
IBM

RISCWatch Debugger
Installation Guide

13H6984

Eighth edition (September 1996)

This edition of IBM RISCWstch Debugger JnslallBJlon Guide applies to IBM RISCWalch Debugger Version 3.3
and to all subsequent ""'8ions of the debugger until otherwise Indicated in new versions or technical newslet
ters.

The foDowlng paragraph - not apply to the United Klngclom or any country where such provisions
ara Inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. Some states do not aHow disclaimer of express or implied warranties In cer
laln transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publlcatlon or the areompanying source code examples, whether
individually or as one or more groups, wll meet your requirements or Iha! the publication or the areompanylng
source code examples are error-tree.

This publication could conlaln technical Inaccuracies or typographical errors. Changes are periodically made to
the lnforma11on herein; these changes will be Incorporated in new editions ol 1he publicaUon. IBM may make
improvements and/or changes in the product(•) and/or program(s) described in this publication at any time.

It is possible lhat lhis publication may contain references to, or information abou~ IBM products (machines and
programs), programming, or services that are not announced in your c0Ullb1< SUch references or lnlormaUon
must not be construed to mean that IBM Intends to announce such IBM products, programming, or services In
your country. Any reference to an IBM licensed program In this publication Is not Intended to state or imply that
you can use only IBM's ricensec:t program. You can use any functionally equivalent program instead.

No part ol lhis publication may be reproduced or dis1rlbuted In any form or by any means, or stored in a data
base or retrieval system, without the written permission of IBM.

Requests for copies of lhis publication and for technical Information about IBM Products should be made to
your IBM Aulhorized Dealer or your IBM Marketing Representative.

Address comments about this publication to:

IBM Corporation
Department OH83A
P.O. Box 12195
Research Triangle Park, NC 2noo

IBM may use or distribute whatever information you supply in any way tt believes appropriate without Incurring
any obligation to you.

©Copyright lntemaUonal Business Machines Corporation 1996. All rights reserved.

Printed in the United States of America.

4321

Notice to U.S. Government Users-Documentation Related to Reslrtcted Rights-Use, duplication, or disclo
sure is subject to reslrlctions set forth in GSA ADP Schedule Contract with IBM Corporation.

RISCWatch Debugger Installation Guide

Patents and Trademarks

IBM may have patents or pending patent applications covering the subject matter in this publication. The fur
nishing of this publication does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, Stamford, CT 06904, United
States of America.

The following terms are trademarks of IBM Corporation:

AIX
AIX/Windows
IBM
Micro Channel
OS Open
PowerPC
PowerPC Architecture
RISC System/6000
RISCTrace
RISCWatch

The following term is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited:

UNIX

Windows is a trademark of Microsoft Corporation.

Other terms which are trademarks are the property of their respective owners.

RISCWatch Debugger Installation Guide

Contents

Contents .. v

Installing the RISCWatch Debugger ... 1
Hardware Installation for JTAG Targets .. 1

RISCWatch Micro Channel Adapter (RS/6000 Only) 1

RISCWatch Parallel Port Adapter.. .. 2

PC Specifics... 3
RS/6000 Specifics..............................,.............................. 3

Sun Specifics 3

RISCWatch Processor Probe .. .,............................ 4

Connecting the RISCWatch Processor Probe to an Existing Ethernet Network........ 4
Establishing an Ethernet Network for the RISCWatch Processor Probe 5

PC Specifics:

RS/6000 Specifics:

Sun Specifics .. .

Changing the TCP/IP Address of the RISCWatch Processor Probe .. .

. ... 7

. 9

.. 10

.. 11

PC Specifics ... ······················· 11
RS/6000 Specifics 12

Sun Specifics 15
Verifying Your Network 16

Hardware Installation For Non-JTAG Targets .. . 16

Ethernet Link 16
PC Specifics.. 17

RS/6000 Specifics................... 17

Sun Specifics 17

Software Installation ······················· 18
PC Specifics 18

RS/6000 Specifics ··················· ·········· 19
Sun Specifics 22

SunOS Device Driver Installation 22

Configuring the SunOS Kernel for RISCWatch 22

Software Installation Instructions for SunOS and Solaris 23

Instructions for SunOS 24

Instructions for Solaris 24

Contents v

Instructions for both SunOS and Solaris 24

Notes for Sun OS•.. 26

Index ... X-1

vi RISCWatch Debugger Installation Guide

Installing the RISCWatch Debugger
Installation of RISCWatch requires both hardware and software to be installed on
the host platform. System requirements and installation procedures vary,
depending on the host platform and whether or not the target application supports
the JTAG port. The following sections will guide you through the steps necessary
to install these items.

Additionally, for non-JTAG targets, you MUST also complete the target platform's
installation instructions for debugging before continuing. They can be found in the
PowerPC 400Series evaluation board kit user documentation (ROM Monttor
target) or the OS Open user documentation (OS Open target).

These instructions describe specific host configuration steps and other setup
(editing /etc/services files) required by RISCWatch for hosVtarget
communications. Refer to the Configuration chapter of the PowerPC 403
Evaluation Board Kit User's Manual or the Installation chapter of the OS Open
User's Guide. Both documents are listed in "Related IBM Publications" on page
xxvi of the RISCWatch Debugger User's Guide.

BEFORE BEGINNING THE HARDWARE INSTALLATION, YOU MUST REFER
TO THE ENCLOSED IBM SAFETY BOOKLET (SD21-0030-02).

Hardware Installation for JTAG Targets

A JTAG target is defined as a board using a PowerPC processor, for example, a
PowerPC 400Series evaluation board, connected via the JTAG port of the
controller to the host platform running the RISCWatch Debugger.

RISCWatch Micro Channel Adapter (RS/6000 Only)

The following hardware is required before you can install the RISCWatch Micro
Channel™ adapter on the RISC System/6000 platform:

RISC System/6000 PowerStation with a graphics display

One RISCWatch Micro Channel adapter card for RISC System/6000

One RISCWatch Processor Interface Assembly (buffer card) for RISC
System/6000

One 34-pin connector cable

What follows is a step by step procedure for installing the RISCWatch Micro
Channel adapter card for RISC System/6000. Be sure to follow the exact
sequence of steps and follow the directions for each step exactly.

Installing the RISCWatch Debugger

1. Logan as root or use the su command to assume root user privileges on the
RISC System/6000 that is to contain the adapter card.

2. Issue the shutdown command. This will terminate all running processes and
force the logoff of all logged-on users.

3. When the '. .. Halt completed .. ." message appears, turn the power swttch to
the off (0) posttion.

4. Insert the machine's key and turn it to the Service position.

5. Perform the actions necessary to remove the cover.

6. Find an empty Micro Channel slot and remove tts protective silver slot tab.

7. Install the RISCWatch adapter card in this slot and tighten the tab fastener.

8. Plug one end of the 34-pin cable into the RISCWatch adapter card.

Note: The connector is keyed so that tt can only be plugged in one way. Do
not force the cable or the adapter card pins may be damaged.

9. Plug the other end of the 34-pin cable into the RISCWatch buffer card, again
noting the orientation of the keyed connector.

10. Plug the 16-pin cable of the RISCWatch buffer card into the JTAG port con
nector of the JTAG target.

11. Replace the RISC System/6000 cover.

12. Turn the machine's key to the Normal position and turn the power switch to
the on (1) posttion.

13. Watt for the login prompt to appear alter the RISC System/6000 has finished
its boot up procedure.

RISCWatch Parallel Port Adapter

2

The following hardware is required before you can install the RISCWatch parallel
port adapter on the host platform:

One RISCWatch parallel port adapter

One RISCWatch parallel port adapter cable

• One RISCWatch Parallel Port Adapter power supply for U.S.A and Canada
use only.

• One RISCWatch Parallel Port Adapter power supply jack for countries
other than the U.S.A or Canada.
YOU MUST PROVIDE A 240VA (OR LESS) POWER SUPPLY THAT IS
AGENCY-APPROVED IN THE COUNTRY YOU ARE IN.

Note: The power requirements for the adapter are 5V, 300mA, regulated, 5V
on the inner conductor, GND on the outer conductor.

RISCWatch Debugger Installation Gulde

PC Specifics

1. Plug one end of the adepter cable Into the adapter and plug the other end into
the parallel port of the host platform.

2. Plug the 16-pin cable of the RISCwatch parallel port adapter into the JTAG
port connector of the JTAG target.

3. If you are in the U.S.A. or Canada, plug the connector of the enclosed power
supply into the parallel port adapter box and plug the power supply into the
wall outlet.

4. If you are not in the U.S.A or Canada, attach the enclosed power supply jack
to your own agency-approved, 240VA (or less), 5V, 300ma, regulated power
supply. The inner conductor of the jack has to be connected to 5V and the
outer conductor has to be connected to ground. Plug the jack into the parallel
port adapter box and plug the power supply into the wall outlet.

The following hardware is required before you can install RISCWatch on a PC:

IBM or compatible PC

Minimum required: x486 DX2 50166 MHz with 8 MB of RAM

VGA/SVGA Display

Minimum required: VGA 640x480
Recommended: SVGA 1024x768
Also supports: SVGA 800x600, SVGA 1280x1024

RISCWatch defaults to the parallel port on the PC motherboard. The port is
usually mapped at address 0x03BC. If the parallel port to which the hardware is
attached is not mapped at this address, refer to "PC Specifics" on page 1 B for
information about changing the default setting.

RS/6000 Specifics
The following hardware is required before you can install RISCWatch for the RISC
System/6000 :

RISC System/6000 PowerStation with a graphics display

RISCWatch only supports the parallel port on the motherboard of the RISC
System/6000. It does not support parallel port Micro Channel adapter cards.

Sun Specifics
The following hardware is required before you can install RISCWatch for Sun:

Sun SPARCstation 5, 10, or 20

Installing the RISCWatch Debugger 3

RISCWatch Processor Probe

The RISCWatch Processor Probe is an Bhemet-to-JTAG converter, converting
commands sent from RISCWatch to the appropriate series of processor accesses
through the probe's JTAG port. The probe has a dedicated JTAG controller chip to
drive the JTAG signals In hardware as opposed to a slower, emulated approach In
software. For additional Information, see • JTAG Ethernet Targets and the
RISCWatch Processor Probe" on page 3-1 O of the RISCWatch Debugger User's
Guide.

The following hardware is required before you can install the RISCWatch
processor probe:

One RISCWatch processor probe

One RISCWatch processor probe power supply and power cord

One RISCWatch processor probe transfer adapter and JTAG cable. The
transfer adapter is the small circuit board with two connectors.

1. Connect the 20-pin connector on the transfer adapter to the front of the RISC
Watch processor probe. If the transfer adapter is supplied with a tong 20-pin
ribbon cable, attach the 20-pin connector on the long ribbon cable to the front
of the RISCWatch processor probe instead.

2. Connect the 16-pin cable attached to the transfer adapter to the JTAG port
connector of the JTAG target. This cable may be long or short based on the
transfer adapter type. The connector is keyed. Failure to align the key prop
erly may damage the JTAG target.

3. Connect the power cord to the power supply and to a socket outlet. USE
ONLY THE SUPPLIED POWER CORD.

4. Connect the 5v power cord to the back of the RISCWatch processor probe.
The power tight on the front of the RISCWatch processor probe will be illumi
nated. The RISCWatch processor probe does not have an on/off switch.
Note: The combination of a RISCWatch processor probe connected to a
JTAG target is referred to as a JTAG Ethernet target.

Connecting the RISCWatch Processor Probe to an Existing Ethernet
Network

4

1. Obtain a TCP/IP address and gateway address for the RISCWatch processor
probe from your system administrator.

2. Follow the instructions under "Changing the TCP/IP Address of the RISC
Watch Processor Probe" on page 11 and use the "Ian• command to set the
TCP/IP address and gateway address on the processor probe.

RISCWatch Debugger lnstallaHon Gulde

3. Request a BNC type connection to your Ian. Connect the BNC connection on
your Ian (IEEE 802.3 Type 10Base2 ThinLAN) to the round BNC receptacle
marked LAN on the RISCWatch processor probe.

Note: This installation guide assumes that a 10Base2 type connection will be
made to the RISCWatch processor probe. However, if a 10BaseT connection is
required, connect your 10BaseT Ian drop to the rectangular 10BaseT receptacle
marked LAN on the RISCWatch processor probe. Set switch number 5 on the
RISCWatch processor probe to the open position and cycle power on the
RISCWatch processor probe.
The default settings for the RISCWatch processor probe configuration switches
are switch 1 open and the other seven closed. Configuration switch functions are
indicated on the underside of the processor probe frame.

Establishing an Ethernet Network for the RISCWatch Processor Probe
Establishing an Ethernet connection between a host and the RISCWatch
processor probe can be done in several ways, depending on the type of
connection supported by the Ethernet adapter in your host. A 10Base2
connection between a host machine and the RISCWatch processor probe
requires at a minimum two pairs of BNC T-connectors and 50-ohm terminators,
plus a short length of 10Base2 ThinLAN cable, as shown in Figure 1 beiow:

10Base2

RISCWatch
processor

probe D receptacle
l,J

ter~~~~ m-8 - 1 .. oa _.2_ca..,b,.le""""''""' - 8-m
BNC
T-connector

Figure 1. 10Base2 Ethernet Connection

For 10BaseT Ethernet, the connection can be made in two ways. if the connection
is to be used exclusively between the host and the EVB, a crossover cable can be
used to connect the two nodes. Otherwise, a 10BaseT hub must be used to
connect the nodes together.

Installing the RISCWatch Debugger 5

Figure 2 shows the connections and signal assignments in a crossover cable:

RJ-45 Connector

Twisted Signal
Pair Name

TD+

TD-

2 RD+

2

3,4

RD-

(Not
used)

10BaseT Cable

Pin Pin

2 2

3 3

6 6

4, 5, 7, 8 4, 5, 7, 8

Figure 2. Wiring In a 1 OBaseT Crossover Cable

Figure 1 shows a point-to-point Ethernet connection using a 10BaseT crossover cable:

6

c:J RISCWatch
processor

10BaseT probe....llil.
1

receptacle
1

RJ-45~ 10BaseT~cable 9
connector~ ~

Figure 3. 1 OBaseT Crossover Connection

RISCWatch Debugger lnstallalion Guide

RJ-45

Signal
Name

TD+

TD-

RD+

RD-

(Not
used)

Figure 1 shows a 10BaseT Ethernet connection using a hub:

PC Specifics:

[] 10BaseT
receptacle

RISC Watch
processor

probe__l!l

10BaseT
straight-through

cable

Figure 4. 10BaseT Hub Connection

Establishing an Ethernet network requires addrtional hardware. Because most PC
models do not come with an Ethernet connection, an ISA bus Ethernet adapter
with the required BNC 10Base2 or RJ4510BaseT connection has been provided.
To install the adapter hardware, refer to the installation instructions found wrth the
adapter.

To correctly install the supplied ISA bus Ethernet adapter under IBM's TCP/IP for
DOS, the following steps must be executed before running the TCP/IP for DOS's
"custom" program. These instructions assume TCP/IP for DOS has already been
installed.

1. Place the ISA Ethernet Adapter Feature Diskette into the A: drive.

2. Copy the device driver, KTC2000.DOS, to the appropriate TCP/IP directory:

copy A:INDIS\KTC2000.DOS C:\TCPDOS\BIN\KTC2000.DOS

If this fails, the driver file may be located in a different directory. Try the
following command:

copy A:\NDIS\DOS\KTC2000.DOS C:\TCPDOS\BIN\KTC2000.DOS

If this command fails, locate the KTC2000.DOS file on the diskette and copy it
to the \TCPDOS\BIN directory.

3. Create the file C:\TCPDOS\ETC\PROTOCOL.INI, containing the lines:
[PROTMAN]
DriverName~PROTMAN$

Installing the RISCWatch Debugger 7 8

[KTC2000]
; Kingston EtheRx LC Adapter
; KTC2000.DOS
DriverNam~KTC2000$

4. Edit the C:\CONFIG.SYS file and add the following line after
PROTMAN.DOS:

DEVICE ~ C:\TCPDOS\BIN\KTC2000.DOS

The RISCWatch processor probe supports connection via Standard Ethernet,
either 10Base2 or 10BaseT. See "Establishing an Ethernet Network for the
RISCWatch Processor Probe" on page 5 lor further details.

Because TCP/IP packages for PCs vary, users should consutt their TCP/IP
documentation for information regarding the management and configuration of an
Ethernet network interface.

Establishment of an Ethernet interface will require a host TCP/IP address. To
maintain consistency with this document, a TCP/IP address of 7.1.1.4 is
suggested.

Once the required hardware has been installed on the host PC, IBM TCP/IP for
DOS users can establish an Ethernet interface by executing the following steps:

1. Type "custom" from the DOS prompt

2. Select Ok or press Enter

3. Go to Configure at the top of the menu and press Enter

4. Select NDIS Interfaces

5. Select NDO (or any available NDx} Interface

6. Set the IP address field to the IP address of the PC host: 7.1.1.4 is suggested
to maintain consistency with this document

7. Set the Subnet mask to 255.255.240.0

8. Select the appropriate type of Ethernet adapter installed for the Bcund
adapter field (select the down arrow for a list of adapter types}. If using the
supplied ISA bus Ethernet adapter, select KTC2000.

9. Select Enable under Options

10. Select Advanced Functions from the bottom of the screen and ensure only
arp is selected under Options

11. Select OK from the NDIS Interfaces menu

12. Select Exit - Save Changes from the Configure menu

The interface is activated by starting TCP/IP via the tcpstart command from the
DOS prompt. If problems occur, verify the custom settings for the Ethernet
interface, re-boot the system, and re-try the tcpstart command.

RISCWatch Debugger Installation Guide

RS/6000 Specifics:

Establishing an Ethernet network requires additional hardware.

The RISCWatch processor probe supports connection via Standard Ethernet,
either 10Base2or10BaseT. See "Establishing an Ethernet Network for the
RISCWatch Processor Probe" on page 5 for further details.

Other hardware required will depend on the type of Ethernet adapter you have on
your RS/6000.

AIX Communications Concepts and Procedures (GC23-2203, two volumes) has
addltional information about the management and configuration of a TCP/IP
network, including specifics as to how to configure an Ethernet network interface.

Some of the basic steps are outlined below.

1. The host must be equipped to participate in a 10Base2 or 1 OBaseT Ethernet
network.

This may involve the installation of any or all of the following hardware: an
Ethernet adapter card for the specific RS/6000 model, a 10Base2 network
transceiver, a BNC "T" type connector, and a terminating resistor. Consult the
documentation included with the hardware for installation instructions. Most
RS/6000 models come with Ethernet adapters already installed. They are
labeled ET in the back of the RS/6000 system unit.

2. Assuming the host system is equipped with the appropriate Ethernet adapter,
the Ethernet interface must be configured properly. To do this:

a. Log in as root or superuser (su)

b. Enter smit

c. Select Communication Applications and Services

ct. SelectTCP/IP

e. Select Further Configuration

I. Select Network Interfaces

g. Select Network Interface Selection

h. Select Add a Network Interface

i. Select Add a Standard Ethernet Network Interface.
Choose "Standard Ethernet' as opposed to "IEEE 802.3 Ethernet'.

Note: If you receive an error message stating that there is "No available
adapter'. go directly to step 3. Skip the remaining items in step 2.

j. Select enO

k. Set the INTERNET ADDRESS field to the host TCP/IP address. An
acceptable value would be 7.1.1.4

Installing the RISCWatch Debugger 9

Sun Specifics

I. Set the Network MASK field to 255.255.240.0

m. Insure that ACTIVATE is yes

n. Insure that the Use Address Resolution Protocol is yes

o. Leave the BROADCAST ADDRESS blank

p. Select Do or press Enter

Upon successful completion, a properly configured Ethernet interface has been
added. The Ethernet set-up is complete and step 3 need not be performed.

3. Perform this step only ff you received the "No available adapter" error mes
sage when trying to Add a Standard Ethernet Network Interface in step 2.

This message indicates that either the Ethernet adapter is missing (or
possibly misplugged) or the Ethernet Network Interface already exists. To
determine whether the interface already exists:

a. Return to the Network Interface Selection screen in smit

b. Select Change/Show Characteristics of a Network Interface
II enO is not listed, insure that the RS/6000 host does have an Ethernet
adapter and, if possible, verify that It is plugged correctly. If the adapter
was misplugged, repeat step 2 to add the Ethernet Network Interface.
If enO is listed, then the Ethernet Network Interface already exists. Select
enO and note the TCP/IP address listed for the INTERNET ADDRESS
field. This value is the host's Ethernet TCP/IP address and will be needed
later. II no TCP/IP address is listed, choose one. The TCP/IP address
7.1.1.4 is recommended to maintain consistency with the menus and
examples in this document. The Ethernet set-up is complete.

Establishing an Ethernet network requires addltional hardware.

The RISCWatch processor probe supports connection via Standard Ethernet,
either 10Base2 or 10BaseT. See "Establishing an Ethernet Network for the
RISCWatch Processor Probe" on page 5 for further details.

Other hardware that may be required is an AUi (or thick Ethernet) adapter cable
(or an AUi/Audio Adapter cable depending on your SPARCstation model and
options - both are available from Sun) and an Ethernet/IEEE 802.3 10Base2
network transceiver. Consult the documentation included with the hardware for
installation instructions.

The lfconfig command can be used to establish the network. Users should
consult their network administrator and Sun documentation for additional
information. A host TCP/IP address ol 7.1.1.4 is suggested to maintain
consistency with this document.

10 RISCWatch Debugger Installation Guide

Changing the TCP/IP Address of the RISCWatch Processor Probe

PC Specifics

The RISCWatch processor probe ships wtth a TCP/IP address of 7.1.1.100and a
gateway address of 0.0.0.0. To change these addresses to be valid addresses on
your network, a serial port connection must be made from the host to the
processor probe.

Once the addresses are made valid for your network, the "telnet" utiltty on your
host and the "Ian" command on the RISCWatch processor probe can be used to
change the addresses from then on. The "tan" command is described in ttems
10-14 under the subsection PC Specifics, items 13-17 under the subsection
RS/6000 Specifics and ttems 5-9 under the subsection Sun Specifics.

Please follow the instructions that apply to the host that you are using when
changing the TCP/IP and gateway addresses for the first time.

Most PCs include two serial ports to support communications via asynchronous
data transfer. These ports are sometimes referred to as communication or COM
ports. These ports are usually accessed from the back of the system unit.

This document refers to them as serial ports S1 and S2. Consult your PC
literature to determine how many serial ports are available on your unit and where
they are located.

1. Connect the 9-pin female connector of the supplied serial cable to 81 or 82
on the PC.

2. Connect the 9-pin male connector of the supplied cable to the connector
labeled RS232 on the RISCWatch processor probe.

3. Start Microsoft Windows if tt is not active.

4. Select Accessories from the Windows Program Manager.

5. Double-click on the Terminal icon to start the terminal emulator program.

6. Select Settings->Communications.

7. Select COM1 if using S1 or COM2 if using S2.

8. Select Baud Rate 9600, Data Bits 8, Stop Bits 1, Parity None and Flow Con
trol Xon/Xoff

9. Select OK

10. Press enter. The RISC Watch processor probe will respond with a status
prompt consisting of a letter followed by the">" sign.

11. Enter "Ian" to display the current Ian settings.

12. To change the TCP/IP address, enter "Ian -i 'dotted tcplip address'". For
example, enter "Ian -i 7.1.1.101".

Installing the RISCWatch Debugger 11

13. To change the gateway, enter "Ian -g 'dotted gateway address~. For example,
enter "Ian -g 0.0.0.0".

14. To change the Processor Probe's port number, enter "tan -p 'port number"'.
For example, enter "Ian -p 6470".

15. Select File->Extt to exit the terminal session.

16. If asked to save changes to terminal settings, select No.

17. Cycle power on the RISCWatch processor probe for the changes to take
effect.

RS/6000 Specifics

12

The RS/6000 includles two serial ports to support communications via
asynchronous data transfer. These ports are labeled S1 and S2 on the back of the
RS/6000's system unit.

1. Connect the supplied 25-pin-to-9-pin adapter to the 9-pin female connector of
the supplied serial cable.

2. Connect the 25-pin connector to port S1 or S2 on the RS/6000.

3. Connect the 9-pin male connector of the supplied serial cable to the connec-
tor labeled RS232 on the RISCWatch processor probe.

4. Log in as root or superuser {su)

Proper set-up involves the configuration of tty devices for either S1 or S2. The
following steps should be taken to insure proper S1 or S2 configuration:

5. Determine whether the ttyO or tty1 devices already exist. ttyO must exist if
using port S1 and tty1 must exist if using S2.

a. Enter smlt

b. Select Devices

c. Select TTY

d. Select List All Defined TTYs

e. Perform step 6 if ttyO or tty1 is not listed. To properly configure a defined tty
device, perform step 7 for systems running AIX 3, or perform step 8 for
systems running AIX 4 or higher.

6. To add a tty device:

a. Select Done or PF3 to exit the List All Defined TTY s screen

b. Return to the TTY screen

c. Select Add a TTY

d. Select tty RS232 Asynchronous Terminal

e. Select saO • Serial Port 1 when adding ttyO
sa 1 - Serial Port 2 when adding tty1

RISCWatch Debugger Installation Guide

f. Select s 1 for the port number when adding ttyO
s2 for the port number when adding tty1

g. Insure that the BAUD rate is 9600

h. Insure that the PARITY is none

i. Insure that the BITS per character is 8

j. Insure that the Number of STOP BITS is 1

k. Insure that Enable LOGIN is disabled

I. The default settings for all the other fields are satisfactory.

m. Select Do or press Enter

Upon successful completion, a properly configured tty device is created and thus,
steps 7 and 8 can be skipped for the particular tty (ttyO or tty1) added. Go directly
tostep9.

7. To properly configure a previously defined tty device:
• For systems running AIX 3 :

a. Select Done or PF3 to exit the List All Defined TTYs screen

b. Return to the TTY screen

c. Select Change I Show Characteristics of a TTY

d. Select tty# (where # = 0 or 1)

e. Select Change I Show TTY Program

I. Insure that the following fields are set to the indicated values:

TTY tty# (#=O for ttyO, 1 for tty1)

TTY type tty

TTY interface RS232

Description

Status

Location

Parent Adapter

Port Number

Terminal Type

Enable LOGIN

Asynchronous Terminal

Available

00-00-s•-00 (*=1forttyO,2 fortty1)

sa# (#=OforttyO, 1 fortty1)

s• ('=1 for ttyO, 2 for tty1)

dumb

disable

The other fields can remain at their default values.

g. Select Do or press Enter

h. Upon successful completion, select Done or press PF3 to return to the
TTY screen

i. Select Change I Show Characteristics of a TTY

Installing the RISCWatch Debugger 13 14

j. Select tty# (where # = O or 1)

k. Select Change/Show HARDWARE TTY Characteristics

I. Insure that the BAUD rate is 9600

m. Insure that the PARITY Is none

n. Insure that the BITS per character is 8

o. Insure that the Number of STOP BITS is 1

p. Select Do or press Enter

Upon successful completion, the tty device is properly configured. Go directly to
step9.

8. To properly configure a previously defined tty device:
• For systems running AIX 4 or later :

a. Select Done or PF3 to exit the List All Defined TTYs screen

b. Return to the TTY screen

c. Select Change I Show Characteristics of a TTY

d. Select tty# (where # = O or 1)

e. Insure that the following fields are set to the indicated values:

TTY tty#(#=OlorttyO, 1 lortty1)

TTY type tty

TTY interlace

Description

Status

Location

Parent Adapter

Port Number

Terminal Type

Enable LOGIN

RS232
Asynchronous Terminal

Available

00-00-s•-00 ('=1forttyO,2 fortty1)

se# (#=OforttyO, 1 lortty1)

s• ('=1 for ttyO, 2 for tty1)

dumb

disable

I. Insure that the BAUD rate is 9600 for ttyO

g. Insure that the PARITY is none

h. Insure that the BITS per character is 8

Insure that the Number of STOP BITS is 1

The other fields can remain at their default values.

Select Do or press Enter

Upon successful completion, the tty device is properly configured.

9. Ecfrt the file /etc/uucp/Devices and add one of the following lines:

RISCWatch Debugger Installation Gulde

Sun Specifics

"Direct ttyO - 9600 direct• rt using S1
"Direct tty1 - 9600 direct• if using S2

10. File the changes.

11 . Exit from root.

12. From the AIX command line, enter:
"/usr/bin/cu -m -I ttyO" if using S1
"/usr/bin/cu -m -I tty1" if using S2

13. Press Enter one more time. The RISCWatch processor probe will respond
wijh a status prompt consisting of a letter followed by the ">" sign.

14. Enter 'Ian• to display the current Ian settings.

15. To change the TCP/IP address, enter "Ian -i 'dotted tcp/ip address'". For
example, enter "Ian -i 7.1.1.101".

16. To change the gateway, enter "Ian -g 'dotted gateway address·. For example,
enter "Ian -g 0.0.0.0".

17. To change the Processor Probe's port number, enter "Ian -p 'port number'".
For example, enter "Ian -p 64 70".

18. Enter '-.•to return to the host

19. Press Enter to quij the session.

20. Cycle power on the RISCWatch processor probe for the changes to take
effect.

The Sun SPARCstation includes two serial ports to support communications via
asynchronous data transfer. These ports are labeled Serial A and Serial B on the
back of the Sun's system unit. Some SPARCstation models multiplex these two
ports into one physical port labeled A/B. Use A ii it is available because use of the
B port requires a special demultiplexing cable from Sun.

This section refers to these ports as S 1 and S2, respectively.

1. Connect the supplied 25-pin-to-9-pin adapter to the 9-pin female connector of
the supplied serial cable.

2. Connect the 25-pin connector to port S 1 or S2 on the Sun.

3. Connect the 9-pin male connector of the supplied serial cable to the connec
tor labeled RS232 on the RISCWatch processor probe.

4. From the command line, enter:

"/usr/binltip -9600 /dev/ttya" if using S1

'/usr/binltip -9600 /dev/ttyb" if using S2

Installing the RISCWatch Debugger 15

5. Press Enter one more time. The RISCWatch processor probe will respond
wijh a status prompt consisting of a letter followed by the ">" sign.

6. Enter "Ian' to display the current Ian settings.

7. To change the TCP/IP address, enter "Ian -i 'dotted tcp/ip address". For
example, enter "Ian -i 7.1.1.101".

8. To change the gateway, enter "Ian -g 'dotted gateway address". For example,
enter "Ian -g 0.0.0.0".

9. To change the Processor Probe's port number, enter "Ian -p 'port number".
For example, enter "Ian -p 6470".

10. Enter"-." to quij the session.

11. Cycle power on the RISCWatch proL'0ssor probe for the changes to take
effect.

Verifying Your Network
From your host, enter "ping 'dotted tcp/ip address". For example, enter "ping
7.1.1.101".

Hardware Installation For Non-JTAG Targets

A non-JTAG target is defined as a board using a PowerPC processor, for example,
a PowerPC 400Series evaluation board, connected via an Ethernet link to the host
platform running the RISCWetch Debugger. A non-JTAG target must be running
OS Open or the IBM ROM Monitor for PowerPC debug software to communicate
with RISCWatch.

Ethernet Link

16

The following hardware is required before you can install the RISCWatch Ethernet
link to the target:

If the host platform is already on an Ethernet network, request a new Ethernet
drop and TCP/IP address for the target from your system administrator. If the host
platform is not on an Ethernet network, the following is recommended to establish
a 10Base2 Ethernet link:

Two BNC T-section (male to female-female)

Two BNC male 50 ohm terminating resistors

One BNC coaxial cable

One female LAN connector on the host platform

One female LAN connector on the target

RISCWatch Debugger Installation Guide

PC Specifics

1. Attach a BNC terminator to each BNC T-section.

2. Connect the two BNC T-sections with the BNC coaxial cable.

3. Attach one BNC T-section to the host platform BNC LAN connector and the
other to the target BNC LAN connector.

The following hardware is required before you can install RISCWatch on a PC:

IBM or compatible PC

Minimum required: x486 DX2 50166 MHz with 8 MB of RAM

VGNSVGA Display

Minimum required: VGA 640x480
Recommended: SVGA 1024x768
Also supports: SVGA 800x600, SVGA 1280x1024
Ethernet adapter
Ethernet/IEEE 802.3 transceiver unit (MAU) if a BNC connector is not
available on the Ethernet adapter

RS/6000 Specifics

The following hardware is required before you can install RISC Watch for the RISC
System/6000 :

Sun Specifics

RISC System/6000 PowerStation with a graphics display

Ethernet adapter, if not already available

Ethernet/IEEE 802.3 transceiver unit (MAU) if a BNC connector is not
available

The following hardware is required before you can install RISCWatch for Sun:

Sun SPARCstation 5, 10, or 20

Attachment Untt Interface Adapter (AUi) Cable, or Attachment Unit Interlace
(AUi)/ Audio Adapter Cable, if not already available

Ethernet/IEEE 802.3 transceiver unit (MAU) if a BNC connector is not
available

Installing the RISCWatch Debugger 17

Software Installation

PC Specifics

18

The following items are required before you can install RISCWatch software on a
PC:

Microsoft Windows 3. 1

RISCWatch Installation Diskette(s)

One 3.5" diskette drive

Three megabytes of hard disk space

For JTAG Ethernet and non-JTAG targets, a TCP/IP for Windows package
compliant with the Microsoft Wmdows Socket API definition

To install RISCWatch, perform the following :

1. Place the RISCWatch Installation diskette in the proper drive

2. Start Microsoft Windows if it is not active

3. Select Run ... from the File pull-down of Program Manager

4. Type •a:instalF(or "b:install" ff applicable) then press Enter

5. When the Welcome window appears, click on Continue

6. When the Custom Installation window appears, use the Set Location button if
you wish to change the directory where the program files will be installed
(C:\RW)

7. Click on Install

8. Follow any instructions that may prompt you to insert additional installation
diskettes.

Note: You will be prompted to insert a "Processor Probe Driver" diskette. For
JTAG parallel port targets, this diskette is not necessary, so simply "Cancer
this prompt.

9. For JTAG Ethernet and non-JTAG targets, the following addftional steps are
required to establish communications between the host and target. Named
communications ports must be established for TCP/IP socket communica
tions. Most often, this involves an update to the services file.

a. Most TCP/IP packages place the services file under one of the package's
subdirectories. Consult your TCP/IP documentation or contact your system
administrator if this file cannot be found. The following lines must be added
to the file:

RISCWatch Debugger Installation Guide

osopen-<lbg

osopen-<lbg
jtag_eth

20044/tcp # For ROM Monitor targets
20044/udp # For OS Open targets

6470/tcp # For JTAG Ethernet targets
Note: use underscore, not hyphen

b. For the update to take effect, TCP/IP may need to be restarted. This may
require a reboot of the system andlor a restart of the TCP/IP package.

Once the installation Is completed, a RISCWatch group will be created along with
some program Items. The RISCWatch "README" file will then be displayed.
Please view the entire file for the latest changes to the program and Its operation.

If you are using the RISCWatch parallel port adapter, the default RISCWatch
program Item assumes that the parallel port to which the hardware is attached is
mapped at address 0x03BC. If the parallel port is mapped at address 0x0378, use
Windows Program Manager to modify the properties of the RISCWatch program
Item by adding the switch '-par2' on the command line. If the parallel port is
mapped at address 0x0278, use '-par3' instead.

If you are using the RISCWatch processor probe, you must modify the properties
of the RISCWatch program Item to use the •-proc" switch to select the processor.
The ·-proc• switch is only needed when you are using the RISCWatch processor
probe for the first time or when you want to switch from one processor to another.
For the current list of valid processor names, see "Invoking the Debugger" on
page 3-7 In the RISCWatch Debugger User's Guide.

Modify the file rwppc.env to make the appropriate changes to any of the
RISCWatch environment variables. Select the proper target lype, as described in
"Environment Resources· on page 3-5 in the RISCWatch Debugger User's Guide.
Users that have a working directory other than the install directory have their own
copy of the rwppc.env file. Such users should backup their copy, make a fresh
one from the install directory, and then merge their changes from the old one to
the new one.

Note that the RISCWatch environment variable TARGET_ TYPE, when set to
"jtag", informs RISCWatch that you are using the RISCWatch parallel port
adapter. When TARGET_ TYPE is set to itag_eth", It informs RISCWatch that you
are using the RISCWatch processor probe. For the current list of TARGET_ TYPE
settings, refer to "Environment Resources• on page 3-5 in the R/SCWatch
Debugger User's Guide.

This completes the software installation for RISCWatch.

RS/6000 Specifics

The following Items are required before you can install RISCWatch software on a
RISC System/6000:

AIX Version 3.2.5 or later

Installing the RISCWatch Debugger 19 20

AIX/Windows with X11 R5 and Mottt 1.2

RISCWatch Installation Diskstte(s)

One 3.5" diskstte drive

Three megabytes of hard disk space

Note: During program installation, an additional three megabytes of hard disk
space are needed temporarily to hold both the RISCWatch program files and
the installation file.

What follows is a step by step procedure for installing the RISCWatch software.
Be sure to follow the exact sequence of steps and follow the directions for each
step exactly.

1. Logan as root to the RISC System/6000 or use the su command to gain root
user privileges.

2. Choose an already existing directory or create a new directory. For example:

mkdir /usr/rwppc

which will contain the RISCWatch program and Its associated files.

3. Issue the cd command to make It the present working directory. For example:

cd /usr/rwppc

4. Insert the RISCWatch Installation Diskstte into the diskstte drive

5. Issue the following command to extract the files from the RISC System/6000
RISCWatch Installation Diskette(s) and place them in the chosen directory:

tar -xvi /dev/rfdO

6. For this next step, you will need to run the installation program. The installa
tion program is highly automated and will automatically update any RISC
Watch drivers that are already on your system. The installation program will
detect currently Installed MCA cards, MCA drivers and parallel port drivers
and update them accordingly. The one exception that the installation program
cannot detect is when the parallel port is to be configured for use by RISC
Watch. Since the parallel port is generally used by a printer, you must instruct
the installation program to use it for RISCWatch. Once it is done the first time,
a driver will then exist for the installation program to detect in future installa
tions. So tt you are installing a parallel port version of RISCWatch for the first
time you must run the installation program as 'rw_inst -p'; otherwise run It as
'rw_inst'.

7. The install program will prompt you for a driver diskette. Insert the Processor
Probe Driver diskstte for JTAG Ethernet targets, or the Device Driver diskette
for parallel port or MCA JTAG targets. No diskette is required for OS Open or
ROM Monitor targets.

RISCWatch Debugger Installation Guide

8. Modify the file rwppc.env to make the appropriate changes to any of the
RISCWatch environment variables. Select the proper target type, as
described in "Environment Resources" in the RISCWatch Debugger User's
Guide. Users that have a working directory other than the install directory
have their own copy of the rwppc.env file. Such users should backup their
copy, make a fresh one from the install directory, and then merge their
changes from the old one to the new one.

Note that the RISCWatch environment variable TARGET_ TYPE, when set to
·~ag", informs RISCWatch that you are using the RISCWatch Micro Channel
or parallel port adapter. When TARGET_ TYPE is set to "jtag_eth", ft informs
RISCWatch that you are using the RISCWatch processor probe. For the
current list of TARGET_ TYPE settings, refer to "Environment Resources" on
page 3-5 in the RISCWatch Debugger User's Guide.

9. Add the following line to every user's .profile that will be running RISCWatch:

export UIDPATH=./%U:/usr/rwppc/%U (for Korn shell)
setenv UIDPATH .i°/oU:/usr/rwppc/°/oU (for C shell)

You must specify the %U at the end of each path in the UIDPATH line.

Be sure to change the directory in the above lines if you did not install
RISCWatch in the /usr/rwppc directory. If you wish to use RISCWatch without
logging off and logging on your machine again, type in the above line at the
AIX prompt to set this environment variable immediately.

10. For proper device configuration reporting, ensure that one of the following
export lines exists in each user's .profile :

For AIX3.2:

export LANG=En_US (for Korn shell)
setenv LANG En_ US (for C shell)

ForAIX4.1:

export LANG=en_US (for Korn shell)
setenv LANG en_ US (for C shell)

11. For JTAG Ethernet and non-JTAG targets, these additional steps are required
to establish communications between the host and target:

a. To modify the /etc/services file, the user must be logged in as root or
superuser (su). The following lines must be added to the file:

osopen-dbg 20044/tcp

osopen-dbg 20044/udp

~ag_eth 6470/tcp # Note: Underscore used, not hyphen

b. The AIX refresh -s inetd command must then be run to synchronize the
object data manager (ODM) database and to update the inetd daemon.

This completes the software installation for RISCWatch.

Installing the RISCWatch Debugger 21

Notes:
It may be necessary to add the chosen directory to the PATH environment variable
if it has not already been added. Furthermore, it may be necessary to change
ownership of this directory as well as all of its files if many people will need access
to the RISCWatch program.
if you are using the RISCWatch processor probe, refer to 'Invoking the Debugger"
on page 3-7 in the RISCWatch Debugger User's Guide before you start
RISCWatch.

Sun Specifics

The following Items are required before you can install RISCWatch software on a
Sun SPARCstation 5, 10, or 20.

A Sun SPARCstation 5, 10 or 20 workstation

One 3.5" diskette drive

SunOS 4.1.3 (or higher) or Solaris (or higher)

OpenWindows 3.0 (SunOS 4.1.3) or 3.3 (Solaris)

RISCWatch Installation Diskette(s)

Three megabytes of hard disk space

Note: During program installation, an additional three megabytes of hard disk
space are needed temporarily to hold both the RISCWatch program files and
the installation file.

SunOS Device Driver Installation

For SunOS, the operating system kernel must be recompiled wtthout a device
attached to the parallel port for the RISCWatch parallel port device driver to
dynamically install correctly. The kernel must be recompiled BEFORE the
RISCWatch installation program, "rw_inst" is run. The following explains how to
reconfigure the SunOS kernel.

Configuring the SunOS Kernel for RISCWatch

22

1. Log in as root.

2. Change directory to /usr/kvm/sys/sun4m/conf.

3. Copy your existing kernel configuration file, eg. GENERIC, to a new name,
eg. SUN4RW.

cp GENERIC SUN4RW; chmod +w SUN4RW

4. Edit SUN4RW to comment out the bidirectional device driver that comes with
your kernel. # in the first column is used to indicate a comment. Any devices
that use this device driver, such as a printer, will not be useable.

#device-driver bpp # bpp support commented out

RISCWatch Debugger Installation Guide

5. Verify that the following line exists in SUN4RW to dynamically load device
drivers:

options VDDRV # loadable modules

6. Verify that enough space exists to recompile the kernel. Approximately 2.5MB
of disk space is needed in /usr to recompile the GENERIC configuration ker
nel.

7. Run config:

/etc/config SUN4RW

(The directory .JSUN4RW will be made n It doesn't exist and "make depend"
will be done unless you specify a •-n· !fag)

6. Make the new system:

cd . ./SUN4RW
make

9. Typically the running kernel should be •1vmunix" because programs like 'ps'
and 'w' expect "/vmunix" to be the running kernel. Save the original kernel,
install the new one in /vmunix, and try It out:

mv /vmunix /vmunix.old
cp vmunix /vmunix
/etc/halt
bootvmunix

1 O. If the system ~s not appear to work, boot and restore the original kernel,
then fix the new kernel:

/etc/halt
b vmunix.old -s
mv /vmunix.old /vmunix
bootvmunix

Software Installation Instructions for SunOS and Solaris

1. Logon as root or use the su command to gain root access.

2. Open at least two windows for this process.

3. Choose an already existing directory or create a new directory which will con
tain the RISCWatch program and Its associated files. For example, to create a
new directory rwppc within /usr:

mkdir /usr/rwppc

4. Issue the cd command in both windows to make /usr/rwppc the current work
ing directory. For example:

cd /usr/rwppc

5. Insert RISCWatch Installation Diskette 1 into the diskette drive.

Installing the RISCWatch Debugger 23

Instructions for SunOS

6. From the second window run the command:

cpio -ivB rwppc.SunOS4.tar.Z rw_inst </dev/rffYJ

where '/dev/rfd(f is the name of your diskette device.

7. When the system prompts you for a new volume, m0\19 to the first window and
type eject to eject the diskette. Insert the next diskette.

6. Move to the second window and type the name of the diskette device
(/dev/rfdO) to continue the process.

9. If prompted for more diskettes, repeat steps 7 and 6 above.

10. Insert the driver diskette (Processor Probe Driver or Device Driver).

11. From the second window run the command:

cpio -ivB < /dev/rfdO

12. Skip to instruction 20 below:

Instructions for Solaria

13. From the first window run the command 'vok:heck'. This creates a file called
/voVdev/rdisketteO/unlabeled (the diskette device name).

If the system pops up a message box saying the diskette format is
unrecognized, ilJlOlll the message and cancel the message box. The name
of the file created may be different on your system; use the command eject -q
to see the actual name.

14. From the second window run the command:

epic -ivB rwppc.SunOSS.tar.Z rw_inst </voVdev/rdisketteO/unlabeled

15. When the system prompts you for a new volume, m0\19 to the first window and
type eject to eject the diskette. Insert the next diskette and type volcheck.

16. MOiie to the second window and type the name of the diskette device
(/voVdev/rdisketteO/unlabeled) to continue the process.

17. If prompted for more diskettes, repeat steps 15 and 16 above.

16. Insert the driver diskette (Processor Probe Driver or Device Driver) and type
"volcheck" from the first window.

19. From the second window run the command:

cpio -ivB < /voVdev/rdisketteO/unlabeled

Instructions for both Sunos and Solaria

24

20. From the directory where RISCWatch wes installed, type • Jrw_inst" to untar
the RISCWatch files and install the parallel port device driver, ff required.

RISCWatch Debugger Installation Guide

21. Modify the rwppc.env file to make the appropriate changes to any of the
RISCWatch environment variables. Select the proper target type, as
described in "Environment Resources· in the RISCWatch Debugger User's
Guide. Users that have a working directory other than the install directory
have their own copy of the rwppc.env file. Such users should backup their
copy, make a fresh one from the install directory, and then merge their
changes from the old one to the new one.

Note that the RISCWatch environment variable TARGET_ TYPE, when set to
~Jlag", informs RISCWatch that you are using the RISCWatch parallel port
adapter. When TARGET_ TYPE is set to jtag__eth", It informs RISCWatch that
you are using the RISCWatch processor probe. For the current list of
TARGET_ TYPE settings, refer to "Environment Resources• on page 3·5 in
the RISCWatch Debugger User's Guide.

22. Add the XVTPATH environment variable to specify the directory for RISC
Watch to find the OpenWindows resource file (.frl). Here are examples for set·
ting the environment variable for different user shells, assuming RISCWatch
is installed under /usr/rwppc:

export XVTPATH=/usr/rwppc (for Korn shell)

setenv XVTPATH /usr/rwppc (for C shelQ

This environment variable should be added to any user's startup shell (.profile
for Korn shell, .cshrc for C shell).

23. Add the LD_LIBRARY _PATH environment variable to include the OpenWin·
dows libraries (in /usr/openwin/lib) tt It does not already do so. The environ·
ment variable should be added to any user's startup shell (.profile for Korn
shell, .cshrc for C shell).

For Korn shell:
export LD_LIBRARY _PATH=/usr/openwinllib:$LD_LIBRARY _PATH
ForCshell:
setenv LO _LIBRARY _PATH /usr/openwinllib:$LD_LIBRARY _PATH

24. For JTAG Ethernet and non·JTAG targets, an addltional step is required to
establish communications between the host and target To modify the
/etc/services file, the user must be logged in as root or superuser (su).

The following lines must be added to the file:

osopen-dbg 200441tcp
osopen-dbg 20044/udp

jlag__eth 6470/tcp # Note: Underscore used, not hyphen

25. Exit from root or su.

This completes the software installation for RISCWatch.

Notes:

Installing the RISCWatch Debugger 25

It may be necessary to add the chosen directory to the PATH environment
variable H It has not already been added. Furthermore, It may be necessary
to change ownership of this directory as well as all of Its files tt many people
will need access to the RISCWatch program.

If you are using the RISCWatch processor probe, refer to invoking the
Debugger" on page 3-7 in the RISCWatch Debugger User's Guide before you
start RISCWatch.

OpenWindows must be running before starting RISCWatch.

Notes for SunOS

26

1. rw_inst will update /etc/re.local, ff It exists, to automatically load the RISC
Watch parallel device driver upon machine reboot. If /etc/re.local does not
exist or the modifications made by rw_inst are removed, type •rw_inst -a· to
manually load the device driver into the kernel after machine reboot.

2. libC.so.5.0 and libC.sa.5.0, two dynamic libraries which RISCWatch needs to
run, will be installed in /usr/lang/lib.

RISCWatch Debugger Installation Guide

Index

Numerics
10Base2 Ethernet setup 16

A
AIX 3 operating system 13
AIX 4 operating system 14

E
Ethernet setup

H

non-JTAG
PC 17
RS/6000 17
Sun 17

non-JT AG targets 16
processor probe 4

PC7
RS/6000 9
Sun 10

hardware installation

J

Micro Channel adapter 1
parallel port adapter 2, 3
processor probe 4

JT AG targets

M

micro channel adapter 1
parallel port adapter 2
processor probe 4

micro channel adapter
hardware installation 1

N
non-JTAG targets

OS Open 16
ROM Monitor 16

0
operating systems

AIX313
AIX414

Solaris 2.3 23. 24
SunOS 4.1.3 22, 23, 24
Windows 3.1 11, 18

OS Open targets 16

p
parallel port adapter

hardware installation 2
PC3
RS/6000 3
Sun 3

PC host
installing parallel port adapter 3
installing processor probe 7
JT AG Ethernet setup 7
non-JTAG Ethernet setup 17
serial port setup 11
software setup 18

processor probe
configuration switches 5
existing Ethernet setup 4
hardware installation 4
jumper settings 5
new Ethernet setup

PC7
RS/6000 9
Sun 10

TCP/IP address change 11

A
ROM Mon it or target 16
RS/6000 host

Micro Channel adapter 1
non-JTAG Ethernet setup 17
parallel port adapter 3
processor probe 9
serial port setup 12
software setup 19

s
serial port setup

PC11
RS/6000 12
Sun 15

Index X-1

software installation
PC 18
RS/6000 19
Sun

Solaris 2.3 23, 24
SunOS 4.1.3 22, 23, 24, 26

Sun host

T

new Ethernet setup 1 O
non-JT AG Ethernet setup 17
parallel port adapter 3
processor probe 10
serial port setup 15
software setup 22
SunOS 4.1.3 device drivers 22
SunOS 4.1.3 kernel 22

TCP/IP address change
processor probe 11

v
verifying your network 16

w
Windows3.111, 18

X·2 RISCWatch Debugger Installation Guide

IBM

RISCWatch Debugger
User's Guide

13H6964

Eighth edition (September 1996)

This edition of IBM RISCWatch Debugger User's Guide applies to IBM RISCWatch Debugger Version 3.3 and
to all subsequent versions of the debugger until otherwise indicated in new versions or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such provisions
are Inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS MANUAL "AS IS" WITHOUT WARRANTY OF Al'N KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY ANO FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in cer
tain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples, whether
individually or as one or more groups, will meet your requirements or that the publication or the accompanying
source code examples are error-free.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the pmduct(s) and/or program(s) descnbed in this publication at any time.

It is possible ttlat this publication may contain references to. or information about, IBM products (machines and
programs). programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country. Afr1 relerence to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM's licensed program. You can use any functionally equivalent program instead.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the written permission of IBM.

Requests for copies of this publication and for technical information about IBM products should be made ta
your IBM Authorized Dealer or your IBM Marketing Representative.

Forms for user's and reader's comments are provided on page xix and page xxi, respectively. You may also
address written comments about this publication to:

IBM Corporation
Department OH83A
P.O. Box 12195
Research Triangle Park. NC 27709

IBM may use or distribute whatever information you supply in any wey it believes appropriate without incurring
any obligation to you.

©Copyright lnternattonai Business Machines Corporation 1996. AJI rights reserved.

Printed in the United States of America.

4321

Notice to U.S. Government Users-Documentatton Related to Restricted Rights -Use, duplication. or disclo
sure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

ii RISCWatch Debugger User's Guide

Patents and Trademarks

IBM may have patents or pending patent applications covering lhe subject matter In this publication. The fur
nishing of lhls publication does not give you any license to these patents. You can send license inquiries, in
writing, to lhe IBM Director of Licensing, IBM Corporation, 208 Harbor Drive, S1amlord, CT 06904, Unrted
States of America.

The following terms are trademarks of IBM Corporation:

AIX
AIX/Windows
IBM
Micro Channel
OS Open
PowerPC
PowerPC Architecture
RISC System/6000
RISCTrace
RISCWatch

The following term is a registered trademark in the United Stetes and other countries licensed exclusively
through X/Open Company Limited:

UNIX

Windows is a trademark of Microsoft Corporation.

