
,CAl #48 .

360 INTRODUCTORY ,PROGRAMMING

360pGN

STUDENT .,WORKBOOK

REVISION 1
8/25/70

PAGE

1-1

1-8

1-16

1-26

3-1

3-9

3-13

3-18

3-23

3-25

3-28

3-31

3-34

3-41

3-45

3-48

4-1

4-6

4-11

4-21

4-23

4-27

4-32

4-34

l.NIlLX

TITLE

FIXED-POINI' INST.

lDGICAL INST. .

BRANCliING INST.

STATUS SWITOiING

LOAD

STORE

ADD

SUBTRACT

BRANQi ON CX>NDITION

COMPARE

MULTIPLY

DIVIDE

SHIFf

FIXED-POINT DATA FORMATS (PAC<.AND
. . UNPAC<)

CX>NVERl' TO BINARY

CONVERI' TO DECIMAL

M:>VE

AND

OR

TEsr UNDER MASK

CDMPARE LDGICAL

SHIrr LOGICAL

LOAD ADDJSS

TRANSlATE

PAGL TI'fLI:

4~37 TRANSLATE AND TEST

4-41 EXECUI'E

4'-44 INSERT GIARAcrER

4-46 STORE GIARAcrER

5-1 BRl\NQ-I ON COUNT

5-4 BRANGI ON INDEX

5-8 BRJ\NQ-I AND LINK

5-11 SUPERVISOR CALL

5-13 SET PROGRAM MASK

5-15 SET SYSTEM Ml\SK

5-17 LOAD PSW

5-19 ' STORAGE KEYS (SSK AND ISK)

5-23 TEST AND SET

9~1 DECIMAL INST.

9-8 ADD DECIMAL

9-11 ZEro' AND ADD

9..;;.14 SUBTFAcr DECIMAL

9-17 MULTIPLY DECIMI\.L

9-19 DIVIDE DECIMAL

9-22 COMPARE DECIMI\L

9-24 EDIT

9-41 EDIT'AND MARK

PAGl:.:

11-1

11-16

11-19

11-21

12-1

'rITLE

I/O INST.

STARr I/O

TEST I/O

HALT I/O

I /0 p~OGRAMMrNG PR0,JP.CT

FIXED-POINT INSTRUCTIONS

FIXED-POINT

The fixed-point indtrUQtion sot.performm binary arithmetic on

operands servin·g as .addresses, index quanti ties, and counts·,

as well .as fixed-point data. In general, both operands are.

signed and 32 bits long. Negative quantities are held in

twoDs~complement form.
.. . One operand is always in one of the

16 general regist.ers; the·other operand may.be in main

stor~ge. o~ ... i~. a· general. register.

The instruction set provides for loading, adding, subtracting,

comparing, multiplying, .dividing, and storing, as well as for

the sign control, radix (base) conversion, and shifting of fixed-

point .operands. The entire instruction set is included in the

stand~rd instruction set.

The condition code is set as a result of.all sign control, add,

subtract, compare, and shift operations.

DATA FORMAT

Fixed-point numbers occupy a fixed-length format consisting of

a one~bit sign followed by the integer field. When held in one

of the general registers, a fixed-point qu~tity has a 3l-bit

integer field and occupies all 32 bits of th.e register. Some

multiply, divide, and shift operations use an operand consisting

of 64 bits with a 63-bit integer field. ·These operands are 10-

cated .in a pair of adjacent general registers and are addressed

by an ~ven address referring to the leftmost register of the

pair. Tl\e sign-bit position of the rightmost register contains

1-1

... of the integer. In register-to-register operations the

same register may be specified for both operand locations.

Full Word Flxed.polnf Numb.r

lsi Integer
o I

Ha'fword Flxod-l'olnf Number

lsi Integer
o I 15

Fixed-point data in main storage occupy a 32-bit'word or a

16-bit halfword, with a binary integer field of 31 or 15

b~ts, respectively. The conversion instruction~ use a 64-

bit decimal field. These data must be located on integral

storage boundaries for these units of information, that is,

double word, fullword, or halfword operands must be address

ed with three, two, or one low-order address bites) set to

zero.

A halfword operand in main storage is extended to a full-

word as the operand is ,fetched from storage. subsequ~ntly,

the operand participates as a fullword operand.

In all discussions of fixed-point numbers in this publication,

the expression "32-bit signed integer" denot~s a 31-bit in

teger with a. sign bit, and the expression "64-bit signed

integer" denotes a 63-bit integer with a sign bit.

NUMBER REPRESENTATION

All fixed-point operands are treated as signed integers.

Positive numbers are represented in true binary notation

1-2

with the sign bit set to zero. Negative numbers are represented

1n two'a-complement notation with a one in the sign bit.

Two's-complement notation does' not include a negative zero. It

has a number range in which the set of negative numbers is one

larger than the set of positive numbers. The maximum positive

number consists of an all-one integer field with a sign bit of

zero, whereas the maximum negative number (the negative number

with the greatest absolute value) consists of an all-zero in

teger field with a one-bit for sign.

The CPU cannot represent the complement of the maximum negative

number. When an operation, such as subtraction from zero, pro

duces the complement of the maximum negative number, the number

remains unchanged, and a fixed-point overflow exception is

recognized. An overflow does not result, however, when the

number is complemented and the final result is within the re

presentable range. An example of this case. is a subtraction

from minus one. The product of two maximum negative numbers

is representable as a double-length positive number.

The sign bit is leftmost in a number. In an arithmetic oper

ation, a carry out of'the integer field changes the sign. How

ever, in algebraic left-shifting the sign bit does not change

even if si9nific~nt high-order bits are shifted out of the

integer field.

1-3

INSTRUCTION FORMAT

Fixed-point instructions use the following three formats:

.RR Format

\. Op Code
o 7 • " 12 1:1

RX format

I Op Code R, X2 B2

0 78 II 12 1516 1920 31

RS Format

(Op Code I R, R3 82
0 7. 1112 1:116 1920 31

In these formats, Rl specifies the general register con- .

taining the first operand. The second operand location,.-if

any, is defined differently for each format.

In the RR format, the R2 field specifies the general register

contain~ng the second operand. The same register may be

specified for the first and second operand.

In the RX " format, the contents of the general regis'ters

specified by the X2 and B2 fields are added to the content

of the D2 field to form an address designating the storage

location of the second operand.

In the RS format, the content of the general register speci-

fied by the B2 field is added to the content of the 02 field.

This sum designates the storage location of the second operand

in LOAD MULTIPLE and STORE MULTIPLE. In the shift operations,

the sum specifies the number of bits of the shift. The R3

field specifies the address of a general register in LOAD

MULTIPLE and STORE MULTIPLE and is ignored in the shift oper-

ations.

1-4

A zero in an X2 or B2 field indicates the absence of the

corresponding address component.

An instruction can specify the same gen~ral register Qoth

for address modification and for operand location. Address

modification is always' completed before operation execution.

Results replace the first· operand, except for STORE and

CONVERT TO DECIMAL, where the result replaces the second

operand.

The contents of all. general registers and stqrage locations

participating in the addressing or execution part of an

operat~on remain unchanged, except for the s~oring of the

final result.

NOTE: In the detailed descripti,Ons <;>£ tpe i.114.i.yidual in

structi~ons, the mnemonic and the symbolic ope,rand designation

for the IBM System/360 assembley language are shown with each

instruction. For LOAD AND TEST, for example, LTR is the

mnemonic and Rl, R2 the operand designation.

FIXED-POINT PROGRAM INTERRUPTIONS

Exceptional operand designations, data, or r~sults cause a

program interruption. When a program interruption o~curs,

the current PSW is stored as an old PSW, and a new PSW is

obtained. The interruption code in the old PSW identifies

the cause of the interruption. The following exceptions

cause a program interruption in fixed-point arithmetic.

1-5

Protection: The key of an operand in storage does not match

the protection key in the PSW. The operation is suppressed

for a store violation. Therefore, the condition code and

data in registers and storage remain unchanged. The only

exception is STORE MULTIPLE, which is terminated; the amount

of data stored is unpredictable and should not be used for

further computation. The operation .is terminated on any

fetch violation.

Addressing: An address designates an operand location out

side the available storage for a particular installation. In

most cases, the operation is te~inated. Therefore, the re

sult data are unpredictable and should not be used for further

computation. The exceptions are STORE, STORE HALFWORD, and

CONVERT TO DECIMAL, which are suppressed. Operand addresses

are tested only when used to address storage. Addresses used

as a shift amount are not tested. The address restrictions

do not apply to the components from which an address isgen

era ted - the content of the D2 field and the contents of the

registers specified by X2 and B2. .'

Specification: A double-word operand is not located on a

64-bit boundary, a fullword operand is not located on a

32-bit boundary, a halfword operand is not located on a"

16-bit boundary, or an instruction specifies an odd register

address for a pair of general registers containing a 64-bit

operand. The operation is suppressed. Therefore, the con

dition code and data in registers and storage remain unchanged.

1-6

Data: ,A sign or a digit code of the decimal operand in

CONVERT TO BINARY is incorrect. The operation is suppressed.

Therefore, the condition code and data in regist'ers and stor

age remain unchanged.

Fixed-Point Overflow: The result of a sign-control add,

subtract, or shift operation overflows. The interruption

occurs only when the fixed-point overflow mask bit is one.

The operation is completed by placing the. truncated low-order

result in the register and setting the condition code to 3.

The overflow bits are lost. In add-type operations the sign

stored in the register is the opposite of the sign of the sum

or difference. In shift operations the sign of the shifted

number remains unchanged. The state of the mask bit does

not affect the result.

Fixed-Point Divide: The quotient of a division exceeds the

register size, including division by zero, or the result in

CONVERT TO BINARY exceeds 31 bits. Division is suppressed.

Therefore, data in the registers remain unchanged. The con

version is completed by recording the truncated low-order

result in the register.

1-7

LOGICAL INSTRUCTIONS

A set of instructions is provided for the logical manipula

tion of data. Generally, the operands are treated as eight-

bit bytes. In a few cases the left or right four bits of a

byte are treated separately or operands are shifted a bit

at a time. The'operands are either in storage or in general

registers. Some operands are intro4uced from the instruction

stream.

Processing of data in storage proceeds left to right through

fields which may start at any byte position. In the general

registers, the processing, as a rule, ,involves the entire

register contents.

The set of logical operations includes moving, comparing,

bit testing, translating, and shift operations. All logical

operations are part of the standard instruction set.

The condition code is set as a result of all logical comparing,

connecting, testing, and editing operations.

DATA FORMAT ----
Data reside in general registers' or in storage or are intro-

duced from the instruction stream. The data size may be a

single or doubleword, a single character, or variable length.

When two operands pa~ticipate they have equal length.

1-8

f/xed-Longth Logical Information

logical Data

31

Data in general· regis.tars normally occupy all 32 bits. Bits

are treated uniformly, and no distinction is made between

sign ,and numeric bits.' In a few operations, only the low

order eight bits of a register participate, .leaving the re-.
\

maining 24 bits unchanged. ~Insome shift operations, 64

bits ~f an even/odd pair of registers participate.

The LOAD ADDRESS introduces a 24-bit address into a general

register. The high-order eight bits o~ the register are

made .zero.

In storage-to-register operations, the storage data occupy

either a word of 32 bits or a byte of eight bits. The word

must be located on word boundaries, that is, its address

must have the two low-order bits zero.

Variable-Length .Logicallnformation

I Character I Character Chara~
o &

In storage-to-storageoperations, data have a variable field-

lanqth format, starting at any byte address.~nd continuing

for up to a total of 256 .bytes. Processing is left to

right.

Operations introducing data from the instruction stream into

into storage, as immediate data, are restricted to an eight

bit byte. Only one byte is introduced from the instruction

stream, and only one byte in storage participateso

1-9

Use of general register ,1 is implied in TRANSLATE AND TEST.

A 24-bit address may be placed in this register during oper

ation. The TRANSLATE AND TEST also implies general register

2. The low-order eight bits of register 2 may be replaced by

a function byte during a translate-and-test operation.

The translating operations use a list of arbitrary·values •

. A list provides a relation between an argument (the quantity

usp.d to reference the list) and the function (the content of

the location related to the argument). The purpose of the

translation may be to convert data from one code to another

code or to perform a control function.

A list is specified by an initial address - the address

designating the leftmost byte location of the list. The
~

byte· from the operand to be translated is the argument. The

actual address used to address the list is obtained by add

ing the argument to the low-order positions of the initial

address. As a consequence, the list contains 256 eight-bit

function bytes. In cases where it is known that not all

eight-bit argument values will occur, it may be possible

to reduce 'the size of the list.

In a storage-to-storage operation, the operand fields may

be defined in such a way that they overlap. The effect of

this overlap depends upon the operation. When the operands

remain unchanged, as in the COMPARE or TRANSLATE AND TEST,

.overlapping does not affect the execution of the operation.

1-10

In the case' of MOVE, and TRANSLATE, one operand is replaced by

new data, and the execution of the operation may be affected

by the amount of overlap and the manner in which data are

fetched or stored'. For purposes of evaluating the .effect of

overlapped operands, consider that data are:handled one eight

bit byte at a time. All overlapping fields ~re considered'

valid.

INSTRUCTION FORMAT

Logical instructions use the, following five formats:

RR Format

I Op Code
78 1\12 1.5

RX Format

I Op Code R1 X2 B2
0 7 8 11 12 IS 16 1920 31

RS Format

I Op Code R1 R3 82
0 7 8 1\ 12 IS 16 1920 31

51 Format

I Op Code 12 8
1

0 78 IS 16 1920 31

SS Format

OpCode L
7 8

In the RR, RX, and RS formats, the content o'f the register

specified by Rl is called the first operand.

In the 'SI arid SS formats, the contents of the general regis-

ter specified by Bl is added to the content of the D1 field

to form an address. This address designates the leftmost

byte of the first operand field. The number of bytes to the

1-11

right of this first byte is specified by the L field in the

5S format. In the 51 format the operand size is one byte.

In the RR format, the R2 field specifies the register contain

ing the second operand. The same register may be specified

for the first and second operand.

In the RX format, the contents of the general registers speci

fied by the X2 and B~ fields are added to the content of the

D2 field to ·form the address of the second operand.

In the RS format, used for shift operations, the contents of

the general register specified by the B2 field is added to

the content of the D2 field. This sum is not used as an address

but specifies the number of bits of the shift. The R3 field 'is

ignored in the shift op~rations.

In the SI format, the second operand is the eight-bit immediate

data field, 12, of the instruction.

In the S5for.mat, the content of the general register specified

by B2 is added to the content of the D2 field to form the ad

dress of the second operand. The second operand field has the

same length as the first operand field.

A zero in any of the X2, Bl, or B2 fields indicates the absence

of the corresponding address or shift-amount component. An

instruction can specify the same general register both for

1-12

address modification and for operand location. Address modi

fication is always completed prior to operation execution.

Results replace the first operand, except in STORE CHARACTER,

where the result replaces the second operand. A variable-

length result is never stored outside the field specified by

the address and length.

The contents of all general registers and storage locations

participating in the addressing or execution of an operation

generally remain unchanged. Exceptions are the result loca

tions, general register 1 in EDIT AND MARK, and-general regis

te~s 1 and 2 in TRANSLATE:AND TEST.

NOTE: In the detailed descriptions of the individual instruc

tions, the mnemonic and the symbolic ope.rand designation for

the new IBM':System/360 assembly language are shown with each

instruction: For MOVE NUMERICS, for example, MVN is the

mnemonic and Dl (L,Bl), 02 (B2) the operand designation.

LOGICAL OPERATION EXCEPTIONS

Exceptional operation codes, operand designations, data, or

results cause a program interruption. When the interruption

occurs, the current PSW is stored in an old PSW and a new PSW

is obtained. The interruption code in the old PSW identifies

the cause of the interruption. The following exceptions cause

a proqr.am interruption in logical operations.

1-13

Protection: The key of an operand in storage does not match

the protection key in the PSW. The operation is suppressed

on a store violation. Therefore, the condition code and data

in registers and storage remain unchanged. The only excep

tions are the variable length, storage-to-storage operations

(those containing a length specification), which are termin

ated. The operation is terminated on any fetch violation.

For terminated operations, .the result data and condition code,

if affected, are unpredicatable and should not be used for

further computation.

Addressing: An address designates an operand location outside

the available storage'for the installation: In most cases,

the operation is terminated. The result data and the condition

code, if affected, are unpredictable and should not be used for

further computation. The exceptions are the immediate opera

tions; AND (NI), EXCLUSIVE OR (XI), OR (OI) and MOVE .(MVI) plus

the STORE CHARACTER (STC), which are suppressed.

Specification: A fullword operand in a storage-to-register

operation is not located on a 32-bit boundary or an odd regis

ter address is specified for a pair of general registers con

taining a 64-bit operand. The operation is suppressed. There

fore, the condition code and data in registers and storage .

remain unchanged.

Data: A digit code of the second operand in EDIT or EDIT AND

MARK is invalid. The operation is terminated. The result da~a

and the condition code are unpredictable and should not be used

1-14

for further computation.

Operand addresses' are tested only when used to address storage.

Addresses' us.ed as a shift amount are not tested. Similarly, the

address generated. by the use of LOAD ADDRESS is not tested. The

address restr,ictions do not. apply to the components from

which an address is generated . the contents of the D1

and D2 fields, and the contents of. the registers specified

by X2, Bl, and B2 .•

1-15

BRANCHING INSTRUCTIONS

Instructions are performed by the central processing unit

primarily in the sequential order of their locations. A

departure from this normal sequential operation may occur

when branching is performed. The branching instructions

provide a means for making a two~way choice, to reference

a subroutine, or to repeat a segment of coding, such as a

loop.

Branching is performed by introducing a branch address as

a new instruction address.

The branch address may be obtained from one of the general

registers or it may be the address specified by the instruc- ,

tion. The branch address is independent of the updated

,instruction address.

The detailed operation of branching is determined by the

condition code which is part of the program status word

(PSW) or by the, results in the general registers which are

specified in the loop-closing operations.

During a branching operation, the rightmost half of the PSW,

including the updated instruction address, may be stored be

fore the instruction address is replaced by the branch a~dress.

The stored information may be used to link the new instruction

sequence with the preceding sequence.

1-16

The instruction EXECUTE is grouped with the branching instruc

tions~ The branch address of EXECUTE designates a single in

instruction to be inserted in the instruction sequence. The

updated instruction address normally is not changed in this

operation, and only the instruction located at the branch

address is executed.

All branching operations are provided ;in the standard instruc-

tion set.

NOru~ SEQUENTIAL OPERATION

Normally, operation of the CPU is controlled by instructions

taken in sequence. An instruction is fetched from a location

spec~fied by the instruction-address field of the PSW. The

instruction address is increased by the number of bytes of

the instruction to address the next instruction in sequence.

This new instruction, replaces the previous contents of the

instruction-address field in the PSW. The current instruc-

tion is executed, and the same steps are repeated, using the

updated instruction address to fetch the next instruction.

Conceptually, an instruction is fetched from storage after

the preceding operation is completed and ~efore execution

of the current operation.

A change in the sequential operation may be caused by

. branching, status switching, interruption, or manual inter-

vention. Sequential operation is initiated and terminated
i\

from the system control panel.

1-17

Programming Note

It is possible to modify an instruction in storage by means

of the ~ediately preceding instruction.

SEQUENTIAL OPERATION EXCEPTIONS

Exceptional· instruction addresses or operation codes cause

a program interruption. When the interruption occurs, the

current PSW is stored as an old PSW, and a new PSW is obtained.

The interruption code in the old PSW identifies the cause of

the interruption. (In this manual, part of the description

of each class o'f instructions is a list of the program inter

ruptions that may o'ccur for these instructions.) The new PSW

is not checked for exceptions when it becomes current. These

'checks occur· when the next instruction is executed. The fol

lowing program interruptions may occur in normal instruction

sequencing, independently of the instruction performed •

. Operation: An operation exception occurs when the CPU

attempts to decode an operation code that is not assigned.

The operation exception can be accompanied by an addressing

or specification exception if the instruction class associated

with the undefined operation has uniform requirements or

operand designation. An instruction class is a group of in

structions whose four leftmost bits are identical.

Protection: A protection e)f.Geption occurs when an attempt is

made to fetch an instruction halfword from a fetch-protected

location. This error can occur when normal instructio~ se

quencing goes from an unprotected region into a protected

1-18

region, or following a branching or load-PSW operation or an

interruption.

Addressing: An addressing exception occur,s when an instruc

tion halfword is located outside the a'vailable storage for

the particular installation.

Specification: A specification exception occurs when the

instruction address in the PSW is odd. This odd address

error can occur only after a branching or loa~ PSW operation

or after an interruption.
I

A specification exception will occur when the protection key

is nonzero and the protection feature is not installed. This

error can occur after ,a PSW is loaded or after an int~rrup

tion'.

In each case, the instruction is suppressed; therefore, the

condition code and data in storage and register remain un-

changed. The instruction address stored as part of the old

PSW has been updated by the number of halfwords indicated by

the instruction length code in the old PSW.·

Programming Notes

When a program interruption occurs, the current PSW is stored

in the old PSW location. The instruction address stored as

part of this old PSW is thus the updated instruction address,

havin~ been updated by the number of halfwords indicated in

the instruction-length code of the same PSW. The interruption

1-19

code in this old PSW identifies the cause of the interruption

and aids in the programmed interpretation of the old PSW.

If the new PSW for a program interruption has an unacceptable

instruction address, another program interruption occurs.

Since this second program interruption introduces the same

unacceptable instruction address, a string of program inter

ruptions is established which may be broken only· by an ex

ternal or I/O interruption. If these interruptions also

have an unacceptable new PSW, new supervisor information

must be introduced by initial program loading or by manual

intervention.

DECISION-MAKING

Branching may be conditional or unconditional. Uncondi

tional branches replace the updated instruction address

with the branch address. Conditional branches may use the

branch address or may leave the updated instruction address.

unchanged. When branching takes place, the instruction is·

called successful; otherwise, it is called unsuccessful.

Whether a conditional branch is successful depends on the

result of operations conc~rrent with the branch or preceding

the branch. The former case is represented by BRANCH ON

COUNT and the branch-on-index instructions. The latter

case is represented by BRANCH ON CONDITION, which inspects

the condition code that reflects the result of a previous

arithmetic, logical, or I/O operation.

1-20

..
The condition code provides, a means for data-depended

decision-making. The code is inspected to qualify the

execution of the condition-branch instructions. The code

is set by some ,operations to reflect the ,,'result of the opera-

tion, independently of the previous setting of the code.

The code remains unchanged for all other ,operations.

The condition code occupies bit positions 34 and .35 of the

PSW. When' the PSW is stored during status switching, ,the

condition code is preserved as, part of the PSW. Similarly.,

the condition code is stored as part of the rightmost half

of the PSW in abranch-and-link operation. A new condition

code is obtained by a LOAD PSW OR SET PROGRAM MASK or by the

new PSW loaded,as,a result ,of an interruption.

The condition ,code indicates the outcome.ofsome of the

arithmetic, logical, or I/O operations. ·.It· is not changed

for 'any branching operation, .except for EXECUTE. In the

case of EXECUTE, the condition code is set or left unchanged

by the subject ins.truction, as would have been the case had

the subject instruction been in the normal instruction stream.

1-21

INSTRUCTION FORMATS

Branching inatructi'ons use the f9110wing three formats:

RR format

I' Op Code I ~/Ml I R2 I
() 7 • " 12 1$

RX format

I Op code'l ~/Mll X2 ,B2
0 7 • 11 12' 1$16 1920 31

RS format

o '7 • " 12 IS 16 1920 31

In these for.mats Rl specifies the address of a general register.

In B~CH ON CONDI~ION a mask field (Ml) identifies the b~t

values of the condition code. The branch address is defined

differently for the three formats.

In ~e RR format, the R2 field specifies the address of a.

general register containing the branch address, except'when,

R2 is zero, which indicates no branching. The same register

may be specified by Rl and R2.

In the RX format, the contents of the general regi$ters

specified by the X2 and B2 fields are added to the content

of the D2 field to form the branch addres~.

In the RS format, the content of the, general register

specified by the B2 field is added to the content of th~

D2 field to form the branch address. The R3 field in this

format specifies the location of 'the second operand and

1-22

uap11es the location of the third operand. The first operand

is specified by the Rl field. The third operation location

is alwaya odd.' ,If the R3 field specifies and even register,

the third operand is obtained from the next higher addressed

register. If the R3, field specifies an odd register, the

third operand location coincides with' the second operand

location.

A zero in a B2 or X2 field indicates the absence of the cor-

respond~,ng address component.

An instruction can specify the same general register for both

address modification and operand location. The order in which

, the'cont.e,nts of the general register are used for 'the different

par't~, of an operation is:

1. Address computation.
2. Arithmetic or link information storage.
3. Replacement of the instruction address by the

branch address obtained under step 1.

Results are placed in the general register specified by RI.

Except for the storing of the final results, the contents of

all general registers and storage locations participating in

the addressing or execution part of an operation remain un-

changed.

NOTE: In the detailed descriptions of the individual instruc-

tiona, the mnemonic and the symbolic operand designation for

1-23

the IBMSys.tarn/360 assembly language are shown with each

instruction. For BRANCH ON INDEX HIGH, for example, BXH is

the mnemonic and Rl, R3, D2(B2) . the operand designation.

Programming Note

In several instructions the branch address may ~e specified

in two ways: in the RX format, the branch address is the

address specified by X2,.B2, and D2; in the RR format, the

branch address is in the low-order. 24 bits of the register

specified by R2. Note that·the relation of the two ·formats

in branch-address specification is not the same as in operand

address specification. For operands, the address specified by

X2, B2, and D2 is the operand address, but the register speci

fied by R2 contains the operand itself.

EXECUTE EXCEPTIONS

Exceptional operand designations and a subject-instruction

operation code specifying EXECUTE cause a program interruption.

When the interruption occurs, the current PSW is stored as an

old PSW, and a new PSW is obtained. The interruption code in

the old PSW identifies the cause. Exceptions that cause a

program interruption in the use of EXECUTE are:

Execute: An EXECUTE instruction has as its subject instruc

tion another execute.

Protection: An EXECUTE specifies a subject instruction half

word in .a fetch-protected area.

1-24

.Addressing: The branch address of EXECUTE designates an

instruction-halfword " location"outside the available storage

for the particular' instaliatiori.·

Specification: The'-br'arich 'address of EXECUTE is odd.

These four 'execptions'occur";"only', for ,EXECUTE.. The instruction

is suppressed. Therefore, the condition code and data in

registers and storage . rema:j;;n",;,uDchanged.'·

Exceptions arising for ,the 'subject instruction of EXECUTE

are the sameas'would'ha:ve;'ar:i~sen"'had the subject instruction

been in the 'normal"instructl'ori'stream. However, the instruc-

tion address '. stored in ,tfie'''old::PSW is the 'address of the in

struction'followin<j>EXEbtiTEi~" Similarly, the' instruction-length

code in the 'old' PSW'is,,:thEf';instruct:ion' length code (2) of EXECUTE.

The address ~ restr ictions""do';;'::no€ "::'apply 'to ., the ;~components from'

which anaddress·;is·generated:',,- 'the':'contentof the Dl field

and ·tlie~·content ;"of ,·:the "'register"spe'cffied:by~'Bl.

Programming Note"

An' 'unavailable' or":oddbrancn"address; of, a"' successful branch

is detected';' during: the, ~ execution'" "of,o, the· next ; ins truction and

not as part 'of' the :brancli'~" .

1~25

STATUS SWITCHINGo INSTRUCTIONS

° °

A set of operations °is porovided to switch the status of the CPU,

of storage, and of communications between systems.

The overall CPU sta~us is dOetermined by several program-state

alternatives, each of ~hich can be changed independently °to ita

.opposite and most of which are indicated by a bit in the program

status word (PSW). The CPU status is further defined by the

instruction address, the condition code, the instruction-length

code, the storage-protection key, and the interruption code.

These all occupy fields in the PSW.

Protection of main storage is achieved by matching a key in

storage with a protection key in the PSW or in a channel.
,0

The protection status of storage may be changed ° by introducing

new storage keys, using SET STORAGE KEY. The storage keys may

be inspected by using ·INSERT STORAGE KEY.

PROGRAM STATES

The four types of program-state alternatives, which dete,rmine

the overall CPU status, are named Problem/Supervisor, Wait/

Running v Masked/Interruptible, and Stopped/Operating. These

states differ in the way they affect the CPU functions and in

the way their status is indicated and switched. The masked

states have several alternatives; all other states have only

one alternative.

All program states are independent of each other in their

function, indication, and status switching. Status switching

1-26

does not affect the contents of the arithmetic registers or the

execution 0'£ I/O operations but may ·affect the timer operation.

PROBLEM STATE

The choice between supervisor, and problem state determines

whether the full set,.af instructions is valid. The names of

these states 'reflect· their normal· use.

In the problem .stateall,I/O, ~totection, and direct-control

instructionsareinvalid, ,as·we,llas LOAD PSW, SET SYSTEM MASK,

and DIAGNOSE. Thesearecalled'p'ri viledged instructions. A

priviledged instructibn ·encQuritered',inthe problem state con-

stitutes apriviledge-operatiori'exception ahd causes a program

interruption. Ihthesupervisorstate all instructions are

valid.

When bit 15 of the PSW ,is· zero,' ·the CPU is in the supervisor

state. When bit 15 is one ,the CPU i's ·in the problem state.

The supervisor state Ls 'not.indic~ted:on,the 6perator sections

of the system contr6l,panel.

The CPU is switched between problem arid supervisor state by
~

changing bit 15 of thePSW. ,This bit can be G:hanged only by

introducing a new PSW. Thus status·switching'may be performed

by LOAD PSW, using a new PSW w'iththe desired 'value of bit 15.

Since LOAD PSW is a priviledgedinstruction, the CPU must be

in the supervisor state prior to the switch. A new PSW is also

introduced when ,the CPU is interrupted. The SUPERVISOR CALL

causes an interruption and thus may change the CPU .state.

Similarly, initial program loading introduces a new PSW and

with it a new CPU state. The new PSW may introduce the

problem or 8upe.rvisor state regardless of the preceding

state. No explicit operator control is provided for chang

ing the supervisor state.

WAIT STATE

In the wait state no instructions are processed, and storage

is not addressed repeatedly,. whereas in the running state,

instruction fetching and execution proceed in the normal

manner.

When bit 14 of the PSW is one, the CPU is waiting. When

bit 14 is zero, the CPU is in the running state. The wait

state is indicated on the operator control section of the

system control panel by the wait light.

The CPU is switched between wait and running state by chang

ing bit 14 of the PSW. This bit can be changed only be in

troducing an entire new PSW, as is the case with the problem

state bit. Thus, switching from the running state may be

achieved by· the priviledged instruction LOAD PSW, by an

interruption such as for SUPERVISOR CALL, or by initial pro

gram loading. Switching from the wait state may be achieved

by an I/O or external interruption, or again, by initial

program loading. The new PSW may introduce the wait or run

ning state regardless of the preceding state. No explicit

operator control is provided for changing the wait state.

1-28

To leave the wait state without manual interven~ion, the CPU

should be interruptible for some active I/O or external in

terruption source.

MASKED STATES

The CPU may be masked or interruptible for all I/O, external,

and machine-check interruptions and for 'some program inter

ruptions. When the CPU is interruptible for a class of inter

ruptions, these interruptions are accepted. When the CPU is

masked, the system interruptions remain pending, while the

program and machine-check interruptions are ignored.

