

Color Display Station Models 2A, 2B, 3A, and 3B
Maintenance Analysis Procedures (MAPs)

PAGE 1 OF 6

ENTRY POINTS

FROM	ENTER		

001
(ENTRY POINT A)

```
-Start here to isolate any failure on the
    IBM 3279 display station. After using
    the MAPs once without repairing the
    problem, you are directed to return to
    MAP 0000 Entry point BB and go through
    the MAPs a second time. If the trouble
    remains, request assistance through your
    normal channels.
- The MAPs instruct you to reseat/exchange
    parts in a specific sequence. The first
    part is the most probable cause of
    failure, the second is the next most
    probable, and so on.
- Try reseating cards, top card connectors,
    and their associated cables and test
    before exchanging parts.
- Where a new part does not repair a
    problem, inspect the continuity of its
    associated cables connectors and planar
    strips.
- Reinstall the original when a new part does not repair the problem.
- When the analog card, the amplifier card, or any major FRU is exchanged, the 3279 may need adjustment. (See MIM Chapter 5).
- If the failure is intermittent, inspect cards and cable connectors for correct seating. Verify that the supply voltages are within tolerance as described in MIM Chapter 5.1.
```

(Step 001 continues)

EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP	MAP	ENTRY
NUMBER	NUMBER	NUMBER	POINT
6	005	0100	A
6	013	0100	A
6	008	0200	FF
6	007	0700	A
6	006	1000	A

GENERAL LOGIC PROBE (G.L.P.).
To use the General Logic Probe (P.N. 453212), set the switches as follows:TECHNOLOGY...MULTI
LATCH......... NONE
GATE REF.GND
Power up the probe by connecting:Black wire to any D08 pin (ground) \& Red wire to any D03 pin (+5 V).
Test by probing on D08 \& D03 pins.

OSCILLOSCOPE.

If using an oscilloscope in place of a G.L.P., interpret the indicators on the G.L.P. as follows:The GREEN 1 ight $O N$ represents a voltage of less than +iV.
The RED light $O N$ represents a voltage of greater than +2 V .
Both lights $O N$ indicates a waveform pulsing beyond both these limits.

PAGE 2 OF
 6

（Step 001 continued）
（Step 001 continued）
－If a tilt／rotate table is used，lock it in the horizontal positior．
－Ensure that the 3279 is correctly connected to a working Control Unit（or IDPA）with correct color setup code，or some symptoms will differ from those required for the MAPs．
－Always switch power off before disconnecting cards．

When the 3279 power ON／OFF switch is
is ON П，the following are connected directly to the mainline power：－
－The twisted－pair connection from P3 pins 8 and 9 （on the power supply） to the analog card（ $P 7$ ）．
－The degauss coil．
－Front panel fuse \＆switch，and －Parts of the power supply card．
－Be careful when measuring voltages in these areas．
－Switch power OFF lol and remove the power cord from the mainline socket before such actions as：－
－disassembling，
－inspecting for failures． －making resistance measurements，etc．

CAUTION
Correct ground connections and cable positions are essential for effective lightning and flashover protection． See Figure 6－5 for grounding details．
（Step 001 continues）
（Step 001 continues）

GENERAL	FAILURE	INDEX．
ニニニニニニ＝	こ＝ニニニニ	ミニニニニニ

After using this index，whether or noc the repair action was good， －Continue with the MAP at entry point AC（page 6）．

SYMPTOM． Your problem may be described in this column，if so see right \longrightarrow If not，continue with the MAP at entry point $A C$（page 6）．	PROBABLE FAILING FRU OR REPAIR ACTION． For each symptom，this column contains a list of failing parts，repair actions， or adjustments，in order of probability． －Try them in the order shown． If you need confirmation before ordering （or while waiting for）spares －Continue with the MAP at entry point AC．
POWER．	
Al Indicator LED 1 is OFF．	1 Mainline power or fuse． 2 Power supply．
A3 Indicator LED 2 is OFF \＆LED 1 ON ， A4 Indicator LED 2 is 0 N immediately， after power on．	1 Analog card．
A6 Frequent exchage of amplifier card or power supply required．	1 Selector pen （intermittent short in lead）．
A8 Display often switches power off．	1 Bleed assembly．

（General Failure Index continues．）

PAGE 3 OF 6
general failure Index (Continued).

PAGE 4 OF 6

GENERAL FAILURE INDEX (Continued).

(General Failure Index continues.)

PAGE 5 OF 6

GENERAL FAILURE INDEX (Continued).

VIDEO OUTPUT FACILITY.

The following symptons are associated only with this option.
The switches, indicator, and BNC connectors are in the customer access area (Figure 1-3).

```
- If the repair fails, go to MAP 1000 entry point A.
-If O.K. continue with MAP at entry point AC (page 6).
```

SYMPTOM.	PROBABLE FAILING FRU or Repair action.
SYMPTOMS ON 3279.	
T1 No separator line and no symbols in OIA (but at least, cursor visible).	1 Ensure the VIDEO CONTROL switch is NOT set to TEST. 2 Inspect VIDEO CONTROL switch and wiring.
SYMPTOMS ON THE ATTACHED MONITOR.	
V1 No separator line and no symbols in OIA (but at least cursor visible).	1 No fault. This is normal.
V2 The display is missing or unstable. (Loss of sync.)	1 Ensure that the customer has used the PDG. 2 Inspect the SYNC POLARITY switch, the SYNC BNC connector and internal cable (Figure 6-13). 3 Logic card C2.
V3 The display has one or more colors missing or incorrect. (Loss of video.)	1 Ensure that the customer has used the PDG. 2 Inspect the R G and B BNC connectors and internal cable (Figure 6-13). 3 Logic card C2.
V4 Blue too light or too dark. (Note. Enhance mode increase the brightness of the blue by adding green at half intensity.)	1 Inspect the VIDEO CONTROL switch and cable (Figure 6-13.) 2 Logic card C2.
$V 5$ Excessive flicker.	1 Ask the customer to readjust the BRIGHTNESS and CONTRAST controls on the monitor; some tend to flicker at high brightness. 2 Logic card C2.

PAGE 6 OF 6
(Step 001 continued)

(ENTRY POINT AC)

Start here after using the Failure Index.
Is the problem repaired by using the
Failure Index?
Y N
Does the power supply fail when the 3279
is in use or being serviced? (lamp 1
changes from ON to OFF - it may flash a
few times.)
$\mathbf{Y} \mathbf{N}$
003
- Inspect the keyboard.
Is there a keyboard clicker problem or
a mechanical failure of the keyboard,
for example;- a broken key, missing
keytop or jammed key?
Y N
004
Does it look as if the problem is
With the Video output (RPQ) logic?
Y N
005
GO TO MAP 0100, ENTRY POINT A.
006
GO TO MAP 1000, ENTRY POINT A.
007
GO TO MAP 0700, ENTRY POINT A.
008
GO TO MAP 0200, ENTRY POINT FF.
009
GO TO STEP 010,
ENTRY POINT BB.

Y N

(ENTRY POINT BB)

Return here after attempting a repair.
Switch power OFF lol.

- Reinstall any parts removed.
- Replug any connectors.
- Remove any jumpers used in the MAPS.
- Correct any adjustments as necessary.
- Verify correct operation.

Is all correct?

011
Is this the first time through this step of the MAPS?
Y N
012

- Use the ERROR LOG and the ERROR CODE
- to - FRU list (MIM section 2.6.3
and MIM section 2.6.8) to aid you in
your action plan. Also examine the
Failure Index again, (see above).
Some examples are:

1. -Swap the suspected FRU from another machine.
2. -Request assistance through your normal support channels.
3. Measure voltages for level (and ripple if possible). See MIM section 3.1 and MIM section 3.2 .
4. -Verify connections to control unit; inspecting for ground loops, and bad AC ground connections.
5. -Inspect the line voltage for sudden changes. Verify that the line voltage matches the machine voltage label and that the power supply card part number is correct.
6. -The MAPS do not point to failures in the logic connector strips. If the MAPS call for a card exchange and this does not correct the problem, suspect associated strip or top card connectors or cables.

013
GO TO MAP 0100, ENTRY POINT A.
014

- Check all ground connections have been replaced correctly, see Figure 6-5.
- Replace all covers and bezel.
- Replace MIM in document tray and close rear gate.
- Replace any MIM supplement used, in the keyboard tray.
- Verify correct operation.
- End of call.

PAGE 1 OF 9

ENTRY POINTS

FROM	ENTER		
THIS MAP			
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0000	A	1	001
0200	BB	5	046

001

(ENTRY POINT A)

DANGER

```
When the 3279 power ON/OFF switch is
is ON \Pi, the following are connected
directly to the mainline power:-
    -The twisted-pair connection from P3
        pins }8\mathrm{ and 9 (on the power supply)
        to the analog card (P7).
    -The degauss coil.
    -Front panel fuse & switch, and
    -Parts of the power supply card.
-Be careful when measuring voltages
    in these areas.
- Switch power OFF d and remove the
    power cord from the mainline socket
    before such actions as:-
        -disassembling,
        -inspecting for failures,
        -making resistance measurements, etc.
```

(Step 001 continues)

PAGE 2 OF 9
(Step 001 continued)

- Switch power OFF 0 and remove the power cord from the mainline fower socket.
-Check the screws holding the analog card and power supply cards.
- Reseat the plugs on the video and amplifier cards.
- Reseat the video card.
- Reseat the cards in che logic gate and the top card connectors.
- Reseat the connectors on the rear of the logic gate. (A2, A3, A5)
- Lift off the bezel.
- Reseat the plugs on the bezel. (P11, P12) (Figure 1-2)
- Reseat the plug (P 28) near the analog card socket.
- Switch power ON I.
-Set switches:TEST/NORMAL to TEST, 0000/00 to 0000, $A, a / A$ to A, a.
- Turn security key (if present) fully clockwise.
- Turn BRIGHTNESS knob fully clockwise.
- Wait at least 1 minute or until an image appears.
- Turn BRIGHTNESS knob until the screen brightness is acceptable.
The pattern shown in Figure 2-2 (TEST MODE

1) should display in green, with a green.
cursor in the top left corner. The
characters should be good.
Is EVERYTHING in this image correct?
Y N
002
GO TO PAGE 5, STEP 046,
ENTRY POINT BB.
003
Test operation with the control unit and
the coaxial device cable as follows:-

- Run ONLINE TEST 0; see page 1.

The pattern shown in Figure 2-4 should
display.
Is ALL correct?
(Ignore any convergence problems).
Y \mathbf{N}
004
GO TO PAGE 7, STEP 091,
ENTRY POINT CC.
005

- Return cursor under C of $C K$ field. (If misconverged, use the green cursor.)
-Press keys â (insert) J K L
Field should become jkCK
The symbols X옷 should appear in the
operator information area.
Are ALL actions correct?
Y N
006
GO TO PAGE 7, STEP 091, ENTRY POINT CC.
\int_{007}
-Press the RESET key.
Is the convergence good?
Take the Y path if you don't know.
Y N
008
GO TO MAP 0600 , ENTRY POINT A.
009
The brightness should change smocthly as
the control is turned from minimum to maximum.
can the brightness be changed as expected
by the brightness control?
(Ignore problems affecting BLUE only)
Y N
010
GO TO MAP 0300, ENTRY POINT A.
011
- If a selector pen is NOT installed take the Y path now.
- Set the brightness control to center position.
- Press the light pen tip (do not point it at the screen).
White bars appear through all characters
in lines 2 and 3 of the test pattern.
The blue characters become BRIGHTER but
the red and green do not change.
- Set the brightness control back to an acceptable level.
- Press the pen against the white ?SEL PEN field in line 2.
The field changes to >SEL PEN.
- Press the pen against the blue >SEL PEN field in line 3 .
The field changes to ?SEL PEN.
- If X-f appears in the indicator row, press RESET key and retry.
Did all occur as expected?
Y N
012
GO TO MAP 0800 , ENTRY POINT DD.
013
- If an MSR/MHS is NOT installed, take the Y path now.
- Move the cursor to the first position of the 5 th row.
-Use the MSR/MHS to read the test card.
The green lamp on the MSR/MHS should light
and the cursor move. (The characters read
from the card may or may not display.)
K-f will appear in the indicator row.
Did all occur as expected?
$Y \mathrm{~N}$
014
GO TO MAP 0800, ENTRY POINT EE.

200CT81
3
B

```
B
2.
PAGE 3 OF 9
```

0 1 5

```
0 1 5
-If ECS or PS (feature cards E2 and F2)
-If ECS or PS (feature cards E2 and F2)
    are NOT installed, take the Y path now.
    are NOT installed, take the Y path now.
\bulletRun ONLINE TEST 8; see page 1.
\bulletRun ONLINE TEST 8; see page 1.
The pattern shown in Figure 2-7 should
The pattern shown in Figure 2-7 should
display.
display.
Is the pattern correct?
Is the pattern correct?
YN
YN
    016
    016
    GO TO MAP 0800, ENTRY POINT CC.
    GO TO MAP 0800, ENTRY POINT CC.
0 1 7
0 1 7
- Set the TEST/NORMAL Switch to TEST.
- Set the TEST/NORMAL Switch to TEST.
-Press all the keys in turn (except
-Press all the keys in turn (except
    CONTROL).
    CONTROL).
The characters shown in Eigure 2-3 (TEST
The characters shown in Eigure 2-3 (TEST
MODE 2) should appear. Note the }4\mathrm{ keys
MODE 2) should appear. Note the }4\mathrm{ keys
which give double charocters.
which give double charocters.
Are all keys correct?
Are all keys correct?
Y N
Y N
    018
    018
    GO TO MAP 0700, ENTRY POINT A.
    GO TO MAP 0700, ENTRY POINT A.
819
819
-Set the TEST/NORMAL switch to NORMAL.
-Set the TEST/NORMAL switch to NORMAL.
-Press any alphanumeric key four or five
-Press any alphanumeric key four or five
    times.
    times.
Does the clicker sound each time a key is
Does the clicker sound each time a key is
pressed?
pressed?
YN
YN
    020
    020
    GO TO MAP 0700, ENTRY POINT A.
    GO TO MAP 0700, ENTRY POINT A.
d2
d2
-RUN ONLINE TEST 7; see page 1.
-RUN ONLINE TEST 7; see page 1.
A yellow (or red on green) pattern (-|-|-)
A yellow (or red on green) pattern (-|-|-)
should appear at the center of the screen.
should appear at the center of the screen.
Does this occur?
Does this occur?
Y N
Y N
    0 2 2
    0 2 2
    GO TO MAP 0600, ENTRY POINT A.
    GO TO MAP 0600, ENTRY POINT A.
d3
d3
-Press space bar 26 times, until 13
-Press space bar 26 times, until 13
    patterns display together in white.
    patterns display together in white.
    -Look for any misconvergence. Do not
    -Look for any misconvergence. Do not
        mistake misconvergence for bad focus or
        mistake misconvergence for bad focus or
        bad color balance (impure white).
        bad color balance (impure white).
    Is the convergence good?
    Is the convergence good?
    YN
    YN
        0 2 4
        0 2 4
        GO TO MAP 0600, ENTRY POINT A.
        GO TO MAP 0600, ENTRY POINT A.
    0 2 5
    0 2 5
    -Set the brightness control fully
    -Set the brightness control fully
    clockwise.
    clockwise.
Is the display as bright as you would
Is the display as bright as you would
    expect?
    expect?
    YN
    YN
        026
        026
        GO TO MAP 0300, ENTRY POINT BB.
        GO TO MAP 0300, ENTRY POINT BB.
```

