
Phoenix

...
Addison
Wesley

51805

cf7~chnical Reference Series

ABIOSfor
IBM® PSJ2®

Computers and
Compatibles

The Complete Guide to
ROM-Based System Software for OS/2®

Phoenix Technologies Ltd.

t:f ~echnical Reference Series

..

ABIOSfor
IBM® PS/2®

Computers and
Compatibles

The Complete
Guide to

ROM-based
System

Software
for OS/2

Phoenix Technologies Ltd .

Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by. manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial capital letters.

Limitation of Liability
While every reasonable precaution has been taken in the preparation of this book, the author
and the publishers assume no responsibility for errors or omissions, or for the uses made of
the material contained herein or the decisions based on such use. No warranties are made,
express or implied, with regard to· the contents of this work, its merchantability,
or fitness for a particular purpose. Neither the author nor the publishers shall be liable
for direct, special, incidental, or consequential damages arising out of the use or inability to
use the contents of this book.

Library of Congress Cataloging-in-Publication Data

ABIOS for IBM PS/2 computers and compatibles : the complete guide to
ROM-based system software for OS/2 I Phoenix Technologies, Ltd.

p. cm. •• (The Phoenix technical reference series)
Includes index.
ISBN 0-201-51805-8
1. IBM Personal System/2 (Computer system) 2. Systems software.

3. Read-only storage. 4. Computer input-output equipment.
I. Phoenix Technologies, Ltd. II. Title: ABIOS: Ill. Series.
QA76.8.125963A25 1989 005.4'469-·dc 89-6449

Copyright © 1989, 1988, 1987 by Phoenix Technologies Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America. Published simultaneously in Canada.

Cover design by Hannus Design Associates
Text design by Phoenix Technologies Ltd.
Set in 10-point Modern by Phoenix Technologies Ltd.

ABCDEFGH IJ-AL-89
First printing, June, 1989

Trademarks

This manual acknowledges the following trademarks:

Ashton-Tate and Framework are registered trademarks of Ashton-Tate
Corporation.

AST is a registered trademark of AST Research, Inc.

AT, IBM, Personal Systems/2, PS/2 and PC/ AT are registered trademarks of
the International Business Machines Corporation. PC-DOS, PC/XT, VGA,
CGA, MCA, EGA, MDA, OS/2 and Micro Channel are trademarks of the
International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

1-2-3, Lotus, and Symphony are registered trademarks of Lotus Develop
ment Corp.

Motorola is a registered trademark of Motorola Semiconductor Products, Inc.

MS, MS-DOS, and Microsoft are registered trademarks of the Microsoft
Corporation.

NEC and Multi sync are registered trademarks of Nippon Electric Corporation.

Quad ram is a registered trademark of Quad ram Corporation.

To Eric Enge, Stan Lyness, Paula Bishop, and the rest of the Phoenix
Technologies Ltd. BIOS Engineering Department. Their tireless efforts
have defined compatibility for the PC industry.

Table of Contents

About This Book

About This Book ... xvii

Acronyms and Abbreviations

Acronyms and Abbreviations . xxi

Chapter 1 - The ABIOS

Overview ... -· 1
ABIOS Device Support . 4
The ABIOS Processing Model . 5
ABIOS Data Structures . 10
ABIOS Initialization Facts . 12
Request Block Initialization . 15
Transfer Conventions . 17
ABIOS and Program Access . 19
Accessing ABIOS via ABIOSCommonEntry . 20
Accessing ABIOS via ABIOSCall . 23
Return Code Handling . 24
ABIOS Extensions . 26
Where to Find More Information . 28

Chapter 2 - Hardware Environment

Overview . 29
80286/80386/80386SX Microprocessors . 31
Math Coprocessors . 32
Micro Channel • . 33
1/0 Devices: Introduction .. 35
1/0 Devices: Diskette and Disk Hardware . 35
1/0 Devices: Video Hardware ... 36
1/0 Devices: Keyboard Hardware 38
1/0 Devices: Parallel Port Hardware . 39

continued

ABIOS for IBM PS/2 Computers and Compatibles vii

Chapter 2 - Hardware Environment, Continued

110 Devices: Serial Port Hardware 40
System Time-Related Devices: Introduction 42
System Time-Related Devices: 82284 Clock Generator 42
System Time-Related Devices: 8254A PIT Chip 43
System Time-Related Devices: MC146818A RTC Chip 45
CMOS RAM Service .. 46
DMA Controller . 4 7
Programmable Option Select (POS) . 55
Intel 8259A Programmable Interrupt Controllers . 56
System Control Port Definitions . 58
Power-On Password . 60
NMI Mask ... 60
Hardware 1/0 Port List ; 61

Chapter 3 - ABIOS Data Structures

Overview . 81
Common Data Area . 84
Function Transfer Table . 87
Device Block . 89
Related Information . 94

Chapter 4 - ABIOS Initialization

Overview . 95
Step 1 : Build the System Parameters Table . 98
Step 2: Build ABIOS Initialization Table 100
Step 3: Build the Common Data Area . 103
Step 4: Initialize Device Blocks and Function Transfer Tables 106
Step 5: Build Protected Mode Tables 110
Initializing Logical ID 2: ABIOS Internal Calls . 113
How ABIOS Supports Multiple Instances of a Device . 115
Related Information . 117

continued

viii ABIOS for IBM PS/2 Computers and Compatibles

Chapter 5 - Request Block Structure

Overview . 119
Request Block Parameters .. 121
Request Block Structure . 122
Related Information . 125

Chapter 6 - Calling ABIOS

Overview . 127
ABIOS Processing Model . 1 28
Request Block Initialization . 132
A Generalized Look at Control Transfer . 134
ABIOS Transfer Convention . 136
Operating System Transfer Convention 137
Return Code Handling . 139
Hardware Interrupt Handlers . 142
Default Interrupt Handler . 14 7
Time-Out Handlers . 149
ABIOS and Program Access .. 151
Accessing ABIOS via ABIOSCommonEntry . 152
Accessing ABIOS via ABIOSCall . 155

Chapter 7 - ABIOS Extensions

Overview . 15 7
Recommendations for Extending ABIOS . 162
Requirement 1 : Create Proper Extension Header . 1 68
Requirement 2: Build Initialization Table Entry Routine 171
Requirement 3: Routine to Build Device Blocks and FTT 1 73
Requirement 4: ABIOS Service Code . 1 76
Initialization: ABIOS ROM Extensions 176
Initialization: ABIOS RAM Extensions 178
Examples of How to Modify an Existing Service . 180
Example 1: Non-Intrusive Interception 181
Example 2: Redirection of a Nonstaged Function 184
Example 3: Redirection of a Staged Function 186

continued

ABIOS for IBM PS/2 Computers and Compatibles ix

Chapter 8 - ABIOS Diskette Service

Overview . 189
Hardware Environment . 193
Error Handling . 195
Function: OOh - Default Interrupt Handler . 196
Function: 01 h - Return Logical ID Parameters 197
Function: 03h - Read Device Parameters 199
Function: 04h - Set Device Parameters . 202
Function: 05h - Reset/Initialize Diskette Subsystem 203
Function: 07h - Disable Diskette . 206
Function: 08h - Read Diskette . 208
Function: 09h - Write to Diskette 211
Function: OAh - Format Diskette . 214
Function: OBh - Verify Diskette Sectors 218
Function: OCh - Read Media Parameters 221
Function: ODh - Set Media Type for Format . 223
Function: OEh - Read Change Line Signal Status . 226
Function: OFh - Turn Diskette Motor Off . 228
Function: 1 Oh - Interrupt Status . 229

Chapter 9 - ABIOS Fixed Disk Service

Overview . 231
Hardware Environment . 235
Fixed Disk Service Parameters Table 236
Error Handling . 238
Function: OOh - Default Interrupt Handler . 239
Function: 01 h - Return Logical ID Parameters 240
Function: 03h - Read Device Parameters . 242
Function: 05h - Reset/Initialize Fixed Disk 244
Function: 08h - Read Fixed Disk . 249
Function: 09h - Write to Fixed Disk 251
Function: OAh - Write and Verify Fixed Disk 253

Chapter 1 O - ABIOS Keyboard Service

Overview . 259
Hardware Environment ... 261

continued

x ABIOS for IBM PS/2 Computers and Compatibles

Chapter 10 - ABIOS Keyboard Service, Continued

101-Key Keyboard Layout .. 262
Scan Codes . 263
System Scan Codes . 264
Error Handling .. 268
Function: OOh - Default Interrupt Handler 269
Function: 01 h - Return Logical ID Parameters 270
Function 03h - Read Keyboard ID Bytes 272
Function: 05h - Reset/Initialize Keyboard 274
Function: 06h - Enable Keyboard 276
Function: 07h - Disable Keyboard 278
Function: 08h - Continuous Keyboard Read 280
Function: OBh - Read Keyboard LED Status . 282
Function: OCh - Set Keyboard LED Status . 284
Function: ODh - Set Typematic Rate and Delay . 286
Function OEh - Read Keyboard Scan Code Mode 289
Function 1 Oh - Write Command (s) to Keyboard Controller 295
Function 11 h - Write Command(s) and Data to Keyboard 300

Chapter 11 - ABIOS Video Service

Overview . 305
Hardware Environment . 307
Video Modes . 309
Mode/Monitor Support ... 311
ROM-Resident Fonts . 313
Error Handling .. 315
Function: OOh - Default Interrupt Handler . 316
Function: 01 h - Return Logical ID Parameters , 317
Function: 03h - Read Device Parameters . 319
Function: 05h - Set Video Mode 324
Function: OBh - Return ROM Fonts Information . 331
Function: OCh - Save Video Environment 333
Function: ODh - Restore Video Environment 335
Function: OEh - Select Character Generator Block 337
Function: OFh - Load Text Mode Font 339
Function: 1 Oh - Enhanced Load Text Mode Font 342
Function: 11 h :- Read Palette Register . 345
Function: 12h - Write Palette Register 347

continued

ABIOS for IBM PS/2 Computers and Compatibles xi

Chapter 11 - ABIOS Video Service, Continued

Function: 13h - Read DAC Color Register 349
Funct'ion: 14h - Write DAC Color Register 351
Function: 15h - Read Block of Color Registers 354
Function: 16h - Write Block of DAC Color Registers 356

Chapter 12 - ABIOS Serial Communications Service

Overview . 359
Hardware Environment ... 361
Error Handling . 363
Function: OOh - Default Interrupt Handler . 364
Function: 01 h - Return Logical ID Parameters 365
Function: 03h - Read Device Parameters 367
Function: 05h - Reset/Initialize Serial Port 370
Function: OBh - Set Modem Control 374
Function: OCh - Set Line Control 375
Function: ODh - Set Baud Rate 378
Function: OEh - Transmit .. 379
Function: OFh - Receive ... 389
Function: 10h - Transmit and Receive 399
Function: 11 h - Modem Status 404
Function: 12h - Cancel .. 407
Function: 13h - Return Line Status . 409
Function: 14h - Return Modem Status 410
Function: 15h - Enable FIFO Control . 412

Chapter 13 - ABIOS Parallel Port Service

Overview . 415
Hardware Environment . 417
Error Handling . 418
Function: OOh - Default Interrupt Handler 419
Function: 01h - Return Logical ID Parameters 420
Function: 03h - Read Device Parameters 421
Function: 04h - Set Device Parameters 423
Function: 05h - Reset/Initialize Parallel Port . 425
Function: 09h - Print Block ... 427

continued

xii ABIOS for IBM PS/2 Computers and Compatibles

Chapter 13 - ABIOS Parallel Port Service, Continued

Function: OBh - Cancel Print Block . 430
Function: OCh - Return Printer Status 432

Chapter 14 - ABIOS System Timer Service

Overview . 435
Hardware Environment ... 436
Error Handling ... 437
Function: OOh - Default Interrupt Handler . 438
Function: 01 h - Return Logical ID Parameters 439

Chapter 15 - ABIOS Real Time Clock Service

Overview . 441
Hardware Environment . 443
Real Time Clock Data . 444
Error Handling . 445
Function: OOh - Default Interrupt Handler 446
Function: 01 h - Return Logical ID Parameters . 44 7
Function: 03h - Read Device Parameters 449
Function: 04h - Set Device Parameters 452
Function: OBh - Set Alarm Interrupt 454
Function: OCh - Cancel Alarm Interrupt 457
Function: ODh - Set Periodic Interrupt 458
Function: OEh - Cancel Periodic Interrupt 461
Function: OFh - Set Update-Ended Interrupt 462
Function: 10h - Cancel Update-Ended Interrupt 464
Function: 11 h - Read Time and Date 465
Function: 12h - Write Time and Date 466

Chapter 16 - ABIOS System Services

Overview . 469
Error Handling . 4 70
Function: 01h - Return Logical ID Parameters 471
Function: 03h - Read System Configuration 473

continued

ABIOS for IBM PS/2 Computers and Compatibles xiii

Chapter 16 - ABIOS System Services, Continued

Function: OBh - Switch to Real Mode 475
Function: OCh - Switch to Protected Mode 478
Function: ODh - Enable Address Line 20 481
Function: OEh - Disable Address Line 20 482
Function: OFh - Enable Speaker 483

Chapter 17 - ABIOS Nonmaskable Interrupt (NMI) Service

Overview . 485
Error Handling . 487
Function: 01h - Return Logical ID Parameters 488
Function: 06h - Enable NMI .. 490
Function: 07h - Disable NMI . 491
Function: 08h - NMI Continuous Read 492

Chapter 18 - ABIOS Pointing Device Service

Overview . 495
Hardware Environment . 497
Error Handling . 497
Function: OOh - Default Interrupt Handler 498
Function: 01 h - Return Logical ID Parameters -, 499
Function: 03h - Read Device Parameters . 500
Function: 05h - Reset/Initialize Pointing Device . 503
Function: 06h - Enable Pointing Device 505
Function: 07h - Disable Pointing Device . 507
Function: 08h - Pointing Device Continuous Read 509
Function: OBh - Set Sample Rate 512
Function: OCh - Set Resolution 514
Function: ODh - Set Scaling Factor 516
Function: OEh - Read Pointing Device Identification Code 519

Chapter 19 - ABIOS CMOS RAM Service

Overview . . • . • . 523
Hardware Environment . 524

continued

xiv ABIOS for IBM PS/2 Computers and Compatibles

Chapter 19 - ABIOS CMOS RAM Service, Continued

CMOS RAM Data · : . . . 525
Extended CMOS RAM Data . 528
Error Handling•... ·. 532
Function: 01 h - Return Logical ID Parameters 533
Function: 03h - Read Device Parameters . 534
Function: 08h - Read CMOS RAM . 536
Function: 09h - Write to CMOS RAM 538
Function: OBh - Recompute Checksum · 540

Chapter 20 - ABIOS Direct Memor.y Access (OMA) Service

Overview . 543
Hardware Environment . 545
Error Handling . 552
Function: 01 h - Return Logical ID Parameters . 553
Function: 03h - Read Device Parameters 555
Function: OBh - Allocate Arbitration Level 556
Function: OCh - Deallocate Arbitration Level 558
Function: ODh - Disable Arbitration Level 559
Function: OEh - OMA Transfer Status 560
Function: OFh - Abort OMA Operation 561
Function: 1 Oh - DMA Transfer from Memory to 1/0 . 563
Function: 11 h - Read from 1/0 and Write to Memory 565
Function: 12h - Load OMA Controller Parameters . 567

Chapter 21 - ABIOS Programmable Option Select Service

Overview . 569
Hardware Environment ... 571
Error Handling .. 573
Function: 01 h - Return Logical ID Parameters 574
Function: OBh - Read Stored POS Data from CMOS RAM 575
Function: OCh - Write Stored POS Data from CMOS RAM 577
Function: ODh - Read POS Data from an Adapter 579
Function: OEh - Write Dynamic POS Data from an Adapter 581

continued

ABIOS for IBM PS/2 Computers and Compatibles xv

Chapter 22 - ABIOS Keyboard Security Service

Overview . 583
Hardware Environment . 585
System Scan Codes . 586
Error Handling .. 589
Function: 01 h - Return Logical ID Parameters 590
Function: 03h - Read Device Parameters 592
Function: 06h - Enable Keyboard Security 593
Function: OBh - Write Password . 595
Function: OCh - Write Invocation Byte 597
Function: ODh - Write Match Byte 599
Function: OEh - Write Filter Byte 1 601
Function: OFh - Write Filter Byte 2 . 603

Chapter 23 - ABIOS Error Log Service

Overview . 605
Extended CMOS RAM . 607
Error Handling .. 609
Function: 01 h - Return Logical ID Parameters 610
Function: 08h - Read Error Log 612
Function: 09h - Write to Error Log 614

Appendix A - ABIOS Return Codes 617

Glossary ... 627

Additional Resources . 639

Index ... 641

xvi ABIOS for IBM PS/2 Computers and Compatibles

About This Book

What this book is about

AB/OS for IBM PS/2 Computers and Compatibles is a detailed technical
reference that describes the ABIOS, the portion of the PS/2 ROM BIOS de
signed to support multitasking operating systems such as OS/2. The informa
tion provided in this book is applicable to all Micro Channel Architecture
based IBM PS/2 and compatible computers.

Who should read this book

This book can be used by anyone interested in learning more about PS/2 or
compatible computers.

Programmers who wish to make direct calls to the ABIOS will find complete
instructions for accessing the ABIOS via any version of OS/2 (e.g. IBM OS/2)
that supports DevHlp services ABIOSCommonEntry and ABIOSCall.

Programmers writing device drivers for new peripheral devices will find the
general information on ABIOS services helpful. They will also find,. in the
chapter on ABIOS extensions, a complete description of how ABIOS services
can be added, replaced, or modified.

Implementers of operating systems and other multitasking system software
and systems programmers will find all the information they need on ABIOS/
operating system interfaces.

ABIOS for IBM PS/2 Computers and Compatlbles xvii

What we assume you know

This book assumes a basic knowledge of 80x86 assembly language program
ming concepts, PC architecture, and operating system concepts. If you are
new to these subjects, use this book along with some of the excellent intro
ductory books listed at the end of this book.

'

How to find information

Chapters 1-7 of AB/OS for IBM PS/2 Computers and Compatibles provide a.
general introduction to ABIOS concepts and describe how to use ABIOS
services. Chapters 8-23 describe the individual ABIOS services and serve as
a technical reference. The Appendix provides a comprehensive list of poten
tial error messages and Return Codes. Most readers will want to read chap
ters 1-7 first to get a basic grasp of the ABIOS features before turning to
the individual service descriptions.

Each service-specific chapter (8-23) is organized in a similar fashion. There
is a description of the service and its hardware environment, a discussion on
how errors are handled, and complete descriptions of each service function.
The function descriptions include a description of what the function does, a
graphic outline of the required Request Block structure and a list of Return
Codes.

Other volumes in this series

AB/OS for IBM PS/2 Computers and Compatibles is one of several volumes
about BIOS software in the Phoenix Technical Reference Series published by
Addison-Wesley. Other volumes are:

CB/OS for IBM PS/2 Computers and Compatibles - a complete
technical reference describing the portion of a PS/2 BIOS designed
to support single-tasking operating systems such as MS-DOS.

System BIOS for IBM PCIXTIAT Computers and Compatibles - a
complete technical reference for the BIOS in all standard architec
ture computers.

The BIOS volumes of the Phoenix Technical Reference Series provide the
most comprehensive source of information about IBM and compatible system
BIOSs available today. Each volume lists complete 110 port addresses, CMOS
RAM, and BIOS data definitions. Every function is described in detail, and
complete lists of error messages are provided.

The volumes of this series are a natural companion for anyone who owns
and programs an IBM PC, XT, AT, or PS/2 model, or any compatible
system.

xviii ABIOS for IBM PS/2 Computers and Compatibles

No writing project as large as this can be completed without significant
contributions from many individuals. We would like to acknowledge the
Phoenix employees whose time and effort helped make this book possible.

First and foremost, we gratefully acknowledge the vision and technical skill of
Neil Colvin, founder, CEO, and Chief Scientist of Phoenix Technologies Ltd.
We also gratefully acknowledge the expert guidance of Lance Hansche,
President of Phoenix Technologies Ltd. Without Neil and Lance's leadership,
Phoenix would not be in the position of technological preeminence it now
enjoys.

In the marketing area, Phoenix Vice President Rich Levandov's foresight and
support made this book possible. And Product Marketing Manager Henry
Suwinsky's tactful and dauntless guidance shepherded this project through all
phases of its existence.

On the technical side, we acknowledge the Phoenix engineers who developed
the Phoenix PS/2 BIOS. Eric Enge, Director of PC Product Engineering, Paula
Bishop, and Stan Lyness have been endlessly p~tient with us and tireless in
their efforts to ensure quality PS/2-compatible BIOS products and documen
tation. We also must acknowledge the efforts expended by other Phoenix
engineers, including Bruce Cairns, Paul Chicoine, Greg Honsa, Suzanne
Laferriere, Malcolm Pordes, Debbie Schultz, and Trevor Western.

In the production of this volume, many people contributed significantly. Chief
among these were Kathy Schiff, Manager of Technical Communications, who
provided editorial guidance and direction. Writers Marianne Adams and
Dr. George Elliott Tucker contributed critical and essential writing, editing,
and production assistance. And last but not least, a special thanks goes to
Sandie Zierak, Chief Production Coordinator, for her invaluable contributions
in the fields of graphics, document design, and document production.

The Authors

Mike Boston
Paul Narushoff

Phoenix Technologies Ltd.
Norwood, MA
March, 1989

ABIOS for IBM PS/2 Computers and Compatibles xix

Acronyms and Abbreviations

The following abbreviations and acronyms are used in this manual:

ASCII

ASIC

b

BCD

BIOS

bps

CDA

CGA

CRC

CMOS

DB

OMA

DSR

ECC

EGA

EOI

ESDI

FTT
h

INT

1/0

IRQ

ISR

K

Kbs

LID

LSB

LSI

M, MB

MDA

MFM

MHz

American Standard Code for Information Interchange

Application-Specific Integrated Circuit

Binary

Binary coded decimal

Basic input/output system

Bits per second

Common data area

Color graphics adapter

Cyclic redundancy check

Complementary metal oxide semiconductor

Device Block

Direct memory access

Device service routine

Error checking and correction

Enhanced graphics adapter

End of interrupt

Enhanced small device interface

Function transfer table

Hexadecimal

Interrupt

Input/Output

Interrupt request line

Interrupt service routine

Kilobytes

Kilobits per second

Logical ID

Least significant byte

Large scale integration

Megabytes

Monochrome Display Adapter

Modified frequency modulation

Megahertz

ABIOS for IBM PS/2 Computers and Compatibles

continued

xxi

Acronyms and Abbreviations, Continued

MSB Most significant byte
NMI Nonmaskable interrupt

OS/2 Operating System/2

PGA Professional graphics adapter

POS Programmable Option Select

POST Power-on self test

PTL Phoenix Technologies Ltd.

RAM Random access memory

RB Request block
RLL Run length limited

ROM Read-only memory

RTC Real time clock

VGA Video graphics array
VLSI Very large scale integration

xxil ABIOS for IBM PS/2 Computers and Compatibles

Overview

What is the PS/2 BIOS?

Chapter 1

The ABIOS

The ROM BIOS contained in Micro Channel Architecture-based IBM PS/2 and
compatible computers performs the same function that all basic input/
output systems do: it isolates the operating system from direct manipulation
of hardware registers, timings, and attachments.

When compared with the ROM BIOS contained in IBM PC XT/AT and compat
ible computers, however, the PS/2 ROM BIOS has one critical difference - it
is designed to support two kinds of operating systems. As such, the PS/2
ROM BIOS is divided into two discrete parts: the ABIOS and the CBIOS.

The CBIOS

The CBIOS part of the PS/2 ROM BIOS provides IBM PS/2 and compatible
computers backward compatibility with single-tasking, Intel 80x86 real ad
dress mode operating systems such as PC-DOS or MS-DOS. As a result,
the CBIOS consists of a superset of the services and functions available in
the IBM PC/XT/AT ROM BIOS, and it interfaces with the operating system in
the same well understood way.

continued

The ABIOS 1

Overview, Continued

The ABIOS

The ABIOS part of the PS/2 ROM BIOS provides IBM PS/2 and compatible
computers with forward compatibility with multitasking, bimodal (real mode,
protected mode, or both) operating systems, such as IBM OS/2. The ABIOS
supports the same hardware devices as the CBIOS, but its interface and
data structures are specifically constructed to facilitate the multitasking,
bimodal nature of its design.

Program accessibility

The program accessibility of any ROM BIOS depends on the architecture of
the operating system interfaced with the BIOS.

• ABIOS Accessibility
Starting with IBM OS/2 Version 1 . 1 , programs have full access to the
ABIOS through the operating system via the two IBM OS/2 DevHlp serv
ices: ABIOSCommonEntry and ABIOSCall. ABIOS accessibility for versions
of OS/2 other than IBM's varies from vendor to vendor. Programmers who
are not using IBM OS/2 should refer to their OS/2 documentation to deter
mine if their version of OS/2 supports program access to the ABIOS.

• CBIOS Accessibility

Under the totally open architecture of PC-DOS or MS-DOS, application
programs interface directly with the CBIOS. In fact, many MS-DOS appli
cation programs attempt to improve performance by bypassing MS-DOS
system services in favor of the more direct CBIOS services.

Scope of this document

2

This book describes the ABIOS component of the PS/2 BIOS. The information
is 100 percent applicable to both the IBM and the Phoenix Technologies Ltd.
versions of ABIOS.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

In this chapter

This chapter outlines the major concepts and design features of the ABIOS.
The following topics are discussed:

• ABIOS Device Support

• The ABIOS Processing Model

• ABIOS Data Structures

• ABIOS Initialization Facts

• Request Block Initialization
• Transfer Conventions

• ABIOS and End User Access

• Accessing ABIOS via ABIOSCommonEntry

• Accessing ABIOS via ABIOSCall

• Return Code Handling

• ABIOS Extensions

• Where to Find More Information

For more information on the CBIOS

For a complete treatment of the CBIOS, see CB/OS for IBM PS/2 Computers
and Compatibles in this series.

The ABIOS 3

ABIOS Device Support

Introduction

The ABIOS occupies 64K of the 128K PS/2 BIOS. The ABIOS supports 16
kinds of physical devices. There is one ABIOS device service for each
physical device.

ABIOS supported devices

The table below lists the physical devices supported by the ABIOS and the
ABIOS device IDs assigned to them.

Device ID Device Type/Service Device ID Device Type/Service

OOh ABIOS Internal Calls OBh Pointing Device
01h Diskette OCh Reserved
02h Fixed Disk ODh Reserved
03h Video OEh CMOS RAM
04h Keyboard OFh Direct Memory Access
05h Parallel Port 10h Programmable Option Select
06h Serial Port 11h Error Log
07h System Timer 12h-15h Reserved
08h Real Time Clock Timer 16h Keyboard Security
09h System Services 17h-FFFFh Reserved
OAh Nonmaskable Interrupt &W~'M"' . '' . ~et£1£.z<:;]U{'®jf:Mtfiltfillill$1r$@ ::.:::~· ~"·*m .. -m~"'· '*'·=" ·· .:::t::l ... ·~ -=::~;o··: ;oklJ~:-:-:··l .. -«*. ·:~-.: ..

Standard ABIOS functions

4

Functions numbered 00h-09h are standard functions across all ABIOS serv
ices. Functions 1 Oh-xxh are tailored to the device being serviced.

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Par.ameters

04h Set Device Parameters

05h Reset/Initialize

06h Enable

07h Disable

08h Read

09h Write

ABIOS for IBM PS/2 Computers and Compatibles

The ABIOS Processing Model

Introduction

In a traditional PC-based ROM BIOS (such as the CBIOS), all functions are
processed on the single-staged, call/process/return model. Once a function
is invoked, the CPU is prevented from turning to other work until the function
completes and returns. If the function called must interface with slower
external hardware, the BIOS initiates a Wait and suspends CPU processing
until the hardware interrupt occurs. The resulting amount of idle CPU time
can be considerable.

Single-staged processing/single-tasking operating systems

Although this single-staged call/return method is somewhat inefficient, the
fact that the BIOS is interfaced with a single-tasking operating system mini
mizes the method's impact on system throughput. A BIOS that processes
functions exclusively on the single-staged model is therefore best suited for
single-tasking operating systems.

Multistaged processing/multitasking operating systems

For a multitasking operating system to be interfaced with a BIOS, issues
surrounding system throughput have to be handled more carefully than they
are with a single-tasking operating system. The CPU must be free to pro
cess other tasks while a BIOS function is waiting for a hardware interrupt to
occur. In order to do this, the BIOS must process functions in a way that
minimizes BIOS control of CPU time. This is accomplished by processing
function calls in multiple stages.

Where the ABIOS fits in

The ABIOS is written specifically for multitasking operating systems. As such,
the ABIOS interface and the methods ABIOS employs to process function
calls are specifically designed to minimize ABIOS control of processor time.

continued

The ABIOS 5

The ABIOS Processing Model, Continued

Processing models

The ABIOS and CBIOS methods of processing function calls are contrasted
below:

ABIOS

Start Complete

SINGLE-STAGED FUNCTION
When processing single-staged functions,
the ABIOS performs input/output Immedi
ately and returns to the operating system.
ABIOS requests that can be completed with
a minimum of processor time are executed
in this way.

Start Stage Stage Complete

DISCRETE MULTISTAGED FUNCTION
ABIOS functions that require a greater
amount of processor time are processed In
multiple stages.

In discrete multlstaged functions, the caller
initiates Input/output and returns to the op
erating system, moving from stage to stage
until the function call Is complete. Discrete
multlstaged functions are driven from stage
to stage by an Interrupt from the device
being serviced or by the expiration of a
function-requested time period.

CONTINUOUS MULTISTAGED FUNCTION
When processing continuous multlstaged
functions, ABIOS Initiates input/output and
returns to the operating system. Continu
ous multlstaged functions can be consid
ered "standing requests" In that they never
reach a completion point. Like discrete
multi staged functions, they are driven from
stage to stage by a hardware Interrupt at
the expiration of a function-requested time
period.

6

CBIOS

Start Complete

SINGLE-STAGED FUNCTION
The CBIOS processes all function calls on
the single-staged call/process/return mod
el. Once a CBIOS function Is Invoked, the
processor Is prevented from turning to
other work until the function completes and
returns.

DISCRETE MULTISTAGED FUNCTION

NOT SUPPORTED

CONTINUOUS MULTISTAGED FUNCTION

NOT SUPPORTED

continued

ABIOS for IBM PS/2 Computers and Compatibles

The ABIOS Processing Model, Continued

What drives multistaged functions

Multistaged functions are driven from stage to stage by either:

• hardware interrupt or

• elapse of a function requested period of time.

Some multistaged functions are driven purely by hardware interrupt. Others
are driven purely by time period. Others still are driven by some combination
of both hardware interrupt and time period.

Interrupt driven stages

Each interrupt-driven ABIOS service is associated with one hardware interrupt
level. The ABIOS assumes that all hardware interrupt handlers are under the
control of the operating system.

When a hardware interrupt occurs, the operating system must call the func
tion associated with the interrupt so that the interrupting condition can be
serviced. The ABIOS resets the interrupting condition at the hardware level.
The operating system's hardware interrupt handler must perform end-of-
interrupt processing at the interrupt controller level.

A service can have more than one active function request. When this hap
pens, the hardware interrupt handler calls each function until the ABIOS
replies that the hardware interrupt has been serviced.

Time period driven stages

Some ABIOS functions are driven from stage to stage by the elapse of a
function-requested period of time. The ABIOS assumes that time-period
stage handlers are under the control of the operating system. When the time
period requested by the function expires, the operating system's time period
handler must call the given ABIOS function.

continued

The ABIOS 7

The ABIOS Processing Model, Continued

Hardware interrupt stages and hardware time-out

All hardware interrupt driven stages of a function indicate a maximum time
(in seconds) to wait for the hardware interrupt. The ABIOS assumes that all
hardware time-out handlers are under the control of the operating system.
Should the hardware time-out period associated with a given interrupt driven
function elapse, the operating system must call the ABIOS to terminate the
function and reset the hardware.

Hardware time-out vs. time period stages

8

The terminology surrounding time-period driven stages and hardware time
out handling is similar. However, it is important· not to confuse the process
ing associated with the hardware time-out handling and time-period stage
handling.

Hardware time-out handling is associated exclusively with those stages of a
multistaged function that are driven by hardware interrupt and is designed to
handle function termination cleanly. Execution of a time-out handling routine
is symptomatic of a hardware error.

Time-period handling is associated with those stages of a multistaged func
tion that are driven by time periods. Execution of a time-period handling
routine indicates the elapse of a function-requested time delay and should
not be associated with a hardware error.

continued

ABIOS for IBM PS/2 Computers and Compatibles

The ABIOS Processing Model, Continued

How handlers call ABIOS functions: ABIOS Entry Routines

Although we have mentioned that the various handlers under the control of
the operating system must call ABIOS functions, we have not mentioned how
this is done: Each ABIOS Service is associated with a set of function entry
routines. There are three kinds of entry routines:

• Start Routine
The start routine associated with a service is called when a function is first
started.

• Interrupt Routine

The Interrupt Routine associated with a service is called when the function
interrupts or when a time period driven function requires servicing.

• Time-out Routine

The Time-out Routine associated with a service is called when a interrupt
driven function suffers a hardware time-out.

To reduce caller overhead, the ABIOS also contains a set of Common Entry
Routines: Common Start, Interrupt, and Time-out Routines. The Common
Entry Routines do some initial processing then transfer control to the entry
routine tied to the specific service.

The ABIOS 9

ABIOS Data Structures

Introduction

10

The ABIOS makes use of four kinds of data structures. Three of the struc
tures - the Function Transfer Table, the Device Block, and the Common
Data Area are roughly analogous to the data structures found in the CBIOS.

The fourth structure is a function-specific, parameter block, called the
Request Block. The Request Block has no data structure analog in the
CBIOS, but it provides the ABIOS with the same parameter passing capability
as is provided to the CBIOS by the processor's register set.

Each ABIOS data structure is defined further below.

Function
Transfer Table

Device Block

Common
Data Area

Request
Block

ABIOS Data Structures

Function Transfer Table
Each ABIOS Service Is associated with one Function Transfer
Table. Each Function Transfer Table contains a list of pointers to
the Start, Interrupt, and Time-out Routine associated with Its
ABIOS service, as well as a llst of vectors to the start of each
function contained In that ABIOS Service.

Device Block
An ABIOS Service Is usually associated with one Device Block. The
Device Block contains the Interrupt level, the arbitration level, and
other Information about the hardware device associated with a
ABIOS device service. Some ABIOS services are associated with
more than one physical Instance of a device. When this Is the case,
that service Is associated with more than one Device Block.

Common Data Area
The Common Data Area contains a llst of pointers to the Function
Transfer Table/Device Block pair associated with each ABIOS Serv
ice. Each pair of pointers In the table Is Identified by a unique
Logical ID. Logical IDs are assigned dynamically when the ABIOS Is
Initialized and are used by the caller as an Index Into the Common
Data Area.

Request Block
Each ABIOS function Is Interfaced with the caller via a function-spe
cific structure called the Request Block. All Input and output pa
rameters are passed between the caller and the ABIOS through the
Request Block. Offset OCh of all Request Blocks Is reserved for a
function status Indicator called the Return Code.

continued

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Data Structures, Continued

ABIOS initialization

The Common Data Area, all Function Transfer Tables, and all Device Blocks
are initialized (with segment:offset pointers) as part of ABIOS real mode
initialization. In bimodal operating environments, the operating system insures
bimodal access to the ABIOS by initializing (in selector:offset format) a
parallel Common Data Area and a parallel set of Function Transfer Tables.

Once they are initialized, the Common Data Area, the Function Transfer
Tables, and the Device Blocks stay resident in system RAM for as long as
the ABIOS is in use.

Request Block initialization

Before a given ABIOS function can be started, the caller must initialize its
Request Block. The Request Block associated with a function call stays
resident in system RAM for the life of the call. Request Blocks associated
with completed function calls can be reused, or the memory they occupy
can be reallocated for some other purpose.

Table: CBIOS/ABIOS analogs

End users familiar with CBIOS structures and conventions may find the table
of analogies below useful.

Action CBIOS ABIOS

Pass Parameters CPU Registers Request Block
(bidirectional) (bidirectional)

Identify BIOS service Interrupt number Logical ID

Locate BIOS service Interrupt vector table Logical ID Index Into
Common Data Area

Locate BIOS function Jump table Internal to Vector In Function Trans-
CBIOS code fer Table

The ABIOS 11

ABIOS Initialization Facts

Introduction

Initializing ABIOS is a matter of initializing ABIOS data structures that stay
resident in system RAM for as long as the ABIOS is in use: The Common
Data Area, the Function Transfer Tables, and the Device Blocks. ABIOS is
initialized by the operating system in a five-step process involving both the
CBIOS and the ABIOS.

Key facts to remember

12

• Before ABIOS can be initialized, CBIOS must be initialized and the operat-
ing system must be booted.

• ABIOS can only be initialized in the microprocessor's real mode.
• Initializing ABIOS means initializing the ABIOS data structures.

• In bimodal environments, the operating system must initialize parallel sets
of Common Data Areas and Function Transfer Tables.

continued

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Initialization Facts, Continued

ABIOS initialization flow

ABIOS initialization flow is illustrated below.

Initialization Flow

STEP 1: Build System Parameters Table
CBIOS INT 1 Sh The operating system calls CBIOS INT 1 Sh AH = 04h Bulld

AH=04h System Parameters Table. The CBIOS bullds the System

Bulld System
Parameters Table in system RAM. The table describes
the system stack requirements. the number of devices

Parameters Table installed In the system, and the entry points to the rou-

I
tines used during the ABIOS Calling Convention.

STEP 2: Build ABIOS Initialization Table
CBIOS INT 1 Sh

The operating system calls CBIOS INT 1 Sh AH = 05h Bulld AH=05h
Initialization Table. The CBIOS bullds the Initialization Table

Bulld Initialization In system RAM. The table defines the Information used to
Table Initialize the Device Block and Function Transfer Table

l
associated with each ABIOS device.

STEP 3: Build Common Data Area

Build Common
The operating system allocates system memory for the
Common Data Area, Device Blocks, and Function Transfer

Data Area Tables. The operating system builds the Common Data
Area, lnltlallzes all Device Block and Function Transfer

I
Table pointers, and assigns Logical IDs.

STEP 4: Initialize DBs and FTTs
Bulld: The operating system calls the ABIOS to initialize the

Device Blocks Device Block (DB) and Function Transfer Table (FTT)as-
Function Transfer sociated with each ABIOS service. The Common Data

Tables Area, Device Blocks, and Function Transfer Tables reside
in RAM for as long as ABIOS Is active . . .

_1
STEP 5: Build Protected Mode Structures

Build Protected
Mode: In bimodal or protected mode environments, the operating

Common Data system must bulld protected mode versions of the Com-
Area Function mon Data Area and Function Transfer Tables. This proc-

Transfer Tables ess converts real mode segment:offset pointer to pro-
tected mode selector:offset format.

continued

The ABIOS 13

ABIOS Initialization Facts, Continued

Data structure relationships

The graphic below shows how the ABIOS Data Structures relate to each
other once they have been initialized.

Anchor Pointer Data Structure Relationships

Common
Data Area

©
Logical ID

Entries

Device Block

©
Device 1+----t1H Device Status

Block Pointers

Function
Transfer Table

Pointers

Data Pointers

Function
Transfer Table

©
Function
Pointers

Device Memory

ABIOS Service

ABIOS
Functions

Hardware Device

Legend

<D The Function Transfer Table contains address pointers to each ABIOS function.
@ The Device Block Is used by the ABIOS to store Interrupt levels, device status Infor

mation, and hardware port addresses.
@ The Common Data Area contains a linked list of the Function Transfer Table and De

vice Block pointer pairs associated with each service, as well as device memory point
ers (If any) associated with the given device.

14 ABIOS for IBM PS/2 Computers and Compatibles

Request Block Initialization

Introduction

Each ABIOS function is interfaced with its caller via a function-specific struc
ture called the Request Block. Before starting an ABIOS function the caller
must initialize its Request Block.

Physical device vs. logical device

A hardware device is a device that physically exists in a system configura
tion. Physical devices are identified by a Device ID; for instance, all hard
disks are associated with device ID 02h. Logical IDs, on the other hand, are
used to reference individual device services. They are assigned dynamically
at initialization, and their assignments will change when system configuration
changes. The first device to be initialized will be assigned a Logical ID of 1;
the second will be assigned Logical ID 2, and so on.

Logical IDs are mandatory input

Logical IDs are assigned to each ABIOS service during ABIOS initialization
when the operating system builds the Common Data Area. A service's
Logical ID is used from then on as an index into the Common Data Area
location where the service's Function Transfer Table and Device Block point
ers are stored. A service's Logical ID is a mandatory input into each function
Request Block calling on that service.

Request Block lifespan

Once initialized, Request Blocks stay resident in system RAM for as long as
the function call is active. That is to say, those Request Blocks associated
with multistaged functions stay resident in system RAM for the life of the
function. Request Blocks associated with completed functions may be
reused, or the memory they occupy can be deallocated.

continued

The ABIOS 15

Request Block Initialization, Continued

Rules governing Request Block use

The general rules associated with Request Block use are illustrated below.

16

INPUT Rules

Request Block fields marked Reserved
must be initialized to zeros.

The content of input fields is not changed
throughout a muitistaged request.

lnitlallze the Return Code to FFFFh before
calling any ABIOS Start Routine.

REQUE TBLOCK

Offset Size Input: Output:

OOh Word Request Block length

02h Word Logical ID

04h Word Unit

06h Word Function

08h Word Reserved

OAh Word Reserved

OCh

OEh

10h

12h

16h

18h

1Ah

1Eh

20h

24h
28h

2Ch

2Eh

Bits 7-1 = Reserved
Bit 0 =Caching

O Yes
1 No

OUTPUT Rules

Output fields need not be
initialized

The contents of an output
field must not be altered
during any stage of a
muitlstaged request.

Rules Governing
Request Block Reuse

Request Blocks ass.ociated
with completed functions
can be reused.

Reuse Request Blocks only
if the Request Block
Length for the new func
tions Is the same or
larger.

ABIOS for IBM PS/2 Computers and Compatibles

Transfer Conventions

Introduction

Once its Request Block has been initialized, the caller is free to transfer
control to the ABIOS function. The process of transferring control to an
ABIOS function is divided into two basic tasks:

1 . PUSH required entry pointers onto stack frame, and

2. CALL the function entry routine.

The difference between the two methods of calling ABIOS lies in the process
used to locate pointers and load them onto the stack.

Two tasks

The graphic below details each control transfer task.

Control Transfer Tasks

PUSH POINTERS ON STACK
STACK

The caller pushes pointers to the Request
Block and the Common Data Area onto the
stack. Depending on which convention Is used
to transfer control to ABIOS, the caller may
optlonally push pointers to the Function Trans
fer Table and Device Block.

4-- Pointer to Common Data Area
4-- Pointer to Request Block
4-- Pointer to Function Trans. Table
4-- Pointer to Device Block

FUNCTION TRANSFER
TABLE

µist~t:f:igJtii-ii••••• } ::VibtiM . :.!*

~·.•.· ... · •• · .• • •... • •• .-.• .•.. • •.•. • ..• ·.~ •• ·.·.m.·· •• ·.•.·.,,.··.

111
· .. •: .. e .. · .. · •. · .. ·.rr8 ••. •.·• .•.. ·.• •• •._.· .. •·.• •• u ... ·.:·.0• •• •.P·.·.···u·.· .. ·.t.· •• • •. t• •.. ·.:.::.R••·········A ·· •.. o.·.•.0·.·.u .. ·.• .. u·.· ... t.:• .• •.t1 •. •.b. ..

1
• .. • .. n•.: .• •.•.•.e:····· ... • .. ·•·•·••\ijtli6t···················1>· .. _ · viiM~ · . ·p;

Function OOh Vector --+
Function 01h Vector --+

Vector--+
I'- Function nnh Vector --+

TRANSFER CONTROL TO FUNCTION

There are two kinds of function entry routines:
• Service-specific Entry Routines
• Common Entry Routines

By convention, control can be transferred to a
given ABIOS function via either set of entry
routines. The ABIOS transfer convention Indi
cates that control be transferred to ABIOS
functions via the Common Entry Routines. The
Operating System Transfer Convention indi
cates that control be transferred to functions
via the Service-Specific Entry Routines.

continued

The ABIOS 17

Transfer Conventions, Continued

ABIOS transfer convention

In the ABIOS transfer convention, the operating system transfers control to
the ABIOS function requested via the ABIOS Common Start Routine. From
the caller's point of view, the ABIOS Transfer Convention is the simpler of
the two transfer conventions in that it reduces programming overhead when
ABIOS functions are called in a bimodal environment.

When using this method, the operating system:

• builds the Request Block,

• pushes pointers to the Common Data Area and Request Block onto the
stack,

• pushes place holders for the Function Transfer Table and Device Block
onto the stack, and

• calls the ABIOS Common Entry Routine requested. When control is trans
ferred to the Common Entry Routine, the Common Entry Routine loads
pointers to the Function Transfer Table and the Device Block onto the
stack. The operating system then transfers control to the ABIOS service's
Service-Specific Entry Routine.

Operating system transfer convention

18

In the operating system transfer convention, . the operating system transfers
control to the function requested via the ABIOS service-specific routines.

This transfer convention is more direct and may result in slight performance
improvements. It is most effective when used to handle interrupts from
programmed 1/0 devices (such as the keyboard) that require repeated
access to one function.

When using this method, the operating system:

• builds the Request Block,

• pushes pointers to the Common Data Area, Request Block, Function
Transfer Table, and Device Block onto the stack, and

• calls the service-specific entry routine associated with the service/function
requested.

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS and Program Access

Introduction

For now, OS/2 is the primary operating system using ABIOS. OS/2 itself
provides end user programs with powerful functionality which makes bypass
ing the operating system in favor of the ABIOS or hardware largely unneces
sary. However, the need may arise for the greater hardware control provided
by direct access to ABIOS Services.

The Anchor Pointer, OS/2, and program access

When ABIOS is initialized under OS/2, the segment address of the Common
Data Areas is stored by the operating system in a nonpublic variable called
the Anchor Pointer. Control cannot be transferred to an ABIOS function
without first accessing the information contained in the Common Data Area.

Therefore, access to the ABIOS is impossible from a program running under
OS/2 unless it is supported by the operating system. Although it does not
make the Anchor Pointer public, IBM OS/2 (versions 1.1 and beyond), sup
port program access of the ABIOS via calls to two DevHlp services: ABIOS
CommonEntry and ABIOSCalL

Programmers who are not using IBM OS/2 should refer to their OS/2 docu
mentation to determine if their version of OS/2 supports direct access to the
ABIOS.

The ABIOS 19

Accessing ABIOS via ABIOSCommonEntry

Description

The IBM OS/2 service ABIOSCommonEntry is used to call an ABIOS func
tions via the ABIOS Transfer Convention, that is to say via the ABIOS Com
mon Entry Routines.

ABIOSCommonEntry initializes the stack frame with pointers in the format
required by the current processor mode. It then calls the Common Entry
Routine specified in DH. On return, ABIOSCommonEntry cleans up the stack
before returning to the caller.

Caller must locate Logical ID

Before invoking ABIOSCommonEntry, the caller must first initialize the Re
quest Block associated with the ABIOS function to be called. Since a serv
ice's Logical ID is a mandatory input into each function Request Block, the
caller is responsible for determining the Logical ID assigned to the service
being called.

Locating Logical ID via function 01 h

20

Because the Anchor Pointer to the Common Data Area is a nonpublic vari
able, the only way for the caller to determine a service's Logical ID is to
invoke function 01 h, Return Logical ID Parameters, for each entry in the
Common Data Area.

To do this, the caller must use ABIOSCommonEntry to invoke function 01 h,
"Return Logical ID Parameters" for Logical IDs 03h to nnh. The Request
Block associated with function 01 h of each ABIOS service is fixed at 20h
bytes. When called, function 01 h returns to offset 12h the hardware Device
ID associated with the service. From this value, the caller can determine
which device service is linked to a given Logical ID.

continued

ABIOS for IBM PS/2 Computers and Compatlbles

Accessing ABIOS via ABIOSCommonEntry, Continued

ABIOS supported devices

The ABIOS supports 16 kinds of physical devices. There is one ABIOS device
service for each device. The table below lists the physical device ID and the
ABIOS device services tied to those devices.

Device ID Device Type/Service Device ID Device Type/Service

OOh ABIOS Internal Calls OBh Pointing Device
01h Diskette OCh Reserved
02h Fixed Disk ODh Reserved
03h Video OEh CMOS RAM
04h Keyboard OFh Direct Memory Access
05h Parallel Port 10h Programmable Option Select
06h Serial Port 11h Error Log
07h ~stem Timer 12h-15h Reserved
08h Real Time Clock Timer 16h Keyboard Security
09h System Services 17h-FFFFh Reserved
OAh Nonmaskable Interrupt - -

ABIOSCommonEntry Input/Output

Input:

MOV SI, Request_Block_Offset
MOV DH, Which_Com_Routine

Offset in DS of Request Elock
Indicate in DH which Common
Routine to call, where:
OOh Common Start Routine
Olh Common Interrupt Routine
02h Common Time-out Routine

MOV DL, DevHlp_ABIOSCommonEntry
CALL [Device_Help]

Output:

CF

AX

=
=
=

0 If call was successful
1 If error occurred
Error Code
ABIOS not present.
Unknown ABIOS command.

continued

The ABIOS 21

Accessing ABIOS via ABIOSCommonEntry, Continued

To avoid suspension in the background

ABIOS functions can sometimes be suspended if the operating environment
is shifted from OS/2 mode to the DOS compatibility box. This can occur
when functions executed in the DOS compatibility box put the service's
operating environment in a state that is unknown to the function called in
OS/2 mode.

ROMCritSection sets a flag that prevents entry into the DOS compatibility
box until the function called via ABIOSCommonEntry has executed to com
pletion. Since there is no way to determine in advance whether or not a
given function is susceptible to suspension, the caller has two choices:

• Call OS/2 ROMCritSection before calling ABIOSCommonEntry, or

• Test the function by calling it via ABIOSCommonEntry and switching to
the DOS compatibility box.

If ROMCritSection is called to prevent entry into the DOS compatibility box,
then it must be called again after the ABIOS function completes to re-enable
entry.

ROMCritSection Input/Output

OS must point to the ABIOS Device Driver's data segment. Reset OS if it has
been previously used in a PhysToVirt call.

MOV AL, enter_or_exit

MOV DL,DevHlp_ROMCritSection
CALL [Device_Help]

;Critical Section Flag
0 exit

< > 0 enter

For more information

22

For more information on calling ABIOS functions via ABIOSCommonEntry,
refer to the IBM document IBM Operating System/2 Technical Reference
Volume 1.

ABIOS for IBM PS/2 Computers and Compatibles

Accessing ABIOS via ABIOSCall

Description

The IBM OS/2 service ABIOSCall is used to call an ABIOS functions via the
Operating System Transfer Convention, that is to say via the ABIOS Service
Specific Entry Routines.

ABIOSCall initializes the stack frame with pointers in the format required by
the current processor mode. Then, it calls the Service-Specific Entry Routine
specified in DH. On return, ABIOSCall cleans up the stack before returning
to the caller.

ABIOSCall Input/Output

Input:

MOV AX, LID
MOV SI,RB_Offset

MOV DH,Entry_Point

MOV DL,DevHlp_ABIOSCall
CALL [Device_Help]

Output:

;Service's Logical ID
;Data Segment DS offset to
;caller's Request Block
;Service-Specific Routine
;OOh Start Routine
;Olh Interrupt Routine
;02h Time-out Routine

CF

AX

=
=
=

0 Call was successful
1 Error occurred
Error Code
ABIOS not present.
Unknown ABIOS command.

To avoid suspension in the background

ABIOS functions can sometimes be suspended if the operating environment
is shifted from OS/2 mode to the DOS compatibility box. To avoid this, the
caller may occasionally be advised to call OS/2 ROMCritSection before
calling ABIOSCommonEntry, as described on the previous page.

The ABIOS 23

Return Code Handling

Introduction

ABIOS signals the status (successful, unsuccessful, etc.) of a function call
by returning a code to the Request Block for the operating system.

The rules that the operating system must follow when handling this field are
listed in the illustration below.

Offset Size Input:

24

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOSh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Word

Return Code Field Rules

Input

Always Initialize the Return Code field
to FFFFh before Initiating any ABIOS
Start Routine.

During hardware Interrupts, the oper
ating system should call the Interrupt
routine for each request on that Inter
rupt level that has bit 0 Resume Stage
after Interrupt set In the Return Code
field untll an Interrupt Is claimed (bit 2
Not, My Interrupt Is. returned clear).

Output

Because both a Start Routine and an Inter
rupt Routine may be operating on the same
Request Block from different stack frames,
the operating system should maintain a flag
to Indicate If a request has executed the
Start Routine Return Code Fleld Bit Deter
mination code. If an Interrupt occurs before
the operating system determines the Re
turn Code for the Request Block, the flag
Indicates that the Interrupt Routine cannot
be processed yet, since the Start Routine
Is not completed. If the operating system
has determined the Return Code, Interrupts
can be processed, since the the Start Rou
tine is completed.

If there Is an outstanding Request Block at
Interrupt time, the operating system must
first see If the Return Code field Is FFFFh.
If It Is, the operating system must not at
tempt to resume this request. The ABIOS
can process the request and set the Return
Code appropriately when the Interrupt Is
executed.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Return Code Handling, Continued

Return codes

The following table contains a general listing of the ABIOS Return Codes.
ABIOS may generate any value that can occur in a 16-bit ABIOS field, so all
operating system routines that test ABIOS Return Codes should be prepared
for any value (that is, each bit in the Return Code field should be tested).

Code Description

OOOOh Successful

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Resume Stage after Interrupt

0081h Unexpected Reset, Resume Stage after Interrupt

8000h Device In Use, Request Refused

8001 h-BFFFh Service-Specific Unsuccessful Operation

9000h-90FFh Device Error

9100h-91FFh Retryable Device Error

9200h-9FFFh Device Error

AOOOh-AOFFh Time-out Error

A 1OOh-A1 FFh Retryable Time-out Error

A200h-AFFFh Time-out Error

BOOOh-BOFFh Device Error With Time-out

B100h-B1FFh Retryable Device Error With Time-out

B200h-BFFFh Device Error With Time-out

COO Oh Invalid Logical ID

C001h Invalid Function

C002h Reserved

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h-C01 Fh Invalid Service-Specific Parameter

C020h-FFFEh Service-Specific Unsuccessful Operation

FFFFh Return Code Fleld Not Valld

The ABIOS 25

ABIOS Extensions

Introduction

Under OS/2, ABIOS data structure addresses and service/function entry
points are only known to the operating system. As such, enhancements to
system software or hardware that require ABIOS extensions must insure that:

• The undefined interstage state information and work areas contained in
the pre-existing service's Device Block are not overwritten.

• The extension maintains control of all function entry points, and

• The extension will only be initialized if its revision level is greater than the
revision level of the pre-existing service.

Requirements for ABIOS extensions

26

In order to satisfy the considerations listed above, all ABIOS extensions must
meet the requirements outlined in the illustration below:

entry
routines

function
starts

~I

~

Extension
Service

L
lnlt. code

common
code

start
routine

Int.
routine

time-out
routine

func. 1
start

func. 2
start

func. 3
start

func. n
start

Requirement 1: File Header
All ABlOS extension routines must be Identified to
the system via an extension file header.

Requirement 2: Routine to Build Initialization,
Table Entry
ABIOS extensions must contain a routine that
can be called during the ABIOS lnltlallzatlon proc-
ess to build the extension's entry Into the ABIOS
Initialization Table.

Requirement 3: Routine to Build DB and FTT
All ABIOS extensions must contain a routine to
Initialize an extension-specific Device Block (DB)
and Function Transfer Table (FTT).

I- Requirement 4: Service Code
Each ABIOS service must contain

• A complete set of extension-specific entry
routines.

• Run time code to service a device.

continued

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Extensions, Continued

Two types of ABIOS implementations

As long as it meets the four requirements for creating valid ABIOS exten
sions, an extension can be implemented either in ROM or in RAM.

The differences between the two types of implementations are described
below.

Type

ROM extension

RAM extension

The ABIOS

Description

ABIOS ROM extensions:
• Exist in the same peripheral card ROM that contains

their CBIOS counterparts.
• Contain manufacturer-specific ABIOS device services.
• Are located and initialized as part of the overall ABIOS

ROM inltiallzation process.

ABIOS RAM extensions exist as files that will be located
and Initialized into system RAM during the overall ABIOS
ROM initialization process. If they are to be implemented
under OS/2, extension file names must be listed in the
file ABIOS.SYS. The following facts apply:
• ABIOS.SYS must contain a list of filespecs separated

by either blanks or new lines
• Both ABIOS. SYS and any flies listed in ABIOS. SYS

must reside In the root directory of the OS/2 IPL
volume.

• The flies listed In ABIOS. SYS are loaded into memory
in the order in which they are listed.

• The sector size of all RAM extension flies must be a
multiple of 512K.

• All ABIOS RAM extension files must have a .BIO
extension.

• RAM extensions are loaded after ROM extensions.

27

Where to Find More Information

Introduction

This chapter outlines the major concepts and design fea~ures of the ABIOS.
It is intended to leave the reader with a mental model of how the ABIOS
works. The details of any concept or feature presented here can be found in
subsequent chapters of this book.

Where to find more information

For more Information on •.. Turn to •••

ABIOS Services Chapters 8 through 23

ABIOS Functions Chapters 8 through 23

ABIOS Request Blocks Chapters 5 and 6

ABIOS Data Structures Chapter 3

ABIOS Function Processing Chapter 6

ABIOS Request Types Chapter 6

ABIOS Multltasklng Provisions Chapters 6 and 7

ABIOS Initialization Chapter 4

ABIOS Bimodal Support Chapters 3 and 4

ABIOS Extensions Chapter 7

28 ABIOS for IBM PS/2 Computers and Compatibles

Overview

Introduction

Chapter 2

Hardware Environment

This chapter describes the hardware environment supported by the ABIOS.

Note: The hardware environment described here also applies to the CBIOS
portion of PS/2-compatible ROM BIOSs.

Hardware overview only

The hardware contained in IBM PS/2 and compatible systems provides the
user with a rich and powerful computing environment. A precise description
of each IBM PS/2 hardware component, however, is beyond the scope of
this book. The material presented here is intended to give ABIOS users a
general survey of the PS/2 hardware and is not intended to substitute for
the hardware data sheet or documentation available from individual hardware
manufacturers.

continued

Hardware Environment 29

Overview, Continued

ABIOS benefits

By its very nature, the ABIOS is designed to isolate the user from direct
manipulation of hardware 1/0 ports, registers, and control words. As such,
the ABIOS provides a high level interface to hardware that is guaranteed to
remain the same when hardware components change.

This has a number of benefits:

• If programs use ABIOS calls instead of reads and writes to hardware, they
will be more portable across differing hardware environments.

• Using the ABIOS services spares the programmer from having to master
many details about hardware that may change.

In this chapter

The following hardware information is presented:

• 80286/80386/80386SX Microprocessors

• Math Coprocessors

• Micro Channel

• 1/0 Devices

• System Time-Related Devices

• CMOS RAM Service

• OMA Controller

• Programmable Option Select (POS)

• Intel 8259A Programmable Interrupt Controllers

• System Control Port Definitions

• Power-On Password
• NMI Mask

• Hardware 1/0 Port List

30 ABIOS for IBM PS/2 Computers and Compatibles

80286/80386/80386SX Microprocessors

Introduction

The ABIOS must be implemented in systems that employ the Intel 80286,
80386SX, or 80386 microprocessor, an equivalent, or a superset.

The table below lists the ABIOS microprocessor support.

Item Support

Processor Speeds 6 to 20 MHz (80286); 6 to 33 MHz (80386,
80386SX)
Note: Currently verified range of supported

speeds.

Walt States 0 or 1 wait states

Address Modes Real and protected address modes
Note: See "Address mode support" below.

Address mode support

The ROM BIOS for IBM PS/2 and compatible systems can be addressed in
both the real and the protected address modes of the microprocessor.

This statement holds true for both the ABIOS and the CBIOS portions of the
ROM BIOS. The difference between the ABIOS and the CBIOS portions of the
ROM BIOS lies not in the modes under which they can be addressed but in
the kind of operating systems each is designed to support.

• The ABIOS is designed specifically to support multitasking operating sys
tems (e.g. IBM OS/2} that execute exclusively in the microprocessor's
real mode, exclusively in protected mode, or bimodally - switching be
tween real and protected modes.

• CBIOS is primarily designed to support single-tasking operating systems
(e.g. MS-DOS) that execute exclusively in the microprocessor's real
mode.

Hardware Environment 31

Math Coprocessors

Introduction

The ABIOS can be implemented in systems that include an Intel 80287 or
80387 math coprocessor (80387SX for 80386SX processors) or an equiva
lent math coprocessor.

Description

The math coprocessor performs high speed arithmetic, logarithmic, and
trigonometric floating point arithmetic calculations, permitting much speedier
processing for mathematically intensive processes.

The math coprocessor works in parallel with the microprocessor, allowing
both to process instructions separately. See the user manual for the
coprocessor for details about the extended data types, registers, and
instructions available with this chip.

Math coprocessor hardware interface

32

The coprocessor operates in an asynchronous mode and can use the same
clock generator as the microprocessor. It functions as an 110 device and can
be accessed through 1/0 ports OOF8h, OOFAh, and OOFCh.

The coprocessor BUSY signal tells the microprocessor that the coprocessor
is operating. The WAIT signal means that it is executing, and forces the
microprocessor to wait until the coprocessor is done.

The coprocessor can operate in either the real or protected address mode.
It is in real address mode after a power-on, a reset, or when returning from
protected address mode.

The math coprocessor generates an error signal which sets IRQ 13, and the
BUSY signal from the coprocessor is then held in the BUSY state. The BUSY
signal can be cleared by an 1/0 Write to 1/0 port OOFOh or by a write of zero
to 1/0 port address OOFOh with bits 0-7 set to zeros, which also clears
IRQ 13.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Math Coprocessors, Continued

ABIOS: INT 75h Numeric exception error handling

IRQ 13 (which is generated by a math coprocessor numeric exception error)
is vectored to INT 75h hardware interrupt service routine as part of the
ABIOS initialization. When IRQ 13 goes high, INT 75h clears the BUSY signal
and issues a software interrupt, INT 02h.

Note: User programs which enable numeric exceptions must provide a
method for intercepting and processing either INT 75h or INT 02h.

Micro Channel

Introduction

The ABIOS supports such IBM Micro Channel-compatible features as Pro
grammable Option Select (POS) and configurable Direct Memory Access
(OMA) arbitration levels.

The following table lists the Micro Channel hardware supported by the ABIOS:

Feature Description

110 address width Is Allows either 8-blt or 16-bit 1/0 transfers.
8-bit or 16-bits.

Central arbitration
control point.

Arbitrates among as many as 15 devices.

8 OMA channels. Serial OMA protocol for 8 channels; either 8-blt or 16-blt
OMA transfer.

Level-sensitive Interrupt controller operated in level-triggered mode to
Interrupts. allow devices to share Interrupt levels.

Programmable option
select

Eliminates need for jumpers and configuration switches.

Channel extension Support future growth and additional channel features.
connectors

No support for Supports only adapters designed for the Micro Channel.
PC-type adapters.

continued

Hardware Environment 33

Micro Channel, Continued

Micro Channel connectors

The ABIOS supports three types of channel connectors:

• 16-bit, made up of an 8-bit section, and a 16-bit extension,

• 16-bit with auxiliary video extensions, and

• 32-bit connectors in Intel 80386-based systems.

Programmable option select (POS)

34

POS data is accumulated in adapter description files (ADFs) which are cre
ated by adapter manufacturers for each adapter. The reference diskette
supplied with MCA-compatible systems reads .ADF files and stores configu
ration information in CMOS RAM. The ABIOS power-on self test (POST)
reads CMOS RAM and writes the configuration information to the POS regis
ters of the adapters.

The POS 1/0 addresses are 0094h - 0097h and 0100h - 0107h.

ABIOS for IBM PS/2 Computers and Compatibles

1/0 Devices: Introduction

The ABIOS supports the following 1/0 devices:

• a diskette controller,

• a fixed disk controller,

• a VGA video controller,

• an Intel 8042 or equivalent keyboard controller,

• a serial port, and
• a parallel port.

Each of these capabilities is discussed below.

1/0 Devices: Diskette and Disk Hardware

Diskette controller

The ABIOS supports an NEC 765 or equivalent diskette controller. Four types
of diskette drives are supported:

• 720K 3.5-inch,
• 1.44 MB 3.5-inch,

• 360K 5.25-inch, and
• 1.2 MB 5.25-inch drives.

Diskette drive configuration

The ROM BIOS supports a maximum of two diskette drives.

Fixed disk controller

The ROM BIOS supports up to two fixed disks. The ABIOS supports an
ST506 fixed disk adapter or equivalent. This adapter should be PS/2-compat
ible. The ST506 adapter is single-tasking and must complete one operation
before starting another, even though the next operation may be for the other
fixed disk. The hardware interrupt request for fixed disk is 14.

ALL and ESDI fixed disk controllers are also supported by the ABIOS.

Hardware Environment 35

1/0 Devices: Video Hardware

Introduction

The ABIOS video service supports IBM VGA-compatible hardware, including:

• a VGA-compatible chip or chip set that includes a:

• CRT Controller

• Sequencer
• Graphics Controller, and
• Attribute Controller

• DAC chip - INMOS G171 or compatible Digital-to-Analog Converter
• Video RAM - 256K of dynamic read/write RAM configured as four 64K

maps

• Monochrome or color direct drive analog monitor

• Monochrome or color multiple sync frequency monitors

VGA-compatible chip (or chip set}

36

The VGA chip (or chip set) provides all CRT control signals. It consists of
four components: CRT Controller, Sequencer, Graphics Controller, and
Attribute Controller.

The function of each VGA component is summarized in the table below.

Component Function CRT Controller

CRT Controller Generates horizontal and vertical CRT sync timings,
cursor and underline timings, video buffer addressing,
and refresh addressing.

Sequencer Arbitrates system access to display RAM and fonts. The
sequencer allows up to eight fonts with two fonts display-
able at any one time.

Graphics Controller Handles read/write operation on 4 parallel bit planes.
Outputs data to Attribute Controller.

Attribute Controller Converts Incoming text mode attribute data or graphics
mode pixel data Into 8-blt Indices Into the Digital-to-
Analog Converter (DAC) color registers (see below).

Note: For a complete description of VGA-compatible components, 110
ports, and registers, refer to the hardware documentation accompa
nying your particular VGA-compatible chip or chip set.

continued

ABIOS for IBM PS/2 Computers and Compatibles

1/0 Devices: Video Hardware, Continued

DAC

The video DAC contains 256 individual color registers which can be accessed
by the BIOS as either four 64-color registers or sixteen 16-color registers.

Each DAC color register contains one 18-bit RGB analog value. Six bits of
each register are allocated to each primary color. Thus, the color repre
sented in each DAC color register may be any of 256K possible colors
(i.e. 23*6 = 256K).

Video RAM

The ABIOS Video Service requires 256K of read/write video RAM formatted
into four banks (or maps) of 64K.

To maintain compatibility, display memory for each of the historical MDA,
CGA, and EGA-compatible modes is mapped exactly as it was in the original
display adapter. The display memory organization for the new VGA modes is
outlined in the ABIOS Video Services chapter.

Analog monitor support

To display all modes, the Video Service requires either a monochrome or a
color direct drive analog monitor with a 31.5 KHz horizontal scan frequency.

The display's vertical gain is adjusted automatically by the VGA-compatible
circuitry. Thus, video modes with 350, 400, and 480 horizontal scan lines
can be displayed without requiring manual adjustment.

Multiscan monitor support

In addition to 31.5 KHz direct drive analog monitors, the Video Service also
supports multiscan rate monitors capable of operating in analog modes (e.g.
NEC Multisync monitor). Monitors of this type require an adapter cable that
matches the signal assignments and monitor ID circuitry of the DAC external
video controller.

Hardware Environment 37

1/0 Devices: Keyboard Hardware

Introduction

The ABIOS supports an intelligent keyboard subsystem based on the Intel
8042 or equivalent keyboard controller.

The hardware interrupt level associated with the ABIOS Keyboard Service is
IRQ 1.

The 8042 controller chip

The Intel 8042 peripheral controller (or compatible) is a single chip micro
computer that can be programmed to allow bidirectional communication
between the master microprocessor and up to two auxiliary serial input
devices. The 8042 chip, generally, is mounted on the system motherboard.
8042 programs reside as firmware in the 8042 chip itself.

Device support

The kind of devices a given 8042 chip supports are dependent on how the
8042 is programmed.

On IBM PS/2-compatible systems, the 8042 is programmed to allow
bidirectional communication between the system and the keyboard, as well
as between the system and one other auxiliary serial device, such as a
mouse, joystick, or trackball.

Pointing device interface

38

The pointing device in PS/2-compatible systems is controlled by the 8042.
INT 74h handles interrupts from the pointing device. The ABIOS Pointing
Device Service controls the device operations.

ABIOS for IBM PS/2 Computers and Compatibles

1/0 Devices: Parallel Port Hardware

Introduction

The ABIOS Parallel Port Service is associated with hardware interrupt request
7. The ABIOS supports a parallel port that can transfer eight bits of data at
standard TTL levels. The parallel port can be called port 1 through 8, must
be IBM PS/2-compatible, and must have a bidirectional mode, supporting
both input and output. The parallel port also supports level-sensitive inter
rupts and a readable interrupt pending status.

Parallel port addresses

The following table lists the common parallel port addresses. Up to 8 parallel
ports are supported.

Parallel
Port Number Data Address Status Address Control Address

1 038Ch 03BDh 03BEh

2 0378h 0379h 037Ah

3 0278h 0279h 027Ah

Parallel port extended mode

The extended mode of the parallel port can be selected through the port
system-based POS registers. The extended mode adds a bidirectional
interface.

Hardware Environment 39

110 Devices: Serial Port Hardware

Introduction

The ABIOS supports a National Semiconductor 16550 serial port controller or
equivalent logic. The serial ports can be addressed as Serial 1-8. See
(40: 1 Oh) to find out how many serial ports are available. Serial 1 and 3
interrupts are on IRQ 4; Serial 2 and 4 interrupts are on IRQ 3. The serial
port base addresses are shown below. ABIOS initializes the serial ports in the
same order that they reside in the ROM BIOS data area, so the serial port
Logical IDs will be in the same order as in the BIOS Data area (40: 1 Oh).
Additional serial ports and Logical IDs may be initialized.

Serial port addresses/interrupt levels

The serial port addresses and interrupt levels are listed in the table below.

Serial Port Number Base Address Interrupt Level

1 03F8h 4

2 02F8h 3

3 3220h 3

4 3228h 3

5 4220h 3

6 4228h 3

7 5220h 3

8 5228h 3

NS 16550 characteristics

40

The NS 16550, which is functionally compatible with the NS 16450 and the
NS 8250, supports:

• Characters of 5, 6, 7, or 8 bits,

• 1, 1.5, or 2 stop bits, and

• even, odd, or no parity modes.

continued

ABIOS for IBM PS/2 Computers and Compatibles

1/0 Devices: Serial Port Hardware, Continued

NS 16550 Serial Communications Controller

The NS 16550 does serial-to-parallel conversions on data received from a
peripheral device or a modem, and parallel-to-serial conversion on data
received from the system processor. The system processor can read the
status of the NS 16550 at any time during its operation. The information
furnished includes the type and condition of transfer operations in progress,
as well as any error conditions (parity, overrun, framing, or break interrupt)
present. The NS 16550 provides complete modem control, and has a user
programmable processor-interrupt system.

NS 16550 Serial Controller Registers

The NS 16550 has 12 accessible registers:

• Receiver Buffer Register (Read Only)

• Transmitter Holding Register (Write Only)

• Interrupt Enable Register (Read/Write)

• Interrupt Identification Register (Re~d Only)

• FIFO (First in/First out) Control Register (Write Only)

• Line Control Register (Read/Write)

• Modem Control Register (Read/Write)

• Line Status Register (Read Only)

• Modem Status Register (Read Only)

• Scratch Register (Read/Write)

• Divisor Latch (LSB) (Read/Write)

• Divisor Latch (MSB) (Read/Write)

Information on the operation of these registers is contained in the National
Semiconductor NS 16550 Data Sheet. However, to avoid any incompatibility
problems introduced by direct hardware programming, use the access to the
serial controller provided through the BIOS services.

Programmable baud rate generator

The serial port controller can operate at speeds of from 11 0 to 19, 200 bps.

Hardware Environment 41

System Time-Related Devices: Introduction

System time-related components

The ABIOS supports that the following time-handling chips, or their
equivalents:

• Intel 82284 Clock Generator

• Intel 8254A Programmable Interval Timer (PIT)

• Motorola MC146818A Real Time Clock

System Time-Related Devices: 82284 Clock Generator

Description

42

The Intel 82284 (or compatible) Clock Generator chip interfaces directly to
the system microprocessor (CPU). The 82284 chip:

• Provides the CPU with two clock inputs

• Generates the READY input to the CPU

• Synchronizes the system RESET input to the CPU.

ABIOS for IBM PS/2 Computers and Compatibles

System Time-Related Devices: 8254A PIT Chip

Introduction

The 8254A Programmable Interval Timer (PIT} is a counter and timer that
provides three channel timers. All channels are driven by a 1 . 19 MHz oscilla
tor signal. Each "tick" of the PIT generates hardware interrupt request 0.

The BIOS supports the Intel 8254A programmable counter chip or its equiva
lent. The timer chip need not include a timer/counter 1 but should provide a
limited-function timer/counter 3.

Timer channel differences

There are some differences between the three timer channels.

Counters 0 and 2:

• are independent 16-bit counters,

• can be preset, and

• can count in BCD (binary coded decimal) or in binary.

Counter 3:

• is only 8 bits,

• can be preset,

• counts in binary only, and

• can only count downward.

System Timer Modes

The system timer has six modes:

Mode Name

0 Interrupt on Terminal Count

1 Hardware Retrlggerable One-Shot

2 Rate Generator

3 Square Wave

4 Software Triggered Strobe

5 Hardware Retriggerable Strobe

continued

Hardware Environment 43

System Time-Related Devices: 8254A PIT Chip, Continued

Common timer mode operations

All modes have the following operations in common:

• All control logic resets when control bytes are written to a counter.
• Counters do not stop when they reach zero.
• In Modes 0, 1, 4, and 5 the counter wraps to the highest possible count,

and continues to count.
• In Modes 2 and 3, the counter reloads the initial count and continues to

count.

Timer Channels

The following table describes the functions of the timer channels. The sys
tem timer is treated as a series of 110 ports. Three are count registers, and
two are control registers.

Read/Write
Channel Description 110 Port Status

0 System Timer 0040h R/W

2 Tone Generation for Speaker 0042h R/W

3 Watchdog Timer 0044h R/W

3 Control Register 3 0047h w
0, 2 Control Register O, 2 0043h w

Watchdog Timer

44

The Watchdog Timer is used to find out if IRQ 0 is not being serviced, which
can be used to detect a user program in a tight loop.

The Watchdog Timer is enabled or disabled by the CBIOS INT 15h, System
Services, function C3h.

ABIOS for IBM PS/2 Computers and Compatibles

System Time-Related Devices: MC146818A ATC Chip

Introduction

The ABIOS supports a Motorola MC146818A Real Time Clock, or equivalent.
This chip is assumed to have at least 64 bytes of nonvolatile CMOS RAM
available to store configuration data.

RTC CMOS RAM Addresses

The following table lists the CMOS RAM addresses:

1/0 Address Length Description

0070h 1 Byte CMOS RAM address. where:
Bit 7 = 1 NMI disabled
Bits 6-0 = 0 CMOS RAM address

0071h 1 Byte CMOS RAM data port

• To write to CMOS RAM:

• Inhibit interrupts.

• Write the CMOS address to which the data is to be written to 1/0
port 0070h.

• Write the data to be written to 1/0 port 0071 h.

• To read from CMOS RAM:

• Inhibit interrupts.

• Write the CMOS address from which the data is to be read to 1/0
Port 0070h.

• Read from 1/0 port 0071 h.

Hardware Environment 45

CMOS RAM Service

Introduction

Information may be stored in up to two areas of CMOS RAM. The table
below describes the CMOS RAM areas available to the ROM BIOS.

Table of CMOS RAM areas

1/0
Data Area Location Size Description

CMOS RAM 0070h and 64 bytes These bytes are located on the Motorola
Data Area 0071h MC146818A Real Time Clock CMOS chip

(or Its equivalent). All lmplementatlons
of the BIOS make use of this area to
store real time clock, POST, and sys-
tem configuration data.

Extended 0074h, 0075h, 2K When Implemented on systems that em-
CMOS RAM and 0076h ploy more than four adapter slots, the
Data Area BIOS requires an additional 2K of CMOS

RAM. This extended CMOS RAM is pri-
marlly used to store POS data.

46 ABIOS for IBM PS/2 Computers and Compatibles

OMA Controller

OMA functionality

The hardware environment for OMA transfers is described here in order to
explain the background against which the OMA ABIOS functions operate. The
ABIOS, however, serves as a shield between underlying hardware and re
quests of the operating system, obviating the need for the caller to directly
access the OMA controller.

Direct Memory Access (OMA) allows large amounts of data to be transferred
from a physical device to system memory or vice versa without micropro
cessor involvement. A program may initiate a OMA transfer and have no
need to copy each byte or word individually, freeing the processor for more
complex tasks. OMA transfers are typically from/to a fixed 1/0 port address
to/from a continually incremented memory address.

OMA functionality in Micro Channel systems is a superset of the functionality
of two Intel 8237 OMA Controllers, one addressed at every port, starting with
Port OOOOh, and one addressed at every other port, starting at port OOCOh.
Access to 8237-compatible OMA functions and to additional functions for all
channels is provided at 1/0 ports 0018h and 001 Ah. Data output to port
0018h selects the channel and function, and data output to or input from
001 Ah goes to or from the selected internal register.