The system mask bits (PSW bits 0-7), the program mask bits

(PSW bits 36-39), and the machine-check mask bit (PSW bit 13)

indicate as a group the masked state of th.e cpu. When a mask

bit is one, the CPU is interruptible for the corresponding

interruptions.

are masked off.

When the mask .bit is zero, these interruptions

The system mask bi.ts indicate the masked state

of the CPU for multiplexor and selector channels a.nd the ex

ternalsignals. The program mask bits indicate the masked

state for four of the 15 types of program exceptions. The

machine-check mask bit pertains to all machine checks. Program

interruptions' not maskable, as well as the supervisor-call in

terruption, are always taken. The masked states are not

indicated on the operator sections of the system control panel.

Most mask bits do not affect the execution of CPU operations.

The only exception is the significance mask bit, which deter

mines the manner in which a floating-point operation is completed

when a significance exception occurs.

1-29

The interruptible state of the CPU is switched by changing

the mask bits in the PSW. The pro~ram mask may be changed

separately by SET PROGRAM MASK, and the system mask may be

changed separately by the privileged instruction SET SYSTEM

I~SK. The machine-check bit can be changed only by intro

ducing an entire new PSW, as in the case with the problem

state and wait-state bits. Thus, change in the entire

masked status may b~ achieved by the privileged instruction

LOAD PSW, by an interruption such as for SUPERVISOR CALL,

or by initial program loading. The new PSW may introduce

a new masked state regardless of the preceding state. No

explicit operator control is provided for changing the

masked state.

To prevent an interruption-handling routine from being in

terrupted before necessary housekeeping steps are performed,

the new PSW for that interruption should mask the CPU for

further interruptions of the kind that caused the interrup-

tion. \

PROTECTION

Protection is provided to protect the contents of certain

areas of main storage from destruction (or misuse) caused

by erroneous storing (or storing and fetching) of inforoma

tion during the execution of a program. Locations may be

protected against store violations or against store and

fetch violations but never ag··ainst fetch violations alone.

This protection is achieved 'by identifying blocks of stor

age with a key and comparing this key with a protection key

1-30

supplied with the data to' be stored. The detection of a

mismatch causes the access' to be ,suppressed, and a protec

tion exception is recognized.

The key in storage is not part of addressable storage.
/ (

The key is changed by SET ~TORAGE KEY and, is inspect~dby

INSERT STORAGE KEY. The, 'protection key of the ,CPU occupies

bits 8-11 of the PSW.

The protect~on system is always active. It is independ,ent.

of the problem, supervisor, or masked state of the CPU and

of the type of instruction or 'I/O command being ~xecuted.

When an instruction causes a protection mismatch, the pro-

tected main-storage location remains unchanged.

PROGRAM STATUS WORD

The PSW contains all information not contained in storage .
or registers but required for proper program execution. By

storing the PSW, the program can preserve the detailed

status of the CPU for subsequent inspection. By loading

a new PSW or part of a PSW, the state of the CPU may be

changed.

In certain circums'tances all of the PSW is stored or

loaded; in others, only part of it. The entire PSW is

stored, and a new PSW is introduced when the CPU is in-

terrupted. The rightmost 32 bits 'are stored in BRANCH

AND LINK. The LOAD PSW introduces a new PSWi SET PROGRAM-

1-31

MASK introduces a new condition code and program-mask

field in the PSWi SET SYSTEM MASK introduces a new system

mask field.

The PSW has the following format:

Program Status Word

I System ,v.osk I Key I AMWP I· Interruption Code
o 78 1112 1516 31

IILcleel P~~kml Instruction Address

32 33 34 35 36 3940 63

INSTRUCTION FORMAT

Status-switching instruc~i()ns use the following two formats:
RR format

I Op Code I R] I R2 I
0' 7 B 1112 15

SI forma~

/. Op Coda

31

In the RR format, the Rl field specifies a general register,

except for SUPERVISOR CALL. The R2 field specifies a gen

eral register in SET STORAGE KEY and INSERT STORAGE KEY.

The Rl and R2 fields in SUPERVISOR CALL contain an identi

fication code •. In SET PROGRAM MASK the R2 field is ignored.

In the S1 format the eight-bit immediate field (12) of the

instruction contains an identification code. The I2 field

is ignored in LOAD PSW, SET SYSTEM MASK, and TEST AND SET.

The content of the general regis·ter specified by Bl is

added to the content of the D1 field to form an address

designating the location of an operand in storage. Only

one operand location is required in status-switching

operations.

1 32

A zero in the Bl field indicates the absence of the correspon

ding address component.

NOTE: In the detailed descriptions of the individual instruc

tions, the mnemonic and the symbolic operand designation for

the IBM System/360 assembly language are shown with each in

struction. For LOAD PSW, for example, LPSW i'a the mnemonic

and D1(81) the operand designation.

STATUS-SWITCHING EXCEPTIONS

,Exceptional instructions, operand designations, or data cause

a prog~am interruption. When the interruption occurs, the

current PSW is stored as an old PSW, and a new PSWidentifies

the cause of the interruption. The following exception con

ditions cause a program interruption in status-switching .

operations.

Operation: The protection feature is not installed a.nd the

instruction is SET STORAGE KEY OR INSERT STORAGE KEY.

Pri vileged Operation: A LOAD PSW, SET SYSTEM l-mSK, SE';L'

STORAGE KEY, INSERT STORAGE KEY, or DIAGNOSE is encountered

while the CPU is in the problem state.

Protection: The 'key of an operand in storage does not match

the protection key in the PSW. The instruction is suppressed

on a store violation, except for TEST AND SET, which is ter

minated. The operation is terminated on a fetch violation.

Addressing: An address designates a location outside the

available storage for the installation. The operation' is

terminated, except for DIAGNOSE, which is suppressed.

Specification: The operand address of a LOAD PSW does not

have all three low-order bits zero; the operand address of

DIAGNOSE does not have as many low-order zero bits as re

quired for the pax:ticular CPU; the block address specified

by SET STORAGE KEY OR INSERT STORAGE KEY does 'not have the

four low-order bits all zero; or the protection feature is

not installed and a PSW with a 'nonzero protection key is

'introduced.

When an instruction is suppressed, storage and external

signals remain Unchanged, and the PSW is not changed by

information from storage.

When an interruption is taken, the instruction address

stored as part of the old PSW has been updated by the

number of halfwords ~ndicated by the instruction-length

code in the old PSW.

Operand addresses are tested only when used to address

storage. The address restrictions do not apply to the

components from which an address is generated: the con

tent of the D1 field and' the ~ontent of the register

specified by Bl.

1-34

FIXED POINT FAMILY

LOAD

The primary purpose'of the LOAD instruction is to transfer

the contents of any ,location to that of another location.

The location of the data to be transferred is, specified by

the second ,address field. The first address field speci-

fies the location to which the data 'will be transferred. The

second operand remains unchanged.

The term "Operand" refers to the data that is operated on

by the instruction. The location of the Operand is speci-

fied by the "address field." The "first address field" has

,a subscript ,1 attached as; RI or Dl (Bl). The "second

address field," is als'o described by its subscripts as;

R2 or D2 (X2 , B2) •

The following LOAD instructions exhibit additional charac
teristics:

LH Expands a ha1fword operand to a fu11word operand by
propagating the sign bit to the left through the 16
high-order bit positions.

LTR 'Sets the Condition Code as a result of the data con
tained in the sebond operand.

LCR The second operand is changed to the two's complement
form when transferred.

I

LPR The second operand is changed to a positive number (IF
NEGATIVE)

LNR The second operand is changed to a negative number (IF
POSITIVE)

LM Allows more than one register to be loaded at a time.

3-1

Load

Lil "1,12 [RI]

I 18 I R1 I R2 I
0 78 1112 15

o 78 1112 15" 1920 31

1. The fullword specified by the second address field
[R2 or D2(X2,B2)] is placed in the register spec
ified by the first address field (RI).

2. The second operand remains unchanged.

EXAMPLES

1. LR (Load Register)
Load the contents of register 5 into register 3.

SYMBOLIC LR 3,5 MACHINE 18 35

Before After

GPR 3 F1 96 OA CD 7F 00 19 86
GPR 5 7F 00 19 86 7F 00 19 86

2. L' (Load)
Load the contents of storage address 1000 (FIELDI)
into register 7. (G~R F = 00 00 10 00) .

SYMBOLIC L 7,FIELDl MACHINE 58 70 FO 00

Before After

GPR 7 00 00 00 00 00 00 FC DE

Storage 1000 00 00 FC DE 00 00 FC DE

CONDITION CODE

10 Reroains unchanged

PROGRAM INTERRUPTIONS

1. Protection (fetch L only)
2. Addressing (L only)
3. Specification (L only)

3-2

Load Hcalfword

IN ill' D2(X2, B2) [UX]

I 48 I R1 X2 I 82 D2 o=J
~O-------7~8--~I~II~2--~U~16---19~20-------- 31

1. The halfword second operand [D2(X2,B2)] is placed
in the register specified by the first address
field (Rl).

2. The halfword operand is expanded to .a· fullword by
prop~gating the sign ~it through the 16 high-ordei·
bit positions.

3. The second operand remains unchanged.

EXAMPLES

1. LH.
Load the halfword contents of storage location 1002
(FIELDl+2) into register C. (GPR F = 00 00 10 00)

SYMBOLIC LH l2JFIELD1+2

Before

GPR C 00 00 00 00

Storage 1000 FO 80 9F 10

CONDITION CODE

1. Remains unchanged

PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing
3. Specification

Load and YG;~

LrR Rl , R2 [RIl]

I 12 Rl I R2 I
0 78 1112 15

MACHINE 48 CO FO 02

After

FF FF 9F 10

FO 80 9F 10

1. The contents of the register specified by the second
operand (R2) are placed in the location specified by
the first operand (Rl).

2. The sign ·and value of the second operand determines
the setting of the Condition Code.

3. The second operand remains unchanged.

3-3

EXAMPLES

1. LTR (Load and Test Register)
Load the contents of register 1 into r~gister A and set th~
Condition Code.

SYMBOLIC LTR 10,~ MACHINE 12 Al

Before After

GPR 1 OC 10' 00 00 OC 10 00 00
GPR A AB 19 24 35 OC 10 00 00

Condition Code

2. LTR
Test the contents 'of register 2 without loading into another
location ..
SYMBOLIC LTR 2,2· MACHINE 12 22

Before After

GPR 2 91 23 45 6A 91 23 45 6A

Condition Code 1

CONDITION CODE

o Operand is zero
1 Operand is negative
2 Operand is posi~ive·
3

PROG~ INTERRUPTIONS

1. None

r.Qca Comploment

E.CR 8(1' R2 [Rill

I 13 Rl I R2 I
0 7 II 1117 15

1. The contents of the register specified by the second
address field (R2) are placed in the register designated
by the first address field (Rl).

2. The second operand is complemented prior to placing in
the first operand location.

3. A second operand containing a value of zero would remain
unchanged.

4. A second operand containing the maximum negative number
will not be complemented and will cause a fixed point
overflow. The Condition Code is set to 3.

5. Bot,h posi tive and negative va.1ues are complemented.

3-4

EXAMPLES

18 LCR (Load Complement Register)
Complement and load the contents of register 5 into
register 8 ..

2.

SYMaOLIC LCR 8,6

GPR
GPR

6
8

MACHINE

Before

FF FF FF FF
00 00 00 00

Condition Code 2

LCR

13 86

After

FF FF FF FF
00 00 00 01

Complement the contents of register D.

SYMBOLIC LCR 13,13

GPR D

Condition Code

CONDITION CODE

o Result is zero
1 Result is negative
2 Result is positive
3 Overflow

PROGRAM INTERRUPTIONS

00

1

1. Fixed Point Overflow

Load Posi~ivo

10

78 11 12 15

MACHINE 13

Before After

00 00 AC FF FF FF 54

DD

1. The absolute value contained in the register speci
fied by the second address field (R2) is placed in
the register specified by the first address field (Rl).

2. Negative numbers are complemented ~hile positive
numbers remain unchanged.

3. ~Asecond operand containing the value of zero remains
unchanged.

4. A second operand containing the maximum negative num
ber will not be complemented and will cause a fixed
point overflow. The Condition Code is set to 3.

EXAJ."1P LES

1. LPR (Load positive Registers)
Load the absolute value of register E into register o.

3-5

SYMBOLIC LPR 0,14 MACHINE 10 'OE

Before After

GPR 0 79 OA 05 63 3A FC 19 AS
Gl?R E 3A,FC 19 AS 3A FC 19A8
Condition Code 2

2. LPR
Change the contents of register 9 to its absolute
value. '

SYMBOLIC LPR 9,' 9

Before'

GPR, 9 80'00 00 01

Condition code 2

CONDITION CODE

o Result is zero
1
2 Result is positive
3 Overflow

PROGRAM INTERRUPTIONS '
1. Fixed Point overflow

Load Negative

I 11 I Rl'\ R2 I
o 78 1lt2 15

MACHINE 10 99

After

7F FF FF FF

1. The two's complement of the absolute value contained
in the regis,terspecified by the second address 'field
(R2) is placed in the register specified by the first
address field ,(Rl).

2.. Positive numbers are complemented while negative num
bers remain unchanged. ,

3.. A second operand containing the' value of zero remains
unchanged.

EXAMPLES

1. LNR
Complement the absolute value contained in register 3
and place in register 7.

SYMBOLIC LNR 7,3 MACHINE 11 73

GPR
GPR

3
7

Before

70 00 00 10
00 00 00 00

Condition Code 1

3-6

After

70 00 00 10
SF FF FF Fa

2. LNR
Complement the absolute value
8.

SYMBOLIC LNR 8,8

GPR 8

Condition Code

CONDITION CODE

O' Result is zero .
1 Result is negative
2
3

PROGRAM INTERRUPTIONS

1.. None

load Multiple

98

Before

90 00 00 00

1

78 1112 1.516 1920

contained in register

MACHINE 11 88

After

90 00 00 00

31

1. The ~eneral registers starting with the register :
specified by the first address field (Rl) and ending
with the register specified by the third address field
(R3) are loaded from the locations' designated by
the second address field (B2,D2).

2.. The registers are loaded from storage beginning
at the address specified by the second address field
and continuing in increments of four bytes until all
specified registers are loaded.

3. The registers are loaded in ascending order be
ginning with the register specified by Rl and
con,tinuing up to and including the· register
specified by R3.

4. All combinations of register addresses specified
.by Rl and R3 are valid.

5. When the address specified by R3 is less than Rl,
the register addresses wrap around from F' to O.

6. The second operand remains unchanged.

EXAMPLES

1 .. LM
Load registers 9 through B from storage locations
1000 (DATA) through 100B. (GPR F = 00 00 10 00)

SYMBOLIC LM 9,11,DATA .MACHINE 98 9B FO 00

3-7

Before After

GPR 9 00 00 00 00 00 00 02 00
GPR A 00 00 00 00 00 00 00 04
GPR B 00 00 00 00 00 00 FC DE

Storage 1000 00 00 02 00 00 .00 02 00
1004 ·00 00 00 04 ·00 00 00 04 ..
1008 00 00 FC DE 00 00 FC DE

2. LM
Load register E through 1 from' storage locations
1000 (DATA) through .100F. (GRP F = 00 00 10 00)

SYMBOLIC LM 14, 1', DATA MACHINE 98 El

Before After

GPR E 00 00 00 05 12 34 56 AC
GPR F. 00 00 10 00 00 00 10 00
GPR a 23 lC lA 23 AB CD EF 01
GPR 1 SA 7C 00 ·00 13 72 A2 19

Storage 1000 12 34 56 AC 12 34 56 AC
'1004 00 00 10 00 00 00 10 00
1008 ... AB CD EF 01 AB CD EF 01
100C 13 72 A2,19 13· 72 A2' 19

CO~DITION CODE

1. Remains unchanged

PROGRAMMING INTERRUPTIONS .

1. Protection (fetch only)
2.. Addressing
3. Specification

3-8

FO 06

FIXED POINT 'FAMILy

STORE

The STORE in~.truction is used to transfer the contents of the

General Purpose Regist~rs to main storage. The location of

the data t9 be trClnsfe:r.red, i?, s.pecified' by the first and

thirq (when applical;>leJ addres.s fields. . The second address

fie1q design?lt~s th~ beginIlil1:g. a¢ldress in Il1a~n storage where

the d~ta wi~~ b~ p1~pe~.

The fqJ.).oWi I1g S.TO~ i:Qs. t~~qtiOl1s exh~l?it adqi tiona1 character-

isti~s:

STH Stqr~s ttle l,9.w-:orCie;r- 16 bits of a.:Legister.

STM Stpres more t!:lan one register at a time.

3-9

Store

ST R" D:!(JC~, B;!} [RX)

I 50 I R, I X2 I 82 D2 I
0 7' " 12 IS 16 1920 :u

1. The contents of the register specified by the first
address field (Rl) are stored at the 10cati6n designated
by the address field [D2(X2,B2)].·

EXAMPLES

1. ST (Store)
Store the contents of register D into storage lo
cation 1004 (DATA+4). (GPR F = 00 00 10 00)·

SYMBOLIC ST 13,DATA+4

GPR D

Storage 1004

CONDITION·CQDE

1. Remains unchanged

PROGRAMMING INTERRUPTIONS

Before

OA elaS 69

OF FO 16 72

1. Protection (store only)
2.. . Addressing
3~ Specification

Siors Holfword

5TH R" D:!(X21 82) [RX]

I 40 Rl I X2 I 82 D2
0 7. 1112 IS 16 1920

MACHINE 50 DO FO 04

After

OA Cl 85 69

OA Cl 85 69

) :u

1. The low-order 16 bits of the register specified by
the first.address field (Rl) are stored at location
designated by the address field [D2(X2,B2)].

EXAMPLE

1. STH (Store Halfword)
Store the low order two bytes of register 0 into
storage location 1000 (DATA).. (GPR F = 00 00 10 00)

SYMBOLIC STH O,DATA MACHINE 40 00 FO 00

3-10

Before

GPR o 00 FC 04 50

Storage 1000 FE D9 16 25

CONDITION CODE

l~ Remains unchanged.

PROGRAM INTERRUTPIONS

1. Protection (store only)
2 . Addressing
3. Specification

Store Multiple

STM R'I R:II D:!(S:!) [RS]

I. 90 I Rl .1 .~3.1 B .
2 D2

0 78 11 12 UI6 . 1920

After

00 FC 04 50

04 50 16 25

31

1. The general registet starting with the register
specified by the first address field (Rl) and ending

.with the register specified by the third address field
(R3) are stored in the location designateq by the
second address field (D2,B2).

2. The registers are stored in ascending order begin
ning with the register specified by the first address.
field and continuing until all specified registers
are stored.

3~ The beginning storage address is incremented by 4
bytes after each register is stored. This cqntinues
until all specified registers have been stored.

4. All combinations of register address specified by
Rl and R3 are valid.

5. When the address specified by R3 is less than Rl,
the' register addresses wrap around from F to o.

EXAMPLES

l~ STM (Store!Multiple)
Store the contents of register 4 and 5 into storage
location 1000 (DATA) through 1007. (GPR F = 00 00 10 00)

SYMBOLIC STM 4, 5 "DATA MACHINE 90 45 FO 00

Before After

GPR 4 46 00 00 Al 46 00 00 Al
GPR 5 00 01 lA 23 00 01 lA 23

Storage 1000 27 AE FC D4 46 00 00 Al
1004 00 00 00 02 00 01 lA 23

3-11

2. STM
Store the content of registers F and 0 ~nto storage
location 100S (DATA+S) through :100F. (GPR F = 00 00 10 00)

SY~~OLIC STM lS,O,DATA+S MACHINE 90 FO FO OS

Before .After

. GPR 0 . 00 00 00 04 00 00 00 04
GPR F 00 00 10 00 00 00 10 00

Storage 100S 00 00 00 .OS 00 00 10 00
100C 00 00 20 00 00 00 00 04

CONDITION CODE

1. Remains unchanged.

PROGRAM INTERRUPTIONS

1. Protection (store only)
2. Addressing
3. Specification

3-12

FIXED POINT FAMILY

ADD

The ADD instruction is .usedto perform the addition of two

operands. The second operand is .added to the first operand

and the result replaces .the ·contents·of the. first operand.

The following ADD instructions exhibit additional character-
istics: .'

All Prior to the addition, it expands a ha1fword operand
t.o a fu11word by propagating the sign bit through the
the 16 high-order ·bits positions.

AL . Following' the add, ·i t "records the occurrence of a
carry out of the sign .position in the Condition Code.

3-13

Add

AR R't R2 [RR]

I lA I RII R2 I
0 7 • 1112 15

A R,t D:dX2t 82) [RX]

~. The contents of the location specified by the second
address field {R2 or D2(X2,B2) are added to the
contents of t;.he register sp~cified by the first
address field (Rl).

2. The sum replaces the first operand (RI).
3. Addition is performed by adding all 32 bits of both

oper'ands • . ,
4. If the carry out of the sign-bit position and the

high-order numeric bit position agree, the sum is
satisfactory. If they disagree, an overflow occurs.

S. A posi~ive overflow results in a negative sum.
6. A negative overflow resultf;) ina positive sum.
7. A register may be added to itself.

~XAMPLES

1. AR (Add Registers)
Add the contents of register 4
register 7'and have the result

to the contents of

SYMBOLIC AR 7,4

GPR
GPR

4
7

Before

70 00 12 3C
00 00 OA 81

Condition Code 2

2. A (Add)

placed in 'register

MACHINE lA 74

After

70 00 12 3C
70 00 lC BD

7.

. Add the fullword contents of storage location 1000 (OPERl)
to register 3. (GPR F = 00 00 10 00)

SYMBOLIC A 3,OPERl ~I1ACH INE SA 30 FO 00

Before After

GPR 3 00 00 00 04 00 00 00 03

Storage 1000 FF FF FF FF FF FF FF FF

Condi.tion Code 2

3-14

CONDI'l'ION CODE

o Sum is zero
1 Sum is negative
2 Sum is positive
3 Overflow

PROGRAM INTERRUPTIONS

EXAMPLES

1. Protection (fetch A only)
2. Addressing (A only)
3. Specification (A. only)
4. Fix~d-point overflow

Add Halfword

4A

7 B 11 11' 1 ~ 16 19 20 31

1. The halfword designated by the second address field
(D2 (X2,B2» is· added to the regi~ter specified by
the first address field (Rl).

2. The halfword second operand is'~xpanded to a fullword,
prior to additj.on, by propagating the sign-bit value
through the 16 high"':order bi t posi tions.

3'. The sum replaces the contents of t~e regist~r. specified
by the first address field (Rl) .,. ,

4. Addition is performed by_ addi;ng a 1) .. 32 bits of both
operands.

5. If the carry out of the sjgn-bit position and the high
order numeric bit position agree I the sum is satisfactory.
If they disagree', an overflow occurs.

6. A positive overflow results in· a positive sum.

1 • AH (Add Halfword)
Add the halfword contents of storage location 1002
(OPERl+2) to register 5.

SYMBOLIC AH 5,OPER1+2 MACHINE 4A 50 FO 02

Before After

GPR 5 80 00 00 01 80 00 00 00

Storage 1000 00 00 FF FF 00 00 FF FF

Condition Code 1

3-15

CONDITION CODE·

o Sum' is zero
1 Sum is negative
2 Sum is positive
3 Overflow

PROGRAM INTERRUPTIONS

10 Protection (fetch only)
2. Addressing
3. 'Specification
40 Fixed-point overflow

Add Logical

ALR R,• R2 [RR]

lE

7 8 II 12 IS

5E
7 B 1112 1516 1920 31

1. The contents of the second address field [R2or D2
(X2,B2)] are added to the register specified by the
first address field. (Rl).

2 •. The sum replaces the first operand (Rl) 0

30 Logical addition is performed by adding all 32 bits
of both operands without further change to the re
sulting sign"bit.

4. An overflow condition is not indicated.
5. A carry out of the.sign position is recorded in the

the Condition Code.. .

EXAMPLES

1. ALR (Add' Logical Register)
Logically add the contents of register 9 to
register 7 and place the sum in register 7.

SYMBOLIC ALR 7,9

GPR
GPR

7
9

MACHINE

Before

00 00 00 30
00 00 01 00

Condition Code 1

3-16

lE 79

After

00 00 01 30
00 00 01 00

2. AL (Add Logical) "
Logically add the contents of register 9 to
storage location 1004 (OPER1+'4). (GPR F =
UU 00 10 UO)

SYMBOLIC AL 9,OP~Kl+4 ,MACllINE 51.: 90 FO 04

. lleforc After

GPR 80 00 00 00 00 00 00 01

Storage 1004 80 00· 00 01 80 00 00 01

CONUITION CODE

0 Sum is zero (n6 carry)
1 Sum is not zero , (no carry)
2 Sum is zero ~carry)

3 Sum is not zero (carry)

1. Protection (fetcH AL oniy)
2. Addrc~sing (AL on'fY).,
3. Specification CAL'orily)

3:"17

FIXED POINT FAMILY

SUBTRACT

Tpe primary purpose of 'the SVBTRACT instruction is to find

the difference between two ope,rands. 'The location specified

br the ,second address field co'ntains the ,subtrahend. The minuend

is contained in the register specified by the firs~ address field.

'rne first operand is repla'ced by the difference.

The following SUBTRACT instructions exhibit additional
characteristics:

SH Prior to subtraction the halfword operand is expanded
to a full word by propagating the sign bit through the
high-order 16 b~t positions.

SL Following the subtraction it records the occurrence of
a carry out of the sign position in the Condition Code.

3-18

Subira~t

sa ElJI R2 [Rill

I 18 R1 I R2 I
0 7 8 ' 1112 IS

S RJI D2(X21 B;i} [RX]

I 58 r R1 r X2 I B2 I'
0 7 8 l\ 12 l5ll1 1920 II

1. The contents of the location specified by the
second address field [R2 or D2(X2,B2)] are sub
tracted from the con:tents of the register specified
by the first address field '(Rl).

~. The difference replaces the first (Rl)~
3. Subtraction is performed by complement addition.
4. If the carry out of the sign-bit position and

the high-order numeric ,bit position agree, the
difference is ~atisfactory. If they disagree,
an overflow occurs.

S.A register ,may bec~~~~e.c;l ;.by.s,q[)tracting it from
'itself. ' ,

EXAMPLE.S

1. SR (S~bt.ract R~gister)

2.

Subtract tQe ,cpnten~s J)i .r~g~s.ter 7. ':f~om the
contents of register 5. .

SYMBOLIC SR5" 7 MACHINE lB 57

GPR
GPR

5
7

Before ,After

00 00 2F ED 00 00 2E IF
00 0001 CE -00 00 ,OlCE

.condition Code 2

SR
Clear ,register J by sub~,raction. ,

~YMBOLIC SR 7,7 MACHINE lB

Before After

GPR 7 00 0,0 01 CE 00 00 00 00

Condition Code 0

3~19

77

3. S (Subtract)
Subtract the. fullword contents at storage location 200C
(HOURS+12) from register C. (GPR F = 00 00 20 00)

SYMBOLIC S l2;HOURS+12

GPR

Storage

C

200C

80 00 00 00

80 SO' 00 00

Condi tion Code O·

CONDITION CODE

0 Difference is .zero
1 Difference is negative
2 Difference is positive
3 Overflow

PRO~AAM INTERRUPTIONS

1. Protection (fetch S only)
2. Addressing (S only)
3, Specification.(S only)
4. Fixed-point overflow

Subtract Halfword

SH Il" D;zfXz, 82) '[RX]

I 4B I Rl I X2 I 82
0 7. 11 12 1516 1920

D2

MACHINE 5B CO FO DC

00 00 00 00

80 00 00 00

31

1. The halfword designated by the second address field
(D2(X2,B2» is subtracted from the contents of
the register specified by the first address field
(R1) .

2. The' ha1fword operand is expanded toafu11word I prior
to subtraction, by propagating the sign-bi t value' through
the 16 high-order bit positions.

3. The difference replaces the first operand.
4. Subtraction is performed by complement addition of all

32 bits of both operands.
5. If the carry out of the sign-bit position and the

high-order numeric bi t position agre~ I the difference
is satisfactory. If they di~agree I an overflow occurs.

3-20

EXA1\fPLES

1. SH (Subtract Halfword)

CONDITION

0
1
2
3

Subtract the halfword operand at storage location
2000 (HOURS) from the contents of register E.
(GPR F = 00 00 20 00)

SYMBOLIC SH 14,HOURS MACHINE 4B EO FO 00

Before" After

GPR E " 06 17 FC 10 06 18 lC 00

Storage 2000 EO 10 FC D8 EO 10 FC D8

. Condition Code 2

CODE

Difference is zero
Difference is negative
Difference is positive
Overflow

PROGRAM INTERRUPTIONS

1. Protection (fetch only)
2. Addressing
3 . Specification
4. Fixed-Point Overflow

"Subtrad Logical

SLR R" R2 [RR]

I lF Rl I R2 I
0 78 1112 15

SL R1• DzlX2• 132) [RX]

I 5F I R, X2 I B2 D2
0 70 1112 U16 1920 II

1. The contents of "the second address field (R2 or D2(X2,B2))
are subtracted from the register specified by the first
address field (Rl). " "

2. The difference replaces the first operand (Rl).
3. Logical subtraction is performed by complement addition.

All 32 bits of both operands are complement added with
out further change to the resulting sign bit.

4. An overflow condition is" not indicated.
5. A carry out of the sign position is recorded in the

Condition Code.

3-21

EXAMPLES

1. SLR (Subtract Logical Register)
'Logically, subtract the contents of register E from
the contents of register 3 andp,lace the difference
in register 3.

SYMBOLIC SLR 3,E

GPR
GPR

3
E

Condition Code

MACHINE

Before

00 00 OOlE
FF FF FF FS

1

2. SL (Subtract Logical)

IF 3E

After

00 0000 29
FF FF FF FS

, Logically subtract, the fullword contents at storage
location 2000 (HOURS) from register 6.
(GPR F = 00 00 20 00)

SYMBOLIC SL 6,HOURS MACHINE

Before .
GPR 6 00 00 00 FE

Storage 2000 00 00 00 FE

Condition Code 2

CONDITION CODE

a
1 Difference 1s not zero (no carry)
2 D~fference is zero (carry)
3 Difference is not zero (carry)

PROGRAM INTERRUPTIONS

1. Protection (fetch SL only)
2. . Addressing (SL only)
3. Specification (SL only)

3-22

SF 60 Fa 00

After

00 00 00 00

00 00 00 FE

BRANCHING FAMILY

BRANCH ON CONDITION

The BRANCH on CONDITION instruction provides a means of

leaving,the normal'instruction sequence. The effective

address of the second address field is the branch address.

This branch address will be used to replace the next in

struction address if the Mask Field matches the Condition

Code. The first operand is a 4-bit Mask Field contairied in

bits 8-11 of the instruction.

3-23

Branch On Condition

. BCR M" R2 [RR]

'I 07 I Ml .1 R2 I
o 78 "12 15

Be M" D:JX:!,8:!} '[RX]

I 47 I Ml I X
2 I 6

2 I. D2

o 7 8 1\ 12 1516 1920 31

1. The Mask Field (Ml) is compared to the Condition Code
to determ.ine if the branch will occur.

2. This is performed by comparing the Condition Code ,to
its· corresponding Mask Field bit as follows:

INSTRUCTION BIT (Ml),
8
9
10
11

CONDITION CODE·
o
1
2
3"

The existing Condition Code determines which Mask
Field bit is checked. If that Mask bit is a one,
the branch will occur.

30 The updated instruction address is replaced with the
contents of the location designated by second address
field [R20r D2(X2,B2)] when the Condition Code and the
Mask Field match.