Other terms which are trademarks are the properly of their respective owners.

iii iv RISCWatch Debugger User's Guide

Contents
User's Comments Form .. xix

Reader's Comments Fonn .. xxl

About This Book .. xxlii
Who Should Use This Book.. xxiii
How To Use This Book ... xxiv

Conventions Used In This Book ... xxlv
Numeric Notation and Input Conventions ... xxiv
Highlighting Conventions ... xxv
Syntax Diagram Conventions .. xxv

Where to Find More Information ... xxvi
Related IBM Publications .. xxvi

Introducing the RISCWatch Debugger ... 1-1
Embedded System Software Development 1-1

Programming Languages .. 1-1

Hardware Level Debugger (HLD) Tutorial .. 1·1
Features... 1-2

Quick Start ... 2-1
Compiling the Example Program ... 2-1

Starting the Debugger .. 2-1
Entering Commands .. 2-2
Loading the Demo Program ... 2-3
Scrolling Through Source Code ... 2-4
Setting Breakpoints .. 2-6
Stepping Through the Code ... 2-8
Altering and Displaying Variables .. 2-11

Debugging at the Assembly Level... ... 2-14

Using the RISCWatch Debugger ... 3-1
Debugger Facilltles .. 3·1
Environment Resources ... 3-5
Invoking the Debugger ... 3-7

JTAG Ethernet Targets and the RISCWatch Processor Probe ... 3-10
Main Window Resources ... 3-11

Menus .. 3-12

Contents v

File Menu .. 3-14
Source Menu ... 3-14
Hardware Menu .. 3-14
Chip Menu (JTAG Target Only) .. 3-15
Utillties Menu .. 3-15
Help Menu... 3-15

Command Line Usage ... 3-15
Command History Usaga .. 3-16
Message Window .. 3-16

Running Your Programs .. 3-16
Preparing the Program for Debug ... 3-16
Loading Files ... 3-17
Loading Boot and Boot Image Files .. 3-18
Executing the Program .. 3-20
Following Program Execution Flow... 3-20
Input Line Usage ... 3-20

Scrolling Source Window Contents Using the Keyboard .. 3-23
Source Level Debugging.. 3-24

Source Window ... 3-24
Assembly Debug Window.. 3-27
Programs Window... 3-31
Callers Window.. 3-33
Files Window... 3-34
Functions Window ... 3-34

OS Open Debugging .. 3-36
Managing Breakpoints ... 3-40

Using Software Breakpoints.. 3-40
Using Hardware Breakpoints ... 3-41
Breakpoints Window .. 3-42
Breakpoint Select Window ... 3-44

Reading and Writing Program Data ... 3-45
Program Variables... 3-45
Formatting Variables Overview 3-46

Changing Variable Information via Change Variable Windows .. 3-46
Configuring Variable Information via the Variable Configuration Window 3-46
Expanding/Contrecting Variable Detail ... 3-47
Formatting Examples.. 3-47

Expansion/Contraction from Locals or Globals window .. 3-47

vi RISCWatch Debugger Use(s Guide

Displaying ASCII Strings .. 3-49

Handling Multiple Data Elements Referenced by a Single Pointer 3-50

Changing Multiple Instances of a Variable Within an Array .. 3-53

Variable Windows.................. 3-61

Local Variables Window ···························· 3-61
Global Variables Window 3-63

Variable Configuration....................................... 3-65

Change Variable Windows................ 3-67

Change Array Variable .. 3-68

Change Base Variable 3-69

Change Enum Variable ······· 3-71

Change Pointer Variable ············· 3-72
Change Struct/Union Variable ·························· 3-75

Reading and Writing Memory ... 3-76

Memory Access Window (JTAG Target Only).................... 3-76

ASCII Memory Window .. 3-79

Custom Memory Window.......................... 3-81

Cache Windows (JTAG Target Only).. 3-83

Reading and Writing Registers... . 3-85

Register Windows.......................... 3-85

Register Field Windows... 3-87

User-Defined Resources.. 3-88

User-Defined Windows .. 3-88

Creating the Window.. 3-90

Example.. . .. 3-90
User-Defined Buttons................................. 3-91

Example 3-92

Command Files ... 3-93

Using Shell Scripts to Execute Command Files .. 3-93

Startup Command File... 3-93

Special Command File Commands.. 3-94

Blank Lines and Comments in Command Files .. 3-94

Command File Programming....... . .. 3-95
Command File Special Expressions ... 3-96

Command File Parameters....................................... 3-97

Command File Pseudo-Variables............... 3-98

Command File Programming Example

Running a Command File .. .

Contents

...... 3-98

. 3-99

vii

Command File Single-Step Window .. 3-99

Processor Resources ... 3-101

Processor Reset Window (JTAG Target Only) .. 3-102

General Resources .. 3-103

Window Layout ... 3-103

Window List... 3-103

Log Files .. 3-103

Logging Control ... 3-104

Logging User Comments .. 3-105

Viewing Log Files .. 3-105

Shell Command Window (Non-PC Host Only) .. 3-106

Screen Capture .. 3-106

Calculator Window .. 3-107

Profiler Window .. 3-108

Online Help .. 3-109

Using Processor-Specific Debug Features .. 4-1
PPC403GC Implementation Notes .. 4-1

Managing Hardware Breakpoints and Trace Events ... 4-2

Using RISCTrace (400Sertes JTAG Processor Probe Only) ... 4-2

RISCTrace Output .. 4-3

Trigger!Trace Window (400Series Only) ... 4-6

RISCTrace Controls .. 4-8

Compound Trigger!Trace Window (400Series Only) ... 4-9

Memory Resources.. 4-12

Translation Lookaside Buffer Window (PPC403GC Only) .. 4-12

Processor Resources .. 4-13

Processor Status Window (400Series JTAG Only) ... 4-14

Debugger Command Reference .. 5-1
Processors Currently Supported .. 5-1

Reading the Syntax Diagrams .. 5-2

Using RISCWatch Debugger Commands ... 5-2

Command Quick Reference ... 5-2

asmstep .. 5-10

assign .. 5-11

assm .. 5-13

attach .. 5-15

beechp .. 5-17

viii RISCWatch Debugger User's Guide

bot... ···················· ..•.......................•..... 5-18
bp .. 5-19
bpmode ... 5-23
callstep 5-25
capture ... 5-26
create 5-29
delay ... 5·31
detach ... 5-32
dis .. 5-33
down 5-35
edit... 5.37
end ... 5-38
event ... 5-39
exec ... 5-40

exit .. 5-41
expr... 5-42
fctrl.. 5-44
file... 5-46
find
findb .. .
finde .. .
focus
fold

. 5-47
.......... 5.49

...... 5-51

······· 5-53
............. 5-54

!print. 5-55
freeze .. .
funcdisp

goto

. 5-58
. 5-59
........ 5-61

halt... .. . ································· ······· 5-62
hidewins .. .
hwcfg

ip.............................. ····················
jtagclk......
kill_thread
line .. .

. 5-63

..... 5-64
. ... 5-65

. 5-66
.... 5-67

5-68
linestep 5-69
load... ... 5·70

log.. ························ 5-74
logging... 5-75

Contents ix

logoff ... 5-77
memchk .. 5-78
memcopy ... 5-79
memfill .. 5-80
memlind... 5-81
memrwait.. . .. 5-83

memwwait 5-84
mode ... 5-85
pagedn 5-87
page up 5-88
parms ... 5·89
print.. 5·91
profile .. 5-92

quit .. 5-95
read.. . .. 5-96

record 5·98
reset........... . .. 5-100
restartt 5-101
retstep 5-102
run.................................... . .. 5-103
save ... 5-105
set ... ··············· 5-107
shell.......... 5-111
showip... . .. 5·112
socket ... 5-113
sourcemode 5-114
srcdisp .. 5-115
srchpath 5-116
srcline ... 5-118
start_thread .. 5-119
stop ·································· 5-120
stuff..................................... 5·122
timer .. 5-124
top... . .. 5-125
unload ·· 5-126
up································· . .. 5-127

varinfo 5-129
varvis ·· 5·131

x RISCWatch Debugger Users Guide

view... 5-132

write .. 5-133

Interfacing RISCWatch to a Target Board .. A-1
IEEE 1149.1 (JTAG) Port .. A-1

RISCTrace Status Port (400Series JTAG Processor Probe Only) .. A-4

Target Monitor Debugging .. A-5

Index .. X-1

Contents xi xii RISCWatch Debugger Users Guide

Figures

Figure 2-1. Sample Main Window .. .

Figure 2-2. Sample Files Window .. .

Figure 2-3. Sample Source Window

Figure 2-4. Sample Breakpoints Window

Figure 2-5. Sample Functions Window

Figure 2-6. Sample Callers Window.

Figure 2-7. Sample Locals Window

2-2

2-4

2-5

2-6

............ 2-7

.... 2-9

. .. 2-11

Figure 2-8. Sample Variable Configuration Window ... 2-12

Figure 2-9. Sample Change Struct/Union Window

Figure 2-10. Sample Change Base Window

Figure 2-11. Sample Assembly Debug Window

............. 2-12

.. 2-13

2-15

Figure 3-1. Sample Main Window 3-12

Figure 3-2. Main Window Menu Options

Figure 3-3. Sample Input Line Displayed

Figure 3-4. Sample Source Window

Figure 3-5. Sample Assembly Debug Window , .. .

Figure 3-6. Sample Programs Window

Figure 3-7. Sample Callers Window

Figure 3-8. Sample Files Window .. .

Figure 3-9. Sample Functions Window .. .

Figure 3-10. Sample OS Open Window .. .

Figure 3-11. Sample Breakpoints Window

Figure 3-12. Sample Breakpoint Select Window

Figure 3-13. Sample Unexpanded Structure Variable

Figure 3-14. Sample Expanded Structure Variable

Figure 3-15. Further Structure Variable Expansion

Figure 3-16. Single-Element Structure Variable Expansion

Figures

. ········ 3-13

. ... 3-23

. 3-25

. 3-28

3-31

. 3-33

. 3-34

3-35

3-36

3-43

3-45

....... 3-47

3-47

........ 3-48

. 3-48

xiii

Figure 3-17. Structure Variable Contraction ... 3-49

Figure 3-18. Sample Pointer Variable.. 3-49

Figure 3-19. Sample ASCII String Display........................ 3-49

Figure 3-20. Sample Character Array ... 3-50

Figure 3-21. Sample Array Element Display..................... . .. 3-50

Figure 3-22. Sample struct record Pointer Display ... 3-51

Figure 3-23. Sample Initial struct record Pointer Expansion .. 3-51

Figure 3-24. Changing Pointer Variables ... 3-52

Figure 3-25. Sample Pointer Variable Shown as an /may .. 3-52

Figure 3-26. Sample Expanded Pointer Variable Shown as an Array 3-53

Figure 3-27. Sample char Array Display .. 3-54

Figure 3-28. Changing Multiple Elements of a Variable Array ... 3-55

Figure 3-29. Updated Display of Variable Array .. 3-56

Figure 3-30. Sample Multi-Element, Multilevel Variable Display .. 3-57

Figure 3-31. Updated Multi-Element, Multilevel Variable Display ... 3-58

Figure 3-32. Sample Change Value Display ... 3-59

Figure 3-33. Sample Result of Change Value Update .. 3-60

Figure 3-34. Sample Locals Window .. 3-61

Figure 3-35. Sample Globals Window ·························· 3-64

Figure 3-36. Sample Variable Configuration Window 3-66

Figure 3-37. Sample Change Array Window .. 3-68

Figure 3-38. Sample Change Base Window .. 3-70

Figure 3-39. Sample Change Enum Window......................... 3-71

Figure 3-40. Sample Change Pointer Window ··················· 3-73

Figure 3-41. Sample Change Struct/Union Window .. 3-75

Figure 3-42. Sample Memory Access Window ... 3-77

Figure 3-43. Sample ASCII Memory Window ... 3-79

Figure 3-44. Sample Custom Memory Window ················ 3-81

Figure 3-45. Sample Data Cache Window ················ 3-84

Figure 3-46. Sample Registers Window . ·· 3-86

xiv RISCWatch Debugger Users Guide

Figure 3-47. Sample Register Field Window .. 3-87

Figure 3-48. Sample User-Defined Window ... 3-91

Figure 3-49. Sample User-Defined Buttons Window .. 3-93

Figure 3-50. Sample Command File Single-Step Window ... ··· 3-100

Figure 3-51. Sample Processor Reset Window .. 3-102

Figure 3-52. Sample Log Comment Window ... 3-105

Figure 3-53. Sample Shell Command Window....................................... 3-106

Figure 3-54. Sample Calculator Window...................... 3-107

Figure 3-55. Sample Profiler Window 3-108

Figure 4-1. Sample Trace Output File 4-4

Figure 4-3. Sample Trigger!Trace Window with Trace Supported 4-7

Figure 4-4. Sample Compound Trigger!Trace Window with Trace Supported ,. 4-10

Figure 4-5. Sample TLB Window.... 4-12

Figure 4-6. Sample Processor Status Window,.. 4-14

Figure A-1. JTAG Header Connector (top view).. A-1

Figure A-2. RISCTrace Header (top view) ... A-4

Figures xv xvi RJSCWatch Debugger User's Guide

Tables
Table 3-1. Quick Reference for the RISCWatch Debugger 3-2

Table 3-2. Input Line Functions 3-22

Table 3-3. Keyboard Options for Scrolling ... 3-24

Table 4-1. Quick Reference for Processor-Specific Debug Features .. 4-1

Table 5-1. Syntax Summary for Debugger Commands.. 5-3

Table A· 1. PowerPC 400Series JTAG Interlace Connections and Resistors........ A-2

Table A-2. PowerPC 6xx JTAG Interlace Connections and Resistors.......... A-3

Table A-3. RISCTrace Header Pin Description... A-5

Tables xvii xviii RISCWatch Debugger User's Guide

User's Comments Form
We hope you are delighted with this product, but only you can tell us! Your comments and
suggestions will help us improve our products. Please take a few minutes to let us know what you
think by completing this form.

If you wish to fax this form, please send to the following number care of 'PowerPC Embedded Tools
Software Feedback':

FAX: (919) 543-7575

If you wish to send your comments softcopy, please send to the following Internet address:

INTERNET: ppc400pubs@vnet.ibm.com

Please indicate which product you are commenting on by marking the appropriate box:

R OS Open Real-Time Operating System

PowerPC 403 Evaluation Board Kit

High CIC++ Compiler

RISCWatch Debugger

In order for us to properly process your information, please also include the version number for the
product you indicated above. Version:--------------------

Please check the appropriate boxes below, to describe your host, target and application:

Host
Platform

Target
Processor

Target
Platform

Target
Application

Interface
Used

RS/6000

PC (Win 3.1)

403GA

602

604

IBM Evaluation Board

Other Platform:

JTAG (via Parallel Port)

Ethernet

Sun (SunOS) Sun (Solaris)

PC(Win95)

403GB

603

Other:

Other Evaluation Board (please specify):

OS Open

Other: __ _

JTAG (via Microchannel)

SLIP

Own ROM Monitor

JTAG (via Ethernet)

Token Ring

User's Comments Form xix

1. Please rate the characteristics of the product on a scale of 1 to 5 (1 being the best):

ease of installation 2 3 4 5
ease of use 2 3 4 5
amount of function provided 2 3 4 5
level to which it helped you do your job 2 3 4 5
reliabiltty (frequency of failure) 2 3 4 5
performance 2 3 4 5
error messages 2 3 4 5
IBM problem support and service 2 3 4 5
price, considering value received 2 3 4 5

2. What is your overall impression of the product?

overall 2 3 4 5

Please include additional comments below. PLEASE BE AS SPECIFIC AS POSSIBLE.

Please tell us how we can improve this product:

Please tell us what you especially liked about the product:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to
use the information in any way you choose.

Please provide the following information should it be necessary for us to contact you for any reason
in order to properly address your input:
Name: _______________________________ _

Company: _____________________________ _

Internet Address:--------------

xx RISCWatch Debugger Users Guide

Reader's Comments Form
We hope you find this publication useful. readable and technically accurate, but only you can tell us!
Your comments and suggestions will help us improve our technical publications. Please take a few
minutes to let us know what you think by completing this form.

If you wish to fax this form, please send to the following number care of 'PowerPC Embedded Tools
Software Feedback':

FAX: (919) 543-7575

If you wish to send your comments softcopy, please send to the following Internet address:

INTERNET: ppc400pubs@vnet.ibm.com

Please indicate which publication you are commenting on by marking the appropriate box:

High CIC++ Language Reference

High CIC++ Compiler, ELF linker and Assembler

OS Open User's Guide

OS Open Programmers Reference Volume 1

OS Open Programmer's Reference Volume 2

PowerPC 403 Evaluation Board Kit User's Guide

RISCWatch Debugger User's Guide

In order for us to properly process your information, please also include the edition number and
date for the book you indicated above (on the back of the title page, atthe top).

Edition and Date:-----------------

1. Please rate the characteristics of the book on a scale of 1 to 5 (1 being the best).

accurate

complete

well laid out

well organized

easy to understand

applies to your tasks

has enough examples

2

2

2

2

2

3

3

3

3

3

3

3

4 5

4

4 5

4 5

4 5

4 5

4

Reader's Comments Form xxi

2. What is your overall impression of the book?

overall 2 3 4 5

For additional comments, either attach a marked-up hardcopy (if applicable) or include your
comments below. PLEASE BE AS SPECIFIC AS POSSIBLE AND INCLUDE THE PAGE NUMBER
AND SECTION OF THE PUBLICATION WHERE YOU HAVE A COMMENT.

Specific Comments or Problems:

Please tell us how we can improve this book:

Please tell us what you especially liked about the book:

Thank you for your response. When you send information to IBM, you grant IBM the right to use or
distribute the information without incurring any obligation to you. You of course retain the right to
use the information in any way you choose.

Please provide the following information should It be necessary for us to contact you for any reason
in order to properly address your input:
Name: ______________________________ _

Company: _____________________________ _

Phone: __________ _ Internet Address:--------------

xxii RISCWatch Debugger User's Guide

About This Book
This book describes the IBM® RISCWatch™ Debugger, Its windowing
environment, and its debugging facilities and commands. This publication
contains the information needed to use RISCWatch, a hardware and software
development tool for PowerPCT" processors.

This release of the RISCWatch Debugger supports the following PowerPC
processors and versions:

• PowerPC 401GF

• PowerPC 403GA

• PowerPC 403GB

• PowerPC 403GC

• PowerPC 602 Rev2

• PowerPC 603 Rev3

• PowerPC 603e Rev1

• PowerPC 603e Rev3

• PowerPC 603ev Rev2

• PowerPC 604 Rev3

• PowerPC 604ev Rev2

For PowerPC 6xx processors, this version of RISCWatch does not support Micro
Channel or parallel port adapters for JTAG targets,

Support for additional PowerPC processors and targets is planned for future
RISCWatch releases.

Who Should Use This Book

This book is for:

• Programmers and engineers who will use the RISCWatch Debugger to develop
embedded applications using PowerPC processors

Users should understand:

• Functions, architecture, and features of their host systems
• PowerPC instruction set architecture and assembler programming
• C programming

About This Book xxiil

For information concerning features and operations of a specific PowerPC
processor, please refer to the document set for each individual device,

How To Use This Book

This manual describes the RISCWatch debugger facillties. windows. and
functions provided specifically to support PowerPC processors in embedded
applications. This book is divided into the following chapters:

• Chapter 1, "Introducing the RISCWatch Debugger,• describes RISCWatch
debugger functions and features.

• Chapter 2, "Quick Start," introduces the RISCWatch Debugger by means of a
brief demo with descriptions of the main windows and debugger functions,

• Chapter 3, "Using the RISCWatch Debugger,• shows debugging tasks in
relation to sample debugger windows and some specific features of the
debugger,

• Chapter 4, "Using Processor-Specific Debug Features,• describes RISCWatch
features and windows applicable to specific PowerPC processors,

• Chapter 5, "Debugger Command Reference," provides detailed descriptions of
the debugger commands,

• Appendix A, "Interfacing RISCWatch to a Target Board," describes the required
connections for interfacing RISCWatch to a PowerPC processor on a target
development board.

For detailed information about installing and configuring the RISCWatch
Debugger, consult the accompanying R/SCWatch Debugger Installation Guide,

Conventions Used In This Book

This book follows numeric and highlighting notation conventions based on those
used in the RISC System/6000™ and Advanced Interactive Executive (AIX™)
publications.

Numeric Notation and Input Conventions

xx iv

In general, numbers are used exactly as shown. Unless noted otherwise, all
numbers are in decimal, and, ~ entered as part of a command, are entered
without format information.

The hexadecimal digits A through F typically appear in uppercase. Hexadecimal
numbers are preceded by "Ox" as shown below:

Ox1A7

RISCWatch Debugger Users Guide

Highlighting Conventions

In code examples, this book uses no highlighting.

This book uses the following highlighting conventions:

• The names of invariant objects known to RISCWatch appear in bold type. In
some text. however, such as in lists. no special typographic treatment is used.
Examples of such objects include:

• File and command names
• Data types and structures
• Constants and flags

• Variable names that are supplied by user programs appear in rtalic type. In
some text. however. such as in lists, no special typographic treatment is used.
Examples of these objects include arguments and other parameters.

Names of objects and keywords known to the RISCWatch Debugger must be
entered exactly as written.

Syntax Diagram Conventions

Throughout this book, diagrams illustrate the syntax for string formats and
commands. The following list shows how to read these diagrams:

• Read the syntax diagrams from left to right. from top to bottom. following the
path of the line.

• A-- symbol begins a diagram.

• A - symbol indicates continuation of a diagram on the next line.

• A-symbol indicates continuation of a diagram from the previous line.

• A-- symbol terminates a diagram.

• Keywords are in regular type, and variables are in italics. Keywords must be
typed exactly as shown.

• Keywords or variables on the main path of a diagram are required.

- keyword - variablet - variable2 -----------

• Keywords or variables shown on branches below the main path are optional.

-keyword

[variable 1 J [variable2 J
• 4

• Keywords or variables can appear in a stack, indicating that only one rtem in a
stack can be chosen. if an item in a stack is on the main path, you must choose

About This Book xxv

an tlem from the stack. If all ttems in a stack are below the main path, you may
choose an ttem from the stack

For example, in the following syntax diagram. you must choose etther variable1
or variabfe2. However. because variable3 and variable4 are below the main
path, nerther is required.

- keyword variable I

1 variab/e2 J [variab/e3 J
l variable4 J

• A repeat separator is a returning arrow that surrounds a syntax element or
group and shows that the element or group can be repeated.

- keyword

...

Where to Find More Information

The following sections list sources of information about or related to RISCWatch.

Related IBM Publications

xxvi

This book refers to the following publications, which are available from your IBM
Microelectronics representative:

• RISC Systemf6000 Publications

IBM RISC System/6000: POWERstation and POWERserver Hardware Technical
Information General Architectures, SA23-2643

• AIX Publications

This book refers to the following AIX publications. The words "IBM AIX Version 3.2
for RISC System/6000" are actually part of the title of each book; however, in all
references to these books, those words are omitted.

Assembler Language Reference, SC23-2197

Commands Reference, Volume 1, SC23-2376

Commands Reference, Volume 2, SC23-2366

Commands Reference, Volume 3. SC23-2367

Commands Reference, Volume 4, SC23-2393

Editing Concepts and Procedures. GC23-2212

RISCWatch Debugger Users Guide

Files Reference, GC23-2200

• XL C Compiler/6000 Publications

XL C Language Reference, SC09-1260

XL C User's Guide, SC09-1259

• IBM High CIC++ Publications

The following list includes the books in the IBM High CIC++ library:

IBM High CIC++ Programmer's Guide for PowerPC, 92G6920

IBM High CIC++ Language Reference for PowerPC, 92G6923

IBM ELF Assembler User's Guide for PowerPC. 92G6921

IBM ELF Unker User's Guide for PowerPC, 92G6922

PowerPC Embedded Application Binary Interface

To receive a copy of the EABI specification, send an email to
eabi@goth.sps.mot.com, and include the word "eabi" or "EABI" in the subject line.
The EABI Postscript file will be sent to you.

• OS Open Publications

The following list includes the books in the OS Open library:

IBM OS Open Programmer's Reference, Volume 1, 92G6911

IBM OS Open Programmer's Reference, Volume 2, 92G6912

IBM OS Open User's Guide, 92G6897

• PowerPC 400Series User's Manuals

PPC403GA Embedded Controller User's Manual, 13H6960

403GA Evaluation Board Kit User's Manual, 13H6987

PPC403GB Embedded Controller User's Manual, 13H6985

PPC403GC Embedded Controller User's Manual, 13H6986

• PowerPC Gxx User's Manuals

PowetPC 602 RISC Microprocessor User's Manual, in progress

PowerPC 603 RISC Microprocessor User's Manual, MPR603UMU-01

PowerPC 603e RISC Microprocessor User's Manual, MPR603EUM-01

PowetPC 604 RISC Microprocessor User's Manual, MPR604UMU-01

About This Book xxvii xxviii

• PowerPC

PowerPC Microprocessor Family: The Programming Environments,
MPRPPCFPE-01

RISCWatch Debugger User's Guide

Chapter 1. Introducing the RISCWatch Debugger
The IBM RISCWatch Debugger provides a powerful, flexible debugging
environment to support hardware and software development using PowerPC
processors in embedded applications.

Embedded System Software Development

Embedded systems are typically developed in a cross-development environment
consisting of host computers and target systems. The host computers provide
software and project management tools for embedded system application
developers. The developers are not restricted to the limtted computing resources
typically available on the target embedded system.

Developers write, compile, and debug embedded application programs on the
host computers. When appropriate, the application programs are loaded on the
target embedded system, where they run and are tested in the target operating
environment.

Embedded system development is an tterative process: the application programs
are refined on the host computers and tested on the target system until the
programs meet the functional and performance requirements of the application.
Eventually, the application programs are shipped as part of an embedded system.

Programming Languages

Application programs for PowerPC processors are typically written in CIC++ and
assembler. Formats currently supported include ELF/DWARF (SVR4 AB/ and
PowerPC Embedded AB/) and XCOFF/STABS.

Hardware Level Debugger (HLD) Tutorial

Included in the installed RISCWatch software is a text file named rwppc.tut. This
file contains a tutorial on how to use the various facilities of RISCWatch to perform
hardware level debugging.

The tutorial is broken up into several lessons progressing from the skills of the
beginner up to the intermediate and advanced user levels. Followed in the given
sequence, these lessons will familiarize the user with an understanding of the
workings of hardware level debug.

Introducing the RISCWatch Debugger

Features

1-2

This tutorial has been distributed as a text tile so that you can view tt online wtth
your favortte edttor while you are using the debugger, or so that you can print tt if
you prefer.

RISCWatch is a development and debug tool for PowerPC processors.
R/SCWatch employs a graphical user interface allowing complete access to all of
the PowerPC processor functions. Following is a list of R/SCWatch features:

• Robust source level debug capability

• Low-level program debug (assembly level)

• Read, modify and wrtte of all processor registers

• Read, modify and write of processor register fields

• Read, modify and write of all processor memory (1, 2 & 4 byte) with memory fill
and write verification testing

• Memory loading of many types of file formats (ELF, XCOFF, HP UNIX,
Extended Tektronix Hexadecimal, Motorola 32-bit, Verilog, and straight binary)

• Save/load processor memory image to/from file

• Save/load processor register values to/from file

• Command file execution

• Command file execution with user-created variables, programming constructs,
expressions and printf-like function

• Command file single-step execution

• Command file calling input parameters

• Batch mode command file execution

• Command sequence recorder wtth file save and playback

• Program disassembler allowing memory modify/write capability

• Program assembler allowing memory write capabiltty

• Single-step execution (assembly or source) of loaded program

• Set/clear of multiple-event breakpoints

• Saving and loading of customized window layout

• User-defined windows consisting of register, register field, memory and
disassembly interlaces

RISCWatch Debugger User's Guide

• User-defined buttons window

• Processor reset functions

• Logging of all commands and messages

• File browsing

• Shell command capability

• On-line help for all screens including extensive processor register definitions
and assembly instructions user's guide

Introducing the RISCWatch Debugger 1-3 1-4 RISCWatch Debugger US8(S Gulde

Chapter 2. Quick Start
Included with the RISCWatch debugger are some example flies that can be used
to quickly demonstrate some of the capabilities of the tool. They include all of the
source, object, and executable files necessary to proceed with the following
tutorial. The sections are designed to be performed sequentially, but the actions
described in each can be applied at various stages of the debug session.

In general, the windows and descriptions will appear exactly as stated in the text.
However, there may be slight differences in what is pictured versus What the user
will actually see when running through the demonstration. For example, if the
program is loaded in a location other than that specified in the load command,
any addresses shown in the window might not match what appears in the
document. However, the functions performed are equivalent.

Compiling the Example Program

For ROM Monitor and JTAG targets, no compilation is necessary. There is an
executable already included called "demo", compiled with debug information to
run on PowerPC processors. The demo3.c file was compiled without debug
information to demonstrate the assembly debug capabillties of RISCWatch.

For OS Open targets, refer to the section "Developing OS Open Applications• in
the OS Open User's Guide for information on how to include these example files in
an OS Open image or dynamically loadable object that can be loaded onto the
target processor.

Starting the Debugger

Before you start the RISCWatch debugger , alter the 'rwppc.env' file to designate
the correct target type, target name, and RISCWatch directory, as described in
"Environment Resources" on page 3-5 and "Invoking the Debugger" on page 3-7.
Alter any additional environment resources required for your specific setup.

From a RISC System/6000 workstation running Motif, type "rwppc"to run
RISCWatch, or type "rwppc -par" H the parallel port is being used to communicate
with a JTAG target.

From a Sun workstation running OpenWindows, type "rwppc" to run RISCWatch.

Quick Start 2-1

STATUS

When running under Windows on a PC, simply double-click on the RISCWatch
icon created during program installation. The following window will be displayed:

rwppc initialization complete

@ Saree @ Locals @ Callers

@ Functions

@ Files

@ Breakpoints . @ Glroals

Figure 2-1. Sample Main Window

N-: An OS Open button will only be displayed tt the target specified is OS
Open. Also, H the target is JTAG, an additional Chip pulldown will be present.

Entering Commands

To enter debugger commands from the command line of the Main window,
single-click on the Command area to give It 1ocus', type in the desired command,
and then press "Enter". See "Command Quick Reference• on page 5-2 for the
complete list of valid commands.

For the demonstration program, enter the command "srchpeth set xxxx", where
xxxx Is the fully qualified directory path where the examples reside.

RISCWatch Debugger Users Guide

Note that when the command is entered, it is displayed in the command history
window. It Is also displayed, along with any associated messages, below the
command line in the message window.

Loading the Demo Program
For JTAG and ROM Monitor targets, enter from the command line:

load file demo t=OxaOOO d=OxcOOO

For OS Open targets (It compiled into an OS Open image), enter from the
command line :

start_thread main

or:

load file filename

where filename is the fully qualified name of the dynamically loaded object
module.

Note: If the target board under test does not have this address range configured,
use other valid values.

Quick Start 2-3

Scrolling Through Source Code

2-4

Now that the program has been loaded, the next step is to bring up the source
files. Move the cursor to the "Files· button on the Main window. and single-click
the left mouse button. The following window will be displayed:

demo1.c
demo2.c

Hide Help

Figure 2-2. Sample Files Window

Single-click the left mouse button on the "demo1 .c· entry in the Flies window. It
will become highlighted.

RISCWatch Debugger Use(s Guide

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Single-click the left mouse button on the "Source" button on the Main window. The
following window will be displayed:

'"''*'•-·-int glob;;::O;
int glob2=:0;

void routine2 (void);
void routine3('Joid);
\olo!d routine4 {yoid);
void routine5(Yoid};

typedef struct inside
(
int count;
char name[lOJ;

} '
t~pedef struct Struct_Outer

(
str-uct in.side show_in;
union {

struct {
int
char
} var _1;

struct {
char

Int_ type;
Str_type [3J;

Str _2_Comp (3J;

i"Ret'-Stefi]

~~w,,..J

Figure 2-3. Sample Source Window

Move the cursor to the Main window, and single-click the left mouse button in the
Command area to enable the command line.

Enter "pagedn source" on the command line. The source window will scroll down
one page.

Enter "pageup" on the command line. The source window will scroll up one page.

Move the cursor back to the Source window, and place the cursor on the down
arrow found on the scroll bar area on the right side of the window. Hold down the
left mouse button. The source code will scroll down a line at a time while the
button is being held down. The scroll bar will also move down along the right side
of the screen.

Quick Start 2-5

Move the cursor to the area above the scroll bar, placing It between the bar and
the up arrow. Press the left mouse button once. This will move the source code up
one page.

Move the cursor to the scroll bar Itself. Hold down the left mouse button and move
the mouse up and down. The source code will scroll up and down with the
movement of the mouse.

Move the cursor back to the Main window, and single-click the left mouse button in
the Command area to enable the command line.

Enter "top" on the command line. The Source window will scroll to the top of the
source file.

Setting Breakpoints

2-6

Move the cursor back to the Source window, and scroll down through the code
until line 39 is in view.

Move the cursor into the source file area next to line 39 over the statement
"i = 111 ;". Single-click the left mouse button. A "BP" indicator will appear next to
the line number 39. This means a breakpoint has been set at line 39.

Single-click the left mouse button on the "Breakpoints• button on the Main window.
The following window will be displayed:

Figure 2-4. Sample Breakpoints Window

RISCWatch Debugger User's Guide

Various information about the breakpoint is displayed in the Breakpoints window,
including type (hardware or software), address, function name, source tile, and
line number corresponding to the breakpoint

Move the cursor button over the entry in the Breakpoints window and single-click
the left mouse button. The entry is highlighted, and Its corresponding location in
the Source window is highlighted. The Delete button is also enabled.

Single-click the left mouse button again on the entry. The highlight is removed,
and the Delete button is disabled.

Single-click the left mouse button on the "Functions" button on the Main window.
The following window will be displayed:

main; OxOOOOA078; demo1.c
routine2; OxOOOOA218; demo2.c
routine3; Ox0000A12C; demo1.c
routine4; OxOOOOA180; demo1.c

~"Functions di sp I a!:J ro0<Je ·•M•m•m"••M•"•••·m·•m••·······1

<;> Functions w/ debug info b\j name

V Functions w/ debug info b!l addr.

Al I functions by naroe

<> All functions addr.

Figure 2-5. Sample Functions Window

Locate the entry "routine2; demo2.c". Move the cursor to this entry, and
single-click the left mouse button. The source file containing routine2 (demo2.c)
will now be shown in the Source window, and the entry will be highlighted in the
Functions window.

Double-click the left mouse button on the same "routine2; demo2.c" function entry.
This will set a breakpoint at the beginning of the routine2 function. The "BP"
indicator will appear in the Source window at the first executable line in the

Quick Start 2-7

function, and information about the breakpoint will also appear in the Breakpoints
window.

Move the cursor to the newly added routine2 entry in the Breakpoints window.
Double-click the left mouse button on the entry. The breakpoint is removed from
the Breakpoints and Source windows.

Stepping Through the Code

2-8

Move the cursor to the "Run" button in the Source window, and single-click the left
mouse button. The program is "run" until It hits the breakpoint set earlier in this
example. The source file corresponding to the breakpoint location that stopped
the program execution is displayed in the Source window. The source line
corresponding to the current Instruction Pointer address is indicated by the ">>"
next to the line number where the program has stopped.

Press the "Show IP" button in the Source window. Information relating to the
current Instruction Pointer is listed in the Main window status and message area.

Press the "Line Step" button in the Source window. The ">>" appears on the next
source line, which is now highlighted.

Move the cursor to source line 48, over the source line "routine4();" and
single-click the left mouse button. The BP indicator appears next to the line, and
the breakpoint entry is entered in the Breakpoints window.

Press the "Run• button once more, and the program runs to the break just set.
The">>" appears next to line number 48, which is now highlighted.

RISCWatch Debugger Users Guide

Move the cursor back to the Main window, and press the "Callers" button. The
following window will be displayed:

main ; demoi.c ; 00039 ; OOOOA094 ; /u/rwppc/examp
~start ; ? ; 00000 ; OOOOA02C ; /u/rwppc/examples.

Hid;;

Figure 2-6. Sample Callers Window

The information contained in the Callers window is essentially a "push down"
stack that contains information about the current call stack.

Press the "Line Step• button in the Source window. The ">>"appears on the next
source line, which is now highlighted. Notice the program did not step into the
routine40 function. The Line Step command essentially steps over function calls.

Now press the "Call Step" button in the Source window. This command causes the
debugger to actually enter the called function. The file containing the routine20
function is displayed in the Source window. The first executable source line is
highlighted, and the ">>" indicator shows the source line corresponding to the
current instruction pointer. The Callers window is also updated to reflect the
current debugger context Press the "Line Step" button in the Source window 3
times. The ">>" will be next to the source line "routine30:" , line number 11.

Now press the "Call Step• button in the Source window. The file containing the
routlne3() function is displayed in the Source window. The first executable source
line is highlighted, and the">>" indicator shows the source line corresponding to
the current instruction pointer. The Callers window is again updated to reflect the
current debugger context, routine3.

Single-click on the "routine2" entry in the Callers window. The context is switched
back to the function that made the call, namely routine2(), with the Source window
being updated to show the file and line where the function call was made. The
Callers window is used in this manner to traverse the call stack.

Quick Start 2-9 2-10

Press the "Show IP" button on the Source window. The current IP information is
again displayed in the message area of the Main window. The Source window is
also returned to the current context, which is the function listed at the top of the
Callers window.

Press the "Rel Step" button on the Source window. This returns the debugger
context to the calling function. Notice that the Callers window is also updated as
the stack entry is "poppecf' from the current call stack.

Press the "Ret Step" button again. and the debugger traverses the stack again,
returning to the original caller in mainO.

Now press the "Restart" button on the Source window. The program is essentially
reloaded, and the instruction pointer is reset to the entry point of the program.
Notice the breakpoints that have been saved and the messages that appear in the
Main window.

For the JTAG and ROM Monitor targets, the entry point in this example is in
startup code that has no source files associated with It. Thus the debugger
displays messages that indicate why It is unable to display code in the Source
window.

Press the "Run· button. Since the breaks are still set, the program stops again at
the breakpoint on line 39 in demo1.c.

RISCWatch Debugger Use(s Guide

Altering and Displaying Variables

i! +4
j: +5

Go back to the Main window and press the "Locals" button. The following window
will be displayed:

rlvar: +286331153
show_out: <struct)

Figure 2-7. Sample Locals Window

This window lists all of the defined local variables in the current debugger context,
and their current values. The window contents can be custom tailored in a variety
of ways. Refer to "Variable Configuration" on page 3-64 for a complete description
of the available options. Only a few will be shown in this example.

Press the "Variable Configuration" button on the Locals window. Figure 2-11
shows the window that will be displayed.

Press the "Address" button in the Display info. area.

Single-click on the variable "i" shown in the Visible area. This moves the variable
to the Not Visible area, meaning the variable will no longer be shown. This is used
to reduce clutter of uninteresting variables and also to reduce the number of
variable values requiring refresh when the debugger context changes.

Press the "OK" button in the Variable Configuration window. This applies the
changes and removes the window. Notice variable "i" is no longer shown, and that
the addresses of all the variables are now displayed.

Quick Start 2-11 2-12

Figure 2-8. Sample Variable Configuration Window

Individual variables may also be custom tailored. Single-click on the "show_ou1"
variable in the Locals window. The following window is displayed:

Figure 2-9. Sample Change Struct/Union Window

The "Address" button in the Display info. field is selected because of the previous
Variable Configuration window update. Press the button again to deselect the
"Address" button. Press the "OK" button to apply the change and remove the
window. Notice the Locals window display no longer shows the address of the
show_out variable.

Move the cursor again to the show_out variable and double-click the left mouse
button. Notice that the variable is "expanded" to show another level of detail of the
structure. Double-click on the show_ou1 variable again to show even more detail.

RISCWatch Debugger Use(s Guide

Move the cursor down three lines to the ".name:" variable name, and double-click
on it. Notice that just that variable gets expanded even further.

Single-click on the ".name:" variable. Notice in the Change Array Variable window
that the subrange shown can be tailored. Change the "0,2" to "2,6" and then press
"OK". Now only array elements 2-6 are shown in the Locals window for the
".name:" array.

Single-click on the +2 next to the ".count:" variable. The following window is
displayed:

cLocal Variable Na111e:~···-·-··--·-··~····~-"···-~·1
,show_out.show_in.count I
L --······--·····-·---~--
,--Displa\j

lo Address

lo Size
lo T!:IPe

l
l

1
i
1--~~--·~·--·---·~-h ,, - , ,_,_,,~··-····'
Change value:

Figure 2-10. Sample Change Base Window

Press the "Hexadecimar button in the Value format field. Enter 1 O in the Change
value field, and press "OK". Notice that the display for the ".count" variable is now
in hex, and reflects the decimal value 10 just entered. Single-click on the "r1var:"
variable, and change the Value format to "Hexadecimaf' as well. Press the "OK"
button to change the variable.

Press the "Line Step" button in the Source window. Notice no variables are
updated since "i" was moved to invisible earlier. Press the "Line Step" button

Quick Start 2·13

again. Notice that the variable "show_out.show_in.count" got updated in the
Locals window as the source line was executed.

The Globals window operates in the same manner as the Locals, but contains
variables defined as global in the program.

Debugging at the Assembly Level

2·14

Assembly level debug can be carried out in several ways. One way is via a source
disassembly in the Source window. Another is to use an actual memory
disassembly found in the Assembly Debug window.

Press the "Delete Air button on the Breakpoints window. Notice that all the
breakpoints are cleared in both the Source and Breakpoints windows. Single-click
on the source code of line 47 in the Source window to set a breakpoint. Run to
that breakpoint by pressing the "Run" button in the Source window.

Press the "Call Step" button in the Source window. Notice that the source file
associated wtth the called function, routines, is shown in the Source window.
However, some of the buttons have been disabled, and some warning messages
have been posted in the Main window. Also, no local variable information is
available.

This is a result of stepping into a function that was compiled with no debug
information-a prime example of why tt might be desirable to do assembly level
debug wtth a source level debugger. Notice also that the warning message
presents the opportuntty to return immediately to the calling function in case the
Call Step issued was inadvertent, or the user decides not to step through the
assembly code.

But since you are still reading this, we'll have to assume you are a hard core user
and want to move on! Move the cursor back to the Main window to the "Hardware·
menu bar entry and single-click the left mouse button. Then, single-click on the
"Asm Debug" choice. The following window is displayed:

RISCWatch Debugger Users Guide

OOOOA1DB 9421FFCO
OOOOA1DC 90610058
OOOOA1 EO 80820008
OOOOA1E4 38600005
OOOOA1E8 90640000
OOOOA1EC 30210040
OOOOA1FO 4E800020
OOOOA1F4 00000000
OOOOAl F8 00002040
OOOOA1 FC 80000101
OOOOA200 00000000
OOOOA204 OOOOOOlC
OOOOA208 0008726F
OOOOA20C 7574696E
OOOOA210 65350000
OOOOA214 00000000

Wi

isassembly

stwu
stw
lwz
addi
stw
addic
blr

Rl, OxFFFFFFCO <R1)
R3, Ox00000058 (Rl)
R4, Ox00000008<R2J
R3, 0, Ox0005
R3, OxOOOOOOOO <R4 J
Rl, Rl. Ox0040

** Unknown opcode {0} **
** Unknown opcode (0) **
lwz RO. Ox00000101 (0)

** Unknown opcode {Q) **
** Unknown opcode (0) **
** Unknown opcode (0) **
andis. R20,R11. Ox6%E
or is R21 ... R9,.0x0000
** Unknown opcode {0) **

~~-·''."::;;:;;:::;;;J,Z

f: ··~~-j· Step count Set !AR
L,!i,t~~- I 00000001 11 OOOOAlDB I i.J Fast stopping

Figure 2-11. Sample Assembly Debug Window

This contains a memory disassembly of a number of instructions, beginning with
the one corresponding to the current instruction pointer. Press the "Asm Step•
button in the Assembly Debug window. Notice the current instruction indicator has
moved to the next assembly instruction. Also notice that the "Return Step" button
on the Source window has been disabled.

This is the debugger's way of politely saying that you had your chance to return
easily per the previous warning message, and you chose not to, so you're on your
own getting back!

This can be done either by pressing the "Asm Step" button until the return is
made, or by going back to the source line calling the function and setting a break
after the line and running to it We'll do the former since this function has only a
few instructions.

Press the "Asm S1ep" button until the return is made to the calling function. The
Source window is updated to show the the source file containing the original call.
Notice that the current instruction pointer is still pointing to the line number
containing the call.

Quick Start 2-15 2-16

The source disassembly feature can be used to show why this is the case. Press
the •Mixed source/asm" button in the Source Mode area of the Source window.
This produces a mixed source and disassembly listing in the window. Notice that
there is more than one assembly instruction associated with each source line. In
our example, we returned from the function call, but we're still on the same source
line as the call itsett.

Breakpoints can also be set while in mixed mode. Move the cursor to the "cror
31,31,31" instruction below the routine20 source line and single-click on it. Notice
that the breakpoint is indicated in the Source, Assembly Debug, and Breakpoints
windows.

Press the "Run· button in the Source window. Notice that the current instruction
pointer is updated at the breakpoint address in both the Source and Assembly
Debug windows.

Press the "Source only" button in the Display mode area in the Source window.
Notice that the break is still shown on the source line corresponding to the
assembly line on which the breakpoint was set

Numerous other screens are also useful when doing assembly level debug.
Please refer to the "Quick Reference for the RISCWatch Debugger" on page 3-2
for a list of the available windows.

RISCWatch Debugger User's Guide

Chapter 3. Using the RISCWatch Debugger
RISCWatch is designed to be run in one of several configurations:

Normal mode

The user interacts with the graphical user interface. This is the mode in which
RISCWatch is usually run.

Command file batch mode

RISCWatch runs via commands contained in an ASCII file. A shell script can,
for example, invoke RISCWatch several times with several command files.
The graphical user interface is not available in this mode. See "Command File
Programming" on page 3-94 for more details on how to run RISCWatch in this
mode.

Remote/network debug mode (non-PC host only)

A TCP/IP communications link is used to debug a PowerPC processor
connected to a remote host The graphical user interface is present on the
local host while the remote processor is being accessed via RISCWatch
running on the remote host This mode may be likened to running RISCWatch
in normal mode over a remote login session.

TIY mode (non-PC host only)

This mode allows RISCWatch to be run on a RISC System/6000 workstation
which does not have a graphical user interface windowing system available.
This mode provides a command line interface where commands are typed in
alter a TIY prompt and resulting execution messages are printed to the
terminal. This mode is invoked by starting RISCWatch wtth the -tty command
line option.

Target types currently supported by RISCWatch are described in "Environment
Resources" on page 3-5.

Debugger Facilities
The RISCWatch Debugger has many faciltties that can be used to develop, test,
and debug your evaluation board code and programs. As you find it necessary to
perform certain tasks, this section can be used as a quick lookup of the faciltties
that might be used to accomplish those tasks. Table 3-1 below provides a quick
reference to RISCWatch resources, both in this chapter on general debug
features and in the next chapter on processor-specific debug features.

Using the RISCWatch Debugger 3-1

Table 3-1. Quick Reference for the RISCWatch Debugger

Task or Resource

Setting the Environment
How to initialize the rwppc.env file

Invoking the Debugger
How to bring up the RISCWatch Main Window

Main Window Resources
Overview of menus and windows

Running Your Programs
How to compile. load. and execute programs

Source Level Debugging
How to use the interface to debug your C
source code

OS Open Debugging
How to use the interface to display operating
system information and to control debug
attachment

Managing Breakpoints
How to use the interface and command set to
set hardware and software breakpoints

Applicable Sections

"Environment Resources" on page 3-5

"Invoking the Debugger" on page 3-7
'JTAG Ethernet Targets and the RISCWatch Pro
cessor Probe" on page 3-10

"Main Window Resources" on page 3-11
"Menus" on page 3-12
"Command Line Usage" on page 3-15
"Command History Usage" on page 3-16
"Message Window" on page 3-16

"Preparing the Program for Debug" on page 3-16
"Loading Flies" on page 3-17
'Loading Boot and Boot Image Files" on page 3-18
"Executing the Program" on page 3-20
"Following Program Execution Flow" on page 3-20
"Input Line Usage" on page 3-20

"Source Window" on page 3-23
"Assembly Debug Window" on page 3-26
"Programs Window" on page 3-30
"Callers Window" on page 3-32
'Files Window" on page 3-33
'Functions Window" on page 3-33

'OS Open Debugging• on page 3-35

"Managing Breakpoints" on page 3-39
"Using Software Breakpoints" on page 3-39
'Using Hardware Breakpoints" on page 3-40
'Breakpoints Window" on page 3-41
'Breakpoint Select Window" on page 3-43
"Trigger/Trace Window (400Series Only)" on
page 4-6
"Compound Trigger/Trace Window (400Series
Only)" on page 4-9

3-2 RISCWatch Debugger User's Guide

Table 3-1. Quick Reference for the RISCWalch Debugger

Task or Resource

Reading and Writing Program Data
How to use the interface to read, modify, and
write program variables

Reading and Writing Memory
How to use the interface and command sel to
read, modify, and write processor memory in
many different formats

Reading and Writing Registers
How to use the interface and command set to
read, modify, and write processor registers
and register fields

User-Defined Resources

Applicable Sections

"Reading and Writing Program Data" on page 3-44
"Program Variables" on page 3-44
"Variable Windows" on page 3-60
"Local Variables Window" on page 3-60
"Global Variables Window" on page 3-62
"Formatting Variables Overview" on page 3-45
"Changing Variable Information via Change Vari
able Windows" on page 3-45
"Configuring Variable Information via the Variable
Configuration Window" on page 3-45
"Configuring Variable Information via the Variable
Configuration Window" on page 3-45
"Expanding/Contracting Variable Detail" on
page 3-46
"Variable Configuration" on page 3-64
"Change Variable Windows" on page 3-66
"Change Array Variable" on page 3-67
"Change Base Variable" on page 3-68
"Change Enum Variable" on page 3-70
"Change Pointer Variable" on page 3-71
"Change Struct/Union Variable" on page 3-74

"Reading and Wrifing Memory" on page 3-75
"Assembly Debug Window" on page 3·26
"Memory Access Window (JTAG Target Only)" on
page 3-75
"ASCII Memory Window" on page 3-78
"Custom Memory Window" oo page 3-80
"Cache Windows (JTAG Target Only)" on page 3-82
"Translation Lookaside Buffer Window
(PPC403GC Only)" on page 4-12

"Reading and Writing Registers" on page 3-84
"Register Windows· on page 3-84
"Register Field Windows" on page 3-86

'User-Defined Windows• on page 3·87
"User-Defined Buttons" on page 3-90

Using the RISCWatch Debugger 3-3

Table 3-1. Quick Reference for !he RISCWatch Debugger

Task or Resource

Command Ries
How to create and run command files which
are used to perform repetitious tasks and help
to automate testing

Processor Resources
How to use the interface to perform processor
resets and to read processor status

General Resources
How to use various program resources

RISC Trace
Describes using RISCTrace and the trace
capabilities of 400Series processors

Help
How to use the interface to display the exten
sive on-line information available while
debugging

Applicable Sections

"Command Files" on page 3-92
'Command File Programming" on page 3-94
"Command File Special Expressions" on page 3-95
"Command File Parameters" on page 3-96
"Command File Pseudo-Variables" on page 3-97
"Running a Command File" on page 3-98
"Command File Programming Example" on
page 3-97
"Running a Command File" on page 3-98
"Command File Single-Step Window" on page 3-98

"Processor Resources" on page 3-100
"Processor Reset Window (JTAG Target Only)" on
page 3-100
"Processor Status Window (400Series JTAG Only)"
on page 4-14

"Window Layout" on page 3-102
"Window List" on page 3-102
"Log Files" on page 3-102
"Logging Control" on page 3-103
"Logging User Comments" on page 3-104
'Viewing Log Files" on page 3-104
"Shell Command Window (Non-PC Host Only)" on
page 3-105
'Screen Capture• on page 3-105
"Calculator Window" on page 3-106
"Profiler Window" on page 3-107

'Using RISCTrace (400Series JTAG Processor
Probe Only)" on page 4-2

"Online Help" on page 3-108

It may prove helpful to glance through each of the sections listed in Table 3-1 to
gain an overall picture of the available facilities that RISCWatch offers. Such an
understanding can help you to avoid doing something "the hard way."

3-4 RISCWatch Debugger User's Guide

Environment Resources

RISCWatch employs an environment resources file to specify or configure various
resources. This file, rwppc.env, is designed to allow the RISCWatch user to tailor
program operation to meet specific operating preferences. This file should be
examined and changed where necessary, before RISCWatch is run to ensure that
the environment will conform to your debugging needs.

What follows is a list of the environment resources that can be used in the
rwppc.env file and their functionality.

Resource name Description

TARGET_TYPE

jtag

jtag_eth

rom_mon

os_open

TARGET_NAME

RW_DIR

SEARCH_PATH

jtag, jtag_eth, rom_mon, osopen (one required)
If the target type is osopen, rom_mon, or jtag_eth, refer to
the README file which came with RISCWatch for
information on which version levels of these targets are
required for proper RISCWatch operation.
Each target type is described below.

JTAG target. RISCWatch is connected through a parallel
or Microchannel interface to the JTAG port on the
PowerPC 400Series target system.

JTAG Ethernet target. RISCWatch is connected via
Ethernet to a RISCWatch processor probe. The JTAG
connector of the processor probe is then connected to
the JTAG port on the PowerPC 400Series or PowerPC
6xx target system.

