
Systems Reference Library

IBM System/360 Operating System

FORTRAN IV (H) Programmer's Guide

Program Number 360S-F0-500

File No. 8360-25
Form C28-6602-3 OS

·:rhis publication describes how to compile, link
edit, and execute a program written in IBM System/360
FORTRAN IV Language.

Fourth Edition

This publication corresponds to os Release lb. It is a major revision
of and makes obsolete Form C28-6602-2 and its associated Technical News­
letter, N28-2307. New material describes the optional Extended Error
Message facility which, for certain error occurrences, either provides a
standard corrective action or allows the user to correct his error
through an installation-written routine, 'thus enabling execution to con­
tinue. Text for certain error messages is added, and there are miscel­
laneous clarifications and corrections throughout the publication.
Changes to the text are indicated by a vertical line to the left of the
change; revised illustrations are denoted by the symbol (•) to the left
of the caption.

Specifications contained herein are subject to change from time to
time. Any such change will be reported in subsequent revisions or
Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Comments regarding this publication may be addressed to IBM Corpora­
tion, Programming Systems Publications, 1271 Avenue of the Americas, New
York, N.Y. 10020

e International Business Machines corporation 1966,1967

The purpose of this guide is to enable
programmers to compile, link edit, and
execute FORTRAN IV programs under control
of IBM System/360 Operating System. The
FORTRAN IV language is described in the
publication IBM System/360 FORTRAN IV Lan­
guage, Form C28-6515, which is the corequi­
site to this publication. The programmer
may use the language as described except
for the debugging facility.

'l'he Programmer's Guide is organized to
fulfill its purpose at three levels:

1. Programmers who will use the cataloged
procedures ~ provided by IEM should
read the "Introduction" and "Job Con­
trol Language" sections to understand
the job control statements, the
"FORTRAN Job Processing" section to
understand the use of cataloged proce­
dures, the "Programming Considera­
tions" section to be able to use the
FORTRAN language correctly and effi­
ciently, and the "System output" sec­
tion to understand the listings, maps,
and messages generated by the compil­
er, the linkage editor, and a load
module.

2. Programmers who, in addition, are con­
cerned with creating and retrieving
data sets, optimizing the use of I/O
devices, or temporarily modifying IBM­
supplied cataloged procedures should
read the entire Programmer's Guide.

3. Programmers who are concerned with
making extensive use of the operating
system facilities, such as writing
their own cataloged procedures, modi­
fying the FORTRAN library, or calcu­
lating region sizes for operating in
an MVT environment, should also read
the entire Programmer's Guide in con­
junction with the following publica­
tions, as required:

IBM System/360 Operating system: Job
Control Language, Form C28-6539

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM system/360 Operating System: Super­
visor and Data Management Services, Form
C28-6646

IBM System/360 Operating System: Utili­
tie~, Form C28-6586

IBM System/360: FORTRAN IV, Library
Subprograms, Form C28-6596

IBM System/360 Operating System: Link­
age Editor, Form C28-6538

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System: Opera­
tor's Guide, Form C28-6540

IBM System/360 Operating System: Mes­
sages and Codes, Form C28-6o08

IBM System/360 Operating System: Pro­
grammer's Guide to Debugging, Form
C28-6670

IBM System/360 Operating System:
Storage Estimates, Form C28-6551

This publication contains appendixes
that provide the programmer with the fol­
lowing information:

• Descriptions and explanations of com­
piler invocation from a problem
program.

• Examples of job processing.

• Descriptions and explanations for the
preparation of subprograms written in
assembler language for use with a main
program written in FOR'I'RAN.

• Detailed descriptions of the diagnostic
messages produced during compilation
and load module execution.

• A list of USA carriage control
characters.

For easier reading, the titles of publi­
cations ref erred to in this publication are
abbreviated. For example, references to
the publication IBM System/360 Operating
system: Linkage Editor are abbreviated to
Linkage Editor publication.

INTRODUCTION • • • • • • • • • • • •
Job and Job Step Relationship
FORTRAN Processing and Cataloged
Procedures • • • • • • •
Data Sets • • • • • • •

Data Set Organization • • • •

9
9

9
• 10

10
• 11 Data Set Labels

Data Set Cataloging • • • 11

JOB CONTROL LANGUAGE • • 12
Job Management • • • • • • • • • • • • • 12
Coding Job Control Statements • 12

Name Field • • • • • • • • 12
Operation Field • • • • • • 13
Operand Field • • • • • • • 13
Comments • • • • 13
continuing Control Statements and
comments • • • • • • • • • • 13
Notation for Defining control
Statements • • • • • • • 13

JOB Statement • • • •
Name Field • • • • •

• 14
15

Operand Field • • • • • • • • • • 15
• 15 Job Accounting Information •

Programmer's Name •••••
control Statement Messages •
Conditions for Terminating a
Assigning Job Priority • • •
Requesting a Message Class •
Specifying Main Storage

• • 16
• 16

Job • • 16
• 17

• • • • 17

Requirements for a Job ••••••• 17
EXEC Statement • • • • • • • 17

Name Field • • • ••••• 17
Operand Field • • • 18

Positional Parameter • 18
Keyword Parameters • • • • • • 20

Data Definition (DD) Statement • • • • • 22
Name Field • • • • • • • • • • • • • 22
Operand Field • • • • • • • • • • 22

Retrieving Previously Created Data
Sets • • • • • • • • 25

Delimiter Statement • • 28

FORTRAN JOB PROCESSING • • • • 29
Using Cataloged Procedures • • • • • 29

compile • • • • • • • • • • 29
Compile and Link Edit •••••• 30
Link Edit and Execute •• 30
compile., Link Edit, and Execute • • • 30

Compiler Processing • • 31
compiler Name • • • • .• • • 31
compiler ddnames • • • • • 31
Compiler Device Classes • 32
Compiler Data Set Assumptions • • • 32
Compiler Options • • • • • • • • • • 33
Multiple Compilation Within a Job
Step • • • • • • • • • • • 35

Linkage Editor Processing ••••••• 36
Linkage Editor Name •••••• 36
Linkage Editor Input and output 36
Linkage Editor ddnames and Device
Classes • • • • • • • • • • • 37

Additional Input • • • • • • •
Linkage Editor Priority
Other Linkage Editor Control

CONTENTS

• 38
39

Statements • • • • • • • • • • • • 39
Options for Linkage Editor
Processing • • . • 40

Load Module Execution
Program Name • • •
Execution ddnames

• • • • • • • 4 0
• • • • • • 40

Reference Numbers for Data Sets
Specified in DEFINE FILE Statements
Retrieving Data Sets Written With
varying FORTRAN Sequence Numbers •
REWIND and BACKSPACE Statements
Error Message Data set • • • • •
Execution Device Classes •
DCB Parameter

40

41

• 42
43
43
43
43

CREATING DATA SETS • • • 44
Use of DD Statements for Direct-Access
Data Sets
Data Set Name • • • •
Specifying I/O Devices
Specifying Volumes . •
Specifying Space on Direct-Access
Volumes • • • • • • • • • • • • • •
Label Information • • • •
Disposition of a Data Set
Writing a Unit Record Data set on an
Intermediate Device
DCB Parameter • • • • • •

46
• • 46
• • 4b

47

• 48
49
49

49
• 50

Referring to Previously Specified DCB
Information • • • • • • • • • • • • 50
Density and Conversion •••••••• 50
Number of Buffers for Sequential
Data Sets • • • • •
Chained Scheduling • • • • • • •
Record Format • • • • • • • • • • •
Record Length, Buffer Length, and

51
51
51

Block Length • • • • • • • • • • • • • 51
FORTRAN Records and Logical Records 52
BACKSPACE Operations • • • • • • • • 56

DCB Assumptions for Load Module
Execution • • • • • • • • • • • 57

CATALOGED PROCEDURES • • • • .• 58
compile • • • • • • • • 58
Link Edit • • • • 58
Execute • • • • • • • • • 59

User and Modified Cataloged Procedures • 60
Overriding Cataloged Procedures • 61

overriding Parameters in the EXEC
Statement • • • • • • • • • • • 62
overriding and Adding DD Statements 62

PROGRAMMING CONSIDERATIONS • • • • • • • 64
Storage Locations and Bytes • • • • • • 64
Minimum system Requirements for the
FORTRAN Compiler • • • • • • • • • 64
Program Optimization • • • • • • • • • • 64

Programming Considerations Using
the Optimizer • • • • • • 65

Definition of a Loop • • • • • • 66
Movement of code Into
Initialization of a Loop • • • • •• 66
common Expression Elimination • • • 66
Induction Variable Optimization • • 67
Register Allocation • • • • • • 67
COMMCN Blocks • • • • • • • • • 67
EQUIVALENCE Statements • • • • • • • 68
Boundary Adjustment of Variables
in COMMON Blocks and EQUIVALENCE
Groups • • • • • • • • • • 68
Multidimensional Arrays • 68
Program Structure • • • • • 68
Logical IF Statements • • • 69
Branching • • • • • • • • • • • • • 69
Indica~ors and Sense Lights • • • • 70
Name Assignment • • • 70
Conditional Branching • 70
Use of DUMP and PDUMP • • 70
Use of ERR Parameter in READ
Statement • • • • • • • • • • • 71
Support of AND, OR, and CCMPL • • • 71
DATA Statements and Literal
Constants • • • • • • • • • • • 71
Direct Access Programming 72
Direct Access Programming
considerations • • • • • • • • • • • 74

compiler Restrictions • • • • 75
Library Considerations • 75
DD Statement Considerations • • • • 75

Channel Optimization • • • • • • 75
I/O Device Optimization • • • • 75
Direct-Access Space Optimization • • 76

SYSTEM OUTPUT • • • • • • • • • 78
compiler Output • • • 78

source Listing • • • • • • • • • 78
Cross Reference Listing • -. .• • 78
Structured Source Listing ~ • 78
Object Module Listing • • • 79
Storage Map • 80
Label Map • • • • • • • 80
Object Module Card Deck • 80
Source Module Diagnostics • • • 83

ERROR DETECTED - SCAN POINTER = x • • 83
Linkage Editor output •••• 84

Module Map • • • • • • • • 84
Cross-Reference List • • • • • • • • 84

Load Module Output • • • • • • • • • 85
Error Code Diagnostics and

• 85
• 86

Traceback without Extended Error
Message Facility' • • • • ••
Program Interrupt Messages •
ABEND Dump • • • • • • • • 86

• • • 86 Operator Messages • • • •

Extended Error Message Facility • 87

Functional Characteristics • •
Subprograms for using Extended Error
Message Facility • • • • • • • •

• 87

• 87
Accessing and Altering the Option
Table • • • • • • • • 88
Obtaining Traceback • • • • • 91

User-Supplied Exit • • • • • • • • 91

• 92
considerations for a User-Supplied
Exit Routine •••••••••

Option Table Considerations • • 92
How to create or Alter an Option
Table • • • • • • • • • • • • •

Option Table Default Values
Errors in Use of Facility
Programming Example • • • • •

APPENDIX A: INVOKING THE FORTRAN
COMPILER

• • • 92
• 99
• 99
• 99

••• 101

APPENDIX B: EXAMPLES OF JOB PROCESSING 102
Example
Example
Example

1 • • • • • • • • • • • • .102.
2 •••••• 103
3 • • • • • • • • • • .104

APPENDIX C: ASSEMBLER LANGUAGE
SUBPROGRAMS • • • • • • • • • • • .108

.108

.108

.108

subroutine References
Argument List
Save Area
Calling Sequence •

Coding the Assembler Language
Subprogram • • • • • • • • • •

• .108

•• 110
Coding a Lowest Level Assembler
Language Subprogram •••••••• 110
Higher Level Assembly Language
Subprogram ••••••••••••• 110
In-Line Argument List ••••••• 112
Sharing Data in COMMON ••••••• 112

Retrieving Arguments From the Argument
List • • • • • • • • • • • • • .112

APPENDIX D: SYSTEM DIAGNOSTICS
compiler Diagnostic Messages • • •

Compiler Informative Messages
Compiler Error/Warning Messages

Load Module Execution Diagnostic
Messages • • • • • • • • • • • • •

Program Interrupt Messages •
Execution Error Messages • • •
Extended Error Messages for

•• 114
.114
.114

• .114

••• 124
.124
.126

Execution Errors • • • • • • .130
.137 Operator Messages • • • • • •

APPENDIX E: EXTENDED USA CARRIAGE
CONTROL CHARACTERS • • • •

INDEX

• .138

•• 139

)

Figure 1. Rocket Firing Job 9
Figure 2. Job control Statement
Formats • • • • • • • • • • • • • • 12
Figure 3. JOB Statement • 15
Figure 4. Sample Job Statements • 16
Figure 5. EXEC Statement • 18
Figure 6. Sample EXEC Statements • 19
Figure 7. compiler and Linkage
Editor Options • • • • • • • • 21
Figure 8. Data Definition
Statement • • • • • • • • • • • • • 23
Figure 9. DD Statement ••• 24
Figure 10. Examples of DD
Statements for·unit Record Devices • 25
Figure 11. Retrieving Previously
Created Data Sets • • • • • • • • • 27
Figure 12. Delimiter Statement • • 28
Figure 13. Invoking the Cataloged
Procedure FORTHC • • • • • • • • • 29
Figure 14. Compiling a single
Source Module • • • • • • • • • • • 29
Figure 15. Compiling Several
Source Modules • 29
Figure 16. Invoking the cataloged
Procedure FORTHCL • • • • • • 30
Figure 17. Invoking the Cataloged
Procedure FORTHLG • • • • • • 30
Figure 18. Link Edit and Execute • 30
Figure 19. Link Edit and Execute
Object Modules in a cataloged Data
Set • • • • • • • • • • • • • • 30
Figure 20. Invoking the Cataloged
Procedure FORTHCLG • • • • • • • • 31
Figure 21. Single Compile, Link
Edit, and Execute • • .• • • • • 31
Figure 22. Batched compile, Link
Edit, and Execute • • • • • • • • • 31
Figure 23. Compiler Options • 34
Figure 24. Multiple Compilation
Within a Job Step • • • • • • 36
Figure 25. Linkage Editor Input
and output • • • .• • • • • • • 3 7
Figure 26. Linkage Editor Example 39
Figure 27. Tape output for
Several Data Sets Using Same Data
Set Reference Number • • 42
Figure 28. Examples of DD
Statements • • • • • • • • • 44
Figure 29. DD Parameters for
Creating Data Sets • 45
Figure 30. FORTRAN Record (FORMAT
Control) Fixed-Length
Specification • • • • • • • • • • • 52
Figure 31. FORTRAN Record (FORMAT
Control) Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE • • • • • 53
Figure 32. FORTRAN Record (FORMAT
Control) Variable-Length
Specification • • • • • • • • 53

FIGURES

Figure 33. FORTRAN Record (FORMAT
control) With Variable-Length
Specification and the FORTRAN
Record Length Less Than (LRECL-4) • 53
Figure 34. FORTRAN Record (FOR!'.!AT
Control) With Undefined
Specification and the FORTRAN
Record Length Less Than BLKSIZE . • 53
Figure 35. Fixed-Length Blocked
Records Written Under FORMAT
Control • • • • • • • • • • • • • • 53
Figure 36. Variable-Length
Blocked Records Written Under
FOMAT Control • • • • . • • • • 54
Figure 37. Format of a Block
control Word • • • • • • • • • 54
Figure 38. Format of a Segment
Control Word • • • • • • • 54
Figure 39. Variable-Length
Unblocked Records, No FORMAT
control, one Record Segment •••• 55
Figure 40. variable-Length
Unblocked Records, No FORMAT
Control, Two Record Segments • 55
Figure 41. Variable-length,
Blocked Records, No FORMAT control 56
Figure 42.. Logical Record (No
FORMAT Control) for Direct Access • 56
Figure 43. compile cataloged
Procedure (FORTHC) • • • • • • • • 59
Figure 44. Compile and Link Edit
Cataloged Procedure (FORTHCL) . 60
Figure 45. Link Edit and Execute
cataloged Procedure (FORTHLG) • • • 61
Figure 46. Compile, Link Edit,
and Execute Cataloged Procedure
(FOTHCLG) • • • • • • • • • • 61
Figure 47. Record Chaining • 73
Figure 48. Writing a Direct
Access Data Set for the First Time • 74
Figure 49. DD Statement
Parameters for Optimization • 7b
Figure 50. Source Module. Listing

Figure 51. compiler Cross
Reference Listing
Figure 52. Structured Source
Listing • • • • • • • • • • •
Figure 53. Object Module Listing
Figure 54. Storage Map
Figure 55. Label Map • • . •
Figure 56. Object Module Deck
Structure • • • • • • • • • • •
Figure 57.. Format of Diagnostic
Messages • • • • • • • • • • •
Figure 58. Load Module Map
Figure 59. Linkage Editor Cross
Reference List • • • • • •
Figure 60. Sample Traceback for
Execution-Time Errors • • • •
Figure 61. Option Table • •

• 78

• • 79

79
• 81
• 82
• 82

• • 83

• • 84
• 84

• • 85

• 86
• • 88

Figure 62. Example of Assembler
Language Macro Definition Used to
Generate Option Table • • • • • • • 98
Figure 63. Sample Program Using
Extended Error Message Facility •• 100
Figure 64. Input/Output Flow for
Example 1 ••••••••••••• 102
Figure 65. Job control Statements
for Example 1 ••••••••••• 102
Figure 66. Job control Statements
for Example 2 • • • • • • • • .104
Figure 67. Block Diagram for
Example 3 • • • • • • • • • • .105
Figure 68. Job control Statements
for Example 3 • • • • • • .106
Figure 69. FORTRAN Coding for
Example 3 • • • • • • • • • .107

TABLES

Table 1. Job Control Statements
Table 2. Compiler ddnames
Table 3. Device Class Names

• 12
• 32
• 32

Table 4. correspondence Between
Compiler ddnames and Device Classes 33
Table 5. DCB Assumptions for the
Compiler Data Sets • • • • • • • • • 33
Table 6. Linkage Editor ddnames • 37
Table 7. correspondence Between
Linkage Editor ddnames and Device -
Classes • • • • • • • • • • • • • • 38
Table 8. Load Module ddnames • 41
Table 9. Data Set References • 47
Table 10. DEN Values • 50
Table 11. Load Module DCB
Parameter Default Values • • 52

Figure 70. Save Area Layout and
Word Contents • • • • • • • • • •
Figure 71. Linkage Conventions
for Lowest Level Subprogram
Figure 72. Linkage conventions
for Higher Level Subprogram
Figure 73. In-Line Argument List
Figure 74. Compile-Time Program
Interrupt Message • • • • • • • •
Figure 75. Program Interrupt
Message Format Without Extended
Error Message Facility
Figure 76. Summary of Error and
Traceback • • • • • • • • • • • •
Figure 7-7. Example of Traceback
Map • • • • • • • • .• • • •

.109

.110

.111

.112

.115

.124

.136

.136

Table 12.
Table 13.
Table 14.

Storage Allocation
constant Expressions
Additional Built-In

• • • 64
• • 67

Functions • • • • • • • • . • • 71
Table 15. OPTION TABLE Entry
Description • • • • • • • • • . 89
Table 16. Option Table Default
Values • • • • • • • • • • • • • 90
Table 17. Corrective Action After
Error Occurrence • • • . • . • • • • 93
Table 18. Corrective Action After
Mathematical Subroutines Error
Occurrence • • • • • • • • • • 94
Table 19. corrective Action After
Program Interrupt Occurrence • 97
Table 20. Linkage Registers .109
Table 21. Dimension and Subscript
Format .• .113

The IBM system/360 operating system Cthe
operating system) consists of a control
program and processing programs. The con­
trol program supervises execution of all
processing programs, such as the FORTRAN
compiler, and all problem programs, such as
a FORTRAN program. Therefore, to execute a
FORTRAN program, the programmer must first
communicate with the operating system. The
medium of communication between the pro­
grammer and the operating system is the job
control language.

The programmer uses job control state­
ments to define two units of work to the
operating system: the job and the job
step, and to define the files (data sets)
used in these jobs and job steps. He
defines a job to the operating system by
using a JOB statement; a job step by using
an EXEC statement; and a data set by using
a DD statement.

JOB AND JOB STEP RELATIONSHIP

To the operating system, a job consists
of executing one or more job steps. In the
simplest case, a job consists of one job
step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

In more complex cases, one job may con­
sist of a series of job steps. For
example, a programmer is given a tape con­
taining raw data from a rocket firing: he
must transform this raw data into a series
of graphs and reports. Three steps may be
defined:

1. Compare the raw data to projected data
and eliminate errors which arise
because of intermittent errors in
gauges and transmission facilities.

2. Use the refined data and a set of
parameters as input to a set of equa­
tions, which develop values for the
production of graphs and reports.

3. Use the values to plot the graphs and
print the reports.

Figure 1 illustrates the rocket firing
job with three job steps.

In the previous example, each step could
be defined as a separate job with one job
step in each job. However, designating

INTRODUCTION

related JOO steps as one job is more effi­
cient: processing time is decreased
because only one job is defined, and inter­
dependence of job steps may be stated.
(The interdependence of jobs cannot be
stated.>

Projected
Data

Parameters

Job Step 1:
Refine Data

Job Step 2:
Develop Values

Job Step 3:
Generate

Graphs and
Re orts

Figure 1. Rocket Firing Job

FORTRAN PROCESSING AND CATALOGED PROCEDURES

When a programmer writes a FORTRAN pro­
gram, the objective is to obtain a problem
solution. However, before the program can
provide this solution, the program itself
must undergo processing. 'I'he source pro­
gram (source module) is compiled to give an
object module; and the object module is
link edited to give a load module. This
load module is then executed to give the
desired problem solution.

If each of the three steps involved in
processing a FORTRAN module is a job step
in the same job, a set of job control
statements that consists of one EXEC state­
ment and one or more DD statements is
required for each step. Because writing
these job control statements can be time­
consuming work for the programmer, IBM sup­
plies cataloged procedures to aid in the
processing of FORTRAN modules. A cataloged
procedure consists of a procedure step or a

Introduction 9

series of procedure steps. Each step con­
tains the necessary set of job control
statement.s to compile or to link edit or to
execute a FORTRAN module. (Note: A JOB
statement cannot be cataloge~

Four FORTRAN cataloged procedures are
supplied by IBM.. These four cataloged pro­
cedures and their uses are:

FORTHC
FORTHCL
FORTHLG
FORTHCLG

compile
compile and link edit
link edit and execute
compile, link edit, and execute

Any of the cataloged procedures can be
invoked by an EXEC statement in the input
stream. In addition, each of the proce­
dures can be temporarily modified by this
EXEC statement and any DD statements in the
input stream; this temporary modification
is called overriding.

DATA SETS

For FORTRAN processing, a programmer
uses DD statements to define the particular
data set(s} required for a compile, link
edit, or execute step. In the operating
·system, a data set is a named, organized
collection of one or more records that are
logically related. For example, a data set
may be a source module, a library of mathe­
matical functions, or the data processed by
a load module.

Data Set Orqani~ation

A data set is a named collection of
data. Several methods are available for
internally organizing data sets. Three
types of data sets are accessible in
FORTRAN processing: sequential data sets,
partitioned data sets, and direct access
data sets.

A sequential data set is organized in
the same way as a data set that resides on
a tape volume, but a sequential data set
may reside on any type of volume. The com­
piler, linkage editor, and load modules
process sequential data sets. The compiler
uses the queued sequential access method
(QSAM} for such processing, and load
modules use the basic sequential access
time method (BSAM} for object time I/O
operations.

A partitioned data set (PDS} is composed
of named, independent groups of sequential
data and resides on a direct access volume.
A directory index resides in the PDS and

10

directs the operating system to any group
of sequential data. Each group of sequen­
tial data is called a member. Partitioned
data sets are used for storage of any type
of sequentially organized data. In partic­
ular, they are used for storage of source
and load modules (each module is a member}.
I~' fact, a load module can be executed only
if it is a member of a partitioned data
s~t. A PDS of load modules is created by
either the linkage editor or a utility pro­
gram. A PDS is accessible to the linkage
editor; however, only individual members of
a, PDS are accessible to the compiler. Mem­
bers of a PDS are not accessible to a
FORTRAN load module.

The FORTRAN library is a cataloged PDS
that contains the library subprograms in
the form of load modules. SYSl.FORTLIB is
the nam~ given to this PDS.

A direct access data set contains rec­
ords that are read or written by specifying
the position of the record within the data
set. When the position of the record is
indicated in a FIND, READ, or WRITE state­
ment, the operating system goes directly to
that position in the data set and either
retrieves, reads, or writes the record.
For example, with a sequential data set, if
the 100th record is read or written, all
records preceding the lOOth record (records
1 through 99} must be transmitted before
the 100th record can be transmitted. With
a direct access data set the 100th record
can be transmitted directly by indicating
in the I/O statement that the 100th record
is to be transmitted. However, in a direct
access data set, records can only be trans­
mitted by FORTRAN direct access I/O state­
ments; they cannot be transmitted by
FORTRAN sequential I/O statements. Records
in a direct access data set can be trans­
mitted sequentially by using the associated
variable in direct access I/O statements.

A direct access data set must reside on
a direct access volume. Direct access data
sets are processed by FORTRAN load modules;
the compiler and linkage editor cannot
process direct access data sets. Load mod­
ules process data sets of this type with
the basic direct access method (BDAM).

Saying that a data set is sequential,
partitioned, or direct access reflects its
organization. Saying that a data set is
cataloged or that it is a generation data
set reflects a method of retrieving the
data set. Sequential, partitioned, and
direct access data sets can be cataloged;
however, an individual member of a PDS can­
not be cataloged because a member is not a
data set. A generation data set can only
be a sequential or direct access data set;

a generation data set cannot be a PDS or a
member of a PDS. (See the section "Job
Control Language" for information on how to
specify a generation data set.)

Data Set Labels

Data sets that reside on direct access
volumes have standard labels only~ data
sets that reside on magnetic tape volumes
can have standard labels or no labels.
Information, such as a data set identifier.,
volume sequence number, record format,
density, etc., is stored in the data set
labels. The information required in the DD

statement used to retrieve a labeled data
set is substantially less than that
required to retrieve an unlabeled data set.

Data Set cataloging

To relieve the programmer of the burden
of remembering the volume on which a par­
ticular data set resides, the operating
system provides a cataloging facility.
When a data set is cataloged, the serial
number of its volume is associated in the
catalog with the data set name. A pro­
grammer can refer to this data set without
specifying its physical location. Any data
set residing on a direct access or magnetic
tape volume can be cataloged.

Introduction 11

JOB CONTROL LANGUAGE

The FORTRAN programmer uses the job con­
trol statements shown in Table 1 to com­
pile, link edit, and execute programs.

Table 1. Job Control Statements
r----------T------------------------------1
!Statement I Function I

~----------+------------------------------~ !JOB !Indicates the beginning of a I
I !new job and describes that jobl
~----------+------------------------------~
!EXEC !Indicates a job step and de- I
I !scribes that job step; indi- I
I lcates the cataloged procedure I
I !or load module to be executed I
~----------+------~-----------------------~
IDD !Describes data sets, and con- I
I ltrols device and volume I
I I assignment I
~----------+------------------------------~
!delimiter !Separates data sets in the in-I
I !put stream from control state-I
I lments; it appears after each I
I !data set in the input stream I
L----------i------------------------------J

JOB MANAGEMENT

Job control statements are processed by
a group of operating system routines known
collectively as job management. Job man­
agement routines interpret control state­
ments, control the flow of jobs, and issue
messages to both the operator and the pro­
grammer. Job management has two major com­
ponents: a job scheduler and a master
scheduler.

The specific facilities available
through the job scheduler and the master
scheduler depend on the scheduling level
the installation selects during system
generation. Schedulers are available at
two levels -- the sequential scheduler and
the more powerful priority scheduler.

Sequential schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with a primary control program
(PCP) and those that provide multiprogram­
ming with a fixed number of tasks CMFT) use
sequential schedulers.

Priority schedulers process jobs accord­
ing to their relative priority and avail­
able system resources, and can accept input
data from more than one input stream. Sys­
tems that provide multiprogramming with a
variable number of tasks (MVT) use priority
schedulers.

CODING JOB CONTROL STATEMENTS

Job control statements are identified by
the initial characters // or /* in card
columns 1 and 2, and may contain three
fields -- name, operation, and operand (see
Figure 2).

NAME FIELD

The name contains between one and eight
alphameric characters, the first of which
must be alphabetic. The name begins in
card column 3 and is followed by one or
more blanks to separate it from the opera­
tion field. The name is used:

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to refer to information con­
tained in the named statement.

3. To relate DD statements to I/O state­
ments in the load module.

r---T---1
I FORMAT I APPLICABLE CONTROL STATEMENTS I
~------------~-----------------------------+---~
l//Name Operation Operand [Comment] I JOB,EXEC,DD I
I I I
I// Operation Operand [Comment] I EXEC,DD I
I I I
I/* [Comment] I delimiter I
L---i---J
Figure 2. Job Control Statement Formats

12

/

OPERATION FIELD

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

or, if the statement is a delimiter state­
ment, the operation field is blank. The
operation code is preceded and followed by
one or more blanks.

OPERAND FIELD

The operand field contains the parame­
ters that provide required and optional
information to the operating system.
Parameters are separated by commas, and the
operand field is ended by placing one or
more blanks after the last parameter.
There are two types of parameters, posi­
tional and keyword.

Positional Parameters: Positional parame­
ters are placed first in the operand field
and must appear in the specified order. If
a positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a comma.

Keyword Parameters: Keyword parameters
follow positional parameters in the operand
field. (If no positional parameters
appear, a keyword parameter can appear
first in the operand field: no leading
comma is required.) Keyword parameters are
not order depend·ent, i.e., they may appear
in any order. If a keyword parameter is
omitted, a comma is not required to indi­
cate the omission.

Subparameters: Subparameters are either
positional or keyword and are noted as such
in the definition of control statements.

Positional subparameters appear first in
a parameter and must appear in the speci­
fied order. If a positional subparameter
is omitted and other positional subparame­
ters follow, the omission must be indicated
by a comma.

Keyword subparameters follow positional
subparameters in a parameter. (If no posi­
tional subparameters appear, a keyword sub­
parameter can appear first in the parame­
ter: no leading comma is required.) Key­
word subparameters are not order dependent,
i.e., they may appear in any order. If a
keyword subparameter is omitted, a comma is
not required to indicate the omission.

COMMENTS

Comments must be separated from the last
parameter (or the * in a delimiter state­
ment) by one or more blanks and may appear
in the remaining columns up to and includ­
ing column 71.

CONTINUING CONTROL STATEMENTS AND COMMENTS

A control statement can be written in
card columns 1 through 71. If a control
statement exceeds 71 columns, it may be
continued onto the next card. If a state­
ment is continued, it must be interrupted
after the comma that follows the last
parameter on the card and a nonblank
character must be placed in column 72. The
continuation card must contain // in
columns 1 and 2, columns 3 through 15 must
be blank, and the continued portion of the
statement must begin in column 16.

comments are continued by placing a non­
blank character in column 72, // in columns
1 and 2 of the continuation card, and con­
tinuing the comment in any column after
column 15 (columns 3-15 must be blank).

There is no limit to the number of con­
tinuation cards that may be used for a
single control statement or comment.

Note: Excessive continuation cards should
be avoided whenever possible to reduce proc­
essing time for the control program.

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used in this publication to
define control statements is described in
the following paragraphs.

1. The set of symbols listed below are
used to define control statements, but
are never written in an actual
statement.

a. hyphen
b. or
c. underscore -d. braces { }

e. brackets []

f. ellipsis
g. superscript 1

The special uses of these symbols are
explained in paragraphs 4-10.

Job control Language 13

2. Uppercase letters and words, numbers,
and the set of symbols listed below
are written in an actual control
statement exactly as shown in the
statement definition. <Any exceptions
to this rule are noted in the defini­
tion of a control statement.>

a. apostrophe
b. asterisk * c. comma
d. equal sign
e. parentheses ()

f. period
g. slash /

3. Lowercase letters, words, and symbols
appearing in a control statement
definition represent variables for
which specific information is substi­
tuted in the actual statement.

Example: If name appears in a state­
ment definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

4. Hyphens join lowercase letters, words,
and symbols to form a single variable.

5.

Example: If member-name appears in a
statement definition, a specific value
(e.g., BETA) is substituted for the
variable in the actual statement.

Stacked items or items separated from
each other by the "or" symbol repre­
sent alternatives. Only one such
alternative should be selected.

Example: The two representations

A
B and AIBIC
c

have the same meaning and indicate
that either A or B or c should be
selected.

6. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

14

Example: The two representations

A
~ and Al~IC
c

have the same meaning and indicate
that either A or B or c should be
selected; however, if B is selected,
it need not be written, because it is
the default option.

7. Braces group related items, such as
alternatives.

Example: ALPHA=({AIBl£l,D)

indicates that a choice should be made
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D). If c is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

8. Brackets also group related items;
however, everything within the brack­
ets is optional and may be omitted.

Example: ALPHA=([AIBICl,D)

indicates that a choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is
selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA=(,D).

9. An ellipsis indicates that the preced­
ing item or group of items can be
repeated more than once in succession.

10.

Example: ALPHA[,BETA] •••

indicates that ALPHA can appear alone
or can be followed by ,BETA optionally
repeated any number of times in
succession.

A superscript refers to a prose de­
scription in a footnote.

Example:
{ .NEW}1

OLD
MOD

indicates that additional information
concerning the grouped items is con­
tained in footnote number 1.

11. Blanks are used to improve the reada­
bility of control statement defini­
tions. Unless otherwise noted, blanks
have no meaning in a statement
definition.

JOB STATEMENT

The JOB statement (Figure 3) is the
first statement in the sequence of control
statements that describe a job. The JOB
statement contains the following
information:

1. Name of the job.

2. Accounting information relative to the
job.

' ,'

r---------T---------T---1
I I I I
!Name I Operation I Operand I
I I I I
~---------+---------+---~ I I Positional Parameters
I I
//jobname JOB I [([account-numberll,accounting-information])1 2 3]

I
I C,programmer-namelq s e
I
I Keyword Parameters
I
I {MSGLEVEL=O}
I MSGLEVEL=l
I
I [COND=((code,operator)l,Ccode,operator)] ••• 7)8]

I
I [PRTY=nnl 9
I
I [MSGCLASS=x] 9
I

I I [REGION=nnnnnK]9
~---------i---------L---~
1If the information specified C"account-nwnber" and/or "accounting-information") con-
tains blanks, parentheses, or equal signs, it must be delimited by apostrophes
instead of pci.rentheses.

2 If only "account-number" is specified, the delimiting parentheses may be omitted.
3 The maximum number of characters allowed between the delimiting parentheses or apos­
trophes is 144.

qif "programmer-name" contains commas, parentheses, apostrophes, or blanks, it must be
enclosed within apostrophes.

5 When an apostrophe is contained within "programmer-name", the apostrophe must be
shown as two consecutive apostrophes.

6 The maximum number of characters allowed for "programmer-name" is 20.
7 The maximum number of repetitions allowed is 7.
Bif only one test is specified, the outer pair of parentheses may be omitted.

l 9This parameter is used with priority schedulers only. The sequential scheduler
I ignores it.
L----------------------------------~--
Figure 3. JOB Statement

3. Programmer's name.

4. Whether the job control statements are
printed for the programmer.

5. conditions for terminating the execu­
tion of the job.

6. A job priority assignment.

7. Direction for where messages should
come out.

8. Specification of main storage require­
ments for a job.

Examples of the JOB statement are shown
in Figure 4.

NAME FIELD

The "jobname" must always be specified;
it identifies the job to the operating sys-

tern. No two jobs being handled concurrent­
ly by a priority scheduler should have the
same "jobnarne".

OPERAND FIELD

Job Accounting Information

The first positional parameter can con­
tain the installation account number and
any parameters passed to the installation
accounting routines. These routines are
written by the installation and inserted in
the operating system when it is generated.
The format of the accounting information is
specified by the installation.

Job Control Language 15

Sample Coding form

Figure 4. Sample Job Statements

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce­
dure for the input reader. (Information on
the cataloged procedure for the input read­
er and how to write an accounting routine
may be found in the system Programmer's
Guide.> Otherwise, the account number is
optional.

Programmer's Name

The "programmer name" is the second
positional parameter. If no job accounting
inform~tion is supplied, its absence must
be indicated by a comma preceding the pro­
grammer's name. If neither job accounting
information nor programmer's name is pres­
ent, commas need not be used to indicate
their absence.

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

control Statement Messages

The MSGLEVEL parameter indicates the
type of control statement messages the pro­
grammer wishes to receive from the control
program.

MSGLEVEL=O
indicates that only control statement
errors and associated diagnostic mes­
sages are written for the programmer.

MSGLEVEL=l

16

indicates that all control statements
as well as control statement errors,
and associated diagnostic messages are
written for the programmer.

Note: If an error occurs on a control
statement that is continued onto one
or more cards, only one of the con­
tinuation cards is printed with the
diagnostics.

conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of that
job step. This generated code is tested
against the conditions stated in control
statements. The error codes generated are:

0 - No errors or warnings detected.

4 - Possible errors <warnings> detected,
execution should be successful.

8 - Errors detected, execution may fail.
(If the LOAD option is specified,
compilation continues. However, if
the error is found in an executable
statement, the statement is replaced
by a call to the IBERH routine
(IHCIBERH). If the resulting load
module is executed, IBERH is called
and execution is terminated. If the
NOLOAD option is specified, compila­
tion is terminated.

16 - Terminal errors detected, compiler
or linkage editor terminated abnor­
mally. (If a terminal error is
detected during load module execu­
tion, a 16 is issued.)

The COND parameter specifies conditions
under which a job is terminated. Up to
eight different tests, each consisting of a
code and an operator, may be specified to
the right of the equal sign. The code may
be any number between 0 and 4095. The
operator indicates the mathematical rela­
tionship between the code placed in the JOB.
statement and the codes issued by completed
job steps. If the relationship is true,
the job is terminated. The six operators
and their meanings are:

Operator
GT
GE
EQ
NE
LT
LE

Meaning
greater than
greater than or equal to
equal to
not equal to
less than
less than or equal to

For example0 if a code 8 is returned by
the compiler and the JOB statement
contains:

COND= (7, LT)

the job is terminated.

If more than one condition is indicated
in the COND parameter and any condition is
satisfied, the job is terminated.

Assigning Job Priority

To assign a priority other than the
default job priority (as established in the
input reader procedure), the parameter
PRTY=nn must be coded in the operand field
of the JOB statement. The "nn" is to be
replaced with a decimal number from 0
through 14 (the highest priority that can
be assigned is 14).

If the PRTY parameter is omitted, the
default job priority is assumed. This
parameter is used with the priority sched­
uler only. The sequential scheduler ig­
nores it.

Requesting a Message Class

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit.

The MSGCLASS=x parameter allows the mes­
sages issued by the priority scheduler to
be routed to an output class other than the
normal message class, A. The "x" is to be
replaced with an alphabetic or numeric
character. An output writer, assigned to
process this class, transfers the data to a
specific device.

If the MSGCLASS parameter is omitted,
the job scheduler messages are routed to
the standard output class, A. This parame­
ter is used with priority schedulers only.
The sequential scheduler ignores it.

Specifying Main Storage Requirements
for a Job

The REGION=nnnnnK parameter is used to
specify the amount of main storage to be
allocated for the job. The "nnnnn" is to
be replaced with the number of 1024-byte
areas to be allocated to the job. This
number can range from one to five digits.

If the REGION parameter is omitted, the
default region size (as established in the
input reader procedure) is assumed. This
parameter is used with priority schedulers
only. The sequential scheduler ignores it.

Note: If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement.

EXEC STATEMEN'I

The EXEC statement (Figure 5) indicates
the beginning of a job step and describes
that job step. The statement can contain
the following information:

1. Name of job step or procedure step.

2. Name of the cataloged procedure or
load module to be executed.

3. Compiler and/or linkage editor options
passed to the job step.

4. Accounting information relative to
this job step.

5. Conditions for bypassing the execution
of this job step.

6. A time limit for the job step or an
entire cataloged procedure.

7. Specification of main storage require­
ments for a job step or an entire
cataloged procedure.

Example 1 of Figure 6 shows the EXEC
statement used to execute a program.
Example 2 in Figure 6 shows an EXEC state­
ment used to execute a cataloged procedure.

NAME FIELD

The "stepname" is the name of the job
step or procedure step. It is required
when information from this job step is
referred to in a later job step. No two
steps in the same job should have the same
"stepname."

Job Control Language 17

OPERAND FIELD Specifying a Cataloged Procedure:

{ PROC=cataloged-procedure-name}
cataloged-procedure-name

Positional Parameter indicate that a cataloged procedure is
invoked. The "cataloged procedure
name" is the name of the cataloged
procedure. For example, The first parameter of an EXEC statement

must specify either the name of the cata­
loged procedure or program to be executed.
Each program load module) to be executed
must be a member of a library (PDS). The
library can be the system library
(SYSl.LINKLIB), a private library, or a
temporary library created to store a pro­
gram from a previous job step of the same
job.

// EXEC PROC=FORTHC
or

// EXEC FORTHC

indicates that the cataloged procedure
FORTHC is to be executed.

r-------------T---------T---1 I Name I Operation I Operand I
t-------------+---------+---------------------------------~-----------------------------i
I I I Positional Parameter I
l//[stepnameJ 1 IEXEC l(PROC=cataloged-procedure-name ~ I
I I 1,cataloged-procedure-name I
I I '? PGM=program-name I
I I PGM=*.stepname.ddname

I PGM=*.stepname.procstep.ddname

Keyword Parameters

[{~~~~.procstep2}=<option[,optionJ •••)3 ~ s]

[{~~~i.procstep2}=(accounting-information} 3 6 7]

I
I
I
I
I
I
I
I

I t{~~~~-procstep2}=((code,operator[,stepname[.procstep]]) J
I [, (.code,operator[,stepname[.procstep]])] ••• a)9J

I {ii:i.procstep2} =(minutes,seconds)]
10 11

I REGION.procstep2 =nnnnnK
I [{REGION }]10

t-------------~---------~---i
1 If information from this control statement is referred to in a later job step, "ste-

pname" is required.
2If this format is selected, it may be repeated in the EXEC statement, once for each
step in the cataloged procedure.

3 If the informat,ion specified contains blanks, parentheses, or equal signs, it must
be delimited by apostrophes instead of parentheses.

~If only one option is. specified and it does not contain any blanks, parentheses, or
equal signs, the a~limiting parentheses may be omitted.

5 The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 40. The PARM paramet~r cannot occupy more than one card.

6 If "accounting-information" does not contain commas, blanks, parentheses, or equal
signs, the delimiting parentheses may be omitted.

7 The maximum number of characters allowed between the delimiting apostrophes or
parentheses is 144.

8 The maximum number of repetitions allowed is 7.
I 9If only one test is specified, the outer pair of parentheses may be omitted.
l 10This parameter is used with priority schedulers only. sequential schedulers ignore
I it.
l11If only minutes are given, the parentheses need not be used. If only seconds are
I given, the parentheses must be used and a comma must precede the seconds. I
l---J
Figure 5. EXEC Statement

18

Sample Coding Form

FORTHCLG,
1-'---'-'-'-L--'---'-'-'-j-L--'-'-'-L--'---'-'-'-j-L--'-'_L_L..L--'-'-'-+-'-...L.J--'--'-L-'--'C-'-+-'--"-L..L-'-L_i_L_l I I I I I I I I t I I I I I I 1

I/, I l I J I I I I t I I I

II
II
II
II

Figure 6. Sample EXEC Statements

Specifying a Program in a Library:

PGM=program-name
indicates that a program is executed.
The "program name" is the member name
of a load module in the system library
{SYSl.LINKLIB) or private library.
For example,

// EXEC PGM=IEWL

indicates that the load module IEWL is
executed. CA load module in a private
library is executed by concatenating
that private library with the system
library through the use of a JOBLIB DD
statement. see the discussion con­
cerning JOBLIB under "Data Definition
{DD) Statement" in this section.)

Specifying a Program Described in a Pre­
vious Job Step:

PGM=*.stepname.ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previous job step. The
* indicates the current job; "step­
name" is the name of a previous step
within the current job; and "ddname"
is the name of a DD statement within
that previous job step. (The "step­
name" cannot refer to a job step in
another job.) The program referred to
must be a member of a PDS. For
example, in the statements,

AP, ID, EDIT', 2

' I

RT))'

//MCLX JOB ,JOHNSMITH,COND=(7,LT)

//STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=MATH(ARCTAN)

//STEPS EXEC PGM=*.STEP4.SYSLMOD

statement STEPS indicates that the
name of the program is taken from the
DD statement SYSLMOD in job step
STEP4. Consequently, the load module
ARCTAN in the PDS MATH is executed.

Specifying a Program Described in a Cata­
loged Procedure:

PGM=•.stepname.procstep.ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previously executed
step of a cataloged procedure. The *
indicates the current job; "stepname"
is the name of the job step that
invoked the cataloged procedure;
"procstep" is the name of a step with­
in the procedure; "ddname" is the name
of a DD statement within the procedure
step. {The "stepname" cannot refer to
a job step in another job.) For
example, consider a cataloged proce­
dure FORT,

Job control Language 1~

//COMPIL
//SYSPUNCH
//SYSPRINT
//SYSLIN

//LKED
//SYSLMOD

EXEC
DD
DD
DD

PGM=IEKAAOO
UNIT=SYSCP
SYSOUT=A
DSNAME=LINKINP

EXEC PGM=IEWL
DD DSNAME=RESULT(ANS)

Furthermore, assume the following
statements are placed in the input
stream.

//XLIV
//Sl

JOB ,SMITH,COND=(7,LT)
EXEC PROC=FORT

//S2 EXEC PGM=*.Sl.LKED.SYSLMOD
//FT03F001 DD UNIT=PRINTER
//FTOlFOOl DD UNIT=INPUT

Statement S2 indicates that the name
of the program is taken from the DD
statement SYSLMOD. The statement is
located in the procedure step LKED of
the cataloged procedure FORT, which
was invoked by statement Sl. Conse­
quently, the load module ANS in the
PDS RESULT is executed.

Keyword Parameters

The keyword parameters may refer to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

Options for the Compiler and Linkage
Editor:

The PARM parameter is used to pass
options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.)

PARM
passes options to the compiler or
linkage editor, when either is invoked
by the PGM parameter in an EXEC state­
ment, or to the first step in a cata­
loged procedure.

PARM.procstep
passes options to a compiler or link­
age editor step within the named cata­
loged procedure step.

The format for compiler options, and
those linkage editor options most applic­
able to the FORTRAN programmer is shown in
Figure 7.

20

Detailed information concerning compiler
and linkage editor options is given in the
section "FORTRAN Job Processing."

condition for Bypassing a Job Step:

This COND parameter (unlike the one in
the JOB statement) determines if the job
step defined by the EXEC statement is
bypassed.

COND
states conditions for bypassing the
execution of a program or an entire
cataloged procedure.

COND.procstep
states conditions for bypassing the
execution of a specific cataloged pro­
cedure step "procstep".

The subparameters for the COND parameter
are of the form:

(code,operator[,stepname])

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
statement. The subparameter "stepname"
identifies the previous job step that
issued the code. For example, the COND
parameter

COND=((5,LT,FORT),(5,LT,LKED))

indicates that the step in which the COND
parameter appears is bypassed if 5 is less
than the code returned by either of the
steps FORT or LKED.

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code,operator[,stepname.procstep])

If "stepname" is not given, "code" is
compared to all codes issued by previous
job steps.

Accounting Information:

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting rou­
tines for this job step.

ACCT.procstep
is used to pass accounting information
for a step within a cataloged
procedure.

r---1
I compiler: I
I I
I {PARM } {•LIST }{•BCD } I
I PARM.procstep =' [OPT={Ql112}] [,NAME=xxxxxxJ[,LINECNT=xxJ ,NOLIST ,EBCDIC I
I I
I {,SOURCE }{·DECK }{·MAP }{·LOAD }{·ID }{·EDIT }{·XREF }' 1 2. I
I ,NOSOURCE ~NODECK ,NOMAP ,NOLOAD ,NOID ,NOEDIT ,NOXREF I
I I
I I
I Linkage Editor: I
I I
I {PARM } [MAP l I
I PARM.procstep =< XRErj [,LETJ[,NCALJ[,LIST]) 1 I
~---1
l 1 The subparameters (options) are keyword subparameters. I
l 2 If the information specified contains blanks, parentheses, or equal signs, it must be I
I delimited by apostrophes instead of parentheses. I
L---J
Figure 7. Compiler and Linkage Editor Options

If both the JOB and EXEC statements con­
tain accounting information, the installa­
tion accounting routines decide how the
accounting information shall be used for
the job step.

Setting Job Step Time Limits:

To limit the computing time used by a
single job step or cataloged procedure, a
maximum time for its completion can be
assigned. If the job step is not completed
in this time, the entire job is terminated.

The time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439 (24 hours); the number of
seconds cannot exceed 59. (If the job step
execution time is expected to exceed 1439
minutes, TIME=1440 can be coded to elimi­
nate job step timing.)

If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed. This parameter is used
with priority schedulers only. Sequential
schedulers ignore it.

TIME
is used to assign a time limit for a
job step or for an entire cataloged
procedure. For a cataloged procedure,
this parameter overrides all TIME
parameters that may have been speci­
fied in the procedure.

TIME.procstep
is used to assign a time limit for a
single step of a cataloged procedure.
This parameter overrides, for the
named step, any TIME parameter which
is present. One parameter of this
form can be written for each step in
the procedure.

Specifying Main Storage Requirements for a
Job Step:

The REGION parameter may be specified in
the JOB statement, thus overriding REGION
parameters specified in any EXEC statements
and applying to all steps of the job.
However, if it is desired to allot to each
step only as much storage as is required,
the REGION parameter should be omitted fro;n
the JOB statement; each EXEC statement
should contain a RBGION parameter that
specifies the amount of main storage to be
allocated to the associated job step. The
size is specified in the form "rmnnpK"
where the "nnnnn" is to be replaced by the
number of 1024-byte areas to be allocated
to the job step. This number can range
from one to five digits.