4. Normal instruction sequencing begins at the new
address [contents of R2 or D2(X2,B2)] when the
branch is taken.

5. When a match condition does not exist, this instruction
performs no action; and the updated instruction address
will determine the next sequential. instruction.

6. The first and second operands remain unchanged.
70 If R2 is zero, no branch is taken (no-op).

EXAl-1PLES

lG BCR (Branch on Condition Register)
Branch to the location specified by register 6'if the
Condition Code is 0 or 1.

SYMBOLIC BCR 12,6 MACHINE 07 C6

2. BC (Branch on Condition)
Unconditionally b~anch to location 4lCE (TEXT+2).
(GPR F = 00 00 40 00)

SYMBOLIC BC l5,TEST+2 MACHINE 47 FO FI CE

CONDITION CODE

1. Remains unchanged

PROGRAMMING INTERRUPTIONS

1. None

3--24

FIXED POINT FAMILY

COMPARE

The COMPARE instruction is used to determine the similarity or

difference between two ,operands. The contents of the register

specified by the .first address field are comp~red to the contents

of the location designated. by the ,second address field. The

Condit.ion Code ia,set to reflect. the. similarity or difference

between the two operands.

The fol1o~"in9' COMPARE instruction"exhibits an additional
characteristic:

CH Expands a halfword. second operand to a ful1word by pro
psgating the sign bit through the 16 hi9h~order bit
positions prior to comparing.

3-25

Compare

ell Il" Rz [RR]

I 19 I Rl I R2 I
0 78 11 12 U

C IlJ, DZ(X2, 82) [RX]

59
o 78 1\ 12 15\6 1920 31

1. The contents of the register specified by the first
address field (Rl) are compared to the contents of the
location designated by the second address field (R2 or
D 2 (X2 , B 2» •

2. Comparison is algebraic, treating both operands as
32-bit signed integers.

3. The result of the comparison determines the Condition
Code.

4. Both operands remain unchanged.

EX~LE~

~. CR (Compare Registers)
Compare the contents of register A to the contents
of register B.

SYMBOLIC CR 10,11"

GPR
GPR

A
B

Before

07 00 10 OC
87 00 00 OC

Condition Code" 2

MACHINE 19 AB

After

07 00 10 OC
87 00 00 OC

2. C . (Compare)
Compare the contents of register 1 "to a fu11word operand
storage location 4000 (TEXT). (GPR F" = 00 00 40 OO)

SYMBOLIC C 1,TEXT l-mCHINE 59 10 Fa 00

Before After

GPR 1 1A 23 1A 12 lA 23 1A 12

Storage 4000 lA 23 IB 33 1A 23 IB 33

Condition Code 1

CONDITION CODE

o
1
2
3

Operands are eqtial
First operand is low
First operand'is high

3-26

PRO·GAAMMING INTERRUPTIONS

1. Protection (fetch Conly)
2. Addressing (C only)
3. Specification (C only)

Cc,nf;)QIl'O CialNJ@rcl

~H R
"

D2(X"z, B2) [EtX]

I 49 ·1 Rl x2 I B
2 I .D2

0 70 II 12 1516 1920 31

1. The contents of the register specified by the first
address field (Rl) are algebraically compared to the
halfword designated by the second address field [D2
(X2 ,B2)] .

2. The halfword operand is expanded to'a fullword by
propagating the sign bit value thro~gh.the high
order l6-bit positions prior to the compare.

3. The result of the compare is indicated by the
Condition Code.

EXAMPLES

1. CH (Compare Halfword)
. Compare the contents of register 2 to a halfword

operand at storage location 400C (TEXT+12).
(GPR F = 00 00 40 00)

SYMBOLIC CH 2,TEXT+12

Before

GPR 2 FF FF 80 00

Storage 400C 80.00 CD EF

Condition Code a

CONDITION CODE

a Operands are equal
1 First operand is low
2 First operand is high
3

PROGRAMMING INTERRUPTIONS

1. Protection (fetch only)
2. Addressing
3~ Specification

I

·MACHINE 49 20 Fa DC

After

FF FF 80 00.

80 00 CD EF

FiXED POINT FAMILY

MJLTIPLY

The MULTIPLYmst;r'Uction is used to find the product of two

integers (numbers). The first addl:-ess field must specify an

even adctress register, The mUltiplicand is located at a register

address of. one greater than· the even register specified by

the first operand. Multiplicands would. always be contaiiled

in an odd address register (1, 3, 5, 7, 9, B, D or F).

The product of these two integers is 64 bits long. It is

placed in the even register designated by the first address field

and the odd register which contained the multiplicand. This

registe1=' pair wiU be referred' to as the EVEN-ODD register

The following MULTIPLY instruction exhibits an additional
characteristic:

M-i Expands a halfword second operand to a fullword by
propagating the sign bit value through .the 16 high
oruel' bit positions prior to multiplication.

3-28

Mul~ip!y

Mn RJI &:2 [ltlR]

I Ie Rl I R2
0 78 ,II 12 1.5

/1.1 filiI DiX21 !J2) [RX]

I 5C Rl I X2 I B2 D2
0 7 II II 12 1516 1920 31

1. The first address field (Rl) must contain an EVEN
register address.

2. This address specifies an EVEN-ODD regis tel;" pair,.
3. The contents of the ODD register (multiplicand) are

multiplied by the second op~rand (R2 or D2(X2,B2»).
4. The product of this multiplication is 64 bits and is

placed in the EVEN-ODD register pair.
5. The sign of 'the product is determined by the rules

of algebra. ,
6. A specification exception will occur if the register

specified by the first operand is at an odd address.

EXAMPLES

1. MR (Multiply Register)
Multiply the contents of register 5 by the contents

,of'register 9.

SYMBOLIC MR 4,9

GPR
GPR
GPR

4
5
9

Before

9C 01 04 66
70 00 00 00
00 00 02 00

MACHINE lC, 49

After

00 00 00 EO
00 00 00 00,
00 00 02 00

2. M (Multiply)

CONDITION

1.

,Multiply the contents of register B by the fullword
contents at storage location 3004 (MULT+4). (GPRF=OO 00 30 00)

SYMBOLIC M 10,MULT+4

Before

GPR A 12 AC IF
GPR B FF FF FF

Storage 3004 FF FF FF

CODE

Remains unchanged.

3-29

60
FE

FF

MACHINE SC AO FO 04

After

00 00 00 00
00 00 00 02

FF FF FF FF

PRQGRAM ,IN,TERRUPTIONS

1 •. Protection (f~tch M only)
, 2. Addressing(M onlyf
,3. ,$pecifica£io~

~ultiply Haiiword

MH

r
0

R
"

Dz(Xz,SzJ '. [IX]

4C I R, . I x2 ,I 82 I D2 ,' J' 7. 1112 1S16 1920 31

·l. The register specified by the first address field (Rl) is
multiplied by the halfword designated ,by the second
address' field [D2:(X2 ,B2)] • ' ,', , "

2. 'The halfword operand is expanded to afullword by
propagating the sign bit value through the 16 high
order bit positions prior to mUltiplication.

3. The product is 32 bits and replaces the multiplicand
in the register specified by Rl.

4. The sign of the product is determined by the rules
of algebra.

5. All register addre~s~s are valid~
6. If thepr6du~t exceeds'32 bits the'hi~h-order bits

are lost.

EXAM:\?LES

1. MH, (Multiply Halfword)
Mult.iply the contents of register 3 by the halfword,
at storage location 3000(MULT). (GPR F ;:: 00 00 30 00)

SYMBOLIC MH 3,MULT

GPR

Storage 3000

CONOITION CODE

1. Remains unchanged

PROGRAM INTERRUPTIONS

Before

'00 0000 21

00 05 CF 01

1. Prote6tion (fetch only)
2. Addressing
3. Specification

'3~30

MACHINE 4C'30 FO'OO

After

00 00 00 AS

00. OS' CF 01

FIXED POINT FAMILY

DIVIOE

The DIVIDE instruction will produce the quotient of a 64-bit

integer (number). The first .operand must always be an even

numbered register (0, 2, 4, etc.') • This even register and

the reg.iater whose address. is. one. greater . form an EVEN-ODD

register ,pair. The dividend is·a 64 bit· signed integer th~t
/

occupies this EVEN-ODD- register pair .•

The' contents- of the EVEN-ODD. 'register is divided by the con

tents of the location specified :by the second addre'ss field.

The quotient is placedinthe·.ODD register of the EVEN-ODD

pair. The remainder is placed ·in the EVEN register.

3~31.

DR I., R: fiR]

I 10 ·1
Rl I R2 I

0 ·7' . "12, I'
D' Rt , D2(X2, 52} . [IlX]

I 50 , . Rl IX2 (8
2 I

0 7. lin IS,I6 1920 , 31

1. The first address field (Rl) must contain an even
add~ess register.

,2.' This address specifies an'EVEN-boo register pair which
contains the 64-bit dividend. ' :

3.' The contents of the EVEN-ODD register pair are divided
by the second operand (R2 or D2(X2,B2».

4. The quotierit will be 'placed in the ODD register, and
the EVEN register will be used to contain the remainder.

5. The sign of the quotient is determined by the rules "
of algebra while the remainder will have the sign of
the dividend. . .

6. When the size of the dividend and'divisor is such that
the quotient cannot be contained in a 32-bit, register,'
a fixed point divide exception occurs and the instruction
is aborted.

7. A specification exception will occur if the register ,
specified'by the first ope~and is at an odd address.

8. The 0 instruction must specify an operahd located on
a fullword boundary.

EXAMPLES

1. DR (Divide Register)
Divide the contents of registers 6 and 7 by the content~
of register 5.

SYMBOLIC DR 6,5' . MACHINE ID 6'S

Before' A·.fter
"

GPR 5 00 00 02 BC 00 00 02 BC
GPR 6 00 00 00 A3 00 00 01 8B
GPR 7 EC 05 3E 83 . 38 F3 23 3A

2. D (Divide)
Divide the conten·ts of registers 8 and 9 by the ·fullword
contents~t storage location 3500' (bTA). (GPR'F =
00 00 30 00) .

SYMBOLIC D 8,DTA MACHINE 50 80 F5 00

Before' After

GPR 8 .00 00 00 00 ,00 00 bo 00
GPR 9 00 AO 00 00 00 50 00 00

Storage 3500 00 00 00'02 00 00 00 02

3-32 .

COND!TION CODE

1. _ -Remains unchang~4

PROGRru4 INTERRUP~IONS

1. Protection (fetch D only)
2. Addressing (0 only)
3. Specif~cation .
4.. Fi\Xed~po.in_t divide

3-33

FIXED POINT FAMILY

SHIFT:

Tpere are two main purposes of the shift instructions, editing

9f register data .and arithmatic operations. Editing is normally
. . .

done in the four "LOGICAL SHIFT" instructions which will be

covered later.

The arithmatic operations of a SHIFT instruction is·to.multiply or

divide an integer by some multiple of 2. The first address field

~pecifies a.register or an EVEN-ODD register pair that contains

;his integer. The second address field does not reference a

~torag~ location but is used to generate an eff~ctive address.

~he low-order 6 bit positions of this effective address determine by

what multiple' of 2 the'iriterqer will be' divided or multiplied •.

Multiplication is accomplished by shifting the specified register(~)

. ~o~tents·to the left. The number of bit positions that the

integer .is shiftedo'is determined by the low-order 6-bit positiO"ns

of the effective address. Each bit position that .the integer is

$hifted is equivalent to a multiplication by 2.

Division'is accomplished by shifting the. specified register(s)

contents to the right. The number of bit'positions that the in

teger is shifted is determined by the low-order 6-bit positions

of the effective address. Each bit position that the integer is

shifted is equiv~lent to a di.vision by 2.

3-34 .

5~~!qi LQ~i Singlo

SLA ~" D:!(S:!) [RS]

I
0

sa I, Rl - 62 I'
D2]

7 a IIIl 1516 1920 31

1. The contents of the register specified by the first
address field (RI) are shifted to the left.

2. The low-order ,6 bits 6f the effective address [D2(B2)]
, specify ,the numbe;- of positions that the first operand
will be shifted. ,

3. All 31 integer bits participate in the shift and O"s are
placed in the vacated low order bit positions of the
first operand.

4. Each bit position that, the integer is shifted equates-to
a multipli9ation by 2.

5. When'the low order 6 bits of the effective address ex
ceed a decimal value of 30, the entire integer will be
shifted out of the specified register.

6. The entire integer being shifted out of the specified
register result~ in the value of 0 for a positive in-'
teger and minus 2,147~486,648 for a negative integ~r.

7. When a bit un'rikethe sign is shifted out of bit, posi-.
tion 1, an overflow will occur.

EXAMPLES

1. SLA (Shift Left Algebraic)
Multiply the contents, of register 9 by 4 ustng the shift
instruction and wi thout s,pec:i.fying a base "register.

SYMBOLIC SLA'9,2(0) MACHINE

Before

GPR 9 00 00 OA 00

Condition Code ' 2

CONDITION CODE

o Result is 0
1 Result is less than 0
2 Result is greater than 0
3 Overflow

PROGRAM INTERRUPTIONS

1. Fixed point overflow

3-35

8B 90 00 02
:,,-

After

00 00 28 00

Shift Right Single

SRA RJ , °2(82) [RS]

I SA I· Rl ~. 82 I D2
0 7. 1112 " 16 1920 :II

1. The contents of the register specified by the first
address field. (Rl)" are shifted to the right. , '

'2. The' low-order' 6 bits of·the. effective ,address [D2 (B'2)]
specify the number of positions that the first operand
will be shif~ed~ ,

3. All 31 integer bits participate in the shift and bits
like the sign are placed in the vacated high order
bit positions of the first operand.

4. Each bit position that the integer is shifted equate~
to a division by 2. '

5. When the low order 6 bits of the effective address ex
ceed a decimal value of 30, the entire integer will be
shifted out of the specified register. . .

6. The entire. integer being shifted outof.the specified
register.results in·thevalueof 0 for a positive in
tegerand -1 fora negative integer.

7. Low-order bits are shifted out without inspection and
'are lost.

1. SRA (Shift Right Algebraic)
Divide the contents of register 4 by 2 using the shift
instruction and without specifying a base register.

SYMBOLIC SRA4,1(0) MACHINE SA '40 00 01

Before After

GPR 4 00 00 OOFB 00 00 00 7D

Condition Code 2

2. SRA (Shift Right Algebraic)
Divide the contents of register A by 2 using the shift
instruction and specifying a base register of 4.
(GPR 4 = 00 0000 01)

SYMBOLIC SAA10,' 0 (4) MACHINE SA AO 40 00

Before . After

GPR A FF FF FF FB FF FF FF.FD

Condition Code 1

3-36

CONDITION CODE

0 Result is 0
1 Result is less than 0
2 Result is greater than 0
3

PROGRAM INTERRUPTIONS

1. None

Shift lart Double

SLDA R1, D2(B2) [RS]

8F

78 11'12 1.516 1920 31

1. The contents of the EVEN-ODD register pair specified
by the first address field (Rl) are shifted to the
left.

2. The low-order 6 bits of the effective address D2(B2)
specify thenurnber of the positions of the first operand
will be shifted.

3. The operand is treated as a number with 63 integer
bits and a sign in a sign position of the even register.

4. The high-order position of the ODD REGISTER contains an
integer bit in the ~ign bit position~

5. All 63 integer bits participate in a shift and O's are
placed in the vacated low-order bit positions of the
EVEN-ODD register pair.

6. Each bit position that the integer is shifted equates
to a multiplication by 2.

7. When the low-order 6 bits of the effective address
e.xc~e.4,a decimal value of 62, the entire integer wil;L
be shifted 'out of the specified registers.

8. When a bit unlike the sign is shifted out of bit
position 1 of the even register, an overflow will occur.

9. A specification exception will occur if the register
address specified by the first operand is odd.

EXAMPLES

1. SLDA (Shift Left Do~ble Algebraic)
Using the shift instruction, multiply the contents of
register pair A and B by 8. Do not specify a base
register.

SYMBOLIC SLDA 10,3(0) MACHINE 8F AO 00 03

3-37

GPR
GPR

Before

00 '00 00 00
80 00 01 20

Condition Code. 2

After

00' 00 00 04
00 0009 00

2. SLDA (Shift Left Double Algebraic)
Using the shift instruction multiply the contents of
register pair C andD by 4 using base register 6.
'(GPR 6 = 00 00 00 02)

SYMBOLIC SLDA12,0(6) MACHINE 8F CO 60 00'

Bef'ore After

GPR .C 80 00 00 00 80 00 00 01
GPR D 7C 00 00 Db FO 00 00 00

Condition Code 3

ONOITION CODE

o Result is O·
1 Result is less' than O.
2. Result is greater than. 0
3 Overflow

ROGRAM INTERRUPTIONS

1. . Specification
2. Fixed point overflow

.Shift Ri9h~ Double

SRDA R." DAB:!} [RS]

I 8E I Rl - B2 I D2 I.,
0 7. 11 12 lSI6 1920 31

1. The contents of the EVEN-ODD register pair specified
by the first address field (Rl) are· shifted to the
right.

2. The low-order 6 bits of the effective address :P2(B2)
specify the number of positions that the first operand
will be shifted.

3. The operand is treated as a number with 63 integer
bits and a sign in the sign position of even register.

3-38

4. The high-order positioriof' the ODD register contains
an integer bit in the sign bit position.

5. All 63 integer bits participate in the shift and
bits like the sign are placed in the vacated high
order bit positions of the EVEN-ODD register pair .

6. Every bit position that the integer is shifted equates
to a division by 2.

7. When the low-order 6 bits of the effective address
exceeds a decimal value of the specified registers.

8. A specification exception will occur if the reigster
address specified by the first operand' is ODD.

EXAMPLES

1. SRDA (Shift Right Double Algebraic)
Using the shift instruction, divide the contents of
register pair 2 and 3 by 16. Do not specify a base
register.

SY!~OLIC SRDA2,4(0)

GPR
GPR

2
3

Condition Code 2

Before

00 OC IF 39
FC 2A 67 49

MACHINE 8E 20 00 04

After

00 00 Cl F3
9F C2 A6 74,

2. SRDA, (Shift Right Double Algebraic)
Using the shift instruction, divide the contents of
register pair 4 and 5 by 8 using a base register.
(GPR 1 = 00 00 00 02) ,

SYMI;30LIC SRDA 4 ,1 (1) MACHINE 8E 40 10 01

Before After

GPR 4 FF FF FF FF FF FF FF FF
GPR 5 FF FF FF 00 ' FF FF FF EO

Condition Code I

CONDITION CODE

0 Result is 0
1 Resul t is less than 0
2 Result is greater than 0
3

PROGRAM INTERRUPTIONS

1. Specification

3-39

FIXED POINT FAMILY

DATA FORMATS

·Ar;ithmetic data entering ·a system from an I/O (Input/Output)

aev~ce normally occupies the zoned data format. When zoned

data is to be used bY'either fixed-point or decimal instruc-

tioris it must be converted into the data format used by these

instructions. The PACK instruction wiil convert the incoming

zoned data to packeQ decimal data.

The packed decimal data is used by decimal instructions I but

lJlust again be converted for use by fixed-point instructions.

The CONVERT TO BINARY instruction performs the task of cori

vel;t:i,.ng packed decimal data into fixed-point data.

When arithmetic data is to be taken from the system and sent

to a ~,ormatted I/O device (card punch, printer, .typewriter,

e~9.), it must be in the zoned data format.' If the data is in

the packed decimal data format, the UNPACK instruction will

change it into the zoned format. Data in the fixed-point format

must frist be changed to the packed decimal format by using the,

CO~VERT TO DECIMAL instruction prior to conversion by the UNPACK

il);3truction.

~ACK --....

'l'h~ Pack instruction converts data in the zoned format to packed

qt1~imal data. The starting address and length of the zoned data

ft~ld to be convert~d are specified by the second operand.

3-40

The packing of zoned data is accomplished in a right-to

left sequence. The first step is placing the zone of the

low-order zoned digit in the low-order 4 bits of the packed

data field designated by the first operand. The digits

contained in the zoned data field are now placed right

to-left, adjacent to each other and these 4 bits that be

come the sign 'of the packed-decimal number.

UNPACK

The Unpack instruction converts data from the packed deci

mal format to the zoned format. The.starting address and

length of the packed decimal field are specified by the

second operand.

The unpacking.of data is accomplished by placing, r1ght

to-left, the digits ofthepacked~decimal data into the

low-order 4 bits·of·eachbyte.containedin the.first op

erand'sfield. The zone (high-order 4 bits) supplied to

these bytes is 1111 (OlOlfor USASCII-8) ~xcept the zone

of the low-order byte which is set to the sign of the

packed decimal data.

Pack

I F2 I L, I L2 .\ 8, . I U·O , IB2 11m
o 7. 1112 1~16 1920 3132 3S 36· 47

1. The second.address field (D2(L2,B2)] defines a field
in storage that contains zoned-arithmetic data.

2. The first address field [Dl(Ll,Bl)] defines a field
in "storage where the contents of the second
operands will be placed after being converted
to the packed decimal data format.

3. The sign of the zoned data field (zone of the
low-order byte) becomes the sign of the packed
decimal data and is placed in the low-order 4
bits of the first operand field. \

4. The digits of the zoned fieldare.fetched one
at a time and placed adjacent to the sign of
the packed field and each other.

S. Fetching is performed in a right-to-left se:'"
quenceand neither the sign or digit are
checked for validity.·

6. A first operand field larger than the resultant
packed decimal number is supplied with zeros in
the high-order unused positions.

7. ·If the first operand field is exhausted prior
to completing the transfer of all the zoned
digits the remaining zoned digits will be
ignored.

8. First and second operand fields may overlap in
any desired manner.

Ex.,i.\MPLES

1. PACK (Pack)
Convert the zoned eight byte field located at
storage location 4200(ZONE) to a packed decimal
operand and place· in a five-byte field beginning
at storage location 43S0(DEC). (GPR F = 00 00 40 00)

SYMBOLIC PACKDEC(5),ZONE(8)

MACHINE F2 47 F3 50 F2 00

Before After

Storage 4200 F2 FS F6 F3 F2 F5 F6· F"j·
4204 Fl FO Fl D4 F7 FO Pl 04

4350 FF FF FF FF 02 56" 37 01
4354 FF FF FF FF 4D FF FF FF

3-42

2. PACK (Pack)
Switch the two packed-decimal digits at storage
location 4351(DEC+l). (GPR F = 00 00 40 00)

SYMBOLIC PACK'DEC+l(l),DEC+l(l)

~mCHINE F2 00 F3 51 F3 51

Storage 4350

CONDITION CODE

1. Remains unchanged

PROGRAM INTERRUPTIONS

1,.. Protection
2 ~ Addressing

Unpac~

UNPK DdL" 8,), D2(L2,82) [55]

F3

Before

02 56 37 01

After

02 65 37 01

1. The second address field [D2(L2,B2)] defines a field
in storage that contains packed-decimal data
that will be converted to' zoned data.

2. The first address field [Dl(Ll,Bl)] specifies a field
in storage where the result of the conversion
(zoned data) will be placed.

3. The sign of the packed-decimal field (low-order
4 bits of the low-order packed byte) becomes the
zone of the low-order zoned data byte.

4. The packed data is transferred a byte at a time
in a right-to-left sequence and are not checked
for valid digit or sign codes.

5. A packed digit is placed in the low-order 4 bits
of each byte in the first operands field and is
supplied with a zone of 1111 (0101 for USASCII-8
mode).

6. Zeros are supplied as high-order digits to be
unpacked when the first-operand field is larger '
than the unpacked result. '

7. If the first operand field is shorter than the
unpacked result the high-order packed digits are
ignored.

8. Overlapping of fields, greater than two bytes,
requires the first operand field to begin at an
address greater than the low-order byte of the
second operand field. The number of bytes greater
is equal to the second operand's length minus two.

3-43

EXAMPLE

1. UNPK (Unpack)
Unpack the 6-byte field at storage location 4600
(DEC1) and placeina12-byte field located at
4800 (ZONE1) • (GPR F I: 0000 45" 00)

SYMBOLIC UNPK-ZONE1(12),DEC1(6)