patterns display together un white.

```
```

patterns display together un white.

```

C
MAP 0100-3

PAGE \(40 F\)

033
-Remove the jumper C2W09 to C2W28.
- Jumper C2W07 to C2W28. (force white).
- Hold down the ALT key, press the TEST
key, release both.
The screen will be full of white
characters.
-Check convergence carefully all over the screen.
Is the convergence good?
Y N
034
GO TO MAP 0600, ENTRY POINT A.
035
- Fit the alignment mask to the screen.

Is the image SIZE and SHAPE correct?
\(Y\) N

\section*{036}
- Remove jumpers.
-Go to MIM section 5.3.5 to adjust the raster controls correctly (See also Figure 1-4).
- If this corrects the problem,

GO TO MAP 0000 , ENTRY POINT BB.
-If you cannot correct the problem, GO TO MAP 0400, ENTRY POINT DD.
037
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.)
-Look for a skip gap above and below the separator line. It should be \(1-3 \mathrm{~mm}\) (0.05-0.1 inches) wide. See Figure 2-1.

Is the skip good?
Y N
038
GO TO MAP 0400, ENTRY POINT DD.
039
- Remove jumpers.
- Set the TEST/NORMAL switch to TEST.
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.)
Does the image appear as shown in Figure 2-1?
\(Y \mathrm{~N}\)
040
GO TO MAP 0300, ENTRY POINT A.
041
- Release Intensity Override.
\(\bullet\)-to
- Set the 0000/00 switch to 00.

The color of the pattern (Figure 2-4)
should change so that all characters
become green except the characters on line 2 which will be white. The separator line and characters in the OIA remain blue.
Does this occur?
Y N
042
GO TO MAP 0500, ENTRY POINT A.

1043
- Set the 0000/00 switch back to 0000.

Check that the A,a/A switch is set to A, a
- Move the cursor down a few lines and press the 'Q' key.
A character ' \(q\) ' should appear.
- Set the \(A, a / A\) switch to \(A\).

The ' \(q\) ' will become ' \(Q\) '.
Does this occur?
Y N

\section*{044}
- Switch power OFF 0 .
- See Figure 6-8 to check for an open or short circuit in the wiri.rg to the A,a/A switch.
- Check the switch. Exchange any failing FRU.
- If no failure is found, exchange logic card D2.
GO TO MAP 0000, ENTRY POINT BB.
045
GO TO MAP 0800, ENTRY POINT FF.

PAGE 5 OF 9

\section*{046}
(ENTRY POINT BB)
-Observe the TEST MODE 1 pattern:
(If the image is missing or too poor to answer the question, take the \(Y\) path.)
Do the focus, and purity adjustments look good?
Y N
047
- Make any necessary adjustments to the controls (see Figure 1-4).
You may use MIM section 5.3.4 (Focus) or MIM section 5.3.2 (Purity) to make the adjustment.
If this corrects the problem,
GO TO MAP 0000 , ENTRY POINT BB.
If the problem is still present,
GO TO PAGE 3, STEP 027,
ENTRY POINT DD.
048
-Observe the TEST MODE 1 pattern:
(If the image is missing or too poor to
answer the question, take the \(Y\) path.)
Do the raster adjustments look good?
If the TEST MODE 1 pattern is visible but the width or height is wrong or the corners of the pattern are not square (for example) take the \(N\) path.
Y \(N\)

\section*{049}
- Make any necessary adjustments to the controls (see Figure 1-4).
You may use MIM section 5.3.5 to make the adjustment.
If this corrects the problem, GO TO MAP 0000, ENTRY POINT BB. If the problem is still present, GO TO PAGE 3, STEP 027, ENTRY POINT DD.
050
Is lamp 1 (power good) ON ?
Y N

\section*{051}

GO TO MAP 0200, ENTRY POINT A.
052
- If this display contains no feature cards, (E2, F2, G2, G4) take the \(Y\) path now.
- Switch power OFF ld and remove any feature cards.
- Replace the C5-D5(-E5) top card connector, if moved. See Figure 1-6.
- Observe TEST MODE 1 pattern again (step 001 ).
Is test still bad?
\(Y \mathrm{~N}\)

\section*{053}

GO TO MAP 0800, ENTRY POINT A.

054
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.)
The image on the screen may not be very bright.
- If the image is unstable, take the \(Y\) path now.
- Look for the following:-
(A) The image filling most of the screen.
(B) A blank margin at right-hand side.
(C) The 3 rasters not aligned so that the 3 primary colors Red, Green and Blue are visible. See Figure 2-1.
Are (A), (B), and (C) all good?
Ignore other problems.
Y N
055
GO TO MAP 0400 , ENTRY POINT A.
056
- Continue to engage Intensity Override.
-Look near the bottom of the image for the gaps by the separator line and look at the diagonal flyback lines.
- See Figure 2-1.

Are these gaps and lines VISIBLE and STABLE?
(If you don't know take the \(Y\) path.)
Y N
\[
057
\]

GO TO MAP 0400, ENTRY POINT CC.
058
- Release Intensity Override.

Is the image now stable?
(Take the \(Y\) path if you don't know.)
Y N

\section*{059}
- Exchange logic card C2 then D2

GO TO MAP 0000 , ENTRY POINT BB.
060
Is there a permanent raster in one or more of the 3 colors? (It may be very dim.) \(Y \mathrm{~N}\)
```

0 6 1
Is the screen completely blank or do all
characters display too dim or too
bright?
Y N
062
Do some groups of 'o-' characters (or a
full screen of '0'') appear.?
Y N
063
There may be distorted characters on
the screen. These may have dots
missing or have too many dots
(vertical lines) or may be flashing.
(Ignore convergence.)
do any characters look similar to
this?
Y N
200CT81
7 7 7 7 6
G H J K L

```
- Exchange logic card C2 then D2.
GO TO MAP 0OOO, ENTRY POINT BB.
```

```
G
    J
    K
        CONTROL MAP
    5
        PAGE }7\mathrm{ OF
        08
        -Check the +5v and the +8.5v on the
        video card test points - see Figure
        6-9.
            Are both voltages correct?
            Y N
                0 8 4
                - Switch power OFF ld.
            -See Figure 6-7 to check the
                    continuity of the voltage
                    supplies. Repair any failure
                    found.
                GO TO MAP 0000, ENTRY POINT BB.
        0 8 5
        - Exchange logic card C2 then D2.
        GO TO MAP 0000, ENTRY POINT BB.
    08
    - Exchange logic card D2 then C2.
        GO TO MAP 0000, ENTRY POINT BB.
    87
    -If the screen is not blank, take the }
    path now.
    -Press keys CONTROL and B O I
    -Set the TEST/NORMAL switch to NORMAL.
    Does the screen always remain completely
    blank?
    Y N
    0 8 8
    - Exchange logic card C2. If this
        corrects the problem,
        GO TO MAP OOOO, ENTRY POINT BB.
        -If the problem remains,
        GO TO MAP 0300, ENTRY POINT A.
    089
    GO TO MAP 0300, ENTRY POINT BB.
00
GO TO MAP 0300, ENTRY POINT A.
```

 MAP 0100-7
 091
(ENTRY POINT CC)
-Observe the TEST 0 pattern at high and Low settings of the BRIGHTNESS control on the front panel.

- Take the Y path if the image is missing or too poor to answer the question.
- Do not mistake a missing color(s) or a continuous raster for poor color balance.
Do the raster, focus, purity and color balance adjustments look good?
$\mathbf{Y} \mathrm{N}$
092
- Make any necessary adjustments to the CE controls (see Figure 1-4).
You may use MIM section 5.3.5 (Raster)
or MIM section 5.3.4 (Focus) or MIM
section 5.3 .2 (Purity) or MIM section 5.3 .7 (color balance) to make the adjustment. Only use MIM section 5.3 .6 if necessary.
If this corrects the problem,
GO TO MAP OOOO, ENTRY POINT BB.
If the problem is still present, GO TO PAGE 3, STEP 027, ENTRY POINT DD.

093

- If this display contains no feature cards, (E2, F2, G2, G4) take the Y path now.
- Switch power OFF 0 and remove any feature cards.
- Replace the C5-D5(-E5) top card connector, if moved. See Figure 1-6.
- Switch power ON Π.
- Repeat preceding test (step 003 or 005).

Is test still bad?
Y N
094
GO TO MAP 0800, ENTRY POINT A.
095

- Set the TEST/NORMAL switch to TEST.
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.) The image on the screen may not be very bright.
Around some of the edges the three rasters should not be aligned and th: 3 primary colors (Red, Green, Blue) should be visible in some areas around the edge. See Figure 2-1.
Does the image look similar to this? Y N

096
GO TO MAP 0300, ENTRY POINT A.

PAGE $80 F$ 9

097

\bullet Release Intensity Override. (Turn Brightness knob fully clockwise and then back if too bright.)
-Press the keys with the following legends shown in Figure 2-3:

BCIJKLK K_{Q} / pp ? \times)
Note - On most keyboards the legends
'pp', '?', 'x' and ')' are on the keys
marked 'ALT', 'ENTER', 'TEST' and 'â'
The cursor should move as each character
is entered.
Is all as expected?
$\mathbf{Y} \mathrm{N}$

098

GO TO MAP 0700 , ENTRY POINT A.
099
-Press these keys in sequence:
CONTROL C CONTROL B B O I
-Press these keys in sequence: CONTROL C

- Press these keys in sequence: CONTROL B B 0
Does the entire display become RED then
GREEN then BLUE?
Y N
100
- Set the TEST/NORMAL switch to NORMAL and back to TEST.
- Connect a jumper from C2U11 to C2U08. A solid red raster should cover the characters on the screen.
- Remove the jumper.
- Now connect the jumper from C2S12 to C2U08. A solid blue raster should cover the characters on the screen.
- Remove the jumper.

Did you see both the red and blue rasters?
Y N
101
GO TO MAP 0300, ENTRY POINT A.
102

- Run ONLINE TEST 0 ; see page 1.

The pattern shown in Figure 2-4 should display.
Is the problem with this test pattern that it does not display in the correct colors or there is a color missing?
Y N

103

- Exchange logic card D2 then C2.

GO TO MAP 0000 , ENTRY POINT BB.
104
GO TO MAP 0500, ENTRY POINT A.
105

- Set the TEST/NORMAL switch to NORMAL.

Is there a ready symbol in the indicator row?
Y N

106
Does the display show a green separator line and a green cursor in the top left-hand corner and NOTHING else? Y N

107
Does an error code appear on the screen or is there an entry in the error log for this display? (See MIM section 2.6.3 on how to read the error log.)
(Take N path if you don't know.)
$Y \mathrm{~N}$
108
Does the display remain in TEST MODE
even when the TEST/NORMAL switch is set to NORMAL?
Y N
109

- Exchange logic card C2 then D2.

GO TO MAP 0000 , ENTRY POINT BB.
110

- Switch power OFF 0 .
- See Figure 6-8 to verify and repair wiring and connections to the TEST/NORMAL switch.
GO TO MAP 0000 , ENTRY POINT BB.
111
-Use the 'Error Code-to-FRU' list (MIM section 2.6.8) to isolate the failing FRU.
GO TO MAP 0000 , ENTRY POINT BB.
112
GO TO MAP 0900, ENTRY POINT BB.

113

The screen should appear:-
(A) White cursor at top left.
(B) Blue separator line near the bottom.
(C) Any symbols in the indicator row should be blue.

- Ignore any other image on the screen.

Are (A), (B) \& (C) correct?
Y N
114

- Attempt to enter the convergence
routine. (See MIM section 5.3.3.)
Do the symbols X츄\#? appear in the
indicator row?
Y N

115

- Exchange logic card C2 then D2.

GO TO MAP 0000, ENTRY POINT BB.
116

- Exchange logic card B2 then C2 then D2. GO TO MAP 0000 , ENTRY POINT BB.

PAGE 9 rf 9

117
-Hold down the ALT key, press the TEST key, release both.
Does the word 'TEST' appear in the indicator row?
$Y \mathrm{~N}$

118

- Hold down the ALT key, press the ALT CURSOR key, release both.
Does the reverse cursor appear? N

119
Does the normal flashing cursor appear?
$Y \mathrm{~N}$
120
GO TO MAP 0700 , ENTRY POINT CC.
121
GO TO MAP 0700 , ENTRY POINT EE.
122
GO TO MAP 0700, ENTRY POINT. A.
123
-Press the "/' key.
Does a 'ノ' symbol appear on the screen (in the top left hand corner)?
Y N
124
GO TO MAP 0700, ENTRY POINT EE.
125

- Press the ENTER key.
(ONLINE TEST O).
The pattern shown in Figure 2-4 should display.
Are the colored fields displayed in the correct colors?
Ignore any other differences.
Y N

126

GO TO MAP 0500, ENTRY POINT A.
127

- Exchange logic card C2 then D2.

GO TO MAP OODO, ENTRY POINT BB.

PAGE 2 OF 7

004

- Remove the power cord from the mainline power socket.
- Remove the bezel.
- With the power switch in the ON П
position, measure the continuity from the power supply edge connector (P3) to the power cord.
Pins 11 and 14 (test points) of $P 3$ should be connected one to each power cord pin.
See Figure 1-2 and Figure 6-15.
Are both connections good?
Y N
005
- Switch power OFF lol.
- Check the mainline fuse.

Has the fuse failed?
Y N

006

- See Figure 6-15 to check the continuity of the ON/OFF switch, fuse and fuseholder and the connecting cables.
- Exchange the failing FRU. GO TO MAP OOOO, ENTRY POINT BB.

007

- Exchange the fuse and test operation.
- Switch OFF and wait 1 minute.
- Switch $O N$ and wait 10 minutes.

Did the fuse fail again?
Y N

008

GO TO MAP 0000, ENTRY POINT BB.
009

- Switch power OFF $\mathfrak{0 l}$ and remove the power cord from the mainline power socket.
- Remove power supply card.
- Exchange the mainline fuse again.
- Switch power ON II WITHOUT reinstalling the power supply card.
Did the fuse fail?
Y N
010
- Switch power OFF to and remove the power cord from the mainline power socket.
- Exchange the power supply card.

GO TO MAP 0000, ENTRY POINT BB.
011
-Remove the power cord from the mainline power socket.
-See Figure 6-15 to verify the insulation of the input power wiring. GO TO MAP 0000, ENTRY POINT BB.

- Switch power OFF 10 and remove the power cord from the mainline power socket.
- Remove the power supply card.
- Check the fuse on the power supply card.
NOTE: If necessary, remove the plastic cover to inspect the fuse. Replace the cover.
Is the fuse good?
Y N

013

- Do NOT repair or exchange the fuse.
- Exchange the power supply card.

GO TO MAP 0000, ENTRY POINT BB.
014

- Leave the power supply card out.
- See Figure 1-2 and Figure 3-2. Check the continuity of the LOPT sense winding to the analog card as follows:
- Measure resistance between locations 8 and 9 on the power supply card edge connector SOCKET (P3).
Is the resistance 0 ohms?
Y N
015
- See Figure 4-7. Check that P7 (LOPT sense) is plugged-in.
- If the resistance is still not 0 , verify the continuity of the cable from P3 to P7 and repair.
- If no problem is found, exchange the analog card.
GO TO MAP 0000 , ENTRY POINT BB.
016
- Verify the seating of the power supply card in the card edge connector.
- If no problem found, exchange the power supply card.
- Ensure that it matches the machine voltage label and the mainline ac voltage.
GO TO MAP 0000 , ENTRY POINT BB.
017
- Connect the meter to +5 V on the logic board.
(0 V = B2D08, $+5 \mathrm{~V}=\mathrm{B} 2 \mathrm{DO} 3$).
Does the meter indicate +4.5 to +5.5
volts?
$Y \mathrm{~N}$
018
- Switch power OFF 0 .
- Disconnect the logic gate A3 cable.
- Switch power ON I.

