Communications Reference

Accept_Conversation (CMACCP)

Accept_ Conversation (CMACCP)

OS/400 I OS/2 I IMS

The Accept_Conversation call accepts an incoming conversation. Like
Initialize_ Conversation (CMINIT), this call initializes values for various
conversation characteristics. The difference between the two calls is that the
program that will later allocate the conversation issues the lnitialize_Conversation
call, and the partner program that will accept the conversation after it is allocated
issues the Accept_Conversation call.

When the Accept_Conversation call completes successfully, the following
conversation characteristics are initialized:

Conversation Characteristic

conversation_ type

deallocate_ type

error _direction

fill

log_data

/og_data_Jength

mode_name

mode _name _length

partner _LU _name

partner _LU_ name _length

prepare _to _receive _type

receive_type

return_contro/

send_type

sync_level

TP_name

TP _name_length

lnltlallzed Value

Derived from the received conversation start-up
request

CM_DEALLOCATE_SYNC_LEVEL

CM_RECEIVE_ERROR

CM_FILL_LL

Null value

0

Mode name of session over which the conversation
start-up request was received

Length of mode name

Partner LU name of session over which the
conversation start-up request was received

Length of partner LU name

CM_PREP _TO_RECEIVE_SYNC_LEVEL

CM_RECEIVE_AND_WAIT

Null value

Note: This characteristic applies only to an Allocate
call.

CM_BUFFER_DATA

Derived from the received conversation start-up
request

Null value

Note: This characteristic applies only to an Allocate
call.

0

Chapter 4. Reference Section 47

Accept_ Conversation (CMACCP}

Format

Parameters

State Changes

Usage Notes

Related Information

CALL CMACCP(conversation_ID,
return_code)

conversation _ID
Specifies the conversation identifier assigned to the conversation. CPI
Communications supplies and maintains the conversation_ID. When the
return_code is set equal to CM_OK, the value returned in this parameter is used
by the program on all subsequent calls issued for this conversation.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that no incoming conversation exists.
• CM _PRODUCT_ SPECIFIC_ ERROR

When return_code is set equal to CM_OK, the local program enters the Receive
state.

For each conversation, CPI Communications assigns a unique identifier (the
conversation_ID) that the program uses in all future calls intended for that
conversation. Therefore, the partner program must issue the Accept_ Conversation
call before any other calls can refer to the conversation.

"Conversation Characteristics" on page 14 provides a comparison of conversation
characteristics as set by Accept_Conversation and lnitialize_Conversation.

"Example 1: Data Flow in One Direction" on page 23 shows an example program
flow using the Accept_Conversation call.

"lnitialize_Conversation (CMINIT)" on page 68 describes how the conversation
characteristics are initialized for the program that allocates the conversation.

48 SAA CPI Communications Reference

Allocate (CMALLC)

Allocate {CMALLC)

Format

Parameters

OS/400 I OS/2 IMS CICS

A program uses the Allocate (CMALLC) call to establish a basic or mapped
conversation (depending on the conversation_type characteristic) with its partner
program. The partner program is specified in the TP _name characteristic.

Note: A return_code of CM_OK indicates that the conversation has been
successfully allocated.

Optional set-up:

CALL CMSCT - Set_Conversation_Type
CALL CMSDT - Set_Deallocate_ Type
CALL CMSMN - Set_Mode_Name
CALL CMSPLN - Set_Partner_LU_Name
CALL CMSRC - Set_Return_Control
CALL CMSRT - Set_Receive_ Type
CALL CMSSL - Set_Sync_Level
CALL CMSST - Set_Send_Type
CALL CMSTPN - Set TP Name

CALL CMALLC(conversation_ID,
return_code)

conversation _ID
Specifies the conversation identifier of an initialized conversation.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_control characteristic determines which return codes can
be returned to the local program.

If return_control is set to CM_WHEN_SESSION_ALLOCATED, return_code can have
one of the following values:

• CM_OK

• CM_ALLOCATE_FAILURE_NO_RETRY

• CM_ALLOCATE_FAILURE_RETRY

• CM_PARAMETER_ERROR

This value indicates one of the following:
The mode_name characteristic (set from side information or by
Set_Mode_Name) specifies a mode name that is not recognized by the
LU as being valid.

Chapter 4. Reference Section 49

Allocate (CMALLC)

The mode_name characteristic (set from side information or by
Set_Mode_Name) specifies SNASVCMG, but the local program is not
an SNA services program.
The TP _name characteristic (set from side information or by
Set_ TP _Name) specifies an SNA service transaction program name,
,Put the local program does not have the appropriate privilege to
allocate a conversation to an SNA service program.
The TP _name characteristic (set from side information or by
Set_TP _Name) specifies an SNA service transaction program and
conversation_type is set to CM_MAPPED_CONVERSATION.

The partner_LU_name characteristic (set from side information or by
Set_Partner_LU_Name) specifies a partner LU name that is not
recognized by the LU as being valid.

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in lnltlallze state.
• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

If return_control is set to CM_IMMEDIATE, return_code can have one of the
following values:

• CM_OK

• CM_PARAMETER_ERROR

This value indicates one of the following:
The mode_name characteristic (set from side information or by
Set_Mode_Name) specifies a mode name that is not recognized by the
LU.
The mode_name characteristic (set from side information or by
Set_Mode_Name) specifies SNASVCMG, but the local program is not
an SNA services program.
The TP _name characteristic (set from the side information or
Set_ TP _Name) specifies an SNA service transaction program name,
but the local program does not have the appropriate privilege to
allocate a conversation to an SNA service program.
The TP _name characteristic (set from the side information or
Set_ TP _Name) specifies an SNA service transaction program and the
conversation_type is set to CM_MAPPED_CONVERSATION.

The partner_LU_name characteristic (set from side information or by
Set_Partner_LU_Name) specifies a partner LU name that is not
recognized by the LU as being valid.

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
• CM_PROGRAM _PARAMETER_ CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT _SPECIFIC_ERROR

• CM_UNSUCCESSFUL

This value indicates that the session is not immediately available.

50 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Allocate (CMALLC)

When return_code is set equal to CM_OK, the local program enters Send state.

1. An allocation error resulting from the local LU's failure to obtain a session for
the conversation is reported on the Allocate call. An allocation error resulting
from the remote LU's rejection of the allocation request is reported on a
subsequent conversation call.

2. For CPI Communications to establish the conversation, CPI Communications
must first establish a session between the local LU and the remote LU, if such
a session does not al ready exist.

3. Depending on the circumstances, the local LU can send the conversation
allocation request to the remote LU as soon as it allocates a s~ssion for the
conversation. The local LU can also buffer the allocation request until it
accumulates enough information for transmission (from one or more
subsequent Send_Data calls), or until the local program issues a subsequent
call other than Send_Data that explicitly causes the LU to flush its send buffer.
The amount of information sufficient for transmission depends on the
characteristics of the session allocated for the conversation and can vary from
one session to another.

4. The local program can ensure that the remote program is connected as soon
as possible by issuing Flush (CMFLUS) immediately after Allocate (CMALLC).

5. Security information for the LU and conversation is determined by the
implementing product, not by CPI Communications.

6. After making a call to Accept_Conversation, the remote program is connected
in Receive state.

"Example 1: Data Flow in One Direction" on page 23 shows an example program
flow using the Allocate call.

"SNA Service Transaction Programs" on page 149 provides a discussion of SNA
service transaction programs.

"Data Buffering and Transmission" on page 29 provides a complete discussion of
control methods for data. transmission.

"Set_Return_Control (CMSRC)" on page 112 provides a discussion of the
return_control characteristic.

"Set_Conversation_ Type (CMSCT)" on page 93 provides a discussion of the
conversation_ type characteristic.

Chapter 4. Reference Section 51

Confirm {CMCFM)

Confirm (CMCFM)

Format

Parameters

OS/400 I OS/2 IMS CICS

The Confirm (CMCFM) call is used by a local program to send a confirmation
request to the remote program and then wait for a reply. The remote program
replies with a Confirmed (CMCFMD) call. The local and remote programs use the
Confirm and Confirmed calls to synchronize their processing of data.

Note: The sync_level conversation characteristic for the conversation_ID specified
must be set to CM_CONFIRM to use this call.

CALL CMCFM(conversation_ID,

conversation _ID

request _to_ send _received,
return_ code)

Specifies the conversation identifier.

request_ to_ send _received
Specifies the variable in which is returned an indication of whether or not a
request-to-send notification has been received. The request_to_send_received
variable can have one of the following values:

• CM_REQ_TO_SEND_RECEIVED

The local program received a request-to-send notification from the remote
program. The remote program issued a Request_To_Send requesting that
the local program enter Receive state, which places the remote program in
Send state.

• CM_REQ_TO_SEND_NOT_RECEIVED

A request-to-send notification has not been received.

Note: When return_ code indicates CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not contain a value.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK (remote program replied Confirmed)
• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_V,ALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP_NOT_AVAILABLE_NO_RETRY

• CM_TP_NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

• CM_PROGRAM_ERROR_PURGING

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

52 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Confirm {CMCFM)

• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The conversation is not in Send or Send-Pending state.

- The conversation is basic and the program is in Send state, and the
program started but did not finish sending a logical record.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
- The sync_level conversation characteristic is set to CM_NONE.

- The conversation_ID specifies an unassigned conversation identifier.
• CM _PRODUCT_ SPECIFIC_ ERROR

When return_code is set to CM_OK:

• The program enters Send state if it issued the Confirm cal I in Send-Pending
state.

• No state change occurs if the program issued the Confirm call in Send state.

1. The program that issues Confirm must wait until a reply from the remote
partner program (a reply made using the Confirmed call) is received.

2. The program can use this call for various application-level functions. For
example:

• The program can issue this call immediately following an Allocate call to
determine if the conversation was allocated before sending any data.

• The program can issue this call to determine if the remote program
received the data sent. The remote program can respond by issuing a
Confirmed call if it received and processed the data without error, or by
issuing a Send_Error call if it encountered an error. The only other valid
response from the remote program is the issuance of the Deallocate call
with deallocate_type set to CM_DEALLOCATE_ABEND.

3. The send buffer of the local LU is flushed as a result of this call.

"Confirmed (CMCFMD)" on page 54 provides information on the remote program's
reply to the Confirm call.

"Request_ To_ Send (CMRTS)" on page 81 provides a complete discussion of the
request_to_send_received parameter.

"Set_Sync_Level (CMSSL)" on page 116 explains how programs specify the level
of synchronization processing.

"Example 4: Validation and Confirmation of Data Reception" on page 32 shows an
example program using the Confirm call.

Chapter 4. Reference Section 53

Confirmed {CMCFMD)

Confirmed (CMCFMD)

Format

Parameters

State Changes

Usage Notes

OS/400 I OS/2 IMS CICS

A program uses the Confirmed (CMCFMD) call to send a confirmation reply to the
remote program. The local and remote programs can use the Confirmed and
Confirm calls to synchronize their processing.

CALL CMCFMD(conversation_/D,
return_ code)

conversation _ID
Specifies the conversation identifier.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This return code indicates that the conversation is not in Confirm,
Confirm-Send, or Confirm-Deallocate state.

• CM_PROGRAM_PARAMETER_CHECK

This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM _PRODUCT_ SPECIFIC_ ERROR

When return_code is set to CM_OK:

• The program enters Receive state if it received the status_received parameter
set to CM_CONFIRM_RECEIVED on the preceding Receive call, that is, the
conversation was in Confirm state.

• The program enters Send state if it received the status _received parameter set
to CM_CONFIRM_SEND_RECEIVED on the preceding Receive call, that is, the
conversation was in Confirm-Send state.

• The program enters Reset state if it received the status_received parameter
set to CM_CONFIRM_DEALLOC_RECEIVED preceding Receive call, that is, the
conversation was in Confirm-Deallocate state.

1. The local program can issue this call only as a reply to a confirmation request;
the call cannot be issued at any other time. A confirmation request is
generated (by the remote LU) when the remote program makes a call to
Confirm. The remote program that has issued Confirm will wait until the local
program responds with Conti rm ed.

54 SAA CPI Communications Reference

Related Information

Confirmed (CMCFMD}

2. The program can use this call for various application-level functions. For
example, the remote program may send data followed by a confirmation
request (using the Confirm call). When the local program receives the
confirmation request, it can issue a Confirmed call to indicate that it received
and processed the data without error.

"Confirm (CMCFM)" on page 52 provides more information on the Confirm call.

"Receive (CMRCV)" on page 74 provides more information on the status_received
parameter.

"Set_Sync_Level (CMSSL)" on page 116 explains how programs specify the level
of synchronization processing.

"Example 4: Validation and Confirmation of Data Reception" on page 32 shows an
example program using the Confirmed call.

Chapter 4. Reference Section 55

Deallocate (CMDEAL)

Deallocate (CMDEAL)

Format

Parameters

OS/400 I OS/2 IMS CICS

A program uses the Deallocate (CMDEAL) call to end a conversation. The
Deallocate call can include the function of the Flush or Confirm call, depending on
the value of the deallocate_type conversation characteristic. The conversation_ID
is no longer assigned when the Deallocation call completes successfully.

Optional set-up:

CALL CMSDT - Set_Deallocate_Type
CALL CMSLD - Set_Log_Data

CALL CMDEAL(conversation_/D,
return_code)

conversation _ID
Specifies the conversation identifier of the conversation to be ended.

return_ code
Specifies the result of the call execution, which is returned to the local
program.

If the deallocate _type conversation characteristic is set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to CM_NONE, or if
deal/ocate_type is set to CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_ABEND, the
return_code variable can have one of the following values:

• CM_OK (deallocation is complete)
• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The deallocate _type conversation characteristic is set to
CM_DEALLOCATE_ABEND, and the conversation is not in Initialize, Send,
Receive, Send-Pending, Confirm, Confirm-Send, or Confirm-Deallocate
state.
The deallocate _type conversation characteristic is set to
CM_DEALLOCATE_SYNC_LEVEL or CM_DEALLOCATE_FLUSH, and the
conversation is not in Send or Send-Pending state.
The deallocate _type conversation characteristic is set to
CM_DEALLOCATE~SYNC_LEVEL or CM_DEALLOCATE_FLUSH; the conversation is
basic and in Send state; and the program started but did not finish
sending a logical record.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

56 SAA CPI Communications Reference

State Changes

Usage Notes

Deallocate (CMDEAL)

If the deal/ocate_type conversation characteristic is set to
CM_DEALLOCATE_SYNC_LEVEL and the sync_level is set to CM_CONFIRM, or if
deallocate_type is set to CM_DEALLOCATE_CONFIRM, the return_code variable can
have one of the following values:

• CM_OK (deallocation is complete)
• CM_ CONVERSATION_ TYPE _MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP _NOT_AVAILABLE_NO_RETRY

• CM_TP _NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

• CM_PROGRAM_ERROR_PURGING

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The deallocate_type characteristic is set to CM_DEALLOCATE_CONFIRM or
CM_DEALLOCATE_SYNC_LEVEL and the conversation is not in Send or
Send-Pending state.
The deallocate_type characteristic is set to CM_DEALLOCATE_CONFIRM or
CM_DEALLOCATE_SYNC_LEVEL; the conversation is basic and in Send state;
and the program started but did not finish sending a logical record.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

When return_code indicates CM_OK, the program enters Reset state.

1. If deal/ocate_type is set to CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the
execution of Deallocate includes the flushing of the local LU's send buffer.

2. If deallocate_type is set to CM_DEALLOCATE_ABEND and the log_data_length
characteristic is greater than zero, the local LU formats the supplied log data
into an Error Log Data GOS variable. After completion of the Deallocate
processing, the log_data is reset to null and the log_data_length is reset to
zero.

3. The remote program receives the deallocate notification by means of a
return_code or status_received indication, as follows:

• CM_DEALLOCATED_NORMAL return_code
This return code indicates that the partner program issued Deallocate with
the-sync_level characteristic set to CM_NONE and deallocate_type set to
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_SYNC_LEVEL.

Chapter 4. Reference Section 57

Deallocate (CMDEAL)

Related Information

• CM_DEALLOCATED_ABEND return_code
This indicates that the partner program issued Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND

Note: If the remote program has issued Send_Error in Receive state, the
"incoming information containing notice of CM_DEALLOCATED_ABEND is purged
and a CM_DEALLOCATED_NORMAL return_code is reported instead of
CM_DEALLOCATED_ABEND. See' "Send_Error (CMSERR)" on page 88 for a
complete discussion .

• CM_CONFIRM_DEALLOC_RECEIVED status_received indication
This indicates that the local program issued Deallocate with the sync_level
set to CM_CONFIRM and deal/ocate_type set to CM_DEALLOCATE_CONFIRM or
CM_ DEALLOCATE_ SYNC_ LEVEL.

"Example 1: Data Flow in One Direction" on page 23 shows an example program
flow using the Deallocate call.

SNA Formats provides a detailed description of GOS variables.

"Set_Log_Data (CMSLD)" on page 102 provides a discussion of the log_data
characteristic.

"Set_Deallocate_Type (CMSDT)" on page 95 provides a discussion of the
deal/ocate_type characteristic and its possible values.

58 SAA CPI Communications Reference

Extract_Conversation_ Type (CMECT)

Extract_ Conversation_ Type (CMECT)

OS/400 I OS/2 I IMS

Format

Parameters

State Changes

Usage Notes

Related Information

A program uses the Extract_Conversation_Type (CMECT) call to extract the
conversation_type characteristic's value for a given conversation. The value is
returned in the conversation_type parameter.

CALL CMECT(conversation_/D,
conversation_ type,
return_code)

conversation _ID
Specifies the conversation identifier.

conversation_ type
Specifies the conversation type that is returned to the local program. The
conversation_type can be one of the following:

• CM_BASIC_CONVERSATION

Indicates that the conversation is allocated as a basic conversation.
• CM_MAPPED_CONVERSATION

Indicates that the conversation is allocated as a mapped conversation.

Note: If return_code is set to CM_PROGRAM_PARAMETER_CHECK, conversation_type
does not contain a value.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

This call does not change the conversation_type for the specified conversation.

"Set_ Conversation_ Type (CMSCT)" on page 93 provides more information on the
conversation_type characteristic.

Chapter 4. Reference Section 59

Extract_Mode_Name (CMEMN)

Extract_Mode_Name {CMEMN)

Format

Parameters

State Changes

Usage Notes

OS/400 I OS/2 I IMS CICS

A program uses the Extract_Mode_Name (CMEMN) call to extract the mode_name
characteristic's value for a given conversation. The value is returned to the
program in the mode_name parameter.

CALL CMEMN(conversation_ID,
mode_name,
mode_name_length,
return_code)

conversation _ID
Specifies the conversation identifier.

mode_name
Specifies the mode name that is returned to the local program. The mode
name designates the network properties for the session allocated, or to be
allocated, which will carry the conversation specified by the conversation_ID.

Note: When return_code is set to CM_PROGRAM_PARAMETER_CHECK, mode_name
does not contain a value.

mode_ name _length
Specifies the variable in which is returned the length of the returned
mode_name parameter.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_ CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

This call does not change the mode_name for the specified conversation.

60 SAA CPI Communications Reference

Related Information

Extract_Mode_Name {CMEMN)

"Set_Mode_Name (CMSMN)" on page 104 and "Side Information" on page 11
provide further information on the mode name characteristic.

Chapter 4. Reference Section 61

Extract_Partner _LU_Name (CMEPLN)

Extract_ Partner_ LU_ Name (CMEPLN)

Format

Parameters

State Changes

Usage Notes

OS/400 I · OS/2 I
IMS

A program uses the Extract_Partner_LU_Name (CMEPLN) call to extract the
partner_LU_name characteristic's value for a given conversation. The value is
returned in the partner _LU _name parameter.

CALL CMEPLN(conversation_ID,

conversation _ID

partner _LU _name,
partner _LU _name_length,
return_code)

Specifies the conversation identifier.

partner_LU_name
Specifies the name of the LU where the remote program is located, which is
returned to the local program.

Note: If return_code is set to CM_PROGRAM_PARAMETER_CHECK, partner_LU_name
does not contain a value.

partner _LU_name_length
Specifies the variable in which is returned the length of the returned
partner _LU _name parameter.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT _SPECIFIC_ERROR

This call does not cause a state change.

This call does not change the partner _LU _name for the specified conversation.

62 SAA CPI Communications Reference

Related Information

Extract_Partner _LU _Name (CMEPLN)

"Set_Partner_LU_Name (CMSPLN)" on page 106 and "Side Information" on
page 11 provide more information on the partner _LU _name characteristic.

Chapter 4. Reference Section 63

Extract_Sync_Level (CMESL)

Extract Sync Level (CMESL) - -

Format

Parameters

State Changes

OS/400 I OS/2 I IMS CICS

A program uses the Extract_Sync_Level (CMESL) call to extract the sync_level
characteristic's value for a given conversation. The value is returned to the
program in the sync_level parameter.

CALL CMESL(conversation_ID,
sync_Jevel,
return_code)

conversation _ID
Specifies the conversation identifier.

sync_level
Specifies the sync _level characteristic of this conversation, which is returned to
the local program. The sync_level variable can have one of the following
values:

• CM_NONE

Specifies that the programs will not perform confirmation processing on
this conversation. The programs will not issue any calls and will not
recognize any returned parameters relating to synchronization.

• CM_CONFIRM

Specifies that the programs can perform confirmation processing on this
conversation. The programs can issue calls and will recognize returned
parameters relating to confirmation.

Note: If return_code is set to CM_PROGRAM_PARAMETER_CHECK, sync_level does
not contain a value.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT _SPECIFIC_ERROR

This call does not cause a state change.

64 SAA CPI Communications Reference

Usage Notes

Related Information

Extract_Sync_Level {CMESL)

This call does not change the sync_level for the specified conversation.

"Set_Sync_Level (CMSSL)" on page 116 provides more information on the
sync_level characteristic.

Chapter 4. Reference Section 65

Flush (CMFLUS)

Flush (CMFLUS)

Format

Parameters

State Changes

OS/400 [OS/2 IMS CICS

A program uses the Flush (CMFLUS) call to empty the local LU's send buffer for a
given conversation. When notified by CPI Communications that a Flush has been
issued, the LU sends any information it has buffered to the remote LU. The
information that can be buffered comes from the Allocate, Send_Data, or
Send_Error calls. Refer to the descriptions of these calls for more details of when
and how buffering occurs.

CALL CMFLUS(conversation_ID,
return_ code)

conversation _ID
Specifies the conversation identifier.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code can be one of the following:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Send or Send-Pending
state.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation ID.

• CM_PRODUCT_SPECIFIC_ERROR

When return_code indicates CM_OK:

• The program enters Send state if it issues the Flush call while in Send-Pending
state.

• No state change occurs if the program issues the Flush call while in Send
state.

66 SAA CPI Communications Reference

Usage Notes

Related Information

Flush (CMFLUS)

1. This call optimizes processing between the local and remote programs. The
local LU normally buffers the data from consecutive Send_Data calls until it has
a sufficient amount for transmission. Only then does the local LU transmit the
buffered data.

To avoid this data buffering, the local program can issue a Flush call to
minimize any delay in the remote program's processing of the data.

2. The local LU flushes its send buffer only when it has some information to
transmit. If the LU has no information in its send buffer, nothing is transmitted
to the remote LU.

3. Contrast the use of Send_Data followed by a call to Flush with the equivalent
use of Send_Data after setting send_type to CM_SEND_AND_FLUSH.

"Set_Send_Type (CMSST}" on page 114 provides a discussion of alternative
methods of achieving the Flush function.

"Allocate (CMALLC)" on page 49 provides more information on how information is
buffered from the Allocate call.

"Send_Data (CMSEND}" on page 83 provides more information on how information
is buffered from the Send_Data call.

"Send_Error (CMSERR)" on page 88 provides more information on how
information is buffered from the Send_Error call.

"Data Buffering and Transmission" on page 29 provides a complete discussion of
the conditions for data transmission.

"Example 4: Validation and Confirmation of Data Reception" on page 32 shows an
example' of how a program can use the Flush call to establish a conversation
immediately.

Chapter 4. Reference Section 67

lnitialize_Conversation (CMINIT)

Initialize_ Conversation (CMINIT)

OS/400 I OS/2 I IMS

A program uses the lnitialize_Conversation (CMINIT) call to initialize values for
various conversation characteristics before the conversation is allocated (with a
call to Allocate). The remote partner program uses the Accept_Conversation call
to initialize values for the conversation characteristics on its end of the
conversation.

Note: A program can override the values that are initialized by this call using the
appropriate Set calls, such as Set_Sync_Level. Once the value is changed, it
remains changed until the end of the conversation or until changed again by a Set
call.

When the lnitialize_Conversation call completes successfully, the following
conversation characteristics are initialized:

Conversation Characteristic

conversation_ type

deal locate_ type

error _direction

fill

log_data

log_data_length

mode_name

mode_ name _length

partner _LU _name

partner _LU _name _length

prepare _to _receive_type

receive _type

return_contro/

send_type

sync_level

TP_name

TP _name_length

68 SAA CPI Communications Reference

Initialized Value

CM_MAPPED _CONVERSATION

CM_DEALLOCATE_SYNC_LEVEL

CM_RECEIVE_ERROR

CM_FILL_LL

Null value

0

Mode name from side information referenced by
sym_dest_name

Length of mode name

Partner LU name from side information referenced by
sym_ dest_name

Length of partner LU name

CM_PREP _TO_RECEIVE_SYNC_LEVEL

CM_RECEIVE_AND_WAIT

CM_ WHEN_SESSION_ALLOCATED

CM_BUFFER_DATA

CM_NONE

TP name from side information referenced by
sym_dest_name

Length of TP name

Format

Parameters

State Changes

Usage Notes

Related Information

CALL CMINIT(conversation_/D,
sym_dest_name
return_code)

conversation _ID

lnitialize_Conversation (CMINIT)

Specifies the conversation identifier assigned to the conversation, which is
returned to the program. CPI Communications supplies and maintains the
conversation_ID. If the lnitialize_Conversation is successful (return_code is set
equal to CM_OK), the local program uses the identifier returned in this variable
for the rest of the conversation.

sym_dest_name
Specifies the symbolic name of the destination LU and partner program, as
well as the mode name for the session on which the conversation is to be
carried. The symbolic destination name is provided by the program and points
to an entry in the side information table. The appropriate entry in the side
information is retrieved and used to initialize the characteristics for the
conversation being initialized.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the sym_dest_name specifies an unrecognized
value.

• CM _PRODUCT_ SPECIFIC_ ERROR

When return_code indicates CM_OK, the local program enters the Initialize state.

1. For each conversation, CPI Communications assigns a unique identifier, the
conversation_ID. The program then uses the conversation_ID in all future calls
intended for that conversation. Initialize_ Conversation (or
Accept_Conversation, on the opposite side of the conversation), must be
issued by the program before any other calls may be made for that
conversation.

2. If the program supplies invalid allocation information with the
lnitialize_Conversation (CMINIT) call, or any subsequent Set calls, the error is
detected when the information is processed by Allocate (CMALLC).

"Accept_Conversation (CMACCP)" on page 47 provides more information on how
conversation characteristics are set by the Accept_Conversation call.

"Allocate (CMALLC)" on page 49 provides more information on how conversation
characteristics are set by the Allocate call.

Chapter 4. Reference Section 69

lnitialize_Conversation (CMINIT)

"Conversation Characteristics" on page 14 provides a general overview of
conversation characteristics and how they are used by the program and CPI
Communications.

"Example 1: Data Flow in One Direction" ·on page 23 shows an example program
flow where lnitialize_Conversation is used.

The calls beginning with "Set" and "Extract" in this chapter are used to modify or
examine conversation characteristics established by the lnitialize_Conversation
program call; see the individual call descriptions for details.

"Side Information" on page 11 provides more information on sym_dest_name.

70 SAA CPI Communications·Reference

Prepare_To_Recelve (CMPTR)

Prepare_ To _Receive (CMPTR)

Format

Parameters

OS/400 I OS/2 I IMS CICS

A program uses the P.repare_ To_Receive (CMPTR) call to change a conversation
from Send to Receive state in preparation to receive data. This call's function is
determined by the value of the prepare_to_receive_type conversation
characteristic and may include the same function as the Confirm call.