MACHINE F3 B5 F3 00 Fl 00

Storage 4600'
4604

4800-
4804
4808 -

Before

12 34 5678
90 OC 23 45

00 00·00 00
00 00 00 00_
00 00 OO"PF

After

12 34 56-78
90 OC 23 45

FO Fl F2 F3
F4FS F6 F7
F8 F9 Fa co

CONDITION CODE

1. Remains unchanged

~~~ lNTERRUPTIONS 

1. Protection 
2." Addressing 

3-44 



'il' 

FIXED POINT FAMILY 

CONVERT TO BINARY 

The CONVERT TO BINARY instruction will convert a decimal 

number tSase 10) to its, equivalent binary number (Base ,2) • 

The second address field designates a doubleword in storage, 

whose data is in the packed decimal data format. The conte~,t~ 

of this storage location will be converted and pl.aced in the 

register specified by the .firstaddress field. 

3-45 



Convert ~o ninary 

eva 11" Dt (X2, SzJ [IX) 

I 04F I R, I X2 I 62 I D2 
U16 1920 Jl 

0 7' 1112 

1. The 'decimal contents of the storage location desig
nated by the second address field [D2(X2,B2)] are 
changed to binary and are placed in the register 
specified by the first address' field (Rl). 

2.' The second operand must be a doubleword in storage 
whose contents are in the packed decimal data format. 

3. This doubleword is' checked for valid sign and digit 
. codes. A data exception will occur if either is . 
invalid. . 

4. The second operand must be located on a double word 
boundary. 

5. The maximum positive·decimal number that can be con
verted is 2, 147, 483, 647. The maximum negative ntun
her is 2,'147 I 483, 648. 

6. If the maximum positive or. negative number is exceeded, 
the low-order 32 binary bits are placed in the regis
·ter specified byRl and a fixed point divide exception 
will occur. . 

7. The number is located as a right aligned signed integer 
before and after conversion. 

S. .The contents .of the second operand remain unchanged. 

E~LES 

1. CVB (Convert Binary) 
Convert the decimal number at storage address 1020 
(DATA+32) to binary and place in register C. (GPR F = 
00 0'0 10 00) 

SYMBOLIC CVB12,DATA+32 MACHINE 4F CO Fa 20 

GPR C 

Storage 1020 
1024 

Before After 

00 00 FF FF OE 00 0000 

00 00 00 23 00 00 00 23 
48 81 02 4C . 48 81 02 4C 

.3-46 



2 u eVB (Conyer,t Binary) 
Convert the decimal number at storage address 1028 
(DATA+'40) 'to binary and, pl~ce' in register 3. (GPR F = 
00 00 10 0.0) 

S){~OLI.~ CVB 3,DATA+40 

GPR 3 

S.tor~ge 1028 
102C 

CONDITIO~, CPPE 

PROGRAM INTERRUPTI.9~S, 

Before 

C~, 16,00 12 

00 09 00 01 
39 8§,12 lp, 

1. Protection (fetch o~ly) 
2 ~ AdCl~,e~~i~g 
3. Spe~i~~~ati9~ 
4. Data 
5,. F,ixe9-~P9;i.~ t di vid~ 

3,-4.7 

MACHINE 4F 30 FO 28 

After 

FF 2A 96 B7 

00 00 00 01 
39 86,12 ID 



FIXED POINT FAMILY 

CONVERT·TO DECIMAL 
i P ----

The CONVERT TO DECIMAL inst~uctionwill convert a binary number 

~Base 2) to its equivalent decimal number (Base 10). The first 

"Cldress field specifies.the register which contains the binary 

~~ero The second qddress field designates a doubleword in 

~tot"age where the decimal result will be placed.after the 

qonversion. 

3-48 



Convert to Decimal 

o ' 7 • 11 12 U 16 19 20 31 

1. The binary contents of the register specified by the 
first address field (Rl) are changed to packed decimal 
and are placed in the doubleword storage location 
designated by the second'address field [02 (X2 ,B2) ] • 

2. The seco~d operand must be located on a doubleword 
boundary. 

3. The result placed in the second operand location will 
be a right aligned packed decimal integer. 

40 The sign placed in the low order ~ex digit will be C 
or A for plus and D or Bfor minus. ' 

5. The choice between the two sign representations is 
determined by the state of PSW bit 12. 

60 Any'binary value contained in a register can be con
verted and will not exceed the doubleword length ,that 
the second operand designates '." , 

7. The contents of the first operand remain unchanged • 
• :"'>, 

EXAMPLES 

1. eVD (Convert Decimal) 
convert the binary contents of register C to decimal .. 
and place at storage location 1020(PATA+32). (GPR F = 
00 00 10 00) 

SYMBOLIC CVD 12,DATA+32 MACHINE 4E CO FO"20 

Before After 

GPR C OE 00 00 00 OE 00 00 00 

Storage 1020 00 00 00 00 00 00, 00 23 
1024 00 00 00 00 48 81 02 4C 

,3-49 



~. CVD (Convert· Decimal) 
Convert the binary cont~nts of zegistei 3 todedimal 
and'plac;e at storage location 1028,(DATA+40) • (GPR F -= 
'00 00 10 00) 

SYMBQLIC' CVD 3,DATA+40' MACHINE 4E 30 FO 28' 

Before After 

GPR 3 FF 2A 96 B7 FF 2A 96B7 

Storage 1028 
102C 

CONDITION CODE 

1. Remains unchanged 

~RQGRAM INTERRUPTIONS 

00 00 00 20 
C9 99'99 99 

1. Protection (store only) 
2. Addressing 
3. Specif~cation 

00 00 00 01 
3986 12 lD' 



LOGICAL FAMILY 

MOVE 

. The I40VE ins truction is usetl to trans fer data from' one locat ion 

to another. The location of the data to be moved is specified 

by the second address field. Thc first addre'ss field designatcs 

the location to which the data will be moved. The data is con-

taincd either in storage or within the instruction. The 

general-purpose registers are not used to receive or supply 

this data. 

The following MOVE instructions exhibit additional character-

istics: 

MVN This permits the moving of the low-order 4 bits contained 
in 'any one byte or group of bytes. 

MVZ Allows the moving of the high order 4 bits contained in 
anyone byte or group of bytes. 

MVO Provides a means of shifting uata in the packed decimal 
data format and changing the sign of a packed decimal 
fielu. 

4-1 



Move 

MV' Dl (8 1), '2 [5'] 

I 92 I '2 I 61 ,I Dl I 
0 7. U16 1920 31 

1. The second operand (I2) is contained within the 
instruct.ion. 

2. This one byte of data is placed at the 'location, 
desigriated by the first address field [Dl(Bl)]. 

3. The second operand, contained within the instruc
tion,is unchanged. 

E~PLES 

1r. MVI (Move Immediate) 
Place the data FA into storage location 1001 
(DATA+l) using the MOVE IMMEDIATE instruction. 
(GPR F = 00 00 10 00) 

SYMBOLIC MVI DA~A+l,X'F~' 

Before 

Storage 1000 

CONDITION CODE 

1. Remains unchanged 

PRpGRAM INTERRUPTIONS 

1.. Protection 
2. Addressing 

lAve DJ(L, B,), DiSz) 
, , ' 

I 02 I L 
o ' 7 a 

00 00 00 00 

MACHINE 92 FA FO 01 

After 

OO'FA 00 00 

~. ,The length field (L) specifies the length in bytes 
of the first and second operands. 

2. The maximum number of bytes that can be specified 
by the length field is 256. 

3. The hexidecima-l value of this field is always one 
less than the number of bytes actually transferred. 

4. The second address field [D2(B2)] specifies a 
starting address in storage where the data is 
located. 

4-2 



5. The first address field [Dl(S1)] designates a starting 
address in storagG where the data will be placod. 

6. Tho data 10 ~wved left to right through each field 
one byte at a time. . .. 

7. The data· being transferred in ·a left to right 
sequence, a byte at' a time, allows .. , the propogation 
of a byte through storage. . 

S. This continues"untll all specified, bytes are 
transferred. 

EXAMPLES 

1. mc . (Move Characters) 
Move the contents .. of . storage location 1000(DATA 
through 1007 to storage locations 1100 (DATA+256) 
through 1107. (GPR F = 00 ·00 10 00) 

SYMBOLIC MVC ·DATA+ 2 56· (8), DATA MACHINE D2 07 Fl 

Before After 

Storage 1000 00 33 33 33 00 33 33 33 
1004 22 22 22 22 22 22 22 22 

-,1008 ·11 11 11 11 11·11 11 11 

1100 00 00 00' 00 00 33 33 33 
1104 CE IF 00 00 22 22 22 22 
1108 :39· 12 ·1A Be 39 12 lA BC 

2. MVC (Move Characters) 
Propogate the' byte located at storage location 
1000 (DATA) .. through st6rageto locationlOOB. 
(GPR F = 00 0010 00) 

00 FO au 

SYMBOLIC MVe DATA+1(11) ,DATA MAeHINE D2 OA FO 01 'Fa 00 

Storage 1000 
1004 
1008 

CONDITION CODE 

I. Remains unchanged 

PROGRAM " INTERRUPTIONS 

10 Protection. 
2. Addressing 

Before 

00 33 33 33 
22 22 22 22 
11 11 11 11 

:After 

00 00 00 00 
00 00 00 00 
0000 00 00 



Move Numorics 

I 01' I. iL 
. 0 7 8 

.l·.The lengthfie'ld (L) specifies the length in bytes 
of the first and second operands. 

~. The maximum number of numerics (low order 4 bi.ts of 
a byte) that can be speci~ied by the length field is 
256. 

3. The hexadecimal value of the length field is alway.s 
one less than the numeric actually moved. 

4. The first address field Dl(Bl) sp~cifies a starting 
address in storage where the numeric is placed. 

5. 'The second address field 02 (B2) designates a starting 
address in storage where the numeric .is located. 

, 6. The low-ord~r 4 bits of the byte specified by the 
second address field are moved left to right one numeric 
ata time. 

7. 'They are placed inthe low-order 4 bits of the byte 
specified by the first address field. 

8. The fields may overlap in any desired manner. 

1. MVN (Move Numerics) 
Move the numeric portion of storage address 100C 
(OATA+12) . through lOaF to location 1020 (OATA+32) 
through 1023 (GPRF = 00 00 10 00). 

SYMBOLIC MVN DATA+32 (4) ,DATA+12 MACHINE Dl 03 FO 20FO OC 

Before After 

Storage' ·lOOC F1 F2 F3 F4 F1 F2 F3 F4 

1020 F9 Fa F3 Cl F1F2 F3 C4 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTION 

1. Protection 
2. Addressing 

4-4 



Movo ZonoG 

03 I 
o 7 a 

1. The length field (L) specifies the length.in bytes 
of the first and second operand. 

2. The maximum number of zones (high order 4-bits. of 
a byte) that can be specified by the length field 
is 256. . 

3. The hexidec~al value of the length field is always 
one less that the number of zones actually moved. 

4. The f~ret address field [Dl(Bl)] specifies a starting 
address in storage where the zones \V'ill be placed.' 

5. The second address field [D2(B2)] designates a starting 
address in storage where the zones are located. 

6. The high-order 4 bits of the byte specified by the 
second address field are moved left to right one zone 
at a time. 

7. They are placed.in the high-order 4 bits of the byte 
sp~cified·by the first address field. 

8. The fields may overlap in any desired manner. 

EXAMPLES 

1. MVZ (Move Zones) 
Move the'zone portion of storage address lOOF (DATA+1S) 
to location 1023 (DATA+3S) (GPR F :: 00 00 10 00) 

. SYMBOLIC MVZ DATA+35 (1) ,DATA+1S 
MACHINE D3 00 FO 23 FO OF 

stor&ge loce 
1020 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. Protection 
2. Addressing 

Before 

Fl F2 F3 F4 

FI F2 F3 C4 

4-5 

After 

FI F2 F3 F4 

FI F2 F3 F4 



Move with Offset 

MVO D,(L" B,}, D2(L2, B2} [SS] 

1., The second operand [D2 {L2,B2] is placed in the 
first operand ;:[Dl(Ll,Bl] location. 

2. The second operand is placed to the left tif and 
adjacent to the low-order four bits of 'the first 
opezand's field. 

3. The'resultant field is a combination of the second 
operand and the low-order four bits of the first 
operand. 

4. The fields are processed right-to-left and may 
overlap in any desired manner. , 

5. A first operandi field length greater than, can be 
occupied by the second operand, is supplied with 
high-order zeros. 

'6. A second operand field length greater than the 
first operand field causes the remaining bytes to 

~,Xl\M?LE 

be ignored. ' 

1. ,Move the 6-byte data field beginning at storage 
location 4200 (NUMB) to the9-byte field at stor
age location 4600 (PLUS) and allot a position 
value to the resultant field. (GPR F ~ 00 00 40 00) 

SYMBOLIC MVO PLUS ( 9 ), NUMB ( 6 ) 

MACHINE Fl 85 F6 00 F2 00 

Before After 

Storage 4200 12' 34 56 78 12 34 56 78 
4204 90 09 80 OC 90 09 80 OC 

'4600 55 44 33 22 00 00 01 23 
.'~604 11 00 11 22 45 67 89 00 
4608 3C 13 79 26 9C 13 79 26 

CONDITION CODE 

1. Remains unchanged 

~ROGRAM INTERRUPTIONS 

1. Protection 
2. Addressing 

4-5A 



LOGICAL FAMILY 

AND 

The AND instruction finds the -logical product of the bits 

cont.ained in the locat.ions specified by the first and second 

address fields. The operands are treated as unstructured 

logical quantities, and the AND is applied bit by bit. A 

bit position in the result will. be made-equal to one if the 

corresponding bit' positions in both operands are equal 'to one. 

If these conditions a·re not met, that bit position 'Vli1l be 

made a zero. The bit-by-bit r.esult is placed in location 

specified by the first address field. 

4-6 



BXAMPLE 

[RA] 

I 14 
o 7. ,,\2 U 

1. The contents of the register specified by the second 
address field (R2) are ANOED with the contents of the 
'register specified by the first address field (Rl). 

2. The result replaces the first operand. 
3. ANDING is performed one bit at a time until all bits 

have been ANDED., ' 
4. ANDING is commonly used to set anyone bit or a 

group of bits to zero. 

1. NR (AND Registers) 
AND the contents of register 6 to the contents of 
register A. 

SYMBOLIC NR 10,6 

GPR 
GPR 

6 
A 

" 

MACHINE 14 A6 

Before After 

AF AF AF AF AF AFAF AF 
SF SF SF OC OF OF OF OC 

Condition Code 1 

~NDI'l'ION CODE 

o Result is 0 
1 Result l10t 0 
2 
3 

P~GRAM INTERRUPTIONS 

1" None 

o 78 11 12 U 16 1920 31 

1. The contents of the location designated by the second 
address field [D2(X2,B2)] are ANDED with the contents 
of the register specified by the first address field 
(Rl). 

4-7 



2. The result replaces the first operand. 
3. ANDING is performed one bit at a time until all 

bits are ANOED. 
~o ANDING is oommonly used to Get llny one bit or 

group of bits to o. 

EXA£#1PLES 

1. N (AND) 
AND the contents of location 5000 (Bits) to 
register 8 (GPR F = 00 00 50 00) 

SYMBOLIC N 8,Bits MACHINE 54 80 FO ·00 

Before After 

GPR 8 3C 3C 3C C3- 00 00 00 C3 

Storage 5000 C3 C3 C3 C3 C3 C3 C3 'C3 

Condition Code 1 

CONDITION CODE 

o Result is 0 
1 Result not 0 
2 
3· 

PROGRAM INTERRUPTIONS 

I 94 
o 

1.. Protection (Fetch only) 
20 Addressing 
3., Specification 

78 1516 1920 
I 

31 

1. The second operand (I2), contained within the 
instruction, is ANDED with the ~ingle byte 
designa.ted by the first address field. [DI(BI)]. 

2. The result replaces the byte specified by the 
first address field. 

3. ANDING is performed one bit at a time until all 
bits have bean ANDED. 

4. ANDING is commonly used to set anyone bit or 
group of bits to o. 

4-8 



EXiU-lP Ll::S 

1. NI (AND Immediate) . . 
Set bits at looation 500'6 (8i ts+ 6) to O. 
(GPR F • 00 00 50 00) 

SYMBOLIC NI Bits+6,X'FB' MACHINE 94 FB FO 06 

Before After 

Storage 5004 CB 91 FE 01 CB 91 FA 01 

Condition Code. 1 

CONDIT~ON CODE 

o Resu1tis 0 
1 Result not 0 
·2 

3 

P~GRAM INTERRUPTIONS 

1.· Protection (store only) 
2. AQdressing 

, 04 I 
o 7. 

l~ The contents of the location designated by the second 
address field [02(B2)] are ANDED with the contents of the 
location designated by the first address. field [Dl(Bl)] 

2. The number of bytes ANDED is specified by the length 
field (L). 

3. The result replaces the first operand. 
4. ANDING is perfor.med one bit at a time until all bits 

have been ANDED. . 
S. ANDING is commonly· used to set any one bit or group 

of bits to O. 

~LES 

1. NC (AND Characters) . 
AND the contents· of storage location·S008 (Bits+8) 
through 500B to SOOC (Bits+12) thrO\il9h.SOOF (GPR 
F = 00 00 50 00) 

4-9 



SYMBOLIC NC Bits+12(4),Bits+8 

MACHINE D4 03 FO OC FO 08 

Storage 5008 
500C 

Before 

00 00 00 FC 
lA 23 96 40 

Condition Code" 1 

CONDITION CODE 

o Result is 0 
1 Result not 0 
2 
3 

PROGRAM INTERRUPTIONS 

1. Protection" 
2 ~ Addressing 

After 

00 00 00 FC 
00 00 00 4C 



LOGICAL FAMILY 

The OR instruction computes the logical sum of the bits contained 

in the locations specified by the first and, second address fields. 

~~rands are treated as unstructured logical quantities, and the 

~nc:lusiv~ OR is applied bit by bit. A bit posit.ion'in the result 

W~41 be made a one (1) if the corresponding bit position in either 
, , 

Q~,*rand is equal to one (1). Both bit positions being equal to zero 

a.~ that result bit to'a zero. The bit-by-bit result 1s placed 

~n location specified by the first address field. 

4-11 



I 16 R1· I R2 I 
o 78 1112 15 

1.. The conten·t.s of the register specified by the second 
address field (R2) are OR'ED with the contents of the 
register specified by the first address field· (Rl) • 

2. The result replaces the first operand. 
3. The corresponding bit position in the result will be 

made a one if either of the bit positions· in the op
erands is equal .to a one. 

4. If· neither of the bit positions in the operands is 
equal to one, the corresponding bit position, in the" 
result will be made a zero. 

S. OR'ING is performed a bit at a time until all bits 
have been OR'ED. 

6. OR 0 ING is commonly used to set·, any, one bi t 'or group 
of bits to a one. 

EXAMPLES 

1. OR (OR Registers) 
OR the contents of register 4 to the contents·of 
register 1. 

SYMBOLIC OR 1,4 

GPR 
GPR 

1 
4 

Before 

AS AS. AS AS 
SA SA, SA SA 

Condition Code 1 

CONDITION CODE, 

o Result is 0 
1 Result not. 0 
2 
3' 

PROGRAM ·INTERRUTP·ION 

1. None 

4-12 

MACHINE 1614 

After 

FFFF FF FF 
SA ,SA SA SA 



I 56 
, • " 12 U" "10 )1 

1. The contents of the storage locations specified by 
the second address field [D2(X2,B2)] is ORIED with the 
contents of the register specified by the first 
address field (Rl). 

2. The result replaces the first operand (Rl). 
3. The corresponding bit position in the result will 

be made a one if either of the bit positions in 
the operand is equal to a one. 

4. If neither of the bit positions in the operands 
is equal to one, the corresponding bit posit~on 
in the result will be made a zero. 

5. OR'ING is performed a bit at a time until all 
bits have been OR'ED. 

6. OR'ING is commonly used to set anyone bit or 
group, of bits to a one. 

EXAMPLES 

1. 0 (OR) 

CONDITION 

0 
1 
2 
3 

OR the contents of storage location 5010 (Bits+16) 
to the contents'of register o. (GPR F = 00 00 50 00) 

SYMBOLIC 0 0,Bits+16 

GPR 0 01 

Storage 5010 10 

Condition Code 1 

CODE 

Result is 0 
Result not 0 

Before 

02 03 

43 6C 

04 

OE 

MACHINE 56 00 FO 10 

After 

11 43 6F OE 

10 43 6C OE 

PROGRAM INTERRUPTIONS 

1. Protection (fetch only) 
2. Addressing 
3. Specification 

4-13 



I 96 
7. '1.516 1920 31 , 

1. 'The second operand (12)" conta.ined within the 
instruction., is OR'EDwith the contents of the 
storage location specified by the first addres,s· 
field [bl{B1)]. ' 

2. The result replaces the first operand'. 
3. 'I'he corresponding bit position in the result will 

be made a one if either of the bit positions in 
the operands is equal to a one. 

4. If neither of the bit positions in the operands 
is equal to one, the corresponding bit position in 
the result will be made a zero. 

5. ORtING is performed a bit at a time until all of 
the bits have been OR'ED. 

6. ORoING is commonly used to· set anyone bit or 
group of bits to a one. 

EXAMPLES 

1. 01 (OR Immediate) 
Set bit 5 of storage location 5017 (Bits+2"3) to 
a one. (GPR F = 00 00 50 00) 

SY~mOLIC 01 Bits+23,4 

Before 

Storage 5014 00 00 00 C3 

Condition Code 1 

CONDITION CODE 

o Result is 0 
1 Result not 0 
2 
3' 

PROGRAM INTERRUPTION 

1. Protection 
2. Addressing 

4-14 

MACHINE 96 04 FO 17 

, After 

00 00 00 C7 



ot' DdL, 0,), DiJ(O~) [55) 

06 I 
o 7 • 

1. The contents of the storage location specified by 
the second address field [D2(B2)1 are OR'EDwith 
the contents of the storage location designated by 
the first address field [Dl(Bl)1. 

2. The number of bytes to be OR'ED is specified bV 
the length field (L). 

3. The result replaces ~he first operand. 
4. The corresponding bit position in the result will 

be made a one if either of the bit positions in 
the operand is equal to a one. . . 

5. If neither of the bit positions in the operands .' " , 
is equal ~oa one, the corresponding bit position 
in the result will be made a zero. 

6. OR'ING is performed a bit at a time until all 
bits have been OR'ED. 

7. OR'ING is commonly used to set any one.bit or 
gro\lp of bi ts" to a one. 

ExAMPLES 

1. OC (OR Characters) 
OR 6' bytes . starting at storage location 5020 
(Bits+32) to 6 bytes beginning at location 5028 
(Bi ts+40). . (GPR F :: 00 00 50 00) 

SYMBOLIC OC Bits+40(6),Bits+32 

MACHINE D6 as FO 28 Fa 20 

Storage 5020 
5024 
5028 
502C 

Condition Code 

CONDITION CODE 

o Result is 0 
1 Result not 0 
2 
3 

PROGRAM INTERRUPTIONS 

1. Protection 
2. Addressing 

Before 

80 00 00 
00 00 FC 
40 00 00 
00 00 13 

1 

4-15 

02 
3E 
01 
29 

After 

80 00 00 02 
00 00 FC 3E 
co 00 00 03 
00 00 13 29 



LOGICAL FAMILY 

EXCLUSIVE OR 

The EXCLUSIVE OR instruction is used to find the. modulo two 

sum of the bits of two operands. The second address field 

specifies the location of data that will be EXCLUSIVE, DRIED 

with data at the location specified by the ,first address 

field. Operands are treated as unstructured logical quanti-

ties, and the EXCLUSIVE OR is applied bit by bit. A bit 

position in the result will be made a 1 if either (not 

both) of the corresponding bit positions in the operands 

is equal to a one. Both bit positions being equal to zero 

or one set the result bit position to a,O. The bit-by-

bit result replaces the first operand. 

The expression, "modulo two sum," means (to us) "What. is 

left when any two is cast out." The following table shows 

the modulo two sum (exclusive OR). 

0+0=0 
0+1=1 
1+0=1 

1001 
+1010 

0011 

1111 
+0111 

1000 

The strange part is that one plus one is zero. 

4-16 



I 17 I Rl I R2 I 
o .71 1112 15 

1. The contents of the register speci'fied by the 
second address field (R2) are EXCLUSIVE ORIED 
with the contents of the register 'specified by 
the first address field (Rl). 

2. The result replaces the first operand. 
3. The corresponding bit position in the result will 

be made a one if either (not both) of the bit 
positions in the operands is equal to a one. 

4. If both bit positions are equal to a one or zero, 
the corresponding bit positions in the result 
will be made a zero. 

5. The EXCLUSIVE OR'ING is performed one bit position 
at a time until all bits have been Exclusive ORIED. 

6. Any field EXCLUSIVE ORIED with itself becomes all 
zeros. 

7. EXCLUSIVE OR'ING is commonly used to invert anyone 
bit or group of bits. . 

EXAMPLES 

1. XR (EXCLUSIVE OR Registers). 
EXCLUSIVE OR the contents of register 9 to the con
tents of registerC. 

SYMBOLIC XR 12,9 

GPR 
GPR 

9 
C 

MACHINE 

Before 

FF 11 CC 55 
1122 88 AA 

Condition Code 1 

CONDITION CODE 

o Result is 0 
1 Result not 0 
2 
3 

PROGRAM INTERRUTPIONS 

1. None 

4-17 

17 C9 

After. 

FF 11 CC 55 
EE 33 44 FF 



X R/, D:,dX::t Bt } [RX] 

( 57 R, I X2 [ B2 D2 
7 • 1112 \.5 16 1920 :II 

0 

1. The contents of the storage location specified by, 
the'second address field [D2(X2,B2)] are EXCLUSIVE 
OR'ED with the contents of register specified by 
the first address field (RI). 

2. The result replaces\the first operand. 

EXAMPLE 

3. The corresponding bit positions in the result will 
be made a one if either (not both) of bit positions 
in the operands is equal to a one. 

4. If both bit positions are equal to a one or zero, 
the corresponding bit positions in the result will 
be made a o. 

5. The EXCLUS IVE OR' ING is perfo'rmed one bi t pos i tion 
at a time until all bits have been EXCLUSIVE OR'ED. 

6. Any field EXCLUSIVE OR'ED with itself becomes all 
zeros. 

7. EXCLUSlVEOR'ING is conunonly used to invert anyone 
bit or group of bits. 

1. X (EXCLUSIVE OR) 
EXCLUSIVE OR the contents of storage location 5050 
(Bits+SO) to register 1. (GPR F a 00 00 50 00) 

SYMBOLIC X 1,Bits+80 

GPR 1 FF 

Storage 5050 00 

Condition Code 1 

Before 

00 FF 

00 FF 

00 

FF 

MACHINE 57 10 FO 50 

After 

FF 00 00 FF 

00 00 FF FF 

CONDITION CODE 

0 Result is 0 
1 Result not 0 
2 
3 

PROGRAM INTERRUPTIONS 

1. Protection (fetch only) 
3. Addressing 
3. Specification 

4-18 



\ 97 
o 7 a 1516 1920 31 

1. The second operand (12,) contained within the in
struction, is EXCLUSIVE ORIED with the contents of 
the storage location designated by the first 
address field [Dl(Bl)]. 

2. The result replace the first operand. 
3. The corresponding bit position in the result will 

be made a one if either (not both) of the bit 
positions in the operands is equal to a one. 

4. If ,both bit positions are equal to a one or zero 
the corresponding bit position in the result will 
be made a zero. 

5. The EXCLUSIVE ORIING is performed one bit position 
at a time until all bits have been EXCLUSIVE OR'ED., 

6. Any field EX~LUSIVE OR'ED with itself becomes all 
zeros. 

7. EXCLUSIVE OR'ING is commonly used to invert any 
one bit orqroup of bits. 

1. XI (EXCLUSIVE OR Immediate) 
Invert bit 0 and 3 of storage location 5056 
(Bits+86). (GPR F = 00 00 50 00) 

SYMBOLIC XI Bits+86,X'90' 

Before 

Storage 5054 C3 01 OF 23 

Condition Code 1 

CONDITION CODE 

o Result is'O 
1 Result not 0 

'2 
3 

PROGRAM INTERRUPTIONS 

1. Protection (store only) 
2. Addressing 

4-19 

MACHINE 97 90 FO 56 

After 

C3 01 9F 23 



07 I l 
o 7 6 

1. The contents of the storage locations specified by 
the second address field [D2(B2)] are EXCLUSIVE' 
OR'ED with the contents of storage location desig
nated by the first address field [Dl(Bl)]. 

2. The number of bytes that will be EXCLUSIVE ORIED 
is designated by the length field (L). 

EXAMP~E 

3. The result replaces the fi~st operand. 
4. The corresponding bit position in the result will 

be made a one if"either (not both) of the bit posi~ 
tions in the operands is equal to a one. 

5. If both bit poiitions are equal t6 a one or zero, 
the corresponding bit positions in the result will 
be made a zero. 

6. The EXCLUSIVE OSIING is performed one bit position 
at a time until all bits have been EXCLUSIVE ORIED. 

7. Any field EXCLUSIVE ORIED with itself becomes all 
zeros. 

8. EXCLUSIVE ORIING"is commonly used to invert anyone 
bit or group of bits. 

1. XC (EXCLUSIVE OR Character) 
EXCLUSIVE OR storage locations 5050 (Bits+80 through 
5057 wi th itself. (GPR F 00 00 50 00) 

SYMBOLIC XC Bits+80(8),Bits+80 

MACHINE D7 07 FO 50, FO 50 

Storage 5050 
5054 

Before 

00 00 FF FF 
C3 01 9F 23 

Condition Code 0 

After 

00 00 00 00 
00 00 00 00 

CONDITION CODE 

o 
1 
2 
3 

Result is 0 
Result not 0 

PROGRAM INTERRUPTIONS 

1. Protection 
2. Addre~sing 

4-20 



LOGICAL FAMILY 

TEST UNDER MASK 

The TES~ UNDER MASK instruction is normally used to test 

the condition of a bit or group of bits within a byte. The 

byt~ ~o be tested is specified by the first address field. 

The bits to be tested are designated by the mask field. The 

result of this test is used to set the Condition Code. 

Storage remains unchanged as a result of the TM instruction. 

4-21 



Test Under Mask 

TM D zfB,J, ,:,! [51] 

91 

78 

I 2 
1'16 1920 31 

1. The location of the byte to be tested is specified 
by the first address field (Dl,Bl). 

2. The second operand (12) is a mask field contained 
within the instruction. 

3. This mask field determines the bits of the byte 
to be tested. 

4. The result of this test determines the setting of 
the Condition Code. 

EXAMPLES 

1. TM (Test Under Mask) 
Using this instruction, test bits 4 through 7 of 
storage location 4500 (SWTH). (GPR F = 00 00 45 00) 

SYMBOLIC TM 0(15) ,X'OF' 91 OF FO 00 

Before After 

Storage 4500 08 04 8C 00 08 04 8C 00 

Condition Code 1 

2. TM 
Test Bits 28 and 29 of storage location 4500 (FWTH). 
(GPR F = 00 00 45 00) 

SYMBOLIC TM 3(15),X'OC' MACHINE 91 OC FO 03 

Before 

Storage 4500 07 04 AC 00 

Condition Code 3 

CONDITION CODE 

o Selected bits all 0; mask result 0 
1 Selecte d bi ts mix ed 0 and 1 
2 
3 Selecte d hi ts all 1 

PROGRAM INTERRUPTIONS 

1. Protection (fetch only) 
2. Addressing 

4-22 

After 

07 04 AC 00 



LOGICAL FAMILY 

COMPARE LOGICAL 

The COMPARE-LOGICAL instruction is used to de.termine the simi-. 

larity or difference between two operands. The contents of a 

. location specified by the first address field are compared to 

the contents of the location designated by the second address 

field. The Condition Code is set to reflect the similarity or 

difference between the two operands. 

4-23 



Compare Logical 

CLR R1, Rz [RR] 

I 15 R1 I R2 I 
0 78 II 12 . IS 

CL R1, D2(X~, 82) . [RX] 

I 55 I R1 X
2 I 

0 7 B 1112 1:116 

B2 
1920 

D' 
2 

31 

10 The contents of the register specified by the first 
address field (Rl) is compared to the contents of the 
location designated by the second address field (R2 or 
D2 (X2,B2». 

2. The' logical comparisoti is left to right a bit at a 
time until an inequality is found or the field are 
completed. 

3. The result of the comparison determines the se~ting 
of the Condition Code. 

4. Both operands remain unchanged. 

EXAMPLES 

1. CLR (Compare Logical Registers) 
Logically compare the contents of register 6 to 
the contents of register 1. 

SYMBOLIC CLR 6,1 

GPR 
GPR 

1 
6 

Condition Code 

MACHINE 

Before 

073C lA 28 
00 OF lC 29 

1 

2. CL (Compare Logical) 

1561 

After 

07 3C IA 28 
00 OF 1C 29 

Logically compare the contents of register I to the 
contents of storage location 4000 (TEST). (GPR F = 
00 00 40 00) 

SYMBOLIC CL I,TEST 

GPR 1 
Storage 4000 
Condition Code 2 

CONDITION CODE 

o Operands are equal 
1 First operand is low. 
2 First operand-is high 
3 :--

Before 

07 3D ID 2F 
F7 3E 50 00 

4-24 

MACHINE 55 10 FO 00 

After 

07 3D ID 2F 
F7 3E 50 00 



PROGRAM INTERRUPTIONS 

1. Protection (fetch CL only) 
2. Addressing eeL only) 
3. Specification (CL only) 

95 
o 78 IS 16 1920 31 

1. The contents of the storage location designated by the first 
address field (Ul (Bl)) is compared to the second operand (12). 

2. The logical comparison is left to right a bi t at a time Wlti1 
an inequality is found or the fields are completed. 

3. The result of the comparison determines the setting of the 
Condition Code. . 

4. Both operands remain Wlchanged. 

EXAMPLES 

1. CLI (Compare Logical Immediate) 
Logically compare bits 0 .... 90f storage lO'cation 4007 (TEXT+7) 
to OE (GPR F = 00 00 40 00) 

SYMBOLIC CLI TEXT+7, X I OE' 

Before 

Storage 4004 FC 23 OE 16 

Condition Code 2 

CONDITION CUDE 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

PROGH.AM INTERRUPTIONS 

1. Protection (fetcll only) 
2. Addressing 

4-25 

MAQlINE 95 OE FO 07 

After 

Fe 23 OE 16 



1. The con ten ts of storage loca ti ons beginning with the 
location designated by th'e first address field (U1 (Bl)) 
ane compared to the contents of the storage locations 
beginning with the location de~ignated by the second 
address field (U2(H2)). 

2. The number of bytes compared is determined by the 
length field (L) in the instruction.' 

3. The logical comparison is left to right a bi t at a time 
until an ine(luality is fowld or the fields are completed. 

4. The resul t of the comparison determines the setting of 
the Condition Code. 

S. Hoth operands remain lUlchanged. 

EXAMPLE 

1. CLC (Compare Logical Character) 
Logically compare the ,contents of storage location 
4000 (Text) through 4007 with storage locations 
4022 (Text+34) through 4029. (GPR F = 00 00 40 00) 

SYMBOLIC CLC TEXT (8) , TEXT+3 4 

Storage 400 6 
4004 

4020 
4024 
4028 

Before 

07 3C SF FF 
FC 23 OE 16 

36 4707 3C 
SF FF Fe 23 
OE 16 37 2A 

Condition Code 0 

CONlJITION COUE 

o Operands are equal 
1 First operand is low 
2 First operand is high 
3 

PROGlWt INTERRUPTIONS 

1. Protection (fetch only) 
2. Addressing 

4-26 

r·tA(}lINE DS 07 FO 00 FO 22 

After 

07 3C SF FF 
FC 23 DE 16 

36 47 07 3C 
SF FF FC 23 
OE 16 37 2A 



LOGICAL FAMILY 

SHIFT LOGICAL 

The LOGICAL SHIFT is used primarily to move logical data 

within a register or an EVEN-ODD register pair. The differ

ences between the logical and the algebraic shift is the 

absence of the Condition Code setting and the participation' 

of the sign-bit position in all logical shifts. 

The first address field specifies a register or an EVEN-ODD 

register pair that contains the data to be shifted. The,second 

address field does not reference a storage location, but is, ~sed 

to generate an effective address. The decimal value of th~ 

low-order 6 bits of this address deter.mines the number of bit 

positions the data will be shifted. 

Register data can be edited by using the shift instructions. 

Extraneous data can be deleted and/or relevant data can be 

positioned in single or double registers. 

4-27 



SLL R,. °2(82) [RS] 

I 89 
7 8 II 12 15 16 19 20 31 

1. The contents of the register specified' by the first 
address field (Rl) are shifted to the left. 

2~ The low order 6 bits of the effective address [D2(B2)] 
specifies the number of positions that the first~op
erand will be shifted. 

3. All 32 bits participate in the shift and a's are 
placed in the vacated low-order bit positions of 
the first operand. 