Bus sharing

The system microprocessor and any currently-transferring OMA users can
share the bus by taking turns directing bus cycles (driving the Micro Chan
nel's address lines and certain control signals). An arbitration process deter
mines which of these possible bus masters are ready to direct a cycle.
Competing bus masters (OMA devices) are assigned varying priorities, which
are weighed during arbitration. Each bus master gets control of the bus for a
number of cycles as determined by the arbitration process.

OMA device

A OMA device (or bus master) is one that enters into arbitration for the
channel. If it wins, it receives addresses and control signals from the OMA
controller so it can read or write data.

continued

Hardware Environment 47

OMA Controller, Continued

OMA Controller functions

A OMA controller is a device which monitors the arbitration process and
gives addresses and control signals to the device that has won the bus
through arbitration. The controller does not enter into the arbitration itself.
PS/2-compatible Micro Channel-based systems provide a OMA controller
that supports OMA transfers to/from LIP to eight devices at once.

OMA hardware registers

48

The OMA controller maintains several hardware registers for each OMA
channel. The key registers are:

• a memory address where the next byte or word will be transferred to
or from

• a count· of the remaining bytes to transfer (transfer count)

• a flag (mode) controlling the transfer direction (to memory or to the
device), and

• transfer status flags for each channel (status)

continued

ABIOS for IBM PS/2 Computers and Compatibles

OMA Controller, Continued

OMA hardware registers

The OMA Controller has ten sets of registers, summarized below:

Number of
Register Size (bits) Registers How Allocated

Memory Address 24 8 1 per Channel

110 Address 16 8 1 Per Channel

Transfer Count 16 8 1 Per Channel

Temporary Holding 16 1 All Channels

Mask 4 2 1 for Channels 7-4
1 for Channell! 3-0

Arbus 4 2 1 for Channel 4
1 for Channel O

Mode 8 8 1 per Channel

Status 8 2 1 for Channel 7-4
1 for Channel 3-0

Function 8 1 All Channels

Refresh 9 1 Independent of OMA

Mode Control Field

The Mode Control field provides an opportunity for the caller to use the
Autoinitialization and Programmed 1/0 (PIO) features of the OMA Controller.

• Autoinitialization

Specifies if the OMA Controller will initialize automatically when the transfer
reaches the terminal count.

• Programmed 110

Specifies that the 1/0 address is to be programmed to the OMA Control
ler, driving the 1/0 address on the bus during the OMA cycles.

continued

Hardware Environment 49

OMA Controller, Continued

Transfer Control Bytes

These fields provide an opportunity for the caller to specify the physical
address of the memory and 110 fields for ABIOS OMA Service functions 1 Oh,
11 h, and 12h.

• Count Control
Specifies if the physical address is decremented or incremented during
a transfer.

• Device Size
Specifies whether this is an 8-bit or 1 6-bit transfer.

OMA controlled by microprocessor

The microprocessor can address the OMA controller and access the OMA
registers. The microprocessor can control the OMA modes, transfer ad
dresses, transfer counts, channel masks, and page registers.

Direct OMA Controller access

Reading directly from or writing directly to any OMA Controller port may cause
unpredictable results.

OMA data transfer

50

After a OMA device has won the arbitration bus and the OMA controller is
programmed to service the request, a transfer can take place.

OMA transfers can be:

• single transfer,

• multiple transfer (burst mode), or

• read verification.

continued

ABIOS for IBM PS/2 Computers and Compatibles

OMA Controller, Continued

Burst mode

Burst mode is a method of OMA transfer that allows a device to remain
inactive for long periods and then send large amounts of data in a short
time. Some peripheral devices, e.g. a fixed disk, transfer their data in bursts
that are frequently separated by long periods of inactivity. Burst mode is a
way of making these devices more efficient. The device asks to be serviced
only when it has data to transfer and then does so in large quantities.

Arbitration levels

Arbitration is a process through which devices compete for control of the
Micro Channel on a prioritized basis. Arbitration levels are predefined or
programmable levels of priority assigned to devices that compete for pos
session of the channel.

Central Arbitration Control is a hardware function that allows intelligent pe
ripherals to share and control access to the system. Arbitration is organized
in levels of priority, and on each level there can be a number of competing
devices,

Arbitration Levels are numbered from OOh to OFh. In addition, there are
Arbitration Levels -1 and -2, which exist only on the system board. Of the
former set, Arbitration Level OOh has the highest priority; Level OEh has the
lowest. All arbitration level priorities are assigned sequentially; OOh through
OEh are the highest through lowest priorities. Level OFh is reserved.

Note: The ABIOS OMA service reads the fixed disk arbitration level from the
CBIOS extended data area at ABIOS initialization and uses this arbitra
tion level throughout the ABIOS session.

continued

Hardware Environment 51

OMA Controller, Continued

Arbitration levels, cont'd

52

The following table summarizes the arbitration levels:

Arbitration Levels Primary Assignment

FEh Memory Refresh

FFh NMI

OOh OMA Channel o•
01h OMA Channel 1

02h OMA Channel 2

03h OMA Channel 3

04h OMA Channel 4 •

05h OMA Channel 5

06h OMA Channel 6

07h OMA Channel 7

OBh Reserved

09h Reserved

OAh Reserved

OBh Reserved

OCh Reserved

OOh Reserved

OEh Reserved

OFh System Microprocessor

• These OMA Channels can be programmed to any arbitration level

ABIOS functions allow these arbitration levels to be allocated, deallocated or
disabled.

continued

ABIOS for IBM PS/2 Computers and Compatibles

OMA Controller, Continued

OMA channel flags

Additional channel flags control whether

• a transfer is to be repeated forever,

• the memory address is to be decremented or incremented after
each cycle,

• the OMA controller maintains 1/0 address (this is hardwired in most
devices that use OMA) , or

• a byte or a word is transferred at each cycle.

Physical and Virtual OMA channels

OMA channels can be either physical or virtual. A physical channel can only
have one arbitration level, but a virtual channel can be programmed to own
any arbitration level not currently assigned to a different channel. Thus, a
virtual OMA channel can have many arbitration levels.

Functionally, there is no difference between physical and virtual channels.
Priority is determined by the arbitration level only, where level OOh is the
highest priority and level OEh the lowest.

Virtual OMA Channels and the Arbus register

The arbitration level assignment for channels 0 and 4 can be programmed
using the two 4-bit Arbus registers. The Arbus registers permit dynamic
reassignment of the arbitration ID value by which the OMA controller re
sponds to OMA requests for bus arbitration. Channels 0 and 4 can then
service devices at any arbitration level.

continued

Hardware Environment 53

OMA Controller, Continued

OMA Channels

The OMA channel 1/0 addresses are defined in the 1/0 Port Address section
later in this chapter. They range from OOOOh - OOOFh, 0018h, 001 Ah, 0081 h
- 008Fh, and OOCOh - OOOEh.

OMA extended mode

54

An extended mode register is available for each programmable OMA channel
and is used when a OMA channel requests a OMA data transfer. OMA chan
nels must match the transfer size of the OMA slave, which is programmed
by Bit 6 of the extended mode register. OMA read transfers of 16 bits from
8-bit memory or 8-bit memory-mapped 1/0 devices are not supported.

The following table describes the OMA extended mode register:

Bit Number Description

7 = 0 Reserved

6 = 0 8-blt transfer
= 1 16-blt transfer

5 = O Reserved

4 = 0 Reserved

3 = 0 Read memory transfer
= 1 Write memory transfer

2 = 0 Verify
= 1 Transfer data

1 = 0 Reserved

0 = 0 1/0 address OOh
= 1 User programs the 1/0 address

ABIOS for IBM PS/2 Computers and Compatibles

Programmable Option Select (POS)

Introduction

Because it is an integral part of the Micro Channel Architecture (MCA),
Programmable Option Select support is assumed.

Adapter slots

The ABIOS supports up to eight adapter cards (or more on systems with a
customized BIOS) . The ABIOS will work with any system regardless of the
number of adapter slots available.

Adapter card Identification

Each adapter card must have a unique 2-byte identifier.

Adapter description files

POS data is accumulated in adapter description files (ADFs) that are created
by adapter manufacturers for each adapter. The reference diskette supplied
with MCA-compatible systems reads the .ADF files and stores the configura
tion information in CMOS RAM. This information is read by the BIOS power
on self test (POST}, which writes it to the POS registers of the adapters and
the system board.

Hardware Environment 55

Intel 8259A Programmable Interrupt Controllers

Introduction

The ABIOS supports two cascaded Intel 8259A Programmable Interrupt Con
troller {PIC) chips, or their functional equivalent.

Description

The PIC handles all maskable hardware interrupts. The ABIOS insures com
patibility with hardware interrupts expected by existing software. Formerly
reserved, IRQ2 is now associated with the 8042 Auxiliary Device (mouse)
controller.

Levels of Interrupt

There are 16 levels of interrupts. Interrupts are level-sensitive, allowing
several devices to share the same hardware interrupt. This reduces the
interrupt controller's sensitivity to a transient signal on the Micro Channel
bus.

Programmable Interrupt Controller Addresses

The following table lists all PIC addresses:

1/0 Functional Read/Write
Address Equivalents IRQs Routed Status Description

20h master 8259A IRQ 0 - IRQ 7 R/W Base

21h master B259A IRQ 0 - IRQ 7 w Mask

A Oh slave 8259A IRQ B - IRQ 15 R/W Base

A1h slave 8259A IRQ B - IRQ 15 w Mask

continued

56 ABIOS for IBM PS/2 Computers and Compatibles

Intel 8259A Programmable Interrupt Controllers, Continued

Table of IRQ assignments

The following table shows the assignment of interrupt requests to commonly
interrupting devices, listed from highest to lowest priority. Other devices
not listed may use interrupt requests and may share requests with these
devices.

Request Device

IRQ 0 Timer tick

IRQ 1 Keyboard

IRQ 2 IRQ 8-15 are cascaded through IRQ 2

IRQ 8 Real time clock

IRQ 9 Redirect cascade

IRQ 10 Reserved

IRQ 11 Reserved

IRQ 12 Mouse

IRQ 13 80x87 math coprocessor exception

IRQ 14 Fixed disk controllers

IRQ 15 Reserved

IRQ 3 Serial port 2

IRQ 4 Serial port 1

IRQ 5 Parallel port 2

IRQ 6 Diskette

IRQ 7 Parallel port 1

Hardware Environment 57

System Control Port Definitions

Introduction

The ABIOS supports certain system control functions at 1/0 Port addresses
0061h and 0092h.

Port 61 h: System Control Port B

58

The read/write definitions for 1/0 port address 0061 h, System Control Port
8, are:

Port 61 h: Write Operations

Bit Description

7 = 1 Reset timer 0 output latch (IRQ 0)

6-4 = 0 Reserved

3 = 0 Enable channel check

2 = 0 Enable parity check

1 = 1 Speaker data enable

0 = 1 Enable Timer 2 gate to speaker

Port 61 h: Read Operations

Bit Description

7 = 1 Parity check

6 = 1 Channel check

5 = 1 Timer 2 output

4 = 1 Toggles with each refresh request

3 = 0 Channel check enabled

2 = 0 Parity check enabled

1 = 1 Speaker data enabled

0 = 1 Timer 2 gate to speaker enabled

continued

ABIOS for IBM PS/2 Computers and Compatibles

System Control Port Definitions, Continued

Port 0092h: System Control Port A

110 port 0092h (R/W), System Control Port A, contains system control flag
data. System control Port A is defined below:

Bit Description

7 1 = Fixed disk activity light A on

6 1 = Fixed disk activity light B on

5 0 = Reserved (must be zero)

4 1 =Watchdog time-out occurred

3 1 = Security lock latch Is locked

2 O = Reserved (must be zero)

1 1 = Alternate gate A20 line active

0 1 = Alternate hot CPU reset

Hardware Environment 59

Power-On Password

There are eight bytes in CMOS RAM reserved for a 1-7 byte password and a
check character for that password. The microprocessor accesses these
bytes during POST. These bytes cannot be accessed by a user program.

These eight bytes are initialized to zeros and are changed to the password
during password installation. Passwords can only be changed during POST
via the program on the reference diskette which is supplied with MCA
compatible systems.

Models 25 and 30: Power-on password is not supported in IBM PS/2 Models
25 and 30, and compatibles.

NMI Mask

60

The NMI (nonmaskable interrupt) input to the microprocessor is masked off
at power-on reset. Bit 7 of 110 address 0070h is set to zero to enable the
NMI. A power-on reset sets this bit to one.

ABIOS for IBM PS/2 Computers and Compatibles

Hardware 1/0 Port List

Table: Hardware 110 Port Definitions

Read/Write
110 Address Status Description

OOOOh R/W OMA channel 0, memory address register

0001h R/W OMA channel 0, transfer count register

0002h R/W OMA channel 1 , memory address register

0003h R/W OMA channel 1 , transfer count register

0004h R/W OMA channel 2, memory address register

0005h R/W OMA channel 2, transfer count register

0006h R/W OMA channel 3, memory address register

0007h R/W OMA channel 3, transfer count register

0008h R OMA channel 0-3, status register, where:
Bit 7 = 1 Channel 3 request
Bit 6 = 1 Channel 2 request
Bit 5 = 1 Channel 1 request
Bit 4 = 1 Channel 0 request
Bit 3 = 1 Terminal count on channel 3
Bit 2 = 1 Terminal count on channel 2
Bit 1 = 1 Terminal count on channel 1
Bit 0 = 1 Terminal count on channel 0

OOOAh R/W OMA channel 0-3, mask register, where:
Bits 7-3 = 0 Reserved
Bit 2 = o Clear mask Bit

= 1 Set mask Bit
Bits 1-0 = OOb Select channel 0

= 01 b Select channel 1
= 1 Ob Select channel 2
= 11 b Select channel 3

OOOBh w OMA channel 0-3, mode register, where:
Bits 7-6 = OOb Demand mode

= 01b Signal mode
= 1 Ob Block mode
= 11 b Cascade mode

Bits 5-4 = 0 Reserved
Bits 3-2 = OOb Verify operation

= 01 b Write operation
= 1 Ob Read operation
= 11 b Reserved

Bits 1-0 = OOb Select channel 0
= 01b Select channel 1
= 1 Ob Select channel 2
= 11 b Select channel 3

OOOCh w OMA Clear Byte Pointer

OOODh w OMA Master Clear Byte

continued

Hardware Environment 61

Hardware 1/0 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

OOOEh w DMA Channel 0-3 Clear Mask Register

OOOFh w DMA channel 0-3, write mask register, where:
Bits 7-4 = O reserved
Bit 3 = O unmask channel 3 mask bit

= 1 set channel 3 mask bit
Bit 2 = 0 unmask channel 2 mask bit

= 1 set channel 2 mask bit
Bit 1 = 0 unmask channel 1 mask bit

= 1 set channel 1 mask bit
Bit 0 = O unmask channel O mask bit

= 1 set channel 0 mask bit

0018h w DMA extended function register, where:
Bits 7-4 = Progress command, where:

OOh 1/0 address register
01h Reserved
02h Memory address register write
03h Memory address register read
04h Transfer count register write
05h Transfer count register read
06h Status register read
07h Mode register
08h Arbus register
09h Mask register set single bit
OAh Mask register reset single bit
OBh-OCh Reserved
ODh Master clear
OEh-OFh Reserved

Bits 3-0 = 0 Reserved

001Ah R/W DMA extended function execute register

0020h R PIC, Interrupt request/In-service registers pro-
grammed by Operation Command Word 3
(OCW3):

Interrupt request register, where:
Bits 7-0= 0 No active request for the car-

responding interrupt line
= 1 Active request for the correspond-

Ing Interrupt line

Interrupt In-service register, where:

Bits 7-0 = 0 The corresponding Interrupt line Is
not currently being serviced

= 1 The corresponding Interrupt line is
currently being serviced

continued

62 ABiOS for IBM PS/2 Computers and Compatibles

Hardware 1/0 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

0020h w PIC, lnltlallzatlon Command Word 1 (ICW1) (Bit
4 Is one), where:
Bits 7-5 = 000 Only used in 80/85 mode
Bit 4 = 1 Reserved
Bit 3 = 0 Edge triggered mode

= 1 Level triggered mode
Bit 2 = 0 Successive Interrupt vectors are

separated by eight bytes
= 1 Successive Interrupt vectors are

separated by four bytes
Bit 1 = O Cascade mode

= 1 Single mode - no ICW3 needed
Bit 0 = 0 No ICW4 needed

= 1 ICW4 needed

0021h w PIC, ICW2, ICW3, or ICW4 In sequential order
after ICW1 written to Port 0020h

ICW2, where:
Bits 7-3 =Address lines AO-A3 of base vector

address for Interrupt controller
Bits 2-0 = 000 Reserved

ICW3, where:
Bits 7-0 = 0 Slave controller not attached to

corresponding Interrupt pin
= 0 Slave controller attached to

corresponding Interrupt pin

ICW4, where:
Bits 7-5 = 000 Reserved
Bit 4 = 0 No special fully-nested mode

= 1 Special fully-nested mode
Bits 3-2 = 00 Non-buffered mode

= 01 Non-buffered mode
= 10 Buffered mode/slave
= 11 Buffered mode/master

Bit 1 = 0 Normal EOI
= 1 Auto EOI

Bit 0 = 0 80/85 mode
= 1 8086/8088 mode

0021h R/W PIC, Interrupt mask register (OCW1) , where:
Bit 7 = 0 Enable parallel printer Interrupt
Bit 6 = 0 Enable diskette Interrupt
Bit 5 = 0 Enable fixed disk Interrupt
Bit 4 = 0 Enable serial port 1 Interrupt
Bit 3 = 0 Enable serial port 2 Interrupt
Bit 2 = 0 Enable video Interrupt
Bit 1 = 0 Enable keyboard Interrupt
Bit 0 = 0 Enable timer interrupt

continued

Hardware Environment 63

Hardware 110 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

0021h w PIC, OCW2 (Bit 4 Is zero, Bit 3 Is zero), where:
Bits 7-5 = 000 Rotate In automatic EOI mode

(clear)
= 001 Non-specific EOI
= 01 O No operation
= 011 Specific EOI
= 100 Rotate In automatic EOI mode

(set)
= 101 Rotate on non-specific EOI

command
= 11 O Set priority command
= 111 Rotate on specific EOI

command
Bit 4 = 0 Reserved
Bit 3 = 0 Reserved
Bits 2-0 = Interrupt request to which the

command applies

0020h w PIC, OCW3 (Bit 4 Is zero, Bit 3 Is one), where:
Bit 7 = 0 Reserved
Bits 6-5 = 00 No operation

= 01 No operation
= 10 Reset special mask
= 11 Set special mask

Bit 4 = O Reserved
Bit 3 = 1 Reserved
Bit 2 = 0 No poll command

= 1 Poll command
Bits 1-0= OONo operation

= 01 No operation
= 10 Read Interrupt request register

on next read at Port 0020h
= 11 Read Interrupt In-service register

on next read at Port 0020h

0040h R/W Programmable Interrupt Timer - Read/write
counter 0

0042h R/W Programmable Interrupt Timer - Read/write
counter 2

continued

64 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 1/0 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

0043h w PIT, control word register for counters 0 and
2, where:
Bits 7-6 = OOb Select counter O

= 01 b Reserved
= 1 Ob Select counter 2

Bits 5-4 = OOb Counter latch command
= 01b Read/write counter bits 0-7

only
= 1 Ob Read/write counter bits 8-15

only
= 11 b Read/write counter bits 0-7

first, then bits 8-15
Bits 3-0 = OOOb Mode 0 select

= 001 b Mode 1 select
= X1 Ob Mode 2 select
= X11b Mode 3 select
= 1 OOb Mode 4 select
= 101 b Mode 5 select

Bit 0 = 0 Binary counter 16 bits
= 1 Binary coded decimal counter

0044h w PIT, read/write counter 3

0047h w PIT, control word register for counter 3, where:
Bits 7 -6 = OOb Select counter 3

= 01 b Reserved
= 1 Ob Reserved
= 11 b Reserved

Bits 5-4 = OOb Counter latch command
select counter 0

= 01b Read/write counter bits 0-7
only

= 1 Ob Reserved
= 11 b Reserved

0060h R/W Keyboard/auxlllary data port

0061h R System control port B, where:
Bit 7 = 1 Parity check
Bit 6 = 1 Channel check
Bit 5 = 1 Timer 2 output
Bit 4 = 1 Toggle with each refresh request
Bit 3 = 0 Channel check enabled
Bit 2 = 0 Parity check enabled
Bit 1 = 1 Speaker data enabled
Bit 0 = 1 Timer 2 gate to speaker enabled

continued

Hardware Environment 65

Hardware 1/0 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
110 Address Status Description

0061h w System control port B, where:
Bit 7 = 1 Reset timer 0 output latch (IRQ 0)
Bits 6-4 = Reserved
Bit 3 = 0 Enable channel check
Bit 2 = 0 Enable parity check
Bit 1 = 1 Speaker data enable
Bit 0 = 1 Enable timer 2 gate to speaker

0064h w 8042 Commands

0064h R 8042 Status, where:
Bit 7 = 1 Parity error
Bit 6 = 1 General time out
Bit 5 = 1 Auxiliary output buffer full
Bit 4 = 1 Inhibit switch
Bit 3 = 1 Command/data
Bit 2 = System flag
Bit 1 = 1 Input buffer full
Bit 0 = 1 Output buffer full

0070h w CMOS RAM address register port, where:
Bit 7 = 1 NMI disable

= O NMI enabled
Bits 6-0 = 0 CMOS RAM address

0071h R/W CMOS RAM data register port

0074h w Extended CMOS RAM address register port,
least significant byte

0075h w Extended CMOS RAM address register port,
most significant byte

0076h R/W Extended CMOS RAM data register port

0080h R OMA access

0081h R/W OMA channel 2 , page table address register

0082h R/W. · OMA channel 3, page table address register

0083h R/W OMA channel 1 , page table address register

0087h R/W OMA channel 0, page table address register

0089h R/W OMA channel 6, page table. address register

008Ah R/W OMA channel 7, page table address register

008Bh R/W OMA channel 5, page table address register

008Fh R/W OMA channel 4, page table address register

continued

66 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 110 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

0090h R DMA arbitration register, where:
Bit 7 = 1 System microprocessor cycles

enabled
Bit 6 = 1 Arbitration mask by NMI
Bit 5 = 1 Bus timeout
Bit 4 = O Reserved
Bits 3-0 = Arbitration level

0090h w DMA arbitration register, where:
Bit 7 = 1 Enable system microprocessor

cycle
Bit 6 = 1 Arbitration mask
Bit 5 = 1 Enable extended arbitration
Bits 4-0 = 0 Reserved

0091h w DMA card selected feedback register, where:
Bits 7-1 =Reserved
Bit 0 = 1 Card selected feedback signal

active on previous cycle or
system board 1/0 functions
accessed by an 110 cycle

0092h R/W System control port A, where:
Bit 7 = 1 Fixed disk activity light bit A on
Bit 6 = 1 Fixed disk activity light bit B on
Bit 5 = X Reserved
Bit 4 = 1 Watchdog timeout occurred
Bit 3 = 1 Security lock latch locked
Bit 2 = X Reserved
Bit 1 = 1 Alternate gate A20 active
Bit O = 1 Alternate hot reset

0094h R/W System board setup enable register, where:
Bit 7 = 0 Enable system board setup

= 1 Disable system board setup
Bit 6 = 1 Reserved
Bit 5 = O Enable VGA setup

= 1 Disable VGA setup
Bits 4-0 = 1 Reserved

0096h R/W POS channel position select register, where:
Bit 7 = 1 Channel 1 reset
Bits 6-4 = Reserved (written as 0, read as 1)
Bit 3 = 1 Channel select
Bits 2-0 = 0 Channel number

OOAOh R/W Programmable Interrupt Controller 2

continued

Hardware Environment 67

Hardware 1/0 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

OOA1h R/W Programmable Interrupt Controller 2 mask,
where:
Bit 7 = 0 Reserved
Bit 6 = 0 Enable fixed disk Interrupt
Bit 5 = 0 Enable 80387 exception interrupt
Bit 4 = 0 Enable mouse interrupt
Bit 3 = O Reserved
Bit 2 = O Reserved
Bit 1 = 0 Enable redirect cascade
Bit 0 = 0 Enable real time clock interrupt

OOCOh R/W OMA channel 4, memory address register

OOC2h R/W OMA channel 4, transfer count register

OOC4h R/W OMA channel 5, memory address register

OOC6h R/W OMA channel 5, transfer count register

OOC8h R/W OMA channel 6, memory address register

OOCAh R/W OMA channel 6, transfer count register

OOCCh R/W OMA channel 7, memory address register

OOCEh R/W OMA channel 7, transfer address register

OOOOh R OMA channel 4-7, status register, where:
Bit 7 = 1 Channel 7 request
Bit 6 = 1 Channel 6 request
Bit 5 = 1 Channel 5 request
Bit 4 = 1 Channel 4 request
Bit 3 = 1 Terminal count on channel 7
Bit 2 = 1 Terminal count on channel 6
Bit 1 = 1 Terminal count on channel 5
Bit 0 = 1 Terminal count on channel 4

0004h R/W OMA channel 4-7, mask register, where:
Bits 7-3 = 0 Reserved
Bit 2 = 0 Clear mask bit

= 1 Set mask bit
Bits 1-0 = OOb Select channel 4

= 01b Select channel 5
= 1 Ob Select channel 6
= 11 b Select channel 7

continued

68 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 1/0 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

OOD6h R/W OMA channel 4-7, Mode Register, where:

Bits 7-6 = OOb Demand mode
= 01 b Single mode
= 1 Ob Block mode
= 11 b Cascade mode

Bit 5 = O Reserved
Bit 4 = 0 Reserved
Bits 3-2 = OOb Verify operation

= 01b Write operation
= 1 Ob Read operation
= 11 b Reserved

Bits 1-0 = OOb Select channel 4
= 01 b Select channel 5
= 1 Ob Select channel 6
= 11 b Select channel 7

OOD8h w OMA Clear Byte Pointer

OODAh w OMA Master Clear

OODCh w OMA Channel 4-7, Clear Mask Register

OODEh w OMA Channel 4-7, Write Mask Register, where:

Bits 7-4 = 0 Reserved
Bit 3 = 0 Unmask channel 7 mask bit

= 1 Set channel 7 mask bit
Bit 2 = 0 Unmask channel 6 mask bit

= 1 Set channel 6 mask bit
Bit 1 = 0 Unmask channel 5 mask bit

= 1 Set channel 5 mask bit
Bit 0 = O Unmask channel 4 mask bit

= 1 Set channel 4 mask bit

FO-FFh R/W Math Coprocessor

0100h R POS Adapter Identification (least significant
byte)

0101h R POS Adapter Identification (most significant
byte)

continued

Hardware Environment 69

Hardware 110 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

010.2h R/W POS register 2 for the system board setup,
where:
Bit 7 = 0 Enable parallel port extended

mode
= 1 Disable parallel port extended

mode
Bits 6, 5 =Parallel port select, where:

= 00 Parallel 1 3BC-3BE
= 01 Parallel 2 278-37A
= 10 Parallel 3 278-27 A
= 11 Reserved

Bit 4 = 1 Enable parallel port, If bit 0 = 1
= 0 Disable parallel port

Bit 3 = 1 System board serial Is serial 1
= 0 System board serial Is serial 2

Bit 2 = 1 Enable serial port, If bit 1 = 1
= 0 Disable serial port

Bit 1 = 1 Enable diskette, If bit 0 = 1
= 0 Disable diskette

Bit 0 = 1 Allows bits 4, 2, and 1 to
enable/ disable devices

= O Disables system board devices
For an adapter card, the following bit Is
defined:
Bit 0 = 1 Enable adapter card

0103h R/W POS register 3, where:
Bits 7-2 =Reserved
Bit 1 = 0 Password disable
Bit 0 =Reserved

0104h R/W POS register 4

0105h R/W POS register 5 for an adapter card, where:
Bit 7 = 0 Channel check condition occurred

= 1 Channel reset
Bit 6 0 Channel check exception status

av all able

0106h R/W POS subaddress extension (least significant
byte)

0107h R/W POS subaddress extension (most significant
byte)

1F0-1F8h R/W Fixed disk

200-20Fh R/W Game port

0278h R/W Parallel 3, Data Port

continued

70 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 110 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
110 Address Status Description

0279h R/W Parallel 3, Status Port, where:
Bit 7 = 0 Busy
Bit 6 = O Acknowledge
Bit 5 = 1 Out of paper
Bit 4 = 1 Printer Is selected
Bit 3 = 0 Error
Bit 2 = O IRQ has occurred
Bits 1-0 = Reserved

027Ah R/W Parallel 3, Control Port, where:
Bits 7-6 = Reserved
Bit 5 = 0 Direction Is write to port

= 1 Direction Is read from port
Bit 4 = 1 Enable IRQ
Bit 3 = 1 Select printer
Bit 2 = 0 Initialize printer
Bit 1 = 1 Automatic llne feed
Bit 0 = 1 Strobe

02F8h w Serial 2, transmitter holding register, where:
Bits 7-0 Data bits 7-0, respectively, when

Divisor Latch Access Bit = 0

02F8h R Serial 2, receiver buffer register, where:
Bits 7-0 = Data bits 7-0, respectively, when

DLAB = 0

02F8h R/W Serial 2, divisor latch, low byte, where:
Bits 7-0 ::; Bits 7-0 of divisor, when DLAB = 1

02F9h R/W Serial 2, divisor latch, high byte
Bits 7-0 =Bits 15-8 of divisor, when DLAB = 1

02F9h R/W Serial 2, Interrupt enable register, where:
Bits 7-4 = O Reserved
Bit 3 = 1 Modem status Interrupt enable
Bit 2 = 1 Receiver line status Interrupt

enable
Bit 1 = 1 Transmitter holding register

empty Interrupt enable
Bit 0 = 1 Received data avallable Interrupt

enable when DLAB = 0

02FAh R Serlal 2, Interrupt Identification register, where:
Bits 7-3 = O Reserved
Bits 2-1 = OOb Modem status Interrupt

= 01b Transmitter holding register
empty Interrupt

= 10b Received data avallable register
Interrupt

= 11b Receiver line status Interrupt
Bit 0 = 0 Interrupt pending

continued

Hardware Environment 71

Hardware 110 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

02FAh w Serial 2, FIFO control register, where:
Bits 7-6 = Receiver FIFO register trigger

OOb = 1 byte
01b = 4 bytes
10b = 8 bytes
11b = 14 bytes

Bits 5-3 = 0 Reserved
Bit 2 =Transmitter FIFO register reset

1 = transmit FIFO register cleared,
counter cleared, bit Is self-
clearing

Bit 1 = Receiver FIFO register reset
1 =receiver FIFO register cleared,

counter cleared, bit is self-
cl earing

Bit 0 = FIFO enable
1 = receiver and transmitter FIFOs

enabled, must be 1 to program
FIFO registers

0 = clears receive and transmit
FIFO registers, enters charac-
ter mode

02FBh R/W Serial 2, line control register, where:
Bit 7 = 1 Divisor latch access

= 0 Receiver buffer, transmitter
holding, or Interrupt enable
registers access

Bit 6 = 1 Set break enable
Bit 5 = Stick parity
Bit 4 = Even parity select
Bit 3 = Parity enable
Bit 2 = Number of stop bits
Bits 1-0 = OOb Word length Is 5 bits

= 01 b Word length Is 6 bits
= 1 Ob Word length Is 7 bits
= 11 b Word length Is 8 bits

02FCh R/W Serial 2, modem control register, where:
Bits 7-5 = 0 Reserved
Bit 4 = 1 Loopback mode
Bit 3 = 1 Enable OUT2 Interrupt
Bit 2 = 1 Force OUT1 active
Bit 1 = 1 Force request-to-send active
Bit 0 = 1 Force data-terminal-ready

active

continued

72 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 110 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

02FDh R Serial 2, line status register, where:
Bit 7 = 0 Reserved
Bit 6 = 1 Transmitter shift and holding

registers empty
Bit 5 = 1 Transmitter holding register

empty
Bit 4 = 1 Break Interrupt
Bit 3 = 1 Framing error
Bit 2 = 1 Parity error
Bit 1 = 1 Overrun error
Bit 0 = 1 Data ready

02FEh R Serial 2 , modem status register, where:

Bit 7 = 1 Data carrier detect
Bit 6 = 1 Ring Indicator
Bit 5 = 1 Data set ready
Bit 4 = 1 Clear to send
Bit 3 = 1 Delta to carrier detect
Bit 2 = 1 Trailing edge ring Indicator
Bit 1 = 1 Delta data set ready
Bit 0 = 1 Delta clear to send

02FFh R/W Serial 2, scratch register

0320h R/W Fixed Disk Adapter Register (8 or 16 bit)

0322h w Fixed Disk Adapter Control Register, where:
Bit 7 = 1 Reset
Bit 6 = 1 Reserved (except during reset)
Bit 5 = 1 16-blt mode (must match bit 2)

= O 8-blt mode
Bit 4-3 = 0 Reserved
Bit 2 = 1 16-blt mode (must match bit 5)

= o 8-blt mode
Bit 1 = 1 Enable Interrupt through Program-

mable Interrupt Controller (hard-
ware Interrupt)

Bit 0

= 0 enable Interrupt through Interrupt
Status Register (port 324h)

= 1 OMA mode
= 0 PIO mode

0322h R Fixed Disk Adapter Status Register, where:
Bit 7-6 = 0 Reserved
Bit 5 = 1 16-blt mode

= o 8-blt mode
Bit 4 = 1 Data transfer requested by adapter
Bit 3 = 1 Direction Is adapter to system

= 0 Direction Is system to adapter
Bit 2 = 1 Busy
Bit 1 = 1 Interrupt request (notification)
Bit 0 = 1 Transfer In progress

continued

Hardware Environment 73

Hardware 1/0 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

0324h w Fixed Disk Adapter Attention Register, where:

Bit 7 = 1 Command control block
Bit 6 = 1 Command specify block
Bit 5 = 1 Sense summary block
Bit 4 = 1 Data transfer requested by system
Bit 3 = 0 Reserved
Bit 2 = 0 Drive 0 select

= 1 drive 1 select
Bit 1 = 0 Reserved
Bit 0 = 1 Abort current command

0324h R Fixed Disk Adapter Interrupt Status Register
where:
Bit 7 = 1 Termination error, bits 0-6 in di-

cate what the error is
Bit 6 = 1 Invalid command
Bit 5 = 1 Command reject
Bit 4-3 = O Reserved
Bit 2 = 0 Drive 0 selected

= 1 Drive 1 selected
Bit 1 = 1 Error recovery procedure Invoked
Bit 0 = 1 Equipment check

0378h R/W Parallel 2, data port

0379h R/W Parallel 2, status port, where:

Bit 7 = 0 Busy
Bit 6 = 0 Acknowledge
Bit 5 = 1 Out of paper
Bit 4 = 1 Printer Is selected
Bit 3 = O Error
Bit 2 = O IRQ has occurred
Bits 1 , 0 = Reserved

037Ah R/W Parallel 2, control port, where:
Bit 7-6 =Reserved
Bit 5 = 0 Direction Is write to port

= 1 Direction Is read from port
Bit 4 = 1 Enable IRQ
Bit 3 = 1 Select printer
Bit 2 = 0 Initialize printer
Bit 1 = 1 Automatic line feed
Bit 0 = 1 Strobe

03B4h R/W VGA CRT controller Index register (mono)

03B5h R/W Other VGA CRT controller registers (mono)

03BAh R VGA Input status register 1 (mono)

03BAh w VGA feature control register (mono)

continued

74 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 1/0 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

03BCh R/W Parallel 1 , data port

03BDh R/W Parallel 1, status port, where:
Bit 7 = o Busy
Bit 6 = 0 Acknowledge
Bit 5 = 1 Out of paper
Bit 4 = 1 Printer Is selected
Bit 3 = 0 Error
Bit 2 = 0 IRQ has occurred
Bits 1 , 0 = Reserved

03BEh R/W Parallel 1, control port, where:
Bit 6 =Reserved
Bit 5 = 0 Direction is write to port

= 1 Direction Is read from port
Bit 4 = 1 Enable IRQ
Bit 3 = 1 Select printer
Bit 2 = 0 Initialize printer
Bit 1 = 1 Automatic line feed
Bit 0 = 1 Strobe

03COh R/W VGA attribute address register
-~,.....,-

03COh w Other VGA attribute registers

03C1h R Other VGA attribute registers

03C2h w VGA miscellaneous output register

03C2h R VGA Input status register 0

03C3h R/W VGA video subsystem enable

03C4h R/W ·VGA sequencer address register

03C5h R/W Other VGA sequencer registers

03C6h R/W Video DAC PEL mask

03C7h w Video DAC PEL address, read mode

03C7h R Video DAC state register

03C8h R/W Video DAC PEL address, write mode

03C9h R/W Video DAC PEL data register

03CAh R VGA feature control register

03CCh R VGA miscellaneous output register

03CEh R/W VGA graphics registers, address register

03CFh R/W VGA and other graphics registers

continued

Hardware Environment 75

Hardware 110 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

0304h R/W VGA CRT controller Index register (color)

03D5h R/W Other VGA CRT controller registers (color)

03DAh R VGA Input status register 1 (color)

03DAh w VGA feature control register (color)

03FOh R Diskette controller status register A, where:
Bit 7 = 1 Interrupt pending
Bit 6 = O Second drive Installed
Bit 5 = 1 Step
Bit 4 = 1 Track 0
Bit 3 = 1 Head 1 select
Bit 2 = 0 Index
Bit 1 = O Write protect
Bit 0 = 0 Data received by controller

03F1h R Diskette controller status register B. where:
Bit 7-6 = 0 Reserved
Bit 5 = Drive select
Bit 4 =Write data
Bit 3 =Read data
Bit 2 = Write enable
Bit 1 = 1 Motor enable 1
Bit 0 = 1 Motor enable 0

03F2h w Diskette controller digital output register, where:
Bit 7-6 = 0 Reserved
Bit 5 = 1 Motor enable 1
Bit 4 = 1 Motor enable 0
Bit 3 = 0 Allow Interrupts
Bit 2 = 0 Controller reset
Bit 1 = 0 Reserved
Bit 0 = 0 Drive select 0

= 1 Drive select 1

03F4h R Diskette controller status register, where:
Bit 7 = 1 Data register Is ready
Bit 6 = 1 Transfer Is from controller to

system
= 0 Transfer Is from system to

controller
Bit 5 = 1 Non-OMA mode
Bit 4 = 1 Diskette controller busy
Bit 3-2 = Reserved
Bit 1 = 1 Drive 1 busy
Bit 0 = 0 Drive 0 busy

03F5h R/W Diskette controller data registers

continued

76 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 110 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

03F7h R Diskette controller digital Input register where:
Bit 7 = Diskette change
Bits 6-1 = Reserved
Bit 0 = 0 High density select

03F7h w Diskette controller configuration control
register, where:
Bits 7-2 = Reserved
Bits 1-0 = OOb 500 kbs mode

= 01 b Reserved
= 1 Ob 250 kbs mode
= 11 b Reserved

03F8h w Serial 1 , transmitter holding register, where:
Bits 7-0 = Data bits 7-0, respectively,

when Divisor Latch Access Bit
(DLAB) = 0

03F8h R Serial 1 , receiver buffer register, where:
Bits 7-0 = Data bits 7-0, respectively,

when DLAB = 0

03F8h R/W Serial 1 , divisor latch, low byte, where:
Bits 7-0 = Bits 7-0 of divisor, when DLAB = 1

03F9h R/W Serial 1 , divisor latch, high byte, where:
Bits 7-0 = Bits 15-8 of divisor, when

DLAB = 1

03F9h R/W Serial 1 , interrupt enable register, where:
Bits 7-4 = 0 Reserved
Bit 3 = 1 Modem status Interrupt enable
Bit 2 = 1 Receiver line status Interrupt

enable
Bit 1 = 1 Transmitter holding register

empty interrupt enable
Bit 0 = 1 Received data available Interrupt

enable when DLAB = 0

03FAh R Serial 1 Interrupt ID Register, where:
Bits 7-3 = 0 Reserved
Bits 2-1 = OOb Modem status Interrupt

01b Transmitter holding register
empty Interrupt

10b Received data available
register Interrupt

11b Receiver line status Interrupt
Bit 0 = 0 Interrupt pending

continued

Hardware Environment 77

Hardware 1/0 Port List, Continued

Table: Hardware 1/0 Port Definitions, cont'd

Read/Write
1/0 Address Status Description

03FAh w Serial 1, FIFO Control Register, where:
Bits 7-6 = Receiver FIFO register trigger

OOb = 1 byte
01b = 4 bytes
10b = B bytes
11 b = 14 bytes

Bits 5-3 = 0 Reserved
Bit 2 = Transmitter FIFO register reset

1 = transmit FIFO register cleared,
counter cleared, bit Is self-
clearing

Bit 1 = Receiver FIFO register reset
1 = receiver FIFO register cleared,

counter cleared, bit Is self-
clearing

Bit 0 = FIFO enable
1 = receiver and transmitter FIFOs

enabled, must be 1 to program
FIFO registers

0 = clears receive and transmit
FIFO registers, enters
character mode -

03FBh R/W Serial 1 , Line Control Register, where:
Bit 7 = 0 Receiver Buffer, Transmitter

Holding, or Interrupt Enable
Registers Access '

= 1 Divisor Latch Access
Bit 6 = 1 Set Break Enabled
Bit 5 = Stick Parity
Bit 4 = Even Parity Select
Bit 3 = Parity Enable
Bit 2 = 0 1 Stop Bit

= 1 0 Stop Bits
Bits 1-0 = OOb 5 Bit Word Length

01 b 6 Bit Word Length
1 Ob 7 Bit Word Length
11 b 8 Bit Word Length

03FCh R/W Serial 1 , Modem Control Register, where:
Bits 7-5 = 0 Reserved
Bit 4 = 1 Loopback mode
Bit 3 = 1 Enable OUT2 Interrupt
Bit 2 = 1 Force OUT1 active
Bit 1 = 1 Force request to send active
Bit 0 = 1 Force data terminal ready active

continued

78 ABIOS for IBM PS/2 Computers and Compatibles

Hardware 110 Port List, Continued

Table: Hardware 110 Port Definitions, cont'd

Read/Write
110 Address Status Description

03FDh R/W Serial 1 , Line Status Register, where:

Bit 7 = 0 Reserved
Bit 6 = 1 Transmitter shift and holding regis-

tars empty
Bit 5 = 1 Transmitter holding register empty
Bit 4 = 1 Break Interrupt
Bit 3 = 1 Framing error
Bit 2 = 1 Tralllng edge ring Indicator
Bit 1 = 1 Overrun error
Bit O = 1 Data ready

03FEh R Serial 1 Modem Status Register, where:
Bit 7 = 1 Data carrier detect
Bit 6 = 1 Ring Indicator
Bit 5 = 1 Data set ready
Bit 4 = 1 Clear to send
Bit 3 = 1 Delta data carrier detect
Bit 2 = 1 Tralllng edge ring Indicator
Bit 1 = 1 Delta data set ready
Bit 0 = 1 Delta clear to send

03FFh R Serial 1 , Scratch register

0680h w Manufacturing checkpoint port

3220-3227h See Serial Port 3 (see description for addresses
03F8h-03FFh 03F8h-03FFh for details).

3228-322Fh See Serial Port 4 (see description for addresses
03F8h-03FFh 03F8h-03FFh for details).

4220-4227h See Serial Port 5 (see description for addresses
03F8h-03FFh 03F8h-03FFh for details).

4228-422Fh See Serial Port 6 (see description for addresses
03F8h-03FFh 03F8h-03FFh for details).

5220-5228h See Serial Port 7 (see description for addresses
03F8h-03FFh 03F8h-03FFh for details).

5228-522Fh See Serial Port 8 (see description for addresses
03F8h-03FFh 03F8h-03FFh for details).

Hardware Environment 79

Chapter 3

ABIOS Data Structures

Overview

Description

ABIOS makes use of data structures to link ABIOS services/functions to the
operating system. The data structures reside in system memory and are
initialized during ABIOS initialization. The ABIOS data structures are the

• Common Data Area,

• Function Transfer Tables, and

• Device Blocks.

continued

ABIOS Data Structures 81

Overview, Continued

Data structure relationships

82

Each ABIOS service has a Function Transfer Table and a Device Block asso
ciated with it.

1 . The Function Transfer Table contains address pointers to each ABIOS
function.

2. The Device Block is used by the ABIOS to store interrupt levels, device
status information, and hardware port addresses.

3. The Common Data Area contains a linked list of the Function Transfer
Table and Device Block pointer pairs associated with each service, as well
as device memory pointers (if any) associated with a given device.

Anchor Pointer Data Structure Relationships

Common
Da.ta Area

©
Logical ID

Entries

Device Block

©
Device s

Block Pointers H-~IM Device tatus

Function
Transfer Table

Pointers

Data Pointers

Function
Transfer Table

©
Function
Pointers

Device Memory

ABIOS Service

ABIOS
Functions

Hardware Device

continued

ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

In this chapter

This chapter defines the internal components of each kind of ABIOS data
structure. The following topics are discussed:

• Common Data Area

• Function Transfer Tables

• Device Blocks

• Related Information

ABIOS Data Structures 83

Common Data Area

Introduction

Created during ABIOS initialization, the Common Data Area (CDA) is pro
vided so that operating systems that use both the real and protected ad
dress modes (or a combination of both) of the system microprocessor can
be implemented. The main features of the Common Data Area are outlined
below:

Logical Device Block
ID Pointer

01h Function
Transfer Table

Logic al Device Block
ID Pointer

02h Function
Transfer Table

Logical Device Block
ID Pointer
nnh Function

Transfer Table

Data Pointer 0
Length, Offset, Segment

Data Pointer 1
Length, Offset, Segment

Data Pointer xxh
Length, Offset, Segment

Common Data Area

Number: One per processor mode
(See Chapter 4.)

Kind: Vector table

Access: ABIOS & Operating System

Description:
The Common Data Area contains pointers to the
Device Block and Function Transfer Table associ
ated with each ABIOS service. It also contains
pointers to the device memory (If any) accessed
by any ABIOS-supported device.

The pointers contained In the Common Data Area
are divided Into two arrays:
• The first array contains pairs of pointers to the

Device Blocks and Function Transfer Tables.
Each pair of entries Is Indexed by Logical ID.

• The second array contains pointers to the de
vice memory (If any) accessed by any ABIOS
supported device.

Real mode/protected mode CDAs

84

The Common Data Area acts as a link between all ABIOS pointers. It gathers
them all in one structure, allowing an operating system to manage the ABIOS
requests in both real and protected modes. There must be a Common Data
Area in both the real mode and the protected mode if both address modes
are used by the operating system.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Common Data Area, Continued

The Anchor Pointer

Every time the operating system makes a request of the ABIOS, it passes a
segment or selector (the offset is assumed to be zero) to the ABIOS. This
selector points to the Common Data Area and is called the Anchor Pointer to
the Common Data Area.

Device IDs and Logical IDs

Device IDs are physical device identifiers that are attached to each device
known to the ABIOS. Each Device ID may have one or more Logical IDs. A
Logical ID is a device handle used by the operating system to make a call to
the ABIOS. Logical IDs are assigned during ABIOS initialization.

Device Data pointers

The Common Data Area data pointers point to system data areas such as
the CBIOS Data Area. Additional data pointers may be defined and used by
individual services. The data areas pointed to by the data pointers are per
manently resident in RAM data areas reserved by the operating system.

Null entries into the Common Data Area

If the Function Transfer Table Pointer and the Device Block Pointer Fields are
both set to OOOO:OOOOh after initialization, the associated Logical ID must be
thought of as a null Common Data Area entry. The entire entry for this
Logical ID is used as a temporary place holder at initialization time.

continued

ABIOS Data Structures 85

Common Data Area, Continued

Common Data Area structure

Offset Bytes Description

OOh 2 OFFSET TO DATA POINTER 0
Combined with the Anchor Pointer, Is a pointer to the
Data Pointer 0 Length field.

02h 2 COUNT OF LOGICAL IDS
Number of Device Block and Function Transfer Table
pointer pairs

04h 4 Reserved

08h 4 Pointer to Device Block for Logical ID 2.

OCh 4 Pointer to Function Transfer Table for Logical ID 1.

10h 4 Pointer to the Device Block for Logical ID 2.

14h 4 Pointer to the Function Transfer Table for Logical ID 2.

(08h*n) 4 Pointer to the Device Block for Logical ID n.

(08h*n) + 04h 4 Pointer to the Function Transfer Table for Logical ID n.

(08h*n) + 08h 2 LENGTH OF THE INDICATED DATA POINTER
Data pointer length of the data areas Indicated by an
associated data pointer.

(08h*n) + OAh 2 OFFSET OF THE INDICATED DATA AREA
Combined with associated data pointer segment, lndl-
cates the location of the beginning of the data area.

(08h*n) + OCh 2 DATA AREA POINTER SEGMENT
Combined with Its associated offset, indicates the lo-
cation of the beginning of the data area.

(08h*n) + OEh 2 Length of the data pointer for pointer p - 1 .

(08h*n) + 10h 2 DAT A AREA OFFSETS
Combined with an associated segment to construct the
pointer to the data area for pointer p - 1 .

(08h*n) + 12h 2 DAT A AREA SEGMENTS
Combined with an associated data area offset to con-
struct the pointer to the data area for pointer p - 1 .

(08h*n) + 2 Length of data pointer 0.
(06h*p) + 08h

(08h*n) + 2 DAT A AREA OFFSET
(06h*p) + OAh Combined with an associated segment to construct the

pointer to the data area.

(08h*nJ + 2 DAT A AREA SEGMENTS
(06h*p) + OCh Combined with an associated data area offset to con-

struct the pointer to the data area.

(08h*n) + 2 The total number of data pointers.
(06h*p) + OEh

Note: n is the number of Logical IDs. pis the number of Data Pointers minus one.

86 ABIOS for IBM PS/2 Computers and Compatibles

Function Transfer Table

Description

The Function Transfer Table is a table of vectors to ABIOS entry points.
Each entry contains the four-byte address pointer for each ABIOS function.
Reserved function pointers are initialized to OOOO:OOOOh.

Each logical ID, or each entry in the Common Data Area, has a Function
Transfer Table Pointer. Multiple Logical IDs can have Function Transfer Table
Pointers that point to the same Function Transfer Table and thus establish its
relationship with the Common Data Area.

The main features of the Function Transfer Table are outlined below:

Function Transfer Table

Start Routine Vector--+
Interrupt Routine Vector--+
Time-out Routine Vector--+

Count of functions In service

Function OOh
Function 01 h
Function 02h
Function 03h
Function 04h
Function 05h
Function 06h
Function 07h
Function 08h
Function 09h
Function nnh

Vector--+
Vector-+
Vector-+
Vector-+
Vector-+
Vector-+
Vector-+
Vector-+
Vector-+
Vector-+
Vector-+

Number: One per ABIOS service and one per
processor mode used (See Chapter 4
In this volume.)

Kind: Double Word Vector table

Access: ABIOS and operating system

Description:
The Function Transfer Table contains a list of
double word vectors that supply the entry points
Into one ABIOS service.

The first three entries In each ABIOS Function
Transfer Table are vectors to the start, Interrupt,
and time-out routines contained In an ABIOS
service.

The remaining entries In each Function Transfer
Table are vectors to specific ABIOS functions.
These functions are referred to by function number
In the Request Block Function field.

The start and Interrupt routines check for valid
entry conditions before transferring control to the
function requested. The time-out routine ends a
function that does not receive an interrupt In a
specified amount of time.

continued

ABIOS Data Structures 87

Function Transfer Table, Continued

Function Transfer Table structure

88

The structure of the Function Transfer Table is described in the
following table:

Offset Bytes Description

OOh 4 START ROUTINE POINTER
Pointer to a routine that validates the Function fleld, Re-
quest Block Length fleld, and the Unit fleld. The routine
saves all registers before this field Is used and restores
them after It returns. The routine Is called using a CALL
FAR Indirect to start an ABIOS request.

04h 4 INTERRUPT ROUTINE POINTER
Pointer to a routine that resumes all multlstaged requests
If the operation Is not completed In one request. The rou-
tine saves all registers before this field Is used and re-
stores them after It returns. If this Function Transfer Table
corresponds to a device that does not Interrupt, the Inter-
rupt Routine Pointer Field Is lnltlallzed to OOOO:OOOOh. This
routine Is called using a CALL FAR Indirect to resume a
multlstaged request after an Interrupt Is cleared.

08h 4 TIME-OUT ROUTINE POINTER
Pointer to a routine that aborts the request, and, as a
result, sets the affected hardware controller In a known
state. The routine saves all registers before this routine
executes and restores them after It returns. The Time-out
Routine Is called using a CALL FAR Indirect. It Is used to
terminate a request that does not receive a hardware In-
terrupt within a specified time period. If this Function
Transfer Table corresponds to a device that does not ien-
erate Interrupts, or a device that generates Interrupts ut
never times out, the Time-out Routine Pointer field must
be Initialized by the operating system to OOOO:OOOOh.

OCh 2 FUNCTION COUNT
Contains a count of the number of functions supported by
a device.

OEh 2 Reserved

10h 4 Pointer to the Function 1 Routine.

14h 4 Pointer to the Function 2 Routine.

OCh + (4*n) 4 Pointer to the Function n Routine.

Note: n Is equal to the number of functions specified In this Function Transfer
Table.

ABIOS for IBM PS/2 Computers and Compatibles

Device Block

Description

Each ABIOS device service requires a permanent work area for storing
device interrupt levels, device status information, and hardware port ad
dresses. This work area is called the Device Block.

The main features of the Device Block are summarized in the graphic below:

Public Data

Device Block Length
Revision
Secondary Device ID
Logical ID
Device ID
1/0 Port Pairs

Private Data

Device Unique Data
Unit Unique Data

Public data

Device Block

Number: One per ABIOS service

Kind: Work area

Access: Public data - ABIOS and operating system
Private data - ABIOS only

Description:
Physical devices are linked to the ABIOS services by
Device ID. The ABIOS services, In turn, are linked to the
operating system by Logical ID. Logical IDs are assigned
dynamically by the operating system during ABIOS
Initialization.

The Device Block associated with any ABIOS Service
contains public information such as the Device Block
length, the Logical ID/Device ID pairing, and the 1/0 port
pairs used by the associated ABIOS service. Public
information is accessible by both the operating system
and the ABIOS itself.

The Device Block also contains data that is private to the
individual ABIOS Service and is subject to change in
future ABIOS releases. Typically, Device Block private
data includes the interrupt level, arbitration level, and
device status. Private information must only be accessed
by the ABIOS.

Public Data in the Device Block

• is readable,

• has a format common to all Device Blocks, and

• should not be changed by the caller.

continued

ABIOS Data Structures 89

Device Block, Continued

Private data

Private data in the Device Block

• is used internally by the ABIOS,

• may not have the same format from one Device Block to another,

• may not contain the same kind of data from one Device Block to the
next, and

• should not read or be written to by the caller.

Private data in the Device Block may be altered in future ABIOS releases.

Device Block structure

The structure of the Device Block is described in the following table.

Offset Type Bytes Description

OOh Public 2 DEVICE BLOCK LENGTH
ABIOS returns the required size of the Device
Block here during ABIOS lnltlallzation. The maxi-
mum length Is 65, 535 bytes.

02h Public 1 REVISION
Indicates the ABIOS version/revision level.

03h Public 1 SECONDARY DEVICE ID
Indicates the hardware level that ABIOS supports.
When this field Is Incremented, the Revision Field
reverts to zero.

04h Public 2 LOGICAL ID
The logical Identifier of the device associated with
this Device Block. Logical IDs are set at ABIOS
lnltlalizatlon time. The Logical ID for a ~lven device
Is determined by the index of Its entry nto the
Common Data Area.
The operating system must reserve the first n
Logical IDs for ABIOS use. The number of Logical
IDs to be reserved for ABIOS use Is passed to the
operating system at ABIOS lnltlalizatlon time via
the lnltlallzatlon Table.
(A table describing how the ABIOS Logical IDs are
used follows this table.)

06h Public 2 DEVICE ID
The type of device that the function request ad-
dresses, or the ABIOS Internal call, Is specified In
this field. (A table of valid ABIOS Device IDs fol-
lows.)

continued

90 ABIOS for IBM PS/2 Computers and Compatibles

Device Block, Continued

Device Block structure, cont'd

Offset Type Bytes Description

08h Public 2 COUNT OF LOGICAL ID
EXCLUSIVE PORT PAIRS
Logical ID exclusive port pairs are two ports (input
and output) used by a certain Logical ID. For ex-
ample, 110 ports 0061h and 0062h are used by the
diskette services Logical ID.
If the entry In this field is zero, no space is
allocated for the Logical ID Exclusive Port Pairs
Fields. This field contains the number of Logical ID
Exclusive Port Pairs.

OAh Public 2 COUNT OF LOGICAL ID
COMMON PORT PAIRS
Logical ID common port pairs are ports that are
shared by more than one Logical ID. For example,
the OMA controller ports or Keyboard Controller
ports are used by other Logical IDs. Each Logical
ID that uses one of these ports contains an entry
In the Logical ID Common Port pairs fields of the
Device Block. If this field Is set to zero, no space
Is allocated for the Logical ID Common Port Pairs
Field. This field contains the number of Logical ID
Common Port Pairs for this Request Block.

Varies Private 4 LOGICAL ID EXCLUSIVE PORT PAIRS
Contains the Logical ID Exclusive Port Pairs for
this Request Block. The first word contains the
starting 110 port number; the last word contains
the ending 110 port number.
Note: Every port that an ABIOS Logical ID writes

to or reads from must be accounted for in
either the Logical ID Exclusive Port Pairs or
Logical ID Common Port Pairs Fields.

Varies Private 4 LOGICAL ID COMMON PORT PAIRS
Points to a list of the 110 Port addresses of the
Logical ID Common Port Pairs. The first word
contains the starting 110 port number; the last
word contains the ending 110 port number.
Note: Every port that an ABIOS Logical ID writes

to or reads from must be accounted for In
either the Logical ID Exclusive Port Pairs or
Logical ID Common Port Pairs Fields.

Varies Private 2 DEVICE-UNIQUE DAT A AREA LENGTH
Contains the length In bytes of the Device-Unique
Data Area for this device.

continued

ABIOS Data Structures 91

Device Block, Continued

Device Block structure, cont'd

92

Offset Type Bytes Description

Varies Private Varies DEVICE-UNIQUE DAT A AREA
Information about arbitration levels, Interrupt lev-
els, and device status Is stored In this fleld. Pa-
rameters that describe the device and working
data that concerns this Device ID are stored In
this field. The Information In this field Is data that
Is unique to this particular device. The content and
format of the Information In this field are Private
Data and may change.

Varies Private 2 COUNT OF UNITS
The number of Unit Unique Data Area fields In the
Device Block Is stored In this fleld. If the entry Is
zero, this fleld Is the last field In the Device Block.

Varies Private 2 UNIT -UNIQUE DAT A AREA LENGTH
The length In bytes of a slngle entry In the repeat-
able Unit-Unique Data Area, not Including the
Unit-Unique Data Area Length, Is stored here.
This field wlll be here only If the Count of Units
fleld Is greater than zero.

Varies Private Varies UNIT -UNIQUE DAT A AREA
This repeatable ABIOS Private Data area Is re-
served for each unit of the Device ID. For exam-
pie, lf"the diskette Logical ID Is 01h, a particular
diskette drive wlll be the Unit. This area contains
parameters describing the unit and the working
data for lndlvldual requests. The contents and for-
mat of the data In this field may change, since It
Is ABIOS Private Data. This field wlll be here only
If the Count of Units Fleld Is greater than zero.

Note: n is the last Logical ID reserved for ABIOS internal calls. This value
will vary depending on how many Logical IDs ABIOS must reserve for
internal use, extending, and adding functions. ABIOS passes this value
to the operating system at ABIOS initialization by noting it in the
initialization table.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Device Block, Continued

Table of Logical ID Values

Logical ID How used ••.

OOh Reserved for use by ABIOS.

01h Reserved for use by ABIOS.

02h-xxh Reserved for use by ABIOS. xxh Is specified by the operat-
Ing system In the lnltlallzatlon Table when the ABIOS Is In-
ltlallzed. xxh Is the number of ABIOS logical IDs.

greater than xxh System board ROM, adapter ROM, RAM extension.

Device IDs

The following table lists all valid ABIOS Device IDs.

Device ID Device Type/Service Device ID Device Type/Service

OOh ABIOS Internal Calls OBh Pointing Device
01h Diskette OCh Reserved
02h Fixed Disk ODh Reserved
03h Video OEh CMOS RAM
04h Keyboard OFh Direct Memory Access
05h Parallel Port 10h Programmable Option Select
06h Serial Port 11h Error Log
07h System Timer 12h-15h Reserved
08h Real Time Clock Timer 16h Keyboard Security
09h System Services
OAh Nonmaskable Interrupt

ABIOS Data Structures 93

Related Information

Data structure initialization

The discussion of ABIOS data structures presented in this chapter is confined
to a detailed presentation of data structure internal components. No mention
was made, however, of how these structures are initialized.

For more information on how ABIOS Data Structures are initialized, refer to
Chapter 4.

Request Blocks

In addition to the ABIOS data structures, the ABIOS also interfaces with
RAM-resident parameter blocks called Request Blocks.

The ABIOS caller must initialize one Request Block per function call. The
input, output, and status parameters associated with a given function call are
stored in the Request Block dedicated to that call. Request Blocks associ
ated with completed function calls can be reused.

For a complete discussi.on of Request Block structure, turn to Chapter 5.

Transfer conventions

94

Each time an ABIOS device function is called, the caller must build a
function-specific Request Block, push a set of pointers to the ABIOS Data
Structures onto the stack, and invoke the appropriate function entry routine.

ABIOS functions can be called via either of two transfer conventions: the
operating system transfer convention and the ABIOS transfer convention. The
difference between these two conventions lies in the stack information and
the entry routine called.

For more information on how ABIOS functions are called, turn to Chapter 7.

ABIOS for IBM PS/2 Computers and Compatibles

Overview

Initialization facts

Chapter4

ABIOS Initialization

Before ABIOS can be used, it must be initialized. Here are the key facts
surrounding ABIOS initialization:

• Before ABIOS can be initialized, CBIOS must be initialized and the operat
ing system must be booted.

• ABIOS can only be initialized in the microprocessor's real mode.

• Initializing ABIOS is largely a matter of initializing the ABIOS data
structures.

• In bimodal environments, the operating system must initialize parallel sets
of Common Data Areas and Function Transfer Tables.

continued

ABIOS lnltlallzatlon 95

Overview, Continued

Initialization steps

ABIOS initialization flow is illustrated below.

96

CBIOS INT 15h
AH=04h

Build System
Parameters Table

I
CBIOS INT 15h

AH=05h

Build Initialization
Table

1
Build Common

Data Area

1
Build:

Device Blocks
Function Transfer

Tables

.
t

Build Protected
Mode:

Common Data
Area Function

Transfer Tables

Initialization Flow

STEP 1: Build System Parameters Table
The operating system calls CBIOS INT 15h AH= 04h Build
System Parameters Table. The CBIOS builds the System
Parameters Table in system RAM . The table describes
the system stack requirements, the number of devices
installed in the system, and the entry points to the rou
tines used during the ABIOS Calling Convention.

STEP 2: Build ABIOS Initialization Table
The operating system calls CBIOS INT 15h AH = 05h Build
Initialization Table. The CBIOS builds the Initialization Table
in system RAM. The table defines the information used to
initialize the Device Block and Function Transfer Table
associated with each ABIOS device.

STEP 3: Build Common Data Area
The operating system allocates system memory for the
Common Data Area, Device Blocks, and Function Transfer
Tables. The operating system builds the Common Data
Area, Initializes all Device Block and Function Transfer
Table pointers, and assigns Logical IDs.

STEP 4: Initialize DBs and FTTs
The operating system calls the ABIOS to Initialize the
Device Block (DB) and Function Transfer Table (FTT)as
soclated with each ABIOS service. The Common Data
Area, Device Blocks, and Function Transfer Tables reside
in RAM for as long as ABIOS Is active .

STEP 5: Build Protected Mode Structures
In bimodal or protected mode environments, the operating
system must build protected mode versions of the Com
mon Data Area and Function Transfer Tables. This proc
ess converts real mode segment: offset pointer to pro
tected mode selector:offset format.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

About Request Blocks

Request Blocks, which are initialized by the operating system as each func
tion request arises, are not built as part of the ABIOS initialization process.

For more information on Request Blocks, please refer to Chapter 5.

In this chapter

This chapter details each of the steps required to initialize ABIOS. The follow
ing topics are discussed:

• Step 1 : Build System Parameters Table

• Step 2: Build ABIOS Initialization Table

• Step 3: Build the Common Data Area

• Step 4: Initialize Device Blocks/Function Transfer Tables

• Step 5: Build Protected Mode Tables

• Initializing Logical ID 2: ABIOS Internal Calls

• How ABIOS Supports Multiple Instances of a Device

ABIOS lnltlallzatlon 97

Step 1: Build the System Parameters Table

Introduction

In step 1 of the ABIOS initialization process, the operating system calls
the CBIOS INT 15h AH = 04h Build System Parameters Table function.

The System Parameter table describes the number of devices available
in the system, the ABIOS common entry points and the system stack
requirements.

Once the ABIOS initialization process is complete, the operating system
may deallocate the memory space occupied by the System Parameters
Table.

System Parameter table

The structure of the System Parameter Table is listed below:

Offset Length Description

OOh 4 Bytes COMMON ST ART ROUTINE POINTER
Contains the address of the Common Start Routine entry
point.

04h 4 Bytes COMMON INTERRUPT ROUTINE POINTER
Contains the address of the Common Interrupt Routine
entry point.

08h 4 Bytes COMMON TIME-OUT ROUTINE POINTER
Contains the address of the Common Time-out Routine
entry point.

OCh 2 Bytes ST ACK REQUIRED
Contains the number of bytes of stack memory that Is re-
quired for the particular ABIOS Implementation.

OEh 4 Bytes RESERVED

12h 4 Bytes RESERVED

16h 4 Bytes RESERVED

1Ah 4 Bytes RESERVED

1Eh 2 Bytes NUMBER OF ENTRIES
The ABIOS gathers configuration information by polling the
Common Data Area and by scanning for the presence of
ROM and RAM extensions to the ABIOS.

continued

98 ABIOS for IBM PS/2 Computers and Compatibles

Step 1: Build the System Parameters Table, Continued

Operating system tasks

To build the System Parameters table, the Operating System must

1. Allocate 20h bytes for CBIOS to build the system parameters table.

2. Call CBIOS INT 15h, function AH = 04h, Build System Parameters Table.

3. Optionally deallocate the memory used for the System Parameters Table
after the ABIOS initialization process is complete.

CBIOS Function: INT 15h AH = 04h Build System Parameters Table

The CBIOS Build System Parameters Table function:

1. Establishes the value of the System Parameters Table's Number of Initiali
zation Table Entries field by examining configuration information in CMOS
RAM, the system equipment data area, and by testing for the presence
of those devices with operating code that resides in system ROM.

2. Scans in 2K increments absolute addresses COOOOh to DF800h to deter
mine the presence of adapter ROM (if any), updating the Number of
Initialization Table Entries field accordingly.

3. Scans the RAM extension area pointed to by the parameter passed by the
operating system in the DS register to count the number of entries (if
any) to add to the Number of Initialization Table Entries field.

4. Builds the System Parameter Table in the 20h byte location allocated by
the operating system.

Input/Output

Input: AH = 04h
ES:DI= Pointer to 20h byte location in RAM where the table is to

be built.
DS = Segment where ABIOS RAM Extensions reside. If there are

no RAM extensions, this register must be set to OOOOh.
(ABIOS RAM extension offset is assumed to be OOOOh)

Output: System Parameter Table is output to RAM
AH = OOh If function was successful
CF = 1 Exception error has occurred

All registers except AX and flags are restored.

ABIOS Initialization 99

Step 2: Build ABIOS Initialization Table

Introduction

Once the System Parameters Table is built, the operating system must call
CBIOS INT 15H function AH = 05h to build the ABIOS Initialization Table.

The information contained in the Initialization Table is referred to later in the
ABIOS initialization process in two ways:

• In step 3, the operating system refers to the ABIOS Initialization Table to
determine the size of the Common Data Area, as well as the size of each
Device Block and Function Transfer Table.

• In step 4, the ABIOS refers to the Initialization Table when initializing
Device Blocks and Function Transfer Tables.

Initialization Table Structure

The Initialization Table is made up of fields of 18h bytes. The information in
each field is repeated for each device found by the CBIOS INT15h AH = 05h
Build ABIOS Initialization Table function. The entries making up each field are
described in the following table.

Offset Length Description

OOh 2 Bytes DEVICE ID
The same Device ID can appear more than one time within
the lnltlallzatlon table. Device IDs are listed In Chapters 1
and 3.

02h 2 Bytes NUMBER OF LOGICAL IDs
The maximum number of Logical IDs used by the operating
system Is stored In this field. This field stores the maximum
number of devices that require Device Blocks but are used
by the same code.

04h 2 Bytes DEVICE BLOCK LENGTH
Contains the allocation of storage needed by the Device
Block for this device. If a Device Block Length Is zero, this
entry Is for an ABIOS patch or extension. A zero length
entry means that a Device Block need not be built for this
entry. If the Device Block Length is zero, the operating
system must initialize the Device Block Pointer in the Com-
mon Data Area to OOOO:OOOOh. See Chapter 7 ABIOS Ex-
tensions for more detail on modifying the ABIOS.

continued

100 ABIOS for IBM PS/2 Computers and Compatibles

Step 2: Build the Initialization Table, Continued

Initialization Table Structure, cont'd

Offset Length Description

06h 4 Bytes INITIALIZE DEVICE BLOCK AND
FUNCTION TRANSFER TABLE ROUTINE POINTER
Contains the address, In real address mode, segment: off-
set format, of the routine that will Initialize the Device
Blocks and Function Transfer Tables for an entry In the
Initialization Table. Adapter ROMs and RAM extensions
must also provide this routine to patch, add, extend, or
replace services. See Chapter 7 ABIOS Extensions for
more detail on modifying ABIOS functions.

OAh 2 Bytes REQUEST BLOCK LENGTH
Contains the length of the Request Block required for this
device. Any Request Block size equal or greater to this size
is valid when making a request to the ABIOS.

OCh 2 Bytes FUNCTION TRANSFER TABLE LENGTH
Contains the Function Transfer Table length, in bytes.
If the Function Transfer Table length Is zero, . this entry Is for a patch, . the data area for the Function Transfer Table need not

be allocated, and . the operating system must Initialize the Function
Transfer Table Pointer field In the Common Data Area
to 0000: OOOOh.

OEh 2 Bytes DAT A POINTERS LENGTH
Contains the required length of the data pointer fields In the
Common Data Area.

10h 1 Byte SECONDARY DEVICE ID
Indicates the level of hardware that this ABIOS version
supports.

11 h 1 Byte REVISION
Indicates the device driver revision level that ABIOS sup-
ports for this device.

12h 2 Bytes RESERVED

14h 2 Bytes RESERVED

16h 2 Bytes RESERVED

continued

ABIOS Initialization 101

Step 2: Build the Initialization Table, Continued

Operating system tasks

The operating system must perform the following steps to help build the
Initialization Table:

1 . Allocate an area of memory where the CBIOS will build the Initialization
Table. The area must be 18h times the number of entries in the Initializa
tion Table. The information about the number of entries in the Initialization
Table can be found in the System Parameters Table under the Number of
Entries field.

2. Call INT 15h, function AH = 05h, Build Initialization Table.

Memory allocated for the Initialization Table may be reused by the operating
system after the initialization process is complete.

CBIOS Function: INT 15h AH = 05h Build Initialization Table

The CBIOS Build Initialization Table function must:

1. Use the following order of precedence for Initialization Table entries:

a. system board devices

b. adapter ROM devices (CBIOS uses POST for this search)

c. extension RAM devices.

2. Construct the Initialization Table using information found in system ROMs,
adapter ROMs (if any), and the RAM extensions (if any).

Input/Output

Input: AH = 05h
ES:DI= Pointer to location in RAM where the table is to be built.
DS = Segment of the Extended System RAM data area.

(Offset is assumed to be OOOOh)

Output: ABIOS Initialization Table is output to RAM
AH = OOh If function was successful
CF = 1 Exception error has occurred

All registers except AX and flags are restored.

102 ABIOS for IBM PS/2 Computers and Compatibles

Step 3: Build the Common Data Area

Introduction

Once the System Parameters Table and ABIOS Initialization Table are built,
the operating system has all the information it needs to build the Common
Data Area.

Operating system tasks

The Operating System builds the Common Data Area in the following
sequence:

1 . Allocates memory at offset 0 within a segment for the Common Data
Area. The operating system saves a pointer (called the Anchor Pointer)
to this segment.

2. Allocates memory within the Common Data Area for pointers to the
Device Block and Function Transfer Table associated with each ABIOS
device service.

3. Allocates memory for pointers to the data area (if any) associated with
each ABIOS device service.

4. Initializes the offset to the Data Pointer 1 Field so that it points to the
Data Pointer Length 0 Field in the Common Data Area.

5. Initializes the Data Pointer Count Field to zero.

6. Places the number of Device Block and Function Transfer Table pointer
pairs in the Count of Logical IDs Field in the Common Data Area.

7. Initializes each Device Block Pointer to point to the memory location that
has been allocated for that particular Device Block.

8. Initializes each Function Transfer Table Pointer to point to the memory
location that has been allocated for that particular Function Transfer
Table.

9. Assigns a Logical ID to each pair of Device Block/Function Transfer Table
pointers.

continued

ABIOS lnltlallzatlon 103

Step 3: Build the Common Data Area, Continued

Logical IDs

A Logical ID identifies the logical name of the device associated with one
Device Block.

Logical ID numbering

During step 3 of the ABIOS initialization process, the operating system as
signs Logical ID numbers ordinally, according to the rules defined in the
table below:

Loglcal ID Description

OOh Reserved for use by ABIOS.

01h Reserved for use by ABIOS.

02h-xxh Reserved for ABIOS Internal Calls.
Loglcal IDs 2 to nnh are reserved for ABIOS Internal calls. xxh Is
the number of the last Loglcal ID reserved for ABIOS Internal
calls.
Loglcal ID 2 Is always defined. All remalnln~ entries In the lnltlall-
zatlon Table with Device ID 0 must be lnltla lzed as reserved for
ABIOS Internal calls. This Insures support for patches to the
ABIOS Common Routines.

greater than xxh Reserved for ABIOS Services.
The starting Logical ID assigned to an ABIOS device must be
one greater than nnh. System board, adapter devices, RAM
extension devices are assigned Loglcal ID numbers In this range.

Device OOh and Logical ID 02h

Device OOh is not associated with a particular hardware device but is pro
vided to allow for ABIOS internal calls.

In the ABIOS system ROM, code associated with the ABIOS Common Entry
Routines is contained in the Device OOh service. The operating system al
ways assigns Logical ID 02h to the system ROM Device OOh service.

For more on Common Entry Routines

104

Control can be optionally transferred to any given ABIOS service via the
Common Entry Routines. A complete discussion is found in Chapter 6.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Step 3: Build the Common Data Area, Continued

Device OOh and Logical IDs 02h + xxh

Subsequent instances, if any, of Device OOh correspond to ABIOS extensions
designed to patch the Common Entry Routines contained in the system ROM
Device OOh service. The operating system ordinally assigns a Logical ID to
each subsequent Common Data Area entry with Device OOh.

Logical ID nnh

Once it has assigned Logical IDs to Device OOh, the operating system
assigns a Logical ID, ordinally, to each pair of Device Block/Function Transfer
Table pointers in the Common Data Area.

It is possible for a single ABIOS service to be assigned more than one Logi
cal ID. The number of Logical IDs assigned to a service lies in the relation
ship between the number of hardware devices that will access the service's
code, and the interrupt and/or arbitration level associated with each device.

For more on multiple Logical IDs

For more information on multiple Logical IDs, see How ABIOS Supports
Multiple Instances of a Device later in this chapter.

ABIOS lnltiallzatlon 105

Step 4: Initialize Device Blocks and Function Transfer Tables

Introduction

Whether it is in system ROM, adapter ROM, or in an ABIOS RAM extension,
each ABIOS service contains a routine to initialize the Device Block (DB) and
Function Transfer Table (FTT) associated with that service. Once it has built
the Common Data Area, the operating system calls each of these routines.

Operating system tasks

For each field in the Initialization Table, the operating system must

1. load the CX, DX, and OS registers with the parameters required for entry
into the Device Block and Function Transfer Table initialization routine
associated with the Initialization Table.

2. invoke the initialization routine contained in the Initialize Device Block and
Function Transfer Table Routine pointer entry for the field under consid
eration.

3. after the initialization routine completes, convert all 32-bit Data Pointers
contained in the Common Data Area to segment:offset address format.

Input/Output

106

Here is a definition of the input parameters that must be passed, and the
output parameter that is returned.

Input: CS:IP= Pointer to Initialization Routine
CX = Number of Logical IDs to initialize. This number must be

less than or equal to the number of Logical IDs allowed
by the Number of Logical IDs field in the Initialization
Table.

DX Starting Logical ID
OS = Anchor Pointer to Common Data Area

(Segment value: Offset is assumed to be OOOOh)

Output: AL = OOh Success
01 h Device initialization failure.

All other registers are preserved.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Step 4: Initialize Device Blocks and Function Transfer Tables,
Continued

Initialization routine processing

In initializing Device Blocks and Function Transfer Tables, ABIOS performs
the following actions:

Step Description

1. COMPLETES THE FUNCTION TRANSFER TABLE
When the operating system calls the lnltlallze Device Block and Fune-
tlon Transfer Table Routine, ABIOS Completes the Function Transfer
Table.

• The Function Transfer Table Is completed at the location defined
by the Function Transfer Table pointer In the ~artlng Logical ID
parameter In Register DX.

• When the lnltlallze Device Block and Function Transfer Table routine
is called for adapter ROMs or RAM extensions, each segment value
that is placed in the Function Transfer Table must equal the seg-
ment of its corresponding adapter ROM header or RAM extension
header.