As a result of this call, the local LU's send buffer is flushed.

Optional set-up:

Call CMSPTR - Set_Prepare_To_Receive_Type

CALL CMPTR(conversation_ID,
return_code)

conversation _ID
Specifies the conversation identifier.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The prepare_to_receive_type currently in effect determines which
return codes can be returned to the local program.

If prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH, or if
prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the
sync_level for this conversation is CM_NONE, return_code can have one of the
following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The conversation is not in Send or Send-Pending state.

- The conversation is basic and in Send state, and the program started
but did not finish sending a logical record.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM _PRODUCT_ SPECIFIC_ ERROR

Chapter 4. Reference Section 71

Prepare_To_Receive (CMPTR)

State Changes

Usage Notes

If prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM, or if
prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the
sync_level for the conversation is CM_CONFIRM, return_code can have one of the
following values:

• CM_OK

• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP _NOT_AVAILABLE_NO_RETRY

• CM_TP _NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

• CM_PROGRAM_ERROR_PURGING

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The conversation is not in Send or Send-Pending state.

- The conversation is basic and in Send state, and the program started
but did not finish sending a logical record.

• CM_PROGRAM_PARAMETER_CHECK

This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

When return_code indicates CM_OK, the program enters the Receive state.

1. If prepare_to_receive_type is set to CM_PREP _TO_RECEIVE_CONFIRM, or if
prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is CM_CONFIRM, the local program regains control when a Confirmed
reply is received.

2. The program uses the prepare_to_receive_type characteristic set to
CM_PREP _TO_RECEIVE_SYNC_LEVEL to transfer send control to the remote program
based on one of the following synchronization levels allocated to the
conversation:

• If sync_level is set to CM_NONE, send control is transferred to the remote
program without any synchronizing acknowledgment.

• If sync_level is set to CM_CONFIRM, send control is transferred to the remote
program with confirmation requested.

3. The program uses the prepare_to_receive_type characteristic set to
CM_PREP _TO_RECEIVE_FLUSH to transfer send control to the remote program
without any synchronizing acknowledgment. The prepare_to_receive_type
characteristic set to CM_PREP _TO_RECEIVE_FLUSH functions the same as the
prepare _to _receive _type characteristic set to CM_PREP _TO _RECEIVE_SYNC _LEVEL

combined with a sync_level set to CM_NONE.

72 SAA CPI Communications Reference

Related Information

Prepare_To_Receive {CMPTR)

4. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEtVE_CONFIRM to transfer send control to the remote program
with confirmation requested. The prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_CONFIRM functions the same as the prepare_to_receive_type
characteristic set to CM_PREP _TO_RECEIVE_SYNC_LEVEL combined with a sync_level
set to CM_CONFIRM.

5. The remote transaction program receives send control of the conversation by
means of the status_received parameter, which can have the following values:

• CM_SEND_RECEIVED

The local program issued this call with either:
prepare_to_receive_type set to CM_PREP _TO_RECEIVE_FLUSH

or
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync _level set to CM_NONE.

• CM_CONFIRM_SEND_RECEIVED

The local program issued this call with either:
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_CONFIRM

or
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level set to CM_CONFIRM.

6. After the local program has entered Receive state, the remote program enters
the corresponding Send or Send-Pending state when it issues a Receive call
and receives send control of the conversation by means of the status_received
parameter. The remote program can then send data to the local program.

"Set_Prepare_To_Receive_Type (CMSPTR)" on page 108 provides more
information on the prepare_to_receive_type characteristic.

"Set_Sync_Level (CMSSL)" on page 116 provides a discussion of the sync_level
characteristic and its possible values.

"Example 3: The Sending Program Changes the Data Flow Direction" on page 30
and "Example 5: The Receiving Program Changes the Data Flow Direction" on
page 34 show example program flows where the Prepare_To_Receive call is used.

Chapter 4. Reference Section 73

Receive (CMRCV)

Receive (CMRCV)

Format

Parameters

OS/400 I QS/2 IMS CICS

A program uses the Receive (CMRCV) call to receive information from a given
conversation. The information received can be a data record (on a mapped
conversation), data (on a basic conversation), conversation status, or a request for
confirmation.

Optional set-up:

CALL CMSF (Set_Fill)
CALL CMSRT (Set_Receive_Type)

CALL CMRCV(conversation_ID,
buffer,
requested_length,
data _received,
received_length,
status _received,
request_ to_ send _received,
return_code)

conversation_ID
Specifies the conversation identifier.

buffer
Specifies the variable in which the program is to receive the data. If
data_received is returned to the program with a value of CM_NO_DATA_RECEIVED,

buffer does not contain anything.

requested _length
Specifies the maximum amount of data the program is to receive.

data_received
Specifies whether or not the program received data, which is returned to the
local program.

Note: Unless return_code is set to CM_OK or CM_DEALLOCATED_NORMAL,

data _received does not contain a value.

The data_received variable can have one of the following values:

• CM_NO_DATA_RECEtVED (basic and mapped conversations)
No data is received by the program. Status may be received if the
return_code is set to CM_OK.

• CM_DATA_RECEtVED (basic conversation only)
The fill characteristic is set to CM_FtLL_BUFFER and data (independent of its
logical-record format) is received by the program.

74 SAA CPI Communications Reference

Receive (CMRCV)

• CM_COMPLETE_DATA_RECEIVED (basic and mapped conversations)
This value indicates one of the following:

For mapped conversations, a complete data record or the last
remaining portion of the record is received.
For basic conversations, fill is set to cM_FILL_LL and a complete logical
record, or the last remaining portion of the record is received.

• CM_INCOMPLETE_DATA_RECEIVED (basic and mapped conversations)
This value indicates one of the following:

For mapped conversations, less than a complete data record is
received.
For basic conversations, fill is set to CM_FILL_LL, and less than a
complete logical record is received.

Note: For either type of conversation, if data_received is set to
CM_INCOMPLETE_DATA_RECEIVED, the program must issue another Receive (or
possibly multiple Receive calls) to receive the remainder of the data.

received _length
Specifies the variable in which is returned the amount of data the program
received, up to the maximum. If the program receives information other than
data, received_length does not contain a value.

status _received
Specifies the variable in which is returned an indication of whether or not the
program received the conversation status.

Note: Unless return_code is set to CM_OK, status_received does not contain a
value.

The status_received variable can have one of the following values:

• CM_NO_STATUS_RECEIVED

No conversation status is received by the program; data may be received.
• CM_SEND_RECEIVED

The remote program has entered Receive state, placing the local program
in Send-Pending state (if the program also received data on this call) or
Send state (if the program did not receive data on this call). The local
program (who issued the Receive call) can now issue Send_Data.

• CM_CONFIRM_RECEIVED

The remote program has sent a confirmation request requesting the local
program to respond by issuing a Confirmed call. The local program must
respond by issuing Confirmed, Send_Error, or Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND.

• CM_CONFIRM_SEND_RECEIVED

The remote program has entered Receive state with confirmation
requested. The local program must respond by issuing Confirmed,
Send_Error, or Deallocate with deal/ocate_type set to
CM_DEALLOCATE_ABEND.

• CM_CONFIRM_DEALLOC_RECEIVED

The remote program has deallocated the conversation with confirmation
requested. The local program must respond by issuing Confirmed,
Send_Error, or Deallocate with deal/ocate_type set to
CM_DEALLOCATE_ABEND.

request_ to_ send _received
Specifies the variable in which is returned an indication of whether or not the
remote program issued a Request_ To_Send call.

Chapter 4. Reference Section 75

Receive (CMRCV}

Note: If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not contain a value.

The request_to_send_received variable can have one of the following values:

• CM_REQ_TO_SEND_RECEIVED

The local program received a request-to-send notification from the remote
program. The remote program issued Request_To_Send, requesting the
local program to enter Receive state, which places the remote program in
Send state. See "Request_To_Send (CMRTS)" on page 81 for further
discussion of the program's possible responses.

• CM_REQ_TO_SEND_NOT_RECEIVED

The local program has not received a request-to-send notification.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return codes that can be returned depend on the state and
characteristics of the conversation at the time this call is issued.

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in Send
state, return_code can have one of the following values:

• CM_OK

• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP_NOT_AVAILABLE_NO_RETRY

• CM_TP_NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

• CM_DEALLOCATED_NORMAL

• CM_PROGRAM_ ERROR_NO _ TRUNC

• CM_PROGRAM_ERROR_PURGING

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PRODUCT_SPECIFIC_ERROR

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in
Send-Pending state, return_code can be one of the following values:

• CM_OK

• CM_DEALLOCATED_ABEND

• CM_DEALLOCATED_NORMAL

• CM_PROGRAM_ERROR_NO_TRUNC

• CM_PROGRAM_ERROR_PURGING

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PRODUCT _SPECIFIC _ERROR

76 SAA CPI Communications Reference

State Changes

Receive {CMRCV)

If a receive_type is set to CM_RECEIVE_AND_WAIT or CM_RECEIVE_IMMEDIATE and this
call is issued in Receive state, return_code can be one of the following:

• CM_OK

• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP _NOT_AVAILABLE_NO_RETRY

• CM_TP_NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

• CM_DEALLOCATED_NORMAL

• CM_PROGRAM_ERROR_NO_TRUNC

• CM_PROGRAM_ERROR_PURGING

• CM_PROGRAM_ERROR_TRUNC (basic conversation only)
• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM _PRODUCT_ SPECIFIC_ ERROR

• CM_UNSUCCESSFUL

This value indicates that receive_type is set to CM_RECEIVE_IMMEDIATE, but
there is nothing to receive.

If a state or parameter error has occurred, return_code can have one of the
following values:

• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The receive_type is set to CM_RECEIVE_AND_WAIT and the conversation is
not in Send, Send-Pending, or Receive state.
The receive_type is set to CM_RECEIVE_IMMEDIATE and the conversation is
not in Receive state.
The receive_type is set to CM_RECEIVE_AND_WAIT; the conversation is
basic and not in Send state; and the program started but did not finish
sending a logical record.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.

- The requested_length specifies a value greater than 32767.

When return_code indicates CM_OK:

• The program enters Receive state if a Receive call is issued and all of the
following conditions are true:

The receive_type is set to CM_RECEIVE_AND_WAIT.

The conversation is in Send-Pending or Send state.
The data_received indicates CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED,

or CM_INCOMPLETE_DATA_RECEIVED.

The status_received indicates CM_NO_STATUS_RECEIVED.

• The program enters Send state when data_received is set to
CM_NO_DATA_RECEIVED and status_received is set to CM_SEND_RECEIVED.

Chapter 4. Reference Section 77

Receive (CMRCV)

Usage Notes

• The program enters Send-Pending state when data_received is set to
CM_DATA_RECEIVED or CM_COMPLETE_DATA_RECEIVED, and status_received is set to
CM_ SEND_ RECEIVED.

• The program enters Confirm, Confirm-Send, or Confirm-Deallocate state when
status_received is set to, respectively, CM_CONFIRM:-RECEIVED,

CM_CONFIRM_SEND_RECEIVED, or CM_CONFIRM_DEALLOC_RECEIVED.

• No state change occurs when the call is issued in Receive state; data_received
is set to CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED, or
CM_INCOMPLETE_DATA_RECEIVED; and status_received indicates
CM_NO_STATUS_RECEIVED.

1. If receive_type is set to CM_RECEIVE_AND_WAIT and no data is present when the
call is made, CPI Communications waits for information to arrive on the
specified conversation before allowing the Receive call to return with the
information. If information is already available, the program receives it without
waiting.

2. If the program issues Receive call in Send state with receive_type set to
CM_RECEIVE_AND_WAIT, the local LU will flush its send buffer and send all
buffered information to the remote program. The local LU will also send a
change-of-direction indication. This is a convenient method to change the
direction of the conversation, because it leaves the local program in Receive
state and tells the remote program that it may now begin sending data. The
local LU waits for information to arrive.

Note: A Receive call in Send or Send-Pending state with a receive_type set to
CM_RECEIVE_AND_WAIT generates an implicit execution of Prepare_To_Receive
with prepare_to_receive_type set to CM_PREP_TO_RECEIVE_FLUSH followed by a
Receive. Refer to "Prepare_To_Receive (CMPTR)" on page 71 for more
information.

3. If receive_type is set to CM_RECEIVE_IMMEDIATE, a Receive call receives any
available information, but does not wait for information to arrive. If information
is available, it is returned to the program with an indication of the exact nature
of the information received.

4. If the return_code indicates CM_PROGRAM_STATE_CHECK or
CM_PROGRAM_PARAMETER_CHECK, all other variables will contain no information.

5. A Receive call issued against a mapped conversation can receive only as
much of the data record as specified by the requested_length parameter. The
data_received parameter indicates whether the program has received a
complete or incomplete data record, as follows:

• When the program receives a complete data record or the last remaining
portion of a data record, the data_received parameter is set to
CM_COMPLETE_DATA_RECEIVED. The length of the record or portion of the
record is less than or equal to the length specified on the requested_length
parameter.

• When the program receives a portion of the data record other than the last
remaining portion, the data_received parameter is set to
CM_INCOMPLETE_DATA_RECEIVED. The data record is incomplete because the
length of the record is greater than the length specified on the

78 SAA CPI Communications Reference

Receive (CMRCV)

requested_length parameter. The amount of data received is equal to the
length specified.

6. When fill is set to CM_FILL_LL on a basic conversation, the program is to receive
a logical record, and there are the following possibilities:

• The program receives a complete logical record or the last remaining
portion of a complete record. The length of the record or portion of the
record is less than or equal to the length specified on the requested_length
parameter. The data_received parameter is set to
CM_COMPLETE_DATA_RECEIVED.

• The program receives an incomplete logical record for one of the following
reasons:

The length of the logical record is greater than the length specified on
the requested_length parameter. In this case, the amount received
equals the length specified.
Only a portion of the logical record is available because it has been
truncated. The portion is equal to or less than the length specified on
the requested_length parameter.

The data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. The
program issues another Receive (or possibly multiple Receive calls) to
receive the remainder of the logical record.

Refer to the Send_Data call for a definition of complete and incomplete logical
records.

7. When fill is set to CM_FILL_BUFFER on a basic conversation, the program is to
receive data independent of its logical-record format. The program receives
an amount of data equal to or less than the length specified on the
requested_length parameter. The program can receive less data only when it
receives the end of the data. The end of data occurs when it is followed by an
indication of a change in the state of the conversation (a change to Send,
Send-Pending, Confirm, Confirm-Send, Confirm-Deallocate, or Reset state).
The program is responsible for tracking the logical-record format of the data.

8. The Receive call made with requested_length set to zero has no special
significance. The type of information available is indicated by the return_code,
data_received, and the status_received parameters, as usual. If receive_type
is set to CM_RECEIVE_AND_WAIT and no information is available, this call waits for
information to arrive. If receive_type is set to CM_RECEIVE_IMMEDIATE, it is
possible that no information is available.

If data is available and fill is set to CM_FILL_LL, the data_received parameter
indicates CM_INCOMPLETE_DATA_RECEIVED. If data is available and fill is set to
CM_FILL_BUFFER, the data_received parameter indicates CM_DATA_RECEIVED. If
data is available and the conversation is mapped, the data_received parameter
is set to COMPLETE_DATA_RECEIVED (that is, 0 bytes are received). In all cases,
the program receives no data.

Note: When requested_length is set to zero, receipt of either data or status
can be indicated, but not both.

Chapter 4. Reference Section 79

Receive (CMRCV)

Related Information

9. The program can receive both data and conversation status on the same call.
However, if the remote program truncates a logical record, the local program
receives the indication of the truncation on the Receive call issued by the local
program after it receives all of the truncated record. The return_code,
data_received, and status_received parameters indicate to the program the
kind of information the program receives.

10. The request-to-send notification is usually received when the local program is
in Send state, and reported to the program on a Send_Data call or on a
Send_Error call issued in Send state. However, the local program can receive
the notification while in Receive state under the following conditions:

• When the local program just entered Receive state and the remote
program issued Request_ To_ Send before it entered Send state.

• When the remote program just entered Receive state with the
Prepare_To_Receive call (not Receive with receive_type set to
CM_RECEIVE_AND_WAIT) and then issued Request_To_Send before the local
program enters Send state. This can occur because the request-to-send
notification is transmitted as an expedited request by the LU. The
notification can, therefore, arrive ahead of the request carrying the Send
indication. Potentially, the local program cannot distinguish this condition
from the first. To avoid this ambiguity, the remote program waits until it
receives information from the local program before it issues the
Request_To_Send.

Note: The request-to-send notification is returned to the program in addition to
(not in place of) the information indicated by the return_code, data_received,
and the status_received parameters.

"Send_Data (CMSEND)" on page 83 provides more information on complete and
incomplete logical records and data records.

"Program Partners and Conversations" on page 9 and "Set_Fill (CMSF)" on
page 100 provide more discussion on the use of basic conversations.

All of the example program flows in Chapter 3, "Program-to-Program
Communication Tutorial" show programs using the Receive call.

"Request_To_Send (CMRTS)" on page 81 provides a discussion of how a program
can place itself into Receive state.

"Set_Receive_Type (CMSRT)" on page 110 provides a discussion of the
receive_type characteristic and its various values.

80 SAA CPI Communications Reference

Request_ To_Send (CMRTS)

Request_To_Send (CMRTS)

Format

Parameters

State Changes

Usage Notes

OS/400 I OS/2 I IMS CICS

The local program uses the Request_To_Send (CMRTS) call to notify the remote
program that the local program would like to enter Send state for a given
conversation. The conversation will be changed to Send or Confirm-Send state
only when the local program subsequently receives, respectively, a
CM_SEND_RECEIVED or CM_CONFIRM_SEND_RECEIVED indication from the remote program.

CALL CMRTS(conversation_ID,
return_code)

conversation _ID
Specifies the conversation identifier.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This return code indicates that the conversation is not in Receive, Send,
Send-Pending, Confirm, Confirm-Send, or Confirm-Deallocate state.

• CM_PROGRAM_PARAMETER_CHECK

This return code indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

1. The remote program is informed of the arrival of a request-to-send notification
by means of the request_to_send_received parameter. The
request_to_send_received parameter set to CM_REO_To_SEND_RECEIVED is a
request for the remote program to enter Receive state in order to place the
partner program (the program that issued the Request_To_Send) in Send state.

A program enters Receive state by issuing one of the following calls:

• The Receive call with receive_type set to CM_Rece1ve_AND_WAIT

• The Prepare_To_Receive call
• The Send_Data call with send_type set to CM_SEND_AND_PREP _TO_RECEIVE.

After a program issues one of these calls, its partner program is placed into a
corresponding Send or Send-Pending state upon issuing a Receive call. See
the status_received parameter for the Receive call on page 74 for information
about why the state changes from Receive to Send.

Chapter 4. Reference Section 81

Request_ To_Send (CMRTS)

Related Information

2. The cM_REO_TO_SEND_RECEIVED value is normally returned to the remote program
in the request_to_send_received parameter when the remote program is in
Send state (on a Send_Data or Send_Error call issued in Send state).
However, the value can also be returned on a Receive call. See "Usage
Notes" on the Receive call ("Receive (CMRCV)" on page 74) for more
information.

3. When the remote LU receives the request-to-send notification, it retains the
notification until the remote program issues a call with the
request_to_send_received parameter. The remote LU will retain only one
request-to-send notification at a time (per conversation). Additional
notifications are discarded until the retained notification is indicated to the
remote program. Therefore, a local program may issue the Request_To_Send
call more times than are indicated to the remote program.

"Receive (CMRCV)" on page 74 provides additional information on the
status _received and request _to_ send _received parameters.

"Example 5: The Receiving Program Changes the Data Flow Direction" on
page 34 shows an example program flow using the Request_To_Send call.

82 SAA CPI Communications Reference

Send_Data (CMSEND)

Send_Data (CMSEND)

Format

Parameters

OS/400 I OS/2 IMS CICS

A program uses the Send_Data (CMSEND) call to send data to the remote program.
When issued during a mapped conversation, this call sends one data record to the
remote program. The data record consists entirely of data and is not examined by
the LU for possible logical records.

When issued during a basic conversation, this call sends data to the remote
program. The data consists of logical records. The amount of data is specified
independently of the data format.

Optional set-up:

CALL CMSST - Set_Send_Type

If send_type = CM_SEND_AND_PREP_TO_RECEIVE, optional set-up may include:

CALL CMSPTR - Set_Prepare_To_Receive_Type

If send_type = CM_SEND_AND_DEALLOCATE, optional set-up may include:

CALL CMSDT - Set_Deallocate_Type

CALL CMSEND(conversation_ID,
buffer,
send_length,

conversation _ID

request_to _send _received,
return_code)

Specifies the conversation identifier of the conversation.

buffer
When a program issues a Send_Data call during a mapped conversation, buffer
specifies the data record to be sent. The length of the data record is given by
the send_length parameter.

When a program issues a Send_Data call during a basic conversation, buffer
specifies the data to be sent. The data consists of logical records, each
containing a 2-byte length field (denoted as LL) followed by a data field. The
length of the data field can range from 0 to 32765 bytes. The 2-byte length field
contains the following bits:

• A 15-bit binary length of the record

• A high-order bit that is not examined by the LU. It is used, for example, by
the LU's mapped conversation component in support of the mapped
conversation calls.

Chapter 4. Reference Section 83

Send_Data (CMSEND)

The length of the record equals the length of the data field plus the 2-byte
length field. Therefore, logical record length values of X'OOOO', X'0001 ',
X'BOOO', and X'8001' are not valid.

Note: The logical record length values shown above (such as X'OOOO') are in
the hexadecimal (base-16) numbering system.

send_length
For both basic and mapped conversations, the send_length ranges in value
from 0 to 32767. It specifies the size of the buffer parameter and the number of
bytes to be sent on the conversation.

When a program issues a Send_Data call during a mapped conversation and
send_length is zero, a null data record is sent.

When a program issues a Send_Data call during a basic conversation,
send_length specifies the size of the buffer parameter and is not related to the
length of a logical record. If send_length is zero, no data is sent, and the buffer
parameter is not important. However, the other parameters and set-up
characteristics are significant and retain their meaning as described.

request_ to_ send _received
Specifies the variable in which is returned an indication of whether or not a
request-to-send notification has been received. The request_to_send_received
variable can have one of the following values:

• CM_REQ_TO_SEND_RECEIVED

Indicates a request-to-send notification has been received from the remote
program. The remote program has issued Request_To_Send, requesting
the local program to enter Receive state, which places the remote program
in Send state.

• CM_REQ_TO_SEND_NOT_RECEIVED

Indicates a request-to-send notification has not been received.

Note: If return_ code is either CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not contain a value.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_ TP _NOT _AVAILABLE_NO _RETRY

• CM_TP_NOT_AVAILABLE_RETRY

• CM_PROGRAM_ERROR_PURGING

• CM_DEALLOCATED_ABEND'

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

84 SAA CPI Communications Reference

State Changes

Usage Notes

Send_Data (CMSEND)

• CM_PROGRAM_STATE_CHECK

This value indicates one of the following:
The conversation is not in Send or Send-Pending state.
The conversation is basic and in Send state; the send_type is set to
CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE, or
CM_SEND_AND_PREP_TO_RECEIVE; the deal/ocate_type is not set to
CM_DEALLOCATE_ABEND (if send_type is set to CM_SEND_AND_DEALLOCATE);

and the data does not end on a logical record boundary.
• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The send_length is greater than 32767.
The conversation_type is CM_BAs1c_coNVERSATION and buffer contains an
invalid logical record length (LL) value of x•oooo•, x·ooo1 •, x·sooo•,
or X 1 8001 1

•

• CM _PRODUCT_ SPECIFIC_ ERROR

When return_code indicates CM_oK:

• The program enters Receive state when Send_Data is issued with send_type
set to CM_SEND_AND_PREP_TO_RECEIVE.

• The program enters Reset state when Send_Data is issued with send_type set
to CM_SEND_AND_DEALLOCATE.

• The program enters Send state when Send_Data is issued in Send-Pending
state with send_type set to CM_BUFFER_DATA, CM_SEND_AND_FLUSH, or
CM_ SEND _AND_ CONFIRM.

• No state change occurs when Send_Data is issued in Send state with
send_type set to CM_BUFFER_DATA, CM_SEND_AND_FLUSH, or CM_SEND_AND_CONFIRM.

1. The local LU buffers the data to be sent to the remote LU until it accumulates a
sufficient amount of data for transmission (from one or more Send_Data calls),
or until the local program issues a call that causes the LU to flush its send
buffer. The amount of data sufficient for transmission depends on the
characteristics of the session allocated for the conversation, and varies from
one session to another.

2. When request_to_send_received indicates CM_REO_TO_SEND_RECEIVED, the
remote program is requesting the local program to enter Receive state, which
places the remote program in Send state. See "Request_To_Send (CMRTS)"
on page 81 for a discussion of how a program can place itself in Receive state.

3. When issued during a mapped conversation, the Send_Data call sends one
complete data record. The data record consists entirely of data and CPI
Communications does not examine the data for logical record length fields. It
is this specification of a complete data record, at send time by the local
program and what it sends, that is indicated to the remote program by the
data_received parameter of the Receive call.

Chapter 4. Reference Section 85

Send_Data (CMSEND}

For example, consider a mapped conversation where the local program issues
two Send_Data calls with send_length set, respectively, to 30, then 50. (These
numbers are simplistic for explanatory purposes.) The local program then
issues Flush and the 80 bytes of data are sent to the remote LU. The remote
program now issues Receive with requested_length set to a sufficiently large
value, say 1000. The remote program will receive back only 30 bytes of data
(indicated by the received_length parameter) because this is a complete data
record. The completeness of the data record is indicated by the data_received
variable, which will be set to CM_COMPLETE_DATA_RECEIVED.

The remote program receives the remaining 50 bytes of data (from the second
Send) when it performs a second Receive with requested_length set to a value
greater than or equal to 50.

4. The data sent by the program during a basic conversation consists of logical
records. The logical records are independent of the length of data as specified
by the send_length parameter. The data can contain one or more complete
records, the beginning of a record, the middle of a record, or the end of a
record. The following combinations of data are also possible:

• One or more complete records, followed by the beginning of a record
• The end of a record, followed by one or more complete records
• The end of a record, followed by one or more complete records, followed

by the beginning of a record
• The end of a record, followed by the beginning of a record.

5. The pro.gram using a basic conversation must finish sending a logical record
before issuing any of the following calls:

• Confirm
• Deallocate with deallocate_type set to CM_DEALLOCATE_FLUSH,

CM_DEALLOCATE_CONFIRM, or CM_DEALLOCATE_SYNC_LEVEL

• Prepare_To_Receive
• Receive.

A program finishes sending a logical record when it sends a complete record
or when it truncates an incomplete record. The data must end with the end of a
logical record (on a logical record boundary) when Send_data is issued with
send_type set to CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE, or
CM_SEND_AND_PREP _TO_RECEIVE.

6. A complete logical record contains the 2-byte LL field and all bytes of the data
field, as determined by the logical-record length. If the data field length is
zero, the complete logical record contains only the 2-byte length field. An
incomplete logical record consists of any amount of data less than a complete
record. It can consist of only the first byte of the LL field, the 2-byte LL field
plus all of the data field except the last byte, or any amount in between. A
logical record is incomplete until the last byte of the data field is sent, or until
the second byte of the LL field is sent if the data field is of zero length.

86 SAA CPI Communications Reference

Related Information

Send'""Data (CMSEND)

7. During a basic conversation, a program can truncate an incomplete logical
record by issuing the Send_Error call. Send_Error causes the LU to flush its
send buffer, which includes sending the truncated record. The LU then treats
the first two bytes of data specified in the next Send_Data as the LL field.
Issuing Send_Data with send_type set to CM_SEND_AND_DEALLOCATE and
deallocate_type set to CM_DEALLOCATE_ABEND, or Deallocate with
deal/ocate_type set to CM_DEALLOCATE_ABEND, during a basic conversation also
truncates an incomplete logical record.

8. Send_Data is often used in combination with other calls, such as Flush,
Confirm, and Prepare_To_Receive. Contrast this usage with the equivalent.
function available from the use of the Set_Send_Type call prior to issuing a call
to Send_Data.

"Receive (CMRCV)" on page 74 provides more information on the data_received
parameter.