4. When the low order 6 bits of the effective address ex
ceed a decimal value of 31, the entire integer will be 
shifted out of the specified register. 

S. The entire integer being shifted out of the specified 
register results in all O·s. 

EXAMPLES 

1. SLL (Shift Left Logical) , 
Shift the entire contents of register 3 6 positions 
to the left. 

SYMBOLIC SLL 3,6(0) MACHINE 89 30 00 06 

Before After 

GPR 3 80 03 16 28 00 CS 8A 00 

CONDITION CODE 

1. Remains unchanged. 

PROGRAM INTERRUPTIONS 

1. None 

SRL R,.oA82) [RS] 

88 

o 7 8 II 12 15 16 1920 31 

4-28 



1. The contents of the register specified by the first 
address field (Rl) is shifted to the right. 

2. The low-order 6 bits of the effective address [D2(B2») 
specifies the number of positions that the first op
erand will be shifted. 

3. All 3'2 bits participate in the shift and zeroes are 
placed in the vacated high-order bit positions of 
the first operand. 

4. When the low-order 6 bits of the effective address ex
ceeda decimal value of 3l, the entire integer will be 
shifted out of the specified r.egister. 

·5. The ·entire integer being shifted out of the specified 
. register results in that register containing all 0'5. 

6. Low-order bits are shifted out without inspection and 
are lost. 

EXAMPLES 

1. SRL (Shift Right Logical) 
Using regis.ter 4 as a indirect shift specification, 
perform a SRL on register C. 

SYMBOLIC SRL 12,0(4) 

GPR 
GPR 

CONDITION CODE 

4 
C 

1. Remains unchanged. 

PROGRAM INTERRUPTIONS 

1. None' 

I 8D 

Before 

00 00 00 20 
9642 AA AE 

7 8 11 12 IS 16 19 20 31 

MACHINE 88 CO 40 00 

After 

00 00 00 20 
00 00 00 00 

1. The contents of the EVEN-ODD register pair specified 
by the first address field (Rl) are shifted to the 
left. 

2. The lo\~-order 6 bit of the effective address [02 (B2)] 
specify the number of positions that the first operand 
will be shifted. 

3. The operand is treated as 64 logical bits. 
4. All 64 bits participate in a shift and O's are placed 

in the vacated low-order bit positions of the EVEN-ODD 
register pair. 

4-29 



5. When the low order 6 bits of the effective address 
exceed a decimal value of 63. the entire integer will 
be shifted out of the specified registers. 

6. A specification exception will occur if the register 
address specified by the first.addressfield is ODD. 

1. SLDL (Shift Left Double Logical) 
Shift the contents of register pair 8 and 9 two 
positions to the left. 

SYMBOLIC SLDL 8,2(0) 

GPR 
GPR 

CONDITION CODE 

8 
9 

1. Remains unchanged. 

PROGRAM INTERRUPTIONS 

~l. Specification 

8e 

Before 

01 22 33 44 
55 66 77 88 

o 78 1112 1.516 1920 

MACHINE 80 80 00 02 

After 

04 88 CD 11 
55 99 DE 20 

31 

1. The contents of the EVEN-ODD register pair specified 
by the first address field (Rl) are shifted to the 
right. 

2. The low-order 6 bits of the effective address [D2(B2)] 
specify the number of positions that the first operand 
will be shifted. 

3. The operand is treated as 64 bits of logical data. 
4.' All 64 bits participate in a shift and O's are 

placed in the vacated high-order bit positions of 
the EVEN-ODD register pair. 

5. When the low order 6 bits of the effective address 
exceed a decimal value of 63, the entire integer will 
be shifted out of the specified registers. 

6. A specification exception will occur if the register 
address specified by the first operand is ODD. 

4-30 



EXAMPLE 
1. SRDL (Shift Right Double Logical) 

CONDITION 

1. 

Shift the contents of register pair E and F the 
number of positions spe'cified by the contents of 
register 1. 

SYMBOLIC SRDL 14,0(1) 

Before 

GPR 1 00 00 00 
GPR E 86 00 00 
GPR F 2F C1 39 

CODE 

Remains unchanged. 

04 
07 
04 

MACHINE 8C EO 10 00 

After 

00 00 00 04 
08 60 00 00 
72 Fe 13 90 

PROGRAM INTERRUPTIONS 

1. Specification 

4-31 



LOGICAL FAMILY 

LOAD ADDRESS 

The LOAD ADDRESS instruction provides an etficient method for 

placing a constant into.one of the general registers. 

The first address field specifies the destination of the constant. 

The second address field does not provide an address, but is instead 

used to supply the desired constant by loading the effective 

address (low-order 24 bits) into the registers specified by the 

·first operand. 

4-32 



LA flJ' D:!(X2, B:!} [RX] 

, 41 R1 \ 
X2 \ B2 D2 1 

31 
0 7 I 1112 lSI6 . 1920 

1. The low-order 24 bits of the generated-effective. 
address [D2(X2,B2)] are loaded into the register 
specified by the first address field (Rl). 

2. The high-order 8 bits of the' register are m.ade 
equal. to zero. 

EXAMPLES 

1. LA (Load Address) 
Load a constant of 4 into register 1 without 
specifying a base or index register. 

SYMBOLIC LA 1,4(0,0) MACHINE 41 10 00 04 

Before After 

GPR 1 31 8C 1A 06 00 00 00 04 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. None 

4-33 



LOGICAL FAMILY 

TRANSLATE 

The TRANSLATE instruction provides a means of easily con~ 

verting one code or set of characters into another code or 

set of characters. This is accomplished by use of a table 

in storage and a knowledge of the collating sequence. The 

table must be constructed prior to the use of the Translate 

Instruction by the programmer. 

The collating sequence is the decimal value of all charac

ters arranged in sequence by their values. This value, which 

is directly taken from its binary bit configuration, is used 

to place that character in its alpha-numerical order. This 

alpha-numerical order is the collating sequence. 

The table is constructed using the collating sequence of 

the code or characters you are translating (argument bytes). 

The table contains the code or characters into which you are 

translating (function bytes). The table is formed by placing 

the correct function byte at the collating value of each arg

ument byte. 

The table is completed when each argument byte or character 

combination has the desired function byte at its collating 

value in the table. This table's starting address is speci

fied by the second address field. 



The arqumentbytes are added to the starting address of the 

,table a byte at a time. The function byte located'at the 

resultant address replaces the argument byte. This continues 

until the value specified by the length field is reached. 

4-35 



[55] 

I DC I l 
o 7. 

1. construct a table in storage of the function bytes 
using the argument bytes collating sequence. 

EXAMPLE 

2. The second address ~ield (B2,D2), specifies the 
starting address of the table. 

3. The first address field (B1,D1) designates the 
starting address of the argument bytes. 

4. The number of bytes to be translated is specified 
by the length field (L). 

5. An argument byte is fetched and added to the 
starting address of the table. 

6. The function byte a~ the resultant address replaces 
the argument byte. , ' 

7. This continues untii the number of bytes processed 
equals the value specified by the length field (L). 

, I 

1. TR (Translate) 
Translate 8 EBCDIC bytes into USASCII-8 equivalent., 
The bytes are locat'ed at location 1500 (BCD) and the 
table is located at location 1000 (TABLE). (GPR F = : 
00 00 10 00) 

SYMBOLIC TR BCD(8),TABLE 

MACHINE DC 07 FS 00 FO 00 

Storage 1500 

Before 

40 D7 E8 D7 
61 F3 F6 FO 

After 

40 BO B9 BO 
4F 53 56 50 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. Protection 
2. Addressing 

4-36 



LOGICAL FAMILY 

TRANSLATE AND TEST 

The' TRANSLATE AND TEST instruction is used to scan a field for 

delimiters or any character that has ~een assigned a special 

meaning by the progr~~r.. It is not used to translate data 

as the name implies. 

A.table is constructed by the programmer prior to issuing this 

instruction. This table contains non-zero functioh by~es~ 
."'" 

which are placed in the collating sequence of ~he speciaL 

characters. All other positions of the table"are made zero. 

The starting address of the argument bytes is designated by the 

first address field. The second address field spec~fies the 

starting address of the table. 

The numerical value of the argument byte is added to the 

starting address of the table. If the function byte at that 

location is zero, the operation continues by fetching the next 

argument byte and adding the value of that byte to the starting 

address of the ·tabl~. This continues until a function byte 

containing non-zeros is encountered. When this occurs, the 

address of the argument byte that encountered a non-zero in\the 

table is inserted in the low-order 24 bits of register ... l. The 

high-order 8 bits of the register remain uncha~ged. The non-

zero f~nction byte is placed in the low-order 8 bits of 

register 2. The high~order 24 bits of this address remain 

unchanged. The Condition Code would be set to 1 if the scan 

did not complete, or 2 if it did complete. 

4-37 



If the scan completes (length field exhausted) and no non-~ero 

function bytes are encountered, the Condition Code will be set 

to o • 

. The address in register 1. is used to determine the number of 

argument bytes that have been scanned. The .low-order 8 bits 

in register 2 can be tested to see what special characters had 

been encountered. 

This means that we can, with a single instruction, inspect a 

complete field of argument bytes, looking for whatever interests 
'. 

us: error characters, end-of-message codes, blocks" commas, de-

limiters or whatever. 

4-38 



I DO I L 
o 71 

1. Construct a table in storage of the special, 
characters, using the argument bytes collating 
sequence. 

2. The second address field (B2,D2) specifies the start
ing address of the table. 

3. The first address field (Bl,Dl) designates the start
ing address of the argument bytes. 

4. The number of bytes to be scanned is specified 
by the length field. 

5. An argument byte is fetched and added to the 
starting address of table. 

6. If the function byte at the resultant location 
is zeros, the next argument byte is fetch~d~and 
the operation continues. 

7. If a function byte of non-zeros is encountered, 
that byte is placed in the low-order eight posi
tions of register 2. The argument byte's address 
is loaded into the low-order 24-bit positions of 
reg~ster 1. ' 

EXAMPLE 

1. TRT (Translate and Test) 
Scan 8 argument bytes beginning at 2500 (BYTES). 
The starting address of the table is 2000 (TABLEl). 
(GPR F = 00 00 20 00) 

SYMBOLIC TRT BYTES(8),TABLEI 

MACHINE DO 07 FS 0.0 FO 00 

Before After 

GPR 1 FF FF FF FF FF FF FF FF 
GPR 2 FF FF FF .FF FF FF FF FF 

Storage 2500 B2 C3 B4 63 B2 C3 B4 63 
E4 C8 F2 07 E4 C8 F2 07 

4-39 



Translate and Te3t Tablo 

2070 

2080 

2OCO 

2ODO 

2OE0 

201'0 

00 

00 

00 

00 

00 

90 

co 
00 

00 

00 

00 

00 

00 

00 

00 

00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

B5 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 00 00 

00 co 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

00 00 

90 00 

00 00 

00 00 

00 00 

aw 
00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 10 20 2.5 00 

00 00 00 30 3S 040 ~ 00 .. 
00 00 00 !SO ~ 00 00 00 

00 00 00 60 6.5 70 7' 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 I)() 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 

20FF 

Note: If tho charocter cod •• in the Itatoment being tran.lated occupy 
a range .maller than 0016 through fFul, a table Ie .. than 256 bytM 
can be u.od. 

Condition Code 0 

2. TRT 
Using the same table scan 8 argument bytes be-" 
ginning at location 2508. (GPR F = 00 00 20 00) 

CONDITION 

o 
1 

2 
3 

SYMBOLIC TRT Bytes+8(8),TABLE 1 

MACHINE 00 07 FS 08 FO 00 

Before 
GPR 1 FF FF FF FF FF 
GPR 2 FF FF FF FF FF 

Storage 2508 23 F2 C3 74 23 
51 6C 07 DA 51 

Condition C.ode 1 

CODE 

All function bytes are zero 
Non-zero function byte before 
first operand field was exhausted 
Last function byte is non-zero 

PROGRAM INTERRUPTIONS 

1. Protection (fetch only) 
2. Addressing 

4-40 

After 

00 25 OD 
FF FF 55 

F2 C3 74 
6C D7 DA 



BRANCHING FAMILY 

EXECUTE 

The EXECUTE instruction provides a means of performing an 

instr~ction outside of the normal instruction stream. The 

address of the instruction to be performed is specified by 

the second address field. 

The first address field specifies a register whose low-order 

8 bits are ORED with bits 8-15 of the instruction to be 

performed.If the first address field is zero, no ORI~G takes 

place. This feature gives the EXECUTE instruction great power and 

versatility and is commonly used with TRANSLATE and MOVE in

structions to change or set their length fields. It can also 

be used to change index, mask, immediate data and arithmetic 

register values of the instruction specified by the second 

operand. 

The specified instruction is then performed and upon completion, 

the program returns to the nor.mal instruction sequence. 

4-41 



EX4:lcutG 

EX R.
" 

D2(X2, 8:!) [RX] 

I 44 Rl X2 ! 82 D2 
0 78 11 12 " 16 1920 31 

1. The instruction is uSed as a pointer to the instruc
tion you wish to perform. 

2. The instruction to be performed is specified by the 
second address field [D2(X2,B2)]. 

3. Bits 8-15 of that instruction are OR'ED with the 
low-order 8 bits of the register specified by the 
first address field (Rl). 

4. The instruction desigriated by the second address 
field is then performed and upon completion, the 
normal instruc.tion sequencing continues. 

5. The execution and exception handling of the des
ignated instructions are exactly as if the instruc
tion were obtained in normal sequential operation, 
except for instruction address and instruction length. 

6. The instruction des~gnated by the second address 
field remains unchanged in storage. 

EXAMPLE 

1. EX (Execute) 
Execute the instruction at location 9000(TRANS) 
and modify bits 8-15 with the low-order 8 bits 
of register C. (GPR F = 00 00 90 00) 

SYMBOLIC EX 12, TRANS MACHINE 44 CO FO 00 

GPR C = 26 47 3C IE 

Instruction Addressed Instruction Performed 

DC 00 F3 18 FSOO DC IE F3 18 F500 

Condition Code - Set by the translate instruction 
after execution. 

2. EX 
Execute the instruction at location 9006 (TRANS+6) 
and modify bits 8-15 with the low order 8 bits of 
register 9. (GPR F = 00 00 90 00) 

SYMBOLIC EX 9, TRANS+6 MACHINE 44 90 FO 06 

GPR 9 = 01 46 AA 16 

Instruction Addressed Instruction Performed 

lA24 lA36 
4-42 



Condition Code -

CONDITION CODE 

Set by the ADD instruction 
after completion. 

1. May be set by the designated instruction. 

PROGRAM INTERRUPTIONS ' 

1. Execute', 
2. Protection (fetch only) 
3. Addressing 
4. Specification 

4-43 



LOGICAL FAMILY 

INSERT CHARACTER 

We have discussed instructions which use the low-order eight bits 

of a register. The INSERT CHARACTER instruction provides the 

means for placinq these eight bit characters in the low-order 

eight bits of a register. 

The second address field designates the characters to be inserted. 

This character is inserted in the low-order eight bit positions of 

the register 'specified by the first operand. 

v 

This instruction is commonly used prior to the EXECUTE instruction 

to set the desired OR'ING"field.-



EXAMPLE 

Ie 

I 
0 

1. 

2. 

R" D2(X21 82) [RX] 

43 Rl I X2 1 
B2 

-I 
D2 

11 12 IS 16 1920 31 
7 • 

I 

The character designated by the second address field 
[D2(X2,B2») is placed in -the low-order 8 bits of the 
register specified by the f.j.rst address field (Rl). 
The remaining bits of the specified register are 
not changed. -

1. IC (Insert Character) 
Place the character located at 6S00(CHAR) into 
bits 24-31 of register 4 •. (GPR F = 00 00 00 OQ) 

SYMBOLIC IC 4,CHAR MACHINE 

GPR 4 

Storage 6500 

Before 

EF 2C 04 7B 

lF 37 2A ED 

43 40 FS 00 

After 

EF 2C 04 IF 

IF 37 2A ED 

CONDITION CODE 

1. Remains unchanged. 

PROGRAM INTERRUPTIONS 

1. Protection (fetch only) 
2. Addressing 



LOGICAL FAMILY 

STORE CHARACTER 

The STORE CHARACTER instruct'ion enables a proqrammer to place 

the low-order 8 bits of any register into storage. This in

struction can be particularly useful for the further examination 

of the function byte that is stored in low-order 8 bits of regis

ter 2 when performing a TRANSLATE AND TEST instruction. 

The character to be stored. is located in the low-order 8 bits of 

the register specified by the first address field. The second· 

address field designates the location where the character will 

be stored. 

4-46 



. ~LE 

I 42 
o 7 I 11 12 15 " 1920 21 

1. The low-order 8 bits of the register specified by 
the first address field (Rl) are stored at the 
location designated by the second address field 
[D2(X2,B2)1. 

2. The first operand remains unchanged • 

1. STC (S tore Character) 
Store the low-order 8 bits of register 2 into lo
cation 1400 (MATCH) • (GPR F = 00 00 12 00)'·· .. 

SYMBOLICSTC 2,MATCH MACHINE'. 42 20 F200 

Before After' 

GPR 2 

Storage 1400 

CONDITION CODE 

29 00 14 27 

34 FE l29A 

29 00 14 27 

27 FE 12 9A 

1. Remains unchanged. 

PROG~4 INTERRUPTIONS 

1. Protection (store only) 
2. Addressing 



BRANCHING FAMILY 

BRANCH ON COUNT 

The BRANCH ON COUNT instruction permits the construction of program 

loops that avoid rep,etitive instruction sequences. 

The 32-bit contents of the registerapecified by the first address 

field are algebraically reduced by 1. If the result is not 0, the 

program will branch to the address specified, by the second address 

field. A result of zero permits nor.mal instruction sequencing and 

no branching takes place. 

The RR version of this instruction permits counting without branching 

if the second address field is given a value of zero. 

5-1 



BCTR Rl , R2 [RR] 

06 I R, I R2 \. 
0 7 • . 1\ \2 u 

BCT It l , D;<X:~, B2} lRxl , 46 \ R, \ 
X2 I 82 °2 

31 
0 7. n 12 1516 1920 

1. The fullword contents of the register specified by 
the first address field (RI) are algebracially 
reduced by 1. 

2. If the result of this subtraction is zero, the pro
gram continues with normal instruction sequencing. 

3. A non-zero result (+ or-) will cause the program to 
branch to the location designated by the s€cond 
[R2 or D2(X2,B2)]. 

4. If the second address field of the RR format specifies 
register 0, counting· is perfo.rmed, but no branching 
will occur. 

5. An overflow occurring on the transition from the max 
·negative number to the max positive number would be 
ignored. 

EXAMPLE 

1. BCTR (Branch on Count Register) 
Branch* to the location in register 4 when the 
count in register 5 is not equal to zero. 

SYMBOLIC BCTR 5,4 

GPR 
GPR 

4 
5 

Before 

00 00 Fl 04 
00 00 00 04 

MACHINE 06 54 

After 

00 00 Fl 04 
00 00 00 03 

* In the above example, branching would occur. 

2. BCTR (Branch on Count Register) 
Perform a counting function without a branch. 
Register 6 will contain the count. 

SYMBOLIC BCTR 6,0 MACHINE 0660 

Before After 

GPR 6 00 00 00 00 FF FF FF FF 

5-2 



3. BCT (Branch on Count) 
Branch otf to lo~ation 2000.(LOOP) when the contents of 
register 8 do not equal zero. (GPR F u 00 00 20 00) 

SYMBOLIC BCT 8,LOOP MACHINE 46 80 Fe) 00 

Before After 

GPR 8 00 00 00 01 00 00 00 00' 

* In the above example the branch would not occur. 

CONDITION CODE . 

1. Remains unc~anged. 

PROGRAM INTERRUPTIONS 

1 •. None 

·5-3 



BRANCHING FAMILY 

BRANCH ON INDEX 

The incrementing and testing of the index value is the major purpose 

of the BRANCH ON INDEX instructions. 

An increment contained in the register specifie~ 'by the third address 

field is ,added to the contents of the register specified by the"first: 

address field. The result of this addition 'replaces the first 

operand. 

T,he first operand is now compared to the third' operand if the third 

operand is an odd register. If the third operand is ,an even regis,ter, 

the contents of the register whose address is' one greater, Iwi 11 be 

used. 

BRANCH ON INDEX HIGH 

If the result of the comparison shows the sum to be greater, the next 

instruction address is replaced with 'the address specified by' the sec-

ond address field. The sum being low or equal results in 'normal' 

instruction sequencing. 

BRANCH ON INDEX LOW OR EQUAL 

This instruction will continue with normal instruction s,equencing if 

the result of the comparison'shows the sum to be great~r. A comparison 
(, 

of low or equal causes the updated instruction address to be replaced 

by the address specified by the second address field. 

5-4 



Branch On Index High 

8XH R" R,'/I D:!(82) [RS] 

• 0 7 8 11 12 15 16 1920 31 

1. The contents of register specified by the third 
address field (R3) are added to the contents of the 
register specified by the first address field (Rl). 

2. The sum replaces the first operand. 
3. The first operand is now compared to the third op

erand, if the address of the third operand is an 
odd register. A third operand ad~ress specifying 
an even register causes the comparison to be made 
with the register whose address is one greater. 

4. The sum being lower or equal to the comparand re
sults in normal instruction sequencing. 

5. If ·the sum is greater than the comparand, the up
dated instruction address is replaced with the 
effective address specified by the second address 
field (B2 ,D2) • . 

6. The addition and comparison are performed using 
normal fixed point arithmetic. 

7. When both the first and the comparand specifies 
the same location, the original contents are used 
for the comparand. 

8. The second operand remains unchanged. 

EXAMPLE 

1. BXH (Branch on Index High) 
Branch to location 6500(LOC) if the sum of register 
4 and the index' register lis greater than the con
tents of the comparand register. The following in
struction will result in a branch. (GPR F = 00 00 65 00) 

SYMBOLIC BXH 4,1,LOC· 

GPR' 
GPR' 
GPR 

1 
2 
4 

Before 

00 00 00 04 
01 AC OF 23 

. 00 00 65 30 

2. BXH (Branch on Index High) 

MACHINE 86 41 Fa 00 

After 

00 00 00 04 
01 AC OF 23 
00 00 65 34 

Branch to location 6500(LOC) if the sum of register 
4 and the index register 6 is greater than the com
parand. The following instruction will not result in 
a branch. (GPR F = 00 00 65 OO)' 

SYMBOLIC 4,6,LOC MACHINE 86 46 FO 00 

5-5 



GPR 
GPR 
GPR 

4 
6 
7 

Before 

00 00 65 80 
00 00 00 04 
00 00 65 AO 

After 

00 00 65 84 
0000 00 04 
00 00 65 AO 

CONDITION CODE 

1. Remains unchanged. 

PROGRAM INTERRUPTIONS 

1. None 

[RS] 

I 
o 7. 1112 1516 1920 31 

I, 

1. The contents of register specified by the third ' 
address field (R3) are added to the contents of 'the 
register specified by the first address field (Rl). 

2. The sum replaces the first operand. 
3. ,The first operand is now compared to the third'qp

'erand, if the third operand is in an odd registe~ 
The third operand being in an even register causes 
the comparison to be made with the register whose 
address is one gr~ater. ~ 

4. If the sum is lower or equal to the comparand, the 
updated instruc~ion address is replaced with the, 
effective address specified by the second address 
field (B2',D2). . ' 

5.' The sum being greater than the comparand results 
is normal instruction sequencing. 

'6. The addition and comparison are perfor.med using 
normal fixed point arithmetic. 

EXAMPLE 

7.' When both the first and the comparand specifies 
,the same location, the original contents are used 
for the comparand. 

8. The second operand remains unchanged. 

1. BXLE (Branch on Index Low or Equal) 
Branch to location 3200(THERE) if the sum of . 
register 9 and the index register 2 is lower or 
equal to the comparand. The following instruc
tion will result in a branch. (GPR F = 00 00 30 00) 

SYMBOLIC BXLE 9,2,THERE MACHINE 87 92 F2 00 

5-6 



GPR 
GPR 
GPR 

CONDITION CODE 

2 
3 
9 

Before 

00 00 00 04 
00 00 30 58 
00 00 30 54 

1. Remains unchanged. 

PROGRAM INTERRUPTIONS' 

1. None 

5-7 

After 

00 00 00 04 
00 00 30 58 
00 00 30 '58 



BRANCHING FAMILY 

BRANCH AND LINK 

Routines are conunonly used to~perform repetitive tasks in pro

granuning. Maximum flexibility ii\ .. lJtilizing these routines can 
( 

only be achieved by allowing the routines to be isolated from 

the program. This isolated routine must be readily available 

to the program and assure the program that the same conditio~ 

will exist within the system upon completion·;of the routine .. 

To satisfy these conditions we must have an instruction perform 

the following: 

1. Branch to a routine specified by an address. 
I 

2. Save the updated instruction address so that 

we may return to the program. 

3. Save the Program Mask and the Condition Code 
,', 

so that it may be reloaded if changed at the 

end of the routine. 

The BRANCH AND LINK instruction satisfies all the above con-

ditions. The second address field specifies the branch address. 

The updated instruction address, Condition Code, Instruction 

Length Code, and Program Mask are placed in the register specified 

by the first address field. This is accomplished by loading the 

designated register with the rightmost 32 bits of the PSW. 

Leaving a routine and returning to the program can easily be accom-

plished by utilizing two instructions. The Set Program Mask* is 

used to reload the program mask and the Branch on Condition Register 

*The SET PROGRAM MASK is to be explained. 

5-8 



to branch to the correct point in the program. These two instructions 

are normally the final two instructions of a routine. 

Th~ followi'ng is in the sequence of p·erformance. 

PROBLEM PROGRAM ROUTINE 

STORGE 1000 J\.R 3,4 
1002 S 3,TEN 2500 L 1,PMRTNX 
1006 BAL 2,ROUTNE 2504 SPM 1 

ROUTNE 2506 LR 3,4 
2508 L 5,DATA 
250C SR 4,5 
250E SPM 2 
2510 BCR 15,2 

lOOA C,9,CNST 
lOOE etc. 

The above should clarify the use of a BRANCH AND LINK, the entry 

into a routine and the departure from a routine. 

5-9 



Branch and Link 

BALR R1, R2 [RR] 

I 05 Rli R2 I 
,0 . 7. 11 12 15 

BAL R1, D2(X2, B2) [RX] 

I 45 I Rl X2 I 82 D2 I 
0 7. 1112 1516 1920 31 

1. The rightmost 32 b;i.ts of the PSW are placed in the. 
register specified by the first address field (Rl)';. 

2. The program branches to the address specified by 
the second address field [R2 or D2 (X2,B2)]. 

3. A branch wi11 not occur if the register specified 
by the second operand is GPR 0 when using the 
BALR instruction. 

4. The Instruction Length Code will be set to 2 if the 
BAL is the subject instruction of an EXECUTE. 

EXAMPLE 

1. BALR (Branch and Link Registers') 
Branch to storage location contained in Register 4. 
Save the updated instruction address and the Program 
Mask in register 7. The PSW before executing the BALR 
is FE060000B9001052. 

SYMBOLIC 

GPR 
GPR 

BALR 7,4 

4 
7 

Before 

00 00 16 00 
00 14 00 00 

2. BAL (Branch and Link) 

MACHINE as 74· 

After 

00 00 16 00 
B9 00 10 54 

Branch to ,storage location 2500 (RTNl). Save the 
Program Mask and the updated instruction address 
in Register 1. (GPR F = 00 'DO 20 10) The PSW before 
executing the BAL is 81060000C40014FC. 

SYMBOLIC BAL 1, RTNI MACHINE 45 10 F4 FO 

Before After 

GPR 1 01 CA 46 29 C4 00 15 00 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. None 

5-10 



STATUS SWITCHING FAMILY 

SUPERVISOR ~ 

A SUPERVISOR CALL is a spacial instruction used by the problem 

programmer to force an interrupt. A SUPERVISOR CALL interrupt 

differs from the other .classes of interrupts in that the problem 

program initiates the interrupt to return control of the system 

to the control program. 

This instruction is normally issued if the problem program: has 

need of a common supervisor routine; has need of the control 

program to issue a privileged operation; has ended. A privi

leged operation is any instruction that, if made available to 

the problem programmer, would disrupt the normal control 

and sequencing o~ the system. Privileged instructions will be 

examined later in this course, they include Input/Output opera

tions,' protection control, and PSW controls. 

The SUPERVISOR CALL instruction sends an interrupt· code to the 

control program. The control program analyzes this interrupt code 

and is able to dete~ine the particular action the problem program 

requires. The number and variety of these request codes (interrupt 

codes) that are available to. the problem programmer depends entirely 

upon the particular control program under which the problem program 

will be executed. 

'The SuPERVISOR CALL. is of the RR format, but the register fields 

are combined and lab~led I. This field contains 'the interrupt code 

which is sent to the control program for analysis and action. 

5-11 



EXAMPLE 

SVC I fRR] 

I OA 
7 a 

1. This instruction forces a supervisor call interrupt. 
2. The contents of the I Field are placed in bits 24-31 

of th~ SVC old PSW. 
3.· The control program examines the interrupt code to 

determine the action requested" by this· code. 
4. The control program then performs the specified action 

and if the problem program has·not completed, it will 
return control of the system to the problem program. 

1. SVC (Supervisor Call) 
Issue a supervisor call using an interrupt code of 
HEX '47. 

SYMBOLIC SVC X' 47 1 MACHINE OA 47 

Before After 

PSW Bits 0-31 El 71 00 00 El 71 00 47 

CONDITION CODE 

1. Remains unchanged in the old PSW. 

PROGRAM INTERRUPTIONS 

1. None 

5-12 



STATUS SWITCHING FAMILY 

SET PROGRAM MASK 

The SET PROGRAM MASK instruction is used ·to set bits 34-39 of the 

PSW. This includes both the Program Mask and the Condition Code. 

This instructipn is the only means by which a problem programmer 

can change the P~9ram Mask and Cond1tionCode. 

The first operand specifies the register which contains the new 

Program Mask a~d Condition Code. This instruction ignores the 

second operand. 

5-13 



Sot Program MOSik 

SPM RI [RR] 

I 04 
7. 1112 15 

1. Bits 2-7 of the register specified by the first. 
address field (Rl) : replace bits 34-39 of the PSW. 

2. Bits 0, 1 and' 8~3i of thii register are ignored. 
3. The second operand field is not used. 

EXAMPLE 

1. SPM . (Set Program Mask) 
Set bits 34-39 of the PSW to the' contents of bits' 
2-7 of register 2. 

SYMBOLIC 

GPR. 
PSW 

CONDITION CODE 

8PM 2 

2 
32-63 

Before 

D2 00 54 04 
B4 0·0 59 46· 

MACHINE 04 20 

After 

D2 00 54.04 
92 00 59 48 

1. The code is set according to nits 2-3 of the 
register speciffed by the first adgress field. 

PROGRAM INTERRUPTIONS 

1. Norte 

5-14. 



STATUS SWITCHING FAMILY 

SET SYSTEM MASK - -
The SET SYSTEM MASK is a privileged instruction used by the con

trol program to change t~e system mask of thePSW. This is done 

to allow or disallow interrupts from Input/Output devices or ex-

ternal sources. 

The byte at the location designated by the first address field 

replaces the system mask of the current PSW. The second address 

field of this instruction is ignored. 

5-15 



EXAMPLE 

SSM D,(B,) [S'1 

o 7 • 15 " " 20 31 

1. The first address field (01, Bl) specifies a byte in 
storage that replaces the system mask of the 
current psw. 

2. The second address field is ignored. 
3. This is a privileged instruction and only be 

executed while in the supervisor state. 

1. SSM (Set System Mask) 
Set the system mask from storage location 2504 
(MASK). This will allow interrupts from channels 
0, 1, and 4. (GPR F = 00 00 25 00) 

SYMBOLIC SSM MASK 

Storage 2504 

PSW Bits 0-31 

Before 

ca 01 FF 00 

Fl 41 00 00 

MACHINE 80 00 Fa 04 

After 

caDl FF 00 

ca 40 00 00 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. Privileged operation 
2. Protection (fetch only) 
3. Addressing 

5-16 



STATUS SWITCHING FAMILY 

LOAD PSW 

When an interrupt occurs, the CURRENT PSW is stored. at the 

permanent assigned storage location for the OLD PSW of that 

particular interrupt. A NEW PSW is loaded by circuitry and 
I 

the system will enter the SUPERVISOR state. This PSW will. 

address an interrupt handling routine to clear the interrupt 

and take action as required. 

Upon completion of this interrupt routine, the processing cap-

abilities of the system are usually returned to the problem pro

gram. This is done by the privileged instruction LOAD PSW which 

is the final instruction of ' the interrupt routine. The 

first operand of this instruction contains the doubleword address 

of the permanent assigned storage location for the OLD PSW of the 

particular interrupt that initiated the above sequence. Bits 16-

33 of this doubleword location are not loaded as the CURRENT PSW 

(The interrupt code and ILC are made 0). The remainder of the 

doubleword becomes the CURRENT PSW and ~ns~ruction sequencing 

proceeds with the instruction address. This instruction does not 

use the second operand field. 