IBM ROM Monitor target. RISCWatch is connected via
Ethernet or SUP to a PowerPC target system running the
IBM ROM Monitor for PowerPC 400Series in debug
mode.

OS Open target. RISCWatch is connected via Ethernet
or SUP to a PowerPC target system running IBM's OS
Open real-time operating system.

Name of target found in TCP/IP services file (required for
JTAG Ethernet, OS Open and ROM Monitor targets)
TCP/IP dotted address may also be used.

A fully qualified path name to the directory in which the
RISCWatch executable and support files reside.

Path names used for source/object search, delimlted by
colons (:) (optional, default= current directory); for a PC
host, the delimlter is a semicolon instead of a colon

Using the RISCWatch Debugger 3-5

CMD_FILE_DIR

LOG_FILE_DIR

CMD_FILE_LOG

EDITOR

ANNOUNCE

STACK_FRAMES

STACK_ SIZE

STACK_ADDR

ADAP _FWARE_FILE

BUFF _FWARE_FILE

A fully qualified peth name to the directory of where to
find RISCWatch command files. Using command files
is described in "Command Fiie Programming" on
page3-94.

A fully qualified path name to the directory of where
RISCWatch is to maintain all log files.

Whether or not the log file will be updated while running
a command file.

The fully qualified name of the program to be called
when a file is edited using either the edit command or
the Edit selection from !ha File Menu.

Whether or not the application notes file (rwppc.ant)
will be displayed on program start.

Indicates !ha number of stack frames to show on the
Callers Window. If not designated, !ha default setting is
twelve.
Indicates the number of bytes to reserve for the stack H
It is not supplied on the load file command. The stack
address is calculated by adding this value to the last
byte loaded on the target. The stack address is forced
word aligned. If not specified, the default stack size will
be set to 161<, provided a stack address Is not
designated (via STACK_ADDR or 'S=' option on the
load command).

Indicates the value to be used for the stack address ff tt
is not supplied on the LOAD FILE command. This value
is ignored H a stack size is designated. USE OF THIS
ENVIRONMENT RESOURCE IS NOT
RECOMMENDED. Designating a stack size is the
preferred method of setting the stack address since
certain applications may define a heap space starting
beyond the stack size.

The name of the file which contains the firmware used
to program the RISCWatch MCA card.

The name of the file which contains the firmware used
to program the RISCWatch buffer card.

SAVE_LA'tOUT Save/restore window layout when ending/beginning
session (yes/no) (optional, default= yes)

APPLPROG_NAME Allows renaming of applprog executable (OS Opan
target only - optional)

RISCWatch Debugger Usefs Gulde

FONT_SIZE

603_DRTRYMODE

Specifies the font size to use in the main window for the
text in the command history and message windows. This
size should be one of 8, 10, 12 or 14.

For 603 processors which are run in Data Retry
(DRTRY) mode, 603_DRTRYMODE must be set to yes
for RISCWatch to operate properly (optional:
default= no).
The PowerPC 603 can be put in DRTRY mode by having
the DRTRY line on the PowerPC 603 negated during the
negation of HRESE'r. Please see the PowerPC 603
User's Manual for more information.

Note: RISCWatch cannot detect that the 603 has DRTRY
mode enabled, nor can it change the DRTRY mode of the
603 processor.

File syntax consists of placing the resource name on a new line, and then
following it with one or more spaces, an equal sign, one or more spaces and then
specifying the resource value.

For example:

RW_DIR = /usr/rwppc

To enhance readability of this file, comment and blank lines are allowed. A
comment can only start in the first column and does so by beginning with the #
character.

Every time RISCWatch is run, it attempts to locate the environment resources file
using the following rules:

1. Check to see if it is in the current directory; if so, use it

2. Check to see if It is in a directory specified by the environment variable PATH;
if so. use it

3. Check to see if it is in the same directory as the executable specified on star
tup; if so, use it, else

4. Print an error message and terminate RISCWatch.

Invoking the Debugger
Before RISCWatch is started for the first time, a few items need to be taken care
of. First, make sure that the RISCWatch executable is in a directory that can be
located by the PATH environment variable. Prior to starting RISCWatch, change
the environment resource file rwppc.env to match the specific target
configuration you plan to use. Below is the complete list of the different target

Using the RISCWatch Debugger 3-7 3-8

types available and a brief description of some of the key steps that need to be
taken. See "Environment Resources• on page 3-5 for additional resource setup
information.

JTAG Target (MicroChannel or Parallel Port Connection):

Verify that the JTAG hardware was installed as defined in the RISCWatch
Debugger Installation Guide.

Verify that the rwppc.env file designates 'TARGET_ TYPE = jtag', as
discussed in "Environment Resources· on page 3-5.

JTAG Ethernet Target (RISCWatch Processor Probe Connection):

Verify that the Processor Probe hardware was installed as defined in the
RISCWatch Debugger Installation Guide.

Verify that the rwppc.env file designates 'TARGET_ TYPE = jtag_eth', as
discussed in "Environment Resources" on page 3-5.

Verify that the rwppc.env file designates 'TARGET _NAME = x ... x', where
'x ... x' is replaced by the TCP/IP name or address chosen for the processor
probe during installation.

Verify proper installation and network recognition of the RISCWatch
Processor Probe. This can be accomplished by 'pinging' the TARGET _NAME
from the host system (ex. 'ping 7.1.1.4').

ROM Monitor Target:

Verify that the host is configured correctly for serial port or Ethernet setup, as
discussed in the configuration section of the evaluation board kit user's
documentation. These instructions describe specific host configuration steps
and other setup (editing /etc/services flies) required by RISCWatch for
successful host/target communication.

Verify that the target ROM monitor is set up in debug mode, as discussed in
the evaluation board kit user's documentation. This typically involves starting
a terminal emulation screen, resetting the board, enabling an ethernet or
serial port boot source, and selecting an option to enable ROM monitor
debug.

Verify that the rwppc.env file designates 'TARGET_ TYPE= 'rom_mon' as
discussed in "Environment Resources" on page 3-5.

Verify that the rwppc.env file designates 'TARGET _NAME = x ... x', where
'x ... x' is replaced by the TCP/IP name or address chosen for the ROM
monitor. See the evaluation board kit user's documentation for more
information about setting up a local address for the ROM monitor.

From the host system, ping the TARGET_NAME to verify proper network and
ROM monitor initialization (ex 'ping 7.1.1.4'). Note that the ROM monitor must
be in debug mode when the ping command is issued.

RISCWatch Debugger User's Guide

OS Open Target

Verify that OS Open is running on the target system. RISCWatch cannot
communicate with OS Open programs that have not called rsld_start().
Loading an OS Open image can be performed using one of the other
RISCWatch targets (see "Loading Boot and Boot Image Files" on page 3-18)
or by using ROM monitor bootp support. See the evaluation board kit user's
documentation and the OS Open User's Guide, listed in 'Related IBM
Publications" on page xxvi of this user's guide.

Verify that the rwppc.env file designates 'TARGET_ TYPE = 'osopen' as
discussed in 'Environment Resources" on page 3-5.

Verify that the rwppc.env file designates 'TARGET _NAME = x. .. x', where
'x ... x' is replaced by the TCPllP address chosen for the OS Open image.

From the host system, ping the TARGET _NAME to verify proper network and
OS Open inltialization (ex 'ping 7.1.1.4').

Under normal circumstances, RISCWatch will be started as described in 'Starting
the Debugger" on page 2-1. RISCWatch does have a few command line
parameters which may or may not have to be specified depending on how you run
RISCWatch. Here is a list of the command line parameters that RISCWatch
understands:

-echo

-help or?

-par

-procNAME

used to echo each command file line as it is executed; use
this to debug command file execution. This option is only
available on a non-PC platform.

used to display the help information for RISCWatch which
lists all of the available command line options

specifies that the parallel port adapter should be used for
JTAG communications to the processor. See the Software
Installation section in the RISCWatch Installation Guide for
variations of this parameter when running under Windows.

tells RISCWatch what processor it is debugging.
Valid processor names are: 403GA, 403GB, 403GC, 602,
603, 603e, 604.
tt is recommended that the -proc flag only be used when
attaching via a JTAG Ethernet processor probe for the first
time, or when switching to a processor which would require
a processor probe driver change. Currently, all PowerPC
6xx processors have separate driver files and the
400Series processors are contained in a single driver file.
Therefore, the -proc flag would be needed when switching
from any PowerPC 6xx processor to another PowerPC 6xx
processor or 400Series processor, or when switching from
any 400Series processor to a PowerPC 6xx processor.

Using the RISCWatch Debugger 3-9

-prog

-rev

-slot

-tty

forces RISCWatch to reprogram the Micro-Channel and
buffer card firmware. This will be needed tt the buffer card
loses power. such as when the adapter cable is
disconnected. (JTAG targets only)

Distinguishes between different 6xx processor revision
levels when connected via the RISCWatch Processor
Probe. The -rev flag must be used when debugging a 6xx
processor in which RISCWatch supports more than one
revision level. For example, if debugging a 603e Rev3
processor, one would use -rev3 to distinguish Revision 3
from other supported revision levels. Once the proper
JTAG driver is loaded into the Processor Probe memory,
the -rev flag is not required.

If RISCWatch only supports one revision level of a given
processor. the -rev flag is not required.

specifies the Micro-Channel adapter slot holding the
RISCWatch adapter card that RISCWatch is to
communicate with; the option is followed immediately by
the number of the slot (for example, -slot3). (JTAG targets
only)

specfies that RISCWatch is to be run in TTY mode. TTY
mode is a command line driven mode of RISCWatch that
does not rely on the user interface for input and output.
This option is only available on a non-PC host.

JTAG Ethernet Targets and the RISCWatch Processor Probe

3-10

The RISCWatch processor probe is an Ethernet-to-JTAG converter, converting
commands sent from RISCWatch to the appropriate series of processor accesses
through the JTAG port of the probe. The probe has a dedicated JTAG controller
chip to drive the JTAG signals in hardware as opposed to a slower, emulated
approach in software.

To talk to RISCWatch, the processor probe contains two programs in its flash
memory: the interface that RISCWatch communicates with (called the
"Generics"), and the underlying specffic JTAG device driver. When a RISCWatch
JTAG Ethernet target is inltially invoked, RISCWatch will check the version of the
Generics and the specific JTAG driver loaded in the processor probe (or
requested with the -proc flag) against the versions of the files located in the
directory specified by the RW _DIR environment variable. If the Generics or JTAG
drivers do not match, the file(s) from the RW_DIR will be loaded into the
processor probe. Because loading the processor probe will corrupt the
processor's JTAG controller, RISCWatch will reset the processor if new drivers are
loaded.

RISCWatch Debugger User's Guide

Note: If you wish to maintain the current processor state, the processor probe
must be disconnected from the target until the correct Generics and JTAG driver
are loaded.

Generics and JTAG driver filenames supported for currently available processors
are included in the README file provided for this version of RISCWatch.

Main Window Resources

RISCWatch employs a graphical user interlace (GUI) that needs to have the host
platform window system running.

When RISCWatch is started, it will bring up the windows specified in the
rwppc.lay file. The first time RISCWatch is run, or at any other time when no
rwppc.lay file is available, the debugger brings up only the main command
window. It is this window, shown in Figure 3-1, that will be used to access all of the
debugger features.

At the top of the window resides the menu bar which contains the names of the
major program access points. Directly below the menu bar is a scrolling window
which maintains a history of all the commands entered through the command line
interlace. Commands in this window can be re-executed or edited and then
executed.

Directly below the command history window is the command line interlace that is
used to send commands to RISCWatch to be processed. The commands entered
here are the same as the ones which may be used in a command file to help
automate development and testing of products using supported PowerPC
processors. For a list of the commands and their syntax, select the Help option
from the menu bar and then the 'Command syntax' menu option.

Directly beneath the command line interface, is the scrolling message window
which maintains a history of all entered commands and their resultant status, help
and error messages. As each command is entered, it is echoed to this window
and will be followed by status or error messages. This format allows all commands
and their resultant actions to be viewed at any time.

Checkboxes located at the bottom of the Main window control and provide access
to several other source level debug windows.

Clicking on a checkbox toggles the state of the corresponding window. If the
window is closed, clicking its checkbox opens the window. If the window is open,
clicking Its checkbox closes the window. When a window is open, its checkbox will
be selected.

Using the RISCWatch Debugger 3-11

srchpath set /u/rwppc/examples
srchpath query
load file Dhrystone

STATUS Stack ptr = Ox0003C170
STATUS Switching debugger context to program

"/u/rwppc/examples/Dhrystone"
STATUS load command completed successfully

Figure 3-1. Sample Main Window

Note: An OS Open checkbox will only be displayed tt the target specified is OS
Open. Also, ii the target is JTAG. an additional Chip pulldown will be present.

Menus

3-12

The RISCWatch menus are used to access those parts of the program which
require interaction with the user. Menu items can be commands or sub-menus.
Selecting an item runs its corresponding command or displays its corresponding
sub-menu.

Menu Items can be selected by clicking on a menu option to pull down the
corresponding menu. Moving the mouse to a menu Item highlights the item.
Clicking on a highlighted Item selects the item. Unavailable selections are
grayed-out. Clicking outside the menu closes the menu without making a
selection.

Clicking on a menu displays a pull-down containing the selections for that
particular menu, as shown in "Main Window Menu Options• on page 3-13.

RISCWatch Debugger User's Guide

Main
Window
Menu
Options

File Menu------- Command File (Seep. 3-98.)
Edit (Seep. 5-37.)
Memory File
Register File
View (Seep. 5-132.)
Quit

Source Menu----- Breakpoints (Seep. 3-41.)
Callers (Seep. 3-32.)
Files (See p. 3-33.)
Functions (See p. 3-33.)
Globals (Seep. 3-62.)
Locals (Seep. 3-60.)
OS Open (Seep. 3-35.)
Programs (Seep. 3-30.)
Source (Seep. 3-23.)

Hardware Menu---- Assembly Debug (Seep. 3-26.)
Compound Trigger(See p. 4-9.)
Memory (See p. 3-75.)

Chip Menu
(JTAG target only)

Utllltles Menu

Register (See p. 3-84.)
Register Fields (See p. 3-86.)
RISCTrace (Seep. 4-2.)
Trigger (Seep. 4-6.)

Processor Reset (Seep. 3-100.)
Processor Status (Seep. 4-14.)

---- Beep Volume (Seep. 5-17.)
Calculator (Seep. 3-106.)
Capture (Seep. 5-26.)
Logging (Seep. 3-102.)
Shell (See p. 5-111.)
Source Mode (Seep. 5-114.)
User-Defined (See p. 3-87.)
Window Layout (Seep. 3-102.)
Window List (See p. 3-102.)

Help Menu------ About
App Notes
Command Syntax
Contacts
Instructions
Registers

Figure 3-2. Main Window Menu Options

Using the RISCWatch Debugger 3-13

File Menu

The menu bar contains the following menus:

File

Source

Hardware

Chip (JTAG target only)

Utilities

Help

What follows is a list of the menus and their selections. Next to each selection is a
brief description of its function.

Command File Run a command file

Edit Edit a selected file (non-PC host only)

Memory File

Register File

View

Quit

Load/Save a memory file

Load/Save a register file

View a selected file

Terminate the program

Source Menu
Breakpoints window

Callers window

Files window

Functions window

Globals window

Locals window

OS Open window

Programs window

Source window

Displays breakpoints

Displays called functions

Displays files in current context

Displays functions in current context

Displays global variables

Displays local variables

Display OS Open threads and status
(OS Open target only)

Displays programs in current context

Displays source file in current context

Hardware Menu

3-14

Asm. Debug

Com Trig

Memory

Register

Reg Fields

Displays the Assembly Debug window

Displays the Compound Trigger window

Displays memory window pull-down

Displays a register access window

Displays a register field access window

RISCWatch Debugger User's Guide

RISCTrace Displays the RISCTrace window
(JTAG target, RISC System/6000 host only)

Trigger Displays the Hardware Trigger window

Chip Menu (JTAG Target Only)
Reset

Status

Displays the Processor Reset window

Displays the Processor Status window

Utilities Menu

Help Menu

Beep Volume

Calculator

Capture

Logging

Shell

Source Mode

User-Defined

Adjust the program error beep volume

Displays the desktop Calculator window

Captures screen contents to a file

Log comments or enable/disable logging

Pass a command to AIX to execute (non-PC host only}

Sets source mode on or off

Loads a user-defined window or buttons definition

Window Layout Loads or saves a window layout

Window List Display window list

About Display RISCWatch version information

App Notes Display the RISCWatch application notes file (rwppc.anf}

Command Syntax Display RISCWatch command syntax

Contacts

Instructions

Registers

Display RISCWatch technical support contacts

Display PowerPC assembly instruction information

Display detailed RISCWatch register information

Command Line Usage

RISCWatch supports a rich set of commands which are used to access processor
resources. thereby facilitating debug of software and hardware. A list of
RISCWatch commands and their syntax is given in the section "Command Quick
Reference" on page 5-2.

These commands may be typed into a command file to be executed by
RISCWatch or used in the user interface via the command line. The command
line is the interface between RISCWatch and the user. It is simply a single-line text
editor that is used to compose commands and their arguments.

Commands that are valid from the command line may also be entered on the input
line, as described in "Input Line Usage" on page 3-20.

Using the RISCWatch Debugger 3-15

The command line understands all alphanumeric keys as well as the Enter,
Backspace, Delete, Insert, Home, End and arrow keys.

Command History Usage

The RISCWatch Main window maintains a list of all commands the program has
executed since It was started. This list consists of a scrollable window located
between the menu bar and command line interface.

Aller more than a few commands have been entered, the scroll bar attached to
the window will need to be used to view the commands which have scrolled off.

By using the scroll bar attached to the window, it is possible to view all the
commands entered since RISCWatch was started. This proves helpful at times to
see the precise order in which the commands were issued.

The command history list is also useful for editing or executing previously entered
commands. To edit a previous command, simply place the mouse over the
command and click the fell mouse button. RISCWatch will place the command on
the command line where It may be edited and executed if desired.

To execute a previously entered command, simply place the mouse over the
command and double-click the left mouse button. RISCWatch will execute the
command as though it had been typed in by the user.

Message Window

The message window is located at the bottom of the RISCWatch Main window.
Every time a command is entered into the command line interlace, It is echoed in
this window. It will then be followed by status or error messages indicating the
result of the execution of the command. Aller a few commands have been
entered, it will be necessary to use the scroll bar attached to the window to view
earlier commands because they have been scrolled off to show the latest ones.

The message window is not editable and is used as feedback to the user as well
as maintaining a history of command usage and status. The contents of the
message window will be very similar to that of a RISCWatch log file, which is
described in "Log Files" on page 3-102.

Running Your Programs

Preparing the Program for Debug

3-16

Generally, for source level debug a program must be compiled with a debug option
selected. Addltionally, no optimization option can be used. Also, the target

RISCWatch Debugger User's Guide

processor architecture must be specified as PowerPC. All libraries used must also
be statically linked into the program unless they already reside on tha target.

For specHics about compiling and linking programs for debugging, refer to the
documentation included with the compiler and linker being used.

For compiling and linking programs intended for use with the PowerPC 400Series
Evaluation Board Kits, refer to the documentation for the kit being used.

Loading Files

Files can be loaded either from the command line in the Main window, or by using
the FileslMemoryFilelLoad pulldown. Reier to the command reference for the
complete list of options available for the load command. Enter the command and
desired options on the command line and hit enter.

To load a file using the load pulldown, select the file to be loaded. Addltional
prompts will be presented to allow the user to specify the file format and any other
applicable options.

For source level debug, loading a file includes both target and host inltialization.
The target embedded system is typically inltialized with the text end data sections
of the file. The host system is initialized with the symbolic debug sections of the
file (symbol table, line table, etc). If the debugger has not been initialized to debug
a program via load, start_thread, attach, or restart, all source level debug
capabilities are disabled.

To facilltate source level debug on applications which are resident on the target
prior to RISCWatch invocation, the load command provides the 'host' keyword
which will load the symbolic debug information on the host without changing the
state of the target system. This method of loading is quite useful when debugging
ROM resident code.

The actions performed during the load are summarized below.

For ROM Monitor and JTAG targets:

1. A load file command will unload ALL previously loaded files.

2. A load host filename command will unload only the filename being loaded, n
It is already loaded.

3. A load host filename must either be statically linked at the desired text/data
locations or the text/data parameters must be supplied with the load com
mand (that is, load information is not retrieved from the target).

Using the RISCWatch Debugger 3-17

For an OS Open target:

1. A load file filename will be assumed to be a dynamic load. A load info will be
issued after the target load. All programs included in the return block will be
loaded on the host. If the target program, that is, the program specnied in the
load command, is already on the host, It will be unloaded and then reloaded.
H other programs are already on the host, they will remain loaded, that is, they
will not be reloaded.

Any other programs loaded on the host but not included in the load info return
block will be left alone.

2. A load host filename must either be statically linked at the desired text/data
locations or the text/data parameters must be supplied with the load com
mand (that Is, load information is not retrieved from the target).

3. A start_thread or attach will behave as the load file except the target will not
be loaded.

Loading Boot and Boot Image Files

3-18

A boot file is defined to be an XCOFF or ELF file which was created with entry
code consistent with an OS Open executable or a PowerPC 400Serles evaluation
board support package executable. This type of executable was never designed to
run successfully on the target system.

The PowerPC 400Series evaluation board support package provides a boot
image program which takes a boot file and creates a boot image file. The boot
image file contains a 32 byte header, followed by a binary image of the loadable
portions of the ELF or XCOFF file. This file may also contain addltional binary
data (controlled by options on the 'boot image' program) which is required for OS
Open use (symbol table, string string table, etc).

To facilltate the user in debugging boot files, the load Ille command attempts to
recognize a boot executable. This is done by looking for the hex number
'004d5054' lour bytes beyond the designated entry point. If this special sequence
is found, RISCWatch will edit the text section of the executable In an attempt to
make the code execute without !ha need of loading the boot image file. In addftion,
the symbol and string table is loaded on the target system H the 'nosym' flag is not
designated. This method of loading has proven to be effective on non-OS Opan
boot files.

It is important to note that the entry code in a boot file load executes differently
from the entry code provided in a boot image file. For this reason, the load Image
command has been added to allow the user to load a boot image file. RISCWatch
will strip off the 32-byte header of the boot image file and load the remaining bytes
of the file on the target. The start address of the load is designated in bytes 3-7 of

RISCWatch Debugger Use(s Guida

the header. Once loaded, the IAR register is set to the value designated in bytes
16-19 of the header.

The following actions and descriptions define three typical debug scenarios using
boot and boot image files

Load and Debug of a Boot File

1. Issue the load file command to load the host and target.

2. This provides ful~function support with restart capability.

3. Entry code Is modified by RISCWatch to allow execution.

Load and Debug of a Boot Image File

1. Issue the load Image command to load the target.

2. Issue the load host command to load the debug information on the host sys
tem.

3. Entry code runs exactly as intended without modification.

4. Program restart is accomplished by reissuing the load Image command.

Load and Debug of OS Open Threads

1. Bring up RISCWatch using the ROM Monitor target.

2. Hide all windows except the Main window.

3. Issue the command attach 42 to inform the ROM Monitor that a process will
be running.

4. Issue the load Image command with the file name of the OS Open boot
image file.

5. Issue the command logoff. The ROM Monitor will exit debug mode and start
the execution of OS Open. tt a terminal emulation screen is up, you should
see the OS Open shell prompt.

6. Select ~ile' on the Main window and then select 'quit' to exit RISCWatch.

7. Edit the environment file (rwppc.env). Change the TARGET_TYPE to
'osopen'. Make sure the TARGET _NAME matches the name or address used
by your OS Open image.

8. Bring up RISCWatch using the OS Open target.

9. Issue a start.thread or attach command to the thread you want to debug.

10. Note that steps 1-6 are required to load OS Open. These steps are not
required if some other method is used to load OS Open.

Using the RISCWatch Debugger 3-19

Executing the Program

Once a file has been loaded successfully, it can be started by issuing the run
command from the Main window, or by pressing the Run button on the Source or
Assembly Debug window. Note that the debugger may not automatically stop
when it gets to the end of the program. Breakpoints or other mechanisms should
be used to prevent the program from running Into non-program memory locations
upon execution completion.

When a program Is initially loaded, the Instruction Pointer will often be pointing to
startup code which has no corresponding source files for the debugger to use. A
message will be dlspla}'9d when this situation occurs. In these cases, a breakpoint
can first be set in the application code and, when it is hit, the debugger context will
be updated for the current Instruction Pointer. The source code will then appear in
the Source window.

Following Program Execution Flow

Program flow is usually followed with a series of actions that cause the program to
start and stop at various locations of interest throughout the code. Some of the
actions that control program execution Include:

1. Setting breakpoints and running to them (run)

2. Stepping one source line (llnestep)

3. Stepping into a function (callstep)

4. Returning from a function (ratstep)

5. Stepping one assembler instruction (asmstep)

6. Restarting a program (restart)

These commands can be executed from the command line, as specified in the
command reference section, or via buttons on the Source and/or Assembly Debug
windows.

Tracing back through execution contexts can be performed using the Callers
window. Refer to the Callers window description and the Quick Start sections for
more details on how these windows and commands can be used to follow
program execution flow.

Input Line Usage

3-20

The RISCWatch input line can used to provide a shortcut method of performing
some user Interface actions. The input line will appear at the top of a RISCWatch
window if the window has locus and a keyboard character is typed which
corresponds to a function >Mlich is supported by that window. Table 3-2 below
describes each of the available functions:

RISCWatch Debugger Users Guide

Table 3-2. Input Une Functions

Kay Function Parameter
Supported
Windows

F12 command line any command line all
command

find forward (find search string specified in find
command) command descrlp-

lion

find backward search string specified in flndb
(flndb command) command descrip-

lion

? find exact (flnde search string specified in flnde
command) command descrip-

lion

scroll to line (llne line number specified in llne
command) command descrip-

tion

scroll to source line source line number Source window
(srcllne command)

The first field of the input line will indicate the function being performed. That will
be followed by an entry field which can to be used to specify any parameters for
the function, if necessary. For example, entering a command valid from a
command line (not all commands can be used from a command line) or searching
for a string in a window can be done in the input line.

For example, typing a 'f character in a window which supports the find command
will display the input line at the top of the window with the first field specifying 'I
[FINDf. In this case the parameter to be entered in the entry field would be the
string to search for.

Typing the enter key will perform the requested function. Typing the ESC key, or
performing any mouse action on another window, will hide the input line with no
action taken.

Refer to Chapter 5, 'Debugger Command Reference,• for detailed information
concerning any of the commands mentioned above.

The input line automatically uses the associated window (the window which had
focus when the input line was brought up) as the window parameter for those
functions which require It. In the case of the Variable Configuration window and
the Breakpoint Select window, which have more than one subwindow, the

Using the RISCWatch Debugger 3-21

[FIHDBJ CllldJlreak

Cllld_Detach(); /sld/sccs/rwppc/lib/src/gui/db_C111ds.
ClllcLDisCint,long,unsigned long.int); /sld/sccs/rwp
ClllcLDown(char•,int); /sld/sccs/rwppc/lib/src/gui/d
Cllld_Event(int,int); /sld/sccs/rwppc/lib/src/rwxvt/
CZ1eFile(char•,int,LW_STRIHG*); /sld/sccs/rwppc/li
I- Cchar*,char*.int,int.int); /sld/sccs/rwppc.
Cllld_Focus<char*>; /sld/sccs/rwppc/lib/src/gui/db_a
ClllcLFoldCint); /sld/sccs/rwppc/lib/src/rwxvt/rw_Clll
Cllld_Freeze(int); /sld/sccs/rwppc/lib/src/rwxvt/rw_
Cllld_Funcd1sp(1nt>; /sld/sccs/rwppc/lib/src/gui/db_

Hide

tions sorted by address
Help

Figure 3-3. Sample Input Line Displayed

subwindow to use for an input line function can be selected by clicking the mouse
in the subwindow (either on an entry or on a blank line) or by selecting a scrollbar
with the mouse if It will result in a scrolling event.

Also for these two windows, selecting one of the 'Move all to .. .' pushbuttons will
select the subwindow to which the move was done as the subwindow to be used
for subsequent input line functions.

H the entry field is left blank for any of the find functions, the last string which was
specified for a find function will be used as the search string to perform a 'next'
type search for the associated window.

Note: On some host platforms, if a control in a window has focus, It may be
necessary to give the window ltseH focus by clicking the mouse on the window
background or tltlebar before It will recognize keyboard characters.

Scrolling Source Window Contents Using the Keyboard

3-22

The data contained in a source level debug window with locus can be scrolled
different ways using the keyboard. Following are the keys which can be used to
scroll data:

RISCWatch Debugger Use(S Gulde

Table 3-3. Keyboard Options for Scrolling

Key Function

Up Arrow Scroll up one line

Down Arrow Scroll down one line

Left Arrow Scroll left one section

Right Arrow Scroll right one section

Page Up Scroll up one page

Page Down Scroll down one page

Home Scroll to top of contents of window

End Scroll to bottom of contents of window

Source Level Debugging

Source Window

The Source window consists of a Source File subwindow with a Status
subwindow, a Source Mode selection groupbox, and pushbuttons. For example,
Figure 3-4 shows the Source window in Mixed source/assembly mode.

The title bar indicates the source file currently being displayed. The file which is
displayed in the Source window can be changed by performing one of the
following actions:

Initiate debugging via a command like load, start_thread, attach, or restart.

If the debugger has not been initialized to debug a program via one of the
above commands, all source level debug capabilities are disabled.

Change the current context as in the case of a breakpoint being hit in another
file or performing an execution command.

Change the current context as in the case of a breakpoint being hit in another
file, performing an execution command, or selecting an entry from the Callers
window.

The title bar will also include the name of the function containing the current
Instruction Pointer if the following is true:

• The Source window was updated as a result of an execution action
completing (stepping, hitting a breakpoint, etc.), and the file in the Source

Using the RISCWatch Debugger 3-23 3-24

88

89
90

91

Ptr _Glob = {Rec_Pointer} fllalloc (sizeof {Rec_T\:tPe)};
000205BC: 38600030 oddi R3. O. 48
000205CO! 4BFHA29 bl s+OxFFFF1A2S<Ox00011FE8>
000205C4! 4FFfFB82 cror 31,.3L31
000205C8: 389EOOOO oddl R4,R30,0
000205CC: 38A30000 oddi R5.R3,0
000205DO: B062007C lwz R3 ... 0x0000007C!R2}
00020504: 90A30000 stw R5.0xOOOOOOOO<R3l

Ptr _Glob->Ptr _Ccrop
00020508: 80A30000 lwz
000205DC: 00840000 lwz
000205EO: 90850000 stw

= Next_Ptr _Glob;
R5. OxOOOOOOOO <R3l
R4. OxOOOOOOOO <R4J
R4 .. OxOOOOOOOO {R5}

* SBP » 000205E4: 80A30000 lwz R5 .. 0x00000000(R3>
000205EB: 38800000 addi R4,.0,.0
000205EC: 90850004 stw R4 ... 0x00000004<R5)

92 Ptr_Glob->var1ant.var_1.Enurn_Corrtp = Ident_3;
000205FO: 80A30000 lwz R5,. Ox00000000<R3>
000205F4: 38800002 addi R4 .. 0"'.2
000205FB: 90850008 stw R4,0x00000008(R5>

93 Ptr_Glob->variant.var_1.Int_Comp = 40;
000205FC: 80A30000 lwz R5,0xOOOOOOOO<R3>
00020600: 38800028 addi R4,0,.40
00020604: 9085000C stw R4,0x00000QOC<R5>

94 strep!::! <Ptr _filob->variant.var _1. Str _Comp,.

r~Source disp. lllOde ! ["'"'ib;-r.w••1

i~-~= =Ian ! j"'R8St6('"f

Figure 3-4. Sample Source Window

lket'ste;;]

rmae '1

window contains the function associated wtth the current Instruction
Pointer.

• The file in the Source window has no debug information.

In regular Source Mode, a source file which is part of the current program is
displayed in the Source File subwindow, wtth the corresponding source line
numbers displayed in the Status subwindow. In Mixed Source/Asm Mode, a
source file which is part of the current program is displayed in the Source File
subwindow, wtth both source lines and assembly instructions displayed.
Assembly instructions appear for each source line which has instructions
associated with tt, directly below the corresponding source line. In this mode the
Status subwindow shows the line number for corresponding source lines, and an
asterisk for assembler lines. The displayed assembly instructions come from the
file image of the loaded program. This differs from the instructions displayed on
the Assembly Debug window, which are determined by reading the target system
memory.

The Source Mode groupbox consists of two buttons, one for Source only and one
for Mixed Source/ Asm. The display mode is changed by selecting the appropriate

RISCWatch Debugger Use(s Guide

button. The button which is on indicates the current mode. If a file is currently
displayed when the display mode is changed, the window will be updated to show
the source file in the new mode. Regardless of whether a file is currently
displayed, any subsequent files which are displayed in the window will be
displayed in the mode reflected by the button which is on in the Source Mode
checkbox.

The Status subwindow shows source line numbers, denotes assembly
instructions with an asterisk, indicates the current Instruction Pointer, and
indicates any instruction breakpoints which are set. A double arrow(>>) is
displayed on the line corresponding to the current Instruction Pointer address. In
Mixed Source/Asm mode, this indicator will appear next to the assembly
instruction associated with the Instruction Pointer address.

The letters 'BP' will appear on the line corresponding to an instruction breakpoint if
the Source window is in Source Only mode. In Mixed Source/Asm mode, the
letters 'SBP' or 'HBP' will appear next to each assembly instruction for which a
software or hardware breakpoint has been set. Breakpoints can be set or deleted
by clicking the mouse in the Source subwindow on a valid line. If in Mixed
Source/Asm mode, breakpoints can only be set by clicking on lines corresponding
to assembler instructions. If a breakpoint cannot be set on a selected line, an error
message will be generated.

If the Breakpoint Mode (selectable via the bpmode command or from the
Breakpoints window) is set to Hardware, breakpoints can only be set on
assembler instructions (requiring Mixed Source/Asm mode). This is because
setting a break on some source lines may require setting breakpoints on multiple
assembly lines associated wrth the source line (the 'for' statement is an example),
and only a finite number of hardware breakpoint registers are available at any one
time.

Directly below the Status subwindow is the processor/process running indicator.
This field indicates whether the processor (in the case of a JTAG target) or
process (in the case of a ROM Monitor or OS Open target) is currently running or
stopped. If the processor/process is running, the Run/Stop button will be titled
"Stop", and the status indicator will be "Running". Pressing the button in this state
will cause the processor/process to be stopped. If the processor/process is
stopped, the Run/Stop button will be titled "Run", and the status indicator will be
"Stopped''. Pressing the button in this state will cause the processor/process lo
run. This is the same functionality which exists on the Assembly Debug window
(see p. 3-28). The status and button state will be updated automatically during
the course of the debug session to reflect any changes in the processor/process
state. If the debugger is currently not attached to and debugging a target, the
status indicator on this window will be a string of periods (" "). If a
processor/process is running, all controls or actions are disabled tor all source
level debug windows except for the processor/process status indicator and the
Run/Stop button on the Source window.

Using the RISCWatch Debugger 3-25

Breakpoints are toggled by clicking on a valid line. If no break is currently set at
the line, a breakpoint is set by clicking on the line, and the bp indicator appears in
the Status subwindow on that line. Conwrsely, if a break is currently set at the
line, a breakpoint is deleted by clicking on the line, and the bp indicator is removed
in the Status subwindow on that line. If a breakpoint is set or deleted from the
source window, the Breakpoints window is updated accordingly.

Assembly Debug Window

3-26

Assembly lewl debug can be carried out in several ways. One way is via a source
disassembly in the Source window. This can be used only when the source file
has been compiled with debug information.

Another way to perform assembly level debug is via the Assembly Debug window.
The Assembly Debug window allows memory to be read, altered and written as
assembly opcodes and disassembled text. This window uses an actual memory
disassembly, so it can be used independent of whether the source exists or was
compiled with debug information.

Refer to "Debugging at the Assembly Lever on page 2-14 tor an example of how
assembly level debug can be performed.

This window is displayed by selecting the Asm Debug option of the menubar's
Hardware pull-down choice. What follows is a description of this window's
functionality.

Page Up/Down buttons

The page up and page down buttons are located along the left hand edge of the
Assembly Debug window. These buttons are used to page through memory.
Clicking on a page button alters the display address by one line or opcode.
Double-clicking on a page button attars the display address by one screen's worth
of data. To display a given address, use the address entry schemes described in
the Data area and Address entry sections.

The page up and page down feature may also be accessed via the keyboard Page
Up and Page Down buttons.

Breakpoint buttons

The breakpoint buttons are located right next to the page buttons and are used to
set and clear hardware or software breakpoints. There is one breakpoint button for
every line in the data area containing the addresses, data words and
disassembled memory.

To set a hardware or software breakpoint for a particular memory address, simply
use the mouse to click on the appropriate breakpoint button. This will set a
hardware or software breakpoint, depending on the current Breakpoint Mode
(selectable via the bpmode command or from the Breakpoints window). For that

RISCWatch Debugger Users Guide

;,;;;.1
c:J:
c;J

- :=.;

»
~~ddress Data ._O_i_s_a_s_s_em_b_l~~~~·~~~~~~~~~~

000205A8 38600030 addi R3. O. Ox0030
000205AC 4BFF1A3D bl ••OxFFFF1A3C(Ox00011FE8l
00020580 4FFFFB82 cror 31. 31, 31
00020584 83C20078 lwz R30, Ox00000078<R2J
00020588 907EOOOO stw R3,0xOOOOOOOO<R30J
000205BC 38600030 addi R3, 0, Ox0030

SBP
Q

000205CO 4BFF1A29 bl >+OxFFff1A28<0x00011FE8J
000205C4 4FFFFB82 cror 31, 31. 31

I:;;;:) 000205C8 389EOOOO addi R4, R30, OxOOOO
I:;;;:) 000205CC 38A30000 addi RS, R3. OxOOOO
;;;;;;J HBP 00020500 8062007C lwz R3, Ox0000007C (R2l

·~
::;;J
>;;;;J

c;J

c·Runww]

G;;-~

00020504 90A30000 stw RS. OxOOOOOOOO <R3 >
00020508 80A30000 lwz RS, OxOOOOOOOO (R3 J
000205DC 80840000 lwz R4.0x00000000(R4J
00020SEO 90850000 stw R4, OxOOOOOOOO (R5l
000205E4 80A30000 lwz R5, OxOOOOOOOO <R3l

rU«·
fiho siei>]

;;;
·····.·.·Read]

~ . : ·
rrrii@€r l

Step count Set IAR
I 00000001 11000205A8 I U Fast stepping

Figure 3-5. Sample Assembly Debug Window

address an 'HBP' or 'SBP' marker appears next to the breakpoint button indicating
that a hardware or software breakpoint has been set for that address.

To clear a breakpoint, simply click on the breakpoint button which has the 'HBP' or
'SBP' marker next to it. This will clear the breakpoint and remove the marker for
that breakpoint button.

IAR cursor

The IAR cursor is used to indicate which memory word is being pointed to by the
IAR register. The IAR cursor appears as the » characters and will point to the
IAR memory address if tt appears in the data area display text.

Data area

The data area for the Assembly Debug window is a large text editing area which
consists of three parts: memory addresses, data words and disassembled text.
The memory addresses are listed sequentially in a column along the left hand
side of the data area. The data words are located in a column adjacent to their
respective memory addresses. The disassembled text consists of each data word
being disassembled and then displayed in the adjacent column.

Each of these areas can be edited thereby allowing addresses or data to be
altered and then written back to memory. Editing one of the memory address

Using the RISCWatch Debugger 3-27 3-28

values allows for the disassembled display of any piece of memory. Simply use
the mouse to place the cursor next to one of the addresses. Then type in the new
address and press the Enter key. The appropriate memory addresses will be read
from memory, disassembled, and then displayed in the data area.

It is also possible to change the memory words or disassembled text. To change a
particular memory word, simply use the mouse to place the edit cursor next to the
desired word. Type in the new word and press the Enter key. The newly entered
value will be written and then the display will be updated with the disassembly text
for the new word.

Similarly, the disassembled text may be edtted by using the mouse to place the
edtt cursor next to the desired text. Type in the new assembly text and press Enter.
The assembler will then be called to create a new memory word which will be
written to the appropriate address. The display will then be updated wtth the newly
created memory word.

Data values entered for new addresses and memory words are expected to be
input in hexadecimal format.

Run/Stop button

The Run/Stop button is used to start the processor/process if tt is currently
stopped, or to stop it tt it is currently running. In the case of a JTAG target, a
processor is run or stopped. In the case of a ROM Monttor or OS Open target, a
process is run or stopped.

Run is used to start or stop a processor/process; Stop is used to stop tt. When a
processor/process is stopped, debugger context is updated based on the current
Instruction Pointer value for the target. H a processor/process is running, all
controls or actions are disabled for all source level debug windows except for the
processor/process status indicator and the Run/Stop button on the Source
window.

The current run/stop state of the processor/process is seen directly below this
button in the processor/process running indicator.This is the same functionality
which exists on the Source window (see p. 3-25). Once memory has been loaded
wtth code and any applicable hardware and/or software breakpoints set, the Run
button would be pressed to start the processor/process running.

If the processor/process successfully starts running, the Run button will change to
a Stop button and the processor/process running indicator will be updated to
indicate running. The processor/process may be stopped asynchronously by
pressing the Stop button. Doing so will change the Stop button to the Run button
and change the processor/process running indicator .

If, while the processor/process is running, a breakpoint is activated, or the
processor/process stops for any reason, the Stop button will change to the Run
button and the processor/process running indicator will be updated to indicate that

RISCWatch Debugger User's Guide

the processor/process is stopped. The IAR field will reflect the current IAR value,
while the data area will display the code at the IAR address and the IAR cursor will
point to the appropriate memory data.

Asm Step button

The Asm Step button is used to single-step the processor/process to execute one
or more 4-byte instruction values. Instruction stepping single-steps the
processor/process starting with the instruction at the memory address referenced
by the IAR. Every press of the Asm Step button will execute the number of
instructions indicated by the value in the Step count field located directly beneath
the Asm Step button.

Step count

The Step count field is used to register a new step count value. This value is used
to determine how many instructions will be single-stepped for every press of the
Asm Step button. To change this step count value, use the mouse to place the edit
cursor in the step count, type in the new count value and then press Enter. The
step count value must be entered in hexadecimal format.

Trigger button (400Series Only)

The Trigger button is used to display the Trigger window which is used to enable
and disable hardware breakpoints. See "Trigger/Trace Window (400Series Only)"
on page 4-6 for information on how to use this window. Hardware breakpoints are
not available for OS Open targets.

Modifying the IAR

The current IAR value may be modified to change the execution sequence of code
that is being debugged using the Assembly Debug window. Use the mouse to
place the cursor in the Set !AR field. Then type in the new !AR value and press
ENTER. This will write the new value to the IAR and update the contents of the
data area to reflect this new code execution point. The IAR value must be entered
in hexadecimal format. When the IAR value is changed, the entire source level
debugger context will be updated for the new IAR value.

Fast stepping (400Series Only)

Fast stepping is used to speed up the execution of single instruction stepping.
This function is controlled by the check box located in the lower right-hand corner
of the window. When the check box is selected, fast stepping is on. By default, fast
stepping is off when the Assembly Debug window is displayed.

When fast stepping is on, there are two limitations to be aware of:

1. Stepping over an RFI, RFCI or SC instruction will not work properly.

2. Stepping over an instruction which has a hardware debug event active or
pending will not be successful.

Using the RISCWatch Debugger 3-29

II these types of instructions must be stepped over, make sure last stepping is off.

Programs Window

The Programs window consists of a Programs subwindow with horizontal and
vertical scrollbars, and pushbuttons.

-) <IP> I /u/rwppc/examples/applprog

Figure 3-6. Sample Programs Window

The Programs subwindow shows a list of all the programs which the debugger
session knows about. The load command is the mechanism by which the
debugger generates program information on the host for a particular program. and
thus becomes 'aware' of the program.

The first field for a program entry is used to indicate which program is currently
active. A '·>' symbol will appear in this field ~the program entry matches the
program which is currently active, otherwise It will be blank. The next field tor a
program entry is used to indicate which program contains the current Instruction
Pointer. A '<IP> ' symbol will appear in this field if the program entry matches the
program in which the current Instruction Pointer is located, otherwise it will be
blank. The last field shows the fully qualified name of the program which was
loaded.

II the mouse is single-clicked on a program entry for a program which is not
currently active, the debugger context will be switched to the new program,
making it the active program. If the new program contains the Instruction Pointer.
and the debugger is attached to the target, all appropriate source debug screens
will be updated to reflect the context at the current Instruction Pointer. If the new
program does not contain the Instruction Pointer. and the debugger Is attached to
the target, the Source, Locals, and Caller windows will be blanked out, and the
Files, Functions, and Globals windows will be updated for the new program. In
these cases the Programs window ftselt will be updated to indicate the new active
program and execution commands will still be valid.

If the debugger is not currently attached to the target (for example, after detaching
from a thread for an OS Open target), the Programs window will still be updated to
show the programs loaded on the host. In this case the source level debug

RISCWatch Debugger Use(s Guide

screens will not be functional, so single-clicking the mouse on an entry will not
affect any source debug screens. The window can still be used, however, to
unload programs.

II the mouse is single-clicked on a program entry for the program which is
currently active (ie., has the'->' symbol next to ft), the selection is highlighted and
the Unload pushbutton will become enabled. The Unload pushbutton will unload
the program from the host debugger, effectively making the debugger unaware of
the programs existence, and preventing the use of any normal source level debug
capabiltties for that program. The target will not be affected by the unload. Any
program on the Programs window can also be unloaded by double-clicking on the
program entry. If a program has been unloaded and you wish to debug it once
again, the load command can be used to make the debugger aware of any
program which is still resident on the target. Refer to the load and unload
commands in Chapter 5, "Debugger Command Reference.•

One example of the usefulness of this function would be for dynamically loaded
programs on an OS Open target. If the OS Open image and the loaded programs
have any function calls to the other, it is possible to use the Programs window to
swttch active programs so that code and variables may be viewed at any time for
each program.

It is also possible to set breakpoints in etther program, tt you wanted to stop in
another program at a certain instruction, or ff you inadvertently stepped into
another program (say, at a place with no debug information) and you wanted to
view the code in the program from which you came (and possibly set a break and
do a run to get back to where you were previously).

Using the RISCWatch Debugger 3-31

Callers Window

3-32

The Callers window lists the names of calling programs and functions in the
current context. This window consists of a scrolling text window and a menu bar,
as shown in Figure 3-7.

Proc_7 ; dhry_2,c ; 00081 ; 00021108 ; /u/rwppc/ex
Proc_3 ; dhry_l.c ; 00348 ; 00020F54 ; /u/rwppc/ex
Proc_l ; dhry__l,c ; 00299 ; 00020E08 ; /u/rwppc/ex
main ; dhry_l,c ; 00163 ; 00020704 ; /u/rwppc/exam
start ; start,c ; 00000 ; 00014038 ; /u/rwppc/exam
~entry ; noname ; 00000 ; 00010404 ; /u/rwppc/ex@

Figure 3-7. Sample Callers Window

The information is presented essentially as a pushdown stack, with the current
(called) function appearing as the top entry. As subsequent function calls are
made, they then appear at the top, and the other functions are listed below.
Similarly, as function returns are carried out. the top entry is removed, and the
others moved up on the screen.

Single-clicking the left mouse button over any given entry causes the debugger to
change context to the selected (caller) function entry. The Source window shows
the source file associated with the given function, and the source line where the
function call was made is highlighted. Similarly, the Locals window variables are
switched back to the variables and values valid at the time of the function call. This
method can be repeated on all of the entries to traverse the entire call chain at any
point in the program execution.

Each Callers entry lists, in order, fields that indicate the function name, the source
file containing the function, the line number of the calling instruction, the return
address of the calling function, the program name, and the stack pointer address.

RISCWatch Debugger Use(s Guide

Files Window

The Files window displays source file names in the current context. This window
consists of a menu bar and a scrolling text window, as illustrated in Figure 3-8.

arcs.c
cat.c
dfn.c
gmon.c
hello.c
io_init.c
lookup.c
panic.c
printgprof.c

Figure 3-8. Sample Files Window

The Files window lists all the source files contained in the executable currently
loaded in the debugger. Single-clicking on any given entry causes that source file
to appear in the Source window. The path the debugger uses to search for the file
is dictated by the settings made using the srchpath command.

The debugger first looks for the source file according to the path specified in the
window. If It is not found there, the search proceeds according to any paths that
were specified via the srchpath command. Source files can also be viewed as
ASCII files using the FilelView pulldown found on the Main window or by using the
view command.

Functions Window

The Functions window consists of a Functions subwindow with horizontal and
vertical scrollbars, a Function Mode selection groupbox, and pushbuttons.The
Functions subwindow displays functions for the current program. The format of the
function entries, and which functions are displayed, depends on the Functions
display mode setting.

The Functions Mode groupbox consists of four radio buttons. Each radio button
can be used to change which functions are displayed in the window (only those
functions with symbolic debug information, or all functions in the program) and
how they are sorted (alphabetically by name, or by ascending address). The

Using the RISCWatch Debugger 3-33 3-34

Functions mode is changed by selecting the appropriate button. The button which
is selected indicates the current mode.

Ox00010000; start; ?
Ox000100E4; s1dbprintf; ?
Ox00010178; calc_speed; ?
Ox0001022C; lcl_putstring; ?
Ox000102C8; strCO"lp; ?
Ox00010344; strcp8; ?
Ox00010364; main; dhry_ibs.c
Ox00010A7C; Proc_1; dhry_ibs.c
Ox00010BBC; Proc_2; dhry_1bs.c
Ox00010C48; Proc_3; dhr8_1bs.c

r·Functions display .octe-····--·-~ ...

I.
':.·.·· Functions wl debug info by n11111e
V Functions wl debug info by addr.
v All functions by name

l:!: .. A.~~!~:L~.-~~'!:!:.:...~-·-
Figure 3-9. Sample Functions Window

When a mode is selected which sorts the function entries by name, each entry will
consist of the function name, followed by an address value, followed by the name
of the source file which contains the function. The entries will be displayed in
alphabetical order by name. When a mode is selected which sorts the function
entries by address, each entry will consist of an address value, followed by the
function name, followed by the name of the source file which contains the
function. The entries will be displayed in order by ascending address.

In all cases the address value in a function entry will be the address of the start of
the function.

When a mode is selected which displays functions with symbolic debug
information, only those functions for which there is symbolic debug information in
the program will appear. Otherwise, all functions in the program will be displayed.

A functions entry can be selected by single-clicking the mouse on a line
containing a functions entry within the window. If the debugger has sufficient
information from the functions entry, the Source window will be updated to show
the file which the function is in, with the source line corresponding to the start of
the function appearing highlighted in the middle of the view.

RISCWatch Debugger User's Guide

-----*** Single-click the mouse on a list entrY: to expand/contract dUfllp info ***
*** Double-click the mouse on a list entr!:I to attach/detach the thread ***

Thread Startina: function State
D Ox329f1c Ox38f54 main SUSPENDED

Ox33c36c Oxa124c shell BLOCKED IN WAIT
Ox35b700 Ox6f07c rsld READY
Ox35cc3c Ox9197c biosenet_rcv_thread BLOCKED IN WAIT
> 1--
) I Thread ID: Ox35cc3c
>I Stairting function! Ox9197c {biosenet_rcv_thread)
>I Thread state: BLOCKED IN WAIT errno: CO> Operation successful {ESUCC
>I Blocking SEMAPHORE: Ox0035cde0
>I Stacksize: 4096 Detaich state: JOIHAELE Contention scope; PROCESS
>I Inherit s:ched: DEFAULT Scheduler: FIFO Priorit~: 26 Base prioritB:
>I Registers:

Figure 3-10. Sample OS Open Window

A breakpoint can be toggled by double-clicking on a function entry. If the function
associated with the function entry has symbolic debug information, the necessary
breakpoints corresponding to the first executable line of the function will be
toggled. If the function does not have symbolic debug information, a breakpoint
will be toggled at the address of the start of the function (which is the address
value in the entry). Regardless of the function mode setting, the Breakpoint Mode
setting (selectable via the bpmode command or from the Breakpoints window)
determines whether hardware or software breakpoint processing will be used.

OS Open Debugging

The OS Open window is used to display operating system construct information
and control debug attachment for an IBM OS Open Real-time Operating system
program image. The OS Open window is available only if OS Open is specified as
the target in the RISCWatch environment file.

The OS Open window consists of a subwindow with horizontal and vertical
scrollbars and a number of pushbuttons used to dynamically load a file,
starVkilVdetach an OS Open thread, and display OS Open construct information.

The subwindow displays information relevant to the construct display pushbutton
which was last selected. For some constructs, single-clicking the mouse on a list
entry will display more specific information immediately under the entry, or will
contract this information if It is already displayed. There will be a message at the

Using the RISCWatch Debugger 3-35 3-36

top of the display window ff the expansion/ contraction function is available for the
current display.