"Program Partners and Conversations" on page 9 provides more information on
mapped and basic conversations.

SNA Transaction Programmer's Reference Manual for LU Type 6.2 provides further
discussion of basic conversations.

"Data Buffering and Transmission" on page 29 provides a complete discussion of
controls over data transmission.

All of the example program flows in Chapter 3, "Program-to-Program
Communication Tutorial" make use of the Send_Data call.

"Set_Send_ Type (CMSST)" on page 114 provides more information on the
send_type conversation characteristic and the use of it in combination with calls to
Send_Data.

Chapter 4. Reference Section 87

Send_Error (CMSERR) .

Send Error (CMSERR)

Format

Parameters

OS/400 I OS/2 IMS CICS

Send_Error (CMSERR) is used by a program to inform the remote program that the
local program detected an error during a conversation. If the conversation is in
Send state, Send_Error forces the LU to flush its send buffer.

When this call completes successfully, the local program is in Send state and the
remote program is in Receive state. Further action is defined by program logic.

Optional set-up:

CALL CMSED - Set_Error_Direction
CALL CMSLD - Set_Log_Data

CALL CMSERR(conversation_ID,

conversation _ID

request _to_ send _received,
return_code)

Specifies the conversation identifier.

request_ to_ send _received
Specifies the variable in which is returned an indication of whether or not a
request-to-send notification has been received. The request_to_send_received
variable can have one of the following values:

• CM_REQ_TO_SEND_RECEIVED

The remote program issued a Request_To_Send call requesting the local
program to enter Receive state, which places the remote program in Send
state.

• CM_REQ_TO_SEND_NOT _RECEIVED

A request-to-send notification has not been received.

Note: If return_code is set to either CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, request_to_send_received does not contain a value.

return_code
Specifies the result of the call execution, which is returned to the local
program. The value for return_code depends on the state of the conversation
at the time this call is issued.

88 SAA CPI Communications Reference

State Changes

Usage Notes

Send_Error (CMSERR)

If the Send_Error is issued in Send state, return_code can have one of the
following values:

• CM_OK

• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP_NOT_AVAILABLE_NO_RETRY

• CM_TP_NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

• CM_PROGRAM_ERROR_PURGING

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PRODUCT_SPECIFIC_ERROR

If the Send_Error is issued in Receive state, return_code can have one of the
following values:

• CM_OK

• CM_DEALLOCATED_NORMAL

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PRODUCT_SPECIFIC_ERROR

If the Send_Error is issued in Send-Pending, Confirm, Confirm-Send, or
Confirm-Deallocate state, return_code can have one of the following values:

• CM_OK

• CM_RESOURCE_FAILURE_NO_RETRY

• CM_RESOURCE_FAILURE_RETRY

• CM_PRODUCT_SPECIFIC_ERROR

Otherwise, the conversation is in Reset or Initialize state and return_code has
one of the following values:

• CM_PROGRAM_PARAMETER_CHECK

- The conversation_ID specifies an unassigned identifier.
• CM_PROGRAM_STATE_CHECK

When return_code indicates CM_OK:

• The program enters Send state when the call is issued in Receive, Confirm,
Confirm-Send, Confirm-Deallocate, or Send-Pending state.

• No state change occurs when the call is issued in Send state.

1. The LU can send the error notification to the remote LU immediately (during
the processing of this call), or the LU can delay sending the notification until a
later time. If the LU delays sending the notification, it buffers the notification
until it has accumulated a sufficient amount of information for transmission, or
until the local program issues a call that causes the LU to flush its send buffer.

Chapter 4. Reference Section 89

Send_Error (CMSERR)

2. The amount of information sufficient for transmission depends on the
characteristics of the session allocated for the conversation, and varies from
one session to another. Transmission of the information can begin
immediately if the /og_data characteristic has been specified with sufficient log
data, or transmission can be delayed until sufficient data from subsequent
Sen'tf_Data calls is also buffered.

3. To make sure that the remote program receives the error notification as soon
as possible, the local program can issue Flush immediately after Send_Error.

4. The issuance of Send_Error is reported to the remote program as one of the
following return codes:

• CM_PROGRAM_ERROR.:.,TRUNC (basic conversation)
The local program issued Send_Error in Send state after sending an
incomplete logical record (see "Send_Data (CMSEND)" on page 83). The
record has been truncated.

• CM_PROGRAM_ERROR_NO_TRUNC (basic and mapped conversations)
The local program issued Send_Error in Send state after sending a
complete logical record (basic) or data record (mapped); or before sending
any record; or the local program issued Send_Error in Send-Pending state
with error _direction set to CM_SEND_ERROR. No truncation has occurred .

• CM_PROGRAM_ERROR_PURGING (basic and mapped conversations)
The local program issued Send_Error in Receive state. All information
sent by the remote program and not yet received by the local program has
been purged, or the local program issued Send_Error in Send-Pending
state with error _direction set to CM_RECEIVE_ERROR or in Confirm,
Confirm-Send, or Confirm-Deallocate state, in which case no purging has
occurred.

5. When Send_Error is issued in Receive state, incoming information is also
purged. Because of this purging, the return_ code of CM_DEALLOCATED_NORMAL is
reported instead of:

• CM_ALLOCATE_FAILURE_NO_RETRY

• CM_ALLOCATE_FAILURE_RETRY

• CM_CONVERSATION_TYPE_MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LVL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_TP_NOT_AVAILABLE_NO_RETRY

• CM_TP_NOT_AVAILABLE_RETRY

• CM_DEALLOCATED_ABEND

Similarly, a return code of CM_OK is reported instead of:

• CM_PROGRAM_ERROR_NO_TRUNC

• CM_PROGRAM_ERROR_PURGING

• CM_PROGRAM_ERROR_TRUNC (basic conversation only)

The following types of incoming information are also purged:

• Data sent with the Send Data call.
• Confirmation request sent with the Send_Data, Confirm, -

Prepare_ To_Receive, or Deallocate calls.

90 SAA CPI Communications Reference

Send~Error {CMSERR)

If the confirmation request was sent with deallocate_type set to
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_SYNC_LEVEL, the deallocation request
will also be purged.

The request-to-send notification is not purged. This notification is reported to
the program when it issues a call that includes the request_to_send_received
parameter.

6. The program can use this call for various application-level functions. For
example, the program can issue this call to truncate an incomplete logical
record it is sending; to inform the remote program of an error detected in data
received; or to reject a confirmation request.

7. If the /og_data_length characteristic is greater than zero, the LU formats the
supplied log data into an Error Log Data GOS variable. The data supplied by
the program is any data the program wants to have logged. The data is placed
in the message text portion of the Error Log GOS variable created by the LU.
The LU formats the GOS variable, filling in the appropriate length fields and the
product set ID portion of the GOS variable. After completion of the Send_Error
processing, /og_data is reset to null, and log_data_length is reset to zero.

8. The error _direction characteristic is significant only when Send_Error is issued
during a conversation in Send-Pending state (that is, the Send_Error is issued
immediately following a Receive on which both data and a status_received
parameter set to CM_SEND_Rece1veo is received). In this case, Send_Error could
be reporting one of the following types of errors:

• An error in the received data (in the receive flow)
• An error having nothing to do with the received data, but instead being the

result of processing performed by the program after it had successfully
received and processed the data (in the send flow).

Because the LU cannot tell which of the two errors occurred, the program has
to supply the error _direction information.

The default for error _direction is CM_RECEIVE_ERROR. A program can override
the default using the Set_Error_Oirection call before issuing Send_Error.

Once changed, the new error _direction value remains in effect until the
program changes it again. Therefore, a program should issue
Set_Error_Oirection before issuing Send_Error in Send-Pending state.

If the program is not in Send-Pending state, the error _direction characteristic is
ignored.

Chapter 4. Reference Section 91

Send_Error (CMSERR)

Related Information
"Example 6: Reporting Errors" on page 36 and "Example 7: Error Direction and
Send-Pending State" on page 38 provide example program flows using Send_Error
and the Send-Pending state; "Set_Error_Direction (CMSED)" on page 98 provides
further information on the error _direction characteristic.

"Usage Notes" of "Request_To_Send (CMRTS)" on page 81 provides more
information on how a program enters Receive state.

SNA Formats provides a detailed description of GOS variables.

"Send_Data (CMSEND}" on page 83 provides a discussion of basic conversations
and logical records.

"Set_Log_Data (CMSLD}" on page 102 provides a description of the /og_data
characteristic.

92 SAA CPI Communications Reference

Set_ Conversation_ Type {CMSCT)

Set_Conversation_Type (CMSCT)

Format

Parameters

OS/400 I OS/2 I IMS I CICS

Set_ Conversation_ Type (CMSCT) is used by a program to set the
conversation_type characteristic for a given conversation. It overrides the value
assigned with the lnitialize_Conversation call.

Note: A program cannot use Set_Conversation_Type after an Allocate has been
issued. Only the program that initiates the conversation (using the
Initialize_ Conversation call) can issue the Set_ Conversation call.

CALL CMSCT(conversation_ID,
conversation_ type,
return_code)

conversation _ID
Specifies the conversation identifier.

conversation_ type
Specifies the type of conversation to be allocated when Allocate is issued. The
conversation_type variable can have one of the following values:

• CM_BASIC_CONVERSATION

Specifies the allocation of a basic conversation.
• CM_ MAPPED_ CONVERSATION

Specifies the allocation of a mapped conversation.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in lnltlallze state.
• CM _PROGRAM _PARAMETER_ CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The conversation_type specifies an undefined value.
The conversation_type is set to CM_MAPPED_CONVERSATION, but fill is set
to CM_FILL_BUFFER.

The conversation_type is set to CM_MAPPED_CONVERSATION, but a prior
call to Set_Log_Data is still in effect.

• CM_PRODUCT_SPECIFIC_ERROR

Chapter 4. Reference Section 93

Set_ Conversation_ Type (CMSCT)

State Changes

Usage Notes

Related Information

This call does not cause a state change.

1. Some calls, such as Set_Fill, can only be issued against a basic conversation.
However, a program may attempt to issue the following incorrect sequence of
calls:

a. lnitialize_Conversation, setting conversation_type to
CM_MAPPED _CONVERSATION

b. Set_Conversation_Type, setting conversation_type to
CM_BASIC_CONVERSATION

c. Set_Fill, setting fill to CM_FILL_BUFFER

d. Set_Conversation_Type setting conversation_type to
CM_ MAPPED_ CONVERSATION

e. Allocate

In the above sequence, the program attempts to set conversation_type to
CM_MAPPED_CONVERSATION after the fill characteristic has been set with
conversation_type (cM_BAs1c_coNVERSATION) in effect. An error will be returned
by Set_Conversation_Type because conversation_type can no longer be
changed.

2. Because of the detailed manipulation of the data and resulting complexity of
error conditions, the use of basic conversations should be regarded as
intended for advanced programmers.

3. If a return_code other than CM_OK is returned on the call, the conversation_type
conversation characteristic is unchanged.

"Program Partners and Conversations" on page 9 and the "Usage Notes" section
of "Send_Data (CMSEND)" on page 83 provide more information on the differences
between mapped and basic conversations.

94 SAA CPI Communications Reference

Set_Deallocate_ Type {CMSDT)

Set_Deallocate_Type (CMSDT)

Format

Parameters

OS/400 I OS/2 I IMS CICS

Set_Deallocate_Type (CMSDT) is used by a program to set the dea/locate_type
characteristic for a given conversation. Set_Deallocate_ Type overrides the value
that was assigned when either the Initialize_ Conversation or the
Accept_Conversation call was issued.

CALL CMSDT(conversation_ID,
deallocate_ type,
return_code)

conversation _ID
Specifies the conversation identifier.

deallocate_ type
Specifies the type of deallocation to be performed. The deallocate _type
variable can have one of the following values:

• CM_DEALLOCATE_SYNC_LEVEL

Perform deallocation based on the sync_level characteristic in effect for
this conversation:

If sync_level is set to CM_NONE, execute the function of the Flush call
and deallocate the conversation normally.
If sync_level is set to CM_CONFIRM, execute the function of the Confirm
call and if successful (as indicated by a return code of CM_OK on the
Deallocate call, or a return code of CM_OK on the Send_Data call with
send_type set to CM_SEND_AND_DEALLOCATE), deallocate the conversation
normally. If-the Confirm call is not successful, the state of the
conversation is determined by the return code.

• CM_DEALLOCATE_FLUSH

Execute the function of the Flush call and deallocate the conversation
normally.

• CM_DEALLOCATE_CONFIRM

Execute the function of the Confirm call and if successful (as indicated by a
return code of CM_OK on the Deallocate call, or a return code of cM_OK on
the Send_Data call with send_type set to CM_SEND_AND_DEALLOCATE),

deallocate the conversation normally. If the Confirm is not successful, the
state of the conversation is determined by the return code.

• CM_DEALLOCATE_ABEND

Execute the function of the Flush call when the conversation is in Send
state and deallocate the conversation abnormally. Data purging can occur
when the conversation is in Receive state. If the conversation is a basic
conversation, logical-record truncation can occur when the conversation is
in Send state.

Chapter 4. Reference Section 95

Set_Deallocate_ Type (CMSDT}

State Changes

Usage Notes

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The deallocate_type is set to CM_DEALLOCATE_CONFIRM, and the
conversation is assigned with sync_level set to CM_NONE.

The deallocate_type specifies an undefined value.
• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

1. A deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL is used by a program to
deallocate a conversation based on the conversation's synchronization level:

• If sync_level is set to CM_NONE, the conversation is unconditionally
deallocated.

• If sync_level is set to CM_CONFIRM, the conversation is deallocated when the
remote program responds to the confirmation request by issuing the
Confirmed call. The conversation remains allocated when the remote
program responds to the confirmation request by issuing the Send_Error
call.

2. A deal/ocate_type set to CM_DEALLOCATE_FLUSH is used by a program to
unconditionally deallocate the conversation regardless of the level of
synchronization. The deal/ocate_type set to CM_DEALLOCATE_FLUSH is
functionally equivalent to deal/ocate_type set to CM_DEALLOCATE_SYNC_LEVEL

combined with a sync_level set to CM_NONE.

3. A deal/ocate_type set to CM_DEALLOCATE_CONFtRM is used by a program to
conditionally deallocate the conversation, depending on the remote program's
response, when the sync_level is set to CM_CONFIRM. The deallocate_type set to
CM_DEALLOCATE_CONFtRM is functionally equivalent to deal/ocate_type set to
CM_DEALLOCATE_SYNC_LEVEL combined with a sync_level set to CM_CONFIRM.

The conversation is deallocated when the remote program responds to the
confirmation request by issuing Confirmed. The conversation remains
allocated when the remote program responds to the confirmation request by
issuing Send_Error.

4. A deal/ocate_type set to CM_DEALLOCATE_ABEND is used by a program to
unconditionally deallocate ,a conversation regardless of its synchronization
level and its current state. Specifically, the parameter is used when the
program detects an error condition that prevents further useful
communications (communications that would lead to successful completion of
the transaction).

5. If a return_code other than CM_OK is returned on the call, the deallocate_type
conversation characteristic is unchanged.

96 SAA CPI Communications Reference

Related Information

Set_Deallocate_Type (CMSDT)

"Deallocate (CMDEAL)" on page 56 provides further discussion on the use of the
deallocate_type characteristic in the deallocation of a conversation.

"Set_Sync_Level (CMSSL)" on page 116 provides information on how the
sync_level characteristic is used in combination with the deallocate_type
characteristic in the deallocation of a conversation.

Chapter 4. Reference Section 97

Set_Error _Direction (CMSED)

Set_Error_Direction {CMSED)

Format

Parameters

OS/400 I OS/2 I IMS CICS

Set_Error_Direction (CMSED) is used by a program to set the error_direction
characteristic for a given conversation. Set_Error _Direction overrides the value
that was assigned when the Initialize_ Conversation or the Accept_ Conversation
calls were issued.

CALL CMSED(conversation_ID,
error _direction,
return_code)

conversation _ID
Specifies the conversation identifier.

error_ direction
Specifies the direction of the data flow in which the program detected an error.
This parameter is significant only if Send_Error is issued in Send-Pending state
(that is, immediately after a Receive on which both data and a conversation
status of CM_SEND_RECEIVED are received). Otherwise, the error_direction value
is ignored when the program issues Send_Error.

The error _direction variable can have one of the following values:

• CM_RECEIVE_ERROR

Specifies that the program detected an error in the data it received from
the remote program.

• CM_SEND_ERROR

Specifies that the program detected an error while preparing to send data
to the remote program.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
- The conversation_ID specifies an unassigned conversation identifier.
- The error _direction specifies an undefined value.

• CM _PRODUCT_ SPECIFIC_ ERROR

98 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Error _Direction (CMSED}

This call does not cause a state change.

1. The error _direction parameter is significant only if Send_Error is issued
immediately after a Receive on which both data and a conversation status of
CM_SEND_RECEIVED are received (when the conversation is in Send-Pending
state). Otherwise, the error _direction value is ignored when the program
issues Send_Error. In this situation, the Send_Error may result from one of the
following errors:

• An error in the received data (in the receive flow)
• An error having nothing to do with the received data, but instead being the

result of processing performed by the program after it had successfully
received and processed the data (in the send flow).

Because the LU in this situation cannot tell which error occurred, the program
has to· supply the error _direction information.

The error _direction defaults to a value of CM_RECEIVE_ERROR. To override the
default, a program can issue the Set_Error_Direction call prior to issuing
Send Error.

Once changed, the new error _direction value remains in effect until the
program changes it again. Therefore, a program should issue
Set_Error_Direction before issuing Send_Error in Send-Pending state.

If the program is not in Send-Pending state, the error _direction characteristic is
ignored.

2. If a return_code other than CM_OK is returned on the call, the error _direction
conversation characteristic is unchanged.

"Example 7: Error Direction and Send-Pending State" on page 38 provides an
example program using Set_Error_Direction.

"Send_Error (CMSERR)" on page 88 provides more information on reporting
errors.

Chapter 4. Reference Section 99

Set_Fill {CMSF)

Set_Fill (CMSF)

Format

Parameters

OS/400 OS/2 IMS CICS

Set_Fill (CMSF) is used by a program to set the fill characteristic for a given
conversation. Set_Fill overrides the value that was assigned by the
lnitialize_Conversation or Accept_Conversation calls.

Note: This call applies only to basic conversations. The fill characteristic is
ignored for mapped conversations.

CALL CMSF(conversation_ID,
fill,
return_code)

conversation _ID

fill

Specifies the conversation identifier.

Specifies whether the program is to receive data in terms of the logical-record
format of the data. The fill variable can have one of the following values:

• CM_FILL_LL

Specifies that the program is to receive one complete or truncated logical
record, or a portion of the logical record that is equal to the length
specified by the requested_length parameter of the Receive call.

• CM_FILL_BUFFER

Specifies that the program is to receive data independent of its
logical-record format. The amount of dat~ received will be equal to or less
than the length specified by the requested_length parameter of the Receive
call. The amount is less than the requested length when the program
receives the end of the data.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_JD specifies an unassigned conversation identifier.

- The conversation_type specifies CM_MAPPED_CONVERSATION.

- The fill characteristic specifies an undefined value.
• CM_PRODUCT_SPECIFIC_ERROR

100 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Fill (CMSF)

This program does not cause a state change.

1. The fill value provided (for a basic conversation) is used on all subsequent
Receive calls for the specified conversation until changed by the program with
another Set_Fill call.

2. If a return_code other than CM_OK is returned on the call, the fill conversation
characteristic is unchanged.

"Receive (CMRCV)" on page 74 provides more information on how the fill
characteristic is used for basic conversations.

Chapter 4. Reference Section 101

Set_Log_Data (CMSLD)

Set_Log_Data {CMSLD)

Format

Parameters

OS/400 I OS/2 IMS CICS

Set_Log_Data (CMSLD) is used by a program to set the log_data and
log_data_length characteristics for a given conversation. Set_Log_Data overrides
the values that were assigned with the lnitialize_Conversation or
Accept_ Conversation calls.

Note: This call applies only to basic conversations. The log_data characteristic is
ignored for mapped conversations.

CALL CMSLD(conversation_ID,
log_data,
log_data_length,
return_code)

conversation _ID
Specifies the conversation identifier.

log_data
Specifies the program-unique error information that is to be placed in the
system error logs of the LUs supporting this conversation. The error
information supplied is formatted by the sending LU into an Error Log GOS
variable. The data supplied by the program is any data the program wants to
have logged. The data is placed in the message text portion of the Error Log
GOS variable created by the LU. The LU formats the GOS variable, filling in the
appropriate length fields and the product-set ID portion of the GOS variable.

log_data_length
Specifies the length of the product-unique error information. The length can be
from Oto 512 bytes. If zero, no log data is sent for this call and the Jog_data
parameter is not significant.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_ CHECK

This value can be one of the following:
The conversation_ID specifies an unassigned conversation identifier.

- The conversation_type is set to CM_MAPPED_CONVERSATION.

- The log_data_length specifies a value greater than 512 or less than 0.
• CM_PRODUCT_SPECIFIC_ERROR

102 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Log_Data (CMSLD)

This call does not cause a state change.

1. The LU resets the log_data and Jog_data_length characteristics to their initial
(null) values after an issuance of Send_Error or Deallocate (deal/ocate_type set
to CM_DEALLOCATE_ABEND) calls. Therefore, the log_data is sent to the remote
LU only once per issuance of an error indication.

2. If a return_code other than CM_OK is returned on the call, the Jog_data and
log_data_length conversation characteristics are unchanged.

SNA Formats provides a detailed description of GOS variables.

"Send_Error (CMSERR)" on page 88 and "Deallocate (CMDEAL)" on page 56
provide further discussion on how the log_data characteristic is used.

Chapter 4. Reference Section 103

Set_Mode_Name (CMSMN)

Set_Mode_Name (CMSMN)

Format

Parameters

OS/400 I OS/2 I
IMS CICS

Set_Mode_Name (CMSMN) is used by a program to set the mode_name and
mode_name_length characteristic for a conversation. Set_Mode_Name overrides
the system-defined value, which was originally acquired from the side informati.on
using the sym_dest_name.

Issuing this call does not change the values in the side information. It only
changes the mode_name for this conversation.

Note: A program cannot issue the Set_Mode_Name call after an Allocate is
issued. Only the program that initiates the conversation (using the
lnitialize_Conversation call) can issue this call.

CALL CMSMN(conversation_ID,
mode_name,
mode_name_length,
return_code)

conversation _ID
Specifies the conversation identifier.

mode_name
Specifies the mode name designating the network properties for the session to
be allocated for the conversation. The network properties include, for
example, the class of service to be used, and whether data is to be enciphered.

Note: Only an SNA service transaction program can specify the SNA-defined
mode name SNASVCMG.

mode_ name _length
Specifies the length of the mode name. The length can be from zero to eight
bytes.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in lnltlalize state.

104 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Mode_Name {CMSMN)

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.

- The mode_name_length specifies a value less than zero or greater
than eight.

• CM_PRODUCT _SPECIFIC_ERROR

This call does not cause a state change.

1. Specification of a mode name that is not recognized by the LU is not detected
on this call. It is detected on the subsequent Allocate call.

2. If a return_code other than CM_OK is returned on the call, the mode_name and
mode _name _length conversation characteristics are unchanged.

"SNA Service Transaction Programs" on page 149 provides a discussion of SNA
service transaction programs.

"Side Information" on page 11 provides further discussion of the mode_name
conversation characteristic.

Chapter 4. Reference Section 105

Set_Partner _LU _Name (CMSPLN)

Set_Partner_LU_Name (CMSPLN)

Format

Parameters

OS/400 I OS/2 I IMS I CICS

Set_Partner_LU_Name (CMSPLN) is used by a program to set the
partner LU name characteristic for a conversation. Set Partner LU Name - - - - -
overrides the current value for the partner _LU _Name, which was originally
acquired from the side information using the sym_dest_name.

Issuing this call does not change the information in the side information. It only
changes the partner _LU_ Name and partner _LU_ Name _length for this conversation.

Note: A program cannot issue Set_Partner_LU_Name after an Allocate call is
issued. Only the program that initiated the conversation (issued the
lnitialize_Conversation) can issue Set_Partner_LU_Name.

CALL CMSPLN(conversation_ID,

conversation _ID

partner _LU _name,
partner _LU _name_length,
return_code)

Specifies the conversation identifier.

partner _LU _name
Specifies the name of the remote LU at which the remote program is located.
This LU name is any name by which the local LU knows the remote LU for
purposes of allocating a conversation.

partner _LU _name _length
Specifies the length of the partner LU name. The length can be from 1 to 17
bytes.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in lnitlallze state.
• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.

- The partner_LU_name_length is set to a value less than 1 or greater
than 17.

• CM_PRODUCT_SPECIFIC_ERROR

106 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Partner_LU_Name (CMSPLN)

This program does not cause a state change.

If a return_code other than CM_OK is returned on the call, the partner _LU _name and
partner _LU _name_length conversation characteristics are unchanged.

"Side Information" on page 11 and note 2 of Table 6 on page 129 provide further
discussion of the partner _LU _name conversation characteristic.

Chapter 4. Reference Section 107

Set_Prepare _To _Receive_ Type (CMSPTR)

Set_ Prepare_ To_ Receive_ Type (CMSPTR)

Format

Parameters

OS/400 I OS/2 I IMS

Set_Prepare_To_Receive_Type (CMSPTR) is used by a program to set the
prepare_to_receive_type characteristic for a conversation. This call overrides the
value that was assigned by the Initialize_ Conversation or Accept_Conversation
calls.

CALL CMSPTR(conversation_/D,

conversation _ID

prepare _to _receive _type,
return_code)

Specifies the conversation identifier.

prepare_ to _receive_ type
Specifies the type of prepare-to-receive to be performed for this conversation.
The prepare_to_receive_type variable can have one of the following values:

• CM_PREP _TO_RECEIVE_SYNC_LEVEL

Perform the prepare-to-receive based on one of the following sync_level
settings:

If sync_level is set to CM_NONE, execute the function of the Flush call
and enter Receive state.
If sync_level is set to CM_CONFIRM, execute the function of the Confirm
call and if successful (as indicated by a return code of CM_OK on the
Prepare_To_Receive call, or a return code of CM_OK on the Send_Data
call with send_type set to CM_SEND_AND_PREP _TO_RECEIVE), enter Receive
state. If Conti rm is not successful, the state of the conversation is
determined by the return code.

• CM_PREP_TO_RECEIVE_FLUSH

Execute the function of the Flush call and enter Receive state.
• CM_PREP_TO_RECEIVE_CONFIRM

Execute the function of the Confirm call and if successful (as indicated by a
return code of CM_OK on the Prepare_To_Receive call, or a return code of
CM_OK on the Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If it is not successful,
the state of the conversation is determined by the return code.

Note: The execution of the Flush or Confirm function as part of the
Prepare_To_Receive call includes the flushing of the LU's send buffer.

108 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Prepare_ To_Receive_ Type {CMSPTR)

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The prepare_to_receive_type is CM_PREP_TO_RECEIVE_CONFIRM, but the
conversation is assigned with sync_level set to CM_NONE.

The prepare_to_receive_type is set to an undefined value.
• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

If a return_code other than CM_OK is returned on the call, the
prepare _to _receive _type conversation characteristic is unchanged.

"Prepare_To_Receive (CMPTR)" on page 71 provides a discussion of how the
prepare_to_receive_type is used.

"Example 5: The Receiving Program Changes the Data Flow Direction" on
page 34 shows an example program using the Prepare_ To_Receive call.

Chapter 4. Reference Section 109

Set_Receive_Type (CMSRT)

Set_ Receive_ Type (CMSRT)

Format

Parameters

State Changes

Usage Notes

IMS CICS

Set_Receive_Type (CMSRT) is used by a program to set the receive_type
characteristic for a conversation. Set_Receive_Type overrides the value that was
assigned by the lnitialize_Conversation or Accept_Conversation calls.

CALL CMSRT(conversation_ID,
receive_type,
return_code)

conversation _ID
Specifies the conversation identifier.

receive_ type
Specifies the type of receive to be performed. The receive_type variable can
have one of the following values:

• CM_RECEIVE_AND_WAIT

The Receive call is to wait for information to arrive on the specified
conversation. If information is already available, the program receives it
without waiting.