If the .REGION parameter is omitted from
both JOB and EXEC statements, the default
region size (as established in the cata­
loged procedure for the input reader) is
assumed. This parameter is used with
priority schedulers only. Sequential
schedulers ignore it.

REGION
is used to specify a region size for
the job step or for an entire cata­
loged procedure. For a cataloged pro­
cedure, this parameter overrides all
REGION parameters that may have been
specified in the procedure.

REGION.procstep
is used to specify a region size for a
single step of a cataloged procedure.
This parameter overrides, for the
named step, any REGION parameter whicn
is present. One parameter of this
form can be written for each step in
the procedure. For a discussion of
the region size required for FOR'I'RAN

Job Control Language 21

jobs, see the section "Cataloged
Procedures."

DATA DEFINITION (DD) STATEMENT

The DD statement (Figure 8) describes
data sets. The DD statement can contain
the following information:

1. Name of the data set to be processed.

2. Type and number of I/O devices for the
data set.

3. Volume(s) on which the data set
resides.

4. Amount and type of space allocated on
a direct access volume.

5. Label information for the data set.

6. Disposition of the data set after
execution of the job step.

7. Allocation of data sets with regard to
channel optimization.

NAME FIELD

ddname
is used:

1. To identify data sets defined by
this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers used by the pro­
grammer in his source module.

3. To identify this DD statement to
other control statements in the
input stream.

The "ddname" format is given in "FORTRAN
Job Processing."

procstep.ddname

22

is used to override DD statements in
cataloged procedures. The step in the
cataloged procedure is identified by
"procstep". The "ddnarne" identifies
either:

1. A DD statement in the cataloged
procedure that is to be modified
by the DD statement in the input
stream, or

2. A DD statement that is to be added
to the DD statements in the proce­
dure step.

JOBLIB
is used to concatenate data sets with
the system library; that is, the
operating system library and the data
sets specified in the JOBLIB DD state­
ment are temporarily combined to form
one linrary. The JOBLIB statement
must immediately follow a JOB state­
ment, and the concatenation is in
effect only for the duration of the
job. In addition, "DISP=COLD,PASS)"
must be specified in the JOBLIB DD
statement. (See the discussion under
"Operand Field" concerning the DISP
parameter.) Only one JOBLIB statement
may be specified for a job.

The "PGM=program name" parameter in
the EXEC statement refers to a load
module in the system library. Howev­
er, if this parameter refers to a load
module in a private library, a JOBLIB
statement identifying the library in
which the.module resides must be spec­
ified for the job. The JOBLIB state­
ment concatenates this library with
the system library.

The library indicated in the JOBLIB
statement is searched for a module
before the system library is searched.

Blank Name Field

If the name field is blank, the data set
defined by the DD statement is concatenated
with the data set defined in the preceding
DD statement. In effect, these two data
sets are combined into one data set.
(Private libraries may also be concatenated
with the library specified in the JOBLIB DD
statement. Therefore, several libraries
can be concatenated with the system
library.>

Note: Data sets whose records are of dif­
ferent lengths and/or different formats
cannot be concatenated.

OPERAND FIELD

For purposes of discussion, parameters
for the DD statement are divided into six
classes. Parameters are used to:

Specify unit record data sets.

r----------------------T---------T---1

I Name IOperationjOperand1 I
r----------------------+---------+--1
I I I Positional Parameter I
I I I I

l//{~~~~~~ep.ddname} 2
l DD l[~UMMYJ 4 I

JOBLIB 3 I I DATA I
I I I
I !Keyword Parameters 5 6 I
I I I
I I DDNAME=ddname I
I I I

I I { ds name t I I I dsname(element) I
I I *.ddname I
I I DSNAME= *.stepname.ddname I
I I *.stepnarne.procstep.ddname I
I &name I
I &name(element) I

I

[UNIT=(subparameter-list)J

[DCB=(subparameter-list))

[VOLUME=(subparameter-list)J

[
SPACE=(subparameter-list) J
SPLIT=(subparameter-list)
SUBALLOC=(subparameter-list)

I [LABEL=(subparameter-list)J
I
llDISP=(subparameter-list) J
I SYSOUT=A
I SYSOUT=B
I SYSOUT=(x[,program-nameJ [,form-numberJ) 7 a
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I I [SEP=(subparameter-list)J I
r----------------------~---------~--1
11A DD statement with a blank operand field can be used to override parameters speci- I
I fied in cataloged procedures. (See "Overriding and Adding DD Statements" in the sec- I
I tion "Cataloged Procedures".) I
l 2 The name field is blank when concatenating data sets. (Note the exception for the I
I use of JOBLIB.) I
13 The JOBLIB statement precedes any EXEC statements in the job. (See the discussion I
I concerning JOBLIB under "Name Field" in this section.) I
l 4 If either the * or DATA the positional parameter is specified, keyword parameters I
I cannot be specified. I
l 5 If "subparameter-list" consists of only one subparameter and no leading comma Cindi- I
I eating the omission of a positional subparameter) is required, the delimiting paren- I
I theses may be omitted. I
16 If "subparameter-list" is omitted, the entire parameter must be omitted. I
17 This form of the parameter is used only with priority schedulers. I
18 If "program-name" and "form-number" are omitted, the delimiting parentheses can be I
I omitted. If only the form number is given, the parentheses must be used and two com- I
I mas must precede the form number. I
L---J
Figure P. Data Definition Statement

Job Control Language 23

• Retrieve a previously created and cata­
loged data set.

Retrieve a data set created in a pre­
vious job step in the current job and
passed to the current job step.

Retrieve a data set created but not
cataloged in a previous job.

Create data sets that reside on magnet­
ic tape or direct access volumes.

• Optimize I/O operations.

The DD statement parameters that apply to:

1. processing unit record data sets,

2. retrieving data sets created in pre­
vious job steps,

3. retrieving data sets created and cata­
loged in previous jobs

are described in this section. (See Figure
9 for applicable parameters.>

Parameters shown in Figure 8 and not
mentioned in this section are used to cre­
ate data sets and optimize I/O operations
in job ~teps. These parameters are dis­
cussed in the sections "Creating Data Sets"
and "Programming Considerations."

Specifying Data in the Input Stream:

*

DATA

24

indicates that a data set (e.g., a
source module or data) immediately
follows this DD statement in the input
stream Csee Figure 10). If the EXEC
statement for the job step invokes a
cataloged procedure, a data set may be
placed in the input stream for each
procedure step. If the EXEC statement
specifies execution of a program, only
one data set may be placed in the
input stream. The DD * statement must
be the last DD statement for the pro­
cedure step or program. The end of
the data set must be indicated by a
delimiter statement. The data cannot
contain // or /* in the first two
characters of the record.

also indicates data in the input
stream. The restrictions and use of
the DATA parameter are the same as the
*• except that // may appear in the
first and second positions in the
record.

r---1
I {* }1 I I DATA I
I I

I ldsname ! I I dsnameCelement) I
I *.ddname I
I DSNAME= *.stepname.ddname I
I •.stepname.procstep.ddname I
I &name I
I &narne(element) I
I I

UNIT=<name[,{nlP}2])3

DCB=(

{
PRTSP=O}
PRTSP=l
PRTSP=2
PRTSP=3

{MODE=E}{•STACK=l}
MODE=C ,STACK=2

SYSOUT=A

I
I
I
I
I
I
I
I
I
I
I

SYSOUT=B j
SYSOUT=Cx[,program-namel [,form-number]) I

{ SHR} ~DELETE J 4 OLD ,KEEP
DISP= (. NEW 1 PASS .) 5

MOD ,CATLG
,UNCATLG

LABEL=Csubparameter-list)6

I
I
I
I
I
I
I
I
I

I VOLUME=Csubparameter-list) 6 I
!---~
11 If either of these two parameters is I
!selected, it must be the only parameter I
jselected. I
j2If heither "n" nor "P" is specified, 1 I
lis assumed. I
j3If only "name" is specified, the delim- I
liting parentheses may be omitted. I
j4The assumption for the second subparame-1
jter is discussed in "Specifying the Dis- I
jposition of a Data set" in this section. I
l 5 The subparameters are positional. I
l 6See the section "Creating Data Sets." I
L---J
Figure 9. DD Statement

UNIT Parameter:

UNIT=(name[,{njP}])
specifies the name and number of I/O
devices for a data set (see Figure
10). When the system is generated,
the "name" is assigned by the operat­
ing system or the installation and
represents a device address, a device
type, or a device class. (See the
System Generation publication.) The
programmer can use only the assigned
names in his DD statements. For
example,

UNIT=190, UNIT=2311, UNIT=TAPE

nlP

where 190 is a device address, 2311 is
a device type, and TAPE is a device
class.

specifies the number of devices allo­
cated to the data set. If a number
"n" is specified, the operating system
assig~s that number of devices to the
data set. Parallel, "P", is used with
cataloged data sets when the required
number of volumes is unknown. The
control program assigns a device for
each volume required by the data set.

DCB Parameter:

DCB=PRTSP={01!1213}
is used to indicate line spacing for
the printer. The digits O, 1, 2, and
3 indicate no space, single space,
double space, and triple space,
respectively.

The carriage control character in a
FORTRAN record causes spacing before
printing. The PRTSP subparameter
causes spacing after printing.

{ MODE=E} {, STACK=l}
DCB= (MODE=c , STACI<= 2)

specify options for the card read
punch. The MODE subparameter indi­
cates whether the card is transmitted
in column binary or EBCDIC mode: c
specifies column binary, and E speci­
fies EBCDIC.

The STACK subparameter indicates
stacker selection for the card read
punch.

Routing a Data Set To An output Stream:
With the SYSOUT parameter, output data sets
can be routed to a system output stream and
handled much the same as system messages.

Sample Coding Form

Figure 10. Examples of DD Statements for
Unit Record Devices

SY SO UT= A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system output device.
No parameter other than the DCB param­
eter has any meaning when SYSOUT=A is
used. This form of the SYSOUT param­
eter may be specified for printer
data sets.

SYSOUT=B
can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler routes
the output data set to class B.

SYSOUT=(x[,program-name][,form-number])
indicates that the data set is normal­
ly written on an intermediate direct
access device during program execu­
tion, and later routed through an out­
put stream to a system output device.
The "x" is to be replaced by an alpha­
betic or numeric character that speci­
fies the system output class to be
used. Output writers route data from
the output classes to system output
devices. The DD statement for this
data set can also include a unit spec­
ification that describes the interme­
diate direct access device and an
estimate of the space required. If
these parameters are omitted, the job
scheduler provides default values as
the job is read and processed.

If there is a special installation
program to handle output operations,
its "program-name" should be speci­
fied. "Program-name" is the member
name of the program, which must reside
in the system library.

If the output data set is to be
printed or punched on a specific tJpe
of output form, a four-digit "form­
number" should be specified. This
form number is used to instruct the
operator, in a message issued at the
time the data set is to be printed, of
the form to be used.

Retrieving Previously created Data Sets

If a data set is created with standard
labels and cataloged in a previous job, all
information for the data set, such as rec­
ord format, density, volume sequence num­
ber, device type, etc., is stored in the
catalog and labels. This information need
not be repeated in the DD statement used to
retrieve the data set: only the name
(DSNAME) and disposition (DISP) is
required.

Job control Language 25

~If a data set was created in a previous indicates the thirdmost recent member
job step in the current job and its dispo- of the generation data group FIRING.
sition was specified as PASS, all the (See the Data Management publication
information in the previous DD statement is for the complete description of
available to the control program, and is generation data sets.> If "element"
accessible by referring to the previous DD is a name, a member of a partitioned
statement by name. To retrieve the data data set is indicated.
set, a pointer to a data set created in a ~- '• '"""'~
previous job step is specified by the I Note: Members of a ,Eartitioned data 1

DSNAME parameter. The disposition (DISP} set ifiPii ge read as input''"f.tl a•n& \
of the data set is also specified, along FORT o ject program or created as
with the UNIT parameter if more than one , output from a FORTRAN object program "
unit is to be allocated. ~ even though the member name has been

l specified in the DSNAME parameter of a:·
If a data set is created with standard\11 DD statement. ~·~· ~~--.~--·'"'

labels in a previous job but not cataloged~~-... -,..__.. ... ,,,.
information for the data set, such as rec- Referring to a Data Set in the Current Job
ord format, density, volume sequence num- Step:
ber, etc., is stored in the labels; the
device type information is not stored. To
retrieve the data set, the name (DSNAME},
disposition (DISP), volume serial number
(VOLUME}, and device (UNIT) must be
specified.

If a data set is created with no labels
and cataloged, device type information is
stored in the catalog. To retrieve the
data set, the name (DSNAME), disposition
(DISP), volume serial number (VOLUME), and
the LABEL and DCB parameters must be
specified.

Examples of the use of BD statements to
retrieve previously created data sets are
shown in Figure 11.

IDENTIFYING A CREATED DATA SET:
parameter indicates the name of
or refers to a data set defined
rent or a previous job step.

The DSNAME
a data set
in the cur-

Specifying a cataloged Data Set by Name:

DSNAME=dsname
the name of the data set is indicated
by "dsname." If the data set was pre­
viously created and cataloged, the
control prog~am uses the catalog to
find the data set and instructs the
operator to mount the required
volumes.

Specifying a Generation Data Group ~
DSNAME=dsname(element}

26

indicates either a generation data set
contained in a generation data group,
or a member of a partitioned data set.
The name of the generation data group
or partitioned data set is indicated
by "dsname"; if "element" is either 0
or a signed integer, a generation data
set is indicated. For example,

DSNAME=FIRING(~2)

DSNAME=*.ddname
indicates a data set that is defined
previously in a DD statement in this
job step. The * indicates the current
job. The name of the data set is
copied from the DSNAME parameter in
the DD statement named "ddname".

Referring to a Data Set in a Previous Job
Step:

DSNAME=*.stepname.ddname
indicates a data set that is defined
in a DD statement in a previous job
step in this job. The * indicates the
current job, and "stepname" is the
name of a previous job step. The name
of the data set is copied from the
DSNAME parameter in the DD statement
named "ddname". For example, in the
control statements:

//LAUNCH JOB
//JOBLIB DD DSNAME=FIRING,DISP=(OLD,PASS)
//Sl EXEC PGM=ROCKET
//FT01F001 DD DSNAflE=RATES(+l} ,DISP=OLD
//FT09F001 DD DSNAME=TIME,DISP=(OLD,PASS}
//S2 EXEC PGM=DISTANCE
//FT08F001 DD DSNAME=*.S1.FT09F001,
// DISP=OLD
//FT05F001 DD *

1

The DD statement FT08F001 in job step
S2 indicates that the data set name
(TIME) is copied from the DD statement
FT09F001 in job step Sl.

Referring to a Data Set in a Cataloged
Procedure:

DSNAME=•.stepname.procstep.ddname
indicates a data set that is defined
in a cataloged procedure invoked by a
previous job step in this job. The *
indicates the current job; "stepname"

Sample Coding Form

Figure 11. Retrieving Previously Created Data Sets

is the name of a previous job step
that invoked the cataloged procedure;
"procstep" is the name of a step in
the cataloged procedure. The name of
the data set is copied from the DSNAME
parameter in the DD statement named
"ddname".

Assigning Names to Temporary Data Sets:

DSNAME=&name
assigns a name to a temporary data
set. The control program assigns the
data set a unique name which exists
only until the end of the current job.
The data set is accessible in subse­
quent job steps by specifying "&name".
This option is useful in passing an
object module from a compiler job step
to a linkage editor job step.

DSNAME=&name(element)
assigns a name to a member of a tem­
porary PDS. The name is assigned in
the same manner as the "DSNAME=&name".
This option is useful in storing load
modules that will be executed in a
later job step in the current job.

SPECIFYING THE DISPOSITION OF A DATA SET:
The DISP parameter is specified for both
previously created data sets and data sets
being created in this job step.

{
SHRl ['DELETE] NEW ,KEEP

DISP=(OLD ,PASS)
MOD ,CATLG

,UNCATLG

is used for all data sets residing on mag­
netic tape or direct access volumes.

The first subparameter indicates the
status of the data set at the beginning of
or during the job step.

SHR

NEW

OLD

MOD

indicates that the data set resides on
a direct access volume and is used as
input to a job whose operations do not
prevent simultaneous use of the data
set as input to another job. '!'his
parameter has meaning only in a multi­
programming environment for existing
data sets. If it is omitted in a mul­
tiprogramming environment, the data
set is considered unusable by any
other concurrently operating job. If
it is coded in other than a multipro­
gramming environment, the system
assumes that the disposition of the
data set is OLD.

indicates that the data set is created
in this step. NEW is discussed in
more detail in the section "Creating
Data Sets."

indicates that the data set was
created by a previous job or job step.

indicates that the data set was
created in a previous job or job step,
but records can be added to the data
set. Before the first I/O operation
for the data set occurs, the data set
is positioned following the last rec­
ord. If MOD is specified and (1) the
volume serial number is not given, and
(2) the data set is not cataloged or
passed, MOD is ignored and NEW is
assumed.

The second subparameter indicates the
disposition of the data set at job step
termination.

Job control Language 27

DELETE

KEEP

PASS

causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

insures that the data set is kept
intact until a DELETE parameter is
specified in a subsequent job or job
step. KEEP is used to retain uncata­
loged data sets for processing in
future jobs. KEEP does not imply
PASS.

indicates that the data set is
referred to in a later job step. When
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the last job step that uses
the data set. When a data set is in
PASS status, the volume(s) on which it
is mounted is retained. If dismount­
ing is necessary, the control program
issues a message to mount the vol-
ume (s) when needed. PASS is used to
pass data sets among job steps in the
same job.

If a data set on an unlabeled tape is
being passed, the volume serial number
mu~t be specified in the VOLUME=SER=
parameter of the DD statement that
"passed" the data set.

Note: The PASS status of the private
library specified in a JOBLIB DD statement
always remains in effect f.or the dur_ation
of a job.

28

CATLG
causes the creation of a catalog entry
that points to the data set. The data
set can then be referred to in subse­
quent jobs or job steps by name (CATLG
implies KEEP).

UNCATLG
causes references to the data set to
be removed from the catalog at the end
of the job step.

If the second subparameter is not speci­
fied, no action is taken to alter the sta­
tus of the data set. If the data set was
created in this job, it is deleted at the
end of the current job step. If the data
set existed before this job, it exists
after the end of the job.

DELIMITER STATEMENT

The delimiter statement (see Figure 12)
is used to separate data from subsequent
control statements in the input stream, and
is placed after each data set in the input
stream.

,.----T---------T--------------------------1
IName!Operation!Operand I
~----+---------+--------------------------~
I/* I I I
L----~---------~--------------------------J
Figure 12. Delimiter Statement

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

To process a FORTRAN source module from
compilation through execution, three steps
are required: compile the source module to
obtain an object module, link edit the
object module to obtain a load module, and
execute the load module. For each of these
three steps, job control statements are
required to indicate the program or proce­
dure to be executed, to specify options for
the compiler and linkage editor, to specify
conditions for termination of processing,
and to define the data sets used during
processing. Because writing these job con­
trol statements can be time-consuming work
for the programmer, IBM supplies four cata­
loged procedures to aid in the processing
of FORTRAN modules. The use of cataloged
procedures minimizes the number of job con­
trol statements that must be supplied by
the programmer.

USING CATALOGED PROCEDURES

When a programmer uses cataloged proce­
dures, he must supply the following job
control statements.

1. A JOB statement.

2. An EXEC statement that indicates the
cataloged procedure to be executed.

3. A procstep.SYSIN DD statement that
specifies the location of the source
module(s) or the object module(s) to
the control program. (Note: If the
source module(s) and/or object mod­
ule(s) are placed in the input stream,
a delimiter statement is required at
the end of each data set.)

In addition, a GO.SYSIN DD statement
can be used to define data in the input
stream for load module execution. (A de­
limiter statement is required at the end of
the data.)

The job control statements needed to
invoke the procedures, and deck structures
used with the procedures are described in
the following text.

COMPILE

The cataloged procedure for compilation
is FORTHC. This cataloged procedure con-

FORTRAN JOB PROCESSING

sists of the control statements shown in
Figure 43 in "Cataloged Procedures." If
the EDIT option is specified, a SYSUTl data
set must be defined as a work data set for
the compiler; if the compiler XREF option
is specified, a SYSUT2 data set must be
defined as a work data set.

Figure 13 shows control statements that
can be used to invoke FORTHC. 'l'he SYSIN
data set containing the source module is
defined as data in the input stream for th.,
compiler. Note that a delimiter statement
follows the FORTRAN source module.

//jobname JOB
// EXEC FORTHC
//FORT.SYSIN DD *
r--·· 1

I FORTRAN Source Module I
L--J
/*

Figure 13. Invoking the cataloged Proce­
dure FORTHC

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 14.

//JOBSC JOB 00,FORTRANPROG,MSGLEVEL=l
//EXECC EXEC PROC=FORTHC
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 14. Compiling a Single source
Module

Batched Compile: A sample deck structure
to batch compile is shown in Figure 15.

//JOBBC JOB 00,FORTRANPROG,MSGLEVEL=l
//EXECC EXEC PROC=FORTHC
//FORT.SYSIN DD *
r---1
I First FORTRAN Source Module I
L---J

r---1
I Last FORTRAN Source Module I
L---J
/*

Figure 15. compiling Several source
Modules

FORTRAN Job Processing 29

When several source modules are entered
in the SYSIN data set for one job step, the
compiler recognizes the FORTRAN END state­
ment. If the next card is a delimiter
statement, control returns to the control
program at the end of the compilation. If
the next card is a FORTRAN statement, con­
trol remains with the FORTRAN compiler.

COMPILE AND LINK EDIT

The cataloged procedure to compile
FORTRAN source modules and link edit the
resulting object modules is FORTHCL. This
cataloged procedure consists of the control
statements shown in Figure 44 in "Cataloged
Procedures".

Figure 16 shows control statements that
can be used to invoke FORTHCL.

//jobname JOB
// EXEC FORTHCL
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*

Figure 16. Invoking the Cataloged Proce­
dure FORTHCL

LINK EDIT AND EXECUTE

The cataloged procedure to link edit
FORTRAN object modules and execute the
resulting load module is FORTHLG. This
cataloged procedure consists of the control
statements shown in Figure 45 in "Cataloged
Procedures".

Figure 17 shows control statements that
can be used to invoke FORTHLG.

//jobname JOB
// EXEC FORTHLG
//LKED.SYSIN DD *
r---1
I FORTRAN Object Module I
L---J
/*

Figure 17. Invoking the cataloged Proce­
dure FORTHLG

A sample deck structure to link edit and
execute, as one load module, several object
modules entered in the input stream is
shown in Figure 18.

30

The object module decks were created by
the DECK compiler option. The linkage edi­
tor recognizes the end of one module and
the beginning of another, and resolves
references between them.

//JOBBLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECLG EXEC PROC=FORTHLG
//LKED.SYSIN DD *
r---1
I First FORTRAN Object Module I
L---J

r---1
I Last FORTRAN Object Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 18. Link Edit and Execute

A sample deck structure is shown in
Figure 19 to link edit and execute, as one
load module, object modules that are mem­
bers of the cataloged sequential data set,
OBJMODS, which resides on a tape volume.
In addition, a data set in the input stream
is processed using the SYSIN data set.

//JOBBLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECLG EXEC FORTHLG
//LKED.SYSIN DD DSNAME=OBJMODS,DISP=OLD
//GO.SYSIN DD *
r---1
I Data I l-__ J

/*

Figure 19. Link Edit and Execute Object
Modules in a Cataloged Data Set

COMPILE, LINK EDIT, AND EXECUTE

The fourth cataloged procedure,
FORTHCLG, passes a source module through
three procedure steps - compile, link edit,
and execute. This cataloged procedure con­
sists of the control statements shown in
Figure 46 in "Cataloged Procedures."

Figure 20 shows control statements that
can be used to invoke FORTHCLG.

//jobname JOB
// EXEC PROC=FORTHCLG
//FORT.SYSIN DD *
r---1 I FORTRAN source Module I
L---J
/*

Figure 20. Invoking the Cataloged Proce­
dure FORTHCLG

Single Compile, Link Edit, and Execute:
Figure 21 shows a sample deck structure to
compile, link edit, and execute a single
source module.

//JOBSCLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECC EXEC FORTHCLG
//FORT.SYSIN DD *
r---1 I FORTRAN Source Module I
L---J
/*
//GO.SYSIN DD *
r---1
I Data I
L---J
/*

Figure 21. Single Compile,, Link Edit, and
Execute

Batched Compile, Link Edit, and Execute:
Figure 22 shows a sample deck structure to
batch compile, link edit, and execute a
FORTRAN main program and its subprograms.
The source modules are placed in the input
stream along with a data set that is read
using the SYSIN data set.

//JOBBCLG JOB 00,FORTPROG,MSGLEVEL=l
//EXECCLG EXEC FORTHCLG
//FORT.SYSIN DD *
r---1 I First FORTRAN Source Module I
L---J

r---1
I Last FORTRAN Source Module I
L-------~-~-----------------------------J
/*
//GO.SYSIN DD *
r---1
I Data I
L------------~---------------------------J
/*

Figure 22. Batched compile, Link Edit, and
Execute

COMPILER PROCESSING

The names for DD statements Cddnames)
relate I/O statements in the compiler with
data sets used by the compiler. These
ddnames must be used for the compiler.
When the system is generated, names for I/O
device classes are also established and
must be used by the programmer.

Compiler Name

The program name for the compiler is
IEKAAOO. If the compiler is to be executed
without using the supplied cataloged proce­
dures, an EXEC statement of the form

// EXEC PGM=IEKAAOO

must be used. (For more information on
procedures and options in coding IEKAAOO,
refer to Appendix A, "Invoking the FORTRAN
compiler.")

Compiler ddnames

The compiler can use seven data sets.
To establish communication between the com­
piler and the programmer, each data set is
assigned a specific ddname. Each data set
has a specific function and device require­
ment. Table 2 lists the ddnames, func­
tions, and device requirements for the data
sets.

To compile a FORTRAN source module, two
of these data sets are necessary -- SYSIN
and SYSPRINT, along with the direct access
volume(s) that contains the operating sys­
tem. However, with these two data sets,
only the source listing is generated by the
compiler. If a structured source listing
is to be generated, a SYSUT1 DD statement
must be supplied. If a cross reference
listing is to be generated by the compiler,
a SYSUT2 DD statement must be supplied. If
an object module is to be punched and/or
written on a direct access or magnetic tap.:!
volume, a SYSLIN and/or SYSPUNCH DD state­
ment must be supplied.

For the DD statements SYSIN, SYSABEND,
SYSUDUMP, or SYSPRINT, an intermediate
storage device may be. specified instead of
the card reader or printer. The intermedi­
ate storage device can be magnetic tape or
a direct access device.

FORTRAN Job Processing 31

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was written on interme­
diate storage by a previous job or job
step. If an intermediate device is speci­
fied for SYSPRINT, the map, listing, and
error/warning messages are written on
intermediate storage; a new job or job step
can print the contents of the data set.
When the SYSPRINT data set is written on
intermediate storage, carriage control
characters are placed in the records.

Table 2. Compiler ddnames
r--------T-----------T--------------------1
lddname !FUNCTION !DEVICE REQUIREMENTS I
~--------+-----------+--------------------i
ISYSIN !reading thel•card reader I
I jsource !•intermediate I
I I program I storage I
r--------+-----------+--------------------i
ISYSUT1 jwork data !•direct access I
I lset for thel•magnetic tape I
I !structured I I
I I source I I
I I listing I I
~-------+-----------+--------------------i
ISYSUT2 !work data !•direct access I
I jset for thel•magnetic tape I
I I compiler I I
I I cross I I
I I reference I I
I I listing I I
t--------+-----------+--------------------i
ISYSABENDjwriting thej•printer I
I or Jdump for anl•intermediate I
jSYSUDUMPlabnormal I storage I
I I termination I
~--------+-----------+--------------------i
ISYSPRINTlwriting !•printer I
I lthe storagej•intermediate I
I jmap, I storage I
I I listing, I I
I I label map, I I
I land I I
I I messages I I
r--------+------~----+--------------------i
ISYSPUNCHlpunching !•card punch1 I
I !the object !•direct access I
I jmodule deckj•magnetic tape I
t--~-----+-----------+--------------------i
jSYSLIN joutput datal•direct access I
I jset for thej•magnetic tape I
I !object !•card punch1 I
I jmodule,usedl I
I las input tol I
I I the linkage I I
I jeditor I I
t--------i-----------i--------------------i
l 1 These must not be the same card punches.I
L---J

32

compiler Device Classes

Names for input/output device classes
used for compilation are also specified by
the operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 3.

The data sets used by the compiler must
be assigned to the device classes listed in
Table 4.

Compiler Data Set Assumptions

Standard assumptions are made for the
DCB parameter of the data sets used by the
compiler. Table 5 contains the values set
for logical record length, record format,
and blocksize. Of these, only the value
for blocksize may be overridden with a DD
statement.

In addition, the programmer may specify
the number of buffers to be used for the
compiler data sets. If this information is
missing, the queued sequential access
method CQS,AM) default is used. This
default.is three buffers for an IBM 2540
card read punch and two buffers for all
other devices.

Table 3. Device Class Names
r----------T---------------T--------------1
!CLASS NAMEICLASS FUNCTIONSIDEVICE TYPE I
t----------+---------------+--------------i
ISYSSQ jwriting, !•magnetic tapel
I I reading, I •direct access I
I I backspacing I I
I I (sequential> I I
t----------+---------------+--------------i
ISYSDA jwriting, !•direct access!
I I reading, I I
I I backspacing, I I
I I updating I I
I !records in I I
I jplace (direct) I I
t----------+---------------+--------------i
jSYSCP jpunching cards !•card punch I
~----------+---------------+--------------i
IA ISYSOUT output !•printer I
I I I •magnetic tape I
t----------+---------------+--------------i
I B I SYSOUT card I •card punch I
I I image output I •1nagnetic tape I
L----------i--------------~i ______________ J

Table 4. Correspondence Between Compiler
ddnames and Device Classes

r--------T--------------------------------1
lddname !Possible Device Classes I
r--------+--------------------------------~
ISYSIN ISYSSQ,or the input stream device!
I I (specified by DD* or DD DATA), I
I !or a device specified as the I
I Icard reader I
r--------+--------------------------------~
ISYSUTl ISYSSQ I
r--------+--------------------------------~
ISYSUT2 ISYSSQ I
r--------+--------------------------------~
ISYSABENDIA,SYSSQ I
I or I I
ISYSUDUMPI I
r--------+--------------------------------~
ISYSPRINTIA,SYSSQ I
r--------+--------------------------------~
ISYSPUNCHIB,SYSCP1 ,SYSSQ,SYSDA I
r--------+--------------------------------~
ISYSLIN ISYSSQ,SYSDA,SYSCP1 I
r--------~--------------------------------~
l 1SYSPUNCH and SYSLIN must not be assigned!
I to the same card punch. I
l ___ J

Table 5. DCB Assumptions for the compiler
Data Sets

r----------T----------T--------T----------1
I ddname I LRECL I RECFM I BLKSIZE1 I
r----------+----------+--------+----------~
I SY SIN I 8 0 I FE I 8 0 I
r----------+----------+--------+----------~
I SYSPRINT I 137 I VEA I 141 I
r----------+----------+--------+~---------~
I SYSLIN I 8 0 I FB I 8 0 I
r----------+----------+--------+----------~
I SYSUT1 I 105 I FE I 105 I
r----------+----------+--------+----------~
I SYSUT2 I 1024-4096 2 I FB 11024-4096 2 I
r----------+----------+--------+----------~
I SYSPUNCH I 80 I FB I 80 I
r----------~----------~--------~----------~
1This value may be increased by overrid- I

ing the present value in the associated I
DD statement. I

2 The value is within this range. The I
actual value is calculated during execu-1
tion. The size of one of the tables I
used by the compiler (the address con- I
stant table) is compared with the track-I
size of the device specified by SYSUT2, I
and the LRECL and BLKSIZE fields are I
equated to the smaller value. If the I
BLKSIZE subparameter of the DCB paramet-1
er is specified on the SYSUT2 card, it I
must be an integral multiple of the I

I value chosen by the compiler for LRECL. I l ___ J

Compiler Options

Options may be passed to the compiler
through the PARM parameter in the EXEC
statement Csee Figure 23). The following
information may be specified:

1. Type of optimization, if any, desired
by the programmer.

2. Name assigned to the program.

3. Number of lines per page for the
source listing.

4. Whether an object module listing is
printed.

5. Whether the source module is coded in
Binary Coded Decimal (BCD) or Extendeu
Binary Coded Decimal Interchange Code
(EBCDIC).

6. Whether a list of source statements,
with their associated internal state­
ment numbers, is printed.

7. Whether an object module is punched.

8. Whether a table of names and a table
of labels, which appear in the source
module, are printed.

9. Whether the compiler writes the object
module on external storage for input
to the link editor.

10. Whether calls and function references
are identified with an internal state­
ment number.

11. Whether a structured source listing is
printed.

12. Whether a cross reference listing is
printed.

There is no specified order for compiler
options in the PARM parameter.

FORTRAN Job Processing 33

r---1
I {PARM } I
I PARM.procstep =< [OPT={.Q.1112}] [,NAME=xxxxxx1 C,LINECNT=xx] I
I I
I { 1 LIST } {• BCD } {•SOURCE } {•DECK } I
I ,NOLIS~ ,EBCDIC ,NOSOURCE ,NODECK I
I I
I {,MAP } {,LOAD }{·ID } {·EDIT }{·XREF } I I ,NOMAP ,NOLOAD ,NOID ,NOEDIT ,NOXREF)1 2 3 I
~---~
l1If the information specified contains blanks, parentheses, or equal signs, it must be I
I delimited by apostrophes instead of parentheses. I
12If only one option is specified and it does not contain any blanks, parentheses or I
I equal signs, the delimiting parentheses or apostrophes may be omitted. I
l 3 The maximum number of characters allowed between the delimiting apostrophes or paren- I
I theses is 40. The PARM parameter cannot occupy more than one card. I
L---J
Figure 23. Compiler Options

OPT={Ollj2}

The OPT=O option indicates that the com­
piler uses no optimizing techniques in pro­
ducing an object module. ~he OPT=l option
indicates that the compiler treats each
source module as a single program loop and
optimizes the loop with regard to register
allocation and branching. The OPT=2 option
indicates that the compiler treats each
source module as a collection of program
loops and optimizes each loop with regard
to register allocation, branching, common
expression elimination, and replacement of
redundant computations. The options OPT=l
and OPT=2 are described in more detail in
the section "Programming consi?erations".

Name=xxxxxx

The NAME option specifies the name
Cxxxxxx) assigned to a module (main program
only) by the programmer. If NAME is not
specified or the main program is not the
first module in a compilation, the compiler
assumes the name MAIN for the main program.
The name of a subprogram is always the name
specified in the SUBROUTINE or FUNCTION
statement.

The name appears in the source listing,
map, and object module listing. (See "Mul­
tiple Compilation Within a Job Step" in
this section for additional considerations
concerning the NAME option.)

LINECNT=xx

The LINECNT option specifies the maximum
number of lines Cxx),per page for a source
listing. If LINECNT is not specified, a
default of 50 lines per page is provided.
(The LINECNT optjon is effective only at
compile time.)

34

LIST or NOLIST

The LIST option indicates that the
object module listing. is written in the
data set specified by the SYSPRINT DD card.
(The statements in the object module list­
ing are in a pseudo assembly language for­
mat.) The NOLIST option indicates that no
object module listing is written. A
description of the object module listing is
given in the section "System output."

BCD or EBCDIC

The BCD option indicates that the source
module is written in Binary Coded Decimal;
EBCDIC indicates Extended Binary Coded
Decimal Interchange code. Intermixing of
BCD and EBCDIC in the source module is not
allowed.

1. If the EBCDIC option is selected,
statement numbers passed as arguments
must be coded as

&n

However, if the BCD option is
selected, statement numbers passed as
arguments must be coded as

and the $ must not be used as an
alphabetic character in the source
module.

(The n represents the statement
number.>

\
)

2. The compiler does not support BCD
characters either in literal data or
as print control characters. such
characters are treated as EBCDIC.
consequently, a BCD +, for example,
used as a carriage control character
will not cause printing to continue on
the same line. Programs keypunched in
BCD, therefore, should be carefully
screened if errors relating to literal
data and print control characters are
to be avoided.

SOURCE or NOSOURCE

The SOURCE option specifies that the
source listing is written in the data set
specified by the SYSPRINT DD statement.
The NOSOURCE option indicates that no
source listing is written. A description
of the source listing is given in the sec­
tion "System Output."

DECK or NODECK

The DECK option specifies that an object
module card deck is punched as specified by
the SYSPUNCH DD statement. The object
module deck can be used as input to the
linkage editor in a subsequent job. NODECK
specifies that no object module deck is
punched. A description of the deck is
given in the section "System Output."

MAP or NOMAP

The MAP option specifies that a table of
names and a table of labels are written in
the data set specified by the SYSPRINT DD
statement. These tables include those
names and labels which are generated by the
compiler as well as those which appear in
the source module. The NOMAP option speci­
fies that no tables are written. A de­
scription of the tables is given in the
section "System Output."

LOAD or NOLOAD

The LOAD option indicates that the
object module is written in the data set
specified by the SYSLIN DD statement. This
option must be used if the cataloged proce­
dure to compile and link edit, or to com­
pile, link edit, and execute is used; i.e.,
the object module is used as input to the
linkage editor in the current job. The
NOLOAD option indicates that the object
module is not written on external storage.
This option can only be used if the cata­
loged procedure to compile is used.

ID or NOID

The ID option specifies that the
generated code is to contain an identifier
for the compiler-assigned internal state­
ment number associated with each function
reference or CALL statement. When ID is
specified, the internal statement numbers
appear in the diagnostic traceback provided
for execution-time errors. (A description
of the traceback is given in the section
"System output.") The NOID option specifies
the omission of the identifiers in the
object program.

EDIT or NOEDIT

The EDIT option specifies that a struc­
tured source listing is written in the data
set specified by the SYSPRINT DD statement.
This listing indicates the loop structure
and the logical continuity of the source
program. If this option is used, OPT=2
must be specified and a DD statement with
the name SYSUTl must be supplied. The
NOEDIT opl1on specifies that no structured
source listing is written. A description
of the structured source listing is given
in the section "System output."

XREF or NOXREF

The XREF option specifies that a cross
reference listing of variables and labels
is written in the data set specified by the
SYSPRINT DD statement. This listing indi­
cates the internal statement number of
every statement in which a variable or
label is used. If this option is speci­
fied, a DD statement with the name SYSUT2
must be supplied. The NOXREF option speci­
fies that no cross reference listing is
written. A description of the compiler
cross reference listing is given in the
section "System Output."

Note: The default compiler options shown
in this publication are standard IBM
defaults; however, during system genera­
tion, an installation can choose its own
set of default options.

Multiple compilation Within a Job step

Several compilations may be performed
within one job step. The compiler recog­
nizes the FORTRAN END statement in a source
module, compiles the program, and deter­
mines if another source module follows the
END statement. If there is another source
module, another compilation is initiated
(see Figure 24).

FORTRAN Job Processing 35

r---1
l//JOBRA JOB .'FORTRAN PROG' I
l//STEPl EXEC FORTHC I
l//FORT.SYSIN DD * I
I 1 READ (8,lO)A,B,C I
I I
I I
I I
I E~ I
I SUBROUTINE CALC I
I I
I I
I END I
I/* I l ___ J

Figure 24. Multiple Compilation Within a
Job Step

Only one EXEC statement may be used to
initiate a job step; therefore, compiler
options can be stated only once for all
compilations in a job step.

In a multiple compilation, only the
first program (if it is a main program) is
given the name specified in the NAME
option; all subsequent main programs are
given the name MAIN. If the first program
is a subprogram,, the name specified in the
NAME option is not used. If the NAME
option is not specified, all main programs
in a multiple compilation are given the
name MAIN• For example, in the multiple
compilation,

//MULCOM JOB
// EXEC FORTHC,PARM.FORT='NAME=IOR'
//FORT.SYSIN DD *

READ(l,10)ALP,BETA

END
SUBROUTINE INVERT(A,B)

END
READ (5) P .• Q, R

END

the first main program is given the name
IOR; the third program is given the name
MAIN. The second program is assigned the
name INVERT.

When a multiple compilation is per­
formed, the SYSLIN data set contains all
the object modules, because only one SYSLIN
DD statement may be supplied for compiler
output. If tape or direct access output is
specified for the compiler, the object
modules are written sequentially on the
volume.

36

r-----------------T-----------------1
I Object Module 1 I Object Module 2 I
l-----------------~-----------------J

LINKAGE EDITOR PROCESSING

The linkage editor processes FORTRAN
object modules, resolves any references to
subprograms, and constructs a load module.
To communicate with the linkage editor, the
programmer supplies an EXEC statement and
DD statements that define all required data
sets; he may also supply linkage editor
control statements.

Linkage Editor Name

The program name for the linkage editor
is IEWL. If the linkage editor is executed
without using cataloged procedures, an EXEC
statement of the form

// EXEC PGM=IEWL

must be used.

Linkage Editor Input and output

There are two types of input to the
linkage editor: primary and secondary.

Primary input is a sequential data set
that contains object modules and linkage
editor control statements. (A member of a
PDS cannot be the primary input.) Any
external references among object modules in
the primary input are resolved by the link­
age editor as the primary input is proc­
essed. Furthermore, the primary input can
contain references to the secondary input.
These references are linkage editor control
statements and/or external references in
the FORTRAN modules.

Secondary input resolves the references
and is separated into two types: automatic
call library and additional input specified
by the programmer. The automatic call
library should always be the FORTRAN
library (SYSl.FORTLIB), which is the PDS
that contains the FORTRAN library subpro­
grams. Through the use of DD statements
the automatic call library can be concate­
nated with other partitioned data sets.
Three types of additional input may be
specified by the programmer:

An object module used as the main pro­
gram in the load module being con-

'\
;/

structed. This object module, which
can be accompanied by linkage editor
control statements, is either a member
of a PDS or·is a sequential data set.
The first record in the primary input
data set must be a linkage editor
INCLUDE control statement that tells
the linkage editor to insert the main
program.

• An object module or a load module used
to resolve external references made in
another module. The object module,
which can be accompanied by linkage
editor control statements, is a sequen­
tial data set or is a member of a PDS.
The load module, which is a member of a
PDS, cannot be accompanied by linkage
editor control statements. An INCLUDE
statement that defines the data set
must be given.

• A module used to resolve external
references made in another module. The
load module or object module, which can
be accompanied by linkage editor con­
trol statements, is a member of PDS. A
linkage editor LIBRARY control state­
ment that defines the data set to the
linkage editor must be given.

In addition, the secondary input can con­
tain external references and linkage editor
control statements. The automatic call
library and any of the three types of addi­
tional input may be used to resolve
references in the secondary input.

The load module created by the linkage
editor is always placed in a PDS. Error
messages and optional diagnostic messages
are written on intermediate storage or a
printer. In addition, a work data set is
required by the linkage editor to do its
processing. Figure 25 shows the I/O flow
in linkage editor processing.

Table 6. Linkage Editor ddnames

SYSLIN

SYSLIB

Automatic
Call
Library

Additional
Libraries

SYSUT 1

Work SVSLMOD
Dota Set Output

Module
Library

Linkage
Editor

SYS PRINT

Figure 25. Linkage Editor Input and Output

Linkage Editor ddnames and Device Classes

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific
ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 6.

Any data sets specified by SYSLIB or
SYSLMOD must be partitioned data sets.
(Additional inputs are partitioned data
sets or sequential data sets.> The ddname
for the DD statement that retrieves any
additional libraries is written in INCLUDE
and LIBRARY statements and is not fixed by
the linkage editor.

r--------------T---T----------------------------1
I ddname I FUNC'IION I DEVICE REQUIREMENTS I
~--------------+---+----------------------------~
ISYSLIN !primary input data, normally the output of !•direct access I
I I the compiler I •magnetic tape I
I I I •card reader I
~----~---------+-------------------------------~-----------+----------------------------~
ISYSLIB !automatic call library (SYSl.FORTLIB) !•direct access I
~--------------+---+----------------------------~
ISYSUTl !work data set !•direct access I
~--------------+---+----~-----------------------~
ISYSPRINT !diagnostic messages !•printer I
I I !•intermediate storage device!
~--------------+---+----------------------------~
ISYSLMOD !output data set for the load module I direct access I
~--------------+---+----------------------------~
luser-specifiedladditional libraries and object modules I direct access I
I I !•magnetic tape I
L--------------i---i----------------------------J

FORTRAN Job Processing 37

The device classes used by the compiler
(see Table 3) must also be used with the
linkage editor:--The data sets used by
linkage editor may be assigned to the
device classes listed in Table 7.

Table 7. correspondence Between Linkage
Editor ddnames and Device
Classes

r--------------T--------------------------1
I ddname !Possible Device Classes I
~--------------+--------------------------~
ISYSLIN ISYSSQ,SYSDA,or the input I
I !stream device (specified I
I lby DD *or DD DATA), or al
I !device specified as the I
I Icard reader I
~--------------+---------------------------~
ISYSLIB ISYSDA I
~--------------+--------------------------~
ISYSUTl ISYSDA I
~--------------+-------------------~-----~
I SYSLMOD I SYSDA I
~--------------+--------------------------~
ISYSPRINT IA,SYSSQ I
~--------------+--------------------------~
1user-specifiedlSYSDA,SYSSQ I
L--------------i--------------------------J

Additional Input

The INCLUDE and LIBRARY statements are
used to specify additional secondary input
to the linkage editor. Modules neither
specified by INCLUDE or LIBRARY statements
nor contained in the primary input are
retrieved from the automatic call library.

INCLUDE Statement:

r---------T------------~-----------------1
I Operation I Operand I
~---------+-------------------------------~
!INCLUDE lddname[(member-name I
I I [,member-name] ••• > l I
I I [,, ddname [(member-name I
I I [,member-name] ••• }]]... I
L--~------i-------------------------------J

The INCLUDE statement is used to include
either members of additional libraries or a
sequential data set. The "ddname" speci­
fies a DD statement that defines either a
library containing object modules and con­
trol statements or just load modules, or
defines a sequential data set containing
object modules and control statements. The
"member name" is not used when a sequential
data set is specified.

38

The linkage editor inserts the object
module or load module in the output load
module when the INCLUDE statement is
encountered.

LIBRARY Statement:

r-------~T-------------------------------1
I Operation I Operand I
~---------+-------------------------------~
!LIBRARY lddname(member-name I
I I [,member-name] ••• } I
I I C,ddname(member-name I
I I [,member-name] •••) l. . . I t_ ________ i _______________________________ J

The LIBRARY statement is used to include
members of additional libraries. The
"ddname" must be the name of a DD statement
that specifies a library that contains
either object modules and linkage editor
control statements, or just load modules.
The "member name" is an external reference
that is unresolved after primary input proc­
essing is complete.

The LIBRARY statement differs from the
INCLUDE statement: external references
specified in the LIBRARY statement are not
resolved until all other processing, except
references reserved for the automatic call
library., is completed by linkage editor.
(INCLUDE statements resolve external
references when the INCLUDE statement is
encountered.)

Example: Two subprograms, SUBl and SUB2,
and a main program, MAIN, are compiled by
separate job steps. In addition to the
FORTRAN library, a private library, MYLIB,
is used to resolve external references to
the symbols X, Y, and z. Each of the
object modules is placed in a sequential
data set by the compiler, and passed to the
linkage editor job step.

Figure 26 shows the control statements
for this job. (Note: Cataloged procedures
are not used in this job.} In this job, an
additional library, MYLIB, is specified by
the LIBRARY statement and the ADDLIB DD
statement. SUBl and SUB2 are included in
the load module by the INCLUDE statements
and the DD statements DDl and DD2. The
linkage editor input stream, SYSLIN, is two
concatenated data sets: the first data set
is the sequential data set &GOFILE which
contains the main program; the second data
set is the two INCLUDE statements and the
LIBRARY statement. After linkage editor
execution, the load module is placed in the
PDS PROGLIB and given the name CALC.

r---1
//JOBX JOB
//STEPl EXEC PGM=IEKAAOO,PARM='NAME=MAIN,LOAD'

//SYSLIN
//SYSIN

/*
//STEP2

//SYSLIN
//SYSIN

/*
//STEP3

//SYSLIN
//SYSIN

/*
//STEP4

//SYSLIB
//SYSLMOD
//ADDLIB
//DDl
//DD2
//SYSLIN
//

DD DSNAME=&GOFILE,DISP=(,PASS),UNIT=SYSSQ
DD *
Source module for MAIN

EXEC PGM=IEKAAOO,PARM='NAME=SUBl,LOAD'

DD DSNAME=&SUBPROGl,DISP=(,PASS),UNIT=SYSSQ
DD *
source module for SUBl

EXEC PGM=IEKAAOO,PARM='NAME=SUB2,LOAD'

DD DSNAME=&SUBPROG2,DISP=(,PASS),UNIT=SYSSQ
DD *
source module for SUB2

EXEC

DD
DD
DD
DD
DD
DD
DD
INCLUDE
INCLUDE
LIBRARY

PGM=IEWL

DSNAME=SYSl.FORTLIB,DISP=OLD
DSNAME=PROGLIB(CALC),UNIT=SYSDA
DSNAME=MYLIB,DISP=OLD
DSNAME=*.STEP2.SYSLIN,DISP=OLD
DSNAME=*.STEP3.SYSLIN,DISP=OLD
DSNAME=*.STEPl.SYSLIN,DISP=OLD

* DDl
DD2
ADDLIB(X,Y,Z)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ___ j

Figure 26. Linkage Editor Example

Linkage Editor Priority

If modules with the same name appear in
the input to linkage editor, the linkage
editor inserts only one of the modules.
The following priority for modules is es­
tablished by the linkage editor:

1. Modules appearing in SYSLIN or modules
identified by INCLUDE statements.

2. Modules identified by the LIBRARY
statement.

3. Modules appearing in SYSLIB.

For example. if a module named SIN
appears both in a module identified in an
LIBRARY statement and in the automatic call
library. only the module identified in the
LIBRARY statement is inserted in the output
load module.