Does the mater now indicate +4.5 to +5.5
volts?
$Y \mathrm{~N}$
019

- Switch power OFF 0 and remove the power cord from the mainline power socket.
- Exchange the power supply card.

GO TO MAP 0000, ENTRY POINT BB.

PAGE 1 OF

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0000	FF	6	065
0100	A	1	001
0400	CC	6	060

001
（ENTRY POINT A）

DANGER

```
When the 3279 power ON/OFF switch is
is ON 円, the following are connected
directly to the mainline power:-
    -The twisted-pair connection from PJ
        pins 8 and 9 (on the power supply)
    to the analog card (P7).
    -The degauss coil.
    -Front panel fuse & switch, and
    -Parts of the power supply card.
- Be careful when measuring voltages
    in these areas.
Switch power OFF lof and remove the
    power cord from the mainline socket
    before such actions as:-
    -disassembling,
    -inspecting for failures,
    -making resistance measurements, etc.
```

- Switch power OFF @.
- Verify that the power cord is plugged in
to an active outlet.
- Reseat the A2 and A3 logic gate cables
and verify that the problem is still
present.
- Switch power OFF lod.
- Wait 10 seconds.
- Switch power ON 门 and look CAREFULLY at
lamp 1.
Does lamp 1 (POWER GOOD) flash at least
once and then go OFF?
Y N
002
Connect a meter to +8.5 V on the logic
board. ($0 \mathrm{~V}=\mathrm{B} 2 \mathrm{D} 08,+8.5 \mathrm{~V}=\mathrm{B} 2 \mathrm{~B} 11$).
- Switch power OFF 10 and wait at least 30
seconds.
 - Switch power ON 同.
Did the voltage puise once or several
times (approximately once a second) and
then fall to zero? The voltage pulse may
be very small. Switch the meter down a
range if necessary.
$\mathbf{Y} \mathrm{N}$
003
Is the voltage constant between 7.6
and 9.4 Volts?
$\mathbf{Y} N$
1122

VOLTAGE	TOL.	$\begin{aligned} & \text { LOGIC } \\ & \text { GATE } \end{aligned}$	ANALOG Wire	$\int_{T P}^{\text {CARD } P 4}$
$+5 \mathrm{Vdc}$	0.5 V	B2J03	34	37
-5 Vdc	0.5 V	B2G06	29	5
$+8.5 \mathrm{Vdc}$	0.9 V	B2G11	35	36
0 V		B2J08	30	10

0 2 0
0 2 0
- Switch power OFF lol.
- Switch power OFF lol.
-Unseat the analog card.
-Unseat the analog card.
-See Figure 6-8 and Figure 3-2
-See Figure 6-8 and Figure 3-2
-Check the +5v cable from the logic
-Check the +5v cable from the logic
A3 connector to the analog card
A3 connector to the analog card
P4-34 for continuity and short
P4-34 for continuity and short
circuit to ground.
circuit to ground.
- If no problem is found exchange the
- If no problem is found exchange the
analog card.
analog card.
GO TO MAP 000O, ENTRY POINT BB.
GO TO MAP 000O, ENTRY POINT BB.
021
021
-See Figure 6-8 and Figure 3-2 and the
-See Figure 6-8 and Figure 3-2 and the
table below to check the supplies to
table below to check the supplies to
the analog card and the LED
the analog card and the LED
Indicators.
Indicators.
- Switch power OFF lO.
- Switch power OFF lO.
-Check continuity:-
-Check continuity:-
Analog P4-10 to LED P12-6.
Analog P4-10 to LED P12-6.
Analog P4-34 to LED P12-7.
Analog P4-34 to LED P12-7.
Did you find a problem?
Did you find a problem?
Y N
Y N
0 2 2
0 2 2
- Exchange the analog card (then the
- Exchange the analog card (then the
power supply card).
power supply card).
GO TO MAP 0000, ENTRY POINT BB.
GO TO MAP 0000, ENTRY POINT BB.
023
023
-Trace and repair wiring if possible
-Trace and repair wiring if possible
or exchange any failing FRU.
or exchange any failing FRU.
GO TO MAP 0000, ENTRY POINT BB.
GO TO MAP 0000, ENTRY POINT BB.
024
024
GO TO STEP 025,
GO TO STEP 025,
ENTRY POINT BB.
ENTRY POINT BB.
025
(ENTRY POINT BB)

- Switch power OFF and connect a meter to
+5 V on the logic board.
($0 V=$ B2D08, $+5 V=$ B2D03).
There now follows a sequence of FRU disconnecting and reconnecting to find which FRU is overloading the power supply.

CAUTION

When investigating with FRUs
When investigating with FRUs
disconnected:-
disconnected:-
- Do NOT switch power ON for more
- Do NOT switch power ON for more
than 5 minutes.
than 5 minutes.
- Do NOT leave the 3279 unattended
- Do NOT leave the 3279 unattended
with power on.
with power on.

Remember POWER should not be switched back (Step 025 continues)
(Step 025 continued)
ON until 10 seconds after POWER OFF.
-Disconnect the keyboard.

- Switch power ON 17.

Is the $+5 v$ supply now present (between
+4.5 V and +5.5 V)?
$Y \mathrm{~N}$

026

- Leave the keyboard disconnected.
- Switch power OFF 10 .
- Disconnect the video card plugs P14 and

P16. See Figure 1-4.

- Switch power ON II.

Is the +5 V supply now present?
Y N
027

- Switch power OFF lod.
- Reconnect the video card connectors P14 and P16
- Disconnect amplifier card plug P18.

See Figure 1-4.

- Switch power ON M.

Is the +5 V supply now present?
Y N
028

- Switch power OFF lo.
- Reconnect amplifier card connector P18.
-Disconnect amplifier card
connectors P17A and P17B.
- Switch power ON 17.

Is the +5 V supply now present?
Y N
029

- Switch power OFF 0 .
- Reconnect amplifier card
connectors P17A and P17B.
- Disconnect the logic gate A3 cable.
- Switch power ON 1 I.

Is the +5 V supply now present?
Y N

23NOV8 1
555544
HJKLMN
MAP 0200-3

POWER MAP

$$
\text { PAGE } 40 F \quad 7
$$

30

- Switch power OFF lol.
-Reconnect the logic gate A3 cable.
- Disconnect the logic gate A2 cable.
- Connect a meter to power supply connector

P3-1 (+12V). See Figure 1-2.
-Use the potentiometer mounting plate as ground.

- Switch power ON II.

Does the $+12 V$ supply pulse once or
several times and then fall to zero?
Y N
031
Is the +12 V supply constant between +10 and +15 Volts?
Y N
032

- Switch power OFF tol and remove the power cord from the mainline power socket.
- Exchange the power supply card.

GO TO MAP 0000, ENTRY POINT BB.
033
There may be a short circuit in a logic card.

- Switch power OFF lod.
- Reconned't the A2 logic gate connector.
- Remove the logic cards one at a time in the following order, each time testing the +12V;
Feature cards G4, G2, F2, E2
Base cards C2, D2
Convergence logic card B2
- If the problem disappears, exchange the last card removed.
Has the problem gone?
Y N
034
GO TO PAGE 6, STEP 060 ,
ENTRY POINT CC.
035
GO TO MAP 0000, ENTRY POINT BB.
036
-Switch power OFF d.
- Reconnect the logic gate A2 connector.
-Unseat the analog card from its edge connector (P4).
-Switch power ON 1 .
Does the +12 V supply (at P3-1) stiz1 pulse once or several times and then fall to zero?

037

- Switch power OFF ld.
-Disconnect P5 from the analog card.
(Figure 4-7)
- Switch power ON

Does the +12 V supply at P3-1 now pulse zero?
Y N

MPQR
MAP 0200-4
3

038

- Switch power OFF lol.
- Exchange the video card.

GO TO MAP 0000 , ENTRY POINT BB.
039

- See Figure 1-2.
- Meter the $+103 v$ supply to the analog
card at test points P3-39 and 40 .
Does it pulse when power is switched
ON?
$Y \mathrm{~N}$
040
- Switch power OFF 0 .
- See Figure 3-2.
- Meter the $103 V$ wiring for short circuits.
- Repair or exchange any failing FRU.
- If no problem found, exchange the power supply card.

041

- Switch power OFF 10 .
- Exchange the analog card.

GO TO MAP 0000 , ENIRY POINT BB.
042

- Switch power OFF lol and remove the power cord from the mainline power socket.
- Exchange the power supply card.

GO TO MAP 0000 , ENTRY POINT BB.
043
(ENTRY POINT EE)

- Switch power OFF 0 .
- Reconnect the logic gate A3 cable.
-Unseat the analog card from its edge connector P4.
- Switch power ON I.
-See Figure 1-2 and Figure 3-3 and use a logic probe to trace these signals:

HORIZ RETRACE: D2J13-B2G13
HORIZ SYNC: B2JI3-A3D13-Analog card P4-1 to Analog card P4-2 (TP).

VERT RETRACE: D2G08-C2G07-B2G08
VERT SYNC: C2G12-A3D12-Analog card P4-28 to Analog card P4-3 (TP).

Do BOTH probe lamps light at ALL the above points?
Y N
044

- Switch power OFF \bullet.
- Check cables and connectors for continuity or short circuits to ground. - Repair or exchange any failing FRU. GO TO MAP 0000 , ENTRY POINT BB.
$K L S$
POWER MAP
PAGE 5 OF
7

045 - Switch power OFF lof. - Reconnect the logic gate A3 cable. - Remove the EHT cable from the LOPT on the analog card. See MIM section 4.5.4 para6. The free end of the EHT cable is safe - let it remain in the bottom of the box. - Reinstall the analog card. - Switch power ON II. Is the +5 V supply now present? Y N 046 There is probably a short circuit on the analog card. - Switch power OFF lol. - First disconnect both the audible alarm connector P8 and the bezel lamps card connector P12. See Figure 1-2. - Switch power ON I and test. - Switch power OFF of if the problem remains, and exchange the analog card. GO TO MAP 0000 , ENTRY POINT BB. 047 - Switch power OFF Cl and remove the power cord from the mainline power socket. - Exchange the bleed assembly. MIM section 4.8.4.) - If the problem is still present, exchange the CRT. GO TO MAP 0000 , ENTRY POINT BB. 648 -Switch power OFF O. - Exchange the amplifier card. - See MIM Chapter 5 to make adjustments. GO TO MAP OOOO, ENTRY POINT BB.

049

- Switch power OFF U.
- Reconnect the amplifier card connector P18.
Does this display have a selector pen
installed?
$\mathbf{Y} N$
050
GO TO STEP 052,
ENTRY POINT DD.

651

- Remove the selector pen logic card G4.
- Switch power DN II.

Is the $+5 V$ supply now present?
$Y \mathrm{~N}$

H J T
33
TU
MAP 0200-5
$\left.\right|_{052}$

- Reinstall the selector pen card.

(ENTRY POINT DD.)

- Remove the convergence logic card B2.
- Switch power ON 同.

Is the +5 V supply now present?
$Y \mathrm{~N}$

053

There seems to be a short circuit in the wiring of the the $+12 V$ and $-12 V$ supplies to the selector pen card. The problem may be present even if there is no selector pen installed.

- Switch power OFF 0 and see Figure

6-16. Repair any problem.
GO TO MAP 0000 , ENTRY POINT BB.
054

- Exchange logic card B2.

GO TO MAP 0000 , ENTRY POINT BB.
055

- Exchange logic card G4.

GO TO MAP 0000 , ENTRY POINT BB.
056

- Switch power OFF 0
- Exchange the video card. If the problem remains, verify the connections to the video card shown in Figure 6-7.
- Repair any problem.

GO TO MAP 0000 , ENTRY POINT BB.
057
Can the TEST MODE 1 pattern now be displayed?
Y N
058

- There is a slight overload on the power supply - the analog card is probably failing. Leave the keyboard disconnected and
GO TO MAP 0100, ENTRY POINT BB.
659
- Switch power OFF ld.
- Meter the keyboard cable for short circuits (Figure 6-12) and repair as necessary.
- If no problem, exchange the keyboard logic card.
Another possible failure is a slight
overload on the power supply; removing a FRU has lowered the current within tolerance. See MIM section 3.1 .
GO TO MAP 0000 , ENTRY POINT BB.

060
(ENTRY POINT CC)

- Switch power OFF 10 and remove the power cord from the mainline power socket.
- Reinstall any disconnected FRUs.
- Remove the analog card.
- Disconnect the deflection coils (Connector P6, near the center of the analog card with 4 colored wires) - see Figure 4-7.
- Inspect the plug and connector for loose and dirty contacts and broken wires.
- Repair any damage.

Did you find the problem?
$Y \mathrm{~N}$
061
The horizontal scan coil is connected to the RED and BLUE wires.
The vertical scan coil is connected to
the YELLOW and GREEN (or BLACK) wires.
The resistance of each coil should be
less than 2 ohms.

- Measure the resistance of the 2 scan coils.
Do both coils seem good?
Y N
062
- Exchange the CRT.

GO TO MAP OOOO, ENTRY POINT BB.
063

- Exchange the analog card.
- If the problem remains, exchange the power supply card, then CRT.
GO TO MAP OOOO, ENTRY POINT BB.
064
GO TO MAP OOOO, ENTRY POINT BB.

065

(ENTRY POINT FF)

- Start here to isolate problems causing the power supply to stop (i.e. lamp 1 changing from ON to OFF - with or without flashing).
- Wait one minute.
- Look at lamp 1 carefully.
- Switch power ON I.

Does lamp 1 flash?
Y N
066
Is lamp 1 ON?
Y N
067
GO TO PAGE 1, STEP 001,
ENTRY POINT A.
068

```
If, during more testing,
lamp 1 changes to OFF again:-
- Switch power OFF ๒.
- Wait one minute.
- Switch power ON IT.
    - If lamp 1 lights; continue
    MAP from where you stopped.
- If lamp 1 remains off,
        GO TO STEP 001.
        ENTRY POINT A.
```

- Probe pins P4-2 \& 3 (horizontal \& vertical sync Test Points on analog card).
Do both lamps light on both pins? Y N

069
GO TO PAGE 4, STEP 043,
ENTRY POINT EE.
070

- Switch power OFF id and remove the power cord from the mainline power socket.
- Reinstall any disconnected FRUs.
- Remove the analog card.
- Disconnect the deflection coils (Connector P6, near the center of the analog card with 4 colored wires) - see Figure 4-7.
- Inspect the plug and connector for loose and dirty contacts and broken wires.
- Repair any damage.