• CM_RECEIVE_IMMEDIATE

The Receive call is to receive any information that is av~ilable from the
specified conversation, but is not to wait for information to arrive.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
- The conversation_ID specifies an unassigned conversation identifier.
- The receive_type specifies an undefined value.

• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

If a return_code other than CM_OK is returned on the call, the receive_type
conversation characteristic is unchanged.

110 SAA CPI Communications Reference

Related Information

Set_Receive_ Type (CMSRT)

"Receive (CMRCV)" on page 74 provides a discussion of how the receive_type
characteristic is used.

"Example 3: The Sending Program Changes the Data Flow Direction" on page 30
provides a discussion of how a program can use Set_Receive_Type with a value of
CM_RECEIVE_IMMEDIATE.

Chapter 4. Reference Section 111

Set_Return_Control {CMSRC)

Set Return Control (CMSRC) - -

Format

Parameters

OS/400 I OS/2 I IMS CICS

Set_Return_Control (CMSRC) is used to set the return_control characteristic for a
given conversation. Set_Return_Control overrides the value that was assigned
with the Initialize_ Conversation call.

Note: A program cannot issue the Set_Return_Control after an Allocate has been
issued for a conversation. Only the program that initiates the conversation (with
the lnitialize_Conversation) can issue this call.

CALL GMSRG(conversation_ID,
return_ control,
return_code)

conversation _ID
Specifies the conversation identifier.

return_ control
Specifies when a program will receive control back after issuing a call to
Allocate. The return_control can have one of the following values:

• CM_ WHEN_ SESSION_ ALLOCATED

Allocate a session for the conversation before returning control to the
program.

• CM_IMMEDIATE

Allocate a session for the conversation if a session is immediately
available and return control to the program with one of the following return
codes indicating whether or not a session is allocated.

A return code of CM_OK indicates a session was immediately available
and has been allocated for the conversation. A session is immediately
available when it is active; the session is not allocated to another
conversation; and the local LU is the contention winner for the session.
A return code of CM_UNSUCCESSFUL indicates a session is not
immediately available. Allocation is not performed.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.
• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
- The conversation_ID specifies an unassigned conversation identifier.
- The return_control specifies an undefined value.

• CM _PRODUCT_ SPECIFIC_ ERROR

112 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Return_Control {CMSRC)

This call does not cause a state change.

1. An allocation error resulting from the local LU's failure to obtain a session for
the conversation is reported on the Allocate call. An allocation error resulting
from the remote LU's rejection of the allocation request is reported on a
subsequent conversation call.

2. Two LUs connected by a session may both attempt to allocate a conversation
on the session at the same time. This is called contention. Contention is
resolved by making one LU the contention winner of the session and the other
LU the contention loser of the session. The contention-winner LU allocates a
conversation on a session without asking permission from the contention-loser
LU. Conversely, the contention-loser LU requests permission from the
contention-winner LU to allocate a conversation on the session, and the
contention-winner LU either grants or rejects the request. For further
information, see SNA Transaction Programmer's Reference Manual for LU
Type 6.2.

Contention may result in an CM_UNSUCCESSFUL return code for programs
specifying CM_IMMEDIATE.

3. If a return_code other than CM_OK is returned on the call, the return_control
conversation characteristic is unchanged.

"Allocate (CMALLC)" on page 49 provides more discussion on the use of the
return_control characteristic in allocating a conversation.

Chapter 4. Reference Section 113

Set_Send_Type {CMSST)

Set_Send_Type (CMSST)

Format

Parameters

051400 I 0512 I
IMS CICS

Set_Send_Type (CMSST) is used by a program to set the send_type characteristic
for a conversation. Set_Send_Type overrides the value that was assigned with the
lnitiafize_Conversation or Accept_Conversation calls.

CALL CM SST(conversation _ID,
send_type,
return_ code)

conversation _ID
Specifies the conversation identifier.

send_type
Specifies what, if any, information is to be sent to the remote program in
addition to the data supplied on the Send_Data call, and whether the data is to
be sent immediately or buffered.

The send_type variable can have one of the following values:

• CM_BUFFER_DATA

No additional information is to be sent to the remote program. Further, the
supplied data may not be sent immediately but, instead, may be buffered
until a sufficient quantity is accumulated.

• CM_SEND_AND_FLUSH

No additional information is to be sent to the remote program. However,
the supplied data is sent immediately rather than buffered. Send_Data with
send_type set to CM_SEND_AND_FLUSH is functionally equivalent to a
Send_Data with send_type set to CM_BUFFER_DATA followed by a Flush call.

• CM_SEND_AND_CONFIRM

The supplied data is to be sent to the remote program immediately, along
with a request for confirmation. Send_Data with send_type set to
CM_SEND_AND_CONFIRM is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a Confirm call.

• CM_SEND_AND_PREP _TO_RECEIVE

The supplied data is to be sent to the remote program immediately, along
with send control of the conversation. Send_Data with send_type set to
CM_SEND_AND_PREP JO_RECEIVE is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a Prepare_To_Receive call.

• CM_SEND_AND_DEALLOCATE

The supplied data is to be sent to the remote program immediately, along
with a deallocation notification. Send_Data with send_type set to
CM_SEND_AND_DEALLOCATE is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a call to Deallocate.

114 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Send_Type (CMSST)

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_PARAMETER_CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The send_type is set to CM_SEND_ANo_coNFtRM and the conversation is
assigned with sync _level set to CM_NONE.

The send_type specifies an undefined value.
• CM _PRODUCT_ SPECIFIC _ERROR

This call does not cause a state change.

If a return_code other than CM_OK is returned on the call, the send_type
conversation characteristic is unchanged.

"Send_Data (CMSEND)" on page 83 provides a discussion of how the send_type
characteristic is used by Send_Data.

The same function of a call to Send_Data with different values of the send_type
conversation characteristic in effect can be achieved by combining Send_Data with
other calls:

• "Flush (CMFLUS}" on page 66
• "Confirm (CMCFM}" on page 52
• "Prepare_To_Receive (CMPTR)" on page 71
• "Deallocate (CMDEAL)" on page 56

"Example 5: The Receiving Program Changes the Data Flow Direction" on
page 34 shows an example program flow using the Set_Send_Type call.

Chapter 4. Reference Section 115

Set_Sync_Level (CMSSL)

Set_Sync_Level (CMSSL)

Format

Parameters

OS/400 I OS/2 I IMS CICS

Set_Sync_Level (CMSSL) is used by a program to set the sync_level characteristic
for a given conversation. The sync_level characteristic is used to specify the level
of synchronization processing between the two programs. It determines whether
or not the programs support the use of Confirm and Confirmed calls.
Set_Sync_Level overrides the value that was assigned with the
Initialize_ Conversation call.

Note: A program cannot use the Set_Sync_Level call after an Allocate has been
issued. Only the program that initiates a conversation (using the
lnitialize_Conversation call) can issue this call.

CALL CMSSL(conversation_ID,
sync_level,
return_code)

conversation_ID
Specifies the conversation identifier.

sync_level
Specifies the synchronization level that the local and remote programs can use
on this conversation. The sync_level can have one of the following values:

• CM_NONE

The programs will not perform confirmation processing on this
conversation. The programs will not issue any calls and will not recognize
any returned parameters relating to synchronization.

• CM_CONFIRM

The programs can perform confirmation processing on this conversation.
The programs may issue calls and will recognize returned parameters
relating to confirmation.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Initialize state.

116 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_Sync_Level {CMSSL)

• CM _PROGRAM _PARAMETER_ CHECK

This value indicates one of the following:
The conversation_ID specifies an unassigned conversation identifier.
The sync_level is set to an undefined value.
The sync_level is set to CM_NONE and send_type is set to
CM_SEND_AND_CONFIRM.

The sync_/evel is set to CM_NONE and prepare_to_receive_type is set to
CM_PREP _TO _RECEIVE_ CONFIRM.

The sync_level is set to CM_NONE and deallocate_type is set to
CM_DEALLOCATE_ CONFIRM.

• CM_PRODUCT_SPECIFIC_ERROR

This call does not cause a state change.

If a return_code other than CM_OK is returned on the call, the sync_leve/
conversation characteristic is unchanged.

"Confirm (CMCFM)" on page 52 and "Confirmed (CMCFMD)" on page 54 provide
further information on confirmation processing.

Chapter 4. Reference Section 117

Set_TP_Name {CMSTPN)

Set_ TP _Name (CMSTPN)

Format

Parameters

OS/400 I OS/2 I
IMS CICS

Set_TP _Name (CMSTPN) is used by a program to set the TP _name characteristic
for a given conversation. Set_ TP _Name overrides the current value, which was
originally acquired from the side information using the sym_dest_name. See "Side
Information" on page 11 for more information.

This call does not change the value of TP _name in the side information.
Set_TP _Name only changes the TP _name characteristic for this conversation.

Note: A program cannot issue Set_ TP _Name after an Allocate is issued. Only a
program that initiates a conversation (using the lnitialize_Conversation call) can
issue this call.

CALL CMSTPN(conversation_ID,
TP_name,

conversation _ID

TP _name_length,
return_code)

Specifies the conversation identifier.

TP_name
Specifies the name of the remote program. A program with the appropriate
privilege can specify the name of an SNA service transaction program.

TP _name _length
Specifies the length of TP _name. The length can be from 1 to 64 bytes.

return_code
Specifies the result of the call execution, which is returned to the local
program. The return_code can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in lnitlallze state.
• CM_PROGRAM_PARAMETER_ CHECK

This value indicates one of the following:
- The conversation_ID specifies an unassigned conversation identifier.
- The TP _name_length specifies a value less than 1 or greater than 64.

• CM _PRODUCT_ SPECIFIC_ ERROR

118 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Set_ TP _Name {CMSTPN)

This call does not cause a state change.

If a return_code other than CM_OK is returned on the call, the TP _name and
TP _name _length conversation characteristics are unchanged.

See "SNA Service Transaction Programs" on page 149 for more information on
privilege and service transaction programs.

"Side Information" on page 11 and note 3 of Table 6 on page 129 provide further
discussion of the TP _name conversation characteristic.

Chapter 4. Reference Section 119

Test_Request_To_Send_Received (CMTRTS)

Test_ Request_ To_ Send_ Received (CMTRTS)

Format

Parameters

OS/400 I OS/2 I IMS

Test_Request_To_Send_Received (CMTRTS) is used by a program to determine
whether a request-to-send notification has been received from the remote program
for the specified conversation.

CALL CMTRTS(conversation_ID,
request_to _send_received,
return_code)

conversation _ID
Specifies the conversation identifier.

request_ to_ send _received
Specifies the variable in which is returned an indication of whether or not a
request-to-send notification has been received. The request_to_send_received
variable can have one of the following values:

• CM_REQ_TO_SEND_RECEIVED

A request-to-send notification has been received from the remote program.
The remote program has issued Request_To_Send, requesting the local
program to enter Receive state, which will place the remote program in
Send state.

• CM_REQ_TO_SEND_NOT_RECEIVED

A request-to-send notification has not been received.

Note: If return_code is either CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the request_to_send_received parameter will not be
replaced with a valid value and should not be examined by the program.

return_ code
Specifies the result of the call execution, which is returned to the local
program. The return_code variable can have one of the following values:

• CM_OK

• CM_PROGRAM_STATE_CHECK

This value indicates that the conversation is not in Send, Receive, or
Send-Pending state.

• CM_PROGRAM_PARAMETER_CHECK

This value indicates that the conversation_ID specifies an unassigned
conversation identifier.

• CM _PRODUCT_ SPECIFIC _ERROR

120 SAA CPI Communications Reference

State Changes

Usage Notes

Related Information

Test_Request_To_Send_Received {CMTRTS)

This call does not cause a state change.

1. When the local LU receives the request-to-send notification, it retains the
notification until the local program issues a call (such as
Test_Request_To_Send_Received) with the request_to_send_received
parameter. It will retain only one request-to-send notification at a time (per
conversation). Additional notifications are discarded until the retained
notification is indicated to the local program. Therefore, a local program may
issue the Request_To_Send call more times than are indicated to the remote
program.

2. After the retained notification is indicated to the local program via the
request_to_send_received parameter, the local LU discards the notification.

"Request_ To_ Send (CMRTS)" on page 81 provides further discussion of the
request-to-send function.

Chapter 4. Reference Section 121

Test_Request_To_Send_Received (CMTRTS)

122 SAA CPI Communications Reference

Variable Definitions

Appendix A. Variables and Characteristics

For the variables and characteristics used throughout this book, this appendix
provides the following items:

• A chart showing the values that variables and characteristics can take. The
valid pseudonyms and corresponding integer values are provided for each
variable or characteristic.

• The character sets used by CPI Communications, along with their
corresponding hexadecimal encodings.

• The data definitions for types and lengths of all CPI-Communications
characteristics and variables.

Pseudonyms and Integer Values
As explained in "Naming Conventions - Calls and Characteristics, Variables and
Values" on page 19, the values for variables and conversation characteristics have
been shown as pseudonyms rather than integer values. For example, instead of

·stating that the variable return_code is set to an integer value of 0, the book shows
the return_code being set to a pseudonym value of CM_OK. Table 4 on page 124
provides a mapping from valid pseudonyms to integer values for each variable or
characteristic.

This same method of pseudonyms-for-integer-values can be used in program code
by making use of equate or define statements. CPI Communications provides
sample pseudonym files for each of the SAA languages - see "Programming
Language Considerations" on page 177 for the names of the pseudonym files and
Appendix F, "Sample Programs" on page 181 for an example of how one is used
by a COBOL program.

Note: Because the return_code variable is used for all CPI-Communications calls,
Appendix B, "Return Codes" provides a more detailed description of its values, in
addition to the list of values provided here.

Appendix A. Variables and Characteristics 123

Variable Definitions

Table 4 (Page 1 of 2). Variables/Characteristics and Their Possible Values

Variable or Characteristic Pseudonym Values Integer
Name Values

conversation _type CM_BASIC_CONVERSATION 0

CM_MAPPED _CONVERSATION 1

data_received CM_NO_DATA_RECEIVED 0

CM_DATA_RECEIVED 1

CM_ COMPLETE_DAT A_ RECEIVED 2

CM_INCOMPLETE_DATA_RECEIVED 3

deallocate_type CM_DEALLOCATE_SYNC_LEVEL 0

CM_DEALLOCATE_FLUSH 1

CM_DEALLOCATE_CONFIRM 2

CM_DEALLOCATE_ABEND 3

error _direction CM_RECEIVE_ERROR 0

CM_SEND _ERROR 1

fill CM_FILL_LL 0

CM_FILL_BUFFER 1

prepare _to _receive _type CM_PREP_TO_RECEIVE_SYNC_LEVEL 0

CM_PREP _TO _RECEIVE_FLUSH 1

CM_PREP _TO_RECEIVE_CONFIRM 2

receive_ type CM_RECEIVE_AND_WAIT 0

CM_RECEIVE_IMMEDIATE 1

request _to_ send _received CM_REO_TO_SEND_NOT_RECEIVED 0

CM_REQ_ TO _SEND_RECEIVED 1

124 SAA CPI Communications Reference

Variable Definitions

Table 4 (Page 2 of 2). Variables/Characteristics and Their Possible Values

Variable or Characteristic Pseudonym Values Integer
Name Values

return_code CM_OK 0

CM_ALLOCATE_FAILURE _NO _RETRY 1

CM_ALLOCATE_FAILURE_RETRY 2

CM_ CONVERSATION_ TYPE_MISMATCH 3

CM_SECURITY _NOT_ VALID 6

CM_ SYNC_ LVL_NOT _SUPPORTED _PGM 8

CM_ TPN_NOT _RECOGNIZED 9

CM_TP _NOT_AVAILABLE_NO_RETRY 10

CM_TP _NOT_AVAILABLE_RETRY 11

CM_DEALLOCATED_ABEND 17

CM_DEALLOCATED _NORMAL 18

CM_PARAMETER_ERROR 19

CM_PRODUCT _SPECIFIC _ERROR 20

CM_PROGRAM_ERROR_NO_TRUNC 21

CM_PROGRAM_ERROR_PURGING 22

CM_PROGRAM_ERROR_TRUNC 23

CM_PROGRAM_PARAMETER_CHECK 24

CM_PROGRAM_STATE_CHECK 25

CM_RESOURCE_FAILURE _NO _RETRY 26

CM_RESOURCE_FAILURE_RETRY 27

CM_UNSUCCESSFUL 28

return_ control CM_WHEN_SESSION_ALLOCATED 0

CM_IMMEDIATE 1

send_type CM_BUFFER_DATA 0

CM_SEND_AND_FLUSH 1

CM_SEND _AND_CONFIRM 2

CM_SEND_AND_PREP _TO_RECEIVE 3

CM_SEND_AND_DEALLOCATE 4

status _received CM_NO_STATUS_RECEIVED 0

CM_SEND_RECEIVED 1

CM_CONFIRM_RECEIVED 2

CM_CONFIRM_SEND_RECEIVED 3

CM_CONFIRM_DEALLOC_RECEIVED 4

sync_Jevel CM_NONE 0

CM_CONFIRM 1

Appendix A. Variables and Characteristics 125

Variable Definitions

Character Sets
CPI Communications makes use of character strings composed of characters from
one of the following character sets:

• Character set 01134, which is composed of the uppercase letters A through Z,
numerals 0-9.

• Character set 00640, which is composed of the uppercase and lowercase
letters A through Z, numerals 0-9, and 20 special characters.

These character sets, along with hexadecimal and graphic representations, are
provided in Table 5. See SNA Formats for more information on character sets.

Table s (Page 1 of 2). Character Sets 01134 and 00640

Hex Graphic Description Character Set
Code

01134 00640

40 Blank x
48 Period x
4C < Less than sign x
4D (Left parenthesis x
4E + Plus sign x
so & Ampersand x
SC * Asterisk x
SD) Right parenthesis x
SE I Semi-colon x
60 - Dash x
61 I Slash x
68 I Comma x
6C % Percent sign x
6D Underscore x -
6E > Greater than sign x
6F ? Question mark x
7A Colon x
70 I Single quote x
7E = Equal sign x
7F " Double quote x
81 a Lowercase a x
82 b Lowercase b x
83 c Lowercase c x
84 d Lowercased x
8S e Lowercase e x
86 f Lowercase f x
87 g Lowercase g x
88 h Lowercase h x
89 i Lowercase i x
91 j Lowercase j x
92 k Lowercase k x
93 I Lowercase I x
94 m Lowercase m x
9S n Lowercase n x
96 0 Lowercase o x
97 p Lowercase p x
98 q Lowercase q x
99 r Lowercase r x

126 SAA CPI Communications Reference

Variable Definitions

Table 5 (Page 2 of 2). Character Sets 01134 and 00640

Hex Graphic Description Character Set
Code

01134 00640

A2 s Lowercases x
A3 t Lowercase t x
A4 u Lowercase u x
A5 v Lowercase v x
A6 w Lowercase w x
A7 x Lowercase x x
AS y Lowercase y x
A9 z Lowercase z x
C1 A Uppercase A x x
C2 B Uppercase B x x
C3 c Uppercase C x x
C4 D Uppercase D x x
C5 E Uppercase E x x
C6 F Uppercase F x x
C7 G Uppercase G x x
ca H Uppercase H x x
C9 I Uppercase I x x
01 J Uppercase J x x
02 K Uppercase K x x
03 L Uppercase L x x
04 M Uppercase M x x
05 N Uppercase N x x
06 0 Uppercase 0 x x
07 p Uppercase P x x
08 Q Uppercase Q x x
09 R Uppercase R x x
E2 s Uppercase S x x
E3 T Uppercase T x x
E4 u Uppercase U x x
E5 v Uppercase V x x
E6 w Uppercase W x x
E7 x Uppercase X x x
ES y Uppercase Y x x
E9 z Uppercase Z x x
FO 0 Zero x x
F1 1 One x x
F2 2 Two x x
F3 3 Three x x
F4 4 Four x x
F5 5 Five x x
F6 6 Six x x
F7 7 Seven x x
F8 8 Eight x x
F9 9 Nine x x

Appendix A. Variables and Characteristics 127

Variable Definitions

Variable Types

Integers

CPI Communications makes use of two variable types, integer and character string.
Table 6 on page 129 defines the type and length of variables used in this
document. Specifics on the types are provided below.

The integers are signed non-negative integers. Their length is provided in bits.

Character Strings
Character-strings are composed of characters taken from one of the character sets
discussed in "Character Sets" on page 126, or, in the case of buffer, are bytes with
no restrictions (that is, a string composed of characters from X • 00 1 to X' FF•).

Note: The name "character string" as used in this manual should not be confused
with "character string" as used in the C programming language. No further
restrictions beyond those described above are intended.

The character-string length represents the number of characters a character string
can contain. Two character-string lengths are defined for each variable of type
character-string:

• Minimum specification length: the minimum number of characters that a
program can use to specify the character string. For some character strings,
the minimum specification length is zero. A zero-length character string on a
call means the character string is omitted, regardless of the length of the
variable that contains the character string (see the notes for Table 6 on
page 129).

• Maximum specification length: the maximum number of characters that a
transaction program can use to specify a character string. All products can
send or receive the maximum-specification length for the character string.

For example, the character-string length for log_data is listed as 0-512 bytes where
0 is the minimum specification length and 512 is the maximum specification length.

If the variable to which a character string is assigned is longer than the character
string, the character string is left-justified within the variable and the variable is
filled out to the ,right with space (X 140 1

) characters. Space characters, if present,
are not part of the character string.

If the character string is formed from the concatenation of two or more individual
character strings, the concatenated character string as a whole is left-justified
within the variable and the variable is filled out to the right with space (X' 40')
characters. Space characters, if present, are not part of the concatenated
character string.

128 SAA CPI Communications Reference

Variable Definitions

Table 6. Variable Types and Lengths

Variable Variable Character Set Length
Type

buffer Character no restriction 0-32767
string bytes

conversation _ID Character no restriction 8 bytes
string

conversation_ type Integer NIA 32 bits

send _length Integer NIA 32 bits

data_received Integer NIA 32 bits

deallocate _type Integer NIA 32 bits

error _direction Integer NIA 32 bits

fill Integer NIA 32 bits

log_data Character 00640 0-512 bytes
string

log_data_length Integer NIA 32 bits

mode_name 1 Character 01134 0-8 bytes
string

mode_ name _length Integer NIA 32 bits

partner_LU_name 1, 2 Character 01134 1-17 bytes
string

partner _LU_name_length Integer NIA 32 bits

prepare_to_receive_type Integer NIA 32 bits

receive _type Integer NIA 32 bits

received _length Integer NIA 32 bits

requested _length Integer NIA 32 bits

request_to_send_received Integer NIA 32 bits

return_code Integer NIA 32 bits

return_control Integer NIA 32 bits

send_type Integer NIA 32 bits

status _received Integer NIA 32 bits

sync_level Integer NIA 32 bits

sym_dest_name Character 01134 8 bytes
string

TP_name 3 Character 00640 1-64 bytes
string

TP _name _length Integer NIA 32 bits

Appendix A. Variables and Characteristics 129

Variable Definitions

Notes:

1. Because the mode_name and partner_LU_name characteristics are output
parameters on their respective Extract calls, the variables used to contain the
output character strings should be defined with a length equal to the maximum
specification length.

2. The partner_LU_name can be of two varieties:

• A character string composed solely of characters drawn from character set
01134

• A character string consisting of two character strings composed of
characters drawn from character set 01134. The two character strings are
concatenated together by a period (the period is not part of character set
01134). The left-hand character string represents the network ID, and the
right-hand character string represents the network LU name. The period is
not part of the network ID or the network LU name. Neither network ID nor
network LU name may be longer than eight bytes in length.

The use of the period differentiates between which variety of partner _LU_name
is being used.

On VM, a blank is used as a delimiter instead of a period.

3. When communicating with non-CPI-Communications programs, the TP _name
can use characters other than those in character set 00640. See
Appendix D, "CPI Communications and LU 6.2" on page 147 and "SNA
Service Transaction Programs" on page 149 for details.

130 SAA CPI Communications Reference

Return Codes

Appendix B. Return Codes

All calls have a parameter called return_code that is used to pass a return code
back to the program .at the completion of a call. The return code indicates the
result of call execution and includes any state changes to the specified
conversation.

Some of the return codes indicate the results of the local processing of a call.
These return codes are returned on the call that invoked the local processing.
Other return codes indicate results of processing invoked at the remote end of the
conversation. Depending on the call, these return codes can be returned on the
cali that invoked the remote processing or on a subsequent call. Still other return
codes report events that originate at the remote end of the conversation. In all
cases, only one code is returned at a time.

Some of the return codes associated with the allocation of a conversation have the
suffix RETRY or NO_RETRY in their name. RETRY means that the condition indicated by
the return code may not be permanent, and the program can try to allocate the
conversation again. Whether or not the retry attempt succeeds depends on the
duration of the condition. In general, the program should limit the number of times
it attempts to retry without success. NO_RETRY means that the condition is probably
permanent. In general, a program should not attempt to allocate the conversation
again until the condition is corrected.

The return codes shown below are listed alphabetically, and each description
includes the following:

• The meaning of the return code
• The origin of the condition indicated by the return code
• When the return code is reported to the program
• The state of the conversation when control is returned to the program.

Notes:

1. The individual call descriptions in Chapter 4, "Reference Section" list the
return code values that are valid for each call.

2. The integer values that correspond to the pseudonyms listed below are
provided in Table 4 on page 124 of Appendix A, "Variables and
Characteristics."

The valid return_code values are described below:

CM_ALLOCATE_FAILURE_NO_RETRY

The conversation cannot be allocated on a session because of a condition that
is not temporary. When this return_code value is returned to the program, the
conversation is in Reset state. For example, the session to be used for the
conversation cannot be activated because the current (LU,mode} session limit
for the specified (LU-name,mode-name} pair is 0, or because of a system
definition error or a session-activation protocol error. This return code is also
returned when the session is deactivated because of a session protocol error
before the conversation can be allocated. The program should not retry the
allocation request until the condition is corrected. This return code is returned
on the Allocate call.

Appendix B. Return Codes 131

Return Codes

CM_ALLOCATE_FAILURE_RETRY

The conversation cannot be allocated on a session because of a condition that
may be temporary. When this return_code value is returned to the program,
the conversation is in Reset state. For example, the session to be used for the
conversation cannot be activated because of a temporary lack of resources at
the local LU or remote LU. This return code is also returned if the session is
deactivated because of session outage before the conversation can be
allocated. The program can retry the allocation request. This return code is
returned on the Allocate call.

CM_ CONVERSATION_ TYPE_ MISMATCH

The remote LU rejected the allocation request because the local program
issued an Allocate call with conversation_type set to either
CM_MAPPED_CONVERSATION or CM_BASIC_CONVERSATION, and the remote program
does not support the respective mapped or basic conversation protocol
boundary. This return code is returned on a call subsequent to the Allocate.
When this return_code value is returned to the program, the conversation is in
Reset state.

CM_DEALLOCATED_ABEND

The remote program issued a Deallocate call with deallocate _type
(cM_DEALLOCATE_ABEND) in effect, or the remote LU has done so because of a
remote program abnormal-ending condition. If the conversation for the remote
program was in Receive state when the call was issued, information sent by
the local program and not yet received by the remote program is purged. This
return code is also reported to the local program on a call the program issues
in Send or Receive state. The conversation is in Reset state.

CM_DEALLOCATED _NORMAL

The remote program issued a Deallocate call on a basic or mapped
conversation with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL or
CM_DEALLOCATE_FLUSH. If deallocate_type is CM_DEALLOCATE_SYNC_LEVEL, the
synchronization level is CM_NONE. This return code is reported to the local
program on a call the program issues in Receive state. The conversation is in
Reset state.

CM_OK

The call issued by the local program executed successfully (that is, the function
defined for the call, up to the point at which control is returned to the program,
was performed as specified). The state of the conversation is as defined for the
call.

CM_PARAMETER_ERROR

The local program issued a call specifying a parameter containing an invalid
argument. ("Parameters" include not only the parameters described as part of
the call syntax, but also characteristics associated with the conversation_ID.)
The source of the argument is considered to be outside the program definition,
such as an LU name supplied by a system administrator in the side information
and referenced by the Initialize_ Conversation call.