If modules with the same name appear in
a single data set, only the module encoun­
tered first is inserted in the output load
module.

Other Linkage Editor Control Statements

In addition to the LIBRARY and INCLUDE
statements, other control statements are
available for use with the linkage editor.
These statements enable the user to: spec­
ify different names for load modules
(ALIAS), replace modules within a load
module (REPLACE), change program names
(CHANGE), and name entry points (ENTRY).
In addition, two statements (OVERLAY and
INSERT) enable the programmer to overlay
load modules. For a detailed description
of these control statements, see the Link­
age Editor publication. ~~-

FORTRAN Job Processing 39

Options for Linkage Editor Processing

The linkage editor options are specified
in an EXEC statement. The options that are
most applicable to the FORTRAN programmer
are:

{PARM } [MAP J
PARM.procstep =(XREF [,LET] [,NCAL]

[,LIST])

MAP or XREF

The MAP option informs linkage editor to
produce a map of the load module; this map
indicates the relative location and length
of main programs and subprograms. If XREF
is specified, a map of the load module is
produced and a cross reference list indi­
cating all external references in each main
program and subprogram is generated. The
map or map and cross reference list are
written in the data set specified by the
SYSPRINT DD statement. If neither option
is specified, no map or cross reference
listing is generated. Descriptions of the
map and cross reference listing are given
in "System Output."

The LET option informs the linkage edi­
tor to mark the load module executable even
though error conditions, which could cause
execution to fail., have been detected.

NCAL

The NCAL option informs linkage editor
that the libraries specified in the SYSLIB
DD statement or specified in LIBRARY state­
ments are not used to resolve external
references. (The SYSLIB DD statement need
not be specified.) The subprograms in the
librari~s are not inserted in the load
module; however. the load module is marked
executable.

The LIST option indicates that linkage
editor control statements are listed in
card-image format in the diagnostic output
data set specified by the SYSPRINT DD
statement.

Other options can also be specified for
the linkage editor. For a detailed de­
scription of all linkage editor options,
see the Linkage Editor publication.

40

LOAD MODULE EXECUTION

The ddnames used in executing load
modules must meet the format specified by
IBM.

When the system is generated, device
names are assigned by the operating system
and the insta'llation; the programmer
chooses devices by specifying either the
installation or operating system names.

Program Name

When "PGM=program name" is used to indi­
cate the execution of a load module, the
module must be in either the system library
CSYSl.LINKLIB) or a private library. When
the module is in a private library, a JOB­
LIB DD statement must be supplied to indi­
cate the name of the private library. For
example, assume that the load modules CALC
and ALGBRA in the library MATH and the load
module MATRIX in the library MATRICES are
executed in the following job:

//JOBN JOB 00,FORTPROG
//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)
// DD DSNAME=MATRICES,DISP=(OLD,PASS)
//STEPl EXEC PGM=CALC

//STEP2 EXEC PGM=MATRIX

//STEP3 EXEC PGM=ALGBRA

The JOBLIB DD statement concatenates the
private library MATH with the system
library. The private library MATRICES is
concatenated with the system library, by
concatenating the second DD statement with
the JOBLIB DD statement.

Execution ddnames

In the source module, data set reference
numbers are used to identify data sets.
Data sets processed by a FORTRAN load
module must be defined by DD statements.
The correspondence between a data set
reference number and a DD statement is made
by a ddname.

The ddname format that must be used for
load module execution is

FTxxFyyy

where xx is the data set reference number,
and yyy is a FORTRAN sequence number.

Data Set Reference Number (xx): When the
system is generated, the upper limit for
data set reference numbers is specified by
the installation; it must not exceed 99.
This upper limit does not correspond to the
number of input/output devices.

If an installation specifies an upper
limit of 99 for its data set reference num­
bers, the ddnames and data set reference
numbers correspond as shown in Table 8.
Note that 0 is not a valid data set
reference number.

Table 8. Load Module ddnames
r-----------------------------T-----------1
I Data Set Reference Numbers I ddnames I
~-----------------------------+-----------~
I 1 I FT01Fyyy I
I 2 I FT02Fyyy I
I I I
I I I
I I I
I 13 I FT13Fyyy I
I I I
I I I
I I I
I 99 I FT99Fyyy I
L-----------------------------i ___________ J

FORTRAN Sequence Number Cyyy): The FORTRAN
sequence number is used to refer to sepa­
rate data sets that are read or written
using the same data set reference number.
For the first data set, the sequence number
is 001; for the second 002; etc. This
sequence number is incremented when (1) an
END FILE statement is executed and a subse­
quent WRITE is issued with the same data
set reference number or (2) the "END=" exit
is taken following a READ and a subsequent
READ or WRITE is issued with the same data
set reference number.

A DD statement with the required ddname
must be supplied every time the WRITE, END
FILE, WRITE sequence occurs. If the FOR­
TRAN statements in the following example
are executed, DD statements with the
ddnames indicated by the arrows must be
supplied for the corresponding WRITE
statements.

Statements

15 FORMAT(3E10.3,I7)
10 FORMAT(3F10.3)

DO 20 I=l,J

ddnames

20 WRITE(17,10)A,B,C -----------> FT17F001

END FILE 17
DO 30 I=l,N

30 WRITE(17,15)X,Y,Z,K ---------> FT17F002
END FILE 17
DO 40 I=l,M,2

40 WRITE(17,10)A,B,C -----------> FT17F003

END FILE 17

Reference Numbers for Data Sets Specified
in DEFINE FILE Statements

The characteristics of any data set to
be used during a direct access input/output
operation must be described by a DEFINE
FILE statement.

The data set reference number specified
in any DEFINE FILE statement may refer to
only one data set. In other words, the
method described previously concerning
references to separate data sets that are
read or written using the same data set
reference number is prohibited. For
example, the statement

DEFINE·FILE 2(50,100,L,I2)

establishes a data set reference number of
02. All subsequent input/output statements
must refer to only one data set with the DD
name of FT02F001. (For a more detailed
explanation of the DEFINE FILE statement,
refer to the FORTRAN IV Language
publication.)

If the preceding instructions are used
to write a tape, the output tape (unla­
beled) has the appearance shown in Figure
27.

FORTRAN Job Processing 41

Retrieving Data Sets Written With Varying
FORTRAN Sequence Numbers

To retrieve the data sets shown in
Figure 27, the data set sequence number in
the LABEL parameter must be supplied in the
DD statement. The LABEL parameter is de­
scribed in detail in the section "creating
Data Sets."

{ ,NL}
LABEL=([data-set-sequence-number] ,SL)

The "data set sequence number" indicates
the position of the data set on a sequen­
tial volume. (This sequence number is
cataloged.) For the first data set on the
volurne 0 the data set sequence number is 1;
for the second. it is 2; etc.

If one of the data sets shown in Figure
27 is read in the same job step in which it
is written,, an END FILE statement must be
issued after the last WRITE instruction.
If the data set is to be read by the same
data set reference number, DD statement
FT17F004 is used to read the data set. The
execution of a READ statement following an
END FILE increments the FORTRAN sequence
number by 1. For example, the following DD
statements are used to write the three data
sets shown in Figure 27 and then read the
second data set:

//FT17F001 DD UNIT=TAPE,LAEEL=C,NL)
//FT17F002 DD UNIT=TAPE,LABEL=(2,NL),
// VOLUME=REF=*.FT17F001
//FT17F003 DD UNIT=TAPE,LAEEL=(3.,NL),
// VOLUME=REF=*.FT17F001
//FT17F004 DD VOLUME=REF=*.FT17F002
// DISP=OLD.LABEL=C2,NL),
// DSNAME=*.FT17F002,UNIT=TAPE

The VOLUME parameter indicates that the
data set resides on the same volume as the
data set defined by DD statement FT17F001.
DD statement FT17F004 refers to the data
set defined by DD statement FT17F002.

If the data set is read by a different
data set reference number, for example,
data set reference number 18; then, the DD
statement FT17F004 is replaced by the
statement.

x

x

x
x

//FT18F001 DD VOLUME=REF=*.FT17F002,
// DISP=OLD,LABEL=(2,NL)

If the data sets shown in Figure 27 are
cataloged for the purpose of later reading
them, and the following DD statements are
used to write the data sets,

x

//FT17F001 DD DSNAME=Nl,LABEL=Cl,NL), X
// DISP=(,CATLG),UNIT=TAPE, X
// VOLUME=SER=lb3K
//FT17F002 DD DSNAME=N2,LABEL=(2,NL), X
// DISP=(,CATLG),VOLUME=REF=*.FT17F001
//FT17F003 DD DSNAME=N3,LABEL=(3,NL), X
// DISP=(,CATLG),VOLUME=REF=*.FT17F002

the information necessary to retrieve the
data sets is the DSNAME, the LABEL, and the
DISP parameters. For example, if data set
reference number 10 is used to retrieve
data set Nl, the following DD statement is
required.

//FTlOFOOl DD DSNAME=Nl,DISP=OLD,
// LABEL=C,NL)

If the data set is not cataloged and
then retrieved in a later job, the VOLUME,
UNIT, and LABEL information is needed to
retrieve the data set. When the data set
is created, the programmer must assign a
specific volume to it.

x

Assume the data sets shown in Figure 27
were assigned the volume identified by the
volume serial number Alllll when the data
sets were created. If the second data set
written on the volume is retrieved by data
set reference number 10 in a later job, the
following DD statement is needed.

//FT10F001 DD VOLUME=SER=A11111,DISP=OLD, X
// LABEL=(2,NL),UNIT=SYSSQ

END Exit: Data sets written using the same
data set reference number can be retrieved
in the same job or job step by using a
facility provided in the FORTRAN language -
the "END=" exit in a READ statement. After
the last data set is written and the END
FILE is executed, a REWIND may be issued.
A subsequent READ using the same data set
reference number resets the FORTRAN
sequence number to 001. When the last

r----------------------------------~--1
I tapemark tapemark tapemark I

! -r-- T-~~r:sT --"-TiT~~-----T ____ :::::::T _______ TtT~TtT_ l
I IA,B.,CIA.,B,cl ••• 1A,B,cl 1x,Y,Z,KIX,Y,Z,Kl---IX,Y,Z,KI IA,B,Cl-··IA,B,cl I··· I I L _____ i _____ i ___ i _____ i_i _______ i _______ .1.-__ i _______ i_i _____ i ___ i _____ i_i_ I

I ------ I
I Written using DD Written using DD Written using DD I
I statement FT17F001 statement FT17F002 statement FT17F003 I
L--~--J
Figure 27. Tape Output for Several Data Sets Using Same Data Set Reference Number

42

record of a data set has been read, an
additional READ causes the END exit to be
taken. On the next READ, the sequence
number is incremented by 1. The data sets
shown in Figure 27 can be read by using the
following sequence of statements.

Note: The DD statements used to create the
data sets also suffice for retrieving the
data sets. No additional DD statements are
required.

REWIND 17

100 READ(17,10,END=200)A,B,C ---->FT17F001

GO TO 100

200 READ(17,15,END=300)X,Y,Z,K---->FT17F002

GO TO 200

300 READ(17,10,END=350)A,B,C ---->FT17F003

GO TO 300

350 REWIND 17

Concatenation: The data sets shown in
Figure 27 can be concatenated and read as a
single data set. The information necessary
(assume cataloged data sets) to retrieve
the data sets is the DSNAME, LABEL, and
DISP parameters. For example, if data set
reference number 16 is used to retrieve the
data sets, the following DD statements are
required.

//FT16F001 DD
//
// DD
//
// DD
//

DSNAME=Nl,DISP=OLD,
LABEL= (.,NL)

DSNAME=N2,DISP=OLD,
LABEL=(2,NL)

DSNAME=N3,DIS"P=OLD,
LABEL=(3,NL)

REWIND and BACKSPACE Statements

The REWIND and BACKSPACE statements
force execution of positioning operations
by the control program.

x

x

x

A REWIND statement instructs the control
program to position the volume on the

device so that the next record read or
written is the first record transmitted for
that data set reference number on that
volume, irrespective of data set sequence
numbers.

The effect of a BACKSPACE statement
depends upon the record format and the type
of control used to read or write the record
(FORMAT control or no FORMAT control). For
specific information concerning BACKSPACE,
see "Backspace operations" in the section
"Creating Data sets."

Error Message Data Set

When the system is generated, the
installation assigns a data set reference
number so that execution error messages and
information for traceback, DUMPs, and
PDUMPs can be written on a data set. The
programmer must define a data set, using a
DD statement with the ddname for that data
set reference number. This data set should
be defined using the SYSOUT=A parameter.
If the error message data set is on tape,
the DD statement should contain DCB parame­
ters for BLKSIZE=133 and RECFM=UA. (The
publication IBM System/360 Operating sys­
tem: System Generation, Form C28-6554,
explains the method of assigning the data
set reference number. See the description
of the OBJERR parameter in the section on
the FORTLIB macro instruction.)

Execution Device Classes

For load module execution, the program­
mer can use the same names assigned to
device classes used by the compiler (shown
in Table 3). However, additional names for
specific devices and device classes can be
assigned by the installation. 'I'he program­
mer can choose which device to use for his
data sets, and specify the name of the
device or class of devices in the UNIT
parameter of the DD statement.

DCB Parameter

The DCB parameter may be specified for
data sets when a load module is executed.
For information concerning the DCB parame­
ter, see the section "Creating Data Sets."

FORTRAN Job Processing 43

CREATING DATA SETS

Data sets are created by specifying
parameters in the DD statement or by using
a data set utility program. This section
discusses the use of the DD statement to
create data sets. (The Utilities publica­
tion discusses data set utility programs.)
No consideration is given to optimizing I/O
operations; this information is given in
the section "Program Optimization."

To create data sets, the DSNAME, UNIT,
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB
parameters are of special significance (see
Figure 29). These parameters specify:

DSNAME - name of the data set

UNIT - class of devices used for the
data set

VOLUME - volume on which the data set
resides

LABEL - label specification

DISP - the disposition of the data set
after the completion of the job
step

SYSOUT - ultimate device for unit record
data sets

DCB - tape density, record format,
record length

Examples of DD statements used to create
data sets are shown in Figure 28.

Sample Coding Form

II DCB=(DEN=2,RECF =U,BLKSilE=2500)

Figure 28. Examples of DD Statements

44

(')
t1
ro
Sl>
rT
I-'·
::l

'° t1
Sl>
rT
Sl>

00
ro
rT
Ul

~- _J

\
\dsname 'I~'

DSNAME=· dsname(element),
l&name \

~ ,&name(element) ~
D~Y
DDNAME=ddname

UNIT=(name[,CnjP}1))2

[

SER=(volume-serial-number[,volume-serial-number],,,)3]
dsname '

VOLUME=([PRIVATE][,RETAIN][,volume-sequence-number)[,volume-count] ,REF=l*.ddname ~)4

*.stepname.ddname l
*.stepname.procstep.ddname.J

SPACE=(1CYL 1 ,(primary-quantity[,secondary-quantity)[,directory-quantity])[,RLSE] ,ALX [,ROUND)&)?
\TRK l . [,MXIG] 5

taver·age-record-1 engthJ ,CONTIG

LABEL=([data-set-sequence-number) {,NL }f,EXPDT=yyddd]> 8
,SL l,RETPD=xxxx

{
SYSOUT=A '
SYSOUT=B
SYSOUT=(X[,program-name][,form-no.])

l. .NEWl~DELETE] 9 >
DISP=(t\O[D' :~~~)7

MOD ,CATLG
SHR ,UNCATLG j

~sname J [(Ol] [{Cl~ [~ _ .ddname l1 'E l 10 ff Ul[AIM][T][.BLKSIZE=xxxx] ·
DCB-(.stepname.ddname ,DENl2 ,TRTCH=lT ~BUFNO=GJ ~[.OPTCD=C] ,RECFM={vrAIMJ[T],LRECL=xxxx,BLKSIZE=xxxx l)11

.stepname.procstep.ddname (J (ET ff IVJB[AIMJ[T].LRECL=xxxx ,BLKSIZE=xxxx,I

,BLKSIZE=xxxx12

1If neither "n" nor "P" is specified, l is assumed.
2If only "name" is specified, the delimiting parentheses may be omitted.
3lf only one "volume-serial-number" is specified, the delimiting parentheses may be omitted.
4 SER and REF are keyword subparameters; the remaining subparameters are positional subparameters.
5The assumption made when this subparameter is omitted is discussed with the SPACE parameter.
8 ROUND can be specified only if "average-record-length" is specified for the first subparameter.
7All subparameters are positional subparameters.
8 EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional'subparameters.
11The assumption made when this subparameter is omitted is discussed in "Job Control Language."

1 BUFNO is the only DCB subparameter that should be specified for direct access data sets.
11The first subparameter is positional; all other subparameters are keyword subparameters.
12This form is used only with compiler and linkage editor blocked input and output.

~ Figure 29. DD Parameters for creating Data Sets

USE OF DD STATEMENTS FOR DIRECT-ACCESS DATA
SETS

Data sets that are referred to in FOR­
TRAN direct-access input/output statements
must first be defined in the DEFINE FILE
statement. However, the DD statement may
be used in conjunction with the DEFINE FILE
statement for designating other character­
istics of the data set.

If the user chooses to exercise this
option, caution must be taken in specifying
the parameters in the DD statement (Figure
29). The DUMMY parameter may not be used
with FORTRAN defined direct access data
sets because of a conflict in specifica­
tions. The remaining parameters of the DD
statement must conform to the specif ica­
tions in the DEFINE FILE statement. The
DEN and TRTCH subparameters of the DCB
parameter apply only to data sets residing
on magnetic tape volumes; consequently,
their use with FORTRAN defined direct
access data sets may also produce a
conflict.

The following statements illustrate the
possible conflicts that may arise between
the DEFINE FILE and DD statements.

DEFINE FILE 2(50,100,E,I2)

//FT02F001 DD DSNAME=BOOL,DISP=(NEW,CATLG)l
//
//
//
//

LABEL=(0 SL),UNIT=SYSDA,
VOLUME=(PRIVATE,RETAIN),
SPACE=(l00,(50,30),,CONTIG),
DCB=CDEN=l,RECFM=F,BLKSIZE=100)

2
3
4

The SPACE parameter must be included for
all direct access data sets, but it must
also conform to the DEFINE FILE statement;
the record length in both statements must
be the same. In the DCB parameter, the
subparameter DEN applies only to data sets
residing on magnetic tape volumes. If the
DUMMY parameter is specified in a DD state­
ment for a direct access data set, the con­
flict arises because the disposition of a
direct access data set is always checked
and a dummy data set has no disposition.

Note: The name field of the DD statement
must contain FTxxFOOl, where xx is the data
set reference number specified in the
DEFINE FILE statement.

DATA SET NAME

The DSNAME parameter specifies the name
of the data set. Only four forms of the
DSNAME parameter are used to create data
sets.

46

{DSNAME=dsname }
DSNAME=dsname(element)

specify names for data sets that are
created for permanent use.

Note: Members of a partitioned data
set cannot be read as input to a
FORTRAN object program or created as
output from a FORTRAN object program
even though the member name has been
specified in the DSNAME parameter of a
DD statement.

{DSNAME=&name }
DSNAME=&narne<element)

DUMMY

specify data sets that are temporarily
created for the execution of a single
job or job step.

is specified in the DD statement to
inhibit I/O operations specified for
the data set. A write statement is
recognized, but no data is trans­
mitted. (When the programmer speci­
fies DUMMY in a DD statement used to
override a cataloged procedure, all
parameters in the cataloged DD state­
ment are overridden.)

Note: A DUMMY data set should only be
read if the "END= " option is speci­
fied in the FORTRAN READ statement.
If the option is not specified, a read
causes an end of data set condition,
and termination of execution of the
load module.

DDNAME=ddname
indicates a DUMMY data set that will
assume the characteristics specified
in a following DD statement "ddname".
The DD statement identified by
"ddname" then loses its identity; that
is, it cannot be referred to by an
* ddname parameter. The statement
in which the DDNAME parameter appears
may be referenced by subsequent
* ddname parameters. If a subse­
quent statement identified by "ddname"
does not appear, the data set defined
by the DD statement containing the
DDNAME parameter is assumed to be an
unused statement. The DDNAME parame­
ter can be used five times in any
given job step or procedure step, but
no two uses can ref er to the same
"ddname". The D'DNAME parameter is
used mainly for cataloged procedures.

SPECIFYING I/O DEVICES

The name and number of I/O devices are
specified in the UNIT parameter,

UNIT=(narne[,{n!P}])

name

nlP

is given to the input/output device
when the system is generated.

specifies the number of devices allo­
cated to the data set. If a number,
"n" is specified, the operating system
assigns that number of devices to the
data set. Parallel, "P", is used with
cataloged data sets when the required
number of volumes is unknown. The
control program assigns a device for
each volume required by the data set.

SPECIFYING VOLUMES

The programmer indicates the volumes
used for the data set in the VOLUME
parameter.

VOLUME=([PRIVATE] [,RETAIN]

[,volume-sequence-number]

[,volume-count]

,SER=(volume-serial-number
[,volume-serial-number] •••)

ldsname }
,REF= •.ddname)

•.stepname.ddname
•.stepname.procstep.ddname

identifies the volume(s) assigned to
the data set.

PRIVATE
indicates that the assigned volume is
to contain only the data set defined
by this DD statement. PRIVATE is
overridden when the DD statement for a
data set requests the use of the pri­
vate volume with the SER or REF sub­
parameter. The volume is demounted
after its last use in the job step,
unless RETAIN is specified.

RETAIN
indicates that this volume is to
remain mounted after the job step is
completed. Volumes are retained so
that data may be transmitted to or
from the data set, or so that other
data sets may reside on the volume.
If the data set requires more than one
volume, only the last volume is
retained; the other volumes are dis­
mounted when the end of volume is
reached. If each job step issues a
RETAIN for the volume, the retained
status lapses when execution of the
job is completed.

volume-sequence-number
is a one-to-four digit decimal number
that specifies the sequence number of
the first volume of the data set that
is read or written. The volume
sequence number is meaningful only if
the data set is cataloged and volumes
lower in sequence are omitted.

volume-count

SER

specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used, this
subparameter is required for every
multi-volume output data set.

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphameric characters.
If it contains less than six charac­
ters, the serial number is left
adjusted and padded with blanks. If
SER is not specified, and DISP is not
specified as NEW, the data set is
assumed to be cataloged and serial
numbers are retrieved from the cata­
log, or inherited from passed data
sets in a previous step. A volume
serial number is not required for new
output data sets.

REF indicates that the data set is to
occupy the same volume(s) as the data
set identified by "dsname",
"*.ddname", "*.stepname.ddname", or
•.stepname.procstep.ddname. Table 9
shows the data set references.

Table 9. Data Set References
r---------------------T-------------------1
I Option I Refers to I
~---------------------+-------------------~
IREF=dsname la data set named I
I l"dsname" I
~---------------------+-------------------~
IREF=•.ddname la data set indicat-1
I I ea by DD statement I
I l"ddname" in the I
l I current job step I
~---------------------+-------------------~
IREF=•.stepname.ddnamela data set indicat-1
l led by DD statement I
I I "ddname" in the I
l !previous job step I
I I "stepname" I
~---------------------+-------------------~
IREF=•.stepname. la data set indicat-1
I procstep.ddnameled by DD statement I
l l"ddname" in the I
I I procedure step I
I I "procstep" invoked I
I lin the previous jobl
l !step "stepname" I
L---------------------i-------------------J

Creating Data Sets 47

When the data set resides on a tape
volume and REF is specified, the data set
is placed on the same volume, immediately
behind the data set referred to by this
subparameter. When this subparameter is
used, the UNIT parameter must be omitted.

If SER or REF is not specified, the con­
trol program allocates any non-private
volume that is available.

SPECIFYING SPACE ON DIRECT-ACCESS VOLUMES

The programmer indicates the amount of
space for a data set in the SPACE
parameter.

SPACE=(CYL {
TRK }

average-record-length

,(primary-quantity

[,secondary-quantity])

[
,MXIG J

[, RLSE] • ALX [,ROUND])
,CONTIG

The SPACE parameter specifies:

1. Units of measurement in which space is
allocated.

2. Amount of space allocated.

3. Whether unused space can be released.

4. In what format space is allocated.

{
TRK }
CYL
average-record-length

specifies the units of measurement in
which storage is assigned. The units
may be tracks (TRK), cylinders (CYL),
or records {average record length in
bytes expressed as a decimal number
less than or equal to 65,535).

Cpri.mary-quanti ty [,secondary-quantity J)
specifies the amount of space allo­
cated for the data set. The "primary
quantity" indicates the number of
records, tracks, or cylinders to be
allocated when the job step begins.
The "secondary quantity" indicates how
much space is to be allocated each
time previously allocated space is
exhausted. (Note: The maximum number
of times secondary allocation will be
made is 15.)

For example, by specifying:

SPACE=(120,(400,100))

48

RLSE

space is reserved for 400 records, the
average record length is 120 charac­
ters. End time space is exhausted,
space for 100 additional records is
allocated.

By specifying:

SPACE=(CYL,(20,2))

20 cylinders are allocated to the data
set. When previously allocated space
is exhausted, two additional cylinders
are allocated.

Note: When the FORTRAN programmer
uses a direct access data set, he must
allocate space on the direct access
volume in two places: the DEFINE FILE
statement in the source module and a
DD statement at load module execution.
He must also make certain that the DD
statement SPACE parameter contains an
adequate SPACE allocation, based on
the value specified in the DEFINE FILf
statement.

indicates that all unused external
storage assigned to a NEW or MOD data
set is released when processing of the
data set is completed.

[~~~G J
CONTIG

MXIG

ALX

specify the format of the space allo­
cated to the data set, as requested in
the "primary quantity".

requests the largest single block of
contiguous storage that is greater
than or equal to the space requested
in the "primary quantity".

requests all available storage on the
volume as long as there is at least as
much space as specified in the "pri­
mary quantity". The operating system
must be able to allocate at least the
amount specified as the "primary quan­
tity" by using, at most, five noncon­
tiguous areas of storage.

CONTIG
requests that the space indicated in
the "primary quantity" be contiguous.

If the subparameter is not specified,
or if any option cannot be fulfilled,
the operating system attempts to
assign contiguous space. If there is
not enough contiguous space, up to
five noncontiguous areas are
allocated.

ROUND
indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.

Note: If a data set might be written on a
direct access volume, the SPACE parameter
must be specified in the DD statement.

LABEL INFORMATION

The label parameter (LABEL) is used to
specify the type and contents of a data set
label.

{ •NL}
LABEL=([data-set-sequence-number] ,SL

[• EXPDT=yyddd]
1 RETPD=xxxx)

data-set-sequence-number

{~t}

is a four-digit number that identifies
the relative location of the data set
with respect to the first data set on
a tape volume. (For example, if there
are three data sets on a magnetic tape
volume, the third data set is identi­
fied by data set sequence number 3.)
If the data set sequence number is not
specified. the operating system
assumes 1.

specifies whether a data set is
labeled or unlabeled. SL indicates
standard labels. NL indicates no
labels (applicable only to data sets
residing on a tape volume).

[EXPDT=yyddd l
RETPD=xxxx J

specifies how long the data set shall
exist. The expiration date, EXPDT=
yyddd, indicates the year Cyy) and the
day (ddd) the data set can be deleted.
The period of retention, RETPD=xxxx,
indicates the period of time, in days,
that the data set is to be retained.
If neither is specified, the retention
period is assumed to be zero.

DISPOSITION OF A DATA SET

The disposition of a data set is speci­
fied by the DISP parameter; see "Data
Definition (DD) Statement". The same
options are used for both creating data
sets and retrieving previously created data
sets. When a data set is created, the sub­
parameters used are NEW, MOD, KEEP, PASS,
and CATLG.

WRITING A UNIT RECORD DATA SE'I' ON AN
INTERMEDIATE DEVICE

With the SYSOUT parameter, output data
sets can be routed to a system output
stream and handled much the same as system
messages.

SYSOUT=A
can be used with sequential schedulers
to indicate that the data set is to be
written on the system output device.
No parameter other than the DCB param­
eter has any meaning when SYSOUT=A is
used. This form of the SYSOUT parame­
ter may be specified for printer data
sets.

SYSOUT=B
can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler routes
the output data set to class B.

SYSOUT=(x[,prograrn-name] [,form-number])
indicates that the data set is normal­
ly written on an intermediate direct
access device during program execu­
tion, and later routed through an out­
put stream to a system output device.
The "x" is to be replaced by an alpha­
betic or numeric character that speci­
fies the system output class to be
used. Output writers route data from
the output classes to system output
devices. The DD statement for this
data set can also include a unit
specification that describes the
intermediate direct access device and
an estimate of the space required. If
these parameters are omitted, the job
scheduler provides default values as
the job is read and processed.

If there is a special installation
program to handle output operations,
its "program-name" should be speci­
fied. "Program-name" is the member
name of the program, which must reside
in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a four-digit "form
number" should be specified. This
form number is used to instruct the
operator, in a message issued at the
time the data set is to be printed, of
the form to be used.

Note: If the DEN subparameter is explicit­
ly specified f,or SYSOUT data sets, only
DEN=2 is allowed in the DCB parameter. In
addition, TRTCH=C must be specified in the
DCB parameter, when the SYSOUT data set (1)
is written on 7-track tape and (2) is corn-

Creating Data Sets 49

posed of variable-length records or con­
tains binary information.

DCB PARAMETER

For load module execution, the FORTRAN
programmer may specify record formats and
record lengths for sequentially organized
data sets that reside on magnetic tape or
direct access volumes. The DCB information
is placed in the labels for these data
sets.

DCB=(*.ddname ~dsname J
*.stepname.ddname
*.stepname.procstep.ddname

[,DEN=f0111213}] [,TRTCH={CIEITIET}]

[,BUFNO={lllll [,OPTCD=C]

l l{F I U} [A I Ml [T) [, BLKSIZE=xxxx] 1~
RECFM= V[AIMJ[T],LRECL=xxxx,BLKSIZE=xxxx

{FIV}B[AIMJ [TJ,LRECL=xxxx,
BLKSIZE=xxxx

,BLKSIZE=xxxx

REFERRING TO PREVIOUSLY SPECIFIED DCB
INFORMATION

The first subparameter

[
dsname J
*.ddname
*.stepname.ddname
*.stepname.procstep.ddname

is used to copy DCB information from the
data set label of a cataloged data set or
from a preceding DD statement. The copied
information is used for processing the data
set defined by the DD statement in which
the subparameter appears. Any subparame­
ters that follow this subparameter override
any copied DCB subparameters.

dsname
indicates that the DCB subparameters
of a cataloged data set "dsname" are
copied. The data set indicated by
"dsname" must be currently mounted and
it must reside on a direct access
volume.

*.ddname

50

indicates that the DCB subpararneters
in a preceding DD statement "ddname"
in the current job step are copied.

*.stepnarne.ddnarne
indicates that the DCB subpararneters
in a DD statement "ddnarne" that occurs
in a previous job step "stepname" in
the current job are copied.

*.stepname.procstep.ddname
indicates that the DCB subparameters
in the DD statement "ddname" are
copied from a previous step "procstep"
in a cataloged procedure. The proce­
dure was invoked by the EXEC statement
"stepname" in the current job.

DENSITY AND CONVERSION

The second subparameter indicates the
density and conversion for data sets resid­
ing on magnetic tape volumes.

DENSITY: Density is specified for data
sets residing on any magnetic tape volume.

DEN= { 0 I 11 213}
indicates the density used to write a
data set (see Table 10}.

Table 10. DEN Values
r-----T-----------------------------------1
I !Tape Recording Density (bits/inch) I
I DEN ~-----------------------------------~
!Value I Model 2400 I
I ~-----------------T-----------------i
I I 7-Track I 9-Track I
~-----+-----------------+-----------------i
I o I 200 I I
I 1 I 556 I I
I 2 I 800 I 800 I
I 3 I I 1600 I l _____ i _________________ i _________________ J

If DEN is not specified, the lowest applic­
able density is assumed.

CONVERSION: conversion is used only for
data sets residing on 7-track tape volumes.

TRTCH={CIEITIET}
indicates which conversion type is
used:

c - data conversion feature is
used

E - even parity is used

T - translation from BCD to EBCDIC
is required

ET - even parity is used and trans­
lation from BCD to EBCDIC is
required.

I NUMBER OF BUFFERS FOR SEQUENTIAL DATA SETS

The number of buffers required for any
application is specified by

BUFNO=x

where:

x=l or 2

CHAINED SCHEDULING

Chained scheduling may be requested by
specifying OPTCD=C as a DCB subparameter in
the DD statement. Although chained sched­
uling is not used for direct-access I/O
itself, it does produce faster formatting
of direct-access data sets. It is this
direct-access application of chained sched­
uling that is its most important FORTRAN
function, since use of chained scheduling
for sequential data sets does not appre­
ciably reduce FORTRAN execution time.
Note, too that when chained scheduling is
specified. the system makes use of about 2K
additional bytes of main storage to provide
the feature.

RECORD FORMAT

I ~ECFM=U [A I Ml [T] ~
RECFM=V[B][AjM] [T]
RECFM=F[B][A!Ml(T]

The characters U, v, F, and B represent

u - undefined records (records that do
not conform to either the fixed­
length or variable-length format)

V - variable-length records (records
whose length can vary throughout the
data set)

F - fixed-length records <records whose
length is constant throughout the
data set)

B - blocked records

The character A indicates the use of the
extended USA carriage control characters.
(See Appendix E); the character M indicates
the use of machine code control characters.

Note: If A is not
a carriage control
data and written.
provided.

specified (or assumed),
character is treated as
Single spacing is

The character T specifies the use of the
track overflow feature. Use of this fea­
ture results in more efficient utilization
of track capacity and allows records to be
written when the specified block size
exceeds track size. RECFM subparameter
specifications, and the type of processing
each is associated with, follow:

REC FM= UT
Formatted Sequential I/O

RECFM=VT
Formatted or Unformatted Sequential
I/O

RECFM=FT
Direct Access I/O or Formatted Sequen­
tial I/O

Note that backspacing is not allowed when
track overflow is specified. Therefore, a
FORTRAN program using the track overflow
feature may not contain the BACKSPACE
statement.

RECORD LENGTH, BUFFER LENGTH, AND BLOCK
LENGTH

For unblocked, fixed-length or undefined
records, the record length and the buffer
length are specified by

BLKSIZE=xxxx (See Table 11.)

For unblocked variable-length records,
the record length is specified by

LRECL=xxxx Clsxxxxs3624);

buffer length is specified by

BLKSIZE=xxxx (See Table 11.)

For all blocked records, the record
length is specified by

LRECL=xxxx (lsxxxxs3624);

block length and buffer length are speci­
fied by

BLKSIZE=xxxx Csee Table 11.)

Creating Data Sets 51

Table 11. Load Module DCB Parameter Default Values
r-----------------------T------------------------------1
I Sequential Data Sets I Direct Access Data Sets I

r-------------------T------------f-----------T-----------f-----------T------------------~
I Data Set I I Default I Default I Default I Default LRECL I
I Reference Number I ddname I BLKSIZE1 I RECFM2 I RECFM I or BLKSIZE I
r-------------------+------------+-----------+-----------+-----------+------------------~
I 1 I FTO lFyyy I 8 0 0 I u I F I I
r-------------------+------------t-----------+-----------+-----------~ I
I 2 I FT02Fyyy I 800 I U I F I The value spec-I
r-------------------+------------t-----------+-----------t-----------~ I
I 3 I FT03Fyyy I 800 I U I FA3 I ified as the I
r-------------------+------------+-----------t-----------+-----------~ I
I 4 I FT04Fyyy I 800 I U I F I maximum size of
r-------------------+------------+-----------+-----------+-----------~
I 5 I FT05Fyyy I 80 I F I F I a record in the
r-------------------+------------+-----------+-----------+-----------~
I 6 I FT06Fyyy I 133 I UA3 I F I DEFINE FILE
r-------------------+------------+-----------+-----------+-----------~
I 7 I FT07Fyyy I 80 I F I F I statement.
r-------------------+------------+-----------+-----------+-----------~
I 8 I FT08Fyyy I 800 I u I F I
I I I I I I
I I I I I I
I I I I I I
I 99 I FT99Fyyy I 800 I u I F I r-------------------i ____________ i ___________ i ___________ i ___________ i __________________ ~
j1If the records have no FORMAT control, the default LRECL is 4 less than BLKSIZE, where!
I the default BLKSIZE is as specified in this table. For direct access data sets, I
I blocksize is usually limited by track capacity, unless track overflow has been I
I specified. I
j2If the records have no FORMAT control, the default RECFM is v (F if it is direct I
I access). I
j 3 The first character in the record is for carriage control. I
L---J

FORTRAN Records and Logical Records

In FORTRAN, records for sequential data
sets are defined by specifications in
FORMAT statements and by READ/WRITE lists.
A record defined by a specification in a
FORMAT statement is a FORTRAN record (see
the FORTRAN IV Language publication). A
record defined by a READ/WRITE list is a
logical record. Within each category,
there are three types of records: fixed­
length, variable-length, and undefined. In
addition, fixed-length and variable-length
records can be blocked.

UNBLOCKED RECORDS, FORMAT CONTROL: For
fixed-length and undefined records, the
record length and buffer length are speci­
fied in the BLKSIZE subparameter. For
variable-length records, the record length
is specified in the LRECL subparameter; the
buffer length in the BLKSIZE subparameter.
The information coded in a FORMAT statement
indicates the FORTRAN record length (in
bytes).

Fixed-Length Records: For unblocked fixed­
length records written under FORMAT con­
trol, the FORTRAN record length must not
exceed BLKSIZE (see Figure 30).

52

Example: Assume BLKSIZE=44

10 FORMATCF10.5,I6,2F12.5,'SUMS')
WRITE(20,10)AB,NA,AC,AD

r - - - - - - - BLKSIZE - - - - - - - - -,
I I
I - - - - - - FORTRAN Record - - - - - - - ---j

I

44 Bytes of Dato I
Figure 30. FORTRAN Record (FORMAT Control)

Fixed-Length Specification

If the FORTRAN record length is less
than BLKSIZE, the record is padded with
blanks to fill the remainder of the buffer
(see Figure 31). The entire buffer is
written.

Example: Assume BLKSIZE=56

5 FORMAT(F10.5.,I6,F12.5, 'TOTAL')
WRITE(15,5)BC,NB,BD

I - - - - - - - BLKSIZE - - - - - - - -,

I f- - - - - - - - Written Record - - - - - - -1
I- - - FORTRAN Record - - --, I
I I I

I 33 Bytes of Data I 23 Bytes of Blanks I

Figure 31. FORTRAN Record (FORMAT Control)
Fixed-Length Specification and
FORTRAN Record Length Less Than
BLKSIZE

Variable-Length Records: For unblocked
variable-length records written under
FORMAT control. LRECL is specified as four
greater than the maximum FORTRAN record
length; and BLKSIZE as four greater than
LRECL. These extra eight bytes are
required for the four-byte block control
word (BCW) and the four-byte segment con­
trol word CSCW), as shown in Figure 32.
The BCW (see Figure 37) contains the length
of the block; the sew (see Figure 38) con­
tains the length of the record segment,
i.e., the data length plus four bytes for
the sew.

I----- --- -- BLKSIZE-- - - - ------,

I I
I I
I ,-----------LRECL-----------1

I I :
I I r ·- - - - - - -FORTRAN Record - - - - - - -1
I I I I

iBCWlscwl Data I
Figure 32. FORTRAN Record (FORMAT Control)

Variable-Length Specification

If the data length is less than
(LRECL-ij), the unused portion of the buffer
is not written (see Figure 33).

I - - - - - - - - - - BLKSIZE - - - - - - - - - -- 1

I I
1 _ - - - - Written Record - - - - -l I

I I I
I ~----------~ECL-~--------~

I : 1 I I I :-- --- FORTRAN Record - - -j I

I I I I I

IBcwjscwj Data I -~~0~~==]
Figure 33. FORTRAN Record (FORMAT Control)

With Variable-Length Specifica­
tion and the FORTRAN Record
Length Less Than (LRECL-ij)

Undefined Records: For undefined records
written under FORMAT control. BLKSIZE is
specified as the maximum FORTRAN record
length. If the FORTRAN record length is
less than BLKSIZE, the unused portion of
the buffer is not written (see Figure 3ij).

,--- ------- BLKSIZE - - - -- -- -- ~

I :
f-- - - - FORTRAN Record - - - - -, I
I I I
I I I

I Data I = ~~~tten==J
Figure 3ij. FORTRAN Record (FORMAT Control)

With Undefined Specification
and the FORTRAN Record Length
Less Than BLKSIZE

BLOCKED RECORDS, FORMAT CON'l'ROL: For all
blocked records, the record length is spec­
ified in the LRECL subparameter; the block
length and buff er length in the BLKSIZE
subparameter.

Fixed-Length Records: For blocked fixed­
length records written under FORMAT con­
trol, LRECL is specified as maximum possi­
ble FORTRAN record length, and BLKSIZE must
be an integral multiple of LRECL. If the
FORTRAN record length is less than LRECL,
the rightmost portion of the record is
padded with blanks (see Figure 35).

Example: Assume BLKSIZE=ij8 and LRECL=2ij

10 FORMAT(I2,Fij.1,F8.ij,F10.5)
20 FORMAT(I3,F9.ij)

WRITEC13,10)N.B,Q,S

WRITE (13, 20) K, Z

- - - - - - - - - -- BLKSIZE - - - - - - - - - -1
I I
L - - - - - - - - -Written Block - -- - - - - - -1
I I
I-- - -- --LRECL - -- - ---, -----LRECL - - --1
I I FORTRAN I
i-----FORTRANRecord----f- Record -1 I
I I I I

12 12 Bytes

24 Doto Bytes Data Bytes of
Blanks

Figure 35. Fixed-Length Blocked Records
Written Under FORMAT Control

Variable-Length Records: For blocked
variable-length records written under
FORMAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be at least four
greater than LRECL. The four bytes are

Creating Data Sets 53

required for the block control word (BCW)
that contains the block length. The data
length must be equal to or less than
(LRECL-4). These four bytes are used for
the segment control word (SCW) that con­
tains the record-length indicator.

If a WRITE is executed and the amount of
space remaining in the present buffer is
less than LRECL. only the filled portion of
this buffer is written <see Figure 36); the
new data goes into the next buffer. Howev­
er, if the space remaining in a buffer is
greater than LRECL, the buffer is not writ­
ten, but held for the next WRITE (see
Figure 36). If another WRITE is not
executed before the job step is terminated,
then the filled portion of the buffer is
written.

Example: Assume BLKSIZE=28 and LRECL=l2.

30 FORMAT(I3,F5.2)
40 FORMAT{F4.1)
50 FORMAT(F7.3)

WRITE{l2.30)M,Z
WRITE{12,40)V
WRITE(l2.50)Y

,-----------ITT:RSm-----------1
I I
f----- --'- - Written Block - - -----, I

: I
r- - - - LRECL - ---,--- - -LRECL- - - --1
I I ' I
I ,--FORTRAN Record--1 r_FORTRAN_j I
I 1 I 1 Record 1 I
I 1 I I I I

4
----,
4 Bytes I

Not I
Written I

sew sew 8 Data Bytes ~cw Data
Bytes _____ ..

,--FORTRAN Rec.ord- -,
I I
I I

scwl
This space of 13 bytes

BCW 7 Data Bytes Ready far next WRITE.
(space> LRECL)

Figure 36. Variable-Length Blocked Records
Written Under FORMAT Control

NO FORMAT CONTROL: Only variable-length
records can be written without format con­
trol: i.e •• the RECFM subparameter must be
V. (If nothing is specified, V is
assumed.)

Records written with no FORMAT control
have the following properties:

54

The length of the logical record is
controlled by the type and number of
variables in the input/output list of
its associated READ or WRITE statement.

A logical record can be physically
recorded on an external medium as one
or more record segments. Not all seg­
ments of a logical record must fit into
the same physical record (block).

Three quantities control the manner in
which records are placed on an external
medium: the block size (as specified
by the BLKSIZE parameter), the segment
length (as specified by the LRECL
parameter), and the logical record (as
defined by the length of the I/O list).
BLKSIZE and LRECL are specified as part
of the DCB parameter of the data
definition (DD) statement. If not
specified, FORTRAN provides default
values.

Each block begins with a 4-byte block
control word (BCW); each segment begins
with a 4-byte segment control word CSCW).
The sews and BCWs are provided by the sys­
tem. Each buffer begins with a four~byte
block control word CBCW). The sews and
BCWs are provided by the system.

The format of a BCW is given in Figure
37.

r--------------------T--------------------1
I block-length I reserved I
L--------------------i--------------------J

2 bytes 2 bytes

Figure 37. Format of a Block control Word

where:

block-length
is a binary count of the total number
of bytes of information in the block.
This includes four bytes for the BCW
plus the sum of the segment lengths
specified in each sew in the block.
(The permissible range is from 8 to
32,767 bytes.)

reserved
is two bytes of zeros reserved for
system use.

The format of an sew is given in Figure
38.

r--------------------T----------T---------1
I segment-length I code !reserved I
L--------------------i __________ i _________ J

2 bytes 1 byte 1 byte

Figure 38. Format of a Segment control
Word

where:

segment-length
is a binary count of the number of
bytes in the sew (4 bytes) plus the
number of bytes in the data portion of
the segment following the sew. CThe
permissible range is from 4 to 32,763
bytes.)

code
indicates the position of the segment
with respect to the other segments (if
any) of the record. Bits O through 5
are reserved for system use and are
set to O. Bits 6 and 7 contain the
codes:

Code
00

01

10

11

Meaning
This segment is not followed or
preceded by another segment of
the record.
This segment is the first of a
multisegment record.
This segment is the last of a
multisegment record.
This segment is neither the
first nor last of a multiseg­
ment record.

reserved
is a byte of zeros reserved for system
use.

Unblocked Records: For unblocked records
written without FORMAT control the value of
BLKSIZE is equal to LRECL + 4. (The four
additional bytes are for the BCW.)

If the logical record length is less
than or equal to LRECL-4, the logical rec­
ord comprises one record segment. Hence,
for each READ or WRITE statement issued,
one record segment, i.e., one block, is
transmitted (see Figure 39). Note that the
unused portion of the block is not
transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where: N=logical record
length/LRECL-4. Hence, for each READ or
WRITE statement issued, N record segments,
i.e., N blocks, are transmitted <see Figure
40).

Example 1: Assume BLKSIZE=28 and LRECL=24

WRITE (18) Q,,R

where: Q and R are real *8 variables

,-------- BLKSIZE - - - - - - - - --,

1

I
I

I

I I - - - - - - LRECL - - - --j

r.- - - - Logical Record - - - I
I -i I

I I

BCW sew Data Segment I Nat Written I
4 bytes 4 bytes 16 bytes 4 bytes

Figure 39. Variable-Length Unblocked Rec­
ords, No FORMAT control, One
Record Segment

Example 2: Assume BLKSIZE=28 and LRECL=24

WRITE (18) Q,R,S,V,X

where: Q, R, and V are real *8 variables S
and X are real *4 variables

,---- - -- --- - -- -- --BLKSIZE---- - --- - - - ---- ---·,
I
I

r------------- - - - -LRECL - --- - -- --- --- - ----i
I I
I I
:-- - - ---- - - - - -Beginning of Logical Record --- -- - -- - --·-~

IBcwlscj Data Segment 1

4 Bytes 20 Bytes
4 Bytes

[----End of Logical Record----:
I I

IBcwlscwl Data Segment 2 I Not Written

4 Bytes 12 Bytes 8 Bytes
4 Bytes

Figure 40. Variable-Length Unblocked Rec­
ords, No FORMAT Control, Two
Record Segments

Blocked Records: For blocked records writ­
ten without FORMAT control, each block is
composed of M record segments, where:
M = BLKSIZE-4/LRECL.

If the logical record length is less
than or equal to LRECL-4, the logical rec­
ord comprises one record segment. Hence,
for each M READ or WRITE statements issued,
one block, i.e., M record segments, are
transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where: N = logical rec­
ord length/LRECL-4. Hence, for each READ
or WRITE statement issued, N record seg­
ments (i.e., as many blocks of M segments
each as are needed to make up N segments)
are transmitted. The unused portion of the
last block is held for the next READ or
WRITE <see Figure 41).

Example: Assume BLKSIZE=28 and LRECL=12

WRITE (18) A

WRITE (18) B

WRITE (18) E

Creating Data Sets 55

:--- - - ------- - - - - - --- - -- BLKSIZE - - ------- ------------;

I
r---- -- LRECL --------1---------- LRECL --------1

: I
j--- - -- Logical Record -- - - -+- Logical Recordi

: : j
IBcj SC~ Record l lscwl Record 2

4 Bytes 8 Bytes
4 Bytes

i---Logical Record --1
I

4 Bytes 4 Bytes

Not Written

4 Bytes

BCW SC Record 3 Space Ready for Next WRITE

4 Bytes 4 Bytes 16 Bytes
4 Bytes

Figure 41. Variable-length, Blocked Rec­
ords, No FORMAT Control

I
I

where: A is a real *8 variable B and E are
real *4 variables

BACKSPACE Operations

Unblocked Records, FORMAT Control: For all
unblocked records written under FORMAT con­
trol, the volume is positioned so that the
last record read or written is transmitted
next.

Unblocked Records, No FORMAT control: For
all unblocked records written without
FORMAT control, the volume is positioned so
that the last logical record read or writ­
ten is transmitted next.