• When the headers and segment values are equal, an operating
system can access the Length Field (given in 512-byte blocks)of
either the adapter ROM or RAM extension header so that the seg-
ment limit can be determined In either bimodal or protected mode
environments.

• When building the protected mode Common Data Area, If offset 0
of the ROM header segment or RAM extension header segment
contains the RAM or ROM signature, offset 2 will contain the length
of the segment (In 512-byte blocks up to a maximum of 7Fh
512-byte blocks).The operating system can use this value to calcu-
late the segment limit.

2. FILLS IN THE DEVICE BLOCK
a. After completing the Function Transfer Table, the Initialize Device

Block and Function Transfer Table Routine completes the Device
Block for the Starting Logical ID Parameter (which Is contained in
DX).

b. The Initialize Device Block and Function Transfer Table Routine
builds a Device Block for each Logical ID up to the Number of Logi-
cal IDs To Initialize Parameter (this value Is contained In CX). It
may affect multiple services.

3. WRITES 32-BIT DEVICE DAT A POINTERS TO THE COMMON DAT A
AREA

a. ABIOS stores any Data Pointers associated with an ABIOS service
(If any) Into the appropriate Data Pointer field In the Common Data
Area.

b. ABIOS increments the Data Pointer Count field as each Data Point-
er Is stored.

c. ABIOS stores a handle to the Data Pointer In the Device Block.
This handle Is an offset to the location In the Common Data Area
where the Data Pointer Is stored.

continued

ABIOS lnitlallzatlon 107

Step 4: Initialize Device Blocks and Function Transfer Tables,
Continued

How the operating system handles error conditions

If the Return Code Parameter (in AL) is not zero upon return from the Initial
ize Device Block and Function Transfer Table Routine, the operating system
should deallocate the associated Device Blocks and Function Transfer Table
Areas and replace the associated Device Block pointers and Function Trans
fer Table pointers with OOOO:OOOOh, making all affected entries into null
Common Data Area entries.

Order of initialization

The Initialize Device Block And Function Transfer Table Routines are called
in the exact order that their respective pointers appear in the Initialization
Table. The order of initialization is system board ROMs, adapter ROM exten
sions, and RAM extensions.

Because ABIOS services contained in system board ROMs are initialized first,
the Initialize Device Block and Function Transfer Table routines for adapter
ROM and RAM extension devices can then easily identify the system board
device services they need.

The initialization routines associated with adapter ROMs and ABIOS RAM
extensions must scan the Common Data Area using the Device ID in the
public portion of the Device Block to identify the system board services that
they need. Once the Device ID is found, the Logical ID, stored in the public
portion of the Device Block, should be used for all additional requests to the
system board ABIOS service.

ABIOS services and initialization

108

The operating system is free to decide not to initialize an ABIOS service
based on the model, device, and revision information for each Initialization
Table entry (OS/2 uses model and submode! number). If the operating
system decides that this information indicates that the ABIOS code is not
appropriate for current hardware, then the initialization of these ABIOS rou
tines may not be performed. Initialization routines are also free not to initial
ize themselves.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Step 4: Initialize Device Blocks and Function Transfer Tables,
Continued

Support for ABIOS extensions

To properly support ABIOS extensions, the operating system must insure that
all entries in the Initialization Table with the same Device ID and Secondary
Device ID are initialized.

Logical ID 02h initialization

In the ABIOS system ROM, the code associated with the ABIOS Common
Entry Routines is contained in the Device OOh service. The operating sys
tem always assigns Logical ID 02h to the system ROM Device OOh service.
The process of initializing Logical ID 02h is a separate subject in itself and
is discussed further in this chapter under the heading "Logical ID 02h
Initialization.

Physical addresses must be converted to segment:offset

Unless they are altered by the operating system, all Data Pointer fields
contained in the Common Data Area remain in 32-bit physical address
format. Before calling the ABIOS, the operating system must translate the
32-bit physical address of each data pointer into segment:offset format.

Data Pointer/Pointer length facts

Here are the most important things to remember about data pointers and
data pointer lengths:

• Data Pointers are stored in the ABIOS service as 32-bit physical ad
dresses in Intel low word/high word format.

• The Initialization Routine initializes the Data Pointer field with this 32-bit
physical address.

• All Data Pointer fields in the Common Data Area are preceded by a Data
Pointer Length Field.

• The Data Pointer Length field specifies the segment limit for a protected
mode or bimodal environment.

• In a bimodal environment, if the Data Pointer Length field is OOOO:OOOOh
in the real mode Common Data ·Area, then an address above 1 MB is
assumed.

ABIOS lnltlallzatlon 109

Step 5: Build Protected Mode Tables

Introduction

In bimodal or protected mode environments, protected mode versions of the
real mode Common Data Area and Function Transfer Tables must be built by
the operating system. The operating system can use the information already
gathered in the real mode Common Data Area and Function Transfer Tables
to build these protected mode tables.

Building the protected mode Common Data Area

The protected mode Common Data Area and the protected mode Function
Transfer Tables pointers are stored in protected mode selector:offset for
mat. The operating system must initialize all protected mode pointers so that
their effective addresses are identical to their real mode, segment:offset
counterparts.

110

The operating system must perform the following the steps in order to build
the protected mode Common Data Area:

Step Description

1 Build the real mode Common Data Area.

2 Allocate memory for the protected mode Common Data Area.

3 Allocate memory for the protected mode Function Transfer Tables.

4 Convert each real mode Device Block Pointer to a protected mode De-
vice Block Pointer.

5 Create a protected mode Function Transfer Table Pointer for each pro-
tected mode Function Transfer Table.

6 Convert each real mode Function Pointer within each real mode Function
Transfer Table to a protected mode Function Pointer.

7 Convert each real mode Data Pointer to a protected mode data pointer.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Step 5: Build Protected Mode Tables, Continued

Building selector descriptors

To build descriptors associated with each selector, the operating system
must know

• the actual physical address of the descriptor,

• the access rights of each segment, and

• the segment limits of each segment.

Pointer characteristics

The Function Transfer Table pointers and the Device Block pointers are data
segment descriptors that can be written to by the operating system. The
expansion direction and limit of each pointer must be maintained by the
operating system.

Function Transfer Table length and Device Block length are returned to the
operating system via the Initialization Table.

Each data pointer's selector must reference a data segment descriptor that
can be written to and has an expansion direction of up. Segment limit is
stored in the Data Pointer Length Field associated with each Data Pointer
entry in the Common Data Area.

All Function Transfer Table pointers must be readable code segment descrip
tors. The Conforming Bit for each pointer is set by the operating system.

If offset zero of either the ROM header segment or the RAM extension
header segment contains the ROM/RAM signature, then offset 2 contains the
length (in 512-byte increments with a limit of 7Fh) of the segment. This
value should be used as the segment limit by the operating system.

The segment limit for ROM/RAM signatures that do not exist must be FFFFh.

Note: A complete description of both ROM and RAM extension headers is
found in Chapter 7.

continued

ABIOS lnltiallzatlon 111

Step 5: Build Protected Mode Tables, Continued

ABIOS 110 privileges

The ABIOS must have 1/0 privilege at all times. Insuring ABIOS 1/0 privilege is
the responsibility of the operating system, particularly when the operating
system calls the ABIOS using multiple privilege levels or as a conforming
code segment.

Null Common Data Area entries

112

Each null entry in the real mode Common Data Area must have a corre
sponding null entry in the protected mode Common Data Area.

When the protected mode version of each Function Transfer Table is initial
ized, each entry in the protected mode version that has a corresponding real
mode entry equal to OOOO:OOOOh must also equal OOOO:OOOOh.

The offset fields in the Function Transfer Table must be the same for the
corresponding entries in both the real mode and the protected mode tables.

The Device Block pointers for each Logical ID entry in both the real mode
and the protected mode Common Data Areas must point to the same De
vice Block.

ABIOS for IBM PS/2 Computers and Compatibles

Initializing Logical ID 2: ABIOS Internal Calls

Introduction

The data structures associated with Logical ID 2 are reserved for ABIOS
internal calls.

How reserved Data Pointers are initialized

Data Pointers 0, 1, and 2 in the Common Data area are initialized by Logical
ID 2. The operating system initializes reserved Data Pointers in the Common
Data Area when the Initialize Device Block and Function Transfer Table Rou
tine is called for Logical ID 2.

The purpose of these data pointers is to allow a single common data pointer
to be used in common by several ABIOS devices. The reserved data point
ers are:

Data Pointer
Number Physical Value Limit Description

0 400h 0100h BIOS Data Area

1 EOOO:OOOOh FFFFh First 64K of System Board ROM

2 FOOO:OOOOh FFFFh Second 64K of System Board
ROM

How the Function Transfer Table is initialized

When the Initialize Device Block and Function Transfer Table Routine is called
for Logical ID 2, this routine must perform the following actions:

Place the address of the ••• at •••

Common Start Routine the Start Routine pointer In the Function
Transfer Table for Logical ID 2.

Common Interrupt Routine the Interrupt Routine pointer In the Function
Transfer Table for Logical ID 2.

Common Time-out Routine the Time-out Routine pointer In the Function
Pointers Transfer Table for Logical ID 2.

continued

ABIOS lnltlallzatlon 113

lnltlallzlng Logical ID 2: ABIOS Internal Calls, Continued

Logical ID 2 Function Transfer Table entry

The Initialization Table entry for the first Device ID that is a zero must have a
Function Transfer Table length of 1 Oh or greater, since the first 1 Oh bytes
are reserved. The Function Transfer Table length must be more than 1 Oh if
there are ABIOS internal functions.

The Function Transfer Table entry for Logical ID 2 is described in the
following table:

Offset Length Description

OOh 4 Bytes Common Start Routine Pointer

04h 4 Bytes Common Interrupt Routine Pointer

08h 4 Bytes Common Time-out Routine Pointer

OCh 2 Bytes Function Count (should be zero)

OEh 2 Bytes Reserved

114 ABIOS for IBM PS/2 Computers and Compatibles

How ABIOS Supports Multiple Instances of a Device

When a service supports more than one device

Once it has initialized all Device ID OOh structures, the operating system
moves on to nonzero Device IDs, assigning Logical IDs ordinally. Occasion
ally, an ABIOS service supports more than one instance of a device. The
number of Device Blocks required by the service depends on how the indi
vidual devices are distinguished. There are two cases.

Case 1: Separate interrupt and arbitration levels

l Serial
Port 1

Common
,...,

Data Area Serial Port Device Request
I- LID nnh Service Block H Block

DB Pointer Function (Port 1)
FTT Pointer Transfer

Operating Table
System H

Fune. 01h Fune. 01h
r\

LJ Request LiD nnh + 1 Device
H DB Pointer Block I-Block FTT Polnter (Port 2)

'--'

J Serial
Port 2

When multiple copies of a device require separate interrupt or arbitration
levels, each device requires its own Device Block. Thus each device is
logically identified with a separate Logical ID. Even though they require
multiple Device Blocks and Logical IDs, each device must share the same
device driver code. As such, the Function Transfer Table pointer associated
with each Device Block can be initialized to point to the same structure. In
other words, device services that support separate interrupt and arbitration
levels still only require one Function Transfer Table.

The ABIOS Serial Port Service, for example, supports up to eight physical
serial ports. Since each serial port requires a separate interrupt and arbitra
tion level, each serial port is associated with a separate Logical ID. The
ABIOS Serial Port Service interfaces with up to eight Device Blocks; all Serial
Port Service functions, however, are located by one Function Transfer Table.

continued

ABIOS Initialization 115

How ABIOS Supports Multiple Instances of a Device, Continued

Case 2: Share interrupt and arbitration levels

Operating
System

Request
Block

Fune. 01h

Unit #1

Request
Block

Fune. 01h

Unit #2

Common
Data Area

Function
Transfer

Table

Diskette
Service

Device
Block

When multiple copies of a device share the same interrupt and arbitration
levels, they are distinguished from each other by the Device Block unit
number field. Device Services of this type require only one Device Block,
and one function Transfer Table.

The ABIOS Diskette Service supports two physical diskette drives. Each
diskette drive is identified by unit number.

116 ABIOS for IBM PS/2 Computers and Compatibles

Related Information

Request Blocks

In addition to the ABIOS data structures, the ABIOS also interfaces with
RAM-resident parameter blocks, called Request Blocks.

The ABIOS caller must initialize one Request Block per function call. The
input, output, and status parameters associated with a function call are
stored in the Request Block dedicated to that call. Request Blocks associ
ated with completed function calls can be reused.

For a complete discussion of Request Block structure, turn to Chapter 5.

Transfer conventions

Each time an ABIOS device function is called, the caller must build a func
tion-specific Request Block, push a set of pointers to the ABIOS Data Struc
tures onto the stack, and invoke the appropriate function entry routine.

ABIOS functions can be called via either of two transfer conventions: the
operating system transfer convention and the ABIOS transfer convention. The
difference between these two conventions lies in the stack information and
the entry routine called.

For more information on how ABIOS functions are called, turn to Chapter 6.

ABIOS extensions

The discussion of ABIOS initialization presented in this chapter is kept on a
fairly generic level. Although some mention was made of the process of
initializing ABIOS extensions, the details of extension structure and require
ments was kept to a minimum.

For more information on how ABIOS extensions, refer to Chapter 7.

ABIOS lnitiallzatlon 117

Overview

Introduction

Chapter 5

Request Block Structure

Request Blocks are parameter blocks resident in system RAM which are
created on demand by the operating system. There must be one Request
Block per active ABIOS function request.

Limits of this discussion

This discussion is limited strictly to a definition of Request Block internal
structure. The process of initializing and using Request Blocks is integrally
related to the process of calling ABIOS functions.

All discussion of Request Blocks beyond the definition of Request Block
internal structures is found in Chapter 6 Calling ABIOS.

continued

Request Block Structure 119

Overview, Continued

Summary of internal structure

Request Block

Offset Size

OOh Word
02h Word

04h Word
06h Word
08h Word

OAh Word
OCh Word

OEh Word

10h Word
12h Word
16h Word
18h
1Ah
1Eh

20h
24h

28h

2Ch
2Eh

Input:

Request Block length

Logical ID

Unit
Function
Reserved

Reserved

Number of blocks read

Caching

Bits 7-1 = Reserved
Bit O = Caching

0 Yes
1 No

Output:
Number: One per function

request

Kind: Parameter block

Access: ABIOS and Oper-
ating System

Description:
All Input and output parame
ters are passed between the
operating system and the
ABIOS function via the Re
quest Block.

Request Blocks are built and
controlled by the operating
system.

Because Request Blocks reside
In system RAM, Input and out
put parameters are designated
as offsets from the Request
Block segment.

Offsets OOh-OEh are defined
the same way across all
ABIOS functions. Offsets 10h
xxh bear definitions that are
function-specific.

Request Blocks associated with
completed functions can be
reused.

In this chapter

120

This chapter describes the internal structure of ABIOS Request Blocks. The
following topics are presented:

• Request Block Parameters
• Request Block Structure

• Error Codes

ABIOS for IBM PS/2 Computers and Compatibles

Request Block Parameters

Types of Request Block parameters

The Request Block has two types of parameters:

• Functional Parameters

• Service-Specific Parameters.

Functional parameters

Request Block functional parameters are the same for every ABIOS service
request. Information about the service requested and the device to be called
on is placed in these parameters by the caller and sent to the ABIOS.

Each parameter is initialized by the caller and must not be changed while the
request is being processed by the ABIOS, especially through multistaged
ABIOS requests. The first 1 Oh bytes in a Request Block are reserved for the
Functional Parameters. See the Request Block Structure table in this chapter
for a list of all Request Block functional parameters.

Service-Specific parameters

Request Block service-specific parameters may change with every ABIOS
request. The information passed in these parameters varies with each type
of ABIOS request. See the specific ABIOS service explanations in Chapters 8
through 23 for detailed information about the contents of these parameters.
See the Request Block Structure table in this chapter for a list of all Request
Block service-specific parameters.

Request Block Structure 121

Request Block Structure

Request Block structure table

Input/
Offset Output Bytes Description

FUNCTIONAL PARAMETERS

OOh Input 2 REQUEST BLOCK LENGTH
Contains the length In bytes of the Request Block.
The maximum Is 65, 535. The caller Initializes this
field for a specific Logical ID. The ABIOS gives the
size of the Request Block for a Logical ID in the
Initialization Table. Function 01h, Return Logical ID
Parameters, also gives the size, but the Request
Block may actually be larger than the returned size
from this function call.

02h Input 2 LOGICAL ID
Specifies the particular device to be operated on for
this service request. Used as an Index to the Device
Block/Function Transfer Table pair located In the
Common Data Area.

04h Input 2 UNIT
Addresses only a certain unit of a device within a
Logical ID. The range of values for this field is spe-
clfic to each device that Is identified as a Logical ID.
The number of units attached to a single controller
determines how many units are In a Logical ID. Units
are numbered from zero, so the maximum unit num-
ber Is one less than the number of devices attached
to the controller associated with this Logical ID.

06h Input 2 FUNCTION
The entry In this field requests a particular ABIOS
function. The following list details the common ABIOS
functions. Refer to Chapter 8 for an example of how
these are used In the Request Block.

Function Description

OOh Default Interrupt Handler
01h Return Logical ID Parameters
02h Reserved
03h Read Device Parameters
04h Set Device Parameters
05h Reset/Initialize
06h Enable
07h Disable
08h Read
09h Write
OAh Additional Data Transfer

OBh-FFh Other service-specific functions

continued

122 ABIOS for IBM PS/2 Computers and Compatibles

Request Block Structure, Continued

Request Block structure table, cont'd

Input/
Offset Output Bytes Description

OBh -- 2 RESERVED

OAh -- 2 RESERVED

OCh Input/ 2 RETURN CODE
Output Indicates the result of the current stage of the

ABIOS function request. For single-stage requests
or those requests in the final stage of a multistage
request, this field indicates the final result of the
entire function request. For more information, see
the Return Code Handling heading In Chapter 3.

OEh Output 2 TIME-OUT
The expected time that a requested stage will
take. The time-out value is used to ensure that no
operation or stage of an operation takes too much
microprocessor time.
This field Is valid if the Return Code is Resume
Stage after Time Delay (Bit 1 Is set).
This field Is structured as follows:
Bits 15-3 = Units of time before time-out (in

seconds)
Bits 2-0 = Reserved

SERVICE SPECIFIC PARAMETERS

10h Output 2 RESERVED

12h Input 4 DATA POINTER 1
Contains a pointer to an 1/0 buffer used for this
ABIOS request. The effective address, a 16-blt
segment In the high word and a 16-blt offset In the
low word, must be addressable from within the
current mode of the microprocessor (real or pro-
tected) when in a bimodal environment.
The address may be: . a 32-blt physical address for OMA, or

• a segmented address for programmed 110 .
The Return Logical ID Parameters Function (01h)
returns a parameter (Transfer Data Pointer Mode)
that Indicates the mode (physical or logical) of the
data pointer for the . Read (OBh), . Write (09h), and

• Additional Data Transfer (OAh) functions .

continued

Request Block Structure 123

Request Block Structure, Continued

Request Block structure table, cont'd

Input/
Offset Output Bytes Description

12h DAT A POINTER 1, continued
(cont'd) If the Transfer Data Pointer Mode Parameter

specifies that this must be a logical pointer, Data
Pointer 1 is a logical pointer and Data Pointer 2 is
reserved.
If the Transfer Data Pointer Mode Parameter
specifies that this must be a physical pointer, Data
Pointer 2 Is a physical pointer and Data Pointer 1 is
reserved.
If the Transfer Data Pointer Mode parameter speci-
fies that both a logical pointer and a physical point-
er will be passed, Data Pointer 1 is the logical
pointer and Data pointer 2 Is the physical pointer.
If the Transfer Data Pointer Mode parameter speci-
fies none of the above, this Logical ID does not
support functions OBh, 09h, and OAh, or these
functions do not need address pointers, and no
space will be allocated In the Request Block for any
data pointers.

16h -- 2 RESERVED

18h -- 2 RESERVED

1Ah Input 4 DAT A POINTER 2
See Data Pointer 1 above.

1Eh-nnh Input/ varies SERVICE-SPECIFIC PARAMETERS
Output Operands and the results of ABIOS functions may

be communicated In these fields. Their contents
depend on the device service and the requested
function. See Chapters 8 through 23 for detailed
descriptions, by service and function, of the con-
tents of the service-specific parameter fields.

varies Private varies WORK AREA
Optional data area for ABIOS use only. User data
may not be stored In this field. This field Is not in-
itlalized. The caller must not alter the contents of
this field, particularly while ABIOS Is processing a
multistaged request.

124 ABIOS for IBM PS/2 Computers and Compatibles

Related Information

Transfer conventions

Each time an ABIOS device function is called, the caller must build a func
tion-specific Request Block, push a set of pointers to the ABIOS Data Struc
tures onto the stack, and invoke the appropriate function entry routine.

ABIOS functions can be called via either of two transfer conventions: the
operating system transfer convention and the ABIOS transfer convention. The
difference between these two conventions lies in the stack information and
the entry routine called.

For more information on how ABIOS functions are called, turn to Chapter 6.

Request Block handling

Each time the caller builds a Request Block, the rules governing Request
Block initialization and reuse must be observed. Because the rules for han
dling Request Blocks are so integrally related to the act of calling ABIOS
functions, a complete discussion of the rules for handling Request Blocks are
delineated in Chapter 6.

Return Code handling

The specifics of Return Code handling can be viewed as an integral part of
calling ABIOS functions. A more detailed discussion of can be found in
Chapter 6.

Request Block Structure 125

Overview

Introduction

Chapter 6

Calling ABIOS

This chapter describes the tasks, conventions, and operating system
responsibilities involved in calling ABIOS functions.

In this chapter

The following topics are presented:

• ABIOS Processing Model

• Request Block Initialization

• Transfer Conventions

• ABIOS Transfer Conventions

• Operating System Transfer Convention

• Return Code Handling

• Hardware Interrupt Handlers

• Default Interrupt Handler

• Time-out Handler

• ABIOS and Program Access

• Accessing ABIOS via ABIOSCommonEntry

• Accessing ABIOS via ABIOSCall

Calling ABIOS 127

ABIOS Processing Model

Introduction

When an operating system is interfaced with a ROM BIOS, care must be
taken to insure that BIOS functions calls do not tie up the processor. In the
ABIOS, this is accomplished by processing all functions that could potentially
monopolize the processor time in multiple stages.

How ABIOS processes functions

The following illustration depicts the three ways ABIOS function calls are
processed.

ABIOS Processing Models

SINGLE-STAGED FUNCTIONS
When processing single-staged functions, the ABIOS performs
Input/output Immediately and returns to the operating system.
ABIOS requests that can be completed with a minimum of
processor time are executed In this way.

DISCRETE MULTISTAGED FUNCTIONS
ABIOS functions that require a greater amount of processor
time are processed in multiple stages. In discrete multi staged
functions, the caller Initiates Input/output and returns to the
operating system, moving from stage to stage until the func
tion call Is complete. Discrete multistaged functions are driven
from stage to stage by an Interrupt from the device being
serviced or by the expiration of a function-requested time
period.

CONTINUOUS MULTISTAGED FUNCTIONS
When processing continuous multistaged functions, ABIOS
Initiates Input/output and returns to the operating system.
Continuous multlstaged functions can be considered ·standing
requests• In that they never reach a completion point. Like
discrete multlstaged functions, they are driven from stage to
stage by a hardware Interrupt at the expiration of a function
requested time period.

How functions are interfaced

128

In order to further liberate the processor, all function parameters are passed
between the operating system and the ABIOS function via a function-specific
parameter block, called the Request Block. Before starting a given ABIOS
function, the operating system must initialize that function's Request Block.

continued

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Processing Model, Continued

Return Codes: how function status is reported

The ABIOS signals the status (successful, unsuccessful, etc.) of a function
stage by placing a Return Code in offset OCh of the Request Block. The
ABIOS assumes that all Return Code handling is under the control of the
operating system.

What drives multistaged functions

Multistaged functions are driven from stage to stage by either:

• A hardware interrupt or

• The elapse of a function requested period of time.

Some multistaged functions are driven purely by hardware interrupt. Others
are driven purely by time period. Others are driven by some combination of
both hardware interrupt and time period.

Interrupt-driven stages

Each interrupt-driven ABIOS service is associated with one hardware interrupt
level. The ABIOS assumes that all hardware interrupt handlers are under the
control of the operating system.

When a hardware interrupt occurs, the operating system must call the
function associated with the interrupt so that the interrupting condition can
be serviced. The ABIOS resets the interrupting condition at the hardware
level. The operating system's hardware interrupt handler must perform
end-of-interrupt processing at the interrupt controller level.

A service can have more than one active function request. When this hap
pens, the hardware interrupt handler must call each function until the ABIOS
replies that the hardware interrupt has been serviced.

continued

Calling ABIOS 129

ABIOS Processing Model, Continued

Time period driven stages

Some ABIOS functions are driven from stage to stage by the elapse of a
function-requested period of time. The ABIOS assumes that time-period
stage handlers are under the control of the operating system. When a time
period requested by the function expires, the operating system's time period
handler must call the given ABIOS function.

Hardware interrupt stages and hardware time-out

All hardware interrupt-driven stages of a function indicate a maximum time
(in seconds) to wait for the hardware interrupt. The ABIOS assumes that all
hardware time-out handlers are under the control of the operating system.
Should the hardware time-out period associated with a given interrupt driven
function elapse, the operating system is responsible for terminating the
function and resetting the hardware.

Hardware time-out vs. time period stages

130

The terminology surrounding time period-driven stages and hardware time
out handling is similar. However, it is important not to confuse the process
ing associated with the hardware time-out handling and time-period stage
handling.

Hardware time-out handling is associated exclusively with those stages of a
multistaged function that are driven by hardware interrupt and is designed to
handle function termination cleanly. Execution of a time-out handling routine
is symptomatic of a hardware error.

Time-period handling is associated with those stages of a multistaged func
tion that are driven by time periods. Execution of a time-period handling
routine indicates the elapse of a function-requested time delay and should
not be associated with a hardware error.

continued

ABIOS for IBM PS/2 Computers and Compatibles

ABIOS Processing Model, Continued

How ABIOS functions are called

Each ABIOS Service is associated with a set of function entry routines. There
are three kinds of entry routines:

• Start Routine

The start routine associated with a service is called when a function is first
started.

• Interrupt Routine

The Interrupt Routine associated with a service must be called when
the function interrupts or when a time period-driven function requires
servicing.

• Time-out Routine

The Time-out Routine associated with a service must be called when an
interrupt-driven function suffers a hardware time-out.

To reduce caller overhead, the ABIOS also contains a set of Common Entry
Routines: a Common Start, Interrupt, and Time-out Routine. The Common
Entry Routines do some initial processing then transfer control to the entry
routine tied to the specific service.

Conventions for calling ABIOS

Whether it is a single-staged or a multistaged function, the caller has the
option of starting functions via either of two conventions: the Operating
System Transfer Convention or the ABIOS Transfer Convention. Each transfer
convention is described in this chapter.

Program accessibility

The program accessibility of any ROM BIOS depends on the architecture of
the operating system interfaced with the BIOS.

Starting with IBM OS/2 Version 1. 1, programs have full access to the ABIOS
through the operating system via the IBM OS/2 DevHlp services: ABIOSCom
monEntry and ABIOSCall.

ABIOS accessibility for non-IBM versions of OS/2 varies from vendor to
vendor. Programmers who are not using IBM OS/2 should refer to their
OS/2 documentation to determine if their version of OS/2 supports program
access to the ABIOS.

Calling ABIOS 131

Request Block Initialization

Description

The Request Block, resident in system RAM, is a parameter block used to
communicate information to and from the calling routine (usually the operat
ing system) and the ABIOS. Each ABIOS function is interfaced to its caller
via a function-specific Request Block. The caller passes input parameters
and the ABIOS passes output parameters and any other information concern
ing the completion state of a function through that function's Request Block.

Request Blocks and function requests

The Request Block associated with a function must be initialized by the caller
(usually the operating system) before the function can be started.

When the operating system calls more than one function contained in the
same ABIOS service, it must create one Request Block for each function
requested. When each function is entered, the ABIOS references the serv
ice's Device Block to determine the state of the device as it pertains to the
function being processed.

Defining Request Blocks

The Request Block is defined differently for each ABIOS Service. The length
of a Request Block is fixed for all functions numbered above 01 h for a serv
ice. Request Block length is checked by ABIOS upon entry into an ABIOS
function.

Request Block lifespan

132

Once initialized, Request Blocks stay resident in system RAM for as long as
the function call is active. Those Request Blocks associated with multistaged
function stay resident in system RAM for the life of the function. Request
Blocks associated with completed functions may be reused, or the memory
they occupy can be deallocated. Reuse Request Blocks only if the Request
Block length for the new function is the same or longer.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Request Block Initialization, Continued

Rules governing Request Block use

The general rules associated with Request Block use are illustrated below.

INPUT Rules

Request Block flelds marked Reserved
must be lnltlallzed to zeros.

The content of Input fields Is not changed
throughout a multlstaged request.

lnltlallze the Return Code to FFFFh before
calling any ABIOS Start Routine.

REQUE T BLOCK

Offset Size Input:

OOh Word Request Block length

02h Word Logical ID

04h Word Unit

06h Word Function

08h Word Reserved

OAh Word Reserved

OCh

OEh

10h
12h

16h

18h

1Ah

1Eh

20h
24h

28h

2Ch

2Eh Caching

Bits 7-1 = Reserved
Bit O = Caching

0 Yes
1 No

Calling ABIOS

OUTPUT Rules

Output flelds need not be
lnltlallzed

The contents of an output
field must not be altered
during any stage of a
multlstaged request.

Rules Governing
Request Block Reuse

Request Blocks associated
with completed functions
can be reused.

Reuse Request Blocks only
If the Request Block
Length for the new func
tions Is the same or
larger.

133

A Generalized Look at Control Transfer

Introduction

Once its Request Block has been initialized, the caller is free to transfer
control to the ABIOS function. The process of transferring control to an
ABIOS function is divided into two basic tasks:

1. PUSH required entry pointers onto stack frame,

2. CALL function entry routine.

Control can be transferred to the function via the ABIOS Common Entry
Routines or the ABIOS Service-Specific Entry Routines. The difference be
tween the two methods of calling ABIOS lies in the process used to locate
pointers and load them onto the stack.

Two tasks

The graphic below details each control transfer task.

Control Transfer Tasks

PUSH POINTERS ON STACK
STACK

The caller pushes pointers to the Request
Block and the Common Data Area onto the
stack. Depending on which convention Is used
to transfer control to ABIOS, the caller may
optionally push pointers to the Function Trans
fer Table and Device Block.

+-- Pointer to Common Data Area
+-- Pointer to Request Block
+--Pointer to Function Trans. Table
+-- Pointer to Device Block

FUNCTION TRANSFER
TABLE

(~~Wli~,1Jj11J ~~~!~~ < ~
Function OOh Vector --+
Function 01 h Vector --+

Vector --+
~Function nnh Vector --+

134

TRANSFER CONTROL TO FUNCTION

There are two kinds of function entry routines:
• Service-specific Entry Routines.
• Common Entry Routines

By convention, control can be transferred to a
given ABIOS function via either set of entry
routines. The ABIOS transfer convention Indi
cates that control be transferred to ABIOS
functions via the Common Entry Routines. The
Operating System Transfer Convention Indi
cates that control be transferred to functions
via the Service-Specific Entry Routines.

continued

ABIOS for IBM PS/2 Computers and Compatibles

A Generalized Look at Control Transfer, Continued

Common Entry Routine processing

The Common Entry Routines - Start, Interrupt, and Time-out - provide the
operating system with a common entry point to the ABIOS Service-Specific
Entry Routines. The Common Entry Routines:

• Test the Logical ID field contained in the Request Block associated with
the function being requested. If an invalid Logical ID is found, the Com
mon Entry Routine returns to the caller with the Return Code field set to
COOOh Invalid Logical ID. The Logical ID input into the Common Data Area
can be invalid for two reasons:

• The Logical ID is greater than the count of Logical ID field contained in
the Common Data Area, or

• The Logical ID corresponds to a null Logical ID entry in the Common
Data Area. (Logical IDs 0 and 1 are reserved).

• Index into the Common Data Area based on the Logical ID and the Anchor
Pointer to determine which pair of Device Block and Function Transfer
Table pointers are required.

• Copy the Device Block address into the stack placeholder.

• Copy the address into the Function Transfer Table stack placeholder.

• Transfer control to the Service-Specific Entry Routine.

Service-Specific Entry Routine processing

Every ABIOS service contains a set of service-specific entry routines -
Start, Interrupt, and Time-out. The entry point to each of these routines is
contained in the first three entries in the service's Function Transfer Table.

The Service-Specific Entry Routines:

• save the state of the registers,

• test the Request Block for valid function,

• test the Request Block for valid Unit Number (if any), and

• transfer control to function called.

• The function executes and returns to the operating system
with a Return Code, and

• restores the state of the registers

Calling ABIOS 135

ABIOS Transfer Convention

ABIOS Transfer Convention

Under the ABIOS Transfer Convention, the operating system loads the stack
frame with pointers to the caller's return address, Common Data Area, and
Request Block. However, only placeholders are supplied for the pointers
associated with the function's Device Block and Function Transfer Table.

With the stack frame loaded, control is then transferred to the ABIOS func
tion via its Common Entry Routine. The Common Entry Routine fills in the
placeholders in the stack frame then transfers control to the function via the
function's Service-Specific Entry Routine.

Advantages

From the caller's point of view, the ABIOS Transfer Convention is the simpler
of the two transfer conventions in that it reduces programming overhead
when ABIOS functions are called in a bimodal environment.

Caller responsibilities on function return

Once the function returns, the caller is responsible for

• supplying error handling routines, and

• removing arguments from the stack.

Pseudocode

136

The pseudocode below shows the suggested method for transferring control
to an ABIOS function via the ABIOS Transfer Convention.

PUSH
PUSH
PUSH
SUB
CALL

Pointer to Anchor Pointer Segment or Selector
Pointer to Request Block Segment or Selector
Offset to Request Block
Stack Pointer,8
Common Entry Routine (Start, Interrupt, or Time-out)

ABIOS for IBM PS/2 Computers and Compatibles

Operating System Tran sf er Convention

The Operating System Transfer Convention

Under the Operating System Transfer Convention, the operating system
assumes the responsibility for loading the stack frame with pointers to the
caller's return address and to the Common Data Area, as well as to the
function's Request Block, its Device Block, and its Function Transfer Table.
With the stack frame loaded, control is transferred to the ABIOS function via
its service-specific entry routine.

Two ways to load the stack frame

The Operating System Transfer Convention supports two methods for loading
the stack frame.

• Direct CDA access method
The caller indexes directly into the Common Data Area to locate the
Device Block and Function Transfer Tables pointers associated with the
Logical ID contained in the function's Request Block. This is similar to the
ABIOS Transfer Convention except that the Common Routines are not
used, giving this method a slight performance edge.

• Stored pointer method
The caller (i.e. usually the operating system) stores the necessary point
ers and loads the stack frame directly without indexing the Common Data
Area.

OS Transfer Convention: Advantage #1

The Operating System Transfer Convention involves more programming
overhead, but may result in some improvement in speed of execution. This
calling convention's main advantage is realized in real mode only or pro
tected mode only operating environments.

Where the ABIOS Transfer Convention relies on the Common Entry Routines
to index into the Common Data Area to determine which Device Block/Func
tion Transfer Table pointer pair to use, there is a small performance disad
vantage to this method in a single mode environment. The Common Data
Area is provided as an aid so that functions can be easily located in a
bimodal environment.

continued

Calling ABIOS 137

Operating System Transfer Convention, Continued

OS Transfer Convention: Advantage #2

Whether the operating environment is single or bimodal, the Operating Sys
tem Transfer Convention is most effective when used to handle interrupts
from programmed 110 devices (such as the keyboard controller) that are
called repeatedly by a single function.

Caller responsibilities on function return

Once the function returns, the operating system is responsible for:

• supplying error handling routines, and

• removing arguments from the stack

Pseudocode

138

The pseudocode below shows the suggested method for transferring control
to an ABIOS function via the Operating System Transfer Convention.

PUSH
PUSH
PUSH
PUSH

PUSH
PUSH
PUSH
CALL

Pointer to Anchor Pointer Segment or Selector
Pointer to Request Block Segment or Selector
Offset to Request Block
Pointer to Function Transfer Table Segment
or Selector
Offset to Function Transfer Table
Pointer to Device Block Segment or Selector
Offset to Device Block
Service-Specific Entry Routine
(Start, Interrupt, or Time-out)

ABIOS for IBM PS/2 Computers and Compatibles

Return Code Handling

Introduction

ABIOS signals the status (successful, unsuccessful, etc.) of a function call
by writing a Return Code to offset OCh of the function's Request Block. The
ABIOS assumes that all Return Code handlers are under the control of the
operating system.

Return Code bit testing

The operating system's Return Code Handling routine should always test
certain Return Code bits. Depending on the settings for bits 15, 13, 12, and
8, all other bits, including some bits marked reserved, may be meaningful.

Return Code bit definitions

The following table lists the primary and secondary definitions for Return
Code bit settings.

Bits Primary Definition Secondary Definition

15 Unsuccessful None

14 Parameter Error None

13 Time-out error None

12 Device Error None

11-9 Reserved Device-specific error

8 Retryable Error Device-specific error

7 Unexpected Interrupt. Reset Device-specific error

6-4 Reserved Device-specific error

3 Attention Device-specific error

2 Not My Interrupt Device-specific error

1 Resume Stage after Time Delay Device-specific error

0 Resume Stage after Interrupt Device-specific error

Notes: 1 . Bits 14-8 take the Primary Definition only when Bit 1 5 Is set.
2. Bits 11-0 take the Secondary Definition only when Bit 15 is on and any

combination of bits 13, 12, and 8 are also on.
3. Bits 7-0 take the Primary Definition only when Bit 15 is not on.
4. If all bits are on, this Request Block has not been processed yet.

continued

Calling ABIOS 139

Return Code Handling, Continued

Flow chart

The following flow chart shows a method of testing the Return Code field.

Successful
operation

Done

Start
again

Device in use, re
quest refused. If
bits 11-0 on, de
vice-specific error.

140

Request Block not
processed yet

Unsuccessful
operation

Parameter Error. Re
quest Block coded In
correctly. Range -
COOOh-C020h.

Time-out Error. See
bits 11-0 for
device-specific error
code. Test bits 12
and 8 also. Range -
AOOOh-FEFFh.

Device Error. See
bits 11-0 for device
specific error code.
Test bits 13 and 8
also. Range -
9000h-FEFFh

Retryable Error. See
bits 11-0 for device
specific error code.
Test bits 13 and 12
also. Range -
8100h-FEFFh

Request in progress.
Check bits 3-0 for
reason. Range -
0001-?FFFh.

Start
again

Start
again

Start
again

Start
again

continued

ABIOS for IBM PS/2 Computers and Compatibles

Return Code Handling, Continued

Return codes

The following table contains a general listing of the ABIOS Return Codes.
ABIOS may generate any value that can occur in a 16-bit ABIOS field, so all
operating system routines that test ABIOS Return Codes should be prepared
for any value. That is, each bit in the Return Code field should be tested.

Code Description

OOOOh Successful

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Resume Stage after Interrupt

0081h Unexpected Reset, Resume Stage after Interrupt

BOO Oh Device in Use, Request Refused

8001 h-8FFFh Service-Specific Unsuccessful Operation

9000h-90FFh Device Error

9100h-91FFh Retryable Device Error

9200h-9FFFh Device Error

AOOOh-AOFFh Time-out Error

A 1OOh-A1 FFh Retryable Time-out Error

A200h-AFFFh Time-out Error

BOOOh-BOFFh Device Error With Time-out

8100h-81FFh Retryable Device Error With Time-out

8200h-BFFFh Device Error With Time-out

COOOh Invalid Logical ID

C001h Invalid Function

C002h Reserved

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h-C01 Fh Invalid Service-Specific Parameter

C020h-FFFEh Service-Specific Unsuccessful Operation

FFFFh Return Code Field Not Valid

Calling ABIOS 141

Hardware Interrupt Handlers

Introduction

The ABIOS assumes that the operating system provides hardware interrupt
handlers that receive control via a hardware interrupt vector.

Logical IDs and the hardware interrupt handler

Once ABIOS initialization is complete, all ABIOS services are identified to the
operating system by unique Logical ID. The operating system's hardware
interrupt handler must keep track of the Logical IDs that operate on each
interrupt level. And it must maintain the validity of all Request Block pointers
currently tied to each Logical ID.

When a hardware interrupt occurs, the ABIOS Common Entry and Service
Specific Entry Routines, in turn, provide the operating system with a way to
transfer control to the given ABIOS service.

Request Block polling

142

When a given hardware interrupt occurs, a Logical ID may have more than
one active Request Block. The operating system's hardware interrupt handler
must process each active Request Block by calling the ABIOS service in
volved at its Interrupt Routine entry point. Depending on the transfer conven
tion used, this can be done through either the common interrupt routine or
through a service-specific interrupt routine.

If bit 0 of the Return Code field is set, the Request Block is waiting for an
interrupt. As the hardware interrupt handler polls each Request Block, the
ABIOS is responsible for setting the Return Code field to indicate whether or
not the hardware interrupt was associated with the given Request Block.

The operating system's interrupt handler can call the ABIOS with interrupts
either enabled or disabled. If interrupts must be disabled, the ABIOS restores
the state of the interrupt flag when interrupts are disabled and re-enabled.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Hardware Interrupt Handlers, Continued

Initializing the Return Code Field before starting functions

The operating system should always initialize the Return Code field in a
Request Block to FFFFh before calling the start routine.

If there is an outstanding Request Block at interrupt time, the operating
system must first see if the Return Code field is FFFFh. If it is, the hardware
interrupt handler must not attempt to resume this request. In this way, the
ABIOS can process the function request and set the Return Code appropri
ately when the interrupt is executed.

Preventing interruption of a routine while it is being started

When a Start Routine transfers control to a function, it does not reset the
registers to their pre-call state until the function returns with a valid (i.e.
other than FFFFh) Return Code.

When an interrupt occurs before a Start Routine has interrogated the Return
Code field and reset the register state, it is possible for the Start Routine
and an Interrupt Routine to be accessing the same Request Block from within
different stack frames.

To prevent this, the operating system should maintain a flag to indicate
whether or not a Start Routine has processed completely. An Interrupt
Routine should not be allowed to call a function until its Start Routine has
finished execution.

ABIOS processing

If the interrupt is not associated with the Request Block being polled, the
ABIOS generates the Return Code 0005h Not My Interrupt, Resume Stage
After Interrupt.

When the interrupt is associated with the Request Block being polled, the
ABIOS:

• processes the interrupt,

• resets the device condition causing the interrupt at the device level, The
return code handler routine and

• returns to the caller via the Request Block with an updated Return Code.

continued

Calling ABIOS 143

Hardware Interrupt Handlers, Continued

End-of-interrupt (EOI) processing

Although it resets the interrupting condition at the device, the ABIOS does
not reset the interrupt controller. Therefore, all end of interrupt processing
must be handled by the operating system at the interrupt controller.

Once all Request Blocks for a given Logical ID have been processed through
the operating system's hardware interrupt handler and at least one Request
Block responds that the interrupt was serviced, the operating system is free
to reset the interrupt controller.

The ABIOS informs the caller that a Request Block has been serviced by
placing any value other than 0005h Not My Interrupt, Resume Stage After
Interrupt into the Request Block's Return Code field (offset OCh}.

Default interrupt handler

If the hardware interrupt handler has called all Request Blocks waiting on an
interrupt level and none have "claimed" the interrupt (i.e. sent a Return
Code other than 0005h Not My Interrupt, Resume Stage after Interrupt), a
rogue interrupt has occurred.

The hardware interrupt handler should call each Default Interrupt Handler for
each Logical ID using the interrupt level. For more information on the Default
Interrupt Handler see the next topic in this chapter.

Interrupt sharing

144

No Logical ID can operate on more than one interrupt level. Logical IDs with
multiple units operate on the same interrupt level.

Should more than one Logical ID or Logical ID/Unit combination share the
same interrupt level, the hardware interrupt handler associated with that
interrupt level should repeat the polling process until all the Logical IDs are
processed, or until one Logical ID is processed to completion.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Hardware Interrupt Handlers, Continued

Interrupt sharing

The graphic below depicts the situation where more than one Request Block
is active on a given Logical ID.

Interrupt Flow

Request Block
ABIOS
Service

..... l Return CodeJ
0001h

Request Block Hardware
Device

l Return Code J
0001h I~

Request Block

~ ~Return Code 1
0001h

+
IRQ Line

Operating System
Logical ID "n" j+- Interrupt Service

Routine --
{Logical ID "n+1" }-

continued

Calling ABIOS 145

Hardware Interrupt Handlers, Continued

ABIOS bimodal support for interrupt handlers

146

When operating in a bimodal environment, it is possible for one Logical ID
(i.e. one ABIOS service) to be associated with a number of real mode and
protected mode function requests.

When this is the case, the ABIOS supports hardware interrupt handlers in the
following way:

• Microprocessor mode is maintained
After a function polls its hardware interrupt handler, the ABIOS is returned
to the microprocessor mode that was in effect before the hardware inter
rupt call was made.

• Interrupt routine can be called bimodally
When servicing the next Request Block, the hardware interrupt handler
calls the interrupt routine from the current mode in effect. The micropro
cessor mode is hidden from the ABIOS. Control is transferred to the next
function called whether or not that function was originally started in the
current mode. For example, if the system is operating in real mode, the
hardware interrupt handler can call a function that was initiated in pro
tected mode.

ABIOS for IBM PS/2 Computers and Compatibles

Default Interrupt Handler

Description

Each ABIOS service that uses hardware interrupts contains a Default Interrupt
Handler. The Default Interrupt Handler resets the interrupting condition at the
device level when a hardware device generates an unexpected interrupt.

Determining which services contain Default Interrupt Handlers

To determine whether or not a given Logical ID (ABIOS service) contains a
Default Interrupt Handler, place a call to function 01 h Return Logical ID
Parameters to determine the Logical ID.

The value returned in the Request Block at offset 1 Oh will indicate whether or
not the Default Interrupt Handler is supported. The values may be:

Return Code Description

FFh Default Interrupt Handler Is not supported

FEh Reserved for NMI Service.
Default Interrupt Handler Is not supported

nnh Default Interrupt Handler supported for this Logical
ID, where nnh = hardware Interrupt level.

How the Default Interrupt Handler is invoked

When an interrupt occurs while there are no active Request Blocks, the
operating system must

• build the Default Interrupt Handler's Request Block,

• load the stack frame with the appropriate pointers,

• call either the Common Interrupt Routine or Service-Specific Interrupt
Routine, depending on the transfer convention being used. The Default
Interrupt Handler resets the unexpected interrupt at the device level, and

• upon return, the operating system performs EOI processing, resetting the
interrupt at the interrupt controller.

continued

Calling ABIOS 147

Default Interrupt Handler, Continued

Request Block Structure

The structure of the Default Interrupt Handler's Request Block is described in
the table below:

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (initialize to OOOOh)
OCh Word
OEh Word Time-out

Return Codes

The Default Interrupt Handler Return Codes are listed in the table below:

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

148 ABIOS for IBM PS/2 Computers and Compatibles

Time-Out Handlers

Introduction

The ABIOS informs the operating system of the maximum period it is to wait
for a hardware interrupt-driven stage by outputting a value (in seconds) to
the the time-out field (offset OEh) in the function's Request Block. The
ABIOS assumes that all hardware time-out handlers are under the control of
the operating system.

A time-out value of OOh indicates no time-out checking should be done by
the caller. The keyboard is an example of a device for which the ABIOS
device service is willing to wait forever for the next interrupt.

Time-out handler duties

The operating system's time-out handler must refer to function time-out
value and set up a function-specific time-out counter. If the hardware inter
rupt associated with a given function does not occur in this amount of time,
the time-out handler transfers control to the ABIOS Time-Out Routine. The
Time-Out Routine disables further interrupts for the device, aborts the func
tion. and cleanly returns control to the operating system.

Either transfer convention will do

Depending on the transfer convention used, the operating system's time-out
handler can handle hardware time-outs via either the Common Interrupt
Routine or through a Service-Specific Interrupt Routine.

continued

Calling ABIOS 149

Time-Out Handlers, Continued

Time-out Routine vs. Resume Stage after Time Delay value

It is important not to confuse the processing associated with the Time-out
Routine with the processing associated with the Resume Stage After Time
Delay value (Return Code 0002h) returned by the ABIOS for those stages of
a function that are driven by a function-requested time delay.

The ABIOS Time-out Routine is associated exclusively with those stages of a
multistage function that are driven by hardware interrupts. It is designed to
handle function termination cleanly.

The Resume Stage after Time Delay (Return Code 0002h) value is associ
ated exclusively with those stages of a multistaged function that are not
driven by a hardware interrupt. Error handling resulting from this stage is
handled by the ABIOS function itself. Generally, the function indicates an
error in a time delay-driven stage by returning a Return Code of 0002h to its
Request Block.

150 ABIOS for IBM PS/2 Computers and Compatibles

ABIOS and Program Access

Introduction

For now, OS/2 is the primary operating system using ABIOS. OS/2 itself
provides end user programs with powerful functionality which makes bypass
ing the operating system in favor of the ABIOS largely unnecessary. How
ever, the need may arise for the greater hardware control provided by direct
access to the ABIOS Services.

The Anchor Pointer, OS/2, and program access

When ABIOS is initialized under OS/2, the segment address of the Common
Data Area is stored by the operating system in a non-public variable called
the Anchor Pointer. See Chapter 3 for more information about Anchor Point
ers and public and private data.

Control cannot be transferred to an ABIOS function without first accessing
the information contained in the Common Data Area. Therefore, access to
the ABIOS is impossible from a program running under 08/2 unless it is
supported by the operating system.

IBM OS/2 allows program access to ABIOS

Although it does not make the Anchor Pointer public, IBM OS/2 (versions
1 . 1 and beyond), support program access of the ABIOS via two OS/2
DevHlp services: ABIOSCommonEntry and ABIOSCall.

Programmers who are not using IBM OS/2 should refer to their OS/2 docu
mentation to determine if their version of OS/2 supports direct access to the
ABIOS.

Calling ABIOS 151

Accessing ABIOS via ABIOSCommonEntry

Description

The IBM OS/2 service ABIOSCommonEntry is used to call an ABIOS
functions via the ABIOS Transfer Convention, that is to say via the ABIOS
Common Entry Routines.

ABIOSCommonEntry initializes the stack frame with pointers in the format
required by the current processor mode. Then it calls the Common Entry
Routine specified in DH. On return, ABIOSCommonEntry cleans up the stack
before returning to the caller.

Caller must locate Logical ID

Before invoking ABIOSCommonEntry, the caller must first initialize the Re
quest Block associated with the ABIOS function to be called. Since a serv
ice's Logical ID is a mandatory input into each function Request Block, the
caller is responsible for determining the Logical ID assigned to the service
being called.

Locating Logical ID via function 01 h

Because the Anchor Pointer to the Common Data Area is a non public
variable, the only way for the caller to determine a service's Logical ID is
to invoke function 01 h Return Logical ID Parameters for each entry in the
Common Data Area.

To do this, the caller must use ABIOSCommonEntry to invoke function 01h,
Return Logical ID Parameters for Logical IDs 03h to nnh. The Request Block
associated with function 01 h of each ABIOS service is fixed at 20h bytes.
When called, function 01 h returns to offset 12h the hardware Device ID
associated with the service. From this value, the caller can determine which
device service is linked to a given Logical ID.

continued

152 ABIOS for IBM PS/2 Computers and Compatibles

Accessing ABIOS via ABIOSCommonEntry, Continued

ABIOS supported devices

The ABIOS supports 16 kinds of physical devices. There is one ABIOS device
service for each device. The table below lists the physical device ID and the
ABIOS device services tied to those devices.

Device ID Device Type/Service

OOh ABIOS Internal Calls

01h Diskette

02h Fixed Disk

03h Video
04h Keyboard

OSh Parallel Port

06h Serial Port

07h System Timer

08h Real Time Clock Timer

09h System Services

OAh Nonmaskable Interrupt

ABIOSCommonEntry Input/Output

Input:

MOV SI, Request_Block_Offset
MOV DH, Which_Com_Routine

Device ID Device Type/Service

OBh Pointing Device

OCh Reserved

ODh Reserved

OEh CMOS RAM

OFh Direct Memory Access

10h Programmable Option Select

11h Error Log
12h-15h Reserved

16h Keyboard Security
17h-FFFFh Reserved

L___t__________.· .. /.

Offset in DS of Request Block
Indicate in DH which Common
Routine to call, where:
OOh Common Start Routine
Olh Common Interrupt Routine
02h Common Time-out Routine

MOV DL, DevHlp_ABIOSCommonEntry
CALL [Device_Help]

Output:

CF

AX

Calling ABIOS

=
=
=

0 If call was successful
1 If error occurred
Error Code
ABIOS not present.
Unknown ABIOS command.

continued

153

Accessing ABIOS via ABIOSCommonEntry, Continued

To avoid suspension in the background

ABIOS functions can sometimes be suspended if the operating environment
is shifted from OS/2 mode to the DOS compatibility box. This occurs when
functions executed in the DOS compatibility box put the service's operating
environment is a state that is unknown to the function called in OS/2 mode.

ROMCritSection sets a flag that prevents entry into the DOS compatibility
box until the function called via ABIOSCommonEntry has executed to com
pletion. Since there is no way to determine in advance whether or not a
function is susceptible to suspension, the caller has two choices:

• call OS/2 ROMCritSection before calling ABIOSCommonEntry, or

• test the function by calling it via ABIOSCommonEntry and switching to the
DOS compatibility box.

If ROMCritSection is called to prevent entry into the DOS compatibility box,
then it must be called again after the ABIOS function completes to re-enable
entry.

ROMCritSection Input/Output

DS must point to the ABIOS Device Driver's data segment. Reset DS if it has
been previously used in a PhysToVirt call.

MOV AL, enter_or_exit

MOV DL,DevHlp_ROMCritSection
CALL [Device_Help]

For more information

;Critical Section Flag
0 exit

< > O enter

For more information on calling ABIOS functions via ABIOSCommonEntry,
refer to IBM Operating System/2 Technical Reference, Volume 1.

154 ABIOS for IBM PS/2 Computers and Compatibles

Accessing ABIOS via ABIOSCall

Description

The IBM OS/2 service ABIOSCall is used to call an ABIOS functions via the
Operating System Transfer Convention via the ABIOS Service-Specific Entry
Routines.

ABIOSCall initializes the stack frame with pointers in the format required by
the current processor mode. Then, it calls the Service-Specific Entry Routine
specified in DH. On return, ABIOSCall cleans up the stack before returning
to the caller.

ABIOSCall Input/Output

Input:

MOV AX, LID
MOV SI,RB_Offset

MOV DH,Entry_Point

MOV DL,DevHlp_ABIOSCall
CALL [Device_Help]

Output:

;Service's Logical ID
;Data Segment DS offset to
;caller's Request Block
;Service-Specific Routine
;OOh Start Routine
;Olh Interrupt Routine
;02h Time-out Routine

CF

AX

=
=
=

0 If call was successful
1 If error occurred
Error Code
ABIOS not present.
Unknown ABIOS command.

To avoid suspension in the background

ABIOS functions can sometimes be suspended if the operating environment
is shifted from OS/2 mode to the DOS compatibility box. To avoid this, the
caller should call OS/2 ROMCritSection before calling ABIOSCommonEntry.
The method for doing this is described on the previous page.

Calling ABIOS 155

Overview

Introduction

Chapter 7

ABIOS Extensions

In general, how a given BIOS extension is implemented depends on the
nature of the BIOS-to-operating system interface.

BIOS extensions in PC XT/AT systems

In IBM PC XT I AT -compatible environments, system hardware is isolated
from the operating system (typically MS- or PC-DOS) by a ROM-based
BIOS, such as the Phoenix AT-compatible BIOS.

Under DOS, ROM BIOS interrupt vectors and data structures are publicly
accessible. As a result, system hardware or software enhancements that
require extensions to the BIOS are typically implemented by intercepting an
existing software interrupt. Since BIOS data is public, BIOS extensions of this
type are free to use existing BIOS data or to create data structures of their
own.

continued

ABIOS Extensions 157

Overview, Continued

CBIOS extensions in PS/2-compatible systems

In MCA-based PS/2-compatibles, the CBIOS portion of the ROM BIOS iso
lates single-tasking operating systems (such as MS- or PC-DOS) from
system hardware in the same way the BIOS isolates DOS from the hardware
in PC XT I AT -compatible systems. Extensions to the CBIOS/DOS interface are
implemented exactly as they are in PC XT/AT-compatible systems.

ABIOS extensions

158

When a multitasking operating system (such as OS/2) is interfaced with a
PS/2-compatible system, that operating system interfaces with the ABIOS
portion of the ROM BIOS.

Under OS/2, however, ABIOS data structure addresses and service/function
entry points are only known to the operating system. Because of this, en
hancements to system software or hardware that require ABIOS extensions
must insure that:

• the undefined interstage state information and work areas contained in the
pre-existing service's Device Block are not overwritten,

• the extension maintains control of all function entry points, and

• the extension will only be initialized if its revision level is greater than the
revision level of the pre-existing service.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

Summary of requirements

To ensure each of the above considerations, all ABIOS extensions must meet
the requirements outlined in the illustration below:

entry
routines

function
starts

,

~i

ABIOS Extensions

Extension
Service

t
lnlt. code

common
code

start
routine

Int.
routine

time-out
routine

func. 1
start

func. 2
start

~ rt

func. n
start

Requirement 1 : File Header
All ABIOS extension routines must be Identified to
the system via an extension file header.

Requirement 2: Routine to Build Initialization
1-- Table Entry

ABIOS extensions must contain a routine that
can be called during the ABIOS Initialization proc-
ess to build the extension's entry Into the ABIOS
Initialization Table.

Requirement 3: Routine to Build DB and FTT
All ABIOS extensions must contain a routine to
Initialize an extension-specific Device Block (DB)
and Function Transfer Table (FTT).

H Requirement 4: Service Code
Each ABIOS service must contain

• A complete set of extension-specific entry
routines.

• Run time code to service a device.

continued

159

Overview, Continued

Two types of ABIOS implementations

160

As long as it meets the four requirements for creating valid ABIOS exten
sions, an extension can be implemented either in ROM or in RAM.

The differences between the two types of implementations are described
below.

Type

ROM extension

RAM extension

Description

ABIOS ROM extensions:
• Exist In the same peripheral card ROM that contains

their CBIOS counterparts.
• Contain manufacturer-specific ABIOS device services.
• Are located and lnltlallzed as part of the overall ABIOS

ROM lnltlallzation process.

ABIOS RAM extensions exist as flies that wlll be located
and lnltlallzed Into system RAM during the overall ABIOS
ROM lnltlallzatlon process. If they are to be Implemented
under OS/2, extension file names must be listed in the
file ABIOS.SYS. The following facts apply:
• ABIOS. SYS must contain a llst of fllespecs separated

by either blanks or new lines.
• Both ABIOS.SYS and any files listed In ABIOS.SYS

must reside In the root directory of the OS/2 IPL
volume.

• The flies listed In ABIOS. SYS are loaded Into memory
In the order In which they are listed.

• The sector size of all RAM extension files must be a
multiple of 512K.

• All ABIOS RAM extension files must have a . BIO
extension.

• RAM extensions are loaded after ROM extensions.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

In this chapter

This chapter explains how to implement ABIOS extensions.

Topics presented

The following topics are presented:

• Recommendations for extending ABIOS

• Requirement 1 : ABIOS Extension Header Formats

• Requirement 2: Build Initialization Table Routine

• Requirement 3: Build Device Block and Function Transfer Table Routine

• Requirement 4: ABIOS Function Code

• Initialization: ABIOS ROM Extensions

• Initialization: ABIOS RAM Extensions

• Examples: Introduction

• Example 1 : Non-Intrusive Interception

• Example 2: Redirection of a Nonstaged Function

• Example 3: Redirection of a Staged Function

ABIOS Extensions 161

Recommendations for Extending ABIOS

Background

IBM suggests in its document, Advanced BIOS Supplement for the Personal
System/2 and Personal Computer BIOS Interface Technical Reference, that an
ABIOS extension may:

• ADD a completely new device service.

• REPLACE an existing device service.

• PATCH revised function support into an existing device service.

• EXTEND new function support to an existing device service.

Why patching and extending are not recommended

162

In its definition for ABIOS extensions that patch or extend device services,
IBM suggests that such function-level ABIOS extensions can be implemented
by changing the vectors to function starts in the Function Transfer Table
used by the previous service.

There are two problems with this approach to function-level extensions:

• Start replacement does not accommodate interstage data

If the start of a staged function is replaced, interrupt and time-out han
dling associated with this function must also be replaced (because the
extension and the previous service may use interstage state information
differently). There are no public vectors to an individual function's inter
rupt and time-out handling.

• Stack and register contents are not defined

Stack and register contents passed to individual function starts are not
defined by IBM and are presumably subject to change. Therefore, a start
routine in one service doesn't know how to pass control to an individual
function start in another service, and the function start doesn't know how
to return.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Recommendations for Extending ABIOS, Continued

Phoenix recommendations

Phoenix Technologies Ltd. recommends that function-level extensions to the
ABIOS fall under the single class: MODIFY. Extensions that modify ABIOS
services on the function level must carefully conform to the requirements set
down in this chapter. The requirements insure that:

• Device Block private data is not overwritten

The Device Blocks associated with all ABIOS services contain a substantial
amount of "private" data that is neither publicly defined nor publicly
accessible.

• Interstage state information is not lost

Interstage state information is not defined. Therefore, if an extension
performs any stage of a particular function or a particular call, it must
perform all stages.

Phoenix terminology

When handled in this way, ABIOS extensions fall into three categories: RE
PLACE, ADD, and MODIFY. As a general rule, the extent of change between
the pre-existing service and the extension service should help determine
which extension type is required.

Graphic examples

The following illustrations graphically depict how extensions that REPLACE,
ADD, or MODIFY might interface with fixed disk hardware.

continued

ABIOS Extensions 163

Recommendations for Extending ABIOS, Continued

ABIOS extensions that REPLACE services

ABIOS extensions that replace an existing service completely supersede that
service.

Operating System

Fixed Disk
Service

init code

common
code

start
routine

Int.
routine

time-out
routine

func. 1
start

func. n
start

REPLACE Service

Fixed Disk

The REPLACE option and ABIOS Data Structures

164

ABIOS extensions that replace existing services require an all new Device
Block and Function Transfer Table. At initialization, the Common Data Area
pointers to the "old" service's Device Block and Function Transfer Table are
zeroed, thus nullifying all calls to the older service.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Recommendations for Extending ABIOS, Continued

ABIOS extensions that ADD services

ABIOS extensions that add a service are similar to those extensions that
replace a service, but differ in one critical respect. ABIOS extensions that
add a service do not supersede any pre-existing service.

Operating System

ADD Service

Fixed Disk
r-

~
Service 2

lnlt code

common
code

start
routine

int.
Fixed Disk routine

Fixed Disk Service 1 time-out
routine (new hardware)

lnlt code func. 1
common start

code I-
start func. n

routine start =
Int.

routine
Fixed Disk

time-out
routine ("old" hardware)

func. 1
start

1---1
func. n

start =

The ADD option and ABIOS Data Structures

ABIOS extensions that add a new, coexistent device service require an all
new Device Block and Function Transfer Table. At initialization, each device
service is assigned its own Logical ID. Function calls to each service are
distinguished from each other by Logical ID.

continued

ABIOS Extensions 165

Recommendations for Extending ABIOS, Continued

ABIOS extensions that MODIFY services

166

When the degree of change between a pre-existing ABIOS service and the
extension is small, the ABIOS service can be modified by creating an exten
sion that shares duties with the pre-existing service.

Operating System

MODIFY Service

I
Fixed Disk

Service

init code init code init code
common common common

code code code

} New code

Old code{

start start start
routine routine routine

int. int. Int.
routine routine routine

time-out time-out time-out
routine routine routine
func. 1 func. 1 tune. 1

start start start
Old code{

func. n func. n ... func. n
start start start

I
} New code

Fixed Disk

=

continued

ABIOS for IBM PS/2 Computers and Compatibles

Recommendations for Extending ABIOS, Continued

The MODIFY option and ABIOS Data Structures

ABIOS extensions that share functionality with an existing service require a
"hybrid" Device Block and a new Function Transfer Table. At initialization,
the Common Data Area pointers to the "old" device service data structures
are nullified. All function calls are relayed via a new Logical ID associated
with the modified service.

The new Function Transfer Table directs all functions to the new service,
where a decision to revector certain functions to the "old" service may be
made. The private Device Block parts reserved by the "old" service must
not be written to by the new service; private data may not be shared be
tween services.

ABIOS Extensions 167

Requirement 1: Create Proper Extension Header

Introduction

ABIOS extensions are identified to the system by an extension file header.
The format of this header varies depending on whether the extension is to
be implemented in ROM or RAM.

ROM extension file header

The ROM extension file header is described in the table below.

Offset Bytes Description

OOh 2 EXTENSION ROM SIGNATURE = AA55h
Extension ROMs may contain extensions to either (or both)
the CBIOS and the ABIOS. The power-on self test (POST)
searches for CBIOS extension ROMs In 2K Increments over the
absolute address range COOOOh-DFBOOh. ABIOS extension
ROMs are searched for over the same address range as part
of ABIOS initialization.

The extension ROM signature AA55h Informs POST that an
extension ROM is present. All extension ROMs must begin on a
paragraph boundary.

02h 1 ROM LENGTH IN 512-BYTE BLOCKS
Extension ROMs must be divided Into 512-byte blocks. The
maximum value for this field is 7Fh.

03h 3 ENTRY POINT TO CBIOS INITIALIZATION ROUTINE (FAR
CALL)
If the extension ROM contains a portion that will be used to
extend CBIOS, then the entry point to the CBIOS extension's
lnltiallzatlon Routine must appear here.

Note: If the extension ROM contains an ABIOS extension
only, this field must contain a dummy Return Far in-
struction. The dummy Return Far Instruction allows
POST to continue its ROM extension scan.

06h 2 ABIOS EXTENSION ROM SIGNATURE - BB66h
The search for ABIOS extension ROMs Is performed In 2K In-
crements over the absolute address range COOOOh-DFFFFh as
part of ABIOS Initialization. The ABIOS Extension ROM slgna-
ture Indicates that the ROM contains an ABIOS extension. The
ABIOS Extension Signature must be set to BB66h.

OBh 1 NUMBER OF ENTRIES TO ADD TO INITIALIZATION TABLE
The total number of Initialization Table Entries is accumulated
as part of the ABIOS Initialization process. This field must con-
taln the number of Initialization Table Entries required by the
ABIOS ROM extension. The minimum acceptable value is 1.

09h - ENTRY POINT FOR BUILD INITIALIZATION TABLE ROUTINE
Entry point to routine to Build Initialization Table routine.

continued

168 ABIOS for IBM PS/2 Computers and Compatibles

Requirement 1: Create Proper Extension Header, Continued

RAM extension file header

The RAM extension file header is described in the table below.

Offset Bytes Description

OOh 2 EXTENSION RAM PRESENT = AA55h
The value AA55h Indicates that a RAM extension Is present.

02h 1 RAM EXTENSION LENGTH IN 512-BYTE BLOCKS
Extension RAMs must be created In Increments of 512-byte
blocks. The maximum value for this fleld Is 7Fh.

03h 1 MODEL BYTE
04h 1 SUBMODEL BYTE
05h 1 ROM REVISION LEVEL

The model byte and submode! byte Identify the system board
with which the RAM extension Is to be associated. The ROM
Revision Level Indicates the revision of system board ROM
which the RAM extension Is designed to Interact.

06h 2 DEVICE ID
The Device ID fleld (along with the secondary device ID below)
Identifies the ABIOS device with which the RAM extension Is to
be associated.

08h 2 NUMBER OF ENTRIES TO ADD TO INITIALIZATION TABLE
The total number of lnltlallzatlon Table Entries Is accumulated
as part of the ABIOS lnltiallzatlon process. The value contained
In this field must be set to the number of lnltlallzatlon Table
Entries that will be required by this ABIOS ROM extension. The
minimum acceptable value Is 1 .

09h 1 ENTRY POINT FOR BUILD INITIALIZATION TABLE ROUTINE
Entry point to routine to Build Initialization Table routine.

OCh 1 SECONDARY DEVICE ID
When more than one physical device Is associated with a De-
vice ID, the two physical devices can be differentiated with a
Secondary Device ID. When a unique ABIOS Service Is required
for each physical device, the two services must be different!-
ated via their Secondary Device ID.

ODh 1 RAM EXTENSION REVISION LEVEL
The RAM extension revision level Identifies the revision level of
the RAM extension.

OEh 2 RESERVED
(Must be Initialized to zero.)

continued

ABIOS Extensions 169

Requirement 1: Create Proper Extension Header, Continued

Table of ABIOS Device IDs and Services

The system ROM ABIOS contains one device service for each of the Device
IDs listed in the table below.

Device ID Device Type/Service Device ID Device Type/Service

OOh ABIOS Internal Calls OBh Pointing Device

01h Diskette OCh Reserved
02h Fixed Disk ODh Reserved
03h Video OEh CMOS RAM
04h Keyboard OFh Direct Memory Access
OSh Parallel Port 10h Programmable Option Select
06h Serial Port 11 h Error Log
07h System Timer 12h-15h Reserved
08h Real Time Clock Timer 16h Keyboard Security
09h System Services 17h-FFFFh Reserved
OAh Nonmaskable Interrupt l•FTIF?T••••T< ~···•?·••r< -....... ~.·.·. ./.

:..2_//

170 ABIOS for IBM PS/2 Computers and Compatibles

Requirement 2: Build Initialization Table Entry Routine

Introduction

ABIOS extensions are initialized and integrated as part of the general process
of initializing the system ROM ABIOS. ABIOS extensions must contain a
routine that can be called during the ABIOS initialization process to build the
extension's entry into the ABIOS Initialization Table.

Example: Routine to Build Initialization Table Entry

The example below shows how a routine to build an ABIOS extension's entry
into the Initialization Table could be implemented.

Those routines associated with ABIOS extensions that modify an existing
service must reserve a Device Block size equal to that reserved by the
existing service plus enough bytes for the modification's workspace.

MY-BINIT proc far
Entry: ES:DI points to where to put init
table entry(s)

Exit: far ret w/AL =OOOh (successful),
80h (no units found), or other error and
ex = # entries added. Other registers are
preserved.

assume DS:nothing, ES:nothing
cld

;* patch CS in template
mov fixsegl, CS

;* copy template to entry
mov SI, offset MY-INITEMPL
mov ex, 18h/2

rep movs word ptr ES: [DI], word ptr CS: [SI]
sub di, 18h

ABIOS Extensions

continued

171

Requirement 2: Build Initialization Table Entry Routine, Continued

Example: Routine to Build Initialization Table Entry, cont'd

;* At this point, if this is a MODIFY, the Device Block
;* and Request Block reserved sizes should be calculated
'* from those of the previous service plus the sizes for
;* workspace required by the modification.
·*
'
•*
'
•*
' return w/AL

pop a
0, ex

mov al, 0
mov ex, 1
ret

MY BINIT endp

MY INITEMPL label word
dw MY DIDl
dw MY LIDCNT
dw MY DEVBLLEL

dw offset MY INITDS

fixsegl dw ?
dw MY_REQBLLEN

dw (MY_FUNCCNT +4)*4

dw MY_DATAPTCNT*6

dw MY DID2
dw MY_REV+80H
dw 0, 0, 0

172

1

!nit Table Template
device ID
logical ID count
device block size in
bytes
ptr to init-FUNCT-and
DEVBL routine
CS - fill in the blank
default request block
length
function table size in
bytes
bytes required for
buff er ptrs
secondary Device ID
code level
reserved

ABIOS for IBM PS/2 Computers and Compatibles

Requirement 3: Routine to Build Device Blocks and FTT

Introduction

All ABIOS extensions must contain a routine to initialize an extension-specific
Device Block and Function Transfer Table (FTT).

How the routine is entered

The routine to build an extension-specific Device Block and Function Transfer
Table must be entered with DS:OOh pointing to the Common Data Area
(CDA) and DX = Logical ID, so that:

• the double word at DS: (DX*B) points to where the Device Block is to be
built, and

• the double word at DS: (DX*8+4) points to where the Function Transfer
Table is to be built.

continued

ABIOS Extensions 173

Requirement 3: Routine to Build Device Blocks and FTT, Continued

Extension type requirements

How the routine to initialize an extension's Device Block and Function Trans
fer operates depends on the type of ABIOS extension involved.

Extension Type lnltlallzatlon Routine

ADD Service The extension's Device Block and Function Transfer Table
can be lnltlallzed to any length required.

REPLACE Service The lnltlallzatlon routine must zero the Common Data Area
pointers to the older service's Device Block and Function
Transfer Table.
This ensures that the operating system will not call the ABIOS
service being replaced.

MODIFY Service The Initialization routine must:

• Copy the existing service's Device Block to where the ex-
tension's Device Block is to be built.

• Initialize the modification's workspace In the Device Block .

• Patch the existing Device ID In the service's Device Block
to a number unrecognized by an operating system (e.g.
OFFh) so that an operating system will not call It.

lnltlallzlng the Device Block In this way ensures that the func-
tlons Involved with the ABIOS extension:

• Do not make use of any undefined areas within the existing
service' s Device Block.

• Access extension-specific data only In the extension-
specific workspace added at the end of the Device Block.
In this way Interstage state Information need not be main-
talned between the extension and the pre-existing ABIOS
service.

• Build an extension-specific Function Transfer Table that
takes over all three entry routines.

continued

174 ABIOS for IBM PS/2 Computers and Compatibles

Requirement 3: Routine to Build Device Block and FTT, Continued

Pseudocode: Routine to Build Device Block and Function Transfer Table
for a Fixed Disk Service REPLACEment

MY_INITDS proc far
Entry: ex = logical ID count

DX = 1st logical ID
DS:O points to CDA

Exit: FAR RET w/: AL= error code (0)
for each LID up until mine, ;*

;*

'* I

if it's for my device (DIDs & DID2s are=),
if device block rev > mine,

'* I

;*
•* I

'* I

; *
'* '
; *
;*

'* ;

; *
'* '
; *
. * '
'* '
'* '
; *
'* ' . * ' . * '
'* '
. *
'
'* ' MY INITDS endp

ABIOS Extensions

go zero my LID's ptrs and abort
end if

zero that LID's ptrs
end if

next LID
init device block(s) {
copy DB template
init device unique data
init all unit unique data

for each UUDA,
get drive #
get potential hard disk params
get drive type, params for type
call UUDini t

next UUDA
}

fill in offset to first data pointer
fill in LID
calc & fill in dev block

build function transfer table
exit

size

175

Requirement 4: ABIOS Service Code

Introduction

Each ABIOS extension must contain the code implementing all or part of an
ABIOS device service. This is the run-time code of an extension; the other
requirements deal only with ABIOS initialization.

Reference

Information under the Examples heading in this chapter provides concrete
examples of how various kinds of extensions can be coded.

Initialization: ABIOS ROM Extensions

Introduction

The process of initializing an ABIOS ROM extension includes the same steps
and is closely integrated with the process of initializing the system board
ROM ABIOS.

Limits of this discussion

176

The discussion below is limited to only those areas of ABIOS initialization
directly related to the initialization of ABIOS ROM extensions. For additional
ABIOS initialization information, refer to Chapter 4.

continued

ABIOS for IBM PS/2 Computers and Compatibles·

Initialization: ABIOS ROM Extensions, Continued

ROM extension initialization procedure

The table below lists the steps involved in initializing ABIOS ROM extensions.

Step Action

1 . The operating system calls CBIOS INT 15h, AH= 04h Build System Pa-
rameters Table.

2. The Build System Parameters Table function scans (In 2K Increments)
absolute addresses COOOOh to DFFFFh, testing for a valid ABIOS ROM
extension header. Valid ABIOS ROM headers contain a signature value
of BB66h at offset 06h.

3. When a valid ABIOS ROM extension Is found, the Build System
Parameters Table function: . Reads the Number of Initialization Table Entries at ROM extension

header offset 08h. . Adds that value to the value In offset 1 Eh of the System Parameters
Table. . Continues It search at the next 2K boundary .

4. The operating system call CBIOS INT 15h, AH= 05h Build Initialization
Table.

5. The Build Initialization Table function scans (in 2K Increments) absolute
addresses COOOOh to DFFFFh, testing for a valid ABIOS ROM extension
header.

6. Valid ABIOS ROM headers contain a signature value of BB66h at offset
06h. When a valid ABIOS ROM extension is found, the Build Initialization
Table function performs a far call to offset 09h in the ROM extension
header. This is the ROM extension's routine to Build Initialization Table
Entry.

7. Once It has built Its entry Into the Initialization Table, the ABIOS ROM
extension's Routine to Build the extension's Device Block and Function
Transfer Table are called directly from OS/2 In the same manner as
system board ABIOS device code.

The routine to build the extension's Device Block and Function Transfer
Table may choose to Install or not install Itself. If It does not Install It-
self, It zeros Its Device Block pointer and Function Transfer Table
pointer In the Common Data Area.

ABIOS Extensions 177

Initialization: ABIOS RAM Extensions

Introduction

The process of initializing an ABIOS RAM extension is similar to the process
of initializing an ABIOS ROM extension.

The difference between the two lies in the additional steps that the Build
Initialization Table routine contained ABIOS RAM extensions must take to
insure that only the latest revision of a given ABIOS service is initialized.

When RAM extensions are initialized

ABIOS RAM extensions are initialized only after the system board ROM ABIOS
and all adapter board ABIOS ROM extensions have been fully initialized.

Extension requirements reprised

As discussed in the previous pages, all ABIOS RAM extensions must meet
the four requirements below:

• Requirement 1 : ROM Extension Header
• Requirement 2: Build Initialization Table Routine

• Requirement 3: Routine to Build Device Block and Function Transfer Table

• Requirement 4: Extension Code

Limits of this discussion

178

The discussion below is limited to those areas of ABIOS initialization directly
related to the initialization of ABIOS RAM extensions. For further information
about ABIOS initialization, refer to Chapter 4.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Initialization: ABIOS RAM Extensions, Continued

RAM extension initialization procedure

The table below lists the steps involved in initializing ABIOS RAM extensions.