Note: In general, the contents of the subwindow will not be automatically updated
as the application runs on the target. In each case, when a display pushbutton is
selected, or a single-click is performed for a construct which supports It, the latest
information for the entire window will be retrieved from the target and displayed.

Following are descriptions of the pushbuttons in the OS Open window:

Load Module button

This pushbutton brings up the Load Module window. Entering the name of a file
which is located on a file system mounted on the target OS Open system causes
that file to be dynamically loaded by OS Open into the target. Also, the file to be
loaded must be located in the current RISCWatch search path. A thread
corresponding to the entry point for the program loaded will be queued. A
breakpoint will be put at this entry point and the debugger will be initialized to
debug this thread.

Note: for OS Open systems with Virtual Memory support: Unless otherwise
specified, newly loaded modules will be loaded into a new thread group. To
specify an existing thread group, use the load file command's tg parameter.
For example, to load module /faVcat.ld into thread group Ox5435770, type:

/faVcat.ld tg=Ox5435770

Start Thread button

This pushbutton brings up the Start Thread window. Entering a function name
which is part of the target program image will initialize a source mode debug
session with OS Open.

A thread corresponding to the specttied function will be queued, with a breakpoint
set at the entry of the function.

Notes:
RISCWatch cannot be used to debug the OS Open shell.

For OS Open systems with Virtual Memory support: Unless otherwise specified,
newly started threads will be started in a new thread group. To specffy an existing
thread group, specify the thread group id after the function name. For example, to
start the thread my_hello_world in thread group Ox5435701, type:

my_hello_world Dx5435701

Detach Thread button

This pushbutton ends the source mode debug session with OS Open by
disconnecting from the thread which is currently being debugged. The thread will
continue to run normally on the target.

RISCWatch Debugger User's Guide

Kill Thread button

This pushbutton ends the source mode debug session wrth OS Open by
destroying the thread which is currently being debugged.

Threads button

This pushbutton lists each thread in the OS Open system in the display
subwindow. II a thread is currently being debugged, a 'D' will appear in the first
column of the list entry. If the mouse is double-clicked on a thread list entry, the
thread will be attached ii rt is not already being debugged, or detached if rt is
currently being debugged.

Note: RISCWatch cannot be used to debug the OS Open shell.

II the mouse is single-clicked on a list entry which is not already expanded, the
window display will be expanded to show detailed information about that specific
thread directly below the thread list entry. II the mouse is single-clicked on a list
entry which is already expanded, the detail for that list entry will be contracted.

Mutexes button

This pushbutton lists each mutex in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific mutex directly below the mutex list entry. If the mouse is
single-clicked on a list entry which is already expanded, the detail for that list entry
will be contracted.

Condition Variables button

This pushbutton lists each condition variable in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific condition variable directly below the condition variable list
entry. If the mouse is single-clicked on a list entry which is already expanded, the
detail for that list entry will be contracted.

Semaphores button

This pushbutton lists each semaphore in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific semaphore directly below the semaphore list entry. If the
mouse is single-clicked on a list entry which is already expanded, the detail for
that list entry will be contracted.

Timers button

This pushbutton lists each timer in the OS Open system in the display subwindow.
If the mouse is single-clicked on a list entry which is not already expanded, the

Using the RISCWatch Debugger 3-37

window display will be expanded to show detailed information about that specific
timer directly below the timer list entry. If the mouse is single-clicked on a list
entry which is already expanded, the detail for that list entry will be contracted.

Message Queues button

This pushbutton lists each message queue in the OS Open system in the display
subwindow. If the mouse is single-clicked on a list entry which is not already
expanded, the window display will be expanded to show detailed information
about that specific message queue directly below the message queue list entry. II
the mouse is single-clicked on a list entry which is already expanded, the detail for
that list entry will be contracted.

Memory Pools button

This pushbutton lists each memory pool in the OS Open system in the display
subwindow.

Heaps button

This pushbutton lists each heap in the OS Open system in the display subwindow.

FLIHs button

This pushbutton lists each first level interrupt handler in the OS Open system in
the display subwindow.

Signals button

This pushbutton lists each signal in the OS Open system in the display
subwindow.

Libraries button

This pushbutton lists each registered library in OS Open system in the display
subwindow.

Thread Group List button

This pushbutton is only available if the target is an OS Open system wtth Virtual
Memory support. It will list each thread group in the OS Open system in the
display subwindow.

If the mouse is single-clicked on a list entry which is not already expanded, the
window display will be expanded to show detailed information about that specific
thread group directly below the thread group list entry. tt the mouse is single
clicked on a list entry which is already expanded, the detail for that list entry will be
contracted.

Hide button

This pushbutton hides the window.

RISCWatch Debugger Users Guide

Help button

This pushbutton accesses the help information for the OS Open window.

For more information on the OS Open Real-Time Operating System, refer to
"Related IBM Publications" on page xxvi.

Managing Breakpoints

Breakpoints within RISCWatch fall into two categories:

Software breakpoints

Hardware breakpoints

Software breakpoints are implemented by replacing the instruction at the
breakpoint address with a trap instruction. Hardware breakpoints make use of the
debugging features designed into specific PowerPC processors. When the
processor/process stops, all the trap instructions are replaced with the original
instructions residing at the breakpoint addresses.

Note: For PowerPC 6xx processors connected via a JTAG target, hardware
breakpoints cannot be used tt software breakpoints are set and, conversely,
software breakpoints cannot be used if hardware breakpoints are set. Hardware
breakpoints are not available on OS Open targets.

Using Software Breakpoints

Software breakpoints can be set or cleared in a number of ways using the
RISCWatch Debugger windows. Note that the Breakpoint Mode must be set to
Software mode (see bpmode on page 5-23).

1. Source window

Software breakpoints can be set and cleared in the Source window by moving the
cursor to the targeted source line and then single-clicking the left mouse button.
An indicator will appear next to the line number of the target source line. Similarly,
an existing breakpoint can be cleared by single-clicking on the line. The
single-clicking toggles the breakpoint setting for a target source line.

If in mixed/source and assembly mode, the breakpoints can be set and cleared
the same way, w~h the target line in this case being an assembly instruction
instead.

2. Breakpoints window

Software breakpoints can be viewed and cleared from the Breakpoints window.
Double-clicking on an entry will clear the breakpoint. Single-clicking on an entry

Using the RISCWatch Debugger 3-39

will highlight the entry and enable clearing by then pressing the Delete button. The
Delete All button can be used to delete all current breakpoints.

3. Assembly Debug window

Software breakpoints can be set and cleared from the Assembly Debug window
by single-clicking on the buttons along the left side of the disassembly entries.
This action also toggles the breakpoint each time it is performed.

4. Functions window

Software breakpoints can be set and cleared from the Functions window by
double-clicking the cursor on a function entry. A breakpoint will be toggled at the
first executable line of the function tt the function has symbolic debug information.
A breakpoint will be toggled at the address of the start of the function if the
function does not have any symbolic debug information.

Setting Software Breakpoints with the bp Command

To set a software breakpoint, you can use a bp command along with the address
of the instruction to stop at and RISCWatch takes care of the rest. For example, to
stop just prior to the execution of the instruction at address OxFFFC0004, issue
the following command:

bp set OxFFFC0004

The processor/process could then be started using the run command. If the
processor/process were to try and execute the instruction at this address, the
processor/process would stop and an event would be generated which
RISCWatch would detect. It would then be possible to examine the state of the
processor.

To clear this software breakpoint, simply issue the command

bp clear OxFFFC0004

See bp on page 5-19 in the Command Reference for a detailed description of
available functionality.

Using Hardware Breakpoints

Hardware breakpoints can be set or cleared in a number of ways using the
RISCWatch Debugger windows. Note that the Breakpoint Mode must be set to
Hardware mode (see bpmode on page 5-23).

1. Source window

Hardware breakpoints can be set and cleared in the Source window only when
the source screen is in mixed source/assembly mode. Single-clicking the left
mouse button on the targeted assembly instruction will atternately set and clear

RISCWatch Debugger User's Guide

the breakpoint. An indicator will appear next to the target line in the line number
field when the breakpoint is set.

2. Breakpoints window

Hardware breakpoints can be viewed and cleared from the Breakpoints window.
Double-clicking on an entry will clear the breakpoint. Single-clicking on an entry
will highlight the entry and enable clearing by then pressing the Delete button. The
Delete All button can be used to delete all current breakpoints.

3. Assembly Debug window

Hardware breakpoints can be set and cleared from the Assembly Debug window
by single-clicking on the buttons along the left side of the disassemblY entries.
This action also toggles the breakpoint each time It is performed.

"Trigger/Trace Window (400Series Only)" on page 4-6 and "Compound
Trigger/Trace Window (400Series Only)" on page 4-9 provide descriptions of other
(processor-specific) windows for handling hardware breakpoints.

Setting Hardware Breakpoints with the bp Command

RISCWatch allows access to the available hardware registers used to control
breakpoints through the use of the bp command. This type of access allows for
the usage of native processor debugging facillties to control when a running
processor will be stopped. This access is dependent on the processor being used
and the available functionallty may vary.

Breakpoints Window

The Breakpoints window consists of a Breakpoint subwindow with horizontal and
vertical scrollbars, a Breakpoint Mode selection groupbox, and pushbuttons. The
Breakpoint subwindow displays any breakpoints that are currently set.

The Breakpoint entry contains information about the breakpoint, with each field
separated by a semicolon. If the entry is for an Instruction breakpoint, the first field
contains the letter 'H' or 'S' to indicate a Hardware or Software breakpoint,
respectively. The next fields in order show the address of the breakpoint, the
function containing the breakpoint, the file containing the breakpoint, the line
number in the file which the breakpoint is set at, and the program which the
breakpoint is set in. If the values of any of the fields cannot be determined by the
debugger they will designated by values of zero in the case of numbers and '?' in
the case of strings.

If the entry is for a Data breakpoint, the first field contains the letter 'D'. The next
fields in order show the Data Address Compare value, the Data Address Compare
register used, the Data Address Compare Write/Read enable, and the Data
Address Compare size.

Using the RISCWatch Debugger 3-41

s
s
H
H
D
D

3-42

Ox000205E4 main :
Ox00020EA4 Proc_2
Ox00020FAC Proc_5
Ox00020780 main
Ox0003COBO DAC1 :
Ox0003C054 DAC2 ;

dhry_1.c ; 00091 ; /u/rwpp
; dhry_1.c ; 00324 ; /u/rw
; dhry_1.c : 00368 : /u/rw
dhrii-1.c ; 00160 : /u/rwpp
Read/Write : All Bits
Read ;

Hide

Ignore 2 LSB

! Delete AH I
~

Figure 3-11. Sample Breakpoints Window

Breakpoints may be set or deleted in several ways during a debug session. In
each case the Breakpoints window will be automatically updated to reflect the
currently set breakpoints.

A breakpoint can be selected by single-clicking the mouse on the on a line
containing a breakpoint entry within the window. This will cause the breakpoint
entry to become highlighted. For an Instruction breakpoint, H the debugger has
sufficient information from the breakpoint entry, the Source window will be
updated to show the source file in which the breakpoint is set, with the source line
which the breakpoint is set at appearing highlighted in the middle of the view. No
attempt will be made to update the Source window for a breakpoint with an
unknown program (program field is '?'). The AssemblY Debug window will also be
updated when an Instruction breakpoint entry is selected to display memory
starting at the address of the breakpoint. Single-clicking on an already selected
breakpoint entry will deselect It.

The Delete pushbutton is disabled unless a breakpoint entry is selected, at which
time It is enabled. Pressing the Delete pushbutton will cause the selected
breakpoint to be deleted. A breakpoint can also be deleted by double-clicking on
the breakpoint entry. When an Instruction breakpoint is deleted, the Breakpoints
window and the Status subwindow in the Source window will reflect the current
status.

The Delete All pushbutton will delete all current breakpoints.

The Breakpoint Mode groupbox consists of two buttons, one for Software BPs and
one for Hardware BPs. The Breakpoint mode is changed by selecting the

RISCWatch Debugger lJse(s Gulde

appropriate button. The button which is on indicates the current mode. When in
Software mode, breakpoints are set by writing trap instructions in place of
program instructions. When in Hardware mode, breakpoints are set via the
hardware debug registers of the target processor. An example of the use of
Hardware breakpoints would be if you were debugging code resident in read only
memory, where software traps could not be written.

There are a finite number of hardware breakpoints available. The number is
based on the target processor and is dependent on how many hardware debug
registers It has. Error messages will be generated if attempts are made to set
Hardware breakpoints and none are available.

If the mouse is single-clicked on an Instruction breakpoint entry which
corresponds to a program which is currently not active, the debugger context will
be switched for the new program, making it the active program. If the new program
contains the Instruction Pointer, all appropriate source debug screens will be
updated to reflect the context at the current Instruction Pointer. If the new
program does not contain the Instruction Pointer, the Source, Locals, and Caller
windows will be blanked out, and the Files, Functions, and Globals windows will
be updated for the new program. Refer to the Programs window description for
more information on debugging with multiple programs simultaneously.

The RISCWatch Debugger also uses the bp command to manage both types of
breakpoints. Sea bp on page 5-19 for further details.

See "Triggerffrace Window (400Series Only)" on page 4-6 and "Compound
Triggerffrace Window (400Series Only)" on page 4-9 for addttional RISCWatch
debugging windows that manage PowerPC 400Series hardware breakpoints.

Breakpoint Select Window

The Breakpoint Select window appears when an attempt is made to set or delete
a breakpoint wtth the mouse on a source line in the Source window, and that
source line corresponds to multiple functions in the program. An example of when
this situation could exist is when debugging source code containing C++
templates. The Breakpoint Sela'! window can then be used to set or remove
breakpoints for particular functions associated wtth the selected source line.

The window consists of a BP Set subwindow wtth horizontal and vertical
scrollbars, a BP Not Set subwindow with horizontal and vertical scrollbars, and
pushbuttons.

The BP Set and BP Not Set subwindows are used to select the functions for which
breakpoints related to the chosen source line will be set. If breakpoints are
currently set for an associated function, its name will initially appear in the BP Set
window. If breakpoints are not currently set for an associated function, tts name
will inttially appear in the BP Not Set window.

Using the RISCWatch Debugger 3-43

BP Set

LW_DARRAY <FULL_FH_BRKPT> : : LW_DARRAY
LW_DARRAY <DBG_PGM_EHLl'1> : : LW_DARRAY (
LW_DARRAY <DBG_PG!_STRUCT_UNION>: : LW.
LW_DARRAY<DBG_PGM_LOCAL_VAR>:: LWJ)A
LWJ)ARRAY <DBG_PG!_GLOBAL_VAR>:: LW_D
LW_DARRAY <DBG....BP _mm> : : LW_DARRAY (c

BP Not Set

ttl~~~~~~~~~n~~;~;;t~~~~~~ !fl
LWJJARRAY <SLD_ADDR>:: LW_DARRAY <cons
LWJ]ARRAY <DBG_PG1• > : : LW_DARRAY <DBG_
LWJ)ARRAY <ADEPT jtSG> ! : LWJ)ARRAY (con
LW_DARRAY <DATURKPT>:: LWJJARRAY <co
LW_DARRAY <HAR!l_IHSTBRKPT>:: Ll>LDARR
LW_DARRAY <SOFT _!HSTBRKPT> : : LIJJJARR
LWJJARRAY <DBG_PGM_LINE>:: LWJJARRAY (
LWJJARRAY<DBG_PGM_FILE>:: LW_DARRAY <
LW_DARRAY <DBG_PGl•L \/AIL TYPE>: : LWJ]AR
LWJJARRAY <DBG_PGM_FCH>: : LW_DARRAY (c
LW_DARRAY <DBG_?GM_ \IAILRAHGE> : : LW_DA

Figure 3-12. Sample Breakpoint Select Window

Single clicking the mouse on a function in one of the subwindows will move It to
the other subwindow. The Move All to BP Set pushbutton will move all the
functions to the BP Set subwindow. The Move All to BP Not Set pushbutton will
move all the variables to the BP Not Set subwindow.

If the information on the Breakpoint Select is applied via the OK pushbutton, the
appropriate breakpoints for the selected source line will be set for each function
currently listed on the BP Set subwindow. Also, associated breakpoints will be
removed if a function is in the BP Not Set subwindow at the time the changes are
applied and It inltially had breakpoints set. The Cancel pushbutton is used to
close the window without applying any changes.

Reading and Writing Program Data
Many methods of updating and viewing data are provided by the RISCWatch
Debugger. They can be used by themselves or in concert with others to provide a
wide range of options on how the data is presented.

Program Variables

3-44

Program variables can be viewed and updated using the Locals and/or Global
windows. See "Local Variables Window" on page 3-60 and "Global Variables
Window" on page 3-62 for detailed descriptions of these windows.

RISCWatch Debugger User's Guide

One option is to present the address of the variable. This address can then be
used in conjunction with other commands and screens to provide addltional ways
to view and update the 'variable' contents.

Once the address is known, the program variables can also be viewed and altered
using the read and write commands from the command line on the Main window.

Formatting Variables Overview

Objects in the Locals and Globals windows may be reformatted in a variety of
ways, depending on their type.

Changing Variable Information via Change Variable Windows

Single-clicking the left mouse button on a variable entry in the Locals or Globals
window will select the variable and open the Change Variable window appropriate
for the type of the selected variable (integer, structure etc,), The Change Variable
windows are used to configure variable information for an individual variable.
There are Change Variable windows for each major variable type:

"Change Array Variable" on page 3-67
"Change Base Variable" on page 3-68
"Change Enum Variable" on page 3-70
"Change Pointer Variable" on page 3-71
"Change Struct/Union Variable" on page 3-7 4

The following information may be customized for variables via the Change
Variable windows (note: the information which may be customized for a particular
variable is dependent on that variable's type):

• Display Information (Address, Size and Type)
• Variable Detail (Expand/Contract)
• Value Format (Hexadecimal, Binary, Octal etc.)
• Change Value
• Change Subrange
• Change multiple instances of a variable within an array

Configuring Variable Information via the Variable Configuration Window

Selecting the Var.Contig pushbutton on the Locals or Globals window will open
the Variable Configuration window for those variables. The Variable Configuration
window is used to change variable information for all local or global variables.
Refer to "Variable Configuration" on page 3-64 for detailed information on this
window.

The following information may be configured for local or global variables via the
Variable Configuration window:

Using the RISCWatch Debugger 3-45

• Which variables are visible
• Display Information (Address, Size and Type)
• Read Mode (Automatic/Manual)
• Compiler variables (Hide/Show)

Expanding/Contracting Variable Detail

The level of detail for an individual variable on the Locals or Globals screen can be
expanded or contracted. One way to change the variable detail is from the
Variable Detail groupbox available on some Change Variable windows. Another
shortcut method of changing the variable detail for a variable is to double-click the
left and right mouse buttons on a variable entry line within the Locals or Globals
variable window itself.

Double-Clicking the left mouse button on a structure, pointer, or union variable
entry expands the variable detail one level if it is expandable and It has not already
been fully expanded. You can continue to expand the variable detail another level
by continuing to double-click on the variable entry.

Double-Clicking the right mouse button on a structure, pointer, or union variable
entry contracts the variable detail to the point which was clicked on. Subsequent
expansion of the variable at this point will result in the variable being expanded to
the level of detail which It was at when It was contracted.

Formatting Examples

Following are some examples of how to manipulate the variable information which
is displayed on the Locals or Globals variable window:

Expansion/Contraction from Locals or Globals window

Consider the following (unexpanded) structure variable entry on a Locals or
Globals variable window:

show_out: <struct Struct_Outer>

Figure 3-13. Sample Unexpanded Structure Variable

Double-clicking the left mouse button on this variable line will result in expanding
the structure to show the individual elements:

show_out: <struct Struct_Outer)
.show_in: <struct inside)
+variant: <union>

Figure 3-14. Sample Expanded Structure Variable

RISCWatch Debugger User's Guide

Double-clicking the left mouse button again on the same line will continue to
expand by one level each data element of the structure:

show_~ut: <struct Struct_Outer>
.show_in: <struct inside>

.count: +928 (int>

.name: <arra~[10J of char>
.variant: <union)

.var_1: <struct>

.var_2: <struct>

.var_3: (struct)

Figure 3-15. Further Structure Variable Expansion

Note that we could have chosen above to only expand one of the data elements of
the structure by moving the mouse to that specific element (.show_in, say) and
double-clicking the left mouse button on it. We can demonstrate this ability to
expand an individual element by now double-clicking the left mouse button on the
(now visible) .name array element of the nested .show_in structure:

show_out: <struct Struct_Outer)
.show_in: <struct inside>

.count: +928 <int>

.name: <arra~[10] of char>
[OJ : '\xO' <char>
[1J: '\x2' <char>
[2J: '1.' <char>

,variant: <union>
.var_1: <struct)
.var_2: <struct>
.var_3: <struct>

Figure 3-16. Single-Element Structure Variable Expansion

Note that in this case the expansion took place from the line which was
double-clicked on. Also, because this was an array and not a structure, the
elements are listed by array index. In this case, only the first three elements of the
array were shown when tt was expanded, which is the default setting for arrays
wtth three or more elements. The subrange to view for an array can be changed
via the Change Array Variable window which is opened by single-clicking the left
mouse button on the array variable entry. (Seep. 3-67.)

Using the RISCWatch Debugger 3-47

Now, we can demonstrate the ability to contract variable elements by
double-clicking the right mouse button on the .show_in element. This will contract
the variable information displayed up to this element.

show_out: <struct Struct_Outer)
.show_in: <struct inside>
.variant: <union>

• var _1: <struct>
.var_2: <struct>
,var_3: <struct>

Figure 3-17. Structure Variable Contraction

The next time the .show_in element is expanded, it will be expanded to the level of
detail to which it was previously expanded above.

Using these techniques, variables consisting of complex data elements can be
customized to show various levels of detail for each data element comprising the
variable.

Displaying ASCII Strings

3-48

Consider the following variable which is a pointer to type char on a Locals or
Globals variable window:

Str_i_Par_Ref: Ox0002E248 (ptr to char>

Figure 3-18. Sample Pointer Variable

Single-clicking the left mouse button on this variable line will open the Change
Pointer Variable window. (Seep. 3-71.) One of the options under Value Format is
ASCII string. Selecting this format and applying the change will result in the
variable entry being updated to show the ASCII string being pointed to:

Str_1_Par_Ref: Ox0002E248->'DHRYSTOHE PROGRAM, 1'ST STRING'

Figure 3-19. Sample ASCII String Display

RISCWatch Debugger Users Guide

Variables of type char can also be used as the initial point for an ASCII string
display. Consider the same string being displayed as an array of characters
(expanded to show the first few elements):

Str_1_Par_Ref: Ox0002E248 <ptr>
[QJ: 'D'
[1J: 'H'
[2J: 'R'
[3]: 'Y'

Figure 3-20. Sample Character Array

Single-clicking the left mouse button on any of the character variable entries will
open the Change Base Variable window. (See p. 3-68.) One of the options under
Value Format is ASCII string. Selecting this format and applying the change will
result in the character variable entry being updated to show the ASCII string being
pointed to, starting from the address of the variable. In this case it would probably
make most sense to choose the first element of the array, resulting in the following
format change:

Str_1_Par_Ref: Ox0002E248 (ptr>
[OJ: 'DHRYSTONE PROGRAM, l'ST STRING'
[1]: , w
[2] : 'R'
[3]: 'Y'

Figure 3-21. Sample Array Element Display

Note that in either case of using a pointer or a char as the basis for displaying the
string, the debugger will display characters starting from the address of the
variable until a NULL character is reached in memory or an internally defined
maximum length is reached (in which case the debugger will append a NULL
character as the last character).

Handling Multiple Data Elements Referenced by a Single Pointer

Suppose we initialize a data pointer to point to a memory buffer which has been
allocated for the purpose of holding a number of identical data structures.
Typically, then, individual buffer elements can be manipulated by the program by
using pointer arithmetic with the pointer value. It could normally then be
cumbersome to view and change any of the various individual data elements in
the buffer. RISCWatch provides a way to simplify this task.

Consider the following variable which is a pointer to type struct record on a
Locals or Globals variable window. It is used to reference individual elements of a

Using the RISCWatch Debugger 3-49 3-50

buffer containing muttiple struct record instances, and points to the beginning of
the buffer:

Ptr_Glob: Ox00335DEF (ptr to struct record>

Figure 3-22. Sample struct record Pointer Display

Normally, ff we were to expand this pointer, it would only expand one instance of
the structure at the address which it is currently pointing to:

Ptr_Glob: Ox00335DEF <ptr to struct record>
->: <struct record>

.Ptr_C0!11p! NULL (ptr to struct record

.Discr: +O STRUCT_O <enum>

.variant: <union>

Figure 3-23. Sample lnttial struct record Pointer Expansion

What we want to do is to be able to manipulate individual records. RISCWatch
supports this abiltty by allowing a pointer variable entry to be expanded as an
array (with a specified number of elements), with each element of the array
subsequently being of the type which the original pointer is pointing to.

Single-clicking the left mouse button on this variable line for the original pointer
will open the Change Pointer Variable window. One of the options under Value
Format is Show As Array. Selecting this format option changes the entry field at
the bottom of the window so that an array subrange (with the first element having
the address of the pointer value) may be specified.

RISCWatch Debugger Users Guide

In this case we'll specify the first three elements [0,2):

Displ<111 info. --.....,,,....,.,alue for,.at

0 Address • Show as Array
0 Size <;>Show as Ptr
1111 Type Q ASCII string

iable detai I
<;I tlore detail
v Less detail

• Lea...e detail

<> lW!signed
¢'Signed
(>Octal
<;I Hexadecimal

(>Binar1i

(>Default

Change aN'a\I subrange: Limits = [0,?J

0,~

I OK

Figure 3-24. Changing Pointer Variables

Applying the changes will result in the variable entry being updated to show an
array of three data structures, each representing one of the indMdual data
elements in the buffer.

Ptr_Glob: Ox00335DEF (ptr to struct record>
[OJ: <struct record)
[lJ: <struct record>
[2J: <struct record>

Figure 3-25. Sample Pointer Variable Shown as an Array

Using the RISCWatch Debugger 3-51

Now each individual array element can be manipulated according to the treatment
for that type.

Ptr_Glob: Ox00335DEF (ptr to struct record>
[OJ: <struct record> @00335DEF

.Ptr_Corop: HULL (ptr to struct record>

.Discr: +O STRUCT_O <enum> @00335DF3
,variant: <union> @00335DF7

.var_1: <struct> @00335DF7

.var_2; <struct) @00335DF7
,var_3: <struct> @00335DF7

C1J: <struct record) @00335E1F (48 bytes)
.Ptr_Corop: Ox00335DEF <ptr> @00335E1F
.Discr: +1 STRUCT_1 <enum> @00335E23 (4 bytes)
.variant: <union> @00335E27 (40 bytes)

C2J: <struct record>
.Ptr_Corop: Ox00335E1F (ptr to struct record>
.Discr: +2 STRUCT_2 (enum>
.variant: <union>

Figure 3-26. Sample Expanded Pointer Variable Shown as an Array

Al any time the original pointer can be returned to its normal pointer designation
by single-clicking the left mouse button on the pointer variable to open the Change
Pointer Variable window, and then using the Show es Ptr option under Value
Format.

Changing Multiple Instances of a Variable Within an Array

3-52

If a local or global variable is part of an array element, RISCWatch provides the
ability to simultaneously change the format, display, or value of each instance of
the variable within multiple elements of the array. This is accomplished by
selecting a checkbox on any of the Change Variable windows titted 'Apply to each
var. instance at this lever when changes are applied. This checkbox used to
apply changes to multiple elements will only appear on the Change Variable
window if the selected variable is somewhere part of an array element (and more
than one element exists for the array from the perspective of the debugger).

If the checkbox is selected on a window which contains a Variable Detail
groupbox, It will be disabled as long as the checkbox is selected (and any detail
selections will be ignored ff the checkbox is selected when changes are applied).

If display information changes are applied, they will only apply to portions of the
variable which have previously been 'revealed' or expanded, whether they are
currently visible or not.

If a value change is applied, It will only apply to the associated variables which are
currently visible on the variable window. Also when applying a change to multiple

RISCWatch Debugger User's Guide

instances, a pop-up dialog will appear to verify the action. This underscores the
fact that care should be taken when this option is used.

Consider the following variable which is an array of chars, with each element
value currently displayed as hexadecimal:

Str_1_Loc: <array[31J of char>
[OJ: Ox49
[1]: Ox42
[2J: Ox4D
[3J; Ox20
[41: Ox52
[5J: Ox49
[6J; Ox53
[7J: Ox43
[BJ: Ox57
C9J: Ox61
[10J: Ox74
[11J: Ox63
[12J: Ox68

Figure 3-27. Sample char Array Display

As a simple example of applying a change to multiple elements at once, we'll first
select an element of the array (it doesn't have to be the first). This will bring up
the Change Base Variable window shown in Figure 3-28. Notice the checkbox
above the buttons at the bottom of the window. It appears because the variable
we selected was part of an array element. We'll update the display so that the
address of each element will be shown, and the value be formatted as ASCII
instead of hex. We do this by selecting the appropriate Display Info. and Value

Using the RJSCWatch Debugger 3-53 3-54

Format options just as we would for any variable, along with selecting the
checkbox to indicate we wish to apply these changes to each element:

!-Display lin;,Jf;;;o:=-. ::.::::;;:~\i.;i~;f:;;-r~;;,t==::; H
l rl Address
I •:J Size
lJ TH?e

i
~
1

v ASCII string

v EBCDIC
9 Unsigned

<i Si9ned
v Octal

V Hexadeci""'l
Binar\:I

\)Default

Figure 3-28. Changing Multiple Elements of a Variable Array

Applying these changes results in each element being updated accordingly on the
variable screen:

RISCWatch Debugger User's Guide

Str_l_Loc: <array[31J of char>
(OJ: 'I'(Ox49) @0002E248
[1J: 'B'(Ox42) @0002E249
E2J: 'M'(Ox4D) @0002E24A
E3J; ' '<Ox20) @0002E24B
E4J: 'R'(Ox52l @0002E24C
[5J: 'I'(Ox49l @0002E24D
[6J: 'S'(Ox53l @0002E24E
[7J: 'C'(Ox43> @0002E24F
(BJ: 'W'<Ox57) @0002E250
[9J; 'a' (0x61) @0002E251
E10J; 't'(Ox74) @0002E252
E11J: 'c'<Ox63) @0002E253
E12J: 'h'(Ox6Bl @0002E254

Figure 3-29. Updated Display of Variable Array

Note that in the example above, we could also have initialized each element of the
array by entering a value in the Change Value field. With a value change being
applied to multiple instances, a pop-up dialog would first appear to verify the
change request. Applying the value change would result in the value of each
element of the array being changed.

The robustness of this capabiltty can be fully realized by understanding that it
applies to all data types at any level of detail expansion within an array element.

Using the RISCWatch Debugger 3-55 3-56

Consider the following pointer formatted to show as array, wh the first two
elements expanded to multiple levels of detail:

Rec_Ptr: Ox003FF6FO (ptr>
[OJ: <struct>

.Ptr_C01T1p! NULL <ptr>

.Discr; +O STRUCT_O

.variant: <union>

[1J: <struct>

.var_l: <struct>
.Enum_Comp; +O STRUCT_O
• Int_COOlp! +0
.Str_COIYlp! <array> @003FF700

. var _2: <struct>
.E_Comp_2: +O STRUCT_O
.Str_2_Comp: <array) @003FF6FC

[OJ: '\xO' @003FF6FC
[1J: '\xO' @003FF6FD
[2J: '\xO' @003FF6FE

.var_3; <struct>

.Ptr_CO!Ylp! NULL (ptr>

.Discr: +1 STRUCT_1

.variant: (union>
.var_1; <struct>

.Enum_Comp: +1 STRUCT_1
• Int_Comp! +1
.Str_Comp: <array) @003FF730

.var_2: <struct>

.var_3: <struct>

Figure 3-30. Sample Mutti-Element, Muttilevel Variable Display

Selecting the Str_Comp array variable of the first Rec_Ptr element brings up the
Change Array Variable window. The checkbox to apply to multiple instances
appears since ultimately this variable is contained within an array element. This
time we'll change the array subrange to '0,2', select to show address information,
and select the checkbox to apply the change to each element. Notice that the

RISCWatch Debugger Usefs Guide

variable window is updated for each instance of the variable at that level in both
Rec_Ptr array elements:

Rec_Ptr; Ox003FF6FO (ptr>
[OJ; <struct>

,Ptr_Cornp: NULL (ptr>
.Discr: +O STRUCT_O
.variant: <union>

[lJ: <struct>

.var_l: <struct>
.Enum_Comp; +O STRUCT_O
• Int_Comp: +O
,Str_Comp; <array> @003FF700

[OJ: 'I' @003FF700
[lJ: 'B' @003FF701
[2J: 'M' @003FF702

. var _2: (st ruct>
.E_Comp_2; +O STRUCT_O
.Str_2_Cornp; (array> @003FF6FC

[OJ; '\xO' @003FF6FC
[1J: '\xO' @003FF6FD
[2J; '\xO' @003FF6FE

• var _3; <struct>

,Ptr_Cornp: NULL (ptr>
.Discr: +1 STRUCT_1
.variant: <union>

.var_1; <struct>
.Enurn_Cornp; +1 STRUCT_1
.Int_Comp: +1
.Str_Cornp: (array> @003FF730

[OJ: 'H' @003FF730
[1J: 'A' @003FF731
[2J: 'L' @003FF732

.var_2: <struct>

.var _3: <str-uct>

Figure 3-31. Updated Multi-Element, Multilevel Variable Display

This last example will further explain the processing used to determine where
changes will be applied ff the option is used to change muttiple instances of a
variable within a complex structure. Selecting the first element of the Str_Comp
variable in the first Rec_Ptr element brings up the Change Base Variable Window.
We'll initialize each (visible) element of the Str_Comp array in this and every other

Using the RISCWatch Debugger 3-57 3-58

(visible) Rec_Ptr element by putting the value in the Change Value field and
selecting the checkbox to apply to multiple instances.

0 Size
Ll T~pe

Chan9e value:

¢c ASCII string

vEBCDIC
{>Unsigned

-0 Si9ned
<)Octal

v Hexadecimal

()Binary

~Default

Figure 3-32. Sample Change Value Display

Now, notice the variable's name in the window above:
Rec_Ptr(O].variantvar_ 1.Str_Comp[O]. First, all elements of this instance of
Str_Comp will be changed. Next, going back through the name, the changes will
also be applied to all the elements of any other instance of the Str_Comp variable.
We can see in this example that there is another instance of the Str_Comp
variable, in the second Rec_Ptr element having the name

RISCWatch Debugger User's Guide

Rec_Ptr[1].variant. var_ 1.Str_Comp. Applying the change results in the following
update:

Rec_Ptr: Ox003FF6FO <ptr>
EOJ : (st ruct)

.Ptr_Cornp: NULL (ptr>

.Discr: +O STRUCT_O
• variant: <union>

[1]: <struct>

.var_1: <struct>
.Enurn_Cornp: +O STRUCT_O
• Int_Comp: +O
.Str_Comp: (array> @003FF700

[OJ: 'A' @003FF700
[1J: 'A' @003FF701
[2J: 'A' @003FF702

• var _2: <struct>
,E_Cornp_2: +O STRUCT_O
.Str_2_Cornp: <array> @003FF6FC

[OJ: '\xO' @003FF6FC
E1J: '\xO' @003FF6FD
[2J: '\xO' @003FF6FE

~var_3! <struct>

.Ptr_Cornp: NULL <rtr>

.Discr: +1 STRUCT_1

.variant: (union)
• var _1: <struct>

.Enurn_Cornp: +1 STRUCT_l
• Int_Cornp: +1
.Str_Cornp; <array> @003FF730

[OJ: 'A' @003FF730
ElJ: 'A' @003FF731
E2J: 'A' @003FF732

.. var _2! <struct>

.var_3: <struct>

Figure 3-33. Sample Result of Change Value Update

All elements of the each Str_Comp array are now initialized to the character 'A'.
Notice that the elements of the Str_2_Comp array are not affected, even though
the Str_2_Comp array is an array of characters nested the same number of
'levels' from Rec_Ptr[O]. This is because it is a different variable and the changes
were only applied to Str_Comp variable instances.

It should be apparent that care should be taken when applying value changes to
multiple variable instances within complex data structures. Format and Display
changes are not destructive, but once the values are changed they cannot be
recovered.

Using the RISCWatch Debugger 3-59

Variable Windows

A total of eight windows are used to display and manipulate program variable
information.

The Locals and Globals windows display selected local and global variables,
respectively, forthe program currently being debugged .

The Variable Configuration window is selectable from the Locals or Globals
window, and is used to configure variable information for all Local or Global
variables. The five Change Variable windows are accessed from the Locals or
Globals window, and are used to configure variable information displayed for a
single selected variable of a particular type.

Local Variables Window

3-60

The Locals window displays local variables in the current source file. Figure 3-34
shows an example of a Locals window.

Ptr _\lal_Par: Ox003FF868 (ptr>
->: <struct>

,Ptr_Comp: Ox003FF6AO <ptr>
->: <struct>

.Discr: +O IdBnt_1
,.variant: <union>

~var_1: <struct>
.Enum_Comp: +2 Ident_3
• Int_Cornp: +40
.Str_Cornp! <array>

. var _2: <str-uct)

. var _3: <:struct>
Next_Record: Ox003FF8AO <ptr>

->: <struct>
.Ptr_Comp: Ox003FF8AO (ptr>
.Discr: +O Ident_1

Figure 3-34. Sample Locals Window

The Locals window consists of a Locals subwindow with horizontal and vertical
scrollbars and pushbuttons. The Locals subwlndow displays the visible local
variables for a function. The variables which can be displayed are dependent on
the current local variable context for the debugger. Variables can be shown which
correspond to the current instruction context, that is, variables for the function
associated with the current Instruction Pointer address. These are automatically
shown after performing an execution command like run or linestep. Variables

RISCWatch Debugger Users Guide

can also be shown which correspond to a previous function in the call chain. The
Callers window is used to select the context of a function on the callers stack, and
the Locals window will be updated appropriately.

A local variable entry consists of the variable name followed by configurable
variable information. Configurable variable information includes the value of the
variable (if It is a fundamental type) expressed in a format selectable by the user,
the type of the variable enclosed in a lelVright arrow pair (<>), the address of the
variable preceded by an 'ar sign(@), and the size of the variable enclosed in
parentheses. The Variable Configuration and Change Variable windows are used
to configure the variable information forthe local variables.

If the address for a variable is not a valid memory address for the target being
debugged, the words 'INVALID VALUE' will appear in place of a numeric value as
long as the address is invalid. The address field will show the current address
associated with the variable. Variable detail and format changes can still be
applied while the variable is in this state, and will be applied if during the course of
debugging the program the variable address becomes valid.

For example, tt an uninitialized pointer is defined, the contents of this pointer may
initially be outside the range of valid memory for the target, in which case any data
element pointed to by the pointer would have an invalid value. As soon as the
pointer is assigned a valid value for the program, say, by a call to malloc(), the
data elements pointed to should then contain valid data.

Single-clicking the left mouse button on a variable entry selects the variable and
opens the Change Variable window appropriate for the type of the selected
variable (integer, structure, and so on). The Change Variable windows are used to
configure variable information for an individual variable. See 'Change Variable
Windows: p. 3-66.

Double-clicking the left mouse button on a structure, pointer, or union variable
entry expands the variable detail one level if it is expandable and it has not already
been fully expanded. You can continue to expand the variable detail another level
by continuing to double-click on the variable entry.

Double-clicking the right mouse button on a structure, pointer, or union variable
entry contracts the variable detail to the point which was clicked on. Subsequent
expansion of the variable at this point will result in the variable being expanded to
the level of detail which it was at when it was contracted.

The Variable Config pushbutton is used to open the Variable Configuration
window. The Variable Configuration window, when opened from the Locals
window, is used to configure variable information for all the local variables in the
current locals context. See 'Variable Configuration,' p. 3-64.

The Read pushbutton is used to manually read the values of the variables which
are displayed on the Locals window from the target. It is only enabled if the Read
mode for the Locals is set to Manual. If the Read mode is set to Automatic, the

Using the RISCWatch Debugger 3-61

button is disabled. The Read mode is set via an option on the Variable
Configuration window.

One practical use of Manual read mode is to minimize the overhead of normally
having the debugger read the visible variable values from the target after each
execution command, as happens in Automatic read mode. For local variables the
debugger automatically updates the Locals window when the locals context
changes to show the variables and their current values for that context, even tt the
read mode is Manual. This is done so that the local variables shown match the
current context when it changes, and those variables can then be manipulated
using the Variable Configuration and Change Variable windows.

There are other exceptions where visible variable values are read even ff the Read
mode is Manual. The variable values are read for all the visible local variables if a
variable detail change is made by double-clicking on a variable in the window, tt
any changes are made via the Variable Configuration window for the Locals
window, or ff any changes are made for a visible local variable via a Change
Variable window.

The rationale for applying the read from the target in these inS1ances is because it
is likely that without Automatic read mode on the values shown may not be
correct, and the fact that an action is performed on a variable implies that the
present state of the variable is desired. Also, in the case of these one-shot
updates, the overhead for doing the read will not be noticeable since the read
processing will only be a portion of the total processing required for the requested
action.

Global Variables Window

3-62

The Globals window consiS1s of a Globals subwindow with horizontal and vertical
scrollbars and pushbuttons.

The Globals subwindow displays the visible global variables for the program
currently being debugged. A global variable entry consists of the file which the
variable is in followed by the variable name and configurable variable information.
Configurable variable information includes the value of the variable (ij It is a
fundamental type) expressed in a format selectable by the user, the type of the
variable enclosed in a le IV right arrow pair (<>), the address of the variable
preceded by an 'at' sign (@), and the size of the variable enclosed in parentheses.
The Variable Configuration and Change Variable windows are used to configure
the variable information for the global variables.

If the address for a variable is not a valid memory address for the target being
debugged, the words 'INVALID VALUE' will appear in place of a numeric value as
long as the address is invalid. The address field will show the current address
associated with the variable. Variable detail and format changes can still be
applied while the variable is in this state, and will be applied if during the course of
debugging the program the variable address becomes valid.

RISCWatch Debugger User's Guide

dhry_l.c
dhr!j_i.c
dhr!J_1.c

Next_Ptr_Glob: Ox003FFBAO <ptr to struct record>
Ptr_Glob: Ox003FF868 (ptr to struct record)
Arr_2_Glob: (arra!J[50J of arra!J[50J of int>

[OJ: <arra!J[50l of int>
[OJ: +O (int>
[1J: +O <int>
[2]: +O <int>

[1]: «1rra!J[50J of int>
[OJ: +O <1nt>

dhr!j_l.c Reg; +1 (int>
dhr!J_1.c Begin_Tirne: +527 <long> @00032C38
dhr!l-1. c Bool_Glob: +1 (int> @00032C40
dhr!J_l.c Arr_i_Glob: <arra!j[50J of int> @00032C48
dhr!J_l.c Ch_2_Glob: 'B' <char> @00032D10
dhr!J_l.c Int_Glob: b.oooo.oooo.oooo.oooo.oooo.0000.0000.0101
dhr!J 1.c End Time: OxOOOOOOOO <long>
tlf

Figure 3-35. Sample Globals Window

For example, if an uninitialized pointer is defined, the contents of this pointer may
inttially be outside the range of valid memory for the target, in which case any data
element pointed to by the pointer would have an invalid value. As soon as the
pointer is assigned a valid value for the program, say, by a call to malloc(), the
data elements pointed to should then contain valid data

Single-clicking the left mouse button on a variable entry will select the variable
and open the Change Variable window appropriate for the type of the selected
variable (integer, structure etc.). The Change Variable windows are used to
configure variable information for an individual variable. Refer to the Change
Variable window descriptions.

Double-clicking the left mouse button on a structure, pointer, or union variable
entry will expand the variable detail one level if it is expandable and it has not
already been fully expanded. You can continue to expand the variable detail
another level by continuing to double-click on the variable entry.

Double-clicking the right mouse button on a structure, pointer, or union variable
entry contracts the variable detail to the point which was clicked on. Subsequent
expansion of the variable at this point will result in the variable being expanded to
the level of detail which It was at when It was contracted.

The Variable Conlig pushbutton is used to open the Variable Configuration
window. The Variable Configuration window, when opened from the Globals
window, is used to configure variable information for all the global variables in the

Using the RISCWatch Debugger 3-63

program. Reier to the Variable Configuration window description. The Variable
Config pushbutton will be disabled if there is no source debug information for the
current program.

The Read pushbutton is used to manually read the values of the variables which
are displayed on the Globals window from the target. It is only enabled if the Read
mode for the Globals is set to Manual. If the Read mode is set to Auto, the button
will be disabled. The Read mode is set via an option on the Variable
Configuration window.

One practical use of Manual read mode is to minimize the overhead of normally
having the debugger read the visible variable values from the target alter each
execution command, as happens in Automatic read mode.

There are exceptions where visible variable values will be read even if the Read
mode is Manual. The variable values will be read for all the visible global
variables if a variable detail change is made by double-clicking on a variable in the
window, if any changes are made via the Variable Configuration window for the
Globals window, or if any changes are made for a visible global variable via a
Change Variable window.

The rationale for applying the read from the target in these instances is because It
is likely that without Automatic read mode on the values shown may not be
correct, and the fact that an action is performed on a variable implies that the
present state of the variable is desired. Also, in the case of these one-shot
updates, the overhead for doing the read will not be noticeable since the read
processing will only be a portion of the total processing required for the requested
action.

Variable Configuration

3-64

The Variable Configuration window is used to change variable information for all
local or global variables. II consists of a Display Information selection groupbox, a
Read Mode selection groupbox, a Compiler-created Variable selection groupbox,

RISCWatch Debugger Users Guide

a Visible subwindow with horizontal and vertical scrollbars, a Not Visible
subwindow with horizontal and vertical scrollbars, and pushbuttons.

Visible

dhry_1. c: Hext_Ptr _Glob
dhr!:J-LC: Ptr_Glob
dhry_l.c: Arr_2-Glob
dhn:1_1. c: Rea
dhr-1::1_1. c: Begin_ T irne
dhrH-.1. c: Bool_Glob

Not Visible

dhry_1.c: Arr_t_G:lob
dhry_Lc: Ch_2_Glob
dhrH.-1. c: Int_Glob
dhry_1.c: End_Tirne
dhry_1.c: Ch_l_Glab
dhry_l.c: User_Time
dhr!d-1.c! Microseconds
dhry_1, c: Dhrystones_Per _Sec
dhr~_2.c: kbtest1

Figure 3-36. Sample Variable Configuration Window

The Variable Configuration window is opened via the Variable Configuration
pushbutton on the Locals or Globals window. The OK pushbutton is used to apply
the selected information to the associated variable window (the variable window
from which the Variable Configuration window was opened). The Cancel
pushbutton is used to close the window without applying any changes.

The Variable Configuration window is intended to be used for the purpose of
applying configuration changes to a variable window once it is opened. The
Variable Configuration window will be brought down without any changes being
applied if It is open and the associated variable window is brought down or
updated. An existing Variable Configuration window will also be brought down
with no changes applied if another Variable Configuration window or a Change
Variable window is opened while the Variable Configuration window is up.

The Display Information groupbox consists of three checkboxes, one each to
display the Address, Size and Type information for the visible variables on the
associated variable window. The initial state of the checkboxes shows the
currently enabled display information for the associated variable window. If the
information on the Variable Configuration window is applied, each variable entry
on the associated variable window will be updated to reflect the selected display
information. The display changes will be applied to any portions of the variables
on the variable window which have been previously 'revealed' or expanded,
whether they are currently visible or not.

The Read Mode groupbox consists of two buttons, one for Automatic read mode
and one for Manual read mode. The Read mode is changed by selecting the

Using the RISCWatch Debugger 3-65

appropriate button. The button which is on initially indicates the current mode for
the visible variables on the associated variable window. If the information on the
Variable Configuration window is applied, the selected read mode will be applied
to the associated variable window, and the Read pushbutton on the variable
window will be enabled/disabled accordingly. Refer to the variable window
descriptions for a discussion on variable Read mode.

The Compiler-created variable groupbox consists of three buttons, one to hide
variables which are created by the compiler, one to show variables which are
created by the compiler, and one to leave the current setting. The debugger keys
off variables beginning with two underscores ('_') to determine variables created
by the compiler. They are typically present in C++ programs. The initial state is to
have the compiler-created variables hidden. Selecting the Hide button will move
all variables beginning with two underscores to the Not Visible subwindow.
Conversely, selecting the Show button will move all variables beginning with two
underscores to the Visible subwindow.

The Visible and Not Visible subwindows are used to select which variables will be
visible on the associated variable window. No processing is done for a variable
while it is not visible. All local variables are initially visible. All global variables are
initially not visible.

Single-clicking the mouse on a variable in one of the subwindows will move it to
the other subwindow. The Move All to Vis pushbutton will move all the variables to
the Visible subwindow. The Move All to lnvis pushbutton will move all the
variables to the Not Visible subwindow. If the information on the Variable
Configuration window is applied, a variable entry will appear on the associated
variable window for each variable in the Visible subwindow.

Note: For local variables, all variables defined for the function will be shown,
regardless of whether they are currently in scope. If multiple instances of
variables with the same name are defined with different scope within a function,
the variable name will appear repeated times in the window. Each variable
instance on the window will correspond to a variable definition within the function.

Change Variable Windows

3-66

The Change Variable windows are used to change variable information for an
individual selected local or global variable.

A Change Variable window is opened by single-clicking the mouse on a variable
entry in the Locals or Globals window. The type of the variable determines which
Change Variable window is opened. There are five Change Variable windows:
Change Array Variable, Change Base Variable, Change Enum Variable, Change
Pointer Variable, and Change Stuct/Union Variable.

The OK pushbutton is used to apply the selected information to the variable entry
on the associated variable window (the variable window from which the Change

RISCWatch Debugger Usefs Guide

Variable window was opened). The Cancel pushbutton is used to close the
window without applying any changes.

A Change Variable window is intended to be used for the purpose of applying
configuration changes to a variable once ii is opened. The Change Variable
window will be brought down without any changes being applied ij ii is open and
the associated variable window is brought down or updated. An existing Change
Variable window will also be brought down with no changes applied if another
Change Variable window or a Variable Configuration window is opened while the
Change Variable window is up.

Change Array Variable

The Change Array Variable window is used to change variable information for an
array variable. It consists of Variable Name field, a Display Information selection
groupbox, a Variable Detail selection groupbox, a Change Subrange field and
pushbuttons. The name of the selected variable appears in the name field, with
the title indicating whether ii is a local or global variable.

r·Global Variable Naflle; ~········~~--

~':'.'_::2_::~!_~--~~--- ---·~~ .. ~-""----·~-..J hl

Figure 3-37. Sample Change Array Window

The Display Information groupbox consists of three checkboxes, one each to
display the Address, Size and Type information for the selected variable on the
associated variable window. The initial state of the checkboxes shows the
currently enabled display information for the associated variable. If the
information on the Change Variable window is applied, the variable entry on the
associated variable window will be updated to reflect the selected display
information. The display changes will be applied to any portions of the variable
which have been previously 'revealed' or expanded, whether they are currently
visible or not.

Using the RISCWatch Debugger 3-67

The Variable Detail groupbox consists of three checkboxes: More detail, Less
detail, and Leave detail. Leave detail will always be the default when the window
comes up. Sele~1ing More detail will expand the variable to the next level of
expansion, if it can be expanded further. If the variable was previously expanded
multiple levels from that point, those levels of expansion will be shown as well.
Selecting Less detail will contract the variable detail to the level of the selected
variable. The detail changes will only take effect if the changes for the window are
applied. Refer to "Expending/Contracting Variable Detail" on page 3-46 for more
discussion on changing the level of detail for a variable.

The Change Subrange field is used to change the subrange to be shown for an
array. It will be initialized with the current subrange value. The limits of the array
will be shown in the title above the change field. The low and high subrange
values should be entered separated by a comma. with no spaces. If an invalid
subrange is entered, an error message will be displayed in the Main window and
the Change Array window will remain up to accept another entry. If a subrange
value is entered which is outside the limits for the array, a warning message is
displayed and the the limit value is used. When applied, the array variable will be
expended on the associated variable window to show the array elements for the
entered subrange.

A checkbox rnled 'Apply to each var. instance at this lever will appear above the
buttons al the bottom of the window if the selected variable is somewhere part of
an array element (and more than one element exists for the array from the
perspective of the debugger). If It is selected when changes are applied for the
window. they will be applied to each instance of the variable wtthin multiple
elements of the array. Refer to "Changing Multiple Instances of a Variable Within
an Arra'f' on page 3-52 for a detailed description of this support.

Change Base Variable

3-68

The Change Base Variable window is used to change variable information for a
variable which is a fundamental type (integer, char, etc.). It consists of a Variable
Name field, a Display Information selection groupbox, a Value Format selection
groupbox, a Change Value field and pushbuttons. The name of the selected
variable appears in the name field, with the trtle indicating whether it is a local or
global variable.

The Display Information groupbox consists of three checkboxes, one each to
display the Address, Size and Type information for the selected variable on the
associated variable window. The initial state of the checkboxes shows the
currently enabled display information for the associated variable. If the
information on the Change Variable window is applied, the variable entry on the
associated variable window will be updated to reflect the selected display
information.