Blocked Records: The programmer is cau­
tioned against backspacing blocked records;
the results obtained are unpredictable.

Extending a Data Set: The execution of an
ENDFILE followed by the execution of a
BACKSPACE does not cause the FORTRAN
sequence number to be incremented. The
data set can be extended <written) using
the same FORTRAN sequence number.

Record Length, Buffer Length, and Number of
Buffers for Direct Access Data Sets

A direct access data set can contain
only fixed-length, unblocked records. Any
attempts to read or write any other record
format by specification in the DCB parame­
ter are ignored. The record length and
buffer length for a data set are specified
by the programmer as the record size in the
DEFINE FILE statement, and cannot be
changed by specifying the BLKSIZE or LRECL
subparameters in the DCB parameter. For
example, the statement:

DEFINE FILE 8(1000,152,E,INDIC)

56

sets the record length and buffer length
permanently at 152 bytes. The direct
access data set defined by this DEFINE FILE
statement contains 1000 fixed-length,
unblocked records, each record is 152 bytes
long, and is written under FORMAT control.

The only DCB subparameter that can be
supplied for direct access data sets is the
number of buffers:

BUFNO=x <x=l or x=2)

Where: x is the number of buffers used to
read or write the data set.

For records written with FORMAT control,
the record format is the same as for fixed­
length unblocked records written with
FORMAT control for sequential data sets.
For records written with no FORMAT control,
the records must be fixed length and
unblocked. These records do not contain a
block control word or a segment control
word. For records written with no FORMAT
control, the logical record can exceed the
record length specified in the DEFINE FILE
statement. If it is shorter than the rec­
ord length, the remaining portion of the
record is padded with zeros (see Figure
42).

Example: A DEFINE FILE statement has spec­
ified the record length for a direct access
data set as 20. This statement is then
executed:

WRITE(9'IX)DP1,DP2,Rl,R2

Where: DPl and DP2 are real *8 variables.
Rl and R2 are real *4 variables.
IX is an integer variable that con­
tains the record position.

BACKSPACE, END FILE, and REWIND opera­
tions are ignored for direct access data
sets.

r
I

- - - - - Record Length - - -

I- - - - - - -Record Segment 1- - - - - -

-,
I

-t
I

20 Data Bytes

Record Segment 1 + Record Segment 2 = 1 Logical Record

r - - -;Record Segment z- - - - - -
I

14 Data Bytes I 16 Bytes of Z ros

Figure 42. Logical Record <No FOrut.tAT Con­
trol) for Direct Access

I

,
I

DCB ASSUMPTIONS FOR LOAD MODULE EXECUTION

The range of values that may be speci­
fied for BLKSIZE is established for specif­
ic data set reference numbers. If the DCB
parameter is not specified, default values
are assumed for BLKSIZE and RECFM (see
Table 11).

Creating Data sets 57

CATALOGED PROCEDURES

This section contains figures showing
the job control statements used in the
FORTRAN IV cataloged procedures and a brief
description of each procedure. This sec­
tion also describes statements used to
override statements and parameters in any
cataloged procedure. (The use of cataloged
procedures is discussed in "FORTRAN Job
Processing.")

Compile

In the three cataloged procedures that
have a compile step (see Figures 43, 44,
and 46), the EXEC statement named FORT
indicates that the operating system is to
execute the program IEKAAOO (the FORTRAN IV
H compiler).

The REGION parameter is ignored by
sequential schedulers. Priority schedulers
require that region size be specified,
unless the user is willing to accept the
default region size (as established in the
input reader procedure).

The size of the region required by the
FORTRAN H compiler depends upon the SIZE
parameter specified during system genera­
tion and on the buffer requirements for the
compiler data sets. The SIZE parameter is
specified in the FORTRAN macro instruction.
The buffer requirements must be determined
for each compiler data set, totaled, and
rounded to the next highest multiple of 2K
<where K = 1024 bytes). (The buffer
requirement for a data set is equal to the
blocksize multiplied by the number of buff­
ers.) Another 10K for system use must be
added to the sum of the SIZE parameter and
the buffer requirements.

The region size of 228K in the cataloged
procedure assumes the default value for the
SIZE parameter and the buffer requirements
as given in the procedure.

Note: If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of the JOB statement.

Compiler options are not explicitly
specified; default options are assumed
in particular, SOURCE and LOAD. The source
listing and compile-time information and
error messages are written in the SYSOUT
data set.

58

The object module is written in the tem­
porary data set &LOADSET. The data set
&LOADSET is a sequential data set and is in
"pass" status; records can be added to the
data set.

The SYSOUT=B parameter on the SYSPUNCH
DD statement is interpreted by sequential
schedulers as a specification for the sys­
tem card punch unit. The priority schedul­
ers route the output data set to system
output class B. A programmer can get an
object module card deck by overriding the
default NODECK option with an explicit DECA
option.

Several additional DD statements,
external to the procedure, may be supplied.
If the EDIT option is used, a work data set
must be defined with a FORT.SYSUTl DD
statement. If the compiler XREF option is
specified, a work data set must be defined
with a FORT.SYSUT2 DD statement. Input to
the compile step is defined by a FORT.SYSIN
DD statement.

Link Edit

In the three cataloged procedures that
have a link edit step <see Figures 44, 45,
and 46), the EXEC statement named LKED
indicates that the operating system is to
execute the program IEWL (the linkage edi­
tor). The linkage editor requires a region
of 54K if used with MVT. The linkage edi­
tor step (or the remainder of a procedure)
is not executed if a condition code greater
than 4 was generated by a compile step in
the same procedure.

If the link edit step is executed, a
list of linkage editor control statements
(in card image format), a map of the load
module and a list of linkage editor diag­
nostic messages are written in the SYSOU'I
data set. The load module is marked exe­
cutable even though error conditions are
found during linkage editor processing.

If the link edit step is preceded by a
compile step <see Figures 44 and 46), the
primary input to the linkage editor may
consist of concatenated data sets. The
first, defined by the SYSLIN DD statement,
is the output of the compiler C&LOADSET
data set); the second Cif present) is the
data set defined by a LKED.SYSIN DD state­
ment (external to the procedure). However,
if the link edit step is the first step in

Sample Coding Farm

//FORT EXEC
//SYSPRINT DD
I /SYS PUNCH DD
//SYSLIN DD x
II

Figure 43. compile cataloged Procedure CFORTHC)

a procedure (see Figure 45). the primary
input is the data set defined by a
LKED.DD statement.

External references made in a FORTRAN
object module are resolved by the linkage
editor. Some or all of these references
can be resolved from the FORTRAN library
CSYS1.FORTLIB) which is a system resident
PDS.

During processing, the linkage editor
requires a work data set which is defined
by the SYSUT1 DD statement. This data set
is assigned to a direct access device.

The load module produced by the
editor is written in the temporary
&GOSET with a member name of MAIN.
data set is in "pass" status and is
assigned to a direct access device.

Execute

linkage
PDS

The

In the two cataloged procedures that
have an execute step (see Figures 45 and
46), the EXEC statement named GO indicates
that the operating system is to execute the
load module (program) produced in a preced­
ing link edit step in the same procedure.
However. the execute step is bypassed if a
condition code greater than 4 was generated
by a compile or link edit step in the same
procedure.

Input to the execute step is defined by
a GO.SYSIN DD statement (external to the
procedure) and is read using data set

reference number 5. Execution-time error
messages and information for traceback and
FORTRAN dumps are written in the SYSOUT
data set that is associated with data set
reference number 6. (Output from the load
module can also be written in the same data
set..) The card punch is associated with
data set reference number 7.

In a multiprogramming environment with a
priority scheduler, main storage require­
ments for the execute step are determined
by a number of factors. These include:
the size of the object program produced by
the compiler, the requirements of the data
access method used, the blocking factors,
the number and sizes of the data sets used,
the number and sizes of library subprograms
invoked, and the sizes of the execution
time routines required by the program. If
the default region size (established in the
cataloged procedure for the input reader)
is not large enough for the program,
REGION.GO must be used to specify the
region size for the execute step.

A list of the execution time routines
required for various input/output, inter­
ruption, and error procedures is contained
in the FORTRAN IV Library Subprograms pub­
lication. That publication also lists the
sizes of both the execution-time routines
and the mathematical subprograms.

An example of using a REGION.GO speci­
fication to indicate the main storage re­
quirements for the execute step of a
FORTRAN program follows .•

cataloged Procedures 59

Sample Coding Form

//SYSLIN DD x
II
//LKE'D EXEC
//SYSLIB DD
//SYSPRINT DD
//SYSLMOD DD x
II
//SYSLIN DD

.Ll

II DD
/ /SYSUTi DD

Figure 44. Compile and Link Edit Cataloged Procedure (FORTHCL)

//EXAMPLEl JOB ACCOUNTl,'JOHNSMITH', X
// MSGLEVEL=l
// EXEC FORTHCLG,PARM.FORT=DECK, X
// REGION.G0=200K
//FORT.SYSIN DD *
r---1
I FORTRAN source Symbolic Decks I
L---J
/*
//LKED.SYSIN DD *
r---1 I Previously Compiled or Assembled I
I Object Decks I
L---J
/*
//GO.SYSIN DD *
r---1
I Input Data I
L---J
/*

USER AND MODIFIED CATALOGED PROCEDURES

The programmer can write his own cata­
loged procedures and tailor them to the
facilities in his installation. He can
also permanently modify the IBM-supplied
cataloged procedures. For information
about permanently modifying cataloged pro­
cedures, see the Job Control Language
publication.

60

The IBM-supplied cataloged procedures
for FORTRAN IV H define logical unit 05 as
SYSIN and 06 as SYSOUT. (See Figures 45
and 46.) If, during system generation,
values other than 05 for the ONLNRD parame­
ter and 06 for the OBJERR parameter were
specified in the FORTLIB macro instruction,
one or both of the following DD cards must
be added to the cataloged procedures, ei­
ther at execution time or permanently.

• For the unit specified as ONLNRD, use
the DD card:
//GO.FTxxFOOl DD DDNAME=SYSIN,

DCB=(BLKSIZE=80,RECFM=F)

• For the unit specified as OBJERR, use
the DD card:
//GO.FTxxFOOl DD SYSOUT=A

where xx is the unit specified. (The Sys­
tem Generation publication describes the
FORTLIB macro instruction.)

In addition, the DD card for FT05F001
must be deleted permanently from the proce­
dure. The following section describes the
general procedure for adding and deleting
cards from cataloged procedures.

OVERRIDING CATALOGED PROCEDURES

Cataloged procedures are composed of
EXEC and DD statements. A feature of the
operating system is its ability to read
control statements and modify a cataloged

procedure for the duration of the current
job. overriding is only temporary; that
is, the parameters added or modified are in
effect only for the duration of the job.
The following text discusses the techniques
used to modify cataloged procedures.

Sample Coding Form

//SYSPRINT DD SYSOUT=A
1111f1111!1111l1111i1111l1~~.--l1111i1111!1111!1111!111r!1111lrr11i1111l~~

//SYSLIN DD DDNA E=SYSIN . I

//SYSLMOD DD DSNAME=~GOSET(MAIN)1UNIT=SYSDA1DISP=(,PASS), X

/ISYSUT1 DD UNIT=SYSDA,SPACE=(1¢24,(200,2¢)),SEP=SYSLMOD

/IFT(»SF0(t}1 DD DDNAM£=SYSIN
I I FTel6F001 , DD SYSOUJ =A
//FT07F~01 , DD SYSOUJ=B

Figure 45. Link Edit and Execute Cataloged Procedure (FORTHLG)

Sample Coding Form

//SYSPUNCH
11 SYS LIN DD x
II
//LKED EXEC
//SYSLI B DD
//SYSPRINT DD
//SYSLMOD DD
II

. I

Figure 46. Compile, Link Edit, and Execute cataloged Procedure (FOTHCLG)

cataloged Procedures 61

overriding Parameters in the EXEC Statement

Two forms of keyword parameters <"key­
word" and "keyword.procstep") are discussed
in "Job control Language." The form
"keyword.procstep" is used to add or over­
ride parameters in an EXEC statement in a
cataloged procedure.

The FORTRAN programmer can, for example,
add (or override) compiler or linkage edi­
tor options for an execution of a cataloged
procedure, or he can state different condi­
tions for bypassing a job step.

Note: When the PARM parameter is overrid­
den, all compiler and/or linkage editor
options stated in the EXEC statement in the
procedure step are deleted and replaced by
those in the overriding PARM parameter.

Example 1: Assume the cataloged procedure
FORTHC is used to compile a program, and
the programmer wants to specify the name of
his program and the MAP option. The fol­
lowing statement can be used to invoke the
procedure, and to supply the compiler
options.

//STEPl EXEC FORTHC, X
// PARM.FORT='MAP,NAME=MYPROG'

The PARM options apply to the procedure
step FORT.

Example 2: Assume the cataloged procedure
FORTHLG is used to link edit and execute a
module. Furthermore, the XREF option over­
rides MAP, LET, and LIST in the linkage
editor step and the COND parameter is
changed for the execution of the load
module. The following EXEC statement adds
and overrides parameters in the procedure.

//DO EXEC FORTHLG,PARM.LKED=XREF,
// COND.G0=(3,LT,DO.LKED)

The PARM parameter applies to the link­
age editor procedure step LKED, and the
COND parameter applies to the execution
procedure step GO.

x

Example 3: Assume a source module is com­
piled, link edited, and executed using the
cataloged procedure FORTHCLG. Furthermore,
the compiler option OPT and the linkage
editor option XREF are specified, and
account number 506 is used for the execu­
tion procedure step. The following EXEC
statement adds and overrides parameters in
the procedure.

//STEPl EXEC FORTHCLG,
// PARM.FORT='OPT=2',
// PARM.LKED=XREF,
// ACCT.G0=506

62

x
x
x

overriding and Adding DD Statements

A DD statement with the name "stepname.
ddname" is used to override parameters in
DD statements in cataloged procedures, or
to add DD statements to cataloged proce­
dures. The "stepname" identifies the step
in the cataloged procedure. If "ddname" is
the name of a DD statement

1. present in the step, the parameters in
the new DD statement override parame­
ters in the DD statem~nt in the proce­
dure step.

2. not present in the step, the new DD
statement is added to the step.

In any case, the modification is only ef­
fective for the current execution of the
cataloged procedure.

When overriding, the original DD state­
ment in the cataloged procedure is copied,
and the parameters specified in it are
replaced by the corresponding parameters in
the new DD statement. Therefore, only
parameters that must be changed are speci­
fied in the overriding DD statement.

If more than one DD statement is modi­
fied, the overriding DD statements must be
in the same order as the DD statements
appear in the cataloged procedure. Any DD
statements that are added to the procedure
must follow overriding DD statements.

~: The following additional rules apply
to overriding in cataloged procedures:

1. In the DCB parameter, individual sub­
parameters can be overridden.

2. To nullify the use of any particular
keyword parameter (except the DCB
parameter), the overriding DD state­
ment must specify

keyword=,

3. A parameter can be overridden by spec­
ifying a mutually.exclusive parameter
in the overriding DD statement. For
example, in the FORTHC procedure, the
SPACE specification for SYSLIN may be
overridden by using either the SPLIT
or SUBALLOC parameter.

When the procedures FORTHC, FORTHCL, and
FORTHCLG are used, a DD statement must be
added to define the SYSIN data set to the
compile step in the procedures <see
Figures 15 and 21). When the procedure
FORTHLG is used, a DD statement must be
added to define the SYSLIN data set (see
Figures 17 and 18).

\
j

When the procedures FOR'IHCL, FORTHLG,
and FORTHCLG are used, an overriding DD
statement can be used to write the load
module constructed in the linkage editor
step in a particular PDS chosen by the pro­
grammer, and assign that member of the PDS
a particular name.

In execution procedure steps, the pro­
grammer can catalog data sets, assign names
to data sets, supply DCB information for
data sets, add data sets, or specify par­
ticular volumes for data sets by using
overriding and/or additional DD statements.

Example 1: Assume the data sets identified
by ddnames FT04F001 and FT08F001 are named,
cataloged. and assigned specific volumes.
The following DD statements are used to add
this information and indicate the location
of the source module.

//JOBl JOB MSGLEVEL=l
//STEPl EXEC FORTHCLG
//FORT.SYSIN DD *
r---1
I FORTRAN Source Module I
L---J
/*
//GO.FT04F001 DD DSNAME=MA'IRIX, X
// OISP=(NEW.CATLG),UNIT=TAPE, X
// VOLUME=SER=987K
//GO.FT08F001 DD DSNAME=INVERT, X
// DISP=(NEW,CATLG),UNIT=TAPE, X
// VOLUME=SER=1020
//GO.SYSIN DD *
r---1
I Input to Load Module I
L---J
/*

Example 2: Assume the link edit and
execute cataloged procedure (FORTHLG) is
used. The load module constructed in the
linkage editor step is placed in the cata­
loged partitioned data set MATH and is
assigned the member name DERIV.

//JOB3 JOB
//STEPl EXEC FORTHLG
//LKED.SYSLMOD DD DSNAME=MATH(DERIV), X
// DISP=(MOD,PASS)
//LKED.SYSIN DD *
r----------------------~-----------------1
I FORTRAN Object Module I
L---J
/*
//GO.SYSIN DD *
r---1 I Input to Load Module I
'----------------------~-----------------J
/*

Example 3: Assume the compile, link edit,
and execute cataloged procedure CFORTHCLG)
is used with three data sets in the input
stream:

1. A FORTRAN main program MAIN with a
series of subprograms, SUBl through
SUBN.

2. A linkage editor control statement
that specifies an additional library,
MYLIB. MYLIB is used to resolve
external references for the symbols
ALPHA, BETA, and GAMMA.

3. A data set used by the load module and
identified by data set reference num­
ber 5 in the source module.

The following example shows the deck
structure.

//JOBCLG JOB 00,FORTRANPROG,MSGLEVEL=l
//HXECCLGX EXEC FORTHCLG
//FORT.SYSIN DD *
r---1
I FOR'IRAN Source Module MAIN I
~---------------------------------·--------~
I FORTRAN Source Module SUBl I
~---~
I I
I I
I I
~---~
I FORTRAN Source Module SUEN I ._ __ J

/*
//LKED.ADDLIB DD DSNAME=MYLIB
//LKED.SYSIN DD *

LIBRARY ADDLIB(ALPHA,BETA,GAMMA)
/*
//GO.SYSIN DD *
r---1
I Input to Load Module I
L---J
/*

The DD statement FORT.SYSIN indicates to
the compiler that the source modules are
in the input stream. The DD statement
LKED.ADDLIB defines the additional library
MYLIB to the linkage editor. The DD state­
ment LKED.SYSIN defines a data set that is
concatenated with the primary input to the
linkage editor. The linkage editor control
statements and the object modules appear as
one data set to the linkage editor. The DD
statement GO.SYSIN defines data in the
input stream for the load module.

Cataloged Procedures 63

PROGRAMMING CONSIDERATIONS

This section discusses minimum system
requirements for the compiler, program
optimization, updating the FORTRAN library,
creation of the programmer's private
library, and limitations of the compiler.

STORAGE LOCATIONS AND BYTES

Storage locations in system/360 are
called bytes, words, and double-words. One
word is four bytes long; a double-word is
eight bytes long. When data is read into
main storage, it is translated into inter­
nal format. See Table 12 for storage allo­
cation according to the type and length of
the constant or variable. 1" I:;.

Table 12. Storage Allocation
r---------------T------T------------------1
I Type I Length I Storage I
r---------------+------+------------------~,
I Logical I 1 11 byte I
I I ~ . 14 bytes J I 2.
r---------------+---~::::.1~=~~~-----------~
I rteal I '-.,~,,., .. 18~ . . !JX~~-~·~"1 I "
I I a I bytes ~r 0 I 0
r---------------+------+------------------~~
I Integer I 2 12 bytes(variable I 3
I I I only> I

~---------------+--::~~~+~=·~~-~~~,2:L ________ ~ ..
I Complex I 1,._jl __ J 8 }.2yte~"w"j I +
I I 16 rrO' I:iy.tes ,1,". r·. 18
r---------------+------+------------------~
I Character I 11 character/byte 10
I (BCD or EBCDIC) I I I

t~~~~~~~~~~~~~~~!~~==~~!~~~~~~~~~~~~~~~~~~J o/

MINIMUM SYSTEM REQUIREMENTS FOR THE FORTRAN
COMPILER

The operating system is device independ­
ent. In particular, the FORTRAN compiler
can operate with any combination of devices
(shown in Table 3); however, there are cer­
tain requirements.

64

The FORTRAN IV compiler requires at
least a System/360, Model 40 with 256K
bytes of storage and the standard
instruction set with the floating-point
option.

All programs require a device, such as,
the 1052 keyboard printer, for direct
operator communication.

At least one direct access device must
be used for residence of the operating
system.

• The printer must have at least a 132
character print line.

PROGRAM OPTIMIZATION

Facilities are available in the FORTRAN
compiler that enable a programmer to opti­
mize execution speed and to reduce the size
of the object module. However, programs
that are compiled using the IBM-supplied
cataloged procedures are not optimized;
OPT=O is the default option. A programmer
must override this default option with
either OPT=l or OPT=2 to specify the use of
the optimization facilities. (See "Cata­
loged Procedures" for overriding parameters
in the EXEC statement.)

When using OPT=l, the entire program is
a loop, while individual sections of cod­
ing, headed and terminated by labeled
statements, are blocks. The object code is
improved by:

• Improving local register assignment.
(Variables that are defined and used in
a block are retained (if possible) in
registers during the processing of the
block. Time is saved because the num­
ber of load and store instructions are
reduced.)

• Retaining the most active base
addresses and variables in registers
across the whole program. (Retention
in registers saves time because the
number of load instructions are
reduced.)

• Improving branching by the use of RX
branch instructions. (An RX branch
instruction saves a load instruction
and reduces the number of required
address constants.)

When using OPT=2, the loop structure and
data flow of the program are analyzed. The
object code is improved over OPT=l by:

• Assigning registers across a loop to
the most active variables, constants,
and base addresses within the loop.

Moving outside the loop many computa­
tions which need not be calculated
within the loop.

Recognizing and replacing redundant
computations.

Replacing fif possible) multiplication
of induction variables by addition of
those variables.

• Deleting (if possible) references to
some variables.

• Using (where possible) the BXLE
instruction for loop termination. (The
BXLE instruction is the fastest condi­
tional branch; time and space are
saved.)

Programming Considerations Using the
Optimizer

In general, the specification of OPT=l
or OPT=2 causes compilation time to
increase. However, the object code pro­
duced is more concise and yields shorter
execution times.

The object module logic, when optimized,
is identical to the unoptimized logic,
except in the following cases:

1. If the list of statement numbers in an
Assigned GOTO statement is incomplete,
errors, which were not present in the
unoptimized code, may arise in the
optimized code.

2. The computational reordering done by
text optimization may produce a dif­
ferent execution time behavior than
unoptimized code. For example. a test
of an argument of a FORTRAN library
function may be executed after the
call to the function. This is caused
by the movement of the function call
to the back target of the loop when
the function argument is not changed
within the loop.

DO 11 I=l,10
DO 12 J=l,10
IF (B(I).LT.0.)GO TO 11

12 C(J)=SQRT(B(I))
11 CONTINUE

The square root computation will occur
before the less-than-zero test, and
will result in a message if B(I) is
negative. A rearrangement of the pro­
gram which could avoid this situation
can be constructed:

DO 11 I=l,10
IF (B(I).LT.0.) GO TO 11
DO 12 J=l,10

12 C(J)=SQRT(B(I))
11 CONTINUE

A similar condition may result with
the statements:

CALL OVERFL(J)
CALL DVCHK(J)

These may produce different results
when optimized, because computations
causing overflow, underflow, or
divide-check conditions could be moved
out of the loop in which the test
occurs.

3. If a programmer defines a subprogram
with the same name as a FORTRAN­
supplied subprogram (e.g., SIN, A'I'AN,
etc.), errors could be introduced dur­
ing optimization. If the subprogram
stores into its arguments, refers to
COMMON, performs I/O, or remembers its
own variables from one execution to
another, the name of the subprogram
must be specified in an EXTERNAL
statement to allow the program to be
optimized without error.

4. In the statements

COMMON X, Yl(lO), W, Z
EQUIVALENCE (Yl,Y2)
DIMENSION Y2(12)

there is an implied equivalence of Y2
(11) and W and Y2(12) and z.

If the optimization feature is not
used, and

W=Q and A=Y2 (I) <where I=ll)

then the value of Q is assigned to A.

However, if OPT=2 is used, and

W=Q and A=Y2 (I) (where I=ll)

there is !!2 guarantee that the value
of Q is assigned to A.

5. With OPT=2, when a subprogram is
called at one entry point for initial­
ization of reference-by-name argu­
ments, and at another entry point for
subsequent computation, certain argu­
ment values may not be transmitted.
This applies to either arguments of
the second call or any argument values
redefined between calls and not ex­
plicitly defined in COMMON.

In the following example the incremented
value for I may not be transmitted to the
subprogram due to the loop initialization
optimization.

Programming Considerations 65

CALL !NIT (!) SUBROUTINE !NIT (/J/)

I = 0 ENTRY COMP
10 CALL COMP

I = I + 1

GO TO 10

Definition of a Loop

The term 'loop' is used to refer to DO
loops and other configurations of coding
that a programmer regards as a loop.

If a programmer writes a loop which is
preceded by an IF statement, a conditional
GOTO statement. or READ statement with END
or ERR parameters, the loop is not identi­
fied and efficiency is lost. A CONTINUE
statement at the end of the range of a DO
also obscures a loop (other than a DO loop)
that follows the CONTINUE without interven­
ing initialization. The insertion of a
labeled CONTINUE statement or any other
suitable re-arrangement allows the loop to
be recognized.

The movement of computations from inside
a loop to the initialization coding is done
on the assumption that every statement in
the loop is executed more frequently than
the initialization coding. Occasionally,
this assumption fails and computations are
moved to a position where they are computed
more often. One way to prevent such a move
is to make a subprogram of the coding
(statements and computations) that is
executed less frequently within a loop than
it would be in the initialization coding.

The recognition of loops may also be
obscured when the programmer knows that
some paths through the program cannot
occur; for example,

10 IF (L) GOTO 200
20 I=l
30 ASSIGN 40 TO J

GOTO 100
40 I=I +1
50 IF (I.LE.N) GOTO 30

100 B(I) = FUNCT (I)
110 GOTO J, (40 6 220)
200 ASSIGN 220 TO J
210 GOTO 100
220 CONTINUE

66

From the programmer's· point of view, the
statements 30 to 50 comprise a loop which
is initialized by statement 20. The loop
causes an internal subprogram consisting of
statements 100 and 110 to be executed.
From the compiler's point of view, it
appears possible to execute statements in
the order 10, 200, 210, 100, 110, 40, 50,
30. The compiler does not recognize the
loop, because it appears possible to enter
it without passing through the initializa­
tion coding in statement 20.

A loop can be obscured by the computed
GOTO, because the compiler always assumes
that one of the possible branches is to the
succeeding statement, even though the pro­
grammer knows that such a branch is impos­
sible. A loop can also be obscured by a
call to the EXIT routine, because the com­
piler assumes there is a path from such a
statement to the next.

Movement of Code Into Initialization of a
Loop

Where it is logically possible to do so
with OPT=2, the optimizer moves computa­
tions from inside the loop to the outside.
This movement permits a programmer to do
more straightforward coding without penalty
in object code efficiency.

If an expression is evaluated inside a
loop and all the variables in the expres­
sion are unchanged within the loop, the
computation is generally moved outside the
loop into the coding sequence which ini­
tializes the loop. Even if the constant
expression is part of a larger expression,
this constant expression may still be rec­
ognized and moved. However, the movement
depends on how the larger expression is
written. Table 13 gives examples of
e~pressions and the constant parts which
are recognized and moved •

. f

Common Expression Elimination

With OPT=2, if an expression occurs
twice in such a way that:

1. any path starting at an entry to the
program always passes through the
first occurrence of the expression to
reacp the second occurrence (and any
subsequent occurrence>, and

\
J

Table 13. Constant Expressions
r---y---1
I Expression where Cl, C2,... I I
I are constant in the loop !Constant expression recognized and moved I
~-----------~-------------------------------+---~
I Cl + C2 * C3/SIN (C4) I Cl + C2 * C3/SIN (C4) I
I Cl + C2 * C3 + Bl I Cl + C2 * C3 I
I Cl + Bl + C2 * C3 I C2 * C3 I
I Bl + Cl + C2 * C3 I C2 * C3 I
I Cl + Bl + B2 + C2 * C3 I C2 * C3 I
I Cl * C2/Bl I Cl * C2 I
L---i---J

2. any evaluation of the second (third,
fourth, etc.) expression produces a
result identical to the most recent
evaluation of the first expression,
then the value of the first expression
is saved <generally) and used instead
of the value of the second <third,
fourth, etc.) expression.

In statements such as:

A=B + C + D
E=C + D

the common expression C + D is not recog­
nized, because the first expression is com­
puted as CB + C) + D.

Induction Variable Optimization

In a loop with OPT=2, an induction vari­
able is a variable that is only incremented
by a constant or by a variable whose value
is constant in the loop.

When an induction variable is multiplied
by a constant in the loop, the optimizer
may replace the multiplication with an
addition by introducing a new induction
variable into the loop. This new induction
variable may make it possible to delete all
references to the original induction vari­
able. This deletion is likely to occur if
the original induction variable is used
only as a subscript within the loop, and
the value of the subscript is not used on
exit from the loop.

Register Allocation

Some variables are assigned to a regis­
ter on entry to a loop and retained in the
register through part or all of the loop to
avoid loading and storing the variable in
the loop. Within the loop, the variable is
modified only in the assigned register, the
value of the variable in storage is not
changed. If necessary, the latest value of

the variable is stored after exit from the
loop.

The value in general register 13, which
points to the start of a register save
area, remains constant during execution of
a subprogram. This register is used to
refer to address constants and temporary
variables, and for branching within the
program. The value in general register 12
remains constant and is used to refer to
constants, variables, and arrays that are
not in COMMON.

General registers 14 and 15 are used for
base addresses and index values on a
strictly local basis. Floating-point
register 0 and general register 0 are used
as locally assigned arithmetic accumula­
tors. General register 1 is used in con­
junction with general register 0 for fixed­
point arithmetic operations, and to point
to argument lists in subprogram linkages.

The remaining registers are used for
accumulators, index values, base addresses,
and high speed storage (a register
reference is faster than a main storage
reference).

Because general register 13 is not ade­
quate to provide RX branching throughout a
large program, general registers 11, 10,
and 9 may be pre-empted for RX branching
(only if the program exceeds 4K, BK, and
12K bytes, respectively). (RR branches
preceded by loads are required for branch­
ing to points beyond the first 16K bytes of
the program and possibly to the last part
of a program if it exceeds 4K, BK, or 12K
bytes by a small amount.)

COMMON Blocks

Because each COMMON block is independ­
ently relocatable, each requires at least
one base address to refer to the variables
in it. A sequence of coding that refers to
a large number of COMMON blocks is slowed
down by the need to load base addresses
into general registers. Thus, if three

Programming considerations 67

COMMON blocks can be combined into one
block whose total size is less than 4096
bytes, one base address can serve to refer
to all the variables. (Many register loads
can be avoided.)

The order in which data is entered into
a COMMON block may also affect the number
of base addresses needed. For example, if
an array of 5000 bytes is placed in a
COMMON block and followed by 200 bytes of
variables, two base addresses are needed:
the beginning address of the first variable
and the beginning address of the last dif­
fer by more than 4096 bytes. However, if
the variables preceded the array., one base
address would suffice.

EQUIVALENCE Statements

Optimization tends to be weakened by the
occurrence of variables in EQUIVALENCE
statements.

When an array appears in an EQUIVALENCE
statement, a reference to one of its ele­
ments cannot be eliminated as a common
expression, nor can the reference be moved
out of a loop. However, the elimination
and movement of subscript calculations used
for making the reference is not affected.

If a variable is made equivalent only to
another variable (not in COMMON) of the
same type and length, optimization is not
weakened. The net effect is that the com­
piler accepts the two names as alternate

I pointers to the same storage location.
However, if a variable is made equivalent
to another variable in any other way, all
references to it are 'immobilized': the
references cannot be eliminated, moved,
confined to registers, or altered in any
way.

Boundary Adjustment of Variables in COMMON
Blocks and EQUIVALENCE Groups

Variables in a COMMON block or
EQUIVALENCE group may be in any order if
the BOUNDRY=ALIGN option is specified in
the FORTLIB macro instruction during system
generation, because boundary alignment vio­
lations are corrected during execution.
(The FORTLIB macro instruction is described
in the System Generation publication.) If
the BOUNDRY=NOALIGN option is specified and
boundary violations are encountered during
execution of the object program, the job
terminates.

68

If the BOUNDRY=ALIGN option of the
FORTLIB macro instruction is specified and
a boundary violation occurs in a FORTRAN
main program or in a FORTRAN or assembler
language subprogram, each instruction that
refers to the improperly aligned variable
requires that (1) the specification excep­
tion resulting from this reference be pro­
cessed, and (2) the boundary alignment rou­
tine be invoked. Therefore, considerable
programming efficiency is gained if the
programmer ensures that all of the
variables have proper boundary alignment.
The FORTRAN IV Language publication con­
tains information on boundary alignment.

When boundary alignment is performed,
program interrupt message IHC210I is
issued. (This message is described com­
pletely in the section "Program Interrupt
Messages" in Appendix D). For boundary
alignment, the letter A appears in the text
of the message and the code 6 appears in
the old PSW <program status word), which is
included in the message. The number of
warning messages printed is limited to 10.
After 10 boundary alignment adjustments
have been made, the message is suppressed,
but boundary alignment violations continue
to be corrected.

Note: Even if BOUNDRY=ALIGN is specified
and a boundary error occurs in an EXECUTE,
LM (load multiple), or STM (store multiple)
instruction in a subprogram written in
assembler language, boundary adjustment
does not take place and the job terminates.
Therefore, if these instructions refer to
improperly aligned data, they should not be
used in assembler language subprograms.

Multidimensional Arrays

In general, references to higher dimen­
sional arrays are slower than references to
lower dimensional arrays. Thus, a set of
one-dimensional arrays is more efficient
than a single two-dimensional array in any
case where the two-dimensional array can be
logically treated as a set of one­
dimensional arrays.

Constants occurring in subscript expres­
sions are accounted for at compile time and
have no effect at execution time.

Program structure

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. For example, in the main
program and subroutine EXAMPL

)

DIMENSION E(20),I(15)
READ(10)A,B,C
CALL EXAMPL(A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL (X,Y,Z,P,Q,R,J)
DIMENSION Q(20),J(15)

RETURN
END

time and storage are wasted by allocating
storage for variables in both the main pro­
gram and subprogram and by the subsequent
instructions required to transfer variables
from one program to another.

The two programs should be written using
a COMMON area, as follows:

COMMON A,B,C,D,E(20),F,I(15)
READ(10)A,B,C
CALL EXAMPL

END

SUBROUTINE EXAMPL
COMMON X,Y,Z,P,Q(20),R,J(15)

RETURN
END

Storage is allocated for variables in
COMMON only once and fewer instructions are
needed to cross reference the variables
between programs.

To reduce compilation time for
equivalence groups, the entries in the
EQUIVALENCE statement should be specified
in descending order according to offset.
For example, the statement

EQUIVALENCE (ARR1(10,10),ARR2(5,5),
ARR3(1,1),VAR1)

compiles faster than the statement

EQUIVALENCE (VAR1,ARR3(1,1),ARR2(5,5),
ARR1C10, 10))

To reduce compilation time and
internal table space, equivalence
should be combined, if possible.
example, the statement

save
groups
For

EQUIVALENCE (ARR1(10,10),ARR2(5,5),VAR1)

compiles faster and uses less internal
table space than the statement

EQUIVALENCE (ARR1(10,10),VAR1),
(ARR2(5,5),VAR1)

Logical IF Statements

A statement such as:

IF CA. LT. B. OR. C. GT. F (X). OR •• NOT. L) GO'IO 10

is compiled as though it were written:

IF (A .LT. B) GO TO 10
IF CC .GT. F(X)) GO TO 10
IE' (.NOT. L) GOTO 10

Thus, if A .LT. B is found to be true, the
remainder of the logical expression is not
evaluated .•

Similarly, a statement such as:

IF CD.NE. 7.0 .AND. E.GE.G) I=J

is compiled as:

20

IF (D.EQ. 7.0) GOTO 20
IF (E.LT.G) GOTO 20
I=J
CONTINUE

The order in which a programmer writes
logical expressions in an IF statement
affects the speed of execution.

If A is more often true than B, then
write A .OR. B rather than B .OR. A: and
write B .AND. A rather than A .AND. B.

If any of the following occur in a log­
ical expression:

1. a mixture of both .AND. and .OR.
operators

2. a .NOT. operator followed by a paren­
thesized expression

the entire logical expression must be eval­
uated and efficiency is lost.

Branching

The statement

IF(A.GT.B) GOTO 20

gives equivalent or better code than

Programming Considerations 69

10
IF(A-B)l0,10,20
CONTINUE

The Assigned GOTO is the fastest condi­
tional branch.

The computed GOTO should be avoided
unless four or more statement labels occur
within the parentheses.

The statement

IF(I-2) 20., 30., 40

is significantly faster than

GOTO (20,30,40), I

Indicators and Sense Lights

At the start of program execution, the
divide-check indicator, the overflow indi­
cator. and the sense lights are not ini­
tialized. Therefore, if a programmer
intends to use the indicators or sense
lights, he should initialize them prior to
use: otherwise0 erroneous results may be
obtained.

Name Assignment

For its internal use, the compiler
places names used for variables, arrays,
and subprograms into a table. This table
is divided into six strings and is searched
many times during compilation. Names that
are one character long are placed in the
first string; names two characters long are
placed in the second string: and so on.
For faster compiling, the names should be
distributed equally among the six strings.

conditional Branching

A test for 0.0 in an IF statement is not
recommended. Slight inaccuracies may cause
the low-order bit(s) to be set. Therefore,
the test for 0.0 may not yield the expected
result.

use of DUMP and PDUMP

Under the operating system, a program
may be 1-oaded into different areas of
storage for different executions of the
same job. The following conventions should

70

be observed when using tti,e DQMP or PDUMP
subroutine to insure that the appropriate
areas of storage are dumped.

If an array and a variable are to be
dumped at the same time, a separate set of
arguments should be used for the array and
for the variable. The specification of
limits for the array should be from the
first element in the array to the last ele­
ment. For example, if an array TABLE is
dimensioned as:

DIMENSION TABLE (20)

The following statement could be used to
dump TABLE and the real variable B in hexa­
decimal format and terminate execution
after the dump is taken:

CALL DUMP (TABLE(l),TABLE(20},0,B,B,0}

If an area in COMMON is to be dumped at
the same time as an area of storage not in
COMMON, the arguments for the area in
COMMON should be given separately. For
example, if A is a variable in COMMON, the
following statement could be used to dump
the variables A and B in real format
without terminating execution:

CALL PDUMP (A,A,5,B,B,5}

If variables not in COMMON are to be
dumped, the programs should list each vari­
able separately in the argument list. For
example, if R, P, Q are defined implicitly
in the program, the statement

CALL PDUMP(R,R,5,P,P,5,Q,Q,5}

should be used to dump the three variables.
If

CALL PDUMPCR,Q,5)
,,_;

is used, all main storage between R and Q
is dumped.

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDUMP in the subroutine
should specify the parameters used in the
definition of the subroutine. For example,
if the subroutine SUBI is defined as:

SUBROUTINE SUBI(X,Y}
DIMENSION X(lO)

and the call to SUBI within the source
module is:

DIMENSION A(l0}

CALL SUBI(A,B}

Table 14. Additional Built-In Functions
r-----------------------T--------------T-------T-----------T-----------T----------------1
I I IIn-Linel No. of I Type of I Type of I
!Function I Entry Name I I I Arguments I Arguments !Function Value I
~----~-----------------+--------------+-------+-----------+-----------+----------------~
!Logical intersection ofl I I I Real*4 I I
I two arguments I AND I I I 2 I or I Real*4 I
I I I I I Integer*4 I I
~-----------------------+--------------+-------+-----------+-----------+----------------~
I Logical union I I I I Real* 4 I I
I of two arguments I OR I I I 2 I or I Real*4 I
I I I I I Integer*4 I I
~-----------------------+--------------+-------+-----------+-----------+----------------~
!Logical l's. I I I I Real*4 I I
I Complement of argu- I COMPL I I I 1 I or I Real*4 I
I ment. I I I I Integer*4 I I
l _______________________ i ______________ i _______ i ___________ i ___________ i ________________ J

then the following statement in the subrou­
tine should be used to dump the variables
in hexadecimal format without terminating
execution:

CALL PDUMP (X(l),X(lO).O,Y,Y,0)

If the statement

CALL PDUMP (X(l),Y,0)

is used, all storage between A(l} and Y is
dumped. due to the method of transmitting
arguments. CY does not occupy the same
storage location as B.)

Use of ERR Parameter in READ Statement

Use of the optional ERR parameter for a
READ statement can indicate the source pro­
gram statement to which transfer should be
made if an error is encountered during data
transfer. When transfer has been made to
that statement. the first subsequent READ
in the source program provides the record
that was in error. If this is not the
record desired, an additional READ should
be be issued.

If the ERR parameter is omitted from the
READ statement. an input/output device
error terminates program execution.

Support of AND, OR, and COMPL

The functions listed in Table 14 are not
part of the standard FORTRAN language, but
are currently supported by the compiler.
caution should be exercised in their use
since continued support is not assured.

DATA Statements and Literal Constants

These paragraphs describe DATA Statement
initialization in cases when data does not
exactly match the specifications for
variables or arrays involved.

Assume DIMENSION XClO).

DATA X/lSHABCDEFGHIJKLMNO, 10.0/

will be treated exactly the same as

DATA X(l)/15HABCDEFGHIJKLMNO/,X(2)/10.0/

namely,

X(l)=ABCD

X(2)=10.0

X(3)=IJKL

X(4)=MNOb

XCS> through XClO)=bbbb

Note the following points:

1. If the array name is used or if the
subscript is 1, the entire array is
initialized.

2. If the literal in the DATA statement
is longer than one array item, and if
one of the conditions in point 1
holds, the excess characters of the
literal will be placed into succeeding
items.

3. A constant following the literal with
excess characters may replace some of
the excess characters.

4. In DATA XC5)/5HABCDE/, the characters
ABCD are placed into X(S)~ Eis not
treated as an excess character.

Programming Considerations 71

Further examples:

a. Assume DIMENSION Y(5)

I
DATA Y(1),Y(3)/'ABCDEF','XY'/

will be initialized as follows:

Y(l)=ABCD
Y(2)=EFbb
Y(3)=XYbb
Y(4) through Y(5)=bbbb

b. Assume DIMENSION Z (10)

Then DATA Z(1),Z(2),Z(6),Z(5)/
lOH)rncd;EFGHiIJ ,'QRST/u: 5H123~5,
5HGGGGG/ . I

will be initialized as follows:

Z (1) =ABCD
Z(2)=QRST
Z(3)=IJbb
z (4) =hl:;>)?_]:)_
Z(5)=GGGG
Z(6)=1234
Z(?)through ZC10)=bbbb

The above describes the current imple­
mentation for data initialization; however,
the implementation is subject to change and
it should be used with caution.

Direct A·ccess Programming

Using direct access I/O rather than
sequential I/O can decrease load module
execution time: the direct access state­
ments in the FORTRAN IV language enable the
programmer to retrieve a record from any
place on the volume without reading all the
records preceding that record in the data
set. For efficiency., direct data sets
should be pre-formatted. If, however, the
NEW subparameter is specified in the DD
statement for the data set, a FORTRAN sup­
plied load module will format the data set
before the program begins processing.

Note: Direct access I/O statements and
sequential I/O statements may not be used
to process the same direct data set within
the same FORTRAN load module. However,
sequential I/O statements may process a
direct data set in one load module, while
direct access I/O statements process it in
another.

Not all applications are suited to
direct access I/O, but an application that
uses a large table that must be held in
external storage can use direct access I/O
effectively. An even better example of a
direct access application is a data set
that is updated frequently. Records in the

72

data set that are updated frequently are
called master records. Records in other
data sets used to update the master records
are called detail records.

Each of the master records should con­
tain a unique identification that distin­
quishes this record from any other master
record. Detail records used to update the
masters should contain an identification
field that identifies a detail record with
a master record. For example, astronomers
might have assigned unique numbers to some
stars, and they wish to collect data for
each star on a data set. The unique number
for each star can be used as identification
for each master record, and any detail
record used to update a master record for a
star would have to contain the same number
as the star.

A FORTRAN program indicates which record
to FIND, READ, or WRITE by its record posi­
tion within the data set. The ideal situa­
tion would be to use the unique record
identification as the record position.
However, in most cases this is impractical.
The solution to this problem is a randomiz­
ing technique. A randomizing technique is
a function which operates on the identif i­
cation field and converts it to a record
position. For example, if six-digit num­
bers are assigned to each star, the ran­
domizing technique may truncate the last
two digits of the number assigned to the
star and use the remaining four digits as a
record position. For example, star number
383320 would be assigned position 3833.
Another example of a randomizing technique
would be a mathematical operation performed
on the identification number, such as
squaring the identification number and
truncating the first four digits and the
last four digits of the result. Then the
record for star number 383320 is assigned
record position 3422. There is no general
randomizing technique for all sets of iden­
tification numbers. The programmer must
devise his own technique for a given set of
identification numbers.

Two problems arise when randomizing
techniques are used. The first problem is
that there may be a lot of space wasted on
the volume. The solution in this instance
must be developed within the randomizing
technique itself. For example, if the last
two digits on the identification numbers
for stars are truncated and no star numbers
begin with zero, the first thousand record
positions are blank. Then a step should be
added to the randomizing technique to sub­
tract 999 from the result of the
truncation.

The second problem is that more than one
identification may randomize to the same
record location. For example, if the last

two digits are truncated, the stars identi­
fied by numbers 383320, 383396, and 383352
randomize to the same record location -
3833. Records ·that randomize to the same
record location are called synonyms. This
problem can be solved by developing a dif­
ferent randomizing technique. However, in
some situations this is difficult, and the
problem must be solved by chaining.

Chaining is arranging records in a
string by reserving an integer variable in
each record to point to another record.
This integer variable will contain either
an indicator showing that there are no more
records in this chain, or the record loca­
tion of the next record in the chain. Rec­
ords chained together are not adjacent to
each other. Figure 47 shows the records
for star numbers 383320, 383396, and
383352.

When records are chained, the first
record encountered for a record position is
written in the record position that
resulted from randomizing the identifica­
tion number. Any records that then ran­
domize to that same record location must be
written in record positions to which no
other record identifications randomize.
The space for these synonyms can be allo­
cated either at the end or the beginning of
the data set. However, this space must be
allocated when the data set is first writ­
ten. For example, if the randomizing tech­
nique assigns master records to record
locations between 1 and 9999, the program­
mer may wish to reserve record locations
10000 to 12000 for master records that
become synonyms.

The programmer must keep a record loca­
tion counter to keep track of the space
assigned for synonyms. When a synonym is
inserted in this space, the record location
counter must be incremented. The program­
mer should set up a dummy record in his

Identifier Chain

data set to maintain this record location
counter. When the direct access data set
is created, the record location counter
should be set at the lower limit of the
record positions available for synonyms
Ci.e., record location 10000 in the example
used above).

Also an indicator should be reserved to
indicate to the program that the end of a
chain has been reached. Since no record
position is designated as 0, 0 can be used
to indicate the end of a chain.

Before a FOR'I'RAN program writes a direct
access data set for the first time, the
data set must be created by writing "skele­
ton records" in the space that is to be
allocated for the direct access data set.
These skeleton records should be written by
an installation-written program. After the
skeleton records are written, the direct
access data set must be classified as OLD
in the DISP parameter of the DD statement.
However, if the skeleton records are not
written before direct access records are
written by the FORTRAN program for the
first time, a FORTRAN load module automat­
ically creates the data set and writes the
skeleton records. The programmer indicates
that skeleton records have not been written
by specifying NEW in the DISP parameter. A
FORTRAN load module writes skeleton records
according to the format described in the
Supervisor and Data Management Service pub­
lication in the section on direct data set
processing.

Figure 48 shows a block diagram of the
logic that can be used to write a direct
access data set for the first time. The
block diagram does not show any attempt to
write skeleton records.

Example 3 in Appendix B shows a program
and job control statements used to update a
direct access data set.

r--------T------------T---1
I I Record I I
I 383320 !Position forl Data I
I I 383396 I I

:====!===:=====~======:===: I I Record I I
I 383396 !Position forl Data I
I I 383352 I I

:====!===:=====:======:===: I I End I I
I 383352 I of I Data I
I I chain I I
l--------~------------~---J
Figure 47. Record Chaining

Programming Considerations 73

Direct Access Programming Considerations

In a job that creates a data set that
will reside on a direct-access device 0 the
DCB subparameter of the DD statement must
specify DSORG = DA in order that the label
that is created will indicate that this is
a direct-access data set (see "Creating a
Direct Data set" in the publication IBM
System/360 Operating System: Supervisor
and Data Management Services, Form
C28-6646).