Step Action

1. The operating system calls CBIOS INT 15h, AH= 04h Build System
Parameters Table.

2. The Build System Parameters Table function scans RAM extension area,
polling the Number of Initialization Table Entries field (offset 08h) of each
RAM extension header to determine the total number of Initialization Table
Entries.

3. When a valid ABIOS RAM extension Is found, the Build System Parame-
ters Table function: . Reads the Number of lnltlallzatlon Table Entries at RAM extension

header offset 08h. . Adds that value to the value In offset 1 Eh of the System Parameters
Table. . Continues It search at the next 2K boundary .

4. The operating system calls CBIOS INT 15h, AH = 05h Build Initialization
Table.

5. Once It has built Its entry Into the Initialization Table, the ABIOS ROM
extension's Routine to Build the extension's Device Block and Function
Transfer Table are called directly from OS/2 In the same manner as
system board ABIOS device code.

6. If the extension replaces or modifies an existing service, the Routine to
Build DB and FTT may compare the extension's revision level against the
revision level of the existing service, choosing to replace or modify only If
Its own revision Is greater. To disable either the existing service or the
extension's service, the corresponding DB and FTT pointers In the CDA
must be zeroed.

Reference

To be initialized, all ABIOS RAM extensions should be listed in the OS/2 file
ABIOS.SYS. For more information on ABIOS.SYS, refer to the documentation
accompanying 08/2.

continued

ABIOS Extensions 179

Initialization: ABIOS RAM Extensions, Continued

The ABIOS RAM extension area

The ABIOS RAM extension area resides in system RAM and contains a
chained list of all ABIOS RAM extensions. The ABIOS RAM extension area
must start on a paragraph boundary. Individual RAM extensions within the
ABIOS RAM extension area ate linked via the Extension Length in 512-Byte
Blocks field in the RAM Extension header.

Considerations for last RAM extension in area

The last RAM extension in the ABIOS RAM extension area must have its
Extension Length in 512-Byte Blocks header field set to zero.

Examples of How to Modify an Existing Service

Introduction

180

Anything a programmer might hope to achieve with ABIOS extensions that
MODIFY an existing service can be achieved by building extensions that do
not replace individual function-start vectors.

Well-behaved programming strategies that are useful in different situations
include:

• Non-intrusive service interception

• Redirection of a nonstaged function

• Redirection of a staged function

ABIOS for IBM PS/2 Computers and Compatibles

Example 1: Non-Intrusive Interception

Description

The example below shows how an ABIOS extension can replace an entire
service yet redirect all activity to the previous device service transparently to
that service and to the operating system.

Code example: non-intrusive interception

CODE segment byte public
assume cs:CODE

start:
RAM extension header
dw OAA55h
db EXTSIZE
db 0, 0, 0

length in half Ks
model, submodel, ROM revision

dw 2 device ID for hard disk
db 1 # initialization table entries

jmp near ptr BINIT build init table entry
db OFFh, OFFh secondary dev ID, my revision
dw 0 reserved
my workspace in pseudo-Device-Block:
offsets into workspace:

WORKl equ 0
WORK3 equ 2

word
byte

WORKSPACESIZE
OLDFUNCTOFF
FUN CT

equ 3
dw ?

my read-only (after init) data:
offset in CDA of ptr to old LIDs

MYDATAPTROFF dw ?
WORKSPACEOFFSET dw ?
workspace
FUNCTABLESIZE

ABIOS Extensions

dw ?

offset in CDA of my data ptr
off set in device block of my

size of previous function table

continued

181

Example 1: Non-Intrusive Interception, Continued

Code example: non-intrusive interception, cont'd

182

BINIT proc far ; Build-initialization table subroutine
;* find previous init table for this device ID
;* if none, go return unhappy
;* store DID, LID count=l
;* WORKSPACEOFFSET =previous device block size
;* store device block size= previous device block size+
;* WORKSPACESIZE
;* store pointer to init-data-structures subroutine
;* store request block size= previous request block size
;* store function table size= 4*4
;* store data pointer size, DID2, revision, 0000s
; * return happy
BIN IT endp

INITDS proc far ; Initialize-data-structures subroutine
;* get offset of our pointers in CDA
;* find previous service's ptrs in CDA
;* save offset to its function table
;* copy device block to mine, changing size
;* init workspace at end of device block
;* give old driver a weird device ID so OS doesn't call it
;* build function transfer table - vectors to
;* LOGSTART, LOGINTERRUPT,
;* and LOG Time-out routines (and no functions)
;* update Common Data Area's data pointer count
;* find where my data pointer goes
;* load my data pointer
;* MYDATAPTROFF =offset of my data pointer's selector in CDA
;* return happy
INITDS endp

continued

ABIOS for IBM PS/2 Computers and Compatibles

Example 1: Non-Intrusive Interception, Continued

Code example: non-intrusive interception, cont'd

LOGTime-out:
;* save offset into transfer table= 8
;* goto LOGCOMMON
LOGINTERRUPT:
;* save offset into transfer table
;* goto LOGCOMMON
LOGSTART:

4

;* save offset into transfer table o
;* goto LOGCOMMON

LOGCOMMON proc far
;* save registers

time-out routine

interrupt routine

start routine

;* change function transfer table in stack for revector
;* get address of previous service's start, int, or time-out
;* routine from previous transfer table
;* place it in stack for return from here
;* get function code from request block
;* get pointer to workspace
;* get my data pointer
;* record function code
;* restore registers and return (to previous service's start
;* routine)
LOGCOMMON endp

EXTSIZE = (offset $ - offset start + 1FFh)/200h
;* RAM ext. size / 200h
org EXTSIZE*200h

CODE ends
end

ABIOS Extensions 183

Example 2: Redirection of a Nonstaged Function

Description

Redirection of a nonstaged function is relatively easy. The extension's start
routine examines the function code in the request block and either services
the function itself or redirects the request to the previous device service.

In the example below, a replacement video service redirects all functions to
the previous video service and regains control when that service returns. It
then checks to see if one of the font-loading functions was performed; if so,
the font is "italicized" by shifting half of each loaded character font.

Code example: redirecting a nonstaged function - italicizing fonts

184

INITDS proc far ; Initialize-data-structures subroutine
;* get offset of our pointers in CDA
;* find previous service's ptrs in CDA
;* save offset to its function table
;* copy device block to mine
;* give old driver a weird device ID so OS doesn't call it
;* build function transfer table - vector to MYSTART (and no
; * functions)
;* update Common Data Area's data pointer count
;* find where my data pointer goes
;* load my data pointer
;* MYDATAPTROFF =offset of my data pointer's selector in CDA
;* return happy
INITDS endp

continued

ABIOS for IBM PS/2 Computers and Compatibles

Example 2: Redirection of a Nonstaged Function, Continued

Code example: redirecting a nonstaged function - italicizing fonts, cont'd

MYSTART proc far start routine
;* Save registers.
;* Build additional stack, copying pointers from passed stack,
;* replacing transfer table vector with vector to previous
;* transfer table.
;* Get previous service start address from previous transfer
;* table.
;* Call previous service start routine.
;* Flush additional stack.
;* Get function code from request block.

if function code = OFh or lOh, •*
'
;* set up hardware to access font plane,
;* get my data pointer (to font at AOOOO)
;* for each character,
;* shift top half of character definition right.
;* next character
;* restore hardware
;* endif
;* restore registers and return to OS

MY START endp

ABIOS Extensions 185

Example 3: Redirection of a Staged Function

Description

186

Replacing a staged function requires careful design because all stages of the
interrupt function must be redirected, not just the function start.

The way to handle this is for all three device service entries - the start
routine, the interrupt routine, and the time-out routine - to make redirection
decisions based on function code.

For instance, if an extension wishes to replace only "read" functionality, all
three entries into the device service (start, interrupt, and time-out routines)
will examine the function code in the request block and redirect all functions
except "read" to the corresponding entry in the previous device service.

In this manner, interstage state information (which is private) need not be
compatible between, say, an extension's start processing and the system
ROM ABIOS's interrupt processing.

In the example on the following page, an ABIOS extension for a diskette
drive which has a "ready" signal rather than a change line is presented.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Example 3: Redirection of a Staged Function, Continued

Code example: redirecting staged functions - diskette change line emulation

INITDS proc far ; Initialize-data-structures subroutine
;* get offset of our pointers in CDA
;* find previous service's ptrs in CDA
;* save offset to its function table
;* copy device block to mine, changing size
;* init workspace at end of device block
;* give old driver a weird device ID so OS doesn't call it
;* build function transfer table - vectors to MYSTART,
;* MYINTERRUPT,
;* and previous service's time-out routine (and no functions)
;* update Common Data Area's data pointer count
;* find where my data pointer goes
;* load my data pointer
;* MYDATAPTROFF =offset of my data pointer's selector in CDA
;* return happy
INITDS endp

MY INTERRUPT proc far ; interrupt routine
;* save registers
;* if it's diskette interrupt but function code
; * (default),
;* sense interrupt status

0000

;* if interrupt is due to change in state of ready line,
;* changedflag =yes
;* endif
•* .
;*

restore regs and return to caller w/ return code 0000
end if

;* get address of previous service's interrupt routine
;* place it in stack for return from here
;* restore registers and return (to previous service's
;* interrupt routine)

MY INTERRUPT endp

ABIOS Extensions

continued

187

Example 3: Redirection of a Staged Function, Continued

Code example: redirecting staged functions - diskette change line emulation,
cont'd

MY START proc far start routine
;* save registers
;* get function code from request

if function code = OOOE,
block

. * ' . * '
;*
•*
'
•*
'
•*
'

if changedflag = yes,
restore regs and return to
else if changedflag = no,
restore regs and return to
end if

caller

caller

W/ change

w/ change

;* else if function code= 0008 through OOOB,
;* if changedflag =yes,
•*
'
•*
'
•*
'
•*
'
•*
'
•*
'
;*
•*
'

sense drive status
if drive not ready,

restore regs and return to caller
(w/ return code 8000)

else,
restore regs and return to caller
(w/ return code 8006)
changedflag = no

;* endif
; * endif
; * endif

active

inactive

;* change function transfer table in stack for revector
;* get address of previous service's start routine
;* place it in stack for return from here
;* restore registers and return
;* (to previous service's start routine)

MY START endp

188 ABIOS for IBM PS/2 Computers and Compatibles

Chapter B

ABIOS Diskette Service

Overview

Introduction

The ABIOS Diskette Service provides access to diskette 1/0 operations.

Rules for using the PS/2 BIOS Diskette Services

Because the CBIOS and ABIOS interface with different operating systems,
either the CBIOS or ABIOS Diskette Service may place diskette hardware in
an unknown state. The CBIOS does not inform the ABIOS of the diskette
hardware state when control is passed from the CBIOS to the ABIOS, and
vice versa. As a result, it is possible for one part of the PS/2 ROM BIOS to
put the diskette hardware in a state that will not be recognized by the other
part of the BIOS.

continued

ABIOS Diskette Service 189

Overview, Continued

Rules for using the PS/2 BIOS Diskette Services, cont'd

Follow the rules listed below to avoid diskette problems in the PS/2 BIOS:

1. If there is an outstanding ABIOS Diskette function request, do not request
a CBIOS diskette function.

2. If there is an outstanding CBIOS Diskette function request, do not request
an ABIOS Diskette function request.

3. If using CBIOS and the last Diskette Service function call was to ABIOS,
request INT 13h, AH = OOh, Reset Diskette System, before invoking other
CBIOS Diskette functions.

4. If using ABIOS and the last Diskette Service function call was to CBIOS,
request ABIOS Diskette Service function 05h, Reset Diskette System,
before invoking other ABIOS Diskette Service functions.

5. After ABIOS is initialized, the first ABIOS Diskette Service function request
must be function 05h, Reset Diskette System.

Logical IDs for diskette drives

190

All diskette drives may share the same Logical ID with each drive assigned a
separate unit number. For example, all diskette drives may be Logical ID 11.
Diskette drive 0 may be Logical ID 11 , Unit 0 and diskette drive 1 may be
Logical ID 11 , Unit 1 .

continued

ABIOS for IBM PS/2 Systems and Compatibles

Overview, Continued

Diskette Change Line signal

Some diskette drives are equipped with a Diskette Change Line signal that is
set when the diskette drive door is opened. The Diskette Change Line signal
has two states, set and not set:

• set
The diskette has been changed or the diskette drive door is open. Disk
ette data cannot be read or written in this state. Diskette media status
cannot be determined while the Change Line is set.

• not set
The diskette drive door is closed, information can be read from and
written to the diskette, and all status information can be read and
modified.

Testing the Diskette Change Line signal status

The Diskette Change Line signal status is tested by the ABIOS Diskette
Service before functions 08h Read Diskette, 09h Write to Diskette, OAh
Format Diskette, or OBh Verify Diskette Data are processed.

Function 03h Read Device Parameters may be requested to determine if
the Diskette Change Line signal status is supported by the specified dis
kette drive.

continued

ABIOS Diskette Service 191

Overview, Continued

Summary of Diskette Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h Set Device Parameters

05h Reset/Initialize Diskette Subsystem

06h Reserved

07h Disable Diskette

08h Read Diskette

09h Write to Diskette

OAh Format Diskette

OBh Verify Diskette Sectors

OCh Read Media Parameters

ODh Set Media Type for Format

OEh Read Change Line Signal Status

OFh Turn Diskette Motor Off

10h Interrupt Status

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• Error Handling

• ABIOS Diskette Service functions

192 ABIOS for IBM PS/2 Systems and Compatibles

Hardware Environment

Hardware interrupt

The ABIOS Diskette Service is associated with hardware interrupt request 6
(IRQ 6).

Diskette controller

The ABIOS supports an NEC 765 or equivalent diskette controller. Also,
additional hardware support for data separation, interrupt, and OMA control
is required.

Data transfer rates

All supported formats must use a 512-byte sector size. Data transfer rates
supported are:

Transfer Rate Diskette
(Kbs)* Capacity Drive Capacity Drive Size

250Kbs 360K 360K 5.25

250Kbs 720K 720K 3.5

500Kbs 1.2MB 1.2MB 5.25

300Kbs 360K 1.2MB 5.25

250Kbs 720K 1.44MB 3.5

500Kbs 1.44MB 1.44MB 3.5

* Kiiobits per second

continued

ABIOS Diskette Service 193

Hardware Environment, Continued

Supported drive types

The ABIOS supports a maximum of two diskette drives. The Phoenix ABIOS
supports both 5.25 inch and 3.5 inch diskette drives. The IBM ABIOS sup
ports only 3.5 inch diskette drives.

The Phoenix ABIOS Diskette Service supports four types of diskette drives:

Maximum Disk Size Maximum Maximum
Storage Capacity (inches) Tracks/Side Sectors/Track

1.44 MB 3.5 80 18

720K 3.5 40 18

360K 5.25 40 9

1.2 MB 5.25 80 15

5. 25 inch diskette compatibility

194

5.25 inch diskette media can be high density (1.2 MB) or double density
(360K). Diskettes written to on one type of 5.25 inch drive may or may not
be written to or read from using the other type. The following table outlines
the possible read/write combinations of 5.25 inch diskette media and drive
types.

If diskette was Then it can be And it can be
Media Type formatted on ... read on ... or .•. written to by ...

360K 360K drive 360K drives 1.2 MB drives 360K drives only

1.2 MB 360K drive 360K drives 1.2 MB drives 360K drives only

If a high density (1.2 MB) diskette is formatted on a 1.2 MB drive, it can
only be read from and written to by 1.2 MB drives.

The DOS command, format/4, can be used to format a 360K diskette in a
1.2 MB drive. Both 1.2 MB and 360K drives can generally read and write
these diskettes.

continued

ABIOS for IBM PS/2 Systems and Compatibles

Hardware Environment, Continued

3.5 inch diskette compatibility

The following outlines the possible read/write combinations for 3.5 inch
drives and media:

• If a 720K media type diskette is formatted on a 720K drive, it can be read
on either 720K or 1.44 MB drives, but it can only be written to by 720K
drives.

• If a 1.44 MB media type diskette is formatted on a 1.44 MB drive, it can
only be read from and written to by 1.44 MB drives.

Error Handling

How errors are reported

ABIOS signals the status (SuccessfuL Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the diskette function requested has
an error. The caller's Return Code handler routine should test Bits 14, 13,
12, and 8 to determine the class of error that has occurred, and should then
test the remaining bits to determine the precise nature of the error.

Retryable diskette errors

When Bit 8 (Retryable Error) of the Return Code is set, the request should
be retried. The recommended number of retries is returned by Diskette
function 03h, Read Device Parameters (in offset 2Bh in the Request Block) .

ABIOS Diskette Service 195

Function: OOh - Default Interrupt Handler

Description

Function OOh, Default Interrupt Handler, is a single-staged request. It handles
unexpected hardware interrupts by resetting the interrupt at the device level.

How function is requested

When the Logical ID associated with the ABIOS Diskette Service has no
outstanding Request Blocks waiting for an interrupt and an unexpected hard
ware interrupt occurs, the operating system must build a Request Block in
the format below and call function OOh to turn off the interrupt at the diskette
controller level.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length (1 Oh)
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (initlalize to OOOOh)
OCh Word
OEh Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

196 ABIOS for IBM PS/2 Systems and Compatibles

Function: 01h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
Diskette Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)

02h Word Lo ical ID
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte
11 h Byte
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word
3Ah Byte

ABIOS Diskette Service

Output:

Hardware Interrupt Level (06h)
Arbitration Level (02h)
Device ID (0001h)
Count of Units
Logical ID Flags
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 0 Reserved
= Transfer Data Pointer

Mode:
1 Ob = Physical Pointer

Required
Request Block Length (for other
functions)

continued

197

Function: 01h - Return Logical ID Parameters, Continued

Return Codes

198

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Systems and Compatibles

Function: 03h - Read Device Parameters

Description

This function is a single-staged request. It returns the parameters for this
device in the Request Block as specified below. The information returned
applies to the maximum capacity of the media for the specified drive type.
The ABIOS resets the diskette subsystem if there is a hardware error.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo ical ID
04h Word Unit
06h Word Function 0003h
08h Word Reserved initialize to OOOOh
OAh Word
OCh Word
OEh Word
10h Word

12h Word

14h Word

ABIOS Diskette Service

Output:

Time-out Value
Sectors per track for the maximum
media density supported by the
drive
Sector Size In bytes
OOh = Reserved
01 h = 256 bytes/sector
02h = 512 bytes/sector

(Default)
Device Control Flags
Bits 15-4 = Reserved
Bit 3 = Recalibrate status

0 Recalibrate not
required

1 Recalibrate required
= Concurrent operations

O Not supported
1 Supported

= Format unit Information
0 Not supported
1 Supported

= Change signal
availability
0 Not available
1 Available

continued

199

Function: 03h - Read Device Parameters, Continued

Request Block Structure, cont'd

Offset Size Input:

16h Word

18h Word
1Ch DWord

20h DWord
26h Word

2Ah Byte
2Bh Byte

2Ch Byte
2Dh DWord
31h Byte
32h Byte
33h Byte
3Ah Byte

200

Output:

Diskette Drive Type
OOh = Drive not present/invalid

CMOS RAM
01h = 5.25 inch 40-Track, 2-Head,

360K
02h = Reserved
03h = Reserved
04h = 3.5 Inch, BO-Track, 2-Head,

1.44MB
Reserved
Delay Before Turning Motor Off
(microseconds)
Motor Startup Time (microseconds)
Number of Cylinders on the
Maximum-Density Media the Drive
Supports
Number of Heads
Recommended Number of Software
Retries
Fiii Byte for Format
Head Settle Time (microseconds)
Gap Length for Read/Write/Verify
Gap Length for Format
Data Length
Disk Controller Status Byte

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: 03h - Read Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy, Request Refused

8001h Diskette Not Started

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Diskette Service 201

Function: 04h - Set Device Parameters

Description

This function is a single-staged request. It is used to change the default
Sector Size (512 bytes), Gap Length, and Data Length for diskette 110
functions.

If a diskette is formatted with a sector size other than 512 bytes, this func
tion must be issued before executing functions 08h Read Diskette, 09h Write
to Diskette, OAh Format Diskette, or OBh Verify Diskette Data.

The ABIOS resets the diskette subsystem if there is a hardware error.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h Word

31h Byte
33h Byte

202

Input:

Request Block Length
Lo lcal ID
Unit
Function 0004h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Reserved (Initialize to OOOOh)
Size of sector (bytes)
OOh = Reserved
01h = 256 bytes per sector
02h = 512 bytes per sector

default
Gap Length for Read/Write/Verify
Data Length

Output:

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: 04h - Set Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

BOOOh Device Busy, Request Refused

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Sector Size

FFFFh Return Code Field Not Valid

Function: 05h - Reset/Initialize Diskette Subsystem

Description

This function is a discrete multistaged request. It resets the diskette control
ler to a known state, which generates an interrupt to which the caller must
respond and forces a recalibration of the diskette drive(s) on the next ac
cess to each drive. The ABIOS resets the diskette subsystem if there is a
hardware error.

If using both ABIOS and CBIOS Diskette Services

If a CBIOS Diskette Service function has been requested last, the caller must
request ABIOS Diskette function 05h before requesting any other Diskette
function.

If ABIOS has just been initialized, the caller must request this function to set
the diskette subsystem to a known state.

continued

ABIOS Diskette Service 203

Function: 05h - Reset/Initialize Diskette Subsystem, Continued

Testing the Diskette Change Line signal status

The Diskette Change Line signal status is tested by the ABIOS Diskette
Service before functions 08h Read Diskette, 09h Write to Diskette, OAh
Format Diskette, or OBh Verify Diskette Data are processed.

Function 03h Read Device Parameters may be requested to determine if the
Diskette Change Line signal status is supported by the specified diskette
drive.

Diskette Change Line signal

The Diskette Change Line signal has two states: set and not set.

• Set
The diskette has been changed or the diskette drive door is open. Disk
ette data cannot be read or written in this state. Diskette media status
cannot be determined while the Change Line is set.

• Not set
The diskette drive door is closed, information can be read from and
written to the diskette, and all status information can be read and
modified.

Turning off the diskette motor

If it is known thet the requested function is the last diskette operation and
the Return Code is OOOOh Successful Operation, the caller can turn off the
diskette motor by requesting function OFh, Turn Diskette Motor Off. The
recommended turn-off delay value can be found by requesting function 03h,
Read Device Parameters.

Track switching

204

The ABIOS Diskette Service does not support a switch from head 1 of a
diskette cylinder to head 0 of the next cylinder. However, it allows you to
cross track boundaries if you switch from head 0 to head 1 on the same
cylinder.

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: 05h - Reset/Initialize Diskette Subsystem, Continued

Switching between ABIOS and CBIOS

Request this function after switching from CBIOS to ABIOS and before invok
ing any other ABIOS Diskette Service functions.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0005h
08h Word Reserved initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh}
OCh Word
OEh Word
10h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

8000h Device Busy, Request Refused

9009h Controller Failure In Reset Operation

A120h Controller Failure

B020h Controller Failure

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Diskette Service 205

Function: 06h - Reserved

Function: 07h - Disable Diskette

Description

This function is a single-staged request that disables the diskette interrupt.
ABIOS reads the diskette controller result bytes and returns them at offsets
3Ah and 3Bh in the Request Block and then shuts down the diskette inter
rupt. The ABIOS resets the diskette subsystem if there is a hardware error.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word

OCh Word
OEh Word
10h Word
3Ah Word

3Bh Word

206

Input:

Request Block Length
Logical ID
Unit
Function 0007h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Return Code

Output:

Diskette Result Byte 0 (Status Regis
ter 0), where:
Bits 7-6 = Interrupt Code

OOb = Command ends
normally

01 b = Commands ends
abnormally

1 Ob = Invalid command
11 b = Ready Line state

changed
= 1 Seek End
= 1 Equipment Check
= 1 Not Ready
= 1 Head Address
= 1 Unit 1 selected
= 1 Unit 0 selected

Diskette Result Byte 1 (Present Cyl
inder Number)

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: 07h - Disable Diskette, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

8000h Device Busy, Request Refused

9009h Controller Failure in Reset Operation

9120h All Diskette Controller Register Bytes Not Read

9180h Either Data is Not Ready Or the Transfer Direction
is Incorrect

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Diskette Service 207

Function: 08h - Read Diskette

Description

This function is a discrete multistaged request that reads data from the
specified cylinder, head, and sector number on the specified diskette drive
to the memory location specified in Data Pointer 2, if the Diskette Change
Line signal status is not set (the diskette door is closed) .

If a diskette is formatted with a sector size other than 512 bytes, function
04h Set Device Parameters must be issued, resetting the sector size, before
executing this function.

The ABIOS resets the diskette subsystem if there is a hardware error.

Turning off the diskette motor

If it is known that the requested function is the last diskette operation and
the Return Code is OOOOh Successful Operation, the caller can turn off the
diskette motor by requesting function OFh, Turn Diskette Motor Off. The
recommended turn-off delay value can be found by requesting function 03h,
Read Device Parameters.

Track switching

208

The ABIOS Diskette Service does not support a switch from head 1 of a
diskette cylinder to head 0 of the next cylinder. However, it allows you to
cross track boundaries if you switch from head 0 to head 1 on the same
cylinder.

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: 08h - Read Diskette, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
18h Word
1Ah DWord

1Eh Word
20h DWord

24h Word
26h Word
2Ah Byte
31h Word

Input:

Request Block Length
Lo lcal ID
Unit
Function 0008h
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Reserved
Reserved (lnltlallze to OOOOh)
Reserved (lnltlallze to OOOOh)
Data pointer 2 (32-blt physical
address required)

Number of sectors to read
Cylinder number (0-based)
Head number (0-based)
Sector number

ABIOS Diskette Service

continued

209

Function: 08h - Read Diskette, Continued

Return Codes

210

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If the Number of Sectors to Read field Is zero,
no action Is performed and this Code Is generated.

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

8000h Device Busy, Request Refused

8003h Write Attempted on Write-Protected Diskette

8006h Media Changed
Generated If the ABIOS can reset the Diskette
Change Line signal to not set; data may be transmitted.

800Dh Media Not Present
Generated If the ABIOS cannot reset the Diskette
Change Line signal to not set; no data Is transferred.

9009h Controller Failure In Reset Operation

9102h Address Mark Not Found

9104h Requested Sector Not Found

9108h DMA Overrun on Operation

9110h Bad CRC on Diskette Read

9120h Controller Failure

9140h Seek Operation Failed

9180h Error

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit

C004h Invalid Request Block Length

COOCh Unsupported Media Type/Unestablished Media

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Systems and Compatibles

Function: 09h - Write to Diskette

Description

This function is a discrete multistaged request that writes the specified
number of sectors of data from the memory location specified by Data
Pointer 2 to the specified cylinder, head, and sector number on the specified
diskette drive if the diskette Change Line signal status is not set (the disk
ette door is closed).

If a diskette used in the system's diskette drive(s) was formatted with a
sector size other than 512 bytes, function 04h Set Device Parameters must
be issued, resetting the sector size, before executing function 09h Write to
Diskette.

The ABIOS resets the diskette subsystem if there is a hardware error.

Turning off the diskette motor

If it is known that the requested function is the last diskette operation for
awhile and the Return Code is OOOOh Successful Operation, the caller can
turn off the diskette motor by requesting function OFh, Turn Diskette Motor
Off. The recommended turn-oft delay value can be found by requesting
function 03h, Read Device Parameters.

Track switching

The ABIOS Diskette Service does not support a switch from head 1 of a
diskette cylinder to head 0 of the next cylinder. However, it allows you to
cross track boundaries if you switch from head 0 to head 1 on the same
cylinder.

continued

ABIOS Diskette Service 211

Function: 09h - Write to Diskette, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
18h Word
1Ah DWord

1Eh Word
20h DWord

24h Word
26h Word
2Ah Byte
31h Word

Input:

Request Block Length
Lo ical ID
Unit
Function 0009h
Reserved initialize to OOOOh

Reserved
Reserved (Initialize to OOOOh)
Reserved (Initialize to OOOOh)
Data pointer 2 (32-blt physical
address required)
Reserved (Initialize to OOOOh)

Number of sectors to write
Cylinder number (0-based)
Head number (0-based)
Sector number

Output:

continued

212 ABIOS for IBM PS/2 Systems and Compatibles

Function: 09h - Write to Diskette, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If the Number of Sectors to Read field Is zero,
no action Is performed and this Code is generated.

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

8000h Device Busy, Request Refused

8003h Write Attempted on Write-Protected Diskette

8006h Media Changed
Generated if the ABIOS can reset the Diskette
Change Line signal to not set; data may be transmitted.

800Dh Media Not Present
Generated if the ABIOS cannot reset the Diskette
Change Line signal to not set; no data is transferred.

9009h Controller Failure in Reset Operation

9102h Address Mark Not Found

9104h Requested Sector Not Found

9108h OMA Overrun on Operation

9110h Bad CRC on Diskette Read

9120h Controller Failure

9140h Seek Operation Failed

9180h Error

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit

C004h Invalid Request Block Length

COO Ch Unsupported Media Type/Unestablished Media

FFFFh Return Code Fleld Not Valid

ABIOS Diskette Service 213

Function: OAh - Format Diskette

Description

This function is a discrete multistaged request that formats the media in the
specified drive if the Diskette Change Line signal status is not set (the disk
ette drive door is closed) .

If a diskette is formatted with a sector size other than 512 bytes, function
04h Set Device Parameters must be issued, resetting the sector size, before
executing function OAh Format Diskette.

The ABIOS resets the diskette subsystem if there is a hardware error.

Formatting a diskette

To format a diskette:

1 . Construct a table with one entry (the Address field) for each sector on
the track. The table entries (Address fields) must have the format de
scribed below.

2. Place the table in a buffer and place the address of the buffer in Data
Pointer 2.

3. Request function ODh Set Media Type for Format. The field ID for each
sector is written sequentially from the buffer to each sector in the
specified track.

Address field format

214

Each Address field consists of the following four bytes, in order:

• Track number (C)

• Head number (H)

• Sector number (R)

• Sector size (N)

Each sector on the track must be represented by one entry, consisting of
one byte each containing the data items above, in order, in the buffer
pointed to by Data Pointer 2.

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: OAh - Format Diskette, Continued

Return Code Processing

If the Return Code is 8006h Media Changed or 800Dh Media Not Present,
request function ODh Set Media Type for Format before invoking function OAh
Format Diskette again.

Turning off the diskette motor

If it is known that the requested function is the last diskette operation and
the Return Code is OOOOh Successful Operation, the caller can turn off the
diskette motor by requesting function OFh, Turn Diskette Motor Off. The
recommended turn-off delay value can be found by requesting function 03h,
Read Device Parameters.

Track switching

The ABIOS Diskette Service does not support a switch from head 1 of a
diskette cylinder to head 0 of the next cylinder. However, it allows you to
cross track boundaries if you switch from head 0 to head 1 on the same
cylinder.

continued

ABIOS Diskette Service 215

Function: OAh - Format Diskette, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOAh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word
12h DWord Reserved
16h Word Reserved (Initialize to OOOOh)
18h Word Reserved (Initialize to OOOOh)
1Ah DWord Data pointer 2 (32-bit physical)
1Eh Word Reserved (lnltlallze to OOOOh)
20h DWord

24h Word
26h Word Cylinder number (0-based)
2Ah Byte Head number (0-based)

continued

216 ABIOS for IBM PS/2 Systems and Compatibles

Function: OAh - Format Diskette, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If the Number of Sectors to Read field is zero,
no action is performed and this Code Is generated.

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

BOO Oh Device Busy, Request Refused

8003h Write Attempted on Write-Protected Diskette

8006h Media Changed
Generated if the ABIOS can reset the Diskette
Change Line signal to not set; data may be transmitted.

800Dh Media Not Present
Generated if the ABIOS cannot reset the Diskette
Change Line signal to not set; no data is transferred.

9009h Controller Failure in Reset Operation

9102h Address Mark Not Found

9104h Requested Sector Not Found

9108h OMA Overrun on Operation

9110h Bad CRC on Diskette Read

9120h Controller Failure

9140h Seek Operation Failed

9180h Error

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit

C004h Invalid Request Block Length

COOCh Unsupported Media Type/Unestablished Media

FFFFh Return Code Field Not Valid

ABIOS Diskette Service 217

Function: OBh - Verify Diskette Sectors

Description

This function is a discrete multistaged request that verifies the data residing
on the specified number of sectors on the specified cylinder number, head
number, and sector number on the drive if the the diskette drive door is
closed. The data is not read, but is determined to be accurate.

If a diskette used in the system's diskette drive(s) was formatted with a
sector size other than 512 bytes, function 04h Set Device Parameters must
be issued, resetting the sector size, before executing this function.

The ABIOS resets the diskette subsystem if there is a hardware error.

Turning off the diskette motor

If it is known that the requested function is the last diskette operation and
the Return Code is OOOOh Successful Operation, the caller can turn off the
diskette motor by requesting function OFh, Turn Diskette Motor Off. The
recommended turn-off delay value can be found by requesting function 03h,
Read Device Parameters.

Track switching

218

The ABIOS Diskette Service does not support a switch from head 1 of a
diskette cylinder to head 0 of the next cylinder. However, this service will
allow you to cross track boundaries if you switch from head 0 to head 1 on
the same cylinder.

continued

ABIOS for IBM PS/2 Systems and Compatibles

Function: OBh - Verify Diskette Sectors, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length

02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word
1Eh Word
20h DWord

24h Word Number of sectors to verify
26h Word Cylinder number (0-based)
2Ah Byte Head number (0-based)
31h Word Sector number

continued

ABIOS Diskette Service 219

Function: OBh - Verify Diskette Sectors, Continued

Return Codes

220

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If the Number of Sectors to Read fleld Is zero,
no action Is performed and this Code Is generated.

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

8000h Device Busy, Request Refused

8003h Write Attempted on Write-Protected Diskette

8006h Media Changed
Generated If the ABIOS can reset the Diskette
Change Line slgnal to not set; data may be transmitted.

800Dh Media Not Present
Generated If the ABIOS cannot reset the Diskette
Change Line slgnal to not set; no data Is transferred.

9009h Controller Failure In Reset Operation

9102h Address Mark Not Found

9104h Requested Sector Not Found

9108h OMA Overrun on Operation

9110h Bad CRC on Diskette Read

9120h Controller Failure

9140h Seek Operation Falled

9180h Error

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit

C004h Invalid Request Block Length

COOCh Unsupported Media Type/Unestablished Media

FFFFh Return Code Fleld Not Valld

ABIOS for IBM PS/2 Systems and Compatibles

Function: OCh - Read Media Parameters

Description

This function is a discrete multistaged request. It returns the parameters of
the media used in the preceding diskette function, if the Diskette Change
Line signal status is not set.

This function is intended to be used after requests for either function 08h
Read Diskette, 09h Verify Diskette, or OAh Format Diskette.

The ABIOS resets the diskette subsystem if there is a hardware error.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word
12h Word

16h Word
26h Word
2Ah Byte
31h Byte
32h Byte
33h Byte

ABIOS Diskette Service

Output:

Number of sectors per track
Size of sector (bytes)
OOh = Reserved
01 h = 256 bytes per sector
02h = 512 bytes per sector
03h-FFFFh = Reserved

Gap Length for Read/Write/Verify
Gap Length for format
Data Length

continued

221

Function: OCh - Read Media Parameters, Continued

Return Codes

222

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Succe.ssful Operation
If the Number of Sectors to Read field Is zero,
no action is performed and this Code is generated.

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

8000h Device Busy, Request Refused

8003h Write Attempted on Write-Protected Diskette

8006h Media Changed
Generated If the ABIOS can reset the Diskette
Change Line signal to not set.

800Dh Media Not Present
Generated if the ABIOS cannot reset the Diskette
Change Line signal to not set.

9009h Controller Failure in Reset Operation

9102h Address Mark Not Found

9104h Requested Sector Not Found

9108h OMA Overrun on Operation

9110h Bad CRC on Diskette Read

9120h Controller Failure

9140h Seek Operation Failed

9180h Error

COOOh Invalid Logical ID

C001h lnvalld Function

C003h Invalid Unit

C004h Invalid Request Block Length

COOCh Unsupported Media Type/Unestablished Media

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Systems and Compatibles

Function: ODh - Set Media Type for Format

Description

This function is a single-staged request that sets the media information used
in the format function. This information includes the number of tracks and
the number of sectors per track. These parameters are used until changed
by function 04h Set Device Parameters, or until the drive door is opened
(changing the Change Line signal status to set).

The ABIOS resets the diskette subsystem if there is a hardware error.

Warning: If the sector size is changed by this function, the caller must
restore the sector size to its original value by invoking function
04h Set Device Parameters immediately after using function ODh.

ABIOS diskette processing

If the diskette has been changed since the last time function ODh was
requested and a diskette is in the drive, the ABIOS sets the specified pa
rameters and resets the Diskette Change Line signal to not set.

Note: request this function before invoking function OAh Format Diskette

continued

ABIOS Diskette Service 223

Function: ODh - Set Media Type for Format, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Word
12h Word

16h Word
20h DWord

26h Word Number of tracks to format
2Ch Byte Fifi byte for format
32h Byte Gap Length for format

continued

224 ABIOS for IBM PS/2 Systems and Compatibles

Function: ODh - Set Media Type for Format, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If the Number of Sectors to Read field Is zero, no
action Is performed and this Code Is generated.

8000h Device Busy, Request Refused

8006h Media Changed
Generated If the ABIOS can reset the Diskette
Change Line signal to not set; data may be transmitted.

800Dh Media Not Present
Generated If the ABIOS cannot reset the Diskette
Change Line signal to not set (the diskette drive
door Is open); no data Is transferred.

800Fh Invalid Value In CMOS RAM

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Diskette Parameter

COOCh Unsupported Media Type/Unestablished Media
Invalid Input In the Number of Tracks to Format or Number
of Sectors Per Track fields causes this code to be set.

FFFFh Return Code Field Not Valid

ABIOS Diskette Service 225

Function: OEh - Read Change Line Signal Status

Description

This function is a single-staged request. It determines if the drive door of
the specified diskette drive has been opened since the last time the change
line was cleared. The Change Line Signal Status field is valid only if the
specified drive supports the Diskette Change Line signal. Function 03h, Read
Device Parameters specifies if the Change Line signal status is supported.

The ABIOS resets the diskette subsystem if there is a hardware error.

This function does not clear the Diskette Change Line signal.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOEh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte

16h Word

continued

226 ABIOS for IBM PS/2 Systems and Compatlbles

Function: OEh - Read Change Line Signal Status, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy , Request Refused

800Eh Change Line Signal Not Available

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Diskette Service 227

Function: OFh - Turn Diskette Motor Off

Description

This function is a single-staged request that turns off the diskette drive
motor for the specified diskette drive. The caller should request this function
when the OOOOh Successful Operation Return Code is set for those functions
that may turn the motor on:

• 05h Reset/Initialize Diskette

• 08h Read Diskette

• 09h Write to Diskette

• OAh Format Diskette
• OBh Verify Diskette Data

The ABIOS resets the diskette subsystem if there is a hardware error.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOFh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Byte

continued

228 ABIOS for IBM PS/2 Systems and Compatibles

Function: OFh - Turn Diskette Motor Off, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy, Request Refused

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 10h - Interrupt Status

Description

This function is a single-staged request that returns the diskette interrupt
pending status. This function does not reset the interrupt condition.

The ABIOS resets the diskette subsystem if there is a hardware error.

Track switching

The ABIOS Diskette Service does not support a switch from head 1 of a
diskette cylinder to head 0 of the next cylinder. However, it allows you to
cross track boundaries if you switch from head 0 to head 1 on the same
cylinder.

continued

ABIOS Diskette Service 229

Function 1 Oh - Interrupt Status, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 001 Oh
08h Word Reserved Initialize to OOOOh
OCh Word
OEh Word
10h Byte

16h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy, Request Refused

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

230 ABIOS for IBM PS/2 Systems and Compatibles

Chapter 9

ABIOS Fixed Disk Service

Overview

Description

The ABIOS Fixed Disk Service provides access to fixed disk 1/0 through a
series of function requests. All ABIOS Fixed Disk Service functions disable
interrupts upon completion.

OMA interface

The ABIOS Fixed Disk Service accesses the ABIOS OMA Service. If the
ABIOS Fixed Disk Service is used, the ABIOS OMA Service must also be
initialized.

continued

ABIOS Fixed Disk Service 231

Overview, Continued

Rules for using the PS/2 BIOS fixed disk services

Because the CBIOS and ABIOS interface with different operating systems,
either the CBIOS or ABIOS Fixed Disk Service may place fixed disk hardware
in an unknown state. The CBIOS does not inform the ABIOS of the fixed disk
hardware state when control is passed from the CBIOS to the ABIOS, and
vice versa. As a result, it is possible for one part of the PS/2 ROM BIOS to
put the fixed disk hardware in a state that will not be recognized by the other
part of the BIOS.

Follow the rules listed below to avoid fixed disk problems in the PS/2 BIOS:

1 . If there is an outstanding ABIOS Fixed Disk function request, do not
request a CBIOS Fixed Disk function.

2. If there is an outstanding CBIOS Fixed Disk function request, do not
request an ABIOS Fixed Disk function.

3. If using CBIOS and the last Fixed Disk Service function call was to ABIOS,
request INT 13h, AH = ODh, Alternate Reset Fixed Disk System, before
invoking other CBIOS Fixed Disk functions.

4. If using ABIOS and the last Fixed Disk Service function call was to CBIOS,
request ABIOS Fixed Disk Service function 05h, Reset Fixed Disk System,
before invoking other ABIOS Fixed Disk Service functions.

5. After ABIOS is initialized, the first ABIOS Fixed Disk Service function
request must be function 05h, Reset Fixed Disk System.

Fixed disk drive access

232

In the ABIOS, fixed disk drives are specified by Logical ID. All fixed disk
drives may share the same Logical ID, with each drive assigned a separate
unit number. For example, all fixed disk drives may be Logical ID 11; fixed
disk drive 0 may be Logical ID 11 , Unit 0 and fixed disk drive 1 may be
Logical ID 11 , Unit 1 .

continued

ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

Fixed Disk Relative Block addressing

The ABIOS Fixed Disk Service functions 08h, 09h, OAh, and OBh require
Relative Block Addresses as input in the Request Block that invokes these
functions. An RBA is constructed of three elements. The derivation of these
elements is as follows:

1 . Multiply the Number of Sectors Per Track times the Head Number times
the Cylinder Number to arrive at the first element of the RBA.

2. Multiply the Number of Sectors Per Track times the Head Number for the
second element of the RBA.

3. The third element is the Sector ID minus one.

Add all three elements together to arrive at the RBA.

Relative Block Addresses begin at zero. In relative block addressing the first
data block is at location 0 on the fixed disk (Cylinder 0, Head 0, Sector 1).

Relative Block Address input

Function 03h Read Device Parameters of the ABIOS Fixed Disk Service
returns actual physical values for the number of sectors per track, number
of heads, and number of cylinders. When multiplied together, these three
values indicate the number of Relative Block Addresses on the fixed disk.
The largest Relative Block Address is one less than that number.

continued

ABIOS Fixed Disk Service 233

Overview, Continued

Summary of ABIOS Fixed Disk Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h Reserved

05h Reset/Initialize Fixed Disk

06h-07h Reserved

08h Read Fixed Disk

09h Write to Fixed Disk Drive

OAh Write and Verify Fixed Disk

OBh Verify Fixed Disk Data

OCh Fixed Disk Interrupt Status

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• Fixed Disk Service Parameters Table

• Error Handling

• ABIOS Fixed Disk Service functions

234 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

Fixed disk controller

The ABIOS supports up to two fixed disks. The ABIOS supports a
PS/2-compatible ST506 fixed disk adapter. The ST506 adapter is single
tasking and must complete one operation before starting another, even
though the next operation may be for the other fixed disk. The hardware
interrupt request for fixed disk is 14.

ALL and ESDI fixed disk controllers may also be supported by the ABIOS.

Data Transfer characteristics

The standard data transfer rate for the fixed disks is 500 kilobits per second
(Kbs). The largest contiguous block of data that can be transferred at any
one time is 255 sectors. The time-out value for all fixed disk functions is
22 seconds.

ABIOS Fixed Disk Service 235

Fixed Disk Service Parameters Table

Table of fixed disk definitions

The defined entries into the Fixed Disk Parameters table are listed below.
Wherever possible, the manufacturer name and model number associated
with a given drive type are listed in the column, "Manufacturer."

Write Landing Sectors/ Defect
Type Manufacturer Cyl. Heads Precomp Zone Track Map

1 IBM 10 MB 306 4 128 305 17 No

2 IBM 20 MB 615 4 300 615 17 No
Seagate ST -225
CDC Wren II
9415-5-25
Miniscribe 8438F

3 IBM 30 MB 615 6 300 615 17 No

4 IBM 62 MB 940 8 512 940 17 No

5 IBM 46 MB 940 6 512 940 17 No

6 IBM 20 MB 615 4 OFFFFh* 615 17 No
Miniscribe MS 8425
Seagate ST4026
Tandon TM 262
Tandon TM 702AT

7 IBM 30 MB 462 8 256 511 17 No

8 IBM 30 MB 733 5 OFFFFh* 733 17 No
Seagate ST -4038
CDC Wren II
9415-5-38
Tandon TM 703AT

9 IBM 112 MB 900 15 OFFFFh* 901 17 No

10 IBM 20 MB 820 3 OFFFFh* 820 17 No

11 IBM 35 MB 855 5 OFFFFh* 855 17 No

12 IBM 49 MB 855 7 OFFFFh* 855 17 No

13 IBM 20 MB 306 8 128 319 17 No

• If a table entry contains OFFFFh for Write Precompensatlon, then there Is no write
precompensatlon for this disk. If the Write Precompensatlon Is zero, then there Is write
precompensatlon for all cylinders.

continued

236 ABIOS for IBM PS/2 Computers and Compatibles

Fixed Disk Service Parameters Table, Continued

Table of fixed disk definitions, cont'd

Write Landing Sectors/ Defect
Type Manufacturer Cyl. Heads Precomp Zone Track Map

14 IBM 42 MB 733 7 OFFFFh* 733 17 No

15 Not used

16 IBM 20 MB 612 4 o• 663 17 No

17 IBM 40 MB 977 5 300 977 17 No

18 IBM 56 MB 977 7 OFFFFh* 977 17 No

19 IBM 59 MB 1024 7 512 1023 17 No

20 IBM 30 MB 733 5 300 732 17 No

21 IBM 42 MB 733 7 300 732 17 No

22 IBM 30 MB 733 5 300 733 17 No

23 IBM 10 MB 306 4 o• 336 17 No

24 IBM 20 MB 612 4 305 663 17 No

25 IBM 10 MB 306 4 OFFFFh* 340 17 No

26 IBM 20 MB 612 4 OFFFFh• 670 17 No

27 IBM 40.5 MB 698 7 300 732 17 Yes

28 IBM 40.5 MB 976 5 488 977 17 Yes

29 IBM 10 MB 306 4 OFFFFh* 340 17 No

30 IBM 20 MB 611 4 306 663 17 Yes

31 IBM 42.5 MB 732 7 300 732 17 Yes

32 IBM 42.5 MB 1023 5 OFFFFh* 1023 17 Yes

• If a table entry contains OFFFFh for Write Precompensation, then there is no write
precompensation for this disk. If the Write Precompensation is zero, then there is write
precompensatlon for all cylinders.

ABIOS Fixed Disk Service 237

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the fixed disk function requested has
an error. The caller's Return Code handler routine should then test Bits 14,
13, 12, and 8 to determine the class of error that has occurred. The return
code handler routine should then test the remaining bits to determine the
precise nature of the error.

Retryable fixed disk errors

238

When Bit 8 (Retryable Error) of the Return Code is set, the request should
be retried. The recommended number of retries is returned by Diskette
function 03h, Read Device Parameters (in offset 1 Dh in the Request Block) .

ABIOS for IBM PS/2 Computers and Compatibles

Function: OOh - Default Interrupt Handler

Description

This function is a single-staged request that handles unexpected hardware
interrupts by resetting the interrupt at the device level. It is invoked through
the interrupt routine.

When invoked

This function is invoked by calling the interrupt routine with a function code
of OOOOh. It is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo ical ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Fixed Disk Service 239

Function: 01h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte

11h Byte
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

240

Input:

Request Block Length (20h)
Lo lea! ID
Unit
Function 0001 h
Reserved initialize to OOOOh
Reserved (initialize to OOOOh)

Reserved (Initialize to OOOOh)
Reserved (Initialize to OOOOh)

Output:

Arbitration Level (OOh through OEh)
Device ID (0002h)
Count of Units
Logical ID Flags

Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 0 Reserved
= Transfer Data Pointer

Mode
10b= Physical Pointer

Required
Request Block Length (for other
functions)
Secondary Device ID

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 02h - Reserved

ABIOS Fixed Disk Service 241

Function: 03h - Read Device Parameters

Description

This function is a single-staged request that returns the parameters for this
device in the Request Block as specified below. The information returned
applies to the maximum capacity of the media for the specified drive type.
All ABIOS Fixed Disk Service functions disable interrupts upon completion.

Software retries

This function returns a recommendation for the Number of Retries (at offset
1 Dh) performed by the caller when a Retryable error (Bit 8 in the Return
Code field) is set.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

Request Block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word

12h Word

16h Word

242

Input:

Request Block Length
Lo lcal ID
Unit
Function 0003h
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Sectors per track associated with
requested unit
Size of Sector (bytes)
00h-01h =Reserved
02h = 512-byte sectors
03h-FFFFh = Reserved
Drive Type, where:
OOh = Drive Type 1
01h =Drive Type 2, etc, up to
21 h = Drive Type 33

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Request Block structure, cont'd

Offset Size Input:

14h Word

18h DWord

1Ch Byte

1Dh Byte

20h DWord

24h DWord
28h Word
2Ch Word

ABIOS Fixed Disk Service

Output:

Device Control Flags
Bits 15-13 = Reserved
Bits 12-11 =Format support

00 No format
support

01 Format track
support

10 Format unit
support

11 Track/unit
support

Bit 10 = ST506 drive
0 No ST506
1 ST506

Bit 9 = Concurrent unit
requests
0 Not concurrent
1 Concurrent

Bit 8 = Ejecting capablllty
0 No ejecting
1 Ejecting

Bit 7 = Media organization
0 Random
1 Sequential

Bit 6 = Locking capability
0 No locking
1 Locking

Bit 5 = Read capablllty
O Not readable
1 Readable

Bit 4 = Caching support
O No caching
1 Caching

Bit 3 = Write frequency
0 Write once
1 Write many

Bit 2 = 1 Change signal
supported

Bits 1-0 = Reserved
Number of cylinders associated
with requested unit
Number of heads associated with
requested unit
Suggested number of software
retries
Number of Block Addresses
associated with requested unit
Reserved
Reserved
Maximum number of blocks to
transfer for one call

continued

243

Function: 03h - Read Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 04h - Reserved

Function: 05h - Reset/Initialize Fixed Disk

Description

244

This function is a discrete multistaged request that resets the fixed disk
subsystem (both hardware and software) to a known state. Setting the fixed
disk drives to a known state involves resetting the fixed disk controller, which
generates an interrupt to which the caller must respond, and recalibrating
the drives on the next fixed disk access. All ABIOS Fixed Disk Service func
tions disable interrupts upon completion.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Reset/Initialize Fixed Disk, Continued

Switching between ABIOS and CBIOS

Invoke this function after switching from CBIOS to ABIOS and before invoking
any other ABIOS Fixed Disk Service functions.

Software retries

Function 03h Read Device Parameters returns the Number of Retries (at
offset 1 Dh in the Request Block) to attempt for a Fixed Disk Service function
when a Retryable error (Bit 8 in the Return Code field) is set.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0005h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (initialize to OOOOh)
OCh Word
OEh Word
10h Word
28h DWord

ABIOS Fixed Disk Service

Output:

Time to Walt Before Continuing
request (microseconds). Valid only
If Return Code Is 0002h.

continued

245

Function: 05h - Reset/Initialize Fixed Disk, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation: If the Number of Blocks to Read fleld
Is zero, no processing occurs, and this code Is generated.

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device Busy, Request Refused

800Fh OMA Arbitration Level Out of Range

9001h Bad Command

9002h Address Mark Not Found

9004h Record Not Found

9005h Reset Failed

9007h Controller Parameter Activity Failed

900Ah Defective Sector

900Bh Bad Track

900Dh Invalid Sector on Format

900Eh CAM Detected During Read or Verify

9010h Uncorrectable ECC or CRC Error

9020h Bad Controller

9021h Equipment Check

9040h Bad Seek

9080h Device Did Not Respond

90AAh Drive Not Ready

90BBh Undefined Error

90CCh Write Fault

90FFh Incomplete Sense Operation

9105h Reset Falled

9107h Controller Parameter Activity' Failed

continued

246 ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Reset/Initialize Fixed Disk, Continued

Return Codes, cont'd

Code Description

9120h Bad Controller

9121h Equipment Check

9140h Bad Seek

9180h Device Did Not Respond

91AAh Drive Not Ready

91BBh Undefined Error

91CCh Write Fault

91FFh Incomplete Sense Operation

AOOOh Time-out Occurred - No Other Error

A001h Bad Command

A002h Address Mark Not Found

A004h Record Not Found

A005h Reset Failed

A007h Parameter Activity Failed

AOOAh Defective Sector

AOOBh Bad Track

AOODh Invalid Sector on Format

AOOEh CAM Detected During Read or Verify

A010h Uncorrectable ECC or CRC Error

A011h ECC Corrected Data Error

A020h Bad Controller

A021h Equipment Check

A040h Bad Seek

A080h Device Did Not Respond

AOAAh Drive Not Ready

AOBBh Undefined Error

AOCCh Write Fault

AOFFh Incomplete Sense Operation

A100h Time-out Occurred - No Other Error

continued

ABIOS Fixed Disk Service 247

Function: 05h - Reset/Initialize Fixed Disk, Continued

Return Codes, cont'd

Code Description

A105h Reset Failed

A107h Controller parameter Activity Failed

A120h Bad Controller

A121h Equipment Check

A140h Bad Seek

A180h Device Did Not Respond

A1AAh Drive Not Ready

A1BBh Undefined Error

A1CCh Write Fault

A1FFh Incomplete Sense Operation

B001h Bad Command

B020h Bad Controller

B021h Equipment Check

B080h Device Did Not Respond

BOBBh Undefined Error

BOFFh Sense Failed

B101h Bad Command

B120h Bad Controller

B121h Equipment Check

B180h Device Did Not Respond

B1BBh Undefined Error

B1FFh Sense Failed

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Fixed Disk Parameter: If Number the of Blocks to
Read Is greater than 255, no processing occurs, and this
code Is returned.

FFFFh Return Code Field Not Valid

248 ABIOS for IBM PS/2 Computers and Compatibles

Functions: 06h - 07h - Reserved

Function: 08h - Read Fixed Disk

Description

This function, a multistaged request, reads the amount of data specified in
the Number of Blocks to Read field from the specified location on the fixed
disk to the location specified in Data Pointer 2. All ABIOS Fixed Disk Service
functions disable interrupts upon completion.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

Software retries

Function 03h Read Device Parameters returns the Number of Retries (at
offset 1 Dh in the Request Block) to attempt for a Fixed Disk Service function
when a Retryable error (Bit 8 in the Return Code field) is set.

continued

ABIOS Fixed Disk Service 249

Function: 08h - Read Fixed Disk, Continued

Request Block

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
18h Word
1Ah DWord

1Eh Word
20h DWord
24h DWord
28h DWord

2Ch Word

2Eh Byte

2Fh Word

Return Codes

Input:

Request Block Length
Lo ical ID
Unit
Function OOOBh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Reserved
Reserved (Initialize to OOOOh)
Reserved (Initialize to OOOOh)
Data Pointer 2 (32-bit physical
data pointer required)
Reserved (lnltlallze to OOOOh)
Relative Block Address

Number of blocks to read
(amount of data to be trans
ferred)

Caching
Bits 7-1 =Reserved (set to 0)
Bit 0 = Caching

0 = Caching Is OK
for this request

1 = Do not cache

Time to wait before continuing
request (microseconds). Valid only
If Return Code is 0002h.
Number of blocks read (not up
dated if Return Code is C005h) .
Number of blocks transferred if
successful or partially successful.
Only valid if request is complete.

Soft Error Occurred: If adapter de
tected and corrected an error, the
recovered error code Is displayed.
OOOOh = no error.

All Return Codes valid for the ABIOS Fixed Disk Service may be returned by
the ABIOS in response to this function. See the Return Codes list for Func
tion 05h - Reset/Initialize Fixed Disk.

250 ABIOS for IBM PS/2 Computers and Compatibles

Function: 09h - Write to Fixed Disk

Description

This function, a discrete multistaged request, writes the amount of data
specified in the Number of Blocks to Write field from the location specified in
Data Pointer 2 to the Relative Block Address on the fixed disk. All ABIOS
Fixed Disk Service functions disable interrupts upon completion.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

Software retries

Function 03h Read Device Parameters returns the Number of Retries (at
offset 1 Oh in the Request Block) to attempt for a Fixed Disk Service function
when a Retryable error (Bit 8 in the Return Code field) is set.

continued

ABIOS Fixed Disk Service 251

Function: 09h - Write to Fixed Disk, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
18h Word
1Ah DWord
1Eh Word
20h DWord
24h DWord
28h DWord

2Ch Word

2Eh Byte

2Fh Word

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function 0009h
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Reserved
Reserved (lnltlallze to OOOOh)
Reserved (lnltlallze to OOOOh)
Data Pointer 2 (32-blt physical)
Reserved (lnltlallze to OOOOh)

Number of Blocks to Write: If
zero, no processing occurs; Re
turn Code Is OOOOh; If> 255, Re
turn Code Is C005h, no process
ing occurs.
Caching
Bits 7-1 =Reserved (set to 0)
Bit 0 = Caching

0 = Caching Is OK
for this request

1 = Do not cache

Output:

Time to Walt Before Continuing
Request (microseconds). Valid
only If Return Code Is 0002h.

Number of blocks written (not up
dated If Return Code Is C005h).
Number of blocks transferred If
successful or partially successful.
Only valid If request Is complete. -
Soft Error Occurred: If adapter
detected and corrected an error,
the recovered error code Is dis
played.
OOOOh = no error.

All Return Codes valid for the ABIOS Fixed Disk Service may be returned by
the ABIOS in response to this function. See the Return Codes list for Func
tion 05h - Reset/Initialize Fixed Disk.

252 ABIOS for IBM PS/2 Computers and Compatibles

Function: OAh - Write and Verify Fixed Disk

Description

This function, a multistaged request, writes data to the fixed disk Oust as
function 09h does), then immediately verifies that same data (as function
OBh does).

Software retries

Function 03h Read Device Parameters returns the Number of Retries (at
offset 1 Dh in the Request Block) to attempt for a Fixed Disk Service function
when a Retryable error (Bit 8 in the Return Code field) is set.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

continued

ABIOS Fixed Disk Service 253

Function: OAh - Write and Verify Fixed Disk, Continued

Request Block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
OBh Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
18h Word
1Ah DWord
1Eh Word
20h DWord
24h DWord
28h DWord

2Ch Word

2Eh Byte

2Fh Word

31h Word

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOAh
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Reserved
Reserved (Initialize to OOOOh)
Reserved (Initialize to OOOOh)
Data Pointer 2 (32-bit physical)
Reserved (lnltlallze to OOOOh)
Relative Block Address
Reserved (Initialize to OOOOh)

No. of Blocks to Write/Verify. -
If the input is zero, no process
ing occurs. If the Input is> 255,
no processing occurs and the
Return Code is set to C005h.

Caching
Bits 7-1 =Reserved (set to 0)
Bit O = Caching

0 = Caching OK
1 = Do not cache

Time to Wait Before Continuing
Request (microseconds). Valid only
if Return Code is 0002h.
Number of blocks written and veri
fied (not updated if Return Code Is
C005h). Number of blocks written/
verified if successful or partially
successful. Only valid If request Is
com lete.

All Return Codes valid for the ABIOS Fixed Disk Service may be returned by
the ABIOS in response to this function. See the Return Codes list for Func
tion 05h - Reset/Initialize Fixed Disk.

254 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Verify Fixed Disk Data

Description

This function, a discrete multistaged request, verifies the readability of the
data on the fixed disk. Data is read but is not transferred. All ABIOS Fixed
Disk Service functions disable interrupts upon completion.

Software retries

Function 03h Read Device Parameters returns the Number of Retries (at
offset 1 Dh in the Request Block) to attempt for a Fixed Disk Service function
when a Retryable error (Bit 8 in the Return Code field) is set.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

continued

ABIOS Fixed Disk Service 255

Function: OBh - Verify Fixed Disk Data, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
16h Word
18h Word
1Eh Word
20h DWord
24h DWord
28h DWord

2Ch Word

2Eh Byte

2Fh Word

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOBh
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Soft Error Occurred: If adapter de
tected and corrected an error, the
recovered error code Is displayed.
OOOOh = no error.

All Return Codes valid for the ABIOS Fixed Disk Service may be returned by
the ABIOS in response to this function. See the Return Codes list for Func
tion 05h - Reset/Initialize Fixed Disk.

258 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Fixed Disk Interrupt Status

Description

This function, a single-staged request, returns the fixed disk controller
interrupt pending status. All ABIOS Fixed Disk Service functions disable
interrupts upon completion.

The interrupt condition is not reset by the ABIOS.

Logical ID

The Interrupt Status field applies to the fixed disk controller Logical ID and
not to any individual diskette drive (Unit) entered in the Request Block by
the caller.

Interrupt Status field

A parameter error in the input to the Request Block will cause the Interrupt
Status field to be invalid. The Interrupt Status field indicates if any interrupts
are currently pending from the interrupt controller.

Fixed disk hardware error conditions

The ABIOS resets the Fixed Disk subsystem if there is a fixed disk hardware
error.

Software retries

Function 03h Read Device Parameters returns the Number of Retries (at
offset 1 Dh in the Request Block) to attempt for a Fixed Disk Service function
when a Retryable error (Bit 8 in the Return Code field) is set.

continued

ABIOS Fixed Disk Service 257

Function: OCh - Fixed Disk Interrupt Status, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Byte

16h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Fixed Disk Parameter

FFFFh Return Code Field Not Valid

258 ABIOS for IBM PS/2 Computers and Compatibles

Chapter 10

ABIOS Keyboard Service

Overview

Description

The ABIOS Keyboard Service provides an interface between the operating
system and IBM PS/2-compatible keyboards. The functions available provide
the user with a means of accessing the keyboard which is independent of
hardware specifics. To maintain maximum compatibility across different
keyboard controllers, direct hardware programming of a controller should be
avoided.

continued

ABIOS Keyboard Service 259

Overview, Continued

Summary of Keyboard Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Keyboard ID Bytes

04h Reserved

05h Reset/lnltlallze Keyboard

06h Enable Keyboard

07h Disable Keyboard

08h Continuous Keyboard Read

09h-0Ah Reserved

OBh Read Keyboard LED Status

OCh Set Keyboard LED Status

ODh Set Typematlc Rate and Delay

OEh Read Keyboard Scan Code Mode

OFh Set Keyboard Scan Code Mode

10h Write Command (s) to Keyboard Controller

11h Write Command(s)/Data to Keyboard

In this chapter

This chapter includes information about the following topics:

• Hardware Environment
• 101-key Keyboard Layout

• Scan Codes

• System Scan Codes
• Error Handling
• ABIOS Keyboard Service functions

260 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

Introduction

The ABIOS supports an intelligent keyboard subsystem based on the Intel
8042 or equivalent keyboard controller.

The hardware interrupt level associated with the ABIOS Keyboard Service is
IRQ 1.

The 8042 controller chip

The Intel 8042 peripheral controller (or compatible) is a single-chip micro
computer that can be programmed to allow bidirectional communication
between the master microprocessor and up to two auxiliary serial input
devices. The 8042 chip, generally, is mounted on the system motherboard.
8042 programs reside as firmware in the 8042 chip itself.

Device support

The kind of devices a given 8042 chip supports are dependent on how the
8042 is programmed.

On IBM PS/2-compatible systems, the 8042 is programmed to allow bi
directional communication between the system and the keyboard, as well as
between the system and one other auxiliary serial device, such as a mouse,
joystick, or trackball.

ABIOS Keyboard Service 261

101-Key Keyboard Layout

Keyboard layout

The figure below depicts the key arrangement and key number system
applied to the typical 101-key keyboard.

B I 112 I m I ,,· I 115 I (1" I "' 111811191 , ,,. I 121 I 122 f 123 I , ,,. I 12511261

15

16 29

42

57

75 80 85

76 81 86

__G__
[:EE]

Norn
Lock

7
Home

4 ._
1

'""
0

'"'

90

91

92

93

99

8 9 ... Pg Up

6 _.
2 3
t PgDo

95 100

96 101

97 102

98 103

104

105

106

108

262 ABIOS for IBM PS/2 Computers and Compatibles

Scan Codes

Introduction

The keyboard hardware generates two kinds of keyboard codes: keyboard
scan codes and system scan codes. The illustration below defines each type
of code and shows their relationship to the ABIOS Keyboard Service.

·----

8042
Keyboard
Controller

..

Keyboard Service
Function 08h

ABIOS Keyboard Service

Keyboard scan codes
Each time a key Is pressed, the keyboard hard
ware generates a keyboard make or break scan
code. Keyboard scan codes are not understand
able to the system.

System scan codes
Among other things, the firmware resident In the
8042 keyboard controller chip must translate all
keyboard scan codes Into "system scan codes"
(I.e. codes that are understandable to the sys
tem). As It translates each code, the 8042 firm
ware deposits It In the 8042 • s output buffer.

Function OBh - Continuous Read
The ABIOS Keyboard Service Function 08h, Con
tinuous Keyboard Read, retrieves system scan
codes from their buffer In the 8042 keyboard con
troller chip and returns them In offset 14h of the
function 08h Request Block.
Function 08h signals the operating system that a
keystroke Is available by outputting Return Code
0009h, Attention, Resume Stage after Interrupt.
The operating system Is responsible for providing
any further processing of the system scan code.

263

System Scan Codes

The following system scan codes, including multi-byte codes, can be used
for the Write Password, Write Invocation and Write Match Byte functions.

Typewriter/Function Keys

U.S. U.S.
Keyboard System Scan Keyboard System Scan

Key# Legend Codes (hex) Key# Legend Codes (hex)

1 . - OE 26 p 40

2 1 ! 16 27 [{ 54

3 2@ 1E 28 I } SB

4 3# 26 29 101-key only 50

5 4$ 25 30 Caps Lock 58

6 5% 2E 31 A 1C

7 6 36 32 s 1B

8 7& 30 33 D 23

9 8* 3E 34 F 2B

10 9(46 35 G 34

11 0) 45 36 H 33

12 - 4E 37 J 3B -
13 =+ 55 38 K 42

15 Backspace 66 39 L 4B

16 Tab OD 40 .. 4C . .
17 Q 15 41 .. 52

18 w 1D 42 102-key only 50

19 E 24 43 Enter SA

20 R 20 44 L Shift 12

21 T 2C 45 102-key only 61

22 y 35 46 z 1A

23 u 3C 47 x 22

24 I 43 48 c 21

25 0 44 49 v 2A

continued

264 ABIOS for IBM PS/2 Computers and Compatibles

System Scan Codes, Continued

Typewriter/Function Keys, cont'd

U.S. U.S.
Keyboard System Scan Keyboard System Scan

Key# Legend Codes (hex) Key# Legend Codes (hex)

50 B 32 101 9 PgUp 7D

51 N 31 102 6 Right 74

52 M 3A 103 3 Page Down 7A

53 ,< 41 104 . Del 71

54 .> 49 105 - 78

55 I ? 4A 106 + 79

57 A Shift 59 108 Enter E0-5A

58 L Ctrl 14 110 Esc 76

60 L Alt 11 112 F1 05

61 Space 29 113 F2 06

62 A Alt E0-11 114 F3 04

64 A Ctrl E0-14 115 F4 oc
··--~---r-

90 Num Lock 77 116 F5 03

91 7 Home SC 117 F6 OB

92 4 Left 68 118 F7 83

93 1 End 69 119 F8 OA

96 8 Up 75 120 F9 01

97 5 73 121 F10 09

98 2 Down 72 122 F11 78

99 O Ins 70 123 F12 07

100 • 7C 125 Scroll Lock 7E

continued

ABIOS Keyboard Service 265

System Scan Codes, Continued

Other keys

The rest of the keys send a series of codes that depend on the state of the
shift keys (Ctrl, Alt, and Shift) and the Num Lock key (On or Off). Since the
base scan code is the same as that for another key, an additional code (hex
EO) is added to the base code so that it is unique. The following four tables
summarize the scan codes for these other keys.

Cursor/Control Keys

U.S. Base Case or
Keyboard Shift+

Key# Legend Num Lock Shift Case* Num Lock on

75 Insert E0-70 EO FO EO 12
12 EO 70 EO 70

7S Delete E0-71 EO FO EO 12
12 EO 71 EO 71

79 Left EO-SB EO FO EO 12
12 EO SB EO SB

80 Home EO-SC EO FO EO 12
12 EO SC EO SC

81 End EO-S9 EO FO EO 12
12 EO S9 EO 69

83 Up E0-75 EO FO EO 12
12 EO 75 EO 75

84 Down E0-72 EO FO EO 12
12 EO 72 EO 72

85 Page Up E0-7D EO FO EO 12
12 EO 7D EO 7D

8S Page Down E0-7A EO FO EO 12
12 EO 7A EO 7A

89 Right E0-74 EO FO EO 12
12 EO 74 EO 74

• With the Left Shift key down, the FO 12 shift code Is added to the other scan
codes sent. With the Right Shift key down, FO 59 Is added. When both keys are
down, both sets of codes are sent with the rest of the scan code.

continued

266 ABIOS for IBM PS/2 Computers and Compatibles

System Scan Codes, Continued

"/" Key on Numeric Keypad

U.S. Keyboard System Scan Codes
Key# Legend (hex) Shift Case•

95 I EO 4A EO FO
12 EO 4A

• With the Left Shift key down, the FO 12 shift code Is added to the other scan
codes sent. With the Right Shift key down, FO 59 Is added. When both keys are
down, both sets of codes are sent with the rest of the scan code.

Print Screen/Sys Req Key

U.S.
Keyboard System Scan Ctrl Case

Key# Legend Codes (hex) Shift Case Alt Case

124 Print Screen EO 12 EO 7C 84
EO 7C

Pause/Break Key

U.S. Keyboard System Scan Codes
Key# Legend (hex) Ctrl Key Pressed

126 Pause E1 14 77 EO 7E EO
E1 FO 14 FO 7E

FO 77

ABIOS Keyboard Service 267

Error Handling

Description

The ABIOS Keyboard Service assumes that the operating system will handle:

• Hardware errors

The ABIOS does not reset the keyboard after a keyboard hardware error.
It is the operating system's responsibility to execute function 05h Reset/
Initialize Keyboard every time there is a hardware error.

• Time-out error retries

The ABIOS Keyboard Service resets the keyboard after time-out errors.

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

268

If Bit 15 of the Return Code field is set, the keyboard function requested has
an error. The caller's Return Code handler routine should then test Bits 14,
13, 12, and 8 to determine the class of error that has occurred. The return
code handler routine should then test the remaining bits to determine the
precise nature of the error.

ABIOS for IBM PS/2 Computers and Compatibles

Function: OOh - Def a ult Interrupt Handler

Description

This single-staged function handles unexpected hardware interrupts by reset
ting the interrupt at the device level.

How and When to invoke

This function is invoked by calling the interrupt routine with a function code
of OOOOh. It is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
OBh Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Request Code Field Not Valid

ABIOS Keyboard Service 269

Function: 01h - Return Logical ID Parameters

Description

This single-staged function returns the parameters for the specified Logical
ID.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte
11h Byte
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

270

Input:

Request Block Length (20h)

Lo lcal ID
Unit
Function 0001 h
Reserved lnltlallze to OOOOh
Reserved (Initialize to OOOOh)

Reserved (Initialize to OOOOh)
Reserved (Initialize to OOOOh)

Output:

Hardware Interrupt Level (01 h)
Arbitration Level (FFh)
Device ID (0004h)
Count of Units
Logical ID flags
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 1 Overlap across units

supported
= O Reserved
= Transfer Data Pointer

Mode
00 =No Pointers

Required
Request Block Length (for other
functions)
Secondary Device ID

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 02h - Reserved

ABIOS Keyboard Service 271

Function 03h - Read Keyboard ID Bytes

Description

This function generates a multistaged request that returns the keyboard
identification code which indicates the keyboard type.

Keyboard ID code

The Keyboard ID is a two-byte code. Function 03h returns the low byte of
the keyboard ID in offset 14h of the function 03h Request Block. The high
byte of the keyboard ID is returned in offset 15h.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0003h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord

14h Byte
15h Byte
16h Word

continued

272 ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Keyboard ID Bytes, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9001h Keyboard Failed Reset

9002h Resend Error

9003h Keyboard Parity Error

9004h General Hardware Time-out

9006h Undefined Mode Returned by Keyboard

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Failed Reset

9102h Resend Error

9103h Keyboard Parity Error

9104h General Hardware Time-out

B001h Keyboard Error

B101h Keyboard Error
The caller should Invoke function 05h Reset/lnltlallzatlon
after a keyboard hardware error.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Keyboard Parameter

FFFFh Return Code Is Not Valid

ABIOS Keyboard Service 273

Function: 04h - Reserved

Function: 05h - Reset/Initialize Keyboard

Description

This function generates a multistaged request that resets the keyboard
hardware and turns off the Caps Lock, Num Lock, Scroll Lock LEDs.

Keyboard Reset

The ABIOS does not reset the keyboard after a keyboard hardware error.

Note: It is the operating system's responsibility to execute function 05h
Reset/Initialize Keyboard every time there is a hardware error.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0005h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h DWord

16h Word

continued

274 ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Reset/Initialize Keyboard, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9001h Keyboard Failed Reset

9002h Resend Error

9003h Keyboard Parity Error

9004h General Hardware Time-out

9006h Undefined Mode Returned by Keyboard

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Failed Reset

9102h Resend Error

9103h Keyboard Parity Error.

9104h General Hardware Time-out

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/
lnltlallzatlon after a keyboard hardware error.

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Parameter

FFFFh Return Code Is Not Valid

ABIOS Keyboard Service 275

Function: 06h - Enable Keyboard

Description

This function generates a multistaged request that enables the keyboard,
allowing data from the keyboard to be passed to the system.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Logical ID
04h Word Unit
06h Word Function 0006h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h DWord

16h Word

continued

276 ABIOS for IBM PS/2 Computers and Compatibles

Function: 06h - Enable Keyboard, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0002h Resume Stage after Time Delay

BOOOh Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9100h Keyboard Controller Perpetually Busy

COO Oh lnvalld Loglcal ID

C001h lnvalld Function

C003h Invalid Unit Number

C004h lnvalld Request Block Length

C005h lnvalld Keyboard Parameter

FFFFh Return Code Is Not Valld

ABIOS Keyboard Service 277

Function: 07h - Disable Keyboard

Description

This function generates a multistaged request that disables the keyboard,
inhibiting the flow of data from the keyboard to the system.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo teal ID
04h Word Unit
06h Word Function 0007h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord

16h Word

continued

278 ABIOS for IBM PS/2 Computers and Compatibles

Function: 07h - Disable Keyboard, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0002h Resume Stage after Time Delay

8000h Device Busy. Request Refused

8003h Security Ena.bled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9100h Keyboard Controller Perpetually Busy

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Parameter

FFFFh Return Code Is Not Valid

ABIOS Keyboard Service 27.9

Function: 08h - Continuous Keyboard Read

Description

This function generates a continuous multistaged request that retrieves
system scan codes as they ~re generated by the 8042 keyboard controller
chip from 1/0 port 0060h and signals the operating system that a keystroke
is available for processing.

When to invoke function 08h

Since no keystrokes can be processed unless function 08h has been suc
cessfully invoked, function 08h should be invoked immediately after ABIOS
initialization.

What is a raw system scan code

The keyboard hardware generates two kinds of keyboard codes: keyboard
scan codes and system scan codes.

280

• Keyboard scan codes
Each time a key is pressed, the keyboard hardware generates a keyboard
make or break scan code. Keyboard scan codes are not understandable
to the system.

• System scan codes
The firmware resident in the 8042 keyboard controller chip translates all
keyboard scan codes into "system scan codes" (i.e. codes that are
understandable to the system). As it translates each code, the 8042
firmware deposits it in the 8042's output buffer.

Function 08h retrieves system scan codes from their buffer in the 8042
keyboard controller chip and returns them in offset 14h of the Request
Block. Function 08h signals to the operating system that a keystroke is
available by sending Return Code 0009h Attention, Resume Stage after
Interrupt.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 08h - Continuous Keyboard Read, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
OBh Word Reserved lnltlalize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word Return Code
OEh Word
14h Byte
16h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Resume Stage after Interrupt

BOO Oh Device Busy, Request Refused

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Parameter

FFFFh Return Code Fleld Not Valid

ABIOS Keyboard Service 281

Functions: 09h - OAh - Reserved

Function: OBh - Read Keyboard LED Status

Description

This single-staged request returns the status of the keyboard Caps Lock,
Scroll Lock, and Num Lock LEDs.

Function OBh limitations

282

The data returned by function OBh reflects the state of the Keyboard LED
status byte after the last successful call of either function OSh, Reset/Initialize
Keyboard or function OCh Write Keyboard LED Status.