5-17 



EXAMPLE 

82 
o 7 • IS 16 19 20 II 

1. The doubleword located at the address specified by 
the first address field (Dl,Bl) replaces the current psw. 

2. The first operand must be on a doub1eword boundary. 
3. Bits 16-33 of this doub1eword are not transferred . 

to the current psw. 
4. This instruction isprivi1eged and cannot be issued 

by a problem program. 

1. LPSW (Load Program Status Word) 
Load a Program Status Word from the Input/Output . 
OLD PSW location as the CURRENT PSW. 

SYMBOLIC LPSW 56 MACHINE 82 00 00 38 

Before After 

CURRENT PSW 0-31 00 00 00 00 Fl 41 00 00 
32-63 40 00 34 60 60 00 94 26 

Storage 0038 F1 41 00 10 FI 41 00 10 
003C AO 00 94 26 AO 00 94 26 

CONDITION CODE 

1. Set by bits 34 & 35 of the LOADED PSW. 

PROGRAM INTERRUPTIONS 

1. Privileged operation 
2. Protection (fetch only) 
3. Addressing 
4. Specification 

5-18 



STATUS SWITCHING FAMILY 

STORAGE KEYS 

The main storage sizes available with a. system are always divis

able by 2,048. The q,uotient of this number divided into the main 

storage size deter.mines the number of storage blocks within any 

given syst~. Storage blocks are a convienent means by which 

storage can be sectioned for use with the storage and fetch pro

tection feature. 

When a problem program is loaded, ·it informs the control program 

of its storage requirements. The control program then assigns 

the problem program the number of storage b,locks needed for ex

ecution. The storage blocks are assigned a storage key and the 

problem program PSW is given the protection key to match the 

storage key. 

SET STORAGE KEY 

The SET' STORAGE KEY instruction allows the control program to 

assign the storage blocks a storage key that will correspond 

with the protection key of the problem program's PSW. 

The stor~ge block to be assigned a key is specified by bits 8-20 

of the register designated by the~second address field. The con

tents of the first operand, bits 24-27 (24-28 for fetch protection), 

contain the key assigned to the storage block designated 

by the second operand. 

5-19 



INSERT STORAGE KEY 

The INSERT STORAGE KEY instruction is the only means by which a 

storage key can be inspected. 

Bits 8-20 of the second operand specify the storage 

key to be inspected. The first address field designates the 

. register where the key will be placed for inspection. The key 

will occupy bits 24-27 (24-28 for fetch protect)., of the register· 

specifiedbytbe first operand. 

5-20 



SSK flit R2 [RR1 

08 
71 \112 15 

1. The storage block addressed by bits 8-20 of the 
register specified by the second address field (R2) 
will be given a key. 

2. Bits 0-7 and 21-27 are ignored but bits 28-31 must 
contain zeros or a specification error will occur. 

EXAMPLE 

3. ,The key .is taken fro~ bits 24-27 (24-28 when fetch 
'protect is installed) of the register specified by 
the first address field (Rl). 

4. The remainder of the bits in this register are ig
nored. 

5. This is a privileged instruction th~t can only be 
issued by the control program. 

1.' SSK (Set Storage Key) 
Assign the storage key in register 3 to the storage 
address of 800-FFF. (GPR E = 00 00 08 00) 

SYMBOLIC SSK 3,14 MACHINE 08 3E 

Before After 

GPR 3 lC 23 46 7B lC 23 46 7B 
GPR 14 00· 00 08 00 00 00 08 00 

Storage Key 800-FFF 4 7 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. Operation (protection feature not insta~led). 
2. Privileged operation 
3. Addressing 

. 4. Specification 

5-21 



Inaort Storage Koy 

15K ~/' R.! [RR] 

I 09 I R) I R2 I 
0 71 " 12 15 

1. The storage block addressed by bits 8-20 ~f:the 
second operand (R2) 'supplies its key for irisp~ction. 

2. Bits 0-7 and 2l~27 are ignored, but bit~ 28-31. 
must contain zeros or a specification e~for will 
occur. 

3. The key is placed in bit~ 24-27 (24-28 when fetch 
protection is installed) of the first operand (Rl). 

4. The low-order 4 (3 if fetch protection is installed) 
bits of this register are set to zero and the re
mainder ignored. 

5. This is a privileged instruction that can only be 
executed by the Contro.l Program. 

EXAMPLE 

1. ISK (Insert Storage Key) 
Take the storage key from the storag~ block 
3000 -37FF and place in register 1. (GPR 9 = 
00 00 35 00 and fetch protect not installed) 

SYMBOLIC 

GPR 
GPR 

ISK 1,9 

1 
9 

MACHINE 

Before 

, FF FF FF FF 
00 00 35 00 

Storage Eey 300e -37FF 5 

CONDITION CODE 

1. 'Remains unchanged. 

PROGRAM INTERRUPTIONS 

09 19 

After 

FF FF FF FF 
00 00 35 00 

5 

1. Operat!on (protection feature not installed) 
2. Privileged operation 
3 • Addre s sing 
4. Specification 

5-22 



STATUS SWITCHING FAMILY 

TEST AND SET ----
When a system is loaded with, and opera.ting on, two or more programs: 

the assignment of available storage space to anyone program becomes 

difficult. Allowing .morethan one program the use of the same stor

age area would alleviate much of this problem. 

Assigning the same area to different programs requires a method of 

determining the "in use" status of a particular storage area. This 

function is the prime purpose of the TEST AND SET instruction. 

The TEST AND SET instruction can perform this task by testing a 

control byte. This control byte is determined by the programmer 

and is usually the first byte of the common storage area. The 

Condition Code will be sett9 the value of the leftmost bit in a 
\ 

control byte as a result of this test. If this bit contains a 

value of one, the common storage area is being used by another 
. ' 

program. A bit value of zero indicates that this storage 'area is 

free for use. 

Prior to setting the Condition Code the control byte is set to all 

ones to prevent the possibility of two programs testing the common 

storage area at the same time and finding it to be free for their 

use. 

When a program finishes with a common storage area, it must reset 

the first bit of the control byte so that the area is again available 

to other programs. 

The address of the control byte is specified by the first operand. 

The second operand field of the instruction is ignored. 



EXAMPLE 

T5 D,(O ,) lSI) 

( 93 ~Bl 
7 a 'u 16 1920 11 

1. The first address field (D1,Bl) specifi~s the ';byte in 
storage whose leftmost bit will be set i~to the 
Condition Code. : 

2. Prior to setting this bit into the Condition Code 
the addressed byte is set to all ones. 

3 • ,If tl:leinstruction is a protection violation, the 
conq;~~~~n Code results are unpredictable. 

1lV 

1. TS (Test and Set) 
Test storage address 2301(SAREA) to see if the 
common storage area is in use. (GPR F c. 00 0,9 23 00) 

SYr~OLIC TS SAREA MACHINE 93 00 FO 01 

Before After 

Storage 2300 1C 00 23 16 JC FF 23 16 

Condition Code 0 

CONDITION CODE 

o 'Leftmost bit of byte specified is zero. 
1 Leftmost bit of byte specified is one. 
2 
3 

PROGRru4 INTERRUPTIONS 

1. Protection 
2. Addressing 

5-24 



DECIMAL INSTRUCTIONS 

. . 

Decimal. arithmetic operates on dat~ in the packed fo'rmat. In 

this-format, ~WQ decimal digits are placed in one eight-bit 

byte. 

Data a·re interpreted as integers, right-aligned in their 

fields. They are kept in true notation with a sign in the 

right four bits of the low-order eight-bit byte. 

Processing takes place "right to left between main-storage 

locations. All decimal arithmetic instructions use a two-

address format. Each address specifies the leftmost byte of 

an operand. Associated with this address is a length field, 

I indicating the number of additional bytes that the. operand 

extends beyond the first byte. 

The decimal arithmetic instruction set provides for adding, 

subtracting, comparing, multiplying, and dividing, as well 

as the format conversion of variable length ope;rands." 

The condition code is set as a result of all arithmetic and 

comparison operations. 

DATA FORMAT 

Decimal operands reside in main storage only. They occupy 

fields that may start at any byte address and are composed 

of one to 16 eight-bit bytes. 

" ~-l 



Lengths of ·the two operands specified in an instruction need 

not be the same. If necessary they are considered,to be ex

tended with .zeros to the left of the high-order digits. Re

sults never exceed the limits set by addr~ss and length 

specification. Lost carries or lost digits from arithmetic 

operations are signaled as 'a decimal overflow exception. 

In the packed format, two decimal digits normally are placed' 

adjacent ina byte, except for the rightmost byte~. of the 

field.' In the rightmost byte a sign is placed to ~he right 

of the decimal digit. Both digits and a sign are eq.c::oded and 

occupy four bits each. 

NUMBER REPRESENTATION 

Numbers are represented as right-aligned true integers,}'li'th 

a plus or minus sign. 

The digits 0-9 have the binary encoding 0000-1001. The codes 

1010-1111 are invalid as digits. This set of codes is inter~ 

preted as sign codes, with 1010, 1100, 1110, and 1111 recog

nized as plus and with 1011 and 1101 recognized as minus. The 

codes 0000-1001 are invalid as sign codes. 

The sign and zone codes generated for all decimal arithmetic 

results differ for the Extended Binary-Coded-Decimal Interchange 

9-2 



Code (EBCDIC) and the USA· Standard Code for Information 

Interchange (USASCII-8). The choice between the two codes 

is determined.by bit 12 of the PSW. When bit 12 is zero, 

the preferred,EBCDIC codes are generated; these are plus, 

1100i minus, ll01i and zone, 1111. When bit 12 is one, the 

preferred USASCII-8 codes are generated; these are plus, 

1010; minus, 1011; and zone, 0101. 

CONDITION CODE 

The results of all add-type and comparison operations are 

used to set the cond~tion code. All other decimal arith

metic operations leave the code unchanged. The condition 

code can be used for decision-making by subsequent branch-

on-conditiQn instructions. 

The condition code can be set to re~lect two types of re

sults for decimal arithmetic. For most operations the 

states 0, l~ and 2 indicate a zero, less than zero, and 

greater than zero content of the result field; the state 

3 is used when the result of the operation overflows. 

For the comp~rison operation, the states 0, 1 and 2 indi

cate that the first operand compared equal, low, or high. 

CONDITION CODE SETTING FOR DECIMAL ARITHMETIC 

0 1 2 3 

Add Decimal zero (zero >zero overflow 

Compare Decimal equal low high 

Subtract Decimal zero (zero ) zero overflow 

Zero and Add zero (zero > zero overflow 

9-3 



INST~UCTION FORMAT 

Decimal instructions use the following format: 
SS Format 

I Op Code 
o 

For this format, the content of the general register sp'ecified 

by Bl is added to the content of Dl field to for.m an address. 

This address specifies the leftmost byte of the first ope~-

and·field. The number of operand,bytes to the right of this 
, I 

byte is sp~cified by the Ll fi~ld of the instruction. There

fore, the length in bytes' of the first operand field is 1-16,' 

corresponding to a length code in Ll of 0000-1111. The sec

ond operand field is specified similarly by the L2, B2, and 

02 instruction fields. 

A zero in the Bl or B2 field indicates the absence of the 

corresponding address component. 

Results of operations are always placed in the first operand 

field. The result is never stored outside the field specified 

by the address and length. In the event the first operand is 

longer than the second, the second operand is extended with 

high-order zeros up to the length of the first operand. Such 

extension never modifies storage. The second operand field 

and the contents of general regist~rs remain unchanged. 

NOTE:'In the detailed descriptions of the individual instruc

tions, the mnemonic and the symbolic operand designation for 

the IBM System/360 assembly language are shown with each in-
~ 

struction. For ADD DECIMAL, for example,'AP is the mnemonic 

9-4 



and Dl(Ll,Bl),D2(L2,B2) the operand designation. 

INSTRUCTIONS 

The decimal arithmetic instructions and their mnemonics 

and operand codes follow. All instructions use the 8S format 

and assume'packed operands and results. The table indicates 

when the condition code is set and the exceptions in operand 

designation, data, or results that cause a program interrup

tion. 

NAME MNEMONIC TYPE 

Add Decimal AP 

Subtract Decimal SP 

Zero and Add ZAP 

Compare Decimal CP 

Multiply Decimal MP 

Divide Decimal DP 

Notes: 

A Addressing exception 

C Condition Code is set 

D Data exception 

5S 

58 

S8 

5S 

S8 

SS 

DF Decimal-overflow exception 

DK Decimal-divide exception 

P Protection exception 

S Specification exception 

T Decimal feature 

PROGRAMMING NOTE 

T,C 

T,C 

T,C 

T,C 

T 

T 

EXCEPTIONS CO~E 

P,A, D,DF FA 

P,A, D,DF FB 

P,A, D,DF Fa 

P,A, D F9 

P,A,S,D FC 

P,A,S,D,DK FD 

The moving, editing, and logical comparing instructions may 

also be used in decimal calculations. 

9-5 



DECIMAL PROGRAM INTERRUPTIONS 

Exceptional operation codes, operand designations, data, or 

results cause a program interruption. When the interruption 

occurs, .. the current PSW is stored. as an old PSW, ·and a new 

PSW is obtained. The.interruption code in the·old PSW 

identifies the cause of the. interruption. The following 

exceptions cause a program interruption in decimal arithmetic: 

Operation: The decimal feature is not installed, and the 

instruction is AD~DEClMAL, SUBTRACT DECIMAL, ZERO AND ADD, 

COMPARE DECIMAL, MULTIPLY DECIMAL, DIVIDE· DECIMAL, EDIT, OR 

EDIT AND MARK. The instruction is suppressed. Therefore, 

the condition code and data in storage.and registers remain 

unchanged. 

Protection: The key of an operand in storage does not match 

the protection key in the PSW. 

The operation is terminated for either a store or a fetch 

violation by a decimal instruction; the result data and 

., condi tion code are unpredictable. 

Addressing: An address designates an operand location out

side the available storage for the installation. 

The operation is termin.ated. The result data and the con

dition code are unpredictable. and should not be used for 

further computation. 

9-6 



These address exceptions do not apply to the components from 

which an address is generated: i.e. The base or index 

register may have a value larger than the storage size, but 

the effective address (EA) may not. For example,.1f a base, 

register 'orindex regis,ter contained 6A FF FF FF and the dis- , 

placement was 079, the EA would be 00 0078. 

Specifications: . A multiplier or a divisor size exceeds 15 

digits and sign or exceeds the multiplicand or dividend size. 

The instruction is suppre~sed; therefore, the condition code 

. and data in storage and registers remain unchanged. 

Data: A sign or digit code of an operand in ADD DECIMAL,. 

SUBTRACT DECIMAL, ZERO AND ADD, COMPARE .DECIMAL, MULTIPLY 

DECIMAL, DIVIDE DECIMAL, EDIT, .OR EDIT AND MARK is inco'rrect, a 

multiplical,ld has insufficient high-order zeros, or the operand 

fields in these. operations overlap incorrectly. The operation 

. is terminated. The result data and the ·condit.ion code are 

unpredictable and should not be used for further computation. 

Decimal Overflow: The result of ADD· DECIMAL, SUBTRACT 

DECIMAL, or ZERO AND ADD overflows. The program interruption 

occurs only when the decimal-over-flow mask bit is one. The 

operation is completed by placing the truncated low-order 

result in the result field and setting the condition code to 

3. The sign, and low-order digits 'contained in the result 

field are the same as they would have been for an infinitely 

long result field. 

Decimal Divide: The quotient exceeds the specified data 

field, including division by zero. Division is suppressed. 

Therefore, the dividend and divisor remain unchanged in storage. 

9-7 



DECIMAL FAMILY 

ADD DECI~~ 

The Add Decimal instruction provides a means by which two 

packed decimal operands can be algebraically added. The 

packed decimal data field specified by the second operand 

is adQed to the packed decimal data field designated by 

the first operand. The sum replaces the first operand. 

9-8 



1. The packed decimal field specified by the 
second address fie1d [D2(L2,B2)] is algebraically 
added to the packed decimal field designated 
by the first address field [Dl(Ll,Bl)]. 

2. All digits and signs are checked for validity 
prior to the addition. 

3. The sum replaces the first·operand. 
4. Decimal overflow may be caused by either a 

carry out of the high-order digit position 
or a first operand field shorter than the 
resultant sum. . . 

5. PSW bit 37 will allow a decimal overflow to 
be masked. 

6. First and second operand ·fields may overlap 
in any desired manner. 

EXAMPLES 

1. AP (Add Packed) 
_Add the contents of a 5 byte field at storage 

location 2010 (FIELDl) to a 7 byte field at 
location 2131 (FIELD2). (GPRF::: 00

1

00 20 00) 

SYMBOLIC AP FIELD2(7),FIELDI(S) 

MACHINE FA 64 Fl 31 FO 10 

Before After 

Storage 2010 22 44 66 88 22 44 66 a8 
2014 9C 12 34 56 9C 12 34 56 

2130 lD 00 55 44 ID 00 55 66 
2134 33 22 11 3C 77 89 00 2C 

Condition Code 2 

2. AP (Add Packed) 
Add the contents of a 4 byte field at storage 
location 2200 (FIELD3) to a 4 byte field at 
location 2204. (GPR F = 00 00 22 00) 

SYMBOLIC AP FIELD3+4(4),FIELD3(4) 

MACHINE FA 33 FO 04 Fa 00 

9-9 



Storage 2200 
2204 

Before 

76 54 32 lD 
12 34 56 7C 

Condition Code 1 

CONDITION CODE 

o Sum is zero 
1 Sum is negative 
2 Sum is positive 
3· Overflow 

PROGRAM INTERRUPTIONS 

After 

76 54 32 10 
64 19 75 4D 

1. Operation (decimal feature not installed) 
2. Protection 
3. Addressing 
4. Data 
5. Decimal over~low 

9-10 



DECIMAL FAMILY 

ZERO AND ADD --.--
The Zero and Add instruction performs the equivalent of 

adding a packed decimal number to zero. This instruction 

is very flexible andean be used to accomplish any of the 

following: 

1. Expand or reduce the field size of an 

operand. 

2. Move a field from one location to another. 

3. Assure that a field is zero prior to add

ing a value to it. 

The packed decimal data field of the second operand is placed 

in the field of the first operand. 

9-11 



EXAlilPLE 

Fa 

1. The field 'specified by the first address field 
[Dl(Ll,Bl)] is loaded with packed decimal 
data designated by the second address field 
[b2(L~,B2)1. ~~ 

2. This operation is the equivalent. of addi.~g 
the second operand to a zero first operand •. 

3. The second operand· is checked for valid sign 
and digit codes. 

4. Decimal overflow will occur if the contents 
of the second operand cannot be contained 
within the field of the first operand~ 

5. Decimal overflow may be masked by bit. 37 
of the PSW. . 

6. First and second operand fields may over
lap in any desired manner~ 

1. ZAP (Zero and Add Packed) 
Zero and add to storage locations 2500 
(FIELD6) through 2507, the contents of 
a two~byte field beginning at location 
2508. (GPR F = 00 00 23 00) 

SYMBOLIC ZAP FIELD6(8),FIELD6+8(2) 

MACHINE Fa 71 F2 00 F2 08 

Storage 2500 
2504 
2508 

Before 

16 23 48 97 
26 11 55 3D 
86 4C 27 lC 

Condition Code 2 

00 00 00 00 
00 00 86 4C 
86 ·4C 27 lC 

CONDITION CODE 

o Result is zero 
1 Result is nega~ive 
2 Result is positive 
3 Overflow 

PROGRAM INTERRUPTIONS 

1. Operation (decimal feature not installed) 
2. Protection 

9-12 



3. Addressing 
4. Data 
S. Decimal overflow' 

9-13 



DECIMAL FAMILY 

SUBTRACT DECIMAL 

The Subtract Decimal instruction will find the algebraic 

difference between two packed decimal data fields. The first 

operand is the minuend and the subtrahend is the second operand. 

The difference will replace the first ope~and. This instruction 

can-also be used to zero a field by specifying identical first 

and second operand starting addresses and lengths. 

9-14 



I FB 
o 

1. The packed decimal data field spe~ified by the 
second address field [0,2 (L2 ,B2)] is subtracted from 
the packed decimal data field designated by 
the first address field [Dl(Ll,Bl)]. 

2. All digits and signs are checked for validity 
prior to the algebraic subtraction. 

3. The difference replaces the first operand's field. 
4. Decimal overflow will occur if the difference 

cannot be contained in the first operand's 
field. , 

5. PSW bit 37 allows the masking of decimal over
flow. 

6. First and second operand fields may overlap in 
any desired manner. 

EXAMPLES 

1. SP (Subtract Packed) 
Zero storage locations 2500, (FIELD6) through 
250B. (GPR F = 00 00, 2300) 

SYMBOLIC SP FIELD6(l2),FIELD6(l2) 

MACHINE FB BB F2 00F2 00 

storage 2500 
2504 
2508 

Before 

00 00 00 00 
00 00 86 4C 
86 4C 27 lC 

Condition Code 0 

After 

00 00 00 00 
00 00 00 00 
00 00 00 OC 

2. SP , (Subtract Packed) 
Subtract storage locations '3114 (SUB) through 

,3llA from locations 3l00(MIN) through 3107. 
(GPR F = 00 00'31 00) 

SYMBOLIC SP MIN(8),SUB(7) 

MACHINE FB 76 FO OOFO 14 

9-15 



Before 

Storage 3100 99 99 
3104 99 99 

3114 77 66 
3118 33 22 

Condition Code 1 

CONDITION CODE 

o Difference is zero 
1 Difference is negative 
2 Difference is positive 
3 Overflow 

PROGRAM INTERRUPTIONS 

99 99 
99 9D 

55 44 
1D OC 

After 

99 22 33 44 
55 66 77 80 

77 66 55 .44 
33 22 1D OC 

1. Operation (decimal feature not installed) 
2. Protection 
3. Addressing 
4. Data 
5. Decimal Overflow 

9-16 



DECIMAL FAMILY 

MULTIPLY DECIMAL 

To find the product of two packed decimal data fields the 

programmer would issue a Multiply Decimal in~truction. The 

first operand is the multiplicand and the multiplier is 

the second operand. The product will replace the m\lltiplicand 

upon completion of the instruction. 

9-17 



EXAMPLE 

1. The multiplicand [Dl(Ll,Bl)] is algebraically 
multiplied by the multiplier [D2(L2,B2)] and 
the product replaces the multiplicand. 

2. The length of the multiplier must be less than 
the length of the multiplicand and cannot ex
ceed 15 digits plus sign or a specification 
exception will occur. 

3. ' To prevent product overflow a data exception 
will occur if the multiplicand field does not 
contain high-order zeros equal to or greater 
than the length of the multiplier. 

4. The maximum product size is 31 digits and at 
least one high-order digit of the product is 
zero. 

5. The multiplier and product fields may overlap' 
when their low-order bytes 'coincide. 

1. MP (Multiply Packed) " 
Multiply the 6-byte field at storage location 
5010 (CAND) by the 3-byte field at location 
5018 (PLIER) • (GPR F = 00 00 SO 00) 

SYMBOLIC MP CAND(6),PLIER(3) 

MACHINE Fe 52 FO 10 FO 18 

Before After 

Storage 5010 00 00 00 27 00 00 69 20' 
5014 35 4D 12 8D 56 2C 12 8D 
5018 00 25 3D 2C 00 25 3D 2C 

CONDITION CODE 

1. Remains unchanged 

PROGRAM INTERRUPTIONS 

1. Operation (decimal feature not installed) 
2. Protection 
3. Addressing 
4. Specification 
5. Data 

9-18 



DECIMAL FAMILY 

DIVIDE DECIMAL 

The Divide ~cimal instruction will find t~e quotient of 

two packed decimal data fields •. The dividend field is 

the first operand and the divisor is the secon~operand. 

The quotient and remainder replaces the dividend upon ex

ecution of the instruction. 

9-19 



I FD I Ll I L2 I Bl I ~{D,\ B2 I~~ 
o 78 1112 1516 1920 3132 3536 H 

1. The packed decimal data field (dividend) 
specified by the first address field [Dl(L1,Bl)] 
is divided by the packed decimal data field 
(divisor) designated by the second address field 
[D2 (L2. I:B2) ] • 

2. The remainder replaces the rightmost 
portion of the dividend and occuppies the ( 
same number of digits as the divisor. 

3. The quotient replaces the leftmost remaining 
positions of the dividend. 

4. A divisor which exceeds 15 digits and sign. 
or is greater than or equal to the length 
of the dividend will cause a specification 
exception. 

S. The dividend, divisor~ quotient, and remain
der are all signed numbers, right aligned in 
their assigned field. 

6. Division and signs are controlled by the rules 
of algebra. 

7. Overflow cannot occur, but a quotient that 
cannot be contained in its assigned field will 
cause a decimal divide exception. 

1. DP (Divide Packed) 
Divide the twelve-byte field at storage 
location 4130(DEND) by the one-byte field 
at location 4A2C(ISOR). (GPR F = 00 00 41 00) 

SYMBOLIC DP DEND (12),ISOR(1) 

MACHINE FD BO FO 30 F9 2C 

Before After 

Storage 4130 00 88 44 66 44 22 33 11 
4134 22 44 66 88 22 33 44 00 
4138 00 88 44 OC 44 22 00 00 

4A2C 2D 13 26 79 20 13 26 79 

CONDITION CODE 

1. Remains unchanged 

9-20 



PROGRAM INTERRUPTIONS 

1. Operation (decimal feature not installed) 
2. Protection 
3. Addressing 
4. Specification 
5. Data 
6. Decimal divide" 

9-21 



DECIMAL FAMILY 

COMPARE DECIMAL 

This instruction performs a numeric comparison between 

two packed decimal data fields. The first operand is 

compared to the second operand and the result of the 

comparison'dete~ines the setting of the Condition Code. 

9-22 



EXAMPLE 

1. The packed decimal field designated by the . 
first address field [Dl(Ll,Bl)1 is compared to the 
field specified by the second address field [02(L2, 
B2)]. 

2. The result of the Comparison is indicated by. 
the setting of the Condition Code. 

3. Comparison is right to left and all signs 
and digi ts are checked for ·va1idi·ty. . 

4. If the fields compared are unequal in length, 
the shorter field is expanded with high-order 
zeros prior to the comparisons. 

5. Operands may overlap in any desired manner. 

1. CP (Compare Pac~ed) 
Compare the one-byte field at location 2508 
(FIRST) to the two-byte field at location 
250B (SNO) • (GPR F =.00 00 25 00) 

SYMBOLIC CP FIRST(1),SND(2) 

MACHINE F9 01 FO OS· FO OB 

Storage 2508 
250C 

Before 

7C 4C 20 00 
7C 21 6D 14 

Condition Code 0 

After 

7C4C 2D 00 
7C 21 60 14 

CONDITION CODE 

o Operands are equal 
1 First operand is lower 
2 First operand is higher 
3 

PROGRAM INTERRUPTIONS 

1. Operation (decimal feature not installed) 
2. Protection 
3. Addressing 
4. Data 

9-23 



EDI'T 

DECIMAL FAMILY 

EDIT 

The Edit instruction is used in the preparation of printed 

reports to give them a high degree of legibility and there

fore greater usefulness. With proper planning, it is possible 

to suppress nonsignificant zeros, insert co~as and decimal 

point.s, insert minus signs or credit symbols, and specify 

where suppression' of leading zeros should stop for small num

bers. All of these actions are done by the mach1ne inane 

left-to-right pass. 

We begin with a simple requirement to suppress leading~ zeros; 

no punctuation is to be inserted. We have a field to b~ 

edited, called DATA. It is four bytes long, and the decimal 

data is in packed format; the packed format for data to be 

edited is a requirement of the EDIT instruction. 

The data to be edited is designated by the second operand 

and "the first operand must specify .a field containing a 

C'lpattern~' of characters that controls the editing. After 

execution of the instruction, the location specified by the 

first operand contains the edited result. (The original 

pattern is destroyed by the editing process.) The pattern 

is in zoned format, as is theresul~; the Edit instruction. 

·causes the conversion of the data to be edited from packed 

to zoned format. 

9-24 



We said that in our eX~lple the data field to be edited was 

four bytes long, that. is, seven decimal d'iqits, and sign, 

which we shall assume to be plus. The pattern must accord

ingly be at least eight bytes long: seven for the digits 

and one at the left to designate the "fill character." The 

fill character may be any character, but is usually a blank • 

. This is the character that is substituted for nonsignificant 

zeros. 

The leftmost character of the pattern in our case will be 

. the character blank (hexadecimal 40). The other seven char

acters will contain a special coding, hexadecimal 20, called 

a digit selector, which is used to indicate to the Edit in

struction tha,ta digit, from the source data may go into the 

corresponding position. 

Let us see how all this works out in our example. Suppose 

we set up an eight-byte working storage field named WORK in

to which we move the pattern (located in an area called 

PATTRN). Then we will p~rform our edit using WORK and DATA 

as the two operands. The two instructions necessary to do 

the job are: 

MVC . WORK,PATTRN 

ED WORK,DATA 

After execution of the two instructions, WORK contains our 

edited result. PATTRN still contains the original pattern 

and can transmit that original pattern to WORK for the editing 

of any new value in DATA. At PATTRN there should be the 

9-25 



following characters, written here in hexadecimal: 

40 20 20 20 20 20 20 20 

The 40 is the hexadeci~al code for a blank. The 20 is the 

hexadecimal cOde for the digit selector. Suppose now that 

at DATA there is 

00 01 00 0+ 

The edited result would be 

b b b 1 000 

where the bls stand for blanks. All zeros to the left of 

the first nonzero digit have been replaced by blanks; bU,t 

zeros to the right of the first nonzero digit have been 

moved to WORK without change. This is the desired action. 

Figure 1 shows a series of values for DATA and the r'esultant 

edited results in WORK, using the pattern stated. Note that 

the high-order position of WORK contains the fill character, 

a blank. The values of DATA are packed decimal; the edited 

results are changed during execution of the Edit ~nstruction 

to zoned decimal format. 

BDDDDDDD 
;40 20 20 20 20 20 20 20 

1234567 
012,0406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 
Figure 1 

1234567 
120406 

12345 
1000 

123 
12 

1 

Examples of the application of the Edit instruction. 

The first line gives the editing pattern used, first 

in a symbolic form and then in hexadecimal coding. 

In the symbolic form, B stands for blank and D for 

digit selector. 9-26 



The fill character that we supply as the leftmost character 

of the pattern may be a~y character that we wish. It is 

fairly common practice to print dollar amounts of a'st'erisks 

to the left of the first significant digit in order to protect 

against fraudulen~ alteration. This is usally called asterisk 

protection. 

To do this, we need only change the leftmost character of the 

pattern of the previous example. The hexadecimal code for an 

asterisk is 5C; hence the new pattern is 

. SC '20 20 20 20 20 20 20 

Figure 2 shows the edited results for the same DATA values. 

*DDDDDDD 
SC 20 20 20 20 20 20 20 

1234567 
,,0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

*1234567 
**120406 
***12345 
****1000 
*****123 
******12 
*******1 
******** 

Figure 2 

Examples of the application of the Edit instruction 

with an asterisk as the fill character. 

Any characters in the pattern other than the digit selector 

and two other control characters that we shall study later 

are called message characters. They are not replaced by 

digits from the data. Instead, they are either replaced by 

the fill character (if a significant digit has not been 

encountered yet), or left as they are (if a significant 

digit has been found). Suppose, for instance, that we set 

up a PATTRN as follows: 

40 20 6B 20 20 20 6B 20 20 20 
9-27 



The 6B is hexadecimal coding for a comma, and it is a massage 

character. The edited result will contain commas in the two 

positions shown, unless they are to the left of the first 

nonzero digit, in which case they are suppressed. Figure 

3 shows the result of the same data values. 

BD,DDD,DDD 
40 20 6B 20 20 20 6B 20 20 20 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

Figure 3 

1,234,567 
120,406 

12,345 
1,000 

123 
12 

1 

Examples of the application of the Edit 

instruction with blank" fill and the in-

sertion of commas. 

The message characters inserted are, naturally, not limited 

to COBmlas. A frequent application is to insert a decimal 

point as well as commas. Let us assume that the data values 

we have been using are to be interpreted as dollars-and-

cents amounts. We need to arrange for a comma to set off 

the thousands of dollars, and a decimal point to designate 

cents. The characters in PATTRN, where 6B is a comma and 

4B is a decimal point, should be as follows: 

40 20 20 6B 20 20 20 4B 20 20 

The edited results this time are in Figure 4. 

9-28 



BDD,DDD.DD 
40 20 20 6B ~O 20 20 4B 20 20 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

Figure 4 

12,345.67 
1,204.06 

123.45 
10.00 

1.23 
12 

1 

Examples of the application of the Edit 

instruction with blank fill and the in-

sertion of comma and decimal point. 