The Value Format groupbox consists of a number of buttons used to change the
format of the variable value in the variable entry. For example, ii the value of the

RISCWatch Debugger User's Guide

I Variable Name:

r Display info.
W Address
0 Size

W Tl!Pe

I

v EBCDIC
vUnsi9ned
(,>Signed

<)Octal

V Hexadeciroal

(tBinar~

{}Default

Figure 3-38. Sample Change Base Window

number is decimal 12, it will be displayed in the variable entry as 'OxOOOOOOOC' ii
the Hexadecimal format is applied. The following formats are supported: ASCII,
ASCII string, EBCDIC, Unsigned, Signed, Octal, Hexadecimal, Binary, and
Default. ASCII string is enabled only for types of 'char'. If selected, the debugger
will display characters starting from the address of the variable until a NULL
character is reached in memory or an internally defined maximum length is
reached. Refer to "Displaying ASCII Strings" on page 3-48 for a detailed
description of this support. Default is the format which corresponds to the type
which the variable is defined as in the program.

The Change Value field is used to change the value of the variable. Values can be
entered in decimal or hexadecimal notation. If an invalid value is entered, an error
message will be displayed in the Main window and the Change Base Variable
window will remain up to accept another entry. When applied, the variable value
will be written to the target and the variable entry on the associated variable will
be updated to reflect the new value.

A checkbox titled 'Apply to each var. instance at this level' will appear above the
buttons at the bottom of the window if the selected variable is somewhere part of

Using the RISCWatch Debugger 3-69

an array element (and more than one element exists for the array from the
perspective of the debugger). If it is selected when changes are applied for the
window, they will be applied to each instance of the variable wrthin multiple
elements of the array. Refer to "Changing Multiple Instances of a Variable Wrthin
an Array" on page 3-52 for a detailed description of this support.

Change Enum Variable

3-70

The Change Enum Variable window is used to change variable information for a
variable which is an enumeration type. It consists of Variable Name field, a
Display Information selection groupbox, a Value Format selection groupbox, a
Change Value field and pushbuttons. The name of the selected variable appears
in the name field, with the title indicating whether it is a local or global variable.

ELocal Variable Name
Ptr _Val_Par->.variant
--~~-------

'splay info,--~-
tl Address

Cl Size

UT-

Figure 3-39. Sample Change Enum Window

The Display Information groupbox consists of three checkboxes, one each to
display the Address, Size and Type information for the selected variable on the
associated variable window. The inttial state of the checkboxes shows the
currently enabled display information for the associated variable. If the
information on the Change Variable window is applied, the variable entry on the
associated variable window will be updated to reflect the selected display
information.

AISCWatch Debugger Use(s Guide

The Value Format groupbox consists of a number of buttons used to change the
format of the variable value in the variable entry. For example, if the value of the
number is decimal 12, It will be displayed in the variable entry as 'OxOOOOOOOC' tt
the Hexadecimal format is applied. The following formats are supported: ASCII,
EBCDIC, Unsigned, Signed, Octal, Hexadecimal, Binary, and Default. Default is
the format which the corresponds to the type which the variable is defined as in
the program.

The Change Value field is used to change the value of the variable. Values can be
entered in decimal or hexadecimal notation. If an invalid value is entered, an error
message will be displayed in the Main window and the Change Enum window will
remain up to accept another entry. When applied, the variable value will be
written to the target and the variable entry on the associated variable will be
updated to reflect the new value.

A checkbox tttled 'Apply to each var. instance at this level' will appear above the
buttons at the bottom of the window if the selected variable is somewhere part of
an array element (and more than one element exists for the array from the
perspective of the debugger). If It is selected when changes are applied for the
window, they will be applied to each instance of the variable within multiple
elements of the array. Refer to "Changing Multiple Instances of a Variable Within
an Array" on page 3-52 for a detailed description of this support.

Change Pointer Variable

The Change Pointer Variable window is used to change variable information for a
variable which is a pointer type. It consists of Variable Name field, a Display
Information selection groupbox, a Variable Detail selection groupbox, a Value
Format selection groupbox, a Change Value/Subrange field and pushbuttons.
The name of the selected variable appears in the name field, with the title
indicating whether It is a local or global variable.

The Display Information groupbox consists of three checkboxes, one each to
display the Address, Size and Type information for the selected variable on the
associated variable window. The initial state of the checkboxes shows the
currently enabled display information for the associated variable. If the
information on the Change Variable window is applied, the variable entry on the
associated variable window will be updated to reflect the selected display
information. The display changes will be applied to any portions of the variable
which have been previously 'revealed' or expanded, whether they are currently
visible or not.

The Variable Detail groupbox consists of three checkboxes: More detail, Less
detail, and Leave detail. Leave detail will always be the default when the window
comes up. Selecting More detail will expand the variable to the next level of
expansion, if It can be expanded further. If the variable was previously expanded
multiple levels from that point, those levels of expansion will be shown as well.
Selecting Less detail will contract the variable detail to the level of the selected

Using the RISCWatch Debugger 3-71 3-72

Figure 3-40. Sample Change Pointer Window

variable. The detail changes will only take effect ff the changes for the window are
applied. Refer to "Expanding/Contracting Variable Delair on page 3-46 for more
discussion on changing the level of detail for a variable.

The Value Format groupbox consists of a number of buttons used to change the
format of the variable value in the variable entry. The following formats choices are
available: Show as Array, Show as Ptr, ASCII string, EBCDIC, Unsigned, Signed,
Octal, Hexadecimal, Binary, and Default. If ASCII string is selected, the debugger
will display characters starting from the address of the variable until a NULL
character is reached in memory or an internally defined maximum length is
reached. Default is the format which corresponds to the type which the variable is
defined as in the program.

Show as Array and Show as Ptr are two special format choices used to support
displaying data elements pointed to by pointers. In normal operation, the pointer
variable will be processed as a normal pointer type, and the format and value of
the pointer can be changed as for a base type. If Show as Array is selected, the
entry field will be used to enter a subrange value. The Mle of the entry field will be
'Change array subrange: Limits~ [O,?]'. The subrange entry field will be

RISCWatch Debugger Use(s Guide

initialized to the current subrange value, or 0,0 if the pointer is being changed to
be displayed as an array. When the Show as Array format is applied, the pointer
variable entry will be expanded as an array, with the elements displayed
corresponding to the entered subrange value. Now, each array element will be of
the type which the pointer is pointing to, and each individual array element can be
processed (expanded/contracted, value change etc.) according to the treatment
for that variable type.

An example of this is if I have defined a pointer to a structure of type STRUCT _X.
If this pointer is inltialized to point to a region of memory containing multiple
instances of STRUCT _X, and the format of this pointer is changed using Show as
Array, each individual STRUCT _X instance appears as an element of an array,
and can be processed using normal structure manipulation. Refer to "Handling
Multiple Data Elements Referenced by a Single Pointer" on page 3-49 for a
detailed description of this support.

If a pointer has been changed using Show as Array and It is selected, the Value
format selected will be Show as Array, and the entry field will accept a subrange
value. In this mode, however, the format and the value of the pointer Itself can still
be changed by selecting one of the other normal format options besides Show as
Ptr. This will change the entry field to accept a pointer value, and the format
selected will be applied to the variable entry. Note that the pointer will remain in
Show as Array mode even after this is done. To change the pointer back to
normal pointer mode, select the Show as Ptr format option. This will return the
pointer back to a normal pointer type.

A checkbox tltled 'Apply to each var. instance at this level' will appear above the
buttons at the bottom of the window if the selected variable is somewhere part of
an array element (and more than one element exists for the array from the
perspective of the debugger). If It is selected when changes are applied for the
window, they will be applied to each instance of the variable within multiple
elements of the array. Refer to "Changing Multiple Instances of a Variable Within
an Array" on page 3-52 for a detailed description of this support.

Using the RISCWatch Debugger 3-73

Change StructlUnion Variable

3-74

The Change Struct/Union Variable window is used to change variable information
for a structure or union variable.

Variable detail --i
\» Hore detail !
v Less detai I 1
~Leave detail I

Figure 3-41. Sample Change struct/Union Window

It consists of Variable Name field, a Display Information selection groupbox, a
Variable Detail selection groupbox, and pushbuttons. The name of the selected
variable appears in the name field, with the tttle indicating whether it is a local or
global variable.

The Display Information groupbox consists of three checkboxes, one each to
display the Address, Size and Type information for the selected variable on the
associated variable window. The initial state of the checkboxes shows the
currently enabled display information for the associated variable. If the
information on the Change Variable window is applied, the variable entry on the
associated variable window will be updated to reflect the selected display
information. The display changes will be applied to any portions of the variable
which have been previously 'revealed' or expanded, whether they are currently
visible or not.

The Variable Detail groupbox consists of three checkboxes: More detail, Less
detail, and Leave detail. Leave detail will always be the default when the window
comes up. Selecting More detail will expand the variable to the next level of
expansion, if it can be expanded further. If the variable was previously expanded
multiple levels from that point, those levels of expansion will be shown as well.
Selecting Less detail will contract the variable detail to the level of the selected
variable. The detail changes will only take elfect if the changes for the window are
applied. Refer to "Expanding/Contracting Variable Detail" on page 3-46 for more
discussion on changing the level of detail for a variable.

A checkbox titled 'Apply to each var. instance at this level' will appear above the
buttons at the bottom of the window if the selected variable is somewhere part of

RISCWatch Debugger User's Guide

an array element (and more than one element exists for the array from the
perspective of the debugger). If it is selected when changes are applied for the
window, they will be applied to each instance of the variable within multiple
elements of the array: Refer to "Changing Multiple Instances of a Variable Within
an Array" on page 3-52 for a detailed description of this support.

Reading and Writing Memory

The Hardware I Memory pulldown on the Main window provides a number of
different ways to view memory. They allow the user to view specified memory
contents in hex, ASCII, or disassembled instruction formats. The Custom Memory
screen also allows the user to customize the presentation of data even further.

See "ASCII Memory Window" on page 3-78 and "Custom Memory Window" on
page 3-80 for detailed descriptions of the memory windows. "Memory Access
Window (JTAG Target on1yr on page 3· 75, "Cache Windows (JTAG Target Only)"
on page 3-82, and "Translation Lookaside Buffer Window (PPC403GC Only)" on
page 4-12 may also be applicable, depending on the target processor.

Some windows also provide the ability to alter memory contents.

Memory can also be viewed and altered using the read and write comm ands
from the command line on the Main window.

Note: Be aware that there are situations where changing the content of an
individual memory location may result in sections of adjacent memory being read.
If data is written to an address, and that address corresponds to an address which
is contained in a Memory or Asm Debug window which is currently up, a memory
region the size of the memory displayed in these windows will be read from the
target. Similarly, if the address of changed memory corresponds to a portion of
an individual memory element existing on any usertidefined window, an amount of
memory equal to the size of the memory element will be read (for example, if a
byte-sized memory element at address Ox00000001 is written, and another
user-defined memory region is defined with four word size elements starting at
address OxOOOOOOOO, one word of data will be read from address OxOOOOOOOO in
this case).

Memory Access Window (JTAG Target Only)

The Memory Access window is used to control data and instruction cache
updating during memory reads and writes. This window is displayed by selecting
the Memory I Access option of the menubar's Hardware pulldown choice.

If caching is disabled via the appropriate hardware registers (DCCR/ICCR for
PowerPC 400Series, HIDO for PowerPC 6xx), reads and writes from/to memory
will directly reflect the contents of physical memory:

Using the RISCWatch Debugger 3-75 3-76

Read l!l01110r\J

~ Use "8lllOl"\J model

Ph!!SiC<J! 111e111or\j

Write DHEH
"¢' Use MeMOr!J 111ode I
v DC wri te-thru

{;-DC b\jpass
Write !HEH
v IC update, DC b!JPass
V IC update, DC update

VIC inval, DC b\lpass

"*' IC inval, DC update
» See Help for usage «

Figure 3-42. Sample Memory Access Window

If the processor is configured to control data and instruction caching, a memory
model is said to have been established for how this data and code are being
accessed. Once a memory model has been established, reads and writes to/from
memory will provide data and/or code that is a combination of information from the
caches and memory.

Using the read memory options, it is possible to force reads lo use your memory
model (a combination of cache and memory information) or to read directly from
physical memory (by bypassing the data cache).

When a memory model is used to control data caching, the Memory Access
window allows control over how the data is written to the data cache and memory.
To allow the processor to manage data coherency between the data cache and
memory, select the memory model option. To force memory writes to immediately
update the data cache and memory contents, select the write-thru option. To force
memory writes to update physical memory only, and not the data cache, select the
bypass option.

Similarly, an instruction cache (IC) memory model can be controlled with the
options in the Memory Access window. The update options should be selected to
force instruction memory writes to update both physical memory and the

RISCWatch Debugger User's Guide

instruction cache. The invalidate options are used to force instruction memory
writes to udpate physical memory while marking the associated addresses as
invalid in the instruction cache.

For instruction memory writes, the data cache (DC) options are used to indicate
whether instruction memory writes are to update the data cache or not. Select the
bypass option to indicate that instruction memory writes are NOT to be written to
the data cache. Selecting the update option forces instruction memory writes to
update the data cache as well.

WARNING: The DC bypass option should be used with caution when data
caching is enabled. This option is used to force the data memory writes to update
physical memory without updating the data in the data cache. This mechanism
essentially overrides the memory model that would be set up using the registers
which control caching. Data written to physical memory using this option could be
overwritten by "dirty" data in the cache that had not yet been written out to
memory.

Following is a description of the Memory Access window options and exactly how
they function:

1. Write DMEM Coherency D-Cache I-Cache Physical
Memory

Use memory model Yes Note 1 No Note2

DC write-thru Yes Note 1 No Yes

DC bypass No No No Yes

2. Write IMEM Coherency D-Cache I-Cache
Physical
Memory

IC update DC bypass Note 3 No Note4 Yes

IC update DC update Yes Note 1 Note4 Yes

IC inval DC bypass Note3 No No (Note5) Yes

IC inval DC update Yes Note 1 No (Note 5) Yes

Notes:
1. D-Cache updated if enabled (via DCCf1 for PowerPC 400Series, HIDO for

PowerPC 6xx)
2. Physical memory written if D-Cache disabled (via DCCR for PowerPC

400Series, HIDO for PowerPC 6xx)
3. Coherent if D·Cache disabled (via DCCR for PowerPC 400Series, HIDO for

PowerPC 6xx)

Using the RISCWatch Debugger 3-77

4. I-Cache updated ii enabled (via ICCR for PowerPC 400Series, HIDO for Pow
erPC 6xx)

5. I-Cache line invalidated

ASCII Memory Window

J..78

The ASCII Memory window allows memory to be read, altered and written as
four-byte data words or as ASCII text. This window is displayed by selecting the
Memory I ASCII option of the menubar's Hardware pull-down choice. What follows
is a description of this window's functionality.

00020DAC 80613558 80630037 8082367C 80840033 .a5X.c.7 •• 61 ••• 3

00020DBC 7C4EC4AA 30846118 62A3C5AA 6934006C IH •• O.a.b ••• i4.l

00020DCC 7CA473AA 7C70C5AA 80650058 38600061 I .s. lp ••• e.XS'.a

00020DDC 902AOOOC 48810038 692D006E 80300067 .• •• K •• Si-.n.=.g

00020DEC 90520034 69816338 80680020 8070386F .R.4i.c8.h.-.p8o

00020DFC 90693473 80230038 48000101 80610038 .i4s.1t.8H •••• a.8

00020EOC 80770026 2C650000 40863869 80812121 .w.&,e •• Ii.Si •• I I

00020E1C 38600065 905F360C 806E005E 80650008 8' .e._6 •• n. • .e ••

r neb\iS-1 r Read J r·ii1cie 1 r··fieii> 1

Figure 3-43. Sample ASCII Memory Window

Page Up/Down buttons

The page up and page down buttons are located along the left hand edge of the
ASCII Memory window. These buttons are used to page through memory. Clicking
on a page button alters the display address by one screen's worth of data. To
display a given address, use the address entry scheme described in the Address
fields section.

The page up and page down feature may also be accessed via the keyboard Page
Up and Page Down buttons.

Address fields

The address fields of the ASCII Memory window are used to display data
anywhere within the configured range of the processor. The address fields are
located in a column adjacent to the page up/down buttons. To display any part of
memory, simply use the mouse to place the cursor in any one of the address
fields, type in the desired address and press the Enter key.

RISCWatch Debugger User's Guide

Data fields

The data fields of the ASCII Memory window are used to display data read from
the processor as well as alter this data so that ii may be written back. There are
four data fields per display line with each field displaying four bytes of data.

To alter any of these data values, simply use the mouse to place the cursor in any
one of the data fields, type in the desired data and press the Enter key to write the
data field to the processor memory. Changed data will not be written to the
processor unless the cursor is in the data field that was changed when the Enter
key is pressed. To change multiple data fields and have all displayed data written
back to processor memory. use the Write button.

If data is mistakenly entered into a data field that is not to be written to memory.
simply click on the Read button to refresh the displayed data.

ASCII fields

The ASCII fields of the ASCII Memory window are used to display data read from
the processor as well as alter this data so that ii may be written back. The ASCII
fields are located in a column along the right hand side of the window. Each ASCII
field contains sixteen (16) ASCII characters that represent the data bytes in the
data fields.

To alter any of these data values, simply use the mouse to place the cursor in any
one of the ASCII fields, type in the desired data and press the Enter key to write
the ASCII field to the processor memory. Changed data will not be written to the
processor unless the edit cursor is in the data field that was changed when the
Enter key is pressed.

Debug button

The Debug button is used to bring up the Assembly Debug window. This window
is used to read. alter and write processor memory as assembly opcodes and text.

Read button

The Read button is used to read the processor memory to refresh the contents of
all currently displayed data and address fields. Use this button to force a refresh of
displayed data or to remove the contents of a partially edited data or address field
which has not been written back to the processor.

Write button

The Write button is used to write the contents of all the data fields to processor
memory. This allows multiple data or address fields to be edited and then all
written to the processor using one memory write.

Using the RISCWatch Debugger 3-79

Custom Memory Window

3-80

The Custom Memory window allows memory to be read. altered and written in a
number of radices and word sizes. This window is displayed by selecting the
Memory I Custom option of the menubar's Hardware pull-down choice. What
follows is a description of this window's functionality.

ata
Address 0 4 8 c
00020DOO 90 61 00 9C CB 41 00 98 FC 42 18 28 FC 40 10 18
00020D10 EC 21 10 24 DO 3E 00 00 30 7F 05 3E 4B FF E2 35
00020D20 4F FF FB 82 38 70 00 00 CO 23 00 00 DB 21 00 AO
00020D30 80 81 00 AO 80 Al 00 A4 30 7F 05 GB 4B ff E2 15
00020D40 4F FF FB 82 30 7F 05 73 4B FF E2 09 4F FF FB 82
00020D50 38 7E 00 00 CO 23 00 00 DB 21 00 AO 80 81 00 AO
00020D60 80 A1 00 A4 30 7F 05 6B 4B FF E1 E9 4F FF FB 82
00020D70 30 7F 00 3E 4B FF E1 DD 4F FF FB 82 80 01 00 CB
00020D80 7C 08 03 A6 30 21 00 CO BB Al FF F4 4E BO 00 20
00020D90 7C OB 02 A6 94 21 FF CO 90 01 00 48 90 61 00 58
00020DAO 80 61 00 58 80 63 00 00 90 61 00 38 80 61 35 58
00020DBO 80 63 00 37 BO 82 36 7C 80 84 00 33 7C 4E C4 AA
00020DCO 30 84 61 18 62 A3 C5 AA 69 34 00 6C 7C A4 73 AA
00020DDO 7C 70 C5 AA 80 65 00 58 38 60 00 61 90 2A 00 OC
00020DEO 4B 81 00 3B 69 2D 00 6E 80 3D 00 67 90 52 00 34
00020DFO 69 81 63 38 80 68 00 2D 80 70 38 6F 90 69 34 73

Add'ess I 00020Doo I f"R<OO<i J fi.l'ite 1 i Hidi]

Figure 3-44. Sample Custom Memory Window

Page Up/Down buttons

The page up and page down buttons are located along the left hand edge of the
Custom Memory window. These buttons are used to page through memory.
Clicking on a page button alters the display address by one screen's worth of
data. To display a given address, use the address entry scheme described in the
Address field section.

The page up and page down feature may also be accessed via the keyboard Page
Up and Page Down buttons.

RISCWatch Debugger User's Guide

Data area

The data fields of the Custom Memory window are used to display data read from
the processor as well as alter this data so that It may be written back. The amount
of data displayed is dependent on the data base and size.

The data area is composed of a column of addresses located along the left hand
edge of the area and one or more columns of data. Both addresses and data may
be edited. However, changing an address value will not have any effect.

To change data, simply use the mouse or arrow cursor keys to place the cursor.
Edit one or more data values and then click on the Write button which will write all
the values in data area to the processor memory.

Base selection button

The Base selection button is used to select the radix in which data will be
displayed and edited in the data area. To select a different base or radix, click on
the base selection button. A list of available bases will be displayed. Place the
mouse over the desired base and click the left mouse button. The data area will
be redrawn to display data in the newly selected base.

The currently available bases are ASCII, binary, decimal and hexadecimal.

WARNING: Make sure all edited data has been written back to processor memory
before changing the data base otherwise edited data may be lost!

Size selection button

The Size selection button is used to select the size of data words that are
displayed in the data area. To select a different size, click on the size selection
button. A list of available sizes will be displayed. Place the mouse over the desired
size and click the left mouse button. The data area will be redrawn to display the
data in the newly selected size.

The currently available sizes are 1, 2 and 4 bytes.

WARNING: Make sure all edited data has been written back to processor memory
before changing the data size otherwise edtted data may be lost!

Sign selection button

The Sign selection button is used to select whether data displayed in decimal form
are shown as signed or unsigned quantities. To select a different sign, click on the
sign selection button. From the displayed list, use the mouse to select either
Signed or Unsigned. The data area will be redrawn to display the data in the newly
selected sign.

WARNING: Make sure all edited data has been written back to processor memory
before changing the data sign otherwise edited data may be lost!

Using the RISCWatch Debugger 3-81

Address field button

The Address field is used to alter the base address at which data is displayed in
the data area. This allows any section of memory to be viewed instantly without
having to use the page up/down buttons repeatedly.

Use the mouse to place the edit cursor in the address field, type in the new base
address and press the Enter key. The processor memory will be read starting at
the new base address and the data area will be redrawn to display the memory
contents just read.

Read button

The Read button is used to refresh the data being displayed in the data area.
When this button is activated, the processor memory at the displayed address is
read and then displayed. Use this button to refresh the data or to cancel a partially
edited entry in the data area.

Write button

The Write button is used to write the entire contents of the data area to the
processor memory. This is the only means of writing changed data area values
back to processor memory.

Cache Windows (JTAG Target Only)

3-82

The Data and Instruction Cache windows are used to read and display the
contents of the processor caches.

The processor caches are displayed one way (or side) at a time. The pulldown in
the lower left corner is used to change the currently displayed way. The buttons
located on the left side of the windows are used to page up and down the
available cache lines for the displayed way.

For the Data Cache window, the following fields are shown:

Set

Address

WordN

v
L

LK

D

Set number (congruence class)

Address tag

32-blt data cache word N

Valid bit

LAU (Least Recently Used) line in set

Lock bit (401 Core and ASIC processors only)

Dirty bit

RISCWatch Debugger Users Guide

00 00006000 FFFE9E78 00004038 000093E4 00000000 1 B 1
01 00006010 000005EE 00005F60 001A8054 141B2F49 1 A 1
02 00008620 0372CF94 3B9ACAOO 0000001E 01FCA055 1 A 1
03 00006030 00000000 18404108 OOD0080E 0200C812 1 B 1
04 00006040 OA00200B FFFE2190 00000010 00005F5C 1 B 1
05 00004C50 000087BC 00004C78 F4000007 00004C70 1 A 1
06 00004C60 00004CA8 FFFE5E14 FFFFB397 FFFFB393 1 A 1
07 00006070 00005968 00000000 00000001 00008540 1 B 1
08 00004C80 FFFFB37F 000087CA 00000800 00005378 1 A 1
09 00006090 00000000 00000000 FFFE9D90 00029000 1 A 1
10 000060AO 00000000 00000000 80000010 40282329 1 B 1
11 00004ABO 00000010 40000003 00005378 00005394 1 B 1
12 FFFED4CO 6765723F 205B797C 6E5D2000 25630AOO 1 A 0
13 00003CDO FFFFC32F FFFFC32B FFFFC327 FFFE2190 1 B 1
14 00003CEO 00000010 00005F5C 00005378 00005394 1 B 1
15 00003EFO 00003F10 FFFFC10B OOOOOOOF 00007350 1 A 1

~l!l ~ i Hide Ii Help J

Figure 3-45. Sample Data Ceche Window

For the Instruction Cache window, the following fields are shown:

Set Set number (congruence class)

Address Address tag

WordN
v
L

LK

32-bit instruction cache word N

Valid bit

LAU (Least Recently Used) line in set

Lock bit (401 Core and ASIC processors only)

Notes: For these cache displays, the address tag is always displayed normalized
to bit 0 (MSB).

The Read button is used to force a read of the processor cache and display the
latest contents.

The Hide button is used to remove this window from the screen.

Using the RISCWatch Debugger

Reading and Writing Registers
The Ha!dware I Register pulldown on the Main window provides the ability to view
and update the architected registers of the target chip. They are divided into
classes:

General Purpose Registers (GPRs)

Special Purpose Registers (SPRs)

Device Control Registers (DCRs): 400Series only

Segment Registers (SRs): PowerPC 6xx only

Floating Point Registers (FPRs): processors with FPUs

There is another class of registers, Scratch, which are kept internally by
RISCWatch and can be used to hold temporary data or for calculating results.

See "Register Windows" on page 3-64 and "Register Field Windows" on
page 3-86 for detailed descriptions of the register windows. Register Field
windows are used to manipulate Individual fields of selected registers. These
provide a bit breakdown of the selected register divided into logical field groupings
applicable to the register.

Registers can also be viewed and altered using the expr, read, set, and write
commands from the command line on the Main window.

Register Windows
Register windows are used to read, display, modify and write-back processor
registers. Register windows are broken up into classes based on the types of
registers they contain. Current register windows include General Purpose
Registers (GPA), Special Purpose Registers (SPA), Device Control Registers
(OCR: PowerPC 400Series only), Segment Registers (SR: PowerPC 6xx only),
Floating Point Registers (FPR: processors with FPUs), and Scratch registers
(program defrned registers used for temporary results). To bring up a particular
register window, use the HanlwarelRegister pulldown of the Main window
menu bar.

A register window is split into two or more columns with each column containing a
push button and register edit field. The push button contains a register name while
the edit field contains its value. The push button is used to bring up a register field
window for that particular register (ii it has a field definition). Use the mouse to
press the push button and bring up its register field window. If it has no field
definition, an error message will be displayed.

RISCWatch Debugger Usefs Guide

~ 1000207041 ffi.!!11000000071 ~ IFFFECB5ol

IB!Jlooo3BFncl ~looo3c0Aal ~ IFFFECB6cl

!B!Jlooo303F41 ~1000000001 ~ IFFFEcaeol

ffi[lloo3FF8AOI ~1000000001 ~IFFFECBA41
m!] !000320101 ~1000000001 ~ IFFFEcac41

~ 1000016001 ~ 1000000001 ~ IFFFEC3ool

IB!]joooo15Eol m!!!IFFFE210cl ~ IFFFECBE41

!!!] 1000000001 ~ !000000001 !§ 1000214701

~ 14D2C20321 ~jOOOOOOOOI ~ jo00305181

!.!![] l274E442ol ~IFFFECBtol ~ looo216Dal

~1000000001 ~ IFFFEca2cl

[~] f'1iidii-"J OfileJ

Figure 3-46. Sample Registers Window

To edit a register value, use the mouse to place the edit cursor in the appropriate
field end enter a new hexadecimal value for the register. This new value will not be
written to the processor unless the edit cursor is in the field and the Enter key Is
pressed.

To refresh the contents of all register fields at any time, use the mouse button to
click on the Read button located et the bottom of the window.

Scratch registers can be manipulated using the expr, read, set, and write
commands from the command line of the Main window just like any other register.
There are a total of ten Scratch registers labelled SO - S9.

Using the RISCWatch Debugger

Register Field Windows

Register field windows are used to read, display, modify and write-back processor
registers. To bring up a particular register field window, use the HardwarelReg
Fields pulldown of the Main window menubar.

A register field window is composed of one or more registers. Each register
definition in the window takes up one display line. This line is composed of the
register name, a register value field and register field value fields.

EOT EOL E1T E1L E2T E2L E3T E3L E4T E4L RES mt TCS SCS SPC

IOCR ~140-0-00-00-,-,21@] I!:] @] @] @] @] @] @] @] @] looooo I @] @] I!:] @]
RES WE CE RES EE PR RES ME RES DE RES PE PX RES

HSR l.-00-02-90.,_,.o..,o I loooo I @] I!:] @] I!:]@] @] I!:] @] @] §] @] @] @]
FAM MEM CL CFG MAJ MIN

M ,.-00-20-00-0-,1 j [§) @] @:) @] @] I!:]
11i8id::::J O[iiOJ ! HolLl

Figure 3-47. Sample Register Field Window

The register value field contains the full data value for the register and should
track to the value of the register in Its Register window. This field may be edited
and written to the processor just like Its counterpart in the Register window.

The register field value fields ere a series of fields that represent the individual
logical bit groupings for that register. Each field value contains a heading which
matches the register bit definitions in the PowerPC User's Manual for that specific
processor. The heading is a two or three character mnemonic derived from the
field's name.

For each register field, the appropriate bits are extracted from the register value,
shift to bit zero to normalize them, and then displayed In their appropriate field.
Such a display allows these field values to be compared directly with the values in
the User's Manual for that register, edited and written back to the processor.

Register or register field values may be modified by using the mouse to place the
edit cursor in the appropriate input field and then typing new hexadecimal values.
This new data will not be written to the processor unless the Enter key is pressed.
It is also possible to edit multiple field values for a single register and when the
Enter key is pressed, all the field values will be used to construct the new register
value which Is then written to the processor.

RISCWatch Debugger User's Guide

For register fields which are only one bit in size, the mouse may be used toggle
the current bit value and write It back to the processor. To do so, simply use the
mouse to double-click over the single-bit field.

Whenever data is changed and written back to the processor, the appropriate data
fields in the window will be updated to reflect this latest value. If tha register value
is changed and written, the field values will be updated accordingly. Likewise, if
one or more register field values are changed and written. the register value will
be updated.

To refresh the entire window's contents with the latest processor data, simply use
the mouse to click on the Read button. This will read the latest data value for all
the registers in the window and update the display accordingly.

WARNING: Any data that has been changed in the window and not written back
to the processor will be lostl

User-Defined Resources

User-Defined Windows

User-Defined windows allow a RISCWatch user to create windows containing
customizable register, register field, memory and disassembly entries. Using a
simple syntax, ASCII files are created to define the contents of a user-defined
window.

Fiie Syntax

The file used to describe a user-defined window is a simple ASCII file that is
created with a text editor. The file names for such files usually, but do not have to,
end in .wdf (window descriptor file).

The file can be brokan up into five optional sections:

1. Tltle

2. Registers

3. Register fields

4. Memory

5. Disassembly

The file is composed of simple keywords and may contain comments. The
keywords used to define the contents of user-defined entries are TITLE, REG,

Using the RISCWatch Debugger

FLO, MEM, and DIS. These keywords and their usage are explained In the
sections that follow.

Even though these sections are optional, they must appear in tha same sequence
as listed above ("TITl.E" must be first n It is used, "MEM" must be before "DIS but
after any "TITLE", "REG" or "FLO", and so on).

Comments are allowed in the file and they must start with the # character as the
first character on the line.

Window Tiiie

The u--defined window is given a tltle by using the TITLE keyword followed by
the desired tltle window. If the TITLE keyword is used in the file, It must be the first
keyword used. If no window title is assigned using the TITLE keyword, one will be
assigned for It.

Register Entries

Register entires are used to place registers in the user-defined window. Up to
three (3) registers may be placed on a single line using tha REG keyword. Simply
follow tha REG keyword with the names of up to any three (3) valid processor
register names. The names of registers that can be used in a user-defined
window correspond to the buttons on an associated register window. There may
be up to ten (10) register entries for a single user-defined window.

Register Field Entries

Register field entries are used to place register fields in the user-defined window.
One register field is allowed per FLO keyword. In other words, there can only be
one register field entry per line in a user-defined window. Simply follow the FLO
keyword with the name of a valid processor register name. The names of registers
that can be used in a user-defined window correspond to the buttons on an
associated register window. There may be up to ten (10) register field entries for a
single user-defined window.

Memory Entries

Memory entries are used to place memory data in the user-defined window.
Memory can be displayed as words, half-words. or bytes by using the MEM,
MEMH, or MEMB keywords, respectively. A maximum of lour words (MEM), eight
half-words (MEMH), or sixteen bytes (MEMB) can be placed on a single line.

A memory entry consists of the memory keyword (MEM, MEMH, or MEMB)
followed by the address of memory to be displayed, followed by the number of
elements (words, half-words or bytes based on the memory keyword), followed by
an optional label (maximum eight characters) to give the line of memory. There
may be up to ten memory entries for a single user-defined window.

The leftmost field of each memory line is the label field. If a label is specified as
part of a memory entry It will inltially appear in the label field on the window,

RISCWatch Debugger Usefs Guide

otherwise the label field will be blank. Once the window is up, the label field for
any memory entry can be updated by selecting the field wtth the mouse and
typing in the new label name.

Placing the cursor in an address field and pressing Enter will result in the amount
of memory displayed in the line being read starting at the specified address. The
address can also be changed by typing over the current address and pressing
Enter. This will also result in a memory read of an entire line's worth of data.

The contents of an individual memory element can be written by typing in the new
value and pressing Enter. This will only write an amount of memory equal to the
size of the individual memory element (ie., word, hatt-word, or byte).

Disassembly Entries

Disassembly entries are used to place disassembly text in the user-defined
window. Up to ten (10) disassembly entries per DIS keyword may be placed in a
user-defined window. The DIS keyword is followed by the address of memory to
be disassembled which is followed by the number of words (1-1 O) to be displayed.
There may be up to ten (10) disassembly entries for a single user-defined window.

Creating the Window

Example

A user-defined window is created by using the User-Def Win entry of the
User-Defined menu of the Utiltties pull-down. This will display a file selection
dialog allowing the window descriptor file to be chosen. Once a file has been
selected, ft will be read by RISCWalch. If no errors were detected, the
user-defined window will be created for use.

The following example illustrates the use of the user-defined window file syntax:

TITLE My Window

Let's add some registers we use a lot
REG RO R1 R2
REG IAR SARO SRR1

Add a register field
FLO MSR

Add some memory definitions
MEM OX000305AC 4 INSTRS
MEM OXOOOSOOOO 2 GLOBDATA
MEMB OxOOOCOOOO 2 IODEV1 ,2

Using the RISCWatch Debugger 3-89

MEMH OxOOOC0002 1 IODEV3
MEMB OxOOOC0008 6 IODEV4-9

Disassemble some memory
DIS 0x000305AC 4

When coded as above, the window file will produce the window shown in Figure
3-48 below.

Label Address Data
jrnsTRS 11 ooo305AC 11~7-co_a_o_2A-6~1-BF_A_1_F_FF-4~1-90_0_1-oo_o_a~j 9_4_2_1F_F_4~o I
jGLOBDATA j jooosoooo I [Wooooo1 !00001200 I
lrooEvi.2 j looocoooo !101 j40 I
I IODEV3 II ooocooo21i 0200 I
!rnDEV4-9 jlooocooos j~ls_o_lo_2_IF_F_lo-oi-o-cl-3~0 I
000305AC 7C0802A6 mfl r
000305BO BFA1FFF4 st.mw
00030584 90010008 stw
00030588 9421FF40 stwu

RO
R29,0xFFFFFFF4<R1}
RO, Ox00000008 <R1 >
Ri, OxFFFFFF 40 <R1 l

Figure 3-48. Sample User-Defined Window

A sample window descriptor file is included with the software installation of
RISCWatch and is titled rwppc.wdf.

User-Defined Buttons

3-90

User-defined buttons allow a RISCWatch user to create a window containing
buttons which will execute one or more specified commands. Using a simple

RISCWatch Debugger User's Guide

Example

syntax, ASCII files are created to define the buttons and the commands they will
execute when activated.

Fiie Syntax

The file used to describe user-defined buttons is a simple ASCII file that is created
with a text editor. The file names for such files usually, but do not hava to, end in
.bin. The file is composed of a single keyword followed by a button title and the
button commands.

Comments are allowed in the file and they must start with the # character.
Comments may be on a line by themselves or follow a BUTTON title or a button
command.

Button Entry

A button entry is used to define a button, Its title and the commands It will execute
when activated. A button entry is started with the BUTTON keyword which is
immediately followed by the button's title. This title will be displayed within the
button when the button definition is loaded into the user interface.

The lines that follow consist of Iha commands that will be executed when the
button is activated by the user. Each button entry may have up to 50 commands.
These commands may be any command that would normally be entered on the
command line of the RISCWatch Main window.

The button entry definition ends with the start of another button entry. or end of
file.

The following example is used to illustrate the use of the user-defined button file
syntax:

Lefs define some buttons for things we use a lot

One to read the IAR
BUTTON Read IAR
read iar

One to reset the processor core
BUTTON Resat core
reset core

One to load and run our favorite program
BUTTON load 'n run
load bin program.bin
run

Using the RISCWatch Debugger 3-91

Whan coded as above, Iha window file will produce the following screen:

Figure 3-49. Sample User-Defined Buttons Window

A sample button definition file is included with the software installation of
RISCWatch and is titled rwppc.btn.

Command Files
RISCWatch command files are ASCII text files which contain commands that are
understood by RISCWatch. Various commands allow for access to almost all of
RISCWatch's processor functionality. These command files are designed to be
human-readable and therefore can contain comment and blank lines.

The commands contained in a command file are the same as those commands
that can be typed into the command line of RISCWatch's Main window. See the
following sections for a list of available commands and their usage.

Using Shell Scripts to Execute Command Flies
By using a shall script, several command files could be generated. one for each
piece of logic or function to be tested, and then the entire suite could be called
from within a single script file and allowed to run overnight. At some later time
when the test suite was completed. the output files from the test suite would be
checked to verify the status of each test file run.

Startup Command File
RISCWatch allows a pre-defined command file to be executed every time the
program is brought up in graphical user interface mode.

This command file, rwppc.cmd, may be used to perform a series of commands
which would normally be entered on the command line whenever RISCWatch is
started, to help set up the debugging environment and/or specific processor
facillties.

Every time RISCWatch is started In graphical user interface mode, It attempts to
locate rwppc.cmd in the current directory. If It is found, It will execute It
accordingly. If Iha rwppc.cmd file is not found in this directory, RISCWatch looks

RISCWatch Debugger Usefs Guide

for it in the directory specified by the RW_DIR variable in the environment file. If it
is found there, it will be executed.

This scheme allows individuals to create their own startup command files by
placing it in their own directories. This also allows one startup command file to be
placed in the install directory (specified by RW_DIR) so that everyone will execute
it whenever RISCWatch is started.

A third option allows for the individual users to use their own rwppc.cmd files in
their directories and still execute the rwppc.cmd in the install directory by placing
a command similar to the following in their rwppc:.cmd files:

exec /usr/rwppc/rwppc.cmd

Note: Commands in the startup command file are executed after the environment
file is read. Therefore, search paths set with the SEARCH_PATH environment
variable will be overridden by srchpath commands in the startup command file.

Special Command File Commands

The following commands can only be used from within a command file:

delay Delays command file execution for the specified number of
seconds.

end

parms

Forces the immediate termination of the command file.

Specifies a parameter variable list for the command file. See
"Command File Parameters" on page 3-96 for details.

prlnl/fprlnt Takes the contents of the command after the print keyword and
prints them in the host window. See the fprlnt command for
details and available formatting options.

Blank lines and Comments in Command Files

To make the command files more readable, blank lines can be placed anywhere in
a command file. Comments can also be added to help document the command
file.

The # character indicates the beginning of a comment on a line. The #character
can be placed anywhere on a line. Everything after the #character on a line is
taken as a comment. Comments do not carry over onto the lines that follow them.
An example command file that uses comments is shown below:

ii This is a sample command file
ii In this command file are examples of comments that start
ii in column 1 and comments that start alter a command on a line.
stop II This command stops the processor
run #This command starts the processor running

Using the RISCWatch Debugger 3-93

Command File Programming

3-94

The following programming logic and flow commands are available for use in
RISCWatch command files. These logic and flow commands are not understood
by RISCWatch's command line interface.

H-then

if (expression)

block

end if

H-then-else

if (expression)

block

elseif

block

end if

while

while (expression)

block

endwhile

Note: The while() construct cannot be nested. A while loop cannot contain
another while or do-while.

do-while

do

block

while (expression)

Note: The do-while() construct cannot be nested. A do-while cannot contain
another do-while or while.

Where:

block

expression

Represents one or more RISCWatch commands.

Composed of either a mathematical or logical expression. See
the set command for a detailed description of RISCWatch
expression syntax. Most expressions take the form

(argument operator argument)

Arguments cen be references to reigsters, register fields,
memory values, immediate values or created/assigned

RISCWatch Debugger Users Guide

variables. The operator(s) used in an expression are dependent
upon the arguments used. Examples of operators in a
mathematical expression are + and - while examples of
operators in a logical expression are = and >.

Regardless of whether a mathematical or logical expression is
specified, RISCWatch will evaluate the expression accordingly. A
logical expression will always evaluate to either a 1 (TRUE) or 0
(FALSE). A mathematical expression will evaluate to a resultant
mathematcial value and this value will indicate FALSE if equal to
zero and TRUE all other times.

Command File Special Expressions

Several special expressions can be used by themselves in an if, while, or do
expression. For each expression, RISCwatch determines Its state and returns a
Boolean value used to evaluate the expression. These special expressions
include:

proc_running Returns 1 if the processor (JTAG) or process (non..JTAG) is in
the run state, else returns 0

proc_stopped Returns 1 if the processor (JTAG) or process (non..JTAG) is in
the stopped state, else returns O

run_timeout Returns 1 if the processor/process was stopped due to a run
timeout since the run command was given. This value is cleared
on program start and is reset every time a RUN command is
issued. After a RUN is completed, this value will remain valid
until the next RUN is issued.

rw_cmd_error Returns 1 if the last executed RISCWatch command caused an
error to be generated, else returns 0. This value is cleared on
program start and is reset every time a command issued. After
the command is completed, this value will remain valid until the
next command is issued.

rw_prog_error Returns 1 if any executed RISCWatch command has caused an
error to be generated, else returns 0. This value is cleared on
program start and Its value is never cleared once It is set.

stop_timeout Returns 1 if the processor/process was stopped due to a stop
timeout since the stop command was given. This value is
cleared on program start and is reset every lime a STOP
command is issued. After a STOP is completed, this value will
remain valid until the next STOP is issued.

To use these special expressions, simply put the desired expression between the
O characters of an if, while or do construct.

Using the RISCWatch Debugger 3-95

Command Fiie Parameters

3-96

When starting a command file to be run by RISCWatch, it is possible to pass
values into the command file using RISCW8tch command file parameters.

To do so, two things must be done:

1. A parameter list must be supplied with the command file name

2. A parameter definition must be specified in the command file

A parameter list is a set of one or more values enclosed by the '{' and T
characters. If more than one value is specified, they must be separated by
commas(,).

A parameter definition takes the form of the keyword parms followed by a list of
the parameters that will take on the values specified in the parameter list. This list
is composed of one or more variable names enclosed by the '{' and '}' characters.

To enhance readability and maintainability of a command file, It is suggested that
the parms command be the first command of a command file, although
RISCWatch does not explicitly require this.

When the parms command is reed by RISCWatch, it immediately creates the
variables and assigns each one a value of O, just as though a create command
was executed with no initial value. This allows these variables to be used as
normally created variables even if no parameter list is specified.

The following command could be used in a command file to create three
command file variables to be used as parameters:

perms {var1, var2, var3}

Notice the space between the parms command and the '{' character. This space
must be there for RISCWatch to identify the command.

To pass outside values into the command file and have them assigned to these
variables simply call the command file like this:

rwppc file.cmd{10, 20, 30}

Notice that there is no space between the command file name and the '{'
character.

For this example, var1 would be assigned a value of 10, var2 a value of 20, and
var3 a value of 30. The values passed in the parameter list are assigned in
sequence to the variable names in the parameter definition.

It is possible for the caller to specify fewer parameters in the list than are in the
parameter definition. Using the previous example, if the command file was
executed with the following call:

rwppc file.cmd{10, 20}

RISCWatch Debugger User's Guide

the variable var1 would haw a value of 10, var2 a 20 and var3 a O. Since all
parameter variables are assigned a value of zero {0) when they are created, if no
value for them is specnied in the parameter list, they remain zero {O).

Similarly, if no parameter list was specified, all the variables would have a value of
zero (0). A parameter list can also be specified when executing a command file
from within RISCWatch using the exec command.

Command File Pseudo-Variables

There are a few special variables that are available for use but they can not be
used like normal variables. Hence they are called pseudo-variables.
Pseudo-variables are used to determine the values of certain system resources.
They can not be read or written in the normal sense. Howeller, they can be used in
set expressions and/or referenced inside a print or fprlnt command.

The RISCWatch pseudo-variables include:

$DATE Contains the current calendar date. The format of this

$ERRORS

$FILESIZE

$TIME

$TIMER

pseudo-variable is weekday month day year. This may be used
in a prlnt/lprlnt command only.

Contains the number of program errors generated since
RISCWatch was started. This may be used in a set expression
or a prlnt/lprlnt command.

Contains the number of bytes loaded from the last successful
load command. This may be used in a set expression or a
prlnt/lprlnt command.

Contains the current clock time. The format of this
pseudo-variable is hour:minute:second. This may be used in a
prlnt/lprlnt command only.

Contains the current timer value. See the timer command for
details. This may be used in a set expression or a prlnt/lprlnt
command.

Command File Programming Example

The following is an example that uses command file programming logic to set a
scratch register based on the value of the IAR. In the example the value at
memory address location OxFFFFBOOO is added to the contents of GPRO and
compared to the JAR. If the JAR is greater then this value, scratch register S1 is
set to indicate this fact; otherwise It is cleared.

if (JAR > RO+ (OxFFFFBOOO))

setS1=1

elseif

Using the RISCWatch Debugger 3-97

setS1 =0

endif

Running a Command File

Command files can be run from within RISCWatch using the exec command or
they can be run by passing their filename to RISCWatch on the command line
when RISCWatch is started.

If a command file is specnied at program startup, RISCWatch does not bring up
the graphical user interface but It does execute each of the commands in the file
just as if n were being executed from within RISCWatch.

Once the last command in a command file executes, RISCWatch terminates nsett
and returns control to ns parent process. This allows RISCWatch to be run from
either a host command prompt or called from within a host shell script.

To run a command file from wnhin RISCWatch, type in the following on the
command line of the user interfaca:

exec command_file step

To run a command file at program startup type in the following at the shell prompt:

rwppc cornmand_file

Where:

command_file The name of the command file to be executed. For example:

test.cmd

step Runs the command file in single-step mode. This option is only
valid when executing a command file from the user interface.
See "Command File Single-Step Window" on page 3-98 for more
Information on running a command file using single-step mode.

Command File Single-Step Window

The Command File Single-Step window allows a command file to be run in an
interactive session for development and debugging. It also allows the command
file to be edited and saved. The following section describes the functionality of this
window.

Rlename

At the top of the window, the current command file being run is displayed. If the
saw option is used to saw an edited command file and a different name is
chosen, this filename will be changed to reflect the new command filename.

Cursor wind-

RISCWatch Debugger Use(s Guide

~ file : /u/r"'fl'C/.._les1Nilcrar.coc1

»

tl---
8 ASSM "instruction (operand(s)]"

ASSM "oddis r3,0,0x1234"

·--------------~---
ASSM "instruction C:operand(s:)]" address ~

CREATE cv_02_var1
WRITE ll'IEM OxOOOOoOFO Ox2468F001
READ CHEM OxOOOOaOFO cv_02_v or1
if (cv_02_vor1 ! = Ox2468F001l

FPRIHT " TEST FAILEDC2.1"n"
SET error _count = error _count +

end if
ASSM "addis r3,0,0x1234" OxOOOOaOFO
READ ll-1EM OxOOOOaOFO cv_02_var1
if' {cv_02._var1 != Ox3C601234)

FPRIHT " TEST FAILEDC2.2>'-n" i!B.
SET error _count = error _count + W

L_ 'ii@~~~~~~~~~~::::iiiiii iiiii iiii&iiii, iijj1@iijj-•iijj,iijjL.iijjKiii;m"·"·

Figure 3-50. Sample Command File Single-Step Window

The Cursor window is used to display a cursor that indicates the next line of the
command file that will be executed if the Step button were to be pressed. As
commands are executed, the cursor will move to the next executable line, skipping
blank and comment lines.

Text window

The Text window is used to display the contents of the command file. When the
Single-Step window is first brought up, the contents of the command file will be
read and placed in this window. Since the Single-Step window is a constant size,
vertical and horizontal scroll bars are provided to help with viewing the command
file.

To change the contents of the window, simply use the mouse to place the edn
cursor in the desired location, and then enter n- text or delete existing text. To
save your changes, use the Save button (see description below).

Step button

The Step button is used to execute the command which appears next to the
command cursor.

Repeat button

Using the RISCWatch Debugger 3-99

The Repeat button is used to execute the last executed command.

Skip button

The Skip button Is used to skip execution of the command appearing next to the
command cursor. The command cursor will be placed beside the next executable
command In the file.

Goto button

The Goto button is used to skip execution of one or more instructions. To select
the line to "goto•, simply use the mouse to highlight a word on that line and click
on the Goto button. This function may be used to skip forwards of backwards In
the command file. All commands between the current line and the goto line will be
skipped; they will not be executed.

Reset button

The Reset button Is used to reset the execution of the command file to the first
command In the command file. The Text window will be scrolled to the top and the
command cursor will be placed next to the first executable command of the file.

Save button

If the contents of the Text window are changed and these changes are to be
saved, click on the Save button. This will bring up a file selection dialog box from
which an existing or new command file may be specified to save the Text window
contents to.

Close button

The Close button is used to remove the Command File Single-Step window from
the interface. Be advised that any changes made to the Text window that have not
been saved will be lost!

Processor Resources
For PowerPC processors, RISCWatch can reset a target processor through its
JTAG test port. Exact debug functions are specific to individual PowerPC
processors.

For PowerPC 400Serles devices. see also "Processor Status Window (400Serles
JTAG Only)' on page 4-14.

Processor Reset Window (JTAG Target Only)

3-100

This window is used to access the reset functions of the processor. The three
different kinds of resets available are Core, Chip (Core+ ASIC) and System.
Each reset performs a slightly different function.

RISCWatch Debugger User's Guide

For PowerPC 400Series processors, please refer to the appropriate processor
User's Manual for a description of each reset.

For PowerPC 6xx processors the Core and Chip resets are equivalent. They will
reset the processor and soft stop at address OxFFF00100. Also, the System reset
will reset the processor and run from address OxFFF00100.

Figure 3-51. Sample Processor Reset Window

This window consists of three buttons which are used to select the type of reset
that is desired. Use the mouse to select the appropriate reset then click on the
Reset button located near the bottom of the window. To monitor the status of the
reset, watch the contents of the message window. This status will indicate, among
other things, whether the processor is running or stopped after the reset was
performed.

WARNING: To ensure that RISCWatch maintains an accurate status of chip
conditions, the processor should be reset using this window. Avoid using the
contact switch on the evaluation board to reset the processor unless a reset via
RISCWatch is not possible. If this contact switch is used to reset the processor,
RISCWatch will not be able to detect a change in the processor running/stopped
status. While this should not prove to be a dangerous condition, confusing
information may be displayed if the reset started the processor running, but
RISCWatch still thinks the processor is stopped. Status Indicators in one or more
windows may indicate that the processor is stopped, when in fact It is running due
to the asynchronous nature of the run operation via the contact switch reset.

Using the RISCWatch Debugger 3-101

General Resources

Window Layout

The window layout feature of RISCWatch is used to save the position and size of
each visible window so that the exact screen layout can be loaded thereafter. H
the SAVE_LA'IOUT variable in the environment resources file, rwppc.anv, is set
to YES, RISCWatch automatically saves a window layout when the program is
exited. This allows RISCWatch to load the same window layout the next time It is
started.

To save the current window layout, access the UtilltieslWmdow LayoutlSave
option of the Main window menubar. This will display a file selection dialog that
can be used to specify an existing layout file or to create a new layout file of your
choosing. Select an existing filename or type in a new filename and click on OK.
This will save the window layout to the specified file. By allowing users to select
their own files, RISCWetch allows multiple screen layouts to be saved to facilitate
the needs of multiple users or resource dependent debugging needs.