Did you find the problem?
Y N

23NOV8 1
777
V W X

```
v W xPOWER MAP
                    PAGE }70
                7
    0 7 1
    The horizontal scan coil is connected
    to the RED and BLUE wires.
    The vertical scan coil is connected to
    the YELLOW and GREEN (or BLACK) wires.
    The resistance of each coil should be
    less than 2 ohms.
    -Measure the resistance of the 2 scan
    coils.
    Do both coils seem good?
        N
        0 7 2
            \bulletExchange the CRT.
            GO TO MAP 0000, ENTRY POINT BB.
        073
        -See MIM section 3.1
        GO TO MAP OOOO, ENTRY POINT BB.
    074
    GO TO MAP 0OOO, ENTRY POINT BB.
075
GO TO PAGE 1, STEP 001,
ENTRY POINT A.
```

PAGE 1 OF 5

ENTRY POINTS

FROM	ENTER	THIS MAP	
MAP	ENTRY	PAGE	STEP
NUMBER	POINT	NUMBER	NUMBER
0100	A	1	001
0100	BB	4	042
0100	CC	2	008
0400	A	1	001

001

(ENTRY POINT A)

- Set the TEST/NORMAL switch to TEST.
- Engage Intensity Override. (Turn the brightness knob fully counterclockwise.)
You should see all 3 colors (red, green and blue) in some areas around the edge of
the screen - as in Figure 2-1.
can you see all the 3 colored rasters?
Y N

002

Are only one or two colored rasters visible? (No charactiars.)
Y N
003
The following symptoms in Intensity
Override should not prevent the
display from operating normally:
(a) Only 2 of the 3 rasters visible and some dim characters just visible.
(b) The rasters do not appear and any characters remain in view.
Have you got either of these problems? Y N

004

- Release Intensity Override.

GO TO PAGE 4, STEP 042,
ENTRY POINT BB.
005

- If symptom (a) is present, exchange
the video card.
- For symptom (b), probe the VIDEO

FORCE signal on the video card (Test
Point GT, Figure 6-9).
The signal should normally be UP and should go DOWN when Intensity Override is engaged.
Does this occur?
$Y \mathrm{~N}$
006

- Switch power OFF lod
- See Figure 6-7 to trace the VIDEO

FORCE signal

- See Figure 6-7 to verify the continuity of the connections to the Intensity Override switch on the brightness potentiometer.
- If you find no problem, exchange the analog card.
GO TO MAP 0000, ENTRY POINT BB.

EXIT POINTS

EXIT	THIS MAP	TO	
PAGE	STEP		
NUMBER	NUMBER	MAP	ENTRY
2	023	0800	HH

- Switch power OFF lO
 - Exchange the video card.
GO TO MAP 0000, ENTRY POINT BB.
08
-Release Intensity Override.

```
(ENTRY POINT CC)
-See Figure 6-7 and Figure 6-9.
- Meter the 3 video card grid test points shown below. Use the -150 V de meter range. Use a ground braid or the brightness potentiometer plate as ground. - With the brightness control set to MINIMUM, the voltages on the test points should be between -50 V de and -80 V dc. -With the control set to MAXIMUM, the test point voltages should be between -20 V dc and -60 V de.
```

GREEN GRID Test Point = GG
BLUE GRID Test Point = BG
RED GRID Test Point = RG

```

Do the 3 grid voltages look good?
Y N
009
Is only the blue grid voltage bad? Y N

\section*{010}
(ENTRY POINT DD)
```

On the amplifier card, adjust the
settings of the color balance
potentiometers for the bad color.
See Figure 1-4.
can the bad grid voltage be corrected?
$\mathbf{Y} \mathrm{N}$
01
Ar
Nall 3 voltages bad?
$Y \mathrm{~N}$
012

- See Figure 6-7 and Figure 1-4.
- Switch power OFF O.
- Check the continuity of the P15
Check the continuity of the P15
the amplifier card connectors
P17A and P17B.
- If the continuity is good
exchange the amplifier card.
Has the problem gone?
Y N
1
(024

```
024
- Switch power OFF lol.
- Exchange the video card.
- If the problem remains exchange the CRT.
GO TO MAP 0000 , ENTRY POINT BB.
is always activel?
Y \(N\)

\section*{026}

Is the problem that ONE RASTER is permanently on?
(that is, there is a solid RED, GREEN, or BLUE raster which may be dim or
bright). Some characters may be just
visible.
Y N
027
- Set the TEST/NORMAL switch to TEST.
- Look at the normal cursor - it should
    be WHITE - that is, made up of RED
and BLUE and GREEN.
Is the problem that ONE of the 3
primary colors is never displayed on
the screen?
Y N
028
GO TO PAGE 4, STEP 042,
ENTRY POINT BB.
029
- Ground the suspect video signal for a
    few seconds, where it comes on to the
    video card.
        GREEN \(=\) Test Point GI
        RED = Test Point RI
        BLUE \(=\) Test Point BI
    See Figure 6-9.
Does a full raster appear in the
correct color?
Y N
    030
    - Switch power OFF 0 .
    - Exchange the video card.
        - If the problem remains, exchange
        the CRT.
        GO TO MAP 0000 , ENTRY POINT BB.
    031
    - Switch power OFF to.
    - Check the continuity of the
        connections below. See Figure 1-4
        for plug locations.
\begin{tabular}{|l|l|l|ll|}
\hline \begin{tabular}{l} 
VIDEO \\
SIGNAL
\end{tabular} & LOGIC & Through & VIDEO & CARD \\
Wire & ITP. \\
\hline \begin{tabular}{l} 
Green \\
Red \\
Blue
\end{tabular} & C2S11 & A5D11 & P14-5 & GI \\
C2S12 & A5D12 & P14-7 & RI \\
PI & R14- & P14-9 & BI \\
\hline
\end{tabular}

\footnotetext{
- Repair any problem found or exchange
logic card E2 then the video card.
} GO TO MAP 0000, ENTRY POINT BB.

- Switch power OFF lol.
- Remove the P14 connector from the video card. See Figure 1-4.
- Switch power ON II.
- Set the TEST/NORMAL switch to NORMAL.
- Use a LOGIC PROBE to look at the 3
video signals on the logic board.
GREEN = A5D11
RED \(=\) A5D12
BLUE \(=\) A5D13
Are any of them DOWN all the time?
Y N
033
- Verify the +5V supply to the video card. (See Figure 6-7.) If no problem found, Switch power OFF lof and exchange the video card.
GO TO MAP 0000, ENTRY POINT BB.
034
- Switch power OFF 10 .
- Measure the resistance to ground of the suspect signal.
Is it 10 ohms or less?
\(Y \mathrm{~N}\)

\section*{035}
- Exchange logic card C2.

GO TO MAP OOCO, ENTRY POINT EB.

\section*{036}

There appears to be a short to ground.
- Disconnect logic card C2.

Has the short disappeared?
\(Y \mathrm{~N}\)

\section*{037}
- Look for a failure in the wiring between the video card and the logic board or on the logic board. See Figure 6-7 and Figure 3-2.
GO TO MAP 0000 , ENTRY POINT BB.
038
- Exchange logic card C2.

GO TO MAP 0000 , ENTRY POINT BB.
039
- Switch power OFF 0 .
- Reseat the video card on the CRT.
- Switch power ON I.
- See Figure 6-9 to check that the
following supplies are present on the card.


Are the voltages correct?
Y N

\section*{040}
- See Figure 1-4 and Figure 6-7 to check bad voltages and cable connections.
- Exchange the failing FRU.

GO TO MAP 0000, ENTRY POINT BB.
041
- Switch power OFF 0 .
- See Figure 6-7 to verify the continuity of the VIDEO FORCE signal.
-See Figure 6-7 to verify the continuity of the connections to the Intensity Override switch on the brightness potentiometer.
- If you find no problem, exchange the video card, then the CRT.
GO TO MAP 0000 , ENTRY POINT BB.

\section*{042}
(ENTRY POINT BB)
- (Do not use Intensity Override.)
- You may héve:
a) screen too DIM or BRIGHT
b) brightiess not variable
c) limited brightness or brightness does not change smoothly when control turned from minimum to maximum
d) screen BLANK

Were you sent here for any of the above problems?
Y N
043
You may have a color balance or purity problem.
- Go to the adjust instructions (MIM Chapter 5).
- If necessary adjust the purity controls (MIM section 5.3.2) to make the color the same all over the screen.
- If necessary adjust the color balance controls (MIM section 5.3.7) to make white.
Are the purity and color balance correct?
Y N
044
Is it a purity probsem?
Y \(N\)

\section*{045}

GO TO PAGE 2, STEP 008, ENTRY POINT CC.

046
- Switch power OFF to.
- See Figure 1-2 ane rigure 6-15 to verify the degauss cuil and its plug (P27).
The degauss coil should measure 15 20 ohms.
- Verify the continuity of the purity coils from amplifier cand P19 - see Figure 3-3 and Figure 1-4.
Each coil should measure between 130
and 170 ohms.
Are all coils good?
Y N
047
- Exchange the failing coil assembly.
- If the problem remains, exchange
the CRT.
GO TO MAP 0000 , ENTRY POINT BB.
048
-Check the amplifier card fuse and exchange if necessary.
- If the problem remains, exchange the amplifier card then the analog card, then the CRT.
GO TO MAP \(0000^{\circ}\), ENTRY POINT BB.
049
GO TO MAP 0000, ENTRY POINT BB.

200CT81
5
    potentiometer mounting plate as ground.
- If voltage is bad, switch power OFF 01 and
    exchange the analog card.
- Verify the adjustment of the Red
    Brightness and Color Balance controls.
    See MIM section 5.3.6 \& MIM section 5.3.7
- Switch power OFF 道.
-See Figure 6-7 for the connections to the
    brightness potentiometer and the
    Intensity Override switch.
- Check continuity of the wiring from these
    controls to the analog and amplifier
    cards. Repair or exchange as necessary.
- Reseat the analog card.
- Reseat P15 on video card - see Figure 1-4
- If no problem found, exchange the analog
    card (then the amplifier card, then the
    video card).
GO TO MAP 0000 , ENTRY POINT BB.

ENTRY POINTS
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & \multicolumn{1}{l}{ STEP } \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0100 & A & 1 & 001 \\
0100 & CC & 5 & 056 \\
0100 & DD & 5 & 068
\end{tabular}

\section*{001}
(ENTRY POINT A)

\section*{DANGER}

When the 3279 power ON/OFF switch is is ON 门, the following are connected directly to the mainlin'e power:-
-The twisted-pair connection from P3 pins 8 and 9 (on the power supply) to the analog card (P7).
- The degauss coil.
-Front panel fuse switch, and
-Parts of the power supply card.
- Be careful when measuring voltages in these areas.
- Switch power OFF of and remove the power cord from the mainline socket before such actions as:-
-disassembling,
-inspecting for failures,
-making resistance measurements, etc.
- Release Intensity Override. (If engaged.)
- Switch power OFF lol.
- Reseat the \(A 2, A 3\) \& A5 logic gate connectors.
- See Figure 6-5. Check the continuity of frame ground (potentiometer mounting plate on bezel) to P3-4 and P4 pins 14 , 24 and 30 .
- Repair if necessary.
- Switch power ON 1 .
- Measure the voltages shown in the table opposite using the brightness potentiometer plate as ground.
Was ALL correct?
\(\mathbf{Y} \mathbf{N}\)

\section*{002}
- Switch power OFF lol.
- Check continuity of A2D08 to the frame ground.
- Repair if necessary. See Figure 6-8 and Figure 3-2.
- Switch power ON 1 .
- Measure the voltages shown in the table opposite using the brightness potentiometer plate as ground.
Was ALL correct?
Y N
003
Was any voltage less than 1.0 V de? Y N
\begin{tabular}{|c|c|c|c|c|}
\hline LOGIC GATE PINS & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { VOLTAGES } \\
& \text { AND } \\
& \text { TOLERANCES }
\end{aligned}
\]} \\
\hline B2D03 & +5.0 & \(V \mathrm{dc}\) & \(\pm 0.8\) & \(V\) \\
\hline B2811 & +8.5 & Vdc & \(\pm 1.0\) & \(V\) \\
\hline B2806 & -5.0 & Vde & \(\pm 0.8\) & \(\checkmark\) \\
\hline
\end{tabular}


EXIT POINTS
\begin{tabular}{ll|ll}
\hline EXIT & THIS MAP & \multicolumn{1}{l|}{ TO } & \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 4 & 053 & 0200 & CC \\
4 & 055 & 0300 & A \\
5 & 065 & 0500 & BB
\end{tabular}

PAGE \(20 F\) 5

004
- Switch power OFF lol.
- Remove and reseat the power supply card and then reseat the power supply cable in the logic board (A2).
Is the problem solved?
Y N
005
- Switch power 0FF 10 .
- Disconnect the logic gate A2
cable.
- Switch power ON \(\Pi\).
- Meter the 103 V -upply (P3-5), using the potentiometer mounting plate as grourd.
Is the supply 'Jetween 110 Vdc and 140 Vdc?
Y N
006
- Switch power OFF lof.
- Exchange the power supply card. GO TO MAP OOOO, ENTRY POINT BB.

\section*{007}
- Switch power OFF lo
- Exchange the analog card.
(Other FRU'S or wiring problems
may give similar symptoms.)
GO TO MAP 0000 , ENTRY POINT BB.
008
GO TO MAP 0000 , ENTRY POINT BB.
009
- Switch power OFF lod.
- Verify seating of logic gate A2 connector.
- If no problem found, exchange power supply card.
GO TO MAP 0000 , ENTRY POINT BB.
010
- See Figure 3-2 to check the power distribution to the analog card.
- Reseat connectors and logic cards or exchange/repair the failing FRU. GO TO MAP 0000 , ENTRY POINT BB.
011
- Measure the voltages shown in the table below using the potentiometer mounting plate as ground.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
ANALOG CARD \\
P4 \\
PINS
\end{tabular}} \\
\hline 14 & VOLTAGES AND \\
TOLERANCES
\end{tabular}

Is ALL correct?

012
Are the voltages measured on pins 15 and 40 different? \(Y \mathrm{~N}\)

013
- Measure 103 V dc at power supply connector P3-5.
- See Figure 1-2.

Is the voltage more than lil \(V \mathrm{dc}\) ?
Y N
014
Is the voltage less than 95 V dc? Y N

015
- Switch power OFF 10 .
- Exchange analog card then the power supply.
GO TO MAP 0000 , ENTRY POINT BB.
016
- Switch power OFF 0 .
- Exchange the power supply then the analog card.
GO TO MAP 0000 , ENTRY POINT BB.
017
Is the voltage the same at the analog card test point? (P4-40)
\(Y \mathrm{~N}\)
018
There is a problem in the 103 V
connection from the power supply to
the analog card.
- Use Figure 3-2 to isolate and repair.
GO TO MAP 0000 , ENTRY POINT BB.
019
- Switch power OFF 0 .
- Exchange analog card .
- If this corrects the problem

GO TO MAP 0000, ENTRY POINT BB.
- If the problem remains,

GO TO PAGE 3, STEP 037,
ENTRY POINT EE.
020
- Switch power OFF lol.
- Check seatins of the analog carc in its edge connector. There should be continuity between pins 15 and 40 when the analog card is seated.
- Exchange the analog card if no problem found.
GO TO MAP 0000 , ENTRY POINT BB.
021
- Wait one minute or until lamp 2 lights. Is lamp 2 lighted?


200CT81
33
G H



PAGE 5 OF 5

056
(ENTRY POINT CC)
- Release Intensity Override.
- Turn brightness control clockwise until the image is bright.
- Set the TEST/NORMAL switch to NORMAL.

Is there a single, stable separator line near the bottom of the screen?
Y N

\section*{057}
-Connect the logic probe to the analog card socket P4-3. (Vert Sync TP) See Figure 1-2.
- (Ground probe to potentiometer mounting plate.)
Do both lamps light?
Y N
058
- Probe pin C2G12.

Do both lamps light? Y N

\section*{059}
- Exchange logic card C2 then B2 then D2.
GO TO MAP OOOO, ENTRY POINT BB.
060
- Reseat logic gate connector A3 and continue probing for Vert Sync signal until broken connector is found. (See Figure 3-3) GO TO MAP 0000 , ENTRY POINT BB.

061
GO TO STEP 063 ,
ENTRY POINT BB.

\section*{062}

Is there a single stable cursor?
Y \(N\)
063
(ENTRY POINT BB)
- Connect the logic probe to the analog card socket P4-2. (Horiz Sync TP) See Figure 1-2.
- (Ground probe to potentiometer mounting plate.)
Do both probe lamps light?
Y N
064
-Probe pin B2J13.
Do both probe lamp's light? Y N

065
GO TO MAP 0500 , ENTRY POINT BB.
066
\(\bullet\) Reseat logic gate connector A3, and continue probing for Horiz Sync signal until broken connection is found \& repair it. See Figure 3-3. GO TO MAP 0000, ENTRY POINT BB.
```

 |
 -Switch power OFF d.
 - Exchange the analog card.
 GO TO MAP OOOO, ENTRY POINT BB.
 068
(ENTRY POINT DD)