The CM_PARAMETER_ERROR return code is returned on the call specifying the
invalid argument. The state of the conversation remains unchanged.

Note: Contrast this definition with the definition of the
CM_PROGRAM_PARAMETER_CHECk return code.

132 SAA CPI Communications Reference

Return Codes

CM _PRODUCT_ SPECIFIC_ ERROR

A product-specific error has been detected and a description of the error has
been entered into the product's system error log. See product documentation
for an indication of conditions and state changes caused by this return code.

CM _PROGRAM_ERROR_NO _ TRUNC

One oMhe following occurred:

• The remote program issued a Send_Error call on a mapped conversation
and the conversation for the remote program was in Send state. No
truncation occurs at the mapped conversation protocol boundary. This
return code is reported to the local program on a Receive call the program
issues before receiving any data records or after receiving one or more
data records.

• The remote program issued a Send_Error call on a basic conversation, the
conversation for the remote program was in Send state, and the call did not
truncate a logical record. No truncation occurs at the basic conversation
protocol boundary when a program issues Send_Error before sending any
logical records or after sending a complete logical record. This return
code is reported to the local program on a Receive call the program issues
before receiving any logical records or after receiving one or more
complete logical records.

• The remote program issued a Send_Error call on a mapped or basic
conversation and the conversation for the remote program was in
Send-Pending state. No truncation of data has occurred. This return code
indicates that the remote program has issued Set_Error_Direction to set the
error _direction characteristic to CM_SEND_ERROR. The return code is
reported to the local program on a Receive call the program issues before
receiving any data records or after receiving one or more data records.

The conversation remains in Receive state.

CM_PROGRAM_ERROR_PURGING

One of the following occurred:

• The remote program issued a Send_Error call on a basic or mapped
conversation and the conversation for the remote program was in Receive
or Confirm state. The call may have caused information to be purged.
Purging occurs when a program issues Send_Error in Receive state before
receiving all the information sent by its partner program (all of the
information sent before reporting the CM_PROGRAM_ERROR_PURGING return
code to the partner program). The purging can occur at the local LU,
remote LU, or both. No purging occurs when a program issues the call in
Confirm state, or in Receive state after receiving all the information sent by
its partner program.

• The remote program issued a Send_Error call on a mapped or basic
conversation and the conversation for the remote program was in
Send-Pending state. No purging of data has occurred. This return code
indicates that the remote program had an error _direction characteristic set
to CM_RECEIVE_ERROR when the Send_Error call was made.

Appendix B. Return Codes 133

Return Codes

This return code is normally reported to the local program on a call the
program issues after sending some information to the remote program.
However, the return code can be reported on a call the program issues before
sending any information, depending on the call and when it is issued. The
conversation remains in Receive state.

CM_PROGRAM_ERROR_TRUNC

The remote program issued a Send_Error call on a basic conversation, the
conversation for the remote program was in Send state, and the call truncated
a logical record. Truncation occurs at the basic conversation protocol
boundary when a program begins sending a logical record and then issues
Send_Error before sending the complete logical record. This return code is
reported to the local program on a Receive call the program issues after
receiving the truncated logical record. The conversation remains in Receive
state.

CM_PROGRAM_PARAMETER_CHECK

The local program issued a call in which a programming error has been found
in one or more parameters. ("Parameters" include not only the parameters
described as part of the call syntax, but also characteristics associated with the
conversation_ID.) The source of the error is considered to be inside the
program definition (under the control of the local program). The program
should not examine any other returned variables associated with the call as
nothing is placed in the variables. The state of the conversation remains
unchanged.

CM_PROGRAM _STATE_ CHECK

The local program issued a call in a state that was not valid for that call. The
program should not examine any other returned variables associated with the
call as nothing is placed in the variables. The state of the conversation
remains unchanged.

CM_RESOURCE_FAILURE_NO _RETRY

A failure occurred that caused the conversation to be prematurely terminated.
For example, the session being used for the conversation was deactivated
because of a session protocol error, or the conversation was deallocated
because of a protocol error between the mapped conversation components of
the LUs. The condition is not temporary, and the program should not retry the
transaction until the condition is ~orrected. This return code can be reported to
the local program on a call it issues in any state other than Reset. The
conversation is in Reset state.

CM_RESOURCE_FAILURE_RETRY

A failure occurred that caused the conversation to be prematurely terminated.
For example, the session being used for the conversation was deactivated
because of a session outage such as a line failure, a modem failure, or a crypto
engine failure. The condition may be temporary, and the program can retry the
transaction. This return code can be reported to the local program on a call it
issues in any state other than Reset. The conversation is in Reset state.

CM_SECURITY_NOT_VALID

The remote LU rejected the allocation request because the access security
information (provided by the local system) is invalid. This return code is
returned on a call made after the Allocate. When this return_code value is
returned to the program, the conversation is in Reset state.

134 SAA CPI Communications Reference

Return Codes

CM_SYNC_LVL_NOT_SUPPORTED_PGM

The remote LU rejected the allocation request because the local program
specified a synchronization level (with the sync_/eve/ parameter) that the
remote program does not support. This return code is returned on a call made
after the Allocate. When this return_code value is returned to the program, the
conversation is in Reset state.

CM_TPN_NOT_RECOGNIZED

The remote LU rejected the allocation request because the local program
specified a remote program name that the remote LU does not recognize. This
return code is returned on a call made after the Allocate. When this
return_code value is returned to the program, the conversation is in Reset
state.

CM_TP _NOT _AVAILABLE_NO_RETRY

The remote LU rejected the allocation request because the local program
specified a remote program that the remote LU recognizes but cannot start.
The condition is not temporary, and the program should not retry the allocation
request. This return code is returned on a call made after the Allocate. When
this return_code value is returned to the program, the conversation is in Reset
state.

CM_ TP _NOT _AVAILABLE_ RETRY

The remote LU rejected the allocation request because the local program
specified a remote program that the remote LU recognizes but currently cannot
start. The condition may be temporary, and the program can retry the
allocation request. This return code is returned on a call made after the
Allocate. When this return_code value is returned to the program, the
conversation is in Reset state.

CM_ UNSUCCESSFUL

The call issued by the local program did not execute successfully. This return
code is returned on the unsuccessful call. The state of the conversation
remains unchanged.

Appendix 8. Return Codes 135

Return Codes

136 SAA CPI Communications Reference

State Table

Appendix C. State Table

The CPI-Communications state table shows when and where different
CPI-Communications calls can be issued. For example, a program must issue an
lnitialize_Conversation call before issuing an Allocate call, and it cannot issue a
Send_Data call before the conversation is allocated.

As described in "Program Flow - States and Transitions" on page 17, CPI
Communications uses the concepts of states and state transitions to simplify
explanations of the restrictions that are placed on the calls. A number of states are
defined for CPI Communications and, for any given call, a number of transitions
are allowed. Table 7 on page 142 shows the state table, which describes the state
transitions that are allowed for the CPI-Communications calls.

Explanation of State-Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations of
calls and characteristics. There are three categories of abbreviations:

• Conversation characteristic abbreviations are enclosed by parenthesis -
" (...) "

• return_code abbreviations are enclosed by brackets - "[...]"

• data_recelved and status_received abbreviations are enclosed by braces and
separated by a comma - "{ ... , ... }" - where the abbreviation before the
comma represents the data_received value and the abbreviation after the
comma represents the value of status_received.

The next sections show the abbreviations used in each category.

Appendix C. State Table 137

State Table

Conversation Characteristics ()
The following abbreviations are used for conversation characteristics:

Abbreviation Meaning

A deallocate_type is set to CM_DEALLOCATE_ABEND

B send_type is set to CM_BUFFER_DATA

C For a Deallocate call, C means one of the following:

D

F

p

w

138 SAA CPI Communications Reference

• deallocate_type is set to CM_DEALLOCATE_CONFIRM

• deallocate_type is set to CM_DEALLOCATE_SYNC_LVL and
sync_level is set to CM_CONFIRM.

For a Prepare_To_Receive, C means one of the following:

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM

• prepare _to _receive _type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
CM_CONFIRM

For a Send_Data call, C means the following:

• send_type is set to CM_SEND_AND_CONFIRM

send_type is set to CM_SEND_AND_DEALLOCATE.

For a Deallocate call, F means one of the following:

• deal/ocate_type is set to CM_DEALLOCATE_FLUSH

• dea/locate_type is set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level is set to CM_NONE.

For a Prepare_To_Receive call, F means one of the following:

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH

• prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_/eve/ is set to
CM_NONE.

For a Send_Data call, F means the following:

• send_type is set to CM_SEND_AND_FLUSH

receive_type is set to CM_RECEIVE_IMMEDIATE

send_type is set to CM_SEND_AND_PREP_TO_RECEIVE

receive_type is set to CM_RECEIVE_AND_WAIT.

State Table

Return Code Values []
The following abbreviations are used for return codes:

Abbreviation

ae

da

dn

en

ep

et

ok

pe

pc

ps

rf

un

Meaning

For an Allocate call, ae means one of the following:

• CM_ALLOCATE_FAILURE_NO_RETRY

• CM_ALLOCATE_FAILURE_RETRY

For any other call, ae means one of the following:

• CM_ CONVERSATION_ TYPE _MISMATCH

• CM_SECURITY_NOT_VALID

• CM_SYNC_LEVEL_NOT_SUPPORTED_PGM

• CM_TPN_NOT_RECOGNIZED

• CM_ TP _NOT _AVAILABLE _NO _RETRY

• CM_ TP _NOT_ AVAILABLE_ RETRY

CM_DEALLOCATED_ABEND

CM _DEALLOCATED _NORMAL

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM _ERROR _PURGING

CM_PROGRAM_ERROR_TRUNC

CM_OK

CM_PARAMETER _ERROR

CM _PROGRAM _PARAMETER_ CHECK

CM _PRODUCT_ SPECIFIC _ERROR

CM_RESOURCE_FAILURE_NO_RETRY or CM_RESOURCE_FAILURE_RETRY

CM_ UNSUCCESSFUL

Appendix C. State Table 139

State Table

data_received and status_received {,}

Table Symbols

The following abbreviations are used for the data_received values:

Abbreviation Meaning

dr Means one of the following:

• CM_DATA_RECEIVED

• CM_COMPLETE_DATA_RECEIVED

• CM_INCOMPLETE_DATA_RECEIVED

nd CM_NO_DATA_RECEIVED

Means one of the following:

• CM_DATA_RECEIVED

• CM_COMPLETE_DATA_RECEIVED

• CM_NO_DATA_RECEIVED

The following abbreviations are used for the status_received values:

Abbreviation Meaning

cd CM_CONFIRM_DEALLOC_RECEIVED

CS CM_CONFIRM_SEND_RECEIVED

CO CM_CONFIRM_RECEIVED

no CM_NO_STATUS_RECEIVED

se CM_SEND_RECEIVED

The following symbols are used in the state table to indicate the condition that
results when a cal I is issued from a certain state:

Symbol

I

1-8

>

Meaning

"cannot occur" situation

Remain in current state

Number of next state

State error. A return_code of CM_PROGRAM_STATE_CHECK is
returned. For calls illegally issued in Reset state, this condition is
indicated to the program with a return code of
CM_PROGRAM_PARAMETER_CHECK. This is because the program is in
Reset state and the conversation_ID for the conversation is
undefined.

140 SAA CPI Communications Reference

State Table

How to Use the State Table
The various calls and combinations of parameters, also referred to as inputs, are
shown along the left side of the table. These inputs correspond to the rows of the
table. The possible states are shown across the top of the table. The states
correspond to the columns of the matrix. The intersection of input (row) and state
(column) represents what state transition, if any, will occur for the
CPI-Communications call that is issued in that particular state.

For example, look at Initial ize_Conversation[ok]. The [ok] indicates that a
return code of CM_OK was received on the call. By examining the row, it is seen
that the call can only be issued in Reset state (state 1).

When issued in state 1, the 2 in the column for Reset indicates that the program
progresses to state 2, Initialize. A scan down this column shows that the Allocate
call can be made from here. The two variations in the Allocate row that entail a
change of state are for return codes of:

• "ok," indicating a return_code of CM_OK, which allows the program to progress
to state 3.

• "ae," indicating a return_code of CM_ALLOCATE_FAILURE_NO_RETRY or
CM_ALLOCATE_FAILURE_RETRY, which puts the program back into reset state (state
1).

Appendix C. State Table 141

State Table

Table 7 (Page 1 of 4). States and Transitions for CPI-Communications Calls

Reset lnl- Send Receive Send Confirm Confirm Confirm
tlallze Pending Send Deal-

locate

Inputs 1 2 3 4 5 6 7 8

Initialize_ Conversation[ok] 2 I I I I I I I

lnitialize_Conversation[pc] - I I I I I I I

lnitialize_Conversation[ps] - I I I I I I I

Accept_ Conversation [ok] 4 I I I I I I I

Accept_ Conversation[pc] - I I I I I I I

Accept_ Conversation[ps] - I I I I I I I

Allocate[ok] > 3 > > > > > >
Allocate[ae] > 1 > > > > > >
Allocate[pc] > - > > > > > >
Allocate[pe] > - > > > > > >
Allocate[ps] > - > > > > > >
Allocate[un] > - > > > > > >

Confirm[ok] > > - > 3 > > >
Confirm[ae] > > 1 > 1 > > >
Confirm[da] > > 1 > 1 > > >
Confirm[ep] > > 4 > 4 > > >
Confirm[rf] > > 1 > 1 > > >
Confirm[pc] > > - > - > > >
Confirm[ps] > > - > - > > >

Conti rmed [ok] > > > > > 4 3 1
Confirmed[pc] > > > > > - - -
Confirmed[ps] > > > > > - - -

Extract_ Conversation_ Type[ok] > - - - - - - -

Extract_ Mode_ Name[ok] > - - - - - - -

Extract_Partner _LU_ Name[ok] > - - - - - - -

Extract_Sync_Level[ok] > - - - - - - -

Deallocate(F) [ok] > > 1 > 1 > > >
Deallocate(F) [pc] > > - > - > > >
Deallocate(F) [ps] > > - > - > > >

Deallocate(C) [ok] > > 1 > 1 > > >
Deallocate(C) [ae] > > 1 > 1 > > >
Deallocate(C) [da] > > 1 > 1 > > >
Deallocate(C) [ep] > > 4 > 4 > > >
Deallocate(C) [rf] > > 1 > 1 > > >
Deallocate(C) [pc] > > - > - > > >
Deallocate(C) [ps] > > - > - > > >

142 SAA CPI Communications Reference

State Table

Table 7 (Page 2 of 4). States and Transitions for CPI-Communications Calls

Reset lnl· Send Receive Send Confirm Confirm Confirm
tlallze Pending Send Deal-

locate

Inputs 1 2 3 4 5 6 7 8

Deallocate(A) [ok] > 1 1 1 1 1 1 1
Deallocate(A) [pc] > - - - - - - -
Deallocate(A) [ps] > - - - - - - -

Flush[ok] > > - > 3 > > >
Flush[pc] > > - > - > > >
Flush[ps] > > - > - > > >

Prepare_To_Receive(F) [ok] > > 4 > 4 > > >
Prepare_To_Receive(F) [pc] > > - > - > > >
Prepare_ To_Receive(F) [ps] > > - > - > > >

Prepare_To_Receive(C) [ok] > > 4 > 4 > > >
Prepare_To_Receive(C) [ae] > > 1 > 1 > > >
Prepare_To_Receive(C) [da] > > 1 > 1 > > >
Prepare_To_Receive(C) [ep] > > 4 > 4 > > >
Prepare_To_Receive(C) [rf] > > 1 > 1 > > >
Prepare_To_Receive(C) [pc] > > - > - > > >
Prepare_To_Receive(C) [ps] > > - > - > > >

Receive(W) [ok] {dr,no} > > 4 - 4 > > >
Receive(W) [ok] {nd,se} > > 3 3 I > > >
Receive(W) [ok] {dr,se} > > 5 5 I > > >
Receive(W) [ok] {*,co} > > 6 6 I > > >
Receive(W) [ok] {*,cs} > > 7 7 I > > >
Receive(W) [ok] {*,cd} > > 8 8 I > > >

Receive(W) [ae] > > 1 1 I > > >
Receive(W) [da] > > 1 1 1 > > >
Receive(W) [dn] > > 1 1 1 > > >
Receive(W) [en] > > 4 - 4 > > >
Receive(W) [ep] > > 4 - 4 > > >
Receive(W) [et] > > I - I > > >
Receive(W) [rf] > > 1 1 1 > > >
Receive(W) [pc] > > - - - > > >
Receive(W) [ps] > > - - - > > >

Receive(!) [ok] {dr,no} > > > - > > > >
Receive(!) [ok] {nd,se} > > > 3 > > > >
Receive(!) [ok] {dr,se} > > > 5 > > > >
Receive(!) [ok] {*,co} > > > 6 > > > >
Receive(I) [ok] {*,cs} > > > 7 > > > >
Receive(!) [ok] {*,cd} > > > 8 > > > >

~

I

Appendix C. State Table 143

State Table

Table 7 (Page 3 of 4). States and Transitions for CPI-Communications Calls

Reset lni- Send Receive Send Confirm Confirm Confirm
tialize Pending Send Deal-

locate

Inputs 1 2 3 4 5 6 7 8

Receive(!) [ae] > > > 1 > > > >
Receive(!) [da] > > > 1 > > > >
Receive(!) [dn] > > > 1 > > > >
Receive(!) [en] > > > - > > > >
Receive(!) [ep] > > > - > > > >
Receive(!) [et] > > > - > > > >
Receive(!) [rf] > > > 1 > > > >
Receive(!) [pc] > > > - > > > >
Receive(!) [ps] > > > - > > > >
Receive(!) [un] > > > - > > > >

Request_To_Send[ok] > > - - - - - -
Request_ To_ Send[pc] > > - - - - - -

Request_To_Send[ps] > > - - - - - -

Send_Data(B) [ok] > > - > 3 > > >
Send_Data(F) [ok] > > - > 3 > > >
Send_Data(C) [ok] > > - > 3 > > >
Send_Data(P) [ok] > > 4 > 4 > > >
Send_Data(D) [ok] > > 1 > 1 > > >

Send_Data[ae] > > 1 > 1 > > >
Send_Data[da] > > 1 > 1 > > >
Send_Data[ep] > > 4 > 4 > > >
Send_Data[pc] > > - > - > > >
Send_Di;ita[rf] > > 1 > 1 > > >
Send_Data[ps] > > - > - > > >

Send_Error[ok] > > - 3 3 3 3 3
Send_Error[ae] > > 1 I I I I I

Send_Error[da] > > 1 I I I I I
Send_Error[dn] > > I 1 I I I I
Send_Error[ep] > > 4 I I I I I
Send_Error[pc] > > - - - - - -
Send_Error[rf] > > 1 1 1 1 1 1
Send_Error[ps] > > - - - - - -

Set_ Conversation_ Type[ok] > - > > > > > >

Set_ Deal locate_ Type[ok] > - - - - - - -

Set_Error_Direction[ok] > - - - - - - -

Set_Fill[ok] > - - - - - - -

Set_ Log_ Data[ok] > - - - - - - -

Set_Mode_Name[ok] > - > > > > > >

144 SAA CPI Communications Reference

State Table

Table 7 (Page 4 of 4). States and Transitions for CPI-Communications Calls

Reset lnl- Send Receive Send Confirm Confirm Confirm
tlallze Pending Send Deal-

locate

Inputs 1 2 3 4 5 6 7 a
Set_Partner_LU_Name[ok] > - > > > > > >

Set_Prepare _To _Receive_ Type[ok] > - - - - - - -

Set_Receive _Type[ok] > - - - - - - -

Set_Return_ Control[ok] > - > > > > > >

Set_Send_ Type[ok] > - - - - - - -

Set_ Sync_ Level[ok] > - > > > > > >

Set_ TP _Name[ok] > - > > > > > >

Test[ok] > > - - - > > >
Test[pc] > > - - - > > >
Test[ps] > > - - - > > >

Appendix C. State Table 145

State Table

146 SAA CPI Communications Reference

Appendix D. CPI Communications and LU 6.2

This appendix is intended for programmers who are familiar with the LU 6.2
application programming interface. (LU 6.2 is also known as Advanced
Program-to-Program Communications or APPC.) It describes the functional
relationship between the APPC "verbs" and the CPI-Communications calls
described in this manual.

LU 6.2

The CPI-Communications calls have been built on top of the LU 6.2 verbs described
in SNA Transaction Programmer's Reference Manual for LU Type 6.2. Table 8
beginning on page 150 shows the relationship between APPC verbs and
CPI-Communications calls. Use this table to determine how the function of a
particular LU 6.2 verb is provided through CPI Communications.

Although much of the LU 6.2 function has been included in CPI Communications,
some of the function has not. Likewise, CPI Communications contains new
features that are not found in LU 6.2.

Note: These "new" features are differences in syntax. The semantics of LU 6.2
function have not been changed or extended.

CPI Communications contains the following new features:

• A conversation state of Send-Pending (discussed in more detail in
"Send-Pending State and the error_direction Characteristic" on page 148).

• The Accept_ Conversation call for use by a remote program to explicitly
establish a conversation, the conversation identifier, and the conversation's
characteristics.

• The error _direction conversation characteristic (discussed in more detail in
"Send-Pending State and the error_direction Characteristic" on page 148).

• A send_type conversation characteristic for use in combining functions (this
function was available with LU 6.2 verbs, but the verbs had to be issued
separately).

• The capability to return both data and conversation status on the same Receive
call.

CPI Communications does not support the following functions that are available
with the LU 6.2 interface:

• PIP data
• LOCKS= LONG
• MAP NAME
• FMH DATA.
• Syncpoint

Not listed above are the LU 6.2 security parameters. A set of LU 6.2 security
parameters is established for the conversation (currently using a default value of
SECURITY= SAME), but CPI Communications does not provide a method for the
program to modify or examine the security parameters.

Appendix D. CPI Communications and LU 6.2 147

LU 6.2

Finally, to increase portability between systems, the character sets used to specify
the partner TP _name, partner _LU _name, and log_ data have been modified slightly
from the character sets allowed by LU 6.2. To answer specific questions of
compatibility, check the character sets described in Appendix A, "Variables and
Characteristics."

Send-Pending State and the error_ direction Characteristic
The Send-Pending state and error _direction characteristic are part of CPI
Communications because, using CPI Communications, a program may receive
data and a change-of-direction indication at the same time. This "double function"
creates a possibly ambiguous error condition since it is impossible to determine
whether a reported error (from Send_Error} was encountered because of the
received data or after the processing of the change of direction.

This situation is not a problem when using LU 6.2 verbs because the information is
received separately-first the data, then the change of direction indicator - and
there is no ambiguity about where an error might have occurred.

The ambiguity is eliminated in CPI Communications by adding the Send-Pending
state and error _direction characteristic. CPI Communications places the program
in Send-Pending state whenever the program has received data and a
status_received parameter of CM_SEND_RECEIVED (indicating a change of direction).
Then, if the program encounters an error, it uses the Set_Error_Direction call to
indicate how the error occurred. If the program is in Send-Pending state and
issues a Send_ Error, CPI Communications examines the error _direction
characteristic and notifies the partner program accordingly:

• If error _direction is set to CM_RECEIVE_ERROR, the partner program receives a
return_ code of CM_PROGRAM_ERROR_PURGING. This indicates that the error at the
remote program occurred in the data, before (in LU 6.2 terms) the
change-direction indicator was received.

• If error _direction is set to CM_SEND_ERROR, the partner program receives a
return_code of CM_PROGRAM_ERROR_NO_TRUNC. This indicates that the error at
the remote program occurred in the send processing after the change-direction
indicator was received.

For an example of how CPI Communications uses the Send-Pending state and the
error _direction characteristic, see "Example 7: Error Direction and Send-Pending
State" on page 38.

148 SAA CPI Communications Reference

LU 6.2

Can CPI-Communications Programs Communicate with APPC Programs?
Programs written using CPI Communications can communicate with APPC
programs. Some examples of the limitations on the APPC program are:

• CPI Communications does not support PIP data.

• CPI Communications does not allow the specification of MAP _NAME.

• CPI Communications does not allow the specification of FMH_DATA.

• APPC programs with names containing characters no longer allowed may
require a name change. See "SNA Service Transaction Programs" for a
discussion of service transaction programs.

Note: Programs written using LOCKS= LONG will work because this optimization
is wholly contained, on the receiving side of the conversation, in the half-session
component of the LU. However, if an APPC program requires that its partner
CPI-Communications program make use of LOCKS= LONG, that function will not
be supported because the CPI-Communications program has no way of specifying
LOCKS=LONG.

SNA Service Transaction Programs
If a CPI-Communications program wishes to specify an SNA service transaction
program, the character set shown in Appendix A, "Variables and Characteristics"
for TP _name is inadequate. The first character of an SNA service transaction
program name is a character ranging in value from X'OO' through X 1 0D 1 and X'10'
through X 1 3F 1 (excluding X 1 0E 1 and X 10F 1

). Refer to SNA Transaction
Programmer's Reference Manual for LU Type 6.2 for more details on SNA service
transaction programs.

A CPI-Communications program that has the appropriate privilege may specify the
name of an SNA service transaction program for its partner TP _name. Privilege is
an identification that a product or installation defines in order to differentiate LU
services transaction programs from other programs, such as application programs.
TP _name cannot specify an SNA service transaction program name at the mapped
conversation protocol boundary.

How to Use the Table
Table 8 beginning on page 150 is set up as a table with LU 6.2 verbs and their
parameters on the left side and CPI-Communications calls across the top. The
table relates a verb or verb parameter to a call (not a call to a verb). A letter at the
intersection of a verb row and parameter call column is interpreted as follows:

D This parameter has been set to a default value by the CPI-Communications
call. Default values can be found in the individual call descriptions.

X A similar or equal function for the LU 6.2 verb or parameter is available from
the CPI Communications call. If more than one X appears on a line for a verb,
the function is available by issuing a combination of the calls.

S This parameter can be set using the CPI Communications call.

Appendix D. CPI Communications and LU 6.2 149

LU 6.2

Table 8 (Page 1 of 3). Relationship of LU 6.2 Verbs to CPI-Communications Calls

CPI Communications Calls

Starter Set Advanced Function

CD > a.
Q) >- CJ

Q) a. c: Q) 1-, e a::
I

Q) E
~

>- 0 E CJ CD "C cu

'"'
~ Q) a. c: c: R E m cu CD >-

cu z > ·a; CD

~ ~ E z a:: 1-, 0 Q) a; en,
>- I "C a. cu cu I () a. > Q)

> 2i :::> Q)
~ >- I >- 0 1-, ...J c: i5 a; z :::> 0 CD I Q) E c: ...J Q) 1-, CJ 1-, 1-, ...J 1-,

0 s Q) I a:: .E I 0, I ...J, > E cu Q) "C > I CJ en, g Q) ·a; I u, § > cu Q) c: "C t I > a. ::::i "C CJ z O"
c: 0 c: 0 c: Qj e Cl "C t CJ c: I CD .e 0 ~ c, E E 0

~
cu >- 1-, 0 w 0 Q) 0 0 cu ~ Q) ii) Q) s. a. a::, c. cu

~ .i () a. CD .c. 1-, I u, c w u: ...J, ~ a. a. a:: a:: CD en,

'"'
Q) ~ ~

"C 'E 'E ~ ...! J J en a. O"
"C ..J I I I I I I I I Cii LU6.2 Verbs ~

c: x x x ::::i ~
c: ii) ii) ii) ii) ii) ii) a; a; a; a; a; a;

< £ Q) 0 0)(
Lr

Q) Q) Q) Q) c a:: CD () () w w w w a. a:: CD CD CD CD CD CD CD CD CD CD CD CD CD CD I-

150 SAA CPI Communications Reference

LU 6.2

Table 8 (Page 2 of 3). Relationship of LU 6.2 Verbs to CPI-Communications Calls

CPI Communications Calls

Starter Set Advanced Function

CD > a.
CD > 0

CD a. c: CD l-1 e a:
I

CD E
~

> 0 E fd
CD "C

CD E crl iii 1-j
~

CD crl
a. 'E c: z CD E a: > CD iii CDI a. crl > iii .! z 1-1 0

> I CD "C a. crl crl I I u a. > CD > 1-1 2i ::::> _. fd c: > crl 6 Gi z ::::> 0 CD I > CD E 0
c: _. 1-1 ~ l-1 _.