Space must be allocated in the SPACE
parameter of the DD statement for a data
set written on a direct access volume. For
direct access data sets. the space allo­
cated in the SPACE parameter should be con­
sistent with the record length and number
of records specified in the DEFINE FILE
statement in the FORTRAN program. For
example, in the DEFINE FILE statement

DEFINE FILE 8(1000,40,E,X)

the number of records is specified as 1000
and the record length is specified as 40.
When this program is executed, the DD
statement for this data set should contain
the SPACE parameter

SPACE=(40,{1000))

indicating that space is allocated for 1000
records. and 40 bytes for each record. Set
for the First Time

i;f ~~~:ii~~:~~:;~ s!~:~~:~~:~:~~~~~~a ,::t
/ example, the DEFINE FILE statement can be
I given in a main program with a subprogram
I to perform the I/O operations on the data
\ set. However, the associated variable in
f the DEFINE FILE statement is Qnly change~

I ,~~~i~~~~:~~~~¥~~~~:~!~~,~~*~~~~i~~~~~~!ts
in COMMON, the associated variable

is changed only by I/O operations that
occur in the source module in which the
DEFINE FILE statement appears.

variable should not be
passed as a parameter between a main pro­
gram and its subprograms because the asso­
ciated variable is not passed in the same
way that other variables are passed. Other
variables reflect the result of any opera­
tions performed on them in the subprogram.
An associated variable is not changed by

performed on it in the

FIND statement permits record retri­
eval to occur concurrently with computation
or I/O operations performed on different

Set Record Position
in Read Statement
= Chain Variable

DEFINE FILE

Allowing enough
Space for Synonyms

Set Record
Location Counter=

Lower Limit of
Space for Synonyms

Set Chain
Variable in Master

Record = Record
Location Counter

in Write Statement
= Record

Location Counter

Increment
Record Location

Counter by 1

Build
Master
Record

Figure 48. Writing a Direct Access Data
Set for the First Time

data sets. By using the FIND statement,
load module execution time can be
decreased. For example, the statements

10 A=SQRTCX)

52 E=ALPHA+BETA*SIN(Y)
64 WRITE(9)A,B,C,D,E
76 READ(8'101)X,Y

are inefficient because computations are
performed between statements 10 and 52 and
an I/O operation is performed on another
data set while record number 101 could be

retrieved. If the following statements are
substituted, the execution of this module
becomes more efficient because record num­
ber 101 is retrieved during computation and
I/O operations on other data sets.

5 FIND(8"101)
10 A=SQRT(X)

52 E=ALPHA+BETA*SIN(Y)
65 WRITE(9)A,B,C,D,E
76 READ(8"10l)X,Y

COMPILER RESTRICTIONS

• The maximum level of nesting for DO
loops is 25.

• The maximum number of implied DOs per
statement is 20.

• The maximum number of arguments in a
Statement Function definition is 20.

• The maximum number of characters
allowed in a literal constant is 255.

• The maximum number of characters
allowed in a PAUSE message is 255.

• The maximum number of nested references
to another statement function within a
statement function definition is 50;
the maximum number of times a statement
function may be nested is 50.

• The debug facility is not supported.

Note: In this version of the compiler,
Statement Functions are expanded in-line.

LIBRARY CONSIDERATIONS

The FORTRAN library is a group of sub­
programs residing in the partitioned data
set SYSl.FORTLIB. For a detailed descrip­
tion of the FORTRAN library, see the
FORTRAN IV Library Subprograms publication.
A programmer can change the subprograms in
the library; he can add, delete, or substi­
tute library subprograms; or he can create
his own library. These topics are dis­
cussed in detail in the Utilities
publication.

When the FORTRAN library is changed for
maintenance or to provide additional fea­
tures, precompiled programs in a user

library require special attention to bene­
fit from the changed library modules. This
can be accomplished by using the linkage
edit facilities to include the current
library modules, and storing the resultant
load module back into the FORTRAN library.
When the facilities of the linkage editor
are used to provide an overlay structure or
to replace a single control section, care
should be taken not to mix FORTRAN library
modules that are at diverse operating sys­
tem levels.

DD STATEMENT CONSIDERATIONS

Several DD statement parameters and sub­
parameters are provided for I/O optimiza­
tion (see Figure 49). Other DD statement
parameters are discussed in "Job control
Language" and "Creating Data Sets."

Channel Optimization

The SEP parameter indicates that I/O
operations for specified data sets are to
use separate channels (channel separation),
if possible. The I/O operations for the
data set, defined by the DD statement, in
which

SEP=(ddname[,ddname) •••)

appears, are assigned to a channel dif­
ferent from those assigned to the I/O
operations for data sets defined by the DD
statements "ddname". Assigning data sets
whose I/O operations occur at the same time
to different channels increases the speed
of I/O operations.

I/O Device Optimization

UNIT subparameters can be specified for
device optimization.

VOLUME MOUNTING AND DEVICE SEPARATION:

UNIT=(name{:~}[,DEFER)
[, SEP= (-ddname [, ddname) •••)))

can be specified for volume mounting and
device separation. The "name" and number
of units are discussed in the section "Data
Definition Statement".

DEFER
indicates that the volume(s) for the
data set need not be mounted until

Programming considerations 75

needed. The control program notifies
the operator when to mount the volume.
Deferred mounting cannot be specified
for a new output data set on a direct
access device.

SEP=(ddname[,ddname] •••)
is used when a data set is not
assigned to the same access arms on
direct access devices as the data sets
identified by the list of ddnames.
This subparameter is used to decrease
access time for data sets and is
meaningful only for direct access
devices. The operating system honors
the request for device separation if
possible. but ignores the SEP sub­
parameter if an insufficient number of
access arms are available. The SEP
subparameter in the UNIT parameter
provides for device separation, while
the SEP parameter provides for channel
separation.

DEVICE AFFINITY: The use of the same
device by data sets is specified by:

UNIT=AFF=ddname

The data set defined by the DD statement in
which this UNIT parameter appears uses the
same device as the data set defined by the
DD statement "ddname" in the current job
step.

Direct-Access Space Optimization

The SPACE parameter can be used to spec­
ify space beginning at a designated track
address on a direct access volume. The
SPLIT or SUBALLOC parameters may be speci­
fied instead of SPACE to split the use of
cylinders among data sets on a direct
access volume or to use space specified for
another data·set which it did not use.
(The other SPACE parameter is discussed in
"Creating Data sets.")

SPACE BEGINNING AT A SPECIFIED ADDRESS:

SPACE=(ABSTR,(quantity,beginning-address))
specifies space beginning at a partic­
ular track address on a direct access
volume. The "quantity" is the number
of tracks allocated to the data set.
The "beginning address" is the rela­
tive track address on a direct access
volume where the space begins.

SPLITTING THE USE OF CYLINDERS AMONG DATA
SETS: If several data sets use the same
direct access volume in a job step, proces­
sing time can be saved by splitting the use
of cylinders among the data sets. Split­
ting cylinders eliminates seek operations
on separate cylinders for different data
sets. Seek operations are measured in mil­
liseconds, while the data transfer is meas­
ured in microseconds.

r---1
SEP=(ddnameC,ddnameJ ••• 1) a

{ (nameC.{n)P}3)(,DEFERlC,SEP=(ddnameC,ddnamel ••• 1) 2)4 5)6}
UNIT= AFF=ddname

SPACE=(ABSTR,(quantity,beginning-address))

[{ ,CYL } J
SPLIT=(n ,average-record-length ,<primary-quantityC,secondary-quantityl))

{TRK } SUBALLOC=(CYL ,Cprimary-quantityC,secondary-quantity])

average-record-length .{~~~~~=me.ddname }> I

stepname.procstep.ddname I
~---~
j 1 The maximum number of repetitions allowed is 7. I
j2If only one "ddname" is specified, the delimiting parentheses may be omitted. I
l 3If neither "n" nor "P" is specified, 1 is assumed. I
l 4This subparameter is applicable only for direct access devices. I
lsThis subparameter is the only keyword subparameter shown in this figure. All the I
!remaining subparameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC parameters are I
)positional subparameters. I
16If only "name" is specified, the delimiting parentheses may be omitted. I
L--~--J
Figure 49. DD Statement Parameters for Optimization

76

)

[{ ,CYL }
SPLIT=(n ,average-record-length

,<primary-quantity

[,secondary-quantity)}]>

is substituted for the SPACE parameter when
the use of cylinders is split. If CYL is
specified, "n" indicates the number of
tracks per cylinder to be used for this
data set. If "average record length" is
specified, "n" indicates the percentage of
tracks per cylinder used for this data set.
The remaining subparameters are the same as
those specified for SPACE in "creating Data
Sets."

More than one DD statement in a step
will use the SPLIT parameter. However,
only the first DD statement specifies all
the subparameters; the remaining DD state­
ments need only specify "n". For example,

//STEP4 EXEC PGM=TESTFI
//FT08F001 DD SPLIT=(45,800,(100,25}}

//FT17F001 DD SPLIT=(35}

//FT23F001 DD SPLIT=(20}

ACCESSING UNUSED SPACE: Data sets in pre­
vious steps may not have used all the space
allocated to them in a DD statement. The
SUBALLOC parameter may be substituted for
the SPACE parameter to permit a new data
set to use this unused space.

{
TRK }

SUBALLOC=(CYL
average-record-length

(,primary-quantity

[,secondary-quantity)),

{
ddname }
stepname.ddname >
stepname.procstep.ddname

The data set from which unused space is
taken is defined in the DD statement
"ddname", which appears in the step "step­
name." (The step must be in the current
job.) The other subparameters specified in
the SUBALLOC parameter are the same as the
subparameters described for SPACE in
"Creating Data Sets."

Programming Considerations 77

SYSTEM OUTPUT

The compiler, linkage editor1 and load
modules produce aids which may be used to
document and debug programs. This section
describes the listings, maps, card decks 1

and error messages produced by these com­
ponents of the operating system.

COMPILER OUTPUT

The compiler can generate a listing of
source statements, a table of source module
names, a structured listing of source
statements, an object module listing, a
table of source module labels, and an
object module card deck. Source module
diagnostic messages are also produced dur­
ing compilation.

source Listing

If the SOURCE option is specified, the
source listing is written in the data set
specified by the SYSPRINT DD statement. An
example of a source program listing is
shown in Figure SO. This printout is the
source listing of Sample Program 1 shown in
Appendix C of the FORTRAN IV Language pub­
lication. (This program will be used
throughout the remainder of this publica­
tion for purposes of illustration.)

C PRIME NUMBER PR:OBLEM
100 WRITE (6,81

cross Reference Listing

If the compiler XREF option is speci­
fied, a cross reference listing of
variables and labels is written in the data
set specified by the SYSPRINT DD statement.
The variable names are listed in alphabet­
ical order, according to length. (Variable
names of one character appear first in the
listing.) The labels are listed in ascend­
ing sequence along with the internal state­
ment number of the statement in which the
label is defined.

For both variable names and labels, the
listing also contains the internal state­
ment number of each statement in which the
variable or label is used. Figure Sl shows
a compiler cross reference listing produced
for the program in Figure SO.

Structured Source Listing

If the EDIT option is specified, a
structured source listing is written in the
data set specified by the SYSPRINT DD
statement. This listing is independent of
the usual source listing and indicates the
loop structure and logical continuity of
the source program.

Each loop is assigned a unique three­
digi t number. Entrance to the loop is
indicated by <xxx before the internal
statement number of the first statement in
the loop~ exit from the loop is indicated
by xxx) on a separate line before the next
non-comment line. The xxx is the loop
number.

ISN 0002
ISN 0003 8 FORMAT 152H FOLLOWING IS A LIST UF PRIHE NUM8ERS FROM l TO 1000/

119X,1Hl/19X,lH2/19X,lH31
ISN 0004
ISN 0005
ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
JSN 0015
ISN 0016
ISN 0017
ISN 0018
ISN 0019
lSN ·0020
ISN 0021

101 I=5
3 A=I

102 A=SQRTt Al
103 J=A
104 DO 1 K=3,J,2
105 L=I/K
106 1HL•K-L"llt2r4

l CONTINUE
107 WRITE (6,51I

5 FORMAT 11201
:l l=I+2

108 IFll000-1)7,4,3
4 WRITE (6,91
9 FORMAT Cl4H PROGRAM ERROR)
7 WRITE t 6,61
6 FORMAT 131H THIS IS THE ENO OF THE PROGRAM)

109 STOP
ENO

Figure so. source Module Listing

78

SYMBOL
A
I
J
k
l
SQRT

LA8fl
l
2
3
4
5
6
1
(l

9
100
101
102
103
104
105
106
107
108
109

INTERNAL STATtMENT NUMBERS
0005 0006 0006 U007
0004 0005 0009 0010 0012
0007 0008
0008 0009 0010
0009 0010
0006

DEFINED
0011
0014
0005
0016
0013
0019
0018
0003
0017
00')2
0004
0006
00'.!7
00'.)8
0009
0010
0012
0015
0020

REFERENCES
0008 0010
0010
0015
0010 0015
0012
0018
0015
0002
0016

0014 0014 0015

Figure 51. compiler Cross Reference
Listing

Indentations are used to show dominance
relationships among executable source
statements. Statement A dominates state­
ment B if A is the last statement common to
all logical paths from which B receives
control. Statement A is called a domina­
tor. statement B is called a dominee. By
this definition. a statement can have only
one dominator, but a dominator may have
several dominees. For example, a computed
GO TO statement is the last statement
through which control passes before reach­
ing three other statements. The GO TO
statement is a dominator with three
dominees.

A dominee is indented from its dominator
unless it is either the only doroinee or the
last dominee of that dominator. The line
of sight between a dominator and its
dominee(s) may be obscured by intervening
statements. This is a dominance discon­
tinuity and is indicated by c--- on a
separate line above the dominee. Listing

Coll1Illents and non-executable statements
are not involved in dominance relation­
ships; their presence never causes a
dominance discontinuity. Comments line up
with the last preceding non-comment line;
nonexecutable statements line up either
with the last preceding executable state­
ment or with the first one following.

Figure 52 shows a structured source
listing produced for the program in Figure
50.

Object Module Listing

If the LIST option is specified, the
object module listing is written in the
data set specified by the SYSPRINT DD
statement. The listing is in pseudo­
assembly language format; i.e., all
instructions are not legal assembly_ lan­
guage instructions.

The listing is arranged in a column for­
mat as follows:

Column 1: The address (in hexadecimal) of
the instruction.

Column 2: The assembly format (in hexadec­
imal) of the instruction.

C PRIME NUMBER PROBLEM
I SN 0002
I SN 0001

ISN 0004
(0021SN 0005

ISN 0006
ISN 0007
I SN 000'3

IOOllSN 0009
ISN 0010
lSN OOll

0011
ISN 0012
ISN 0011
ISN 0014
JSN 0015

0021
ISN 0015
ISN 0017
ISN 0018
ISN 0019
ISN 0020
JSN 0021

lOC WRITE 16,81
8 FORMAT 152H FOLLOWING IS A LIST OF PRIME NUMdERS FROM 1 TO 1000/
ll~X11Hl/19X,1H~/19X11H3l

101 1=5
3 A=l

102 A=SQR TC Al
103 J=A
104 DO l K=3,J,2
105 L=l/K
106 1Fll*K-11112t4

l CONTINUE
c

107 WRITE 16,5)1
5 FORMAT 1120)
2 I=I+2

108 IFl1000-Il7,4,3
c

4 WRITE 16,q)
9 FORMAT ll4H PROGRAM ERROR!
7 WRITE 16161
6 FORMAT (31H THlS IS THE END OF THE PROGRAM!

109 STOP
END

Figure 52.. Structured source Listing

System Output 79

Column 3: source labels and compiler
generated labels (compiler
generated labels contain six
digits).

Column 4: The actual instruction.

Column 5: Significant items referred to in
the corresponding instruction,
e.g., entry points, labels,
variables, constants, and tem­
poraries C.yxx where y is S, T,
or Q and xx is two digits).

Figure 53 shows an object module listing
produced for the program in Figure 50.

Storage Map

If the MAP option is specified, a table
of names, which appear (or are implied) in
the source module, is written in the data
set specified by the SYSPRINT DD statement.
The table includes:

1. The name of the program.

2. The hexadecimal size of the program in
bytes.

3. A list of all variable names, state­
ment function names, subprogram names,
and-internal function names.

4. An indication of the use of each name,
as follows:

C indicates variables in COMMON
E indicates variables that appear in

an EQUIVALENCE statement
IF indicates an internal function
NR indicates variables not referred to
SF indicates statement functions
XF indicates subprograms
XR indicates variables, arrays. or

subprograms that are referenced by
name

5. An indication of the use of each vari­
able. as follows (alone or in
combination):

80

A indicates that the variable name
was used as an argument; i.e.,
appeared in a parameter list

F indicates that the value of the
variable was used at some time;

i.e., the variable name appeared on
the right of an equal sign

S indicates that a value was stored
into the variable; i.e., the vari­
able name appeared on the left of
an equal sign

6. The type and length of each variable.

1. The relative address assigned to each
variable. (All functions and subrou­
tines have a relative address of
00000.)

B. A map of each COMMON block, followed
by a map of any equivalences made for
the block. The name of each block is
given if a name was assigned, along
with the hexadecimal size of the block
in bytes, and the name, type, length,
and relative address of each variable
in the block. For each equivalence,
the name of the variable is given
along with its displacement (offset)
from the beginning of the common
block.

Figure 54 shows a storage map produced for
the program in Figure 50.

Label Map

If the MAP option is specified, a table
of statement numbers, which appear (or are
implied) in the source module, is written
in the data set specified by the SYSPRINT
DD statement. This table includes:

1. The statement number of each source or
generated label.

2. The relative address assigned to each.

Figure 55 shows_ a label map produced for
the program in Figure 50.

Object Module Card Deck

If the DECK option is specified, an
object module card deck is produced. This
deck is made up of four types of cards
TXT, RLD, ESD, and END. A functional
description of these cards is given in the
following paragraphs.

000000 47 fO f ooc MAIN BC 15, lZC o, 1•>1 'Bf:;\; (

000004 07404040 UC XL4 140404040'
000008 40404040 DC XL4' 40404040'
oooooc 90 EC D ooc Sf!': 14, 12, 121131 Pl<(' Lo
000010 98 23 F \)20 L'I 2,3,321151
000014 50 30 D 20s 5f 3,8(131
OOOOHI 50 00 3 04 ST 131410,31
Ou~OlC 01 F2 BCR 15.2

TC:MPORARV FOK FLOAT ff IX
CONSTANTS

00011)8 4EOOOOOO UC XL4'4EOU0000 1
OOOlOC 00000000 UC KL4 1OOOUOOOO 1
000110 00000002 oc)(L4'00000002 1
000114 00000003 oc XL4 1000000031
OOOllil 00000005 DC XL4'00000005'
ooouc 000003Eil oc KL4 1000003E8 1

AOCllNS FOR V.ARIABLES AND CONSTANTS
AUCONS FOR EXTERNAL 1<.::FERl:NCE S

00Jl38 00000000 oc XL4 1 0000iJ000 1 SQRT
00013C 00000000 oc XL4 100000000 1 IBCOM=
OOvl48 41 40 0 OQ2 lOOJUO L4 4, :d u, 01 2
Ofli.il4(. 41 90 0 OIU LA 9, 31 0' 0 l 3
Ou0150 41 AO Q 005 L.• 10, 51 o, 0) ~

u0Ul54 41 80 0 ~Ed LA 8, lUOO I o, 0 l 3c<l
00d51l 5ll FO U 08(. luO L 15. 1401 o, 131 18CUM=
Oli015C 45 EO F (\() .. i:lAl 1 ... 4{ o, 151
Ofl0160 01%0000b UC XL4 1 0U000006 1 F
00;,164 OOCOGUZ8 UC XL4'00()UO\lL8 1 G+'
00Ul6d 4~ EO F 010 bAl 141 16 I o, 151
OOUlbC 50 AO I) 074 lfJl :; r 10, U61 o, 13)
oeo110 58 QO 0 (174 3 L o, 11<>1 o,u1
00J114 b!l 00 D 05d Lt) 01 tlll(01 l3l
00Ul1d bO Oil L) O!:>O :.n;; o, 801 o, 131
00vl 1C. 12 oc LTk o, 0
Ol:ICl 7c 47 40 D Olk a.; 4, 2UI 01131
OOv182 ~o 00 l) 0.!J Sf 01 o4l o, 1::11
000186 6A 00 l) 0'>0 AIJ o, llOI u, 13)

OOC18A 47 FO D O!:d dC 10, 2321 o, l.:ll
00018E ltl 00 LPI< 01 o
000190 50 QC 0 O!i't :if o, 041 o, 131
000194 6B (JO 0 050 SD o. BUI o, ui
0&0198 70 ()'{) 0 07ll SH. o, 1121 o, 131 A

O&\ll9C. 41 iO &) 04C 102 LA 11 7<>1 o, 13)
Oe<llAO 58 FC 0 08d L 15, 136(o, 131 SQRT
0001A4 05 Ef tlALtl. 14,15
000lA6 70 00 D 09u >Tl o, 1441 (i I 131 .TOO
OOOlAA 78 C'O 0 (l'JQ Lt: 01 1441 o, 131 .TOO
OOOlAc 10 CO 0 Ci7.0 5 rt. I), llll [). 13) A
0(l(,lB2 28 Oil 103 :.1.m 01 0
oo ... 164 78 QI) 0 070 Li: Ot 112((J, 131 A
OOvl.lHl bE Ofl 0 05d Al'i o, 881 o, l.:l)
OOulBC 60 ()!J 0 050 SIL 0, aot o, 13)
OOClCC 58 50 0 054 L 5, 841 0, 13)
00UlC4 47 AU 0 HA t>C 10, 2821 (), 13)
oeo1ca ll 55 Lill" 5, 5
OOiJlCA 18 69 l04 Li< 6, 9
OOOlCC. 58 7C D 074 l 1, 116(o, 131
oei.;100 18 07 105 LI< 01 1
O<lClD2 8E oc 0 o;w Skt..A o, 321 u, 0 l
00(,106 10 01> 01< 01 b
OlH.ll.lS 50 10 D O!lO :) f lt !Zill \l.13) L
OOClOC 18 36 106 Li\ 3, 6
JC(.lOc 5i.; 2C 0 080 M l1 ll31 U, 13) L
OOC1E2 18 37 Si< 3, 1
OOulE4 47 llO D 15;.. bC d, 3481 o, 13 I 2
OGClE8 47 20 0 11d ill. "-• 3761 01 Ul 4
oe.~ lEC 87 64 0 140 1 dXlc 61 ldll l 4,13) 105
O~C.lfO 56 FC 0 Olli. 107 L L!>1 140(o, 131 UH.UM=
JOOlf4 45 EC F OU4 dAL 14, 4(o, 151
Oe\JlF<I OOCIJOOOt> we XL4 • 0000000.0 • F
01.illrC OOLC0072 IJC XL4'0000007l 1 6 -
OOIJ200 45 EO F 00d tJAL 14t Bl o, l:i)
000204 Q450D074 UC XL4'045U00741
001)20<1 45 to F f•HJ tJAl 14. lb I o, 151
Ol!l<.201.; 56 00 u 014 £ L o, ll61 o, 131
000210 IA C4 "" a. 4
00(.212 50 co 0 •·74 Sf o, llbl o, 131
OOC2l6 18 28 108 l:< 2, 8
0002li:l Stl 20 I.I 074 s l, 1161 o, 13.I
OGU21C 47 40 0 160 tl\. 4, 39bl 0, 13) 7
oec220 47 80 0 l1d t!C l:l, 3761 o, 13l 4
0()0224 41 20 l) oco ti\. 2. 1921 il,13) " JOU2.26 56 FO 0 OB(, 4 L 15,, 1401 0,131 ltlCOM~

OOU22C 45 to f f>04 ll.AL 141 41 o, 15)
06U230 OQCQ(J00o oc XL4 1 0000000b 1 F

OOU234 000000 76 LIC. XL4 100000076 1 6+d
OOU238 45 EO F lllJ d<IL 14, 161 u, 151
oe~nc 58 FO 0 0!1(. 7 L 151 1401 o, 131 IBCOM=
00;.240 45 EC F ()()4 llAL 141 41 o,1s1
000244 QCHHl006 01.. XL4 100001J00b 1 f

~\

;ii Figure 53. Object Module Listing (Part 1 of 2)

system Output 81

OOC24<l 06()60088 llC X1.4 I 00000088 I G+Q
00i.i24C 45 E:O f 010 8Al 14. l6L 01151
00(;250 58 fC o nae 109 L .15. 1401 0113) IBCDM=
000254 45 EC f fJ34 liAL 14~ 52(o, l5J
00U2.58 05 DC Xll I 00000005 I
Ot/0259 40 @C Xt.l' 00000040 1
00U25A 40 LIC XLl I 0QOOOG401
0ClC25B 40 DC Xll'00000040'
OfJ025C 40 lilC XLl' 00000040 I
000250 fO DC XLl 1 000000f0 1

ADDRESS uf EPILOGUE
000251: 58 fO o oac l 15. l40L o,l3J
000262 45 EO f 034 BAL 14• 52{ Otl5l JBCOM=
Oe0266 0540 ilC Xl2 1~.i401
000268 464040f0 liC XL<t' 404040f0"

ADDRESS PROLOGUE
0(J026E: 56 FO 3 08(L 15, 140(o, 3)
000272 45 EO F 040 l:IAL 14, 641 0,15) · 1acoi4=
OOG276 18 03 LR 13, 3
000278 47 FO 0 098 80 15, 1521 o, 13)

A OCON fOK P~OLOGUI:

000020 0000026E DC XL4 1 0000026E 1

A OCON Hl>l SWE AREA
000024 00000080 DC Xl4 1 000000801

ADCOill furi:. 1c:> !LOGUE
00\JGBO 0000025E oc Xl4 10000025E 1

ADCONS 114RAMETER USJS
OOOOfC 80000120 DC Xl41 800001201 A

AOCONS 1-Lk. H:MPORARIES
000140 0000'0000 DC Xl4 1 00000\ll00 1

000144 00000000 DC Xl4 100000000 1

AOCONS fU!'i 1 BLOCK LAllELS

Figure 53. Object Module Listing (Part 2 of 2)

I MAIN I

NAME TAG 1 YPE
R*4
l*4

ADO.
000120
000130

NAME TAG TYFE
1*4

Xf R*4

ADO.
A SFA
l s

I SF
SQRT

OOCH24
000000

Figure 54. Storage Map

LAl'IR ADDR

3 000170
2 00020C

LABEL

105 000100
4 000228

Figure 55. Label Map

OBJECT MODULE CARDS: Every card in the
object module deck contains a 12-2-9 punch
in column 1 and an identifier in columns 2
through 4. The identifier consists of the
characters ESD. RLD, TXT or END. The first
four characters of the name of the program
are placed in columns 73 through 76 with
the sequence number of the card in columns
77 through 80.

ESD card: Four types of ESD cards are
generated as follows:

82

ESD, type 0 - contains the name of the
program and indicates the
beginning of the object
module.

ESD, type 1 - contains the entry point
name corresponding to an
ENTRY statement in a
subprogram.

SIZE Of PROGRAM 00027C HEXADEC114AL BYTES

NAME TAG
J SF

l8COM= f Xf

LA!iEL ADDR

1 000.lEC
7 OG023C

TYPE
1*4
1*4

ADD.
000128
000000

LABEL

NAME TAG
K Sf

ADDA

107 OOOlfO

TYPE
1*4

ADO.
00012C

ESD, type 2 - contains the names of sub­
programs referred to in the
source module by CALL
statements, EXTERNAL state­
ments, explicit function
references, and implicit
function references.

ESD, type 5 - contains information about
each COMMON block.

The number o, 1, 2, or 5 is placed in card
column 25.

RLD Card: An RLD card is generated for
external references indicated in the ESD,
type 2 cards. To complete external
references, the linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storage at the

address indicated in the RLD card contains
the address assigned to the subprogram
indicated in the ESD, type 2 card. RLD
cards are also generated for a branch list
produced for statement numbers.

TXT Card: The TXT card contains the con­
stants and variables used by the programmer
in his source module. any constants and
variables generated by the compiler. coded
information for FORMAT statements, and the
machine instructions generated by the com­
piler from the source module.

END Card: One END card is generated for
each compiled source module. This card
indicates the end of the object module to
the linkage editor, the relative location
of the main entry point, and the length <in
bytes) of the object module.

OBJECT MODULE DECK STRUCTURE: Figure 56
indicates the FORTRAN object module deck
structure.

source Module Diagnostics

Two types of diagnostic messages are
written by the compiler - informative and
error/warning messages.

Source Module Informative Messages: Source
module informative messages inform the pro­
grammer or operator of the status of the
compiler. A message is generated when the
compilation has begun, and when the compil­
er options are processed. For a descrip­
tion of these messages, see Appendix D.

Source Module Error/Warning Messages: All
error/warning messages produced are written
in a group following the source module
listing and object module name table.
Figure 57 shows the format of each message
as it is written in the data set specified
by the SYSPRINT DD statement.

In addition, following the statement in
which a serious error is detected. the fol­
lowing appears in the source listing:

ERROR DETECTED - SCAN POINTER X

TXT Cards
for Object
Module Instructions

ESD, Type 2 and
RLD for Compiler
Generated External
References

TXT Cards
for Source
Module Constants

ESD, Type 2, and
RLD for E.xternal
References in
CALL, EXTERNAL,
and Statements
Using Subprograms

ESD, Type 5
Indicating the
Existence of the
COMMON Area

TXT Cards
for Campi ler
Generated
Constants

End Card

ESD, Type 1 Giving
Entry Points from
ENTRY Statements

ESD, Type 0
Giving the Name
of the Object
Module

Figure 56. Object Module Deck Structure

where

represents the position of the char­
acter pointed to by the compiler's
scan pointer at the time the error is
detected. Any FORTRAN key words and/
or meaningless blanks are ignored in
determining the position of the
character. (If the statement is found
to be invalid during the classifica­
tion process, the value of x always
equals one.)

system output 83

r---1
I I
I ERROR NO. ERROR MESSAGE I
I ISN a I
I LABEL b IEKxxxI message I
I NAME c I
I I
~---~
I a is the internal statement I
I number of either the state-I
I ment in error or the state-I
I ment following the last I
I previous executable I
I statement. I
I b is a source label (state- I
I ment number) I
I c is a variable name I
I xxx is a three-digit message I
I number I
I message is the actual message I
I printed I
L---J
Figure 57. Format of Diagnostic Messages

There are three types of messages: (1)
a terminal error message, (2) serious error
messages, and (3) warning messages. The
terminal error message returns a condition
code of 16; the serious error messages a
code of 8; and the warning messages a code
of 4. For a description of error/warning
messages, see Appendix D.

LINKAGE EDITOR OUTPUT

The linkage editor produces a map of a
load module if the MAP option is specified,
or a cross reference list and a map if the
XREF option is specified. The linkage edi­
tor also produces diagnostic messages.
which are discussed in the Linkage Editor
publication.

CONTROL SECTlUN ENTRY

NAHE ORIGIN ltlllGTH NAME LOCATION

MAIN· 00 27C
IHCSSQRH 280 AC

SQRT 280
lMCFCOMtl* 330 FFO

IBCOH= 330
IHCUORT * 1330 8
liiCTRCH • 1338 258
UiCFC'flH* 1590 FF3

ADC ON= 15'>0
FCVIO 1618

UICFIOSH• 2588 CF2
FIOCS= 25(;8

lHCUATBl.* 3280 638

Figure 58. Load Module Map

84

Module Map

The module map is written in the data
set specified in the SYSPRINT DD statement
for the linkage editor. To the linkage
editor, each program (main or subprogram)
and each COMMON (blank or named) block is a
control section.

Each control section name is written
along with origin and length of the control
section. For a program and named COMMON,
the name is listed; for blank COMMON, the
name $BLANKCOM is listed. The origin and
length of a control section is written in
hexadecimal numbers. A segment number is
also listed for overlay structures (see the
Linkage Editor publication.

For each control section, any entry
points and their locations are also writ­
ten; any functions called from the data set
specified by the SYSLIB DD statement are
listed and marked by asterisks.

The total length and entry point of the
load module are listed. Figure 58 shows a
load module map produced for the program in
Figure 50.

Cross-Heference List

If the linkage editor XREF option is
specified, a cross reference list is writ­
ten with the module map. This cross
reference list gives the location from
which an external reference is made, the
symbol externally referred to in this con­
trol section, the control section in which
the symbol appears, and the segment number
of the control section in which the symbol
appears. Unless the linkage editor is
building an overlay structure, the cross
reference list appears after the module map
for all control sections. Figure 59 shows
the cross reference list produced for the
program in Figure 50.

NAMt LOCATION NAME LOCATION NAME LOCATION

FOIOCS= 3EC

FCVZO 160C FCVAO 1782 FCVlO 180A
FCVEO lFSC FCVCO 2186

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

138
13C
304

1108
1100
lUEO
uoc
llEO
llE4
llEB
llEC
UFO
llC8
1490
1494
1498
2444
26BO
261:1C

ENTRY ADDRESS
fUTAL LENGTH

!>QRT
IBCOM=
IBCOM=
AOCUN=
f lOCS=
IHCUOPT
f-CVEO
fCVLO
FCVIO
FCVCO
FCVAO
FCVZO
lHCTRCH
IBCOM=
AD CON=
FlOCS=
lBCOM=
IHCUATBL
lBCOM=
00

381l6

lHCSSQRT
lHCFCOMH
JHCFCOMH
IHCFCVTH
IHCF JOSH
IHCUOPT
IHCFCVTH
IHCFCVTH
lHCFCVTH
lHCFCVTH
Il'ICFCVTH
lHCFCVTH
IHC TRCH
lHCFCQMH
JHCFCVlH
lHCFIOSH
IHCFCOMH
JHCUATBL
lHCFCOMH

Figure 59. Linkage Editor cross Reference
List

LOAD MODULE OUTPUT

At execution time, FORTRAN load module
diagnostics are generated in three forms -
error code diagnostics, program interrupt
messages, and operator messages. An error
code indicates an input/output error or a
misuse of a FORTRAN library function. A
program interrupt message indicates a con­
dition that is beyond the capacity of
System/360 to correct. An operator message
is generated when a STOP or PAUSE is
executed.

Error code Diagnostics and ~raceback
without Extended Error Message Facility

If an error is detected during execution
of a FORTRAN load module, a message and a
diagnostic traceback are written in the
error message data set <see "FORTRAN Job
Processing"}. The message is of the form:

message text
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,
REG. 15, REG. 0, REG. 1

These error messages are described in
Appendix D. For the error conditions num­
bered 211 through 214, 217, 219, 220, and
231 through 237, the message will consist
of only IHCxxxI where xxx is a 3-digit
error code. The errors detected by the
FORTRAN mathematical functions will provide
message text describing the error condi­
tion. The traceback, which follows the
error message, is a list of routines in the
direct line of call to the routine in
error, in reverse order of use. After the
traceback is completed, for error messages
IHC217I and IHC218I, control is passed to

the call routine statement designated in
the END and ERR parameters respectively of
the FORTRAN READ statement if that parame­
ter was specified. In all other cases,
execution of the job step is terminated and
a condition code of 16 is returned to the
operating system.

Each entry in the traceback contains the
name of the called routine, an internal
statement number (ISN} from the calling
routine <if one was generated for that
call), and the contents, in hexadecimal, of
register 14 (which indicate the point of
return to the calling routine).

The first routine listed in the trace­
back is the one that called the li.C•rary
subprogram in which the error occurred,
except when the name given is IBCOl•i. Then,
the error could have occurred in IliCFCut-',B
or one of the routines that it calls:
IHCFCVTH, IHCNAMEL, or IHCFIOSH. '_: li(e erro.r:
code in the message indicates th€ ;-;<.~-cua1
origin of the error.

Note: For an assembler language pro9ram or
subprogram, the routine name field i~ the
traceback contains the identifier specified
in the SAVE macro instruction or e~uivalent
coding. (If the identifier specified is
longer than eight characters, only the
first eight appear.} If no identifier is
specified, the traceback routine name tiela
is either blank or its contents are mean­
ingless in the traceback.

Internal statement number identifiers
are generated for function references and
calls when the ID option is specified on
the EXEC card for the compile step. These
identifiers appear in the traceback, except
for FORTRAN calls to IBCOM for which no
identifiers are generated. If NOID is
specified, no identifiers are generated ana
the internal statement number field will b~
blank.

Note: For an assembler language program or
subprogram, the internal statement number
field contains the value of the binary cal­
ling sequence identifier specified in the
CALL macro instruction or equivalent cod­
ing. If no identifier was specified, the
field is either blank or its contents are
meaningless in the traceback.

If the traceback cannot be completed,
the message TRACEBACK TERMINATED is issued
and the job step is terminated. This mes­
sage appears only if either 13 names of
subprograms appear in the traceback or a
calling loop has been detected (e.g., sub­
program A calling B calling A}.

At the end of the traceback, whether it
was completed or not, the entry point of

System output 8~

r---1
IIHC219I I
!TRACEBACK FOLLOWS ROUTINE ISN REG. 14 REG. 15 REG. 0 REG. 1 I
I IBCOM 820068FC xxxxxxxx xxxxxxxx xxxxxxxx I
I MASTR 010 00005378 I
I PAYROLL 00003148 xxxxxxxx xxxxxxxx xxxxxxxx I
!ENTRY POINT = 00005000 I
L---J
Figure 60. Sample Traceback for Execution-Time Errors

the main FORTRAN program is given in
hexadecimal.

Figure 60 shows the traceback informa­
tion placed in the error message data set
for the following example.

Example: A FORTRAN program PAYROLL calls
the subroutine MASTR 1 which contains a READ
statement. The IHCFIOSH routine is called
to perform the input operation, but an
error condition arises because there is no
DD statement for the data set.

Explanation: PAYROLL was entered at loca­
tion 5000 and called MASTR at internal
statement number (ISN) 10 in PAYROLL.
IBCOM Cin this case, the error occurred in
the IHCFIOSH routine) would have returned
to location 68FC in MASTR: MASTR would have
returned to location 5378 in PAYROLL and
PAYROLL would have returned to location
3148 in the supervisor. Execution ter­
minates and a condition code of 16 is
returned to the operating system.

Program Interrupt Messages

Program interrupt messages containing
the old Program status Word CPSW) are pro­
duced when one of the following occurs:

86

Protection Exception (4)
Addressing Exception (5)
Specification Exception (6)
Data Exception (7)
Fixed-Point Divide Exception (9)

• Exponent-Overflow Exception (C)
Exponent-Underflow Exception CD)
Floating-Point Divide Exception CF)

The characters in parentheses following
the exceptions are PSW codes that appear in
the program interrupt message to indicate
the type of exception. Appendix D contains
a complete description of the message and
its format.

The program interrupt messages are writ­
ten on a data set specified by the pro­
grammer. (See "FORTRAN Job Processing.")
Operator intervention is not required for
any of these interruptions.

ABEND Dump

If a program interrupt occurs that
causes abnormal termination of a load
module, that part of main storage belonging
to his program and significant registers,
indicators, etc., are dumped. (For infor­
mation about interpreting an ABEND dump,
see the Messages., Completion Codes, and
Storage Dumps publication.)

Operator Messages

A message is transmitted to the operator
when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for
operator communication. For a description
of these messages, see Appendix D.

\
'

)

This section describes the error diag­
nostic facilities available during program
execution when the extended error message
facility has been requested.

If the extended error message facility
is specified at system generation time, the
user is provided with more information
about errors detected in a FORTRAN program
at object time. such errors are either
data dependent or program errors which are
not syntactical or semantic in nature.

With the extended error message facili­
ty, a short message text is printed along
with the error number when an error occurs.
The data in error is also printed as a sup­
plement to the message text. An option is
available to suppress the printing of mes­
sages. A summary error count, printed when
a job is completed, informs the user how
many errors occurred, even though printing
of messages may have been suppressed during
the run.

The Traceback map is printed after each
error occurrence with subroutine flow
traced back to the main program before con­
tinuing execution. The Traceback map may
be optionally suppressed. Unless the
extended error message facility is speci­
fied, the Traceback map is printed only for
terminal errors.

The facility exists for calling a user­
written subroutine to correct erroneous
data rather than accept a standard correc­
tion when using the extended error message
facility. Default and dynamic control of
the number of times an error may occur
before execution is terminated is also
offered.

For each error condition, the user has
both dynamic and default control over the
action that follows.

FUNCTIONAL CHARACTERISTICS

With the extended error message facili­
ty, an error monitor with additional fea­
tures is called when an error is detected
by a FORTRAN module. The error monitor
uses the Option Table, which contains an
entry for each error condition. The Option
Table controls the actions that are taken
after the detection of the error.

EXTENDED ERROR MESSAGE FACILITt

When the error monitor is called, it is
passed such information as the error iden­
tification number, the text of the appro­
priate message for printing on the object
error unit, and a pointer to the data in
error.

Contained in the Option Table is infor­
mation about how many messages to print,
how many errors to allow before terminating
the job, indication of whether or not
Traceback is desired, and the address of
the user-written corrective subroutine, if
one exists.

The option Table consists of a double­
word preface, then a double-word entry for
each error condition. If the extended
error message facility is not specified,
the Option Table is reduced to the preface
alone. The format of the Option Table is
shown in Figure 61, which also lists
default values in the preface fields. An
Option T_able entry is described in 'I-able
15. Default values for each error condi­
tion are shown in Table 16.

The error monitor tests the Option
Table, then acts according to its settings.
After printing (or suppressing printing of)
the message text and data in error, the
action after an error occurrence _may be:

1. Terminate the job.

2. Take a standard corrective action,
then continue execution.

3. Call a user-written closed subroutine
to correct the data in error, then
continue execution.

SUBPROGRAMS FOR USING EXTENDED ERROR
MESSAGE FACILITY

To aid the programmer in the use of the
extended error message facility, several
CALL statements may be used in his FORTRAN
source program. These statements allow
access to the Option Table to alter it
dynamically.

All passed parameters, unless otherwise
indicated, are 4-byte integers.

Extended Error Message Facility 87

r----------- .,.,-----------------------------,

i
I Preface

First
Entry

Second
Entry

Last
Entry

r--------------------------1
I A I
r------T------T------T-----~
I B I c I D I E I
t------,+------+------+-----~
I 1 I 2 I 3 I 4 I
~------i ______ i ______ i _____ ~

I s I
t------T------T------T-----~
I 1 I 2 I 3 I 4 I
~------i ______ i ______ i-----~

I s I
t------T------T------T-----~

r--~1
t------+------+------+-----~
I 1 I 2 I 3 I 4 I
~------i ______ i ______ i _____ ~

I s I
L--------------------------J

I
I
I
I
I
I
I
I

r-----T------T----------------------------~
I I Byte I I
IFieldlLengthl Description I
r-----+------+----------------------------~
I A 4 I Count of number of entries I

B 1

c 1

D 1

E 1

1 1

2 1

3 I 1
I
I

4 I 1
I
I

s I 4

I in the Option Table. I
I Default is 95. I
I I
I Boundary alignment switch I
I (bit 1). O=NOALIGN; 1= I
I ALIGN. Default is ALIGN. I

I
I
I

Error message handling
selection indication.
FF=NO; OO=YES. Default
YES.

is I
I
I

mes-I Align count when error
sage handling is not
selected. Default is 10.

Not used (reserved).

Number of errors allowed
before termination.

Number of messages to be
printed.

Number of errors that have
occurred.

Option bits. (See "Option
Table Entry Description"}.

Address of user exit rou-

I
I
I
I
I

I tine, if specified.
_____ i ______ i ___________________________ _

Figure 61. Option Table

88

Accessing and Altering the option Table

To access an entire entry from the
Option Table without altering it, the pro­
grammer issues the following statement:

CALL ERRSAV (IERNO,TABENT)

where

I ERNO
is an integer equal to the error num­
ber to be referenced in the Option
Table. Should a negative number be
used erroneously, a message will be
printed indicating that the number is
out of the range of the error table.

TAB ENT
is the address of an 8-byte storage
area where the accessed table entry is
to be stored.

When it is desirable to modify an entry
temporarily and save the current entry for
later restoration, the CALL ERRSAV state­
ment should be used.

To restore an entry to the Option Table,
the statement is:

CALL ERRSTR (IERNO,TABENT)

where

I ERNO
is an integer equal to the error num­
ber for which the entry is to be
restored in the Option Table. Should
a negative number be used erroneously,
a message will be printed indicating
that the number is out of range of the
error table.

TABENT
is the address of an 8-byte storage
area containing the table entry data.

Note: Certain entries may be protected
against alteration because of the way in
which the Option Table was originally sup­
plied. If an attempt is made to change an
unalterable entry., the request is ignored.

Individual options, numbering up to 5,
may be changed in the Option Table by the
CALL ERRSET statement. The procedure for
altering only one option while leaving the
others intact is described in the defini­
tion of the parameters. It is accomplished
by omitting the final parameter or the last
two parameters from the calling sequence,
or by supplying zero for a parameter to
indicate no change. The CALL ERRSET state­
ment is as follows:

Table 15 OPTION TABLE Entry Description
r-----T--------T------------T---1
I I I Default I I
!Field! Length I Settings1 I Description I
r-----+--------+------------+---i
I 1 11 byte I 10 2 I Contains a number When the count in field 3 matches thisl
I I I I number, the job is terminated. The count maximum is 255. I
I I I I A count of zero means unlimited number of occurrences 3 I
I I I I Any count greater than 255 supplied by ERRSET will set I
l I l I this field to zero. I
r-----+--------+------------+---i
l 2 11 byte I 54 I A count of the number of messages to be printed. Message I
I I I I printing is suppressed thereafter. A count of zero means I
I I I I no messages are to be printed. I

r-----+--------+------------+---i
I 3 11 byte I 0 I A count of the number of errors that have occurred where 01
I I I I means no errors have occurred. I

r-----+--------+------------+---i
I 4 11 byte I I 8 option bits defined as follows: I

I I I I I
I I Bit 0 I 0 I Control character indicator: I
I I I I 0 = none~ 1 = single space I
I I 1 I 1 I Table entry modifiable: O=no, l=yes (See Note 5) I
I I 2 I 0 I Extension of count of field 3 I
I I 3 !<see Note 6>1 Buffer contents to be printed: O=no, l=yes I
I I 4 I 0 I Unused I
I I 5 I 0 I Unlimited number of messages allowed: O=no, l=yes I
I I 6 l 1 I Traceback required: O=no, l=yes I
I I 7 I 1 I unused I
r-----+--------+------------+---i
I 5 f 4 bytes I 1 I Address of user's exit routine I

r-----~--------~------------~---i
f 1The default values shown apply to all error numbers unless excepted by a footnote. I
12Errors 208, 210, and 215 are set as unlimited, and errors 217 and 230 are set to 1. I
l 3 When the user sets the count of allowed errors as unlimited, the FORTRAN job may loop I
I endlessly unless the operator intervenes. I
14Error 210 is set to 10, and errors 217 and 230 are set to 1. I
15The entry for error 230 is not modifiable. I
l 6 This entry is set to 0 except for error numbers 212, 215, 218, 221, 222, 223, 224, andl
I 225. I
L---J

CALL ERRSET (IERNO,INOAL,INOMES,ITRACE,
ADDUSE I I RANGE)

where

I ERNO
is an integer equal to the error numb­
er to be referenced in the Option
Table. Should any number that is not
within the range of the Option Table
be used, a message will be printed.

INOAL
is an integer indicating the number of
errors to be allowed before termina­
tion of execution. If INOAL is zero
or negative, this option is not
altered. Any number greater than 255
will mean an unlimited number of
occurrences.

INOMES
is an integer indicating the number of
messages to be printed A negative
value for 'lNOMES is used to suppress

all messages; a zero value will leave
the entry unaltered. Any number
greater than 255 means that the mes­
sage should always be printed.

I TRACE
is an integer with the value O, 1, or
2, with these meanings:

0 - Option not to be changed.

1 - A Traceback will not be printed
after an error occurrence.

2 - A Traceback will be printed after
an error occurrence.

A value for !TRACE which is npt 1 or 2
will leave the option unchanged

ADDUSE
is an optional parameter that may
contain:

Extended Error Message Facility 89

The value 1 as a 4-byte integer, indi­
cating that the Option Table is to
be set to show no user exit (i.e.,
standard corrective action will be
used when continuing execution).

The name of a closed subroutine that
is to be executed after the occur­
rence of the error identified by

IERNO. This name must appear in
an EXTERNAL statement in the
source program, and the routine to
which control is to be ,passed must
be either in the FORTRAN library
or supplied at compile time.

The value 0, indicating that the table
entry is not altered.

Table 16. Option Table Default Values
r-----T----------T---------T--------------T----------T-------T---------T-----------T----1
l !Number of !Number of! I !Print I !Standard I I
!Error! Errors I Messages! !Modifiable!Buffer !Traceback!Corrective !User!
I Code! Allowed I Allowed !Print Control I Entry !Content! Allowed I Action !Exitl
~-----+----------+---------+--------------+----------+-------+---------+-----------+----~
I 207 10 5 NA Yes I NA Yes Yes No I

I 208 Unlimited 5 NA Yes I NA Yes Yes No I
I 209 10 5 NA Yes I NA Yes Yes 1 No1 1
I 210 Unlimited 10 NA Yes I NA Yes Yes 1 No I
I 211 10 5 NA Yes I NA Yes Yes No I
I 212 10 5 No character Yes I Yes Yes Yes No I
I supplied2 I I
I 213 10 5 NA Yes I NA Yes Yes No I

214 10 5 NA Yes I NA Yes Yes No I
215 Unlimited 5 NA Yes I Yes Yes Yes No I
216 10 5 NA Yes I NA Yes Yes 3 No I
217 14 1 NA Yes NA Yes Yes No I
218 10 5 5 NA Yes Yes 5 Yes Yes No I
219 10 6 5 NA Yes NA Yes Yes No I
220 10 5 NA Yes NA Yes Yes No I
221 10 5 NA Yes Yes Yes Yes No I
222 10 5 NA Yes Yes Yes Yes No I
223 10 5 NA Yes Yes Yes Yes No I
224 10 5 NA Yes Yes Yes Yes No I
225 10 5 NA Yes Yes Yes Yes No I
230 1 1 NA No NA Yes No No I
231 10 5 NA Yes NA Yes Yes No I
232 10 5 NA Yes NA Yes Yes No I
233- 10 5 NA Yes NA Yes Yes No I

I 301 I I I I r-----i __________ i _________ i ______________ i __________ i _______ i---------i-----------i----~

1No corrective action is taken except to return to execution. For boundary alignment,
the corrective action is part of the support for misalignment. For divide check, the
contents of the result register are not altered.