To load a window layout, access the UtilltieslWindow Layoutlload option of the
Main window menubar. Select the layout filename using the file selection dialog.
The specified layout file will be accessed to configure the window layout just as It
was saved.

Window List

Log Files

3-102

The window list is used to display any active window. An active window is a
window that has been created by RISCWatch or by a user and may or may not be
visible on the screen. This fealure is particularly useful when a large number of
windows are on the screen which may hide one or more windows from view.

By accessing the UtilltieslW111dow List option of the Main window menubar, a
window will be displayed that lists all of the active windows. Use the mouse to
select the desired window and this window will be made visible and placed on top
of all other RISCWatch windows.

Every time that RISCWatch is started, a log file is opened. Log files are used by
RISCWatch to log all commands entered by the user, actions accessed via the
graphical user interface, the results of actions, and all status and error messages.
Each entry put in a log file is time stamped so that the exact times of actions can
be recalled H they will be needed at some later date.

RISCWalch Debugger LJse(s Gulde

Log files also allow for the sequence of actions to be recorded so they may either
be repeated, performed again in the exact same sequence, or for a system
operator to figure who's been doing what with AISCWatch and the processor it is
connected to.

AISCWatch creates a new log file for each day that it is started. When
AISCWatch is started, it notes the month and day and looks to see if a log file
already exists for this date. If a file does not exist, AISCWatch opens a new file for
logging. If a file does exist for this date, RISCWatch simply opens the existing file
and appends all new log entries to the end of the file.

AISCWatch log files are given names to reflect the month and day they contain
log entries for. For example, if you were to run AISCWatch on August 19, after
leaving AISCWatch, there would be a file in the current directory called
AW0819.LOG. This naming convention allows for several months, or even years,
of development time, effort and methodolgy to be tracked and/or used to generate
status and activity logs.

When RISCWatch is started, logging of all entries is automatically enabled. By
using the Logging option of the U1ilities pull-down menu in the main program
window, or the logging command, it is possible to disable logging if need be. It is
also possible for any user to place their own comments in the log file by using the
UtilitieslLogginglComment pull-down or the log command.

By using a resource defined in the RISCWatch environment file (rwppc.env), it is
possible to specify the directory where all log files are kept by AISCWatch. The
name of the resource is LOG_FILE_DIR. The following is an example of how to
use this resource in the rwppc.env file:

LOG_FILE_DIA = /u/rwppc/log_files

RISCWatch will detect this resource and maintain all log files in the the specified
directory.

Logging Control

By default, RISCWatch saves all commands and messages to the current log file.
At certain times, rr may be deemed necessary to disable this functionalrry. To
control the state of logging, the logging command or the Logging State window is
used.

To determine the current logging state, enter the logging command on the
command line in the Main window and note the message displayed in the
message window. To turn off logging, type 'logging off' on the command line. To
turn logging back on, type 'logging on'.

The same actions can be accomplished using the user interface. Select the
UtilrrieslLogginglState option of the Main window menubar. This will display a

Using the RISCWatch Debugger 3-103

small popup window indicating the current logging state. To switch logging states,
select the Yes button. To leave the logging state as is, select the No button.

See logging on page 5-75 in the Command Reference for a detailed description
of this command.

Logging User Comments

It is possible for RISCWatch users to enter their own comments into the current
log file. To do so, either the log command or Log Comment window is used. The
log command keyword is entered on the command line of the Main window
followed by the text to be entered in the log file. See log on page 5-7 4 in the
Command Reference for a detailed description.

The Log Comment window, shown in Figure 3-37 below, is displayed by using the
UtilitieslLogginglComment pulldown of the Main window menubar.

Figure 3-52. Sample Log Comment Window

Type the text to be entered in the log file in the edit field and then press the Enter
key. Select the Hide button to remove this window from the screen. Select the
Help button to bring up help information for this window.

Viewing Log Files

3-104

The contents of a log file can be viewed using any ASCII file edrror or the
AISCWatch file viewer. To view a log file while running RISCWatch, select the
UtilftieslLogginglView option of the Main window menubar. This will display a file
selection dialog of all available log files.

Log files are named according to the day on which they were created and for
which they therefore contain entries. For example, a log file created on August 19
will be called RW0819.LOG.

Simply select the desired log file from the files listed and a viewer window will be
opened to display the contents of the selected log file.

RISCWatch Debugger User's Guide

Shell Command Window (Non-PC Host Only)

The Shell Command window is available for a non-PC host only. This window is
used to pass command strings to the native operating system for execution.
Figure 3-37 shows the window that is displayed by using the UtilltieslShell
puildown of the Main window menubar.

Enter shell string

Figure 3-53. Sample Shell Command Window

Type the command to be e:Meeuted in the edit field and then press the Enter key.
Select the Hide button to remove this window from the screen. Select the Help
button to bring up help information for this window.

Screen Capture

The contents of certain data intensi\19 windows may be saved to an ASCII file
using the capture command. This command allows significant amounts of
information to be saved so that It may be viewed later or for S9119ral samples to be
taken to be used for comparison purposes.

When the capture command is used, the desired window is specified and the
contents are captured to a file. If no file is specified, the contents will be saved to a
file named rwppc.cap. To override this name, a file name is specified with the
capture options.

The contents of the capture file will contain a time and date stamp for each
capture that is requested along with a description of the window captured followed
by the appropriate window data.

See capture on page 5-26 in the Command Reference for a detailed description
and a list of available options.

Using the RISCWatch Debugger 3-105

Calculator Window

3-106

The Calculator window is used to mimic the operations of a basic arithmetic
calculator.

Figure 3-54. Sample Calculator Window

The calculator will run in either decimal or hexadecimal modes. Use the DEC and
HEX buttons to switch the current mode.

When in DEC mode, the AND, OR, NOT. A, B, C, D, E, and F buttons will not
function. When in HEX mode, the CHS button will not function.

To convert a number between the two modes, simply enter the mode that the
number is to be entered in, enter the number and then click on the alternate mode
button which will convert the number and then display Its value.

The mathematical operations available are:

+=addition

- = subtraction

• = multiplication

I= division

CHS= change sign

The bitwise operations available are:

AND = bitwise AND

OR = bitwise OR

NOT= one's complement

ASL = arithmetic shift left

RISCWatch Debugger Usefs Gulde

ASA =arithmetic shift right

Memory buttons:

M+ = add value in display to memory value

M- = subtract value in display from memory value

MR = recall the memory value to the display

MC = clear the memory value to O

Other buttons:

AC = all-clear - clears the value in the display and current calculation

C = clear • clears the value in the display

==computes the value of the previously entered number with the value in the
display using the previously specified operator

Profiler Window

Profiler
Step 17
Step 18
Step 19
Step 20
Step 21
Step 22
Step 23
Step 24
Step 25

The Profiler window is used to monitor the progress of a running profile command
and to review the data collected after the run is stopped.

Wed Nov B 12:40:21 1995

Step 26
profiler stopped

OOOOA094 addi
OOOOA098 stw
OOOOA09C <>ddi
OOOOAOAO stw
OOOOAOA4 addi
OOOOAOAB stw
OOOOAOAC lwz
OOOOAOBO addi
OOOOAOB4 stw
OOOOAOBB addi

on user request

R3,0,0x006F
R3,0x0000003C<R1)
R3,0,0x0002
R3,0x00000040(R1)
R3,0,0x0003
R3,0x00000050(R1l
R4,0xOOOOOOOB<R2l
R3,0,0x0001
R3,0x00000000(R4)
R3,0,0x0000

Figure 3-55. Sample Profiler Window

The Profiler window consists of a large text area and two action buttons. The text
area is used to display the results collected from a profiling session. A profiling
session is configured and run using the profile command.

Using the RISCWatch Debugger 3-107

Profiling of code is accomplished by single-stepping the processor, one assembly
instruction at a time. After each step is taken, the requested profiling condttions
set up by the user will be checked. If the conditions specified are met, the
requested profile informetion will be gathered for display in the window.

The entry that is displayed will consist of the step number, the current IAR value,
disassembled opcode at the IAR memory address and a listing of requested
profile data.

Once a profile run command is given, this window will appear and display the
requested profile data as It is being collected. This data will usually consist of
register and/or memory data

To stop the profiling session, the profile stop command is used or the Stop button
located along the bottom of the window is selected. Once stopped, the scroll bar
attached to the text area can be used to view the collected data.

The Close button is used to remove the window from the screen after the collected
data has been viewed.

OnllneHelp

3-108

RISCWatch provides extensive online help. Most windows contain a Help button
which is used to bring up context-sensitive help. Help is also available by using the
Help pulldown of the Main window menuber. Once a help window is displayed, the
Search option can be used to browse a list of all available help topics.

Using the Help pulldown of the Main window, It is possible to display help
information for the following topics :

The RISCWatch program version number

User modifiable Application Notes file

RISCWatch Command Syntax

RISCWatch Technical Support phone numbers

Processor Instruction Sets

Processor Register and Field Definitions

Since the help viewer invoked varies depending on the host platform, the
instructions for using that particular viewer must be viewed online. Once a help
window is displayed, access the Help selection of the window's menubar and
select the How to Use Help option for a description of the resources available.

RISCWatch Debugger Usefs Guide

Chapter 4. Using Processor-Specific Debug Features
This chapter provides detailed information about RISCWatch features applicable
to specific PowerPC processors or families of processors. Individual processor
implementations within the PowerPC architecture may vary in terms of internal
register types, cache size and organization, availability of a memory management
unit, and other hardware functions. The RISCWatch windows in this chapter
support these implementation-specific functions.

Table 4-1 summarizes the features of the RISCWatch Debugger presented in this
chapter, along with the applicabillty of each feature or window to specific PowerPC
processors or processor families:

Table 4-1. Quick Reference for Processor-Specific Debug Features

Task or Resource

Managing Hardware Breakpoints

Memory Resources

Processor Resources

Applicable Seclions

"Using RISCTrace (400Series JTAG Processor Probe Only)"
on page 4-2
"Trigger/Trace Window (400Series Only)" on page 4-6
"Compound Trigger/Trace Window (400Series Only)" on
page 4-9

"Translation Lookaside Buffer Window (PPC403GC Only)"
on page4-12

"Processor Status Window (400Series JTAG Only)" on
page 4-14

PPC403GC Implementation Notes

RISCWatch support for the Memory Management Unit (MMU) of the PPC403GC
is subject to adherence to the following condttlons:

1. The translation mode for Data and Instruction access must be the same. They
can both be enabled or disabled; having only one enabled is not supported.

2. If program execution is stopped at a point where the translation mode has
changed from the state existing upon the initial file load, then the mapping
must be real =virtual. If this is not the case, the source level debug informa
tion for the stopped context will not be displayed correctly.

3. The real addresses in the TLB entries are assumed to be correct and valid
addresses.

Using Processor-Specific Debug Features 4-1

Actions performed via the TLB window, described in "Translation Lookaside Buffer
Window (PPC403GC Only)" on page 4-12, or within the program ltseff that cause
nonconformanca to these conditions will produce unpredictable results.

Refer to the PPC403GC Embedded Controller User's Guide in "Related IBM
Publications" on page xxvi for more information regarding the operating
characteristics of the MMU.

Managing Hardware Breakpoints and Trace Events

See "Using Hardware Breakpoints• on page 3-40 for a general discussion of
hardware breakpoints in RISCWatch.

Using RISCTrace (400Series JTAG Processor Probe Only)

4·2

Certain PowerPC 400Serias processors provide a reaHime trace debug mode
which supports tracing the instruction stream being executed out of the instruction
cache in real time. This mode does not affect the performance of the processor.

RISCWatch provides a mechanism to utilize the hardware trace capabiltties of the
chip and gather a nonintrusive reconstruction of the flow of executing processor
instructions. This feature of RISCWatch is known as RISCTrace 400. RISCTrace
collects trace information from the trace status port in real-time and then
reconstructs the flow of the code using the collected information and the contents
of processor memory.

RISCTrace requires a JTAG Ethernet processor probe target which has trace
capabiltties. The RISCWatch controls for RISCTrace appears only It RISCWatch
detects that ft is connected to a processor probe which supports trace and a
PowerPC 400Series chip which supports trace.

When trace is supported, the Trigger/Trace and Compound Trigger tr race windows
provide the RISCTrace controls necessary to define and manage trace collection.
From these windows the user can define the events which initiate the trace
collection, and other trace parameters such as the number of cycles to trace.
Refer to the Trigger/Trace window descriptions which follow in this section for a
detailed description of the controls on these windows.

After the trace parameters are specified, the Run Trace button can be used to
start the processor running end inttiate trace collection. When a specified trace
trigger event occurs. RISCTrace automatically collects the trace information and
reconstruct and format It. The formatted trace is saved in the file rwppc.trc and
displayed in a view window. The Save Trace button can be used to save the
formatted trace in a file of your choice, as well as aliowing you to enter optional
comment lines which is appended to the beginning of the formatted trace
information in the saved file.

RISCWatch Debugger Users Guide

Selecting the Abort Trace button while a trace is running causes the trace which is
currently running to be aborted. The Abort results in the processor being stopped
with no trace reconstruction occurring for the trace which was running.

If it is not desired to have any program symbol information included in the trace
output, the unload all command can be used to unload all the program
information from RISCWatch prior to initiating the trace. This also speeds up the
trace reconstruction. A detailed description of the trace output follows in the
'RISCTrace Outpuf section below.

For additional information on processor-supported trace, consult the appropriate
chip user's manual.

RISCTrace Output

The output file resulting from a successful trace contains various elements of
information which are presented in a consistent manner for each trace.
Guaranteeing that key information is presented in a consistent manner allows
users the flexibility to write their own post-processing routines which can operate
on the trace output file.

Using Processor-Specific Debug Features 4-3

RISCTrace Trace Output File
DATE Tue Aug 13 17:53:05 1996

fi TRACE TRIGGER SETTINGS : IAC1 occurring 01 times
> TRACE TRIGGER EVEHT CYCLE; 00000

Total Cycle/ (optional)
ft Line Ci;cle Instr Address (+F _Offset) Disassembl!J * ----- ----- ----- --------------------- -----------
• FUNCTION; main START _ADDR: OxOOOOA078

00001 00000 00001 OxOOOOAOAO < +Ox000028l
00002 00000

FILE: demo1. c PROGRAM: ./demo
stw R3, Ox00000040 <R1l

00003 00001 00001 OxOOOOAOA4(+0x00002Cl
00004 00002 00011 OxOOOOAOAB (+Ox000030l
00005 00013 00001 OxOOOOAOAC (+Ox000034)

addi R3,0,0x0003
stw R3,0x00000050(R1)
lwz R4,0x00000008(R2>

*** Entries removed for .. figure display purposes ***

00051 00087 00002 OxOOOOAOE4 (+Ox00006C) cmpwi
00052 00089 00002 OxOOOOAOE8 (+Ox000070) bl t
00053 00089 00002 OxOOOOAOEC(+Ox000074) bl

CR1, R3, Ox0005
CRL $+0xFFFFFFE4
HOxOOOOOOEC

• FUNCTION: routine5 START_ADDR: OxOOOOA1D8 FILE:
00054 00091 00001 Ox0000A1D8(+0x000000) stwu
00055 00092 00013 OxOOOOA1DC(+Ox000004) stw

derno3. c PROGRAM: .!
RL OxFFFFFFCO <R1l
R3, Ox00000058 (R1l
R4,0x00000008 <R2l 00056 00105 00001 OxOOOOA1EO\+Ox000008) lwz

00057 00106 00001 OxOOOOA1E4<•0xOOOOOCl "ddi
00058 00107 00001 OxOOOOA1E8(+0x000010) stw
00059 00108 00001 OxOOOOA1EC<+Ox000014) addic
00060 00108 00001 OxOOOOA1F0(+0x000018l blr

R3, 0, Ox0005
R3,0x00000000 <R4l
R1,R1,0x0040

• FUNCTION: main START_ADDR: OxOOOOA078 FILE: demo1.c PROGRAM: .!demo
00061 00109 00001 Ox0000AOF0(+0x000078J cror 31,31.31
00062 00109 00001 OxOOOOAOF4(+0x00007C) bl ••OxOOOOOOBC

• FUNCTION: routine4 START_ADDR: OxOOOOA180 FILE: derno1.c PROGRAM: .I
00063 00110 00001 OxOOOOA180<+0x000000) stwu R1,0xFFFFFFCO(R1J
00064 00111 00015 Ox0000A184(+0x000004J stw R3,0x00000058(R1l
00065 00126 00001 OxOOOOA188(+0x000008l addis R3,0,0x4444

*** Entries removed for· figure display purposes ***

; FUNCTION: ? STARLADDR: ? FILE! ',j
00126 00261 00001 OxFFFE0700

PROGRAM: ?
sync
stw 00127 00262 00001 OxFFFE0704

00128 00263 00012 OxFFFE0708 stw

Figure 4-1. Sample Trace Output File

4·4 RISCWatch Debugger Use(s Guide

R1,0x00000034 <Ol
R2,0x0000003B <Ol - - ---

The following general rules hold true for any trace output file, such as the sample
in Figure 4-1:

1. All comments are preceded by the comment character '#'

These may be separate comment lines, or comments at the end of trace
entries.

2. If comment lines are added to the trace via the Save Trace window, they are
the first lines in the file and preceded by the comment character '#'

3. A comment line containing the words 'RISCTrace : Trace Output File' e~her
follows the optional comment lines (if they exist) or is the first line in the file.

4. A comment line containing the information 'DATE : time_info' follows next,
where time_info is the time/date information in the format defined by the ANSI
ctimeO function.

5. A comment line containing the information 'TRACE TRIGGER SETIINGS
trigger_settings' follows, where trigger_settings describes the trigger settings
at the time the trace was collected and in the format shown at the top of the
Compound Trigger/Trace window.

6. A line preceded by the special character'>' follows, containing the information
'TRACE TRIGGER EVENT CYCLE : cycle', where cycle is a decimal number
indicating the cycle number at which the trace trigger occurred. Also, the
trace output entry immediately following the entry for the instruction at which
the trace was triggered contains the comment:
... STATUS: Trigger event ••• at the far right of the entry.

This entry also has the same Cycle value as the instruction entry preceding It
at which the trace was triggered.

7. The trace header (preceded by the comment character '#') follows:

Total Cycle/
Line Cycle Instr Address (+F _Offset) Disassembly
------ ------ --------

8. The trace entries follow next. Each field of the entry is aligned below the field
name in the header, as described below:

Line The sequential entry number wrthin the trace output.

Total Cycle

Cycle/Instr

Address

+F_Ottset

The running count of cycles for the trace.

The number of cycles for this executed instruction. This field
provides a quick way to determine which instructions in the
trace are taking the most cycles to execute.

The address of this executed instruction.

The optional offset from the beginning of the function. This
only appears if there is program symbol information loaded

Using Processor-Specific Debug Features 4-5

for the function containing this executed instruction.
Otherwise rt is blank.

All hex numbers are preceded by the ~.haracters 'Ox'. Otherwise, numbers are
decimal.

9. If program information is loaded corresponding to a trace instruction address,
a program information entry preceded by the special character '$' appears
before the first instruction of each new function entry point as rt is encoun
tered in the trace.

The format of the program information entry is as follows:

FUNCTION: tune START_ADDR: start_addr FILE: file PROGRAM: prog

lune function name, '?' if unknown

start_addr start address for the function, '?' if unknown

file file containing the function, '?' tt unknown

prog fully qualified program name, '?' ii unknown

II the trace execution flow goes from an instruction which has program
information associated ~h rt, to one with no program information, all the
fields above are '?'.

1 O. A blank line appears between trace entries where a break in sequentially exe
cuted instruction addresses (for example, a branch to another area of the pro
gram) occurs.

Trigger!Trace Window (400Series Only)

4-6

The Trigger/Trace window is used to manage hardware breakpoints and trace
events. Breakpoints managed by this window are accessible by using the built-in
debug functions of the processor. Hardware breakpoints are not available for OS
Open targets. An explanation of trace capabiltties is explained in "Using
RISCTrace (400Series JTAG Processor Probe Only)" on page 4-2.

RISCWatch Debugger User's Guide

For addltional information on these and other processor debug features, consult
the Debugging chapter of the User's Manual for the specific PowerPC 400Series
processor being used.

Trigger on :

0 Branch t4ken

i:l Exception

Ill Inst Ada-ess(1J I 00000000 j Cl Inst Adcfress(2J I 00000000 j
o n.ta Add-ess<1> I 00000000 I u n.ta Address<2> 100000000 I
o R.;..;.1 + .. n 01•..;

Cl w !•.., Q l;;r""• l LSB
0 Iar.uro 2 lSB
<) I;;r.:.r• <I LSB

o~ +H11 Mt..;.

o Hr it.a Q I;¥i01Q 1 um
¢!~'1)r'ii 2 lSB

Debug •ode : U External 0 Internal

RISCTraco Controls:

Note: Hax trace cycles = 65536

(wi•" ;,,;.,, .• ,,.,99.,. " I 000000 j Cycloo After Trigger = I 0081921

[Run Trace I fAbOi't"frace] cs.we-t;:aa.-J

Figure 4-3. Sample Trigger!Trace Window with Trace Supported

Branch Taken -nt

The Branch Taken event trigger is enabled and disabled according to the state of
Its check box. If the check box is enabled, the trigger is enabled too.

Exception event

The Exception event trigger is enabled and disabled according to the state of Its
check box. If the check box is enabled, the trigger is enabled too.

Using Processor-Specific Debug Features 4-7

Instruction Address Compare -111$

There are two Instruction Address Compare ewnts that can be set. An Instruction
Address Compare ewnt trigger is enabled and disabled according to the state of
Its check box. H the check box is enabled, the trigger is enabled too.

If an Instruction Address Compare is enabled, the appropriate address to trigger
on should be entered in the address field. Usa the mouse to place the edit cursor
in the appropriate address field, enter a new hexadecimal value and then press
the Enter key.

Data Address Compare wenta

There are two Data Address Compare 811911ts that can be sat A Data Address
Compare event trigger is enabled and disabled according to the state of Its Read
and Write check boxes. If a check box Is enabled, the trigger is enabled for that
event.

If a Data Address Compare is enabled, the appropriate address to trigger on
should be entered in the address field Use the mouse to place the edit cursor in
the appropriate address field, enter a new hexadecimal value and then press the
Enter key.

For the Data Address Compare events, a trigger may be generated for a read
and/or write to the specified address. Enable the desired event(s) by enabling the
respective check box. The Data Address Compare events also allow for byte,
haff-word and word masking of the data address on compares through the use of
the All bits/lgnore 1 LSB/lgnore 2 LSB buttons. Use the mouse to select the
appropriate button for the specified data address.

Debug mode

The Debug mode check boxes are used to select the debug mode under which
the processor will be running which in tum dictates the action to be taken when an
event Is triggered. Select the External check box to run in External Debug mode.
Select the Internal check box to run in Internal Debug mode. In External Debug
mode, when a debug event is detected the processor will be stopped. In Internal
Debug mode, when a debug event is detected, the processor will vactor to the
appropriate exception handler for processing.

Note: For normal exception-driven processing of Data or Instruction Address
breakpoints by a ROM Monitor or OS Open target, Internal debug mode should be
selected.

RISCTrace Controls

4-8

RISCTrace controls appear on the window only H RISCWatch determines that
trace is supported. Refer to "Using RISCTrace (400Series JTAG Processor Probe
Only)" on page 4-2 for an explanation of RISCTrace. When a trace is running, the

RISCWatch Debugger User's Gulde

trigger events described above define when the trace is triggered. The following
controls are specific to RISCTrace:

Cycle count specification

The maximum number of cycles which can be traced is shown above the controls
used to specify the cycle count(s) for the trace.

The 400Series processor which RISCWatch is attached to may support either a
'forward only' trace (where tracing begins only after the specified trigger event
occurs) or a 'backtrace' capability (where a 'window' of cycles around the trigger
event may be specified).

If the processor supports a 1orward only' trace, a 'cycles before trigger' count (the
count of cycles before the trigger event occurs) is always zero and cannot be
altered. A 'cycles alter trigger' count (the count of cycles following the trigger
event) can be adjusted with a value not exceeding the maximum size of the trace.

If the processor supports a 'backtrace' capability, a 'cycles before trigger' count
and a 'cycles after trigger' count can be both adjusted to define a 'window' of
cycles around the trigger event, with the total of the two not exceeding the
maximum size of the trace.

Run Trace button

After the trigger event(s) and cycle count(s) are specified, the Run Trace button
starts the processor running and initiates trace collection. When a specified
trigger event occurs, RISCTrace automatically collects the trace information and
reconstructs and formats it. The formatted trace is saved in the file rwppc.trc and
displayed in a view window.

Abort Trace button

Selecting the Abort Trace button while a trace is running causes the trace which is
currently running to be aborted. The abort results in the processor being stopped
with no trace reconstruction occurring for the trace which was running.

Save Trace button

The Save Trace button can be used to save the formatted trace in a file of your
choice, as well as allowing you to enter optional comment lines appended to the
beginning of the formatted trace information in the saved file.

Compound Trigger!Trace Window (400Series Only)

The Compound TriggerfTrace window is available on those processors which
support compound debug events.This window is very similar to the Trigger
window with some additional features to make use of compound debug event
functionality. Reier to "TriggerfTrace Window (400Series Only)" on page 4-6 for an
understanding of the basic features this window provides and to "Using

Using Processor-Specific Debug Features 4-9 4·10

RISCTrace (400Series JTAG Processor Probe Only)" on page 4-2 for the control
information provided with RISCTrace.

occurring ~tioes
BT

Trigger on events ;

tJ fir,';!'~·)', !,';i Vr:

i.:l Exception

f:il Inst Address(1)

Cl Inst Mfress(2)

!1'1 Data Address(!)

Date Address12)

Inst Adchss(l) I 00000000 I
Data Adchss<D @5i~

Read <i), All bits

Write v Ignore 1 LSB
v Ignore 2 LSB
{>Ignore 4 LSD

Followed b\j events :

~ Branch Taken

w Exception

w Inst Address(2)

Inst Address<2> I 00000000 I
nate Address<2> I 00000000 I

"1 Read ~ All bi ts
lil1 Write Ignore 1 LSD

v Ignore 2 LSD
<# Ignore 4 LSD

Debug mode : LI External U Internal

RlSCTrace Cootrols:
Note: Hax trace cycles = 65536

I 000000 I C!jCles After Trigger = I 065536 j

Figure 4-4. Sample Compound TriggerfTrace Window with Trace Supported

RISCWatch Debugger User's Guide

Using the Compound Triggerffrace window, three classes of triggers may be set
up:

1. Trigger on one or more events

2. Trigger alter one or more events occurs a specified number of times

3. Trigger after one or more events occurs a specified number of times which is
followed by a single occurrence of one or more events.

Available debug events include:

1. Branch taken

2. Exception

3. Instruction address compare

4. Data address compare

The inltial trigger events are selected using the checkboxes under the "Trigger on
events• heading. These checkboxes are the same as those found in the Trigger
window. One or more of these events may be specified. As events are selected,
notice the text appearing in the "Trigger on• field at the top of the window.

If It is desired. an event occurrence counter may be set using the text field at the
top of the window. Enter the desired count into the box and press Enter.

Once a Trigger on event is specified, several Followed by events are available for
use as checkboxes under the "Followed by events" heading. H an event is selected
as a Trigger-on event, It is not available for use as a Followed by event and vice
versa. As Followed by events are selected, notice the text appearing in the
"followed by" field at the top of the window.

The Instruction and Data address controls at the bottom of the window can only
be accessed ff the appropriate event has been selected as a Trigger on or
Followed by event.

The Debug mode check boxes are used to select the debug mode under which
the processor is running which in turn dictates the action to be taken when an
event is triggered. Select the External check box to run in External Debug mode.
Select the Internal check box to run in Internal Debug mode. In External Debug
mode, when a debug event is detected the processor is stopped. In Internal
Debug mode, when a debug event is detected, the processor vectors to the
appropriate exception handler for processing.

Note: For normal exception-driven processing of Data or Instruction Address
breakpoints by a ROM Monitor or OS Open target, Internal debug mode should be
selected. Hardware breakpoints are not available for OS Open targets.

RISCTrace controls appear on the window only if RISCWatch determines that
trace is supported. See"RISCTrace Controls" on page 4-8 for further information.

Using Processor-Specific Debug Features 4-11

Memory Resources
See "Reading and Writing Memory" on page 3-75 for a general description of
RISCWatch features and windows for memory access.

Translation Lookaslde Buffer Window (PPC403GC Only)

4-12

The 11.B window is used to read and write entries in the Translation Lookaside
Buffer (TLB) of a processor which contains a Memory Management Unit (MMU).

N EPN S V T RPN Z W E WR
00 400000 0 1 00 400000 0 5 0 1
01 000000 1 1 01 000000 0 0 1 0
02 000010 1 1 01 000010 0 0 1 0
03 000020 1 1 01 000020 0 0 1 1
04 000030 1 1 01 000030 0 0 1 1
05 000040 1 1 01 000040 0 0 1 1
06 000050 1 1 01 000050 0 0 1 1
07 000060 1 1 01 000060 0 0 1 1
OB 000070 1 1 01 000070 0 0 1 1
09 000080 1 1 01 000080 0 0 1 1
OA 000090 1 1 01 000090 0 0 1 1
OB 000100 2 1 01 000100 0 0 1 0
oc 000140 2 1 01 000140 0 0 1 0
OD 000180 2 1 01 000180 0 0 1 0
OE 0001CO o 1 01 0001CO O O O 1
OF FFFEOO 3 1 01 000200 0 0 1 0

~ C!!!E] D!.!LI

Entry. ~

EPN 1400000 I
Size@]

ZSEL@)
a 11r1te-t1ru

0 ""-'ll coh

0 EXecute

Figure 4-5. Sample TLB Window

RI'!! 14000001

TID~
1111 Valid

Iii Inhibit

Iii! Guarded

11111 WRite

"PPC403GC Implementation Notes" on page 4-1 provides details affecting
RISCWatch support for PPC403GC TlB operations.

This window is displayed by selecting the Memory I TlB option of the menubar's
Hardware pulldown choice. The left half of the TLB window displays the contents
read from the TLB. The right hall is used to edit a TlB entry and write It back to
theTLB.

The buttons located along the far left side of the window are used to page up and
down through the available TLB entries when they are clicked on.

RISCWatch Debugger Use(s Guide

The labels across the top of the data window are used to help identify the
quantities being displayed for the TLB entries. The labels are :

N

EPN

s
v
T

RPN

z

entry number

effective page number

page size

valid bit

TIO

real page number

ZSEL field value

w
E

WR

WIMG bits (Write-through, Inhibit, Memory coherence, Guarded)

EXecute bit

WRitebit

Note: Page numbers (EPN & RPN) are always displayed normalized to bit O
(MSB). WIMG bits are displayed as a hexadecimal value with bit positions, from
left to right, being W, I, M, and G.

The Read button is used to force a read of the processor TLB data to display the
latest contents.

The Hide button is used to remove this window from the screen.

The right half of the window is composed of text fields and check boxes which are
used to set the attributes of a TLB entry so that it can be written back. All the text
fields display hexadecimal quantities.

Note: Page numbers (EPN & HPN) are always displayed normalized to bit O
(MSB). These values should also be entered as such.

To view the contents of a particular entry, enter the TLB entry number in the text
field and press Enter. The attributes for the specified entry are displayed.

Edit the text fields and set the check box states accordingly. To write the new data
to the TLB, simply click on the Write but1on.

Processor Resources

See "Processor Reset Window (JTAG Target Only)" on page 3-100 for a
description of RISCWatch options for resetting a PowerPC processor.

Using Processor-Specific Debug Features 4·13

Processor Status Window (400Serles JTAG Only)

4-14

This window is used to convey the status of important processor facilities. The first

Processor
JDSR
BESR
ESR

Stopped <BPl
Ho error
Ho error
Ho error

DMASR
XER

RIO RI1 RI2 RI3
Ho error

Figure 4-6. Sample Processor Status Window

line in the window is used to indicate if the processor is running or stopped. If the
processor is stopped, an attempt will be made to give an explanation as to why
the processor is in the stopped state.

Stopped indicators (DBSR):

BP = software breakpoint

!AC = instruction address compare

DAG =data address compare

BT = branch taken

EXC = exception

IC = instruction complete

TRAP=trap

UDE = uncondttional debug event

!DE = imprecise debug event

The remaining lines in the window are used to provide the status of important
processor lacitlities which are provided by bits in various registers. Each of these
lines is composed of a register name followed by the status for that register. If the
processor is running, the lines will not be updated.

If there are no error indications for that register, the string 'No error' will be
displayed. If the register contents indicate that there have been one or more
errors, the register field name for the indicated error(s) are displayed.

JDSR JTAG Debug Status Register

HAS HoldAck status

RISCWatch Debugger Users Guide

IMC Instruction machine check

10 Illegal instruction

FP Protection error

AE Alignment exception

PWS Processor in wait state

ISO Instruction stuff overrun

BESA Bus Error Syndrome Register

DSE data-side error

DME DMA error

RD read error

WR wrrte error

PV protection violation

CFG non-configured address

BE bus error

BTO bus time-out

ESR Exception Syndrome Register

IMCP instruction machine check (protection)

IMCN instruction machine check (non-configured)

IMCB instruction machine check (bus error)

IMCT instruction machine check (time-out)

PEI program exception (illegal)

PEP program exception (privileged)

PET program exception (trap)

DMASR DMA Status Register

RIO DMA channel O error

Rl1 DMA channel 1 error

Rl2 DMA channel 2 error

Rl3 DMA channel 3 error

XER Fixed-Point Exception Register

SO summary overflow

OV overflow

CA carry

Using Processor-Specific Debug Features 4-15 4-16 RISCWatch Debugger User's Guide

Chapter 5. Debugger Command Reference
This chapter describes the RISCWatch Debugger commands. These commands
can be entered on the command line of the Main window of the graphical user
Interlace.

The commands are listed in alphabetical order. Each command description
contains the following sections:

•Name
• Syntax
• Description

Some command descriptions contain one or more of the following sections:

• Flags
• Examples
• Related lnforma1ion

Processors Currently Supported
This release of the RISCWatch Debugger supports the following PowerPC
processors and versions:

• PowerPC401GF

• PowerPC 403GA

• PowerPC 403GB

• PowerPC 403GC

• PowerPC 602 Rev2

• PowerPC 603 Rev3

• PowerPC 603e Rev1

• PowerPC 603e Rev3

• PowerPC 603ev Rev2

• PowerPC 604 Rev3

• PowerPC 604ev Rev2

For PowerPC 6xx processors, this version of RISCWatch does not support Micro
Channel or parallel port adapters for JTAG targets.

Support for addltional PowerPC processors and targets is planned for future
RISCWatch releases.

Debugger Command Reference 5-1

Reading the Syntax Diagrams
See "Syntax Diagram Conventions• on page xxv for detailed information about the
conventions used in the RISCWa1ch Debugger command syntax diagrams.

Using RISCWatch Debugger Commands

Commands and keywords are not case sensitive. You may enter commands using
either uppercase or lowercase characters. File names and variable names are
typically case sensitive and should be entered in lower case or as shown in the
Individual command descriptions.

Each command description provides a table to summarize the processors,
modes, hosts, and targets with which tha1 command can be used. The
combination of processors, targets (JTAG, OS Open, or ROM Monitor), and usage
modes applicable to each command are indicated by bullets (.) in the appropriate
table cells. Notes below the tables provide additional details of command
applicability.

A sample environment table is shown below:

--Oil -.-on TrY

Note: TIY mode is available only on RS/6000 and Sun wOlkstations.

All the RISCWa1ch Debugger commands can be used when sourca mode Is on,
except for commands restricted to command files usage or not applicable to a
specific host or target.

Command Quick Reference

5-2

The following is a list of commands and the syntax of each command. For further
details, see the syntax and description sections in the individual command
reference pages which follow this quick reference.

The following identifiers are used to improve readability :

[] an optional Item

a selection between two or more Items

RISCWatch Debugger Usefs Guide

address

create_ var
fietd_name

imm_var
mem_var
reg_ name

reg_ var

value

window

bpset

bpnotset

break
callers
files
functions
globals
locals
osopen
programs
source
varinvis
varvis

any valid memory address value (usually specified as a 32 bit
hex number)

any variable created with the create command

an appropriate register field name as it appears in a Register
Field window

any immediate variable created with the assign command

any memory variable created with the assign command

any valid processor register name

any register variable created with the assign command

any decimal, octal or hexadecimal value

window name, specified by one of the following keywords:

Breakpoint Select window, window showing functions with
bpset
Breakpoint Select window, window showing functions with
bp not set
Breakpoints window
Callers window
Files window
Functions window
Globals window
Locals window
OS Open window
Programs window
Source window
Variable Config window, window showing invisible vars
variable Config window, window showing visible vars

Table 5-1 summarizes the syntax of the RISCWatch Debugger commands:

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters

asmstep [value]

reg_ var= reg_name[.field_name]

assign imm_var =value

mem_var =(address)

assm ·assembly" [addresslcreate_varlreg_namelreg_var]

attach threadidlprocessid

Debugger Command Reference 5-3

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters

beep [offlon]

bot [window]

set address

clear addresslall

setlclear bmtlexclicmpltrap

bp set dac1 rtdac1wldac1 rwldac2rldac2wldac2rw address [bytelhaHlwordldouble]

set iac1 liac21iabrlihw address

clear dac1 rldac1 wldac1 rwldac2rtdac2wldac2rwliabrtiac1 liac2

set [ihw]lclear at file:linelat linelin "function"

bpmode [hwlhardware]l[swlsoftware]

call step

capture alllasciildcrldebuglfprlgprlsprlsrlwindow [total] [filename]

create create_var [=initial_ value]

delay valuelcreate_ varlimm_ var

detach

dis valuel(address)lcreate_varlmem_varlreg_namelreg_var

down [lines [window]]

edit [filename]

end

event enablelclear event_name

exec command_file[{variable_list}] [step]

exit [-~

expr expression

5-4 RISCWatch Debugger User's Guide

Table 5-1. Syntax Summary for Debugger Commands Table 5-1. Syntax Summary for Debugger Commands

Command Parameters Command Parameters

appendlnew filename blnarylbin filename addresslcreate_varlimm_var

fctrl close dmemlimem filename [addresslcreate_varlimm_var]

errorslloglstatus onloff file filename [d=address] [S=addresslss=Size] [t=address] [nosym]

file filename host filename [d=address] [s=address!SS=Size] [t~address] [nosym]

find [string [window]] I [$last$ window] hp filename
load

findb [string [window]] I [$last$ window] image filename

fin de [string [window]] I [$last$ window] layout filename

focus [window] motorolalmot filename

fold onlolf reg filename

fprlnt print_ string tektronlxltek filename

freeze neverlstoplalways log message

funcdlsp [all_addrlall_nameldbg_addrldbg_name] logging [onloff]

goto line logoff

halt [onloff] memchk addresslcreate_varlimm_var [lengthlcreate_varlimm_var]

hidewins memcopy sourcelcreate_ varlimm_ var destlcreate_ varlimm_ var length/create_ varlimm_ var

Ip memfill addresslcreate _ varlimm_var lengthlcreate_var1imm_ var value

jtagclk [value] memfind addresslcreate_ varlimm_ var lengthlcreate_ varlimm_ var stringlvalue

kill_ thread memrwait [value]

line [line[window]] memwwait [value]

linestep mode enablelclear bdmldeledmlftdelidmltdm

pagedn [window]

pageup [window]

parms {var1 [, val2, ... , varN]}

print print_string

Debugger Command Reference 5·5 5-6 RISCWatch Debugger User's Guide

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters

reg_ name

address

start iar = value

start mem address= value

profile
start reg reg_name = value

count value

run [output_file]

stop

reset

filename

quit [-I]

read addresslmem_varlcreate_varlimm_var [create_varlreg_namelreg_varJ

readb addresslmem_varlcreate_varlimm_var [create_varlreg_namelreg_var]

readh addresslmem_varlcreate_varlimm_var [create_varlreg_namelreg_var]

read [reg] reg_namelreg_var [create_varlreg_namelreg_var]

read regs

off Ion

record play [filename]

save filename

reset corelchiplsys

restart

retstep

run [timeout]

Debugger Command Reference 5-7

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters

save

set

shell

showip

socket

reg filename

layout filename

mem fdename addresslcreate_varlimm_var byteslcreate_varlimm_var

argument [=] expression

argument= (address)lmem_varlcreate_varlreg_.name[.field_namel.#)lreg_var

expression= logicallmalhematical

logical= expr_arglexpr_arg log_op expr_arg

mathematical= [math_op1] expr_arg [malh_op2 mathematical]

expr_arg= reg_name[.field_namel.#]l(address)lmem_varlcreate_varlimm_varlreg_varlvalue

log_ op==!=>>=<<=

malh_op1= + - -

math_op2= + - *I mod% & IA - << >>

command

retryllimeout [value]

sourcemode onloff

srcdisp sourcelmixed

q[uery]

srchpath
set dir1 (dir2 ... dirN)

add dir

cpear]

srcline pine]

start_thread luncname

stop [timeout]

stuff opcodel'assembly'lreg_namelvartable

5-8 RISCWatch Debugger Users Guide

Table 5-1. Syntax Summary for Debugger Commands

Command Parameters

timer start I stop

top [window]

unload alllfilename

up [lines[window]]

varinfo localslglobals alllnonel[addr][slze][type]

varvis localslglobals vislinvis

view [filename]

dmem addresslmem_varlcreate_varlimm_var valuelcreate_varlimm_varlreg_nameJreg_va

write

imem addresslmem_varlcreate_var!imm_var valuelcreate_varlimm_varlreg_name!reg_var

writeb dmem addresslmem_var/create_varlimm_var valuelcreate_varlimm_varlreg_namelreg_va

writeh dmem addresslmem_varlcreate_varlimm_var valuelcreate_varlimm_varlreg_namelreg_var

write [reg] reg_namelreg_varvaluelcreate_varlimm_varlreg_namelreg_var

Debugger Command Reference 5-9

asmstep

401x 403x 602 603x 604x

[JTAG
r OS Open
rROMMon

Modes I Cmd• Line Cmd Fiie Sowce Mode Off --On
Note: TTY mode is available only on RS/6000 and Sun workstations,

Syntax

Description

Flags

asmstep runs the processor for the execution of one or more 4-byte machine
instructions.

If the value parameter is omitted, it defaults to 1,

value Specifies the number of machine instructions the processor is to step,

See Also

5-10

Note for 400Series JTAG targets: If the IAR is pointing to an RFI or RFCI
instruction, processor requirements dicatate that two instruction steps be taken to
execute these instructions, This special case is handled automatically by the
program,

If the debugger is in source mode and the IAR is pointing to a branch instruction
that will be taken, the debugger context will be switched to the target of the
branch, This has the same effect as issuing a callstep instruction,

• callstep on page 5-25

RISCWatch Debugger User's Guide

assign

401x 403x 602 603x 604x

L JTAG
[osopen
[ROM Mon . . .

I Cmd.Llne Cmd File
Modes :

Source Mode on TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax

- assign - variable 1 reg_name

r
Description

Flags

reg_name.field_name

(address)

value

assign is used to assign a value to a variable name. The value can be an
immediate value, a memory address value, a value in a register, or the value of a
register field. The name given to the variable must not start wtth a number or
match any processor register name. Variable names are also case sensitive.

An immediate value can be any number given in octal, decimal or hexadecimal
form. To assign the value of a register or field, the register or register field name is
specified. A memory address is specified as an immediate value enclosed by the
'(' and ')' characters to differentiate tt from an immediate value.

Having assigned a value to a variable name, the variable name can be used in
commands that accept variables and immediate values.

value

(address)

An inttial data value

The memory address to which the value of an
assembled instruction is written. Note that the ()
characters are used to distinguish a memory address
from an immediate value.

Debugger Command Reference 5-11

assign

Example

See Also

5-12

reg_ name The name of the register to which the value of an
assembled instruction is written. The register must not
be larger than 32 btts.

reg_name.field_name The register name concatenated wtth the field name to
which the value of an assembled instruction is written.
The register must not be larger than 32 btts.

variable The name given to the assigned variable so that tt may
be referenced in future commands

• Assign a register to a variable and then uses the variable to inttialize and read
the register's value.

assign count_reg SPRGl
set count_reg 0
read coun t_reg

make count_reg = SPRGl
init count register
i . e. read SPRGl

• Assign an immediate value to a variable which is then used to inltialize the
value of a register.

assign reg_val = Ox11223344
set SPRGO = reg_val

• create on page 5-29

• set on page 5-107

RISCWatch Debugger User's Guide

assm

401x 403x 602 603)(
. ·----,

604x

L JTAG . . .
[os Open . . . ·-:--j [ROM Mon . . .

Modes I Cm~ line Cmd Fiie Source Mode Off Source Mode On

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available onty on RS/6000 and Sun workstations.

Syntax

- assm --- "assembly"

Description

Flags

address

create_ var

reg_name

reg_ var

assm converts a valid assembly instruction into a 4-byte instruction value and
then optionally writes this value to the specified register, user-created variable, or
processor instruction memory at the specified address.

"assembly"

address

create_ var
reg_ name

reg_ var

A string containing a valid assembly instruction

The memory address to write the assembled instruction value to

Any variable created with the create command

The name of a register to write the assembled instruction value
to

Any register variable created with the assign command

Any operands that accompany an assembly instruction must consist of one
contiguous string of characters. There can be no spaces between the operands if
there are more than one.

Debugger Command Reference 5-13

assm

Examples

See Also

5-14

If no memory address, register name or user-created variable are specified, the
string will simply be assembled and the subsequent machine instruction that is
generated will be printed out in a status message.

• Generate the instruction necessary to move the contents of a special purpose
register to a general purpose register and then write the generated instruction at
memory address OxEOB15.

assm 'mfspr rl3,LR" OxEOB15

• Generate the instruction necessary to move the contents of a special purpose
register to a general purpose register and then store the generated instruction
in a user-created variable.

create assm_value
assm "mfspr rl3,LR• assm_value

• Generate the instruction necessary to move the contents of a special purpose
register to a general purpose register and then wrtte the generated instruction to
register GPRB.

assm Amfspr r13,LRM RB

• dis on page 5-33

RISCWatch Debugger User's Guide

attach

401x 403x 602 603x 604x

L JTAG
·-j

[os Open .
[ROM Mon

« . .
Modes I Cmd• Line Cmd File Source Mode Ott Source Mode On

Note: TTY mode Is available onfy on RS/6000 and Sun workstations.

Syntax

Description

Flags

Examples

-- attach th re a did

process id

For an OS Open target:

attach initializes a source mode debug session with threadid under OS Open.
threadid must be the number of an existing thread. A list of current threads can be
found by clicking on the 'List Threads' buttons of the OS Open window.

Note: RISCWatch cannot be used to debug the OS Open shell.

For a ROM Monitor target:

attach inrtializes a source mode debug session wrth processid under the ROM
Mon rt or on a 403GA evaluation board. The processid must be 42 to connect wrth
the ROM debugger. The process to be debugged must already have been loaded
and be either running or stopped on a breakpoint. See the nimgbld utilrty
described in the 403GA evaluation board kit user documentation for how to cause
the ROM monrtor to begin a debug session after an image is loaded.

threadid

process id

The number of an existing thread

The number 42, if the process is to connect wrth the ROM
Mondor

• Attach to an existing OS Open thread.

attach Ox31568

Debugger Command Reference 5·15

See Also

5-16

• Attach to a process loaded on a 403GA evaluation board

attach 42

• detach on page 5-32
• kill_thread on page 5-67
• start_thread on page5-119

RISCWatch Debugger Use(s Gulde

401x 403x

[JTAG . .
[OS Open . .
L ROM Mon .

I Cmd.Llne Cmd Fiie
Modes :

602 603x 604x
Som:eModeOll SouroeModeOn TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

--- beep

Description

beep

.....

beep controls the program beeper. It may be used to turn the program beeps on
or off or to sound the program beeper. If the on and off parameters are omitted, it
sounds the program beeper.

Flags

Examples

off

on

Turn the program beeper off

Turn the program beeper on

• Turn the program beeper off

beep off

• Turn the program beeper on

beep on

• Sound the program beeper

beep

Debugger Command Reference 5-17

bot

401x 403x 602 603x 604X

l JTAG
[OS Open
LAOM Mon

Modes I Cmd• Line Cmd Fiia --Oii --On TTY

Note; For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

Examples

5-18

-- bot
[window J

...

bot scrolls to the last line of a window, highlighting the line if it contains any text.

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

window See list of window keywords in "Command Quick Reference" on
page 5-2.

• Scroll to the last line of the window previously specified by this command.

bot

• Scroll to the last line of the Breakpoint window.

bot break

RISCWatch Debugger Users Guide

401x 403x

L JTAG .
LOS Open .
LROMMon .

I Cmd
0
Llne Cmd File

Modes :

602 603x 604x -;--
. .

Souree Mode Oft Source Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax

---bp -r set

L clear

-- address

""""laddre9
Lan

-i>p -set 1brnt

exc

icmp

trap

-bp - set

--bp -set

dac1r

dac1w

dac1rw

dac2r

dac2w

dac2rw

l lac1

iac2

labr

ihw

address

byte

half

- word

double

Debugger Command Reference

bp

• Ill!

5·19

bp

~P I set -.[r-1-hw--J..-...,....-,-[: ~:;ine -],_-----••-~.,...

L clear ______ _, L In "function• J

-bp -clear brnt

dac1r

dac1w

dac1rw

dac2r

Description

5·20

dac2w

dac2rw

exc

iabr

iac1

iac2

lcmp

trap

The bp command is used to set or clear hardware and software breakpoints.

Software instruction breakpoints are set using the 'bp set address' syntax.
Hardware breakpoints are set by using the 'bp set' syntax with either pre-defined
event names, or the ihw keyword (which uses the first available instruction
breakpoint register to set an instruction breakpoint). The 'bp clear address' syntax
applies to both hardware and software instruction breakpoints.

WARNING: For non-JTAG targets, only iac and dac (400Series) and iabr
(PowerPC 6xx) breakpoints are recommended. For example, when connected to
a ROM Monitor target, a brnt (branch taken) breakpoint will most likely stop
execution while running the ROM Monitor debug code and will not stop execution
in the program RISCWatch is debugging, thus hanging the debug session.

RISCWatch Debugger User's Guide

Flags

clear

set

address

all

brnt

dac1r

dac1w

dac1rw

dac2r

dac2w

dac2rw

exc

labr

lac1

lac2

icmp

trap

byte

half

word

double

Clear one or all breakpoints

Set a breakpoint

bp

Address of the data or instruction where the breakpoint should
be set or cleared

Remove all breakpcints(hardware and software)

400Series: Break on branch taken

400Series: Break on Data Address Compare #1 Read

400Series: Break on Data Address Compare #1 Write

400Series: Break on Data Address Compare # 1 Read or Write

400Series: Break on Data Address Compare #2 Read

400Series: Break on Data Address Compare #2 Write

400Series: Break on Data Address Compare #2 Read or Write

400Series: Break on exception

PowerPC 6xx: Break on Instruction Address Breakpoint Register

400Series: Break on Instruction Address Compare # 1

400Series: Break on Instruction Address Compare #2

400Series: Break on instruction completion

400Series: Break on trap

400Series: An optional parameter that is used to match the
exact DAC 1 or DAC2 address compare value. This parameter is
used by default if none other is specified.

400Series: An optional parameter that is used to mask off the
LSB of the compare value during data address compares if the
specified register is DAC1 or DAC2. Use of this parameter allows
a breakpoint on any access w~hin an aligned halfword.

400Series: An optional parameter that is used to mask off the
two LSBs of the compare value during data address compares if
the specified register is DAC1 or DAC2. Use of this parameter
allows a breakpcint on any access wtthin an aligned word.

400Series: An optional parameter that is used to mask off the
lour LSBs of the compare value during data address compares if
the specified register is DAC1 or DAC2. Use of this parameter
allows a breakpoint on any access within an aligned quad word
(16 bytes).

Debugger Command Reference 5-21

bp

Examples

5-22

lhw

at

file:line

line

in

"function"

An optional parameter that is used to set a hardware instruction
breakpoint using the first available instruction breakpoint register
for the target processor.

Indicates a source file line number is to follow. Used when the
environment is set to 'Source Mode On'.

A source file name followed by a decimal number indicating a
specttic source line.

A decimal number indicating a specific source line in the
currently active file (the file displayed in the Source window. or
last file specified with the file command).

Indicates a function name is to follow. Used when the
environment is set to 'Source Mode On'.

A case sensitive function name, as it would appear in the
Functions window. If the surrounding quotes are omitted, the
function name must be a non-blank character string. If the
specified function is not found in the currently active file, the
search continues in all remaining files defined by the currently
active program (program containing the current instruction
address).
When searching outside the currently active file. global functions
take precedence over functions defined as static and the first
static function is used if no global definition is found.
The break pcint will be set/cleared at the first line of the function
(if line table information exists) or at the function start address tt
no line table information exists.