1-1 0
~ .s "C > CD I I a: ~ g .._I

°'
I -'1 1-1 > E I crl

0 I CD "iii
u1 > crl CD c: "8 t:'. c: I > id a. ::I "C 0 z O"

~ 0 c: CD Cl § § 0 crl O'i
0 0 w c: e Cl "C t:'. CD &J GJ c: c: 0..1 CD

i5. 0 > :::! 1-, 0 CD 0 0 crl ~ > .Q I u a.. 1-, I it rr:: :::! 6:. a:
~ 'iii .r; ~ Cl _. a.. a: a: CDI 1-j I ID 0 'ii "C ~ ~ ...!!!! Cl) a. "C

iii I I I I I I I I I Cii 8 .Q fd c: O" c:
LU 6.2 Verbs ID 5 3J 0 0 >< >< >< >< ::I ~ Q) CD 3i 1D 1D 1D 1D 1D 1D 1D a> ~ 1D 1D CD

< :;;: Cl a: u u w w w w u:: a.. a: CD CD CD CD CD CD CD CD CD CD CD ·CD I-

Appendix D. CPI Communications and LU 6.2 151

LU 6.2

Table 8 (Page 3 of 3). Relationship of LU 6.2 Verbs to CPI-Communications Calls

CPI Communications Calls

Starter Set Advanced Function

CIJ > c.
CD >- 0

a:: CD c. c: CD 1-, e I
CD E CIJ

>- .Q E 0 CIJ "C cu ~ c.
CD E a; > 0 CIJ cu CD >- c: c:
c. z > ·a; CD CD ~ E z a:: 1-, 0 CD a; oo,
>- cu I CD "C c. a; s cu I I () c. > CD > ~ :::> 0 >- >- 0 1-, ..J CD c: Ci z :::> 0 CIJ I CIJ E c: _J .._ 1-, CJ cu 1-, 1-, ..J 1-, 0 s CD I a:: CD ..Q I a, I ..J > E cu

~ "C > I CJ (/) E .._ CD I ·a; I u, > cu CD c: "C t c: I I > a; c. :J "C CJ z CT
11 c: CD 0 0 w c: E Cl) "C

~ CJ c: c: I CD CJ 9 -~ E 0 cu >- 0 0 CD a; a. Q1 ..Q 0 > () ::? a. (/) 1-, 1-, I 0 CD it u:: 0 ::? a: CD CD >- a. a::
~ ·a; .s::. y a ..J a. a:: a:: (/) (/) ~ I CD CJ a; "C 1: 'E ...! ...!!! en c. CT

"C _J I I I I I I I I I I (ij
LU6.2 Verbs CJ .Q 0 c:

)()()()(:J ~
c: a; a; a; a; a; a; a; a; a; a; a; a; 0 CD E CD CD 0 0 CD CD CD CD

<(< a a:: (/) () () LU LU LU LU u::: a. a:: en en (/) (/) (/) (/) en (/) en (/) (/) (/) en (/) I-

152 SAA CPI Communications Reference

Appendix E. CMS VM/SP-Extension Information

This appendix contains information about VM/SP extensions to CPI
Communications. This extension information consists of:

CMS VM/SP

• Additional VM/SP-related notes about CPI-Communications routines

• Special routines that can be used in CMS to take advantage of VM/SP's
capabilities. However, note that a program using any of these VM/SP
extension routines cannot be moved to another system without being changed.

• Programming language notes for writing CPI-Communications programs in
VM/SP.

VM/SP readers should also be familiar with chapters 1-4 of the VMISP Connectivity
Programming Guide and Reference, SC24-5377. That VM/SP book discusses
connectivity terminology, gives an overview of communication programming on
VM/SP, and introduces CPI Communications. It also contains scenarios and
example programs that aid understanding of CPI Communications in VM/SP.

Invoking CPI-Communications Routines in VM/SP
In addition to the SAA languages shown in "Call Syntax" on page 42,
CPI-Communications routines in VM/SP can be called from Pascal and PL/I. Here
is the calling format for these two languages:

Pascal
routine_name (parm0,parml,parm2, ••• parmN);

PL/I
CALL routine_name (parmO,parml,parm2, ••• parmN);

If a VM/SP program cannot successfully invoke the CPI-Communications routine it
is trying to call, the following error message is generated:

1292E Error calling CPI Co111nunications routine, return code=retcode

The possible values for retcode in this message, and their meanings, are as
follows:

Code Meaning

-07 The CPI-Communications routine that was called was not loaded. Issue
the following command:

'RTNLOAD *(FROM VMLIB SYSTEM GROUP VMLIB)'

and then try calling the routine again. If this fails, contact the system
administrator.

-08 The CPI-Communications routine that was called has been dropped.
Follow the same steps as for return code -07.

-09 Insufficient storage is available. Obtain more storage.

-10 Too many parameters were specified for the CPI-Communications routine.
Refer to the call's detailed description to find the proper number of
parameters.

Appendix E. CMS VM/SP-Extension Information 153

CMS VM/SP

-11 Not enough parameters were specified for the CPI-Communications
routine. Follow the same step as for return code -10.

If one of these error condition occurs, a user abend is generated.

Special VM/SP Notes

Side Information

There are some special considerations that should be understood when writing
applications for a VM/SP environment. These are explained in this section.

CPI Communications defines side information, which is a set of predefined values
used when starting conversations. The side information consists of a partner LU
name, mode name, and TP name, and it is indexed by a symbolic destination
name.

VM/SP implements side information using CMS communications directory files. A
communications directory file is a NAMES file that can be set up on a system level
(by a system administrator) or on a user level. A CMS communications directory
can contain the following tags:

Table 9. Contents of a CMS Communications Directory File

Tag

:nick.

:luname.

:tpn.

:modename.

:security.

:userid.1

:password.1

What the Value on the Tag Specifies

Symbolic destination name for the target resource.

The partner LU name (locally known LU name) that identifies
where the resource resides. This name consists of two 8-byte
fields:

1. An LU_name_qualifier, which is either:
• *USERID {for connections to private resources within the

TSAF collection),
• *IDENT or blank (for connections to local or global

resources within the collection), or
• a defined gateway name (for connections outside the

collection).
2. A target_LU_name that specifies either:

• The target virtual machine's user ID (for connections to
private resources within the collection),

• Zero (for connections to local or global resources within
the collection), or

• The name of the partner's LU (for connections outside the
collection).

The target resource ID (transaction program name).

For connections outside the TSAF collection, this field specifies the
mode name for the SNA session connecting the gateway {a TSAF
collection) and the target LU. For connections within the TSAF
collection, this field specifies a mode name of either VMINT or
VMBAT, or it is omitted.

The security type of the conversation (NONE, SAME, or PGM).
Currently, only security types NONE and PGM are supported for
connections out of a TSAF collection.

The access security user ID.

The access security password.

154 SAA CPI Communications Reference

Interrupts

CMS VM/SP

Once the communications directory file is created, it is put into effect by using the
SET COMDIR command. (Refer to the VMISP CMS Command Reference for details
on this command.)

Note: If, when running a program, program execution must be halted by use of the
HX command, any communication directory files that were loaded with SET
COMDIR are unloaded. If this happens, the SET COMDIR RELOAD
command must be reissued to get the communications directory file loaded
again.

For CPI Communications to work properly in VM/SP, external interrupts must be
enabled for a user's virtual machine. Any action taken by a user application to
disable interrupts must be done carefully.

VM/SP-Specific Errors
Return codes for CPI-Communications routines are listed with each routine in
Chapter 4, and they are generically described in Appendix B; however, calls to CPI
Communications in VM/SP can produce return codes for VM/SP-specific reasons.
The following list shows some CPI Communications return codes, along with some
possible VM/SP-specific causes:

CM_RESOURCE_FAILURE_NO_RETRY

This code can result when the partner program did one of the following:

• Issued the Terminate_Resource_Manager routine (XCTRRM).

• Re-IP Led CMS or logged off.

CM_SECURITY _NOT_ VALID

This code can result when the user ID trying to allocate a conversation to
a private resource is not authorized in the private server's $SERVER$
NAMES file.

CM_ TP _NOT _AVAIL _NO _RETRY

This code can result when the connection to the target cannot be
completed due to one of the following:

• The program does not have directory authorization to allocate the
conversation.

• The program tried allocating a conversation to a private resource
manager program, but the private server virtual machine either had
SET SERVER OFF or SET FULLSCREEN ON.

• The target server virtual machine has exceeded its maximum number
of connections.

CM_TPN_NOT_RECOGNIZED

This code can result when the connection to the target cannot be
completed due to one of the following:

• The target local or global server virtual machine has not issued the
ldentify_Resource_Manager routine (XCIDRM).

1 Access security user IDs and passwords can be specified on the APPCPASS statement in the source virtual
machine's directory, rather than in this fLle. The VMISP Connectivity Planning, Administration, and Operation book
explains this in detail.

Appendix E. CMS VM/SP-Extension Information 155

CMSVM/SP

• The target private server virtual machine cannot be autologged.

• For private resource manager programs, the resource ID was not
registered in the private server's $SERVER$ NAMES file.

• The CMS-invoked routine in a private server (specified on the
:module. tag in $SERVER$ NAMES) is unknown.

CPI Communications defines a return code called cM_PRooucr_sPECIFIC_ERROR for
each routine. In VM/SP, whenever a call to a CPI-Communications routine results
in this return code, a file called CPICOMM LOGDATA A is appended with a
message line that describes the cause of the error. The following list shows the
possible VM/SP messages associated with the CM_PRODUCT_SPECIFIC_ERROR return
code:

Accept_ Conversation (CMACCP)

• Unable to get storage.
• HNDIUCV SET failed.

Allocate (CMALLC)

• The partner program can not be on the same virtual machine as that of the
program issuing the Allocate.

• Unable to set alternate userid
• Unable to get storage

lnitialize_Conversation (CMINIT)

• Unable to get storage
• Bad Side-Information Security value

Receive (CMRCV)

• Unable to get storage
• APPC/VM RECEIVE returned neither data nor status

Set_Partner_LU_Name (CMSPLN)

• The partner LU name in VM/SP cannot contain a period.

Other VM/SP-Specific Notes for CPI-Communications Routines
This section contains notes that the programmer should be aware of when using
CPI-Communications routines in VM/SP.

Allocate (CMALLC)

• If the target program is within the same TSAF collection of VM/SP systems,
an LU 6.2 session does not have to be allocated.

Set_Partner_LU_Name (CMSPLN)

• In VM/SP, the partner LU name is often referred to as a "locally known LU
name," consisting of these two entities:

1. An LU_name_qualifier, which is either:
*USERID (for connections to private- resources within the TSAF
collection)
*IDENT or blank (for connections to local or global resources within
the collection), or
A defined gateway name (for connections outside the collection).

156 SAA CPI Communications Reference

CMS VM/SP

2. A target_LU _name that specifies either:
The target virtual machine's user ID (for connections to private
resources within the collection),
Zero (for connections to local or global resources within the
collection), or
The name of the partner LU (for connections outside the collection).

• Exactly one blank should be used to separate the two partner LU name
fields.

• VM/SP allows the partner LU specified to be local (within the initiating LU);
the partner LU does not have to be remote.

Extract_Partner _LU _Name (CMEPLN)

• The partner LU name in VM/SP (sometimes called locally known LU name)
extracted consists of two fields: an LU name qualifier and a source LU
name. The partner LU name returned by this routine always has a blank
separating the two fields.

Overview of VM/SP Extension Routines

Security

As mentioned earlier, VM/SP provides a number of routines that are extensions to
SAA CPI Communications. Programs using these routines may not be portable to
other SAA systems. However, these routines can be used to take advantage of the
VM/SP operating system. These extension routines are grouped into the three
sections that follow.

The default security value for CPI-Communications conversations is SAME. VM/SP
provides a routine called Set_Conversation_Security_Type that allows explicit
specification of the security value (NONE, SAME, or PROGRAM) for the
conversation.

In addition, VM/SP provides routines that allow explicit specification of an access
security user ID (Set_Conversation_Security_User_ID) and an access security
password (Set_ Conversation_ Security _Password).

Resource Manager Programs
Using CPI Communications, servers can only accept a single conversation and
then finish. VM/SP provides routines that allow resource manager programs in
server virtual machines to handle more than one conversation. The routines are
called ldentify_Resource_Manager, its counterpart Terminate_Resource_Manager,
and Wait_on_Event.

Intermediate Servers
Using CPI Communications, a server can only be on the accepting side of a
conversation; it cannot allocate conversations. VM/SP provides a routine that a
server program can use before making a connection on behalf of another program.
This routine, called Set_Client_Security_User_ID, explicitly sets the user ID of the
program that makes the original connection request. In this way, the original
requesting program is identified to the final target program.

Appendix E. CMS VM/SP-Extension Information 157

CMS VM/SP

Summary
The following table summarizes VM/SP routines that are extensions to CPI
Communications. The routines are listed in alphabetical order by their callable
name. The last column of the table shows the page where the routine is described
in detail.

Table 10 (Page 1 of 2). Overview of VM/SP Extension routines

Call

XCECSU

XCIDRM

XCSCSP

XCSCST

xcscsu

Pseudonym Description

Extract_Conversation_Security_User_ID Lets a server extract
the user ID associated
with an incoming
conversation.

ldentify_Resource_Manager

Set_ Conversation_ Security _Password

Set_ Conversation_Security _Type

Set_ Conversation_ Security_ User _ID

Declares to CMS a
name (resource ID) by
which the resource
manager application
will be known. For a
local resource
manager, this routine
makes the name
known to the system;
for a global resource
manager, this routine
also makes the name
known to the TSAF
collection of VM/SP
systems.

Sets the security
password value for
the conversation. The
target LU uses this
value and the security
user ID to verify the
identity of the
requester.

Sets the security level
for the conversation.
The security level
determines what
security information
is sent to the target.
This lets the target
verify the identity of
the requester.

Sets the security user
ID value for the
conversation. The
target LU uses this
value and the security
password to verify the
identity of the
requester.

Page

160

162

165

167

169

158 SAA CPI Communications Reference

CMS VM/SP

Table 10 (Page 2 of 2). Overview of VM/SP Extension routines

Call

XCSCUI

XCTRRM

XCWOE

Pseudonym

Set_ Client_ Security_ User _ID

Terminate_Resource_Manager

Wait_on_Event

Description

Lets an intermediate
server initiate a
conversation on
behalf of a specific
client application. A
program issuing this
routine must have
special authorization.

Ends ownership of a
resource by a
resource manager
program.

Allows an application
to wait on
communications from
one or more partners.
Events posted are
allocation requests,
information input,
notification that
resource
management has
been revoked, and
console input.

Page

171

173

174

Appendix E. CMS VM/SP-Extension Information 159

Extract_ Conversation_ Security_ User _ID (XCECSU)

Extract_ Conversation_ Security_ User _ID (XCECSU)

Format

Parameters

Use the Extract_Conversation_Security_User_ID routine (XCECSU) in a program to
extract the user ID associated with an incoming conversation.

The incoming conversation must have a conversation_security _type of
XC_SECURITY_SAME or XC_SECURITY_PROGRAM. If the conversation security type is
xc_SECURITY _NONE, this variable will contain nulls (X '00 's), and the length is set to
zero.

This routine is valid only after the server has accepted the conversation, using the
Accept_Conversation routine (CMACCP).

CALL XCECSU(conversation_id,
conversation_security _user _id,
conversation_security _user _id_length,
return_code)

conversation _id
Specifies the conversation identifier. This variable must be an eight-byte
character string, and it is used as input to the routine.

conversation_ security_ user _id
Specifies the user ID obtained by this routine and returned to the calling
program. This variable must be an eight-byte character string.

conversation_ security_ user _id_length
Specifies the length, in bytes, of the returned conversation_security _user _ID.
This variable must be declared a four-byte signed integer with a value from 0 to
8.

return_code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable can have one of the following values:

• CM_OK

Normal completion.
• CM_PRODUCT_SPECIFIC_ERROR

An internal control block problem prevented
Extract_Conversation_Security_User_ID from getting the user ID. When this
code is returned, a file named CPICOMM LOGDATA A is appended with the
following line:

CPIC block does not exist

• CM_PROGRAM_PARAMETER_CHECK

The specified conversation ID was not found.

160 SAA CPI Communications Reference

Extract_Conversatlon_Securlty_User _ID (XCECSU)

State Changes
This routine does not cause any state changes.

Appendix E. CMS VM/SP-Extension Information 161

ldentify_Resource_Manager (XCIDRM)

Identify_ Resource_ Manager (XCIDRM)

Format

Parameters

Use the ldentify_Resource_Manager (XCIDRM) routine to declare to CMS the name
of a resource that the application wants to manage. How the resource name is
known depends on the type of application being written:

• For a local resource manager application, the resource name is known to the
system.

• For a global resource manager application, the resource name is known to the
local system and the entire TSAF collection of VM/SP systems.

• For a private resource manager application, the resource name is known only
to the virtual machine where the program is running.

This routine also specifies how the application handles incoming conversations.
See description of service mode below.

CALL XCIDRM(resource_id,
resource_manager _type,
service_ mode,

resource _ID

security _level_flag,
return_code)

Specifies the name of a resource managed by this resource manager
application. This variable must be an eight-byte character string, padded on
the right with blanks if necessary. It is used as input to the routine.

Other applications wishing to use this resource name must establish
conversations to this resource. These allocation requests are then routed to
the application that issued this ldentify_Resource_Manager routine.

resource_id corresponds to the transaction program name that requesting
applications supply when all"ocating a conversation to this resource.

resource_ manager _type
Identifies whether the application is a private, local, or global resource
manager. resource_manager _type must be equal to one of the following
values:

• XC_PRIVATE

Private resource names are identified only to the virtual machine in which
they are active, but they can be accessed by programs that have the proper
authorization. These other programs can reside on the same VM/SP
system, same TSAF collection of VM/SP systems, or other system in an
SNA network.

• XC_LOCAL

Local resource names are identified only to the system in which they
reside, and cannot be accessed from outside this system.

• XC_GLOBAL

Global resource names are identified to an entire TSAF collection. They
may be accessed by other programs in the collection, or in an SNA
network.

162 SAA CPI Communications Reference

Identify _Resource _Manager (XCIDRM}

This parameter is used as input to the routine.

service _mode
Indicates how this resource manager application handles conversations.
service_mode must be equal to one of the following values:

• XC_SINGLE

This resource manager program can accept only a single conversation.
When the single conversation is ended (deallocated), the resource
manager program should be written to issue the
Terminate_Resource_Manager (XCTRRM) for resource_id.

If a program makes an allocation request to a private resource name and
the private resource manager program has al ready accepted a
conversation for that resource name, CMS queues the new request; then
when the private resource manager program ends (after the single
conversation is deallocated and the program issues XCTRRM), CMS
automatically restarts the private resource manager program and takes the
first pending request off of the queue.

• xc _SEQUENTIAL

This resource manager program can accept only one conversation at a
time. However, when one conversation is completed and deallocated, the
resource manager program can issue Wait_on_Event (XCWOE) to wait for
the next allocation request, or issue Accept_ Conversation (CMACCP). (If a
program issues CMACCP and no allocations are pending, the program
abends, however.) The program can continue in this sequence until all
conversations are completed, and then it should issue
Terminate_Resource_Manager for the resource ID.

If a program makes an allocation request to a private resource name and
the private resource manager program has already accepted a
conversation for that resource name, CMS queues the new request; then
after the single conversation is deallocated, the program should issue
XCWOE or CMACCP as described in the preceding paragraph.

• XC_MULTIPLE

This resource manager program can accept multiple, simultaneous
conversations. A "multiple mode" program can issue Wait_on_Event
(XCWOE) for more than one conversation at a time.

If a program makes an allocation request to a private resource name and
the private resource manager program has already accepted a
conversation for that resource name, CMS queues the new request.
However, in this case, the program does not have to deallocate the
previous conversation for a new allocation request to be presented.

For all three cases, if a program makes an allocation request to a global or
local resource name and the resource manager program has already accepted
a conversation for that resource name, the source program gets a
"deallocated" indication.

This parameter is used as input to the routine.

Appendix E. CMS VM/SP-Extension Information 163

ldentify_Resource_Manager (XCIDRM)

State Changes

Usage Notes

security _level_tlag
Indicates whether or not this resource manager will accept inbound
connections that have conversation_security _type equal to xc_SECURITY _NONE.

security _level_flag must be equal to one of the following values:

• XC_REJECT _SECURITY _NONE

The resource manager will not accept connections that have
conversation_security _type equal to xc_SECURITY _NONE. The source
program requesting such a connection will get return_code of
CM_ALLOCATE:_f:AILURE_NO_RETRY on its Allocate (CMALLC) routine.

• XC_ACCEPT _SECURITY _NONE

The resource manager will accept connections that have
conversation_security _type equal to xc_SECURITY_NONE.

This parameter is used as input to the routine.

return_code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable can have one of the following values:

• CM_OK

Normal completion.
• CM_PRODUCT_SPECIFIC_ERROR

A storage failure prevented the resource manager program from being
identified. When this code is returned, a file named CPICOMM LOGDATA
A is appended with the following line:

Unable to get storage

• CM_PROGRAM_PARAMETER_ CHECK

This can result from one of the following conditions:
resource_id has already been declared to CMS
resource_id could not be declared to CMS
resource_manager _type contains an invalid value
service_mode contains an invalid value
security _level_flag contains an invalid value.

• CM_UNSUCCESSFUL

ldentify_Resource_Manager was unable to get ownership of the resource
because it is already owned by another virtual machine. This return code
applies only when resource_manager _type is xc_LOCAL or xc_GLOBAL.

This routine is not specific to a conversation, so it does not cause any state
changes.

1. The application does not need to call ldentify_Resource_Manager if:

• The application initiates all its conversations and is never the target of an
allocation request.

• The application is a private resource manager, invoked by CMS as the
target of a single conversation.

2. An application calling ldentify_Resource_Manager should also call the
Terminate_Resource_Manager routine (XCTRRM) before exiting.

164 SAA CPI Communications Reference

Set_ Conversation_ Security _Password (XCSCSP)

Set_ Conversation_ Security_ Password (XCSCSP)

Format

Parameters

Use the Set_Conversation_Security_Password routine (XCSCSP) in a source
program or intermediate server to set the security password for a conversation.
The password is necessary for a connection request that has a
conversation_security _type of xc_sECURITY_PROGRAM.

Set_Conversation_Security_.Password can only be issued for a conversation that is
in lnltlallze state. It cannot be issued at any point following an Allocate routine
(CMALLC).

CALL XCSGSP(conversation_id,

conversation _id

conversation_ security _password,
conversation_ security _password _length,
return_code)

Specifies the conversation identifier. This variable must be an eight-byte
character string, and it is used as input to the routine.

conversation_ security _password
Specifies the password. The target LU uses this value and the user ID to verify
the identity of the source program making the allocation request. The
password is stored temporarily in the LU's conversation control block; it is
erased at completion of an Allocate routine.

conversation_security _password must be declared as an eight-byte character
string, and it is used as input to the routine.

conversation_ security _password _length
Specifies the length of the security password. This must be a four-byte binary
integer value from 0 to 8, and it is used as input to the routine.

return_code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable can have one of the following values:

• CM_OK

Normal completion.
• CM_PROGRAM_PARAMETER_CHECK

This can result from one of the following:
conversation_id specifies an unassigned conversation ID,

- conversation_security _password_length specifies a value of less than O
or greater than 8.

• CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state or the conversation_security _type
is not XC_SECURITY _PROGRAM.

Appendix E. CMS VM/SP-Extension Information 165

Set_ Conversation_ Security _Password (XCSCSP)

State Changes

Usage Notes

This routine does not cause any state changes.

1. A program can only issue Set_Conversation_Security_Password on an
outgoing conversation.

2. Before a program can issue Set_Conversation_Security_Password, a user ID
must be provided. The user ID either comes from

• The program issuing Set_Conversation_Security_User_ID (XCSCSU), or

• A communications directory file.

3. When conversation_security _type is xc_sECURITY _PROGRAM, a program can issue
this XCSCSP routine or have a password specified in the virtual machine's

a. Communications directory file, or
b. APPCPASS directory statement.

The access security password specified on this routine overrides a password
in the communications directory file and causes an access security password
specified on an APPCPASS directory statement to be ignored.

166 SAA CPI Communications Reference

Set_ Conversation_ Security_ Type (XCSCST)

Set_ Conversation_ Security_ Type (XCSCST)

Format

Parameters

Use the Set_Conversation_Security_Type routine (XCSCST) to set the security type
for the conversation. This routine overrides the value that was assigned when the
conversation was initialized.

Set_Conversation_Security_Type can only be called from a program in Initialize
state. It cannot be issued at any point following an Allocate routine (CMALLC).

CALL XCSCST(conversation_id,
conversation_security _type,
return_code)

conversation _id
Specifies the conversation identifier. This variable must be an eight-byte
character string, and it is used as input to the routine.

conversation_security _type
Specifies the kind of access security information that the program is sending to
its target. The target LU uses this security information to verify the identity of
the source. The access security information, if present, consists of either a
user ID or a user ID and password. conversation_security _type is used as input
to the routine, and it must be equal to one of the following values:

• XC_SECURITY_NONE

No access security information is to be included on the allocation request
to the target resource manager.

• XC_SECURITY_SAME

The user ID of the source program's virtual machine is sent on the
allocation request to the target resource manager.

This security type can not be used for allocations outside the program's
TSAF collection.

• XC_SECURITY _PROGRAM

The source program must supply an access user ID and password on the
allocation request to the target LU.

return_ code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable indicates the result of the call
execution and can have one of the following values:

• CM_OK

Normal completio~.
• CM_PROGRAM_PARAMETER_CHECK

This can result from one of the following:
- conversation_id specifies an unassigned conversation ID,
- conversation_security _type specifies an undefined value.

• CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

Appendix E. CMS VM/SP-Extension Information 167

Set_ Conversation_ Security_ Type (XCSCST)

State Changes

Usage Notes

This routine does not cause any state changes.

1. A program can only issue Set_ Conversation_ Security_ Type on an outgoing
conversation.

2. A program does not need to use this routine if the default security type of
xc_SECURITY_SAME is desired, or if a security type is specified in the virtual
machine's communications directory file. The security type specified on this
routine overrides a security type in the communications directory file.

168 SAA CPI Communications Reference

Set_ Conversation_Securlty _User _ID

Set_ Conversation_ Security_ User_ ID {XCSCSU)

Format

Parameters

Use the Set_Conversation_Security_User_ID (XCSCSU) routine to set the access
security user ID for the conversation. A program can only specify an access
security user ID when it wants to connect to a target using a
conversation_security _type of xc_SECURITY _PROGRAM.

Set_Conven;ation_Security_User_ID can only be called from lnltlallze state. It
cannot be issued at any point following an Allocate (CMALLC) routine.

CALL XCSCSU (conversation _id,
conversation_security _user _id,
conversation_security _user _id_length,
return_code)

conversation _id
Specifies the conversation ID. This variable must be an eight-byte character
string, and it is used as input to the routine.

conversation_security _user _id
Specifies the user ID. The target LU uses this value (and the
conversation_security _password, which can be specified on the
Set_Conversation_Security_Password routine) to verify the identity of the user
making the allocation request. In addition, the target LU may use the user ID
for auditing or accounting purposes.

This variable must be declared as an eight-byte character string, and it is used
as input to the routine.

conversation_ security _user_ id _length
Specifies the length, in bytes, of the security user ID. This yariable must be a
four-byte signed integer with a value from 0 to 8.

return_ code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return code indicates the result of call execution and can
have one of the following values:

• CM_OK

Normal completion.
• CM_PROGRAM_PARAMETER_CHECK

This can result from one of the following:
conversation_id specifies an unassigned conversation ID,

- conversation_security _user _id_length specifies a value less than 0 or
greater than 8.

• CM_PROGRAM_STATE_CHECK

The conversation is not in Initialize state.

Appendix E. CMS VM/SP-Extension Information 169

Set_Conversation_Security_User_ID

State Changes

Usage Notes

This routine does not cause any state changes.