- Engage Intensity Override. (Turn the
brightness knob fully counterclockwise.)
Are the skip gaps visible?
(See Figure 2-1).
Y N
0 6 9
-Adjust the 'SKIP' potentiometer on the
analog card. See Figure 1-4.
Has it any effect?
YN
070
-See Figure 3-3.
-Use a LOGIC PROBE to trace the SKIP
signal from the B2 logic card to the
analog card.
-Also use a meter to check continuity.
At each of the following points BOTH
probe lamps should be ON.
LOGIC board B2J11.
LOGIC board A3D11.
Analog card P4-26.
Analog card P4-27.
(Test Point)
-Isolate the problem to a connection
failure or to the loss of a signal.
-Reseat the AS logic gate connector.
If no failure can be found, exchange
the analog card.
- If the signal source has been lost,
exchange logic card C2 then B2.
GO TO MAP 0OOO, ENTRY POINT BB.
071
- Set up the correct amount of SKIP. See
MIM section 5.3.5.
- If not possible, switch power OFF lol and
exchange the analog card.
GO TO MAP OOOO, ENTRY POINT BB.
0 7 2
-Adjust the 'SKIP' potentiometer on the
analog card. See MIM section 5.3.5 and
Figure 1-4.
Can you correct the problem?
Y N
073
-Switch power OFF lol and exchange the
analog card.
GO TO MAP 0000, ENTRY POINT BB.
074
GO TO MAP 0OOO, ENTRY POINT BB.

```

ENTRY POINTS
\begin{tabular}{l|ccr}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0100 & A & 1 & 001 \\
0400 & BB & 2 & 010 \\
1000 & A & 1 & 001
\end{tabular}

\section*{001}
(ENTRY POINT A)
- Check the operation of the base color switch as follows. Probe B2J06.
When switch is set to 0000 this pin should
be DOWN.
When switch is set to 00 this pin should be UP
Is ali correct?
Y N

\section*{002}
- See Figure 6-8 to check switch wiring and repair.
GO TO MAP 0000 , ENTRY POINT BB.
003
- Check operation of the 2 color control signals as follows :
- Set NORMAL/TEST switch to TEST.

B2S08 should be UP.
B2U06 should be UP.
Are they correct?
Y N
004
- Exchange logic card B2 then C2 then D2. GO TO MAP 0000 , ENTRY POINT BB.

005
- Set NORMAL/TEST switch to NORMAL.

B2S08 should be DOWN.
B2U06 should be DOWN.
Are they correct?
Y N
006
- Exchange logic card B2 then C2 then D2. GO TO MAP OOOD, ENTRY POINT BB.

007
-Run ONLINE TEST 7; see page \(1 .\).
B2SO8 should be DOWN.
B2U06 should be UP.
Are they correct?
Y \(N\)
008
- Exchange logic card B2 then C2 then D2. GO TO MAP 0000 , ENTRY POINT BB.

009
- Exchange logic card C2 then D2 then C2. GO TO MAP 0000, ENTRY POINT BB.

\section*{EXIT POINTS .}
\begin{tabular}{lr|ll}
\hline EXIT & THIS MAP & \multicolumn{2}{|l}{ TO } \\
\hline PAGE & STEP & MAP & ENTRY \\
NUMBER & NUMBER & NUMBER & POINT \\
\hline 1 & 002 & 0000 & BB
\end{tabular}
```

 TO RUN ONLINE TESTS 0-8.
 ============================
 For more detail see MIM section 2.6.1
 -Set the TEST/NORMAL switch to TEST
 and back to NORMAL.
 -Hold down the ALT key, press TEST,
 and release both.
 The word TEST appears in the OIA.
 -Key in In and press ENTER
 where n is the test number.
 One of patterns shown in the
 MIM section 2.6 should display.
 tO LEAVE THE TEST,
 \bulletHold down ALT and press TEST.
    ```

LOGIC MAP
PAGE \(20 F\)
2

\section*{010}
(ENTRY POINT BB)
- See Figure 1-2 and Figure 3-3 and use a logic probe to trace the VERTICAL SYNC. signal.
```

 LOGIC board C2G12 (source)
 LOGIC board A3D12
 ANALOG card PIN 28
 ANALOG card P4-3 (test point)
    ```
At all of the above points BOTH probe
lamps should light.
Do they?
Y N
    011
    Is the signal at C2G12?
    \(\mathbf{Y} \mathbf{N}\)
            012
            - Exchange logic card C2.
            GO TO MAP 0000, ENTRY POINT BB.
    013
    - Switch power OFF lol.
    -Check continuity and repair.
    GO TO MAP 0000, ENTRY POINT BB.
014
- See Figure 1-2 and Figure 3-3 and use a
    logic probe to trace the HORIZONTAL SYNC
    signal.
LOGIC board D2J13 (source)
LOGIC board B2J13 (retimed)
LOGIC board A3D13
ANALOG card P4-1
ANALOG card P4-2 (test point)
At all of the above points BOTH probe
lamps should light.
Do they?
\(Y \mathrm{~N}\)
    015
    (ENTRY POINT CC)
    - Probe D2J13 on the logic board.
    BOTH probe lamps should light.
    Do they?
        Y N
            016
            -Use a logic probe on :
            C2D10 (DOT 8)
            C2B08 (DOT 5)
            C2D05 (DOT 1)
            C2B04 (DOT 0 )
            DO BOTH lamps light each time?
            Y N
            017
            - Exchange logic card C2 then D2.
            GO TO MAP 0000 , ENTRY POINT BB.
        018
        - Exchange logic card D2 then B2.
        GO TO MAP 0000 , ENTRY POINT BB.

A B
MAP 0500-2

019
-Use a logic probe on :
C2D10 (DOT 8)
C2B08 (DOT 5)
C2D05 (DOT 1)
C2B04 (DOT 0)
Do BOTH lamps light each time?
\(Y \mathrm{~N}\)
020
- Exchange logic card C2 then D2.

GO TO MAP 0000, ENTRY POINT BB.
021
- Use a logic probe on B2M08 (FEATURE CLOCK).
Do BOTH lamps light?
Y N
022
- Exchange logic card C2 then D2.

GO TO MAP 0000, ENTRY POINT BB.
023
- Exchange logic card B2, (then C2, then
inspect B2G13 connection).
GO TO MAP 0000, ENTRY POINT BB.
024
- Switch power OFF 10.
- Reseat the analog card.
- Switch power \(0 N\) 向 and test.

Has the problem gone?
Y N
025
- Switch power OFF 10 .
- Exchange the analog card.
- Make any necessary adjustments.

GO TO MAP 0000, ENTRY POINT BB.
026
GO TO MAP 0000, ENTRY POINT BB.
\begin{tabular}{|c|c|c|c|}
\hline page & OF & 5 & \\
\hline \multicolumn{4}{|l|}{ENTRY POINTS} \\
\hline FROM & \multicolumn{3}{|l|}{ENTER THIS MAP} \\
\hline MAP NUMBER & \[
\begin{aligned}
& \text { ENTRY } \\
& \text { POINT }
\end{aligned}
\] & PAGE NUMBER & STEP NUMBER \\
\hline 0100 & A & 1 & 001 \\
\hline 0800 & A & 1 & 001 \\
\hline 0800 & EE & 1 & 009 \\
\hline
\end{tabular}

001


If the BATTERY or some circuits on the convergence logic card B2 are failing, an error code 55 or 228 will appear on the screen when the 3279 is switched on. (The 3279 may have to be switched off for some hours before an error is generated.) The error code will be resettable (RESET key) and the operator could converge the screen using ONLINE TEST 7.
The battery is marked with its date (mmyy - month and year) and would be suspect if more than 3 years old.
Some other failures will cause error codes 55, 56, 228, or 229 to appear but will NOT be resettable.

\section*{(ENTRY POINT A)}


The convergence patterns sho sld have moved smoothly when you pressed the cursor keys in step 002 .
ฝas there ANY movement?
Y N
006
GO TO STEP 009 ,
ENTRY POINT EE.
007
Was the movement always smooth?
Y N

\section*{008}
- Exchange logic card B2 (then D2). GO TO MAP 0000 , ENTRY POINT BB.

009
(ENTRY POINT EE)
- Meter the amplifier card test points as shown in the table below and verify that the correct voltages are present.
- See Figure 6-10 for locations, end Figure 6-16 for circuit.
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { AMPLIFIER } \\
& \text { CARD } \\
& \text { TEST POINT }
\end{aligned}
\] & VOLTAGES AND TOLERANCES \\
\hline M & \(+12 \mathrm{Vdc} \pm 1.5 \mathrm{~V}\) \\
\hline \(N\) & \(-12 \mathrm{Vdc} \pm 1.5 \mathrm{~V}\) \\
\hline \(K\) (fused) & \(+12 \mathrm{Vdc} \pm 1.5 \mathrm{~V}\) \\
\hline \multicolumn{2}{|l|}{Use B2D08 as your meter ref.} \\
\hline
\end{tabular}

Are the correct voltages present?
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{```
010
Is the voltage only wrong at tes
'K'?
Y N
    011
    - Probe the power supply card
        connector (P3) pins as shown
        table below.
```} \\
\hline \multicolumn{3}{|r|}{Power Supply Card} \\
\hline & P3 & VOLTAGES AND TOLERANCES \\
\hline & \(\frac{1}{3}\) & \begin{tabular}{llll}
\(+1 p\) & \(V d c\) \\
-12 & Vdc \\
\hline 1.5 V \\
\hline 1.5 V
\end{tabular} \\
\hline \multicolumn{3}{|r|}{Use P3-2 as meter ref.} \\
\hline
\end{tabular}

Are the correct voltages present?

200CT81
2222
DEFG
MAP 0600-1

\section*{PAGE 3 OF 5}
```

    027
    GO TO STEP 035,
    ENTRY POINT DD.
    08
GO TO PAGE 5, STEP 050,
ENTRY POINT CC.

```
829
-Press and hold the UP cursor key.
- Check that the RED pattern moves
 diagonally down (\(\alpha\)) a similar amount to
 the green (\(3-10 \mathrm{~mm}, 0.1-0.4\) inches).
Did the RED pattern move as expected?
\(Y \mathrm{~N}\)
030
Did the RED pattern show ANY movemant?
\(Y \mathrm{~N}\)
 031
 GO TO STEP 035,
 ENTRY POINT DD.
032
GO TO PAGE 5, STEP 050,
ENTRY POINT CC.
633
(A) A Press the R key.
 -Press the DOWN cursor key and hold for
 about 10 seconds.
 - Now press and hold the UP cursor key.
The blue pattern should move VERTICALLY up
4-10 mm (0.1 - 0.4 inches).
(B) \(\bullet\) Press the LEFT cursor key and hold for
 about 10 seconds.
 - Now press and hold the RIGHT cursor
 key.
The RED pattern should move HORIZONTALLY
(left) 2-8 mm (\(0.08-0.3\) inches).
Nere the expected movements seen?
Y \(N\)
 034
Was some movement seen in BOTH (A) and
(B) in the last step?
 Y N

44
NP

(ENTRY POINT DD)
- Switch power OFF 0 .
- Disconnect the P19 connector from the amplifier card. (See Figure 1-4).
- Inspect the convergence/purity coils for loose components.
- Check the continuity of the convergence coils from the plug on the end of the cable (P19):
\begin{tabular}{|l|rr|r|}
\hline COIL & \multicolumn{2}{|c|}{\begin{tabular}{rl}
P19 \\
pins.
\end{tabular}} & \begin{tabular}{r}
Resist- \\
ance.
\end{tabular} \\
\hline RED & 11 & 12 & \(<1\) ohm \\
GREEN & 9 & 10 & \(<1\) ohm \\
BLUE & 7 & 8 & \(<1\) ohm \\
BLUE LAT & 5 & 6 & \(1-50 \mathrm{hm}\) \\
\hline
\end{tabular}

Are all correct?
Y N

\section*{036}
- Exchange the convergence coil assembly. - See MIM Chapter 5 for adjustments to be made.
GO TO MAP 0000, ENTRY POINI BB.
037
- Reconnect the P19 connector.
- Switch power ON 1 .

The following procedure will test all 4 convergence amplifiers. A fixed voltage (-5 V) will be connected to the INPUT of each amplifier in turn. Each time it will be checked that the colors move in the expected directions.
If you know which amplifier is failing, you need test only that one.
- Set the NORMAL/TEST switch to TEST.
- Jumper B2MO6 (-5 V) to B2SO6 for about 3
seconds.
The image should move in the direction
shown in the figure below and hold there
While the jumper is on.
The movement should be \(15-30 \mathrm{~mm}(0.6-1.2\)
inches).
\(\qquad\)
- Press keys CONTROL C CONTROL 0 I
- Jumper B2M06 (-5 v) to B2SO5 for about 3 seconds.
The image should move in the direction shown in the figure below and hold there while the jumper is on.
The movement should be \(15-30 \mathrm{~mm}\) (0.6-1.2 inches).

Press keys CONTROL C CONTROL 0 Q
- Jumper B2M06 (-5 V) to B2U07 for about 3 seconds.
The image should move in the direction shown in the figure below and hold there (Step 037 continues)

\section*{CONVERGENCE MAP}

PAGE 4 OF 5
(Step 037 continued)
while the jumper is on.
The movement should be \(15-30 \mathrm{~mm}\) (0.6-1.2 inches).

\section*{- BLUE LATERAL}
- Jumper B2M06 (-5 V) to B2SO3 for about 3 seconds.
The image should move in the direction shown in the figure below and hold there while the jumper is on.
The movement should be 2-8 mm (0.2-0.6 inches).

Did your results match the expected results?
Y N
038
- See Figure 1-4. The amplifier card may have the 4 potentiometers marked 'GAIN'.
- If not take the \(N\) path now.

These are the gain controls for the convergence amplifiers.
- First write down their settings. The red, green and blue controls are normally set \(3 / 4\) away from the counterclockwise position, and the blue lateral set fully clockwise (Maximum gain).
- If any are set less than normal, set them to normal and repeat step 037.
- If the results are still not as expected set all 4 gain controls to maximum (fully clockwise), and repeat step 037.
Do your results now match the expected results?
Y N
039
- Switch power OFF 10 .
- Reset all 4 GAIN controls to the positions you wrote down.
- Reseat the A5 connector on the logic gate and the P18 connector (Figure 1-4) on the amplifier card.
- Switch power ON IT.