2If a print control character is not supplied, the overflow line is not shifted to
incorporate the print control character. Thus, if the device is tape, the data is
intact, but if the device is a printer, the first character of the overflow line is
not printed and is treated as the print control. Unless the user has planned the
overflow, the first character would be random and thus the overflow print line control
can be any of the possible ones. It is suggested that when the device is a printer,
the option be changed to single space supplied.

3 Corrective action consists of return to execution for SLITE.
4If the END parameter is present in a READ statement but the number of occurrences of

l this error is greater than the number allowed, the END is still honored.
lsFor an I/O error, the buffer may have been partially filled or not filled at all when
I the error was detected. Thus, the buffer contents could be blank when printed. When
I an ERR parameter is specified in a READ statement, it is honored even though the error
I occurrence is greater than the amount allowed.
l 6 The count field does not necessarily mean that up to 10 missing DD cards will be
I detected in a single debugging run, since a single WRITE performed in a loop could
I cause 10 occurrences of the message for the same missing DD card. I
L---J

90

I RANGE
is an optional parameter specifying
that the INOAL, INOMES, !TRACE and
ADDUSE options are to be applied to
the range of error numbers IERNO to
!RANGE. If !RANGE is smaller than
!ERNO, !RANGE is ignored. If !ERNO is
212, !RANGE has a special meaning as
follows:

1 - Supply single space on overflow
line.

If !RANGE is not 1, then the option is
set for no print control.

If the print control entry is not to
be changed, !RANGE must be omitted
from the call to ERRSET.

Obtaining Traceback

Under the extended error message facili­
ty, a user may dynamically ask for a Trace­
back and continued execution. To obtain
Traceback, a

CALL ERRTRA

is issued. The call has no parameters.
This statement may not be used when the
error message facility has not been speci­
fied at system generation time. If the
statement is used under such conditions,
ERRTRA is assumed to be user-supplied.

USER-SUPPLIED EXIT

Any user-written subprogram may utilize
the extended error message facility for
error message control. The requirements
are:

1. The routine that detects an error will
issue a CALL ERRMON statement with
appropriate parameters, as described
below.

2. An error number is assigned to the
error condition and an Option Table
entry is made available for the error
condition.

The use of the extended error message
facility requires certain planning at the
installation level. The routine that uses
the error monitor for error service should
have the status of an installation general
purpose function similar to the IBM-
s upplied mathematical functions. The num­
ber of installation error conditions must
be known at the time the FORTRAN library is
created by system generation so that
entries will be provided in the Option

Table. The error numbers chosen for user
subprograms are restricted in range. IBM­
designated error conditions have reserved
the error codes from 000 to 301. Error
codes for installation-designated error
situations must be assigned in the range
302 to 899. The error code is used to find
the proper entry in the Option Table.

The CALL ERRMON statement is as follows:

CALL ERRMON (IMES,IRETCD,IERNO,DATAl,
DATA2, .••)

where

IMES
is the address of an array that con­
tains, in EBCDIC characters, the text
of the message to be printed. The
first item of the array contains an
integer whose value is the length of
the message. Thus, the first 4 bytes
of the array will not be printed. If
the message length is greater than 133
characters, it will be printed on two
or more lines of printed output.

IRETCD
is an integer variable that will be
set upon return from the error monitor
as follows:

0 - The Option Table indicates that
standard correction is required.

1 - The Option Table indicates that a
user exit to a corrective routine
has been executed. T'he functicn
is to be re-evaluated using arsru­
ments supplied in DATAl, Dli.T'll.2 ••••
For input/output type errors, 1
indicates that the user does not
want a standard correction.

I ERNO

DATAl
DATA2

is the number of the error '.~:o:ndition
as an integer. This number :;_dentifies
a unique error situation for which
there is an entry in the IERNC field
of the Option Table. Should an-:x• num­
ber that is not within the range of the
Option Table be used, a mes;;age will
be printed.

are parameters containing the argument
or arguments in error upon entry.
There must be one parameter for each
argument. Upon re-curn, results
obtained from user-written corrective
action are placed in these var5i.ables.
Since the variables' content can be
altered, they should be used only ir1.
the CALL to the error monitor; other­
wise, the user of the function may
have literals or variables destroyed.

Extended Error Message Fa.ci li ty 91

Since DATA1 and DATA2 are the parameters
which the error monitor will pass to a
user-written routine to correct the
detected error. care must be taken to make
sure that these parameters agree in type
and number in the call to ERRMON and in a
user-written corrective routine, if one
exists.

considerations for a User-supplied Exit
Routine

When the error monitor calls a user­
written subroutine for corrective action,
it uses the equivalent of the following
FORTRAN statement:

CALL x(IRETCD,IERNO,DATA1,DATA2, •••)

where

x
is the name of the routine placed in
the Option Table. The other parame­
ters are the same as those of ERRMON.
If the error occurred during an input/
output operation Ci.e., error codes
211 to 237), the subroutine x must be
one that does not contain any FORTRAN
I/O statements -- i.e., READ, WRITE,
BACKSPACE, END FILE, REWIND, PDUMP,
DEBUG, or ERRTRA.

Although the user-written corrective
routine may change the setting of IRETCD,

OPTION TABLE CONSIDERATIONS

When a user-written subroutine is to be
executed, then the Option Table entry for
that error should be altered to contain the
address of the user-exit routine.

Although it is not possible to supply
user exits when the Option Table is created
by system generation, an installation may
construct an Option Table to be placed in
the FORTRAN library that does contain user­
exi t addresses. However, this procedure
will result in loading all user-exit sub­
routines mentioned in the Option Table with
a v-type adcon.

The user must issue a CALL ERRSET to
insert a user-exit address in the Option
Table that is created by system generation.

When changing the Option Table, setting
error occurrence to be unlimited (i.e.,
specifying a number greater than 255) may
cause the program to loop indefinitely
unless the operator intervenes. This use,
therefore, should be made with caution.

92

such a change is subject to the following
restrictions:

1. If IRETCD is set to O, then DATA1 and
DATA2 must not be altered by the
corrective routine, since standard
corrective action is requested. If,
in fact, DATA1 and DATA2 are altered
when IRETCD is set to O, the opera­
tions that follow will have unpredict­
able results.

2. Only the values 0 and 1 are valid for
IRETCD. A user-exit routine must
ensure that one of these values is
used if it changes the return code
setting.

The user-written exit routine can be
written in FORTRAN or in assembler lan­
guage. In either case, it must be able to
accept the call to it as shown above. The
user-exit routine must be a closed subrou­
tine that returns to the caller.

If a user-written exit routine is writ­
ten in assembler language, then the end of
the parameter list can be checked. The
high order byte of the last parameter will
be 80. If the routine is written in FOR­
TRAN, the parameter list must match in
length the parameter list passed in the
CALL to the error monitor.

Meaningful actions the user may take if
he wishes to correct an error are described
in Tables 17, 18, and 19.

HOW TO CREATE OR ALTER AN OPTION TABLE

The Option Table supplied during the
process of system generation may be altered
dynamically for any particular FOR'I'RAN job
by the use of the subprograms ERRSET and
ERRSTR. To provide a new set of options
for the entire installation, the Option
Table must be reassembled and link edited
into the FORTRAN library after system
generation and before the system is used.
A procedure for accomplishing this is
described below.

An assembler language macro definition
can be used to generate an Option Table.
The macro definition and use of the macro
for each Option Table entry are supplied as
input to the assembler procedure ASMFCL to
replace the system generated Option Table
with the desired one.

An example of the use of such an
assembler language macro definition is
shown in Figure 62.

Table 17. Corrective Action After I/O Error Occurrence

r-----T----------T------------------------------------T---1
I I Parameters I I I
JErrorl Passed tol I I
JCode I User I standard Corrective Action I User-Supplied corrective Action I
t-----+----------+------------------------------------+---~
I 211 I A,B,C !Treat format field containing C as l(al If compiled FORMAT statement, put I
I I lend of FORMAT statement I hexadecimal equivalent of character inl
I I I I c (see Note ll. I
I I I I (bl If variable format, move EBCDIC I
I I I I character into C (See Note 1l I
I I I I r
I I I I I
I 212 I A,B,D !Input: Ignore remainder of I/O !See Note 2 I
I I I list. I I
I I I Output: Continue by starting new I I
I I I output record. Supply carriage I I
I I !control character if required by I
I I !Option Table.
I I I
I I I
I 213 I A,B,D !Ignore remainder of I/O list See Note 2
I I I
I I I
I· 214 A, B, D I Input: Ignore remainder of I/O If user correction is requested, the
I llist. remainder of the I/O list is ignored.
I !Output: Change record format to v.
I I
I I
I 215 A,B,E !Substitute zero for the invalid The character placed in E will be sub-
1 !character stituted for the invalid character
I I (see Note ll
I I
I I
I 217 A,B,D !Increment FORTRAN sequence number see Note 2
I I and read next file
I I
I I
I 218t A,B,D,F I Ignore remainder of I/O list See Note 2
I I
I I
I 219- A,B.D !Ignore remainder of I/O list See Note 2
I 224
I
l I
I 225 I A,B.E substitute zero for the invalid The character placed in E will be sub-
1 I character stituted for the invalid character
I I (see Note ll

I
I

231 I A,B.D Ignore remainder of I/O list See Note 2
I
I

232 I A,B.D,G Ignore remainder of I/O list See Note 2
I
I

233 I A,B,D Change record number to list maximumJSee Note 2
I Jallowed (32.,000) I
I I I
I I I

234-I A,B,D I Ignore remainder of I/O list !See Note 2
236 I I I

I I I
I I I

237 I A,B,D,F Jignore remainder of I/O list !See Note 2
t-----~----------~------------------------------------i ___ J

JMeanings:
I
IA - Address of return code field (Integer*4l
IB - Address of error number (Integer•4l
JC - Address of invalid format character (Logical•ll
ID - Address of data set reference number (Integer*4l
IE - Address of invalid character (Logical*ll
JF - Address of DECB
JG - Address of record number requested (Integer •4)
I
I Notes:
I
I 1. Alternatively, the user can set the return code to O, thus requesting a standard corrective
I action.
I
I 2. The user can do anything he wishes except perform another I/O operation - i.e., issue a
I READ, WRITE, BACKSPACE, END FILE, REWIND, PDUMP, DBUG, or ERRTRA. On return to the Library, I
I the remainder of the I/O request will be ignored. I
I I
ltif error condition 218 (I/O error detected) occurs while writing error messages on the object I
I error unit, then the job is terminated since there is no place to exhibit the message. I
I I
I If no DD card has been supplied for the object error unit, error messages cannot be printed and I

J/ I the job is terminated. I
L---J

Extended Error Message Fac1l1ty 93

Table 18. corrective Action After Mathematical Subroutines Error Occurrence <Part 1 of 3)

r-------T-------------------T------------------T--1
I I I I options I
I I I ~----------------------T---------------------------~
I I I Invalid I Standard I user-Supplied I
!Error I F'ORTRAN I Argument I Corrective I corrective Action I
jCode I Reference I Range I Action I (See Note 1) I
~-------+-------------------+------------------+----------------------+---------------------------~

I
I

216 I CALL SLITE (I) I>4 I the call is treated I I
I I as a no operation I
I I I

216 I CALL SLITET I>4 J=2 I I
I <I.J) I
I I

241 I K=I**J I=O, J$0 K=O I I,J
I I

242 I Y=X**I X=O, I$0 Y=O I X,I
I

243 DA=D**I D=O, I$0 DA=O I D,I
I

244 XA=X**Y X=O, Y$0 XA=O I x, y
I

245 DA=D**DB D=O, DB$0 DA=O I D,DB
I

246 cA=C**I c=o+Oi, I$0 cA=O+Oi I c,r

247 CDA=CD*I

251 Y=SQRT (X)

252 Y=EXP (X)

253 Y=ALOG (X)

Y=ALOG10 (X)

c=O+Oi, I$0

X<O

X>174.673

X=O
X<O

X=O
x<O

CA=O+Oi

Y=jXj1/2

Y=*

Y=-*
Y=logjXI

Y=-*
y=log10lxl

CD,I

x

x

x
x

x
x

I 254 Y=COS (X)
Y=SIN (X)

1x1;::21su Y::.J7/2 x
I
I
I 255
I
I 256
I
I
I 257
I
I
I 258
I
I
I 259
I
I

Y=ATAN2 (X,XA)

Y=SINH (X)
Y=COSH (X)

Y=ARSIN (X)
Y=ARCOS (X)

Y=TAN (X)
Y=COTAN (X)

Y=TAN (X)

X=O, XA=O

IXl2:174.673

IXl>l

IXl2: (218) *1T

X is too close
to an·odd
multiple of !.

Y=O

Y=O

Y=l

I I I 2 I

X,XA

x

x

x

x

~-------~-------------------i __________________ i ______________________ i ___________________________ i
I Variable ~ I
jI,T Variables of INTEGER*4 I
jX,,XA.I Variables of REAL*4 I
jD,DA,DB Variables of REAL*8 I
jC,CA Variables of COMPLEX*8 I
jZ,X1,X2 Complex variables to be given the length of the functioned argument when they appear I
!CD Variables of COMPLEX*16 I
~---~
!Notes: 1. The user-supplied answer is obtained by recomputation of the function using the valuej
I set by the user routine for the parameters listed. I
I 2. The largest number that can be represented in floating point is indicated above by *·I
L---~------------~--------------------------------~J

94

Table 18. corrective Action After Mathematical Subroutines Error Occurrence (Part 2 of 3)

r-------T-------------------T------------------T-------------------------------~-------------------1
I I I I options I
I I I ~----------------------T----------------------------1
I l I Invalid I Standard I User-Supplied I
!Error I FORTRAN I Argument I Corrective I Corrective Action I
I Code I Reference I Range I Action I (See Note 1) I
~-------+-------------------+------------------+----------------------+----------------------------!
I I I I I
I I Y=COTAN (X) X is too close I Y=* I X I
I I to a multiple I I
I I of 11 I I
I I I I
I 261 l DA=DSQRT (D) D<O DA= ID 11/ 2 I D I
I I I I
I 262 I DA=DEXP (D) D>l 74. 673 DA=* I D I
I I I I
I 263 I DA=DLOG (D) D=O DA=-* I D I
I D<O DA=log I XI I I
I I I
I DA=DLOG10 (D) D=O DA=-* I D
I D<O DA=log10 Ix I I
I I
I 264 DA=DSIN CD) IDl22 50 *11 DA=-IT/2 I D
I DA=DCOS (D) I
I I
I 265 DA=DATAN2CD.DB) D=O.DB=O DA=O I D,DB
I I
I 266 DA=DSINH (D) IDl.2:174.673 DA=* I D
I DA=DCOSH (D) I
I I
I 267 DA=DARSIN (D) ID I >1 DA=O I D
I DA=DARCOS (D) I
I I
I 268 DA=DTAN (D) 1x122so*11 DA=l I D
I DA=DCOTAN (D) I
I I
I 269 DA=DTAN CD) D is too close DA=* I D
I to an odd 11 I
I multiple of 2 I
I I
I DA=DCOTAN CD) D is too close DA=* I D
I to a multiple I
I I of 11 I I I
!***!
I For errors 271 through 275, C=X1+iX 2 I
!***!
I I
I 271 Z=CEXP (C) X1>174. 673 Z=* (COS X;a+ SIN X;a) c I
I I
I 272 Z=CEXP (C) 1x2 1221sn Z=O+Oi c I
I I
I 273 Z=CLOG (C) C=O+Oi z=-*+Oi C I
L---J
ivariable ~ j
II,T Variables of INTEGER*4 I
IX,XA,I Variables of REAL*4 I
ID,DA,DB Variables of REAL*8 I
IC,CA Variables of COMPLEX*8 I
IZ,X1,X2 Complex variables to be given the length of the functioned argument when they appear I
ICD Variables of COMPLEX*16 I
~--~---!
!Notes: 1. The user-supplied answer is obtained by recomputation of the function using the valuej
I set by the user routine for the parameters listed. I
I 2. The largest number that can be represented in floating point is indicated above by *· I
L---J

Extended Error Message Facility 95

Table 18. corrective Action After Mathematical subroutines Error Occurrence (Part 3 of 3)

r-------T-------------------T------------------T--1
J I I I options I
I I I 1-----------------------T-------------"-----"'-"--------i
I I I Invalid I Standard I User-Supplied I
!Error I FORTRAN I Argument I Corrective I Corrective Action I
]Code l Reference I Range I Action I (See Note 1) I
1--------+-------------------+------------------+----------------------+---------------------------i
I I I I I
I 274 I Z=CSIN (C) I IX11~2 18 *1T Z=O+Oi I c I
I I Z=ccos <c> I I I
I I I I
I 275 I Z=CSIN (C) I X2>174.673 Z=*(SIN X1+iCOS X1) c I
I I I 2 I
I I I I
I I Z=CCOS (C) I Z=_! (COS X1 -iSIN X1) c I
I l I 2
I I I
I l Z=CSIN (C) I X2<-174.673 Z=_!(SIN X1-iCOS X1) c
I I I 2
I I I
I I Z=CCOS (C) I Z=*(COS X1+iSIN X1) c
I I I 2
!***
I For errors 281 through 285, CD=X1+iX2
!***
I I I I I
I 281 I Z=CDEXP (CD) I X1>174.673 I Z=*(COS X2+iSIN X2) I CD
I I I I I
l 282 I Z=CDEXP (CD) I I X2 I ~2 50 *1T Z=O+Oi I CD
I I I I
I 283 I z=cDLOG <cD> I cD=O+Oi z=-*+Oi I cD
I I I I
I 284 I Z=CDSIN (CD) I I X1 I ~2 50 *1T Z=O+Oi I CD
I I Z=CDCOS (CD) I I
I I I I
I 285 I z=cDSIN CcD> I X2>174.673 Z=_!CSIN X1+icos X1> I CD
I I I 2 I
I I I I
I l Z=CDCOS (CD) I Z=* (COS X1-iSIN X1) I CD
I I I 2 I
I I I I
I I Z=CDSIN (CD) I X2<-174.673 Z=_!(SIN X1-iCOS X1) I CD
I I I 2 I
I I I I
l I Z=CDCOS (CD) I Z=* (COS X1 +iSIN X1) CD
I I I 2
I I I
I 290 I Y=GAMMA (X) I xs2-2s2 or Y=* x
I I I X~57. 5744
J I I
I 291 I Y=ALGAMA (X) I xso or Y=* X
I I I X~4. 2937*10 73

I I I
I 300 I DA=DGAMMA (D) I os2- 252 or DA=* D
I I I D~57.5774
I I I
I 301 I DA=DLGAMA CD) I DSO or DA=* D
I I I D~4. 2937*10 73 I
L-------i-------------------i------------------i----------------------i---------------------------J j Variable 1'.Y£§ i
jI,T Variables of INTEGER*4 I
jX,XA,,I Variables of REAL*4 I
jD,DA,DB Variables of REAL*8 I
IC,CA Variables of COMPLEX*8 I
jZ,X1 ,X2 Complex variables to be given the length of the functioned argument when they appear I
jCD Variables of COMPLEX*16 I
1--i
!Notes: 1. The user-supplied answer is obtained by recomputation of the function using the valuej
I set by the user routine for the parameters listed. I
I 2. The largest number that can be represented in floating point is indicated above by *·I
L---J

96

Table 19. corrective Action After Program Interrupt Occurrence
r---T---1
I Program Interrupt Messages I Options I
~-----T----------T--------------------------+---------------------------T---------------~
I !Parameters! I I User-Supplied I
IErrorlPassed to I Reason for Interrupt I I corrective I
jCode jUser Exit I (See Note 1} !Standard corrective Action I Action I
~-----+----------+--------------------------+---------------------------+---------------~
I 207 I D0 I Exponent overflow !Result register set to the User may alter
I I (Interrupt Code 12} I largest possible floating D. See Note 2.
I I jpoint number. The sign of
I I jthe result register is not
I I I altered.
I I I
I 208 I D,I Exponent underflow !The result register is set User may alter
I I (Interrupt code 13} Ito zero. D. See Note 2.
I I I
I 209 I None Divide check, Integer !There is no standard fixup. See Note 4.
I I divide (interrupt code 9},jResult registers are not

210

I Decimal divide (Interrupt touched.
code 11}, Floating point

None

divide (Interrupt code
15). See Note 3.

Specification interrupt
(Interrupt code 6} occurs
for boundary misalignment.
Other interrupts occur
during boundary alignment
adjustment. They will be
shown with this error code
and the PSW portion of the
message will identify the
interrupt.

No special corrective
action other than correct­
ing boundary misalignments.

See Note 4.

~-----i----------i--------------------------i---------------------------i---------------~
!Variable ~ Description I
I D A variable INTEGER*8 This variable contains the contents of the result I
I register after the interrupt. I
I I A variable INTEGER*4 This variable contains the "exponent" as an integer I
I value for the number in D. It may be used to deter- I
I mine the amount of the underflow or overflow. The I
I value in I is not the true exponent, but what was I
I left in the exponent field of a floating point number!
I after the interrupt. I
~---~
!Notes:
I
11.
I
I
12.
I
I
I
I
I
I
13.
I
I
14.
I

A program interrupt occurs asynchronously. Interrupts are described in IBM System/
360 Operating System: Principles of Operation, Form A22-6821.

The user exit routine may supply an alternate answer for the setting of the result
register. This is accomplished by placing a value for D in the user-exit routine.
Although the interrupt may be caused by a long or short floating-point operation,
the user-exit routine need not be concerned with this. The user-exit routine
should always set a REAL*8 variable and the FORTRAN library will load short or long
depending upon the floating-point operation that caused the interrupt.

For floating-point divide check, the contents of the result register is shown in
the message.

The user-exit routine does not have the ability to change result registers after a
divide check. The boundary alignment adjustments are informational messages and

I there is nothing to alter before execution continues.
L---J

Extended Error Message Facility 97

//OPTAB JOB 1, 'SAMPLE MACRO' ,MSGLEVEI.-1 CREATE IHCUOPT
//VER1 EXEC ASllP'C,PARM.ASM•NODECK
//ASM.SYSIN DD •

MACRO
PREFACE lADEN'1!,,ADJST,&SETEN'1!

• O THIS MACRO GENERATES THE PREFACE '1!0 THE OPTION TABLE AND SETS
GLOBALS FOR SUBSEQUEN'l! CALLS '1!0 THE SE'1!EN'1! MACRO• THE USE OF THIS MACRO GENERATES AN OPTION TABLE AS DEFINED BY IBM
AND ALLOWS CHANGES TO INDIVIDUAL ERROR NUMBERS AS DESIRED, BY USE

.• OF SETEN'l!

IHCUOP'1!
lSE'l!NR
&COUNT
l'1!0'1!AL
u

GBLA &COUN'1!,&'1!0'1!AL,lSE'1!NR
LCLA lA
CSECT
SETA
SETA
SETA
SETA
DC

SSE'1!EN'1!
207
&ADEN'1!+301
&ADEN'1!+95

ERROR NUMBER OF FIRST EN'l!RY IN TABLE
NUMBER OF LAST EN'l!RY IN TABLE

DC
DC
MEND
MACRO

F' &A' TOTAL NUMBER OF EN'l!RIES
B'O&ADJST.000000'
AL3(0)

SETEN'l! lE
GBLA &COUN'l!, &TOTAL, &SETNR
LCLA &B
SETA 1
SETA &SETNR-1

IN TABLE

lB
&SETNR
.AGAIN ANOP START OF LOOP '1!0 GEN ONE EN'l!RY IN TABLE FOR ERROR NUMBER

AIF (&COUNT G'1! &'1!0'1!AL) .MEND HAVE ALL EN'l!RIES BEEN CREATED
AIF (&B LE N'&SYSLIST).'l!EST
AIF (&SE'l!NR EQ 0).DEFAULT
MEX IT

.TEST ANOP
• • IF THERE IS NO USER SUPPLIED INFO FOR THIS ERROR NO TAKE DEFAULT

AIF . (lSYSLIST (&B, 1) NE &COUN'l!) • DEFAULT
ERR&COUN'l! DC AL1 (&SYSLIST(&B,2)) NUMBER OF ERRORS '1!0 ALLOW FR SE'l!ENT

DC AL1 (&SYSLISTUB,3)) NO OF MSGS '1!0 PRIN'l! FROM SETENT
DC x•oo•
DC X'lSYSLIST(lB,4)' OPTION BITS SUPPLIED BY SETEN'l!
DC P'1'

&COUN'l! SETA &COUN'l!+ 1
'B SETA lB+1

AGO .AGAIN RETURN TO LOOP
.DEFAULT ANOP IBM ·DEFAULTS FOR ERRORS NOT INDICATED BY SETEN'l!
.• IBM SPECIAL CASES FOR MESSAGE COUNT

AIF (&COUNT EQ 208).UNLIM
AIF (&COUN'l! EQ 21 0) • UNLIM
AIF (&COUN'l! EQ 215) .UNLIM
AIF (&COUNT EQ 217).0NE
AIF (&COUNT EQ 230).0NE

ERR&COUN'l! DC AL1(10)
.BACK1 ANOP

DC AL1 (5)
.BACK2 ANOP

DC x•oo• .. IBM SPECIAL CASES FOR OPTION BITS
AIF (&COUNT EQ 212).SPBITS
AIF (&COUNT EQ 215) • SPBITS
AIF (&COUNT EQ 218) .SPBITS
AIF (&COUNT EQ 221) • SPBITS
AIF (&COUNT EQ 222).SPBITS
AIF (&COUNT EQ 223).SPBITS
AIF (&COUNT EQ 224).SPBITS
AIF (&COUNT EQ 225).SPBITS
DC X 1 42 1

AGO .CONT
.SPBITS DC X'52'
.CON'l! ANOP

DC
&COUN'l! SETA

F 1 1 1

&COUNT+1
AGO .AGAIN RETURN TO LOOP

.UNLIM ANOP
AL1 (0) ERR&COUNT DC

AIF
DC
AGO

(SCOUNT NE 210) .BACK1
AL1 (10)

.ONE ANOP
ERR&COUN'l! DC

DC
AIF
DC
DC

.MEND
AGO
ANOP
MEND

.BACK2

AL1(1)
AL1(1)
(&COUNT
x•oo•
x1 02•
.CON'1!

END OF MACRO

EQ 217) .BACK2

DEFINITION

EXAMPLE OF THE USE OF THE MACRO •
PREFACE 50,1,2
SETENT (220,5,2,21), (235, 10,5,42), (255,2,0,4)
SETENT (300,56,65,3)

END
1•

END OF DATA

Figure 62. Example of Assembler Language Macro Definition Used to Generate Option Table

98

The macro parameters are as follows:

PREFACE A,B,C

where

A

B

c

is the number of user entries to be
created

is the boundary alignment desired,
with these values

0 no alignment

1 alignment

is the number of times the SETENT
macro is to be issued.

SETENT (A,B,C,D)

where

A

B

c

D

is the error entry to be altered

is the count of errors to allow. CA
specification of 0 means unlimited
error occurrence.)

is the count of the number of times
the message should be printed before
suppression.

is two hexadecimal digits that fill
the option code field.

The macro instructions are used as
follows:

1. Only one PREFACE macro instruction is
allowed.

2. As many SETENT macro instructions as
are desired may be used. From one to
200 error entries can be specified in
the use of a single SETENT macro
instruction by using continuation
cards.

3. Only error entries that differ from
the default options need be mentioned.
The default options will be the same
as those listed in Table 16.

4. Error codes must be placed in ascend­
ing order in the SETENT macro instruc­
tion. For IBM-supplied entries, error
codes are in the range from 207 to
301. User entries are in the range
from 302 to 899.

5. If there is an error in the specifica­
tion of parameters, the entry will be
ignored and a diagnostic message will
be printed.

Option Table Default Values

The Option Table controls the extended
error message facility.

Table 16 shows the default val~es for
the Option Table. If an option recorded in
a table entry does not apply to a particu­
lar error condition, it is shown as not
applicable (NA) •

The field that is defined as the user­
exi t address also serves as a means of spe­
cifying standard corrective action. When
the table entry contains an address, the
user exit is specified; when it is 1, stan­
dard correction is specified. It is not
possible to generate or create an Option
Table entry with the user-exit address
specified. The user exit must be specified
by altering the Option Table. To specify
that no corrective action -- either stan­
dard or user-written -- is to be taken, the
table entry must specify that only one
error is to be allowed before termination
of execution.

ERRORS IN USE OF FACILITY

When the extended error message facility
recognizes a situation or request that
requires user notification, an information­
al message is printed.

The error monitor is not recursive; if
it has already been called for an error, it
cannot be re-entered in the event that the
user-written corrective routine causes any
of the error conditions that are listed in
the Option Table. Boundary misalignment is
therefore not allowed in a user-exit
routine.

PROGRAMMING EXAMPLE

The programming example in Figure 63
shows how features of the error message
facility are used.

A FORTRAN job utilizes a user-supplied
library subprogram which makes use of the
error message facility to handle a divide
by zero situation. A user-written routine
is supplied to take corrective action after
the detection of an error. comments in the
FORTRAN program describe what is being
done.

Extended Error Message Facility 99

//SAMPLE JOB 1,SAMPLE, MSGLEVEL=1
//STEP1 EXEC FORTHCLG
//FORT.SYSIN DD *
C MAIN PROGRAM THAT USES THE SUBROUTINE DIVIDE

WMMbN i

c

c

2
1

10

c
c
c

c
c
c
c

c
100
c
1

c
2
c

c
c
c
6
8

7
9
c
5

c
c
c
c
c

c
1

c
2

I*

EXTERNAL FIXDIV
SET UP OPTION TABLE WITH ADDRESS OF USER EXIT
CALL ERRSET(302,30,5,1,FIXDIV)

E=O
GET VALUES TO CALL DIVIDE WITH
READ(5,10) A,B
IF (B) 1, 2, 1
E=1.0
CALL DIVIDE(A,B,C)
WRITE(6,10)C
FORMAT(1 1 1 2E20.8)
S'rOP
END
SUBRQUTl:NE ~i5rvioE: (A~lf, c::r·-..... -- -­
ROUTINE TO PERFORM THE CALCULATION C=A/B
IF B=O THEN USE ERROR MESSAGE FACILITY TO SERVICE ERROR
PROVIDE MESSAGE TO BE PRINTED
DIMENSION MES(4)
DATA MES(1)/12/,MES(2) 1 DIV'/,MES(3)/ 1 302I/,MES(4)/' B=O'/
DATA RMAX/Z7FFFFFFF/
MESSAGE TO BE PRINTED IS
DIV302I B=O
ERROR CODE 302 IS AVAILABLE AND ASSIGNED TO THIS ROUTINE
STEP1 SAVE A,B IN LOCAL STORAGE
D=A
E=B
STEP2 TEST FOR ERROR CONDITION
IE (E) 1, 2, 1
NORMAL CASE -- COMPUTE FUNCTION
C=D/E
RETURN
STEP3 ERROR DETECTED CALL ERROR MONITOR
CALL ERRMON(MES,IRETCD,302,D,E)
STEP 4 BE READY TO ACCEPT A RETURN FROM THE ERROR MONITOR
IF(IRETCD) 5,6,5

IF IRETCD=) STANDARD RESULT IS DESIRED
STANDARD RESULT WILL BE C=LARGEST NUMBER IF D IS NOT ZERO
CR C=O IF E=O AND D=O
IF (D) 7, 8, 7
C=O.O
GO TO 9
C=RMAX
RETURN
USER FIX UP INDICATED. RECOMPUTE WITH NEW VALUE PLACED IN E
GO TO 100
END
SUBROUTINE FIXDIV(IRETCD,INO,A,B) -----·-·- ~­
THIS IS A USER EXIT TO SERVE THE SUBROUTINE DIVIDE
THE PARAMETERS IN THE CALL MATCH THOSE USE IN THE CALL TO
ERRMON MADE BY SUBROUTINE DIVIDE

STEP1 IS ALTERNATE VALUE FOR B AVAILABLE -- MAIN PROGRAM
HAS SUPPLIED A NEW VALUE IN E. IF E=O NO NEW VALUE IS AVAILABLE
COMMON E
IF(E) 1,2,1
NEW VALUE AVAILABLE TAKE USER CORRECTION EXIT
B=E
RETURN
NEW VALUE NOT AVAILABLE USE STANDARD FIX UP
IRETCD=O
RETURN
END

//GO.SYSIN DD *
0.1EOO

I*

Figure 63. Sample Program Using Extended Error Message Facility

100

)

FORTRAN can be invoked by a problem pro­
gram through the use of the CALL, ATTACH,
or LINK macro instructions.

The program must supply to the FORTRAN
compiler:

• The information usually specified in
the PARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used
during processing by the FORTRAN
compiler.

r------T---------T------------------------1
jName IOperationjOperand I
~------+---------+------------------------~
j[namell{LINK } IEP=IEKAAOO, I
I I ATTACH I PARAM=(optionaddr I
I I I [, ddnameaddrl), VL=l I
I I I I
llnamellCALL IIEKAAOO, (optionaddr I
I I I [, ddnameaddrl) , VL I
L------~---------~------------------------J

optionaddr
specifies the address of a variable
length list containing information
usually specified in the PARM parame­
ter of the EXEC statement.

The option list must begin on a half­
word boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
If there are no parameters, the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks should appear in the
list.

APPENDIX A: INVOKING THE

ddnameaddr

I VL=l

specifies the address of a variable
length list containing alternate
ddnames for the data sets used during
FORTRAN compiler processing. This
address is supplied by the invoking
program. If standard ddnames are
used, this operand may be omitted.

The ddname list must begin on a half­
word boundary. The two high-order
bytes contain a count of the number of
bytes in the remainde~ of the list.
Each name of less than eight bytes
must be left justified and padded with
blanks. If an alternate ddname is
omitted from the list, the standard
name is assumed. If the name is
omitted within the list, the 8-byte
entry must contain binary zeros.

The sequence of the 8-byte entries in
the ddname list is as follows:

Entry
1
2
3
4
5
6
7
8
9

OR VL

Alternate Name
SYS LIN
00000000
00000000
00000000
SYS IN
SYSPRINT
SYS PUNCH
SYSUTl
SYSUT2

specifies that the sign bit of the
last full-word of the address parame­
ter list is to be set to 1.

Appendix A: Invoking the FORTRAN Compiler 101

APPENDIX B: EXAMPLES OF JOB PROCESSING

The following examples show several
methods to process load modules.

Example 1

,.t:_,

Problem Statement: A previously created
data set SCIENCE.MATH.MATRICES contains a
set of 80 matrices. Eacfi roatrix is an
array containing real*4 variables. The
size of the matrices varies from 2x2 to
25x25: the average size is 10x10. The
matrices are inverted by a load module
~.iATINV in the library MATPROGS. Each
inverted matrix is written (assume FORMAT
control) as a single record on the data set
SCIENCE.MATH.INVMATRS.

The I/O flow for the example is shown in
.Figure 64. The job control statements used
to define this job are shown is Fiqure 65.

MATINV

Printed
Output

SCIENCE.
MATH.

INVMATRS

Figure 64. Input/Output Flow for Example

Explanation: The JOB statement identifies
the programmer as JOHN SMITH and supplies
the account number 537. Both control
statements and control statement error mes-'
sages are written in the SYSOUT data set.

The JOBLIB DD statement indicates that
the private library MATPROGS is concate­
nated with the system library.

The EXEC statement indicates that the
load module MATINV is executed.

DD statement FT08F001 identifies the
input data set. SCIENCE.MATH.MA'IRICBS.
(Data set reference number 8 is used to
read the input data set.) Because this
data set has been previously created and
cataloged, no information other than the
data set name and disposition has to be
supplied.

DD statement FT10F001 identifies the
printed output. (Data set reference number
10 is used for printed output.)

DD statement FT04F001 defines the output
data set. (Data set reference number 4 is
used to write the data set containing the
inverted matrices.) Because the data set
is created and cataloged in this job step,
a complete data set specification is
supplied.

The DSNAME parameter indicates that the
data set is named SCIENCE.MATH.INV~.ATRS.
The DISP parameter indicates that the data

Sample Coding Form

ATH.MATRICES,DISP=OLD

JI

II

Figure 65. Job Control Statements for Example 1

102

set is new and is to be cataloged. The
SPACE parameter indicates that space is
reserved for 80 records, 408 characters
long (80 matrices of average size). When
space is exhausted, space for 9 more rec­
ords is allocated. The space is contig­
uous: any unused space is released, and
allocation begins and ends on cylinder
boundaries.

The DCB parameter indicates variable­
length records, because the size of
matrices vary. The record length is speci­
fied as 2504, the maximum size of a
variable-length record. (The maximum size
of a record in this data set is the maximum
number of elements (625) in any matrix mul­
tiplied by the number of bytes (4) allo­
cated for an element, plus 4 for the seg­
ment control word (SCW) that indicates the
count of the number of data bytes contained
in the record.) The buffer length is spec­
ified as 2508 (the 4 bytes are for the
block control word (BCW) that contains the
length of the block).

The SEP parameter indicates that read
and write operations should take place on
different channels.

Example 2

Problem Statement: A previously created
data set RAWDATA contains raw data from a
test firing. A load module PROGRD refines
data by comparing the data set RAWDATA
against a forecasted result, PROJDATA. The
output of PROGRD is a data set &REFDATA,
which contains the refined data.

The refined data is used to develop
values from which graphs and reports can be
generated. The load module ANALYZ contains
a series of equations and uses a previously
created and cataloged data set PARAMS which
contains the parameters for these equa­
tions. ANALYZ creates a data set &VALUES,
which contains intermediate values.

These values are used as input to the
load module REPORT, which prints graphs and
reports of the data gathered from the test
firing. Figure 1 in the "Introduction"
shows the I/O flow for the example. Figure
66 shows the job control statements used to
process this job.

The load modules PROGRD, ANALYZ, and
REPORT are contained in the private library
FIRING.

Explanation: The JOB statement indicates
the programmer's name, JOHN SMITH, and that
control statements and control statements
errors are written in the SYSOUT data set.

The JOBLIB DD statement indicates that
the private library FIRING is concatenated
with the system library.

The EXEC statement STEPl defines the
first job step in the job and indicates
that the load module PROGRD is executed.

The DD statements FT10F001 and F'I'11F001
identify the data sets containing raw data
(RAWDATA) and the forecasted result
(PROJDATA), respectively.

DD statement FT12F001 defines a tem­
porary data set, &REFDATA, created for
input to the second step. (In the load
module, data set reference number 12 is
used to write &REFDATA.) The DISP parame­
ter indicates that a data set is new and i8
passed. The data set is written using the
device class TAPECLS. The VOLUME parameter
indicates that the volume identified by
serial number 2107 is used for this data
set. The DCB parameter indicates that the
volume is written using high density: the
records are fixed-length with FORMAT con­
trol and the buffer length is 400.

The EXEC statement STEP2 defines the
second job step in the job and indicates
that the load module ANALYZ is executed.

DD statement FT17F001 identifies the
data set which contains refined data. The
DISP parameter indicates that the data set
is deleted after execution of this job
step. The DD statement FT18F001 identifies
the previously created and cataloged data
set PARAMS.

DD statement FT20F001 defines the tem­
porary data set &VALUES containing the
intermediate values. The DISP parameter
indicates that the data set is created iri
this step, and that it is passed to the
next job step. The data set is written on
volume 2108 using one of the devices
assigned to the class TAPECLS. The DCB
parameter indicates high density and fixed­
length blocked records <written under
FORMAT control). Each record is 204
charac- ters long.

The EXEC statement STEP3 defines the
third job step and indicates that the load
module REPORT is executed. DD statement
FT08F001 identifies the data set containing
intermediate values.

DD statement FT06F001 indicates that the
data set reference number 06 is used to
print the reports and graphs for job step
three.

Appendix B: Examples of Job Processing 103

Sample Coding Form

1

1

Figure 66. Job control Statements for Example 2

Example 3 The following conventions must be

A data set has been created that con­
tains master records for an index of stars.
Each star is identified by a unique six­
digit star identification number. Each
star is assigned a record position in the
data set by truncating the last two digits
in the star identification number. Because
synonyms arise, records are chained.

Problem Statement: Figure 67 shows a block
diagram illustrating the logic for this
problem.

A card
stream is
data set.
this data

data set read from the input
used to update the star master
Each record (detail record) in

set contains:

1. The star identification field of the
star master record that the detail
record is used to update.

2. Six variables that are to be used to
update the star master.

104

observed processing this data set:

1. The star master record that contains
the record location counter pointing
to space reserved for chained records
is assigned to record location 1.

2. A zero in the chain variable indicates
that the end of a chain has been
reached.

3. The first variable in each star master
record is the star identification
field; the second variable in each
star master is the chain variable.

4. Each record contains six other
variables that contain information
about that star.

Stop

Set Record Position
in Read Statement
~ Chain Variable

No

Randomize Star
Number to a

Record Location

Set Chain
Variable ~ Record
Location Counter

Set Record Position
in Write Statement

~ Record
Location Counter

Increment
Record Loe at ion

Counter by l

Bui Id Star
Master Record

Update
Variable in
Star Master

Figure 67. Block Diagram for Example 3

When a star detail record is read, its
identification field is randomized, and the
appropriate star master record is read. If
the correct star master record is found,
the record is to be updated. If a star
master is not found, then a star master
record is to be created for that star.

The last record in the star detail data
set contains a star identification number
999999 which indicates that processing the
star detail data set is completed.

Exolanation: Figure 67 is similar to the
diagram shown in Figure 48 except Figure 67
includes blocks that describe updating
variables in master records already present
in the data set. (Figure 48 includes
blocks describing certain operations that
must be performed when a direct access data
set is first written.) Also, Figure 67 is
adapted to Example 3, while Figure 48 is
more general. Figure 69 shows the FOR'I'RAN
coding for this program.

The star master record that contains the
record counter is read, placing the record
location counter in LOCREC. Whenever a
detail record is read, the identification
variable is checked to determine if the ena
of the detail data set has been reached.
The star detail records contain the
variables A, B, c, D, E, and F.

The identification number in the detail
record is randomized and the result is
placed in the variable NOREC, which is used
to read a master record. The master record
contains the star identification number
CIDSTRM), a chain record location CICHAIN),
and six variables CT, u, V, x,· Y, and Z)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD
are compared to see if the correct star
master is found. If it is not found, then
the variables containing the chain record
numbers are followed until the correct star
master is found or a new star master is
created.

Job Control Statements: The program shown
in Figure 69 is compiled and link edited,
placing the load module in the PDS STARPGMS
and assigning the load module the name
UPDATE. The data set that contains the
star master records was cataloged and
assigned the name STARMSTR when it was
created. Figure 68 shows the job control
statements needed to execute the module
UPDATE.

Appendix B: Examples of Job Processing 105

Sample Coding Form

Star Detail Data Set
I* END OF STAR DETAILS

Figure 68. Job Control Statements for Example 3

106

t-+---+-+----+------+----- ·---- ---+--- ------ -------1------1-----+---------I

4---+----- ----------!---+------- -~--·-

t-t-G1o' -TO ~RITE STAR MASTrRj-R_E_C,_O~=RD"-----' - ------ =
GO TO 25 -- - ---- ---+- I I,

c IF RE!CORD IS FOUND, UPDAI.LAlJD wRta:-srAifMA_S_T_E_Rc___ _ _J_ -'-' ! ;' l
2,2! i l = A I B I --'--'-+---+-----+-~-~-~-+--'-'---'-'--'-I
t--t--4-+----+--t----'-t-------- -----i ---+--- -------- - -- --- - ----- ------+-----+--+------1----'--'-----l
>--+--<-+---+-+-·--+----~·-+---------+-------+----4---+------- --····------- ·--1 -------- ------+------r------+-~-_,___,__. !!

I ! '• - ----.. ----·--~---+--·-:-:-·:-~-1

215 j, ~RITEI7'NOREc, 103) I DST RM, ICHAIN.,Jitt1jf-,W+iY-,l-l -·· --+----f-----+------+-'----+-' J+-1
C G10' TO READ _ _N_!:~I__sJ AKJ:>__ATA RECORD. _ __ _ _ .. . ----+---·------+---~' ·_!-+-,11-1--1

, GO TO 26 . . f------ _____ ·-·------+----1------+----+-----'---__;._i
C !I'F CHAIN VARIABLE IN RECORD READ THE _.Mif_Xl_~,I_~RJ1\~_STE_~ IN THE CHAIN j_'

213, ..:.. NO~~-= I ~-HilN __ ___ -·--·· _ _ __ _ _ _ _ . - ---+--------+-~~+-I
I ! : G 0 T 0 2 7 ~----- - - ---- --- ___ ____, __ __,·---t-------+-----'---+-i+-' +--: r-41

C1 1I 1F END OF STAR DATA,WRITE STAR M_,4~TER ~QNI8IJ-.J_~ _ _B~_C::Q.~_LOCATION COUNTER I! I

:m'- i ~~i~~T;~I,Tefn rDSTRM-;_CcYc~_c_· ' ---' - - - . - - - - ------- ------+------+-~-~----1

~1
1 QJ2.
1!03

STOP 99999 ,- ~- -~- -------+-----+-----
FORMAT (I 6 'I4) +---- ----- - +--- --- -- ----------------j----+--~----'--1

FO RM AT c:ff;; IO lli I 3) -- -- -+------ --~~ - --- - -- - -
FORN AT (I 6, 1'4, 6Fz~-:-ry---- ----+----- -·---------+-----+------+------- - . • J • J-t-
END '-~ - -- ---- ------1----+---~---1-_.____--'--, J.-L' J+-l

-- ----+--- -
1---.,-----+--ji-----l-- ---- -------+------·--+---- --·· ---- -----·- ---- - ·---- ---------- - ---------+-------+-· ---+----+-----'--'--!
i-----+-+--l-----~--t---+------ ---- - -··----+---·- --------4-- __ J __ .L__

l 2 3 4 5 6 7 g 9 10 ll 17 IJ],I 1.5 i6 ,,- 18 19 70 ?I :'? 2J 7·1 75 2l r 7B 29Jo 31 32 :n].i JJ j/, 37 36 Y? ·iO ·'i .u8 44 .lj 46 1 •I.') 49 50 s1::::Ii:: -'>3 54 55 56 5/ 'iS .'i9 6D 61 62 63 64 65 66 67 68 69 70 71 n 73 74 '75 /6 77 78 79 so

Figure 69. FoqTRAN Coding for Example 3

Appendix B: Examples of Job Processing 107

APPENDIX C: ASSE1~BLER LANGUAGE SUBPROGRAMS

A FOR'lHAN LH:ograrnmer can use assembler
la.rl~1_io.gE: ~nbprogra!"!l.S with his FUHTr<.Ai~ main
program. This section describes the link­
age conventions that must be used by the
assembler language subprogram to communi­
cate with the FORTRAN main program. To
understand this appendix, the reader must
be familiar with the Assembler Language
publication and the Assembler Programmer's
~-

SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL state­
ment or a function reference within an
arithmetic expression. For example, the
statements

CALL MYSUB(X,Y,Z)
I=J+K+MYFUNC(L,M,N)

refer to a subroutine subprogram MYSUB and
a function subprogram MYFUNC, respectively.

For subprogram reference, the compiler
generates:

1. A contiguous argument list; the
addresses of the arguments are placed
in this list to make the arguments
accessible to the subprogram.

2. A save area in which the subprogram
can save information related to the
calling program.

3. A calling sequence to pass control to
the subprogram.

Arqument List

The argument list contains addresses of
variables, arrays, and subprogram names

108

used as arguments. Each entry in the argu­
ment list is four bytes and is aligned on a
full-word boundary. The last three bytes
of each entry contain the 24-bit address of
an argument. The first byte of each entry
contains zeros, unless it is the last entry
in the argument list. If this is the last
entry, the sign bit in the entry is set on.

The address of the argument list is
placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogram places information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is 18 words. Figure
70 shows the layout of the save area and
the contents of each word. The address of
the save area is placed in general register
13.

The called subprogram does not have to
save and restore floating-point registers.

Calling Sequence

A calling sequence is generated to
transfer control to the subprogram. The
address of the save area in the calling
program is placed in general register 13.
The address of the argument list is placed
in general register 1, and the entry
address is placed in general register 15.
A branch is made to the address in register
15 and the return address is saved in gen­
eral register 14. Table 20 illustrates the
use of the linkage registers.

r---1
AREA------------>r--1

(word 1) !This word is used by a FORTRAN compiled routine to store its I
!epilogue address and may not be used by the assembler language I
!subprogram for any purpose. I

AREA+4---------->t--1
<word 2) I If the program that calls the assembler language subprogram is I

!itself a subprogram, this word contains the address of the save I
!area of the calling program; otherwise, this word is not used. I

AREA+S---------->t--1
<word 3) !The address of the save area of the called subprogram. I

AREA+12--------->t--1
(word 4) !The contents of register 14 (the return address). When the sub-I

jprogram returns control, the first byte of this location is set I

AREA+16--------->~:~-~~~=:---------~J.(~_tf~-~..2.~~~------------------------------~
<word 5) !The contents of register 15 (the entry address). I

AREA+20--------->t--1
<word 6) !The contents of register O. I

AREA+24--------->t--1
(word 7) !The contents of register 1. I

t--1
I I
I I
I I

AREA+68--------->t--1
(word 18) !The contents of register 12. I

L----------------------~·---------'--·-------------------------------J

Figure 70. save Area Layout and Word contents

Table 20. Linkage Registers
r--------T---------------T--1
I Register I I I
!Number !Register Name !Function I
t--------+---------------+----------.--1
I 0 !Result Register!Used for function subprograms only. The result is returned inl
I I !general or floating-point register 0. However, if the result I
I I lis a complex number, it is returned in floating-point regis- I
I I I ters 0 Creal part) and 2 <imaginary part) . (Note: :For sun- I
I I !routine subprograms, the result(s) is returned in a var-I
I I lable(s) passed by the programmer.) I
t--------+---------------+--~-----1
I 1 I Ar~r;~~~r_i_1:_ .. :!"..!-~!: I Address of the argument list passed to the called I
I I Register I subprogram. I
t--------+---------------+--1
I 2 !Result RegisterlSee Function of' Register O. I
t--------+---------------+--1
I 13 !Save Area !Address of the.area reserved by the calling program I
I !Register lin which tne contents of certain registers are stored by the I
I I I called program. I
t--------+---------------+--1
I 14 !Return RegisterlAddress of the location in the calling program to which con- I
I I ltrol is returned after execution of the called program. I
t--------+---------------+--1
I 15 !Entry Point !Address of the entry point in the called subprogram. I
I I Register I Note: Register 15 is also used as a condition code register, I
I I la RETURN code register, and a STOP code register. The partic-1
I I lular values that can be contained in the register are I
I I I 16 - terminal error detected during execution of a subprogram!
I I I Can IHCxxxI message is generated) I
I I 14*i - a RETURN i statement is executed I
I I I n - a STOP n statement is executed I
I I I 0 - a RETURN or a STOP statement is executed I
L--------~---------------~--J

Appendix C: Assembler Language subprograms 109

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subpro­
grams are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call another
subprogram.