1. A program can only issue Set_Conversation_Security_User_ID on an outgoing
conversation.

2. When conversation_ security _type is xc_sECURITY_PROGRAM, a program can issue
this XCSCSP routine or have a user ID specified in the virtual machine's

a. CMS communications directory file, or
b. APPCPASS directory statement.

The access security user ID specified on this routine overrides a user ID in the
communications directory file and causes an access security user ID specified
in a directory APPCPASS statement to be ignored.

170 SAA CPI Communications Reference

Set_Client_Security_User_ID (XCSCUI)

Set Client Security User ID (XCSCUI) - - - -

Format

Parameters

Use the Set_Client_Security_User_ID (XCSCUI) routine in an intermediate server to
set a user ID value based on an incoming conversation's user ID. The intermediate
server can then present this user ID to the final target when it initiates a
conversation on behalf of the client application.

A program that acts as an intermediate server might have incoming conversations
from various virtual machines. With Set_Client_Security_User_ID, such a server
can specify a particular user ID that will be presented to the final target resource
manager. In this way, the target resource manager virtual machine knows where
the original request is coming from.

A server can only call Set_Client_Security_User_ID if the following conditions are
true:

• The incoming conversation has conversation_security _type equal to
XC_SECURITY_SAME or XC_SECURITY_PROGRAM.

• The outgoing conversation from the intermediate server has
conversation_security _type equal to xc_SECURITY _SAME.

• The intermediate server is in Initialize state for the outgoing conversation_id.

• The intermediate server virtual machine is authorized to issue a Diagnose
Code X 1 D4 1 (for defining an alternate user ID) to issue an Allocate (CMALLC)
on behalf of a client application. This authorization is privilege class B (unless
default privilege classes have been changed).

CALL XCSCUl(conversation_id,
client_user _id,
return_code)

conversation _id
Specifies the conversation identifier. This variable must be an eight-byte
character string, and it is used as input to the routine.

client_ user _id
Identifies the client's user ID, obtained by calling the
Extract_Conversation_Security_User_ID (XCECSU) routine for the conversation
between the server and the client application. This variable must be an
eight-byte character string, padded on the right with blanks as necessary, and
it is used as input to the routine.

return_ code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable can have one of the following values:

• CM_OK

Normal completion.
• CM_PROGRAM_PARAMETER_CHECK

This can result from one of the following:
conversation_id is not found

Appendix E. CMS VM/SP-Extension Information 171

Set_ Client_ Security_ User _ID (XCSCUI)

State Changes

Usage Notes

- conversation_security _type for the incoming conversation is not equal
to XC_SECURITY _SAME or XC_SECURITY _PROGRAM.

• CM_PROGRAM_STATE_CHECK

The conversation is not in lnltlallze state.

This routine does not cause any state changes.

1. Here is a typical sequence of events that includes an intermediate server
calling the Set_Client_Security_User_ID:

a. A client application allocates a conversation with the server application.

b. The server application accepts the conversation using the Accept routine
(CMACCP).

c. The server application calls the Extract_Conversation_Security_User _ID
routine (XCECSU), on the conversation with the client application, to get
the client's user ID.

d. The server calls lnitialize_Conversation (CMINIT) to get a conversation
ready to allocate on behalf of the client.

e. The server application calls Set_Client_Security_User_ID using the
extracted user ID, to set the security information of the new conversation.

f. The intermediate server application calls Allocate (CMALLC) for the
conversation that is being initialized on behalf of the client application.
(The default security type of xc_SECURITY _SAME is used on this CMALLC
call.)

g. The final target program is presented with the original source program's
user ID.

2. An intermediate server that does not use ldentify_Resource_Manager
(XCIDRM) always uses the source program's user ID when allocating a
conversation to the final target; such an intermediate server does not need to
use Set_ Client_ Security_ User _ID.

3. An intermediate server that issues ldentify_Resource_Manager and does not
use Set_Client_Security_User_ID will forward its own user ID, not the original
source program's, when allocating a conversation to the final target.

172 SAA CPI Communications Reference

Terminate_Resource_Manager {XCTRRM)

Terminate_Resource_Manager (XCTRRM)

Format

Parameters

State Changes

Usage Note

Use the Terminate_Resource_Manager routine (XCTRRM) from a resource
manager application to end management of a resource. The resource manager
automatically ends all conversations for the specified resource ID, and the
communication control blocks used to manage the resource are released.

If the resource ID specified on this routine is a global or local resource, that name
is no longer identified to the TSAF collection of VM/SP systems.

CALL XCTRRM(resource_id,
return_code)

resource _id
Specifies the name of a resource, managed by this resource manager
application, for which service is being terminated. This is a name that was
specified by this application on a previous call to the
ldentify_Resource_Manager routine (XCIDRM). resource_id is a character
string variable eight bytes in length, and it is used as input to the routine.

return_code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable can have one of the following values:

• CM_OK

Normal completion.
• CM_PROGRAM_PARAMETER_CHECK

This virtual machine does not control the specified resource.

Reset state is entered on all conversations associated with the specified
resource id. (This applies when return_code is CM_OK, indicating normal
completion.)

1. Any resource manager application that called the Identify _Resource_Manager
routine should be sure to call Terminate_Resource_Manager before exiting.

Failure to call either Terminate_Resource_Manager to deallocate all
conversations could result in paths and control blocks remaining active within
the virtual machine.

Appendix E. CMS VM/SP-Extension Information 173

Wait_on_Event (XCWOE)

Wait_on_Event (XCWOE)

Format

Parameters

Use the Wait_on_Event routine (XCWOE) from a source or target application to wait
for communications from one or more partners. This routine provides a way to
handle requests from partner programs; a program can issue Wait_on_Event, then
take action according to the type of request it receives.

CALL XCWOE(resource_id,
conversation _id,
event_type,
data_length,

resource _id

console _input_buffer,
return_code)

Specifies the name of a resource managed by this resource manager
application for which an event has been posted. resource_id is returned to the
caller; it is a name that was specified by this application on a previous call to
ldentify_Resource_Manager (XCIDRM). It must be a character string variable
eight bytes in length, and it is passed back as output from the routine.

This parameter is only valid when the posted event is an allocation request or
a revoke resource notification. (If the event is information input or console
input, the contents of this variable should not be examined.)

conversation _id
Identifies the conversation on which data is available to be received.
conversation_id is returned to the caller as output from the routine. It must be
a character string variable eight bytes in length.

This parameter is only valid when the event is information input. (If the event
is an allocation request, revoke resource notification, or console input, the
contents of this variable should not be examined.)

event_type
Indicates the type of event posted. This variable is used as output from the
routine, and it must be equal to one of the following values:

• XC_ALLOCATION_REQUEST

A source program is attempting to allocate a conversation with the
program. The program must issue an Accept_ Conversation (CMACCP) to
clear this posted event.

• XC_INFORMATION_INPUT

A partner program is attempting to communicate information to the
program. For instance, it might be sending data or deallocating its
connection. The program must issue a Receive (CMRCV) to clear this
posted event.

• XC_RESOURCE_REVOKED

Another program has revoked the program's resource. In this case, the
program's resource manager program must issue a
Terminate_Resource_Manager (XCTRRM) when it completes its active
conversation(s).

174 SAA CPI Communications Reference

State Changes

Usage Notes

Wait_on_Event {XCWOE)

• XC_CONSOLE_INPUT

The program is waiting for information from the console. This information
will go away after it is presented to the program via the
console _input_ buffer.

data _length
If the posted event is information input or console input, this indicates the
amount of data bytes that are available to be received. See Usage Note 3 on
page 176. If the posted event is console input, this indicates how many bytes
of data are being sent. data_length must be a four-byte integer variable, and it
is used as output from the routine.

This parameter is only valid when the event is information input or console
input. (If the event is an allocation request or revoke resource notification, the
contents of this variable should not be examined.)

console _input_ buffer
Specifies the name of a buffer for console input. On console input events, the
contents of the terminal input buffer will be stored here. This must be a
character string variable, 130 bytes in length, and it is used as output from the
routine. If more than 130 bytes were supplied, the data is truncated and the
program will get only the first 130 bytes.

This parameter is only valid when the event is console input. (If the event is an
allocation request, revoke resource notification, or information input, the
contents of this variable should not be examined.)

return_ code
Specifies the return code that is passed back from the communications routine
to the calling program. This return code variable must be a signed, four-byte
binary integer. The return_code variable can have one of the following values:

• CM_OK

Normal completion.
• CM_PRODUCT_SPECIFIC_ERROR

A storage failure prevented Wait_on_Event from being invoked. When this
code is returned, a file named CPICOMM LOGDATA A is appended with the
following line:

Unable to get storage

• CM_PROGRAM_STATE_CHECK

No conversations exist or no resource has been identified.

This routine does not cause any state changes.

1. If a resource manager application was identified as a multiple server, it can
issue Wait_on_Event routines for more than one conversation at a time; if the
application was identified as a single or sequential server, it may issue only
Wait_on_Event routines for one conversation at a time.

2. Events are posted in this order of priority:

a. Allocation request
b. Information input
c. Resource revoke notification
d. Console input.

Appendix E. CMS VM/SP-Extension Information 175

Wait_on_Event (XCWOE)

For example, as long as there are allocation events pending, they will be
serviced first.

• For allocation requests:

After receiving the allocation event indication, the application can call the
Accept_ Conversation routine (CMACCP) to establish the conversation and
to get a conversation_id assigned by the system.

A new conversation is established after the resource manager application
calls the Accept_Conversation routine. If necessary, the resource manager
application can get information about the conversation by calling the
appropriate "Extract" routines.

After the resource manager application accepts the conversation, it is in
receive state for this conversation. It may call one of the following
routines:

Receive, to get any data that was sent.
Wait_on_Event, to wait for additional communication
Deallocate, with dea/locate_type set to CM_DEALLOCATE_ABEND, to
terminate the conversation.

• For information input:

After getting this event, the application should issue the Receive (CMRCV)
routine, using the value in data_length returned by Wait_on_Event.

• For resource revoked notification:

No new connections may be made to the specified resource_id. This
resource ID is no longer known to the rest of the system or TSAF
collection. Existing conversations are not affected. The actions taken for
this event are application-specific. The resource manager still must issue
Terminate_Resource_manager.

• For console input:

The application determines how to interpret what is input from the console
and what further action to take.

3. The data length parame_ter is a measure of the amount of data available when
the event is information input or console input. When it is information input,
the value of data length can be used on a subsequent call to the Receive
routine to receive the data

Using this length on the call to Receive will not guarantee that the Receive will
complete immediately; the only way to guarantee that a Receive will complete
immediately is to set receive type=cM_RECEIVE_tMMEDIATE prior to calling the
Receive.

176 SAA CPI Communications Reference

CMS VM/SP

Programming Language Considerations

c

COBOL

The following languages can be used on VM/SP to call CPI-Communications
routines and the VM/SP extension routines:

• c
• COBOL
• CSP (Application Generator)
• FORTRAN
• REXX (SAA Procedures Language),
• Pascal
• PL/I.

Specific notes for each of these languages is described later in individual sections.
In addition, the following note applies to all the languages:

• Prior to running the program, the following CMS commands must be issued in
order to establish proper linkage with the CPI-Communications routines:

GLOBAL TXTLIB CMSSAA
LOAD programname (AUTO

The following notes apply to C programs using CPI-Communications routines:

• The pseudonym file CMC COPY contains C statements that allow the use of
symbolic names (pseudonyms) for various CPI-Communications values.

• Before calling a CPI-Communications routine, use the extern statement to
declare the routine as having external linkage, and fully prototype the routine's
return value and arguments.

• When passing an integer value as a parameter, the parameter name should be
preceded with an ampersand(&) so that the value is passed by reference.

• To pass a parameter as a string literal, it should be surrounded with double
quotes rather than single quotes.

• VM/SP does not put a terminating null byte in character strings it returns. C
programs must take this into consideration.

• In addition, if the program is being compiled with the C Program Offering:

The #pragma statement for OS linkage is required for each
CPI-Communications routine. The statement has the following format:

#pragma linkage(routinename, OS)

To generate the program into a module, issue the following commands:

LOAD C$TEXT programname DMSSAA (RESET C$START
GENMOD filename (FROM C$TEXT)

The following notes apply to COBOL programs using CPI-Communications
routines:

• The pseudonym file CMCOBOL COPY contains COBOL statements that allow
the use of symbolic names (pseudonyms) for various CPI-Communications
values.

Appendix E. CMS VM/SP-Extension Information 177

CMS VM/SP

• Because COBOL does not support the underscore character (_), the
underscores in COBOL pseudonyms are replaced with dashes (-). For
example, COBOL programmers would use CM- IMMEDIATE as a pseudonym
value name in their programs instead of CM_IMMEDIATE.

• Each argument in the parameter list must be called (listed) by name.

• Each variable in the parameter list must be level 01.

• Number variables must be fullwords (at least five but less than ten "9"s) and
they must be COMP-4, not zoned decimal.

CSP (Application Generator)

FORTRAN

The following notes apply to CSP programs using CPI-Communications routines:

• The pseudonym file CMCSP COPY explains how to use CSP data definition to
define variables. It also provides sample CSP statements that initialize the
symbolic variable names (pseudonyms) for various CPI-Communications
values.

• Because CSP does not support the underscore character(_), the underscores
in CSP pseudonyms are replaced with dollar signs($).

The following notes apply to FORTRAN programs using CPI-Communications
routines:

• The pseudonym file CMFORTRN COPY contains FORTRAN statements that
allow the use of symbolic names (pseudonyms) for various
CPI-Communications values.

• The EXTERNAL statement should be used for each CPI Communications
routine that is called.

REXX (SAA Procedures Language)
The following notes apply to REXX programs using CPI-Communications routines:

• The pseudonym file CMREXX COPY contains REXX statements that allows the
use of symbolic names (pseudonyms) for various CPI-Communications values.

• Character strings returned by CPI Communications routines are stored in
variables with the maximum allowable length. (Maximum lengths are shown in
Appendix A and later in this Appendix.) However, there is a returned length
variable associated with the returned character string, which allows use of the
REXX function

LEFT(returned_char_string,returned_length)

to get the correct amount of data.

(This note does not apply to re.turned character strings, which always have a
given length. For instance, a conversation_ID returned from the Accept routine
always has a length of 8 bytes.)

178 SAA CPI Communications Reference

Pascal

PL/I

CMS VM/SP

The following notes apply to Pascal programs using CPI-Communications routines:

• A Pascal pseudonym file can be created to allow use of symbolic names
(pseudonyms) for the various CPI Communications values. To create this
pseudonym file, use the FORTRAN pseudonym file, CMFORTRN COPY, as a
model.

• Use internal procedure statements for each CPI Communications routine that is
used, and declare each routine as a FORTRAN routine.

• Parameters should be passed as variables by reference, rather than passing
them as I iterals and constants.

• String (of char) parameters must have a length specified.

• Use PASCMOD, not LOAD, to build a load module. Follow this example to
prepare the program:

VSPASCAL filename
PASCMOD filename
FILEDEF OUTPUT TERM
FILEDEF INPUT TERM
filename

/* compile the program */

RECFM F LRECL 80
RECFM V LRECL 80

/* issue the name of the file to invoke it */

The following notes apply to PL/I programs using CPI-Communications routines:

• A PL/I pseudonym file can be created to allow use of symbolic names
(pseudonyms) for the various CPI Communications values. To create this
pseudonym file, use the FORTRAN pseudonym file, CMFORTRN COPY, as a
model.

• Numbers in the parameter list must be declared, initialized, and passed as
variables.

• To declare each CPI Communications routine, use the following statement:

DCL routinename ENTRY EXTERNAL OPTIONS (ASSEMBLER INTER);

Variables and Characteristics
The following tables are provided for the variables and characteristics used with
the VM/SP extension routines shown in this VM/SP appendix:

1. Table 11 on page 180 shows the possible values for variables and
characteristics associated with VM/SP extension routines. The valid
pseudonyms and corresponding integer values are provided for each variable
or characteristic.

2. Table 12 on page 180 shows the data definitions for types and lengths of all
VM/SP extension characteristics and variables.

These tables are extensions to the the tables provided in Appendix A, "Variables
and Characteristics" on page 123. See that Appendix for further discussion of how
they are used.

Appendix E. CMS VM/SP-Extension Information 179

CMS VM/SP

Table 11. VM/SP Variables/Characteristics and their Possible Values

Variable or Characteristic Pseudonym Values Integer
Name Values

conversation_security _type xc_SECURITY _NONE 0

XC_SECURITY _SAME 1

XC_SECURITY _PROGRAM 2

event_type XC_ALLOCATION_REQUEST 1

XC_INFORMATION_INPUT 2

XC_RESOURCE_REVOKED 3

xc_CONSOLE_INPUT 4

resource_ manager _type XC_PRIVATE 0

XC_LOCAL 1

XC_GLOBAL 2

security _level _flag XC_REJECT_SECURITY _NONE 0

XC_ACCEPT _SECURITY _NONE 1

service_mode XC_SINGLE 0

XC_SEQUENTIAL 1

XC_MULTIPLE 2

Table 12. VM/SP Variable Types and Lengths

Variable Variable Character Length
Type Set (In

bytes)

client_user _id Character 00640 8
string

console _input_ buffer Character no 130
string restriction

conversation_security _password Character 00640 8
string

conversation _security _password _length Integer NIA 4

conversation_security _type Integer NIA 4

conversation_security _user _id Character 00640 8
string

conversation_ security_ user _id _length Integer NIA 4

data_length Integer NIA 4

event_type Integer NIA 4

resource _id Character 00640 8
string

resource_ manager_ type Integer NIA 4

security _level _flag Integer NIA 4

service_mode Integer NIA 4

180 SAA CPI Communications Reference

Sample Programs

Appendix F. Sample Programs

This appendix contains the following sections:

• "SALESRPT (Initiator of the Conversation)" on page 182

The COBOL program SALESRPT establishes a conversation with its partner
program, CREDRPT, in order to transfer a sales record for credit processing.
After sending the sales record, SALESRPT waits for a reply from CREDRPT.

• "CREDRPT (Acceptor of the Conversation)" on page 186

After the conversation is started - thus causing CREDRPT to be loaded into
memory and begin execution - CREDRPT accepts the conversation and
receives the credit record sent by SALESRPT. When CREDRPT has
successfully received the record, it sends a message back to SALESRPT
informing SALESRPT of this fact.

• "Pseudonym File for COBOL" on page 191

This section shows the COBOL statements that establish pseudonyms for the
various conversation characteristic values. Both CREDRPT and SALESRPT
use this file by executing the following command:

COPY CMCOBOL.

• "Results of Successful Program Execution" on page 194

This section shows the output generated by the

DISPLAY

statements in CREDRPT and SALESRPT upon successful execution of the
programs.

Note: These sample programs are provided for tutorial purposes only and a
complete handling of error conditions has not been shown or attempted. The
details and complexity of such error handling will depend on the specific nature of
actual applications.

Appendix F. Sample Programs 181

SALESRPT Program

SALESRPT (Initiator of the Conversation)
IDENTIFICATION DIVISION.
PROGRAM-ID. SALESRPT.

* THIS IS THE SALESRPT PROGRAM THAT SENDS DATA TO THE *
* CREDRPT PROGRAM FOR CREDIT BALANCE PROCESSING. *
* *
* PURPOSE: SEND A SALES-RECORD TO THE CREDRPT PROGRAM FOR *
* CREDIT BALANCE PROCESSING, THEN RECEIVE AND *
* DISPLAY A STATUS INDICATION FROM CREDRPT. *
* *
* INPUT: PROCESSING-RESULTS-RECORD FROM CREDRPT. *
* *
* OUTPUT: SALES-RECORD TO THE CREDRPT PROGRAM. *
* *
* *
* NOTE: SALES-RECORD PROCESSING HAS BEEN GREATLY *
* SIMPLIFIED IN THIS EXAMPLE. *

*

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-0-CONTROL.

DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 BUFFER

01 CM-ERROR-DISPLAY-MSG

PIC X(52) VALUE SPACES.

PIC X(40) VALUE SPACES.

* SALES-RECORD *

01 SALES-RECORD.
05 CUST-NUM
05 CUST-NAME
05 FILLER
05 CREDIT-BALANCE
05 CREDIT-LIMIT
05 CREDIT-FLAG

* PROCESSING-RESULTS-RECORD *

PIC X(4)
PIC X(20)
PIC X(5)
PIC S9(7)V99
PIC S9(7)V99
PIC X

VALUE 11 0010 11
•

VALUE 11 XYZ INC. 11
•

VALUE SPACES.
VALUE 4275.50.
VALUE 5000.
VALUE 11 1".

01 PROCESSING-RESULTS-RECORD PIC X(25) VALUE SPACES.

**
* USE THE CPI-COMMUNICATIONS PSEUDONYM FILE *
**

COPY CMCOBOL.

182 SAA CPI Communications Reference

SALESRPT Program

LINKAGE SECTION.

EJECT.
*

PltoCEDURE DIVISION.
**
************************** START OF MAINLINE *******************
**

MAINLINE.

PERFORM APPC-INITIALIZE
THRU APPC-INITIALIZE-EXIT.

D~SPLAY "SALESRPT CONVERSATION INITIALIZED".

PERFORM APPC-ALLOCATE
THRU APPC-ALLOCATE-EXIT.

DISPLAY "SALESRPT CONVERSATION ALLOCATED".

PERFORM APPC-SEND
THRU APPC-SEND-EXIT.

DISPLAY "SALESRPT DATA RECORD SENT".

PERFORM APPC-RECEIVE
THRU APPC-RECEIVE-EXIT
UNTIL NOT CM-OK.

DISPLAY "SALESRPT RESULTS RECORD RECEIVED".

PERFORM CLEANUP
THRU CLEANUP-EXIT.

STOP RUN.
**
*************************** END OF MAINLINE ********************
**
*
APPC-INITIALIZE.

MOVE "CREDRPT 11 TO SYM-DEST-NAME.
**
** ESTABLISH DEFAULT CONVERSATION CHARACTERISTICS **
**

CALL "CMINIT" USING CONVERSATION-ID
SYM-DEST-NAME
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
MOVE "INITIALIZATION PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT
END-IF.

APPC-INITIALIZE-EXIT. EXIT.

*

APPC-ALLOCATE.

* ALLOCATE THE APPC CONVERSATION *

Appendix F. Sample Programs 183

SALESRPT Program

CALL 11 CMALLC 11 USING CONVERSATION-ID
CM-RETCODE

IF CM-OK
NEXT SENTENCE

ELSE
MOVE "ALLOCATION PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT
END-IF.

APPC-ALLOCATE-EXIT. EXIT.

*

APPC-SEND.
MOVE SALES-RECORD TO BUFFER.
MOVE 52 TO SEND-LENGTH.

* SEND THE SALES-RECORD DATA RECORD *

CALL 11 CMSEND 11 USING CONVERSATION-ID

IF CM-OK
NEXT SENTENCE

ELSE

BUFFER
SEND-LENGTH
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

MOVE "SEND PROCESSING TERMINATED"
TO CM-ERROR-DISPLAY-MSG

PERFORM CLEANUP
THRU CLEANUP-EXIT

END-IF.
APPC-SEND-EXIT. EXIT.

+'*******************
*
APPC-RECEIVE.

**
* PERFORM THIS CALL UNTIL A "NOT" CM-OK *
* RETURN CODE IS RECEIVED. ALLOWING RECEPTION OF: *
* - PROCESSING-RESULTS-RECORD FROM CREDRPT PROGRAM *
* - CONVERSATION DEALLOCATION RETURN CODE *
* FROM THE CREDRPT PROGRAM *
**

*

MOVE 25 TO REQUESTED-LENGTH.
CALL "CMRCV" USING CONVERSATION-ID

BUFFER
REQUESTED-LENGTH
DATA-RECEIVED
RECEIVED-LENGTH
STATUS-RECEIVED
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

IF CM-COMPLETE-DATA-RECEIVED
MOVE BUFFER TO PROCESSING-RESULTS-RECORD
DISPLAY PROCESSING-RESULTS-RECORD

END-IF.

184 SAA CPI Communications Reference

IF CM-OK OR CM-DEALLOCATED-NORMAL
NEXT SENTENCE

ELSE
MOVE "RECEIVE PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
END-IF.

APPC-RECEIVE-EXIT. EXIT.

SALESRPT Program

*

CLEANUP.

* DISPLAY EXECUTION COMPLETE OR ERROR MESSAGE *
* NOTE: CREDRPT WILL DEALLOCATE CONVERSATION *

IF CM-ERROR-DISPLAY-MSG = SPACES
DISPLAY "PROGRAM: SALESRPT EXECUTION COMPLETE"

ELSE
DISPLAY 11 SALESRPT PROGRAM - 11

,

CM-ERROR-DISPLAY-MSG, II RC= 11
, CM-RETCODE.

STOP RUN.
CLEANUP-EXIT. EXIT.

Appendix F. Sample Programs 185

CREDRPT Program

CREDRPT (Acceptor of the Conversation)
IDENTIFICATION DIVISION.
PROGRAM-ID. CREDRPT.

* THIS IS THE CREDRPT PROGRAM THAT RECIEVES DATA FROM THE *
* SALESRPT PROGRAM FOR CREDIT BALANCE PROCESSING. *
* *
* PURPOSE: RECEIVE A SALES-RECORD FROM THE SALESRPT PROGRAM *
* AND COMPUTE AND DISPLAY A NEW CREDIT BALANCE, *
* THEN SEND A STATUS INDICATION TO SALESRPT. *
*
* INPUT: SALES-RECORD FROM SALESRPT PROGRAM.
*
* OUTPUT: DISPLAY OUTPUT-RECORD.
* PROCESSING-RESULTS-RECORD TO SALESRPT.
*
* NOTE:
*

SALES-RECORD PROCESSING HAS BEEN GREATLY
SIMPLIFIED IN THIS EXAMPLE.

*
*
*
*
*
*
*
*

*

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FI LE-CONTROL.
1-0-CONTROL.

DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 CM-ERROR-DISPLAY-MSG

01 BUFFER

01 CURRENT-CREDIT-BALANCE

PIC X(40) VALUE SPACES.

PIC X(52).

PIC S9{7)V99.

01 CONVERSATION-STATUS PIC 9(9) COMP-4.
VALUE 1.
VALUE 0.

88 CONVERSATION-ACCEPTED
88 CONVERSATION-NOT-ESTABLISHED

* SALES-RECORD *

01 SALES-RECORD.

05 CUST-NUM
05 CUST-NAME
05 FILLER
05 CREDIT-BALANCE
05 CREDIT-LIMIT
05 CREDIT-FLAG

* OUTPUT-RECORD *

186 SAA CPI Communications Reference

PIC X{4).
PIC X(20).
PIC X(5).
PIC S9(7)V99.
PIC S9(7)V99.
PIC X.

01 OUTPUT-RECORD.
05 FILLER
05 OP-CUST-NUM
05 FILLER
05 OP-CUST-NAME
05 FILLER
05 OP-CREDIT-LIMIT
05 FILLER
05 OP-CREDIT-BALANCE
05 FILLER
05 OP-TEXT-FIELD
05 FILLER

* PROCESSING-RESULTS-RECORD *

PIC X.
PIC X(4).

CREDRPT Program

PIC X(3) VALUE SPACES.
PIC X(20).
PIC X(5) VALUE SPACES.
PIC Z(6)9.99-.
PIC X(5) VALUE SPACES.
PIC Z(6)9.99-.
PIC X(5) VALUE SPACES.
PIC X(25).
PIC X(5) VALUE SPACES.

01 PROCESSING-RESULTS-RECORD PIC X(25} VALUE SPACES.

**
* CPI-COMMUNICATIONS PSEUDONYM COPYBOOK FILE *
**

COPY CMCOBOL.

LINKAGE SECTION.

EJECT.
*

PROCEDURE DIVISION.
**
************************** START OF MAINLINE *******************
**

MAINLINE.

PERFORM APPC-ACCEPT
THRU APPC-ACCEPT-EXIT.

DISPLAY "CREDRPT CONVERSATION ACCEPTED".

PERFORM APPC-RECEIVE
THRU APPC-RECEIVE-EXIT
UNTIL CM-SEND-RECEIVED.