When function 11 h, Write Keyboard Command, is used to set the Keyboard
LEDs, the value returned by function OBh may not be reliable.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function OBh - Read Keyboard LED Status, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (lnltlalize to OOOOh)
OCh Word
OEh Word
14h Byte

16h Word

Return Codes

Output:

Keyboard Indicator LED Status
Bits 7-3 = 1 Reserved
Bit 2 = 1 Caps Lock on
Bit 1 = 1 Num Lock on
Bit 0 = 1 Scroll Lock on

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

BOO Oh Device Busy, Request Refused

COOOh Invalid Logical ID

C001h Invalid Function

C003h lnvalld Unit Number

C004h Invalid Request Block Length

COOSh lnvalld Keyboard Parameter

FFFFh Return Code Field Not Valld

ABIOS Keyboard Service 283

Function: OCh - Set Keyboard LED Status

Description

This function generates a multistaged request that turns on or off the key
board Caps Lock, Scroll Lock, and/or Num Lock LEDs.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h DWord

14h Byte

16h Word

284

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOCh
Reserved Initialize to OOOOh
Reserved (lnltiallze to OOOOh)

Program the Keyboard LED
Status Indicators
Bits 7-3= 0 Reserved
Bit 2 = 1 Caps Lock on
Bit 1 = 1 Num Lock on
Bit 0 = 1 Scroll Lock on
Reserved (lnltlallze to OOOOh)

Output:

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Set Keyboard LED Status, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9002h Resend Error

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Failed Reset

9102h Resend Error

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/In-
ltlallze Keyboard after a keyboard hardware error.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Keyboard Parameter

FFFFh Return Code Is Not Valid

ABIOS Keyboard Service 285

Function: ODh - Set Typematlc Rate and Delay

Description

This function generates a single-staged or discrete multistaged request that
changes or sets the typematic rate and the keystroke delay for all keys on
the keyboard.

Typematlc rate

The typematic rate is the maximum number of make codes per second that
the keyboard can support. The rate in characters per second can be set at
any of 32 values, ranging from 2 to 30 characters per second.

Keystroke delay

The keystroke delay established by this function is the delay between the
period of time that elapses between a keystroke and the scan code gener
ated by the key stroke being sent to the keyboard controller. This delay can
be set at 250, 500, 750, or 1000 milliseconds.

continued

286 ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Set Typematic Rate and Delay, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord

14h Byte Typematlc Rate Setting
Bits 7-5 = Reserved

(must be 0)
Bits 4-0 = Rate setting In

characters per second
(values In binary)

00000 = 30.0 10000 = 7.5
00001 = 26.7 10001 = 6.7
00010 = 24.0 10010 = 6.0
00011 = 21.8 10011 ~ 5.5
00100 = 20.0 10100 = 5.0
00101 = 18.5 10101 = 4.6
00110=17.1 10110 = 4.3
00111 = 16.0 10111 =4.0
01000 = 15.0 11000 = 3. 7
01001 = 13.3 11001 = 3.3
01010 = 12.0 11010 = 3.0
01011 = 10.9 11011 = 2.7
01100 = 10.0 11100 = 2 .5
01101 = 9.2 11101 =2.3
01110=8.6 11110 = 2.1
01111 =8.0 11111 = 2.0

15h Byte Typematlc Delay Setting

Bits 7-2 = Reserved
(must be 0)

Bits 1-0 = Delay value In
milliseconds (values
In binary)
00 = 250
01 = 500
10 = 750
11 = 1000

16h Word Reserved (lnltlallze to OOOOh)

continued

ABIOS Keyboard Service 287

Function: ODh - Set Typematlc Rate and Delay, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9002h Resend Error

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Falled Reset

9102h Resend Error

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/In-
ltlallze Keyboard after a keyboard hardware error.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Parameter

FFFFh Return Code Is Not Valld

288 ABIOS for IBM PS/2 Computers and Compatibles

Function OEh - Read Keyboard Scan Code Mode

Description

This function generates a discrete multistaged request that reads the key
board scan code mode from the 8042 status port.

What is a keyboard scan code mode?

Each time a key is pressed, the keyboard hardware generates a keyboard
make or break scan code. The keyboard hardware is capable of generating
any of three sets of keyboard scan codes (Modes 1, 2, or 3).

Keyboard scan codes are not understandable to the system. The firmware
resident in the 8042 keyboard controller chip translates all keyboard scan
codes into system scan codes (i.e. codes that are understandable to the
system).

Function OEh and the Phoenix 8042 AK/MCF

Systems equipped with the Phoenix 8042 Advanced Keyboard/Mouse Control
ier Firmware (AKiMCF) support keyboard scan code mode 2 exclusively.
Function OEh returns the value corresponding to keyboard scan code mode
2 only.

continued

ABIOS Keyboard Service 289

Function OEh - Read Keyboard Scan Code Mode, Continued

Request Block Structure

Offset Size

OOh Word
. 02h Word

04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h DWord

14h Byte

16h Word

290

Input:

Request Block Length
Lo leaf ID
Unit
Function OOOEh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Time to Walt Before Continuing
Request (microseconds)
Current Keyboard Scan Code

OOh = Reserved
01h =Set to 1
02h =Set to 2
03h =Set to 3
04h-Fh = Reserved

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function OEh - Read Keyboard Scan Code Mode, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

BOO Oh Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9002h Resend Error

9003h Keyboard Parity Error

9004h Hardware Time-out

9006h Undefined Mode from Keyboard

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Failed Reset

9102h Resend Error

9103h Keyboard Parity Error

9104h General Hardware Time-out

9106h Undefined Mode from Keyboard

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/In-
ltlallze Keyboard after a keyboard hardware error.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COOSh Invalid Keyboard Parameter

FFFFh Return Code Is Not Valid

continued

ABIOS Keyboard Service 291

Function: OFh - Set Keyboard Scan Code Mode, Continued

Description

This function generates a multistaged request that sets the keyboard scan
code mode.

What is a keyboard scan code mode

Each time a key is pressed, the keyboard hardware itself generates a key
board make or break scan code. The keyboard hardware is capable of
generating any of three sets of keyboard scan codes (Modes 1, 2, or 3).

Keyboard scan codes are not understandable to the system. The firmware
resident in the 8042 keyboard controller chip translates all keyboard scan
codes into system scan codes (i.e. codes that are understandable to the
system).

Function OFh and the Phoenix 8042 AK/MCF

292

Systems equipped with the Phoenix 8042 Advanced Keyboard/Mouse Con
troller Firmware (AK/MCF) support keyboard scan code mode 2 exclusively.
Function OFh returns the value corresponding to keyboard scan code mode 2
only.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Set Keyboard Scan Code Mode, Continued

Request Block Structure

Offset

OOh
02h
04h
06h
08h
OAh
OCh
OEh
10h

14h

16h

Size

Word
Word
Word
Word
Word
Word
Word
Word
DWord

Byte

Word

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOFh
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Change Current Keyboard Scan
Code

OOh = Reserved
01h =Set to 1
02h =Set to 2
03h =Set to 3

Reserved (lnltlallze to OOOOh)

ABIOS Keyboard Service

Output:

continued

293

Function: OFh - Set Keyboard Scan Code Mode, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9002h Resend Error

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Failed Reset

9102h Resend Error

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/In-
ltlallze Keyboard after a keyboard hardware error.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Input Parameter

FFFFh Return Code Is Not Valid

294 ABIOS for IBM PS/2 Computers and Compatibles

Function 10h - Write Command(s) to Keyboard Controller

Description

This function generates a discrete multistaged request that writes a com
mand and associated data from the system to the 8042 controller. The
command consists of a single byte. The location and length of the command
must be specified at function start-up. This function permits access to 8042
RAM, keyboard self-tests, interface tests, and other 8042 functions that are
otherwise not available in ABIOS.

Changes to 8042

The caller must not change the state of the 8042 in intermediate stages of a
multistaged request for this function.

Input field considerations

The Data String Length (offset 1Ch) must be initialized to a nonzero value. If
the Data String Length field is initialized to OOh, then function 1 Oh does not
perform any action and sets the Return Code field to OOOOh, Successful
Operation.

ABIOS keyboard command processing

The first byte of the string passed to ABIOS is assumed to be the command
byte and is sent to 1/0 port 0064h. All subsequent bytes are sent to 110 port
0061h. ABIOS issues a Return Code of 0001h, Resume Stage after Interrupt,
between each byte sent. At this point, ABIOS does not respond to the key
board controller. It reads the 8042 status register, which indicates when
commands have been accepted. Return Code OOOOh is issued when all bytes
have been read.

continued

ABIOS Keyboard Service 295

Function 10h - Write Command(s) to Keyboard Controller,
Continued

System-to-8042 commands

Command Description

20h READ THE 8042 COMMAND BYTE.
This command instructs the 8042 to send the contents of location
20h, the command byte, to the system.

21h-3Fh READ THE 8042 RAM.
This command Instructs the 8042 to send the contents of the RAM
location, defined by bits 5-0 of the command to the system.

60h WRITE THE 8042 COMMAND BYTE.
This command instructs the 8042 to write the data byte following the
command to the location of the command byte (20h).

61h-7Fh WRITE THE 8042 RAM.
This command Instructs the 8042 to write the data byte following the
command to the RAM location defined by bits 0-5 of the command.

A4h TEST PASSWORD INSTALLED.
This command Instructs the 8042 to check whether there Is a pass-
word currently installed. If there Is no password, the contents of the
first location where the password would be stored will be zero. If
there is a password Installed, FAh Is placed in the 8042 output buffer,
If not, F 1 h is placed In the buffer.

A5h LOAD SECURITY.
This command Instructs the 8042 to read password data from the
8042 Input buffer and store it until a null (0) Is detected. The null is
stored as the last byte of the password.

A6h ENABLE SECURITY.
This command Instructs the 8042 to check the Installed password
against the incoming keystrokes for a match.

A7h DISABLE AUXILIARY DEVICE INTERFACE.
This command Instructs the 8042 to set bit 5 of the command byte.
This disables the auxiliary device by driving the auxiliary clock low.

A8h ENABLE AUXILIARY DEVICE INTERFACE.
This command Instructs the 8042 to clear bit 5 of the command byte.
This enables the auxiliary device by driving the auxiliary clock high.

A9h AUXILIARY INTERFACE TEST.
This command Instructs the 8042 to test the auxiliary device clock
and data lines. The result of the test is placed in the output buffer as
follows:

00 - No error detected.
01 - Auxiliary device clock line Is stuck low.
02 - Auxiliary device clock line Is stuck high.
03 - Auxiliary device data line is stuck low.
04 - Auxiliary device data line is stuck high.

AAh SELF TEST.
This command Instructs the keyboard 8042 to perform internal dlag-
nestles tests. A 55h Is placed in the output buffer if no errors are
detected.

continued

296 ABIOS for IBM PS/2 Computers and Compatibles

Function 10h - Write Command(s) to Keyboard Controller,
Continued

System-to-8042 commands, cont'd

Command Description

ABh KEYBOARD INTERFACE TEST.
This command Instructs the 8042 to test the keyboard clock and data
llnes. The result of the test Is placed In the output buffer as follows:

00 - No error detected.
01 - Keyboard device clock llne Is stuck low.
02 - Keyboard device clock line Is stuck high.
03 - Keyboard device data llne Is stuck low.
04 - Keyboard device data llne Is stuck high.

A Ch Reserved

ADh DISABLE KEYBOARD INTERFACE.
This command Instructs the 8042 to set bit 4 of the command byte.

· This disables the keyboard by driving the keyboard clock low.

AEh ENABLE KEYBOARD INTERFACE.
This command Instructs the 8042 to clear bit 4 of the command byte.
This enables the keyboard by driving the keyboard clock llne high.

COh READ INPUT PORT.
This command Instructs the 8042 to read the 8042 Input port (port 1)
and place the data In the 8042 output buffer.

C1h POLL INPUT PORT LOW.
This command Instructs the 8042 to continuously read Input port 1
bits 0-3 Into the status register, bits 4-7, untll IBF goes high, when
the next command Is executed.

C2h POLL INPUT PORT HIGH.
This command Instructs the 8042 to continuously read Input port 1
bits 4-7 Into the status register, bits 4-7, untll IBF goes high, when
the next command Is executed.

DOh READ OUTPUT PORT.
This command Instructs the 8042 to read the 8042 output port (port
2) and place the data In the 8042 output buffer.

D1h WRITE OUTPUT PORT.
This command Instructs the 8042 that the next byte of data received
should be sent to the 8042 output port.

D2h WRITE KEYBOARD OUTPUT BUFFER.
This command Instructs the 8042 that the next byte of data received
should be sent to the output buffer. The controller will generate an
Interrupt to the system If the Interrupt bit Is enabled In the command
byte.

D3h WRITE AUXILIARY DEVICE OUTPUT BUFFER.
This command Instructs the 8042 that the next byte of data received
should be sent to the output buffer. The 8042 will generate an Inter-
rupt to the system If the Interrupt bit Is enabled In the command
byte.

continued

ABIOS Keyboard Service 297

Function 10h - Write Command(s) to Keyboard Controller,
Continued

System-to-8042 commands, cont'd

Command Description

D4h WRITE TO AUXILIARY DEVICE.
This command Instructs the 8042 that the next byte of data received
should be transmitted to the auxiliary device.

EOh READ TEST INPUTS.
This command Instructs the 8042 to read the 8042 TO and T1 Inputs
and place them In the output buffer. Bit 0 represents TO and bit 1
represents T1 .

FO-FF PULSE OUTPUT PORT.
This command Instructs the 8042 to pulse bits 0 through 3 of the out-
put port (port 2) low for 6 microseconds. Bits 0 through 3 of the
command Indicate the bits to be pulsed.
If the bit Is a 0 then the corresponding bit on port 2 should be pulsed.
If the bit Is a 1 then the corresponding bit should not be pulsed.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h DWord

14h Word
16h DWord
1Ch Byte

28h Word

298

Input:

Request Block Length
Lo teal ID
Unit
Function 001 Oh
Reserved Initialize to OOOOh
Reserved (lnltlallze to OOOOh)

Pointer to the data area
Data String Length
Note: No action occurs If this

field Is 0.
Reserved (lnltlallze to OOOOh)

Output:

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function 10h - Write Command(s) to Keyboard Controller,
Continued

Return Codes

This list contains only the most common Return Codes for this function. Test

all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9002h Resend Error

9100h Keyboard Controller Perpetually Busy

9101h Keyboard Failed Reset

9102h Resend Error

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/In-
ltlallze Keyboard after a keyboard hardware error.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Parameter

FFFFh Return Code Is Not Valid

ABIOS Keyboard Service

Function 11h - Write Command(s) and Data to Keyboard

Description

This function generates a discrete multistaged request that writes a "list" of
a command and data from the system to the keyboard hardware itself. The
command/data list may consist of any combination of a command and data,
however, only one command can be sent per request. The location and
length of the command/data list must be specified at function startup. ABIOS
delays between writing each byte.

Receipt of ACK

ABIOS expects an Acknowledge from the 8042 keyboard controller at 110 port
0060h after each byte is received, but does not send the ACK byte to the
caller.

Changes to 8042

The caller must not change the state of the 8042 in intermediate stages of a
multistaged request for this function.

ABIOS keyboard command processing

300

The first byte of the string passed to ABIOS is assumed to be the command
byte and is sent to 110 port 0060h. All subsequent bytes are also sent to 110
port 0060h. ABIOS issues a Return Code of 0001h, Resume Stage after
Interrupt, between each byte sent. From the 110 ports, each byte is sent to
the keyboard controller. At this point, ABIOS does not respond to the key
board controller, since it reads the 8042 status register which indicates when
commands have been accepted. Return Code OOOOh is issued when all bytes
have been read.

Some commands from the system to the 8042 controller require that a data
byte also be written to 110 port 64h. Function 11 h does not support such
commands.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function 11h - Write Command(s) and Data to Keyboard, Continued

Table of system-to-keyboard commands

Command Description

EDh SET/RESET LED TOGGLE STATUS INDICATORS.
The Num Lock, Caps Lock, and Scroll Lock LED Indicators can be
turned on or off by a command from the system. The EDh com-
mand byte Is written to port 0060h and the keyboard responds with
FAh (ACK). The system then writes the option byte to port 0060h.
A value of 1 means turn the LED on. The option byte takes the
format below:
Bit 7-3 = Reserved (must be OOOOOb)
Bit 2 = Caps Lock LED
Bit 1 = Num Lock LED
Bit 0 = Scroll Lock LED

EEh ECHO.
The system uses this command to test the keyboard. The key-
board Issues an EEh (Echo) In reply to this command.

EFh INVALID COMMAND.
The keyboard does not acknowledge this command.

FOh CHOOSE ALTERNATE SCAN CODE SET.
The 8042 APCF supports scan code set 2 only.

F1h INVALID COMMAND.
The keyboard does not acknowledge this command.

"----~-~-
- -----~

F2h READ KEYBOARD ID BYTES.
The keyboard acknowledges the command and sends the two key-
board ID bytes.

F3h SET TYPEMATIC REPEAT RATE AND DELAY PERIOD.
The system may set typematlc rate and delay.

F4h ENABLE.
Commands the keyboard to clear Its output buffer and begin
scanning.

F5h DEFAULT DISABLE.
Resets all conditions within the keyboard to their power-on default
state and disables scanning. The keyboard responds with ACK,
clears Its output buffers, and waits for the next Instruction from
the system.

F6h SET DEFAULT
Resets all conditions within the keyboard to their power-on default
state and enables scanning. The keyboard responds with ACK and
clears all output buffers.

F7h-FDh RESERVED

FEh RESEND.
If the system detects an error In transmission, it Issues the resend
command. The keyboard responds by sending the previous output.

FFh RESET.
System issues this command to Invoke the keyboard' s Internal
self-test.

continued

ABIOS Keyboard Service 301

Function 11 h - Write Command(s) and Data to Keyboard, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0011 h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord

14h Word
16h DWord Logical Pointer to the Data Area
1Ch Byte Data String Length

Note: No action occurs If this
field Is 0.

28h Word Reserved (lnltlallze to OOOOh)

continued

302 ABIOS for IBM PS/2 Computers and Compatibles

Function 11h - Write Command(s)/Data to Keyboard, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device Busy, Request Refused

8003h Security Enabled, Keyboard Inhibited - Request Refused

9000h Keyboard Controller Perpetually Busy

9002h Resend Error

9100h Keyboard Controller Perpetually Busy

9102h Resend Error

B001h Keyboard Error

B101h Keyboard Error
The operating system should Invoke function 05h Reset/In-
ltlalize Keyboard after a keyboard hardware error.

COOOh Invalid Logical ID

C001h lnvalld Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Keyboard Parameter

FFFFh Return Code Is Not Valld

ABIOS Keyboard Service 303

Overview

Description

Chapter 11

ABIOS Video Service

The ABIOS Video Service provides provides 110 support for IBM PS/2-
compatible video hardware, specifically, a video graphics array (VGA)
adapter. VGA video is built into the motherboard of most PS/2 and
compatible computers.

The ABIOS Video Service provides 110 support for both color and mono
chrome analog video monitors.

ABIOS Video Service provides a significant advantage in that most routines
can be called by user programs regardless of the video mode being used
(monochrome, CGA, EGA, or VGA). The ABIOS Video Service makes avail
able all the features and functions of the VGA BIOS. The Video Services
determine the current display type and perform the necessary address
translation.

continued

ABIOS Video Service 305

Overview, Continued

Summary of Video Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h Reserved

05h Set Video Mode

06h-0Ah Reserved

OBh Return ROM Fonts Information

OCh Save Video Environment

ODh Restore Video Environment

OEh Select Character Generator Block

OFh Load Text Mode Font

10h Enhanced Load Text Mode Font

11 h Read Palette Register

12h Write Palette Register

13h Read DAC Color Register

14h Write DAC Color Register

15h Read Block of Color Registers

16h Write Block of Color Registers

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• Video Modes
• Mode/Monitor Support

• ROM-Resident Fonts

• Error Handling
• Video Service Functions

306 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

Introduction

The ABIOS Video Service supports IBM VGA-compatible hardware, including:

• a VGA-compatible chip or chip set that includes a:

• CRT Controller

• sequencer

• graphics controller, and an

• attribute controller

• DAC chip - INMOS G171 or compatible DAC (digital-to-analog converter)

• video RAM - 256K of dynamic read/write RAM configured as four 64K
maps

• monochrome or color direct drive analog monitor

• monochrome or color multiple sync frequency monitors

VGA-compatible chip (or chip set)

The VGA chip (or chip set) provides all CRT control signals. It consists of
four components, summarized in the following table:

Component Function

CRT Controller Generates horizontal and vertical CRT sync timings, cursor
and underllne timings, video buffer addressing, and refresh
addressing.

Sequencer Arbitrates system access to dlsplay RAM and fonts. The
sequencer allows up to eight fonts with two fonts display-
able at any one time.

Graphics Controller Handles read/write operation on four parallel bit planes. Out-
puts data to Attribute Controller.

Attribute Controller Converts .Incoming text mode attribute data or graphics
mode pixel data Into 8-blt Indices Into the Dlgltal-to-Analog
Converter (DAC) color registers (see below).

For a complete description of VGA-compatible components, 110 ports, and
registers, refer to the hardware documentation accompanying your particular
VGA-compatible chip or chip set.

continued

ABIOS Video Service 307

Hardware Environment, Continued

Digital-to-Analog Converter (DAC)

The video DAC contains 256 individual color registers which can be accessed
by the BIOS as either four 64-color registers or sixteen 16-color registers.

Each DAC color register contains one 18-bit RGB analog value. Six bits of
each register are allocated to each primary color. Thus, the color repre
sented in each DAC color register may be any of 256K possible colors
(i.e. 23*6 = 256K).

Video RAM

The ABIOS video service requires at least 256K of read/write video RAM
formatted into four banks (or maps) of 64K.

To maintain compatibility, display memory for each of the MDA, CGA, and
EGA-compatible modes is mapped exactly as it was in the original display
adapter. The display memory organization for the new VGA modes is
outlined in this chapter under the Video Modes heading.

Analog monitor support

To display all modes, the Video Service requires either a monochrome or a
color direct drive analog monitor with a 31.5 KHz horizontal scan frequency.

The display's vertical gain is adjusted automatically by the VGA-compatible
circuitry. Thus, video modes with 350, 400, and 480 horizontal scan lines
can be displayed without requiring manual adjustment.

Multiscan monitor support

308

In addition to 31.5 KHz direct drive analog monitors, the Video Service also
supports multiscan rate monitors capable of operating in analog modes (e.g.
NEC Multisync monitor) . Monitors of this type require an adapter cable that
matches the signal assignments and monitor ID circuitry of the DAC external
video controller.

ABIOS for IBM PS/2 Computers and Compatibles

Video Modes

Introduction

The ABIOS video service supports 17 video modes, providing backward
compatibility with MDA (Monochrome Display Adapter), CGA (Color Graphics
Adapter), and EGA (Enhanced Graphics Adapter) modes - as well as com
patibility with all new VGA modes.

Table of video modes

Max. Char. Max. Buff.
Mode Emul. Res. Type Colors Scheme Box Pgs. Start

0, 1 CGA* 320x200 Text 16/256K 40x25 8x8 8 B8000h

0, 1 EGA* 320x350 Text 16/256K 40x25 8x14 8 88000h

0, 1 VGA+ 360x400 Text 16/256K 40x25 9x16 8 B8000h

2, 3 CGA* 640x200 Text 16/256K 80x25 8x8 8 B8000h

2, 3 EGA* 640x350 Text 16/256K 80x25 8x14 8 B8000h

2, 31 VGA+ 720x400 Text 16/256K 80x25 9x16 8 B8000h

4, 5 CGA 320x200 Graphics 4/256K 40x25 8x8 1 B8000h

6 CGA 640x200 Graphics 2/256K 80x25 8x8 1 88000h

7 MDA* 720x350 Text MDA Mono 80x25 9x14 8 BOOOOh

71 VGA* 720x400 Text VGA Mono 80x25 9x16 8 BOOOOh

D EGA 320x200 Graphics 16/256K 40x25 8x8 8 AOOOOh

E EGA 640x200 Graphics 16/256K 80x25 8x8 4 AOOOOh

F EGA 640x350 Graphics Mono 80x25 8x14 2 AOOOOh

10 EGA 640x350 Graphics 16/256K 80x25 8x14 2 AOOOOh

11 VGA 640x480 Graphics 2/256K 80x30 8x16 1 AOOOOh

12 VGA 640x480 Graphics 16/256K 80x30 8x16 1 AOOOOh

13 VGA 320x200 Graphics 256/256K 40x25 8x8 1 AOOOOh

"I" Indicates power-on default mode
31 =color monitor Is attached,
71 =monochrome monitor Is attached.

"*" Indicates that scan lines must be specified before mode set. (See
AH = 12h BL = 30h Select Scan Line for Alphanumeric Codes for details.)

o+" Indicates default mode

continued

ABIOS Video Service 309

Video Modes, Continued

Video mode facts

310

• All modes can be displayed on color or monochrome
All video modes can be displayed on either color or monochrome
monitors.

• MDA, CGA, and EGA modes are emulated
To insure compatibility with older software, the ABIOS Video Service
emulates all MDA, CGA, and EGA modes.

• Modes OOh, 02h, 04h = Modes 01 h, 03h, 05h
On the CGA adapter, modes OOh, 02h, and 04h have color burst turned
off, and modes 01h, 03h, and 05h have color burst turned on. The ABIOS
video service does not support color burst; modes OOh, 02h, and 04h are
identical to modes 01h, 03h, and 05h, respectively.

• Text mode resolution determines default font/text scheme
In text modes, the number of scan lines to display must be specified via
function 05h Set Video Mode. Setting text mode scan lines determines
both the default ROM-resident font ABIOS will load and the column-by-row
text scheme in which the font will be displayed.

• Text mode default font and text scheme can be overridden
ABIOS Video Service function OFh Load Text Mode Font allows the caller
to override the default font loaded when a text mode is requested. Func
tion 1 Oh Enhanced Load Text Mode Font allows the caller to override both
the default font and column-by-row text scheme associated with a given
text mode.

• Color modes are programmable
Unless specified otherwise, the default colors associated with a given
video mode are programmed by ABIOS at mode set. ABIOS Video Service
functions 11 h-16h can be used to override the default colors associated
with any given color mode. See the Programming Colors section in this
chapter for more information.

• 200 scan-line modes are double-scanned
Each line of video is painted on the screen twice, one beneath the other,
before the next new scan line is painted.

• No cursor in graphics modes
A cursor is not displayed in graphics modes.

ABIOS for IBM PS/2 Computers and Compatibles

Mode/Monitor Support

Introduction

Both monochrome and color 31.5 KHz direct drive analog monitors, as well
as multiscan monitors, can display all of the VGA video modes.

When a monochrome monitor is attached, colors are displayed as shades of
gray. When a color monitor is attached, gray scale summing must be explic
itly enabled or disabled via function 05h Set Video Mode.

Some mode/monitor facts

If ... Then •••

a monochrome analog colors are displayed as shades of gray, with the maxi-
monitor Is attached ... mum number of shades equal to the maximum number

of colors displayable In the respective mode. In mode
OEh, for example, 16 shades of gray can be displayed.
Mode 13h Is an exception to this rule. Only 64 (and not
256) shades of gray can be displayed In mode 13h.

a color analog monitor Is the colors displayed are selected from a BIOS Initialized
attached palette of 64 color registers. The number of colors dis-

played In each mode Is listed under the Video Mode
heading In this chapter. In mode OEh, for example, 16
different colors can be displayed.
The BIOS Initializes the 64 colors In this palette to analog
equivalents of the 64-color digital EGA palette. The re-
malnlng 192 color registers are undefined.
Mode 13h Is an exception to this rule. Mode 13h Is capa-
ble of displaying all 256 colors stored In the DAC. The
BIOS Initializes these colors to IBM compatible defaults
at mode set.

a 200 scan line mode Is se- all 200 scan llne modes are double-scanned. That Is,
lected each horizontal line Is scanned twice, for a total of 400

scan lines. This Is true for both color and monochrome
analog monitors.

power-on default video the default power on mode Is mode 3+ (720x400,
modes are In effect 16-color) when a color analog monitor Is attached, or

mode 7+ (720x400, monochrome) Is the default power-
on mode when a monochrome analog monitor Is
attached.

continued

ABIOS Video Service 31-1

Mode/Monitor Support, Continued

Palette register/DAC relationship

312

The Attribute Controller component of the VGA hardware contains an internal
Palette Register. The Palette Register is composed of sixteen 8-bit registers.
The value contained in each palette register is combined with other Attribute
Controller information to create an 8-bit index into the DAC.

The video DAC contains 256 individual color registers. Each DAC color
register contains one 18-bit RGB analog value. Six bits of each register are
allocated to each primary color. Thus, the color represented in each DAC
color register may be any of 256K possible colors (i.e. 23 *6 = 256K).

ABIOS initializes the Palette Registers and the DAC Color Registers upon
each mode set:

Type Description

EGA and DAC
16-color VGA The ABIOS initializes access to the 256 DAC color registers in

blocks, or pages, of 64 colors each. The first 64 color page Is
Initialized to analog equivalents of the 64 EGA colors. The
remaining 192 colors remain undefined.
Attribute Controller
To maintain color compatibility with existing EGA software, the
BIOS Initializes the Attribute Controller to the 16 commonly
accepted default EGA colors.

CGA DAC
The ABIOS Initializes access to the 256 DAC color registers as four
blocks of 64 colors each In CGA modes. The first 64 color block is
Initialized as four 16 color subblocks. Each of these 16 color sub-
blocks Is Initialized to the 16 colors displayable In CGA mode. The
remaining 192 DAC registers are undefined.
Attribute Controller
To maintain color compatibility with existing CGA software, the
ABIOS Initializes the Attribute Controller to the 16 color CGA pal-
ette. When applications software requests a CGA color, the Attrlb-
ute Controller maps the requests through to Its analog equivalent In
the DAC controller.

13h DAC
The ABIOS Initializes all 256 color registers to their IBM PS/2
default equivalents.
Attribute Controller
The attribute controller receives 8-blt color values directly from
application programs. It maps those values directly Into the DAC
color registers.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Mode/Monitor Support, Continued

Overriding default color values

ABIOS Video Service functions 11 h-16h provide ways of overriding default
Palette Register values. For more information, see the descriptions of these
functions later in this chapter.

ROM-Resident Fonts

ROM-resident fonts

The BIOS contains three ROM BIOS-resident character generators (fonts):

• 8x8 dot
• 8x14 dot

• 8x16 dot

The BIOS is also capable of generating a 9x16 dot font in 400 line text
modes. The BIOS generates this 9x16 font by running the 8x16 character set
through a ROM-resident table of corrections.

continued

ABIOS Video Service 313

ROM-Resident Fonts, Continued

Default fonts are loaded during mode set

The default font associated with a given video mode is loaded by function
05h Set Video Mode. Which default font is loaded is directly related to the
resolution produced by the mode requested.

If the resolutlon Is •••• Then the default font Is ...

320x200 8x8

320x350 8x14

360x400 9x16

640x200 8x8

640x350 8x14

640x480 8x16

720x350 9x14

720x400 9x16

Text modes and character blocks

In text modes, the ASCII character number is written to video memory map
O; the corresponding attribute byte is written to memory map 1 . Memory
map 2 is used for storing font data.

Each font occupies one SK block, making for a total of 8 possible fonts.
Character block numbers are zero-based. Character block O contains the
first SK font; character block 1 contains the second SK character block; and
so on through character block 7.

The maximum number of characters associated with any one font is 1 OOh
(i.e. 256 characters). The video hardware is capable of displaying characters
selected from up to two character blocks (i.e. up to 512 characters).

Overriding default fonts

314

ABIOS Video Service functions OFh Load Text Mode Font and function 1 Oh
Enhanced Load Text Mode Font provide a way to load nondefault or user
defined fonts into character blocks for display in a given text mode.

ABIOS for IBM PS/2 Computers and Compatibles

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Video Service function requested
has an error. The caller's Return Code handler routine should then test Bits
14, 13, 12, and 8 to determine the class of error that has occurred. The
return code handler routine should then test the remaining bits to determine
the precise nature of the error.

ABIOS Video Service 315

Function: OOh - Default Interrupt Handler

Description

This single-staged function handles unexpected hardware interrupts by reset
ting the interrupting condition at the device level.

In the ABIOS Video Service, function OOh resets the appropriate video hard
ware registers.

When to invoke

This function is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

316 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001 h
08h Word Reserved lnltlallze to OOOOh

OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word Reserved (initialize to OOOOh)
1Eh Word Reserved (inltlallze to OOOOh)

ABIOS Video Service

Output:

Time-out
Hardware Interrupt Level (06h)
Arbitration Level 09h
Device ID (0003h)
Count of Units
Logical ID flags

Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units ·
= 1 Overlap across units

supported
= 0 Reserved

= Transfer Data Pointer
Mode
00 = No Pointers

Required
Request Block Length (for other
functions

continued

317

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 02h - Reserved

318 ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters

Description

This single-staged function returns parameter data concerning the current
video state. It also returns buffer size information that must be referenced
before invoking Function OBh Return ROM Fonts Information and Function OCh
Save Video Environment.

Video state parameters

The video parameters returned by function 03h include:

• current video mode,

• number of scan lines associated with mode,

• monitor type (color or monochrome),

• character height, and

• character blocks specifiers.

Character block specifier field

When the current video mode is a text mode, the Character BlocK Specifier
field at offset 24h in the Request Block identifies which two character blocks
are being used.

Bits 11-8 hold the binary value (OOOb-111 b) of character block A, which
contains the first displayable character set. Bits 3-0 hold the binary value of
character block B, which contains the second displayable character set. The
remaining bits in this field are reserved.

continued

ABIOS Video Service 319

Function: 03h - Read Device Parameters, Continued

Interpreting the character block specifier field

320

The values returned in the function 03h Request Block Character Block
Specifier field are interpreted as described in the table below:

Selector Fleld Value Meaning

When the value of character block . Two character sets are available for dis-
specifier A Is different from charac- play.
ter block specifier B • Bit 3 of the attribute byte Identifies which

character block Is to be displayed:
1 = Use character block selector A
0 = Use character block selector B

When the value In character block • One character set Is available for display.
specifier A Is equal to the value In • Bit 3 of the attribute byte determines the character block specifier B foreground Intensity of the character dis-

played:
1 = Foreground Intensity on
O = Foreground Intensity off

If the mode returned is a graphics mode, the value returned in the Character
Block Specifier field is undefined.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Buffer size parameters

Function 03h also returns buffer size information applicable to the two Video
Service functions listed below:

• Buffer size: Function OBh Return ROM Fonts Information

Function OBh Return ROM Fonts Information outputs information concerning
each of the ROM fonts to a buffer specified on input. The value returned
by function 03h at Request Block offset 2Ah provides the size of the
buffer required by function OBh.

Function 03h must always be invoked before function OBh can be exe
cuted successfully. For more information on Function OBh, see the de
scription of this function later in this chapter.

• Buffer size: Function OCh Save Video Environment
Function OCh Save Video Environment outputs the requested aspects of
the current video state to a buffer specified on input. The values returned
by function 03h at Request Block offsets 2Eh, 30h, 32h, and 34h are
referenced by function OCh when determining the buffer size it will re
quire.

Function 03h must always be invoked before function OCh can be exe
cuted successfully. For more information on Function OCh, see the de
scription of this function later in this chapter.

continued

ABIOS Video Service 321

Function: 03h - Read Device Parameters, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0003h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
1Ch Byte

1Eh Word
20h Word

22h Word
24h Word

28h Word
2Ah Word

2Eh Word

30h Word

32h Word

34h Word

Output:

Scan lines per screen
OOh = 200 lines
01h = 350 lines
02h = 400 lines
03h = 480 lines
04h-OFFh = Reserved

Video Mode
Type of monitor attached
Bits 15-1 = Reserved
Bit 0 = Color or monochrome

0 =Color
1 = Monochrome

Character height (bytes/character)
Character block specifier
(Modes 0, 1, 2, 3, or 7 only)
Bits 15-12 = Reserved
Bits 11-8 = Character block

select A
=Reserved
= Character block

select B

Size of save/restore Device Block
state (bytes)
Size of save/restore Dlgital-to
Analog Converter state (bytes)

continued

322 ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter

FFFFh Return Code Fleld Not Valid

Function: 04h - Reserved

ABIOS Video Service 323

Function: OSh - Set Video Mode

Description

This single-staged function initializes the video hardware to the requested
mode.

Table of video modes

Max. Char. Max. Buff.
Mode Emu I. Res. Type Colors Scheme Box Pgs. Start

0, 1 CGA• 320x200 Text 16/256K 40x25 8x8 8 B8000h

o. 1 EGA• 320x350 Text 16/256K 40x25 8x14 8 B8000h

0, 1 VGA+ 360x400 Text 16/256K 40x25 9x16 8 B8000h

2, 3 CGA* 640x200 Text 16/256K 80x25 8x8 8 B8000h

2, 3 EGA* 640x350 Text 16/256K 80x25 8x14 8 B8000h

2, 31 VGA+ 720x400 Text 16/256K 80x25 9x16 8 B8000h

4, 5 CGA 320x200 Graphics 4/256K 40x25 8x8 1 B8000h

6 CGA 640x200 Graphics 2/256K 80x25 8x8 1 B8000h

7 MDA* 720x350 Text MDA Mono 80x25 9x14 8 BOOOOh

7! VGA* 720x400 Text VGA Mono 80x25 9x16 8 BOOOOh

D EGA 320x200 Graphics 16/256K 40x25 8x8 8 AOOOOh

E EGA 640x200 Graphics 16/256K 80x25 8x8 4 AOOOOh

F EGA 640x350 Graphics Mono 80x25 8x14 2 AOOOOh

10 EGA 640x350 Graphics 16/256K 80x25 8x14 2 AOOOOh

11 VGA 640x480 Graphics 2/256K 80x30 8x16 1 AOOOOh

12 VGA 640x480 Graphics 16/256K 80x30 8x16 1 AOOOOh

13 VGA 320x200 Graphics 256/256K 40x25 8x8 1 AOOOOh

HI" Indicates power-on default mode
31 =color monitor Is attached,
71 =monochrome monitor Is attached.

"*" Indicates that scan lines must be specified before mode set. (See
AH = 12h BL = 30h Select Scan Line for Alphanumeric Codes for details.)

"+" Indicates default mode

continued

324 ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Set Video Mode, Continued

Video mode facts

• All modes can be displayed in color and monochrome
All 17 video modes can be displayed on either color or monochrome
monitors.

• MDA, CGA, and EGA modes are emulated
To insure compatibility with older software, the ABIOS Video Service
emulates all MDA, CGA, and EGA modes.

• Modes OOh, 02h, 04h = Modes 01 h, 03h, 05h
On the CGA adapter, modes OOh, 02h, and 04h have color burst turned
off, and modes 01h, 03h, and 05h have color burst turned on. The ABIOS
video service does not support color burst; modes OOh, 02h, and 04h are
identical to modes 01 h, 03h, and 05h, respectively.

• Text mode resolution determines default font/text scheme

In text modes, the number of scan lines to display must be specified via
function 05h Set Video Mode. Setting text mode scan lines determines
both the default ROM-resident font ABIOS will load and the column-by-row
text scheme in which the font will be displayed.

• Text mode default font and text scheme can be overridden
ABIOS Video Service function OFh Load Text Mode Font allows the caller
to override the default font loaded when a text mode is requested. Func
tion 1 Oh Enhanced Load Text Mode Font allows the caller to override the
default font and the column-by-row text scheme associated with a text
mode.

• Color modes are programmable

The default colors associated with a given video mode are programmed
by ABIOS at mode set. ABIOS Video Service functions 11 h-16h can be
used to override the default colors associated with any color mode. See
the Programming Colors section in this chapter for more information,

• 200 scan-line modes are double-scanned
Each line of video is painted on the screen twice, one beneath the other,
before the next new scan line is painted.

continued

ABIOS Video Service 325

Function: 05h - Set Video Mode, Continued

Video mode facts, cont'd

• No dots or characters written to screen by ABIOS
ABIOS does not actually write dots or characters to video RAM so that
they appear on the screen. The caller and/or other programs must do
this.

• No cursor in graphics modes
A cursor is not displayed in graphics modes.

Function OSh input field considerations

The Video Mode field (offset 1 Eh) must be defined to a valid video mode
number on entry into function 05h. The entry values of the remaining input
fields depends on the monitor attached and the. mode being requested

Device Control Flag field (offset 1Ah)

326

Located at offset 1 Ah in the function 05h Request Block, the Device Control
Flag contains three flags. The Device Control Flag field must always be
defined upon entry into function 05h.

• Bit 2 - Gray scale summing flag
When a monochrome monitor is attached, gray scale summing is handled
automatically by the video hardware. When a color monitor is attached,
gray scale summing is enabled or disabled by setting this bit.

• Bit 1 - Initialize DAC to default values flag

The video DAC can be initialized to IBM-compatible default values upon
each mode set. Bit 1 enables (on) or disables (on) this feature of the
ABIOS Video Service.

• Bit 0 - Clear video buffer flag
Video buffer memory can be cleared upon mode set. This clears the
video screen. Bit 0 enables (on) or disables (off) this feature.

continued

ABIOS for IBM PS/2 Computers and Compatlbles

Function: 05h - Set Video Mode, Continued

Text mode scan lines (offset 1Ch)

The number of scan lines must be defined each time a text mode (modes
OOh, 01h, 02h, 03h, 07h) is requested. Besides indicating the number of
scan lines to display, the value in this field determines which ROM-resident
font the requested text mode will use.

The PS/2 BIOS contains three ROM BIOS-resident fonts:

• 8x8 dot, used in 200 scan-line text and graphics modes

• 8x14 dot, used in 350 scan-line text and graphics modes

• 8x16 dot, used in 480 scan-line graphics modes

When 400 scan lines are indicated in the Text Mode Scan Lines field, the
BIOS generates a 9x16 dot font. Because there is no ROM-resident 9x16
font, the BIOS generates the 9x16 font by running the 8x16 font through a
ROM-resident table of corrections.

Note: This field is not defined for graphics modes.

Character block to load (offset 26h)

In text modes, the ASCII character number is written to video memory map
O; the corresponding attribute byte is written to memory map 1. Memory
map 2 is divided into eight SK character blocks. Each character block may
contain one text mode character font. Character block numbers are zero
based.

Bits 0-7 of the Character Block to Load field define which character blocks
will be loaded with the default font associated with the text mode being
requested. Setting Bit 0 to 1 instructs ABIOS to load the default font into
Character Block 0. Setting Bit 0 to 0 tells ABIOS to preserve the present
contents of Character Block O. Setting Bit 1 to 1 instructs ABIOS to load the
default font into Character Block 1 , and so on.

If all eight bits of the Character Block to Load field are set to zero, then
ABIOS does not load the default font associated with the text mode re
quested. Setting all bits to one causes ABIOS to load the default font into
each Character Block.

continued

ABIOS Video Service 327

Function: 05h - Set Video Mode, Continued

Overriding default fonts

ABIOS Video Service functions OFh Load Text Mode Font and function 1 Oh
Enhanced Load Text Mode Font provide a way to load nondefault or user
defined fonts into character blocks for display in a given text mode.

Character Block to Select (offset 24h)

328

In text modes, the video hardware is capable of displaying characters se
lected from up to two character blocks. The maximum number of characters
associated with any one font is 256; therefore up to 51 2 characters can be
displayed.

When the current video mode is a text mode, the Character Block Specifier
field identifies which two character blocks are being used.

Bits 11-8 hold the binary value (OOOb-111 b) of character block A, which
contains the first displayable character set. Bits 3-0 hold the binary value of
character block B, which contains the second displayable character set. The
remaining bits in this field are reserved.

Selector Field Value Meaning

When the value of character block • Two character sets are available for dis-
specifier A Is different from charac- play.
ter block specifier B • Bit 3 of the attribute byte Identifies which

character block Is to be displayed:
1 = Use character block selector A
0 = Use character block selector B

When the value in character block . One character set is available for display .
specifier A Is equal to the value In . Bit 3 of the attribute byte determines the character block specifier B foreground Intensity of the character dis-

played:
1 = Foreground Intensity on
0 = Foreground Intensity off

Function OEh Select Character Generator Block can be used to set the
Character Block Specifier field independently from function 05h.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Set Video Mode, Continued

Request block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
1Ah Word

1Ch Byte

1Eh Word
24h Word

26h Word

28h Word

ABIOS Video Service

Input:

Request Block Length
Lo lcal ID
Unit
Function 0005h
Reserved Initialize to OOOOh
Reserved (initialize to OOOOh)

Device Control Flags
Bits 15-3 =Reserved
Bit 2 = Gray Scale Summing

0 Disabled
1 Enabled

Bit 1 = Initialize DAC to
default values
0 No
1 Yes

Bit 0 = Clear video buffer
0 No
1 Yes

Text Mode Scan Lines
OOh = 200 lines

(modes hex 0, 1,2,3)
01h = 350 lines

(modes hex 0,1,2,3,7)
02h = 400 lines

(modes hex 0, 1,2,3,7)
03h-FFh = Reserved
Video Mode
Character Block to Display
(modes hex 0, 1,2,3, 7)
Bits 15-12 = Reserved
Bits 11-8 = Character Block A
Bits 7-4 = Reserved
Bits 3-0 = Character block B
Character block to load with de
fault ROM font (modes hex
0,1,2,3,7)
Bit n = Block n flag

0 = Do not load font
1 = Load default font

Reserved (Initialize to OOOOh)

Output:

continued

329

Function: 05h - Set Video Mode, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Video Parameter

FFFFh Return Code Field Not Valid

Functions: 06h - OAh - Reserved

330 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Return ROM Fonts Information

Description

This single-staged function outputs information concerning each ROM
resident font to a ROM Font buffer area specified on function entry.

How to determine buffer size

Function 03h Read Device Parameters returns the size of the buffer required
by the Return ROM Fonts Information function. Function 03h returns this
value to offset 2Ah of the function 03h Request Block.

Before function OBh can be issued, function 03h must always be invoked, to
determine the proper buffer size.

Buffer format

Each entry into the ROM Font Information buffer occupies 12 bytes. The
format of each font entry is defined in the table below:

Size Description

Word Reserved

DWord Pointer to ROM-resident font

Word Reserved

Byte Character size: number of columns

Byte Character size: number of rows

Byte Total/Partial font, where:
OOh = total font
01 h = Partial font
02h = FFh = Reserved

Byte Partial Font
If a partial font Is Indicated In the byte above, this field tells
which default font that partial font Is drawn from.

continued

ABIOS Video Service 331

Function: OBh - Return ROM Fonts Information, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Word
12h DWord Pointer to buffer that stores

ROM font Information
16h Word Reserved (Initialize to OOOOh)

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter

FFFFh Return Code Field Not Valid

332 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Save Video Environment

Description

This single-staged function stores any of three video states to a buffer
specified upon function entry. The three states are:

• Hardware state

• Device Block state
• Digital-to-Analog Converter (DAC) state

Buffer size values are returned by function 03h

The values returned by function 03h at Request Block offsets 2Eh, 30h, 32h,
and 34h must be referenced in order to determine the buffer size to specify
upon entry into function OCh.

Offset Description

2Eh Size of Save Environment buffer header

30h Buffer size required to save hardware state

32h Buffer size required to save Device Block state

34h Buffer size required to save DAC state

To insure a proper buffer size is calculated, function 03h must always be
issued before function OCh can be executed successfully.

Calculating video environment buffer size

The caller may elect to save any or all three video states.

The size of the save environment buffer that must be specified on entry into
function OCh is calculated as follows:

Buffer header size + Buffer size of each state to be saved.

continued

ABIOS Video Service 333

Function: OCh - Save Video Environment, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord

16h Word
2Ch Word

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOCh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Pointer to environment save
area
Reserved (lnltlallze to OOOOh)
Video states to be saved
Bits 15-3 =Reserved (set to 0)
Bit 2 = DAC state

1 = Save state
Bit 1 = Device Block state

1 = Save state
Bit 0 = Hardware state

1 = Save state

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Video Parameter

FFFFh Return Code Fleld Not Valid

334 ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Restore Video Environment

Description

This single-staged function restores the video environment located at the
buffer area pointed to on function entry.

For more information on the structure and contents of the video environment
buffer, see "Function: OCh - Save Video Environment."

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord

16h Word
1Ah Word

2Ch Word

ABIOS Video Service

Input:

Request Block Length
Lo lcal ID
Unit
Function OOODh
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Pointer to the video environment
to be restored
Reserved (Initialize to OOOOh)
Device control flag
Bits 15-1 = Reserved
Bit O = Clear video buffer

0 =No
1 =Yes

Video states to be restored
Bits 15-3 =Reserved (set to 0)
Bit 2 = DAC state

1 = Restore state
Bit 1 = Device Block state

1 = Restore state
Bit 0 = Hardware state

1 = Restore state

Output:

continued

335

Function: ODh - Restore Video Environment, Continued

Return Codes

336

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Loglcal ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Video Parameter

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Select Character Generator Block

Description

This single-staged function allows the caller, when in text modes, to select
either of two character blocks.

The maximum number of characters associated with any one character block
is 256; therefore up to 512 characters can be displayed.

When the current video mode is a text mode, the Character Block Specifier
field identifies which two character blocks are being used.

Bits 11-8 hold the binary value (OOOb-111 b) of character block A, which
contains the first displayable character set. Bits 3-0 hold the binary value of
character block B, which contains the second displayable character set. The
remaining bits in this field are reserved.

Selector Field Value Meaning

When the value of character block • Two character sets are available for dis-
specifier A Is different from charac- play.
ter block specifier B . Bit 3 of the attribute byte Identifies which

character block Is to be displayed:
1 =- Use character block selector A
0 = Use character block selector B

When the value In character block • One character set Is available for display .
specifier A Is equal to the value In • Bit 3 of the attribute byte determines the character block specifier B foreground Intensity of the character dis-

played:
1 = Foreground Intensity on
0 = Foreground Intensity off

Function 05h Set Video Mode can also be used to set the Character Block
Specifier field.

continued

ABIOS Video Service 337

Function: OEh - Select Character Generator Block, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
16h Word
24h Word

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOEh
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Character Block to Display
Bits 15-12 = Reserved
Bits 11-8 = Character block A
Bits 7-4 =Reserved
Bits 3-0 = Character block B

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter

FFFFh Return Code Field Not Valid

338 ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Load Text Mode Font

Description

This single-staged function loads the font indicated on function entry into the
specified Character Block in Memory Map 2.

Scan lines per character, number of character rows, buffer length, and
cursor size are not recalculated by this function. The font loaded here must
occupy the default character box size associated with the text mode in
effect.

When to use function OFh

When in text mode, use function OFh to load a nondefault or user-defined
font. For best results, insure that the bytes-per-character of the font being
loaded is equal to the bytes-per-character of the default font.

Function OFh input field considerations

When a ROM-resident font is loaded, the character height is known and the
full 1 OOh character set is loaded. Therefore, the caller need not specify the
Count of Characters, Character Offset, or Character Height fields on function
entry.

When a user-defined font is loaded, all input fields must be specified on
function entry.

continued

ABIOS Video Service 339

Function: OFh - Load Text Mode Font, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOFh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word
12h DWord Pointer to the user font
16h Word Reserved (lnltlallze to OOOOh)
18h Word Count of characters

Byte Valld values= 01h to 100h
1Dh Byte Font Type to Load

OOh = User-defined
01h = 8x8 ROM font
02h = 8x14 ROM font
03h = 8x16 ROM font
04h-FFh =Reserved

22h Word Character Height
(bytes/character)

24h Word Character Block to Load
00h-07h = Valid load values
08h-FFFFh = Reserved

28h Word Character Offset

continued

340 ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Load Text Mode Font, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation
When a user-defined font Is loaded, the Count of Charac-
ters field must not be zero. If set to zero, no font Is loaded
and function OFh returns with Return Code OOOOh Success-
ful Operation.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Video Parameter
When a user-defined font Is loaded, the Count of Charac-
ters and the Character offset fields must not exceed the
maximum numbers of characters per character set (100h
characters). If greater than 100h, function OFh returns with
a Return Code field of C005h Invalid Video Parameter.

FFFFh Return Code Field Not Valid

ABIOS Video Service 341

Function: 10h - Enhanced Load Text Mode Font

Description

This single-staged function loads the font indicated on function entry into the
specified Character Block in Memory Map 2. The font loaded here need not
occupy the default character box size associated with the text mode in
effect.

Scan lines per character, number of character rows, buffer length, and
cursor size are recalculated by this function.

When to use function 1 Oh

Use function 1 Oh to load a font that has a different box size than the default
font associated with the current text mode. Cursor size and number of rows
on screen will be recalculated automatically.

For example, the default font associated with mode 07h (720x400, VGA text
mode) is 9x16. The default text scheme is 80 columns by 25 rows.

Since function 1 Oh recalculates scan lines per character, number of charac
ter rows, buffer length, and cursor size, loading the ROM-resident 8x8 font
in this mode yields a screen that displays 80 columns by 50 rows, with a
properly scaled cursor.

Function OFh input field considerations

342

When a ROM-resident font is loaded, the character height is known and the
full 100h character set is loaded. Therefore, the caller need not specify the
Count of Characters, Character Offset, or Character Height fields on function
entry.

When a user-defined font is loaded, all input fields must be specified on
function entry.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 10h - Enhanced Load Text Mode Font, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0010h
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word
12h DWord Pointer to the user font
16h Word Reserved (lnltlallze to OOOOh)
18h Word Count of characters

Valid values = 01h-100h
1Dh Byte Font Type to Load

OOh = User-defined
01h = 8x8 ROM font
02h = 8x14 ROM font
03h "' 8x16 ROM font
04h-FFh =Reserved

22h Word Character Height
(bytes/ character)

24h Word Character Block to Load
00h-07h =Valid values
08h-FFFFh = Reserved

28h Word Character offset

continued

ABIOS Video Service 343

Function: 1 Oh - Enhanced Load Text Mode Font, Continued

Return Codes

344

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation
When a user-defined font Is loaded, the Count of Charac-
ters fleld must not be zero. If set to zero, no font Is loaded
and function OFh returns with Return Code OOOOh Success-
ful Operation.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter
When a user-defined font Is loaded, the Count of Charac-
ters and the Character offset fields must not exceed the
maximum numbers of characters per character set (100h
characters). If greater than 1 OOh, function OFh returns with
a Return Code field of COOSh Invalid Video Parameter.

FFFFh Return .Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 11 h - Read Palette Register

Description

This single-staged function reads the value of the palette register specified
on function entry.

Attribute controller, palette registers, and the DAC

The Attribute Controller component of the VGA hardware contains an internal
Palette Register. The Palette Register is composed of sixteen 8-bit registers.
Bits 0-5 can be programmed to any value up to 3Fh (i.e. 64). Bits 7-6 are
reserved. The value contained in each palette register is combined with
other Attribute Controller information to create an 8-bit index into the DAC.

Palette registers are initialized at mode set

The value programmed into each Palette Register is determined by ABIOS at
mode set. When a 16-color EGA or VGA mode is selected, ABIOS initializes
the Palette Register to the 16 default EGA colors. When a 16-color CGA
mode is selected, ABIOS initializes the Palette Registers to the 16-color CGA
palette. In mode 13h, ABIOS initializes the entire Attribute Controller so that
the 8 bit per pixel value used in this mode maps directly into the DAC.

continued

ABIOS Video Service 345

Function: 11h - Read Palette Register, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0011 h
08h Word Reserved Initialize to OOOOh

OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word
32h Word

34h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter

FFFFh Return Code Field Not Valid

346 ABIOS for IBM PS/2 Computers and Compatibles

Function: 12h - Write Palette Register

Description

This single-staged function writes a particular value to the palette register
specified on function entry. Valid values are 00h-3Fh.

This function is valid for all modes except mode 13h. Writing to a palette
register while in mode 13h may cause unpredictable results. In mode 13h,
the VGA hardware requires that the Palette Registers remain as programmed
on mode set.

Attribute controller, palette registers, and the DAC

The Attribute Controller component of the VGA hardware contains an internal
Palette Register. The Palette Register is composed of sixteen 8-bit registers.
Bits 0-5 can be programmed to any value up to 3Fh (i.e. 64). Bits 7-6 are
reserved. The value contained in each palette register is combined with
other Attribute Controller information to create an 8-bit index into the DAC.

Palette registers are initialized at mode set

The value programmed into each Palette Register is determined by ABIOS at
mode set. When a 16-color EGA or VGA mode is selected, ABIOS initializes
the Palette Register to the 16 default EGA colors. When a 16-color CGA
mode is selected, ABIOS initializes the Palette Registers to the 16-color CGA
palette. In mode 13h, ABIOS initializes the entire Attribute Controller so that
the 8-bit per pixel value used in this mode maps directly into the DAC.

Reference

For more information on color palettes, the DAC, and color mode register
initialization, refer to Hardware Environment in this chapter.

continued

ABIOS Video Service 347

Function: 12h - Write Palette Register, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Len th
02h Word Lo leaf ID
04h Word Unit
06h Word Function 0012h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Word
32h Word Write value to the palette

register
OOh-OFh = Valld write values

1 Oh-FFFFh = Reserved
34h Word Load the palette value

00h-3Fh =Valid
40h-FFFFh = Reserved

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COO Oh lnvalld Loglcal ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

COO Sh lnvalld Video Parameter

FFFFh Return Code Fleld Not Valld

348 ABIOS for IBM PS/2 Computers and Compatlbles

Function: 13h - Read DAC Color Register

Description

This single-staged function returns the 18-bit Red-Green-Blue (RGB) value
contained in the DAC color register specified on function entry.

Digital-to-Analog Converter (DAC) color registers

The video DAC contains 256 individual color registers.

Each DAC color register contains one 18-bit RGB analog value. Six bits of
each register are allocated to each primary color. Thus, the color repre
sented in each DAC color register may be any of 256K possible colors
(i.e. 23*6 = 256K).

How DAC color registers are initialized

The ABIOS initializes the 8-bit index values contained in the Attribute Control
ler and the 18-bit analog color values contained in the DAC color registers
each time a video mode is set.

When a CGA, EGA, or 16-color VGA mode is requested, ABIOS initializes
the first 64 DAC color registers to analog equivalents of the 64 EGA colors.
The remaining 192 registers are undefined. When mode 13h (256 color
mode) is set, ABIOS initializes all 256 color registers to their IBM
PS/2-compatible values.

continued

ABIOS Video Service 349

Function: 13h - Read DAC Color Register, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h . Word Function 0013h
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word
2Ah Word

2Ch Word
2Eh Word
30h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Loglcal ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Video Parameter

FFFFh Return Code Field Not Valid

350 ABIOS for IBM PS/2 Computers and Compatibles

Function: 14h - Write DAC Color Register

Description

This single-staged function outputs the 18-bit RGB value contained to the
DAC color register specified on function entry.

Digital-to-Analog Converter (DAC) color registers

The video DAC contains 256 individual color registers.

Each DAC color register contains one 18-bit RGB analog value. Six bits of
each register are allocated to each primary color. Thus, the color repre
sented in each DAC color register may be any of 256K possible colors
(i.e. 23*6 = 256K).

How DAC color registers are initialized

The ABIOS initializes the 8-bit index values contained in the Attribute Control
ler and the 18-bit analog color values contained in the DAC color registers
each time a video mode is set.

When a CGA, EGA, or 16-color VGA mode is requested, ABIOS initializes
the first 64 DAC color registers to analog equivalents of the 64 EGA colors.
The remaining 192 registers are undefined. When mode 13h (256 color
mode) is set, ABIOS initializes all 256 color registers to their IBM
PS/2-compatible values.

continued

ABIOS Video Service 351

Function: 14h - Write DAC Color Register, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
16h Word
1Ah Word

2Ah Word

2Ch Word

2Eh Word

30h Word

Input:

Request Block Length
Lo ical ID
Unit
Function 0014h
Reserved initialize to OOOOh
Reserved (Initialize to OOOOh)

Device control flags
Bits 15-3 = Reserved
Bit 2 = Gray Scale Summing

O Disable
1 Enable

Bits 1-0 = Reserved
Color Register to Write
OOh-FFh = Valid write values
1 OOh-FFFFh = Reserved
Red Value
00h-3Fh = Valid value
40h-FFFFh = Reserved
Green Value
00h-3Fh =Valid value
40h-FFFFh = Reserved
Blue Value
00h-3Fh =Valid value
40h-FFFFh = Reserved

Output:

continued

352 ABIOS for IBM PS/2 Computers and Compatibles

Function: 14h - Write DAC Color Register, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid· Video Parameter

FFFFh Return Code Field Not Valid

ABIOS Video Service 353

Function: 15h - Read Block of Color Registers

Description

This single-staged function reads a block of 18-bit RGB color register values
from the Digital-to-Analog-Converter (DAC), beginning with the color regis
ter specified on function entry.

A doubleword pointer to the buffer area where the block is to be stored
must also be specified on function entry.

Function 16h input field considerations

• Number of registers to load must be greater than zero

If the value input into the Number of Registers to Load field is zero, no
action is performed and function 16h returns with Return Code OOOOh
Successful Operation

• Block length must not exceed 1 OOh

If the value in the First Color Register to Write field plus the value in the
Number of Color Registers to Write field exceeds 1 OOh, then no action is
performed and function 16h returns with Return Code C005h Invalid Input
Parameter.

Color register data format

354

The block of DAC color register values returned by function 15h is stored in
a system RAM buffer as a series of three-byte sequences as follows:

(Red value, green value, blue value) (red value, green value, blue value)

The standard range for red, green, or blue values is OOh to 3Fh. The values
40h to FFFFh are reserved.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 15h - Read Block of Color Registers, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 001 Sh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Word
12h DWord Pointer to read the color

registers Into the save area
16h Word Reserved (Initialize to OOOOh)
18h Word Number of color registers
2Ah Word First color register

OOh-FFh =Valid read values
100h-FFFFh =Reserved

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation
If the value Input Into the Number of Registers to Load
field Is zero, no action Is performed and function 16h Is-
sues Return Code OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter
If the value In the First Color Register to Write field plus
the value In the Number of Color Registers to Write field
exceeds 1 OOh, no action Is performed and function 16h
returns with Return Code C005h Invalid Input Parameter.

FFFFh Return Code Field Not Valid

ABIOS Video Service 355

Function: 16h - Write Block of DAC Color Registers

Description

This single-staged function toads a block of 18-bit RGB values to the DAC
color registers, beginning with the color register specified on function entry.

The start address of the block of color register values to be loaded is indi
cated with a doubleword pointer that is also specified on function entry.

RGB data format

The block of RGB color register values to be loaded by function 16h must be
stored in system RAM as a series of three-byte sequences as follows:

(Red value, green value, blue value) (red value, green value, blue value)

The standard range for red, green, or blue values is OOh to 3Fh. The values
40h to FFFFh are reserved.

Function 16h input field considerations

356

• Device Control Flag and gray scale summing
When a monochrome monitor is attached, gray scale summing is handled
automatically by the video hardware. When a color monitor is attached,
gray scale summing is enabled or disabled by setting the value of bit 2,
Gray Scale Summing, of the Device Control Flag field.

• Number of register to load must be greater than zero
If the value input into the Number of Registers to Load field is zero, no
action is performed and function 16h returns with Return Code OOOOh
Successful Operation

• Block length must not exceed 1 OOh
If the value of the First Color Register to Write field plus the value of the
Number of Color Registers to Write field exceeds 1 OOh, then no action is
performed and function 16h returns with Return Code COOSh Invalid Input
Parameter.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 16h - Write Block of DAC Color Registers, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0016h
OBh Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Word
12h DWord Pointer to write the color

registers Into the save area
16h Word Reserved (Initialize to OOOOh)
18h Word Number of color registers
1Ah Word Device control flags

Bits 15-3 =Reserved
Bit 2 = Gray Scale Summing

o Disable
1 Enable

Bits 1-0 =Reserved
2Ah Word First color register

OOh-FFh =Valid write values
100h-FFFFh =Reserved

continued

ABIOS Video Service 357

Function: 16h - Write Block of DAC Color Registers, Continued

Return Codes

358

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper ABIOS performance.

Code Description

OOOOh Successful Operation
If the value Input Into the Number of Registers to Load field
Is zero, no action Is performed and function 16h Issues
Return Code OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid Video Parameter
If the values In the First Color Register to Write and the
Number of Color Registers to Write fleld exceed 1 OOh, no
action Is performed and function 16h returns with Return
Code C005h Invalid Input Parameter.

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Chapter 12

ABIOS Serial Communications
Service

Overview

Introduction

The ABIOS Serial Communications Service provides access to serial 1/0
device adapters. The functions available provide the caller with a means of
accessing the system serial ports without directly programming hardware
controller registers. To maintain maximum compatibility across different
serial port controllers, direct hardware programming of a controller should
be avoided.

continued

ABIOS Serial Communications Service 359

Overview, Continued

Summary of ABIOS Serial Communications Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

03h Read Device Parameters

04h Reserved

05h Reset/lnltlallze Serlal Port

06h-0Ah Reserved

OBh Set Modem Control

OCh Set Line Control

ODh Set Baud Rate

OEh Transmit

OFh Receive

10h Transmit and Receive

11h Modem Status

12h Cancel

13h Return Status Line

14h Return Modem Status

15h Enable FIFO Control

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• Error Handling

• ABIOS Serial Communications Service functions

360 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

Serial port

The ABIOS supports a National Semiconductor 16550 serial port controller or
equivalent logic. The serial ports can be addressed as Serial 1-8. See
(40: 1 Oh) to find out how many serial ports are available. Serial 1 and 3
interrupts are on IRQ 4; Serial 2 and 4 interrupts are on IRQ 3. The serial
port base addresses are shown below. ABIOS initializes the serial ports in the
same order that they reside in the ROM BIOS data area, so the serial port
Logical IDs will be in the same order as in the BIOS Data area (40:10h).
Additional serial ports and Logical IDs may be initialized.

Serial port addresses/interrupt levels

Serial Port Number Base Address Interrupt Level

1 03F8h 4

2 02F8h 3

3 3220h 3

4 3228h 3

5 4220h 3

6 4228h 3

7 5220h 3

8 5228h 3

NS 16550 characteristics

The NS 16550, which is functionally compatible with the NS 16450 and the
NS 8250, supports:

• Characters of 5, 6, 7, or 8 bits,

• 1, 1.5, or 2 stop bits, and
• even, odd, or no parity modes.

continued

ABIOS Serlal Communications Service 361

Hardware Environment, Continued

NS 16550 Serial Communications Controller

The NS 16550 does serial to parallel conversions on data received from a
peripheral device or a modem, and parallel to serial conversion on data
received from the system processor. The system processor can read the
status of the NS 16550 at any time during its operation. The information
furnished includes the type and condition of transfer operations in progress,
as well as any error conditions (parity, overrun, framing, or break interrupt)
present. The NS 16550 provides complete modem control, and has a user
programmable processor-interrupt system.

Programmable baud rate generator

The serial port controller can operate at speeds of from 11 0 to 19, 200 bps.

NS 16550 Serial Controller Registers

362

The NS 16550 has 12 accessible registers:

• Receiver Buffer Register (Read Only)
• Transmitter Holding Register (Write Only)
• Interrupt Enable Register (Read/Write)
• Interrupt Identification Register (Read Only)
• FIFO (First in/First out) Control Register (Write Only)
• Line Control Register (Read/Write)
• Modem Control Register (Read/Write)
• Line Status Register (Read Only)
• Modem Status Register (Read Only)
• Scratch Register (Read/Write)
• Divisor Latch (LSB) (Read/Write)
• Divisor Latch (MSB) (Read/Write)

Information on the operation of these registers is contained in the National
Semiconductor NS 16550 Data Sheet. However, to avoid any incompatibility
problems introduced by direct hardware programming, use the access to the
serial controller provided through the BIOS services.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment, Continued

110 port addresses

The 1/0 port table in Section 2 provides a complete list of all serial 1/0 port
addresses. These 1/0 addresses correspond to the serial port registers and
provide a standard means of access for the caller.

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Serial Communications Service
function requested has an error. The caller's Return Code handler routine
should test Bits 14, 13, 12, and 8 to determine the class of error that has
occurred and then test the remaining bits to determine the precise nature of
the error.

ABIOS Serial Communications Service 363

Function: OOh - Default Interrupt Handler

Description

This function is a single-staged or multistaged request that handles unex
pected hardware interrupts by resetting the interrupt at the device level.

When to invoke

This function is invoked by calling the interrupt routine with a function code
of OOOOh. It is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word Time-out

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh lnvalld Loglcal ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

364 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)

02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001 h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (Initialize to OOOOh)

OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word Reserved (Initialize to OOOOh)
1Eh Word Reserved (Initialize to OOOOh)

ABIOS Serlal Communications Service

Output:

Device ID (0006h)
Count of Units
Logical ID Flags
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units (only one unit Is
supported).

= 0 Reserved
= Transfer Data Pointer

Mode Return Codes
01 =Logical Pointer

Required
Request Block Length (for other
functions)
Secondary Device ID

continued

365

Function: 01h - Return Logical ID Parameters, Continued

Return Codes

366

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters

Description

This function is a single-staged request that reads the parameters of the
serial port(s). This function does not interact with any hardware and has no
effect on any other outstanding requests.

Before using this function

Invoke function 05h Reset/Initialize Serial Device to synchronize the serial
port parameters before invoking this function.

How the serial port parameters are set up

The serial port parameters are maintained in the Serial Port Device Block
(Device ID 0006h). These parameters always reflect the state of the serial
port hardware. The parameters are updated every time an ABIOS (or CBIOS)
Serial Communications Service function is invoked.

Warning: If the serial ports are directly programmed or programmed using
CBIOS INT 14h functions after ABIOS initialization, the serial pa
rameters in the ABIOS Device Block will not be accurate.

Initial serial port values

The serial port(s) is initialized to the following values during ABIOS
initialization:

• Baud rate of 1200

• No parity

• One stop bit

• Seven Bits Per Character

• No break

ABIOS Serlal Communications Service

continued

367

Function: 03h - Read Device Parameters, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
18h Word
28h Byte

29h Byte

2Ah Byte
44h Byte

368

Input:

Request Block Length
Lo lcal ID
Unit
Function 0003h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Modem Control
Bits 7-5 = Reserved (set to 0)
Bit 4 = 1 Loop
Bit 3 = 1 Out2
Bit 2 = 1 Out1
Bit 1 = 1 Request To Send
Bit 0 = 1 Data Terminal Ready
Asynchronous Interrupt Status
Bits 7-6 = Reserved (set to 0)
Bit 5 = 1 Modem Status

Interrupt
=Reserved
= 1 Transmit Interrupt
= 1 Receive Interrupt
=Reserved

FIFO Trigger Level
Transmission Baud Rate
OOh = 110
01h = 150
02h = 300
03h = 600
04h = 1200
05h = 2400
06h = 4800
07h = 9600
08h = 19200

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Request Block Structure, cont'd

Offset Size

45h Byte

46h Byte

47h Byte

48h Byte

Return Codes

Output:

Parity Type
OOh =None
01h =Odd
02h =Even
03h = Stick parity odd
04h = Stick parity even

Number of Stop Bits
Note: The following Is true If the

number of Bits Per Charac
ters either 1, 2, or 3.

OOh = 1
01h = 2

Note: The following Is true If the
number of Bits Per Charac
ter Is 0.

OOh = 1
01h = 1-1/2

Number of Bits Per Character
OOh = 5
01h = 6
02h = 7
03h = 8

Break Status
OOh = Disabled
01 h = Enabled

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h lnvalld Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

ABIOS Serial Communications Service 369

Function: 04h - Reserved

Function: 05h - Reset/lnltlallze Serial Port

Description

This function is a single-staged request that initializes the serial port(s)
according to the specified values.

Reset process

370

When this interrupt is invoked, the ABIOS:

• cancels all outstanding serial communications Request Blocks,
• disables all serial port interrupts, including those generated by functions

OEh Transmit, OFh Receive, 10h Transmit and Receive, and 11h Modem
Status,

• clears any pending data at the serial ports, and
• synchronizes the Device Block parameters so they match the current

hardware serial port values (this must be done before function 03h Read
Device Parameters is invoked).

The caller is responsible for deallocating the appropriate Request Blocks and
ensuring the appropriate condition of the interrupt controller (by sending
EOls).

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OSh - Reset/Initialize Serial Port, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
18h Word
28h Byte

29h Byte

2Ah Byte

44h Byte

Input:

Request Block Length
Lo lcal ID
Unit
Function 0005h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Modem Control
Bits 7-5 = Reserved
Bit 4 = 1 Loop
Bit 3 = 1 Out2
Note: This bit must be O If Bit 4

Is 0.
Bit 2 = 1 Out1
Note: This bit must be 0 If Bit 4

Is 0.
Bit 1 = 1 Send
Bit O = 1 Data Terminal

Ready
FIFO Trigger Level, where:
OOh= 1 Byte
01h= 4 Bytes
02h= 8 Bytes
03h= 14 B tes
FIFO Control, where:
OOh = Do not change or

FIFO not supported
01h =Enable and Reset

FIFO
02h-FFh=Enable FIFO
Transmission Baud Rate
OOh = 110
01h = 150
02h = 300
03h = 600
04h = 1200
05h = 2400
06h = 4800
07h = 9600
08h = 19200

ABIOS Serlal Communications Service

continued

371

Function: 05h - Reset/Initialize Serial Port, Continued

Request Block Structure, cont'd

Offset Size

45h Byte

46h Byte

47h Byte

48h Byte

49h Byte

4Ah Byte

Input:

Parity Type
OOh =None
01h =Odd
02h =Even
03h = Stick parity odd
04h = Stick parity even

Number of Stop Bits
Note: The followtng Is true for a

6 bit, 7 bit, or 8 bit word
length.

OOh = 1
01h = 2

Note: The following is true for a
5 bit word length.

OOh = 1
01h = 1-1/2

Number of Bits Per Character
OOh = 5
01h = 6
02h = 7
03h = 8

Bit 7 = Reserved
Bit 6 = 1 Transmitter Empty
Bit 5 = 1 Transmitter Holding

Register Empty
Bit 4 = 1 Break Interrupt
Bit 3 = 1 Framing Error
Bit 2 = 1 Parity Error
Bit 1 = 1 Overrun Error
Bit 0 = 1 Data Ready

Bit 7 = 1 Data Carrier Detect
Bit 6 = 1 Ring Indicator
Bit 5 = 1 Data Set Ready
Bit 4 = 1 Clear To Send
Bit 3 = 1 Delta Data Carrier Detect
Bit 2 = 1 Trailing Edge Ring

Indicator
Bit 1 = 1 Delta Data Set Ready
Bit O = 1 Delta Clear To Send

continued

372 ABIOS for IBM PS/2 Computers and Col'f!patlbles

Function: 05h - Reset/Initialize Serial Port, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Functions: 06h - OAh - Reserved

ABIOS Serial Communications Service 373

Function: OBh - Set Modem Control

Description

This function is a single-staged request that sets the parameters for control
of the modem as specified in the Request Block.

This function does not affect any Request Blocks already in process that
have a .Return Code of 0001 h Resume Stage after Interrupt or 0005h Not My
Interrupt, Resume Stage after Interrupt.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
OBh Word
OAh Word
OCh Word
OEh Word
18h Word
28h Byte

374

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOBh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Reserved
Modem Control
Bits 7-5 = Reserved (set to 0)
Bit 4 = 1 Loop
Bit 3 = 1 Out2
Note: This bit must be 0 If Bit 4

Is 0.
Bit 2 = Out1
Note: This bit must be 0 If Bit 4

Is 0.
Bit 1 = 1 Request-To-Send
Bit 0 = 1 Data Terminal Ready

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Set Modem Control, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

Function: OCh - Set Line Control

Description

This function is a single-staged request that sets the parameters for the line
as specified in the Request Block.

This function does not affect any Request Blocks already in process that
have a Return Code of 0001 h Resume Stage after Interrupt or 0005h Not My
Interrupt, Resume Stage after Interrupt.

continued

ABIOS Serlal Communications Service 375

Function: OCh - Set Line Control, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved lnltiallze to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
18h Word Reserved (lnltiallze to OOOOh)
45h Byte Parity Type

OOh =None
01h =Odd
02h =Even
03h = Stick parity odd
04h = Stick parity even

46h Byte Number of Stop Bits
Note: The following is true for a

6 bit, 7 bit, or 8 bit word
length.

OOh = 1 Stop bit
01h = 2 Stop bits

Note: The following is true for a
5 bit word length.

OOh = 1 Stop bit
01h = 1-1/2 Stop bits

47h Byte Number of Bits Per Character
OOh = 5 bits
01h = 6 bits
02h = 7 bits
03h = 8 bits

48h Byte Break Status
OOh =Disabled
01h =Enabled

continued

376 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Set Line Control, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Serlal Communications Service 377

Function: ODh - Set Baud Rate

Description

This function is a single-staged request that sets the baud rate as specified
in the Request Block.

This function does not affect any Request Blocks already in process that
have a Return Code of 0001 h Resume Stage after Interrupt or 0005h Not My
Interrupt, Resume Stage after Interrupt.

Requ~st Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
18h Word
44h Byte Transmission Baud Rate

OOh = 110
01h =150
02h = 300
03h = 600
04h = 1200
05h = 2400
06h = 4800
07h = 9600
OBh = 19200
09h-OFFh = Reserved

continued

378 ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Set Baud Rate, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Loglcal ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: OEh - Transmit

Description

This function is a discrete multistaged request that enables the transmit
interrupt. No data is transmitted until the actual transmit interrupt occurs.

Pointer field definitions

The Transmit Tail Pointer must point to the first byte of the data block to be
transmitted. The value in this field should be relative to the beginning of the
Transmit Buffer. The value in this field must always be between zero and the
value in the Transmit Buffer Length field minus one.

The Transmit Head Pointer should point to a location one byte past the last
byte to be sent. The value in this field should be relative to the beginning of
the Transmit Buffer. The value in this field must always be between zero and
the value in the Transmit Buffer Length field minus one.

continued

ABIOS Serial Communications Service 379

Function: OEh - Transmit, Continued

Updating the Transmit Tail Pointer fleld

When a transmit interrupt occurs, the interrupt routine increments the value
of the Transmit Tail Pointer by the number of bytes transmitted. Bit 1 (Trans
mit In Progress) of the Current Serial Port Status field will be set.

The Transmit Buffer may be checked at any time during the transmit routine,
so the ABIOS writes data to the Transmit Buffer before the value in the
Transmit Tail Pointer field is incremented.

Transmit Pointer field rules

380

The following rules apply to programming the transmit pointer fields:

• The Transmit Tail Pointer field value will always get closer to the Transmit
Head Pointer value as interrupts occur.

• If the value of the Transmit Tail Pointer comes to the end of the Transmit
Buffer, the Transmit Tail Pointer field value wraps around to O.

• A Transmit Buffer Empty condition occurs when the value in the Transmit
Tail Pointer equals the value in the Transmit Head Pointer field.