We see here something that would normally not be desired: 

amounts under one dollar have been edited with the decimal 

point suppressed. We would oridinari1y prefer to have the 

decimal point. This can be done by placing a significance 

starter in the pattern. 

The control character, which has the hexadecimal code 21, is 

either replaced by a digit from the data or replaced by the 

fill character, just as a digit selector is. The difference 

is that the operation proceeds as though a significant digit 

had been found in the position occupied by the significance 

starter. In other words, succeeding characters to the right 

will not be suppressed. (An exception to this generalization 

may occur when we want to print sign indicators, a subject 

that will be explored later.) 

The pattern for this action, assuming we still want the comma 

and decimal point as before, should be 

40 20 20 6B 20 2021 4B 20 20 

9-29 



The effect is this: if nothing but zeros has b~en found by 

the time we reach the significance starter (code 21) .in a 

left-to-right scan, the signficance starter will turn on the 

significance indicator. This indicator will cause succeeding 

characters to be treated as though a nonzero digit had been 

found. The result is that the decimal point will always be 

left in the result, as will zeros to the right of the decimal 

point. The edited results this time are shawn in Figure 5. 

One useful point to remember is that the total number of digit 

selectors plus significance starters in the pattern must equal 

the number of digits in the field to be edited. Note.that this 

is the case in all our examples. 

BDD,DDS.DD 
40 20 20 6B 20 20 21 4B 20 20 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

Figure 5 

12,345·.67 
1,204.06 

123.45 
10.00 
1.23 

.12 

.01 

.00 

EJtamples of the application of the Edit 
instruction with blank fill, comma and 
decimal point insertion, and signifi
cance starter. In the symbolic pattern, 
S stands for significance starter. 

We can begin to g~t a little idea of how the machine does its 

work on this instruction by noting that the significance indi

cator is initially in the off state before the scan begins. 

Scanning proceeds source digit by source digit. The signi

ficance indicator stays off until a nonzero data digit is 

found, or until the significance starter is encountered; 

either even causes the indicator to be turned on. 
9-30 



Source digits 1-9 always replace a digit selector or signi

ficance starter, but whether a zero oourco digit will do ~o 

depends upon the st&te of the significance indicator. If the 

significance digit was found at some previous character posi

tion, or a significance indicator is off, you "know that no 

s"ignificant digit has been found so far during the scan; there

fore, the fill character appears in the result, i."ather"th~n a 

zero from the data. 

It may be useful to refer to the Table, which includes a summary 

of how the state of the significance indicator affects the edit

ing operation under all conditions of consequence that you may 

encounter. The table also shows how the significance indicator 

itself is affected. 

In the table, the four columns at t~e left list all the signi

ficant combinations of the four conditions that can be encount

ered in the execution of the editing operation. The two columns 

at the right under Results show the action taken for each case -

that is, the type of character placed in the result field and 

the new type of character placed in the result field and the 

new setting of the significance indicator. Use of the field 

separator will be discussed in a later paragraph. 

9-31 



CONDmONS RESULTS 

STATE OF 

SIGNIFICANCE 

PREVIOUS STATE LOW-ORDER INDICATOR AT 

PATTERN OF SIGNIFICANCE SOURCE SOURCE DIGIT RESULT. END OF DIGIT 

CHARACTER INDICATOR DIGIT IS A PLUS SIGN CHARACTER EXAMINATION 

Digit selector off 0 0 fill character off 
1-9 no source digit on 
1-9 yes sourc~ digit off 

on 0-9 no source digit on 
0-9 yes source digit off 

Significance starter off 0 no fill character on 
0 yes fill character off 
1-9 no source digit on 
1-9 yes source digit off 

on 0-9 no source digit· on 
0-9 yes source digit off 

Field separator 0 00 00 fill character off 
Message character off 00 00 fill character off 

on 00 00 message chara~ter on 
°No eHect on result character and new state of significance indicator. 

··Not applicable becanse lIource digit not examined. 
! • 

TABLE 

9-32 



We have so far iqllored the sign portion of the source data, 

which (in. the packed decimal format is required for the Edit 
\ 

instruction) is in the four low-order bits of the .rightmost 

byte. These bits are examined each time the Edit instruction 

is executed. If the sign is plus, the significance indicator 

will then be turned off, as shown in the table; if the sign 

is minus, t~e significance indicator will be left on. The 

information will not appear in the result, however, if there 

are no further pattern characters to be scannede As a matter 

of fact, if any of the source fields in.the·examples above 

had been negative, the results shown would have been exactly 

the same. 

Suppose, however, that pattern characters remain after the 

sign position has been examined. The action of the signifi-

cance indicator in controlling the instruction .continues just 

as before, although the setting oft~e significance indicator 

was accomplished by a difference condition. There are, of 

course, no more digits .to move. Hence we will not want to 

place digit selectors in the pattern in this position, but, 

rather, sign indicators, such as a minus sign or CR for 

credit. The action taken with the characters in the pattern 

is-the same now as it was before: they remain unchanged if 

the significance indicator ,is on, but are replaced by the 

fill character if the significance indicator is off. 

What we do, then, is to place the pattern the characters we 

want to print if the quantity is negative. If the data is 

indeed negative, our sign will be left, but if the data is 

positive, the sign will be replaced by the fill character. 

9-33 



Let us set up a suitable pattern for the example data. Let 

us print the letters CR for negative numbers, with one blank 

between the rightmost digit and the C. In hexadecimal, CR 

is C3 D9, so the pattern becomes: 

40 20 20 6B 20 20 21 4B 20 20 40 C3 D9 

Figure 6 shows the results for sampl'e data values as before, 

together with two negative yalues. 

BDD,DDS.DDBCR 
40 20 20 6B 20 20 21 4B 20 20 40 C3 09 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098765 
-0000000 

Figure 6 

12,345."67 
1,'204.06 

123.45 
10.00 
1.23 

.12 

.01 

.00 
987.65 CR 

.00 CR 

Examples of the application of the Edit 
instruction with blank fill, comma and 
decimal point insertion, significance 
starter and CR symbol for negative num~ 
bers. In the symbolic pattern, C and R 
are themselves. 

If we use an asterisk now as the fill character, positive 

quantities will have three asterisks following the cents, 

as shown in Figure 7. This mayor may riot be desired • 

. There are other ways to handle the signs, as we shall see 

next. 

We have seen above, that an amount of zero prints in the 

general form .00 when a significance starter is used. It 

may in some cases be desirable to make such an amount print 

9-34 



ao all blanKs or all asterisks. This is very easily done by 

making use of the way the oondition oode io oct by oxecution 

of the Edit instruction: 

Code 
o 
1 
2 

Instruction 
Result field is zero 
Result field is less than zero 
Result fie~d is greater than zero 

tiDD,DDS.OOBCR 
SC 20 20 6B 20 20 21 4B 20 20 40 C3 09 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098765 

11: 12,345.67*** 
**1,204.06*** 
****123.45*** 
"'**'**10.00*** 
******1.23*** 
*******.12**· 
****·**.01**~ 
****'l:**.00*** 
***"'987.65 CR 
****~* •. 00 CR -0000000 

Figure 7 

Examples of the application of the Edit 
instruction using asterisk fill. 

This means that after completion of the Edit we can make a 

simple Branch on Condition test of the condition code and 

move blanks or asterisks to the result field if it is zero. 

The movement is particularly simple because the fill char-

acter is still there in the field and an overlapped Move 

Characters in~truction can be used as follows: 

Be 6,SKIP 
MVC WORK+l(12),WORK 

SKIP 

The explicit length of 12 is based on the most recent pattern, 

which has a total of 13 characters. The MVC, written, picks 

9-35 



up.the 'leftmost character a.nd moves it to the leftmost~plus

one position.- It then picks up the leftmost-plus-one char

acter and moves it to the leftmost-plus-two position,. etc., 

in effect propagating the leftmost character through the 

field. This is precisely what we want if the fill character 

is the one to be substituted. (If some other character is 

desired, a suitable Move Characters' instruction can, of 

course, be written.) 

Figure 8 shows our familiar data values with zero fields 

blanked, and Figure 9 shows them with zero fields filled 

with asterisks. Only the fill character differs in the two 

programs that would produce the results. shown in Figure 8 

and 9; the Edit, the Branch on Condition, and the Move 

Characters are the same in both case. 

The condition code can also be used to distinguish between 

positive and negative numbers when it is necessary to pre-

sent the sign in some manner that is not possible by using 

the automatic features of the Edit. We might, for instance, 

wish to test the condition code and use the results of the 

test to place a plus sign or minus sign to the left of the 

edited result. 

The Edit instruction can be used to edit several fields with 

one instruction. Doing so uses a final control character, 

the field separator (hexadecimal 22). This character is re

placed in the pattern by the fill character; and causes the 

significance indicator to be set to the off state. The 

characters following, both in the pattern and in the source 
9-36 



data, are handled as described for a single field. In other 

words, it is possible to set up a pattern to edit a whole 
1 

series of quantities" even an entire line, with one instruc-

tion. The packed source fields must, of course, be contiguous 

in storage, but this is often no inconvenience. One limita

tion is that the condition code, upon completion of such an 

instruction, gives information only about the last field en

countered after a field separator. 

BDD,DDS.DDBCR 
40 20 20 6B 20 20 21 4B 20' 20 40 C3 09 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098765 
-OOOOOCO 

Figure 8 

12,345.67 
1,204.06 

123.45 
10.00 

1.23 
.12 
.01 

987.65 CR 

Examples of the application of the Edit 
instruction, showing the blanking of 
zero fields by the use of two additional 
instructions. 

*DD,DDS.DDBCR 
5C 20 20 6B 20 20 21 4B 20 20 40 C3 D9 

1234567 
0120406 
0012345 
0001000 
0000123 
0000012 
0000001 
0000000 

-0098765 
-0000000 

Figure 9 

*12,345.67*** 
**1,204.06*** 
****123.45*** 
*****10.00*** 
******1.23*** 
~*tl***t:.12*** 
1:tl1"****.01*** 
******'#l****** 
****987.65 CR 
************* 

Examples of the application of the Edit 
instruction with asterisk fill and zero 
filled with asterisks instead of being 
blanked. 

9-37 



Let ~s consider the example shown in Figure 10. Suppose,: that 

at DATA we have a sequence of three fields. The leftmost of 

the fields has four bytes, the next has three, and the right

most has five bytes. The first is to be printed with commas 

separating groups of three digits •. The values are alway~ 

positive and, therefore, no sign control is desired. Zero 

values will be blank since. we shall not use a significance 

starter. 

1234567Cl2345C123456789C 1,234,567 . 12.345 l, 234., 567.89 

0123456C01234C012345678C 123,456 1.234 123,456.78 

0010009C00123C001000000C 10,009 0.123. 10,000.00 

0004502C98007DOOOOO1210C 4,502 98.007- 12.10 

0000800COOO12COOOOOOO06C 800 0.0.12 .06 

00OOOOlCOOQOlDOOOOOOOOlC 1 0.001- .01 

OOOOOOOCOOOOOCOOOOOOOOOC 0.000 

Figure 10 

Examples of multiple edits. On each line the first 
field is a combination of three items; all three 
were edited with one Edit, giving the three results 
shown to the right. The editing pattern and addi
tional instructions are shown in the text. 

The second field is to be printed with three digits to the 

right of the decimal point, with a. significance starter to 

force amounts less than 1 to be printed with a zero before·· 

the decimal point. Positive quantities are to be printed 

without a sign, and negative· quantities are to be printed 

.with a minus sign immediately to the right of the number. 

The third number is a dollar amount that could be as great. 

as $9,999,999.99. Commas and decimal point are needed just 

9-38 



as shown. Amounts less than $1 are to be printed with the 

decimal point as the leftmost character. Zero amounts are 

to be blanked. Signs are not to be printed. 

There is to be at least "one blank between the first and 

second edited result, and at least three between the second 

and third. 

Let us write out the necessary pattern in shorthand for.m, 

with b standing for a blank, d for digit selector, f for 

field separator, s for significance starter, and other 

characters for themselves: 

bd,ddd,dddfsd.ddd-fbbd,ddd,dds.dd 

The required blank between the first and second edited re

sult will be placed thereby the replacement of the field 

separator with the fill character. The significance starter 

in the part of the pattern corresponding to the second field 

will give" the required handling of quantities less than 1. 

The extra two blanks between the second and third results 

are provided by the blanks in the part of the pattern corres

ponding to the third data item. (These are not treated as new 

fill characters; only the leftmost character in the entire 

pattern is so regarded.) Notice that the total of digit 

selectors plus significance starters is equal to the number 

of digits in each field "to be edited. 

9-39 



Instructions t6 do the required actions at Figure 10 are as 

follows: 

MVC WORK,PATTRN 
ED WORK,DATA 
BC· 6,SKIP 
MVC WORK+30(~),WORK+18 

SKIP 

The choice of addresses in the final MVC that blanks a zero 

field is somewhat arbitrary. We reason that if the entire 

field is zero, the first three positions of it are surely 

blank by now; hence a three-character MVC from there to the 

last three positions ~f the field will be correct. 

Figure 10 shows initial source data values and edited re-
\ 
I 

sults. The packed source fields .must be adjacent as shown; 
I • 

we address the leftmost character. 

9-40 



EDIT AND MARK ---
The Edit and Mark instruction (EDMK) makes possible the 

insertion of floating currency symbols. By this we mean 

the placement in the edited result of a dollar sign (or 

pound sterling symbol) in the character position immedi

ately to the left of the first significant digit. This 

serves as protection against alteration, since it leaves 

no blank spaces. It is a somewhat more attractive way to 

provide protection than the asterisk fill. 

The operation of the instruction is precisely the same as 

the Edit instruction, with one additional action. The 

execution of the Edit'and Mark places in register 1 the 

address of the first significant digit. The currency sym-· 

bol is needed one position to the left of the first signi

ficant digit. Consequently, we subtract one from the con

tents of register 1 after the execution of the Edit and 

Mark and p~ace a dollar sign in 'that position. 

There is one complication; if significance is forced by a 

significance starter in the pattern, nothing is done with 

register 1. Before going into the Edit and Mark, therefore, 

we place in register 1 the address of the significance start

er plus one. Then, if nothing happens to register 1, westi1l 

get plus one. Then, if nothing happens to register 1, we still 

get the dollar sign in the desired position by using the pro.

cedure described above. 

Let us suppose that we are again working with a four-byte 

9-41 



source' data field, which we are to edit with a comma, a 

decimal point, and CR for negative numbers. Accordingly, 

the pattern .(in shorthand form) should be 

bdd,dds.ddbCR 

The significance starter here is six .positions to the right 

of the leftmost,ch.aracter of the pattern. The complete pro

gram to g~ve the required editing and the floating dollar 

sign is as follows: 

MVC 
LA 
EDMK 
BCTR 
me 

DOLLAR DC 

WORK,PATTRN 
l,WORK+7 
WORK, DATA 
1,0 
O(1,O),DOLLAR 
C'S' 

The Load Address instruction as written, places in register 

1 the address of the position one beyond the significance 

starter. If significance is forced, this address remains 

in register 1, but otherwise the address of the first signi

ficant 'digit is placed in register 1 as part of the execution 

of the Edit and Mark. The Branch on Count Register instruc-, 

tion with a ~econd operand of zero reduces the 1st operand 

register contents by 1 and does not branch. There are, of 

course, other ways to subtract 1 from the contents of register 

1, but ,this is the easiest and fastest. In. the Move Characters 

instruction we write an explicit displacement of zero, an 

exp1icit1ength of 1, and an explicit base register number:of 

1. The. net effect is to move a one-character field from DOLLAR 

to the address specifed by the base register 1. This is the' 

desired action. 

Figure 11 shows the effect on sample data values. Zero fields 

,could be blanked by methods we have seen above. 

9-42 



BBD,DOS.DDBCR 
40 20 20 6B 20 20 21 4B 2020 40 C~ 09 

1234567 
0120406 
0012345 
0001000 
0000123 

"0000012 
0000001 

, 0000000 
-0098765 

., . ~OOOOOOO 

Figure 11 
< I < 

$12,345.67 
$1,204.06 

$123.45 
$10.00 
$1.23 

$.12 
$.12 
$.01 

$987.65 CR 
$.00 CR 

Examples of the app~ication of the Edit 
and Mark instruction to get a floating 
currency symbol. 

9-43 



[SS] 

DE , L I 81 I ~~ D,j 82 lim 
o 7. 1516 1920 31 32 3.5 36 47 

1. The packed decimal data beginning at the address 
specified by the second address field (02,B2) is 
converted to zoned data and placed in storage be
ginning at the location designated by the first,' 
address field [Dl(Ll,Bl)]. 

EXAl4PLE 

2. The placement of a decimal digit in the first 
operand's field is controlled by a pattern,con
tained within that field., 

3. The pattern is a combina~ion of special charac
ters which allows the suppression of non-signi
ficant zeros and the insertion of punctuation 
into resultant field. 

4. This pattern must, be established prior to 
,issuing the EDIT instruction. 

S. The pattern is destroyed when the source digits 
(packed decimal digits) 'are transferred to the 
first operand I s field.' 

6. Operands are processed left to right a byte at 
a time. 

7. The packed data is checked for valid'signand 
digit codes. 

8. Overlapping fields will result in an unpredic
table outcome. 

1. ED (Edit) 
Edit the four-byte field located at storage 
address 1040(DEK) and place in the 10-byte 
pattern field located at 1000 (RESULT). 
(GPR F = 00 00 10 00) 

SYMBOLIC ED RESULT(lO),DEK 

loiACHINE DE 09 FO 00 FO 40 

Before After 

Storage 1000 40 20 20 6B 40 F2 F2 6B 
1004 20 20 21 4B F4 F4 F6 4B 
1008 20 20 56 20 F6 F7 56 20 

1040 22 44 66 7C 22 44 66 7C 

Condition Code 2 

9-44 



CONDITION CODE 

o Source digits all zeros 
1 Source digits are negative 
2 Source digits are positive 
3 

. PROGRAM INTERRUPTIONS 

1. Operation (decimal feature not installed) 
2. Protection 
3. Addressing 
4. Data 

Edit and Mark 

OF I L 

o 78 

1. The packed decimal data beginning at 
the address 'specified by the second address 
field (D2, B2) is converted to zQned'data and 
placed in storage beginning at the location 
desginated by the first address field [Dl (Ll,Bl)]. 

2. The plabement of a decimaa di~it in the first 
operand's field is controiled by a pattern 
contained within that field. 

3. The pattern is a combination of special char .. 
acters which allows the suppression of non
significant zeros and the insertion of punc
tuatiori into resultant fields. 

4. The address of the first significant digit 
encountered is stored in bits 8-31 of register 
1. 

5. This pattern must be established prior to 
issuing the EDIT and MARK instruction. 

6. The pattern is destroyed when the source 
digits (packed decimal digits) aretransferr~d 
to the first operand's field. 

7. Operands arerprocessed left to right, a byte ar 
a time. 

8. The packed data is checked for valid si~n ~nd 
digit codes. 

9. Overlapping fields will result ~n a unpredic
table outcome.: 

EXAMPLE 

1. EDMK (Edit and Mark) 
Edit and Mark the five-byte field located at 
storage address 1020 (FIELD) and place in the 
thirteen-byte pattern field located at 1100 
10TPT) • (GPR F = 00 00 10 00) 

9-45 



CONDITION 

SYMBOLIC EDMK OTPT(l3),FIELD 
MACHINE DF DC Fl 00 FO 20 

Before 

Storage 1100 40 20 6B 20 
1104 20 20 6B 20 
1108 20 ~l 4B 20 
110C 20 40 21 20 

1020 00 75 36' 02 
1024 OC 22 42 16 

GPR 1 00 00 00 00 

Condition Code 2 

CODE 

,0 Source digits all zeros 
1 Source digits are negative 
2 Source digits are positive 
3 

PROGRAM INTERRUPTIONS 

After 

40 40 40 40 
F7 FS 6B F3 
F6 FO 4B F2 
FO 40, 21 20 

00 75 36 02 
OC 22 42 16 

00 00 1I 04 

'1. Operation (decimal feature not installed) 
2. Protection 
3. Addres'sing 
4. Data 

9-46 



INPUT/OUTPUT INSTRUCTIONS 

The transferring of infor.mation between a system and its de

vices is accomplished through-a.nlnput/Output Operation. 

An input/output I/O operation involves the use of an input/ 

output device. Input/output devices perform I/O operations 

under control of control units, which are attached to the 

central processing unit .(CPU) by means of channels. 

Input/output devices include such equipment as card read 

punches, maqnetic tape units, direct-access-storaqe devices 

(disks and drums), typewriter-keyboard devices. printers, 

teleprocessinq, devices, and process control equipment. 

Input/output operations are initiated and controlled by ·in

formation with three types of formats: instructions, com

mands, and orders. Instructions are decoded by the CPU and 

are part of the CPU program. Commands are decoded and ex

ecuted by the channels and I/O devices. One or more com

mands arranqed for sequential execution form a channel pro

gram. 

Functions peculiar to a device, such as rewinding tape or 

positioning the access mechanism on a disk drive, are 

specified by orders. Orders are decoded and executed by 

I/O devices. The CPU controls I/O operations by means of 

four I/O instructions: START I/O, TEST I/O, HALT I/O, and 

TEST CHANNEL. 

11-1 



The instruction TEST CHANNEL addresses a channel; it does not 

address an I/O device.. The other three I/O. instruction. ad

dress 'a channel and a device on that channel. 

INPUT/OUTPUT DEVICE ADDRESSING 

The first operand ,of and I/O instruction designates an effec

tivestorage address. The low-order 16 bits of this effective 

address become the I/O address. 

An I/O device is designated by the 16-bit I/O address. The 

high-order 8 bits of this I/O address specify a channel to 

which the desired I/O device is attached. The low-order 8 

bit~ of this I/O,address specify the actual device. 

The channel-address field provides for identifying up to 

256 channels, out of which only channels 0-6 may be installed1 

channel-address 7 and up are considered invalid. Channel 0 is 

a multiplexor channel; channels numbered 1-6 may be either 

multiplexor or selector channels, as shown below. The number 

and type of channels available, as well as their address assign

ment, depend on the system model and the particular installation. 

ADDRESS 

CHANNEL DEVICE ASSIGNMENT 

0000 0000 xxxx XXXX Devices on channel 0 
0000 0001 XXXX xxxx· Devices on channel 1 
0000 0010 XXXX XXXX Devices on channel 2 
0000 0011 xXXX XXXX Devices on channel 3 
0000" 0100 . XXXX XXXX Devices on channel 4 
0000 0101 XXXX XXXX Devices on channel 5 
0000 0110 XXXX XXXX Devices on channel 6 
0000 0111 XXXX XXXX 

TO INVALID 
',1111 1111 XXXX XXXX 

11-2 



The device address identifies the p'articular I/O device and 

control unit on the designated channel. The address identi-
\ .' 

fies, for example, a particular magnetic tape drive, disk 

access,mechanism, or transmission line. Any number in the 

range 0-255 can be used as a device address, providing 

facilities for addressing up to 256 devices per'channel. 

Devices, that ,do not share a control unit with other devices 

may, be assigned any: device address in the range 0-255, pro

vided the address is not recognized by any other control 

unit.' Logically, such devices are not distinguishable from 

their control unit, and both are identified by the same 

address. 

Devices sharing a control, unit (i.e., magnetic tape drives 

or disk access mechanisms) are assigned addresses within sets 

of sequential nwnbers. 

Except for the rules described, the assignment of channel 

and dri vedevice addresses is arbitrary. The assignment is 

made at the time of installation, and.the addresses normal~y 

remain fixed th~reafter. 

STATES OF ~ INPUT/OUTPUT SYSTEM 

The state of the I/O system identified by an I/O address 

depends on the collective state of the channel, subchannel, 

and'I/O'device. Each of these components of the I/O system 

can have. up to four' states, as far as the response to an" I/O 

instruction'is concerned. These states are listed in the 



following table. The name of the state is followed by its 

abbreviation' and a brief definition~ 

CHANNEL 
Available 
Interruption Pending 

Working , 
Not operational 

SUBCHANNEL 

Available 
~nterruption Pending 

Working 
Not operational 

I/O DEVICE 

Available 
Interruption Pending 

worlting 
Not operational 

ABBREV 
.A 

I 

W' 
N 

ABBREV 

A 
I 

W 
N 

ABBREV 

A 
I 

W 
N 

DEFINITION 
None of the following states 
Interruption inunediately available 
from. channel 
Channel operating in burst mode 
Channel not,operation~l 

DEFINITION 

None of the following states 
Information for CSW available in 
subchannel 
Subchannel executing an operation 
Subchannel not operational 

DEFINITION 

None of the following states 
Interruption condition pending, in 
device ' 
Device executing an operation 
Device not operational 

A channel, subchannel,or I/O device that is available, that 

contains a pending interruption condition, or that is working, 

is said to be OPERATIONAL. The states of containing an inter-

ruption condition, working, or being not operational are col-

lectively referred to as NOT AVAILABLE. 

The device referred to in the preceding table includes both 

the device proper and its control unit. For some types of 

devices, such as magnetic tape units, the working and the 

interruption-pending states can be 'caused by activity in the 

addressed device or control unit. A shared control unit im-

poses its state on all devices attached to the control unit. 

The states of the devices are not related to those of the 

channel and subchannel., 

11-4 



~~hun t.h~ ~(;';\UL1Q4.aCl to ~n l/O ina t-t"uction :1.0 dtlte.t1nioeQ on 1;,h(1 

bania Qf the states of the channel ~nd aubchannel, the DEVICES 

are not interrogated. Thus, ten composite states mr0 identi

fied QS cond.itions for the execution of the I/O instruotion. 

Each composite state is 1d~ntified in the followinq discussion 

by three alphabetic charapters; the first character position 

identifies the state of the channel, the second identifies 

the state of the subchannel, and the third refers to the state 

of the device. Each character position can contain A, I, W, 

or N, denoting the state of the component. The symbol X in 

place of a letter indicates that the state of the corresponding 

component is not significant for the execution of the instruc

tion. 

Available (AAA): The addressed channel, stibchannel, control 

unit, and I/O device are operational, are not engaged in the 

execution of any previously initiated operations, and do not 

contain any pending interruption conditions. 

Interruption Pending in Device (AAI) or Device Working (AAW): 

The addressed channel andsUbchannel are available. The ad

dressed control unit or I/O device is executing a previously 

initia.ted operation or contains a pending interruption con

ditiono These situations are possible: 

1. The device is executing an operation after 

signaling the channel-end condition, such as rewinding 

tape or seeking on a 'disk file. 

2. The cant'rol unit associated with the device 

'is ,executing an operation after signaling, the channel

e~dcondition, such as backspacing file on a maqnetictape unit. 

11-5 



3. The device or control unit is execu.ting c;ln 

operation on another subchannel or channel. 

4. The device or control unit contains the device

end, control-unit-end, or attention condition or, on the 

selector channel, the channel-end condition associated with 

an operation terminated by HALT I/O. 

Device Not Operational (AAN): The addressed channel and sub

channel are available. The addressed I/O device is not oper-

·ational. A device appears not operational when no control 

unit recognizes the address. This occurs when the control' 

unit is not provided in the system, when power ·is off in the 

unit, or when the control 'unit has been logically switched 

off the I/O interface. The not-operational state is indi

cated also when the control unit is provided and., is designed 

to attach the device, but the device has not been installed 

and the addreSS has not been assigned to the control unit. 

If the addressed device is not installed or has been logically 

removed from the control unit, but the associated control unit 

is operational and the address has been assigned to the control 

unit, the device is said to be not-ready. When an instruction 

is addressed to a device in the not-ready state, the control 

unit responds to the selectiori and indicates unit check when

ever the not-ready state precludes a successful execution of 

the operation. 

Interruption Pending In Subchannel (AIX): The addressed 

channel is available. An interruption condition is pending 

11-6 



in the addressed subchannel because of the termination of the 

portion of the operation involving the use of channel facili~ 

ties. The subchannel is in a position to provide info~ation 

for a compl--ete CSW. The interruption condition can indicate 

termination of an operation at the addressed I/O device or at 

another device on the subchannel.' The state of the addressed 

device is not significant, except when TEST I/O is addressed' 

to the device associated with the te~inated operation, in 

which case the csw contains status information provided by the 

device. 

The state AIX does not occur on the selector channel. On the 

selector channel, the existence of an interruption condition 

in the subchannel immediately causes the channel to assign to 

this condition the highest priority for I/O interruptions and, 

hence, leads to the state,IIX. 

Subchannel Working (AWX): The addressed channel is available. 

The addressed subchannel is executing a previously initiated 

operation or chain of operations in the multiplex mode and has 

not yet reached the channel end for the last operation. The 

state of the addressed device is not significant, except when 

HALT I/O is issued, in which the case the CSW contains status 

provided by the device. 

The subchannel-working state does not occur on the selector 

channel since all operations on the selector channel are ex

ecuted in the burst mode and cause the channel to be in the 

working state(WWX). 

11-7 



Subchannel Not Operational (ANX): The addressed channel is 

available. The addressed subchannel on the multiplexor 

channel is not operational. A subcharinel is not operational 

when it is not provided in the system. This state cannot 

occur on the selector channel. 

Interruptio~ Pending in Channel (IXX): The addressed channel 

is not working and has established which device will cause the 

next I/O interruption from this channel. The state where the 

channel contains a pending interruption TEST CHANNEL. This 

instruction does not cause the subchannel and I/O device to 

be interrogated. The other I/O instructions consider the 

channel available when it contains a pending interruption 

condition. When the channel assigns priority for interruption 

among devices, the interruption condition is preserved in the 