DISPLAY "CREDRPT RECORD RECEIVED".

PERFORM PROCESS-RECORD
THRU PROCESS-RECORD-EXIT.

DISPLAY "CREDRPT DATA PROCESSED".

PERFORM APPC-SEND
THRU APPC-SEND-EXIT.

DISPLAY "CREDRPT RESULTS RECORD SENT".

PERFORM CLEANUP
THRU CLEANUP-EXIT.

STOP RUN.
**
*************************** END OF MAINLINE ********************
**

*
APPC-ACCEPT.

Appendix F. Sample Programs 187

CREDRPT Program

**
* ACCEPT INCOMING APPC CONVERSATION ESTABLISHING *
* DEFAULT CONVERSATION CHARACTERISTICS *
**

CALL 11 CMACCP 11 USING CONVERSATION-ID
CM-RETCODE.

IF CM-OK
SET CONVERSATION-ACCEPTED TO TRUE

ELSE
MOVE "ACCEPT PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT
END-IF.

APPC-ACCEPT-EXIT. EXIT.

*
APPC-RECEIVE.

* PERFORM THIS CALL UNTIL A CM-SEND-RECEIVE INDICATION IS *
* RECEIVED. THIS INDICATES A CONVERSATION STATE CHANGE FROM *
* RECEIVE TO SEND OR SEND-PENDING STATE, THUS 11 CMRCV 11 *
* (RECEIVE) HAS COMPLETED. ALLOWING RECEPTION OF: *
* - SALES-RECORD FROM SALESRPT PROGRAM *

*

*

MOVE 52 TO REQUESTED-LENGTH.
CALL 11 CMRCV 11 USING CONVERSATION-ID

BUFFER
REQUESTED-LENGTH
DATA-RECEIVED
RECEIVED-LENGTH
STATUS-RECEIVED
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

IF CM-COMPLETE-DATA-RECEIVED
MOVE BUFFER TO SALES-RECORD

END-IF.

IF CM-OK
NEXT SENTENCE

ELSE
PERFORM APPC-SET-DEALLOCATE-TYPE

THRU APPC-SET-DEALLOCATE-TYPE-EXIT
MOVE "RECEIVE PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT
END-IF.

APPC-RECEIVE-EXIT. EXIT.

*

PROCESS-RECORD.
SUBTRACT CREDIT-BALANCE FROM CREDIT-LIMIT

GIVING CURRENT-CREDIT-BALANCE.
IF CREDIT-FLAG = 11 0 11

MOVE "**CREDIT LIMIT EXCEEDED**" TO OP-TEXT-FIELD
ELSE

188 SAA CPI Communications Reference

MOVE SPACES TO OP-TEXT-FIELD
END-IF.
MOVE CUST-NUM TO OP-CUST-NUM.
MOVE CUST-NAME TO OP-CUST-NAME.
MOVE CREDIT-LIMIT TO OP-CREDIT-LIMIT.

CREDRPT Program

MOVE CURRENT-CREDIT-BALANCE TO OP-CREDIT-BALANCE.
DISPLAY OUTPUT-RECORD.

*
MOVE "CREDIT RECORD UPDATED" TO PROCESSING-RESULTS-RECORD.

PROCESS-RECORD-EXIT. EXIT.

*

APPC-SEND.
MOVE PROCESSING-RESULTS-RECORD TO BUFFER.
MOVE 25 TO SEND-LENGTH.

**
* SEND THE PROCESSING-RESULTS-RECORD TO SALESRPT *
**

CALL "CMSEND" USING CONVERSATION-ID
BUFFER
SEND-LENGTH
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
PERFORM APPC-SET-DEALLOCATE-TYPE

THRU APPC-SET-DEALLOCATE-TYPE-EXIT
MOVE 11 SEND PROCESSING TERMINATED 11

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT
END-IF.

APPC-SEND-EXIT. EXIT.

*
APPC-SET-DEALLOCATE-TYPE.

SET CM-DEALLOCATE-ABEND TO TRUE.

* ON ERROR SET DEALLOCATE-TYPE TO ABEND *

CALL 11 CMSDT 11 USING CONVERSATION-ID
DEALLOCATE-TYPE
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
DISPLAY "ERROR SETTING CONVERSATION DEALLOCATE TYPE"

END-IF.
APPC-SET-DEALLOCATE-TYPE-EXIT. EXIT.

*

CLEANUP.
IF CONVERSATION-ACCEPTED

* DEALLOCATE APPC CONVERSATION *

Appendix F. Sample Programs 189

CREDRPT Program

CALL "CMDEAL" USING CONVERSATION-ID

CM-RETCODE
DISPLAY "CREDRPT DEALLOCATED CONVERSATION"

END-IF.
IF CM-ERROR-DISPLAY-MSG = SPACES

DISPLAY "PROGRAM: CREDRPT EXECUTION COMPLETE"
ELSE

DISPLAY 11 CREDRPT PROGRAM - 11
,

CM-ERROR-DISPLAY-MSG, II RC= 11
, CM-RETCODE

END-IF.
STOP RUN.

CLEANUP-EXIT. EXIT.

190 SAA CPI Communications Reference

COBOL Pseudonym File

Pseudonym File for COBOL
The source shown below is found in "CMCOBOL COPY" and defines the
pseudonyms that are used in the sample programs. See "Programming Language
Considerations" on page 177 and Appendix A, "Variables and Characteristics" for
further discussion on the values of conversation characteristics.

*COPY CMCOBOL

* NOTE: BUFFER MUST BE DEFINED IN WORKING STORAGE *

*

01 CONVERSATION-ID PIC X(8).
*

01 CONVERSATION-TYPE PIC 9(9) COMP-4.
88 CM-BASIC-CONVERSATION VALUE 0.
88 CM-MAPPED-CONVERSATION VALUE 1.

*
01 CM-RETCODE PIC 9(9) COMP-4.

* ===> RETURN-CODE IS A RESERVED WORD IN SOME <===
* ===> VERSIONS OF COBOL <===
*

88 CM-OK VALUE 0.
88 CM-ALLOCATE-FAILURE-NO-RETRY VALUE 1.
88 CM-ALLOCATE-FAILURE-RETRY VALUE 2.
88 CM-CONVERSATION-TYPE-MISMATCH VALUE 3.
88 CM-SECURITY-NOT-VALID VALUE 6.
88 CM-SYNC-LVL-NOT-SUPPORTED-PGM VALUE 8.
88 CM-TPN-NOT-RECOGNIZED VALUE 9.
88 CM-TP-NOT-AVAILABLE-NO-RETRY VALUE 10.
88 CM-TP-NOT-AVAILABLE-RETRY VALUE 11.
88 CM-DEALLOCATED-ABEND VALUE 17.
88 CM-DEALLOCATED-NORMAL VALUE 18.
88 CM-PARAMETER-ERROR VALUE 19.
88 CM-PRODUCT-SPECIFIC-ERROR VALUE 20.
88 CM-PROGRAM-ERROR-NO-TRUNC VALUE 21.
88 CM-PROGRAM-ERROR-PURGING VALUE 22.
88 CM-PROGRAM-ERROR-TRUNC VALUE 23.
88 CM-PROGRAM-PARAMETER-CHECK VALUE 24.
88 CM-PROGRAM-STATE-CHECK VALUE 25.
88 CM-RESOURCE-FAILURE-NO-RETRY VALUE 26.
88 CM-RESOURCE-FAILURE-RETRY VALUE 27.
88 CM-UNSUCCESSFUL VALUE 28.

*
01 DATA-RECEIVED PIC 9(9) COMP-4.

88 CM-NO-DATA-RECEIVED VALUE 0.
88 CM-DATA-RECEIVED VALUE 1.
88 CM-COMPLETE-DATA-RECEIVED VALUE 2.
88 CM-INCOMPLETE-DATA-RECEIVED VALUE 3.

*
01 DEALLOCATE-TYPE PIC 9(9) COMP-4.

88 CM-DEALLOCATE-SYNC-LEVEL VALUE 0.
88 CM-DEALLOCATE-FLUSH VALUE 1.
88 CM-DEALLOCATE-CONFIRM VALUE 2.
88 CM-DEALLOCATE-ABEND VALUE 3.

*
01 ERROR-DIRECTION PIC 9(9) COMP-4.

88 CM-RECEIVE-ERROR VALUE 0.

Appendix F. Sample Programs 191

COBOL Pseudonym File

*

*

*
*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

88 CM-SEND-ERROR VALUE 1.

01 FILL PIC 9(9) COMP-4.
VALUE 0.

01

01

01

01

01

01

01

01

01

01

01

01

01

01

88 CM-FILL-LL
88 CM-FILL-BUFFER

LOG-DATA
0-512 BYTES

LOG-DATA-LENGTH

MODE-NAME
0-8 BYTES

MODE-NAME-LENGTH

PARTNER-LU-NAME
1-17 BYTES

PARTNER-LU-NAME-LENGTH

VALUE 1.

PIC X(512).

PIC 9(9) COMP-4.

PIC X(8).

PIC 9(9) COMP-4.

PIC X(17).

PIC 9(9) COMP-4.

PREPARE~TO-RECEIVE-TYPE PIC 9(9) COMP-4.
88 CM-PREP-TO-RECEIVE-SYNC-LEVEL VALUE 0.
88 CM-PREP-TO-RECEIVE-FLUSH VALUE 1.
88 CM-PREP-TO-RECEIVE-CONFIRM VALUE 2.

RECEIVED-LENGTH PIC 9(9) COMP-4.

RECEIVE-TYPE PIC 9(9) COMP-4.
88 CM-RECEIVE-AND-WAIT VALUE 0.
88 CM-RECEIVE-IMMEDIATE VALUE 1.

REQUESTED-LENGTH PIC 9(9) COMP-4.

REQUEST~TO-SEND-RECEIVED PIC 9(9) COMP-4.
88 CM-REQ-TO-SEND-NOT-RECEIVED VALUE 0.
88 CM-REQ-TO-SEND-RECEIVED VALUE 1.

RETURN-CONTROL PIC 9(9) COMP-4.
88 CM-WHEN-SESSION-ALLOCATED VALUE 0.
88 CM-IMMEDIATE VALUE 1.

SEND-LENGTH PIC 9(9) COMP-4.

SEND-TYPE PIC 9(9) COMP-4.
88 CM~BUFFER-DATA VALUE 0.
88 CM~SEND-AND-FLUSH VALUE 1.
88 CM-SEND-AND-CONFIRM VALUE 2.
88 CM-SEND-AND-PREP-TO-RECEIVE VALUE 3.
88 CM-SEND-AND-DEALLOCATE VALUE 4.

01 STATUS-RECEIVED PIC 9(9) COMP-4.
88 CM-NO-STATUS-RECEIVED
88 CM-SEND-RECEIVED
88 CM-CONFIRM-RECEIVED
88 CM-CONFIRM-SEND-RECEIVED
88 CM-CONFIRM-DEALLOC-RECEIVED

VALUE 0.
VALUE 1.
VALUE 2.
VALUE 3.
VALUE 4.

*

192 SAA CPI Communications Reference

COBOL Pseudonym File

01 SYNC-LEVEL PIC 9(9) COMP-4.
88 CM-NONE VALUE 0.
88 CM-CONFIRM VALUE 1.

*
01 SYM-DEST-NAME PIC X(8).

*
01 TP-NAME PIC X{64).

* 1-64 BYTES
*

01 TP-NAME-LENGTH PIC 9(9) C9MP·-4.

Appendix F. Sample Programs 193

Results

Results of Successful Program Execution

SALESRPT program:

SALESRPT CONVERSATION INTIALIZED
SALESRPT CONVERSATION ALLOCATED
SALESRPT DATA RECORD SENT
SALESRPT RESULTS RECORD RECEIVED
PROGRAM: SALESRPT EXECUTION COMPLETE

CREDRPT Program:

CREDRPT CONVERSATION ACCEPTED
CREDRPT RECORD RECEIVED
0010 XYZ INC. 5000.00

CREDRPT DATA PROCESSED
CREDRPT RESULTS RECORD SENT
CREDRPT DEALLOCATED CONVERSATION
PROGRAM: CREDRPT EXECUTION COMPLETE

194 SAA CPI Communications Reference

724.50

Glossary

B

basic conversation. A conversation in which programs
exchange data records in an SNA-defined format. This
format is a stream of data containing 2-byte length
prefixes that specify the amount of data to fol low before
the next prefix.

c
conversation. A logical connection between two
programs over an LU type 6.2 session that allows them
to communicate with each other while processing a
transaction. See also basic conversation and mapped
conversation.

conversation characteristics. The attributes of a
conversation that determine the functions and
capabilities of programs within the conversation.

conversation partner. One of the two programs
involved in a conversation.

conversation state. The condition of a conversation
that reflects what the past action on that conversation
has been and that determines what the next set of
actions may be.

Common Programming Interface. Provides languages,
commands, and calls that allow the development of
applications that are more easily integrated and moved
across environments supported by Systems
Applications Architecture.

L
local program. The program being discussed within a
particular context. Contrast with remote program.

logical unit. A port providing formatting, state
synchronization, and other high-level services through
which an end user communicates with another end
user over an SNA network.

logical unit type 6.2. The SNA logical unit type that
supports general communication between programs in
a distributed processing environment; the SNA logical
unit type on which CPI Communications is built.

M
mapped conversation. A conversation in which
programs exchange data records with arbitrary data
formats agreed upon by the applications programmers.

p

partner. See conversation partner.

privilege. An identification that a product or
installation defines in order to differentiate SNA service
transaction programs from other programs, such as
application programs.

R
remote program. The program at the other end of a
conversation with respect to the reference program.
Contrast with local program.

s
session. A logical connection between two logical
units that can be activated, tailored to provide various
protocols, and deactivated as requested.

side information. System-defined values that are used
for the initial values of the partner_LU_name,
mode_name, and TP _name characteristics.

state. See conversation state.

state transition. The act of moving from one
conversation state to another.

symbolic destination name. Variable corresponding to
an entry in the side information.

Systems Application Architecture. A set of software
interfaces, conventions, and protocols that provide a
framework for designing and developing applications
with cross-system consistency.

Systems Network Architecture. A description of the
logical structure, formats, protocols, and operational
sequences for transmitting information units through,
and controlling the configuration and operation of,
networks.

Glossary 195

T

transition. See state transition.

196 SAA CPI Communications Reference

Index

A
abnormal ending 12
Accept_ Conversation (CMACCP)

call description 47
example flow using 25

advanced function calls
description 13
examples 29-39
list 14

Advanced Program-to-Program
Communications 147-152

See also LU 6.2
type 6.2 logical unit 8
verbs 149

Allocate (CMALLC)
call description 49
example flow using 25

APPC

B

See Advanced Program"."to-Program
Communications

basic conversation 9, 86
begin conversation

CMALLC (Allocate) 49
example flow 23
program start-up 12
simple example 14

buffering of data
description 29, 85
example flow 24

c
C considerations (VM/SP) 177
calls

advanced function
description 13
examples 29-39
list 14

CPI-Communications 13, 44
description 10, 13
format for VM/SP 153
naming conventions 19
starter-set

description 13
examples 22-26
list 14

changing data flow direction
by receiving program 34
by sending program 26, 30

character
set exceptions 149
sets 126
strings 128

characteristics
See conversation characteristics

CICS/MVS 2
CMACCP (Accept_ Conversation)

call description 47
example flow using 25

CMALLC (Allocate)
call description 49
example flow using 25

CMCFM (Confirm)
call description 52
example flow using 33

CMCFMD (Confirmed)
call description 54

, example flow using 33
CMDEAL (Deallocate)

call description 56
example flow using 25

CMECT (Extract_ Conversation_ Type) 59
CMEMN (Extract_Mode_Name) 60
CMEPLN (Extract_Partner_LU_Name 62
CMESL (Extract_Sync_Level) 64
CMFLUS (Flush)

call description 66
example flow using 33

CMINIT (lnitialize_Conversation)
call description 68
example flow using 25

CMPTR (Prepare_To_Receive)
call description 71
example flow using 31, 35

CMRCV (Receive)
call description 74
example flow using 25

CMRTS (Request_To_Send)
call description 81
example flow using 35

CMS 2
CMS communications directory 154
CMS (VM/SP) documentation 5, 153-180
CMSCT (Set_Conversation_Type) 93
CMSDT (Set_Deallocate_ Type) 95
CMSED (Set_Error_Direction) 98
CMSEND (Send_Data)

call description 83
example flow using 25

CMSERR (Send_Error)
call description 88

Index 197

CMSERR (Send_Error) (continued)
example flow using 35

CMSF {Set_Fill) 100
CMSLD (Set_Log_Data) 102
CMSMN {Set_Mode_Name) 104
CMSPLN (Set_Partner_LU_Name) 106
CMSPTR {Set_Prepare_ To_Receive_ Type 108
CMSRC {Set_Return_Control) 112
CMSRT (Set_Receive_Type) 110
CMSSL {Set_Sync_Level)

call description 116
example flow using 33

CMSST (Set_Send_ Type)
cal I description 114
example flow using 35

CMSTPN (Set_ TP _Name) 118
CMTRTS {Test_Request_To_Send_Received) 120
COBOL considerations (VM/SP) 177
Common Programming Interface

communications
See CPI Communications

elements 3
overview 3

communication
across SNA network 8
with an APPC program 149

Conti rm state 18
Confirm (CMCFM)

call description 52
example flow using 33

Conti rm-Deal locate state 18
Conti rm-Send state 18
confirmation processing

Conti rm cal I 52
Confirmed call 54
example flow 32

Confirmed {CMCFMD)
call description 54
example flow using 33

conversation
accept 47
allocate 49
basic 9, 86
characteristics

See also conversation characteristics
comparison of defaults 16
defaults set by Accept_Conversation 47
defaults set by Initialize Conversation 68
description 14 -

deallocate 56
description 9
examples 14, 22-39
initialize 68
mapped 9, 86
start-up request 12, 14, 23
states 17, 142

198 SAA CPI Communications Reference

conversation (continued)
synchronization and control

Confirm call 52
Confirmed call 54
Flush call 66
Prepare_To_Receive call 71
Request_ To_Send call 81
Send_Error 88
Test_Request_To_Send_Received 120

transition from a state 17
types 9

conversation characteristics
conversation_type

extract 59
possible values 124
set 93

deallocate_type
possible values 124
set 95

default values 14
error_direction

fi II

possible values 124
set 98

possible values 124
set 100

how to examine 17
integer values 123
log_ data

possible values 124
set 102

mode_name
extract 60
possible values 124
set 104

modifying 17
naming conventions 19
overview 14
partner_ LU_ name

extract 62
possible values 124
set 106

prepare_ to _receive
possible values 124
set 108

pseudonyms 19
receive_ type

possible values 124
set 110

return_ control
possible values 124
set 112

send_type
possible values 124
set 114

sync_level
extract 64

conversation characteristics (continued)
sync_level (continued)

possible values 124
set 116

TP _name
possible values 124
set 118

viewing 17
conversation_type characteristic

extract 59
-possible values 124
set 93

CPI
See Common Programming Interface

CPI Communications
See also Common Programming Interface
and LU 6.2 interface 147
calls 13,44
communication with APPC programs 149
in SNA network 8
major elements 6
naming conventions 19
overview 6, 7
program operating environment 10

CSP considerations (VM/SP) 178

D
dangling conversation 12
data

buffering and transmission 29
direction, changing

by receiving program 34
by sending program 26, 30

flow
both directions 26
one direction 23

purging 38, 90
reception and validation of 32

data records
description 9
Receive call 75
Send_Data call 86

Deallocate (CMDEAL)
call description 56
example flow using 25

deallocate_ type characteristic
possible values 124
set 95

E
error reporting 36, 90
error_direction characteristic

and Send-Pending state 38, 148
possible values 124
set 98

examining conversation characteristics 17
See also extract cal Is

extract cal Is
conversation_type 59
mode_name 60
partner_LU_name 62
product implementation table 6
sync_level 64

Extract_Conversation_Security_User_ID
(XCECSU) 160

Extract_Conversation_Type (CMECT) 59
Extract_Mode_Name (CMEMN) 60
Extract_Partner_LU_Name (CMEPLN) 62
Extract_Sync_Level (CMESL) 64

F
fill characteristic

possible values 124
set 100

flow
definition of 21
diagrams 23-39

Flush (CMFLUS)
call description 66
example flow using 33

FMH_DATA 147
format of cal Is 41, 42
FORTRAN considerations (VM/SP) 178

G
GOS variables

error log data
deallocate processing 57
Send_Error processing 91
Set_Log_Data 102

graphic representations for character sets 126
green ink 4

H
hexadecimal codes for character sets 126

ldentify_Resource_Manager (XCIDRM) 162
IMS/VS 2
initialize

conversation 68
state 18

lnitialize_Conversation (CMINIT)
call description 68
example flow using 25

integer values 123
interface definition table 6

Index 199

interface, communications
See CPI Communications

intermediate servers (VM/SP) 157
invoking routines in VM/SP 153

K
key topics 43

L
language considerations (VM/SP) 177
local 9
logical records

description 9
Receive call 75
Send_Data call 86

logical unit
See a/so LU 6.2
illustration 8

log_data characteristic
possible values 124
set 102

LU
See logical unit

LU 6.2
and CPI communications 147
application programming interface 147-152
verbs 149

luname tag 154

M
mapped conversation 9, 86
MAP _NAME 147
modename tag 154
mode_name characteristic

extract 60
length 130
possible values 124
set 104

mode_name SNASVCMG
Allocate call 50
LU services program 149
Set_Mode_Name call 104

modifying conversation characteristics 17
See also set calls

MVS 2

N
naming conventions 19
nick tag 154
node services 12

200 SAA CPI Communications Reference

0
operating environment

for CPI communications programs 10
node services 12
operating system 12
side information 11

Operating System/2 2
Operating System/400 2

p
partner 9
partner LU name characteristic

extract 62
length 130
possible values 124
set 106

Pascal considerations (VM/SP) 179
password tag 154
PIP data 147
PL/I considerations (VM/SP) 179
Prepare_To_Receive (CMPTR)

call description 71
example flow using 31, 35

prepare_to_receive_type characteristic
possible values 124
set 108

product implementation table 6
program

calls 10
compilation 12
examples

See sample programs
partners 9
start-up processing 12
states

See conversation, states
termination processing 12

programming language considerations (VM/SP) 177
pseudonym

example of 20
explanation of 19
values 123

R
Receive state

description 18
how a program enters it 81

Receive (CMRCV)
call description 74
example flow using 25

receive_ type characteristic
possible values 124
set 110

related publications 5

remote 9
remote partner 9
reporting errors 36, 90
Request_ To_Send (CMRTS)

call description 81
example flow using 35

Reset state 18
resource manager programs (VM/SP) 157
return codes 124, 131-135
return_ code characteristic

definitions of values 131-135
possible values 124

return_control characteristic
possible values 124
set 112

REXX considerations (VM/SP) 178

s
SAA

See Systems Application Architecture
sample programs

CREDRPT program 186
introduction 181
pseudonym file for 191
results of 194
SALESRPT program 182

security tag 154
security (VM/SP) 157
Send state 18
Send-Pending state

and error_direction characteristic 148
description 18

Send_Data (CMSEND)
call description 83
example flow using 25

Send_Error (CMSERR)
call description 88
example flow using 35

send_type characteristic
possible values 124
set 114

service transaction programs 149
session 8
set calls

conversation_type 93
deallocate_type 95
error_direction 98
fill 100
log_data 102
mode_name 104
partner_LU_name 106
prepare_to_receive_type 108
product implementation table 6
receive_type 110
return_control 112

set calls (continued)
send_type 114
sync _level 116
TP _name 118

SET COMDIR command 154
Set_Client_Security_User_ID (XCSCUI) 171
Set_Conversation_Security_Password (XCSCSP) 165
Set_Conversation_Security_Type (XCSCST) 167
Set_Conversation_Security_User_ID (XCSCSU) 169
Set_Conversation_Type (CMSCT) 93
Set_Deallocate_Type (CMSDT) 95
Set_Error_Direction (CMSED) 98
Set_Fill (CMSF) 100
Set_Log_Data (CMSLD) 102
Set_Mode_Name (CMSMN) 104
Set_Partner_LU_Name (CMSPLN) 106
Set_Prepare_To_Receive_Type (CMSPTR) 108
Set_Receive_Type (CMSRT) 110
Set_Return_Control (CMSRC) 112
Set_Send_ Type (CMSST)

call description 114
example flow using 35

Set_Sync_Level (CMSSL)
call description 116
example flow using 33

Set_ TP _Name (CMSTPN) 118
side information

in VM/SP 154
overview 11
setting and accessing 12

SNA
See Systems Network Architecture

starter-set cal Is
description 13
examples 22-26
list 14

state table
abbreviations 137
example of how to use 141
for conversations 142-145
list of states 18

states, conversation
description 17
pseudonyms 19

step, definition of 21
strings, character 128
supported SAA environments 2
symbolic destination name 11, 23
Syncpoint 147
sync_level characteristic

extract 64
possible values 124
set 116

Systems Application Architecture
interface definition table 6

Index 201

Systems Application Architecture (continued)
overview 2
product relationship 3
related publications 5
supported environments 2

Systems Network Architecture
network 8
service transaction programs 149

T
Terminate_Resource_Manager (XCTRRM) 173
Test_Request_To_Send_Received (CMTRTS) 120
tpn tag 154
TP _name characteristic

possible values 124
set 118

transition, state 17
transmission of data 29
TSO/E 2
tutorial information

example flows 21-39
how to use this book 3
terms and concepts 7-20

types of conversations 9

u
userid tag 154

v
validation of data reception 32
values

integers 123
pseudonyms 19, 123

variables
lengths 20, 124
pseudonyms 19
types 123, 128

viewing conversation characteristics 17
VM/SP documentation 5, 153-180

w
Wait_on_Event (XCWOE) 174

x
XCECSU

(Extract_Conversation_Security_User_ID) 160
XCIDRM (ldentify_Resource_Manager) 162
XCSCSP (Set_Conversation_Security_Password) 165

XCSCST (Set_Conversation_Security_ Type) 167
XCSCSU {Set_Conversation_Security_User_ID) 169
XCSCUI (Set_Client_Security_User_ID) 171
XCTRRM (Terminate_Resource_Manager) 173

202 SAA CPI Communications Reference

XCWOE (Wait_on_Event) 174

Special Characters
. {period) 130
${dollar sign) 178
- {dash) 177
_{underscore) 19, 177

Systems Application Architecture
Common Programming Interface
Communications Reference
(SC26-4399-1)

Reader's
Comment
Form

Use this form to send in your comments about this book, with the understanding that IBM may use or distribute what­
ever information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be forwarded to the author for review and appropriate action.

Note: Do not use this form to request IBM publlcatlons. If you do, your order will be delayed because publlcatlons
are not stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of
publications, or for assistance In using your IBM system, to your IBM representative or to your IBM branch office.

o Please check here if you wish a reply.

Name Phone (
~~~~~~~~~~~~~~ 

Company Job Title 

Address 

Number of latest TNL applied to this publication: 

Comments: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM represen­
tative will be happy to forward your comments or you may mail them directly to the address in the Edition Notice on 
the back of the title page.) 



SC26-4399-1 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 

Fold and tape 

--------- ----- - -- - ---- -------- -----·-® 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Dept. E96 
P.O. Box 12195 
Research Triangle Park, N.C. 27709-9990 

Please Do Not Staple 

Fold and tape 

I ........... "iii~~:;; 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 



--------- -- --- ---- - ---- - - -----------·-
® 

Printed in U.S.A. 

Systems Application Architecture Library 

An Overview 

Common User Access : Panel Design and User Interaction 

Writing Applications: A Design Guide 

Common Programming Interface: 

Application Generator Reference 

C Reference 

COBOL Reference 

Communications Reference 

Database Reference 

Dialog Reference 

FORTRAN Reference 

Presentation Reference 

Procedures Language Reference 

Query Reference 

SC26-4399-l 

File Number 
S370-40 

GC26-4341 

SC26-4351 

SC26-4362 

SC26-4355 

SC26-4353 

SC26-4354 

SC26-4399 

SC26-4348 

SC26-4356 

SC26-4357 

SC26-4359 

SC26-4358 

SC26-4349 