• Set a software breakpoint at address OxFFFFFFO.

bp set OxFFFFFFFO

• Clear a breakpcint at address OxFFFFOOCO.

bp clear OxFFFFOOCO

• Clear all breakpoints.

bp clear all

• Set a hardware instruction breakpoint at address OxFFFFOODO using the first
available instruction breakpcint register for the target processor.

bp set ihw OxFFFFOODO

RISCWatch Debugger User's Guide

bpmode

401x 403x 602 603x 604x

[JTAG . . .
LOS Open
LROMMon

I Cmd
0
Une Cmd Fiie

Modes :
Source Mode Ott Source Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

See Also

hardware

hw

software

SW

bpmode is used to set or query the Breakpoint Mode used during source level
debug. When the Breakpoint Mode is set to software (the default), operations to
set breakpoints on the Source window, Assembly Debug window. and Functions
window will result in a software breakpoint being set. When the Breakpoint Mode
is set to hardware, operations to set breakpoints on the Source window and
Assembly Debug window will result in a hardware breakpoint being set (ii
hardware facilites are available).

Entering the bpmode command with no parameters will echo the current
Breakpoint Mode setting.

Note that the Breakpoint Mode can also be set via the Breakpoint Mode groupbox
on the Breakpoints window.

hw I hardware Set the Breakpoint Mode to hardware.

sw I software Set the Breakpoint Mode to software.

• "Assembly Debug Window" on page 3-26
• "Breakpoints Window" on page 3-41

Debugger Command Reference 5-23

bpmode

• "Functions Window" on page 3-33
• "Managing Breakpoints• on page 3-39
• "Source Window" on page 3-23

5-24 RISCWatch Debugger User's Guide

call step

401x 403x 602 603x 604x

L JTAG;--
LOS Open . . .
L ROM Mon . .

I Cmd.Llne Cmd Fiie Source Mode Off Source Mode On TTY
Modes :

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters tor
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

See Also

-- callstep --------------------•

callstep steps into the called routine.

callstep causes program control and debugger context to switch to the function
call specified by the current source line. If the current line does not contain a
function call, the command simply performs a line step.

If the current line contains a function call with functions in the parameter list
(func1 (func2(),func3());), then a callstep will first enterthe function(s) found in the
parameter list. A subsequent return step would return to the original function call
source line. When all of the parameter list functions have been entered and
returned from using callstep/retstep commands, the next callstep will transfer
the debugger context to the function contained in the original call. In the above
example, to enter func1, the first callstep would enter func2(). A retstep would
return to the source line containing the func1 call. The next callstep/retstep
would enter and then return from func3(). Finally, the next callstep would enter
func1.

Note: If a callstep is issued into a function that has no associated debug
information, a retstep command should be issued to return immediately to the
calling function. Alternatively, a breakpoint should be set on the source line
immediately following the function call to assure that the return can be made.

• bp on page 5-19

• retstep on page 5-102

Debugger Command Reference 5-25

capture

401x 403x 602 603x 604x

L JTAG
[OS Open
[ROM Mon

SourceModeOll SourceModeOn TTY

Note: For PowerPC 6xx processors. Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

-capture all

Description

5-26

ASCII total filename

OCR

DEBUG

FPR

GPR

SPR

SR

l window J

capture copies the contents of a user interface window and wrttes it to a file. The
command options select which window's contents will be captured: ASCII
Memory, DCRs, Assembly Debug, FPRs, GPRs, SPRs, SRs, source level debug
windows, or All of the preceding choices (depending on the set of flags associated
with a particular PowerPC processor).

To capture the contents to a specific file, simply put the filename as the last option
on the command line. If no filename is supplied, a default name of RWPPC.CAP

RISCWatch Debugger User's Guide

Flags

capture

will be used. To best understand how this command works simply type capture
all on the command line and then view the file rwppc.cap.

Source level debug windows (those included under the window parameter} will
only be captured tt the window is visible. The default for source level debug
windows is to capture only the visible lines for a window. The total keyword can
be used to capture the entire contents of any source level debug window except
for the Source window. Only the visible lines will ever be captured for the Source
window.

Be advised that the information saved into captured files cannot be loaded back
into the window from which it was captured or to the processor. To store and
restore a particular processor state of memory and/or registers, use the save and
load commands.

Some flags listed below are only applicable to particular target processors, as
indicated in the description of those flags. The set of windows selected by the all
flag is also processor-dependent.

all

ASCII

OCR

DEBUG

filename

FPR

GPR

SPR

SR

total

Specifies that the contents of all capturable windows are to be
captured.

Specifies that the contents of the ASCII Memory window are to
be captured.

400Series only: Specifies that the contents of the OCR Registers
window are to be captured.

Specifies that the contents of the Assembly Debug window are
to be captured.

Specifies the name of the file to which the window capture is
written.

Specifies that the contents of the FPR Registers window are to
be captured (processors with floating point units only)

Specifies that the contents of the GPR Registers window are to
be captured.

Specifies that the contents of the SPR Registers window are to
be captured.

PowerPC 6xx only: Specifies that the contents of the SR
Registers window are to be captured.

If this flag is specified, generally the entire window contents will
be captured for all screens included in the window flag (the
exception may be the Source window as described below}. The
default is to capture only the visible lines for a window.

Debugger Command Reference 5-27

capture

5-28

window

Note: If the all option is specified, only the visible line will ever
be captured for the Source window. If the total option is used
when specifying the Source window individually, the entire
window will be captured without the status subwindow
information. This option may be useful for capturing the contents
of a file in mixed mode. When using the total option, care
should be taken to ensure there is sufficient disk space to hold
the desired screen information.

Any of the list of window keywords in "Command Quick
Reference" on page 5-2 between 'Break' and 'Source' inclusive.

RISCWatch Debugger Users Guide

create

401x 403x 602 603x 604x

[JTAG
l OS Open
[ROM Mon . . .

~-

Source Mode Off Source Mode On

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

~ create -- variable

L =initial_ value J
Description

Flags

Examples

create is used to create a variable. The variable value is stored as a signed four
byte quantity. The name given to the variable may not start with a number and
must not match any processor register name. Variable names are also case
sensitive.

The variable can be used in the set, reacl, write, stuff, dis, create, assm, and
assign commands.

It is possible to assign an initial value to the variable. II no initial value is specified
when creating a variable, a value of 0 will be assigned.

Name of the immediate variable to be created variable

initial_ value The value assigned to the variable after it is created. If an initial
value is not specified, a value of 0 will be assigned

• Create a variable named cr_var1 and assign it an initial value of Ox1234.

create cr_varl = Ox1234

• Create a variable named cr_var2 and assign it no initial value.

create cr_ var2

Debugger Command Reference 5-29

create

See Also

5-30

• Create two variables, i and j, and use them to calculate a value to write to
GPRO.

create i
create j
set i = {Ox12345678)
set j = i - IAR

write RO j

• ass lgn on page 5-11

• set on page 5·107

RISCWatch Debugger User's Guide

create variable i
create variable j
i read memory into i
subtract IAR from i
t write value of j to GPR 0

401x 403x

L JTAG .
[OS Open . .
[ROM Mon . .

I Cmd Line Cmd Fiie
Modes :

602 603x 604X
SourceModeOff Source Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

--- delay

Description

1value j
~reate_var

1mm_var

delay

delay is used to delay the execution of a command file for the specified number of
seconds. During this delay period, no program or command file processing is
performed.

Flags

value

create_ var

imm_var

Specifies the number of seconds to delay execution

Any variable created with the create command

Any immediate variable created with the assign command

Debugger Command Reference 5-31

detach

401x 403x 602 603x 604X

L JTAG

[OS Open
[ROM Mon

Modes I Cmd• Line Cmd Ale Source Mode Off SourceModeOn TTY

Note: ITY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Examples

See Also

-detach

detach ends a source mode debug session by disconnecting from the thread or
process being debugged. The thread or process then continues to run normally.

• Detach from the thread or process being debugged.

detach

• attach on page 5-15

• kill_thread on page 5-67

• start_thread on page 5-119

5-32 RISCWatch Debugger User's Guide

dis

401x 403x 602 603x 604x

L JTAG
LOS Open
LROM Mon

Modes I Cm~ Line Cmd File Soun:o Mode on Soun:o ~on =n
Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for

JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

---dis

Description

Flags

value

(address)

create_ var

reg_name

reg_ var

mem_var

dis is used to disassemble a 4-byte instruction value and print its opcode and
operands in assembly code. The options for this command allow disassembly of
an immediate value or of the contents ol a specified processor memory location,
register or user-variable.

value

(address)

create_ var
mem_var

reg_ name

Specifies an immediate numeric value

Specifies a memory location which will be read and its contents
then disassembled. Note that the () characters are used to
distinguish a memory address from an immediate value.

Any variable created with the create command

Any memory variable created wtth the assign command

Specifies any Vdlid register name whose value will be
disassembled

Debugger Command Reference 5-33

dis

Examples

See Also

reg_ var Any register variable created with the assign command

• Disassemble an immediate value .

dis Ox38000000

• Disassemble the instruction that resides at a given memory address.

dis (0xlD3F0004)

• Disassemble the value contained in a user-created variable.

create dis_val = Ox38000000
dis dis_ val

• assm on page 5-13

RISCWatch Debugger User's Guide

down

401x 403x 602 603x 604X

L JTAG . . .
[OS Open . .
[ROM Mon . . .
I Modes

I Cm~ Line Cmd Fiie Source Mode Ott Source Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

Examples

down scrolls the contents of a window down one or more lines from the top line
visible in the window.

The lines variable initially defaults to 1. If the value specified tor lines is larger than
the number of lines left in the window, the last line is shown at the bottom of the
window.

If the window keyword is not specified, the last window specified tor this command
is used. It initially defaults to the Source window.

If neither the lines variable nor the window keyword is specified, the last lines
value and window keyword specified for the command are used,

lines

window

Specifies the number of lines to be scrolled down

See list of window keywords in ''Command Quick Reference" on
page5-2.

• Scroll down one line in a window previously specified, or the Source window if
none has been specified previously.

down

Debugger Command Reference 5-35

down

See Also

5-36

• Scroll down 1 O lines in a window previously specified, or the Source window if
none has been specified previously.

down 10

• Scroll down 12 lines in the global variables window .

down 12 globals

• up on page 5-127

RISCWatch Debugger Users Guide

edit

401x 403x 602 603x 604x

L JTAG
[osopen
[ROM Mon . .

I Cmd.Une Cmd Fiie Source Mode Off Source Mode On
Modes :

TTY

Notes: edit is available on only RS/6000 and Sun workstations.
For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-edit

L filename J
Description

Flags

edit allows a specified file to be edited by using the edrtor specified by the
EDITOR resource in the environment resources file.

To be able to call your favorite edftor from within the program, a line must be
placed in the environment resources file (rwppc.env) to indicate the name of the
program that should be invoked to edit the file. The line in the resources file could
look like this :

EDITOR = /usr/bin/vx

In this example, the editor that is to be called when the edit command is given is
vx. If the edttor resides in a directory that is included in the PATH environment
variable, then only the name of the editor itself must be supplied. However, to call
an editor that is not in the PATH, the full path name to the editor must be specified.

filename Specifies the name of the file to be edited

Debugger Command Reference 5-37

end

401X 403x 602 603lt 604x

[JTAG . . .
[OS Open
LROMMon

Modes I Cmd Line Cmd File SourceModeOH SourceModeOn TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Examples

..._ end

end is used to end the execution of a command file.

• End execution of the command file.

if {RO != OxFC001234)

end

endif

5-38 RISCWatch Debugger User's Guide

event

401x 403x 602 603X 604x

L JTAG .
[OS Open ----i
[ROM Mon

Modes I Cmd
0
Line Cmd Fiie Sourco Mod• Oii Soun:e ~-on -~

Note: TIY mode is available only on RS/6000 and Sun workstations.

Syntax

- event ~ enable ---r- event_name

Description

Flags

L clear _J

event is used to set and clear conditions used by the processor to determine
when a running program should be interrupted. It is also used to set up debug
event conditions.

clear

enable

event_ name

Clear the debug event

Enable the debug event

The name of the debug event

bmt

dac1r

dac1w

dac1rw

dac2r
dac2w
dac2rw

exc

lac1

Branch taken

Data address compare 1 read

Data address compare 1 wrtte

Data address compare 1 read or write

Data address compare 2 read

Data address compare 2 write

Date address corn pare 2 read or write

Exception

Instruction compare 1

iac2 Instruction compare 2

icmp Instruction completion

trap Trap

all Used to set or clear all of the above events

Debugger Command Reference 5-39

exec

401x 403x 602 603x 604x

[JTAG
LOS Open
LROMMon

Modes I Cmd
0
Line Cmd Fiie Source Mode Oii Source Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax

- exec --· command_file - L-{_va_'_ia_b_/e ___ //_s_t)_]""'"-..,[--
5
-
18
-P--J_,..--

Description

Flags

exec is used to execute the instructions contained in a command file. See the
Command Files section for more details on command file creation and usage.

Note: RISCWatch does not support nested command files while single-stepping
a command file from the user interlace.

command_fi/e The name of the command file to be executed. For example,
test.cmd. For further information, see "Command File
Programming• on page 3-94.

variable_list A list of variable values to be passed into the command file and
assigned to the variables in the parms parameter definttion. See
"Command File Parameters" on page 3-96 for more details.

step Runs the command file in single-step mode. This option is only
valid when a command file is executed from the user interface.
See "Command File Single-Step Window" on page 3-98 for more
details.

5-40 RISCWatch Debugger Users Guide

exit

401x 403x 602 603x 604x

[JTAG . . .
LOS Open . . .
LROM Mon

I Cmd.Une Cmd File
Modes :

Source Mode Off Souree Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on AS/6000 and Sun workstations.

Syntax

-exit

Description

Flags

See Also

-f

exit terminates the program. if the processor is running when this command is
given and the user interface is active, a prompt will be displayed to provide
notttication of the processor state and confirm the intent to terminate.

Avoid using the exit command in a command file. If the command file is executed
while the user interface is active, execution of the exit command will not only stop
the command file but will also terminate RISCWatch. Use the end command
wtthin a command file to stop execution of the command file.

The exit command is equivalent to the quit command.

-f Using this flag forces termination regardless of the processor
state.

• quit on page 5-95

Debugger Command Reference 5-41

expr

401x 403x 602 603x 604X

[JTAG
LOS Open
LAOM Mon . . .

Modes I Cmd• Lino Cmd Fiio S<>uree Mode Off Souree Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and sun workstations.

Syntax

- expr _ expression -------------------...,...

Description

Flags

5-42

expr is used to evaluate an expression and print the results in a status message.
For a complete description of the expression syntax see the set command.

The expr command outputs the result of the expression in hexadecimal, signed
decimal and unsigned decimal forms. Having such a capabiltty allows users to
test out expressions before they are used on the command line or in a command
file. It also allows numbers to be displayed in multiple radices (hexadecimal,
decimal, and unsigned decimal). To display a number in Its alternate base, simply
type It in after the expr command keyword.

expression = logicallmathematical

logical = expr_arglexpr_arg log_op expr_arg

mathematical = [math_op1} expr_arg [math_op2 mathematical}

expr_arg = reg_name[.field_namel.il}l(address)limmediatelvariablelmem_var

/og_op = == != > >= < <=

math_op1 = + - -
math_op2

ii

= + - •I mod 0/o & I"<<>>

= ordinal btt number

RISCWatch Debugger Use(s Guide

Examples

See Also

• Display the result of adding 1 O to GPRO.
expr RO + 10

• Display the value 10 in hexadecimal, decimal, and unsigned decimal.

expr 10

• set on page 5-107

Debugger Command Reference

ex pr

5-43

fctrl

401x - 802 - &04X

[JTAG
L OSOpen
LROMMon

Modes I Clnd•Lrne cmc1 F1o --on --On TTY

N-: For PowerPC 6xx processo<s. Micro Channel and parallel port adapters for
JTAG 1argets are not supported.
TTY mode is available only on RS/6000 and Sun Wllfkslaflons.

Syntax

-fctrl append - filename ---....... ---------

new --- filename

close

errors

log

status

Description
fctrl controls access of the print filas used by the fprlnt command.

Flags
append

new

close
errors

log

Open a print file. H the file exists, It will be opened and all
messages will be appended to the end of the file.

Open a print file. fl the file exists, It will be erased.
Close the print file

This flag controls whether or not program error messages are
copied to the print file.

This flag controls whether or not log messages are copied to the
print file.

RISCWatch Debugger Usefs Guide

Examples

See Also

fctrl

status This flag controls whether or not program slatus messages are
copied to the print file.

off Disables message copying

on

filename

Enables message copying

The name of the print file to open

• Open a new file for printing.

fctrl new print.dat

• Enable copying of error messages to the print file.

fctrl errors on

• Close an open print file.

fctrl close

• fprlnt on page 5-55

• print on page 5-91

Debugger Command Reference 5.45

file

401x 403x 602 603x 604x

L JTAG
[OS Open
LROM Mon
I Modes I Cmd. Line c~ File Source - Ott Source Mode On TTY

Note: For PowerPC 6xx processors. Micro Channel and parallel pert adapters tor
JTAG targets are not supported.

Syntax

Description

Flags

-- file

l filename J
. ..

file sets the current source file to filename (tt specified) and displays it in the
Source window if the Source window is active. Entering file without specifying a
filename displays the name of the current file, ii available.

file can be used in conjunction with the 'at' and 'in' options olthe bp command to
set the current file used by those options.

Only files which belong to the program currently being debugged, and which were
compiled to contain debug information, can be displayed using this command.
The valid file names are those which are shown in the Files window.

filename Specifies the name of the source file to make current and display
in the Source window

5-46 RISCWatch Debugger User's Guide

find

401x 403X 602 603x 604x

L JTAG
[OS Open
[ROM Mon
I I Cmd. Line Cmd Fiie Source Mode on

Modes :
Source Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

-find

~ d
....

string

string window

$last$ window

find searches for a string in a window, scrolling to the line containing the string,
and highlighting the string ii found.

The search is case-insensitive ('non-exact'). If no text is currently highlighted, the
search will begin from the beginning of the top line visible in the window. II there is
text highlighted, the search will begin from either the first character of the selected
text (an 'initial' search), or from the character immediately following the first
character of the highlighted text (a 'next' search). The focus command can be
used to locate highlighted text.

If no parameters are specified, the string last specified for a find command (find,
findb, finde) is used, and a 'next' search is done. This allows the user to initially
specify a string, and find subsequent occurrences of the string in the same
window by simply entering a find command repeatedly. A 'next' search will also
be done ff the string and window values match those of the last attempted find
command. This allows the user to initially specify a string, and find subsequent
occurrences of the string in the window by double-clicking on the command in the
command history list of the Main window.

II the string variable is specified, and the string and window values do not match
those of the last attempted find, an 'initial' search is done. II the window keyword
is not specified, the last window specttied for this command is used. It initially
defaults to the Source window.

Debugger Command Reference 5-47

find

Flags

See Also

5-48

If the keyword $last$ is specified in place of string and a window is specified, the
string specified for the last find command is used, and a 'next' search is done for
the specttied window. This allows a window different from the window specified in
the previous search to be searched for the same string specttied in the previous
search .

This function is also available via the input line, as described in "Input Line Usage"
on page 3-20.

string

window

Sequence of characters to be found

See list of window keywords in "Command Quick Reference• on
page5-2.

• llndb on page 5-49

• !Incle on page 5-51

• focus on page 5-53

RISCWatch Debugger User's Guide

findb

401x 403x 602 603x 604x

[JTAG . .
[OS Open . .

-~
LROMMon . . .
I Modes I Cmd• Lino Cmd Fiie Source Mode Off Source Mode On TTY

Note: For PowerPC 6xx processors. Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

--flndb ~t-str-ing---~~. ---• •

string window

$last$ window

findb searches backwards for a string in a window, scrolling to the line containing
the string, and highlighting the string if found.

The search is case-insensitive ('non-exact') or case-sensitive ('exact'), depending
on the type of forward search (find or flnde) which was done previously. If no
forward search was done previously the command defaults to a 'non-exact'
search.

If no text is currently highlighted, the search will begin from the end of the bottom
line visible in the window. If there is text highlighted, the search will begin from
either the last character of the selected text (an 'initial' search), or from the
character immediately preceding the last character of the highlighted text (a 'next'
search). The focus command can be used to locate highlighted text.

If no parameters are specified, the string last specified for a 'find' command (find,
findb, finde) is used, and a 'next' search is done. This allows the user to initially
specify a string, and find subsequent occurrences of the string in the file by simply
entering a 'find' command repeatedly. A 'next' search will also be done if the
string and window values match those of the last attempted 'find' command. This
allows the user to initially specify a string, and find subsequent occurrences of the
string in the window by double-clicking on the command in the command history
list of the Main window.

II the string variable is specified, and the string and window values do not match
those of the last attempted 'find' command, an 'initial' search is done. If the

Debugger Command Reference 5-49

findb

Flags

See Also

5-50

window keyword is not specified, the window specified for the last 'find' command
is used. It inijially defaults to the Source window.

If the keyword $last$ is specified in place of string and a window is specified, the
string specified for the last find command is used, and a 'next' search is done for
the specified window. This allows a window different from the window specified in
the previous search to be searched for the same string specified in the previous
search.

This function is also available via the input line, as described in "Input Line Usage•
on page 3-20.

string
wlndow

Sequence of characters to be found

See list of window keywords in "Command Quick Reference• on
page5-2.

• find on page 5-47

• finde on page 5-51

• focus on page 5-53

RISCWatch Debugger User's Guide

finde

401x 403x 6-02 603X 604X

L JTAG . . .
[OS Open . . .
[ROM Mon

Source Mode Off _ Source~odeOn ·~

Note: For PowerPC 6xx processors, Mfcro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

--finde t string

string

$last$

window

window

finde searches for a string in a window, scrolling to the line containing the string,
and highlighting the string if found.

Unlike the find command, finde does an case-sensrtive ('exact') search. If no text
is currently highlighted, the search will begin from the beginning of the top line
visible in the window. If there is text highlighted, the search will begin from either
the first character of the selected text (an 'initial' search), or from the character
immediately following the first character of the highlighted text (a 'next' search).
The focus command can be used to locate highlighted text.

If no parameters are specified, the string last specified for a finde command (find,
findb, flnde) is used, and a 'next' search is done. This allows the user to initially
specify a string, and find subsequent occurrences of the string in the same
window by simply entering a finde command repeatedly. A 'next' search will also
be done if the string and window values match those of the last attempted finde
command. This allows the user to initially specify a string, and find subsequent
occurrences of the string in the window by double-clicking on the command in the
command history list of the Main window.

If the string variable is specified, and the string and window values do not match
those of the last attempted finde, an 'inrtial' search is done. If the window keyword
is not specified, the last window specified for this command is used. It initially
defaults to the Source window.

Debugger Command Reference 5-51

finde

Flags

See Also

5-52

If the keyword $last$ is specified in place of string and a window is specified, the
string specified for the last finde command is used, and a 'next' search is done for
the specified window. This allows a window different from the window specified in
the previous search to be searched for the same string specified in the previous
search .

This function is also available via the input line, as described in "Input line Usage·
on page 3-20.

string

window

Sequence of characters to be found

See list of window keywords in "Command Quick Reference" on
page 5-2. '

• find on page 5-47

• findb on page 5-49

• focus on page 5-53

RISCWatch Debugger User's Guide

focus

401x 403x 602 603x 604X

[JTAG . .
[OS Open
LAOM Mon . . .

Modes I Cm~ Line Cmd Fiie Source Mod• Off Source Mode On TIY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

...,.._focus~~~~~~~~~~~~~~~~~~~~~• ~

L window

focus scrolls to the line of a window which has text highlighted, ii any.

II no text is currently highlighted in the window, a message is generated stating
this fact. II the window keyword is not specified, the last window specified for this
command is used. It inttially defaults to the Source window.

window See list of window keywords in "Command Quick Reference" on
page 5-2.

Debugger Command Reference 5-53

fold

401x 403x 602 603x 604X

f JTAG .
r OS Open

f ROMMon

Modes I Cmd• Line Cmd Ale
SourcellodeOff Soun:ellodeOn TIY

Note: TIY mode is available only on AS/6000 and Sun workstations.

Syntax

_,..__told

Description

Flags

I off

Lon

fold controls instruction folding. Refer to the applicable PowerPC processor
documentation for detailed information on instruction folding.

A fold setting is effective only until the next processor system reset. Alter a reset,
the fold setting defaults to 'on'.

off

on
Turns instruction folding off

Turns instruction folding on

5-54 AISCWatch Debugger User's Guide

fprint

401x 403x 602 603X 604x

L JTAG
LOS Open . . .
[ROM Mon

Source Mode Off Soure• Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-fprint _ print_string

Description

fprint prints user defineable strings to a print file that was opened with the fctrl
command.

String literals are ASCII text enclosed by quotation (") marks. The text between
the quotation marks is echoed to the print file. A string literal is also used to
enclose character constants to help format the printed text :

~ ~
\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

User-created variable values may also be printed to the print file if they appear in
the print string. Expressions containing variables and constants may also be
used.

Variable values printed to the print file can be written in a variety of forms.
Available options include the ability to print integers as signed or unsigned,
hexadecimal values and characters.

The syntax for using variable formatting is as follows :

variable[/[+] [[0]11] clilulxlX]

where

Debugger Command Reference 5-55

fprint

5-56

+

0

c

x

x

Terminates the string to be formatted

Prints an integer preceded by a+ or - sign. This option is only
valid for the i format.

Specifies that at least # characters are printed. If the result
contains less than # characters, the output will be left-padded
with spaces. This option is only valid for the i, u, x, and X
formats.

This option, if included, must always precede the #option. This
specifies that at least #characters are printed. If the result
contains less than # characters, the output will be left-padded
with Os. This option is only valid for the i, u, x, and X formats.

Prints a value as a series of four ASCII characters. Unprintable
characters are output as a period(.).

Prints a value as a signed integer.

Prints a value as an unsigned integer.

Prints a value as a hexadecimal integer. The letters a, b, c, d, e,
and f appear in the output.

Prints a value as a hexadecimal integer. The letters A, 8, C, D, E,
and F appear in the output.

To use variable formatting, place the I character immediately after the last
character of the variable name and then follow tt with the formatting options you
desire. To format expressions, place the formatting options directly after the last
argument in the expression. For example:

tprint addr + Ox1234 / 4/08X

A single fprint statement may contain multiple string ltterals, variables and
expressions in any order. If this is done. each item in the command must be
separated with a comma (,).

The following pseudo-variables may be used in the print and fprlnt commands for
your convenience :

$DATE This will be replaced by a string which contains the current date
in the format DAY MONTH DATE YEAR.

$ERRORS

$TIME

$TIMER

This will be replaced by a string which contains the number of
errors generated by executed commands.

This will be replaced by a string which contains the current time
in the format HOUR:MINUTE:SECOND.

This will be replaced by a string which contains the number of
seconds in the clock timer. See the timer command for more
details.

RISCWatch Debugger Users Guide

Flags

print_ string

fprint

This is a user defineable string containing string ltterals,
user-created variable names and the same type of expressions
used in the set command.

Examples

The following commands implement a short loop which writes succesive memory
locations, reads back what was written and prints the result of the comparison
between the two values :

fctrl new test .mem

£print n Start : $TIME, n \n"

create mem_addr OxOOOOFFFF

while lrnem_addr < OxOOOlOOOO)

fprint "Addr : ", mem_addr/OSX

fprint "\n"

write dmem mern_addr OxFFA55AFF

read mern_addr SO

if (SO == OxFFA55AFF)

£print "Test PASSED\n\n~

else if

fprint "Test : FAILED\n\n"

endif

set mem_addr = mem_addr + 1

endwhile

£print "End

fctrl close

See Also

: ", $TIME, "\n"

• fctrl on page 5-44
• print on page 5-91

open a new print file

print test start time

start at this address

check until this address

:# print address being checked

print newline

t write canned value to memory

read back memory value

if values match

print success message

else pr int error message

check next address

print test end time

close print file

Debugger Command Reference 5-57

freeze

401x 403x 602 603x 604x

r JTAG . .
r OS Open

[ROM Mon

I I Cmd• Line Cmd Fiio
~odes :

Source Mode Oft Source-On TTY

Note: TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-freeze 1always

Description

Flags

5-58

never

stop

freeze controls how and when the processor timers are to be frozen.

A freeze setting is effective only until the next processor reset. After any reset, the
freeze setting defaults to 'never'.

always

never

stop

Forces timers to be frozen regardless of the processor state

Forces timers to be free running (not frozen) at all times
regardless of the processor state

Forces timers to be frozen whenever the processor is stopped.
Timers will remain stopped until the next run is performed.

RISCWatch Debuggar Usefs Guida

funcdisp

401x 403x 602 603x 604x

[JTAG
LOS Open
LROM Mon

I Cmd.Llne Cmd File
Modes :

Source Mode Off

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

-funcdisp -.------..-----------------0......,,_

Description

Flags

all_addr

all_name

dbg_addr

dbg_name

tuncdlsp changes the Functions window display to show either all functions in the
program sorted by address {all_addr), all functions in the program sorted by
name (all_name), functions with symbolic debug information sorted by address
(dbg_addr), or functions with symbolic debug information sorted by name
(dbg_name). This is the same capability provided by the Functions Mode
groupbox on the Functions window.

Entering the funcdisp command with no parameters will toggle the current
Functions window display (from functions with symbolic debug information to all
functions, or the reverse), while keeping the sort algorithm for the display {by
name or by address) the same as the current display.

all_addr

all_name

dbg_addr

Sets the Functions window display to show all functions in the
program, sorted by addr.

Sets the Functions window display to show all functions in the
program, sorted by name.

Sets the Functions window display to show only functions with
symbolic debug information, sorted by addr.

Debugger Command Reference 5-59

funcdisp

Example

See Also

dbg_name Sets the Functions window display to show only functions with
symbolic debug information, sorted by name.

• Set the Functions window display to show all functions in the program, sorted
by address

funcdisp all_addr

"Functions Window" on page 3-33

5-60 RISCWatch Debugger User's Guide

goto

401x 403x 602 603x 6':4~-1 L JTAG . . .
LOS Open
LROMMon

--'

~M_o_d•-•~l_c_md_._u_ .. __ c_md_F_11e __ s_ou_ree_Mod_•_Otl ___ s_ou_re_•_M_od_•_On __ 23
Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters tor

JTAG targets are not supported.

Syntax

-goto

Description

Flags

Example

---line

goto causes the source line designated by line to be the next source line run. The
specified source line must be in the same function as the current source line.

line Specifies the next source line to be run in the file which contains
the current instruction

• Change the next source line to be executed to line 100

goto 100

Debugger Command Reference 5-61

halt

401X 403x 602 603x 604x

L JTAG . .
l OS Open

[RoM Mon

I Modes I Cmd• Line ~FU. --Ott Som:eModeOn lTY

Note: TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-halt ...

Description
halt controls the state of the processor Halt line. If neither the on nor the off
parameter is specified, tt displays the current Halt line state.

Flags

5-62

on

off

Activate the Halt line

Deactivate the Halt line

RISCWatch Debugger Users Guide

401x 403x

L JTAG . .
[OS Open .
[ROM Mon . .

I Cmd
0
Llne Cmd Fite

Modes :

Syntax

hidewins

602 603x 604X
SourceModeOll

-- hidewins -----------------------

Description

hidewins hides all the currently visible RISCWatch windows except for the Main
window.

Debugger Command Reference 5-63

hwcfg

401x 403x 602 603x 604X

[JTAG . .
r OS Open

rROMMon

I Cmd•Llne Cmd Fiie Source Mocle Oii
Modes : --On TTY

Notes: Only JTAG Ethernet targets are supported.
32bttmode options are for 602, 603, 603e, and 603ev processors only.
Parity Hags are for 603, 603e, and 603ev processors only.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Flags

5-64

- hwcfg 132bltmode
32bitmode=off

32bltmode=on

parity

parity=off

parity= on

hwcfg configures different hardware options for a particular processor. Selecting
a hardware option without a value to set will display the current option's setting.

32Mmode

parity

Used to display or set RISCWatch's 32bttmode setting. This
setting must match the 32bitmode setting of the processor's
hardware for correct RISCWatch operation.
Note: RISCWatch cannot automatically detect the
processor's 32bltmode setting.

Used to display or change RISCWatch's parity
generation setting. For performance reasons, RISCWatch does
not typically generate parity bits on memory accesses. However,
some memory controllers may require parity generation.

RISCWatch Debugger User's Guide

ip

401X 403x 602
-----------,

603x 604x

L JTAG . . .
[OS Open . . . -:--i [ROM Mon . . .

Modes I c"": Line Cmd Filo

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode Is available only on RS/6000 and Sun workstations.

Syntax

Description

See Also

-- Ip

Ip generates messages in the 1/0 window giving the current Instruction Pointer
address, as well as the Function, File, Line Number, and Current Program
associated wrth the Ip address if there is debug information available
corresponding to it.

For JTAG targets, the Instruction Pointer is actually the current Instruction Address
Register (IAR). For non-JTAG targets, rt is the process copy of the IAR for the
application being debugged.

• showip on page 5-112

Debugger Command Reference 5-65

jtagclk

401x 403x 602 603x 604x

[JfAG . . .
LOS Open

LROMMon

I Modes I Cmd• Line Cmd File
SourceModeOtt SoureeModeOn TTY

Not<>s: Only JTAG Ethernet targets are supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax
- Jtagclk ...

Description

jtagclk displays or sets the JTAG TCK clock speed on the RISCWatch Processor
Probe. When jtagclk is entered wrthout specifying value, the current setting is
displayed.

Flags

5-66

value Specifies the clock speed to sel, where:

1 = 10MHz
2 = SMHz
3 = 2.5 MHz
4 = 1.25 MHz
5 = 625 KHz
6 = 312.5 KHz
7 = 156.25 KHz

RISCWatch Debugger User's Guide

kill_ thread

401x 403x 602 603x 604x

[JTAG

[OS Open
LAOMMon

Modes I Cmd• Line Cmd Fiia Source Mode Off Source Mode On TTY

Note: TTY mode is available only on RS/6000 and Sun workstallons.

Syntax

Description

Examples

See Also

.,.._ kill_thread

kill_thread ends a source mode debug session with OS Open by destroying the
thread which is currently being debugged.

• Kill the current thread

kill_ thread

• attach on page 5-15
• detach on page 5-32
• start_thread on page 5-119

Debugger Command Reference 5-67

line

401x 403X 602 603x 604X

[JTAG
[OS Open
LROMMon
I Modes I Cmd• Line Cmd Fiie

Soun:eModeOfl SourceModoOn TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

--nne
line

line -- window J
.....

line scrolls the contents of a window to a physical line of text in the window.

If the line number specified is larger than the number of lines in the window, the
last line is shown at the bottom of the window. If the window keyword is not
specified, the last window specified for this command is used. It initially defaults
to the Source window. If nefther the line number nor the window keyword is
specffied, the last line number and window specified for the command are used.
The line number inttially defaults to 1.

This function is also available via the input line, as described in "Input Line Usage"
on page 3-20.

line

window

Specifies the physical line number to be scrolled to

See list of window keywords in "Command Quick Reference" on
page 5-2.

RISCWatch Debugger User's Guide

linestep

401x 403x 602 603x 604•

L JTAG
[osopen
[ROM Mon

Modes I Cmd
0
Line Cmd Fiie Source Mode Of1 Soume Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

See Also

- linestep -------------------..,....,

linestep steps the program to the next source line.

If the current source line contains a call to a function, that function and any
subsequent functions will be executed until the program returns to the source line
immediately following the current line, or until a breakpoint is hit.

• asmstep on page 5-10

• callstep on page 5-25

Debugger Command Reference 5-69

load

401x 403x 602 603x 604x

[JTAG
LOS Open
l ROM Mon . . .
I Modes I Cmd. Line c'"". Fiie Soun:9 - Oii - - On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-load

5·70

binary -,-- filename t address
bin __J create_ var

imm_var

dmem ----r---- filename
lmem__J t address

create_ var

1mm_var

layout----- filename -------------~

flleJ filename
host ~addr

lmage------filename -------------<

:t~ola filename

mot

reg

tektronix ---

tek

RISCWatch Debugger User's Guide

Description

Flags

load

load is used to load memory, registers or window layout information using the
contents of the specified file. Each of the load commands expect files formatted
appropriate to the type of data they contain.

binary

bin

dmem

lmem

layout

file

host

image

Load the contents o·i a binary file into data memory

Same as the binary flag

This command is tho complement to the save mem command
and can only process those files which were generated by the
save mem command. The file contains a block of memory
values in a human-readable ASCII format. This allows the saved
state of the memory to be loaded back in at any time.

When loading the saved memory block, the data can loaded to
the same address from which It was saved, or a new address
can be specified with the command allowing the data to be
placed anywhere in the processor's memory.

This command is the same as the load dmem command except
that it ensures that the contents of the instruction cache is
updated along with data memory.

This command is used to load a window layout definition that
was filed with a save command.

Loads selective sections (text, data, etc) of an ELF or XCOFF
file into target memory and loads the host system with internal
data structures used to perform source level debug

Loads the host system with internal data structures used to
perform source level debug on ELF or XCOFF file formats. The
target system is not altered. This command is used to enable
source level debug on user applications which have been
preloaded on the target system. ROM resident code is one
example of a preloaded application.

Loads the target system with the contents of a Boot Image file
(images created with the 403GA evaluation board support
package). The first 32 bytes of data is assumed to be a 'header'
record containing a 'load address' (bytes 4-7) and an 'entry pcint
address' (bytes 16-19). All data following the 32 byte header is
loaded on the target system, starting at the 'load address'. The
instruction address register (IAR) is loaded with the value
designated by the 'entry point address'. See 'Loading Boot and
Boot Image Files' on page 3-14 for further discussions on the
use of this flag.

Debugger Command Reference 5-71

load

5-72

hp

motorola

mot

tektronlx

tek

reg

address

d=

I=

SS=

nosym

size

tg=

filename

create_ var

imm_var

Load the contents of a HP format file into data memory

Load the contents of a Motorola format file into data memory

Same as the motorola flag

Load the contents of a TEXHEX format file into data memory

Same as the tektronix flag

This command is the complement to the save reg command and
can only process those files which were generated by the save
reg command. The file contains all the processor register values
in a human-readable ASCII format. This allows the saved state
of the registers to be loaded back in at any time.

Memory address to load file contents at

Indicates that the specified address is to be used to locate the
data segment (ELF and XCOFF formats only)

Indicates that the specified address is to be used to set the stack
address (ELF and XCOFF formats only). If this value is not
supplied, the STACK_ADDR in the environment resources file
will be used. THE USE OF THIS FLAG IS NOT
RECOMMENDED.

Indicates that the specttied address is to be used to locate the
text segment (ELF and XCOFF formats only)

Indicates that the specttied size is to be used to calculate the
stack address. The stack address is set to 'size' bytes beyond
the last byte loaded on the target (usually the last byte of bss
data). If this value is not specttied, the STACK_SIZE in the
environment resources file will be used. If STACK_SIZE is
undefined, the default size of 16K bytes is used.

Indicates that symbol table and string table are NOT to be
loaded on the target. This applies to boot files only (images
created with 403GA evaluation board support package entry
code). See 'Loading Boot and Boot Image Files" on page 3-18
for a discussion of boot files.

SS= byte count for stack size

Specifies the thread group for OS Open systems with virtual
memory support. See start_thread on page 5-119 for more
information.

Name of the file containing the data, in the appropriate format, to
be loaded

Any variable created with the create command

An assigned user-created variable specifying an immediate
value that may be used as a data memory address

RISCWatch Debugger Use(s Guide

See Also

load

Note: If the file name specified in the load command is fully qualified, then the
initial search for the file will begin in that directory. If the file is not found there or
the file name is not fully qualified, then the directory search will be governed by
the order specified via the srchpath command.

• save on page 5·105

• srchpalh on page 5· 116

• start_thread on page5-119

Debugger Command Reference 5-73

log

401x 403x 602 603x 604x

L JTAG
l OS Open
l ROM Mon

Modes I Cind• Line Cmd File Souroo Mod• Off SO-oModoOn

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

- log - message

Description

Flags

Examples

See Also

log wrtles typed message strings to the log file. The entire log message will be
echoed to the Jog file just as if it had been typed on the command line.

Messages will only be written to the log file if the logging command has been set
to on (the default).

message The message to be written to the log file

• Write the message 'R3 Test Passed' to the log file.

if {r3 != Ox12345678)

log R3 Test Passed

endif

• logging on page 5-75

5-74 RISCWatch Debugger Use(s Guide

logging

401X 403x 602 603x 604x

L JTAG
Los Open
[ROM Mon

Modes I Cmd
0
Line Cmd Fiie 5oun:e Mode Ott Soun:•~- On ==n

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax

-logging

Description
logging determines the current logging stalus and enables or disables the writing
of log messages to the log file. On initial program start up, logging is set to on.
This allows all commands and program error and status messages to be written to
the log file for that session.

To stop these messages from being written to the log file, use the off argument
No messages will be written to the log file until a logging on command is given. If
neither the off nor the on parameter is specified, the command prints the current
logging state.

There is also an environment variable !hat is used to control logging while running
a command file. This variable, CMD_FILE_LOG, is in the environment resources
file (rwppc.env) and can be set to YES or NO. Use of this variable in no way
affects the current setting of the logging state as set by the logging command.
When running command files that are very large or contain loops that will execute
many times, use of this variable is suggested to disable logging during the
command file run. This will prevent a very large log file from being generated in
such cases.

Under normal circumstances, logging will be enabled. But should a case arise
where a command file is generating log files that are too large, the
CMD_FILE_LOG variable can be set to NO. This will keep the commands and

Debugger Command Reference 5·75

logging

Flags

See Also

5-76

messages generated by the command file out of the log file, allowing only
commands entered from the command line and their messages to be logged.

on

off

Logging is turned on (enabled).

Logging is turned off (disabled).

• log on page 5-74

RISCWatch Debugger Users Guide

log off

401X 403x 602 603x 604x

[JTAG

[OS Open r ROM Mon
I Modes I Cmd• Line ~ Fiie

Source Mode Off Source Mode On TTY

Note: TTY mode is available only on RS/6000 and Sun workstations.

Syntax
...__ 1ogoff

Description

Example

logoff allows a user to start an OS Open Boot Image using the ROM Monitor
target. When issued, this command informs the ROM Monitor to leave the debug
state and continue execution with any previously attached process.

The sole purpose for logoff is to load and execute a Boot Image file. No debug is
possible once this command is executed. See "Loading Boot and Boot Image
Files" on page 3-1 B for further details.

• Load and execute an OS Open boot image file.

attach 42

load image applprog. img

logo ff

Debugger Command Reference 5-77

memchk

401x 403x 602 603x 604x

[JTAG
[OS Open
LAOM Mon . . .

Modes I c"": Line Cmd Fiio SourcellodeOll SourcellodeOn TTY

Notes: For PowerPC 6xx processors. Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations .

Syntax

...___ memchk 1 address

create_ var

imm_var t-~--~'
1mm_var

• •

Description

Flags

See Also

memc;hk tests the integrity of the processor's memory. The values OxOO, OxA5,
OxFF and Ox5A are written to the specified address one at a time and then read
back to verify that they were indeed written correctly. An error message is
displayed for any read, write or compare failure detected.

address

length

create_ var

imm_var

Specifies the memory address to be checked

Specifies the number of sequential addresses to check. The
default value is 1

A user-created variable that may be used as the memory
address to be written

An assigned user-created variable specifying an immediate
value that may be used as a data memory address

• memcopy on page 5-79

• memfill on page 5-80

5-78 RISCWatch Debugger User's Guide

memcopy

401• 403X 602 603• 604X

[JTAG
LOS Open
[ROM Mon . . . ---1 .
I I Cmd Lino Cmd Fiie Source Mode OH Source Mode On ~-TTY

Modes ·
Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for

JTAG targets are not supported.
TTY mode Is available only on RS/6000 and Sun workstations.

Syntax

-memcopy source de st length r 1 create_var fl create_ var TI create_ var

1mm_var 1mm_var J L 1mm_var

Description

Flags

See Also

memcopy copies a block of memory from one address to another. The memory
block is copied from the source address to the destination address. The number of
bytes to copy is specified.

source
de st

length

create_ var

imm_var

Specifies the source memory address

Specifies the destinaiion memory address

Specifies the number of bytes to copy

A user-created variable that may be used as the memory
address to be written

An assigned user-created variable specifying an immediate
value that may be used as a data memory address

• memchk on page 5-78
• memfill on page 5-80

Debugger Command Reference 5-79

memfill

401x 403x 602 603x 604x

L .ITAG
LOS Open
[ROM Mon

Modes I Cmd• Lina Cmd Fiie Source Mode Ott SourceModeOn TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters tor
JTAG targets are not supported.
ITY mode is available only on AS/6000 and Sun workstations.

Syntax

--memfill 1 address

~reate_var

1mm_var

3116ngth I value

Description

Flags

See Also

5-80

create_ var

1mm_var

memflfl fills a region of the processor's memory. The value specified is written
starting at the specified address for the specified number of bytes.

address

length

value

create_ var

imm_var

Specdies the memory address to start the fill at

Specifies the number of bytes to fill

Specifies the value to be written

A user-created variable that may be used as a memory address
or a value to be written

An assigned user-created variable specifying an immediate
value that may be used as a data memory address or a value to
be written

• memchk on page 5-78
• memcopy on page 5-79

AISCWatch Debugger User's Guide

memfind

401x 403X 602 603x 604•

l JTAG . . .
l OS Open
[ROM Mon

Modes
,_, c_m_d_

0

u_ne __ c_m_d_A_1e __ source __ M<><l __ •_011 ___ Sou_r<e_M ____ 0n_~

Notes: For PowerPC 6xx processors, Micro Channel and parall&I port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

--memflnd 1 address

~reate_var

1mm~var

TI length

~reate_var

1mm_var

Description

Flags

Examples

memfind locates the address of a specified string in memory. For every
occurence of the string found, a message is printed.

address

length

"string·

value

create_ var

imm_var

Specifies the memory address to start searching at

Specifies the number of bytes to search

Specifies a string of ASCII characters to be searched for

Specifies a string of hexadecimal characters to be searched for

A user-created variable that may be used as a memory address
or a value to be written

An assigned user-created variable specifying an immediate
value that may be used as a data memory address or a value to
be written

• Search for the string "TEST' starting at address OxFFCO for the next Ox200
bytes.

memfind OxFFCO Ox200 "TESTn

Debugger Command Reference 5-81

memfind

See Also

• Search for the same string in the previous example but by specifying hex
characters.

memfind OxFFCO Ox200 54455354

• memchk on page 5-78
• memcopy on page 5-79

5-82 RISCWatch Debugger Users Guide

memrwait

401x 403x 602 603x 604x

[JTAG . . .
L OSOpan

LAoM Mon
-

I ~md.Llne Cmd Fiie
Modes :

Source Mode Off source Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Flags

memrwait displays or sets the delay used in memory read operations. This
command is typically used to slow reads down when reading from a memory
mapped 1/0 device.

value Specifies the delay time to set in microseconds. The valid delay
range is 0 to 10,000,000 µs (10 seconds). The initial delay is
zero.

See Also

• memwwait on page 5-84

Debugger Command Reference 5-83

memwwait

401x 403x 602 603x 604x

L JTAG . . .
[osopan
[ROM Mon

Mod•• I Cmd. Line Cmd Fiie
SOUn:e Mode on Source Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Flags

See Also

memwwait displays or sets the delay used in memory wrtte operations. This
command is typically used to slow wrttes down when wrtting to a memory mapped
VO device.

value Specifies the delay time to set in microseconds. The valid delay
range is Oto 10,000,000 µs (10 seconds). The inttial delay is
zero.

• memrwait on page 5·83

5-84 RISCWatch Debugger User's Guide

401X 403x 602 603• .~ r JTAG .
r OS Open

[ROM Mon

Modes I Cmd
0
Line Cmd File SoureaModeOll

Note: TTY mode is available only on RS/6000 and Sun workstations.

Syntax

- mode j" enable I mode . .name

L clear _J

Description

TTY

mode enables or clears the debug modes of the processor.

Flags

Examples

clear Clear the debug mode

enable Enable the debug mode

mode_name The name of the debug mode:

bdm Bus status debug mode

de Debug interrupt enable

edm External debug mode

fide Freeze timers on debug event

ldm Internal debug mode

tdm Trace status debug mode

• Enable external debug mode.

mode enable edm

• Disable debug interrupts.

mode clear de

Debugger Command Reference

mode mode

See Also

• event on page 5-39

5-85 5-86 RISCWatch Debugger User's Guide

pagedn

[OS Open

I Modes I Cmd• Line Cmd Fiie SO<WCe Mode Oii Soun:e Mode On TIY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

See Also

pagedn scrolls the contents of a window down one page.

lithe window keyword is not specified, the last window specified for this command
is used. It inltially defaults to the Source window.

window See list of window keywords in "Command Quick Reference" on
page 5-2.

• pageup on page 5-88

Debugger Command Reference 5-87

pageup

401x 403x

[JTAG . .
LOS Open . .
LROM Mon . .

I Cmd.Llne Cmd File
Modes :

602 603x 604•
--Oii --on TIY

Note: For PowerPC Sxx processors. Micro Channel and parallel port adapters for
JTAG targels are not supported.

Syntax
...._ pageup

Description
pageup scrolls the contents of a window up one page.

I 14

If the window keyword is not specified, the last window specified for this command
is used. It inltially defaults to the Source window.

Flags

See Also

5-88

window See list of window keywords in "Command Quick Reference" on
page5-2.

• pagedn on page 5-87

RISCWatch Debugger Usefs Guide

parms

401x 403x 602 603x 604x

[JTAG --r OS Open
rROMMon . . .

Modes I Cmd Line Cmd File Source Mode Off Souree Mode On ~

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

..._ parms - { r-=;a:=J_ J -------------.......

Description

Flags

Examples

parms allows one or more parameters to be passed into a command file when it
is executed.

variable The names of variables to be created. Al least one variable
name must be specified. The variables are initialized to the
values specified in the parameter list. If there are more variables
specified in the perms list than there are values in the parameter
list, the left-over variables are initialized to 0. If there are more
values in the parameter list than there are variables in the parms
list, the extra values are discarded.

• Wtthin a command file, use the parms command to pass a memory address
value:

parms {mem_addr}

read dmem mem_addr

The variable mem_addrcan now be used like any other user-created variable
inside the command file. When RISCWatch is invoked to run this command file,
it is now possible to pass the desired memory address into the command file
for execution :

rw400 mem_test{OxFFFFOOOO}

Debugger Command Reference 5-89

parms

See Also

5-90

Note: Be sure that there is NO space between the command file name and the
opening '{'character. Also make sure that there IS a space between the parms
command and the opening '{'character.

• Command Fila Parameters on page 3-96

RISCWatch Debugger Users Guide

print

401X 403x 602 soax 604X

[JTAG . . .
--~

[OS Open .
l ROM Mon

Modes I Cmd Lino Cmd Fiie Source M-Oii "--s;;;;-,,;~;o;-·===1

Notes: print is available only on RS/6000 and Sun workstations.
For PowerPC 6xx processors, Micro Channel ana parallel port adapters for
JTAG targets are not supported.

Syntax

---print - print_string -------------------~

Description

Flags

Examples

See Also

print takes print_string and prints it in the host window. See the !print command
for more details and a list of formatting options.

print_ string This is a user defineable string containing string literals,
user-created variable names and the same type of expressions
used in the set command.

• Write the print message 'R3 Test completed'.

if (r3 != Oxl2345678)

PRINT KR3 Test cornpletedK

endif

See also the Examples section of the !print command

• fctrl on page 5-44
• !print on page 5-55

Debugger Command Reference 5-91

profile

401x 403x 602 603x 604x

[JTAG
[OS Open
LROMMon
I Modes I Cmd• Line Cmd Fiie Soufee Mod• Oii Source - On ~

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

-profile start 1 lar ~=value

Description

5-92

mem - address

reg - reg_name

count -- value

run

output_fi/e J
stop

reset

filename

address

reg_name

profile allows for a limited amount of profiling for a program that has been loaded
into the processor. The single-step feature of the processor is used to perform an
invasive profiling of the loaded program.

RISCWatch Debugger User's Guide

Flags

profile

Once a profiling session has been started, the processor is single-stepped to
execute each instruction of the loaded program. After each step is taken, a step
count, iar value and the decoded instruction residing at the iar address are saved
to the profile output file. It is possible to tailor the profiling session to save register
and memory contents to the output file as well.

start Specffies one or more condrtions that must be met before profile data is saved to a
file after a profile run command is given

iar Specifies an address that must match the value of the iar before profile data is
saved

mem Specrties a memory location address whose contents must match the
specified value before profile data is saved

address Specifies the memory address for the profile mem command

reg Specifies a register whose contents must match the specified value before
profile data is saved

reg_name Specifies the register name for the profile reg command. The register must
not be larger than 32 btts.

count This specifies tt1e number of steps tor which profile data is saved after the start
condition is met. After a start condition is met, each step of the program saves
profile data and decrements this counter. Once this counter reaches zero (0), the
start condrtion is reset and must be triggered again in order to start saving profile
data again.

value Specifies the match value for the memory address, register or !AR, or a step count
value

run Instructs the profiler to begin the profiling session. II no filename is specified after
run, the output is saved to the file rw400.prf; otherwise the specified filename is
used to capture the profile output.

output_file Specifies a file to save all collected profile information so that rt may be viewed at
a later time

stop Instructs the profiler to stop the currently running profile session

reset Instructs the profiler to remove all register and address profile commands. It is
suggested that this be the first command of a profile file to ensure that the
commands for a previous profile session are erased and only the desired registers
and addresses are profiled.

reg_name Specifies a register whose value is to be read and saved after every step is taken.
The register must not be larger than 32 bits.