I/O device or subchannel. 

Channel Working (WXX): The addressed channel is operating in 

the burst mode. In the case of the multiplexor channel, a 

burst of " bytes is currently being handled. In the case of 

the selector channel, an operation or a chain of operations 

is currently' being executed, and the channel end for the last 

opel;ation has not yet been reached. The states of the addressed 

device and, in the case of the·multiplexor channel, of the sub

channel are not significant. 

Channel Not Operational (NXX): The addressed channel is not 

operational, or the channel address in the instruction is in

valid •. A channel is not operational when it is not provided in 

11-8 



the system, when power is off in the channel, or when it has 

been switched to the test mode. The states of the addressed 

I/O device and subchannel are not significant. 

CONDITION CODE 

The results of certain tests by the channel and device, and 

the original state of the addressed part of the I/O system 

are used during the execution of an I/O instruction to set 

one of four condition codes in bit positions 34 and 35 of the 

PSW. The condition code is set at the time the execution of 

the instruction is completed, that is, the time the CPU is 

released to proceed with the next instruction. The condition 

code indicates whether or not the channel has performed the 

function specified by the instruction and, if not, the reason 

for the rejection. Immediate~y following branch-on-condition 

operations can use the code for decision-making. 

The following table lists the conditions and the corresponding 

Condition Codes for each instruction. The digits in the table 

represent the numeric value of the code. The instruction start 

I/O can set code 0 or 1 for the AAA state, depending on the type 

of operation that is initiated. 

11-9 



CONDITIONS 

Available 
Interruption pend. in device 
Device working 
Device not operational 
Interruption pend. in subchannel 

For the addressed device 
For another device 

Subchannel working 
Subchannel not operational 
Interruption pend. in channel 
Channel working 
Channel not operational . 
Error 

Channel equipment error 
Channel programming error 
Device error 

CONDITION CODE FOR 

START TEST HA.LT TEST 

I/O .1/0 I/O CHAN 

A A A 0,1 0 0 1° 0 
A A I 1° 1° 10 0 
A A W 1° 10 1° 0 
AAN 3 3 3 0 
AI X·t 

2 1° 0 0 
2 2 0 0 

A WX t2 2 1° 0 
A N X t3 3 3 0 
I X X t· see note below 1 
WX X t2 2 2 2 
N X X t3 3 3 3 

-The CSW or its status portion is stored at location 64 during 
execution of the instruction. 

tThe symbol X stands for A, I, W, and N, and indicates that 
the state of the corresponding component is not significant. 
As an example, AIX denotes the states AlA, All, AIW, and 
AIN, while IXX represents a total of 16 states, some of which 
do not occur. 

-The condition cannot be identified during execution of the in
struction. 
NOTE: For the purpose of executing START 110, TEST I/O, 

and HALT 110, a channel containing a pending interruption 
condition appears the same as an available channel, and the 
condition-code setting depends upon the states of the sub
channel and device. The condition codes for the IXX states are 
the same as for the AXX states, where the X's represent the 
states of the subchannel and the device. As an exampie, the 
condition-code for the IAA state is' the same. as for the AAA 
state, and the condition code' for the lAW state is the same as 
for the AA W state. 

11-10 



The AVAILABLE condition is indlcated only when no errors are de-

. tected during the execution of ·the I/O instruction. When a pro

gramming error occurs ·in.the information placed in the CAW or 

caw and the addressed channel or subchannel is working, either 

Condition Code 1 or 2 may be set, depending upon the model. Simi

larly, either code 1 or 3·may be set when a programming error 

occurs and a part of the addressed' I/O system is not operational. 

When a subchannel on the multiplexor channel contains a pending 

interruption condition (state AIX),.the I/O device associated 

with the terminated operation normally is in the interruption

pending state. When the channel detects during execution of TEST 

I/O that the device is not operational, condition code 3 is set. 

Similarly, Condition Code 3 is set when HALT I/O is addressed to 

a subchannel in the working state and operating in the multiplex 

mode (state AWX), but the device turns out to be not operational. 

The not-operational state in both situations can be caused by 

operator intervention or by machine malfunctioning_ 

The error conditions listed in the preceding table include all 

equipment or programming errors detected by the channel or the 

I/O device during execution of the I/O instruction. Except for 

channel equipment errors, in which case, depending on the model, 

machine check may be indicated and no CSW may be stored, the 

status portion of the CSW identifies the error. Three types of 

:errors can occur: 

Channel Equipment Error: The channel can detect the following 

equipment errors during execution of START I/O, TEST I/O, and 

HALT I/O: 
11-11 



1. The 'device ,a:ddress that· the-channel received on the 

interface during initial selection ,either has a parity error or 

is not the same as the one the channel sent out. Some devic'e 

other than the one addres'sed may be malfunctioning. 

2. The unit-status byte that the channel received on 

the interface during initial selection' has a' parity error·. 

3. A signal from the I/O device occurred during 

initial selection at an invalid time or had invalid duration. 

4. The channel detected an error in its control equip-

mente 

The channel may perform the malfunction-reset function, depend

ing on the type of error and the model. If a CSW is. stored, 

channel control check or interface control check is indicated, 

depending on the type of error. 

Channel Programm.ing Error: The channel can detect the following 

programming errors during execution of START I/O. 

1. Invalid CCW address in CAW 

2. Invalid CCW address specification in CAW 

3. Invalid storage protection key in CAW 

4. Invalid CAW format 

5. Location of first CCW protected for fetching 

6. First CCW specifies transfer in'channel 

7. Invalid command code in first ccw 
8. Initial data address exceeds addressi~g capacity 

of Model (see "Definition of Storage Area") 

9. Invalid count in first ccw 
10. Invalid format of fir~it CCW 

The CSW indicates program check, except for condition 5, in 

which case protection check is i1dicated. 
~ 

- llr12 



Device Error: Programming or equipment errors detected by the 

device during the execution of START I/O are indicated by unit 

check or· unit exception in the csw. 

The conditions responsible for unit check and unit exception 

for each type of I/O device are ·detailed in the SRL publication 

for the .device. 

INSTRUCTION FORMAT 

All I/O instructions use the following SI format: 

I OpCode ~ 81 I 
o 7. 1516 1920 31 

Bit positions 8-15 of the instruction are ignored. The content 

of the Bl field designates a register. The sum obtained by the 

addition of the content of register Bl and content of the Dl 

field ·identifies the channel and the I/O device. The sum has 

the format: 

o. . 1516 

Channel I· 
Address . 

2324 

Device 
Address 

31 

Bit positions 0-7 are not part of the address. Bit positions 

8-15, which constitute the high-order portion of the address, 

are ignored. Bit positions 16-23 of the sum contain the channel 

address, while bit positions 24-31 identify the device on the 

channel and, additionally in the case of the multiplexor chan

nel, the subchannel. 

NOTE: In the detailed desc~iptions of the individual instruc-. 

tiona, the mnemonic and the symbolic operand designation for 

11-13 



the IBM ~ystem/360 assembly language are shown· with each in

struction. In the case 'of START I/O, for example, SIois the 

mnemonic and Dl(Bl) the operand designation. 

INSTRUCTIONS 

The mnemonics, format, and operation codes of the. I/O instruc-

tions follow. The table also indicates that all I/O instruc-

tions cause program interruption when they are encountered in 

the problem state, and that all I/O instructions set the con

dition code. 

NAME 

Start I/O 
Test· I/O 
Halt I/O 
Test Channel 

MNEMONIC 

SIO 
TIO 
HIO 
TCH 

TYPE 

SI,C 
SI,C 
SI,e 
SI,C 

NOTES 
C 
M 

Condition cqde is set 
privileged-operation exception 

INPUT/OUTPUT INSTRUCTIONEXCEPTION HANDLING 

EXCEPTION CODE 

M 9C 
M 9D 
M 9E 
M 9F 

Before the channel is signaled to execute an I/O instruction, 

the instruction is tested for validity by the cpu. Exceptional 

conditions detected at. this time cause a program interruption. 

When the interruption occurs, the current PSW is stored as the 

program old PSW and is replaced by. the program new PSW. The 

interruption code in the old PSW identifies the cause of the 

interruption. 

The following exception may cause a program interruption: 

Privileged Operation: An I/O instruction is encountered when 

the CPU is in the problem ~tate. The instruction is suppressed 

11-14 



before the channel has been signaled to execute it. The CSW, 

the condition code 'in the PSW, and the 'state of the addressed 

subchannel, and I/O device are not affected by the attempt to 

'execute an I/O instruction while in the problem state. 

11-15 



INPUT/OUTPUT FAMILY 

START I/O 

The Start I/O instruction provides a means by which an I/O 

operation may be initiated. A write, read, readbackword,. 

control or sense operation will begin at the device speci-. 

fied by the low-order 16 bits of the effective address. 

The initiation of a Start I/O to an available device re

sults in the Channel Address Work (CAW) being sent to the 

channel that was addressed. The channel utilizes the pro

tection key of the CAW and' fetches the Channel Command Word 

(CCW) from the storage location specified by. ,the, CAW. 

This CCW specifies the operation to be performed, the main

storage area to be used, and the action to be taken when 

the operation is completed. The contents of the CCW and 

CAW must be established by the programmer prior to iss'uing 

a Start I/O.' 

. If the addressed device was not available when interrogated 

by the Start .1/0 instruction, the entire operation is abort-, 

ed and the Condition Code is set to reflect the cause of the 

abortion. 

11-16 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

EXAMPLES 

[Sl] 

I 9C 
7. IS 16 1920 31 

The low-order 16 bits of the effective address 
(Dl,Bl) form the I/O address. 
The CAW is sent to the channel indicated by 
the I/O address. . 
The protection key contained in· the CAW is 
assumed by the channel and .the effective ad
dress is used to fetch the cow. 
The CCW is d~coded to provide the types of 
operation, t.he next sequential action to be 
taken, and if necessary, the number of bytes, 
and a storage. 
The contents ·of the CAW and CCW must be for
mulated by the' programmer prior to issuing 
the Start I/O instruction. 
This instruction isa privileged operation 
and may only be issued by the control program. 
A Condition Code other than 0 results in the 
instruction be aborted. 
The CSW is stored at the end of·an operation 
for a Condition Code of Oor 1. 

1. SIO (Start Input/Output) 
The following example consists of three in
structions. The Load Address and Store in
struction will be used to establish the ad
dress of the CCW at location 5400(CCWl) in 
the CAW. The protection key will be zero 
and this example will perform a write oper
ation of 10 bytes from location 5000 (STOR).· 
The device is a tape drive on channel 2 with 
a device address of 80. (GPR F = 00 0050 00) 

SYMBOLIC 

LA 1,CCWl 
ST 1,72(0) 
SIO X'2S0'(0) 

STOR 5000 
5004 
5008 

Before 

FF FF FF FF 
FF FF FF FF 
FF FF FF FF 

11-17 

MACHINE 

41 10 F4 00 
50 10 00 48 
9C 00 02 80 

After 

FF FF FF FF 
FF FF ·FF FF 
FF FF FF FF 



CCWl 5400 
5404 

Before 

01 00 50 ,00 
00 00 00 OA 

After 

01 00 5'0 00 
00 00 00 OA 

CSW 00 00 54 08 OC 00 00 00 

Condition Code a 

2. SIO (Start Input/Output) 
This example will perform a read operation of 
80 bytes into storage location 5500(DATAIN). 
The input device is card reader located on the 
multiplexor channel at address OC. The CCW is 
located at storage location 5408 .(CCW2). (GPR 
F = 00, 00 50 00) 

SYMBOLIC 
LA l,CCW2 
ST . 1,72 (0) 
SIO 12 (0) 

CCW2 5408 
540C. 

DATAIN 5500, 
5546 

02 
00 

00 
00 

Before 

00 55 00 
00 00 50 

00 00, 00 
00 00 00 

MACHINE 
41 10 F4 08 
50 10 00 48 
9C 00 00 OC 

After 

'02'00 55 00 
00 00 00 50 

Fl F2 F3 F6 
C6 F3 F5 F7 

CSW 00 00 54 10 OC 00 00 00 

Condition Code a 

CONDITION CODE 

o Channel executing operation 
1 CSW has been stored 
2 Channel or subchannel busy 
3 Channel or device not operational 

PROGRAM INTERRUPTIONS 

1. Privileged operation 

'11-18 



INPUT/OUTPUT FAMILY 

~I/O 

The channel and device ,specified by the low-order 16 bits of 

the effective address ar~ interrogated. The result of this 
.I 

interrogation is reflec.ted in the setting of the Condition 

Code. If this setting is 1, more detailed information con~ 

serning the status of this channel and device can be found 

in the CSW. This instruction also permits a program to clear 

an interrupt at a selective I/O device. 

11-19 



EXAMPLE 

1. 

2. 

3. 

4. 

5. 

, 
7. ".. '''0 :1I 

The low-order 16 bits of the effective address 
(Dl,Bl) form the I/O address. ' 
The 'exact status of the addressed channel and 

'device is reflected by the Condition Code. 
A Condition Code of 1 indicates that further 
status information has been placed in the CSW. 
Issuing this instruction will clear pending 

'interrupts on the majority of I/O devices. 
This instruction is a privileged operation 
and may only be performed by the control 
program. 

1. TIO (Test Input/Output) 
Test the device at address 82 on channel.l 
to determine its status. This device being 
tested will show a busy condition. (GPR C = 
00 00 01 82) 

SYMBOLIC TIO 0(12) MACHINE 9D 00 CO 00 

Condition Code 1 

CSW 00 00 00 00 10 00 00 00 

CONDITION CODE 

o Available 
1 CSW has been stored 
2 Channel or subchannel busy 
3 Channel or device not operational 

PROGRAM INTERRUPTIONS 

1. Privileged operation 

11-20 



INPUT/OUTPUT FAMILY 

~I/O' 

The instructio~ HALT I/O provides the program with a means of 

terminating an I/O operation before all data specified by the 

operation has been transferred or before the operation at the 

device had reached its normal ending point. This would per

mit a program to immediately free a selector channel for an 

operation of 1iiqherpriority. The device to be halted is 

specified by the low-order 16 bits of the effective address. 

11-21 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

EXAMPLE, 

1. 

o 78 1516 "20 

The low-order 16 bits of the effective address' 
, (01, Bl) form the I/O address. 
The device specified by the I/O address is se
lect~d and its operation terminated. 
This instruction has no effect on devices that 
are not in the working state or are executing 
an operation of a fixed duration, such as re
winding a tape. 
The status portion of the CSW is updated if a 
device terminated an operation, the control 
unit was busy and would not accept the HALT 
I/O, or an equipment malfunction occurred 
during execution of this instruction. 
The termination of operation on the selector 
channel causes the channel and subchanne1 to 
be placed in the interrupt-pending state. 
This operation is not terminated ~n the mul
tiplexor channel until all outstanding re
quests for. data have been serviced:." 
The instruction is a privileged operation and 
may only be issued by the control'program. 

HIO (Halt Input/Output) 
Halt the disk drive (address 31)' on channel 2. 

SYMBOLIC HIO X'231' (0) 

MACHINE 9E 00 02 31 

Before ,After 

CSW 00 00 46 08 00 00 46 08. 
00 00 00 50 ,00,00 00 22 

Condition Code 2 

CONDITION CODE 

o Interrupt pending in subchannel 
I CSW has been s~ored 
2 Burst operation terminated 
3 Not operational 

PROGRAM INTERRUPTIONS 

1. Privile9~d operation, 

11-22 



INPUT/OUTPUT FAMILY 

TEST CHANNEL 

The channel specified by bits 16-23"0£ the effective address 

are tested and the result of the test is indicated in the 

Condition Code. This is very similar to the Test I/O but 

only involves the channel and it is not concerned with the 

subchannel or devices. 

11-23 



EXAMPLE 

1. Bits 16-23 of the effective address sp~cify the 
channel to be tested. 

2. The result of this test is used to set the Con
dition Code. 

3. No device is s.elected or subchannel interrogated. 
4~ This is a privileged instruction and can only.be 

issued by the Control·Program. 

1. TCH (Test Channel) 
Determine the status of channel 4. 

SYMBOLIC TCH X' 400 • (0) 

MACHINE 9F 00 04 00 

Condition Code 2 

CONDITION CODE 

o Channel available 
1 Interrupt pending in channel 
2 Channel operating in burst mode 
3 Channel not operational 

PROGRAM INTERRUPTIONS 

1. Privileged operation 

11-24 . 



SECTION 12 

PROJECT 

1. Construct PSW's and CCW's for specified conditions. 
2~ Translate a problem program flowchart into a 

program. 
3. Translate an SVC routine flowchart into 

instructions •. 
4. Translate an I/O interrupt routine flowchart into 

instructions. 

THE PROBLEM -----
L' 

We have a tape on drive #180 with SO-character records. Some 
key records are identified bY, an X'FF' as their first byte. We 
wish to transfer the X'FF' records to cards on punch #000. Since. 
we are to work in the problem state, we will need to use an SVC 
to do both Start I/O's. At· the end of our tape file we will read 
a TAPE~K which will set status bit 39 on· in the' CSW. At this 
time we will 'place the machine in the wait state with all ones in 
the IC. 

CGNSTRUCT 
CONTROL 

WORDS 

600 

GENERAL FLOWCHART 

SIO 
SVC' 

ROUTINE 

700 IIO 
INTERRUPT 

ROUTINE 

12-1 

500 READ THE 
THE 

RECORD 

PUNCE 
THE 

RECORD 



CONTROL WORD CONSTRUCTION (IN.~) 

IPL PSW 
(Problem State PSW) 

CSW 

CAW 

SVC New PSW 

I/O New PSW 

CCW 1 
(R~ad Tape) 

CCW 2 
(Punch Card) 
5SC 

Wait PSW 
(For Interrupt) 

End PSW 
(When Tape Mask) 

Error PSW 

Record Area 

000 
004 

040 
044 

048 

060 
064 

078. 
07C 

550 
554 

558 
55C 

560 
564 

568 
S6C 

570 
574 

SAO 
5EF 

12-2 

01020000 
OOFFFFFF 

01020000 
OOFOFOFO 



000500 

00050Z 

000512 

LOAD ADR 
CCW 1 
GPRO 

STORE 
GPR· 0 

AT CAW 

LOAD ADR 
180 

GPR 12 

SVC 1 
READ 
TAPE 

COMPARE: 
1st Char 

RECORD 

THE PROBLEM PROGRAM 

000516 

00524 

12-3 

LOAD ADR 
CCW 2 
GPR 0 

STORE 
GPR 0 

AT CAW 

LOAD ADR 
O·OD 

GPR 12 

SVC 1 
PUNCH 
CARD 

RETURN 
POINT. 
GO TO A 



000600 COMPARE 
INTERRUPT 

CODE 

LPSW 
ERROR 

SVC ROUTINE 

a0060C 

,00061C 

12-4 

TEST,tlo 
INSURE 

OK '. 

YES 

START IIO 
OF 

GPR 12 

LPSW 
WAIT FOR 
INTERRUPT 

LPSW 
SVC OLD 
RETURN . 



000700 

.. 

000718 

1/0 IN~ERRUPT ROUTINE 

COMPARE 
. GPR'12 
:INT. CODE 

YES 

TEST FOR 
UNIT EXCP .' 

STATUS 

·rNO 

'TEST FOR 
STATUS 

OC 

LPSW 
ERROR 

0007!D.C 

'0'00724 

TURN OFF 
WAIT BIT 

1/0 OLD 

" LPSW 
1/0 OLD 
RETURN 

, LPSW 
FFFFFF 

END 

* "OC" not al,ways valid See page 12-17. 
12-5 



THE PROBLEM. PROGRAM 

CODING 

000500 

504 

508 

SOC 

50E 

512 . 

516 

5lA 

51E 

522 

000524 



THE SVC ROUTINE -----
CODING 

000600 

604 

608 

60C· 

610 

614 

618 

. 61C· 

000620 

12-7 



THE I/O ROUTINE 

CODING 

000700 

704 

708 

70C 

710 

714 

718' 

71C 

720 

000724 

12-8 



27100 
CONSTRUCT CONTROL WORDS 

Our first step is to build the PSW's and CCW's that we will use 
in ourprograrn. The IPL PSW is useCi to change the CPU from a 
program loading state to a running state. It will become our 
current~SW fo~ our problempro~ram. 

The IPL 
1. 
2. 

PSW is to have the following char.cteristic$: 
Machine Check on 

3. ' 
4. 

Problem state on 
Instructionaddres~ q£ X'000500' 

'Enter the 
All other fields zero. 
first half of this PSW. (8 h~x digits) 

27101 
Record your first half of t~e IPL PSW qn page 12~2,of your book 
of figures. As we continue, record your answers o.n page l2~2 
and you will have a ready reference. ' 

Enter, the second half of the IPL PSW. (~ hex Ciigi ts) 

27102 
The SVC new PSW is tQ have these'. cha:r;~c:ter~~tics; 

1. Machine Check on 
2. Supervisory state 
3. Instruction address of X'000600' 
4. All other fields zero. 

Enter the first half of SVC new PSW (8 hex dig~~s). 

27103 
Enter the second half of the SVC new PSW 

27104 
The I/O 

1. 
2. 
3. 
4. 

new PSW is to have these ch~racteristics: 
Machine check on 
Supervisory state 
Instruction address of X'000700' 
All other fields zero. 

Enter the first half'of'I/O new ~SW~ 

27105 
Enter the second half of I/O new PSW. 

27106 
The "Wait" PSW will have the following: 

1. Permit channel 0 and I interrupts. 
2. Machine check on 
3. Wait bit on 
4. Supervisory state 
5. Instruction address X'000620' 
~. All other fields zero 

Enter'the first half of the "Wait" psw. 

27107' 
Enter the second half of the "Wait" psw. 



,27110 
CCWI will be used to give a Read command to our tape drive. The 
CCW format is at the top of Re,ference Card 11 and the 2400 Tape 
Drive conunands are at the bottom of Reference Card 12., CCWl must 

,have: 
1. 
2. 
3. 
4. 

Command Code for a Read 
. Data Address at Xl 0005AO I ' 

Enter the 

Only the SILl flag on. (Bit 34) 
Count to be 80 decimal bytes. 
first half of CCWl. 

, 27111 
Enter the second half of CCWI. 

27112 
CCW2 is to have the following. 

1. 2540 Punch Command (Reference Card 12) 
~ype BB, SS~OO~ D=~ 

2. Data Address at X'0005AO' 
3. No Flags 
4. Count to be 80 decimal bytes~ 

Enter the first half of CCW2. 

27113 
Enter the second half of CCW2. 

27114 
The CAW is set up by the Problem programmer. 
set up by hardware after'the I/O interrupt. 
information on the CSW. 

The CSW will be 
See 12-17 for more 

At the "END" (after the tape mark), the IAR or IC (instruction 
counter) will contain all ones due ,to' the END PSW. If an error 
occurs, the, IC will contain FOFOFO dUe to the Error PSW. This 
is a common way to signal the operation of machine conditions. 

No Question. Just EOB. 

12-10 



27120 
Now we will deal with the Problem program (12-3). 
instruction is a Load Address of CCWl into GPRO. 
is specified on, 12-2. Enter the instruction. 

27121 . 
Now store'the CCWl' address at X'000048." 

27122 

The first 
CCWI location 

CCWl says Read, SO bytes into 10cationX'0005AO. The CAW points 
to CCWl. This information ~ill tell the channel what 'we want to 
do, where the data will go and how much.~ The only thing left is 
"Who" supplies the data. We will,useGP~ 12 to tell the SVC 
routine the device address.' Enter·the command to Load Address, 
X'lSO', into GPR 12. 

27123 
You can record your answers to, the probleIt\ pro,gram on page 12-6. 
Enter the' instruction for an SVC with a code of X'Ol'. 

27124 
This will be all that is required of the problem programmer as 
to getting the tape record. The next problem program instruc
tion will be the compare for X'FF' as the first byte of the 
record. But there will be a considerable delay while th~ SVC 
interrupt and a subsequent I/O -interrupt takes place. 'Never
theless, the next instruction of the problem program will be a 
compare (CLI) of the first byte of 'the tape record. Enter that 
instruction •. 

27125' .. 
Th~ CC will now reflect the result of the above CLI. If the 
first byte is X'FF'iwe will have to deal further with this 
record. Since this was a logical compare, the result must be 
"equal" or "A Low." If it is not equal, we will get the next 
tape record and'test that, etc. Enter a BC instruction to go 
to connector A if the byte' is not X'FF. ' ' 

27126 
It may appear that our branch could go to location X'OOOSOC' 
(in this, case it could have) rather than X'OOOSOD.' 'But'since 

we do not insure the integrity of our GPR's and CAW could 
(it doesn't) change we do it this way. No Question. EOB. 



27130 
It'may appear ,that the next instruction should be a branch to 
connector "B" but it is not necessary.' Connector "Bit will be 

'our'next sequential' address. We get there only if our records 
first byte was X'FF.' The instruction at X'OOOS16' is to LA of 
CCW2 into GPR O. Enter it. 

27131 
Now store it at "CAW". 

27132 
Place the address of the punch in GPR 12. 

27133 
Do an SVC with code X'Ol' again. 

27134 
This demonstrates that the SVC routine does not care about the 
kind of device (tape or card punch) or which command is used 
(read or write). The SVC routine issues the SIlo. TheCAW 
points, to the CCW who has' the order. GPR' 12 has the device 
address. After the SVC and I/O interrupts, control will be 
given to the instruction following the SVC. That instruction 
will be a BC, unconditionally, to connnector A. Enter it. 

27135 
Now you will return to location X'OOOSOO' and,get the next 
card. That completes the coding for the problem program. 
The next step will be the SVC program. No Question. EOB. 

12-12 



27140 
THE SVC ROUTINE 

The SVC routine is to start at. location X' 000600.' Its major 
function is to Start I/O and to return control to the instruc-
tionfollowing the instruction that called for it~ That is the, 
instruction whose address is' in SVC old PSW. First we will 
cbeck that the call is for' routine #01. We will do this with 
a CLI instruction whose inunediate' field is X' 01' against the ' 
fourth byte of SVC old PSW'. Enter it.' , 

27141 
Record the,SVC coding on page 12-7. 

Your next instruction is to be a BC on equal to location 
X'00060C.' Enter it. 

27142 
Usually, there a~e many SVC routines' and we would select the 

correct one by examining the interrupt code. In our case we 
are going to reqognize any code other than X'Ol' as an error. 

,We will LPSW of our error PSW if the code is not X'OI'. The 
error PSW location is noted 'on page 12-2. Enter the instruc
tion. 

27143 
We expect to bypass the LPSW instruction at X'00060a' and do 
the instructiori at connector 01 which'is to b~ a Test I/O. 
Enter the coding for the TIIO instruction. (don't forget 
where we placed the device address). 

27144 
We expect that the CC aft~r the TI/O will be 0 (available). On 
any 'condition other than 0 you are to branch to t~e instruction 
at X'00060S' (Load error PSW). Enter that BC instruction. 

27145 
The next instruction is a Start I/O. Enter it. 

27146 
The instruction at X'0006l8' is to be identical to the instruc
tion at X'0006l0.' It may be redundant, but I like it. EOB. 

27147 
We will now go into the wait state while the device is operating. 
Enter the LPSW instruction to activate the "Wait" PSW. (See· 
12-2) 

--------------------------------------------~---------------------



27150 
We are going to "wait" (the computer will hang) while the device 
is reading tape or punching the card. When the device is com-:
pleted an interrupt will be generated and the device status will 
be' examined. If the status is OK contrql will be returned to 
the instruction whose address is in the "wait" PSW. The instruc
tion that loaded the' "wait" PSW is at X'00061C' and the PSW points 
to X'000620'. The last instruction of the interrupt routine must 
do an LPSW of the I/O old PSW ("wai t" PSW). But just before the 
"wait" PSW is loaded something must be done or we will again go 
into the WAIT STATE. Which bit of·the "wait" PSW must be 
changed? 

27151 
The I/O routine has returned us to the SVC routine by loading 
the "wait" (I/O old) PSW. We must now return to the Problem 
program. The Problem program PSW is at location X' ______ _ 

27152 
Enter the instruction that will load the Problem PSW. 

27153 
The Problem PSW will return us to address X'00050E or X'000524' 
depending on which SVC instruction was issued. In either case 
the SVC routine is ended. EOB. 

12-14 



27160 
THE I/O INTERRUPT ROUTINE 

We reach this routine ~ue to an I/O interrupt. The sequence of 
events is: The Problem Program issues an SVC, the SVC routine 
issued a Start I/O and then went-into the wait State. The I/O 
interrupt routine is flowcharted on 12-5 and you can record the 
machine code instructions on 12-8. \ 

The device that caused the interrupt must be (in our simple pro
gram) the same device that was started. The address of the 
started device is in GPR 12 and the interrupting device's ad
dress is in I/O old PSW's interrupt code. To compare these we 
will use a (C, CR, CH, CLR, CL , CLe, eLI) 

27161 
Enter the compare instruction for the above. 

27i6~ 
Enter a BC instruction (for any condition except equal) to 
address X'000718'. 

27163 
The device and channel status are contained in the CSW. The 
CSW is at address: -----
27164 
The 3rd HW of the CSW contains the status (see Reference Card 11). 
We wi11- ignore the channel status byte (bits 40-47) and examine 
the device status byte. What is the address of the device 
status byte? 

27165 
Enter a TM instruction to check for Unit Exception only. Unit 
Exc.eption means that we have read the Tape ~1ark" 

27166 
Enter a BC instruction for condi tion "one" to bra:rlch to address 
X'000724. I 

27167 
If the device status was not "UE" we will check for Channel End 
and Device End. rrhis ·test sqou1d be more complicated than shown 
but we will test as though .both conditions were always presented 
simultaneously (See 12-17 for explanation). Enter a (~LI instru·c
ti0!1 for the above. 

12-15 



27170 
Enter a BC instruction to branch to address X'00071C' if the CC 
is zero. (status equal X'OC') 

27171 
If the status was not X'OC' we have an error condition. In this 
case we will load the Error PSW. Enter the LPSW instruction 
,(the error PSW is at X'000570). 

27172 
We expect to skip the error PSW by branching from address 
X'000714' to X'00071C'. 
Our interrupt status was OK so we may return to our SVC routine. 
This could be done in our program by a simple branch to address 
X'000620'. But in order to show a more common method we will 
load the I/O old PSW. If there wer,e more ways to enter the 
Wait State we would have 'to load the I/O old PSW to insure we 
returned to' the corr~SVC routine. Another point, the wait 
PSW had, naturally, bit 14 set on. Before we load the I/O old 
PSW we must turn bit 14 off. In turning off bit l4'we must 
insure that we do not change' bits 8-13 and IS as they may, in 
general, contain other bit on. The simplest way of doing this 
is with an AND or an Exclusive Or instruction in the 51 type 
(NI or ,XI). Enter the instruction to turn off bit 14 and no 
other of the I/O old PSW. (Use either a NI or an XI instruction) 

27173 
Now enter the instruction to load the I/O old P5W as the current 
PSW. 

27174 
The above instruction will take us to address X'000620' (return 
us to the SVC routine). ' 
L'ocation X· 000620' of the 5VC routine is a LPSW of SVC old PSW 
which returns us to either location X'OOOSOE' or to X'000S24' 
depending on which 5VC instruction was issued in the Problem 
program. EOB. 

2717S 
The last instruction of the I/O interrupt routine is at connec
tor "0". This instruction is to load the "END" PSW when we read 
the Tape Mark (unit exception). Enter that instruction. 

12-16 



CHANNEL END - DEVICE" END 

The flowchart on 12-5, Compare status DC, is not valid for a 2540 
card reader-punch. The Control unit of the 2540 contains a buf
fer that will hold 80 characters and as soon as the channel has 
sent over the 80 characte'rs, the Control unit will signal Chan
nel End without a Device End. The '2540's Control Unit will then 
transfer the buffer data to "Punch Magnets" that 'will permit the 
punch dies to punch the correct holes in the card. The punching 
is done' a row at a t'ime until all twelve rows are punched and 
the card- is moved out of the 'punch station. Now the device is 
ready to accept a new order qnd the control unit will signal 
the channel with another status condition, Device End. There 
would actually be two interrupts and the interrupt rou~in~ wbuld 
have to have a scheme to keep track of the status. 

We have ignored this on our little program' for purposes of,' 
simplicity. 

On the other hand the test'of "Oe"is valid on a read tape because 
the tape is an unbuffered device. The channel is connected to 
the control unit until all data is transferred and until the tape 
is stopped in the IRG. At this time the control unit sends a 
Channel End and Devi,ce End in one status byte which becomes 
bits 32 t6 39 (B'aOOOllOO' = X'OC') of-the CSW. 

12-17 


	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	04-01
	04-02
	04-03
	04-04
	04-05
	04-05A
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17