Coding a Lowest Level Assembler Language
Subprogram

For the lowest level assembler language
subprogram, the linkage instructions must
include:

1. An assembler instruction that names an
entry point for the subprogram.

2. An instruction(s) to save any general
registers used by the subprogram in
the save area reserved by the calling
program. (The contents of linkage
registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the
"saved" registers before returning
control to the calling program.

4. An instruction that sets the first
byte in the fourth word of the save
area to ones, indicating that control
is returned to the calling program.

5. An instruction that retu+ns control to
the calling program.

Figure 71 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In addi­
tion to these conventions, the assembler

program must provide a method to transfer
arguments from the calling program and
return the arguments to the calling
program.

Higher Level Assembly Language Subprogram

A higher level assembler subprogram must
include the same linkage instructions as
the lowest level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN sub­
program reference statement and include:

1. A save area and additional instruc­
tions to insert entries into its save
area.

2. A calling sequence and a parameter
list for the subprogram that the high­
er level subprogram calls.

3. An assembler instruction that indi­
cates an external reference to the
subprogram called by the higher level
subprogram.

4. Additional instructions in the return
routine to retrieve entries in the
save area.

Note: If an assembler language main pro­
gram calls a FORTRAN subprogram, the fol­
lowing instructions must be included in the
assembler language program before the
FO~TRAN subprogram is called:

L 15,=V(IBCOM#)
BAL 14,64(15)

r---------T------T--1
I Name I Oper. I Operand Comments I
~---------+------+--~
I deckname START 0 I
I BC 15,m+1+4C15) BRANCH AROUND CONSTANTS IN CALLING SEQUENCE I
I DC X'm' m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM I
I DC CLm'name' STARTS ON A HALF-WORD BOUNDARY. THE NAME CAN BE PADDED I
I* WITH BLANKS. I
I STM 14,R, 12 (13) THE CON'I'ENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE I
I* STORED IN THB SAVE AREA OF THE CALLING PROGRAM. R IS ANYI
I* NUMBER FROM 2 THROUGH 12. I
I BALR. B,O ESTABLISH BASE REGISTER C2~B~12) I
I USING *,B I
I user written source statements I
I .1
I I
I I
I LM 2,R,28(13) RESTORE REGISTERS I
I MVI 12(13),X'FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM I
I BCR 15,14 RETURN TO CALLING PROGRAM I
L---------~------~---~J
Figure 71. Linkage conventions for Lowest Level Subprogram

110

\.

These instructions cause initialization of
return coding and interruption exceptions.
If this is not done and the FORTRAN subpro­
gram terminates either with a STOP state­
ment or because of an execution-time error,
the data sets opened by FORTRAN are not
closed and the result of the termination
cannot be predicted. Register 13 must con­
tain the address of the save area that con­
tains the registers to be restored upon
termination of the FORTRAN subprogram. If

control is to return to the assembler lan­
guage subprogram, then register 13 contain~
the address of its save area. If control
is to return to the operating system, then
register 13 contains the address of its
save area.

Figure 72 shows the 2.inkage conventions
for an assembler subprogram that calls
another assembler subprogram.

r---------T------T--1
!Name IOper. !Operand Comments I
~---------+------+--~
deckname START 10

*
*
*

*
*

*

*

*
*

IAREA
I*
I
prob1

*

*
*

* IADCON
I*
IARGLIST I

I

EXTRN 1name2 NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGi-<AM
BC 115~m+l+4(15)

DC I X'm'
DC I CLm' name1

STM

BALR
USING
LR

LA

ST

ST

BC
DS

user

LA
L
BALR
more

L

LM
L
MVI
BCR

DC

DC

ISAVE ROUTINE
114,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH

STORED IN THB SAVE AREA OF THE CALLING PROGRAM.
ANY NUMBER FROM 2 THROUGH 12.

R ARE
R IS I

I
B,O
*,B
Q,13

13,AREA

13,8(0,Q)

Q,4(0,13)

15,prob1

18F
END OF SAVE

ESTABLISH BASE REGISTER

LOADS REGISTER 13, WHICH f'OINTS 'I'O THE SAVE AREA OF THE
CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT 0,
11, 13, AND 15.
LOADS THE ADDRESS OF THIS PROGRAM'S SAVE ARLl\ n, 0
REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA IN'IO THE
CALLING PROGRAM'S SAVE AREA
STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
AREA OF 'I'HE CALLING PROGRAM) INTO WORD 2 OF THIS PRO­
GRAM'S SAVE AREA

B·(,'l.·.· ,.) J l' <I' ' •. / ·-~ 1.;~ .,t,,·' ('(>-,r.,.,;.,.

RESERVES 18 WORDS FOR THE SAVE AREA
ROUTINE

written program statements

CALLING SEQUENCE
11.ABGLI§;:., LOAD ADDRESS OF ARGQMENT LIST
15,ADCON
14,15
user written program statements
RETURN ROUTINE
13,AREA+4 LOADS THE ADDRESS

REGISTER 13
OF THE PREVIOUS SAVE AREA BACK INTO

2,R,28(13)
14., 12 (13)
12(13),X'FF'
15,14
END OF RETURN
A(name2>
ARGUMENT LIST
AL4(arg1 >

LOADS THE RETURN ADDRESS INTO REGISTER 14.

RETURN TO CALLING PROGRAM
ROUTINE

ADDRESS OF FIRST ARGUMENT

I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I • I
1 r ~-·-,,,,~,.,,. ,,;i;,!'iR.~<;;,l'.!'.~ ... Jd~§;r,,.~~vJ,:,\~~Ja,,~~~~'.1' _Lis'I 1
I t I DC I AL3 (argn> ADDRESS OF LAST ARGUl."l~N·.1.· ···· · · ~--"'""'""'··-«~" I
L---------i------i--J
Figure 72. Linkage Conventions for nigher Level Subprogram

Appendix C: Assembler Language Subprograms 111

In-Line Argument List

The assembler programmer may establish
an in-line argument list instead of out-of­
line list. In this case, he may substitute
the calling sequence and argument list
shown in Figure 73 for that shown in Figure
72.

r---1
IADCON DC A(prob1)

I
I
I
I
I
I
I
I
I
I
I

LA
t
CNOP
BAL]:{

14, RETURij
15, ADCON
2,4
1.J.~
AL4(arg 1)

AL4(arg 2)

I me X'80' e f\Jt~ il+ ~:;i le~
I (DC AL3 (argn> I
I RETURN BC O,X'isn' I
L---J
Figure 73. In-Line Argument List

Sharing_Data in COMMON

Both named and blank COMMON in a FORTRAN
IV program can be ref erred to by an assem­
bly language subprogram. To refer. to named
COMMON, the V-type address constant

name DC V(name of COMMON)

is used.

If a FORTRAN program has a blank COMMON
area and blank COMMON is also defined (by
the COM instruction) in an assembly lan­
guage subprogram, only one blank COMMON
area is generated for the output load
module. Data in this blank COMMON is
accessible to both programs.

RETRIEVING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in,
register 1. For example, when the
statement

112

CALL MYSUB(A,B,C)

is compiled, the following argument list is
generated.

r--------T--------------------------------1
jOOOOOOOOI address for A I
~--------+--------------------------------~
1000000001 address for B I
~-------~+--------------------------------~
1tooooooo1 address for c I
L--------i--------------------------------J

For purposes of discussion, A is a real*8
variable, B is a subprogram name, and c is
an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
real*S variable A to location VAR in the
subprogram.

L Q,0(1)
MVC VAR(8),0(Q)

where
Q is any general register except 0.

For a subprogram reference, an address
of a storage location is placed in the
argument list. The address at this storage
location is the entry point to the subpro­
gram. The following instructions can be
used to enter subprogram B from the subpro­
gram to which B is passed as an argument.

L
L
BALR

where

Q,4(1)
15,0(Q)
14,15

Q is any general register except O.

For an array, the address of the first
variable in the array is placed in the
argument list. An array [for example, a
three-dimensional array C(3,2,2)] appears
in this format in main storage.

C(l,1,1) C(2,1,1) C(3,1,1) C(1,2,1)--,
r-------------------------------------~---J
L-CC2,2,1) C(3,2,1) CC1,1,2) C(2,1,2)--1

r---J
L-C(3,1,2) C(l,2,2) C(2,2,2) C(3,2,2)

Table 21 shows the general subscript format
for arrays of 1, 2, and 3 dimensions.

Table 21. Dimension and Subscript Format
r-----------T-----------------------------1
!Array A I Subscript Format I
~-----------+-----------------------------~
IA (Dl) IA(Sl) I
IACD1,D2) IA(Sl,S2) I
IACD1,D2,D3)IACS1,S2,S3) I
~-----------i-----------------------------~
IDl. D2, and D3 are integer constants used!
!in the DIMENSION statement. Sl, S2, and I
IS3 are subscripts used with subscripted I
!variables. I
L---J

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variable from the first
variable in the array, must be calculated.
The formulas for computing the displacement
(DISPLC) of a variable for one, two, and
three dimensional arrays are

DISPLC=(Sl-l)*L
DISPLC=(S1-l)*L+{S2-l)*Dl*L
DISPLC=(S1-l)*L+(S2-l)*Dl*L+(S3-l)*D2*Dl*L

where
L is the length of each variable in
the array.

For example, the variable C(2,1,2) in
the main program is to be moved to a loca­
tion ARVAR in the subprogram. Using the
formula for displacement of integer
variables in a three-dimensional array, the
displacement (DISP) is calculated to be 28.
The following instructions can be used to
move the variable,

L
L
L
ST

where

Q,8(1)
R,DISP
S,O(Q,R)
S8 ARVAR

Q and R are any general register
except 0.
s is any general register.

Appendix C: Assembler Language Subprograms 113

APPENDIX D: SYSTEM DIAGNOSTICS

This appendix contains a detailed de­
scription of the diagnostic messages pro­
duced during compilation and load module
execution.

COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic mes­
sages are generated - informative and
error/warning.

Compiler Informative Messages

Two informative messages are generated
by the compiler to inform the programmer or
operator of the status of the compilation.
The messages are shown with any compiler
action taken.

LEVEL- dmthyr OS/360 FOR~RAN IV
DATE- yy.ddd/HH.mm.ss

Explanation: This message is generated at
the beginning of every compilation. The
level date of the compiler is given by
"dmthyr", where d is the day of the month
(mth) in the year Cyr). The number of the
day Cddd) in the year <yy) that the compi­
lation takes place is given by "yy.ddd";
the time of day in hours (HH) , minute$'
(mml, and seconds (ss) (based on a 24-hour
clock) is given by "HH.mm.ss". The time is
also punched into the END card of the
object deck.

COMPILER OPTIONS - option{option} •••

Explanation: This message occurs for every
compilation. Options explicitly specified
in the PARM parameter and any default
options appear in the message.

compiler Error/Warning Messages

The following text contains a descrip­
tion of error/warning· messages produced by
the compiler. The message is shown with an
explanation, and any compiler action or
user action that is required.

COMPILATION DELETED. Q

114

'where Q can be 1, 2, 3, 4, 5, 6, or 7

Explanation: The message is generated by
the FORTRAN System Director. The compila­
tion is deleted because of the reason indi­
cated by the value of n• (Condition code -
16)

n=l
n=2

n=3
n=4
n=5

Phase 10 Program too large to compile
A program interrupt occurred during
execution of the compiler. A program
interrupt message and the contents of
all registers are written preceding
the message.

Figure 74 shows the format of the
compile-time program interrupt mes­
sage when the extended error message
facility has not been specified at
system generation time. In the old
PSW, c is a hexadecimal number that
indicates the cause of the interrup­
tion; £ may be one of the following
values:

c cause
I Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
C Exponent overflow
D Exponent underflow
E Significance
F Floating-point divide

Following PHASE SWITCH, ~ is a hexa­
decimal number that indicates which
phase of the compiler was executing
when the interrupt occurred; ~ may be
one of the following values:

m Phase
I Phase 10
2 Phase 10 (STALL routine)
4 Phase 15 (PHAZ15 routine)
8 Phase 15 (CORAL routine)

10 Phase 20
20 Phase 25
40 Phase 30

Phase 15 Program too large to compile
Phase 20 Program too large to compile
Phase in control requested System
Director to terminate compilation
immediately. (Any error messages

t' j)

r---1
I I
I IHC210I PROGRAM INTERRUPT - OLD PSW IS xxxxxxxcxxxxxxxx - PHASE SWITCH m I
I I
L---J
Figure 74. Compile-Time Program Interrupt Message

generated by the calling phase will
also be written.)

n=6 Error detected by IHCFCOMH (IBCOM)
I/O error detected during compilation
- an IHCxxxI message may also be
generated

n=7 End of file, no END statement in
source module

IEK001I THE NUMBER OF ENTRIES IN THE ERROR
TABLE HAS EXCEEDED THE MAXIMUM.

(Condition code - 8)

IEK002I THE DO LOOPS ARE INCORRECTLY
NESTED.

(Condition code - 8)

IEK003I THE EXPRESSION HAS AN INVALID LOG-
!CAL OPERATOR.

(Condition code - 8)

IEK005I THE STATEMENT HAS AN INVALID USE
OF PARENTHESES.

(Condition code - 8)

IEK006I THE STATEMENT HAS AN INVALID
LABEL.

(Condition code - 8)

IEK007I THE EXPRESSION HAS AN INVALID
DOUBLE DELIMITER.

(Condition code - 8)

IEK008I THE EXPRESSION HAS A CONSTANT
WHICH IS GREATER THAN THE ALLOW-
ABLE MAGNITUDE.

(Condition code - 8)

IEK009I THE EXPRESSION HAS A NON-NUMERIC
CHARACTER IN A NUMERIC CONSTANT.

(Condition code - 8)

IEKOlOI THE EXPRESSION HAS A CONSTANT WITH
AN INVALID EXPONENT.

(Condition code - 8)

IEK011I THE ARITHMETIC OR LOGICAL EXPRES­
SION USES AN EXTERNAL FUNCTION
NAME AS A VARIABLE NAME.

(Condition code - 8)

IEK012I THE EXPRESSION HAS A COMPLEX CON­
STANT WHICH IS NOT COMPOSED OF
REAL CONSTANTS.

(Condition code - 8)

IEK013I AN INVALID CHARAC'l'ER IS USED AS A
DELIMITER.

(Condition code - 8)

IEK014I THE STATEMENT HAS AN INVALID NON-
INTEGER CONSTANT.

(Condition code - 8)

IEK016I THE GO TO STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

IEK017I THE ASSIGNED OR COMPUTED GO TO HAS
AN INVALID ELE~ENT IN I'l'S STATE­
MENT NUMBER LIST.

(Condition code - 8)

IEK019J~ THE ASSIGNED GO TO HAS THE OPENING
PARENTHESIS MISPLACED O.K MISSING.

<condition code - 8)

IEK020I THE ASSIGNED GO TO HAS AN INVALID
DELIMITER FOLLOWING THE ASSIGNED
VARIABLE.

<condition code - 8)

IEK021I THE COMPU'I'ED GO TO HAS AN INVALID
COMPUTED VARIABLE.

(Condition code - 8)

IEK022I THE VARIABLE IN THE ASSIGNED GO TO
STATEMENT IS NOT INTEGRAL.

(Condition code - 8)

IEK023I THE DEFINE FILE STATEMENT HAS AN
INVALID DATA SET REFERENCE NUMBER.

(Condition code - 8)

Appendix D: System Diagnostics 115

IEK024I THE DEFINE FILE STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

IEK025I THE DEFINE FILE STATEMENT HAS AN
INVALID INTEGER CONSTANT AS THE
RECORD NUMBER OR SIZE.

(Condition code - 8)

IEK026I THE DEFINE FILE STATEMENT HAS AN
INVALID FORMAT CONTROL CHARACTER.

(Condition code - 8)

IEK027I THE ASSIGN STATEMENT HAS AN INVAL­
ID INTEGER VARIABLE.

(Condition code - 8)

IEK028I THE ASSIGN STATEMENT HAS AN INVAL­
ID DELIMITER.

(Condition code - 8)

IEK030I THE DO STATEMENT HAS AN INVALID
END OF RANGE STATEMENT NUMBER.

(Condition code - 8)

IEK031I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID INITIAL VALUE.

(Condition code - 8)

IEK034I THE ASSIGNMENT STATEMENT BEGINS
WITH A NON-VA.RIABLE.

(Condition code - 8)

IEK035I THE NUMBER OF CONTINUATION CARDS
EXCEEDS THE COMPILER LIMIT.

(Condition code - 8)

IEK036I THE STATEMENT CONTAINS INVALID
SYNTAX. THE STATEMENT CANNOT BE
CLASSIFIED.

(Condition code - 8)

IEK039I THE DEFINE FILE STATEMENT HAS AN
INVALID ASSOCIATED VARIABLE.

(Condition code - 8)

IEK040I IT IS ILLEGAL TO HAVE A & STATE­
MENT NUMBER PARAMETER OUTSIDE A
CALL STATEMENT.

<condition code - 8)
IEK044I ONLY THE CALL, FORMAT, OR DATA

STATEMENTS MAY HAVE LITERAL
FIELDS.

<condition code - 8)

116

IEK045I THE EXPRESSION HAS A LITERAL WHICH
IS MISSING A DELIMITER.

(Condition code - 8)

IEK047I THE LITERAL HAS MORE THAN 255
CHARACTERS IN IT.

(Condition code - 8)

IEK050I THE ARITHMETIC IF HAS THE SYNTAX
OF THE BRANCH LABELS INCORRECT.

(Condition code - 8)

IEK052I THE EXPRESSION HAS AN INCORRECT
PAIRING OF PARENTHESES OR QUOTES.

(Condition code - 8)

IEK053I THE STATEMENT HAS A MISPLACED
EQUAL SIGN.

(Condition code - 8)

IEK056I THE FUNCTION STATEMENT MUST HAVE
AT LEAST ONE ARGUMENT.

(Condition code - 8)

IEK057I THE STATEMENT HAS A NON-VARIABLE
SPECIFIED AS A SUBPROGRAM NAiv".iE.

(Condition code - 8)

IEK058I THE SUBPROGRAM STATEMENT HAS AN
INVALID ARGUMENT.

(Condition code - 8)

IEK059I THE FUNCTION STATEMENT HAS AN IN­
VALID LENGTH SPECIFICATION.

(Condition code - 8)

IEK062I THE EQUIVALENCE STATEMENT HAS AN
ARRAY WITH AN INVALID NUMBER OF
SUBSCRIPTS.

(Condition code - 8)

IEK064I THE NAMELIST STATEMENT HAS AN IN­
VALID DELIMITER.

(Condition code - 8)

IEK065I THE NAMELIST STATEMENT HAS A NAME­
LIST NAME NOT BEGINNING WITH AN
ALPHABETIC CHARACTER.

(Condition code - 8)

IEK066I THE NAMELIST STATEMENT HAS A NON­
UNIQUE NAMELIST NAME.

(Condition code - 8)

\
/

IEK067I THE NAMELIST STATEMENT HAS AN IN­
VALID LIST ITEM.

(Condition code - 8)

IEK069I THE COMMON STATEMENT HAS AN INVAL­
ID DELIMITER.

(Condition code - 8)

IEK070I THE EQUIVALENCE STATEMENT HAS A
MISSING OR MISPLACED DELIMITER.

(Condition code - 8)

IEK071I THE EQUIVALENCE STATEMENT DOES NOT
SPECIFY AT LEAST TWO VARIABLES TO
BE EQUIVALENCED.

(Condition code - 8)

IEK072I THE EQUIVALENCE STATEMENT HAS AN
INVALID VARIABLE NAME.

(Condition code - 8)

IEK073I THE EQUIVALENCE STAT'EMENT HAS A
SUBSCRIPT WHICH IS NOT AN INTEGER
CONSTANT.

(Condition code - 8)

IEK074I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SEVEN SUBSCRIPTS.

(Condition code - 8)

IEK075I THE COMMON STATEMENT HAS A VARI­
ABLE THAT HAS BEEN REFERENCED IN A
PREVIOUS COMMON STATEMENT.

(Condition code - 8)

IEK076I THE IMPLICIT STATEMENT IS NOT THE
FIRST STATEMENT IN A MAIN PROGRAM
OR THE SECOND STATEMENT IN A
SUBPROGRAM.

(Condition Code - 8)

IEK077I THE IMPLICIT STATEMENT HAS A MIS­
PLACED DELIMITER IN THE TYPE SPE­
CIFICATION FIELD.

(Condition code - 8)

IEK078I THE IMPLICIT ST·ATEMENT HAS AN IN­
VALID TYPE.

(Condition code - 8)

IEK079I THE IMPLICIT STATEMENT HAS A MIS­
SING LETTER SPECIFICATION.

(Condition code - 8)

IEK080I THE IMPLICIT STATEMENT HAS AN IN­
VALID LETTER SPECIFICATION.

(Condition code - 8)

IEK081I THE IMPLICIT STATEMENT HAS AN IN­
VALID DELIMITER.

(Condition code - 8)

IEK0~2I THE IMPLICIT STATEMENT DOES NOT
END WITH A RIGHT PARENTHESIS.

(Condition code - 8)

IEK083I THE IMPLICIT STATEMENT HAS A MIS­
PLACED DELIMITER IN ITS PARAMETER
FIELD.

(Condition code - 8)

IEK084I THE IMPLICIT STATEMENT CONTAINS A
LITERAL FIELD.

(Condition code - 8)

IEK086I THE COMMON STATEMENT SPECIFIES A
NON-VARIABLE TO BE ENTERED.

(Condition code - 8)

IEK087I THE COMMON STATEMENT SPECIFIES A
NON-VARIABLE COMMON BLOCK NAME.

(Condition code - 8)

IEK090I THE EXTERNAL STATEMEN'l' HAS A NON­
VARIABLE DECLARED AS EXTERNAL.

(Condition code - 8)

IEK091I THE EXTERNAL STATEMENT' HAS AN IN­
VALID DELIMITER.

(Condition code - 8)

IEK092I THE TYPE STATEMENT MULTIPLY
DEFINES THE VARIABLE.

Condition code - 8)

IEK09 3I THE TYPE STATEMENT· HAS AN INVALID
DELIMITER.

(Condition code - 8)

IEK094I THE TYPE STATEMENT HAS A NON­
VARIABLE TO BE TYPED.

(Condition code - 8)

IEK095I THE TYPE STATEMENT HAS THE WRONG
LENGTH FOR THE GIVEN TYPE.

(Condition code - 8)

Appendix D: system Diagnostics 117

IEK096I THE TYPE STATEMENT HAS A MISSING
DELIMITER.

(Condition code - 8)

IEK101I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID DELIMITER.

I IEK102I

(Condition code - 8)

THE BACKSPACE/REWIND/END FILE
STATEMENT' HAS AN INVALID
DELIMITER.

(Condition code - 8)

IEK104I T'HE BACKSPACE/REWIND/END FILE
STATEMENT HAS A DATA SET REFERENCE
NUMBER THAT IS EITHER A NON­
INTEGER OR AN ARRAY NAME.

(Condition code - 8)

IEK109I THE PAUSE STATEMENT HAS A MIS­
PLACED DELIMITER.

(Condition code - 8)

IEK110I THE PAUSE STATEMENT SPECIFIES A
VALUE WHICH IS NEITHER A LITERAL
NOR AN INTEGER CONSTANT.

<condition code - 8)

IEK111I THE PAUSE STA'I'EMENT HAS MORE THAN
255 CHARACTERS IN ITS LITERAL
FIELD.

<condition code - 8)

IEK112I THE DICTIONARY HAS OVERFLOWED.

(Condition code - 16)

IEK115I THE VARIABLE RETURN STATEMENT HAS
NEITHER AN INTEGER CONSTANT NOR
VARIABLE FOLLOWING THE KEYWORD.

(Condition code - 8)

IEK116I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID PARAMETER.

(Condition code - 8)

IEK117I THE BLOCK DATA STATEMENT HAS AN
~NVALID DELIMITER.

(Condition code - 8)

IEK120I THE BLOCK DATA STAT'EMENT WAS NOT
THE FIRST STATEMENT OF THE
SUBPROGRAM.

(Condition code - 8)

118

IEK121I THE DA'I'A STATEMENT HAS A VARIABLE
WHICH HAS A NON-ALPHABETIC FIRST
CHARACTER.

(Condition code - 8)

IEK122I THE DATA STATEMENT CONTAINS A SUB­
SCRIPTED VARIABLE WHICH HAS NOT
BEEN DEFINED AS AN ARRAY.

IEK123I

(Condition code - 8)

THE DATA STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

IEK124I THE DATA STATEMENT HAS A VARIABLE
WITH AN INVALID INTEGER SUBSCRIPT.

(Condition code - 8)

IEK125I THE DATA STATEMENT HAS A VARIABLE
WITH A SUBSCRIPT THAT CONTAINS AN
INVALID DELIMITER.

(Condition code - 8)

IEK129I THE STATEMENT CONTAINS AN INVALID
DATA CONSTANT.

(Condition code - 8)

IEK132I THE DATA STATEMENT HAS AN INVALID
DELIMITER IN ITS INITIALIZATION
VALUES.

(Condition code - 8)

IEK133I THE DO STATEMENT CANNO'I' FOLLOW A
LOGICAL IF STATEMENT.

(Condition code - 8)

IEK134I THE DO STATEMENT HAS AN INVALID
INTEGER DO-VARIABLE.

(Condition code - 8)

IEK135I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID TEST VALUE.

(Condition code - 8)

IEK136I THE NUMBER OF NESTED DO'S EXCEEDS
THE COMPILER LIMIT.

(Condition code - 8)

IEK137I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID INCREMENT VALUE.

(Condition code - 8)

IEK138I THE DO STATEMENT HAS A PREVIOUSLY
DEFINED STATEMENT NUMBER SPECIFIED
TO END THE DO RANGE.

(Condition code - 8)

IEK139I A LOGICAL IF IS FOLLOWED BY ANOTH­
ER LOGICAL IF OR A SPECIFICATION
STATEMENT.

(Condition code - 8)

IEK140I THE IF STATEMENT BEGINS WITH AN
INVALID CHARACTER.

(Condition code - 8)

IEK141I THE FORMAT STATEMENT DOES NOT END
WITH A RIGHT PARENTHESIS.

(Condition code - 8)

IEK143I THE STATEMENT FUNCTION HAS AN
ARGUMENT WHICH IS NOT A VARIABLE.

<condition code - 8)

IEK144I THE STATEMENT FUNCTION HAS MORE
THAN 20 ARGUMENTS.

(Condition code - 8)

IEK145I THE STATEMENT FUNCTION HAS AN IN­
VALID DELIMITER.

<condition code - 8)

IEK146I THE STATEMENT FUNCTION HAS A MIS­
PLACED EQUAL SIGN.

(Condition code - 8)

IEK147I A STATEMENT FUNCTION DEFINITION
MUST PRECEDE THE FIRST EXECUTABLE
STATEMENT.

(Condition code - 8)

IEK148I THE DIMENSIONED ITEM HAS A NON­
INTEGER SUBSCRIPT.

(Condition code - 8)

IEK149I A VARIABLE TO EE DIMENSIONED USING
ADJUSTABLE DIMENSIONS MUST HAVE
BEEN PASSED AS AN ARGUMENT AND
MUST NOT APPEAR IN COMMON.

(Condition code - 8)

IEK150I THE DIMENSIONED ITEM HAS AN INVAL­
ID DELIMITER.

(Condition code - 8)

IEK151I THE STATEMENT SPECIFIES A NON­
VARIABLE TO BE DIMENSIONED.

(Condition code - 8)

IEK152I THE SUBPROGRAM STATEMENT HAS AN
INVALID DELIMITER IN THE ARGUMENT
LIST.

(Condition code - 8)

IEK153I THE STATEMENT HAS AN INVALID NAME
SPECIFIED AS A FUNCTION REFERENCE.

(Condition code - 8)

IEK156I THE I/O STATEMENT HAS AN INVALID
NAI"JE PRECEDING THE EQUAL SIGN.

(Condition code - 8)

IEK157I THE I/O STATEMENT HAS A NON­
VARIABLE SPECIFIED AS A LIST ITEM.

(Condition code - 8)

IEK158I THE I/O STATEMENT HAS AN IMPROPFR
PAIRING OF PARENTHESES IN AN
IMPLIED DO, OR A NON-INTEGRAL
INDEX.

(Condition code - 8)

IEK159I THE FORMAT STATEMENT DOES NOT HAV~
A STATEMENT NUMBER.

(Condition code - 4)

IEK160I THE I/O STATEMENT HAS AN INVALID
DELIMITER IN THE PARAMETERS.

(Condition code - 8)

IEK161I THE I/O STATEMENT HAS A DUPLICATE
PARAMETER.

<condition code - 8)

IEK163I THE I/O STATEMENT HAS AN ARRAY
WHICH IS NOT DIMENSIONED.

(Condition code - 8)

IEK165I THE I/O STATEMENT HAS A PARAMETER
WHICH IS NOT AN ARRAY AND NOT A
NAMELIST NAME.

(Condition code - 8)

IEK166I THE I/O STATEMENT HAS A NON­
INTEGER CONSTANT OR VARIABLE
REPRESENTING THE DATA SET
REFERENCE NUMBER.

(Condition code - 8)

Appendix D: System Diagnostics 119

IEK167I THE STATEMENT HAS AN INVALID USE
OF A STATEMENT FUNCTION NAME.

(Condition code - 8}

IEK168I THE STATEMENT SPECIFIES AS A SUB­
PROGRAM NAME A VARIABLE WHICH HAS
BEEN PREVIOUSLY USED AS A NON­
SUBPROGRAM NAME.

(Condition code - 8}

IEK169I THE DIRECT ACCESS I/O STATEMENT
MAY NOT SPECIFY A NAMELIST NAME.

(Condition code - 8}

IEK170I THE DIRECT ACCESS 1/0 STATEMENT
HAS A NON-INTEGER SPECIFYING THE
RECORD'S RELATIVE POSITION.

(Condition code - 8)

IEK171I THE NAME SPECIFIED FOR AN ENTRY
POINT HAS ALREADY BEEN USED AS
EITHE~ A VARIABLE SUBROUTINE OR
FUNCTION NAME.

(Condition code - 8}

IEK176I THE I/O STATEMENT CONTAINS INVALID
SYNTAX IN ITS IMPLIED DO.

(Condition code - 8}

IEK192I THE STATEMENT HAS A LABEL WHICH IS
SPECIFIED AS BOTH THE LABEL OF A
FORMAT STATEMENT AND THE OBJECT OF
A BRANCH.

(Condition code - 8}

IEK193I THE STATEMENT NUMBER HAS BEEN PRE­
VIOUSLY DEFINED.

(Condition code - 8)

IE.Kl94I THE TYPE STATEMENT HAS A MISSING
DELIMITER IN THE INITIALIZATION
VALUES.

(Condition code - 8)

IEK197I THE STOP STATEMENT HAS A NON­
INTEGER CONSTANT AFTER THE
KEYWORD.

(Condition code - 8)

IEK199I THE SUBROUTINE OR FUNCTION STATE­
MENT WAS NOT. THE FIRST STATEMENT.

(Condition code - 8)

120

IEK200I QUOTE LITERALS MAY APPEAR ONLY IN
CALL, DATA, FUNCTION AND FORMAT
STATEMENTS.

(Condition code - 8}

IEK202I THE STATEMENT HAS A VARIABLE WHICH
HAS BEEN PREVIOUSLY DIMENSIONED.
THE INITIAL DIMENSION FACTORS ARE
USED.

(Condition code - 4}

IEK204I THE STOP STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 4}

IEK205I THE ASSIGNED OR COMPUTED GO TO HAS
AN INVALID ELEMENT FOLLOWING THE
CLOSING PARENTHESIS.

(Condition code - 4}

IEK206I THE STATEMENT HAS A NON­
SUBSCRIPTED ARRAY ITEM.

(Condition code - 4}

IEK207I THE CONTINUE STATEMENT DOES NOT
END AFTER THE KEY WORD CONTINUE.

(Condition code - 4}

IEK208I THE CONTINUE STATEMENT DOES NOT
HAVE A STATEMENT NUMBER.

(Condition code - 4)

IEK209I THE STATEMENT HAS AN OCTAL CON­
STANT SPECIFIED AS AN INITIAL
VALUE. THE VALUE IS REPLACED BY
ZERO.

(Condition code - 4}

IEK211I THE STATEMENT HAS A C01'lPLEX CON­
STANT WHOSE REAL CONSTANTS DIFFER
IN LENGTH.

(Condition code - 4}

IEK212I THE BLOCK DATA SUBPROGRAM CONTAINS
EXECUTABLE STATEMENT(S}. THE
EXECUTABLE STATEMENT(S} IS
IGNORED.

<condition code - 4}

IEK222I THE EXPRESSION HAS A LITERAL WITH
A MISSING DELIMITER.

(Condition code - 4}

IEK224I THE STATEMENT AFTER AN ARITHMETIC
IF, GO TO, OR RETURN HAS NO LABEL.

<condition code - 4}

IEK225I A LABEL APPEARS ON A NON­
EXECUTABLE STATEMENT. 'I'HE LABEL
IS IGNORED.

(Condition code - 4)

IEK226I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SIX CHARACTERS. 'I'HE
RIGHTMOST CHARACTERS ARE
TRUNCATED.

(Condition code - 4)

IEK229I ALL THE ARGUMENTS OF AN ARITHME'I'IC
STATEMENT FUNCTION ARE NOT USED IN
THE DEFINITION.

IEK314I THE EQUIVALENCE STATEMENT NAY
CAUSE WORD BOUNDARY ERHOHS.

(Condition code - 4)

IEK315I THE EQUIVALENCE STATEMENT wILL
CAUSE WORD BOUNDARY ERRORS.

(Condition code - 4)

IEK317I THE BLOCK DATA PROGRAM DOES NOT
CONTAIN A COMMON STATEMEN'I·.

(Condition code - 8)

IEK318I 'I'HE DATA STATEMENT IS USED TO
(Condition code - 4) ENTER DATA IN'lO COMMON OUTSIDE A

BLOCK DATA SUBPROGRAM.

IEK302I THE EQUIVALENCE STATEMENT HAS
EXTENDED COMMON BACKWARDS.

(Condition code - 8)

IEK303I THE EQUIVALENCE STATEMEN'I CONTAINS
AN ARRAY WHICH IS NOT DIMENSIONED.

(Condition code - 8)

IEK304I THE EQUIVALENCE S'IATEMENT HAS
LINKED BLOCKS OF COMMON TOGETHER.

(Condition code - 8)

IEK305I THE COMMON STATEMENT CONTAINS AN
ARRAY WHICH IS NOT DIMENSIONED.

(Condition code - 8)

IEK306I THE EQUIVALENCE STATEMENT HAS AN
INCONSISTENCY.

(Condition code - 8)

IEK307I THE DATA STATEMENT CONTAINS A
VARIABLE THAT IS NOT REFE!\ENCED.

<condition code - 4)

IEK308I THE EQUIVALENCE STATEMENT HAS
EQUIVALENCED TWO VARIABLES IN THE
SAME COMMON BLOCK.

(Condition code - 8)

IEK310I THE EQUIVALENCE STATEMENT HAS A
VARIABLE WITH A VARIABLE
DIMENSION.

(Condition code - 8)

IEK312I THE EQUIVALENCE S'IA'I'EMENT CONTAINS
AN EXTERNAL REFERENCE.

(Condition code - 8)

(Condition code - 8)

IEK319I DATA IS ENTERED INTO A LOCAL VARI­
ABLE IN A BLOCK DATA PROGRAM.

(Condition code - 8)

IEK320I DATA MAY NOT BE ENTERED INTO A
VARIABLE wHICH HAS BEEN PASSED AS
AN ARGUMENT.

(Condition code - 8)

IEK322I THE CO.!V1MON STATEMENT WILL CAUSE
WORD BOUNDARY ERRORS.

(Condition code - 4)

IEK323I THE COMMON STA'I'EMENT MAY CAUSE A
WORD BOUNDARY ERROR.

(Condition code - 4)

IEK332I THE. STATE.MENT NUMBER IS UNDEFINED.

(Condition code - 8)

IEK334I THE COMMON STATEMENT HAS A VARI­
ABLE WITH A VARIABLE DIMENSION.

(Condition code - 8)

IEK350I 'l'HE DATA STATEMENT HAS A I·HSSING
PAJ:<ENTHESIS.

(Condition code - 8)

IEK352I THE DATA TYPE STATEMENT HAS TOO
MANY INITIALIZATION VALUES.

<condition code - 4)

Appendix D: System Diagnostics 121

IEK353I THE DIMENSION STATEMENT HAS A
VARIABLE WHICH HAS A SUBSCRIPT OF
REAL MODE.

I IEK355I

IEK356I

(Condition code - 8)

ADCON TABLE EXCEEDED.

(Condition code - 8)

A PARAMETER CANNOT ALSO BE IN
COMMON.

(Condition code - 8)

IEKSOOI AN ARGUMENT TO A FORTRAN SUPPLIED
FUNCTION IS OF THE WRONG TYPE.
THE FUNCTION IS TREATED AS
EXTERNAL.

(Condition code - 4)

IEKSOlI THE EXPRESSION HAS A COMPLEX
EXPONENT.

(Condition code - 8)

IEK502I THE EXPRESSION HAS A BASE WHICH IS
COMPLEX BUT THE EXPONENT IS
NON-INTEGER.

(Condition code - 8)

IEK503I A NON-SUBSCRIPTED ARRAY ITEM
APPEARS IMPROPERLY WITHIN A FUNC­
TION REFERENCE OR A CALL.

(Condition code - 8)

IEK504I THE BASE AND/OR EXPONENT IS A LOG­
ICAL VARIABLE.

(Condition code - 8)

IEK505I THE INPUT/OUTPUT STATEMENT REFERS
TO THE STATEMENT NUMBER OF A NON­
FORMAT STATEMENT.

<condition code - 8)

IEK506I THERE IS A MISSING OPERAND PRE­
CEEDING A RIGHT PARENTHESIS.

(Condition code - 8)

IEK507I A NON-SUBSCRIPTED ARRAY ITEM IS
USED AS AN ARGUMENT TO AN IN-LINE
FUNCTION.

(Condition code - 8)

IEK508I THE NUMBER OF ARGUMENTS TO AN IN­
LINE FUNCTION IS INCORRECT.

(Condition code - 8)

122

IEK509I THE PROGRAM DOES NOT END WITH A
STOP, RETURN, OR GO TO.

IEK510I

IEK511I

(Condition code - 4)

THE EXPRESSION HAS A LOGICAL
OPERATOR WITH A NON-LOGICAL
OPERAND.

(Condition code ~ 8)

TBE EXPRESSION HAS A LOGICAL
OPERATOR WITH A NON-LOGICAL
OPERAND.

(Condition code - 8)

IEK512I THE LOGICAL IF DOES NOT CONTAIN A
LOGICAL EXPRESSION.

(Condition code - 8)

IEK515I THE EXPRESSION HAS A RELATIONAL
OPERATOR WITH A COMPLEX OPERAND.

(Condition code - 8)

IEK516I THE ARITHMETIC IF CONTAINS A COM­
PLEX EXPRESSION.

(Condition code - 8)

IEK520I THERE IS A COMMA IN AN INVALID
POSITION.

(Condition code - 8)

IEK521I THE EXPRESSION HAS AT LEAST ONE
EX'I'RA RIGHT PARENTHESIS.

(Condition code - 8)

' IEK522I THE EXPRESSION HAS AT LEAST ONE
TOO FEW RIGHT PARENTHESES.

(Condition code - 8)

IEK523I THE EQUAL SIGN IS IMPROPERLY USED.

(Condition code - 8)

IEK524I THE EXPRESSION HAS AN OPERATOR
MISSING AFTER A RIGHT PARENTHESIS.

(Condition code - 8)

IEK525I THE EXPRESSION USES A LOGICAL OR
RELATIONAL OPERATOR INCORRECTLY.

(Condition code - 8)

IEK529I A FUNCTION NAME APPEARING AS AN
A~GUMENT HAS NOT BEEN DECLARED
EXTERNAL.

(Condition code - 8)

IEK530I THE EXPRESSION HAS A VARIABLE WITH
AN IMPROPER NUMBER OF SUBSCRIPTS.

(Condition code - 8)

IEK531I THE EXPRESSION HAS A STATEMENT
FUNCTION REFERENCE WITH AN IMPROP­
ER NUMBER OF ARGUMENTS.

(Condition code - 8)

IEK541I AN ARGUMENT TO A LIBRARY FUNCTION
HAS AN INVALID TYPE.

(Condition code - 8)

IEK542I A LOGICAL EXPRESSION APPEARS IN
INVALID CONTEXT.

(Condition code - 8)

IEK550I PUSHDOWN, ADCON, OR ASF ARGUMENT

(Condition code - 16)

IEK552I SOURCE PROGRAM IS TOO LARGE.

(Condition code - 16)

IEK570I TABLE EXCEEDED. OPTIMIZATION
DOWNGRADED.

Explanation: The program is too
large to permit optimization.
This is a warning message and
appears in the source listing at
the point where the table CRMAJOR)
overflows. The compiler performs
OPT=l register allocation only; no
other optimization is performed.

(Condition code - 0)

User Response: Either the program
should be segmented or the size of
the table RMAJOR should be
increased. Documentation of how
to increase RMAJOR is available
through a local IEM branch office.

IEK580I COMPILER ERROR.

Explanation: One of the following
four conditions occurred: an in­
valid adjective code was detected;
an illegal element length was
detected; no equivalence group was
found; an unusual primary adjec­
tive code was detected.

(Condition code - 16)

IEK600I INTERNAL COMPILER ERROR. LOGICAL­
LY IMPOSSIBLE BRANCH TAKEN IN A
COMPILER SUBROUTINE.

(Condition code - 16)

IEK610I THE STATEMENT NUMBER OR GENERATED
LABEL IS UNREACHABLE.

(Condition code - 4)

IEK620I THE STATEMENT NUMBER OR GENERATED
LABEL IS A MEMBER OF AN UNREACH­
ABLE LOOP.

(Condition code - 4)

IEK630I INTERNAL TOPOLOGICAL ANALYSIS
TABLE EXCEEDED.

(Condition code - 16)

IEK640I COVERAGE BY BASE REGISTER 12 IN
OBJECT MODULE EXCEEDED.

(Condition code - 16)

IEK650I IN'I'ERNAL ADCON TABLE EXCEEDED.

(Condition code - 16)

IEK660I INTERNAL COMPILER ERROR. TEM­
PORARY FETCHED BUT NEVER S'l'ORED.

(Condition code - 16)

IEK670I LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

IEK671I LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

IEK710I THE FORMAT STATEMENT SPECIFIES A
FIELD WIDTH OF ZERO.

(Condition code - 8)

IEK720I THE FORMAT STATEMENT CONTAINS AN
INVALID CHARACTER.

(Condition code - 8)

IEK730I THE FORMAT STATEMENT HAS UNBAL­
ANCED PARENTHESES.

(Condition code - 8)

IEK740I THE FORMA'l' STATEMENT HAS NO BEGIN­
NING LEFT PARENTHESIS.

(Condition code - 8)

IEK750I THE FORMAT STATEMENT SPECIFIES A
COUNT OF ZERO FOR A LITERAL FIELD.

(Condition code - 8)

Appendix D: System Diagnostics 123

IEK760I THE FORMAT STATEMENT CONTAINS A
MEANINGLESS NUMBER.

(Condition code - 8)

IEK770I THE FORMAT STATEMENT HAS A MISSING
DELI.MITER.

(Condition code - 8)

IEK780I THE FORMAT STATEMENT CONTAINS A
NUMERIC SPECIFICATION GREATER THAN
255.

(Condition code - 8)

IEK800I SOURCE PROGRAM IS TOO LARGE.

(Condition code - 16)

IEK1000I INTERNAL COMPILER ERROR

Explanation: An erroneous error
number has been placed in the
error table.

(Condition code - 4)

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

The load module produces three types of
diagnostic messages:

Program interrupt messages.
Execution error messages.
Operator message.

Program Interrupt Messages

Program interrupt messages containing
the old Program Status word (PSW) are writ­
ten when an exception occurs. The format
of the program interrupt message when the
extended error message facility has not
been specified at system generation time is
given in Figure 75.

Note: Codes 4, 5, 6,, and 7 are associated
with the execution-time adjustment of
boundary alignment errors and appear only
when the system is generated to provide
boundary alignment adjustment; i.e., when
BOUNDRY=ALIGN is specified in the FORTLIB
macro instruction during system generation.

The letter A in the message indicates
that boundary adjustment has taken place.
The letter P in the message indicates that
the interruption was precise. This will
always be the case for non-specification
interrupt messages in FORTRAN except when
using machines with special hardware on
which imprecise interruptions may occur.
The eighth character in the PSW <i.e., 4,
5, 6, 7, 9, c, D, or F) represents the code
number (in hexadecimal) associated with the
type of interruption. The following text
describes these interruptions.

Protection Exception: The protection
exception (code 4), is recognized when the
key of an operand in storage does not match
the protection key in the PSW. A message
is issued only if a specification exception
(code 6) has already been recognized in the
same instruction. Otherwise, the job ter­
minates abnormally.

Addressing Exception: The addressing
exception <code 5) is recognized when the
address of the data is outside of the
available storage for the particular
installation. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

Specification Exception: The specification
exception <code 6) is recognized when a
data address does not specify an integral
boundary for that unit of information. A
specification error would occur during
execution of the following instructions.

REAL*8 D, E
COMMON A, B, C
EQUIVALENCE (B, D)
D = 3.0D02

r---1
I 4 I
I s I
I 6 I
I IHC210I PROGRAM INTERRUPT {<A>}-- OLD PSW rs xxxxxxx 7 I
I <P> 9 I
I c I
I D I
I F I
L---J
Figure 75. Program Interrupt Message Format Without Extended Error Message Facility

124

\
)

Note: If an instruction contains a bounda­
ry violation, a specification interrupt
occurs and the message is issued with code
6. The boundary adjustment routine is
invoked if the BOUNDRY=ALIG.N option was
specified in the FORTLIB macro instruction
during system generation. If an instruc­
tion which has been processed for a bounda­
ry violation also contains a protection,
addressing, or data error, the interrupt
message is reissued with the appropriate
code (4. 5. or 7). The job then terminates
because both a specification error and a
protection, addressing, or data error have
been detected. The completion code in the
dump indicates that the job terminated
because of the specification error.

Data Exception: The data exception (code
7), is recognized when the sign and digit
codes for a CONVERT TO BINARY instruction
are incorrect. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

Fixed-Point-Divide Exception: The fixed­
point-divide exception, assigned code num­
ber 9, is recognized when division of a
fixed-point number by zero is attempted. A
fixed-point divide exception will occur
during execution of the following
statements:

J=O
I=7
K=I/J

Exponent-overflow Exception: The exponent­
overflow exception, assigned code number c,
is recognized when the result of a
floating-point addition, subtraction, mul­
tiplication, or division is greater than or
equal to 16 63 <approximately 7.2 x 107 5).

For example, an exponent-overflow will
occur during execution of the statement:

A = 1.0E+75 + 7.2E+75

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format.

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where: hhhhhhhhhhhhhhhh is the floating­
point number in hexadecimal
notation.

If the improved floating-point engineer­
ing change is not in effect, the register
content cannot be used to calculate the
true value.

If the improved floating-point engineer­
ing change is in effect, exponent overflow
causes "exponent wraparound" - i.e., the
characteristic field represents an exponent
that is 128 smaller than the correct one.
Treating bits 1 to 7 (the exponent charac­
teristic field) of the floating-point num­
ber as a binary integer, the true exponent
may be computed as follows:

TE = (Bits 1 to 7) + 128 - 64

Before program execution continues, the
FORTRAN library sets the result register to
the largest possible floating-point number
that can be represented in short precision
(1663*(1-16-6)) or in long precision (1663*
(1-16-~~)), but the sign of the result is
not changed. The condition code is not
altered.

Exponent-Underflow Exception: The
exponent-underflow exception, assigned code
number D, is recognized when the result of
a floating-point addition, subtraction,
multiplication, or division is less than
16-6 5 (approximately 5.4xl0-7 9). For
example, an exponent-underflow exception
will occur during execution of the
statement:

A= 1.0E-50 * 1.0E-50

Although exponent underflows are mask­
able, FORTRAN jobs are executed without the
mask so that the library will handle such
interrupts.

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where: hhhhhhhhhhhhhhhh is the floating­
point n.umber in hexadecimal
notation.

If the improved floating-point engineer­
ing change is not in effect, the exponent
underflow always leaves a zero in the
result register.