• If a Transmit Buffer Empty condition happens after data is sent to the
serial port, the ABIOS stops sending data and sets bit 6 (Transmit Buffer
Empty) of the Current Serial Port Status field (the transmit interrupt is still
enabled) . If the empty buffer condition persists on the next transmit
interrupt (or any transmit interrupt), the ABIOS will then disable the trans
mit interrupt.

• If the transmit interrupt is disabled because the transmit buffer is empty,
the Request Block is canceled by the ABIOS (although it is up to the caller
to deallocate the Request Block) .

• If a Request Block is canceled by the ABIOS, the Current Serial Port
Status field will have bit 6 (Transmit Buffer Empty) and bit 7 (Transmitter
Holding Register Empty) set.

continued

ABIOS for IBM PS/2 Computers and Compatlbles

Function: OEh - Transmit, Continued

Transmit buffer full

This condition occurs when the value in the Transmit Head Pointer full is one
less than the value in the Transmit Tail Pointer field.

It also occurs if zero is in the Transmit Tail Pointer field and the value in the
Transmit Head Pointer field is one less than the value in the Transmit Buffer
Length field.

Adding data during a transmit interrupt

The values in the Transmit Buffer Segment, Transmit Buffer Offset, and
Transmit Buffer Length fields can be altered across calls to the transmit
interrupt routine.

The ABIOS removes the data from the buffer before changing the Transmit
Tail Pointer field, therefore the caller can add data to be transmitted during
the process of a transmit interrupt by placing the data in the Transmit Buffer
and logically incrementing the value in the Transmit Head Pointer field.

The caller must not permit the value in the Transmit Head Pointer field to
equal the value in the Transmit Tail Pointer field while it adds data to the
transmit buffer.

Maximum number of characters transmitted

The maximum number of characters that a single view of the Transmit Buffer
can indicate to be transmitted is one less than the value in the Transmit
Buffer Length field.

Number of bits per character

If the Number of Bits Per Character field in function 05h Reset/Initialize is
less than 8, the high order bit(s) of each byte are transmitted as is.

continued

ABIOS Serial Communications Service 381

Function: OEh - Transmit, Continued

Transmit sequence example

382

After the caller initializes the Request Block with a Transmit function (OEh or
1 Oh} and calls the start routine, the following actions take place:

1 . The ABIOS tests the Transmit Head and Tail Pointers to ensure that they
agree with the Transmit Buffer Length. The maximum number of charac
ters that can be transmitted in this example is 6.

After the caller calls the common start procedure, the Request Block, Transmit
Buffer, and Current Serial Port Status fleld appear as follows:

Request Block

OEh

2Ch Transmit Buffer Length - 6
30h Transmit Head Pointer - 5
34h Transmit Tall Pointer - 0

Current Serial Port Status

4Bh Bits 15-0 = 0

Transmit Buffer

H E L L 0

Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5

t t
Tall Head

Pointer Pointer

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Transmit, Continued

Transmit sequence example, cont'd

2. The ABIOS start routine enables the transmitter interrupt but doesn't send
any data yet.

3. ABIOS tests the Transmitter Holding Register (bit 7 of the Current Serial
Port Status field), finds it empty, and generates a transmit interrupt,
setting the Return Code field to 0001 h, Resume Stage after Interrupt.

ABIOS returns to the caller after the start routine with the following:

Current Serlal Port Status

4Bh Bits 15-8 = 0
Bits 7 = 1 Transmitter Holding Register Empty
Bits 6 =0
Bit 1 = 1 Transmit Interrupt Enabled
Bit 0 =0

OEh

2Ch
30h Transmit Head Pointer - 5
34h Transmit Tall Pointer - 0

continued

ABIOS Serial Communications Service 383

Function: OEh - Transmit, Continued

Transmit sequence example, cont'd

384

4. The caller, seeing that the ABIOS is waiting for the next interrupt, calls
the interrupt routine. A character is sent to the active serial port and the
Transmit Tail Pointer is incremented by one. Byte zero is sent in our
example below.

The caller calls the Interrupt routine with the following request block

OEh

2Ch Transmit Buffer Length - 6
30h Transmit Head Pointer - 5
34h Transmit Tall Pointer - 1

Current Serlal Port Status

4Bh Bits 15-8 = 0
Bit 7 = 1 Transmitter Holding

Register Empty
Bit 1 = 1 Transmit Interrupt Enabled

Transmit Buffer

llillll! E L L O
Byte Byte Byte Byte Byte Byte

0 1 2 3 4 5

l Ttll Hetd
Pointer Pointer

"H" has been sent to the
serial port

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Transmit, Continued

Transmit sequence example, cont'd

5. Since the Transmitter Holder Register Empty bit is still set, an interrupt is
generated by the processor. The caller calls the transmit interrupt routine
again, and byte one is sent to the serial port. Again, the Transmit Tail
Pointer is incremented by one. This process is repeated until all bytes in
the Transmit Buffer are sent (assuming the Transmit Head Pointer is not
moved by the caller) . Actually, standard transmit procedure is that trans
mission occurs while the buffer is being filled, so the buffer is never
empty until all bytes are transmitted.

Bit 7 In the current Serlal Port Status full Is set, so the processor generates
another Interrupt (the Return Code sent to the caller Is 0001 h again).
The caller calls the Interrupt routine to transmit another byte.

Request Block

OEh

2Ch

34h Transmit Tall Pointer - 2

ABIOS Serial Communications Service

Transmit Buffer

!ll!l!l!lilllii :!liiH~ill!i: L L 0
Byte Byte Byte Byte Byte Byte

0 1 2 3 4 5

t Ttil Hetad I Pointer Pointer

"E" has been sent to the
serial port

continued

385

Function: OEh - Transmit, Continued

Transmit sequence example, cont'd

386

6. When all bytes are sent, the Transmit Tail Pointer and Head Pointer point
to the same location and bit 6 (Transmit Buffer Empty) is set. If bit 6 is
still set on the next transmit interrupt, the ABIOS disables the transmit
interrupt, sets a Return Code of OOOOh, and returns to the caller.

4Bh

After all bytes are set, bit 6 In Current Serial Port Status fleld Is set.

Current Serlal Port Status

Bits 15-8 = 0
Bit 7 = O Transmitter Holdlng

Bits 6
Register Empty

= 1 Transmit Buffer Empty
Bits 5-0 =O

Transmit Buffer
All characters transmitted
to the serial port

Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5

~t
Tall Head

Pointer Pointer

If Bit 6 Is still set, and the transmit Interrupt Is disabled, the Return Code Is OOOOh,
and ABIOS returns to the caller.

Request Block

OEh

2Ch Transmit Buffer Length - 6
30h Transmit Head Pointer - 5
34h Transmit Tall Pointer - 5

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Transmit, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOEh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Word Reserved (Initialize to OOOOh)
12h Word Transmit Buffer Offset
14h Word Transmit Buffer Segment
18h Word Reserved (Initialize to OOOOh)
1Ah DWord Reserved (Initialize to OOOOh)
2Ch Word Transmit Buffer Length

(Return Code Is 000 h; no ac-
tlon taken If zero len th In ut

2Eh Word
30h Word
32h Word
34h Word
36h Word
4Bh Word

ABIOS Serial Communications Service

Current Serial Port Status
(Initialize to OOOOh)
Bits 15-13 = Reserved
Bit 12 = 1 Overrun Error, with

Null Data Byte Found
= 1 Break Detected
= 1 Framing Error
= 1 Parity Error
= 1 Overrun Error
= 1 Transmit Buffer

Empty and Transmit
ter Holding Register
Empty

= 1 Transmit Buffer
Empty

= 1 Receive Buffer Full
and Data Deleted

= 1 Receive Buffer Full
= Reserved
= 1 Transmit Interrupt In

Progress
= 1 Receive Interrupt In

Pro ress

continued

387

Function: OEh - Transmit, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

0081h Spurious Interrupt

8000h Device Busy, Request Refused

9000h Bad Com Port

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

388 ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Receive

Description

This function is a discrete multistaged request that enables the receive
interrupt. Data can be read from the serial port when a receive interrupt is
generated after this function is invoked.

Pointer field definitions

The Receive Head Pointer must point to the first byte of the data block to be
received. The value in this field should be relative to the beginning of the
Receive Buffer. The value in this field must always be between zero and the
value in the Receive Buffer Length field minus one.

The Receive Tail Pointer should point to a location one byte past the last
byte to be received. The value in this field should be relative to the begin
ning of the Receive Buffer. The value in this field must always be between
zero and the value in the Receive Buffer Length field minus one.

Head Pointer and Tail Pointer fields

The value in the Receive Head Pointer field points to the first character
received position that will be filled by the ABIOS. The Value in the Receive
Tail Pointer field points to the first received character to be removed by the
caller.

Updating the Receive Tail Pointer field

When a receive interrupt occurs, the interrupt routine increments the value
of the Receive Tail Pointer by the number of bytes received. Bit 0 (Receive
In Progress) of the Current Serial Port Status field will be set.

The Receive Buffer may be checked at any time during the receive routine,
so data is written to the Receive Buffer before the value in the Receive Tail
Pointer field is incremented.

continued

ABIOS Serial Communications Service 389

Function: OFh - Receive, Continued

Receive Pointer rules

The following rules apply to processing the receive head and tail pointers:

• The Receive Tail Pointer field value will always get closer to the Receive
Head Pointer value as interrupts occur.

• If the value of the Receive Tail Pointer comes to the end of the Receive
Buffer, the Receive Tail Pointer field value wraps around to 0.

• A Receive Buffer Full condition occurs when the value in the Receive Tail
Pointer equals the value in the Receive Head Pointer field.

• If a Receive Buffer Full condition happens after data is received from the
serial port, the ABIOS stops receiving data and sets bit 4 (Receive Buffer
Full) of the Current Serial Port Status field (the receive interrupt is still
enabled) . If the full buffer condition persists on the next receive inter
rupt (or any receive interrupt), the ABIOS will then disable the receive
interrupt.

• If the receive interrupt is disabled because the receive buffer is empty,
the Request Block is canceled by the ABIOS (although it is up to the caller
to deallocate the Request Block) .

• If a Request Block is canceled by the ABIOS, the Current Serial Port
Status field will have bit 4 (Receive Buffer Empty) and bit 5 (Receive
Buffer Full With Data Deleted) set.

Receive buffer empty

390

This condition occurs when the value in the Receive Head Pointer field
equals the value in the Receive Tail Pointer field. The ABIOS never sets the
value of the Receive Head Pointer field equal to the value in the Receive Tail
Pointer field, however, the caller may do so, which is a quick way to stop
receiving.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Receive, Continued

How the caller can remove data during a receive Interrupt

The values in the Receive Buffer Segment, Receive Buffer Offset, and Re
ceive Buffer Length fields can be altered across calls to the receive interrupt
routine.

The ABIOS removes the data from the buffer before changing the Receive
Tail Pointer field. The caller can remove data during the process of a receive
interrupt by removing the data from the Receive Buffer and logically incre
menting the value in the Receive Head Pointer field.

The caller must not permit the value in the Transmit Head Pointer field to
equal the value in the Transmit Tail Pointer field during the removal of data
from the buffer.

Maximum number of characters received

The maximum number of characters that a single view of the Receive Buffer
can indicate to be received is one less than the value in the Receive Buffer
Length field.

Ending a receive Interrupt

A receive interrupt can only be terminated by invoking ABIOS Serial Commu
nications Service function 12h Cancel.

Number of bits per character

If the Number of Bits Per Character field in function 05h Reset/Initialize is
less than 8, the high order bit(s) of each byte are transmitted as is.

continued

ABIOS Serlal Communications Service 391

Function: OFh - Receive, Continued

Null Stripping Mode

If ..• the followlng action Is taken

Null Stripping Mode Is All received characters are stored unaltered In the
di sabled Receive Buffer.

Null Stripping Mode Is No received zeros are stored In the Receive Buffer.
enabled

An Overrun occurs and a The Null Data Byte Is discarded. The Current Serial
Null Data Byte caused Port Status Indicates that an overrun error was
the error found and the Null Data Byte was found and dis-

carded and bit 12 of the Current Serial Port Status
field Is set.

Hardware errors

392

If a hardware error occurs at the serial port, the ABIOS stores the current
data byte in the receive buffer, sets bits 8-1 0 of the Current Serial Port
Status field, and returns to the caller. The ABIOS returns on the first hard
ware error, though there may be additional errors and additional data in the
hardware buffer.

If there are additional hardware errors at the serial port, the caller must
handle them and any data that is in the buffer.

The following table lists the actions taken for each type of error.

Error Type Action taken by ABIOS

Break Interrupt Data Byte set to zero.

Overrun Overrun character Is lost, the Data Byte contains the char-
acter that caused the overrun.

Parity Error Data Byte contains the character with the Incorrect parity.

Framing Error Data Byte contains the character that has no valid stop bit.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Receive, Continued

Receive sequence example

After the caller initializes the Request Block with a Receive function (OFh or
1 Oh) and calls the start routine, the following actions take place:

1 . The ABIOS tests the Receive Head and Tail Pointers to ensure that they
agree with the Receive Buffer Length. The maximum number of charac
ters that can be received in this example is 6.

After the caller calls the common start procedure, the Request Block, Receive
Buffer, and Current Serial Port Status field appear as follows:

Request Block

OEh

2Ch

34h Receive Tall Pointer - 5

Current Serial Port Status

4Bh I Bits 15-0 = 0

ABIOS Serial Communications Service

Receive Buffer

No bytes received yet.

Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5

t t
Head

Pointer
Tall

Pointer

continued

393

Function: OFh - Receive, Continued

Receive sequence example, cont'd

394

2. The ABIOS start routine enables the receive interrupt but doesn't read
any data yet.

3. When data is available at the serial port, an interrupt is generated.

4. The caller, seeing that the ABIOS is waiting for the next interrupt, calls
the interrupt routine. A character is read from the active serial port and
the Receive Tail Pointer is incremented by one. Byte zero is received in
the example below.

The caller calls the Interrupt routine with a Receive request.

Request Block

OEh

2Ch
3Ch Receive Head Pointer - 1
40h Receive Tall Pointer - 5

Current Serial Port Status

4Bh Bits 15-5 =0
Bit 4 = O Receive Buffer Full
Bit 0 = 1 Receive Interrupt In

Progress

Receive Buffer

Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5

t t
Head Tall

Pointer Pointer

"H" has been received
from the serial port buffer.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Receive, Continued

Receive sequence example, cont'd

5. Since there are five empty buffer bytes, the data received is read into
each one in turn when the next receive interrupts are generated. The
Receive Head Pointer is incremented by one each time.

Bit 4 In the current Serial Port Status field Is not set, so the processor generates another
Interrupt (the Return Code sent to the caller Is 0001 h again). The caller calls the Interrupt
routine to receive another byte.

Request Block

OEh

2Ch
3Ch
40h Receive Tall Pointer - 5

Receive Buffer

H E

Byte Byte Byte
0 1 2

l
t

Head
Pointer

Byte Byte Byte
3 4 5

t
Tall

Pointer

• E • has been received
from the serial port buffer.

Note: If two or more characters are received at the same time, the Receive
Head Pointer and the Receive Tail Pointer are incremented by 2 or
more. The Tail Pointer may then wrap to byte 0. The calling routine
should anticipate this possibility.

continued

ABIOS Serial Communications Service 395

Function: OFh - Receive, Continued

Receive sequence example, cont'd

6. When all bytes that the receive buffer has room for are received, the
Receive Head pointer will point to the same byte as the Receive Tail
Pointer, (or the Receive Tail Pointer will be one byte less than the Receive
Buffer Length). At this point, a Return Code of OOOOh is generated and
control is returned to the caller. In actual practice, the tail pointer will
chase the head pointer and the buffer never actually fills.

After all bytes In the receive buffer are fllled, and the Tall Pointer and Head Pointer are the
same, bit 4 In the Current Serial Port Status field Is set.

Current Serial Port Status Receive Buffer

4Bh Bits 15-8 = 0 H E L L 0
Bit 5 = 0 Receive Buffer Full

and Data Deleted
Bit 4 = 1 Receive Buffer Empty

Byte Byte Byte Byte Byte Byte
0 1 2 3 4 5

Bit 0 = 0 Receive Interrupt Not In
Progress All characters ~ t

received from Head Tall
the serial port Pointer Pointer

If bit 4 Is stlll set, and the receive Interrupt Is disabled, the Return Code Is set to OOOOh,
and ABIOS returns control to the caller.

396

Request Block

OEh

2Ch

40h Receive Tall Pointer - 5

7. If the Buffer Full condition exists upon entry into the receive function
interrupt routine, the character that caused the interrupt is lost, and bit 5
of the Current Serial Port Status field (Receive Buffer Full and Data
Deleted) is set.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Receive, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOFh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
18h Word Reserved (lnltlallze to OOOOh)
1Ah DWord Reserved (lnltlallze to OOOOh)
20h Word Reserved (lnltlallze to OOOOh)
22h Word Receive Buffer Offset
24h Word Receive Buffer Segment
28h Byte Null Stripping Mode

OOh =Disabled
01h =Enabled

38h Word Receive Buffer Length
Note: No action occurs If this

field Is O.
3Ah Word Reserved (lnltlallze to OOOOh)
3Ch Word Receive Head Pointer
3Eh Word Reserved lnltlallze to OOOOh
40h Word Receive Tall Pointer
42h Word Reserved (lnltlallze to OOOOh)

continued

ABIOS Serial Communications Service 397

Function: OFh - Receive, Continued

Request Block Structure, cont'd

Offset Size

4Bh Word

Return Codes

Output:

Current Serial Port Status
(Initialize to OOOOh)
Bits 15-13 = Reserved
Bit 12 = 1 Overrun Error, with

Bit 11
Bit 10
Bit 9
Bit 8
Bit 7

Bit 6

Bit 5

Null Data Byte Found
= 1 Break Detected
= 1 Framing Error
= 1 Parity Error
= 1 Overrun Error
= 1 Transmit Buffer

Empty and Transmit
ter Holding Register
Empty

= 1 Transmit Buffer
Empty

= 1 Receive Buffer Full
and Data Deleted

Bit 4 = 1 Receive Buffer Full
Bits 3-2 = Reserved
Bit 1 = 1 Transmit Interrupt In

Bit 0
Progress

= 1 Receive Interrupt In
Progress

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

0081h Spurious Interrupt

8000h Device Busy, Request Refused

9000h Bad Com Port

COOOh lnvalld Logical ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Field Not Valld

398 ABIOS for IBM. PS/2 Computers and Compatibles

Function: 10h - Transmit and Receive

Description

This function is a discrete multistaged request that starts both the transmit
and receive interrupts, or starts only the receive interrupt. It allows faster
access to the transmit and receive functions than would be the case if
separate function requests were used.

Adding a transmit function to a receive-only function

Invoke a receive-only request with this function by only enabling the receive
parameters (set the Transmit Buffer Length to zero), then calling the start
routine. The Return Code field, as always, must be initialized to FFFFh when
calling the start routine.

The transmit function can be requested later by recalling the start routine
with an appropriate value in the Transmit Buffer Length field. Do not initialize
the Return Code field to FFFFh when recalling the start routine.

If this function is restarted to enable the transmit after being initially set to
receive only, the Return Code field is undefined when returning from recall
ing the start routine and should be ignored.

Transmit and Receive function characteristics

This function performs the transmit function as described for function OEh
and the receive function as described for function OFh, except that during a
receive interrupt, the transmit interrupt is never disabled. In processing this
function, the ABIOS does not test if the Transmit Head Pointer and Tail
Pointer are equal.

continued

ABIOS Serlal Communications Service 399

Function: 1 Oh - Transmit and Receive, Continued

Input fields to initialize

After the first time this function is called via a start routine (the Return Code
field should be initialized to FFFFh the first time), the caller should initialize
the Current Serial Port Status field and the Return Code field from the previ
ous interrupt to OOOOh before the start routine for this function is called
again.

Multiple receive interrupts

400

After servicing a receive interrupt, the ABIOS tests for a transmit interrupt
pending condition.

If a transmit Interrupt is pending, it is serviced by the ABIOS and Return
Code 0009h Attention, Resume Stage after Interrupt is generated. But if a
second receive interrupt is pending, the ABIOS does not service the pending
transmit interrupt, returning to the caller instead.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 1 Oh - Transmit and Receive, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function (0010h)
08h Word Reserved (lnltlallze to OOOOh)
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word
12h Word Transmit Buffer Offset
14h Word Transmit Buffer Segment
18h Word Reserved (lnltlallze to OOOOh)
1Ah DWord Reserved (lnltlallze to OOOOh)
20h Word Reserved (lnltlallze to OOOOh)
22h Word Receive Buffer Offset
24h Word Receive Buffer Segment
28h Byte Null Stripping Mode

OOh = Dlsabled
01h =Enabled

2Ch Word Transmit Buffer Length (bytes)
If zero and first call, Receive-
only function. If zero and second
cal, Return Code= 0001h and
no action Is performed

2Eh Word Reserved (lnltlallze to OOOOh)
30h Word Transmit Buffer Head
32h Word Reserved (lnltlallze to OOOOh)
34h Word Transmit Buffer Tall
36h Word Reserved (lnltlallze to OOOOh)
38h Word Receive Buffer Length

If zero, no action performed,
Return Code = OOOOh

3Ah Word Reserved (lnltlallze to OOOOh)
3Ch Word Receive Buffer Head
3Eh Word Reserved (lnltlallze to OOOOh)
40h Word Receive Buffer Tall
42h Word Reserved (lnitiallze to OOOOh)

continued

ABIOS Serlal Communications Service 401

Function: 10h - Transmit and Receive, Continued

Request Block Structure, cont'd

Offset Size Output:

4Bh Word Current Serial Port Status
(Initialize to OOOOh)
Bits 15-13 = Reserved
Bit 12 = 1 Overrun Error, with

Null Data Byte Found
Bit 11 = 1 Break Detected
Bit 10 = 1 Framing Error
Bit 9 = 1 Parity Error
Bit 8 = 1 Overrun Error
Bit 7 = 1 Transmit Buffer

Empty and Transmit-
ter Holding Register
Empty

Bit 6 = 1 Transmit Buffer

Bit 5
Empty

= 1 Receive Buffer Full
and Data Deleted

Bit 4 = 1 Receive Buffer Full
Bits 3-2 =Reserved
Bit 1 = 1 Transmit Interrupt In

Bit 0
Progress

= 1 Receive Interrupt In
Progress

4Dh Word Com Port Status of Previous
Interrupt

4Fh Word Return Code of Previous Interrupt

continued

402 ABIOS for IBM PS/2 Computers and Compatibles

Function: 1 Oh - Transmit and Receive, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Resume Stage after Interrupt
The Com Port Status of the Previous Interrupt field (off-
set 4Dh) contains the original status. The Return Code of
the Previous Interrupt (offset 4Fh) has the first Return
Code.

0081h Spurious Interrupt

8000h Device Busy, Request Refused

9000h Bad Com Port
Indicates a hardware failure

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Serial Communications Service 403

Function: 11 h - Modem Status

Description

This function is a discrete multistaged request that returns the Modem Status
upon exit from the start and interrupt routines. After this function is invoked,
the modem status interrupt is enabled.

ABIOS notes changes in modem status immediately

404

If the Request Block that invokes this function is processed before a Trans
mit or Receive function (functions OEh, OFh, or 10h), the ABIOS notices a
change in the modem status even though there may be higher priority inter
rupts in the interrupt identification register that are still pending. This allows
an interrupt handler routine to notice a change in Modem Status before
receiving or transmitting data.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 11 h - Modem Status, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length

02h Word Lo lcal ID
04h Word Unit
06h Word Function 0011h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
18h Word
1Ah DWord
4Ah Byte

4Bh Byte

ABIOS Serial Communications Service

Bit 7 = 1 Data Carrier Detect
Bit 6 = 1 Ring Indicator
Bit 5 = 1 Data Set Ready
Bit 4 = 1 Clear to Send
Bit 3 = 1 Change In Data Carrier

Detect
Bit 2 = 1 Tralllng Edge Ring Indica-

tor
Bit 1 " 1 Change In Data Set Ready
Bit 0 = 1 Change In Clear To Send

Current Serial Port Status
(lnltlallze to OOOOh)
Bits 15-13 = Reserved
Bit 12 = 1 Overrun Error, with

Null Data Byte Found
= 1 Break Detected
= 1 Framing Error
= 1 Parity Error
= 1 Overrun Error
= 1 Transmit Buffer

Empty and Transmit
ter Holding Register
Empty

= 1 Transmit Buffer
Empty

= 1 Receive Buffer Full
and Data Deleted

= 1 Receive Buffer Full
= Reserved
= 1 Transmit Interrupt In

Progress
= 1 Receive Interrupt In

Progress

continued

405

Function: 11h - Modem Status, Continued

Return Codes

406

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh · Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

0081h Spurious Interrupt

8000h Device Busy, Request Refused

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 12h - Cancel

Description

This function cancels a request for serial transmission (functions OEh or
1 Oh), receiving (functions OFh or 1 Oh), modem status (function 11 h) or any
combination of these three functions. It also cancels the associated Request
Blocks, except for function 10h Transmit and Receive (see below). All inter
rupts generated by the request are disabled, except for function 1 Oh Trans
mit and Receive, which is handled differently (see below).

Note: The caller must deallocate all canceled Request Blocks. The ABIOS
does not deallocate Request Blocks.

Canceling function 1 Oh Transmit and Receive

If ••• then ...

Function 1 Oh Transmit and Receive has the Request Block for function 1 Oh Is
both the transmit and receive Interrupts canceled by the ABIOS.
enabled, and function 12h Cancel Is In-
voked with the Intent of dlsabllng both
Interrupts,

Function 12h Cancel Is to disable only the caller may re-Invoke the 1 Oh Trans-
the transmit Interrupt, mlt and Receive function via the start

routine after the function 12h Cancel re-
quest Is completed.

Function 12h Cancel Is Invoked with the the caller must complete the following
Intent of dlsabllng only the receive Inter- steps to re-enable the receive Interrupt:
rupt, • dlsable the transmit Interrupt

• call the start routine with function 1 Oh
Transmit and Receive specified In the
Request Block

Function 1 Oh Transmit and Receive has the entire function 1 Oh Transmit and Re-
only the receive Interrupt enabled, and
function 12h Cancel Is Invoked to disable

celve Request Block Is canceled by the
ABIOS.

the receive Interrupt,

Function 1 Oh Transmit and Receive has the entire function 1 Oh Request Block Is
only the transmit Interrupt enabled, and canceled by the ABIOS.
function 12h Cancel Is Invoked to disable
the transmit Interrupt

continued

ABIOS Serial Communications Service 407

Function: 12h - Cancel, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0012h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word Return Code
OEh Word
18h Word
51h Byte Interrupt Operation to be

Canceled
Bit 7 = Reserved
Bit 6 = Reserved
Bit 5 = 1 Modem Status

Interrupt
Bit 4 = Reserved
Bit 3 = 1 Transmit Interrupt
Bit 2 = 1 Receive Interrupt
Bit 1 = Reserved
Bit 0 = Reserved

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

408 ABIOS for IBM PS/2 Computers and Compatibles

Function: 13h - Return Line Status

Description

This function, a single-staged request, reads the Modem Line Status.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0013h
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
49h Byte

Return Codes

Bit 7 = Reserved
Bit 6 = 1 Transmitter Empty
Bit 5 = 1 Transmitter Holding

Register Empty
Bit 4 = 1 Break Interrupt
Bit 3 = 1 Framing Error
Bit 2 = 1 Parity Error
Bit 1 = 1 Overrun Error
Bit 0 = 1 Data Ready

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Serial Communications Service 409

Function: 14h - Return Modem Status

Description

This function is a single-staged request that reads the current status of the
modem.

If the Modem Status interrupt is enabled, no processing takes place and the
Request Refused, Device Busy Return Code (8000h) is returned.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
4Ah Byte

410

Input:

Request Block Length
Lo lcal ID
Unit
Function 0014h
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)
Return Code

Output:

Bit 7 = 1 Data delta Detect
Bit 6 = 1 Ring Indicator
Bit 5 = 1 Data Set Ready
Bit 4 = 1 Clear To Send
Bit 3 = 1 Delta Data Carrier

Detect
Bit 2 = 1 Tralllng Edge Ring

Indicator
Bit 1 = 1 Delta Data Set Ready
Bit 0 = 1 Delta Clear To Send

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 14h - Return Modem Status, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy, Request Refused

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Serial Communications Service 411

Function: 15h - Enable FIFO Control

Description

This function is a single-staged request that enables FIFO (first-in, first-out)
control for the serial port. The FIFO registers are not cleared.

This function may only be used if the ABIOS is operating on an
80386-based, MCA-based system which has an NS 16550A serial controller.
If the serial controller is not an NS16550A, unpredictable results may occur.

Reusing this function

ABIOS calling routines should not reuse this Request Block for other Serial
Communications Service function requests, since the structure of this Re
quest Block is different from the other Serial Communications Service Re
quest Blocks.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0015h
OBh Word Reserved lnltlallze to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
28h Word FIFO Trigger Level, where:

OOh - 1 Byte
01h - 4 Bytes
02h - 8 Bytes
03h - 14 Bytes

continued

412 ABIOS for IBM PS/2 Computers and Compatibles

Function: 15h - Enable FIFO Control, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy, Request Refused

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Serial Communications Service 413

Chapter 13

ABIOS Parallel Port Service

Overview

Introduction

The ABIOS Parallel Port Service provides access to the system's parallel
ports. Parallel ports on personal computers are most often used to send
data to printers. This ABIOS service supports only the Transmit Mode of the
parallel port.

continued

ABIOS Parallel Port Service 415

Overview, Continued

Summary of Parallel Port Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h Set Device Parameters

05h Reset/lnltlallze Parallel Port

06h-08h Reserved

09h Print Block

OAh Reserved

OBh Cancel Print Block

OCh Return Printer Status

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• Error Handling

• Parallel Port Service functions

416 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

Introduction

The ABIOS Parallel Port Service is associated with hardware interrupt request
7. The ABIOS supports a parallel port that can transfer eight bits of data at
standard TIL levels. The parallel port can be called port 1 through 8, must
be IBM PS/2-compatible, and must have a bidirectional mode, supporting
both input and output. The parallel port also supports level-sensitive inter
rupts and a readable interrupt pending status.

Parallel port addresses

The following table lists the parallel port addresses for the most frequently
used parallel ports. The 110 port addresses for parallel ports 4 through 8
vary among different systems.

Parallel Data Status Control
Port Number Address Address Address

1 03BCh 03BDh 03BEh

2 0378h 0379h 037Ah

3 0278h 0279h 027Ah

Parallel port extended mode

The extended mode of the parallel port can be selected through the system
based POS registers. The extended mode adds a bidirectional interface.

ABIOS Parallel Port Service 417

Error Handling

Parallel Port Service errors

If the parallel port is busy when the caller invokes an ABIOS Parallel Port
Service function, Return Code BOOOh Device In Use is returned. The caller
must then re-invoke the function, except when using function 09h Print
Block. See the function 09h Print Block description for more information
about re-invoking function 09h Print Block.

How errors are reported

418

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Parallel Port Service function
requested has an error. The caller's Return Code handler routine should then
test Bits 14, 13, 12, and 8 to determine the class of error that has oc
curred. The return code handler routine should then test the remaining bits
to determine the precise nature of the error.

ABIOS for IBM PS/2 Computers and Compatibles

Function: OOh - Default Interrupt Handler

Description

This function is a single-staged or multistaged request that handles unex
pected hardware interrupts by resetting the interrupt at the device level. It is
invoked through the interrupt routine.

When invoked

This function is invoked by calling the interrupt routine with a function code
of OOOOh. It is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length (1 Oh)
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word

Return Code

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Parallel Port Service 419

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

420

Input:

Request Block Length (20h)
Lo lcal ID
Unit
Function 0001 h
Reserved initialize to OOOOh
Reserved (initialize to OOOOh)

Reserved (Initialize to OOOOh)
Reserved (lnltlallze to OOOOh)

Output:

Hardware Interrupt Level (07h)
Arbitration Level FFh
Device ID (0005h)
Count of Units
Logical ID Flags
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 1 Overlap across units

supported
= O Reserved
= Transfer Data Pointer

Mode
01 = Logical Pointer

Required
Request Block Length (for other
functions)
Secondary Device ID

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters, Continued

Return Code

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: OAh - Reserved

Function: 03h - Read Device Parameters

Description

This function is a single-staged request that returns the parameters of the
specified Logical ID.

Input field values

The value in the Time to Wait for Printer Initialization field is the same as the
value in the Time To Wait Before Continuing Request (microseconds) field
returned by the Reset/Initialize Parallel Port function (05h).

The value in the Printer Interrupt Time-out field is the wait time for an inter
rupt at the device level returned by the Print Block function (09h).

continued

ABIOS Parallel Port Service 421

Function: 03h - Read Device Parameters, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
16h Word

20h DWord

29h Byte
2Ah Word

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function 0003h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Output:

Time to Wait for Printer Initialization
(microseconds)

Printer Interrupt Time-out
Bits 15-3 =Time-out (In seconds)
Bits 2-0 = Reserved

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

422 ABIOS for IBM PS/2 Computers and Compatibles

Function: 04h - Set Device Parameters

Description

This function is a single-staged request that sets device specific information
as specified in the Request Block.

Input parameters

The ABIOS uses the parameters input in this function until they are changed
by another function 04h request for this service.

The value in the Time To Wait Before Continuing Request field returned by
the Reset/Initialize Parallel Port function (05h) can be entered into the Time
to Wait for Printer Initialization field at offset 20h.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
16h Word
20h DWord

2Ah Word

Input:

Request Block Length
Lo ical ID
Unit
Function 0004h
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Time to Walt for Printer
lnltlallzatlon (microseconds)
Note: This field must not be 0.
Printer Interrupt Time-out
Bits 15-3 = Time-out

(In seconds)
Bits 2-0 =Reserved
Note: This field must not be 0.

ABIOS Parallel Port Service

Output:

continued

423

Function: 04h - Set Device Parameters, Continued

Return Codes

424

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

BOOOh Device In Use
If the Parallel Port Is busy, this Code Is returned and the
function Is terminated.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C006h Invalid Time To Walt
The Time to Wait for Printer Initialization field must not be
zero. If It Is zero, this Return Code is generated, no up-
date Is performed, and the function is terminated.

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Reset/Initialize Parallel Port

Description

This function is a discrete multistaged request that initializes or resets the
parallel printer.

Printer Busy Status

After completing this function, the printer may indicate a Busy status be
cause it is performing a self test. Bit 7 (Busy) of the Printer Status at offset
28h in the Request Block indicates this condition.

Output considerations

The Time To Wait Before Continuing Request field value is returned only
when the Return Code is 0002h Resume Stage after Time Delay. The value
in this field may not be valid if the Return Code is not 0002h.

The Printer Status field and all other output fields are not valid unless this
function has completed.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0005h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word
20h DWord

28h Byte

Output:

Time To Wait Before Continuing
Request (microseconds)
Printer Status
Bit 7 =Busy
Bit 6 = Acknowledge
Bit 5 =End of paper
Bit 4 = Selected
Bit 3 = 1/0 error
Bit 2 = Interrupt
Bits 1 , 0 = Reserved

continued

ABIOS Parallel Port Service 425

Function: 05h - Reset/Initialize Parallel Port, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0002h Resume Stage after Time Delay

8000h Device In Use

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Functions: 06h - 08h - Reserved

426 ABIOS for IBM PS/2 Computers and Compatibles

Function: 09h - Print Block

Description

This function is a discrete multistaged request that sends the block of char
acters pointed to by Data Pointer 1 to the parallel port.

Using the Print Block function

The following steps must be completed before the Print Block function can
be invoked:

1 . Invoke function 01 h Read Device Parameters to determine the Data
Pointer Mode (logical for Parallel Port Data Pointers). If there is an out
standing Print Block function already enabled, function OBh Cancel Print
Block must be invoked before function 9Fh is invoked.

2. Invoke function 09h Print Block

3. Check the Printer Status. The Printer Status field data is valid only if this
function is completed. The ABIOS does the following, depending on the
Printer Status bit settings:

If .•• and ... then ABIOS ...

the Printer Status Is Busy (Bit 7) and the Status Is still returns 8001 h and
the ABIOS reads the Printer Status Busy, terminates.
field for 91.2 microseconds

the printer Is switched offllne during the Status Is still returns 8001h and
a Print Block (Bit 2) and the ABIOS Interrupt on, terminates.
reads the Printer Status field for
91.2 microseconds

the printer Is out of paper, has an either Bits 3, 4, returns 9000h and
1/0 error, or Is not selected (Bits or 5 of the terminates.
3,4, or 5) and the ABIOS reads the Printer Status
Printer Status fleld for 91.2 micro- are still on,
seconds

4. The caller can then complete the Print Block function as described below.

continued

ABIOS Parallel Port Service 427

Function: 09h - Print Block, Continued

Completing a Print Block Request after an unexpected termination

If this function is terminated, the Number of Characters Printed field contains
the part of the print block that has already been printed, in bytes.

The unprinted portion of the print block can be printed by invoking function
09h Print Block again after correcting the condition that caused the termina
tion of the initial Print Block function. The number of characters remaining to
be printed is equal to the original print block length minus the value in the
Number of Characters Printed field.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
18h Word
1Ah DWord
1Eh Word
24h Word
26h Word
28h Byte

428

Input:

Request Block Length
Lo lcal ID
Unit
Function 0009h
Reserved lnltlallze to OOOOh ·
Reserved (lnltlallze to OOOOh)

Data Pointer 1 (Loglcal Pointer)
Reserved (lnltlallze to OOOOh)
Reserved (lnltlallze to OOOOh)
Reserved
Reserved (lnltlallze to OOOOh)

Printer Status
Bit 7 =Busy
Bit 6 = Acknowledge
Bit 5 = End of paper
Bit 4 = Selected
Bit 3 = 110 error
Bit 2 =Interrupt
Bits 1 , 0 = Reserved

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 09h - Print Block, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

BOO Oh Device In Use

8001h Device Busy
If the printer does not Indicate that it Is ready to accept
data within 91.2 microseconds, the Printer Status field is
updated, the printer Interrupt Is disabled, and control is
returned to the caller with this Code.

9000h Printer Error
Printer I/ O error, out of paper, paper jam, or printer not
selected.

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: OAh - Reserved

ABIOS Parallel Port Service 429

Function: OBh - Cancel Print Block

Description

This function is a single-staged request that cancels an outstanding function
09h Print Block by disabling the Printer Interrupt at the device level and
changing the Return Code.

The Printer Status field is valid only if this function has successfully
completed.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo !cal ID
04h Word Unit
06h Word Function OOOBh
OBh Word Reserved Initialize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Word
26h Word Number of Characters Printed
28h Byte Printer Status

Bit 7 =Busy
Bit 6 = Acknowledge
Bit 5 = End of paper
Bit 4 = Selected
Bit 3 = 1/0 error
Bit 2 = Interrupt
Bits 1 , O = Reserved

continued

430 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Cancel Print Block, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Parallel Port Service 431

Function: OCh - Return Printer Status

Description

This function is a single-staged or multistaged request that returns the
printer status.

The printer status data is valid only if the function is completed successfully
(the Return Code is OOOOh).

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo leaf ID
04h Word Unit
06h Word Function OOOCh
OBh Word Reserved Initialize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Word
28h Byte Printer Status

Bit 7 =Busy
Bit 6 = Acknowledge
Bit 5 = End of paper
Bit 4 = Selected
Bit 3 = 110 error
Bit 2 = Interrupt
Bits 1 , 0 = Reserved

continued

432 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Return Printer Status, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0002h Resume Stage after Time Delay

8000h Device In Use

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Parallel Port Service 433

Chapter 14

ABIOS System Timer Service

Overview

Description

The ABIOS System Timer Service provides access to the PS/2-compatible
System Timer. The System Timer Interrupt is handled through function OOh
Default Interrupt Handler.

Summary of System Timer Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h-0Ah Reserved

In this chapter

In this chapter, the following topics are discussed:

• Hardware Environment

.• Error Handling

• ABIOS System Timer Service functions

ABIOS System Timer Service 435

Hardware Environment

Introduction

PS/2-compatible operation of the Programmable Timer is similar to the
operation of the Intel 8254A Programmable Interval Timer. Unlike the 8254A,
the PS/2 programmable timer provides no channel 1 and adds a channel 3
with limited functionality.

Programmable Timer

The PS/2-compatible Programmable Timer is a counter and timer that pro
vides three channels. All channels are driven by a 1.19 MHz oscillator signal.
Each "tick" of channel 0 generates hardware interrupt request 0.

Timer channel differences

There are some differences between the three timer channels:

Counters 0 and 2:

• are independent 16-bit counters,
• can be preset, and
• can count in BCD (binary coded decimal) or in binary.

Counter 3 (associated only with channel 0):

• is only 8 bits,

• can be preset,
• counts in binary only, and

• can only count downward.

436 ABIOS for IBM PS/2 Computers and Compatlbles

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the System Timer Service function
requested has an error. The caller's Return Code handler routine should then
test Bits 14, 13, 12, and 8 to determine the class of error that has oc
curred. The return code handler routine should then test the remaining bits
to determine the precise nature of the error.

ABIOS System Timer Service 437

Function: OOh - Default Interrupt Handler

Description

This function is a single-staged or multistaged request that handles unex
pected hardware interrupts by resetting the interrupt at the device level. This
function is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

If successful, this function resets the Timer 0 channel at 110 port 0061 h and
returns to the caller with a Return Code of OOOOh.

If another interrupt routine is entered by any other caller while this function is
being processed, Return Code 0005h is generated.

Request Block structure

Offset Size Input:

OOh Word Request Block Length (10h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh lnvalld Logical ID

C001h lnvalld Function

C003h Invalid Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Field Not Valld

438 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns information about the
specified Logical ID.

Request Block structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001 h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word Reserved (lnltlallze to OOOOh)
1Eh Word Reserved (lnltlallze to OOOOh)

ABIOS System Timer Service

Arbitration Level FFh
Device ID (0007h)
Count of Units (OOOOhi
Loglcal ID Flags (OOOOh)
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= O Reserved
= Transfer Data Pointer

Mode
00 = No Pointers

Required
Request Block Length (for other
functions
Secondary Device ID

continued

439

Function: 01h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not my Interrupt, Resume Stage after Interrupt

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valld

Functions: 02h - OAh - Reserved

440 ABIOS for IBM PS/2 Computers and Compatibles

Chapter 15

ABIOS Real Time Clock Service

Overview

Introduction

The ABIOS Real Time Clock Service provides access to the system's real
time clock (ATC) functions.

Real time clock interrupt types

This service controls the operation of the following ATC interrupt types:

• Alarm interrupt
An interrupt that is activated at intervals of from once per second to once
per day.

• Periodic interrupt
An interrupt that is activated at a prespecified interval, which can be from
.5 second to 30.517 ms.

• Update-Ended interrupt
An interrupt that is activated every time the system clock is updated, or
once per second.

See the Time-of-Day Service chapter in CB/OS for IBM PS/2 Computers and
Compatibles in the Addison-Wesley Phoenix Technical Reference Series for
more information on these interrupt types.

continued

ABIOS Real Time Clock Service 441

Overview, Continued

Summary of ABIOS Real Time Clock Functions

Code Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h Set Device Parameters

05h-0Ah Reserved

OBh Set Alarm Interrupt

OCh Cancel Alarm Interrupt

ODh Set Periodic Interrupt

OEh Cancel Periodic Interrupt

OFh Set Update-Ended Interrupt

10H Cancel Update-Ended Interrupt

11h Read Time and Date

12h Write Time and Date

In this chapter

This chapter presents information on the following topics:

• Hardware Environment

• Real Time Clock Data Definitions

• Error Handling

• Real Time Clock functions.

442 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

MC146818A real time clock

The ABIOS Real Time Clock Service supports a real time clock compatible
with a Motorola MC146818A. It is associated with interrupt request 8. NMls
are disabled any time the ABIOS Real Time Clock service accesses system
CMOS RAM (first 64 bytes of CMOS RAM) . The real time clock is assumed
to be battery-backed so that the time and date are maintained when the
computer is powered off.

Accessing the Real Time Clock CMOS RAM

To write to the Real Time Clock CMOS RAM:

• inhibit interrupts.
• write the CMOS RAM address to which the data is to be written to 1/0 port

0070h.
• write the data to be written to 1/0 port 0071 h.

To read from ATC CMOS RAM:

• inhibit interrupts.

• write the CMOS RAM address from which the data is to be read to 110
Port 0070h.

• read from 1/0 port 0071 h.

RTC CMOS RAM Addresses

The following table lists the 1/0 port addresses used to access ATC CMOS
RAM:

1/0 Address Length Description

0070h 1 Byte CMOS RAM address, where:
Bit 7 = 1 NMI disabled
Bits 6-0 = 0 CMOS RAM address

0071h 1 Byte CMOS RAM data port

ABIOS Real Time Clock Service 443

Real Time Clock Data

Real time clock data definitions

Real time clock information uses CMOS RAM addresses OOh-OEh. These data
definitions are presented below in offset order.

Location Size Description

OOh 1 Byte Current second In binary coded declmal (BCD)

01h 1 Byte Second alarm in BCD

02h 1 Byte Current minute in BCD

03h 1 Byte Minute alarm in BCD

04h 1 Byte Current hour in BCD

05h 1 Byte Hour alarm in BCD

06h 1 Byte Current day of week in BCD

07h 1 Byte Current date in BCD

08h 1 Byte Current month in BCD

09h 1 Byte Current year in BCD

OAh 1 Byte Status register A, where:
Bit 7 = 1 Update in progress
Bits 6-4 = Divider identifying the time-based

frequency to use
Bits 3-0 = Rate selection bits that define output

frequency and periodic Interrupt rate

OBh 1 Byte Status register B, where:
Bit 7 = 0 Run

= 1 Halt
Bit 6 = 1 Enable periodic Interrupt
Bit 5 = 1 Enable alarm Interrupt
Bit 4 = 1 Enable update-ended Interrupt
Bit 3 = 1 Enable square wave Interrupt
Bit 2 = 1 Calendar Is in binary format

= 0 Calendar is In BCD format
Bit 1 = 1 24-hour mode

= 0 12-hour mode
Bit 0 = 1 Enable Daylight Savings Time

OCh 1 Byte Status register C, where:
Bits 7-4 = IRQF, PF, AF, and UF flags,

respectively
Bits 3-0 = Reserved

ODh 1 Byte Status register D, where:
Bit 7 = 1 Real time clock has power
Bits 6-0 = Reserved

continued

444 ABIOS for IBM PS/2 Computers and Compatibles

Real Time Clock Data, Continued

Real time clock data definitions, cont'd

Location Size Description

OEh 1 Byte Diagnostic status, where:
Bit 7 = 1 Real time clock lost power
Bit 6 = 1 CMOS RAM checksum Is bad
Bit 5 = 1 Invalid configuration Information found

at POST
Bit 4 = 1 Memory size compare error at

POST
Bit 3 = 1 Fixed disk or adapter falls lnltlallzatlon
Bit 2 = 1 CMOS RAM time found Invalid
Bit 1 = 1 Adapters do not match configuration
Bit 0 = 1 Time-out reading an adapter ID

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Real Time Clock Service function
requested has an error. The caller's Return Code handler routine should then
test Bits 14, 13, 12, and 8 to determine the class of error that has oc
curred. The return code handler routine should then test the remaining bits
to determine the precise nature of the error.

ABIOS Real Time Clock Service 445

Function: OOh - Default Interrupt Handler

Description

This function is a single-staged or multistaged request that handles unex
pected hardware interrupts by resetting the interrupt at the device level.

When to invoke

This function is invoked by calling the interrupt routine with a function code
of OOOOh. It is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length (1 Oh)
02h Word Logical ID
04h Word Unit
06h Word Function (OOOOh)
08h Word Reserved (lnltlalize to OOOOh)
OAh Word Reserved (lnltlalize to OOOOh)
OCh Word
OEh Word Time-out

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valld

446 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01h - Return Logical ID Parameters

Description

This function is a single-staged request that returns information about the
specified Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001 h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)

OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word Reserved (lnltlallze to OOOOh)
1Eh Word Reserved (lnltlallze to OOOOh)

ABIOS Real Time Clock Service

Output:

Arbitration Level FFh
Device ID (0008h)
Count of Units (OOOOh)
Logical ID Flags (OOOOh)
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 0 Reserved
= Transfer Data Pointer

Mode
00 = No Pointers

Re ulred
Request Block Length (for other
functions)

continued

447

Function: 01h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 02h - Reserved

448 ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters

Description

This function is a multistaged request that returns the most recent interrupt
settings and Real Time Clock Status for this device in the Request Block.
NMls are disabled when ABIOS accesses system CMOS RAM.

Real Time Clock processing

The Periodic Interrupt Rate field is valid only if the periodic interrupt is
enabled; the Alarm fields are valid only if the alarm interrupt is enabled.

ABIOS test for update-in-progress

If the Return Code is 8000h Device in Use or 8001 h Real Time Clock Not
Started the real time clock is halted. This request is not processed until the
real time clock is set.

continued

ABIOS Real Time Clock Service 449

Function: 03h - Read Device Parameters, Continued

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo teal ID
04h Word Unit
06h Word Function 0003h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Byte Periodic Interrupt Rate,

Bits 7-4= Reserved
Bits 3-0= Rate value set

OOOOb =None
0001b = 30.517 ms
0010b = 61.035 ms
0011b = 122.07 ms
0100b = 244.141 ms
0101b = 488.281 ms
0110b = 976.562 ms
0111b = 1.953125 ms
1000b = 3.90625 ms
1001b = 7.8125 ms
1010b = 15.625 ms
1011b = 31.250 ms
11 OOb = 62. 500 ms
1101b = 125.00 ms
1110b = 250.00 ms
1111b = 500.00 ms

11h Byte Real Time Clock Status Byte
Bit 7 = Set bit status

0 Clock started
1 Clock not started

= Periodic Interrupt bit
0 Interrupt disabled
1 Interrupt enabled

= Alarm Interrupt bit
0 Interrupt disabled
1 Interrupt enabled

= Update-ended Interrupt
bit
0 Interrupt disabled
1 Interrupt enabled

Bits 3-2 = Reserved
Bit 1 =Clock mode

0 12-hour clock
1 24-hour clock

12h Byte Function Alarm Hour In BCD (00-23)
13h Byte Reserved (Initialize to OOOOh) Alarm Minute In BCD (00-59)
14h Byte Reserved (Initialize to OOOOh) Alarm Seconds In BCD (00-59)
16h Word Reserved (Initialize to OOOOh)

continued

450 ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If the Alarm Interrupt Is disabled, a Return Code of
OOOOh Is generated.

8000h Device In Use

8001h Real Time Clock Not Started
If the real time clock Is not started, this code Is
generated and no other flelds are valid.

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Real Time Clock Service 451

Function: 04h - Set Device Parameters

Description

This function is a single-staged request that sets the Real Time Clock Hour
Modes (either 12-hour clock or 24-hour clock), and the Daylight Savings
Update field (either enabled or disabled}. If the ATC is not functioning,
ABIOS does not perform this function and generates Return Code 8001 h,
ATC Not Started. ABIOS disables NM ls when accessing system CMOS RAM.

Request Block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
16h Word
19h Byte

452

Input:

Request Block Length
Lo ical ID
Unit
Function 0004h
Reserved inltlallze to OOOOh
Reserved (Initialize to OOOOh)

Real Time Clock Mode, where:
Bits 7-2 = Reserved
Bit 1 = Hour mode

0 12-hour clock
1 24-hour clock

Bit 0 = Daylight Savings
Update, where:
O =Enabled
1 =Disabled

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 04h - Set Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Functions: 05h - OAh - Reserved

ABIOS Real Time Clock Service 453

Function: OBh - Set Alarm Interrupt

Description

This function is a multistaged request that sets the time for an alarm inter
rupt. If the ATC is not functioning, ABIOS does not perform this function and
generates Return Code 8001 h ATC Not Started. ABIOS disables NMls when
accessing system CMOS RAM.

ABIOS test for update-In-progress

If the Return Code is 8000h Device in Use or 8001 h Real Time Clock Not
Started the real time clock alarm is halted. This request is not processed
until the real time clock alarm is set.

Real time clock update cycle

In the IBM PS/2 BIOS, if the real time clock is in an update cycle when this
function is requested, Return Code 8000h, Device Busy, Request Refused, is
generated. The Phoenix BIOS aborts the clock update cycle and performs
the function in this case.

Setting. the alarm

454

The following steps must be followed to set the alarm function:

1 . If there is an outstanding Set Alarm Interrupt already enabled, function
OCh Cancel Alarm Interrupt must be invoked before function OBh is
invoked.

2. Invoke function OBh Set Alarm Interrupt.
3. Check the Return Code.
4. If the Return Code is 0001 h, the Interrupt Pending Status field indicates

the interrupts that occurred.

5. Query the Return Code just one time; make sure that all indicated inter
rupts are processed, sequentially.

continued

ABIOS for IBM PS/2 Computers and Compatlbles

Function: OBh - Set Alarm Interrupt, Continued

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
12h 1 Byte
13h 1 Byte
14h 1 Byte
16h OWord
1Ah 1 Byte Interrupt Pending Status, where:

Bit 7 = Reserved
Bit 6 = 1 Periodic Interrupt
Bit 5 = 1 Alarm Interrupt
Bit 4 = 1 Update-ended

Interrupt
Bits 3-0 = Reserved

continued

ABIOS Real Time Clock Service 455

Function: OBh - Set Alarm Interrupt, Continued

Return Codes

456

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
Never returned by this function. If It Is present, the request
for this function has not been processed. The Interrupt
Pending Status Indicates If an Update-Ended Interrupt
has been set.

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Real Time Clock Not Started

8002h Interrupt Already Enabled

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Cancel Alarm Interrupt

Description

This function is a single-staged request that disables the alarm interrupt.
ABIOS disables NM ls before performing this function.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved lnitlallze to OOOOh
OAh Word Reserved {Initialize to OOOOh)
OCh Word
OEh Word
16h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Real Time Clock Service 457

Function: ODh - Set Periodic Interrupt

Description

This function is a multistaged request that sets the interval for the periodic
interrupt. If the RTC is not functioning ABIOS does not perform this function,
and generates Return Code 8001h RTC Not Started. ABIOS disables NMls
when accessing system CMOS RAM.

Real time clock update cycle

In the IBM PS/2 BIOS, if the real time clock is in an update cycle when this
function is requested, Return Code 8000h Device Busy Request Refused is
generated. The Phoenix BIOS aborts the clock update cycle and performs
the function in this case.

Setting the periodic interrupt

The following steps must be followed to set the periodic function:

1. If there is an outstanding Set Periodic Interrupt already enabled, function
OEh Cancel Periodic Interrupt must be invoked before function ODh.

2. Invoke function ODh Set Periodic Interrupt.

3. Check the Return Code.

4. If the Return Code is 0001h, the Interrupt Pending Status field indicates
the interrupt that occurred.

5. Query the Return Code just one time; make sure that all indicated inter
rupts are processed sequentially.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
OBh Word Reserved initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word

continued

458 ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Set Periodic Interrupt, Continued

Request Block structure, cont'd

Offset Size

10h Byte

16h DWord
1Ah Byte

Input:

Periodic Interrupt Rate,
Bits 7-4 = Reserved
Bits 3-0 = Rate value set

OOOOb =None
0001b = 30.517 ms
0010b = 61.035 ms
0011b = 122.07 ms
0100b = 244.141 •
0101b = 488.281 •
0110b = 976.562 •
0111b = 1.953125 ms
1000b = 3.90625 ms
1001b = 7.8125 ms
1010b = 15.625 ms
1011b = 31.250 ms
1100b = 62.500 ms
1101b = 125.00 ms
1110b = 250.00 ms
1111b = 500.00 ms

ABIOS Real Time Clock Service

Output:

Interrupt Pending Status, where
Bit 7 = Reserved
Bit 6 = 1 Periodic interrupt
Bit 5 = 1 Alarm Interrupt
Bit 4 = 1 Update-ended

Interrupt
Bits 3-0 = Reserved

continued

459

Function: ODh - Set Periodic Interrupt, Continued

Return Codes

460

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
Never returned by this function. If It Is present, the request
for this function has not been processed. The Interrupt
Pending Status Indicates If an Update-ended Interrupt
has been set.

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Real Time Clock Not Started

8002h Interrupt Already Enabled

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Cancel Periodic Interrupt

Description

This function is a single-staged request that disables the periodic interrupt.
ABIOS disables NM ls before performing this function.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOEh
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (lnltlalize to OOOOh)
OCh Word
OEh Word
16h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Real Time Clock Service 461

Function: OFh - Set Update-Ended Interrupt

Description

This function is a multistaged request that enables the update-ended inter
rupt. The update-ended interrupt generates an interrupt that is activated
every time the system clock is updated, or once per second. If the ATC is
not functioning, ABIOS does not perform this function and generates Return
Code 8001 h ATC Not Started. ABIOS disables NMls when accessing system
CMOS RAM.

Real time clock update cycle

In the IBM PS/2 ABIOS, if the real time clock is in an update cycle when this
function is requested, Return Code 8000h Device Busy Request Refused is
generated. The Phoenix ABIOS aborts the clock update cycle and performs
the function in this case.

Request Block cannot be changed

The Request Block field must not be changed during any intermediate stage
of a request for this function.

Setting the update-ended interrupt

462

The following steps must be followed to set the update-ended function:

1 . If there is an outstanding Set Update-Ended Interrupt already enabled,
function 1 Oh Cancel Update-Ended Interrupt must be invoked before
function OFh is invoked.

2. Invoke function OFh Set Update-Ended Interrupt.
3. Check the Return Code.

4. If the Return Code is 0001 h, the Interrupt Pending Status field indicates
the interrupt that occurred.

5. Query the Return Code just one time; make sure that all indicated inter
rupts are processed sequentially.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Set Update-Ended Interrupt, Continued

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOFh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h DWord
1Ah Byte Interrupt Pending Status, where:

Bit 7 = Reserved
Bit 6 = 1 Periodic Interrupt
Bit 5 = 1 Alarm Interrupt
Bit 4 = 1 Update-ended

Interrupt
Bits 3-0 = Reserved

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
Never returned by this function. If It Is present, the request
for this function has not been processed. The Interrupt
Pending Status Indicates If an update-ended Interrupt
has been set.

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Real Time Clock Not Started

8002h Interrupt Already Enabled

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Real Time Clock Service 463

Function: 10h - Cancel Update-Ended Interrupt

Description

This function is a single-staged request that disables the Update-Ended
Interrupt. ABIOS disables NM ls before performing this function.

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0010h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

464 ABIOS for IBM PS/2 Computers and Compatibles

Function: 11 h - Read Time and Date

Description

This function is a multistaged request that reads the current setting of the
real time clock. The output Time and Date fields are only valid if the Return
Code is OOOOh Successful Operation. ABIOS disables NM ls before performing
this function. If the RTC is not functioning, ABIOS does not perform this
function and generates Return Code 8001 h RTC Not Started.

Note: Function 12h Write Date and Time must be called before this function
is invoked.

ABIOS test for update-in-progress

If the Return Code is 8000h Device in Use or 8001 h Real Time Clock Not
Started the real time clock is halted. This request is not processed until the
real time clock is set.

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0011h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word
12h Byte
13h Byte
14h Byte
15h Byte

16h
17h
18h

ABIOS Real Time Clock Service

Output:

Alarm Hour In BCD (00-23)
Alarm Minute In BCD (00-59)
Alarm second In BCD (00-59)
Century In BCD, where:

O = 20th century
1 =21st centu

Year In BCD (00-99)
Month In BCD 01-12
Day In BCD (01-31)

continued

465

Function: 11 h - Read Time and Date, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device In Use

8001h Real Time Clock Not Started

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 12h - Write Time and Date

Description

This function is a single-staged request that starts the real time clock (if it is
not already started) and sets the time and date information as specified. If
the clock is already started, the clock update cycle is aborted, the new time
and date are set, and a new clock update cycle is started. ABIOS disables
NMls before performing this function. If the ATC is not functioning, ABIOS
does not perform this function and generates Return Code 8001 h ATC Not
Started.

Real time clock update cycle

466

In the IBM PS/2 BIOS, if the real time clock is in an update cycle when this
function is requested, Return Code 8000h Device Busy Request Refused is
generated. The Phoenix BIOS aborts the clock update cycle and performs
the function in this case.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 12h - Write Time and Date, Continued

Request Block structure

Offset Size Input:

OOh Word Request Block Length

02h Word Lo lcal ID
04h Word Unit
06h Word Function 0012h
08h Word Reserved lnltialize to OOOOh
OAh Word Reserved (lnltlalize to OOOOh)
OCh Word
OEh Word
10h Word Reserved (lnltlalize to OOOOh)
12h Byte Hour In BCD (00-23)
13h Byte Minute In BCD

(00-59)

14h Byte Second In BCD
(00-59)

15h Byte Century in BCD, where:
0 = 20th century
1 =21st century

16h Byte Year In BCD (00-99)
17h Byte Month In BCD (01-12)
18h Byte Day In BCD (01-31)

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Real Time Clock Service 467

Chapter 16

ABIOS System Services

Overview

Introduction

The ABIOS System Services provide functions that allow address mode
switching, enable the system speaker, read system configuration informa
tion, and enable/disable Address Line 20.

Summary of System Services functions

Function Description

01h Return Logical ID Parameters

02h Reserved

03h Read System Configuration

04h-0Ah Reserved

OBh Switch to Real Mode

OCh Switch to Protected Mode

ODh Enable Address Line 20

OEh Disable Address Line 20

OFh Enable Speaker

continued

ABIOS System Services 469

Overview, Continued

In this chapter

In this chapter, the following topics are discussed:

• Error Handling

• ABIOS System Services functions

Error Handling

How errors are reported

470

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the System Services function re
quested has an error. The caller's Return Code handler routine should then
test Bits 14, 13, 12, and 8 to determine the class of error that has occurred
and then test the remaining bits to determine the nature of the error.

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01h - Return Logical ID Parameters

Description

This function is a single-staged request that returns information about the
specified Logical ID.

Request Block structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit

06h Word Function 0001 h
08h Word Reserved lnltlallze to OOOOh

OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte
11 h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

ABIOS System Services

Device ID (0009h)
Count of Units (OOOOh)
Logical ID flags (OOOOh)
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 1
= 0 Reserved
= Transfer Data Pointer

Mode
00 No Pointers

Re ulred
Request Block Length (for other
functions)

continued

471

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

472

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Loglcal ID

C001h Invalid Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Fleld Not Valld

ABIOS for IBM PS/2 Computers and Compatlbles

Function: 03h - Read System Configuration

Description

This function is a single-staged request that returns information about the
configuration of this system.

Processing

ABIOS disables all interrupts, including NMls while processing this request.

Identifying PS/2 models

The following information about PS/2 model and submode! byte information is
stored in the BIOS ROM data area (the motherboard ID can be read from the
POS registers). These areas can be accessed from CBIOS.

This information identifies various PS/2 models. It should not be used to
determine processor type, CMOS RAM size, the number of adapter slots in a
system, memory register use, or other system-specific data. The Feature
Configuration Table contains the above data.

Model Submode! Motherboard ID Description

FBh OOh FEFFh Model 80

FBh 09h FDFFh Model 70

FCh 05h F7FFh Model 60

FCh 04h FBFFh Model 50

FAh OOh NIA Model 30

FAh 01h N/A Model 25

FFh FFh Any Other Value Unknown System Board

continued

ABIOS System Services 473

Function: 03h - Read System Configuration, Continued

Request Block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
66h Word
68h Word
6Ah Byte

6Bh Byte
6Ch Byte

6Dh Byte

Return Codes

Input:

Request Block Length
Lo lcal ID
Unit
Function 0003h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Base Memory In 1 K Blocks
Expansion Memory In 1 K Blocks
POS Slot 5 Configuration Byte for
Channel3
Copy of System Board POS 2 Slot
Model Byte - set to FFh If the
Adapter ID Is an unknown type.
Submode! Byte - set to FFh If the
Adapter ID Is an unknown type.

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

474 ABIOS for IBM PS/2 Computers and Compatibles

Functions: 04h - OAh - Reserved

Function: OBh - Switch to Real Mode

Description

This function is a single-staged or multistaged request that switches pro
cessing to the real mode of the 80286, 80386SX, or 80386 microprocessor
and disables Address Line 20 to the microprocessor, which effectively denies
access to any address above 1 MB.

ROM BIOS Data Area pointer

Data Pointer 0 in the real mode Common Data Area points to the ROM BIOS
Data Area.

Interrupts disabled during processing

While processing this function, the ABIOS disables interrupts, including the
NMI 1/0 Channel Check and Parity Check. The NMI Watchdog Timer Time-out
and OMA Arbitration Bus Time-out cannot be disabled.

Successful completion

If all stages of the request are completed, the address mode of the proces
sor is switched to real mode and out of ABIOS. The caller should have set
AH to a nonzero value before calling this function. ABIOS clears AH when
this function is successfully completed. Upon successful completion of this
function, control is returned to the caller at the location pointed to by the
Resume Pointer Field.

If AH is still a nonzero value, this function request has not been successfully
completed.

continued

ABIOS System Services 475

Function: OBh - Switch to Real Mode, Continued

Request between stages

If the request is between stages, a Return Code of 0005h is present and
none of the Request Block parameters are changed yet.

Request unsuccessful

If there is an invalid parameter in the request for this function (Return Code
COOxh), ABIOS returns to the caller with the appropriate Return Code set.
The caller must then process the error and request the function again.

It is the caller's responsibility to re-enable interrupts, including the NMI, upon
return, either successful or unsuccessful, from a request for this function.

Request Block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h DWord
60h DWord
64h Word

476

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOBh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Resume Pointer
Selector to a Dummy Descriptor
Fie Id

Output:

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Switch to Real Mode, Continued

Error handling

This function does not update the Return Code Field unless there is an error
in one of the input parameters. If there is an error in one of the input pa
rameters, the ABIOS returns with all registers preserved. Otherwise, this
function jumps to the address that the Resume Pointer points to with all
registers changed and only CS:IP and AH containing meaningful information.

Set AH to a nonzero value before calling this function and then test AH for
zero. A nonzero value indicates an error condition. See the System Services
chapter in CB/OS for PS/2 Computers and Compatibles for more information
on how to handle the error condition indicated in AH.

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Loglcal ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

ABIOS System Services 477

Function: OCh - Switch to Protected Mode

Description

This function is a single-staged request that switches processing to the
protected mode of the 80286, 80386SX, or 80386 microprocessor and
enables Address Line 20 to the microprocessor.

Interrupts disabled during processing

While processing this function, the ABIOS disables interrupts, including the
NMI 110 Channel Check and Parity Check.

The NMI Watchdog Timer Time-out and DMA Arbitration Bus Time-out cannot
be disabled.

Caller responsibilities

478

The caller must have loaded the Global Descriptor Table and the Local
Descriptor Table referred to in the Request Block before calling ABIOS.
Selector 20h in the descriptor table references the caller's code.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Switch to Protected Mode, Continued

Function completion

Upon completion of this function, control is returned to the caller at the
location pointed to by the Resume Pointer Field, with ABIOS having changed
the contents of CS:IP to point to a protected mode location instead of a real
mode location.

Note: It is the caller's responsibility to re-enable interrupts, including the
NMI, upon return from this function.

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h DWord
48h Word
4Ah Word Segment Descriptor Table Base -

(Bits 0-15)
4Ch Byte Segment Descriptor Table Base -

(Bits 16-23)
4Dh Byte Segment Descriptor Table Access

Rights Byte
4Eh Word

4Fh 17 B tes
60h DWord Resume Pointer
64h 15 Bytes Reserved (do not Initialize)

continued

ABIOS System Services 479

Function: OCh - Switch to Protected Mode, Continued

Error handling

This function does not update the Return Code Field unless there is an error
in one of the input parameters. If there is an error in one of the input pa
rameters, the ABIOS returns with all registers preserved. Otherwise, this
function jumps to the protected mode address pointed to by the Resume
Pointer.

Return Codes

480

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Enable Address Line 20

Description

This function is a single-staged request that enables Address Line 20 to the
microprocessor, which permits access to any valid address above 1 MB.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h DWord

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS System Services 481

Function: OEh - Disable Address Line 20

Description

This function is a single-staged request that disables Address Line 20 to the
microprocessor, denying access to any address above 1 MB.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOEh
OBh Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h DWord

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

482 ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Enable Speaker

Description

This function is a single-staged request that enables the system speaker at
the specified frequency for the specified duration upon successful comple
tion of this function.

The system speaker is enabled by programming Mode 3 of System Timer
Channel 2.

Request Block structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h DWord
60h Word

66h Byte

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOFh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)
Return Code

Reserved (lnltlallze to OOOOh)
Frequency Divisor (1.19 MHz di
vided by the frequency = the
frequency divisor) .
Ex: The frequency divisor Is
1331, for a frequency of 886 Hz.
Duration Counter In sixty-fourths
of a second

continued

ABIOS System Services 483

Function: OFh - Enable Speaker, Continued

Return Codes

484

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation
If either the Input frequency or duration Is zero, the func-
tlon Is not performed and the Return Code Is OOOOh.

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Chapter 17

ABIOS Nonmaskable Interrupt
(NMI) Service

Overview

Introduction

The ABIOS Nonmaskable Interrupt Service clears a nonmaskable interrupt at
the NMI source, which is usually at the device level.

Note: This service clears the source of the interrupt after the source of
the NMI is logged, but does not re-enable NMls. The caller must
reenable NMls.

NMI processing

A Nonmaskable Interrupt (NMI) occurs because an error condition exists
somewhere in the system.

continued

ABIOS Nonmaskable Interrupt (NMI) Service 485

Overview, Continued

Types of NMI

The types of NMI are:

• System Board Memory Parity Check

• Adapter Card (1/0) Channel Check

• Watchdog Timer Time-out

• OMA Arbitration Bus Time-out

Summary of Nonmaskable Interrupt Service functions

Function Description

01h Return Loglcal ID Parameters

02h-05h Reserved

06h Enable NMI

07h Disable NMI

OBh NMI Continuous Read

In this chapter

This chapter includes information about the following topics:

• Error Handling

• ABIOS Nonmaskable Interrupt Service functions

486 ABIOS for IBM PS/2 Computers and Compatibles

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Nonmaskable Interrupt Service
function requested has an error. The caller's Return Code handler routine
should test Bits 14, 13, 12, and 8 for the class of error that has occurred
and then test the remaining bits to determine the nature of the error.

ABIOS Nonmaskable Interrupt (NMI) Service 487

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

488

Input:

Request Block Len th (20h)
Lo lcal ID
Unit
Function 0001 h
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Reserved (lnltlallze to OOOOh)
Reserved (Initialize to OOOOh)

Hardware Interrupt Level (FEh)
Arbitration Level FFh
Device ID (0009h)
Count of Units (OOOOh)
Logical ID flags (OOOOh)
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 1
= 0 Reserved
= Transfer Data Pointer

Mode
00 No Pointers

Re ulred
Request Block Length (for other
functions)
Secondary Device ID

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters, Continued

Return Code

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

Functions: 02h - 05h - Reserved

ABIOS Nonmaskable Interrupt (NMI) Service 489

Function: 06h - Enable NMI

Description

This function is a single-staged request that enables the NMI for System
Board Memory Parity Checks and Adapter Card 110 Channel Checks.

Note: The ABIOS cannot enable the OMA Arbitration Bus Time-out and the
Watchdog Timer Time-out NMls.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0006h
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
21h Word

Return Coda

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

490 ABIOS for IBM PS/2 Computers and Compatibles

Function: 07h - Disable NMI

Description

This function is a single-staged request that disables the NMI for System
Board Memory Parity Checks and Adapter Card 110 Channel Checks.

Note: The ABIOS cannot disable the DMA Arbitration Bus Time-out and the
Watchdog Timer Time-out types of NMls.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0007h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
21h Word

Return Code

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Nonmaskable Interrupt (NMI) Service 491

Function: 08h - NMI Continuous Read

Description

This function is a continuous multistaged request. It sets up a permanently
resident Request Block which is used by the NMI hardware interrupt routine
and the caller to handle NMls.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word

1Eh Byte

1Fh Byte

21h Word

492

Input:

Request Block Length
Lo lcal ID
Unit
Function 0008h
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Return Code
Time-out (OOOOh)
Type of NMI
OOh = Reserved
01 h = Parity Check
02h = Channel Check
03h = OMA Bus Time-out
04h = Watchdog Time-out
OMA Arbitration Level that Initiated
the OMA Bus Time-out

Initiated the 110

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 08h - NMI Continuous Read, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh lnvalld Logical ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Field Not Valld

ABIOS Nonmaskable Interrupt (NMI) Service 493

Chapter 18

ABIOS Pointing Device Service

Overview

Introduction

The ABIOS Pointing Device Service provides routines to handle pointing
devices. A mouse is the most commonly used pointing device, but this
service also handles other devices such as trackballs and touchpads.

continued

ABIOS Pointing Device Service 495

Overview, Continued

Summary of Pointing Device Service functions

Function Description

OOh Default Interrupt Handler

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h Reserved

05h Reset/lnltlallze Pointing Device

06h Enable Pointing Device

07h Disable Pointing Device

08h Pointing Device Continuous Read

09h-0Ah Reserved

OBh Set Sample Rate

OCh Set Resolution

ODh Set Scaling Factor

OEh Read Pointing Device Identification Code

In this chapter

This chapter includes information about the following topics:

• Hardware Environment
• Error Handling

• ABIOS Pointing Device Service functions

496 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

The ABIOS Pointing Device Service is associated with hardware interrupt
request 12. The ABIOS Pointing Device Service supports a Pointing Device
and a Pointing Device/Keyboard Controller such as an appropriately pro
grammed Intel 8042 or its equivalent.

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Pointing Device Service function
requested has an error. The caller's Return Code handler routine should test
Bits 14, 13, 12, and 8 to determine the class of error that has occurred and
then test the remaining bits to determine the precise nature of the error.

ABIOS Pointing Device Service 497

Function: OOh - Default Interrupt Handler

Description

This function is a single-staged or multistaged request that handles unex
pected hardware interrupts by resetting the interrupt at the device level.

When to Invoke

This function is invoked by calling the interrupt routine with a function code
of OOOOh. It is only invoked if a given Logical ID has no outstanding Request
Blocks waiting for an interrupt.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (10h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOOh
08h Word Reserved initialize to OOOOh
OAh Word Reserved (lnltlalize to OOOOh)
OCh Word Return Code
OEh Word Time-out

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valld

498 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001 h
08h Word Reserved lnltlalize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh
10h
11h
12h
14h
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word Reserved (Initialize to OOOOh)
1Eh Word Reserved (lnltlallze to OOOOh)

ABIOS Pointing Device Service

Output:

Hardware Interrupt Level (OCh)
Arbitration Level FFh
Device ID (OOOBh)
Count of Units (OOOOh)
Logical ID flags (OOOOh)
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 0 Reserved
= Transfer Data Pointer

Mode
00 = No Pointers

Re ulred
Request Block Length (for other
functions)

continued

499

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 03h - Read Device Parameters

Description

500

This function is a single-staged or multistaged request that returns the
Pointing Device Status for the specified Pointing Device.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Request Block structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0003h
08h Word Reserved lnltlallzed to OOOOh
OAh Word Reserved (lnltlallzed to OOOOh)
OCh Word
OEh Word
10h Byte

11h Byte
12h 2 Bytes

14h' Word

16h Word

18h DWord

1Ch Word

ABIOS Pointing Device Service

Output:

Interface Status, where:
Bits 7-6 = Reserved
Bit 5 = Interface enable

0 Disabled
1 Enabled

Bits 4-0 = Reserved
Data Package Size (00h-08h)

=Reserved
=Mode

0 Stream mode
1 Remote/poll mode

=Status
o Disabled
1 Enabled

= Scallng
0 1 :1 Scaling
1 2:1 Scallng

Bit 3 = Reserved
Bit 2 = Left button pressed
Bit 1 = Reserved
Bit O = Right button pressed
Current Resolution, where:
OOh = 1 count per mm
01 h = 2 counts per mm
02h = 4 counts per mm
03h = 8 counts per mm
Current Sample Rate, where:
OAh = 10 reports/second
14h = 20 reports/second
28h = 40 reports/second
3Ch = 60 reports/second
50h = 80 reports/second
64h = 100 reports/second
C8h = 200 re orts/second
Time to Walt (In microseconds)
Before Resumln Re uests

continued

501

Function: 03h - Read Device Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful. Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valld

Function: 04h - Reserved

502 ABIOS for IBM PS/2 Computers and Compatibles

Function: 05h - Reset/Initialize Pointing Device

Description

This function is a single-staged or multistaged request that resets and initial
izes a Pointing Device.

Pointing Device initialized state

When the pointing device is initialized,

• data package size is not changed,

• resolution is set to 4 counts per millimeter,

• sample rate is set to 100 reports per second.

• scaling factor is set to 1 : 1 , and

• the pointing device is disabled.

Using this function

The steps below must be followed before this function can be used:

1 . invoke function 08h Continuous Read,

2. invoke function 06h Enable Pointing Device,

3. invoke function 05h Reset/Initialize Pointing Device, and

4. invoke functions OBh, OCh, ODh, or OEh, as needed.

ABIOS Pointing Device Service

continued

503

Function: 05h - Reset/Initialize Pointing Device, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0005h
08h Word Reserved lnltlalized to OOOOh
OAh Word Reserved (Initialized to OOOOh)
OCh Word
OEh Word
10h Byte
11h Byte
18h Word

1Ch Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device in Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

504 ABIOS for IBM PS/2 Computers and Compatibles

Function: 06h - Enable Pointing Device

Description

This function is a single-staged or multistaged request that enables the
Pointing Device.