Is the problem fixed?

N P R STU
33

40
- Switch power OFF 10 .
- Check the continuity of the connections in the table below. (See Figure 6-10)
\begin{tabular}{|c|c|}
\hline LOGIC GATE & AMPLIFIER CARD \\
PIN. & TEST POINT \\
\hline B2S05 & F (red) \\
B2S06 & G (green) \\
B2U07 & H (blue) \\
B2S03 & E (blue lat) \\
\hline
\end{tabular}

Is the continuity of each good? \(Y \mathrm{~N}\)
```

041

- Locate and repair bad connection. See Figure 3-3 GO TO MAP 0000, ENTRY POINT

``` BB.

\section*{042}
- Exchange the amplifier card. GO TO MAP OOOO, ENTRY POINT BB.
 043
 GO TO MAP 0000, ENTRY POINT BB.
 044
 GO TO MAP 0000, ENTRY POINT BB.
045
- Exchange logic card B2 (then C2 then
 D2).
 GO TO MAP 0000 , ENTRY POINT BB.
 046
 GO TO PAGE 5, STEP 050,
 ENTRY POINT CC.
047
- Go to the adjust instructions, MIM
 Chapter 5 to set up static convergence
 and purity.
-Start at MIM section 5.3 .1 to set up
 static convergence, then go to MIM
 section 5.3.2 to set up purity.
-If you make any purity adjustment, go
 back to MIM section 5.3.1 to check the
 static convergence.
- Verify that the raster is correctly centered etc. and then go to MIM section
 5.3.3 to set up the dynamic convergence.
could you set up the purity and static
convergence?

\begin{tabular}{|c|c|c|}
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{50}{*}{}} \\
\hline & & \\
\hline
\end{tabular}

B V W

PAGE 5 OF 5

048
power OFF
- Verify the connections to the from

If far amplifier card, then the convergence
coil assembly

049
could you set up dynamic convergence?

050
(ENTRY POINT CC)
- Switch power OFF of

Check position of the convergence coil assembly see Figure 4-8 problem is found
- See MIM Chapter 5 to carry out adustments.

If the problem remains, exchange the B2 logic card (then D2 then C2). GO TO MAP 0000, ENTRY POINT BB.

051
GO 10 MAP 0000 , ENTRY POINT BB
-Leave the convergence routine by holding down the ALT key and pressing TEST.
an Error code 228 or 229 (3274) or 55
or 56 (3276) appear?

053
- Set the TEST/NORMAL switch to TEST and back to NORMAL
Is the convergence worse than you left it?

054
It may be an intermittent problem. is loose.
-Look for loose cables and connectors and reseat the convergence amplifier card and logic card B2. GO TO MAP 0000, ENTRY POINT BB

055
(then D2 then C2)
- Exchange logic card B2 (then D2 then C2.) GO TO MAP 0000, ENTRY POINT BB.

Is the error code resettable?

058

C2). MAP 0000 , ENTRY POINT BB
059
- Switch power OFF 0 .
the connections to the battery
- Disconnect the A3 logic gate connector.
- Probe the free end of the A3 connector to
+ meter lead to pin D07
- meter lead to pin B07.

A new battery will measure 4.1 V .
Is it less than 3.5 V ?
- Reconnect the AJ connector.
- Measure the voltage on B2B08.
ess than the battery voltage.
Y N
061
Measure the voltage on B2J09
This should be the same as the battery age.
sit correct?

062
There is a connection failure.
B2J09..A3D07..P20-4..Battery/red B2J08..A3B07..P20-1.. Battery/black
Exchange the failing FRU. GO TO MAP 0000 , ENTRY POINT BB.

63
- Exchange logic card B2.

GO TO MAP 0000, ENTRY POINT BB.

The battery seems good
- Exchange logic card B2.

Set up Dynamic convergence; See MIM
section 5.3.3.

065
following points:-
B2J09..A3D07..P20-4.. Battery/red
- If the problem is still present get the customer to exchange the battery.
-If the problem remains when the customer card B2
GO TO MAP 0000, ENTRY POINT BB.

PAGE 1 OF 4

ENTRY POINTS
\begin{tabular}{l|ccc}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & STEP \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0000 & A & 1 & 001 \\
0100 & A & 1 & 001 \\
0100 & BB & 1 & 002 \\
0100 & CC & 1 & 006 \\
0100 & EE & 2 & 019 \\
0800 & A & 1 & 001 \\
0900 & A & 1 & 001 \\
1000 & EE & 2 & 019
\end{tabular}

\section*{001}
(ENTRY POINT A)
- Switch power OFF 0 .
- Reconnect the keyboard if it is disconnected.
Keys binding, broken or worn are
mechanical failures.
Is this a mechanical failure or clicker problem?
\(Y \mathrm{~N}\)
002
(ENTRY POINT BB)
- Switch power OFF 0 .
\(\bullet\) Remove the keyboard top cover. See MIM section 4.11.2.
- Disconnect and reseat the internal keyboard connector, (See Figure 6-11.) the keyboard cable connector and the keyboard cable connector on the logic gate. (D5).
- Switch power ON \(\Pi\).
- See Figure 6-11 and Figure 6-12 and Table 7.1 (column 2) and check the voltages at the internal !eyboard cable connector.
\begin{tabular}{|r|l|l|}
\hline \multicolumn{2}{|c|}{ Table 7.1 } \\
\hline \begin{tabular}{r}
Voltage. \\
Tolerance.
\end{tabular} & \begin{tabular}{l}
Internal \\
Keyboard \\
Connector
\end{tabular} & \begin{tabular}{l}
Logic \\
Gate.
\end{tabular} \\
\hline 0V meter ref & D08 & D5D08 \\
+5 Vdc \(\pm 0.5 \mathrm{~V}\) & D03 & D5D03 \\
\(+8.5 \mathrm{Vdc} \pm 0.9 \mathrm{~V}\) & B11 & D5B11 \\
-5 Vdc \(\pm 0.5 \mathrm{~V}\) & B06 & D5B06 \\
\hline
\end{tabular}

Are all voltages correct?
Y N
003
- Disconnect the keyboard cable connector from the logic gate (D5).
-See Figure 6-11 and Figure 6-12.
-Check the voltages shown in Tabie 7.1
(column 3) on the logic gate.
Are all the voltages correct?

Copyright IBM Corp 1981
3
ABCD
| \(\int_{004}\)
There is probably a failure in the logic board strips.
- See Figure 3-2 and Figure 6-4.

GO TO MAP 0000, ENTRY POINT BB.
005
-See MIM Figure 6-11 and Figure 6-12 and
Table 7.1 to check connections and
isolate to a failing cable or
connector.
GO TO MAP 0000 , ENTRY POINT BB.
006
(ENTRY POINT CC)
- See Figure 6-11 and verify that the keyboard jumpers are plugged correctly for this type of keyboard.
Were they correct?
\(\mathbf{Y} \mathrm{N}\)
007
- Set up keyboard jumpers correctly. GO TO MAP 0000 , ENTRY POINT BB.

008
- (Check keyboard ID bits.)
- Probe the keyboard connector in the back of the logic gate (D5). See Table 7.2 (column 2).
- Record if each signal is UP or DOWN. Bits which are jumpered should be DOWN and bits which are not jumpered should be UP.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|c|}{ Table 7.2 } \\
\hline \begin{tabular}{l}
ID \\
bit
\end{tabular} & \begin{tabular}{l}
Logic \\
Gate
\end{tabular} & \begin{tabular}{l}
Keyboard \\
internal \\
connector
\end{tabular} \\
\hline 0 & D5B05 & D04 \\
1 & D5B07 & D05 \\
2 & D5B10 & D09 \\
3 & D5D12 & D10 \\
\hline
\end{tabular}
```

Are the ID bits correct?
Y N
009

- Probe the internal keyboard connector.
See Table 7.2 (column 3) and record the
results. Bits which are jumpered
should be DOWN. Bits which are not
jumpered should be UP.
Are the ID bits correct?
Y N
010
-Switch power OFF lO.
- Exchange the keyboard logic card.
GO TO MAP 0OOO, ENTRY POINT BB.

```


PAGE 1 OF 8

ENTRY POINTS
\begin{tabular}{l|ccl}
\hline FROM & ENTER & THIS MAP & \\
\hline MAP & ENTRY & PAGE & \multicolumn{1}{l}{ STEP } \\
NUMBER & POINT & NUMBER & NUMBER \\
\hline 0100 & A & 1 & 001 \\
0100 & CC & 1 & 002 \\
0100 & DD & 4 & 031 \\
0100 & EE & 7 & 077 \\
0100 & FF & 3 & 015 \\
0300 & DD & 4 & 031 \\
0900 & A & 1 & 001 \\
0900 & GG & 3 & 025
\end{tabular}

\section*{001}

\section*{(ENTRY POINT A)}

If you know which feature is causing the problem go to the entry point shown in the table below:
\begin{tabular}{|l|l|}
\hline FEATURE Or FUNCTION & ENTRY POINT \\
\hline AUDIBLE ALARM & FF -page 3 \\
SECURITY KEYLOCK & GG -page 3 \\
MRC, MSR Or MHS & EE -page 7 \\
SELECTOR PEN & DD -page 4 \\
ECS Or PS & CC -page 1 \\
KEYBOARD & MAP 0700 \\
CONVERGENCE A A & MAP 0600 \\
VIDEO OUTPUT RPQ & MAP 1000 \\
VI A \\
\hline
\end{tabular}

If there is a machine check (\(X\) nnn) error code displayed on the screen or in the error log for this display go to the entry point in the table below:
(See MIM section 2.6.3 on how to read the error log)
\begin{tabular}{|c|c|}
\hline ERROR CODE & ENTRY POINT \\
\hline 44, 61 or 222 & DD -page 4 \\
\hline 43, 45, 60 or 224 & EE -page \\
\hline 41, 42, 210 or 212 & MAP 0700 \\
\hline 223, 225, & CC -page \\
\hline 226, 227 or 234 & CC -page 1 \\
\hline 55, 56, 228 or 229 & MAP 0600 A \\
\hline Any other error code & MAP 0900 \\
\hline
\end{tabular}
-Reinstall cards E2 and F2 (ECS \& PS) if removed.
If the ECS feature is NOI installed take the \(Y\) path now.
-Repeat the failing test, if known, (or use ONLINE TEST 8.)
Is the test good?
Y \(N\)
002
(ENTRY POINT CC)
Are both ECS and PS features (E2 and F2 cards) installed on this machine? Y N
PAGE 2 OF 8
```


## 003

- Exchange ECS logic card E2 (then D2 then C2).
GO TO MAP 0000, ENTRY POINT BB.


## 04

-Remove the ECS and PS cards (E2 and F2) if not removed earlier.
-Write down the settings of the switches on the ECS logic card and verify using Figure 6-14.

- Now set the switches on the ECS logic card for 'NO PS INSTALLED' (see Figure 6-14).
-Reinstall the ECS card (E2) and its top card connectors.
-Run ONLINE TEST 8 (see this MAP page 1.)
Each PS symbol should display as a green
-.
See MIM Figure 2-7 for correct display.
Is the test pattern OK?.
$Y \mathrm{~N}$


## 005

- Exchange logic card E2 (ECS) then D2 then C2.
GO TO MAP 0000, ENTRY POINT BB.
006
- Set the switches on the ECS card (E2) to their original settings. (See step 004 above)
-Check these settings and the PS card jumper with MIM Figure 6-14.
- Check that the Control Unit has the correct features and microcode.
$\bullet$ Reinstall the F2 logic card (PS) and its top card connectors.
- Repeat ONLINE TEST 8.

Is the problem present?
Y N

## 007

GO TO MAP 0000, ENTRY POINT BB.
008
Are both PS2 and PS4 features installed on this machine? (There will be five pluggable modules on the $F 2$ card if both features present).
Y N
009

- Exchange logic card F2 (PS) then E2 then D2.
GO TO MAP 0000 , ENTRY POINT BB.


## 10

It could be a PS card or a PS pluggable module failure.

- If the failing font is known, use Figure s-14 to isolate the failing module.
-Otherwise order a new F2 logic card for the PS2 feature, and five new pluggable modules as well.
- Fit the new modules to the new card.
- Remove the jumper on the card if it is present.
- Temporarily install the new F2 card and its top card connectors.
Has the problem gone?
$Y \mathrm{~N}$


## 011

- Exchange logic card E2 then D2 then C2. GO TO MAP 0000, ENTRY POINT BB.

012

- Verify the old PS card as follows.
-Remove the pluggable modules from the old PS card.
- Remove the new PS card from the machine and move the five new modules to the old card.
- Now install the old PS card.
- Repeat the preceding test.

Is the problem present?
$Y \mathrm{~N}$
013
One or more of the old PS modules was failing.

- Remove the new modules from the old card (now in the machine), and replace with the old modules one at a time, to locate the failure. Test after each change.
- Run TEST 8 to verify correct operation.

See MIM section 2.6.7 and Figure 2-7.
GO TO MAP 0000 , ENTRY POINT BB.
014
The PS logic is failing (not one of the pluggable modules).

- Remove the PS card from the machine (that is, the failing card with the good modules installed).
- Plug the old modules to the new PS card and install.
- RUn TEST 8 to verify correct operation. See MIM section 2.6.7 and Figure 2-7.
- Return any unused good parts to stock. GO TO MAP 0000, ENTRY POINT BB.

PAGE 3 OF 8

## 15

(ENTRY POINT FF)