If the improved floating-point engineer­
ing change is in effect, exponent underflow
causes "exponent wraparound" - i.e., the

Appendix D: System Diagnostics 125

characteristic field represents an exponent
that is 128 larger than the correct one.
Treating bits 1 to 7 Cthe exponent charac­
teristic field) of the floating-point num­
ber as a binary integer, the true exponent
may be computed as follows:

TE = (Bits 1 to 7) - 128 - 64

Before program execution continues, the
library sets the result register to a true
zero of correct precision. If the inter­
rupt resulted from a floating-point addi­
tion or subtraction operation, the condi­
tion code is set to zero to reflect the
setting of the result register.

Note: The System/360 operating System
FORTRAN programmer who wishes to take
advantage of the "exponent wraparound" fea­
ture and handle the interrupt in his own
program must call an assembly language sub­
routine to issue a SPIE macro instruction
that will override the FORTRAN interruption
routine.

Floating-Point-Divide Exception: The
floating-point-divide exception, assigned
code number F, is recognized when division
of a floating-point number by zero is
attempted. A floating-point divide excep­
tion will occur during execution of the
following statements:

B=O.O
A=l.O
C=A/B

Execution Error Messages

Execution error messages have the form:

IHCxxxI [message text]
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,

REG. 15, REG. 0, REG. 1

The facility for error detection and
diagnostic messages is controlled by a sys­
tem generation option. When the parameter
OPTERR=EXCLUDE is specified in the FORTLIB
macro-instruction at system generation time
Cor assumed when no parameter is speci~
fied), the features described in "Extended
Error Message Facility" are not available.

The following text indicates the mes­
sages printed on the object error unit when
OPTERR=EXCLUDE. Variable information in
the message is shown as x. The error codes
are given with an explanation describing
the type of error. Preceding the explana­
tion, an abbreviated name is given indicat­
ing the origin of the error. For any load

126

module execution error, unless otherwise
stated, a condition code of 16 is generated
and the job step is terminated.

The abbreviated name for the origin of
the error is:

IBC - IHCFCOMH routine <performs inter­
ruption, and error procedures).

FIOCS - IHCFIOSH routine (performs I/O
operations for FORTRAN load module
execution).

NAMEL - IHCNAMEL routine (performs name­
list. processing).

DIOCS - IHCDIOSE routine (performs
direct access I/O operations for FORTRAN
load module execution).

IBERR - IHCIBERH routine (performs the
processing of errors detected during
execution of the load modules.)

LIB - SYSl.FORTLIB. In the explanation
of the messages, the module name is
given followed by the entry point
name(s) enclosed in parentheses.

FCVTH - IHCFCVTH routine (performs
conversions).

IHC211I

IHC212I

IHC213I

IHC214I

I IHC215I

Explanation: IBC -- An invalid
character has been detected in a
FORMAT statement.

Explanation: IBC -- An attempt
has been made to read or write a
record, under FORMAT control, that
exceeds the buff er lerigth.

Explanation: IBC -- The input
list in an I/O statement without a
FORMAT specification is larger
than the logical record.

Explanation: FIOCS -- For records
in sequential data sets read or
written without FORMAT control,
for which the RECFM subparameter
must be V (variable), either U
(undefined) or F (fixed) was
specified.

CONVERT-ILLEGAL DECIMAL CHARACTER
x

Explanation: FCVTH -- An invalid
character exists for the decimal

input corresponding to an I, E, F,
or D format code.

I IHC223I

I IHC216I SLITE-SLITET x IS AN ILLEGAL VALUE

IHC217I

Explanation: LIB An invalid
sense light number was detected in
the argument list in a call to the
SLITE or SLITET subroutine.

Explanation: IBC -- An end of
data set was sensed during a READ
operation; that is, a program
attempted to read beyond the data.

I IHC224I

IHC218I I/O ERROR xxx ••• xxx

IHC219I

IHC220I

I IHC221I

I IHC222I

Explanation: IBC -- A permanent I IHC225I
input/output error has been
encountered or an attempt has been
made to read or write (with mag-
netic tape) a record that is less
than 18 bytes long. The xxx •••
xxx is the character string for-
matted by the SYNADAF macro IHC230I
instruction. For an interpreta-
tion of this information, see the
publication Supervisor and Data
Management Macro Instructions,
Form C28-6647. After the trace-
back is completed, control is
returned to the call routine sta-
tement designated in the ERR para-
meter of a FORTRAN READ statement
if that parameter was specified.
(See "Use of ERR Parameter in READ IHC231I
Statement" for additional
information.)

Explanation: FIOCS -- Either a
data set is referred to in the
load module but no DD statement is
supplied for it, or a DD statement
has an erroneous ddname.

Explanation: FIOCS -- A data set
reference number exceeds the limit
specified for data set reference
numbers when this operating system
was generated.

NAMEL-NAME LARGER THAN EIGHT
CHARACTERS. NAME=X

Explanation: NAMEL -- An input
variable name exceeds eight
characters.

NAMEL-NAME NOT IN NAMELIST DIC­
TIONARY. NAME=X

Explanation: NAMEL -- An input
variable name is not in the NAME­
LIST dictionary, or an array is
specified with an insufficient
amount of data.

IHC232I

IHC233I

IHC234I

IHC235I

NAMEL-END OF RECORD ENCOUNTERED
BEFORE EQUAL SIGN. NA!-'lE=X

Explanation: NAMEL Either an
input variable name or a subscript
has no delimiter.

NAMEL-SUBSCRIPT FOR NON­
DIMENSIONED VARIABLE OR SUESCRIPT
OU'I' OF RANGE. NAME=X

Explanation: NAMEL -- A subscript
is encountered after an undimen­
sioned input name, or the sub­
script is too big.

CONVERT-ILLEGAL HEXADECIMAL
CHARAC'I'ER X

Explanation: FCVTH -- An illegal
character encountered on input
under z format code.

SOURCE ERROR AT ISN xxxx - EXECU­
TION FAILED AT SUBROUTINE - name
Explanation: IBERR -- During loaa
module execution, a source state­
ment error is encountered. The
internal statement number for the
source statement is xxxx; the rou­
tine that contains the statement
is specified by name.

Explanation: DIOCS -- Direct­
access input/output statements are
used for a sequential data set, or
input/output statements for a
sequential data set are used for a
direct access data set.

Explanation: DIOCS -- Relative
position of a record is not a
positive integer., or the relative
position exceeds the number of
records in the data set.

Explanation: DIOCS -- The record
length specified in the DEFINE
FILE statement exceeds the physi­
cal limitation of the volume
assigned to the data set in the DD
statement.

Explanation: DIOCS -- The data
set assigned to print execution
error messages cannot be a dir~ct
access data set.

Explanation: DIOCS -- A data set
reference number assigned to a

Appendix D: System Diagnostics 127

IHC236I

IHC237I

I IHC241I

I IHC242I

I IHC243I

I IHC244I

I IHC245I

128

direct access data set has been
used for a sequential data set.

Explanation: DIOCS -- A READ is
executed for a direct access data
set that has not been created.

Explanation: DIOCS -~ Length of a
record did not correspond to
length of record specified in
DEFINE FILE statement.

FIXPI INTEGER BASE=O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (I**J) in
the subprogram IHCFIXPI(FIXPI#)
where I and J represent integer
variables or integer constants, I
is equal to zero and J is less
than or equal to zero.

FRXPI REAL*4 BASE=O.O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (R**J) in
the subprogram IHCFRXPI(FRXPI#),
where R represents a real*4 vari­
able or real*4 constant, and J
represents an integer variable or
integer constant, R is equal to
zero and J is less than or equal
to zero.

FDXPI REAL*8 BASE=O.O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (D**J) in
the subprogram IHCFDXPI(FDXPI#),
where D represents a real*8 vari­
able or real*8 constant and J
represents an integer variable or
integer constant, D is equal to
zero and J is less than or equal
to zero.

FRXPR REAL*4 EASE=o.o. REAL*4,
EXPONENT=X.X, LE 0

Explanation: LIB -- For an
exponentiation operation (R**S) in
the subprogram IHCFRXPR(FRXPR#),
where R and S represent real*4
variables or real*4 constants, R
is equal to zero and S is less
than or equal to zero.

FDXPD REAL*8 BASE=O.O, REAL*8
EXPONENT=X.X, LE 0

Explanation: LIB -- For an
exponentiation operation (D**P) in
the subprogram IHCFDXPD(FDXPD#),

I IHC246I

I IHC247I

I IHC251I

I IHC252I

I IHC253I

I IHC254I

I IHC255I

where D and P represent real*8
variables or real*8 constants, D
is equal to zero and P is less
than or equal to zero.

FCXPI COMPLEX*8 BASE=O.O+O.OI,
INTEGER EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCXPI(FCXPI#),
where Z represents a complex*8
variable or complex*B constant and
J represents an integer variable
or integer constant, z is equal to
zero and J is less than or equal
to zero.

FCDXI COMPLEX*16 BASE=0.0+0.0I,
IN'I'EGER EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCDXI(FCDXI#),
where Z represents a complex*16
variable or complex•16 constant
and J represents an integer vari­
able or integer constant, z is
equal to zero and J is less than
or equal to zero.

SQRT NEGATIVE ARGUMENT=X

Explanation: LIB -- In the.sub­
program IHCSSQRT(SQRT), the argu­
ment is less than O.

EXP ARG=X.X, GT 174.673

Explanation: LIB -- In the sub­
program IBCSEXP(EXP), the argument
is greater than 174.673.

ALOG-ALOG10 ARG=X.X, LE ZERO

Explanation: LIB -- In the sub­
program IHCSLOG(ALOG and ALOG10),
the argument is less than or equal
to zero. Because this subprogram
is called by an exponential sub­
program, this message also indi­
cates that an attempt has been
made to raise a negative base to a
real power.

SIN-COS/ARG/=/X.X(HEX=X)/, GE
PI*2**18

Explanation: LIB -- In the sub­
program IHCSSCN(SIN and COS), the
absolute value of an argument is
greater than or equal to 21ae~.
(218·~ =.823549664062499960+06)

ATAN2 ARGUMENTS=O.O

Explanation: LIB In the sub-
program IHCSATN2, when entry name

I IHC256I

I IHC257I

I IHC258I

1 IHC259I

I IHC261I

I IHC262I

I IHC263I

I IHC264I

ATAN2 is used, both arguments are I IHC265I DATAN2 ARGUMEN'IS=O. 0
equal to zero.

SINH~coSH/ARG/=/X.X/, GE 174.673

Explanation: LIB -- In the sub­
program IHCSSCNH(SINH or COSH),
the argument is greater than or
equal to 174.673.

ARSIN-ARCOS/ARG/=/X.X/ GT 1

Explanation: LIB -- In the sub­
program IHCSASCN (ARCSIN or
ARCOS), the absolute value of the
argument is greater than 1.

TAN-COTAN/ARG/=/X.XCHEX=X)/, GE
PI*2**18

Explanation: LIB -- In the sub­
program IHCSTNCT (TAN or COTAN),
the absolute value of the argument
is greater than or equal to 21se11.
(21BeTI=.82354966406249996D+06)

TAN-COTAN/ARG/=/X.X(HEX=X)/,
APPROACHES SINGULARITY

Explanation: LIB -- In the sub­
program IHCSTNCT (TAN or COTAN),
the argument value is too close to
one of the singularities.
(±~,±~TI , ••• for the tangent

or ±TI,± 2 TI , ••• for the cotangent)

DSQRT NEGATIVE ARGUMENT=X.X

Explanation: LIB -- In the sub­
program IHCLSQRTCDSQRT), the argu­
ment is less than O.

DEXP ARG=X.X, GT 174.673

Explanation: LIB -- In the sub­
program IHCLEXPCDEXP), the argu­
ment is greater than 174.673.

DLOG-DLOG10 ARG=X.X, LE ZERO

Explanation: LIB -- In the sub­
program IHCLLOG(DLCG and DLOG10),
the argument is less than or equal
to zero. Because the subprogram
is called by an exponential sub­
program, this message also indi­
cates that an attempt has been
made to raise a negative base to a
real power.

DSIN-DCOS/ARG/=/X.X(HEX=X)/, GE
PI*2**50

Explanation: LIB -- In the sub­
program IHCLSCNCDSIN and DCOS),
the absolute value of the argument
is greater than or equal to 250 TI•

(250 TI =.353711887378022390+16)

I IHC266I

I IHC267I

I IHC268I

I IHC269I

I IHC271I

I IHC272I

Explanation: LIB -- In the sub­
program IHCLATN2, when entry name
DATAN2 is used, both arguments are
equal to zero.

DSINH-DCOSH/ARG/=/X.X/, GE 174.673

Explanation: LIB -- In the sub­
program IHCLSCNH (DSINH or DCOSH),
the absolute value of the argument
is greater than or equal to
174.673.

DARSIN-DARCOS/ARG/=/X.X/, GT 1

Explanation: LIB -- In the sub­
program IHCLASCN (DARSIN or
DARCOS), the absolute value of the
argument is greater than 1.

DTAN-DCOTAN/ARG/=/X.XCHEX=X)/ GE
PI*C2**50)

Explanation: LIB -- In the sub­
program IHCLTNCT (DTAN or DCOTAN),
the absolute value of the argument
is greater than or equal to 2so TI.

(250eTI =.353711887378022390+16)

DTAN-DCOTAN/ARG/=/X.X(HEX=X)/,
APPROACHES SINGULARITY

Explanation: LIB -- In the sub­
program InCLTNCT (DTAN or DCOTAN),
the argument value is too close to
one of the singularities
< ± -¥ ,± ~ 11 , ••• for the tangent
or ±rr,±211, ••. for the cotangent>.

CEXP REAL ARG=X.XCHEX=X), GT
174. 673

Explanation: LIB -- In the sub­
program IHCCSEXP (CEXP), the value
of the real part of the argument
is greater than 174.673.

CEXP IMAG ARG=XCHEX=X), ABS VALUE
GE PI*2**18

Explanation: LIB -- In the sub­
program IHCCSEXP (CEXP), the abso­
lute value of the imaginary part
of the argument is greater than or
equal to 21se11.

(21B•TI=.82354966406249996D+06)

IHC273I CLOG ARGUMENT=0.0+0.0I

Explanation: LIB -- In the sub­
program IHCCSLOG (CLOG), the real
and imaginary parts of the argu­
ment are equal to zero.

IHC274I CSIN-CCOS/REAL ARG/=/X.X (HEX=X)/,
GE PI*2**18

Appendix D: System Diagnostics 129

I IHC275I

I IHC281I

I IHC282I

I IHC283I

I IHC284I

I IHC285I

I IHC290I

130

Explanation: LIB -- In the sub­
program IHCCSSCN (CSIN or CCOS},
the absolute value of the real
part of the argument is greater
than or equal to 21a w.
(2i8eW=.82354966406249996D+06)

CSIN-CCOS/IMAG ARG/=/X.X (HEX=X)/
GT 174.673

Explanation: LIB -- In the sub­
program IHCCSSCN (CSIN or CCOS},
the absolute value of the
imaginary part of the argument is
greater than 174.673.

CDEXP-REAL ARG=X.X(HEX=X) GT
174.673

Explanation: LIB -- In the sub­
program IHCCLEXP (CDEXP), the
value of the real part of the
argument is greater than 174.673.

CDEXP IMAG ARG=X.X(HEX=X) ABS
VALUE GE PI*2**50

Explanation: LIB -- In the sub­
program IHCCtEXP (CDEXP}, the
absolute value of the imaginary
part of the argument is greater
than or equal to 2soe~.
(250•W=.35371188737802239D+16}

CDLOG ARGUMENT=O.O+O.OI

Explanation: LIB -- In the sub­
program IHCCLLOG (CDLOG), the real
and imaginary parts of the argu­
ment are equal to zero.

CDSIN-CDCOS/REAL ARG/=/X.X (HEX=X)
/, GE PI*2**50

Explanation: LIB -- In the sub­
program IHCCLSCN (CDSIN or COCOS),
the absolute value of the real
part of the argument is greater
than or equal to 2so.~.
(25°ew=.35371188737802239D+16)

CDSIN-CDCOS/IMAG ARG/=/X.X (HEX=X)
/, GT 174.673

Explanation: LIB -- In the sub­
program IHCCLSCN (CDSIN or COCOS),
the absolute value of the
imaginary part of the argument is
greater than 174.673.

GAMMA ARG=X.X(HEX=Xl, LE 2**-252
OR GE 57.5744

Explanation: LIB -- In the sub­
program IHCSGAMA (GAMMA), the
value of the argument is outside
the valid range. (Valid range:
2-2s2<x<57.5744)

I IHC291I

I IHC300I

I IHC301I

ALGAMA ARG=X.X(HEX=X), LE 0. OR
GE 4.2937*10**73

Explanation: LIB -- In the sub­
program IHCSGAMA (ALGAMA), the
value of the argument is outside
the valid range. (Valid range:
0<x<4.2937x1073)

DGAMMA ARG=X.X(HEX=X), LE 2**-252
OR GE 57.5744

Explanation: LIB -- In the sub­
program IHCLGAMA (DGAMMA), the
value of the argument is outside
the valid0 range. (Valid range:
2-2s2<x<57.5744)

DLGAMA ARG=X.X(HEX=X), LEO. OR
GE 4.2937*10**73

Explanation: LIB -- In the sub­
program IHCLGAMA (DLGAMA), the
value of the argument is outside
the valid range. (Valid range:
O<x<4.2937x1073)

Extended Error Messages for Execution
Errors

When the extended error message facility
is specified by use of the OPTERR=INCLUDE
option in the FORTLIB macro-instruction at
system generation time, the message text
that follows is printed on the object error
unit. Explanations of individual error
situations are the same as those described
previously for "Execution Error Messages."
Variable information in the message is
shown as X, and in the corrective action
descriptions, * denotes the largest poss­
ible number that can be represented in
floating point.

Supplemental data is identified. The
user should refer to Tables 17, 18, and 19
for a listing of the data available to the
user-exit routine. Provided here is a sum­
mary of data available in the message whicn
is also passed to the user-exit routine, as
well as any additional information concern­
ing the data in error that appears in the
message. The standard action to correct
the error is also described.

ERROR
207

DESCRIPTION
IHC207I IBCOM - PROGRAM INTERRUPT­
OVERFLOW OLD PSW IS X REGISTER
CONTAINED X

Supplemental Data: The following
point number before alteration.

208

209

210

211

212

Standard Corrective Action: Con­
tinue execution at point of inter­
rupt with result register set to
the largest possible floating­
point number that can be repre­
sented in short precision (1663*
Cl-16- 6)) or in long precision
(1663*(1-16-1~)).

IHC208I IBCOM - PROGRAM INTERRUP'I'­
UNDERFLOW OLD PSW IS X REGISTER
CONTAINED X

Supplemental Data: The floating
point number before alteration.

Standard Corrective Action: Con­
tinue execution at point of inter­
rupt with result register set to a
true zero of correct precision.

IHC209I IBCOM - PROGRAM INTERRUPT­
DIVIDE CHECK OLD PSW IS X

Supplemental Data: None.

Standard corrective Action: Leave
register unmodified.

IHC210I IBCOM - PROGRAM INTERRUPT
- ALIGNMENT OLD PSW IS X

supplemental Data: None.

Standard Corrective Action: None.

IHC210I IBCOM - PROGRAM INTERRUP'I

< ~) OLD PSW IS <contents of old

PSW)

Supplemental Data: None.

Standard Corrective Action: con­
tinue execution at point of
interrupt.

IHC211I IBCOM - ILLEGAL COMPILED
FORMAT CHARACTER SPECIFIED

IHC211I IBCOM - ILLEGAL VARIABLE
FORMAT CHARACTER SPECIFIED X

supplemental Data: Character in
error.

Standard Corrective Action: For­
mat field treated as an end of
format.

IHC212I IBCOM - FORMATTED I/O, END
OF RECORD ON UNIT X

supplemental Data: Unit number.

213

214

Standard Corrective Action: For a
read, ignore remainder of I/O
list; for a write, start new
record with no control character.

IHC213I IBCOM - UNFORJYiATTED READ,
END OF RECORD ON UNIT X

Supplemental Data: Unit number.

Standard corrective Action:
Ignore remainder of I/O list.

IHC214I FIOCS - UNFORMATTED I/O,
RECORD FOKMAT SPECIFIED AS F OR U
ON UNIT X

Supplemental Data: Unit number.

Standard Corrective Action: For
read, ignore I/O request; for
write, change record form to v.

215 IHC215I CONVEKT - ILLEGAL DECIMAL
CHARACTER X

216

217

218

Su~plemental Data: Display the
record in which character
appeared.

Standard corrective Action: o
replaces the character
encountered.

Note: If the standard or correc­
tive user action results in a null
format, no output will result. If
the FORMAT statement is terminated
in such a way that no conversion
type is called for, an alphanumer­
ic literal may be repeated for
each list item.

IHC216I SLITE - SLITE'I X IS Ar~

ILLEGAL VALUE

Supplemental Data: The sense
light value supplied.

Standard corrective Action: For
SLITE, no action; for SLITET,
return OFF indication, i.e., J=2.

IHC217I FIOCS - END OF DATA SET m~
UNIT X

Sufplemental Data: Unit number.

Standard Corrective Action: Head
next file, i.e., increment
sequence number by 1.

Note: END=parameter is honored.

IHC218I - FIOCS - I/O ERROR (text
provided by data management)

Appendix D: System Diagnostics 131

219

220

221

222

223

224

132

Supplemental Data: Unit number.

Standard Corrective Action: Con­
tinue execution and ignore I/O
request.

Note: ERR=parameter is honored.

IHC219I FIOCS - MISSING DD CARD
FOR (DDname}

IHC219I DIOCS - MISSING DD CARD
FOR UNIT X

Supplemental Data: Unit number.

Standard Corrective Action: Con­
tinue execution and ignore I/O
request.

IHC220I FIOCS - UNIT NUMBER OUT OF
RANGE. UNIT=X

IHC220I DIOCS - UNIT NUMBER OUT OF
RANGE. UNIT=X

Supplemental Data: Unit number.

Standard corrective Action: Con­
tinue execution and ignore I/O
request.

IHC221I NAMEL - NAME LARGER THAN
EIGHT CHARACTERS. NAME=X

supplemental Data: Name specified
(first eight characters).

Standard corrective Action:
Ignore remainder of namelist
request.

IHC222I NAMEL - NAME NOT IN NAME­
LIST DICTIONARY. NAME=X

supplemental Data: Name
specified.

standard Corrective Action:
Ignore remainder of namelist
request.

IHC223I NAMEL - END OF RECORD
ENCOUNTERED BEFORE EQUAL SIGN.
NAME=X

Supplemental Data: Name of item.

Standard corrective Action:
Ignore remainder of the namelist
request.

IHC224I NAMEL - SUBSCRIPT FOR NON­
DIMENSIONED VARIABLE OR SUBSCRIPT
OUT OF RANGE. NAME=X

Supplemental Data: Name of item.

225

230

231

232

233

234

Standard Corrective Action:
Ignore remainder of the namelist
request.

IHC225I CONVERT - ILLEGAL
DECIMAL CHARACTER X

HEXA-

Supplemental Data: Display the
record in which the character
appeared.

Standard corrective Action: O
replaces the encountered
character.

IHC230 - SOURCE ERROR AT ISN X -
EXECUTION FAILED AT SUBROUTINE X

Supplemental Data: None.

Standard corrective Action: Ter­
minate execution.

IHC231I IBCOM - DIRECT ACCESS
STATEMENT USED WITHOUT DEFINE FILE
ON UNIT X

IHC231I DIOCS - DIRECT ACCESS
STATEMENT USED FOR SEQUENTIAL DATA
SET X

IHC231I FIOCS - SEQUENTIAL I/O
STATEMENTS USED FOR DIRECT ACCESS
DATA SET X

Supplemental Data: Unit number X

Standard Corrective Action:
Ignore I/O request.

IHC232I DIOCS - RECORD NUMBER X
OUT OF RANGE ON UNIT X

supplemental Data: Unit number
and record number.

Standard Corrective Action:
Ignore I/O request.

IHC233I DIOCS - RECORD LENGTH
GREATER THAN 32K-1 SPECIFIED FOR
UNIT X

Supplemental Data: Unit number
specified.

Standard Corrective Action: Set
record length to 32,000.

IHC234I DIOCS - ATTEMPT TO DEFINE
THE OBJECT ERROR UNIT AS DIRECT
ACCESS DATA SET. UNIT=X

Supplemental Data: Unit number.

Standard Corrective Action:
Ignore define file entry.

235

236

237

241

242

243

244

245

IHC235I DIOCS - DEFINE A DATA SET
WHICH HAS BEEN USED SEQUENTIALLY
AS A DIRECT ACCESS DATA SET.
UNIT=X

supplemental Data: Unit number.

Standard Corrective Action:
Ignore define file entry.

IHC236I DIOCS - READ REQUEST FOR
AN UNCREATED DATA SET ON UNIT X

Supplemental Data: Unit number.

Standard corrective Action:
Ignore I/O request.

IHC237I DIOCS - INCORRECT RECORD
LENGTH SPECIFIED FOR UNIT X

Supplemental Data: Unit for which
error occurred.

Standard Correct Action: Ignore
the I/O request.

IHC241I FIXPI INTEGER BASE=O,
INTEGER EXPONENT=X, LE 0

supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

IHC242I FRXPI REAL*4 BASE=O.O,
INTEGER EXPONENT=X, LE 0

supplemental Data: Exponent
supplied.

Standard Corrective Action:
Result=O.

IHC243I FDXPI REAL*8 BASE=O.O,
INTEGER EXPONENT=X. LE 0

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

IHC244I FRXPR REAL*4 BASE=O.O,
REAL *4 EXPONENT=X.X, LE 0

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

IHC245I FDXPD REAL*8 BASE=O.O,
REAL*8 EXPONENT=X.X, LE 0

Supplemental Data: Exponent
specified.

246

247

Standard Corrective Action:
Result=O.

IHC246I FCXPI COMPLEX*8 BASE=O.O+
O.OI, INTEGER EXPONENT=X, LE 0

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

IHC247I FCDXI COMPLEX*16 BASE=O.O+
0. OI, INTEGER EXPONEN'I'=X, LE 0

Supplemental Data: Fx:ront·nt­
specified.

Standard Corrective Ac~l912:
Result=O.

251 IHC251I SQRT NEGATIVE A~GUMENT~X

252

253

254

255

256

Sui:;plemental Data: Argument
specified.

Standard Corrective Acti(~:
Result=1x1V2.

IHC252I EXP ARG=X.X, GT 1 4.67~

Supplemental Data: Argumu1t
specified.

Standard Corrective Actinn:
Result=*.

IHC253I ALOG-ALOG10 ARG=X.X,LE
ZERO

Supplemental Data: Argument
specified.

Standard corrective Action: if
x=o, result=-*; if X<O, result=loq
IXI or log 1 o 1x1.

IHC254I SIN-COS/ARG/=/X. X <HEX=X) /
, GE PI*2**18

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=.J2/2

IrlC255I A'I'AN2 ARGUMENTS=O. 0

Supplemental Data: Arguments
specified.

Standard Corrective Action:
Result=O.

IHC256I SINH-COSH/ARG/=/X.X/, GE
174.673

Appendix D: System Diagnostics 133

257

258

259

261

262

263

264

134

supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*·

IHC257I ARSIN-ARCOS/ARG/=/X.X/ GT
1

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=O.

IHC258I TAN-COTAN/AHG/=/X.X/ (HEX=
X)/, GE PI*2**18

supplemental Data: Argument
specified.

Standard Corrective Action:
Result=l.

IHC259I TAN-COTAN/ARG/=/X.X/ (HEX=
X)/, APPROACHES SINGULARITY

Supplemental Data: Argument
specified

Standard Corrective Action:
Result=*·

IHC261I DSQRT NEGATIVE
ARGUMENT=X.X

Supplemental Data: Argument
specified

Standard Corrective Action:
Result=1x11/2

IHC262I DEXP ARG=X.X, GT 174.673

supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*.

IHC263I DLOG-DLOG10 ARG=X.X, LE
ZERO

Supplemental Data: Argument
specified.

Standard Corrective Action: if
X=O, result=-*; if X<O, result=log
Ix I or log10 Ix I .

IHC264I DSIN-DCOS/ARG/=/X.X (HEX=
X)/, GE PI*2**50

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=O • ../7/2

265

266

267

268

269

271

272

273

IHC265I DATAN2 ARGUMENTS=O.O

Supplemental Data: Arguments
specified.

Standard Corrective Action:
Result=O.

IHC266I DSINH-DCOSH/ARG/=/X.X/, G£
174.673

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=*·

IHC267I DARSIN-DARCOS/ARG/=/X.X/,
GT 1

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=O.

IHC268I DTAN-DCOTAN/ARG/=/X.X
(HEX=X)/ GE PI*(2**50)

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=l.

IHC269I DTAN-DCOTAN/ARG/=/X.X
(HEX=X)/, APPROACHES SINGULARITY

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result=*·

IHC271I CEXP REAL ARG=X.X (HEX=X),
GT 174.673

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=* (COS x + iSIN X) where x
is the imaginary portion of the
argument.

IHC272I CEXP !MAG ARG=X (HEX=X),
ABS VALUE GE PI*2**18

Supplemental Data: Argument
specified.

Standard corrective Action:
Result=O+Oi.

IrlC273I CLOG ARGUMENT=O.O+O.OI

Supplemental Data: Argument
specified.

274

275

281

282

283

284

Standard Corrective Action:
Result=-*+Oi.

IHC274I CSIN-CCOS/REAL ARG(=/X.X
(HEX=X)/ 1 GE PI*2**18

§!!£P1~~~!!!~1_Q~!~= Argument
specified.

Standard Corrective Action:
Resu1t=o+or;----~----~--

IHC275I CSIN-CCOS/IMAG ARG/=/X.X
(HEX=X)/, GT 174.673

supplemental Data: Argument
specified.
Standard Corrective Action: If
imaginary-Part->~Tx-IS-real por­
tion of argument>:

For sine, result=
! (SIN X + iCOS X).
2

For cosine, result=
* (COS X - iSIN X).
2

If imaginary part <O, (X is real
portion of argument):

For sine, result=
* (SIN X - iCOS X).
2

For cosine, result=
* (COS X + iSIN X).
2

IHC28I CDEXP REAL ARG=X.X(HEX=X)
GT 174.673

Supplemental Data: Argument
specified.
standard corrective Action:
Result~TCos-x+is!N-x>-wfiere x is
the imaginary portion of the
argument.

IHC282I CDEXP IMAG ARG=X.X(HEX=X)
ABS VALUE GE PI*2**50

§~EEl~~~!!tab_Q~!~: Argument
specified.
Standard corrective Action:
Result=O+Oi.

IHC283I CDLOG ARGUMENT=O.DO+O.DOI

§!!£Ple~g!~1_Q~!~= Argument
specified.
Standard Corrective Action:
Result=-*+Oi.

IHC284I CDSIN-CDCOS/REAL ARG/=/X.
X(HEX=X)/ 1 GE PI*2**50

Supplemental Data: Argument
specified.
Standard corrective Action: Resuif=o+or---------------

285 IHC285I CDSIN-CDCOS/IMAG ARG/=/X.

290

291

300

301

X(HEX=X)/ 1 GT 174.673

§~pplemental Data: Argument
specified.
Standard corrective Action: If
imaginary-part->o;-rx-is real por­
tion of argument):

For sine, result=
* (SIN X + iCOS X).
2

For cosine, result=
* (COS X - iSIN X).
2

If imaginary part <O, (X is real
portion of argument>:

For sine, result=
* (SIN X - iCOS X)
2

For cosine, result=
* (COS X + iSIN X)
2

IHC290I GAMMA ARG=X.X(HEX=X>, LE2*
*-252 OR GE 57.5744

§~PP1~~gtal_Q~t~: Argument
specified.
Standard corrective Action:
Result=*·

IHC291I ALGAMA ARG=X.X(HEX=X), LE
0 OR GE 4.2937*10**73

Supplemental Data: Argument
specified
Standard corrective Action:
Resuif~*;--------------~-

IHC300I DGAMMA ARG=X.X(HEX=X>, LE
2**-252 OR GE 57.5744

Supplemental Data: Argument
specified.
§t~gg~Eg_£QEE~£t~Y~-~£!~Qg:
Result=*·

IHC301I DLGAMA ARG=X.X(HEX=X), LE
0. OR GE 4.2937*10**73

supplemental Data: Argument
specified.
Standard Corrective Action:
Result=*·

*is used to denote the largest number
representable in floating point.

Appendix D: System Diagnostics 135

SUMMARY OF ERRORS FOR THIS JOB ERROR NUMBER
219

NUMBER OR ERRORS
1

217 1
211 57

Figure 76. Summary of Error and Traceback

TRACEBACK FOLLOWS- ROUTINE
IBCOM
MAIN

ISN REG. 14
000083B4
00004918

REG. 15
000089B8
50008020

REG. 0
00000005
00000030

REG. l
000081A6
0003FF04

ENTRY POINT- 50008020

Figure 77. Example of Traceback Map

Even though message printing may be sup­
pressed when the extended error message
facility is available, a summary of errors
is printed when the job is completed. Its
format is shown in Figure 76 • The format
of a Traceback Map is shown in Figure 77.

The headings in the Traceback Map may be
described as follows:

ROUTINE The name of the routine entered,
which was called by the next rou­
tine in the list.

ISN When the compiler's ID option sup­
plies an Internal Statement Number
(ISN), the ISN entry is a symbolic
reference to the point from which
the routine was called.

REG. 14 This is the absolute location
reference to the point from which
ROUTINE was called. By using the
ENTRY POINT location, a relative
location can be computed.

REG. 15 This is the address of the entry
point in ROUTINE.

REG. 0 This is the result register used
by function subprograms.

REG. 1 This is the address of the argu­
ment list passed to ROUTINE.

If the user specifies that an
installation-suppl.ied routine is to be used
for corrective action, this line is added
to the message:

136

USER FIXUP TAKEN, EXECUTION CONTINUING

For a standard corrective action, the
message addition reads:

STANDARD FIXUP TAKEN, EXECUTION
CONTINUING

If the extended error message facility
detects an error condition, an information­
al message is printed and the job may be
terminated. The following text contains a
descript1on of such messages.

IHC900I EXECUTION TERMINATING DUE TO ERROR
COUNT FOR ERROR NUMBER X

Explanation: This error has
occurred frequently enough to
reach the count specified as the
number at which execution should
be terminated.

System Action: The job is
terminated.

IHC901I EXECUTION TERMINATING DUE TO
SECONDARY ENTRY TO ERROR MONITOR
FOR ERROR X WHILE PROCESSING ERROR
x

Explanation: In a user's correc­
tive action routine, an error has
occurred that has called the error
monitor before it has returned
from processing a diagnosed error.

System Action: The job is
terminated.

Note: If Traceback follows this
message, it may be unreliable.

IHC902I ERROR NUMBER X OUT OF RANGE OF
ERROR TABLE

Explanation: A request has been
made to reference a non-existent
Option Table entry.

system Action: The request is
ignored and execution continues.

IHC903I ATTEMPT TO CHANGE UNMODIFIABLE
TABLE ENTRY, NUMBER=X

Explanation: The Option Table
specifies that no changes may be
made in this entry. but a change
request has been made by use of
CALL ERRSET or CALL ERRSTR.

System Action: The request is
ignored and execution continues.

IHC904I ATTEMPT TO DO I/O DURING FIXUP
ROUTINE FOR AN I/O TYPE ERROR

Explanation: When attempting to
correct an input/output error, the
user may not issue a READ, WRITE,
BACKSPACE, ENDFILE, REWIND, PDUMP,
DEBUG, or ERRTRA.

System Action: The job is
terminated.

Operator Messages

Operator messages for STOP and PAUSE are
generated during load module execution.

The message for a PAUSE can be one of
the forms:

{
PAUSE n }

yy IHC001A PAUSE 'message'
PAUSE 0

where: yy is the identification
number

is the unsigned 1-5 digit
integer constant speci­
fied in a PAUSE source
statement

'message' is the literal constant
specified in a PAUSE
source statement

0 is printed out when a

Explanation:
instructions
taken by the
encountered.

PAUSE

statement is executed

The programmer should give
that indicate the action to be
operator when the PAUSE is

User Response: To resume execution, the
operator presses the REQUEST key. When the
PROCEED light comes on, the operator types

REPLY YY, I z I

where yy is the identification number and ~
is any letter or number. To resume program
execution, the operator must press the
alternate coding key and a numeric 5.

The message for a STOP statement can be
one of the forms:

where: .!!

IHC002I{STOP _g0}
STOP

is the unsigned 1-5 digit
integer constant specified in
a STOP source statement.
This value is placed in
register 15 when the STOP
statement is executed.

0 is printed when a STOP
statement is executed.

User Response: None

Appendix D: System Diagnostics 137

APPENDIX E: EXTENDED USA CARRIAGE CONTROL CHARACTERS

Code Inteq~retation

* blank Space one line before printing

* 0 Space two lines before printing
Space three lines before printing

* + suppress space before printing

* 1 Skip to first line of a new page
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
c Skip to channel 12
v Select punch pocket 1
w Select punch pocket 2

* These carriage control characters are
identical to the FORTRAN carriage control
characters specified in the FORTRAN IV
Language publication.

138

A, device class 17,23,25,32, 49
ABEND dump 86
ABSTR subparameter 76
Accessing unused space 77
Account number 15-16
Accounting information

in the EXEC statement 20-21
in the JOB statement 15-16

ACCT paraweter 20
ACCT.procstep parameter 20
Additional input to the linkage editor 38
Addressing exception 124
AFF subparameter 76
Affinity for devices 76
ALIAS linkage editor control statement 39
ALX subparameter 48
Argument list 108,112
Assembler language subprograms

addresses of arguments 112-113
argument list 108
calling sequence 108
COMMON area, use of 112
linkage conventions 110-111
register use 109
save area 108,109
subroutine references 108

Assigning job priority 16-17
Assigning names to temporary data sets

27,46
Asterisk parameter (*) 24
Automatic call library 36,37,38
Average record length subpararneter 48,77

B, device class 25,32
BACKSPACE statement 43,56
Batched compilation 29-30,35-36
BCD characters 35
BCD compiler option 34
BLKSIZE subparameter 51-56
Block control word 54
Blocked records 51-56
BUFNO subparameter 51
Byte 64

card input and output 25
Carriage control characters 25,51,138
Catalog 11
Cataloged data sets 11
cataloged procedure

IBM supplied 9-10,29-31,58-61
invocation of 18,19
overriding 10,61-63
steps 10
user-written 60

cataloged procedure name parameter 18
CATLG subparameter 28
Chained scheduling 51
CHANGE linkage editor control statement 39
Channel separation 75
Column binary mode 25
comments in job control statements 13
COMMON area 68,112

compile and link edit cataloged procedure
(FORTHCL) 30,58,60

Compile cat?loged procedure (FORTHC)
29-30,58,59

compile, link edit, and execute cataloged
procedure (FORTHCLG) 30-31,58,59,61

compiler
cross reference listing 35,78,79
DCB assumptions 32,33
ddnames 31-33
device classes 32
error/warning messages 83-84,114-124
informative messages 83,114
invocation of 29,111
multiple or batched compilation

29-30,35-36
name 31 •
object module deck structure 83
options 33-35
restrictions 75
source listings 35,78,79
storage map 35,80,82

concatenating data sets
with other data sets 22,43
with the system library 22-24

COND parameter
in the EXEC statement
in the JOB statement

COND.procstep parameter
condition code

20
16
20

in the EXEC statement 20
in the JOB statement 16
meaning of 16

Constants 64
CONTIG subparameter 48
continuing control statements 13
control words in variable- length rt ~-,, • 1

53, 54, 55
Control statement messages 17
conversion for tape data sets
Creating data sets 44-57
Cross-reference list

compiler 35,78,79
linkage editor 40,84,85

CYL subparameter 48,76,77
Cylinders, direct access device

Data exception 125
Data in input stream 24
DATA parameter 24
Data set reference number 1a, 42
Data sets

cataloged 10
labels 10
organization

direct access 11
partitioned 11
sequential 11

tH, I ,

DCB parameter 25,50
DCB assumptions

for compiler data sets 32-33
for load module execution 52,57

.~.f\(1€:,li. 139

DD statement
asterisk parameter 24
DATA parameter 24
DCB parameter 2S,SO
ddname 22-24,SO
DDNAME parameter 46
definition of 21,44
DISP parameter 27-28,49
DSNAME parameter 26-27,46
DUMMY parameter 46
LABEL parameter 42-43,49
SEP parameter 76
SPACE parameter 48-49,76,77
SPLIT parameter 76-77
SUBALLOC parameter 77
SYSOUT parameter 2S,32,49
UNIT parameter 24-2S,46,47
VOLUME parameter 47

ddname 22-24,SO
DDNAME parameter 46
DECK compiler option 3S,80
Deck structure, object module 80,82
Definition of

DD statement 21,44
EXEC statement 17,18
JOB statement 14-lS

DELETE subparameter 28
Delimiter statement 28
DEN subparameter SO
Density, tape SO
Diagnostic message 83,84,114-124
Direct access data sets

description 10
record format S6
space specification 48-49
use in programming 72-73

DISP parameter 27-28,49
Disposition of a data set 27-28,49
Double-word 64
DSNAME parameter
DUMMY parameter
DUMP subroutine

26-27,46
46
70-71

EBCDIC compiler option 34
EBCDIC mode 2S
EDIT compiler option 3S,78-80
END card for object modules 83
END FILE statement 41-42
ENTRY linkage editor control statement
EQUIVALENCE statement 68
ERR parameter, use of 71
ERRMON 91
Error message data set 43
Error/warning messages

generated by the compiler 83-84
generated for load modules 86

ERRSAV 88
ERRSET 89
ERRSTR 88
ERRTRA 91
ESD card 82
Examples of FORTRAN jobs 102-107
EXEC statement

140

ACCT parameter 20-21
ACCT.procstep parameter 20-21
COND parameter 20
COND.procstep parameter 20
definition of 17-18

39

name 17
PARM parameter 20,40,62
PARM.procstep parameter 20,40,62
PGM parameter 19
PROC parameter 18
REGION parameter 21
REGION.procstep parameter 21
specifying a cataloged procedure 18,19
specifying a program in a library 19
TIME parameter 21
TIME.procstep parameter 21

Exceptions that cause interrupts
86,114,124-126

Execution, load module
DCB assumptions 42
ddnames 40-41
device classes 43
error message data set 42
errors SS-86,126-130
program name 40

Exit routine, user-supplied 91-92
EXPDT subparameter 49
Expiration date for data sets 49
Exponent-overflow 86,114,12S
Exponent-underflow 86,114,12S
Extended Error Message facility 87
External references 36,37

Fields in job control statements
comments 13
name field 12
operand field 13
operation field 12-13

Fixed-length records S2,S3
Fixed-point-divide 86,114,12S
Floating-point-divide 86,114,126
FORTHC

description of S8
use of 29-30,S6

FORTHCL
description of S8
use of 30, S8, S9

FORTHCLG
description of 60
use of 30-31,S8,S9

FORTHLG
description of 60
use of 30,S8,S9

FORTRAN library 7S
FORTRAN processing 9,29-43
FORTRAN records

for direct access data sets S6
for sequential data sets 51-SS

FORTRAN sequence number 41,42

ID compiler option 35
INCLUDE linkage editor control statement

38
Informative message, compiler 83,114
Initializing a direct access data set

72-7S
INSERT linkage editor control statement 39
Integer constants and variables 64
Intermediate storage device 2S,32,49
Interrupt messages 86,124-12S
Invocation of the FORTRAN compiler 29,111
I/O devices

address 24,46

name 24,46-47
number of 24,46-47

Job 9
Job control statements 12-28

comments 13
continuing 13
DD statement 21-28,43-54
delimiter statement 28
EXEC statement 17-21
Job statement 14-17
notiation for defining 13-14

Job management 12
JOB statement

account number parameter 15-16
accounting information parameter 15-16
COND parameter 17
definition of 14-15
MSGCLASS parameter 17
MSGLEVEL parameter 16
name 15
programmer's name parameter 16
PRTY parameter 17
REGION parameter 17

Job step 9
JOBLIB DD statement 22,23,28
Job name 15

KEEP subparameter 28
Keyword parameters and subparameters 19,20

Label map 35,80,82
LABEL parameter 42-43,49
Labels, data set 11,26,42-43,49
Length

buffer 49
of FORTRAN records 51-56
of logical records 51-56

LET linkage editor option 40
Library

automatic call 36,37,38
FORTRAN 75
private 18
system 17,18

LIBRARY linkage editor control statement
38-39

LINECNT compile option 34
Link edit and execute cataloged procedure

CFORTHLGI 30-31,58,59
Linkage conventions 109-111
Linkage editor

additional input 38
automatic call library 36,37,38
control statements 38-39
cross reference list 40,84,85
ddnames used with 37-38
device classes 37-38
module map 40,84
name 36
options 40
primary input 36
priority 39
secondary input 36

LIST compiler option 34,79-82
LIST linkage editor option 40
LOAD compiler option 34

Load module
cross reference list 40,84,85
execution of (see execution, load

module>
map 40,84

Locations, storage 64
Logical records 51-56
LRECL subparameter 51

Main storage
for a job
for a job

MAP

specification
17

step 21

compiler option 35,80,82
linkage editor option 40,84

Member of a PDS 10
Messages

class 17
compiler error/warning 83-84,114-124
compiler informative 83,114
control statement 16
linkage editor 84
load module 85-86,124
operator 86,137
program interrupt 86,124-125
source module diagnostic 83-84,114-124
traceback 85-86

Minimum system requirements 64
MOD subparameter 27
MODE subparameter 25
Module map

load module 40,84
object module 80,82

MSGCLASS parameter 17
MSGLEVEL parameter 16
Multiple compilation 29-30,35-36
Multiple link editing 36,37
Multiprogramming with a fixed number of
tasks 12

Multiprogramming with a variable number of
tasks 12

MXIG subparameter 48

NAME compiler option 34
NCAL linkage editor option 40
NEW subparameter 27
NL subparameter 42-43,49
NODECK compiler option 35
NOEDIT compiler option 35
NOID compiler option 35
NOLIST compiler option 34
NOLOAD compiler option 35
NOMAP compiler option 35
NOSOURCE compiler option 35
NOXREF compiler option 35
Notation for defining control statements
13-14

Number of I/O devices subparameter
24, 46-47

Object module
card deck 80,82,83
listing 34,79-83

OLD subparameter 28
Operator messages 86,137
OPT compiler option 34
Optimization 64-70

branching 70

Index 141

COMMON blocks 66,67,68
conditional branching 70
in loops 66,67
logical IF statements 69
multidimensional arrays 68
option 34
program structure 68
register allocation 67
use of optimizer 65

Option table
accessing entries from 88
altering 88 1 92
considerations 92
creating 92
default values 90,99
description of 88
entries 89

Options
compiler 33-35
linkage editor 40

Organization of data sets 10
output

of a load module 85-86
of the compiler 78-84
of the linkage editor 84-85

OVERLAY linkage editor control statement
39

overlaying load modules 39
overriding cataloged procedures 10,61-63
OVLY linkage editor option 39

Parameters
keyword 13
positional 13

PARM parameter 20,40,62
PARM.procstep parameter 20,40
Partitioned data set 10
PASS subparameter 28
Passed data sets 28
PDUMP subroutine 70-71
PGM parameter 19
Positional parameters and subparameters 13
Primary control program 12
Printer spacing 25,50,138
Priority of a job 16-17
Priority scheduler 12
PRIVATE subparameter 47
Private volume 47
PROC parameter 18
Procedure step 9
Procedure, cataloged 9-10,29-31,58-61
Procstep 18
Program interrupt messages 86,124-125
Programmer's name parameter 16
Protection exception 124
PRTSP subparameter 25
PRTY parameter 17

Real constants and variables 64
RECFM subparameter 51
REF subparameter 47
REGION parameter 17,21,58
REPLACE linkage editor control statement

39
Requesting a message class 17
RETAIN subparameter 47
Retent~n period for data sets
RETPD subparameter 49

142

49 ..
..;.''

Retrieving data sets 25-26 1 43-44
RLD cards 82
RLSE subparameter 48
ROUND subparameter 49

Save area 108,109
Segment control word 54
SEP parameter 76
SEP subparameter 76
Sequential data set 10
Sequential scheduler 12
SER subparameter 47
Serial number, volume 47
Setting job step time limits 21
SHR parameter · 27
SL subparameter 42-43,49
SOURCE compiler option 35,78
Source listing 78
Space on direct access volumes 48-49
SPACE parameter 48-49,76,77
Specification exception 124
SPLIT parameter 76-77
STACK subparameter 25
Stacker selection 25
Standard labels 11,26,42-43,49
Step

job 9
procedure 10

Stepname 17
Storage map 35,80,82
Structured source listing 35,78,79
SUBALLOC subparameter 77
Subprograms, assembler language 108-113
SYSABEND ddname 31,32
SYSCP device class 32
SYSDA device class 32
SYSIN ddname 31,32
SYSLIB ddname 37
SYSLIN ddname 31,32.33,37,38
SYSLMOD ddname 38
SYSOUT parameter 25
SYSPRINT ddname 31,32
SYSPUNCH ddname 31,32
SYSSQ device class 32
SYSUTl ddname 31,32,37,58
SYSUT2 ddname 31,32,37,58

Tape density 50
Temporary names for data sets 27
Terminating a job 16
Time limits of a job step 21
Traceback 85-86,91
Track overflow 51
TRK subpararneter 48,76,77
TRTCH subparameter 50
TXT card 83

Unblocked records 51-56
UNCATLG subparameter 28
Undefined logical record 53
UNIT parameter 24-25,46-47
Unit record data sets 24-25,49
user cataloged procedures 60
User-supplied exit routine 91-92

Variable-length logical record
Variables 64

53,54

Volume 10
Volume count subparameter 47
VOLUME parameter 47
Volume sequence number subparameter 47
Volume serial number 47

Warning messages
(see error/warning messages)

Word 64

XREF compiler option 35,78,79
XREF linkage editor option 48,76,77

Index 143

C28-6602-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