Using this function

The steps below must be followed before this function can be used:

1 . invoke function 08h Continuous Read,

2. invoke function 06h Enable Pointing Device,

3. invoke function 05h Reset/Initialize Pointing Device, and

4. invoke functions OBh, OCh, ODh, or OEh, as needed.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0006h
08h Word Reserved lnltlallzed to OOOOh
OAh Word Reserved (lnltlallzed to OOOOh)
OCh Word
OEh Word
18h 4 Bytes

1Ch Word

continued

ABIOS Pointing Device Service 505

Function: 06h - Enable Pointing Device, Continued

Return Codes

506

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 07h - Disable Pointing Device

Description

This function is a single-staged or multistaged request that disables a point
ing device.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0007h
08h Word Reserved Initialized to OOOOh
OAh Word Reserved (Initialized to OOOOh)
OCh Word
OEh Word Time-out
18h DWord Time to Walt (In microseconds)

Before Continuing Request
1Ch Word Reserved (Initialize to OOOOh)

continued

ABIOS Pointing Device Service 507

Function: 07h - Disable Pointing Device, Continued

Return Codes

508

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h 1rivalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 08h - Pointing Device Continuous Read

Description

This function is a continuous multistaged request that reads a pointing device
while the device remains disabled.

When to use

This function must be invoked before invoking any other Pointing Device
Service function except function 01 h.

Using this function

The steps below must be followed before this function can be used:

1 . invoke function 08h Continuous Read,
2. invoke function 06h Enable Pointing Device,
3. invoke function 05h Reset/Initialize Pointing Device, and
4. invoke functions OBh, OCh, ODh, or OEh, as needed.

continued

ABIOS Pointing Device Service 509

Function: 08h - Pointing Device Continuous Read, Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte

12h 4
1Ch Bytes

510

Input:

Request Block Length
Lo !cal ID
Unit
Function 0008h
Reserved lnltlallzed to OOOOh
Reserved (Initialized to OOOOh)

Data Package Size, where:
08h = 8 Bytes
OOh =Reserved
01h = 1 Byte
02h = 2 Bytes
03h = 3 Bytes
04h = 4 Bytes
05h = 5 Bytes
06h = 6 Bytes
07h = 7 B tes

Output:

Pointing Device Data, where:
BYTE 1
Bit 7 = 0 No V Data Overflow

= 1 V Data Overflow
Bit 6 = 0 No X Data Overflow

= 1 X Data Overflow
Bit 5 = 0 V Data Sign is Positive

= 1 V Data sign is Negative
Bit 4 = 0 X Data Sign is Positive

= 1 X Data Sign is Negative
Bit 3 = 1 Reserved
Bit 2 = 0 Reserved
Bit 1 = 1 Right Button Pressed
Bit 0 = 1 Left Button Pressed
BYTE 2 = Pointing Device X Data
BYTE 3 = Pointing Device V Data
BYTES 4-12 = Reserved

X and V refer to standard
XIV grid coordinates.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 08h - Pointing Device Continuous Read, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

'Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

0009h Attention, Data Available, Resume Stage after Interrupt

8000h Device In Use

8003h System Lock

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Mouse Controller Parameter

FFFFh Return Code Field Not Valld

Functions: 09h - OAh - Reserved

ABIOS Pointing Device Service 511

Function: OBh - Set Sample Rate

Description

This function is a single-staged or multistaged request that sets the sample
rate for a pointing device.

Using this function

Invoke the following functions in the order given to use this function:

1 . Function 08h Continuous Read

2. Function 06h Enable Pointing Device

3. Function 05h Reset/Initialize Pointing Device

4. Function OBh Set Sample Rate

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved lnltlallzed to OOOOh
OAh Word Reserved (Initialized to OOOOh)
OCh Word
OEh Word
12h Word Sample Rate. where:

OAh = 10 reports/second
14h = 20 reports/second
28h = 40 reports/second
3Ch = 60 reports/second
50h = 80 reports/second
64h = 100 reports/second
C8h = 200 reports/second

18h DWord Time to Walt (In microseconds)
Before Continuing Request

continued

512 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Set Sample Rate, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

BOO Oh Device In Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Pointing Device Service 513

Function: OCh - Set Resolution

Description

This function is a single-staged request that sets the resolution for a pointing
device by specifying the desired resolution rate in the Sample Rate field at
offset 12h in the Request Block.

Using this function

Invoke the following functions in the order given to use this function:

1 . Function 08h Continuous Read

2. Function 06h Enable Pointing Device

3. Function 05h Reset/Initialize Pointing Device

4. Function OCh Set Resolution

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo leaf ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved Initialized to OOOOh
OAh Word Reserved (Initialized to OOOOh)
OCh Word
OEh Word
12h Word

18h DWord Time to Walt (In microseconds)
Before Continuing Request

1 Ch Word Reserved (initialize to OOOOh)

continued

514 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Set Resolution, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Pointing Device Service 515

Function: ODh - Set Scaling Factor

Description

This function is a single-staged or multistaged request that sets the Scaling
Factor for a pointing device by specifying the desired value in the Scaling
Factor field at offset 1 Oh in the Request Block.

Using this function

Invoke the following functions in the order given to use this function:

1. Function 08h Continuous Read,

2. Function 06h Enable Pointing Device,

3. Function 05h Reset/Initialize Pointing Device, and

4. Function ODh Set Scaling Factor.

continued

516 ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Set Scaling Factor, continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
08h Word Reserved lnltlallzed to OOOOh
OAh Word Reserved (lnltlallzed to OOOOh)
OCh Word
OEh Word

10h Byte

18h DWord

1Ch Word
28h Byte
29h Byte
2Ah Word
2Ch Word
2Eh Byte
2Fh Byte
30h Byte
31h Word
33h Word
35h Word
37h Byte
38h Byte

ABIOS Pointing Device Service

Output:

Mouse Data Buffer Index
Retry Parameters
Reserved
Count of Status Bytes In RB
Current Interrupt Level (09h)
Arbitration Level (OCh)

Keyboard Data Register (60h)
8042 Status Register (64h)
Reserved
Pointer to Beginning of Request
Block Status Area (2Eh)

continued

517

Function: ODh - Set Scaling Factor, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

518 ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Read Pointing Device Identification Code

Description

This function is a single-staged or multistaged request that returns the
Pointing Device Identification Code from the pointing device/keyboard
interface.

Using this function

Invoke the following functions in the order given to use this function:

1 . Function 08h Continuous Read,

2. Function 06h Enable Pointing Device,

3. Function 05h Reset/Initialize Pointing Device, and

4. Function OEh Read Pointing Device Identification Code.

continued

ABIOS Pointing Device Service 519

Function: OEh - Read Pointing Device Identification Code,
Continued

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte

18h DWord

1Ch Word
28h Byte
29h Byte
2Ah Word
2Ch Word
2Eh Byte
2Fh Byte
30h B te
31h Word
33h Word
35h Word
37h Byte
38h Byte

520

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOEh
Reserved lnltlallzed to OOOOh
Reserved (lnltlallzed to OOOOh)

Output:

Mouse Data Buffer Index
Retry Parameters
Reserved
Count of Status Bytes In RB
Current Interrupt Level (09h)
Arbitration Level OCh

Keyboard Data Register (60h)
8042 Status Register (64h)
Reserved
Pointer to Beginning of Request
Block Status Area (2Eh)

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Read Pointing Device Identification Code,
Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0001h Resume Stage after Interrupt

0002h Resume Stage after Time Delay

0005h Not My Interrupt, Resume Stage after Interrupt

8000h Device In Use

8001h Resend

8002h Two Consecutive Resends Found

8003h System Lock

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Pointing Device Service 521

Chapter 19

ABIOS CMOS RAM Service

Overview

Introduction

The ABIOS CMOS RAM service provides access to battery-backed CMOS
memory. In addition, this service provides error checking through the
Recompute Checksum function.

Summary of ABIOS CMOS RAM Service functions

Function Description

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h-07h Reserved

08h Read CMOS RAM

09h Write to CMOS RAM

OAh Reserved

OBh Recompute Checksum

continued

ABIOS CMOS RAM Service 523

Overview, Continued

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• CMOS RAM Data Definitions

• Extended CMOS RAM Data Definitions

• Error Handling

• ABIOS CMOS RAM Service functions

Hardware Environment

Introduction

Information may be stored in two areas of CMOS RAM. The table below
describes the CMOS RAM areas.

Table of CMOS RAM areas

1/0
Data Area Location Size Description

CMOS RAM 070h & 071h 64 Bytes These bytes are located on the Motorola
Data Area MC146818A Real Time Clock CMOS chip

(or Its equivalent). All implementations of
the BIOS make use of this area to store
real time clock, POST, and system con-
figuration data.

Extended 074h, 075h, 2048 When Implemented on systems that em-
CMOS RAM and 076h Bytes ploy more than four adapter slots, the
Data Area BIOS requires an additional 2K of CMOS

RAM. This extended CMOS RAM Is prl-
marlly used to store POS data.

524 ABIOS for IBM PS/2 Computers and Compatibles

CMOS RAM Data

Introduction

The Motorola MC14681 BA Real Time Clock CMOS chip (or its equivalent)
contains 50 bytes of CMOS RAM data. Addresses OOh-ODh access Real Time
Clock data, which are listed in Chapter 15. Addresses 0Eh-3Fh access
CMOS RAM data and are documented in this chapter.

CMOS RAM Definitions

The CMOS RAM data contained in the MC146818A chip is accessed by both
the ABIOS and the CBIOS. CMOS RAM definitions are listed here for the
convenience of ABIOS users. This information is repeated in CB/OS for IBM
PS/2 Computers and Compatibles.

Note: CMOS RAM locations 19h-30h are defined only for PS/2-Compatible
models containing four or fewer adapter slots.

Configuration data definitions

The system configuration information data definitions use CMOS RAM ad
dresses 0Eh-3Fh. They are:

Location Size Description

OEh 1 Byte Diagnostic status, where:
Bit 7 = 1 Real time clock lost power
Bit 6 = 1 CMOS RAM checksum Is bad
Bit 5 = 1 Invalid configuration Information found

at POST
Bit 4 = 1 Memory size compare error at POST
Bit 3 = 1 Fixed disk or adapter falls lnltlallzatlon
Bit 2 = 1 CMOS RAM time found Invalid
Bit 1 = 1 Adapters do not match configuration
Bit 0 = 1 Time-out reading an adapter ID

OFh 1 Byte Reason for shutdown, where:
OOh = Power on or soft reset
01h = Memory size pass
02h = Memory test pass
03h = Memory test fall
04h =POST end; boot system
05h = JMP DWord pointer with end-of-Interrupt
06h = Protected tests pass
07h = Protected tests fall
08h = Memory size fall
09h =INT 15h Block Move
OAh = JMP DWord pointer without end-of-Interrupt
OBh = Used by ABIOS

continued

ABIOS CMOS RAM Service 525

CMOS RAM Data, Continued

Configuration data definitions, cont'd

Location Size Description

10h 1 Byte Type of Diskette Drives:
Bits 7-4 = Drive type of drive 0, where:

OOOOb = No drive
0001 b = 360K drive
0010b = 1.2 MB drive
0011 b = 720K drive
0100b = 1.44 MB drive

Bits 3-0 = Drive type of drive 1 , where:
OOOOb = No drive
0001 b = 360K drive
0010b = 1.2 MB drive
0011 b = 720K drive
0100b = 1.44 MB drive

11h 1 Byte Type of fixed disk drive 0

12h 1 Byte Type of fixed disk drive 1

13h 1 Byte Password Configuration
Bits 7-5 = 0 Reserved
Bit 4 = 0 BIOS initializes keyboard to normal

speed
1 BIOS Initializes keyboard to fast speed*

Bits 3-2 =Reserved
Bit 1 = 1 Network password installed

0 Network password not installed
Bit 0 = 1 Power-on password Installed

0 Power-on password not installed

14h 1 Byte Equipment Installed, where:
Bits 7-6 = Number of diskette drives, where:

OOb = 1 Diskette drive
01b = 2 Diskette drives

Bits 5-4 = Primary display, where:
OOb = Reserved
01b = VGA In 40-column mode
1 Ob = VGA In 80-column mode
11b = VGA In monochrome mode

Bits 3-2 =Reserved
Bit 1 = 1 80387 Installed
Bit 0 = 0 Diskette drive installed

15h 1 Byte Base memory In 1 K, low byte

16h 1 Byte Base memory In 1 K, high byte

17h 1 Byte Expansion memory In 1 K, low byte

18h 1 Byte Expansion memory In 1 K, high byte

19h 1 Byte Adapter ID for channel 0, low byte

• If the machine has extended CMOS RAM, the value for the fast speed Is taken from
offset 702h.

continued

526 ABIOS for IBM PS/2 Computers and Compatibles

CMOS RAM Data, Continued

Configuration data definitions, cont'd

Location Size Description

1Ah 1 Byte Adapter ID for channel 0, high byte

1Bh 1 Byte Adapter ID for channel 1 , low byte

1Ch 1 Byte Adapter ID for channel 1 , high byte

1Dh 1 Byte Adapter ID for channel 2, low byte

1Eh 1 Byte Adapter ID for channel 2, high byte

1Fh 1 Byte Adapter ID for channel 3, low byte

20h 1 Byte Adapter ID for channel 3, high byte

21h 1 Byte POS 2 configuration byte for channel 0

22h 1 Byte POS 3 configuration byte for channel 0

23h 1 Byte POS 4 configuration byte for channel 0

24h 1 Byte POS 5 configuration byte for channel 0

25h 1 Byte POS 2 configuration byte for channel 1

26h 1 Byte POS 3 configuration byte for channel 1

27h 1 Byte POS 4 configuration byte for channel 1

28h 1 Byte POS 5 configuration byte for channel 1

29h 1 Byte POS 2 configuration byte for channel 2

2Ah 1 Byte POS 3 configuration byte for channel 2

2Bh 1 Byte POS 4 configuration byte for channel 2

2Ch 1 Byte POS 5 configuration byte for channel 2

2Dh 1 Byte POS 2 configuration byte for channel 3

2Eh 1 Byte POS 3 configuration byte for channel 3

2Fh 1 Byte POS 4 configuration byte for channel 3

30h 1 Byte POS 5 configuration byte for channel 3

31h 1 Byte Copy of system board POS 2

32h 1 Byte CRC for offsets 10-31 , high byte

33h 1 Byte CRC for offsets 10-31, low byte

34h 1 Byte Miscellaneous Information
Bits 7-4 =Actual number of RS-232 ports Installed
Bits 3-0 = Block move status before reset to real

mode

continued

ABIOS CMOS RAM Service 527

CMOS RAM Data, Continued

Configuration data definitions, cont'd

Location Size Description

35h 1 Byte Low byte of actual expansion memory size

36h 1 Byte High byte of actual expansion memory size

37h 1 Byte Century In BCD

38h-3Eh 1 Byte Power-on password

39h 1 Byte Power-on password checksum

Extended CMOS RAM Data

Introduction

The BIOS uses an additional 2K of CMOS RAM to store Programmable Option
Select (POS) data for MCA-compatible computer systems that include more
than four expansion slots. Fixed disk parameter data for fixed disks other
than those listed in the ROM BIOS Fixed Disk Parameter Table is also stored
in this additional CMOS RAM.

Extended CMOS RAM data definitions

The table below outlines the contents of the extended CMOS RAM data area.

CMOS RAM
Offset Size Description

OOOOh 1 Byte LSB of adapter ID for channel 0

0001h 1 Byte MSB of adapter ID for channel 0

0002h 1 Byte Number of POS values used

0003h 1 Byte POS 2 for channel 0

0004h 1 Byte POS 3 for channel O

0005h 1 Byte POS 4 for channel 0

0006h 1 Byte POS 5 for channel 0

continued

528 ABIOS for IBM PS/2 Computers and Compatlbles

Extended CMOS RAM Data, Continued

Extended CMOS RAM data definitions, cont'd

CMOS RAM
Offset Size Description

0007-0022h Reserved

0023h 1 Byte LSB of adapter ID for channel 1

0024h 1 Byte MSB of adapter ID for channel 1

0025h 1 Byte Number of POS values used

0026h 1 Byte POS 2 for channel 1

0027h 1 Byte POS 3 for channel 1

0028h 1 Byte POS 4 for channel 1

0029h 1 Byte POS 5 for channel 1

002A-0045h Reserved

0046h 1 Byte LSB of adapter ID for channel 2

0047h 1 Byte MSB of adapter ID for channel 2

0048h 1 Byte Number of POS values used

0049h 1 Byte POS 2 for channel 2

004Ah 1 Byte POS 3 for channel 2

004Bh 1 Byte POS 4 for channel 2

004Ch 1 Byte POS 5 for channel 2

0040-00SBh Reserved

0069h 1 Byte LSB of adapter ID for channel 3

006Ah 1 Byte MSB of adapter ID for channel 3

006Bh 1 Byte Number of POS values used

006Ch 1 Byte POS 2 for channel 3

006Dh 1 Byte POS 3 for channel 3

006Eh 1 Byte POS 4 for channel 3

006Fh 1 Byte POS 5 for channel 3

0070-00BBh Reserved

008Ch 1 Byte LSB of adapter ID for channel 4

008Dh 1 Byte MSB of adapter ID for channel 4

008Eh 1 Byte Number of POS values used

008Fh 1 Byte POS 2 for channel 4

continued

ABIOS CMOS RAM Service 529

Extended CMOS RAM Data, Continued

Extended CMOS RAM data definitions, cont'd

CMOS RAM
Offset Size Description

0090h 1 Byte POS 3 for channel 4

0091h 1 Byte POS 4 for channel 4

0092h 1 Byte POS 5 for channel 4

0093-00AEh Reserved

OOAFh 1 Byte LSB of adapter ID for channel 5

OOBOh 1 Byte MSB of adapter ID for channel 5

OOB1h 1 Byte Number of POS values used

OOB2h 1 Byte POS 2 for channel 5

OOB3h 1 Byte POS 3 for channel 5

OOB4h 1 Byte POS 4 for channel 5

OOB5h 1 Byte POS 5 for channel 5

OOB6-0001h Reserved

OOD2h 1 Byte LSB of adapter ID for channel 6

OOD3h 1 Byte MSB of adapter ID for channel 6

OOD4h 1 Byte Number of POS values used

0005h 1 Byte POS 2 for channel 6

OOD6h 1 Byte POS 3 for channel 6

OOD7h 1 Byte POS 4 for channel 6

OOD8h 1 Byte POS 5 for channel 6

OOD9-00F4h Reserved

OOF5h 1 Byte LSB of adapter ID for channel 7

OOF6h 1 Byte MSB of adapter ID for channel 7

OOF7h 1 Byte Number of POS values used

OOF8h 1 Byte POS 2 for channel 7

OOF9h 1 Byte PCS 3 for channel 7

OOFAh 1 Byte POS 4 for channel 7

OOFBh 1 Byte POS 5 for channel 7

OOFC-0160h Reserved

continued

530 ABIOS for IBM PS/2 Computers and Compatibles

Extended CMOS RAM Data, Continued

Extended CMOS RAM data definitions, cont'd

CMOS RAM
Offset Size Description

0161-0162h 1 Word Set to a value to make POST' s CRC for extended
CMOS RAM locatlons 0-162 equal zero. Maintained
by the Reference Diskette.

0163-0165h 3 Bytes Actual extended memory size when over 65 MB

0166-0175h 16 Bytes Fixed Disk Parameter Table for drive 0

0176-0185h 16 Bytes Fixed Disk Parameter Table for drive 1

0186h 1 Byte POST uses this offset to test whether extended
CMOS RAM can be accessed correctly

0187h-0188h Reserved

0189h-018Dh Reserved for reference diskette POST use

018Eh 1 Byte Number of Micro Channel slots.

018Fh-0388h Reserved

0389h 1 Byte Error Log Number (0-5)

038Ah 20 Bytes Error Log Block o
039Eh 20 Bytes Error Log Block 1

03B2h 20 Bytes Error Log Block 2

03C6h 20 Bytes Error Log Block 3

03DAh 20 Bytes Error Log Block 4

03EEh 20 Bytes Error Log Block 5

0402h-06FFh 20 Bytes Reserved

0700h-07FFh 20 Bytes Reserved

ABIOS CMOS RAM Service 531

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the CMOS RAM Service function
requested has an error. The caller's Return Code handler routine should test
Bits 14, 13, 12, and 8 for the class of error that has occurred and then test
the remaining bits to determine the nature of the error.

Error checking

532

The potential for error inherent in CMOS technology makes error checking
advisable. Test the Return Code field after all CMOS RAM Service function
requests. A defective battery causes Return Code 80FFh, CMOS RAM Bat
tery Bad, and a checksum error causes Return Code 80FEh, CMOS RAM
Checksum Invalid, but other Return Code values may occur.

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
specified Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001 h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

ABIOS CMOS RAM Service

Hardware Interrupt Level (FFh)
Arbitration Level FFh
Device ID (OOOEh)
Count of Units

=Reserved
= O No overlap across

units
= 1 Overlap across units

supported
Bit 2 = O Reserved
Bits 1-0 = Transfer Data Pointer

Mode
01 = Loglcal Pointer

Required
Request Block Length (for other
functions
Secondary Device ID
Revision Level

continued

533

Function: 01h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 02h - Reserved

Function: 03h - Read Device Parameters

Description

534

This function, a single-staged request, returns the CMOS RAM Service
device parameters. Specifically, the Read Device Parameters function returns
the locations of extended CMOS RAM available to the user. The remaining
areas of Extended CMOS RAM and all of CMOS RAM are reserved.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0003h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word
22h Word
24h Word

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

80FEh CMOS RAM Checksum Invalid

80FFh CMOS RAM Battery Bad

COOOh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid CMOS RAM Parameter

FFFFh Return Code Fleld Not Valid

Functions: 04h - 07h - Reserved

ABIOS CMOS RAM Service 535

Function: 08h - Read CMOS RAM

Description

This function, a multistaged request, returns the data stored in the CMOS
RAM location pointed to by Data Pointer 1 or 2. The Transfer Data Pointer
Mode, which determines the Data Pointer fields format, is returned in func
tion 01 h, Return Logical ID Parameters function.

Note: ABIOS disables nonmaskable interrupts while processing CMOS RAM
accesses through functions 08h or 09h.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0008h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word Reserved (lnltlallze to OOOOh)
12h DWord Data Pointer 1 (Logical Pointer)
16h Word Reserved (lnltlallze to OOOOh)
1Ah DWord Reserved
20h Word Flag Word, where:

Bit 15 = 1 NMI disabled
Bits 14-1 =Reserved
Bit 0 =RAM tyce

0 CMO RAM
1 Extended CMOS

RAM
22h Word Starting Address
24h Word Number of bytes to transfer:

If fleld value = O, no action Is
taken; Return Code field Operation
Completed successfully Is set.

continued

536 ABIOS for IBM PS/2 Computers and Compatibles

Function: 08h - Read CMOS RAM, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

80FEh CMOS RAM Checksum Invalid

80FFh CMOS RAM Battery Bad

COO Oh Invalid Loglcal ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

COOSh Invalid CMOS RAM Parameter
This field Is set and no action Is taken If the bytes In the
Number of B~tes to Transfer fleld plus the byte count for
the Starting AM Address fleld In the Request Block Is
greater than the maximum amount of RAM. It could also
mean that there Is no Extended CMOS RAM.

FFFFh Return Code Fleld Not Valld

ABIOS CMOS RAM Service 537

Function: 09h - Write to CMOS RAM

Description

This function, a single-staged request, writes the number of bytes of data
specified at offset 24h and pointed to by Data Pointer 1 or 2 to the CMOS
RAM or extended CMOS RAM location specified at offset 22h, Starting Ad
dress. The Transfer Data Pointer Mode, which determines the Data Pointer
fields format, is returned in function 01 h, Return Logical ID Parameters
function.

Note: ABIOS disables nonmaskable interrupts while processing CMOS RAM
accesses through functions 08h or 09h.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Word
12h DWord
16h Word
1Ah DWord
20h Word

22h Word
24h Word

538

Input:

Request Block Length
Lo lcal ID
Unit
Function 0009h
Reserved Initialize to OOOOh
Reserved (lnltlallze to OOOOh)

Reserved (Initialize to OOOOh)
Data Pointer 1 (Logical Pointer)
Reserved (lnltlallze to OOOOh)
Reserved
Flag Word, where:
Bit 15 = 1 NMI disabled
Bits 14-1 = Reserved
Bit 0 = RAM type

0 CMOS RAM
1 Extended CMOS RAM

Starting Address
Number of bytes to transfer: If field
value = O, no action Is taken and the
Return Code field Operation Com
pleted Successfully Is set.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 09h - Write to CMOS RAM, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

BOFEh CMOS RAM Checksum Invalid

BOFFh CMOS RAM Battery Bad

COO Oh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid CMOS RAM Parameter
This field Is set and no action Is taken If the bytes In the
Number of Bytes to Transfer field plus the byte count for
the Starting RAM Address field In the Request Block Is
greater than the maximum amount of RAM . It could also
mean that there is no Extended CMOS RAM.

FFFFh Return Code Field Not Valid

Function: OAh - Reserved

ABIOS CMOS RAM Service 539

Function: OBh - Recompute Checksum

Description

This function recomputes the checksum for either CMOS RAM or extended
CMOS RAM.

When to Use

Invoke this function following a function 08h, Read CMOS RAM or 09h, Write
to CMOS RAM request.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Word Reserved (lnltlallze to OOOOh)
12h Dword Reserved (lnltlallze to OOOOh)
16h Word Reserved (lnltlallze to OOOOh)
1Ah Dword Reserved (lnltlallze to OOOOh)
20h Word Flag Word, where:

Bit 15 = 1 for NMI disabled
Bits 14-1 =Reserved
Bit 0 =RAM tyse

OCMO RAM
1 Extended CMOS

RAM

continued

540 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Recompute Checksum, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

80FEh CMOS RAM Checksum Invalid

80FFh CMOS RAM Battery Bad

COOOh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid CMOS RAM Parameter

FFFFh Return Code Field Not Valid

ABIOS CMOS RAM Service 541

Chapter 20

ABIOS Direct Memory Access
(OMA) Service

Overview

Introduction

The ABIOS Direct Memory Access (OMA) Service allows programs to allocate
arbitration levels and OMA channels, and initiate transfers through the ABIOS.
It is unnecessary for the caller to program the OMA Controller directly.

OMA transfer operation steps

To complete a OMA transfer, the caller must

1. Receive an arbitration level by invoking function OBh, Allocate Arbitration
Level.

2. Complete the Mode Control field (offset 1 Ch in the Request Block} and
the Transfer Control Bytes fields (offsets 1Dh and 1 Eh in the Request
Block) to specify the OMA controller functions for the request.

3. Prepare for a transfer to or from a device, using functions 1 Oh, 11 h, or
12h, by coding the appropriate input information.

4. Disable the arbitration level (function ODh Disable Arbitration Level).

5. Deallocate the arbitration level (function OCh Deallocate Arbitration Level).

continued

ABIOS Direct Memory Access (OMA) Service 543

Overview, Continued

Summary of ABIOS OMA Service functions

Function Description

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h-0Ah Reserved

OBh Allocate Arbitration Level

OCh Deallocate Arbitration Level

ODh Disable Arbitration Level

OEh OMA Transfer Status

OFh Abort OMA Operation

10h OMA Transfer from Memory to 110

11h Read from 1/0 and Write to Memory

12h Load OMA Controller Parameters

In this chapter

The following topics are discussed in this chapter:

• Hardware Environment
• Error Handling
• ABIOS DMA Service functions

544 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

OMA functionality

The hardware environment for OMA transfers is described here in order to
explain the background against which the OMA ABIOS functions operate. The
ABIOS, however, serves as a shield between underlying hardware and re
quests of the operating system, eliminating the need for the caller to access
the OMA controller directly.

Direct Memory Access (OMA) allows large amounts of data to be transferred
from a physical device to system memory or vice versa without micropro
cessor involvement. A program may initiate a OMA transfer and have no
need to copy each byte or word individually, freeing the processor for more
complex tasks. OMA transfers are typically from/to a fixed 1/0 port address
to/from a continually incremented memory address.

OMA functionality in Micro Channel systems is a superset of the functionality
of two Intel 8237 OMA Controllers, one addressed at every port, starting with
Port OOOOh, and one addressed at every other port, starting at port OOCOh.
Access to 8237-compatible OMA functions and to additional functions for all
channels is provided at 1/0 ports 0018h and 001Ah. Data output to port
0018h selects the channel and function, and data output to or input from
001Ah goes to or from the selected internal register.

Bus sharing

The system microprocessor and any currently-transferring OMA users can
share the bus by taking turns directing bus cycles (driving the Micro Chan
nel's address lines and certain control signals). An arbitration process deter
mines which of these possible bus masters is ready to direct a cycle. Com
peting bus masters (OMA devices) are assigned varying priorities, which are
weighed during arbitration. Each bus master gets control of the bus for a
number of cycles as determined by the arbitration process.

OMA device

A OMA device (or bus master) is one that enters into arbitration for the
channel. If it wins, it receives addresses and control signals from the OMA
controller so it can read or write data.

continued

ABIOS Direct Memory Access (DMA) Service 545

Hardware Environment, Continued

OMA Controller

A DMA controller is a device that monitors the arbitration process and gives
addresses and control signals to the device that won the bus through arbitra
tion. The controller does not enter into the arbitration itself. PS/2-compatible
Micro Channel-based systems provide a DMA controller that supports DMA
transfers to/from up to eight devices at once.

OMA hardware registers

The DMA controller maintains several hardware registers for each DMA
channel. The key registers are:

• a memory address where the next byte or word will be transferred to or
from,

• a count of the remaining bytes to transfer ((transfer count) ,

• a flag (mode} controlling the transfer direction (to memory or to the
device). and

• transfer status flags for each channel (status).

OMA hardware registers

The DMA Controller has ten sets of registers, summarized below:

Number of
Register Size (bits) Registers How Allocated

Memory Address 24 8 1 per Channel

110 Address 16 8 1 Per Channel

Transfer Count 16 8 1 Per Channel

Temporary Holding 16 1 All Channels

Mask 4 2 1 for Channels 7-4
1 for Channels 3-0

Arb us 4 2 1 for Channel 4
1 for Channel 0

Mode 8 8 1 per Channel

Status 8 2 1 for Channel 7-4
1 for Channel 3-0

Function 8 1 All Channels

Refresh 9 1 Independent of OMA

continued

546 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment, Continued

Mode Control Field

The Mode Control field provides an opportunity for the caller to use the
Autoinitialization and Programmed 1/0 (PIO) features of the OMA Controller.

• Autoinitialization
Specifies if the OMA Controller will initialize automatically when the transfer
reaches the terminal count.

• Programmed 110
Specifies that the 1/0 address is to be programmed to the OMA Control
ler, driving the 1/0 address on the bus during the OMA cycles.

Transfer Control Bytes

These fields provide an opportunity for the caller to specify the physical
address of the memory and 1/0 fields for ABIOS OMA Service functions 1 Oh,
11 h, and 12h.

• Count Control
Specifies if the physical address is decremented or incremented during a
transfer.

• Device Size
Specifies whether this is an 8-bit or 1 6-bit transfer.

Microprocessor and OMA

It is possible for the microprocessor to address the OMA controller and
access the OMA registers. The microprocessor can control the OMA modes,
transfer addresses, transfer counts, channel masks, and page registers.

Direct OMA Controller access

Reading directly from or writing directly to any DMA Controller port may cause
unpredictable results.

continued

ABIOS Direct Memory Access (DMA) Service 547

Hardware Environment, Continued

OMA data transfer

After a OMA device wins the arbitration bus and the OMA controller is pro
grammed to service the request, a transfer can take place.

OMA transfers can be:

• single transfer,

• multiple transfer (burst mode), or

• read verification.

Burst mode

Burst mode is a method of OMA transfer that allows a device to remain
inactive for long periods and then send large amounts of data in a short
time. Some peripheral devices, e.g. a fixed disk, transfer their data in bursts
that are frequently separated by long periods of inactivity. Burst mode is a
way of making these devices more efficient. The device asks to be serviced
only when it has data to transfer and then does so in large quantities.

Arbitration process

548

Arbitration is a process through which devices compete for control of the
Micro Channel on a prioritized basis. Arbitration is organized in levels of
priority, and on each level there can be a number of competing devices.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment, Continued

Arbitration levels

Arbitration levels are predefined or programmable levels of priority assigned
to devices that compete for possession of the channel.

Central Arbitration Control is a hardware function that allows intelligent pe
ripherals to share and control access to the system.

Arbitration Levels are numbered from OOh to OFh, and include -1 , and -2. In
addition, there are Arbitration Levels -1 and -2, which exist only on the
system board. Of the former set, Arbitration Level OOh has the highest
priority; Level OEh has the lowest. All arbitration level priorities are assigned
sequentially; OOh through OEh are the highest through lowest priorities. Level
OFh is reserved for use by the microprocessor.

The ABIOS OMA Service reads the fixed disk arbitration level from the CBIOS
extended data area at ABIOS initialization and uses this arbitration level
throughout the ABIOS session.

continued

ABIOS Direct Memory Access (OMA) Service 549

Hardware Environment, Continued

Arbitration levels table

550

The following table summarizes the arbitration levels:

Arbitration Levels Primary Assignment

FEh Memory Refresh

FFh NMI

OOh OMA Channel o•
01h OMA Channel 1

02h OMA Channel 2

03h OMA Channel 3

04h OMA Channel 4 •

05h OMA Channel 5

06h OMA Channel 6

07h OMA Channel 7

08h Reserved

09h Reserved

OAh Reserved

OBh Reserved

OCh Reserved

OOh Reserved

OEh Reserved

OFh Reserved for System Microprocessor

• These OMA Channels can be programmed to any arbitration level

ABIOS functions allow these arbitration levels to be allocated, deallocated or
disabled (except levels -1, -2, and OFh, which are permanently allocated).

continued

ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment, Continued

OMA channel flags

Additional channel flags control whether

• a transfer is to be repeated forever,

• the memory address is to be decremented or incremented after each
cycle,

• the OMA controller maintains 1/0 address (this is hardwired in most de
vices that use OMA) , or

• a byte or a word is transferred at each cycle.

Physical and Virtual OMA channels

OMA channels can be either physical or virtual. A physical channel can only
have one arbitration level, but a virtual channel can be programmed to own
any arbitration level not currently assigned to a different channel. Thus, a
virtual OMA channel can have many arbitration levels.

Functionally, there is no difference between physical and virtual channels.
Priority is determined by the arbitration level only, where level OOh is the
highest priority and level OEh the lowest.

Virtual OMA Channels and the Arbus register

The arbitration level assignment for channels 0 and 4 can be programmed
using the two 4-bit Arbus registers. The Arbus registers permit dynamic
reassignment of the arbitration ID value by which the OMA controller re
sponds to OMA requests for bus arbitration. Channels 0 and 4 can then
service devices at any arbitration level.

OMA channels

See Section 2 for a complete list of 1/0 port addresses for OMA channels.
The OMA channel addresses are from OOOOh-001 Fh and from 0080h-000Fh.

continued

ABIOS Direct Memory Access (OMA) Service 551

Hardware Environment, Continued

OMA extended mode

An extended mode register is available for each programmable OMA channel
and is used when a OMA channel requests a OMA data transfer. OMA chan
nels must match the transfer size of the OMA slave, which is programmed
by Bit 6 of the extended mode register. OMA read transfers of 16 bits from
8-bit memory or 8-bit memory-mapped 1/0 devices are not supported.

The following table describes the OMA extended mode register:

Bit Number Description

7 = 0 Reserved

6 = 0 8-blt transfer
= 1 16-blt transfer

5 = 0 Reserved

4 = 0 Reserved

3 = 0 Read memory transfer
= 1 Write memory transfer

2 = 0 Verify
= 1 Transfer data

1 = 0 Reserved

0 = 0 1/0 address OOh
= 1 User programs the 1/0 address

Error Handling

How errors are reported

552

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the OMA Service function requested
has an error. The caller's Return Code handler routine should then test Bits
14, 13, 12, and 8 to determine the class of error that has occurred and then
test the remaining bits to determine the precise nature of the error.

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns information about the
specified Logical ID.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word Reserved (Initialize to OOOOh)
1Eh Word Reserved (Initialize to OOOOh)

ABIOS Direct Memory Access (OMA) Service

Output:

Hardware Interrupt Level (FFh)
Arbitration Level FFh
Device ID (OOOFh)
Count of Units (0001h)

=Reserved
= 0 No overlap across

units
= 1 Overlap across units

supported
= 0 Reserved
= Transfer Data Pointer

Mode
00 = No Pointers

Required

Request Block Length (for other
functions)
Secondary Device ID

continued

553

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

Function: 02h - Reserved

554 ABIOS for IBM PS/2 Computers and Compatibles

Function: 03h - Read Device Parameters

Description

This function is a single-staged request that returns the OMA Parameters for
the specified Logical ID and Unit.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0003h
OBh Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlalize to OOOOh)
OCh Word
OEh Word
10h Word
12h Byte

14h Byte
15h Byte
16h Word

Return Codes

Output:

Time-out
Maximum Address In Megabytes
Maximum OMA Transfer Size In
Kiiobytes
Number of Arbitration Levels

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS Direct Memory Access (OMA) Service 555

Functions: 04h - OAh - Reserved

Function: OBh - Allocate Arbitration Level

Description

This function is a single-staged request that allocates an arbitration level.
The Allocate Arbitration Level function can be used to exclude other well
behaved tasks from using this Arbitration Level while a OMA transfer is
performed. Valid arbitration levels are OOh through OEh. OFh is reserved.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
OBh Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
16h Word
1Fh Byte Arbitration Level to Allocate

continued

556 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Allocate Arbitration Level, continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8001h Arbitration Level Not Available

8006h No Channel Available

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

ABIOS Direct Memory Access (OMA) Service 557

Function: OCh - Deallocate Arbitration Level

Description

This function is a single-staged request that frees an arbitration level and its
associated OMA channel so another task can use it.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo real ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved inltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Word
1Fh Byte Arbitration Level to deallocate

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level Not Allocated

8004h Transfer In Process No Channel Available

8007h Arbitration Level Not Disabled

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

558 ABIOS for IBM PS/2 Computers and Compatlbles

Function: ODh - Disable Arbitration Level

Description

This function is a single-staged request that disables the specified arbitration
level for the specified device. It may be called after a OMA transfer is
complete.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Word
1Fh Byte Arbitration Level to dlsable

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level Not Allocated

8004h Transfer In Process

COOOh Invalid Logical ID

C001h Invalid Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Field Not Valld

ABIOS Direct Memory Access (OMA) Service 559

Function: OEh - OMA Transfer Status

Description

This function is a single-staged request that returns the number of bytes that
remain to be transferred from the OMA controller.

Request Block Structure

.:>ff set Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOEh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
16h Word
18h DWord

1Fh Byte

Return Codas

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level Not Allocated

8003h Arbitration Level Dlsabled

COOOh Invalid Logloal ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valld

560 ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Abort OMA Operation

Description

This function is a single-staged request that disables a DMA operation on an
arbitration level and returns the number of bytes to be transferred and the
address of the bytes to be transferred.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOFh
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord

16h Word
18h DWord

1Fh Byte

continued

ABIOS Direct Memory Access (OMA) Service 561

Function: OFh - Abort OMA Operation, Continued

Return Codes

562

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level not Allocated

8003h Arbitration Level Dlsabled

8005h No Transfer In Process

COOOh lnvalld Loglcal ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

COO Sh lnvalld OMA Parameter

FFFFh Return Code Field Not Valld

ABIOS for IBM PS/2 Computers and Compatlbles

Function: 10h - OMA Transfer from Memory to 110

Description

This function is a single-staged request that programs the DMA controller
with the values specified in the Request Block and transfers the specified
number of bytes from the specified memory location to the specified 1/0
port address (001 Sh or 001 Ah).

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Logical ID
04h Word Unit
06h Word Function (0010h)
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord Physical Address of Memory
14h DWord Physical Address of 1/0
18h DWord Count of Data to Transfer (In

bytes)
1Ch Byte Mode Control, where:

Bits 7-3 = Reserved
Bit 2 = Programmable 1/0
Bit 1 =Reserved
Bit 0 = Auto lnltlallzatlon

1Dh Byte Transfer Control Byte 1 , where:
Bits 7-3 = Reserved
Bit 2 = Count control

= O Increment
= 1 Decrement

Bit 1 =Reserved
Bit O = Device size

= 0 8-blt
= 1 16-blt

1Eh Byte Transfer Control Byte 2, where:
Bits 7-1 =Reserved
Bit 1 = Device size

= 0 8-blt
= 1 16-blt

1Fh Byte Arbitration Level to Use

continued

ABIOS Direct Memory Access (OMA) Service 563

Function: 10h - OMA Transfer from Memory to 1/0, Continued

Return Codes

564

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level Not Allocated

8004h Transfer In Process

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

COO Sh Invalid OMA Parameter

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: 11 h - Read from 1/0 and Write to Memory

Description

This function is a single-staged request that reads the specified number of
bytes from the specified 110 port address (001 Sh or 001 Ah) and writes the
bytes to the specified memory location.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h, Word Unit
06h Word Function 0011 h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h DWord Physical Address of Memory
14h DWord Physlcal Address of 110

18h DWord Count of Data to Transfer (In
bytes)

1Ch Byte Mode Control, where:
Bits 7-3 = Reserved
Bit 2 = Programmable 1/0
Bit 1 =Reserved
Bit 0 = Auto lnltlallzatlon

1Dh Byte Transfer Control Byte 1 , where:
Bits 7-3 =Reserved
Bit 2 = Count control

0 Increment
1 Decrement

Bit 1 =Reserved
Bit 0 = Device size

0 8-blt
1 16-blt

1Eh Byte Transfer Control Byte 2, where:
Bits 7-1 = Reserved
Bit 1 = Device size

0 8-blt
1 16-blt

1Fh Byte Arbitration Level to Use

continued

ABIOS Direct Memory Access (OMA) Service 565

Function: 11h - Read from 110 and Write to Memory, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level Not Allocated

8004h Transfer In Process

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h invalid Request Block Length

FFFFh Return Code Fleld Not Valid

566 ABIOS for IBM PS/2 Computers and Compatibles

Function: 12h - Load OMA Controller Parameters

Description

This function is a single-staged request that programs the OMA Controller
with the specified input values.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo !cal ID
04h Word Unit
06h Word Function 0012h
08h Word Reserved Initialize to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word Return Code
OEh Word
10h DWord Physical Address of Memory
14h DWord Physical Address of 110

18h DWord Count of Data to Transfer (In
bytes)

1Ch Byte Mode Control, where:
Bits 7 -3 = Reserved
Bit 2 =Programmable 1/0
Bit 1 =Reserved
Bit 0 = Autofnltfallzatfon

1Dh Byte Transfer Control Byte 1, where:
Bits 7-3 = Reserved
Bit 2 = Count control

0 Increment
1 Decrement

Bit 1 =Reserved
Bit 0 = Device size

0 8-blt
1 16-blt

1Eh Byte Transfer Control Byte 2, where:
Bits 7-1 =Reserved
Bit 0 = Device size

0 8-blt
1 16-bft

1Fh Byte Arbitration Level to Use

continued

ABIOS Direct Memory Access (OMA) Service 567

Function: 12h - Load OMA Controller Parameters, Continued

Return Codes

568

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8002h Arbitration Level Not Allocated

8004h Transfer in Process

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Chapter 21

ABIOS Programmable Option
Select Service

Overview

Description

The ABIOS Programmable Option Select (POS) Service provides functions
that access and manipulate the eight POS registers on each adapter card
and the system board and provide access to the CMOS RAM associated
with the POS feature.

Identifying the correct CMOS RAM locations

The ABIOS Programmable Option Select Service determines if CMOS RAM
and Extended CMOS RAM are available in the system. It examines the POS
System ID byte, which identifies the machine type. This test is performed
for every function call to this service.

continued

ABIOS Programmable Option Select Service 569

Overview, Continued

Programmable Option Select

POS is designed to eliminate switches from the system board and adapter
cards. In place of switches, POS provides eight programmable registers.
These registers are set by information contained in Adapter Descriptor Files
supplied by adapter card manufacturers.

Adapter Description Flies

Adapter Description Files (ADFs) are provided by the adapter card manufac
turer for each adapter card. A reference diskette reads a unique adapter ID
number from each card, matches it with an ADF file, and configures the
system according to the information provided by the ADF.

Summary of Programmable Option Select Service functions

Function Description

OOh Default Interrupt Handler

01h Return Loglcal ID Parameters

03h-0Ah Reserved

OBh Read Stored POS Data from CMOS RAM

OCh Write Stored POS Data from CMOS RAM

ODh Read POS Data from an Adapter

OEh Write Dynamic POS Data from Adapter

In this chapter

This chapter includes information about the following topics:

• Hardware Environment
• Error Handling

• ABIOS POS Service functions

570 ABIOS for IBM PS/2 Computers and Compatibles

Hardware Environment

Introduction

The ABIOS POS Service assumes that the system is based on IBM's Micro
Channel or its equivalent. POS is an integral part of the Micro Channel Archi
tecture (MCA) .

Adapter slots

ABIOS supports systems with up to eight adapter cards (or more with cus
tomization) . ABIOS will work with any system regardless of the number of
adapter slots available.

Adapter card Identification

Each adapter card must have a unique 2-byte identifier.

Adapter description files

POS data is accumulated in adapter description files (ADFs) for each
adapter. A reference diskette reads .ADF files, which are created by adapter
manufacturers, and stores configuration information in CMOS RAM. The BIOS
POST routine reads the CMOS RAM and writes the configuration information
to the POS registers of the adapters and the system board.

continued

ABIOS Programmable Option Select Service 571

Hardware Environment, Continued

Programmable option select 110 Ports

The following table lists the POS 1/0 port addresses:

Read/Write
1/0 Port Status Description

0094h R/W System Board Setup Enable Register, where:
Bit 7 = 0 Setup system board functions

1 Enable system board function
Bit 6 =Reserved
Bit 5 = 0 Setup VGA

1 Enable VGA
Bits 4-0 = Reserved

0095h NIA Reserved

0096h R/W Channel Position Select Register, where:
OOh = No channel selected
08h = Channel 1 selected
09h = Channel 2 selected
OAh = Channel 3 selected
OBh = Channel 4 selected
OCh = Channel 5 selected
ODh = Channel 6 selected
OEh = Channel 7 selected
OFh = Channel 8 selected
80h = Channel reset
Note: Bits 4, 5, and 6 are set to 1 when read

0097h N/A Reserved

0100h R/O POS Register 0 - Adapter Identification Byte
(Least Significant Byte)

0101h R/O POS Register 1 - Adapter Identification Byte
(Most Significant Byte)

0102h R/W POS Register 2 - Option Select Data Byte 1
Bits 7-1 = Reserved
Bit 0 = 1 Card enable

0103h R/W POS Register 3 - Option Select Data Byte 3

0104h R/W POS Register 4 - Option Select Data Byte 4

0105h R/W POS Register 5 - Option Select Data Byte 4,
where:
Bit 7 = 1 Channel Check active
Bit 6 = 0 Channel Check exception status

available In POS registers 6 and 7
= 1 No status available

Bits 5-0 = Reserved

0106h RIO POS Register 6 - Subaddress extension (LSB)

0107h RIO POS Register 7 - Subaddress Extension (MSB)

572 ABIOS for IBM PS/2 Computers and Compatibles

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Programmable Option Select
Service function requested has an error. The caller's Return Code handler
routine should test Bits 14, 13, 12, for the class of error that has occurred
and then test the remaining bits to determine the nature of the error.

ABIOS Programmable Option Select Service 573

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns information about the
specified Logical ID.

Request Block Structure

Offset Size Input:

Request Block Length (20h)

Reserved Initialize to OOOOh

OAh Word Reserved (Initialize to OOOOh)

OCh Word

14h Word
16h Word

18h Word

1Ah B te
1Bh Byte
1Ch Word
1Eh Word

Output:

Hardware Interrupt Level (FFh)
Arbitration Level FFh
Device ID (0010h)
Count of Units (01)

=Reserved
= 0 No overlap across

units
= 0 Reserved
= Transfer Data Pointer

Mode
00 = No Pointers

Required
Request Block Length (for other
functions

continued

574 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh lnvalld Loglcal ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Field Not Valld

Functions: 02h - OAh - Reserved

Function: OBh - Read Stored POS Data from CMOS RAM

Description

This function is a single-staged request that places the two POS Adapter
Identification bytes from CMOS RAM into the Request Block at offset 12h. It
also moves the contents of the POS Option Select Data Bytes 1-4 from
CMOS RAM to the address specified by the data buffer pointer at offset 16h
in the Request Block.

continued

ABIOS Programmable Option Select Service 575

Function: OBh - Read Stored POS Data from CMOS RAM, Continued

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (Initialize to OOOOh)
OCh Word
OEh Word
10h Byte Slot Number, where:

Bits 7-4 = Reserved
Bits 3-0 = Slot Number, where:

OOOOb = System board
0001b =Slot 1
001 Ob = Slot 2
0011b =Slot 3
0100b =Slot 4
0101b =Slots
0110b =Slot 6
0111b =Slot 7
1 OOOb = Slot 8

11h Byte
12h Word
14h Word
16h DWord Pointer to Data Buffer
1Ch Word Reserved (Initialize to OOOOh)

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

80FEh CMOS RAM Checksum Invalid

80FFh CMOS RAM Has Bad Battery

COOOh Invalid Loglcal ID

C001h Invalid Function

C003h Invalid Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Field Not Valid

576 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Write Stored POS Data from CMOS RAM

Description

This function is a single-staged request that copies the Adapter ID data from
offset 12h in the Request Block to CMOS RAM. It also copies the first four
bytes of the contents of the data buffer at the address specified in offset
16h of the Request Block to POS Registers 2-5 (Option Select Data Bytes
1-4) in CMOS RAM.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
OBh Word
OAh Word
OCh Word
OEh Word
10h Byte

11h Byte
12h Word
14h Word
16h DWord
1Ch Word

Input:

R~quest Block Length
Lo lcal ID
Unit
Function OOOCh
Reserved lnltlallze to OOOOh
Reserved (lnltlallze to OOOOh)

Slot Number, where:
Bits 7-4 = Reserved
Bits 3-0 = Slot Number, where:

OOOOb = System board
0001 b = Slot 1
001 Ob = Slot 2
0011b =Slot 3
0100b =Slot 4
0101b =Slot 5
0110b =Slot 6
0111b =Slot 7
1 OOOb = Slot 8

Reserved (lnltlallze to OOOOh)
Adapter ID
Reserved (lnltlallze to OOOOh)
Pointer to Data Buffer
Reserved (lnltlallze to OOOOh)

ABIOS Programmable Option Select Service

Output:

continued

577

Function: OCh - Write Stored POS Data from CMOS RAM,
Continued

Return Codes

578

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

80FEh CMOS RAM Checksum Invalid

80FFh CMOS RAM Has Bad Battery

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Read POS Data from an Adapter

Description

This function is a single-staged request that reads the POS Adapter Identifi
cation bytes directly from 1/0 ports 01 OOh and 0101 h and enters this data in
the Request Block at offset 12h. It also copies the POS Registers 2-5 (Op
tion Select Data Bytes 1-4) from 1/0 ports 0102h-0105h to the data buffer
pointed to by the address in offset 16h of the Request Block.

Request Block Structure

Offset Size Input:

OOh Request Block Length
02h Lo lcal ID
04h Unit
06h Function OOOCh
OBh Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word Return Code
OEh Word
10h Byte Slot Number, where:

Bits 7-4 =Reserved
Bits 3-0 =Slot Number, where:

OOOOb = System board
0001b =Slot 1
0010b =Slot 2
0011b =Slot 3
0100b =Slot 4
0101b =Slot 5
0110b =Slot 6
0111b =Slot 7
1 OOOb = Slot 8

11h B te
12h Word
14h Word
16h DWord Pointer to Data Buffer
1Ch Word Reserved (lnltlallze to OOOOh)

continued

ABIOS Programmable Option Select Service 579

Function: ODh - Read POS Data from an Adapter, Continued

Return Codes

580

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Write Dynamic POS Data from an Adapter

Description

This function is a single-staged request that writes the first four bytes of
data found at the address specified in the Request Block at offset 16h to
1/0 ports 0102h-0105h (POS Registers 2-5 containing Option Select Data
Bytes 1-4).

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte

Input:

Request Block Length
Lo lcal ID
Unit
Function OOOEh
Reserved Initialize to OOOOh
Reserved (Initialize to OOOOh)

Slot Number, where:
Bits 7-4 = Reserved
Bits 3-0 =Slot Number, where:

OOOOb = System board
0001b =Slot 1
0010b =Slot 2
0011 b = Slot 3
0100b =Slot 4
0101b =Slot 5
0110b =Slot 6
0111b =Slot 7
1 OOOb = Slot 8

11h Byte Reserved (lnltlallze to OOOOh)
14h Word Reserved (lnltlallze to OOOOh)
16h DWord Pointer to Data Buffer
1Ch Word Reserved (Initialize to OOOOh)

continued

ABIOS Programmable Option Select Service 581

Function: OEh - Write Dynamic POS Data from an Adapter,
Continued

Return Code

582

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COOOh Invalid Logical ID

C001h Invalid Function

C003h Invalid Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Chapter 22

ABIOS Keyboard Security Service

Overview

Introduction

The ABIOS Keyboard Security Service consists of a set of functions that
allow the caller to implement the security features of PS/2-compatible
systems. Security features include password-controlled access to the
system.

Types of password

Micro Channel-based PS/2-compatible systems may support two types of
passwords: a power-on password, and a keyboard security password.
Password security is controlled through a reference diskette utility.

Power-on password

The power-on password limits access to a PS/2-compatible system by
testing for a password when the system is first turned on. Passwords are
controlled by the end user through the reference diskette. The power-on
password is stored in nonvolatile CMOS RAM.

continued

ABIOS Keyboard Security Service 583

Overview, Continued

Keyboard security password

The keyboard security password limits access to a PS/2-compatible system
by testing for a password when the first attempt to use the keyboard is
made. Passwords are controlled by the end user through a reference disk
ette. The keyboard security password is stored in 8042 RAM.

Password storage

The Keyboard Security password is stored in 8042 RAM and is thus volatile.
Initially, the BIOS uses the power-on password as the keyboard security
password. The power-on password is stored in nonvolatile CMOS RAM (at
38h) and is transferred to the 8042 during the BIOS POST initialization.

How passwords are set

The Reference Diskette controls the passwords for both the power-on pass
word and the keyboard security password. See the manual which accompa
nies your reference diskette for more information about system password
protection.

Summary of ABIOS Keyboard Security Service functions

Function Description

01h Return Logical ID Parameters

02h Reserved

03h Read Device Parameters

04h-05h Reserved

06h Enable Keyboard Security

07h-0Ah Reserved

OBh Write Password

OCh Write Invocation Byte

ODh Write Match Byte

OEh Write Filter Byte 1

OFh Write Filter Byte 2

continued

584 ABIOS for IBM PS/2 Computers and Compatibles

Overview, Continued

In this chapter

This chapter includes information about the following topics:

• Hardware Environment

• System Scan Codes

• Error Handling

• ABIOS Keyboard Security Service functions

Hardware Environment

Introduction

The ABIOS Keyboard Security Service interfaces with the features of an
appropriately programmed Intel 8042 (or equivalent) intelligent keyboard
controller.

Storage of Keyboard Security data in 8042

The following table shows where the Keyboard Security function bytes are
stored in the 8042 and the values to which they are initialized.

8042 RAM
Location Keyboard Security Function lnltlallzed Value

33h Invocation Byte 0

34h Match Byte 0

36h Fiiter Byte 1 Left Shift Key

37h Filter Byte 2 Right Shift Key

ABIOS Keyboard Security Service 585

System Scan Codes

The following system scan codes, including multiple byte codes, can be
used for the Write Password, Write Invocation and Write Match Byte
functions.

Typewriter/Function Keys

U.S. U.S.
Keyboard System Scan Keyboard System Scan

Key# Legend Codes (hex) Key# Legend Codes (hex)

1 ' - OE 26 p 40

2 11 16 27 [{ 54

3 2@ 1E 28 J } SB

4 3# 26 29 101-key only so
5 4$ 25 30 Caps Lock S8

6 5% 2E 31 A 1C

7 6 36 32 s 1B

8 7& 30 33 D 23

9 8* 3E 34 F 2B

10 9(46 3S G 34

11 0) 45 36 H 33

12 - 4E 37 J 3B -
13 =+ SS 38 K 42

15 Backspace 66 39 L 4B

16 Tab OD 40 .. 4C '.
17 Q 15 41 ' . S2

18 w 10 42 102-key only SD

19 E 24 43 Enter SA

20 R 20 44 L Shift 12

21 T 2C 4S 102-key only 61

22 y 35 46 z 1A

23 u 3C 47 x 22

24 I 43 48 c 21

2S 0 44 49 v 2A

continued

586 ABIOS for IBM PS/2 Computers and Compatibles

System Scan Codes, Continued

Typewriter/Function Keys, cont'd

U.S. U.S.
Keyboard System Scan Keyboard System Scan

Key# Legend Codes (hex) Key# Legend Codes (hex)

50 B 32 101 9 PgUp 7D

51 N 31 102 6 Right 74

52 M 3A 103 3 Page Down 7A

53 ,< 41 104 . Del 71

54 .> 49 105 - 78

55 I ? 4A 106 + 79

57 R Shift 59 108 Enter E0-5A

58 L Ctrl 14 110 Esc 76

60 L Alt 11 112 F1 05

61 Space 29 113 F2 06

62 R Alt E0-11 114 F3 04

64 R Ctrl E0-14 115 F4 oc
90 Num Lock 77 116 F5 03

91 7 Home 6C 117 F6 OB

92 4 Left 68 118 F7 83

93 1 End 69 119 F8 OA

96 8 Up 75 120 F9 01

97 5 73 121 F10 09

98 2 Down 72 122 F11 78

99 O Ins 70 123 F12 07

100 • 7C 125 Scroll Lock 7E

Other keys

The rest of the keys send a series of codes that depend on the state of the
shift keys (Ctrl, Alt, arid Shift) and the Num Lock key (On or Off). Since the
base scan code is the same as that for another key, an additional code (hex
EO) is added to the base code so that it is unique. The following four tables
summarize the scan codes for these other keys.

continued

ABIOS Keyboard Security Service 587

System Scan Codes, Continued

Cursor/Control Keys

U.S. Base Case or
Keyboard Shift +

Key# Legend Num Lock Shift Case* Num Lock on

75 Insert E0-70 EO FO EO 12
12 EO 70 EO 70

76 Delete E0-71 EO FO EO 12
12 EO 71 EO 71

79 Left E0-6B EO FO EO 12
12 EO 6B EO 6B

80 Home E0-6C EO FO EO 12
12 EO 6C EO SC

81 End E0-69 EO FO EO 12
12 EO 69 EO 69

83 Up E0-75 EO FO EO 12
12 EO 75 EO 75

84 Down E0-72 EO FO EO 12
12 EO 72 EO 72

85 Page Up E0-7D EO FO EO 12
12 EO 7D EO 7D

86 Page Down E0-7A EO FO EO 12
12 EO 7A EO 7A

89 Right E0-74 EO FO EO 12
12 EO 74 EO 74

• With the Left Shift key down, the FO 12 shift code Is added to the other scan
codes sent. With the Right Shift key down, FO 59 Is added. When both keys are
down, both sets of codes are sent with the rest of the scan code.

"I" Key on Numeric Keypad

U.S. Keyboard System Scan Codes
Key# Legend (hex) Shift Case*

95 I EO 4A EO FO
12 EO 4A

* With the Left Shift key down, the FO 12 shift code Is added to the other scan
codes sent. With the Right Shift key down, FO 59 Is added. When both keys are
down, both sets of codes are sent with the rest of the scan code.

continued

588 ABIOS for IBM PS/2 Computers and Compatibles

System Scan Codes, Continued

Print Screen/Sys Req Key

U.S.
Keyboard System Scan Ctrl Case

Key# Legend Codes (hex) Shift Case Alt Case

124 Print Screen EO 12 EO 7C 84
EO 7C

Pause/Break Key

U.S. Keyboard System Scan Codes
Key# Legend (hex) Ctrl Key Pressed

126 Pause E1 14 77 EO 7E EO
E1 FO 14 FO 7E

FO 77

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Keyboard Security Service func
tion requested has an error. The caller's Return Code handler routine should
test Bits 14, 13, 12, and 8 for the class of error that has occurred and then
test the remaining bits to determine the precise nature of the error.

ABIOS Keyboard Security Service 589

Function: 01h - Return Logical ID Parameters

Description

This function is a single-staged request that returns the parameters for the
Logical ID associated with the keyboard hardware.

Request Block Structure

Offset Size

OOh Word
02h Word
04h Word
06h Word
08h Word
OAh Word
OCh Word
OEh Word
10h Byte
11h B te
12h Word
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

590

Input:

Request Block Length (20h)
Lo lcal ID
Unit
Function 0001 h
Reserved Initialize to OOOOh
Reserved (lnltlalize to OOOOh)
Return Code
Reserved (lnltlalize to OOOOh)

Reserved (Initialize to OOOOh)
Reserved (Initialize to OOOOh)

Device ID (0016h)
Count of Units.
Logical ID flags
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= 1 Overlap across units

supported
= O Reserved
= Transfer Data Pointer

Mode
00 No Pointers

Required
Request Block Length (f.or other
functions)

continued

ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters, Continued

Return Code

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh lnvalld Loglcal ID

C001h lnvalld Function

C003h lnvalld Unit Number

C004h Invalid Request Block Length

FFFFh Return Code Fleld Not Valld

Function: 02h - Reserved

ABIOS Keyboard Security Service 591

Function: 03h - Read Device Parameters

Description

This single-staged function returns the maximum password length
(1-7 bytes).

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo leaf 10
04h Word Unit
06h Word Function 0003h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh ~ord Return Code
OEh Word
10h Byte
11h Byte

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

0005h Not My Interrupt, Resume Stage after Interrupt

COOOh lnvalld Logical 10

C001h lnvalld Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Fleld Not Valld

592 ABIOS for IBM PS/2 Computers and Compatibles

Functions: 04h - 05h - Reserved

Function: 06h - Enable Keyboard Security

Description

This single-staged function enables keyboard security. It is called after the
Write Password, Write Invocation Byte, Write Match Byte, and Write Filter
Byte functions have initialized the password entry procedure.

Request Block structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0006h
08h Word Reserved initialize to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)

OCh Word
OEh Word
11h 1 Byte

continued

ABIOS Keyboard Security Service 593

Function: 06h - Enable Keyboard Security, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy

8003h Device Inhibited

COO Oh lnvalld Logical ID

C001h lnvalld Function Number

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

COO Sh lnvalld Keyboard Security Parameter

FFFFh Return Code Field Not Valld

Functions: 07h - OAh - Reserved

594 ABIOS for IBM PS/2 Computers and Compatibles

Function: OBh - Write Password

Description

This single-staged function sets the password or changes an existing pass
word. Write Password writes a string of system scan codes from 1-7 bytes
long to 8042 RAM (see the System Scan Code tables in this chapter).

A password example

The password, ABC, is stored in the 8042 as follows:

1 Eh 30h 2Eh 1 Ch OOh

where

• 1 Eh is the system scan code for A

• 30h is the system scan code for B

• 2Eh is the system scan code for C

• 1 Ch is the system scan code for the Return key

• The OOh is set by the ABIOS

The routine using this function matches each character as it is received from
the keyboard. When the return key scan code is received, it is matched,
which signals the end of the password.

Password storage

The Keyboard Security password is stored in 8042 RAM and is thus volatile.
Initially, the BIOS uses the power-on password as the keyboard security
password The power-on password is stored in nonvolatile CMOS RAM (at
38h) and is transferred to the 8042 during the BIOS POST initialization.

continued

ABIOS Keyboard Security Service 595

Function: OBh - Write Password, Continued

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0008h
08h Word Reserved initiallze to OOOOh
OAh Word Reserved (lnitiallze to OOOOh)
OCh Word
OEh Word
10h Byte Password Length in bytes
11h Byte Reserved (lnitiallze to OOOOh)
12h B e First Scan Code
13h B te Second Scan Code
14h Byte Third Scan Code
15h Byte Fourth Scan Code
16h Byte Fifth Scan Code
17h Byte Sixth Scan Code
18h Byte Seventh Scan Code

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy

8003h Device Inhibited

COO Oh lnvalld Logical ID

C001h lnvalld Function Number

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

C005h lnvalld Keyboard Security Parameter
This value is set and no action is taken if the Password
Length field is 0 or greater than 7 bytes

FFFFh Return Code Field Not Valld

598 ABIOS for IBM PS/2 Computers and Compatibles

Function: OCh - Write Invocation Byte

Description

This single-staged function sets or changes the Invocation Byte. The Invoca
tion Byte may contain any system scan code. The byte is stored at location
33h in 8042 RAM. The default value for this scan code is zero.

Invocation Byte usage

This byte acts as a signal from the 8042 to the caller indicating that a valid
password has been loaded and that password security has been enabled.
The Invocation Byte is returned to the caller to invoke security. If the Invoca
tion Byte is zero, keyboard security is not enabled.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOCh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte Invocation Byte Scan Code
11h Byte Reserved (lnltlallze to OOOOh)

continued

ABIOS Keyboard Security Service 597

Function: OCh - Write Invocation Byte, Continued

Return Codes

598

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

BOO Oh Device Busy

8003h Device Inhibited

COO Oh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Security Parameter

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: ODh - Write Match Byte

Description

This function sets or changes the Match Byte. The byte is stored in location
34h of 8042 RAM. The default value is zero.

Match Byte usage

This byte is used as a signal from the 8042 to the caller that keyboard
security has been disabled now that the keyboard input matches the system
scan code(s) in the password field. The 8042 sends this byte to the caller
using a keyboard interrupt. If the Match Byte is zero, it will not be used to
signal the keyboard security disabled status to the caller.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOODh
OBh Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte Scan Code
11h Byte Reserved (lnltlallze to OOOOh)

continued

ABIOS Keyboard Security Service 599

Function: ODh - Write Match Byte, Continued

Return Codes

600

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy

8003h Device Inhibited

COOOh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Security Parameter

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: OEh - Write Filter Byte 1

Description

This function sets or changes Filter Byte 1 . This byte contains a system scan
code that is ignored if it is encountered during password validation. Filter
Byte 1 is initialized to left shift key.

Usage of Filter Bytes

If unaltered, Filter Bytes 1 and 2 together ensure that keyboard security input
is not case-sensitive.

Request Block Structure

Offset Size Input: Output:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOEh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word Return Code
OEh Word
10h Byte Fiiter Byte 1
11h Byte Reserved (lnltlallze to OOOOh)

continued

ABIOS Keyboard Security Service 601

Function: OEh - Write Filter Byte 1, Continued

Return Codes

602

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy

8003h Device Inhibited

COOOh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

C005h Invalid Keyboard Security Parameter

FFFFh Return Code Field Not Valid

ABIOS for IBM PS/2 Computers and Compatibles

Function: OFh - Write Filter Byte 2

Description

This function sets or changes Filter Byte 2. This byte contains a system scan
code that is ignored if it is encountered during password validation. Filter
Byte 2 is initialized to right shift key.

Usage of Filter Bytes

If unaltered, Filter Bytes 1 and 2 together ensure that keyboard security input
is not case-sensitive.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOFh
08h Word Reserved ·initialize to OOOOh.
OAh Word Reserved (Initialize to OOOOh)
OCh Word Return Code
OEh Word
10h Byte Fiiter Byte 2
11h Byte Reserved (Initialize to OOOOh)

continued

ABIOS Keyboard Security Service 603

Function: OFh - Write Filter Byte 2, Continued

Return Codes

604

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

8000h Device Busy

8003h Device Inhibited

COOOh lnvalld Logical ID

C001h lnvalld Function Number

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

C005h lnvalld Keyboard Security Parameter

FFFFh Return Code Fleld Not Valld

ABIOS for IBM PS/2 Computers and Compatibles

Chapter 23

ABIOS Error Log Service

Overview

Introduction

The ABIOS Error Log Service is used by the operating system to read and
write error messages to the system error log area in extended CMOS RAM.

This service can only be used by systems that have extended CMOS RAM.

ABIOS start routines

Requests for the ABIOS Error Log Service should use only the ABIOS start
routine. There is no need to use the interrupt or time-out routines.

continued

ABIOS Error Log Service 605

Overview, Continued

Summary of Error Log Service functions

Function Description

01h Return Logical ID Parameters

02h-07h Reserved

08h Read Error Log

09h Write to Error Log

OAh Reserved

In this chapter

In this chapter, the following topics are discussed:

• Hardware environment
• Error handling
• ABIOS Error Log Service functions

606 ABIOS for IBM PS/2 Computers and Compatibles

Extended CMOS RAM

Introduction

The ABIOS Error Log Service assumes that at least 2K of Extended CMOS
RAM is available in the system.

CMOS RAM Error Log Area

Up to six 20-byte error log blocks can be stored in Extended CMOS RAM

Note: If all error log block positions contain error information, as a new
error log block is read in, the oldest error log block is overwritten.

Extended CMOS RAM Error Block data area

Location Description

389h ERRNUM - Number of Error Log entries - can be 0-6

38Ah Error Log Block 0

39Eh Error Log Block 1

3B2h Error Log Block 2

3C6h Error Log Block 3

3DAh Error Log Block 4

3EEh Error Log Block 5

Using ERRNUM

ERRNUM is a pointer to the next available error log block. It is maintained by
the operating system.

Pending error log blocks

The operating system must keep track of the total number of active error log
blocks pending.

If more than six error log blocks are written to extended CMOS RAM, syn
chronization errors may occur unless the error log blocks are tracked by the
operating system.

continued

ABIOS Error Log Service 607

Extended CMOS RAM, Continued

Error Log Block format

Offset Length Description

OOh 1 Byte Error ID Byte

01h 1 Byte Interrupt Level

02h 1 Byte Arbitration Level

03h 1 Byte Device ID

04h 10 Bytes Device-Specific Parameters

OEh 1 Byte Current Seconds (BCD)

OFh 1 Byte Current Minutes (BCD)

10h 1 Byte Current Hours (BCD)

11h 1 Byte Current Day (BCD)

12h 1 Byte Current Month (BCD)

13h 1 Byte Current Vear (BCD)

110 ports

The ABIOS Error Log Service accesses the following 1/0 port addresses to
access CMOS RAM locations.

Read/Write
1/0 Address Status Description

0074h w Extended CMOS RAM address register port,
least significant byte

0075h w Extended CMOS RAM address register port,
most significant byte

0076h R/W Extended CMOS RAM data register port

608 ABIOS for IBM PS/2 Computers and Compatibles

Error Handling

How errors are reported

ABIOS signals the status (Successful, Resume Stage after Interrupt, etc.) of
each ABIOS request by returning a one word Return Code at offset OCh in
the Request Block.

If Bit 15 of the Return Code field is set, the Error Log Service function re
quested has an error. The caller's Return Code handler routine should test
Bits 14, 13, 12, and 8 to determine the class of error that has occurred and
then test the remaining bits to determine the precise nature of the error.

ABIOS Error Log Service 609

Function: 01 h - Return Logical ID Parameters

Description

This function is a single-staged request that returns information about the
specified Logical ID.

Request Block structure

Offset Size Input:

OOh Word Request Block Length (20h)
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0001h
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh
10h
11 h
12h
14h Word
16h Word

18h Word

1Ah Byte
1Bh Byte
1Ch Word
1Eh Word

Hardware Interrupt Level (FFh)
Arbitration Level FFh
Device ID (00011h)
Count of Units (0001h)
Logical ID Flags (OOOOh)
Bits 15-4 = Reserved
Bit 3 = 0 No overlap across

units
= O Reserved
= Transfer Data Pointer

Mode
00 = No Pointers

Required
Request Block Length (for other
functions
Secondary Device ID

continued

610 ABIOS for IBM PS/2 Computers and Compatibles

Function: 01 h - Return Logical ID Parameters, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

COO Oh lnvalld Loglcal ID

C001h Invalid Function

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

FFFFh Return Code Fleld Not Valld

Functions: 02h - 07h - Reserved

ABIOS Error Log Service 611

Function: 08h - Read Error Log

Description

This function. a single-staged request, returns the most current error log
block from extended CMOS RAM. After the error log entry is read, the
memory location it was stored in is cleared to zero. Up to six active error
log entries can exist at one time.

Device-specific parameters

The operating system must determine the contents and format of the 10
bytes of device-specific parameters that are input at offset 14h of the Re
quest Block in Function 09h, Write Error Log. Each device type should have
a different set of device-specific parameters.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function OOOBh
08h Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte
11h Byte
12h Byte
13h Byte
14h 10 Bytes Device-Specific Parameters
1Eh Byte Current Seconds (In BCD)
1Fh Byte Current Minutes (In BCD)
20h Byte Current Hours (In BCD)
21h Byte Current Day (In BCD)
22h Byte Current Month (In BCD)
23h Byte Current Year (In BCD)

continued

612 ABIOS for IBM PS/2 Computers and Compatlbles

Function: 08h - Read Error Log, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

80FEh CMOS RAM Checksum lnvalld

80FFh CMOS RAM Battery Bad

COOOh lnvalld Loglcal ID

C001h lnvalld Function Number

C003h lnvalld Unit Number

C004h lnvalld Request Block Length

C005h lnvalld CMOS RAM Parameter
This fleld Is set and no action Is taken If the bytes In the
Number of Bytes to Transfer fleld plus the byte count for
the Starting RAM Address fleld In the Re~est Block Is
greater than the maximum amount of RA •

FFFFh Return Code Fleld Not Valld

ABIOS Error Log Service 613

Function: 09h - Write to Error Log

Description

This function, a single-staged request, writes a 20-byte error log block to
the next available error log entry in the external CMOS RAM error log block
data area.

Device-specific parameters

The operating system must determine the format and contents of the ten
bytes of device-specific parameters that are input at offset 14h of the Re
quest Block. Each device type should have a different set of device-specific
parameters.

Request Block Structure

Offset Size Input:

OOh Word Request Block Length
02h Word Lo lcal ID
04h Word Unit
06h Word Function 0009h
OBh Word Reserved lnltlallze to OOOOh
OAh Word Reserved (lnltlallze to OOOOh)
OCh Word
OEh Word
10h Byte
11h Byte Interrupt Level
12h Byte Arbitration Level
13h Byte Device ID
14h 10 Bytes Device-specific Parameters
1Eh Byte Reserved Current Seconds (In BCD)
1Fh B te Reserved Current Minutes In BCD
20h Byte Reserved Current Hours (In BCD)
21h B te Reserved Current Da In BCD
22h B te Reserved Current Month In BCD
23h Byte Reserved Current Year (In BCD)

continued

614 ABIOS for IBM PS/2 Computers and Compatibles

Function: 09h - Write to Error Log, Continued

Return Codes

This list contains only the most common Return Codes for this function. Test
all valid bits in the Return Code field to ensure proper performance.

Code Description

OOOOh Successful Operation

BOFEh CMOS RAM Checksum Invalid

BOFFh CMOS RAM Battery Bad

COOOh Invalid Logical ID

C001h Invalid Function Number

C003h Invalid Unit Number

C004h Invalid Request Block Length

COOSh Invalid CMOS RAM Parameter
This fleld Is set and no action Is taken If the bytes In the
Number of Bytes to Transfer field plus the byte count for
the Starting RAM Address field In the Request Block Is
greater than the maximum amount of RAM.

FFFFh Return Code Field Not Valld

ABIOS Error Log Service 615

Overview

Description

Appendix A

ABIOS Return Codes

The following tables list common ABIOS Return Codes, the description of
the Return Code, the ABIOS Service that generated the code, and a sum
mary of the Return Code field bit setting meaning. See Chapter 6 for more
detailed information about Return Codes.

Return Code bit settings

Any program or routine that uses the ABIOS should check the bit settings
for bits 15, 14, 13, 12, 7, 6, 5, 4, 3, 2, 1, and 0 in every Return Code.
ABIOS is open and can be modified in many ways. Any code that is an
extension of the ABIOS is able to set a combination of Return Code bit
settings that would have a new and different meaning than those listed in
the following tables.

It is also possible for bits 7-0 to take on different meanings depending on
the settings of Bits 15, 13, 12, and 8. These meanings will be device
specific error indications that are listed in the service chapters (Chapters
8-23).

ABIOS Return Codes 617

Return Codes that Indicate Action Is Required

618

The following Return Codes indicate that a new stage in a multistaged
request has occurred. The caller must handle the conditions indicated by
these messages in order to continue processing. It is possible for other
combinations of Bits 0, 1, 2, and 7 to occur. The caller's Return Code
handling routine should test each meaningful bit of the Return Code field
each time a Return Code is processed.

Return
Code Description Action Required

0001h Incomplete - resume A stage In a multlstaged request has been
stage after Interrupt completed; at the next Interrupt on this

device, the caller should resubmit this Request
Block.

0002h Resume stage after A stage In a multlstaged request has been
time delay reached; after the appropriate time delay, the

caller should resubmit this Request Block.

0005h Incomplete - not my A stage In a multlstaged request has been
Interrupt, resume completed; the operation Is not complete, the
stage after Interrupt Interrupt that just occurred Is not for this

device , at the next Interrupt on this device,
the caller should resubmit this Request Block.

0009h Attention, resume A stage In a multlstaged request has been
stage after Interrupt completed; the device needs attention, at the

next Interrupt on this device, the caller should
resubmit this Request Block.

0081h Unexpected Interrupt The Interrupt for this device has been reset,
reset restart the Request Block.

ABIOS for IBM PS/2 Computers and Compatibles

Return Codes that Indicate Termination

Non-error Return Codes

There are two conditions that may occur in a Return Code field that do not
indicate an error:

• OOOOh - Successful Operation. The request has been completed.

• FFFFh - Return Code Field Not Valid. The request has not been
processed by ABIOS yet.

Return Code table

The following Return Codes indicate that the request has been terminated,
either successfully or unsuccessfully. All Return Codes listed below (except
OOOOh and FFFFh) indicate an error. If Bit 15 is on, the Return Code is
always an error.

Originating
Return ABIOS
Code Description Service Meaning

OOOOh Successful Operation Any Successful operation

8000h Device Busy, Request Any Unsuccessful operation. see
Refused addltlonal return codes.