Debugger Command Reference 5-93

profile

5-94

address Specifies a 4-byte memory address whose value is to be read and saved after
every step is taken

filename Spedies a file containing profile commands to be used in a profiling session.
This allows the user to set up a profiling session ahead of time and removes the
task of manually entering the profile commands for repeated profiler use.

RISCWatch Debugger Use(s Guide

quit

401x 403x 602 603x -~

L JTAG
[OS Open
[ROM Mon

I Cmd.llne Cmd Fiie Source Mode Off Source Mode On TTY
Modes :

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adaplers for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-quit [_, J
Description

Flags

See Also

quit terminates the program. II the processor is running when this command is
given and the user interface is active, a prompt is displayed to provide notification
of the processor state and confirm the intent to terminate.

Avoid using the quit command in a command file. If the command file is executed
while the user interface is active, execution of the quit command will not only stop
the command file but will also terminate RISCWatch. Use the end command
within a command file to stop execution of the command file.

The quit command is equivalent to the exit command.

-f Using this flag forces termination regardless of the processor
state.

• •Profiler Window" on page 3-107

• exit on page 5-41

Debugger Command Reference 5.95

read

401• 403x 602 603x 604x

[JTAG
[OS Open
[ROM Mon

I Cmd.Llne Cmd Fiie
Modes :

Source Mode Off Source llode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters tor
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

t read

readb

readh

::::r
create_ var

1mm_var

reg_ name

reg_ var

create_ var

-read ...,.--,----...-..- reg_name

Description

5-96

reg reg_ var reg_ name

reg_ var

create_ var

regs

read is used to read register values or four bytes of data memory. The readb
command is used to read one byte of data memory while the readh command is
used to read two bytes of data memory.

RISCWatch Debugger User's Guide

Flags

Examples

See Also

read

The first argument is used to indicate the object (either memory or register) to be
read. If a second argument is specified, it indicates the object to be written using
the value just read. If two objects are specified, the sizes of the objects must
match: 32-blt reg ->32-btt reg, 32-bit reg--+address, 32-bit reg-> user-created var,
64-bit reg -> 64-bit reg.

reg

regs

address

mem_var
imm_var

reg_ name

reg_ var

create_ var

An optional flag that indicates to read a processor register. Use
of this flag is usually to enhance command file readability.

Indicates that all processor register values are to be read

Specifies an immediate address value from which to read data
memory

Any memory variable created with the assign command

An assigned user-created variable specifying an immediate
value that may be used as a data memory address

A valid processor register name to be read and/or written

An assigned user-created variable that may be used to specifiy a
processor register to be read and/or written

A created user-created variable that may be used to hold the
value just read

• Read the value of the !AR.

read IAR

• Read the value at memory address Ox1 FB470.
read Ox1FB470

• Create a user variable to represent a memory location and then use it to read
memory.

assign mem_addr = Ox000F701A

read mem_addr

• write on page 5-133

Debugger Command Reference 5-97

record

401x 403X 602 603x 604x

[JTAG
[OS Open
LRoMMon
I Modes I Cmd• Line Cmd Fiie Souree-OH --On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

-...--- record off

Description

Flags

on

play

filename

save - filename

record is used to record commands that are entered into the main window
command line interface. Having saved a sequence of commands, It is then
possbile to play them back or save them to a file so that they may be played back
at a later time. Up to 100 commands can be recorded at a time.

Note: No record commands will be recorded.

off

on

play

save

Turns off command recording

Turns on command recording

Plays back recorded commands

Saves recorded commands to the specified file

5-98 RISCWatch Debugger User's Guide

filename

record

Name of the file to save recorded commands to or containing
commands to be played back

If the play option is used wrth a filename, the commands from the file are read into
memory thereby overwriting commands which might have already been recorded
earlier. Be sure to save any recorded commands before exercising this option.

Once a set of commands has been loaded using the play with filename option, the
command sequence may be played back any number of times by simply using the
play option.

record commands are not valid within a command tile.

Debugger Command Reference 5-99

reset

401x 403x 602 603x 604x

[JTAG
r OS Open

rROMMon

I Modes I Cmd• Line Cmd Fiie Soureo Mode Oii --On 1TY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters tor
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

-reset

Description

1core

chip

sys

I II

reset resets the processor or system. For further details about processor reset,
see the relevant sections in the PowerPC processor manual for the specific device
being reset.

Flags

See Also

5-100

core

chip

sys

Reset the processor core

Reset the processor core and ASIC

Reset the entire system

"Processor Reset Window (JTAG Target Only)" on page 3-100

RISCWatch Debugger User's Guide

restart

401x 403x 602 603X 604x

L JTAG
l OS Open
[ROM Mon . .

Modes I Cmd• Line Cmd Fiie Source Mode Oft Source Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY made is available only on RS/6000 and Sun workstations.

Syntax

Description

See Also

-- restart

restart restarts the debug session.

The debug session is restarted essentially by reloading the program onto the
target. However. the debug environment remains intact. This means that any
breakpoints that were set will still be set. and all currently selected windows and
customizations will be preserved and their context updated as appropriate.

Note: If the program was dynamically loaded, the breakpoint addresses will be
recalculated based on the new location of the reloaded program.

OS Open Note: If the program being debugged was started via a start_thread or
an attach command, then the program will not be reloaded. The thread will be
restarted or reattached only. This means that the data area and bss sections will
not get reinitialized.

• attach on page 5-15
• start_thread on page 5-119

Debugger Command Reference 5·101

retstep

401x 403x 602 603x 604X

L JTAG
[OS Open
[ROM Mon

Cmd Fiie --Oii Source Mode On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters far
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

See Also

5-102

-- retstep

retstep returns the debugger to the previous function caller.

This location to which the IAR is returned is effectively the contents of the current
link register.

Note: When stepping through code that contains no debug information. the link
register contents could be altered by subsequent branch and link instructions. In
these instances, retstep does not produce the desired results. Instead, a
breakpoint should be set at the desired return location, and a run command
executed to carry out the intended action.

• asmstep on page 5-1 o
• bp on page 5-1g

• callstep on page 5-25

• run on page 5-103

RISCWatch Debugger Users Guide

run

401x 403x 602 603x 604X

r JTAG
r OS Open
[ROM Mon

Modes
Cmd Fiio Source Mode Off TIY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
1TY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Flags

Examples

...,._ run
]

.....
timeout

run starts the processor (JTAG target) or process (non-JTAG) running. If the
timeout parameter is omitted, the processor/process runs until a breakpoint is
reached or a stop command is issued.

timeout The time, in seconds, that the processor/process is allowed to
run. If the processor/process is still running alter the specified
time, the processor/process is stopped. This timeout value may
also be specified using a created variable or an assigned
immediate variable.

If a run command is issued with a timeout value and then a stop
command is issued with a timeout value, when either command
has timed out the processor/process is stopped.

When a run command is executed from within a command file,
execution of the command file does not proceed until the
processor/process has stopped.

• Run the processor/process for a maximum of 10 seconds

run 10

Debugger Command Reference 5·103

run

See Also

• stop on page 5·120

5-104 RISCWatch Debugger User's Guide

save

401x 403x 602 603x 604•

l JTAG
[OS Open . . .
[ROM Mon . . .

Source Mode Oii Soun:eModeOn TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

...,_..._.save

Description

Flags

mem- filename 1 address

- create_ var

imm_var

layo~ filename

reg

IT bytes

J [create_var

1mm_var

save is used to save a block of memory values, all processor register values, or
the current window layou1 to a file. This command complements the load
command and generates the files read by the load command.

The files generated by save are human-readable ASCII files that can be used to
capture the state of the processor any time that it is not running. Since these files
are human-readable, they make excellent reference material when debugging a
problem or for providing hard-copy output.

Once saved, the values in these files may be loaded back into the processor
thereby restoring the processor's state at a later time.

mem
layout

reg

Specifies that a portion of processor memory is to be saved

Specifies that the window layout is to be saved

Specifies that all processor registers are to be saved

Debugger Command Reference 5-105

save

See Also

5-106

filename

address

bytes

create_ var

imm_var

The name of the file to save data to

The address of memory where to start saving data. This may
also be specified using a created variable or an assigned
immediate variable.

The number of memory bytes to save. This may also be
specified using a created variable or an assigned immediate
variable.

A created user-created variable that whose value may be used
in place of the address or bytes flags.

An assigned user-created variable specifying an immediate
value that may be used in place of the address or bytes flag.

• load on page 5-70

RISCWatch Debugger User's Guide

set

401x 403x 602 603• 604x

[JTAG
I OS Open
[ROM Mon . . .

Modes I Cmd
0
Lino Cmd Fii<> Source Mod• Off SouroaModoon.~

Notes: For PowerPC 6.xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
ITV mode is available only on RS/6000 and Sun workstations.

Syntax

- set - argument expression

Description

set is used to set a processor resource (memory or register) or RISCWatch
variable's value to the value represented by the specified expression.

The name of the variable should not conflict with names in the program that is
being debugged. A variable is expanded to the corresponding expression within
other commands.

The set command is used to store computed values in memory address locations,
registers or user-created variables. The first argument specifies where the result
of the expression is to be stored (memory, register or variable).

Following the first argument (or optional= sign), is the expression to be evaluated.
This expression may be composed of registers, registers fields (logically related
sequences of bits within a register), memory addresses, immediate values,
user-created variables and various operators.

The pseudo-variables $ERRORS and $TIMER may also be used in an
expression.

Memory address values which appear on right hand side of the = sign must be
enclosed in () so that they may be differentiated from immediate values. A
memory address value on the left hand side of the = sign can be written as is
since it is not possible to assign the value of an expression to an immediate value.

In its simplest form, the set command works exactly like a write command; writing
a value to an object (memory, register or variable).

Debugger Command Reference 5-107

set

5-108

However, the set command allows for complex expressions to be assigned
whereas the write instruction does not. For example, the following command adds
two (2) registers, divides the result by another and then shifts the result ;

set R4= LR+ ROIR17» 4

The result could have just as easily been assigned to a memory address location
as opposed to the register GPR4. When using these expressions there are a few
rules which must be kept in mind :

1 . Expressions are always evaluated from left to right; there are no parentheses
allowed to change this order

2. All operations are performed using integers; there are no floating point results
stored or used for intermediate calculations

3. All operators are binary except for

a. The operators + and - can be either binary or unary

b. The operator - is always unary

The following list shows the supported operators and describes their functionality :

~ Function

+

mod

%

&

I

<<

»

artthmetic addition

arithmetic subtraction

arithmetic multiplication

arithmetic division

arithmetic remainder or modulus

arithmetic remainder or modulus

bitwise AND

bitwise Inclusive OR

bitwise Exclusive OR

bitwise one's complement

bitwise shift left

bitwise shift right

The set command also supports limited logical operations should this sort of
processing power be desired. The logical operations are used mainly for the
programming constructs of command files but have been also included for the set
command for completeness.

One thing that must be kept in mind when using logical expressions is that their
result is only one of two values; 0 or 1. They NEVER return any other value. The

RISCWatch Debugger User's Guide

Flags

Examples

set

form of a logical expression is restricted to one basic form when ii appears in a set
command:

arg1 oparg2

In this expression, arg1 and arg2 may be simple references to registers, register
fields, memory address, immediate values or user-created variables. Each
argument may also consist of the type of mathematical expressions described
above.

= (address)lcreate_varlreg_name[.field_namel.#]lreg_var

= logicallmathematical

= expr_arglexpr_arg log __ op expr_arg

= [math_op1] expr_arg [math_op2 mathematical]

argument

expression

logical

mathematical

expr_arg

log_ op

math_op1

math_op2

= reg_name[.field_namel.#Jl(address)limmediatelvariablelmem_var

===!=>>=<<=

=+--

;:; + - ,. I mod % & I/\<<>>

=ordinal bit number

Registers specified must not be larger than 32 bits.

• Write a value of Ox1234 to GPRO.

write RO Ox1234

• Use the set command to do the same thing.

set RO = Ox1234

• Set the scratch register S4 to indicate if the IAR exceeded soma known memory
address boundary.

assign max = OxFFFFC14A
set S4 = IAR > max

In this example, ii the IAR was grealer than OxFFFFC14A, scratch register S4
would get set to a 1. If not, S4 would have been set to 0.

• Set the IA 1 field of register DBCR.

set DBCR.IAl = 1

• Set bit 4 of GPR17 and clear bit 12 of GPR5.

set Rl7.4 1
set R5.12 = 0

Debugger Command Reference 5·109

set

See Also

• Command Ria Programming on page 3-94

5-110 RISCWatch Debugger Users Guide

shell

401x 403x 602 603x 604x

L JTAG . . .
[OS Open
[ROM Mon . . .

I Cmd.Une Cmd Fiie Source Mode Off Source Mode On
Modes :

TTY

Notes: shell is only available on RS/6000 and Sun workstations.
For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

--- shell - command -------------------0-.0-
Description

Flags

Examples

shell passes a string to the environment's shell for execution. The shell, such as
the Korn shell (ksh) or C shell (csh), is retrieved from the users SHELL
environment variable. The string should only contain valid host operating system
commands or script file/executable program invocations.

A fork operating system call is used to create a new process for the command
string to run under. To ensure correct command file processing, the forked
process is allowed to finish execution before allowing control to return to the
program. Therefore, care must be taken as to the commands passed to the
operating system using the shell command.

command Name of the host command, script file, or executable

• Create a new directory and save a copy of a capture file to rt.
shell mkdir save
shell copy rwppc. cap save

• The procedure above could also have been performed by executing

shell mkdir save; copy rwppc .cap save

Debugger Command Reference 5-111

showip

401x 403x 602 603x 604x

r JTAG
r OS Open
[ROM Mon
I Modes 'Cmd.Llne C""'.Flle Soun:e-Off Soun:e-On TTY

Note: For PowerPC 6xx proceSSOfS, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

See Also

5-112

..._ showip

showlp updates the entire debgger context based on the current Instruction
Pointer address. All appropriate source debug windows are updated accordingly.
Also, the output of the Ip command will appear in the Main window.

For JTAG targets, the Instruction Pointer is actually the current Instruction Address
Register (IAR). For non-JTAG targets, ~ is the process copy of the IAR for the
application being debugged.

• Ip on page 5-65

RISCWatch Debugger User's Guide

socket

401x 403x 602 603x 604x

[JTAG . . .
l OS Open
LROM Mon . . .

Modes I Cmd• Line Cmd Filo Soutce Mode Off Soun:o ~an =n
Notes: JTAG Ethernet is the only supported JTAG target.

The retry parameter is not available for JTAG Ethernet targets.
TTY mode is available onty on RS/6000 and Sun workstations.

Syntax

Description

Flags

Examples

..- socket

L
retry

timeout :J [value J
• II

socket displays and alters parameters associated with socket communication to a
target. If socket is issued withoU1 value to set, the current setting is displayed,
otherwise the setting is changed to value.

retry The number of times that RISCWatch resends a command to a
target before timing out. A negative retry amount sets an
unlimlted number of retries.

timeout

value

The length of time in seconds that RISCWatch waits for
information from a target before timing out

Number of retries or !imeout value in seconds

• Set the number of retries to 10

socket retry 10

• Examine current timeout setting

socket timeout

• Set the timeout to wait for a target to 3 seconds

socket timeout 3

Debugger Command Reference 5-113

sourcemode

401x 403x 602 603x 604x

[JTAG
LOS Open
LROM Mon

Modes I Cmd• Line Cmd Filo Soun:e - Off Soun:e - On TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
T1Y mode is available only on RS/0000 and Sun workstations.

Syntax

Description

Flags

5-114

...._ sourcemode -r- on

L.. off

sourcemode enables or disables Source level debug functions.

...

When Source Mode is turned off, all the Source level debug screens which are
visible are brought down, the 'Source' menubar option on the Main window is
disabled, the Main window is resized to hide the Source level debug window
checkboxes, and all commands relevant only to Source level debug are disabled.

When Source Mode is turned on, the 'Source' menubar option on the Main
window is enabled, the Main window is resized to show the Source level debug
window checkboxes, all commands relevant only to Source level debug are
enabled, and the Source level debugger is reinitialized to the context of the current
Instruction Pointer value.

This command is also available from the 'Source Mode' pulldown selectable from
the 'Utilities' menubar option on the Main window.

on

off

Enables source level debug features and menu options

Disables source level debug features and menu options

RISCWatch Debugger User's Guide

srcdisp

4-01x 403x 602 603x 604x

[JTAG
LOS Open . . .
LROM Mon . .

Modes ICmd.Une CmdFlle So=•ModoOll Sourco~odeOn =-::J
Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for

JTAG targets are not supported.

Syntax

Description

Flags

Example

See Also

.._ srcdisp -r- mixed

L._ source __j
....

srcdlsp changes the Source window display to show either source lines only
(source), or mixed source/assembly lines (mixed). This is the same capability
provided by the Source Mode groupbox on the Source window.

mixed Sets the Source window display to show mixed source/assembly
lines.

source Sets the Source window display to show source lines only.

• Set the Source window display to show mixed source/asm

srcdisp mixed

"Source Window" on page 3-23

Debugger Command Reference 5-115

srchpath

401x 403X 602 603x 604x

r JTAG
r OS Open
(ROM Mon

Modes I Cmd• Uno Cmd Filo Soun:eModoOll SourcoModoOn TTY

Notes: For PowerPC 6xx processors. Micro Channel and parallel port adapters for
JTAG targels are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

.,._ srchpath 1 q[uery] _.,,,.,, ~
adddlf

c[lear]

.. Iii

srchpath determines the file search order used by the debugger to reference
source files and executables. Initially, the debugger attempls to find the tile exactly
as it was presented by the action performed. For example, for the load fife
command, it would attemp1 to find the file exactly as ~was typed in the command
line. Or in the case of a single click on an entry in the Files window, it would
attempt to locate the file as displayed in the window.

If it is not found, then the path(s) specified via the srchpath command are
searched, in order, until the file is found. If the file is still not found, the current
directory is also search. Note that the current directory can be included anywhere
in the search path by explicftly ordering it via the srchpath command.

Current directory is defined as the following:

UNIX platform

Windows platform

The directory which began the debug session. For
example, if you were in /home, and typed /usr/rwppc/rwppc
to start RISCWatch, the current directory would be /home.

The Working Directory specified under the Program
Manager's File-> Properties pulldown for the RISCWatch
icon. It is originally set to the same directory as the
installed executable.

5·116 RISCWatch Debugger User's Guide

Flags

Examples

See Also

srchpath

q[uery] Shows current directory search setting in main VO command
status window

set Sets the search path to the directories listed, in the order that
they are entered. Nole this deletes any previous setting.

add Adds a directory to the search path at the end of the current
setting

c[lear] Clears the search path setting, which will default the search to
the current setting

• Set the search path for source and executables.

srchpath set /u/stevewin/sandbox /u/mandzak/lib
/u/kburke/test

The search path order for source and executables is set to

1. As entered by the action

2. /u/stevewin/sandbox

3. /u/mandzak/lib directory, and if still not found,

4. /u/kburke/test.

5. Current directory

• Add a directory to the current search path.
srchpath add /u/marsala/lib

The search order would proceed as in the above example, except that
/u/marsala/lib would be searched before the current directory.

• Environment Resources on page 3-5
• load on page 5-70

Debugger Command Reference 5-117

srcline

401x 403• 602 603• 604x

[JTAG
[OS Open
LROMMon

Modes I Cmd
0
Line Cmd Fiio ~ - Oii Souru -On TIY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

..._ srcllne

L fine J
...

srcline scrolls the contents of the Source window to a source line in the current
file, highlighting the line if rt contains text

This command is equivalent to the line command for the Source window if rt is in
'Source Only' display mode. It is useful if the Source window is in 'Mixed
Source/Asm' mode, where assembly instructions are interspersed wtth source
instructions.

If the line number specified is larger than the number of source lines in the file, the
last source line is shown at the bottom of the window. If the line number is not
specified, the last line number specified for the command is used. The line
variable inttially defaults to 1.

This function is also available via the input line, as described in •input Line Usage"
on page 3-20.

line Specifies the source line number to scroll to

5-118 RISCWatch Debugger Users Guide

start_ thread

401x 403• 602 603x 604x

[JTAG

[OS Open . . .
[ROM Mon

Modes I Cmd• Line Cmd Fil• Source Mod• Off Source Mode On TTY

Note: TTY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Flags

Examples

See Also

-- start_thread -- funcname
[tgrp_id J

start_thread initializes a source mode debug session with OS Open by
scheduling a thread to be queued, beginning wtth the function designated by
funcname. The function must have been previously linked with or dynamically
loaded on OS Open. Threads are started using OS Open default thread
characteristics.

For OS Open systems that support Virtual Memory, if tgrp_id is specified, the
function will be started in the existing thread group tgrp_id, otherwise the thread
will be in Its own newly formed thread group.

tuncname
tgrp_id

Name of function to be started

ID of thread group for tuncname

• Schedule a specttied thread to be queued:

start_thread routinel

• attach on page 5-15

• detach on page 5-32

• kill_thread on page 5-67

• load on page 5-70

Debugger Command Reference 5-119

stop

401x 403x 602 603x 604x

l JTAG
LOS Open
[ROM Mon

Modes
CmdFife --Off Sc>utuModeOn TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on RS/6000 and Sun workstations.

Syntax

--stop

[timeout J
..

Description

Flags

stop forces the processor (JTAG target) or process (non-JTAG) to stop running.
This command is used whenewr the processor/process is running and you want
to stop It.

If run is issued with no timeout value and no debug events set, the
processor/process keeps running until the resident program completes execution
or stop is issued by the user.

stop has an optional timeout value. If a timeout value is specified and the
processor/process is stopped, the timeout is ignored and the processor/process
stopped normally. If a timeout value is specified and the processor/process is
running, a timer is started and the processor/process is left running. If the
processor/process is still running when the timer expires, the stop command is
given to stop the processor/process. If the processor/process stops on its own
before the timer expires, the timer is cancelled and the stop command is giwn to
insure a stopped processor/process.

If a run command is issued with a timeout value and then a stop command is
issued with a timeout value, when either command has timed out the
processor/process is stopped.

timeout Specifies the number of seconds to wait before sending
the stop command to the processorlprocess

5-120 RISCWatch Debugger Use(s Guide

stop

See Also

• run on page 5-103

Debugger Command Reference 5-121

stuff

401x 403x 602 603x 604x

[JTAG

LOS Open . .
LROM Mon

Modes I Cm~ Line Cmd File --On TTY

Note: TTY mode is available ooty on AS/6000 and Sun workstations.

Syntax

Description

Flags

.- stuff

l =~1 reg_name

variable

t 4

stuff is used to stuff a 4-byte machine instruction directly into the head of the
instruction execution queue where it is immediately executed by the processor.
This command must be used with caution since no error checking is done on the
machine instruction that is given with the command.

The machine instruction value is sent directly to the processor so an invalid
machine instruction could produce disastrous results. It would be wise to use
either the dis or assm command to verily the machine instruction before the stuff
command is executed.

It is also possible to stuff an assembly instruction into the processor using the built
in line assembler. Simply enclose the assembly instruction in quotation marks
and pass tt to the stuff command. If the stuff command detects a string in
quotes, It passes the string to the line assembler. If the instruction is assembled
without error, the equivalent 4-byte machine instruction is stuffed.

Another variation of the stuff command allows the contents of a register or
user-create variable to be stuffed. Instead of specifying an immediate value or
assembly instruction string, place a register or variable name after the stuff
command. Once entered, the conten1s of the register or variables are read and
then stuffed into the processor.

opcode An immediate machine instruction value to be stuffed

5-122 RISCWatch Debugger User's Guide

assembly

reg_ name

variable

stuff

A valid assembly instruction string enclosed in quotation marks
lo be assembled and then stuffed

The name of a register whose contents are to be read and then
stuffed. The register must not be larger than 32 bits.

The name of a user-created variable whose contents are to be
read and then stuffed

Debugger Command Reference 5-123

timer

401x 403x 602 603x 604x

l JTAG
[OS Open
(ROM Mon
I Modes I Cmd• Line ~ Fiie Saw-co - Oii Saurco ModoOn TTY

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun workstations.

Syntax

Description

Flags

- timer start

stop

timer allows for the timing of events from within a command file. The resolution of
the timer is one second.

When the timer is stopped, a status message is displayed indicating the time that
has elapsed since the timer was started. This elapsed time value is also stored so
that It may be printed using the $TIMER variable in a print/fprlnt command. It
may also be referenced in a set expression.

start

stop

If the timer is stopped, this flag starts It running. If the timer is
running, It updates the $TIMER program variable so that It may
be printed while leaving the timer running.

Stops the timer and saves the time elapsed since the start was
given into the $TIMER program variable

5-124 RISCWatch Debugger Use(s Guide

top

401x 403X 602 603x 604x

[JTAG . . .
r OS Open
[ROM Mon . . .

Modes I Cmd
0
Line Cmd Ale Source Mode Off Sourr,,e Mode On TIY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

See Also

-- top
[window J

I id

top scrolls to the first line of a window, highlighting the line if it contains any text

If the window keyword is not specified, the last window specified for this command
is used. It initially defaults to the Source window.

window See list of window keywords in "Command Quick Reference" on
page 5-2.

• bot on page 5-18

Debugger Command Reference 5-125

unload

401x 403x 602 603x 604x

f JfAG
r OS Opeo
[ROM Mon

I Cmd
0
Llne Cmd Ale

Modes : --Off Source Moct. On TIY

Notes: For PowerPC 6xx processors. Micro Channel and parallel port adapters for
JTAG targets are not supported.
TTY mode is available only on AS/6000 and sun workstations.

Syntax

Description

Flags

See Also

5-126

.,....... unload T all --r-·
filename J

unload removes the program specified by filename from the debugger. It also
removes any breakpoints set within the specified program context. However, any
loaded program will continue to reside in target memory.

Also, this command applies only to files loaded to perform source level debug via
the load file or load host command option.

all

filename

Unloads all programs currently loaded in the debugger

Specifies program to be unloaded. If unqualified, the file
unloaded will be determined by the srchpath settings currently
in effect.

• load on page 5-70
• srchpath on page 5-116

RISCWatch Debugger Users Guide

up

401x 403x 602 603x 604x

f JTAG
[OS Open
r ROM Mon . .

Modes I Cmd• Uno Cmd File Source Mode Oii Source Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

Description

Flags

Examples

-- up L lines

L lines -- window 3
up scrolls the contents of a window up a number of lines from the top line visible in
the window.

If the number of lines specified is larger than the number of lines from the top of
the window, the first line is shown at the top of the window. If the window keyword
is not specified, the last window specified for this command is used. window
initially defaults to the Source window. If neither the tines variable nor the window
keyword is specified, the last fines value and window specified for the command
are used. The lines variable initially defaults to 1.

lines

window

Specifies the number al lines to be scrolled up in window

See list of window keywords in "Command Quick Reference" on
page 5-2.

• Scroll up two lines in a window previously specified, or the Source window ii
none was previously specified.

up 2

• Scroll up six lines in the Breakpoints window.

up 6 break

Debugger Command Reference 5-127

up

See Also

• down on page 5-35

5·128 RISCWatch Debugger Usefs Guide

varinfo

401x 403x 602 603x 604•

l JTAG
[OS Open

--'
[ROM Mon

Modes 1-1 C_md_• L_lne __ C_md_F_lle __ s_ou_,,,. __ __c_Oll_c___ _ _cSoc_ureec__ Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not suppcrted.

Syntax

- varinfo---r- locals

Lg1oba1s none----------------i

addr --,---~~

Description

Flags

, __ [size] [pe
- ---i-- size

addr _J

L..,---..--r--- type

addr size

varinfo changes the Local or Global variable window display to show type,
address, and size information displayed for each visible variable. Any combination
of addr, size and type can be specified. This is the same capability provided by
the Display Information groupboxes on the Variable Configuration window and
each Change Variable window.

locals

globals

all

Specifies Locals variable window

Specifies Globals variable window

Shows the address, size and type for each variable

Debugger Command Reference 5-129

varinfo

Example

See Also

5·130

none

addr

size

type

Shows no address, size and type information for each variable

Shows the address of each variable

Shows the size of each variable

Shows the type of each variable

• Set the locals window display to show address and type information for each
visible variable

varinfo locals addr type

"Variable Windows" on page 3-60

RISCWatch Debugger User's Guide

varvis

401x 403x 602 603x 604•

[JTAG
LOS Open
LROM Mon . . .

Modes I Cmd• Lino Cmd File Source Mode Off Souree Mode On TTY

Note: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.

Syntax

-varvls T locals

Lglobals

vis

TI1nvls

Description

Flags

Example

See Also

varvls changes the visibillty of variables on the Locals or Globals variable
windows. This is the same capability provided by the relevant pushbuttons on the
Variable Configuration window.

Note: lnltially. RISCWatch will default to all local variables being visible, and all
global variables being invisible. These defaults could be changed by putting the
appropriate varvls command entries in a startup command file after a file is
loaded.

locals
globals
vis

invls

Specifies Locals variable window

Specifies Globals variable window

Make all variables visible

Make all variables invisible

• Set the Globals window display to show all variables

varvis globals vis

"Variable Configuration" on page 3-64

Debugger Command Reference 5-131

view

401x 403x 602 603x 604x

L JTAG
LOS Open
[ROM Mon

Modes I Cmd• line Cmd Fiie
Soun:eMo<leOll Soun:eModeOn TTY

Note: For PowerPC 6xx processors. Micro Channel and parallel port adapters tor
JTAG targets are not supported.

Syntax

-view

L filename J
Description

See Also

view allows for a specified file to be viewed. The specification of the filename is
optional. If It is not specified, a file dialog box is presented for the user to navigate
the directory structure and select a file to view. This functionallty is only available
when you are using the graphical user interface, not from within a command file.

Once a file has been selected, a window is displayed and the contents of the file
are displayed within It. The file may be viewed but not edited. Text font and size in
the display are adjustable using the menubar at the top of the window.

This command is equivalent to using the View option of the File pull-down menu.

• edit on page 5-37

5-132 RISCWalch Debugger Users Guide

401x 4-03x 602 603x
---:-::-:---

604x

L JTAG
LOS Open . . .
l ROM Mon . . .

Modes Aline Cmd Fiie Source Mode Off

Notes: For PowerPC 6xx processors, Micro Channel and parallel port adapters for
JTAG targets are not supported.
TIY mode is available only on RS/6000 and Sun worl<stations.

Syntax_
-write I dmem1address

L imem mem_var

create_ var

imm_var
11 :~::e_var 1mm_var

reg_ name

reg_ var

~ writeb J dmem

L wrlteh 1:::s:r
~reate_var

1mm_var

---write

-....-L-.e-g--J -1.,...... :::~::~e

value

create_ var

imm_var

reg_ name

reg_ var

value

create_ var

imm_var

reg_ name

reg_ var

Debugger Command Reference

write

r

5-133

write

Description

Flags

write is used to write a value to either a register, a 4-byte data memory location, a
4-byte instruction memory location, or to a breakpoint register. wrlteb is used to
write a 1-byte data memory location, while wrlteh is used to wrtte a 2-byte data
memory location.

write reg Write a new value to a register.

write dmem Write a new value to a data memory location. Up to four (4)
bytes of data can be written to a valid address.

writeb dmem Write a new value to a data memory location. One (1) byte of

wrl!ehdmem

write lmem

data can be written to a valid address.

Write a new value to a data memory location. Two (2) bytes of
data are written to a valid address.

Write a new value to an instruction memory location This
command ensures that the contents of the instruction cache
is updated along with memory. All instruction addresses must
fall on word boundaries.

When data is written using the imem option a DCBST and ICBI
instruction are executed at every memory address that is
written. This ensures that the data gets to physical memory
and that the instruction cache contents is correct.

Note: The sizes of the specified source and destination arguments must match:
32-bit reg-->32-bit reg, 32-btt reg -->address, 32-bit reg-->user-created var, 64-blt
reg--> 64-bit reg. If a 64-bit register is specified as the destination of the write,
immediate values can be used to write the register in two forms. If the value is
preceded by 'Ox' or 'OX', the hex data is copied bit for bit into the register (with
leading zeroes appended if necessary). If the value is not preceded by 'Ox' or
'OX', the value will be converted to floating point format, with valid scientific
notation also accepted: '1.23456e+oo2)'.

dmem

lmem reg
address

mem_var

create_ var

Write to a data memory address

Write to an instruction memory address

An optional parameter indicating a write to an architected
register in the chip

Specifies an immediate value which represents the memory
location to be written

Any memory variable created with the assign command

A created user-created variable that may be used as the
memory address to be written or as the value to be written

5-134 RISCWatch Debugger User's Guide

Examples

write

imm_var An assigned user-created variable specifying an immediate
value that may be used as as the memory address to be written
or as the value to be written

A valid processor register name to be read and/or written reg_ name

reg_ var An assigned user-created variable that may be used to specifiy a
processor register to be read and/or written

value An immediate value to be written to the specified memory
address or register

• Write OxDEADBEEF to the !AR register.

write reg IAR OxDEADBEEF

• Write Ox11112222 to GPRO.

write RO Ox11112222

• Write the contents of SRRO to R14.

write R14 SRRO

• Write OxDEADBEEF to address OxFFFFFFFO.

write dmem OxFFFFFFFO OxDEADBEEF

• Write an immediate hex value bit for bit into a 64-bit register:

write FPRO Oxl234567812345678

• Write an immediate value specified in scientific notation into a 64-bit register in
floating point format:

write FPRO 1.23456e+002

• Write the contents of GPR3 to memory at address OxFFFFOOOO.

write dmem OxFFFFOOOO R3

• Write the contents of the user-created variable var1 into memory at address
OxFFFFOOOO.

create varl ::.: OxDEADBEEF
write dmem OxFFFFOOOO varl

• Write the contents of the user-assigned variable mem_val to the address found
in the user-assigned memory variable mem_addr:

assign mem_addr = I 0xABCD1234 I
assign mem_val = OxDEADBEEF
write mern_addr mem_val

• Write the contents of the user-assigned variable. mem_val, to the address
found in the user-assigned register variable, mem_reg, which points to the RO
register.

Debugger Command Reference 5-135

write

See Also

5-136

assign mem_val OxDEADBEEF
assign mem._reg RO
set RO Oxl234ABCD
write m.em_reg mem_val

Note: Any of the write dmem examplas are also valid for write lmem, just
replace the word dmem in each example to lmem.

• read on page 5-96

RISCWatch Debugger Users Guide

write

5·137 RISCWatch Debugger User's Guide 5·138 RISCWatch Debugger User's Guide

Appendix A. Interfacing RISCWatch to a Target Board

This appendix describes the requirements for connecting RISCWatch to a
PowerPC processor on a target development board. For the list of PowerPC
processors that this version of RISCWatch supports, see "About This Book" on
page xxiii.

IEEE 1149.1 (JTAG) Port

For RISCWatch to interface to the JTAG port on a PowerPC processor, a 16-pin
male 2x8 header connector. shown in Figure A-1, must be available on the target
development board.

181 181 2

£81 181

181 £81

181 181

£81 £81

181 181

181 KEY

15 181 181 16

Figure A-1. JTAG Header Connector (top view)

Note that position 14 of the header connector on the target development board
should not contain a pin. The mating receptacle supplied wtth a RISCWatch JTAG
adapter cannot be installed ii pin 14 has not been removed from the header.

This header connects the RISCWatch JTAG hardware (Micro Channel adapter,
parallel port adapter, or processor probe) to the JTAG port of the PowerPC
processor on the target development board, using the electrical connections
described below. The header should be placed as close as possible to the
processor to insure signal integrity.

Table A-1 describes the connections for the PowerPC 400Series processors, and
Table A-2 provides information on the PowerPC 6xx connections.

Interfacing RISCWatch to a Target Board A-1 A-2

Table A-1. PowerPC 400Series JTAG Interface Connections and Resistors

Header Pin#

2

3

4

5

6
7

8

9

10

11

12

13
14

15
16

l/O

Out

In

In

In

In

Signal Name

TOO
No Connect

TOI
No Connect

No Connect

+POWER2

TCK

No Connect

TMS

No Connect

No Connect

No Connect

KEY
No Connect

GND

1 PU = pull up, PD = pulldown, SR = series
2The +POWER signal is sourced from the target devek>pment board and is used as a reference signal. tt

should be the power signal being supplied to the processor (either +3.3V or +5V). It does not supply power
to the RISCWatch hardware.

3rhis 1K ohm series resistor provtdes short circuit current limiting protection only. If the resistor is present, it
should be 1 Kohm or less.

RISCWatch Debugger User's Guide

Table A-2. PowerPC Bxx JTAG Interlace Connections and Resistors

2

3

4

5

6
7

8

9

10

uo

Out

In

In

In

In

Signal Name

TOO
No Connect

TOI
TOI

No Connect

+POWER3

TCK

No Connect

TMS

No Connect
>--~-1-1~~~~-ln~~S-R-E-SET

12 No Connect

13 In

14

15 Out

16

N/A In

HRESET

KEY

CKSTP_OUT

GND

L2_TEST_CLK

L1_TEST_CLK

LSSD_MODE

ARRAY_WR

1 Pin numbers for PQFP packages
2PU = pullup, PD = pulldown, SR = series

PowerPC Proces$0r Pfn1

602 603, 603e 604

28 198 248

25 200

10 189 236

9 214 265

216

3

142 235

21 203 254

22 204 255
23 205 256

271

10KOPU

tl<nPD

10KOPU

3The +POWER signal is sourced from the target development board and is used as a reference signal. It
should be the power signal being supplied to the processor (either +3.3V or +SV). It does not supply power
to the RISCWatch hardware.

4This 1 K ohm series resistor provides short circuit current limiting protection only. If the resistor is present, it
should be 1 K ohm or less.

51f the target development board does not use this signal, the board must have a 1 Kohm pu!Jdown resistor
connected to this pin. This signal allows the processor to enter the soft stop state.

The HRESET, SRESET, and TRST signals from the RISCWatch Processor
Interface Assembly connector must be logically ORed with the HRESET,
SRESET, and TRST signals that connect to the processor on the target

Interlacing RISCWatch to a Target Board A-3

development board. They cannot be "dotted" or "wire-ORed" on the board. In
addttion, the ORed signals should only reset the processor and no other devices
on the target board.

For further information concerning RISCWatch support for processor reset. see
"Processor Reset Window (JTAG Target Only)" on page 3-100.

RISCTrace Status Port (400Series JTAG Processor Probe Only)

A-4

A 20-pin male 2x1 O header connector is recommended for connecting to the
RISCTrece Status Port of a PowerPC 400Series processor. The connector outline,
shown in Figure A-2, and the signal descriptions in Table A-3 match the

1-x
181 181

Key Notch 181 181

181 181

181 181

181 181

181 181

l:!SI l:!SI

19 181 181 20

Figure A-2. RISCTrace Header (top view)

requirements of RISCTrace, when used wtth the RISCWatch processor probe wtth
RISCTrace option. The connector for RISCTrace should be placed as close as
possible to the processor to insure signal integrtty.

The seven Trace Status signals, TS0:6, are active-high outputs from the
PPC403GA and PPC403GC processors. These signals should be sampled on the
rising edge of the processor clock.

RISCWatch Debugger User's Guide

Table A-3 describes the assignment of signals TS0:6 and the system clock
(SysClk) output to the header pins:

Table A-3. RISCTrace Header Pin Description

Pin Number Signal Name Pin Number SlgnalName

1 No Connect 11 No Connect

2 No Connect 12 No Connect

3 SysClk 13 TSO

4 No Connect 14 TS1

5 No Connect 15 TS2

6 No Connect 16 TS3

7 No Connect 17 TS4

8 No Connect 18 TS5

9 No Connect 19 TS6
10 No Connect 20 GND

For additional information, see "Using RISCTrace (400Series JTAG Processor
Probe Only)" on page 4·2.

Target Monitor Debugging

In addttion to RISCWatch communicating directly to processor hardware via a
JTAG connection, RISCWatch can also communicate with target monitor software
included in both the IBM OS Open real-time operating system and the PowerPC
evaluation kit ROM monitor. This communication can use either a serial (SLIP) or
Ethernet (TCP/IP) connection.

Custom target monitors can also be created using the available Board Supper!
debug libraries supplied in the PowerPC evaluation kits. This provides the ability
to port the software debug capabilities of RISCWatch to custom board solutions.

For further information, consult the OS Open and evaluation kit documentation
listed in "Related IBM Publications" on page xxvi.

Interfacing RISCWatch to a Target Board A·S A-6 RISCWatch Debugger User's Guide

Index

Numerics
400Series features 3-30
403GC MMU 4-1

A
application notes

rwppc.anf file 3-6, 3-15
application programs

demos 2-2, 2-4, 2-7
file format 1-1
programming languages 1-1

ASCII Memory window 3-79
asmstep command 3-20, 5-1 O
Assembly Debug window 2-14, 3-20, 3-25, 3-

27. 3-43, 3-80
assembly stepping 3-30

fast (400Series) 3-30
assign command 5-11
assm command 5-13
attach command 3-17, 3-19, 3-24, 5-15

B
beep command 5-17
boot files 3-18
boot image files 3-18
bot command 5-18
bp command 3-41, 5-19
bpmode command 3-26, 3-27, 3-36, 5-23
Breakpoint Mode 3-26, 3-36, 3-40, 3-41, 3-42,

3-43
Breakpoint Select window 3-44
breakpoints

clearing 3-28, 3-43
hardware 3-27, 3-40, 3-41, 4-6
setting 3-27, 3-43
software 3-27, 3-40

Breakpoints window 2-6, 3-42
button definition file

rwppc.b1n file 3-93

c
cache coherency 3-77
Cache windows 3-83

Calculator window 3-107
Callers window 2-9, 3-33
callstep command 3-20, 5-25
capture command 3-106, 5-27
capture file

rwppc.cap file 3-106
Change Array Variable window 2-13, 3-68
Change Base Variable window 2-13, 3-69
Change Enum Variable window 3-71
Change Pointer Variable window 3-72
Change Struct!Union Variable window 2-12, 3-

75
Change Variable windows 3-67
Chip menu 2-2. 3-14, 3-15
command file programming 3-95
command files 3-1, 3-93

blank lines 3-94
comments 3-94
directory 3-6
execution 3-9, 3-99
parameter definition 3-97
parameter list 3-97
programming example 3-98
programming syntax 3-95
pseudo-variables 3-98
shell scripts 3-93
Single-Step window 3-99
special commands 3-94
special expressions 3-96
startup 3-93

command history usage 3-16
command history window 2-3, 3-11
command line usage 3-15
commands

asmstep 3-20, 5-1 O
assign 5-11
assm 5-13
attach 3-17, 3-19, 3-24, 5-15
beep 5-17
bot 5-18
bp 3-41, 5-19
bpmode 3-26, 3-27, 3-36, 5-23

Index X-1

callstep 3-20, 5-25
capture 3-106, 5-27
create 3-97, 5-29
delay5-31
detach 5-32
dis 5-33
down 5-35
edit 5-37
end5-38
event 5-39
exec 3-98, 3-99, 5-40
exit 5-41
expr 5-42
fctrl 5-44
file5-46
find 5-47
finde 5-50, 5-52
focus 5-53
told 5-54
!print 3-98, 5-55
freeze5-58
funcdisp 5-59
goto 5-61
halt 5-62
hidewins 5-63
hwcfg 5-64
ip5-65
jtagclk 5-64, 5-66
kill_thread 5-67
line 5-68
linestep 3-20, 5-69
load 3-6, 3-17, 3-18, 3-19, 3-24, 5-71
load image 3-19
log 5-74
logging 5-75
logoff 3-19, 5-77
memchk5-78
memcopy 5-79
memfill 5-80
memfind 5-81
memrwait 5-83, 5-84
mode5-85
pagedn 5-87
pageup5-88
parms 3-97, 5-89

X-2 RISCWatch Debugger User's Guide

print 3-98, 5-91
profile 3-108, 5-93
quit 5-95
read 5-97
record 5-98
reset 5-100
restart 3-17, 3-20, 3-24, 5-101
retstep 3-20, 5-102
run 3-20, 3-41, 5-103
save 5-105
set 3-98, 5-107
shellS-111
showip 5-112
socket 5-113
sourcemode 5-114
srcdisp 5-115
srchpath 3-34, 5-116
srcline 5-118
start_thread 3-17, 3-19, 3-24, 5-119
stop 5-120
stuff 5-122
timer5-124
topS-125
unload 5-126
up 5-127
varinfo 5-129
varvis 5-131
view 3-34, 5-132
write5-134

Compound Trigger!Trace window 4-9
conventions

highlighting xxv
input xxiv
numeric notation xxiv

create command 3-97, 5-29
cross-development environment 1-1
current directory

definition 5-116
Custom Memory window 3-81

D
data coherency 3-77
DCRs 3-85
debugger

loading files 3-17

debugger facillties 3-1
debugger quick reference 3-2, 4-1
default capture file 3-106
delay command 3-94, 5-31
demo programs 2-2, 2-4, 2-7
detach command 5-32
Device Control Registers 3-85
directory

current 5-116
dis command 5-33
down commend 5-35

E
edit command 5-37
end command 3-94, 5-38
environment resources 3-5

rwppc.env file 3-2, 3-5, 3-19, 3-103, 3-104
target name 3-5
target type 3-5

event command 5-39
exec command 3-98, 3-99, 5-40
executing the program 3-20
exit command 5-41
expr command 5-42

F
fctrl command 5-44
file command 5-46
file formats 1-1
File menu 3-14
file Syntax 3-88, 3-92
file syntax 3-7. 3-92

user-defined window 3-90
Files window 2-4, 3-34
find command 5-47
finde command 5-50, 5-52
Floating Point Registers 3-65
focus command 5.53
fold command 5-54
following program execution flow 3-20
forms

reader's comments xxi
user's comments xix

!print command 3-94, 3-98, 5-55
FPRs 3·85
freeze command 5-58

funcdisp command 5-59
Functions mode 3·34
Functions window 2-7, 3-34

G
General Purpose Registers 3-65
Globals window 3-63
goto command 5-61
GPRs3-85

H
halt command 5-62
Hardware menu 3-14
Help menu 3-14, 3-15
Help window 3-109
hidewins command 5-63
host systems

PC2-2
RS/60002-1
Sun2-1

how to use this book xxiv
hwcfg command 5-64

IEEE 1149.1 port A-1
input line usage 3-20
Instruction Address Register 3-30
instruction pointer 3-20, 3-26, 3-31
instruction, assembly 3-29
ip command 5-65

J
JT AG Ethernet target 3-5
JTAGportA-1
JTAG target 2-1, 2-2, 2-3, 2-10, 3-12, 3-14, 3-

15, 3·17, 3-26, 3-29, 3-76, 3-83
jtagclk command 5-64, 5-66

K
kilUhread command 5-67

L
line command 5-68
linestep command 3-20, 5-69
load command 2-1, 3-6, 3-17, 3-18, 3-19, 3-24,

5-71
load image command 3-19

Index X-3

loading files 3-17
Locals window 2·11, 3-61
log command 5-74
Log Comment window3-105
log files 3-103

creation 3-104
directory 3-104
disabling 3-104
user commenting 3-104, 3-105
viewing 3-105

logging command 3-104, 5-75
Logging Slate window 3-104
logoff command 3-19, s-n
M
Main window 3-11, 3-19, 3-20

command history 2-3, 3-11
command history usage 3-16
command line usage 3-15
message window 3-11, 3-16

managing breakpcints 3-40
memchk commend 5-78
memcopy command 5-79
memfill command 5-80
memfind command 5-81
memory

reading 3-76
wrlting3-76

Memory Access window 3-76
memory management unit

PPC403GC 4-1
memrwelt command 5-83, 5-84
menus3-12

Chip menu 2-2, 3-12, 3-14, 3-15
File menu 3-14
Hardware menu 3-14
Help menu 3-14, 3-15
Source menu 3-14
Utilities 3-103
Utilities menu 3-14, 3-15

message window 3-11
Mixed source/assembly mode 2-16, 3-24, 3-25,

3-26
mode command 5·65

X-4 RISCWatch Debugger User's Guide

0
online help 3-14, 3-15, 3-109
operating modes

batch (command file) 3-1
normal 3-1
remote debug 3-1
TTY 3-1, 3-10

OSOpen
ELF version 3-5

OS Open target 2·1, 2·2, 2·3, 3-12, 3-18, 3-19,
3-26, 3-29, 3-30, 3-36, 3-40, 4-8, 4-11

OS Open window 3-36

p
pagedn command 5-87
pageup command 5-88
perms command 3-94, 3-97, 5-89
PC host2-2
preparing the program for debug 3-16
print command 3-94, 3-98, 5-91
Processor Reset window 3-102
Processor Status window 4-14
processor/process status indicator 3-29
profile command 3-108, 5-93
Profiler window 3-108
program variables 3.45
programming languages 1-1
programming, command files 3-95
Programs window 3-31
pseudo-variables 3-98

Q
quit command 5-95

R
read command 5-97
reader's comments form xxi
reading and writing memory 3-76
reading and writing registers 3-85
reading the syntax diagrams xxv
record command 5-98
registers

Device Control 3-85
Floating Point 3-65
General Purpose 3-85
reading 3-65

Scratch 3-85
Segment 3-85
Special Purpose 3-85
wrlting3-85

related publications xxvi
reset command 5-100

Processor Reset window 3-102
restart command 3-17, 3-20, 3-24, 5-101
retstep command 3-20, 5-102
RISCWatch connector A-1
ROM Monitor 2-1, 3-5
ROM Monltortarget2-3, 2-10, 3-17, 3-19, 3-26,

3-29, 4-8, 4-11
RS/6000 host 2-1
run command 3-20. 3-41, 5-103
running a command file 3-99
rwppc.btn file 3-93
rwppc.cap file 3-106
rwppc.cmd file 3-93
rwppc.env file 3-2, 3-5, 3-19, 3-103, 3·104
rwppc.wdf file 3-91

s
sample user-defined window file 3-90
save command 5-105
Scratch registers 3-85
screen capture 3-106
Segment Registers 3-85
set command 3-98, 5-107
shell command 5-111
Shell Command window 3-106
shell scripts 3-93
showip command 5-112
socket command 5-113
Source menu 3-14
source mode 3-25
Source window 2-5, 3-20, 3-24

Mixed source/assembly mode 2-16, 3-24, 3-
25, 3-26

sourcemode command 5-114
Special Purpose Registers 3-85
SPRs 3-85
srcdisp command 5-115
srchpath command 3-34, 5-116
srcline command 5-118

SRs 3-85
start_thread command 3-17, 3-19, 3-24, 5-119
startup command file

rwppc.cmd file 3-93
stop command 5-120
stu:'f command 5-122
Sun host 2-1
syntax diagrams. how to read xxv

T
target board

RISCWatch connector A-1
target monitor debugging A-5
target name 3-5
target type 3-5

,JTAG 2-1. 2-2. 2-3, 2-10, 3-12, 3-14. 3-15, 3-
17, 3-26, 3-29, 3-76, 3-83

OS Open 2-1, 2-2, 2-3, 3-12, 3-18, 3-19, 3-
30, 3-36. 3-40, 4-8, 4-11

ROM Monitor 2-1, 2-3, 2-10, 3-17, 3-19, 4-8.
4-11

timer command 5-124
TLB window 4-12
top command 5-125
translation lookaside buffer 4-12
Triggerffrace window 4-6

u
unload command 5-126
up command 5-127
user's comments form xix
user-defined buttons 3-91

sample definttion file 3-93
sample definitions 3-92

using hardware breakpoints 3-41
using software breakpoints 3-40
Utilities menu 3-14, 3-15, 3-103

v
Variable Configuration window 2-11, 3-62, 3-64,

3-65
variables

program 3-45
user-created 3-45

varinfo command 5-129
varvis command 5-131

Index X-5

view command 3-34, 5-132

w
who should use this book xxiii
window descriptor file

rwppc. wdl 3-91
window layout 3-103
window list 3-103
windows

ASCII Memory 3-79
Assembly Debug 2-14, 3-20, 3-25, 3-27, 3-

43, 3-80
Breakpoint Select 3-44
Breakpoints 2-6. 3-42
Cache 3-83
Calculator 3-107
Callers 2-9, 3-33
Change Array Variable 2-13, 3-68
Change Base Variable 2-13, 3-69
Change Enum Variable 3-71
Change Pointer Variable 3-72
Change Struct/Union Variable 2-12, 3-75
Command File Single-Step 3-99
Compound Triggerffrace 4-9
Custom Memory 3-81
Files 2-4, 3-34
Functions 2-7, 3-34
Globals 3-63
Help 3-109
Locals 2-11, 3-61
Log Comment 3-105
Logging State 3-104
Main 3-11, 3-19, 3-20
Memory Access 3-76
OS Open 3-36
Processor Reset 3-102
Processor Status 4-14
Profiler 3-108
Programs 3-31
sample user-defined 3-90
Shell Command 3-106
Source 2-5, 3-20, 3-24
TLB 4-12
Triggerffrace 4-6
Variable Configuration 2-11, 3-62, 3-64, 3-65

X-6 RISCWalch Debugger User's Guide

window layout 3-103
Window List 3-103

write command 5-134