```
Test the operation of the audible alarm as
follows:
 - Turn the alarm volume control fully
 clockwise.
 \bulletRun ONLINE TEST 0; see page 1.
 The alarm should sound once when the
 test pattern shows.
If the alarm does NOT sound:
 - Switch power OFF Q.
 - Reseat the AS logic gate connector.
 \bulletRun ONLINE TEST 0 again; see page 1.
Does the alarm sound?
Y
 016
 -Probe D2J05.
 Is the UP lamp on?
 Y N
 017
 -Disconnect P8 from audible alarm, see
 Figure 1-2. (Should be accessible
 from front of box).
 - Probe D2J05.
 Is the UP lamp pn?
 YN
 018
 - Switch power OFF d.
 -Meter the wiring for a short
 circuit to ground.
 -If less than 100 ohms, repair the
 wiring.
 -If not, exchange logic card D2.
 GO TO MAP 00OO, ENTRY POINT BB.
 0 1 9
 -Switch power OFF 『.
 - Exchange the alarm FRU.
 GO TO MAP 000O, ENTRY POINT BB.
 d20
 \bulletRun ONLINE TEST 0 again; see page 1.
 Does the DOWN lamp pulse on?
 Y N
 021
 -Disconnect P8 (Figure 1-2).
 -Run ONLINE TEST o again; see page 1.
 Does the DOWN lamp pulse on?
 Y N
 022
 - Exchange logic card D2.
 GO TO MAP OOOD, ENTRY POINT BB.
 03
 -Switch power OFF !.
 - Exchange the alarm FRU.
 GO TO MAP ODOO, ENTRY POINT BB.
```



- Meter TP 'J' on the amplifier card. See Figure 6-10.
- Check using table below.
- Use brightness potentiometer mounting plate as meter ground.

PEN TIP.	EXPECTED VOLTAGE.		
RELEASED	0	$V \mathrm{Vdc}-0.2$	Vdc
PRESSED	1.0	Vdc -1.5	Vdc

Are the voltages correct?
Y N

## 034

- Meter the light pen switch voltages. The table below shows the expected voltages.

PEN   TIP	YELL OW   G5B12	WHITE   G5D11
RELEASED   PRESSED	1.8 Vdc	
0	Vdc	2.2 Vdc

Are the voltages correct?
Y N
035
-Open up the selector pen.

- Verify the continuity of the 3
connections to the light pen switch.
See Figure 6-13.
(1) SWITCH n/o (yellow) G5B12
(2) SWITCH n/c (white) G5D11
(3) SWITCH common G5D08.
(coaxial cable shield)
- Verify correct operation of the
switch.
NOTE: the separate ground connector on
the selector pen cable is only
connected to a cable shield.
- Isolate to wiring or selector pen.

If no problem found, exchange
selector pen logic card G4.
GO TO MAP 0000, ENTRY POINT BB.
036

- Switch power OFF 10.
- Check continuity of blue bright-up signal from TP 'JJ on the amplifier card to P18-3 through to C2U02. See Figure 6-7.
- Check for short to ground.

Is connection good?
Y N
037

- Repair or exchange failing FRU. GO TO MAP 0000 , ENTRY POINT BB.

038
Switeh power ON ${ }^{\circ}$.
-Run ONLINE TEST 0 ; see page 1.
Are blue characters always bright (not controlled by the brightness control)?


200CT81
$\begin{array}{lll}5 & 5 & 5 \\ M & \mathrm{~N} & \mathrm{P}\end{array}$
$\begin{array}{ccc}M & N & P \\ 4 & 4 & 4\end{array}$
444
FEATURE MAP
PAGE
5 OF
8

039

- Switch power OFF lol.
- Disconnect wire 3 from P18 on the amplifier card.
- Switch power ON 1 .
- Wait until the image appears.
- Run ONLINE TEST 0 ; see page 1.
- Decrease the brightness.

Are the blue characters now always bright?
Y N

## 040

- Switch power OFF |0|
- Exchange the amrlifier card.

GO TO MAP 0000 , ENTRY POINT BB.
041

- Probe C2SO5 and press the selector pen tip. The DOWN light should come on and remain on as long as the tip is pressed.
Does this occur?
Y $N$


## 042

- Exchange logic card G4 (then the selector pen). GO TO MAP 0000 , ENTRY POINT BB.

043

- Exchange logic card C2.

GO TO MAP 0000, ENTRY POINT BB.
044

- Meter the voltage at TP 'J' on the amplifier card. Press and release the selector pen tip.
Is the voltage always between 1.0 V dc
and 1.5 V de?
Y N
045
- Switch power OFF 10.
- Exchange the amplifier card.

GO TO MAP 0000, ENTRY POINT BB.
046

- Exchange logic card C2.

GO TO MAP 0000 , ENTRY POINT BB.
047
(ENTRY POINT HH)
Do the blue characters change in brightness as the brightness control is turned?
N
048
-Probe video card TP 'BG' (Blue Grid).
See Figure 6-G.

- Turn the brightness control from
minimum to maximum.
The voltage measured should change
(approximately) from -70 V de to -20 V
dc.
Does this occur?
$\mathbf{N}$
- R S
049
    - Meter the amplifier card test point
'K'.
Expect $+12 \mathrm{~V}( \pm 1.5 \mathrm{Vdc})$.
Is the voltage good?
$Y \mathrm{~N}$
050
GO TO MAP 0600 , ENTRY POINT EE.
051
        - Switch power OFF 10
        - Check the continuity of the Blue
Grid supply: P17B-1 to P15-3 to TP
'BG' to P13-12
        - Check for short to ground. See
Figure 6-7
-Isolate to one of:
(a) Wiring
(b) Video card
(c) Amplifier card.
GO TO MAP 0000, ENTRY POINT BB.
052
    - Switch power OFF tol.
    - Exchange the video card then the CRT
GO TO MAP OOOO, ENTRY POINT BB.
053
    - Switch power OFF lol.
    - Exchange the amplifier card.
GO TO MAP 0000 , ENTRY POINT BB.

054
-Press the light pen tip (do NOT point it at the screen).
White bars appear through all characters
on lines 2 and 3 of the test pattern.

- Set the brightness control to an acceptable level.
-Press the pen against the white ?SEL PEN field in line 2.
The field changes to >SEL PEN.
-Press the pen against the blue >SEL PEN field in line 3.
The field changes to ?SEL PEN.
- If X-f appears in the indicator row, press RESET and retry.
Did all occur as expected?
$Y \mathrm{~N}$
055
NOTE: The light pen tip for Model 2 is
P/N 2570128 (large lens) and for Model 3

1742655. 

- See Figure 6-13 throughout these tests.
- Switch power OFF o.
- Disconnect the selector pen logic gate connector 65 .
- Switch power ON II.
- Meter the following pins: G5D10 (+12 V) and G5B08 (-12 V). Use G5D08 as GND.
Are the voltages present?
Y N

200CT81
766
TU V
MAP 0800-5


- See Figure 6-10.
- Meter the amplifier card test points M ( $+12 \mathrm{~V} d \mathrm{c}$ ) and $\mathrm{N}(-12 \mathrm{Vdc})$.
Are both voltages present?
$Y$ N


## 057

- Switch power OFF 0
- There must be a convergence problem. See Figure 1-2 and Figure 6-16 to check wiring.
GO TO MAP 0000, ENTRY POINT BB.


## 058

- Switch power OFF 10 .
- Reseat the logic gate A5 connector and P18 on the amplifier card and check the +12 V and -12 V wiring. (See Figure 6-16)
Has the problem gone?
$Y \mathrm{~N}$


## 059

One (or both) of the fused resistors on the amplifier card has failed. This will have been caused by an overload or short eircuit on the $+/-12$ $\checkmark$ supplies to the amplifier card.

## CAUTION

Do not insert a new amplifier card until the cause of the overload has been repaired.

- Switch power OFF 0
- Look for a short circuit in the +12 V and $-12 V$ wiring from the amplifier card to the selector pen card. (See Figure 6-16.)
- Repair any problem found. If there is no wiring problem, exchange the selector pen logic card (G4).
- Exchange the amplifier card.

GO TO MAP 0000, ENTRY POINT BB.
060
GO TO MAP 0000, ENTRY POINT BB.
061

- Reinstall the selector pen and card (G4)
if remoyed.
Have you seen any of the following error
codes on the screen or in the error log
for the display: 44, 61 or 222 ? (See MIM section 2.6.3)
Y N


## 062

- Probe C2SO5 and press the selector pen tip. The DOWN light should come on and remain on as lomg as the pen tip is pressed.
Does this occur?
Y N


7
$\mathbf{W} \times \mathbf{Y}$

Are they correct?
$Y \mathrm{~N}$

## 064

- Exchange the selector pen then logic card G4.
GO TO MAP 0000, ENTRY POINT BB.
065
- Exchange the selector pen logic card G4
(then C2 then D2).
GO TO MAP 0000 , ENTRY POINT BB.
066
-Run ONLINE TESTT 0 ; see page 1.
- Probe C2S05 and use the pen to select each of the 4 pen-detectable fields in the test pattern.
- Each time, press and hold the pen against the screen at the correct position. The DOWN light will come on and remain on until the field is sensed. (The white bars should also disappear.)
NOTE: If X-f appears in the indicator
row, press RESET and retry. The red SEL
PEN field and the blue \&SEL PEN field will normally cause X-f to appear.
Were all 4 of the fields sensed correctly? $Y \mathrm{~N}$


## 067

-Probe the back of the selector pen connector (G5) and check voltages as in the table below.

PIN ON   LOGIC GATE	VOLTAGES AND   TOLERANCES
G5D10 (red)	+12 Vdc $\pm 1.5 \mathrm{~V}$
G5D13 (black)	-6.2 Vdc $\pm 0.6 \mathrm{~V}$
G5B08....	-12 Vdc $\pm 1.5 \mathrm{~V}$
Use G5D08 as ground	

Are they correct?
Y N
068
Is only the -6.2 V wrong?
$\mathbf{Y} \mathbf{N}$

200CT81
777
7 A A A
ZABC
MAP 0800-6
666 PAGE 7 OF 8
- Use Figure 6-16 to trace the
+12 and -12 Volt supplies to
the selector pen card (G4).
- Isolate to cables, connectors
or amplifier card.
GO TO MAP 0000, ENTRY POINT BB.
070
- Exchange logic card G4 (then C2
then D2).
GO TO MAP 0000, ENTRY POINT BB.
671
- Set the TEST/NORMAL switch to
NORMAL and enter TEST 0 .
- Probe G5D12 (selector pen signal).
It should be UP.
- Set brightness control to maximum.
The DOWN light should also light
when the pen is pointed at any
characters on the screen.
Does this occur?
Y N
072
- Switch power OFF 10 .
- Check the selector pen lens is
clean and exchange or clean if
necessary. If no problem found,
exchange the selector pen then
logic card G4.
GO TO MAP 0000, ENTRY POINT BB.
073
- Exchange the selector pen logic
card G4.
GO TO MAP 0000, ENTRY POINT BB.
074
- Exchange logic card D2 (then G4 then
C2).
GO TO MAP 0000 , ENTRY POINT BB.
075
- Exchange logic card G4 (then D2 then
C2).
GO TO MAP 0000 , ENTRY POINT BB.
076
The Selector Pen appears to be working
correctly.
GO TO MAP 0000 , ENTRY POINT BB.

## 077

## (ENTRY POINT EE)

If the MHS or MSR feature is NOT
installed, take the $Y$ path now.

- If logic card G2 (MRC) was removed earlier, Switch power OFF $\mathbb{l}$ and reinstall it.
Test the operation of the MHS/MSR as
follows:
- Run ONLINE TEST 0 (see page 1 ).
- Move the cursor to the first position in the fifth line cline below the test pattern).
- Read the MSR test card.

The cursor should move, the green light turn $O N$ and $X-f$ show in the OIA.
If the red (reader) light turns $O N$, press RESET and retry.
Did all occur as expected?
Y N
078
Has the customer used the PDG and the Customer Replacement Procedures Manual
(shipped with the MSR/MHS uniti?
Y N
079

- Do the tests recommended in the

Customer Replacement Procedures
Manual (Form No GA24-3663).
Did you find the problem?
Y N

## 080

- Switch power OFF ld.
- See Figure 6-13. Verify all the connections in the cable from logic gate $G 3$ to the MSR/MHS cornector. Also verify the ground connection. Is there a problem?
Y N
081
- Exchange logic card G2 then D2. GO TO MAP 0000, ENTRY POINT BB.

082

- Repair or exchange the cable.

Verify correct operation.
GO TO MAP 0000 , ENTRY POINT BB.
083
GO TO MAP 0000 , ENTRY POINT BB.
084

- Switch power OFF ld.

The customer did not find the problem.

- See Figure 6-13. Verify all the
connections in the cable from logic gate G3 to the MSR/MHS connector. Also verify the ground connection.
Is there a problem?
Y N
085
- Exchange logic card G2 then D2.

GO TO MAP 0000, ENTRY POINT BB.

```
A AFEATURE MAP
```

    08
    ```
 08
 - Repair or exchange the cable.
 - Repair or exchange the cable.
 GO TO MAP OOOO, ENTRY POINT BB.
 GO TO MAP OOOO, ENTRY POINT BB.
07
Do all 3 indicator lights on the 3279
bezel, function correctly?
Y
 0 8 8
 (ENTRY POINT JJ)
 -See Figure 6-8 to check voltages and
 continuity to the LED card.
 -If all 3 lights are off, check the 5 V
 supply to the LED card pin 7.
 -Switch power OFF lo.
 - Repair or exchange the failing FRU.
 GO TO MAP 0000, ENTRY POINT BB.
09
-Perform the tests described in OFFLINE
 TEST MODE 3 MIM section 2.5.3.
Are all the tests good?
Y N
 0 9 0
 - Exchange logic cards as recommended in
 MIM section 2.5.3.
 GO TO MAP 0000, ENTRY POINT BB.
0 9 1
There does not seem to be a problem.
-Ask the customer if the problem is
 intermittent.
Is it?
Y N
 0 9 2
 - If the ECS feature (logic card E2) is
 not installed, take the N path now.
 - Ask the customer if there is an ECS
 (7-color and highlighting) failure or
 PS (Programmed symbols) failure.
 Is there an ECS or PS failure?
 N
 0 9 3
 -Inspect the error log (MIM section
 2.6.3) and ask the customer to show
 you the problem.
 GO TO MAP 0000, ENTR: POINT BB.
 0 9 4
 -Switch power OFF O.
 -Verify the settings of the 8 switches
 on the ECS logic card (E2). See Figure
 6-14.
 - If the PS logic card (F2) is installed,
 check the jumper. The jumper should
 only be present if this is a PS2
 feature card (no pluggable modules
 installed).
 GO TO MAP 0000, ENTRY POINT BB.
0 9 5
There is an intermittent problem.
GO TO MAP 0000, ENTRY POINT BB.
```

ENTRY POINTS

| FROM | ENTER | THIS MAP |  |
| :--- | :---: | :---: | ---: |
| MAP | ENTRY | PAGE | STEP |
| NUMBER | POINT | NUMBER | NUMBER |
| 0100 | BB | 1 | 007 |
| 0800 | A | 1 | 001 |


| (ENTRY POINT A) <br> Does the indicator row on the screen <br> display any error indicator other than an error code? <br> Y N <br> 002 <br> Does the indicator row, on the screen, display an error code? <br> Y N <br> 003 <br> Is the TEST/NORMAL switch in the NORMAL position? <br> Y N <br> 004 <br> - Put switch in NORMAL position. GO TO MAP 0000 , ENTRY POINT A. <br> 005 <br> Is the security keylock turned fully clockwise? (Use the $Y$ path if there is no security keylock feature). <br> Y N <br> 006 <br> Turn the switch clockwise. <br> GO TO MAP 0000 , ENTRY POINT BB. <br> 007 <br> (ENTRY POINT BB) <br> Are other displays connected to the same control Unit operating normally? <br> Y N <br> 008 <br> - See the Control Unit MIM to isolate the failure. <br> 009 <br> -Use the ERROR LOG to determine if this terminal has had errors that cause the Control Unit to disable the terminal. (See MIM section 2.6.3). <br> Does the error $\log$ contain any of the error codes given in MIM section 2.6.8 ? Take the $N$ path if you don't know. <br> - Switch power OFF fol then to ON П. Does the READY SYMBOL appear in the operator Information area? |
| :---: |
| $\begin{array}{llllllll}3 & 3 & 3 & 3 & 2\end{array} \quad$ Copyright IBM Corp 1981 |

001
Does the indicator row on the screen display any error indicator other than an error code?
Y N

Does the indicator row, on the screen, display an error code?
Y N
003
Is the TEST/NORMAL switch in the
Y N
004

- Put switch in NORMAL position.

GO TO MAP OOOO, ENTRY POINT A.
005
clockuisecurity keylock turned fully no security keylock feature).

006
Turn the switch clockwise.
GO TO MAP 0000, ENTRY POINT BB.
,
(ENTRY POINT BB)
same
$Y \mathrm{~N}$
008

- See the Control Unit MIM to isolate the failure.