8001h Resend Mouse Unsuccessful operation

8001h Device Busy Parallel Unsuccessful operation

8001h Arbitration Level Not OMA Unsuccessful operation
Available

8001h Real Time Clock Not ATC Unsuccessful operation
Started

8002h Interrupt Already Enabled RTC Unsuccessful operation

8002h Arbitration Level Not
Allocated

OMA Unsuccessful operation

8002h Two Consecutive Resends
Found

Mouse Unsuccessful operation

8003h System Lock Mouse Unsuccessful operation

8003h Arbitration Level Disabled OMA Unsuccessful operation

8003h Write-Protected Diskette Diskette Unsuccessful operation

8003h Security Enabled, Key- Keyboard Unsuccessful operation
Board Inhibited -
Request Refused

8003h Keyboard Locked.
Request Refused

Keyboard
Security

Unsuccessful operation

continued

ABIOS Return Codes 619

Return Codes that Indicate Termination, Continued

Return Code table, cont'd

Originating
Return ABIOS
Code Description Service Meaning

8004h Keyboard Locked,
Request Refused

Keyboard Unsuccessful operation

8004h Transfer In Process OMA Unsuccessful operation

8005h No Transfer In Process OMA Unsuccessful operation

8006h Media Changed Diskette Unsuccessful operation

8006h No Channel Available OMA Unsuccessful operation

8007h Arbitration Level Not OMA Unsuccessful operation
DI sabled

800Dh Media Not Present Diskette Unsuccessful operation

BOO Eh Change Slgnal Not Diskette Unsuccessful operation
Available

800Fh lnvalld CMOS Value CMOS RAM Unsuccessful operation

800Fh OMA Arbitration Level Fixed Disk Unsuccessful operation
Out Of Range

BOFEh Invalid CMOS Checksum CMOS RAM Unsuccessful operation,
device error

80FFh Bad CMOS Battery CMOS RAM Unsuccessful operation,
device error

9000h Bad Com Port Serl al Unsuccessful operation
device error

9000h Keyboard Controller Keyboard Unsuccessful operation
Always Busy device error

9000h Printer Error Serial Unsuccessful operation
device error

9000h Printer Error Parallel Unsuccessful operation
device error

9001h Bad Command Parallel Unsuccessful operation
device error

9001h Keyboard Falled Reset Keyboard Unsuccessful operation
device error

9002h Address Mark Not Found Parallel Unsuccessful operation
device error

9002h Resend Error Parallel Unsuccessful operation
device error

9003h Keyboard Parity Error Keyboard Unsuccessful operation
device error

continued

620 ABIOS for IBM PS/2 Computers and Compatibles

Return Codes that Indicate Termination, Continued

Return Code table, cont'd

Originating
Return ABIOS
Code Description Service Meaning

9004h Record Not Found Keyboard Unsuccessful operation
device error

9004h General Hardware Keyboard Unsuccessful operation
Time-out device error

9005h Reset Failed Fixed Disk Unsuccessful operation
device error

9006h Undefined Mode From Keyboard Unsuccessful operation
Keyboard device error

9007h Controller Parameter Fixed Disk Unsuccessful operation
Activity Failed device error

9009h Controller Failure During Keyboard Unsuccessful operation
Reset device error

900Ah Defective Sector Fixed Disk Unsuccessful operation
device error

900Bh Bad Track Fixed Disk Unsuccessful operation
device error

900Dh Invalid Sector On Format Fixed Disk Unsuccessful operation
device error

900Eh CAM Detected During Fixed Disk Unsuccessful operation
Read Or Verify device error

9010h Uncorrectable ECC Or Fixed Disk Unsuccessful operation
CRC Error device error

9020h Bad Controller Fixed Disk Unsuccessful operation
Diskette device error

9021h Equipment Check Fixed Disk Unsuccessful operation
device error

9040h Bad Seek Fixed Disk Unsuccessful operation
device error

9080h Device Did Not Respond Fixed Disk, Unsuccessful operation
Diskette device error

90AAh Drive Not Ready Fixed Disk Unsuccessful operation
device error

90BBh Undefined Error Fixed Disk Unsuccessful operation
device error

90CCh Write Fault Fixed Disk Unsuccessful operation
device error

continued

ABIOS Return Codes 621

Return Codes that Indicate Termination, Continued

Return Code table, cont'd

Originating
Return ABIOS
Code Description Service Meaning

90CCh Keyboard Controller Keyboard Unsuccessful operation device
Always Busy error

90FFh Incomplete Sense Fixed Disk Unsuccessful operation device
Operation error

9100h Controller Failure Mouse Unsuccessful operation device
error

9100h Keyboard Controller Keyboard Unsuccessful operation device
Always Busy error

9101h Keyboard Failed Reset Keyboard Unsuccessful operation device
error

9101h Bad Command Parallel Unsuccessful operation device
error

9102h Address Mark Not Found Diskette Unsuccessful operation device
error

9102h Resend Error Keyboard Unsuccessful operation
retryable device error

9102h Resend Error Parallel Unsuccessful operation device
error

9103h Keyboard Parity Error Keyboard Unsuccessful operation device
error

9103h Parity Error Fixed Disk Unsuccessful operation device
error

9104h General Device Time-out Keyboard Unsuccessful operation device
time-out error

9104h Requested Sector Not Diskette Unsuccessful operation
Found retryable device error

9105h Resat Failed Fixed Disk Unsuccessful operation
retryable device error

9107h Controller Parameter Fixed Disk Unsuccessful operation
Activity Failed retryable device error

9108h OMA Overrun On DMA,Flxad Unsuccessful operation
Operation Disk Diskette ratryable device error

9110h Bad CRC On Diskette Diskette Unsuccessful operation
Read retryabla device error

9120h Controller Failure Diskette, Unsuccessful operation
Fixed Disk retryable device error

continued

622 ABIOS for IBM PS/2 Computers and Compatibles

Return Codes that Indicate Termination, Continued

Return Code bit table, cont'd

Originating
Return ABIOS
Code Description Service Meaning

9121h Equipment Check Fixed Disk, Unsuccessful operation
Diskette retryable device error

9140h Seek Operation Failed Diskette, Unsuccessful operation
Fixed Disk retryable device error

9180h Device Did Not Respond Diskette, Unsuccessful operation
Fixed Disk retryable device error

91AAh Drive Not Ready Fixed Disk Unsuccessful operation
retryable device error

91BBh Undefined Error Fixed Disk Unsuccessful operation
retryable device error

91CCh Write Fault Fixed Disk Unsuccessful operation
retryable device error

91FFh Incomplete Sense Fixed Disk Unsuccessful operation
Operation retryable device error

AOOOh Time-out Fixed Disk Unsuccessful operation
retryable device error

A001h Bad Command Fixed Disk Unsuccessful operation
retryable device error

A002h Address Mark Not Found Fixed Disk Unsuccessful operation
retryable device error

A004h Record Not Found Fixed Disk Unsuccessful operation
time-out error

A005h Reset Failed Fixed Disk Unsuccessful operation
time-out error

A007h Parameter Activity Failed Fixed Disk Unsuccessful operation
time-out error

AOOAh Defective Sector Fixed Disk Unsuccessful operation
time-out error

AOOBh Bad Track Fixed Disk Unsuccessful operation
time-out error

AOODh Invalid Sector On Format Fixed Disk Unsuccessful operation
time-out error

AOOEh CAM Detected During Fixed Disk Unsuccessful operation
Read Or Verify time-out error

A010h Uncorrectable ECC Or Fixed Disk Unsuccessful operation
CRC Error time-out error

continued

ABIOS Return Codes 623

Return Codes that Indicate Termination, Continued

Return Code table, cont'd

Originating
Return ABIOS
Cod• Description Service Meaning

A011h ECC-corrected Data Fixed Disk Unsuccessful operation
Error time-out error

A020h Bad Controller Fixed Disk Unsuccessful operation
time-out error

A021h Equipment Check Fixed Disk Unsuccessful operation
time-out error

A040h Bad Seek Fixed Disk Unsuccessful operation
time-out error

A080h Device Old Not Respond Fixed Disk Unsuccessful operation
time-out error

AOAAh Drive Not Ready Fixed Disk Unsuccessful operation
time-out error

AOBBh Undefined Error Fixed Disk Unsuccessful operation
time-out error

AOC Ch Write Fault Fixed Disk Unsuccessful operation
time-out error

AOFFh Incomplete Sense Fixed Disk Unsuccessful operation
Operation time-out error

A100h Time-out Occurred - No Fixed Disk Unsuccessful operation
Other Error time-out error

A105h Reset Falled Fixed Disk Unsuccessful operation
device time-out error

A107h Controller Parameter Fixed Disk Unsuccessful operation
Activity Falled device time-out error

A120h Controller Failure Diskette, Unsuccessful operation
Fixed Disk retryable time-out error

A121h Equipment Check Fixed Disk Unsuccessful operation
retryable time-out error

A140h Bad Seek Fixed Disk Unsuccessful operation
retryable time-out error

A180h Device Old Not Respond Fixed Disk Unsuccessful operation
retryable time-out error

A1AAh Drive Not Ready Fixed Disk Unsuccessful operation
retryable time-out error

A1BBh Undefined Error Fixed Disk Unsuccessful operation
retryable time-out error

continued

624 ABIOS for IBM PS/2 Computers and Compatibles

Return Codes that Indicate Termination, Continued

Return Code table, cont'd

Originating
Return ABIOS
Code Description Service Meaning

A1CCh Write Fault Fixed Disk Unsuccessful operation
retryable time-out error

A1FFh Incomplete Sense Fixed Disk Unsuccessful operation
Operation retryable time-out error

B001h Bad Command Fixed Disk Unsuccessful operation
retryable time-out error

B001h Keyboard Error Keyboard Unsuccessful operation
retryable device time-out
error

B020h Controller Failure Diskette Unsuccessful operation
retryable time-out error

B020h Bad Controller Fixed Disk Unsuccessful operation
retryable device time-out
error

B021h Equipment Check Fixed Disk Unsuccessful operation
retryable device time-out
error

B080h Device Did Not Respond Fixed Disk Unsuccessful operation
retryable device time-out
error

B101h Bad Command Fixed Disk Unsuccessful operation device
time-out error

B101h Keyboard Error Keyboard Unsuccessful operation
device time-out error

B120h Controller Failure Diskette Unsuccessful operation
device time-out error

B120h Bad Controller Fixed Disk Unsuccessful operation
retryable device time-out
error

B121h Equipment Check Fixed Disk Unsuccessful operation
retryable device time-out
error

B180h Device Did Not Respond Fixed Disk Unsuccessful operation
retryable device time-out
error

BOBBh Undefined Error Fixed Disk Unsuccessful operation
retryable device time-out
error

continued

ABIOS Return Codes 825

Return Codes that Indicate Termination, Continued

Return Code table, cont'd

Originating
Return ABIOS
Code Description Service Meaning

BOFFh Sense Failed Fixed Disk Unsuccessful operation
retryable device time-out
error

B1BBh Undefined Error Fixed Disk Unsuccessful operation
retryable device time-out
error

B1FFh Sense Falled Fixed Disk Unsuccessful operation
retryable device time-out
error

COOOh Invalid Loglcal ID Any Unsuccessful operation
parameter error

C001h Invalid Function Any Unsuccessful operation
parameter error

C003h Invalid Unit Number Any Unsuccessful operation
parameter error

C004h Invalid Request Block Any Unsuccessful operation
Length parameter error

C005h Invalid Parameter Any Unsuccessful operation
parameter error

C006h Invalid Time To Walt Parallel Unsuccessful operation
parameter error

COOCh Unsupported Media Diskette Unsuccessful operation
Type/Unestablished Media parameter error

FFFFh Return Code Not Valid Any Request block not processed

626 ABIOS for IBM PS/2 Computers and Compatibles

Glossary

ABIOS

Advanced BIOS. The BIOS designed to support multitasking operating sys
tems such as OS/2. It comes packaged with a traditional Compatibility BIOS
(CBIOS).

ABIOS Service

Each ABIOS service controls a hardware device. Each ABIOS Service can
only be associated with one Device ID.

Adapter Card

A circuit board that can be installed into one of the expansion slots inside
a PS/2-compatible computer in order to expand the capabilities of the
computer.

Adapter Description Files (ADFs)

Text files supplied on a diskette by manufacturers of PS/2-compatible
adapter cards. The ADFs contain information such as what resources are
needed to use the card. The ADFs must be copied to a working copy of the
Reference Diskette after the adapter card is installed.

continued

Glossary 627

Glossary, Continued

Adapter ROM
The read-only memory on the adapter, which contains code to control the
adapter device. An adapter is a peripheral card that extends the operation
of the system. For example, a fixed disk drive controller is an adapter that
may have an adapter ROM. Adapter ROM code may include an ABIOS ROM
extension.

Address Bus

A set of signals which select a certain cell of memory or a certain device
from the microprocessor to all parts of the system.

Anchor Pointer

A segment or selector with an assumed offset of zero, which is passed to
the ABIOS on each request made of the ABIOS. It points to the real mode
Common Data Area.

Arbitration

Arbitration is a process through which devices compete for possession of
the channel on a prioritized basis.

Arbitration Level

Arbitration levels are the levels of priority assigned to devices that compete
for possession of the channel.

Bimodal Operation

Refers to the ability of a program to operate in both the real address mode
and the protected address mode of the 80286, 80386SX, or 80386 micropro
cessor. ABIOS services are bimodal; they operate in either real or protected
mode.

BIOS

Basic Input/Output System. Systems software that interfaces between the
operating system and hardware .

. Boot

Process of starting the computer.

continued

628 ABIOS for IBM PS/2 Computers and Compatibles

Glossary, Continued

Burst Mode

Bus

Burst mode is a method of OMA transfer that allows a device to remain in
active for long periods and then send large amounts of data in a short time.

One or more lines (conductors) that carry signals or power.

Byte
Eight contiguous bits; a bit is the smallest item of information that a com
puter can process.

Cache
Method of using a fast device to speed up access to a slow device.

CBIOS

Compatibility BIOS. The traditional single-tasking portion of a PS/2-
compatible BIOS.

CBIOS Service
A software routine that services a given peripheral device, and provides an
interface between the operating system and the hardware. These services
are single task, call/return functions, as opposed to the device services
offered by ABIOS.

CMOS

Acronym for Complementary Metal Oxide Semiconductor. In PS/2 compat
ibles, it is low-power memory that is battery-backed and therefore not lost
when the computer is turned off.

Common Data Area

Contains a master list of pointers to the Function Transfer Table, Device
Block, and Data Area (if any) associated with each ABIOS device service.

Configuration

The process of setting up all the parts of the computer so they run
effectively.

continued

Glossary 629

Glossary, Continued

Continuous Multistaged Requests

ABIOS functions that never reach a completion point but are continually
repeated. They can be thought of as standing function calls. An example is
the ABIOS Keyboard Service Get Key Function.

Cyclic Redundancy Check (CRC)

A method of redundancy check where the check key is produced by a cyclic
or repeating algorithm. A common means of error checking.

Default
A value, setting, or option that is assigned by the program or system.

Device Block
A permanent work area for each ABIOS device, containing hardware port
addresses, interrupt levels, and device status information.

Device ID
Each type of device is identified to the system by a device ID.

Direct Memory Access (OMA)
Direct Memory Access is a means for 1/0 devices to transfer data directly to
and from system memory without the intervention of the microprocessor.
This significantly decreases 1/0 processing by the microprocessor.

Discrete Multistaged Requests

An ABIOS function that requires a significant amount of time while waiting for
a hardware interrupt or time interval to occur returns control to the proces
sor between stages of servicing a request. An example is the ABIOS Diskette
Service Diskette Read Function.

OMA Controller
A OMA controller is a device which gives addresses and control signals to
the device that has won the bus through arbitration. The controller does not
enter into the arbitration itself.

OMA Device

630

A OMA device enters into arbitration for the channel. If it wins, it receives
addresses and control signals from the OMA controller so it can read or
write data.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Glossary, Continued

DOS

Acronym for Disk Operating System and short for PC-DOS and MS-DOS.
DOS, like other operating systems, organizes the files and memory for other
programs.

Error Handler

An invisible program on the Reference Diskette that reads the POST error
log. If an error is found, a cause and solution type message about the error
is displayed.

Expanded Memory

For AT -compatible systems, up to 32 MB of additional "paged" memory
above the DOS 640K limit. Application programs written according to LIM
EMS or AST EEMS specifications can use this type of memory. Examples of
such programs are Lotus 1-2-3, Symphony and Framework.

Expanded Memory Specification (EMS)

For AT-compatible systems, a specification and protocol established by a
consortium of computer manufacturers, principally Lotus, Intel, and Microsoft
(LIM), which establishes a set of rules for organizing and accessing ex
panded memory.

Extended Expanded Memory Specification (EEMS)

A specification and protocol established by a consortium of computer and
software manufacturers, principally AST, Quadram, and Ashton-Tate, which
establishes a set of rules for organizing and accessing expanded memory.

Extended Memory

The memory above 1 MB. XENIX and IBM's VDISK can use this memory, but
DOS and almost all application programs cannot, since use of the protected
mode of the Intel 80286 or 80386 microprocessor is required.

Fixed Disk (Hard Disk)

A magnetic storage device consisting of a drive mechanism with perma
nently installed metallic disks; a "filing cabinet" for the computer.

continued

Glossary 631

Glossary, Continued

Function Transfer Table
A data structure that contains a list of pointers to the entry routines and
function start addresses of one ABIOS service. There is a Function Transfer
Table for each ABIOS service.

Hardware
The physical equipment and components in the computer system.

Initialization Table

An ABIOS common data structure that defines initialization data for each
device in the system. It is referred to when initializing each Device Block and
Function Transfer Table.

Interrupt

The suspending of microprocessor program execution by a demand for at
tention coming from a peripheral device. After the interrupt has been serv
iced, the suspended microprocessor task can be resumed where it was
broken off by the interrupt.

Kilobytes (K)

1024 bytes.

Known State

When a device is initialized or reset, and then set to a particular pre
established condition, it is said to be in a known state.

Logical Device

A conceptual, as opposed to physical, identification of a hardware device by
an operating system, so as to allow the latter a greater degree of device
independence. Operating systems commonly identify physical devices with
an operating system-assigned Logical ID number. Contrast with Physical
Device.

Logical ID

632

An identifier for a device controller used by ABIOS. There may be several
devices (units) attached to a Logical ID. The Logical Device ID (Logical
ID/LID) is used by the operating system as an index into the Common Data
Area to locate the Device Block pointer and Function Transfer Table pointer
pair with which each ABIOS service is associated.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Glossary, Continued

Low Level Format
Electronic equivalent of drawing a detailed street map on the fixed disk. The
electronic markings tell the system at what points to start and end reads
and writes.

Main Memory
The memory between 0 and 1 MB.

Megabyte (MB)
One million bytes.

Memory

A device that can store data recorded in it and from which the data can be
retrieved.

Micro Channel
Information is exchanged between the computer system board and the
adapter cards which are plugged into it by means of the "bus." Micro Chan
nel refers to the particular bus design in a PS/2-compatible computer. It is
also referred to as MCA, for Micro Channel Architecture.

Microprocessor

Central processing unit, or "brain" of the computer.

Multitasking
Multitasking programs execute multiple program modules simultaneously.
Information input into one module does not need to be processed completely
before information can be input into another module. ABIOS supports multi
ple concurrent requests.

Offset

A method of addressing that defines an address as relative to the beginning
of a memory segment.

Operating System

Generic systems software which controls the execution of applications
software.

continued

Glossary 633

Glossary, Continued

Option Diskette
The diskette provided by manufacturers of adapter cards that contains
adapter description files (ADFs), which are written to the Reference Diskette
and used by it to configure the system.

Parameter
Value, option, or setting that can be set in two or more ways.

Physical Device
A hardware device that physically exists in a system configuration. Physical
devices are identified by a device ID. Contrast with logical device.

Power-on Self Test (POST)

A program that tests all parts of the computer every time you turn on the
computer.

Private Data
The ABIOS data structures contain areas (private data) which have informa
tion that is not available to ABIOS callers. This information includes hard
ware device support levels, ABIOS internal routines, and ABIOS internal
parameters.

Program

A set of instructions defining the operations of a computer in order to
achieve the desired results.

Programmable Option Select (POS)

634

A way of setting up peripheral devices on a PS/2 machine via the power
on self test (POST) , in which values are placed in registers on the devices.
This software set up routine replaces the traditional switches and jumpers
on devices.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Glossary, Continued

Protected Virtual Address Mode (Protected Mode)

One of two 80286 or three 80386 memory addressing modes. In protected
virtual address mode, the 80386/80286 uses all address lines. This allows
addressing of up to 16 megabytes of physical memory in an 80286 and 4
GB in an 80386. The 80286 processor's internal memory management allows
addressing of an additional 1 gigabyte of virtual memory in protected mode
(the 80386 up to 64 Terabytes). Protected mode addresses are specified in
selector:offset format. ABIOS data structures support protected mode ac
cess of all ABIOS services.

PS/2-Compatible Computer

Any computer that can run software programs written for an IBM PS/2
computer. IBM PS/2 systems come in two basic varieties: Models 25 and 30
versus Models 50, 60, and 80. The former systems do not implement the
Micro Channel Architecture (MCA).

Public Data

That part of an ABIOS data structure which is accessible by the calling
program (or the operating system).

RAM Extension

An extension to ABIOS that exists as files that will be located and initialized
into system RAM during the overall ABIOS ROM initialization process. It can
add or replace whole ABIOS services or individual functions.

Real Address Mode

One of two 80286 memory addressing modes (the 80386 has three). In real
address mode, the 80286 and 80386 microprocessors use 20 address lines,
thus allowing memory addressing of up to 1 megabyte of physical memory
(220) • Real address mode does not support virtual memory addressing. Real
mode addresses are specified in segment:offset format. ABIOS data struc
tures support real mode access of all ABIOS services.

Reentrant Code

Reentrant code allows one copy of a given routine to be entered multiple
times. Input #1 need not be completely processed before input #2 is al
lowed. Input #2 need not be completely processed before input #3 is al
lowed, and so on. All ABIOS code is reentrant.

continued

Glossary 635

Glossary, Continued

Reference Diskette
In PS/2-compatible MCA-based systems, POST error recovery, access to
system utilities, and system configuration are all controlled by a utility disk
ette, the Reference Diskette. The Reference Diskette can automatically
configure a system, resolving conflicts between adapter card settings, and
optimally configuring the system.

Revision Level

The ABIOS ROM contains a ROM revision number that identifies the revision
level of the ABIOS device services contained in the ROM. By convention,
ABIOS extensions must examine the Device ID/Secondary Device ID pair
associated with the service they are extending. It is the extension's re
sponsibility to insure that only the service with the highest revision number
is initialized.

ROM Extension
An extension to ABIOS that . exists in the same peripheral card ROM that
contains its CBIOS counterparts. It contains manufacturer-specific ABIOS
device services, and is located and initialized as part of the overall ABIOS
ROM initialization process.

Secondary Device

An additional field used by the ABIOS to make sure that the selected de
vice's hardware level is supported.

Secondary Device ID

When more than one physical device is associated with a device ID, the two
physical devices can be differentiated with a Secondary Device ID. When a
unique ABIOS Service is required for each physical device, the two services
must be differentiated via their Secondary Device ID.

Segment

636

A unit of contiguous, one-dimensional address space. In real mode, these
address blocks are 64K in size, referenced by one byte. In protected mode,
programs can allocate segments of any size they require up to 64K.

continued

ABIOS for IBM PS/2 Computers and Compatibles

Glossary, Continued

Selector
A value contained in a segment register (such as the CS, DS, SS, or ES
segment registers) when in protected mode. This value determines what
segment is currently being used; e.g., with CS, what segment is being used
for executing code.

Single-Tasking
Single-tasking programs can only execute one program module or routine at
a time. Information input into a module or routine must be processed com
pletely before information can be input into another module.

Software
A comprehensive term used to identify all of the nonhardware components
of a computer. Software includes computer programs and data.

System Board
A large circuit board that holds most of the main electronic parts of the
computer.

System Board ROM
Read-only memory chips that reside on the system board and provide
control information for various system components.

System Parameter Table
A common ABIOS data structure 20h bytes long that describes the number
of devices available in the system, the ABIOS common entry points, and
system stack requirements.

Task

In an 80386, a task is the execution of a single process or set of instruc
tions to perform a particular function. It is not the same as an operating
system task.

Time-Out

When the interval of time expected for a certain process (an interrupt) to
occur is exceeded.

Virtual 8086 Mode (80386 only)

A way of emulating the 8086 or 8088 microprocessors on the 80386. The
8086 program runs in protected mode as a task that can run with multiple
8086 virtual tasks, as well as alongside other multiprogrammed 80386 tasks.

Glossary 637

Additional Resources

The following books provide additional material related to the ABIOS:

Dettman, Terry R. DOS Programmer's Reference. Carmel, IN: Que®
Corporation, 1988.

Duncan, Ray. Advanced MS-DOS Programming. Redmond, WA: Microsoft
Press, 1986.

Duncan, Ray. IBM® ROM BIOS. Redmond, WA: Microsoft
Press, 1988.

International Business Machines Corporation. IBM® Personal System/2™ and
Personal Computer BIOS Interface Technical Reference. Boca Raton, FL:
IBM, 1987.

International Business Machines Corporation. IBM® Personal System/2™
Model 30 Technical Reference. Boca Raton. FL: IBM, 1987.

International Business Machines Corporation. IBM Personal System/2™ Model
50 and 60 Technical Reference. Boca Raton, FL: IBM, 1987.

Norton, Peter and Wilton, Richard. The New Peter Norton Programmer's
Guide to the IBM® PC and PS/2®. Redmond, WA: Microsoft Press, 1988.

Wadlow, Thomas A. Memory Resident Programming on the IBM PC. Reading,
MA: Addison-Wesley Publishing Co., Inc., 1987.

Wilton, Richard. Programmer's Guide to PC® and PS/2™ Video Systems.
Redmond, WA: Microsoft Press, 1987.

Additional Resources 639

Index

A
Abbreviations, xxiii-xxiv

ABIOSCall service, 2, 19, 23, 131,
151, 155

ABIOSCommonEntry service, 2,
19-22, 131, 151-154

ABIOS.SYS file, 27, 160

Abort DMA Operation service,
561-562

Access. See Program access

ACK byte from keyboard controller,
300

Acronyms, xxiii-xxiv

Action, return codes requiring, 618

Adapters
card identification for, 55
CMOS RAM for, 527-530
description files for, 34, 55,

570-571
and POS data, 69, 579-582
ROM extension for, 1 08
slots for, 55

ADD extension class, 163, 1 65, 17 4

Address fields for diskettes, 214

Address line 20
disabling of, 482
enabling of, 481

Address modes. See Protected ad
dress mode; Real address mode

Addresses
for CMOS RAM, 443-445
changing

Global Descriptor Table and pro
tected mode, 4 78

Index

for fixed disk systems, 233
for 1/0 ports, 61-79

parallel, 39, 70-71, 74-75, 417
POS, 67, 69-70, 572
serial, 40, 71-73, 77-79, 361

for PICs, 56
for system control functions, 58-59
for video RAM, 309

ADF (adapter description files) for
POS data, 34, 55, 570-571

Alarm interrupts, 441
canceling of, 457
setting of, 454-456

Allocate Arbitration Level DMA
service, 556-557

Alt key, 266-267, 587

Alternate Reset Fixed Disk System
function, 232

Analog monitor support, 37, 308

Anchor pointer
to CDA, 85-86
and program access, 19-20, 151
relationship of, to other structures,

14

Arbitration levels
allocation of, 556-557
and bus sharing, 545
deallocation of, 558
disabling of, 559
for DMA, 51-53, 548-550
for multiple instances of devices,

115-116
register for, 67

Arbus register in DMA controller, 49,
53, 551

641

A, cont'd
Arithmetic calculations, coprocessor

for, 32

Assignment of interrupt requests, 57

Attention register,' fixed disk adapter,
74

Attention return code, 25, 141, 618

Attribute bytes, video, 314
controller for, 36, 307
and palette register, 312, 345, 347
registers for, 75

Autoinitialization of OMA controller,
49, 547

Auxiliary device, enabling and dis
abling of, 296

B
Banks, RAM, 37

Base memory, CMOS RAM for, 526

Battery-backed CMOS RAM. See
CMOS RAM

Battery Bad return code, 532

Baud rate
generator of, 41 , 362
setting of, 378-379

Bimodal support for interrupt
handlers, 146

BIOS
extensions, 157
ROM, 1

Blocks, print
printing of, 427-431

Blocks, video
of color registers, reading of,

354-355

Booting and initialization, 12, 95

Break Interrupt for serial ports, 392

Break key, 267, 589

642

Buffers, serial port
receive, 389-391, 393-396
transmit, 379-382, 384-386, 399

Buffers, video
video, size parameters for, 321

Build Initialization Table function, 13,
96, 100-102

for RAM extensions, 178-179
for ROM extensions, 177

Build System Parameters Table
function, 13, 96, 98-99

for RAM extensions, 179
for ROM extensions, 177

Burst mode OMA transfer, 51 , 548

Bus sharing for OMA, 4 7, 545

BUSY signal, math coprocessor,
32-33

c
CALL for control transfer, 1 7, 134

Calling of functions, 127
and ABIOSCall, 155
and ABIOSCommonEntry, 152-154
control transfer, 134-135
Default Interrupt Handler for,

147-148
by handlers, 9
hardware interrupt handlers for,

142-146
processing model for, 128-131
and program access, 151
and Request Block initialization,

132-133
return code handling in, 139-141
time-out handlers for, 149-150
and transfer conventions, 136-138

Cancel Alarm Interrupt Real Time ·
Clock Service, 457

Cancel Periodic Interrupt Real Time
Clock Service, 461

Cancel Print Block Parallel Port
Service, 430-431

ABIOS for IBM PS/2 Computers and Compatibles

C, cont'd

Cancel Serial Communications
Service, 407-408

Cancel Update-Ended Interrupt Real
Time Clock Service, 464

Capacity, diskette, 193

Card selected feedback register,
DMA, 67

CBIOS
accessibility to, 2
and compatibility,
and Diskette Service, 189-190
extensions for, 158
and Fixed Disk Service, 232, 245
and serial ports, 367
structures of, compared to ABIOS,

11

CDA. See Common data area

Central Arbitration Control
for DMA controller, 549
with Micro Channel, 33, 51

CGA (Color Graphics Adapter)
compatibility with, 309-310, 325
and palette register, 312

Change Line Status signal, 191
emulation of, 186-188
reading of, 226-227
testing of, 204

Channel extension connectors, 33

Channel position select register,
POS, 67

Channels, DMA, 54, 551
flags for, 53, 551

Character Block Specifier field,
319-320

Character block to load field, 327

Character block to select field, 328

Characters
blocks of, selection of, 337-338

Index

and fonts, 314
generators of, 313
serial support for number of,

40, 361

Checksum
power-on, CMOS RAM for, 528
recomputation of, 540-541

Checksum Invalid return code, 532

Clear Byte Pointer, DMA, 61, 69

Clear Mask Register, DMA, 62, 69

Clear video buffer flag, 326

Clock generator chip, 42

Clock interrupts, 441

CMOS RAM
ADF file data stored on, 34, 55
areas for, 46
device ID for, 4, 153
data for, 525-527
error handling for, 532
for Error Log Service, 607-608
extended, 528-531
hardware environment for, 524
and NMls, 449
port addresses for, 66
and POS, 569, 575-582
for power-on password, 60, 583
reading of, 45
for real time clock, 45, 443,

524-525
return codes for, 620
services for, 523

Read CMOS RAM, 536-537
Read Device Parameters, 534
Recompute Checksum, 540-541
Return Logical ID Parameters,

533-534
Write to CMOS RAM, 538

writing to, 45

Color Graphics Adapter
compatibility with, 309-310, 325
and palette register, 312

643

C, cont'd

Color register
reading of, 349-350, 354-355
writing to, 351-353, 356-358

Colors, video, 309-311, 325

default, 313

Common Data Area, 10, 84-86
and Anchor Pointer, 19
building of, 103-105
and control transfer, 18, 135-136
data pointers in, 85-86, 103, 107,

109, 113, 475
in DB and FTT initialization

routines, 1 08
device data pointers in, 107
and extensions, 173-17 4
and initialization, 11-13, 95
and Initialization Table, 100-101
Logical IDs in, 15, 152
null entries in, 85, 112
and program access, 151
and protected mode, 110-112
relationship of, to other structures,

14, 82
and REPLACE extensions, 1 64
for stack frame loading, 137

Common Entry Routines, 9 17-18
and control transfer, 18, 134-135
device service for, 109
with function calling, 131
logical ID for, 104-105

Common Interrupt Routine, 9
address of, 113
with function calling, 131
pointer for, 98
for time-out handlers

Common Start Routine, 9
address for, 113
and control transfer, 18
with function calling, 131
pointer for, 98

Common Time-out Routine, 9
address of, 113

644

with function calling, 131
pointer for, 98

Compatibility, 1-2
diskette, 194-195
video display, 36
video RAM, 308

Configuration
for CMOS RAM, 525-531
diskette drive, 35
system, reading of, 473-474

Configuration control register, diskette
controller, 77

Conforming Bit for pointers, 111

Connectors for Micro Channel, 34

Continuous Keyboard Read service,
280-281

Continuous multistaged functions, 6
processing model of, 1 28

Continuous read, NMI, 492-493

Control. See Transfer conventions

Control addresses for parallel ports,
39, 417

Control keys, 266, 588

Control Port, address for, 71, 74-75

Control register, fixed disk adapter,
73

Control word register, PIT, 65

Controllers
CRT, 36, 74, 76, 307
diskette, 35, 193
OMA, 545-546
fixed disk, 35, 57, 235
keyboard, 38, 261
serial port, 361

Coprocessors, 32-33
interrupt request for, 57
port address for, 69

Count control for OMA controller,
50, 546-547

ABIOS for IBM PS/2 Computers and Compatibles

C, cont'd

CPU
clock generator for, 42
and functions, 5

CRT controller, 36, 307
index register for, 76
port addresses for, 74, 76

Current Serial Port Status field
for receive, 389-390, 392-396
for transmit, 380, 382-386

Cursor
in graphics modes, 310, 326
keys for, 266, 588
size of, and fonts, 342

Cylinders, fixed disk, 236-237

D

DAC. See Digital-to-analog converter

Data addresses for parallel ports, 39,
70, 74-75, 417

Data length, changing of, 202

Data pointers
in CDA, 85-86, 103, 107, 109, 113,

475
for CMOS RAM, 536, 538
in Initialization Table, 101
relationship of, to other structures,

14
in Request Block structure table,

123-124

Data registers, diskette controller, 76

Data string length for keyboard
controller, 295

Data structures, 10-11, 81-83, 94
Common Data Area, 84-86
Device Block, 89-93
Function Transfer Table, 87-88

Data transfer
diskette rates for, 193
with OMA devices, 50

Index

for fixed disk systems, 235

Date
reading of, 465-466
writing of, 466-467

Daylight Savings Update field, 452

DB. See Device Blocks

Deallocate Arbitration Level OMA
Service, 558

Default colors, 313

Default fonts, 310, 314, 325, 327-328

Default Interrupt Handlers, 4, 144,
147-148

for Diskette Service, 196
for Fixed Disk Service, 239
for Keyboard Service, 269
for Parallel Port Service, 419
for Pointing Device Service, 498
for Real Time Clock Service, 446
for Serial Communications Service.

364
for System Timer Service, 438
for Video Service, 31 6

Default sector size, changing of, 202

Defect map, fixed disk, 236-237

Delay, typematic, 286-288

Descriptors, selector, 111

DevHlp services, 2, 19-23, 131, 151

Device Blocks, 10, 82, 89-93
and ADD extensions, 165
and control transfer, 18, 135-136
for extensions, 26, 159, 173-175
initialization of, 11-13, 96,

106-109' 113
and Initialization Table, 100-101
and MODIFY extensions, 167
for multiple instances of devices,

115-116
pointers to, 84-86

characteristics of, 111
initialization of, 103

645

D, cont'd
and Logical IDs, 15
protected mode, 110

relationship of, to other structures,
14

for REPLACE extensions, 164

Device Control Flag, 326, 356

Device Error return code, 25, 141

Device Error With Time-out return
code, 25, 141

Device IDs, 15, 21
and ABIOSCommonEntry, 152
CDA for, 85
in Device Block, 90, 93
for extensions, 169
in Initialization Table, 100
in Return Logical ID Parameters

function, 20

Device In Use return code, 25, 141

Devices
bit size of, and OMA controller, 50
CDA data pointers for, 85
data area for, in Device Block, 92
extensions for, 1 62
memory for, 14
multiple instances of, 115-116
return codes for, 25, 139-141
supported, 4, 21
See also Device Blocks; Device IDs;

Read Device Parameters
functions

Diagnostic status for CMOS RAM, 525

Digital input register, diskette
controller, 77

Digital output register, diskette
controller, 76

Digital-to-analog converter, 36-37,
307-308

and palette register, 312, 345, 347
port addresses for, 75

646

reading of color register in,
349-350

writing to color register in,
351-353' 356-358

Direct Memory Access Service, 4 7,
50, 543-544

device ID for, 4, 153
error handling for, 552
for fixed disks, 231
hardware environment for, 545-552
return codes for, 619-620, 622
services for, 553-568

Abort OMA Operation, 561-562
Allocate Arbitration Level,

556-557
Deallocate Arbitration Level, 558
Disable Arbitration Level, 559
OMA Transfer from Memory to

1/0, 563-564
OMA Transfer Status, 560
Load OMA Controller Parameters,

567-568
Read Device Parameters, 555
Read from 1/0 and Write to

Memory, 565-566
Return Logical ID Parameters,

553-554
See also OMA controller

Disable Address Line 20 System
Services, 482

Disable Arbitration Level OMA
Service, 559

Disable Diskette Service, 206-207

Disable Keyboard Service, 278-279

Disable NMI Service, 491

Disable Pointing Device Service,
507-508

Disable standard function, 4

Discrete multistaged functions, 6, 128

ABIOS for IBM PS/2 Computers and Compatibles

D, cont'd

Diskette Change Line signal, 191
emulation of, 186-188
reading of, 226-227
testing of, 204

Diskettes
change line emulation for, 186-188
CMOS RAM for, 526
controller registers for, 76-77
device ID for, 4, 153 hardware for,

35, 193
error handling for, 195
interrupt request for, 57
return codes for, 619-626
services for, 189-192

Default Interrupt Handler, 196
Disable Diskette, 206-207
Format Diskette, 214-217
Interrupt Status, 229-230
Read Change Line Signal Status,

226-227
Read Device Parameters,

199-201
Read Diskette, 208-210
Read Media Parameters, 221-222
Reset/Initialize Diskette

Subsystem, 203-205
Return Logical ID Parameters,

197-198
Set Device Parameters, 202-203
Set Media Type for Format,

223-225
Turn Diskette Motor Off, 228-229
Verify Diskette Sectors, 218-220
Write to Diskette, 211-213

support for, 116

Divisor latch, serial port, 71, 77

OMA controller, 4 7 -54, 545-546
arbitration levels for, 33, 52
direct accessing of, 50, 547
port addresses for, 61, 66, 68-69
See also Direct memory access

Index

OMA Transfer from Memory to 1/0,
563-564

OMA Transfer Status, 560

Door, diskette, and Diskette Change
Line signal, 191

DOS, ROM BIOS interrupt vectors for,
157

DOS compatibility box, 22-23,
154-155

Double density diskettes, 194

Drive types, diskette, 194

Dynamic reassignment of arbitration
levels, 53, 551

E

EGA (Enhanced Graphics Adapter)
compatibility with, 309-310, 325
and palette register, 312

Emulation
of Change Line Status signal,

186-188
of video modes, 310, 325

Enable Address Line 20 System
Services, 481

Enable FIFO Control Serial Communi
cations Service, 412-413

Enable Keyboard Service, 276-277

Enable Keyboard Security Service,
593-594

Enable NMI Service, 490

Enable Pointing Device Service,
505-506

Enable Speaker System Services,
483-484

Enable standard function, 4

647

E, cont'd

Enabling of transmit interrupts, 379

End-of-interrupt processing, 144

Enhanced Graphics Adapter
compatibility with, 309-310, 325
and palette register, 312

Enhanced Load Text Mode Font Video
Service, 342-344

Entry pointers for control transfer,
17, 134

Entry points
for extensions, 1 68-169
vectors to, 87-88

Entry routines for transferring control,
9, 17, 131

Environment. See Hardware
environment

EOI (end-of-interrupt) processing,
144

Equipment installed, CMOS RAM for,
526

ERRNUM pointer, 607

Error handling
for CMOS RAM Service, 532
of DBs and FTTs, 108
for Direct Memory Access

Service, 552
for Diskette Service, 195
for Error Log Service, 609
for Fixed Disk Service, 238
for Keyboard Security Service, 589
for Keyboard Service, 268 ·
for math coprocessor, 32-33
for Nonmaskable Interrupt Service,

487
and operating system transfer

convention, 138
for Parallel Port Service, 418
for Pointing Device Service, 497
for POS Service, 573
for Real Time Clock Service, 445

648

for Serial Communications
Service, 363

for switching to protected mode,
480

for switching to real mode, 477
for System Services, 4 70
for System Timer Service, 437
for Video Service, 315

Error Log Service
CMOS RAM for, 531
device ID for, 4, 153
error handling for, 609
extended CMOS RAM for, 607-608
services for, 605-606

Read Error Log, 612-613
Return Logical ID Parameters,

610-611
Write to Error Log, 614-615

ESDI fixed disk controller, 35

Expansion memory, CMOS RAM for,
526, 528

Extended CMOS RAM
data area for, 46, 524
for Error Log Service, 607-608
port address for, 66
for POS Service, 569
services for, 528-531

Extended function execute register,
DMA, 62

Extended function register, DMA, 62

Extended mode
DMA, 54, 552
parallel port, 39, 41 7

Extensions, 26-27, 157-161
Device Block and FTT routines for,

173-175
examples, 180-188
headers for, 168-170
and initialization, 108-109, 117
Initialization Table entry routine for,

171-172
non-intrusive interception, 181-183

ABIOS for IBM PS/2 Computers and Compatibles

E, cont'd

nonstaged function, redirection of,
184-185

RAM, 178-179
recommendations for, 162-167
ROM, 176-17
service code for, 176
staged function, redirection of,

186-187

F

Feature Configuration Table, 473

Feature control register, VGA, 74-76

FIFO control, 412-413
serial port register for, 72, 78

File headers for extensions, 26, 159,
168-169

Filter bytes, writing of, 601-604

Fixed Disk Interrupt Status service,
257-258

Fixed disks
adapters for, 73-74
CMOS RAM for, 526
controller for, 35, 5 7, 235
device ID for, 4, 153
OMA arbitration level for, 549
error handling for, 238
extensions for, 163
hardware environment for, 235
parameters table for, 236-237
port address for, 70
return codes for, 620-626
services for, 231-234

Default Interrupt Handler, 239
Fixed Disk Interrupt Status,

257-258
Read Device Parameters,

242-244
Read Fixed Disk, 249-250

Index

Reset/Initialize Fixed Disk,
244-248

Return Logical ID Parameters, 240
Verify Fixed Disk Data, 255-256
Write and Verify Fixed Disk,

253-254
Write to Fixed Disk, 251-252

Flags
Device Control, 326
in OMA controller, 48, 53, 546, 551
for DOS compatibility box, 22, 154
for Start Routines, 143

Floating point numbers, coprocessor
for, 32-33

Fonts
default, 310, 314, 325, 327-328
extension for, 184-185
retrieval of information about,

331-332
ROM-resident, 313-314, 327
text mode, 325, 339-344

Format Diskette Service, 214-217

Framing errors for serial ports, 392

FTT. See Function Transfer Tables

Function count in FTT, 88

Function Pointers, relationship of, 14

Function Transfer Tables, 10, 82,
87-88

and control transfer, 135
for extensions, 26, 173-175
initialization of, 11-13, 103,

106-109, 113
and Logical IDs, 15
pointers to, 17-18, 84-85

and ADD extensions, 1 65
characteristics of, 111
and control transfer, 18, 136
for extensions, 159, 1 62, 173-17 5
and initialization, 95

649

F, cont'd

and Initialization Table, 100-101
Logical ID 2 entry in, 114
and MODIFY extensions, 167
and protected mode, 111-11 2
relationship of, to other

structures, 14
for REPLACE extensions, 164

relationship of, to other structures,
14

Functional parameters, Request
Block, 121-123

Functions
address pointers to, 82
entry points for, extensions control

of, 26
relationship of, to other structures,

14
and request blocks, 15, 122
standard, 4
suspension of, 5, 22-23, 154
transferring control to, 17-18
See also Calling of functions

G

Game port address, 70

Gap length, changing of, 202

Graphics controller, 36, 307

Graphics registers, VGA, 75

Gray scale summing flag, 326, 356

H

Handlers, calling by, 9

Hardware devices
as physical devices, 15
relationship of, to other structures,

14

Hardware environment, 29-30

650

for CMOS RAM Service, 46, 524
for Direct Memory Access Service,

545-552
for Diskette Service, 193-195
OMA controller, 4 7-54
for Fixed Disk Service, 235
110 devices, 35-42
110 port list, 61-79
for Keyboard Security Service, 585
for Keyboard Service, 261
math coprocessors, 32-33
Micro Channel, 33-34
microprocessors, 31
NMI masks, 60
for Parallel Port Service, 39,

417-418
for Pointing Device Service, 497
for POS Service, 571-572
power-on passwords, 60
Programmable Interrupt Controller,

56-57
Programmable Option Select, 55
for Real Time Clock Service, 443
for Serial Communications Service,

40-41, 361-363
system control port definitions,

58-59
system time-related devices, 42-46
for System Timer Service, 436-437
for Video Service, 36-37, 307-308

Hardware interrupts
for Diskette Service, 193
for fixed disks, 35
handlers for, 142-146
maskable, Pl Cs for, 56
for multistaged functions, 7-8,

129-130
for parallel ports, 39
by PIT, 43
sharing of, 144-145

Hardware time-out
for function driving, 130
vs. time period stages, 8

ABIOS for IBM PS/2 Computers and Compatibles

H, cont'd

Headers for extensions, 26, 159,
168-169

Heads
fixed disk, 236-237
number of, in disk formatting, 214

High density diskettes, 194

Identification code
for keyboard, 272
for pointing devices, 519-521

Identity BIOS service, CBIOS vs.
ABIOS, 11

Idle CPU time, 5

IDs. See Device IDs; Logical IDs

Initialization, 95-97, 117
ABIOS, 11-16
of Common Data Area, 96,

103-105
of DAC color registers, 349, 351
of Device Blocks and FTTs, 11-13,

96, 106-109, 113
of Initialization Table, 96, 100-102
of logical ID 2, 113-115
and multiple instances of devices,

115-116
of palette register, 345
of Pointing Device Service, 503
of protected mode tables, 96,

110-112
of RAM extensions, 178-179
of Request Block, 11, 132-133
of return code fields, 143
of ROM extensions, 176-177
of serial ports, 361
of stack frames, 20, 23
of System Parameters Table, 96,

98-99
of video hardware, 324-330

Initialization Command Words, PIC, 63

Initialization Table

Index

building of, 13, 96, 100-102
for extensions, 26, 159, 168,

171-172
first Device ID entry for, 114

Initialize DAC to default values flag,
326

INMOS G171 DAC chip, 36, 307

Input rules for Request Blocks,
16, 133

Input status register, VGA, 74, 76

Intel 8042 keyboard controller,
38, 261

for keyboard security, 585
for Pointing Device Service, 497
port address for, 66

Intel 8237 OMA Controller, 4 7,
545-546

Intel 8254A Programmable Interval
Timer, 42-44, 436

Intel 8259A Programmable Interrupt
Controller, 56-57

Intel 80286/80386/80386SX
microprocessors, 31

Intel 80287180387 math coprocessor,
32

Intel 82284 clock generator, 42

Internal calls
device ID for, 4, 153
and Logical ID 2, 113
logical IDs for, 104

Interrupt Status Diskette Service,
229-230

Interrupt status field, fixed disk, 257

Interrupt Status Register, fixed disk
adapter, 74

Interrupts, 9, 131
assignment of requests for, 57
diskette handlers for, 196
enable register for, 71, 77

651

I, cont'd

and extensions, 162
identification register for, 71 , 77
levels of, 33, 39-40, 56, 261, 361
mask register for, 63-64
for multiple instances of devices,

115
operating system handling of, 138
pointer to, 87-88, 98
for real time clock, 441
for serial port, 361
and service registers, PIC, 62
and staged function redirection, 186
update-ended, 462-464
See also Hardware interrupts;

Nonmaskable interrupts

Invalid Function return code, 25, 141

Invalid Logical ID return code,
25, 141

Invalid Request Block Length return
code, 25, 141

Invalid Service-Specific Parameter
return code, 25, 141

Invalid Unit Number return code,
25, 141

Invocation byte, writing of, 597-598

110 address width with Micro Channel,
33

1/0 ports
for CMOS RAM, 45, 66
for diskette, 76-77
for OMA controller, 47, 66, 68-69
for error logs, 608
for fixed disk, 70, 73-74
for game port, 70
for keyboard, 65-66
for manufacturing checkpoint port,

79
for math coprocessor, 69
for parallel port, 70-71, 74, 75
for POS, 67, 69, 572
for PIC, 62-64, 68, 572

652

for PIT, 64-65
for serial port, 71-73, 77-79
for video, 74-76
See also Parallel ports; Serial ports

110 privileges, 112

Isolation, BIOS for,

Italicizing fonts, extension for,
184-185

K

Keyboard
device ID for, 4, 153
error handling for Keyboard

Service, 268
error handling for Keyboard Security

Service, 589
hardware environment for Keyboard

Security Service, 585
hardware for, 38, 261

hardware environment for Key-
board Service, 261

interrupt request for, 57
layout of, · 262
return codes for, 619-622, 625
services for Keyboard Security

Service, 583-584
Enable Keyboard Security,

593-594
Read Device Parameters, 592
Return Logical ID Parameters,

590-591
Write Filter Byte 1 , 601-602
Write Filter Byte 2, 603-604
Write Invocation Byte, 597-598
Write Match Byte, 599-600
Write Password, 595-596

services for Keyboard Service,
259-260

Continuous Keyboard Read,
280-281

Default Interrupt Handler, 269
Disable Keyboard, 278-279

ABIOS for IBM PS/2 Computers and Compatlbles

K, cont'd

Enable Keyboard, 276-277
Read Keyboard ID Bytes, 272-273
Read Keyboard LED Status,

282-283
Read Keyboard Scan Mode,

289-291
Reset/Initialize Keyboard, 274-275
Return Logical ID Parameters, 270
Set Keyboard LED Status,

284-285
Set Keyboard Scan Code Mode,

292-295
Set Typematic Rate and Delay,

286-288
Write Command(s) and Data to

Keyboard, 300-303
Write Command(s) to Keyboard

Controller, 295-299
scan codes for Keyboard Service,

263-267' 586-587
system scan codes for Keyboard

Security Service, 586-588
and time-out handling, 149

Keyboard/auxiliary data port, 65

L

Landing zone, fixed disk, 236-237

LED, keyboard, status of, 282-285

Length
data string, for keyboard controller,

295
of extensions, 168
in Request Block structure, 122

Level-sensitive interrupts
with Micro Channel, 33
for parallel port, 39
and PICs, 56
and serial port, 40, 361

Levels of priority for OMA controller,
549

Index

Lifespan of Request Blocks, 15, 132

Line control
register for, 72, 78
setting of, 375-377

Line status register, 73, 79

Load OMA Controller Parameters
service, 567-568

Load Text Mode Font Video Service,
339-341

Local Descriptor Table and protected
mode, 478

Locate BIOS function and service,
CBIOS vs. ABIOS, 11

Logical devices vs. physical devices,
15

Logical ID 2, initialization of, 109,
113-114

Logical IDs, 15
and ABIOSCommonEntry, 20, 152
and ADD extensions, 1 65
assignment of, 103
in bimodal environment, 146
and CDA, 85-86, 104-105
and control transfer, 135
and Default Interrupt Handlers, 147
in Device Blocks, 90-93
for diskette drives, 190, 197-198
for fixed disk systems, 232
FTT pointer for, 87
and hardware interrupt handlers,

142
in Initialization Table, 100
interrupts for, 144-145
and MODIFY extensions, 167
for multiple instances of devices,

115
relationship of, to other structures,

14

653

L, cont'd
in Request Block structure table,

122
for serial ports, 40
See also Device IDs; Return Logical

ID Parameters functions

M
Manufacturers, fixed disk, 236-237

Manufacturing checkpoint port, 79

Mask register, OMA, 61, 68

Maskable hardware interrupts, PICs
for, 56

Masks, NMI, 60

Master Clear, OMA, 61, 69

Match byte, writing of, 599-600

Math coprocessors, 32-33
interrupt request for, 57
port address for, 69

MDA (Monochrome Display Adapter) ,
compatibility with, 309-310, 325

Memory
for CDA, 103, 110
device, 14, 84
for Initialization Table, 102
transferring data from, 563-564
transferring data to, 565-566
video, 36-37, 307-308, 314

Memory address registers, OMA, 61,
68, 546

Memory refresh, arbitration level for,
52

Messages, error. See Return Codes,
Appendix A

Micro Channel, 33-34
arbitration levels for, 51

Microprocessor mode and hardware
interrupts, 146

Microprocessors, 31

654

address line '20, 481-482
and OMA, 50, 547
system, arbitration level for, 52

Miscellaneous output register, VGA,
75-76

Mode control field for OMA controller,
49, 547

Mode Register, OMA, 61, 69

Model byte for extensions, 169

Models, PS/2, identification of, 473

Modem Status Serial Communications
Service, 404-406

Modems
control register for, 72, 78
controlling of, 374-375
line status of, 409
status register for, 73, 79
See also Serial ports

Modes
keyboard scan, 289-294
real time clock, 452
system timer, 43
video, 309-313, 324-330
See also Protected address mode;

Real address mode

MODIFY extension class, 1 63,
166-167, 174

Monitor support, 37, 308, 311-313

Monochrome Display Adapter, com
patibility with, 309-310, 325

Motherboard IDs, reading of, 4 73
See also system board

Motor, diskette, 204, 228-229

Motorola MC146818A Real Time
Clock, 45-46, 443, 524-525

Mouse, 495
interrupt request for, 57
return codes for, 619, 622

Multi-byte scan codes, 264-265, 586

Multiple instances of devices,
115-116

ABIOS for IBM PS/2 Computers and Compatibles

M, cont'd

Multiscan monitor support, 37, 308

Multistaged functions, 7-8
driving of, 129
time-period handling of, 130

Multistaged processing/multitasking
operating systems, 5-6

Multitasking operating system, 31

N

National Semiconductor
8250/16640/16650 serial port
controller, 40-41, 361

NEC 765 diskette controller, 35, 193

NMI. See Nonmaskable interrupts

NMI Continuous Read service,
492-493

Non-intrusive interception by
extensions, 181-183

Nonmaskable interrupts
arbitration level for, 52
and CMOS RAM access, 449
device ID for, 4, 153
error handling for, 487
mask for, 60
services for, 485-486

Disable NMI, 491
Enable NMI, 490
NMI Continuous Read, 492-493
Return Logical ID Parameters, 488

Nonstaged function, redirection of,
184-185

Not My Interrupt return code, 25,
141, 143-144, 618

Not set state for Diskette Change
Line signal, 191

Null CDA entries, 85, 112

Null stripping serial port mode, 392

Index

Number of Initialization Table Entries
for extensions, 168-1 69
in Systems Parameters Table,

98-99

Numbering of logical IDs, 104

Numeric exception error handling
interrupt, 33

Numeric keypad, 267, 588

0

Operating system
CDA building by, 103-104
and DBs and FTTs, 106, 109
isolation of, by BIOS, 1
transfer convention of, 18, 137-138

Out of paper error, Parallel Printer
Service, 427

Output rules for Request Blocks,
16, 133

Overrun errors for serial ports, 392

p

Page table address registers, 66

Palette register
and DAC, 312
reading of, 345-346
writing to, 347-348

Parallel ports
addresses for, 39, 70-71, 74-75,

417
device ID for, 4, 153
error handling, 153
hardware environment for, 39,

417-418
interrupt request for, 57
return codes for, 619-620, 622,

626
services for, 415-416

Cancel Print Block, 430-431

655

P, cont'd

Default Interrupt Handler, 419
Print Block, 427-429
Read Device Parameters,

421-422
Reset/Initialize Parallel Port, 425
Return Logical ID Parameters,

420-421
Return Print Status, 432-433
Set Device Parameters, 423-424

Parallel-to-serial conversions,
41, 362

Parameters
errors in, 140
Request Block, 121
table of, for Fixed Disk Service,

236-237

Parity, serial support for, 40, 361,
392

Pass parameters, CBIOS vs. ABIOS,
11

Passwords
CMOS RAM for, 5~6. 528
with keyboard, 296, 583-584
power-on, 60
writing of, 595-596

Patching, recommendations for, 162

Pause key, 267, 589

PC-type adapters and Micro Channel,
33

Periodic Interrupt Rate field, 449

Periodic interrupts, clock timer, 441
canceling of, 458-460
setting of, 461

Phoenix 8042 Advanced Keyboard/
Mouse Controller Firmware,
289, 292

Physical addresses, conversion of,
109

656

Physical devices
vs. logical devices, 15
supported, 153

Physical DMA channels, 53, 551

PhysToVirt call, 22

PIC. See Programmable Interrupt
Controller, 56-57

PIO (programmed 110) for DMA
controller, 49, 54 7

PIT. See Programmable Interval Timer

Pointer field definitions, 379, 389

Pointers
and CDA, 84-86, 103, 107, 109,

113, 475
for data area, 103
to functions, 82
pushing of, onto stack, 134
receive, 389-391, 393-396
transmit, 379-382, 384-386, 391,

399
See a/so Anchor pointer; Device

Blocks, pointers to; Function
Transfer Tables, pointers to

Pointing Device Continuous Read,
509-511

Pointing devices
controller for, 38
device ID for, 4, 153
error handling for, 497
hardware environment for, 497
services for, 495-496

Continuous Read, 509-511
Default Interrupt Handler, 498
Disable Pointing Device, 507-508
Enable Pointing Device, 505-506
Read Device Parameters,

500-501
Read Pointing Device Identification

Code, 519-521

ABIOS for IBM PS/2 Computers and Compatibles

P, cont'd

Reset/Initialize Pointing Device,
503-504

Return Logical ID Parameters,
499-500

Set Resolution, 514-515
Set Sample Rate, 512-513
Set Scaling Factor, 516-518

Polling of Request Block, 142-143

Port pairs, logical ID, in device block,
91

Portability, interface for, 30

Ports
for CMOS RAM, 45, 66
for diskette, 76-77
for OMA controller, 47, 66, 68-69
for error logs, 608
for fixed disk, 70, 73-74
for game port, 70
for keyboard, 65-66
for manufacturing checkpoint port,

79
for math coprocessor, 69
for parallel port, 70-71, 74, 75
for POS, 67, 69, 572
for PIC, 62-64, 68, 572
for PIT, 64-65
for serial port, 71-73, 77-79
for video, 7 4-76
See also Parallel ports; Serial ports

POS. See Programmable Option
Select

Power-on passwords, 60
for keyboard security, 583

Power-on self test (POST)

ADF files read during, 34, 55

password access during, 60

Print Block Parallel Port Service,
427-429

Print screen key, 267, 589

Printer, resetting of, 425

Index

Printer Interrupt Time-out field, 421

Printer Status, 425, 427, 430
returning of, 432-433

Private data in Device Block, 90

Privileges, 1/0, 112

Processing model, 5-9, 1 28-131

Program access
with ABIOSCall, 2, 19, 23, 131,

151, 155
with ABIOSCommonEntry, 19-22,

131, 151-154

Programmable baud rate generator,
41, 362

Programmable Interrupt Controller,
56-57

port addresses for, 62-64, 67-68

Programmable Interval Timer, 42-44,
436

port addresses for, 64-65

Programmable Option Select, 55
CMOS RAM for, 527-530
device ID for, 4, 153
error handling of, 573
hardware environment for, 5 71-5 72
with Micro Channel, 33-34
parallel port extended mode,

39, 417
port addresses for, 67, 69-70
services for, 569-570

Read POS Data from an Adapter,
579-580

Read Stored POS Data from
CMOS RAM, 575-576

Return Logical ID Parameters,
574-575

Write Dynamic POS Data from an
Adapter, 581-582

Write Stored POS Data from
CMOS RAM, 577-578

Programmed 1/0 for OMA controller,
49, 547

657

P, cont'd

Protected address mode, 31
and CDA, 84
environments for, building of, 13
and math coprocessor, 32
switching to, 4 78-480
tables for, building of, 110-112

Public data in Device Block, 89

PUSH for control transfer, 17, 134

R
RAM extensions, 27, 160

area for, 180
header for, 169
initialization of, 108, 178-179
See also CMOS RAM; Memory

Raw system scan codes, 280

Read Block of Color Registers Video
Service, 354-355

Read Change Line Signal Status Disk
ette Service, 226-227

Read CMOS RAM Service, 536-537

Read DAC Color Register Video
Service, 349-350

Read Device Parameters functions, 4
for CMOS RAM Service, 534
for Direct Memory Access Service,

555
for Diskette Change Line signal,

191
for Diskette Service, 199-201
for Fixed Disk Service, 242-244
for Keyboard Security Service, 592
for Parallel Port Service, 421-422
for Pointing Device Service,

500-502
for Real Time Clock Service,

449-451
for Serial Communications Service,

367-369
for Video Service, 319-322

658

Read, Diskette Service, 208-210
and Diskette Change Line signal,

191

Read, Error log Service, 612-613

Read, Fixed Disk Service, 249-250

Read from 1/0 and Write to Memory,
DMA Service, 565-566

Read Keyboard ID Bytes, Keyboard
Service, 272-273

Read Keyboard LED Status, Keyboard
Service, 282-283

Read Keyboard Scan Mode, Keyboard
Service, 289-291

Read Media Parameters Diskette
Service, 221-222

Read Palette Register Video Service,
345-346

Read Pointing Device Identification
Code, 519-521

Read POS Data from an Adapter,
579-580

Read standard function, 4

Read Stored POS Data from CMOS
RAM, 575-576

Read System Configuration, System
Services, 4 73-4 7 4

Read Time and Date, Real Time Clock
Service, 465-466

Read/write counters, PIT, 64-65
Reading

from CMOS RAM, 45
of system control ports, 58

Real address mode, 31
and CDA, 84
for initialization, 12, 95
and math coprocessor, 32
switching to, 475-477

ABIOS for IBM PS/2 Computers and Compatibles

R, cont'd

Real time clock, 45-46, 524-525
data for, 444-445
device ID for, 4, 153
error handling for, 445
hardware environment for, 443
interrupt request for, 57
return codes for, 619
services for, 495-496

Cancel Alarm Interrupt, 457
Cancel Periodic Interrupt, 461
Cancel Update-Ended Interrupt,

464
Default Interrupt Handler, 446
Read Device Parameters,

449-451
Read Time and Date, 465-466
Return Logical ID Parameters,

447-448
Set Alarm Interrupt, 454-456
Set Device Parameters, 452
Set Periodic Interrupt, 458-460
Set Update-Ended Interrupt,

462-463
Write Time and Date, 466-467

Receive Serial Communications
Service, 389-398

Recompute Checksum CMOS RAM
Service, 540-541

Redirection
of cascade, interrupt request for,

57
of nonstaged functions, 184-185
of staged functions, 186-188

Reference diskette
ADF files read by, 34, 55
for passwords, 583-584

Relative Block Addresses for fixed
disk systems, 233

REPLACE extension class, 163-164,
174

Request Blocks, 10, 94, 119-120,
125, 128

Index

and ABIOSCommonEntry, 20, 152
and control transfer, 18, 136
and Default Interrupt Handlers,

147-148
and function requests, 132-133
for hardware interrupt handling,

142-145
and initialization, 11 , 15-16, 97,

117. 132-133
in Initialization Table, 101
lifespan of, 15, 132
parameters for, 121
for Receive function, 390, 393-396
return codes in, 24, 129, 140
structure of, 122-124
and time-out handlers, 149-150
for Transmit function, 380, 382-386
use of, 16

Reserved data pointers, initialization
of, 113

Reserved fields in Request Blocks, 1 6

Reset Diskette System function, 190

Reset/Initialize functions, 4
for Diskette Service, 190, 203-205
for Fixed Disk Service, 244-248
for Keyboard Service, 274-275
for Parallel Port Service, 425
for Pointing Device Service,

503-504
for Serial Communications Service,

370-372

Resolution
and default fonts, 314
for pointing devices, 514-515
video, 309-310, 325

Restore Video Environment, Video
Service, 335-336

Resume Stage after Interrupt return
code, 25, 141, 618

Resume Stage after Time Delay re
turn code, 25, 141, 150, 618

659

R, cont'd

Retryable Device Error return code,
25, 141

Retryable Device Error With Time-out
return code, 25, 141

Retryable diskette errors, 195

Retryable errors, 25, 140-141, 238

Retryable fixed disk errors, 238

Retryable Time-out Error return code,
25, 141

Return Code Field Not Valid return
code, 25, 141

Return codes, 24-25, 129, 139-142,
617

action-required, 618
for Default Interrupt Handler, 148
for Diskette Service, 195
for Fixed Disk Service, 238
initialization of, 143
for Keyboard Service, 268
for Parallel Port Service, 418
for Real Time Clock Service, 445
for Request Blocks, 16, 123, 125
for Serial Communications Service,

363
for System Timer Service, 437
termination-indicating, 619-626
for Video Service, 315

Return Line Status, Serial Communi
cations Service, 409

Return Logical ID Parameters func-
tions, 4, 20, 152

for CMOS RAM Service, 533-534
and Default Interrupt Handlers, 147
for Direct Memory Access Service,

553
for Diskette Service, 197-198
for Error Log Service, 610-611
for Fixed Disk Service, 240
for Keyboard Security Service,

590-591
for Keyboard Service, 270
for Nonmaskable Interrupt Service,

488

660

for Parallel Port Service, 420-421
for Pointing Device Service,

499-500
for POS Service, 574-575
for Real Time Clock Service,

447-448
for Serial Communications Service,

365-366
for System Services, 471-472
for System Timer Service, 439
for Video Service, 317

Return Modem Status Serial Commu
nications Service, 410-411

Return Print Status Parallel Port
Service, 432-433

Return ROM Fonts Information Video
Service, 331-332

RGB data format, 356

ALL fixed disk controller, 35

Rogue interrupts, 144

ROM
ABIOS vs. CBIOS, 31
fonts resident in, 313-314

ROM extensions, 27, 160
header for, 168
initialization of, 176-177
signature for, 168

ROMCritSection and DOS compatibility
box, 22-23, 154

Rows, video, and fonts, 342

s
Sample rate for pointing devices,

512-513

Save Video Environment, Video
Service, 333-334

Scaling factor for pointing devices,
516-517

ABIOS for IBM PS/2 Computers and Compatibles

S, cont'd

Scan codes for Keyboard Service,
263-267' 586-589

reading of, 280-281

Scratch register, serial port, 73, 79

Secondary device ID in Initialization
Table, 100-101

Sector number and size in diskette
formatting, 214, 223

Sectors per track, fixed disk,
236-237

Security. See Keyboard, security
services for

Select Character Generator Block
Video Service, 337-338

Selector descriptors, 111

Sequencer, video, 36, 307

Serial buffer head pointer
receive, 389
transmit, 379, 382
port address for, 75

Serial buffer tail pointer
receive, 389-390
transmit, 379-380, 382

Serial Port Service, support by, 115

Serial ports
addresses for, 40, 71-73, 77-79,

361
Device Block for, 367
device ID for, 4, 153
error handling for, 363
hardware environment for, 361-363
interrupt request for, 57
and keyboard controller, 261
return codes for, 620
services for, 359-360

Cancel, 407-408
Default Interrupt Handler, 364
Enable FIFO Control, 412-413

Index

Modem Status, 404-406
Read Device Parameters,

367-369
Receive, 389-398
Reset/Initialize Serial Port,

370-372
Return Line Status, 409
Return Logical ID Parameters,

365-366
Return Modem Status, 410-411
Set Baud Rate, 378
Set Line Control, 375-377
Set Modem Control, 374
Transmit, 379-388
Transmit and Receive, 399-403

Serial Receive Buffer, 71, 77,
389-391, 393-396

Serial Receive Head Pointer,
389-391, 393-396

Serial Receive Tail Pointer, 389-391 ,
393-396

Serial-to-parallel conversions, 41 ,
362

Service codes for extensions, 26,
159, 176

Service-specific Entry Routines, 17
for control transfer, 134-135

Service-Specific Interrupt Routine,
149

Service-specific parameters, Request
Block, 121, 123-124

Service-Specific Unsuccessful Opera
tion return code, 25, 141

Services, relationship of, to other
structures, 14

Set Alarm Interrupt Real Time Clock
Service, 454-456

Set Baud Rate Serial Communications
Service, 378

661

S, cont'd

Set Device Parameters function, 4
for Diskette Service, 202-203
for Parallel Port Service, 423-424
for Real Time Clock Service, 452

Set Keyboard LED Status service,
284-285

Set Keyboard Scan Mode Code,
Keyboard Service, 292-295

Set Line Control, Serial Communica
tions Service, 375-377

Set Media Type for Format, Diskette
Service, 223-225

Set Modem Control, Serial Communi
cations Service, 374

Set Periodic Interrupt, Real Time
Clock Service, 458-460

Set Resolution, Pointing Device
Service, 514-515

Set Sample Rate, Pointing Device
Service, 512-513

Set Scaling Factor, Pointing Device
Service, 516-518

Set state for Diskette Change Line
signal, 191

Set Typematic Rate and Delay, Key
board Service, 286-288

Set Update-Ended Interrupt, Real
Time Clock Service, 462-463

Set Video Mode, Video Service,
324-330

Sharing of hardware interrupts,
144-145

Shift key, 266-267, 587

Shutdown, CMOS RAM, 525

Signatures for extensions, 168

Single-staged functions, processing
model of, 128

Single-staged processing/single
tasking operating systems, 5-6

662

Single-tasking operating system, 31

Slashes, 267, 588

Speaker, enabling of, 483-484

Speeds, microprocessor, 31

ST506 fixed disk adapter, 35, 235

Stacks and stack frame
and ABIOSCall, 23, 155
and ABIOSCommonEntry, 20, 152
and extensions, 162
loading of, 137
pushing of pointers onto, 17, 134
for System Parameter Table, 98

Staged functions, redirection of,
186-188

Standard functions, 4

Start Routines, 9, 131
flags for, 143
pointer for, 87-88, 98, 605
and return codes, 24
and staged function redirection, 186

Status
of function calls, 25-26
modem, 404-406, 410
of parallel ports, 39, 71, 74-75,

417
printer, 432-433

Status registers
diskette controller, 76
OMA, 61, 68
fixed disk adapter, 73

Stop bits, serial support for, 40, 361

Stored pointer method of frame
loading, 137

Structures. See Data structures

Subaddress extension, POS, 70

Successful return code, 25, 141

Suspension of functions, 5, 22-23,
154-155

ABIOS for IBM PS/2 Computers and Compatlbles

S, cont'd

Switch to Protected Mode, System
Services, 478-480

Switch to Real Mode System Serv
ices, 475-477

Sys Req key, 267, 589

System board ROMs, initialization of,
108

System board setup enable register,
67

System configuration, reading of,
47-474

System control port
definitions for, 5-59
port addresses or, 65-67

System microprocessor, arbitration
level for, 52

System Parameters Table, building
of, 13, 96, 98-99

System scan codes, 280
for Keyboard Security Service,

586-589
for Keyboard Service, 264-267

System Services, 469
device ID for, 4, 153
error handling for, 4 70
for Watchdog Timer, 44
services for, 471-484

Disable Address Line 20, 482
Enable Address Line 20, 481
Enable Speaker, 483-484
Read System Configuration,

473-474
Return Logical ID Parameters,

471-472
Switch to Protected Mode,

478-480
Switch to Real Mode, 475-477

System Timer Service and devices,
42-46, 435

Default Interrupt Handler, 438
device ID for, 4, 153

Index

hardware environment for, 436-437
Return Logical ID Parameters, 439

T

Termination, return codes indicating,
619-626

Text modes
and character blocks, 314
fonts for, 325, 339-344
resolution of, 310, 325
scan lines for, 327

Time
reading of, 465-466
writing of, 466-467
See also System Timer Service and

devices

Time-out errors, 140
and keyboard, 268
return code for, 25, 141

Time-out parameter in Request Block
structure table, 1 23

Time-out routines, 8-9, 149-150, 162
for function calling, 131
pointer for, 87-88, 98
and staged function redirection, 186

Time-period handlers, 7-8, 130

Time-related devices, 42

Time to Wait Before Continuing Re
quest field, 421, 423

Time to Wait for Printer Initialization
field, 421, 423

Timer channels, 43-44

Timer services. See System Timer
Service and devices

Timer tick, interrupt request for, 57

Touchpads, 495

Track number in diskette formatting,
214, 223

663

T, cont'd

Track switching, diskette, 204

Trackballs,495

Transfer Control bytes field for DMA
controller, 50, 547

Transfer conventions, 17-18, 94
ABIOS 136
for function calling, 131 , 134-136
and initialization, 117
operating system, 18, 137-138
and Request Block, 125
with time-out handlers, 149

Transfer count registers, DMA, 61, 68

Transfer Data Pointer Mode for CMOS
RAM, 536, 538

Transfer rates, diskette, 193

Transfer status, DMA, 546, 560

Transmit and Receive, Serial Commu-
nications Service, 399-403

Transmit Buffer, 379-382, 384-386,
399

Transmit Head Pointer, 379-382,
384-386, 391, 399

Transmit Holding Register, 71, 77,
383, 385

Transmit, Serial Communications
Service, 379-388

Transmit Tail Pointer, 379-382,
384-386, 391, 399

Turn Diskette Motor Off, Diskette
Service, 228-229

200 scan-line video, 31 0-311 , 325

Typematic rate and delay, 286-288

u
Unexpected Reset return code, 25,

141, 618

664

Unit in Request Block structure table,
122

Unit-unique areas in Device Block, 92

Update-ended interrupts, 441
canceling of, 464
setting of, 462-463

v
Verify Diskette Data, Diskette Service,

191

Verify Diskette Sectors, Diskette
Service, 218-220

Verify Fixed Disk Data, Fixed Disk
Service, 255-256

VGA
adapter for, 305
chip for, 307-308
and palette register, 312
port addresses for, 7 4-76
support for, 36

Video
device ID for, 4, 153
error handling for, 315
extension for, 184-185
hardware for, 36-37
hardware environment for, 307-308
modes for, 309-313, 324-330
monitor support for, 311-312
ROM-resident fonts for, 313-314
services for, 305-306

Default Interrupt Handler, 316
Enhanced Load Text Mode Font,

342-344
Load Text Mode Font, 339-341
Read Block of Color Registers,

354-355
Read DAC Color Register,

349-350
Read Device Parameters,

319-322
Read Palette Register, 345-346

ABIOS for IBM PS/2 Computers and Compatibles

V, cont'd

Restore Video Environment,
335-336

Return Logical ID Parameters, 317
Return ROM Fonts Information,

331-332
Save Video Environment, 333-334
Select Character Generator Block,

337-338
Set Video Mode, 324-330
Write Block of DAC Color Regis

ters, 356-358
Write DAC Color Register,

351-353
Write Palette Register, 34 7-348

Video Mode field, 326

Video subsystem register, VGA, 75

Virtual OMA channels, 53, 551

w
WAIT signal, math coprocessor, 32

Wait states, 5, 31

Watchdog Timer, 44

Work area in Request Block structure
table, 124

Write and Verify, Fixed Disk Service,
253-254

Write Block of DAC Color Registers,
Video Service, 356-358

Write Command (s) and Data to Key
board, Keyboard Service,
300-303

Write Command (s) to Keyboard Con
troller, Keyboard Service,
295-299

Write DAC Color Register, Video
Service, 351-353

Index

Write Dynamic POS Data from an
Adapter, 581-582

Write Filter Byte 1 , Keyboard Security
Service, 601-602

Write Filter Byte 2, Keyboard Security
Service, 603-604

Write Invocation Byte, Keyboard Se
curity Service, 597-598

Write mask register, OMA, 62, 69

Write Match Byte, Keyboard Security
Service, 599-600

Write Palette Register, Video Service,
347-348

Write Password, Keyboard Security
Service, 595-596

Write precompensation, fixed disk,
236-237

Write standard function, 4

Write Stored POS Data from CMOS
RAM, POS Service, 577-578

Write Time and Date, Real Time
Clock Service, 466-467

Write to CMOS RAM, CMOS RAM
Service, 538

Write to Diskette, Diskette Service,
211-213

and Diskette Change Line signal,
191

Write to Error Log, Error Log Service,
614-615

Write to Fixed Disk, Fixed Disk
Service, 251-252

Writing
to CMOS RAM, 45
to system control ports, 58-59

665

IBM Programming

The Phoenix Technical Reference Series
Phoenix Technologies Ltd.

>$26-95 FPT USA

ABIOS for IBM® PSI 2® Computers and Compatibles is an indispensable guide to
the ABIOS, the part of the PS/2 BIOS that supports multitasking operating systems
such as OS/2~ It is written for anyone needing a detailed understanding of the system
software resident in their IBM PS/2 or compatible computer-applications program
mers, operating system developers, hardware manufacturers, and students of PC
architecture. This reference is the most complete source of information available on
ROM-based system software for OS/2.

Key information includes:

• an ABIOS theory of operation section, that includes information on initial
ization, data structures and standard calling procedures

• a complete description of procedures for modifying ABIOS, with
several examples

• descriptions of undocumented IBM BIOS features
• a description of how to access ABIOS services through OS/2
• programming tips for using ABIOS functions more productively
• descriptions of key hardware commands, including DMA, POS, and the

Micro Channel'.'

The information in this book is applicable to all Micro Channel Architecture-based
IBM PS/2 and compatible computers.

Phoenix Technologies Ltd. of Norwood, Massachusetts is the industry leader in
providing ROM BIOS products for IBM PC and PS/2 compatibles.

The Phoenix Technical Reference Series includes two other technical reference
volumes on BIOS software-CBI OS for IBM PS/2 Computers and Compatibles: The
Complete Guide to ROM-Based System Software for DOS and System BIOS for IBM
PC/XT/AT Computers and Compatibles: The Complete Guide to ROM-Based
System Software.

Applications

OS/2 DOS
t------ -

AB I OS CBI OS

PS/2 Hardware

Addison-Wesley Publishing Company, Inc.

System BIOS .
PC/XT/AT
Hardware

9 780201 518054

5 2

r
5

ISBN 0-201-51805-8