009
Use the ERROR LOG to determine if cause the Control Unit to disable the terminal. (See MIM section 2.6.3).
error codes given in MIM section 2.6.8 ? Take the $N$ path if you don't know. Y N

010
-Switch power OFF lol then to ON П. Does the READY SYMBOL appear in the operator Information area? Y N

EXIT POINTS

| EXIT | THIS MAP | TO |  |
| :--- | :--- | :--- | ---: |
| PAGE | STEP | MAP | ENTRY |
| NUMBER | NUMBER | NUMBER | POINT |
| 1 | 004 | 0000 | A |
| 3 | 040 | 0700 | A |
| 3 | 038 | 0800 | A |
| 3 | 053 | 0800 | GG |



G H
MAP 0900-2

```
 017
 The internal wiring from the logic gate
 to the external coaxial device cable
 connector is failing.
 - Repair or exchange it.
 GO TO MAP 0000, ENTRY POINT BB.
018
- Exchange C2 card
Is the problem still present?
Y N
 019
 GO TO MAP 0000, ENTRY POINT BB.
0 2 0
- Exchange logic cards D2 then B2.
Is the problem still present?
Y N
 021
 GO TO MAP 0000, ENTRY POINT BB.
022
(ENTRY POINT DD)
Was the terminal LOGGED OFF because of
errors?
isee ERROR LOG codes, MIM section 2.6.8,
for log off codes)
Y N
 023
 Switch power OFF ll.
 Does this terminal contain feature
 cards?
 Y N
 024
 -Inspect the coaxial cable ground, the
 internal coaxial cable and the logic
 board strips for failures.
 GO TO MAP 000O, ENTRY POINT BB.
 025
 -Remove the feature cards one at a time
 and test each time.
 - Exchange the card removed when the
 problem goes away.
 GO TO MAP 0000, ENTRY POINT BB.
026
(ENTRY POINT CC)
Is there an error code 77 or 204 ?
Y N
 027
 Is the error code associated with a
 feature or the convergence logic card
 (B2)? (See MIM section 2.6.8 for codes).
 Y N
 028
 -Verify coaxial cable connectors,
 cable and seating of C2 card.
 - If errors remain, exchange ci card.
 GO TO MAP 000O, ENTRY POINT BB.
```

        200CT81
    33
    J K
MAP 0900-2

```
B C D F J K SYSTEM INDICATED FAILURE

PAGE 3 DF 3
111222

\section*{029}
－If the feature！causing error is identified exchange that card．
－If the feature is not
identified cr this terminal does not have features， exchange \(C 2\) card．
Is the problem still present？ \(Y \mathrm{~N}\)

030
GO TO MAP 0000 ，ENTRY POINT
BB．
031
－Exchange D2 card．
GO TO MAP 0000 ，ENTRY POINT BB．

\section*{032}
－Exchange logic cards D2 then C2． GO TO MAP 0000 ，ENTRY POINT BB．

\section*{033}

The Switch Control Unit is failing． GO TO MAP 0000 ，ENTRY POINT BB．

034
－Exchange logic cards C2 then D2．
GO TO MAP 0000 ，ENTRY POINT BB．
035
GO TO PAGE 2，STEP 026，
ENTRY POINT CC．
036
Is error code other than 41，42， 210 or
212？
Y N
037
－Remove any feature cards present．（E2， F2，G2，G4）
Is problem 5 till present？
Y N
038
GO TO MAP 0800，ENTRY POINT A．
039
－Disconnect keyboard cable from terminal．
Is problem still present？
\(\mathbf{Y} N\)
040
GO TO MAP 0700，ENTRY POINT A．
041
－Exchange logic card C2 then D2．
－Reconnect keyboard cable to terminal．
GO TO MAP 0000 ，ENTRY POINT BB．
042
GO TO PAGE 2，STEP 022，
ENTRY POINT DD．
 Does either X-f or X天聿? appear in the
 Operator Information Area when you
 attempt to enter the convergence
 routine? (Online Test 7)
 Y N
 045
 -Go to MIM Appendix A to find the
 meaning of the symbol(s) displayed
 and to take action.
 GO TO MAP 0000, ENTRY POINT BB.
 046
 Does X-f appear?
 Y N
 047
 - X米#? appears...Reseat logic card B2.
 Has the problem gone?
 Y N
 048
 - Exchange logic card B2.
 Has the problem gone now?
 Y N
 049
 - Exchange logic card C2 then D2.
 -Reinstall the original B2 logic
 card.
 GO TO MAP OOOO, ENTRY POINT BB.
 0 5 0
 -Go to MIM section 5.3.5 to set up
 convergence.
 GO TO MAP OOOO, ENTRY POINT BB.
 051
 GO TO MAP 0000, ENTRY POINT BB.
 052
 Another operator on the same Control
 Unit is probably using the convergence
 routine.
 -Press RESET and wait a few minutes
 before repeating.
0 5 3
GO TO MAP 0800, ENTRY POINT GG.
```


## 1043

Is the symbol $\times 0$ on present in the operator Information Area？

PAGE 1 OF 5

ENTRY POINTS

| FROM | ENTER | THIS MAP |  |
| :--- | :---: | :---: | ---: |
| MAP | ENTRY | PAGE | STEP |
| NUMBER | POINT | NUMBER | NUMBER |
| 0000 | A | 1 | 001 |
| 0200 | BB | 3 | 026 |

001
(ENTRY POINT A)

- Switch power OFF 0 .
- Wait at least 10 seconds.
- Switch power ON 7.
- If the fault appears on the 3279 display as well as the attached video devices, return to the General Failure Index to determine the correct MAP entry point.


## (ENTRY POINT AA)

- Ask the customer ton detach any attached video devices.
- Note the settings of the VIDEO CONTROL and SYNC POLARITY switches (on the rear panel).
- Set the VIDEO CONTROL switch to NORMAL or ENHANCE.
- Check that the 3279 is connected to a control unit.
- Set the TEST/NORMAL switch to NORMAL.
- Set the 00/0000 switch to 0000 .
- Turn the BRIGHTNESS knob fully clockwise.
- Wait at least 1 minute or until an image appears on the 3279 screen.
- Turn the BRIGHTNESS knob until the screen brightness is acceptable.
- Hold down the ALT key, press the TEST key, release both. .
Does 'TEST' appear in the Operator
Information Area (OIA)?
Y N
002
Is the separator lina visible?
Y N
003
Is the video control switch set to TEST?
Y N
004
- Check that the wiring of the VIDEO CONTROL switch is not reversed. - See Figura 6-13.

Is Hiring OK?
N
0.05

- Wire the switch correctly.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

EXIT POINTS

| EXIT | THIS MAP | TO |  |
| :---: | :---: | :---: | :---: |
| PAGE | STEP | MAP | ENTRY |
| NUMBER | NUMBER | NUMBER | POINT |
| 5 | 057 | 0000 | BB |
| 2 | 014 | 0500 | A |
| 2 | 012 | 0700 | EE |

```
A B C D
 VIDEO OUTPUT FACILITY
 PAGE 2 OF 5
| | | |
\bullet Exchange logic card C2.
Has the problem gone?
Y N
007
 -Inspect the cable in position C4.
 -Inspect the VIDEO CONTROL switch.
 - Exchange any failing FRU.
 G0 TO PAGE 5, STEP 057,
 ENTRY POINT FF.
008
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
 009
 - Set the VIDEO CONTROL switch to
 NORMAL or ENHANCE.
 GO TO PAGE 1, STEP 001,
 ENTRY POINT A.
 010
 -Verify that the control unit is
 connected and working.
 -Go to the General Failure Index (MAP
 0000 page 3).
0 1 1
-Press the '/' key.
Does %" appear on the screen?
YN
 012
 GO TO MAP 0700, ENTRY POINT EE.
0 1 3
-Press ENTER.
The pattern shown in Figure 2-4 (Online
Test 0) should display.
Are the COLORS correct? (Ignore any other
differences.)
Y N
 014
 GO TO MAP 0500, ENTRY POINT A.
015
-Observe the SIGNAL TEST lamp located on
 the rear panel.
Is it off?
N
 016
 Lamp is on.
 GO TO PAGE 3, STEP 026,
 ENTRY POINT BB.
0 1 7
-Set the VIDEO CONTROL switch to TEST.
-Observe the SIGNAL TEST lamp.
Is it on?
Y
018
GO TO PAGE 3, STEP 026,
ENTRY POINT BB.
```

- Compare the picture on the 3279 screen with Figure 2-4.
Video signals normally sent to the monitor are now displayed on the 3279 screen.
-Check the image for missing or wrong colors.
Are the colors OK?
Y N


## 020

- Exchange logic card C2.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
021

- Check the image for distortion.

Is the image OK?
Y N

## 022

- Set the VIDEO CONTROL switch to NORMAL. is the image oK?
Y N
023
- Return to the General Failure Index to determine correct MAP entry point.

024

- Exchange logic card C2.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
025
GO TO PAGE 4, STEP 039,
ENTRY POINT CC.

## PAGE 3 OF 5

## 026

## (ENTRY POINT BB)

- Switch power OFF lof.
- Remove cable connector in position C4.
- Remove logic card C2.
- Measure resistance between C4D05 and C4D08, and between C4D04 and C4D08. Are both open-circuit?
Y N


## 027

- Use delete tool (PN 452626) to delete connections on card side of the board at C4D04.
- Also delete wiring at C4D05.
- Reinstall logic card C2 and top-card connectors.
- Reinstall connector in position $\mathbf{C 4}$. GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
028
- Reinstall logic card C2 and top-card connectors.
- Switch power ON $\Pi$.
- Set meter to 6Vdc range.
- Measure voltage between C4D05(+) and C4D08(-).
Does meter indicate between 2.6 and 3.2 Vdc?
Y N


## 029

- Exchange logic card C2.
$\bullet$ Reinstall connector in location $C 4$.
GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
030
- Switch power OFF lol.
- Reinstall connector in location C4.
-Disconnect SYNC TEST lamp at connector $J 34$ (behind rear panel).
- Measure voltage between pin 1 (+) and pin 4 (-)
(NOTE: blank plug is at pin 2.)
- Switch power ON П.
- Set VIDEO CONTROL switch to TEST.

Does meter indicate between 2.0 and 3.0
Vde?
Y N

## 031

- Switch power OFF lol.
- Reinstall connector J34.
- Remove the cable connector from position C4.
- Check the wiring between connector C4 and the video output RPQ switches and indicator.
(See Figure 6-13).
Is the wiring OK?
Y N
032
- Repair/exchange cable.
- Reinstall connector in position 64.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

## 033

- Exchange logic card C2.
-Reinstall connector in position C4.
- Reinstall connector J34.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
034

- Set the VIDEO CONTROL switch to NORMAL.

Does meter indicate less than 0.5 Vdc ?
Y N

## 035

- Check the VIDEO CONTROL switch and wiring to connector C4.
Are switch and wiring OK?
Y N
036
$\bullet$ Repair/exchange failing FRU.
- Reinstall connector J34.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
037

- Exchange logic card C2.
- Reinstall connector J34.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
038
-Check connector J34/P34 is not damaged.

- Inspect/exchange the cable in position C4.
- If the cable is OK, exchange SIGNAL TEST lamp assembly.
- Reinstall connector J34.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

## VIDEO OUTPUT FACILITY

PAGE 4 OF 5

## 039

(ENTRY POINT CC)
-Check the video signals as follows:

- Set the TEST/NORMAL switch to TEST (green - characters fill the screen).
- Jumper D2Y02 to D2Y08 (on C4/D4 top-card connector) to force reverse video.
- Set meter to 6 Vdc range and negative lead to any D08.
-Use pointed probe on positive lead to probe the inner contact of each BNC video socket in turn.
- Green video should be 1.1 to 1.4 Vdc .
- Red and blue video should be less than 0.5 Vde .
-Press CONTROL 0 B (alpha keys) - see Figure 2-3. The test pattern turns blue.
-Check again:
- Blue video should now be 1.1 to 1.4 Vdc.
- Red and green video should be less than 0.5 Vdc
- Press CONTROL C
- Press CONTROL 0 I (alpha keys) - see

Figure 2-3. The test pattern turns red. -Check again:

- Red video should now be 1.1 to 1.4 Vdc .
-Green and blue video should be less than 0.5 Vdc .

Are all voltages correct?
Y N
040

- Remove cable in position C4.
- Use meter to check video signals at pins C4B05(red), C4B06(green) and C4B07(blue).
- Follow the same procedure as in the previous step.
Are all voltages now correct?
Y N


## 041

-Remove jumper D2Y02 to D2Y08.

- Reinstall cable in position C4.
- Exchange logic card C2.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
042

- Remove jumper D2Y02 to D2Y08.
- Inspect cable removed from C 4 for breaks or shorts in the 3 coaxial video cables.
- Exchange any failing FRU.
- Reinstall cable in position C4.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
043

- Remove jumper D2Y02 to D2Y08.
- Set SYNC POLARITY switch to '+'.
- Measure voltage at SYNC output socket (black).
Is the voltage between 1.5 Vdc and 2.0 Vde?
$Y$ N



## 044

-Without removing the connector from position C4, measure the voltage at C4B04.
Is the voltage between 1.5 Vdc and 2.0 Vdc?
Y N
045

- Remove the cable from position C4. - Measure resistance between B02 and D08 on the free end of the cable. With the SYNC POLARITY switch set to ' + ', resistance should be about 0 ohins.
With the SYNC POLARITY switch set to '-' , meter should indicate an open circuit.
Is all correct?
Y N


## 046

- Inspect the cable assembly in position 64 and the SYNC POLARITY switch.
- Exchange any failing FRU.
- Reinstall cable in position C4.
- Exchange any failing FRU.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.

## 047

Exchange logic card C2.

- Reinstall cable in position $C 4$.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
048

- Inspect/exchange the cable in position C4.
G0 TO PAGE 5, STEP 057 ,
ENTRY POINT FF.
049
- Set SYNC POLARITY switch to '-'.
- Measure voltage at SYNC output socket.

Is the voltage between 0 Vdc and 0.4 Vdc?
$Y \mathrm{~N}$
050
-Inspect wiring of SYNC POLARITY switch. (See Figure 6-13)

- Repair or Exchange any failing FRU.

GO TO PAGE 5, STEP 057,
ENTRY POINT FF.
051
(ENTRY POINT EE)

- Remove cable from position C4.
- Set the TEST/NORMAL switch to NORMAL and back to TEST.
- Press CONTROL 0 B (Alpha keys, see Figure 2-3).
Does the character pattern turn blue?
$Y \mathrm{~N}$

280CT81
55
K L
PAGE 5 OF

## 052

- Exchange logic card C2.
- Reinstall cable in position C4.

GO TO STEP 057,
ENTRY POINT FF.
053
-Install a jumper between C4D04 and C4D08, and a jumper between C4D02 and C4D08.

- Observe the image on the 3279 screen.

Does a faint green image appear with the
blue?
YN
054

- Remove jumpers.
- Exchange logic card C2.
- Reinstall cable in position C4.

GO TO STEP 057,
ENTRY POINT FF.
055

- Remove jumpers.
- Measure resistance between D04 and D08 on
the free end of the connector.
With the VIDEO CONTROL switch set to
ENHANCE the resistance should be
approximately 0 ohms.
With the VIDEO CONTROL switch set to
NORMAL the connection should be
open-circuit.
is all correct?
Y N
056
- Inspect cable and VIDEO CONTROL switch. - Exchange any failing FRU.
-Reinstall cable in position C4.
GO TO STEP 057 ,
ENTRY POINT FF.
057
- Reinstall cable in position 64.
- Exchange logic card C2.

GO TO STEP 057,
ENTRY POINT FF.
(ENTRY POINT FF)

- Perform VIDEO OUTPUT checkout procedure
in PDG.
- Return VIDEO CONTROL and SIGNAL POLARITY
switches to their original settings.
GO TO MAP 0000 , ENTRY POINT BB.

