
Systems Reference Library

IBM 1620 Monitor I System
Reference Manual

This publication describes the 1620 Monitor I System, a
com bined operating and programming system. This system
includes a Supervisor Program, a Disk Utility Program, an
SPS II-D Assembler, and a FORTRAN Compiler.,The latter three
programs operate under control of the Supervisor Program
to provide continuous operation.

Also described is the 1620-1443 Monitor I System. This sys­
tem is designed to use the IBM 1443 Printer as an integral
unit in the processing of source programs.

File No. 1620-36
GC26-57394

This is a reprint of an earHer pnhlieationincorporating the fol­
lowing Technical Newsletters: N26-0108, N2G-0122

Copies of this and other IBM puhlications can he ohtained through IBM Branch Offic.:cs.
Comments concerning the contents of this publication may he addressed to:
IBM, Product Publications Department, San J9se, Calif. 9.5114

© 1963, 1965 by International Business Machines Corporation

Page

IBM 1620 Monitorl System. 5
Supervisor Program. .. 12

Monitor Control Records 12
Stacked Input 17
Monitor Control Record Analyzer Routine 18
I/O Routine 21
I/O Error Routine .. 24
Error Count Retrieval Routine .. 27
Loader Routine .. 27
Monito~ I System Communications Areas 29

Disk Utility Program 31
Write Addresses Routine 32
Alter Sector Routine .. 33
Disk-to-Output Routine 34
Load Programs Routine 36
Replace Programs Routine 38
Disk-to-Disk Routine 38.1
Delete Programs Routine 39
Define Parameters Routine .. 40
Define Disk Pack Label Routine 41
Define FORTRAN Library Subroutine Name 42
Error Detection and Correction .. 42
FORTRAN and SPS Output .. 45

1620 SPS II ... D. .. 46
Introduction 46
Symbolic Programming 46
Coding Sheet 47
Statement Writing 49
Operands .. 51
Types of Addresses Used as Operands 52

Programming the 1620/1710 Using SPS II-D 55
Declarative Operations•..................... 55
1620/1710 Imperative Operations 62
Processor Control Operations fJ4
Product-Area Mnemonics .. 67

1620 Subroutines 68
Classification of Subroutines A • • • • • • • •• 68
Subroutine Macro-Instructions 69
Floating-Point Arithmetic 71
DesCription of 1620 Subroutines 74
Adding Subroutines 79
Subroutine DIM Entry • .. 81

Contents

Page

I/O Macro-Statements 83
Linkages for GET, PUT, and SEEK 84
Linkages for CALL LINK and CALL LOAD 84
Linkage for CALL EXIT .. 84
Input/Output Declarative Statements 84

Spg II-D Processor '" M
Operating Procedures 86
On-Line Error Correction 88
Post Assembly Phase .. 90
Execution of SPS II-D Object Programs 91
Rules of Relocatability .. 92.1
SPS II-D Modification Program 92

FORTRAN II-D. .. 95
FORTRAN II-D Language 95
Arithmetic Statements 100
Control Statements 101
Input/Output Statements 105
Specification Statements .. 108
Library Functions ;. 114
Arithmetic Statement Functions 116
Subprogram Statements ,............ 117

FORTRAN II-D Processor 119
General Compilation Process 119
FORTRAN II-D Control Records 120
Entering the Source Program .. 121
Object Program Execution • 128
Operating Procedure 131
FORTRAN Subprograms Written in SPS 134
Disk Storage Location of the FORTRAN Compiler 136

IBM 1620-1443 Monitor I System 137.1
Supervisor Program 137.1
Disk Utility Program. 137.1
SPS II-D 137.2
FORTRAN II-D. • 137.4

Monitor I System Loader. .. 138
Card Formats•........ 138
Operating Procedures 138

Appendix A 140

Appendix B. .. 155

Index .. 157

Preface

In data processing installations, a large amount of
computer idle time may be spent between jobs to set
up the computer for the next job. Programs must be
readied, data must be readied, etc. The amount of
time spent in these activities is greater in installations
where many different jobs are done in the daily sched­
ule. Because computer utilization is usually based
upon the time spent in executing a job, utilization may
appear to be low where multiple jobs increase setup
time.

To increase 1620 computer utilization, the user may
now adopt the Monitor I Programming System. The
primary function of the Monitor I System is to provide
continuous operation during a sequence of jobs which
might otherwise involve several independent pro­
gramming systems. To do this, Monitor I coordinates
computer activity by providing a communication re­
gion for independent programming systems and by
transferring control between them. Operation is con­
tinuous and setup time is reduced. This effects a sub­
stantial time saving in computer operation and allows
greater flexibility in programming. The monitor con­
cept - to control the operation of several unrelated
routines and machine runs so that the computer and
computer time are used advantageously - is not new.
This concept, previously employed by other large­
storage-capacity data processing systems, is made
possible for the 1620 by the 1311 Disk Storage Drive.

The Monitor I System utilizes the large storage ca­
pacity of the 1311 Disk Storage Drive. Thus it is possi­
ble to assemble, assemble and execute, compile, com­
pile and execute, and execute programs stored in disk
storage. In addition, the normal disk storage main­
tenance tasks, such as storing programs, can be per­
formed by the system.

A stacked input arrangement provides direction for
the system. This direction is given in the form of
control records, which are prepared prior to the
actual operation by the programmer and/or operator.
These records direct the sequence of jobs without in-

terrupting continuous operation. A typical sequence
of jobs could be a compilation of FORTRAN programs,
assembly of SPS programs, compilation and execution
of a FORTRAN program, execution of a disk-stored pro­
gram, and punching of a disk-stored program into
cards.

In addition to substantial saving of computer time,
Monitor I reduces the amount of programming time
req uired by the user. This is made possible through
sharing common subroutines by unrelated programs.
For example, input and output for all sps object pro­
grams can be performed by a common input/output
subroutine. Thus, programming time is reduced be­
cause a common subroutine need only be written
once. Because most programs require a subroutine of
this nature, it has been made an integral part of the
Monitor I System, available to all 1620 user pro­
grams.

To use the :Monitor System, the programmer must
pay particular attention to control records and stacked
input arrangements described in this publication. In
addition to directing the sequence of jobs, control
records allow the user the flexibility of assigning the
specifications for each job. Various jobs, each with its
own control record, are entered into the 1620 in the
stacked arrangement. Jobs are performed in the order
in which they are encountered under control of the
Monitor and without operator attention. However,
some messages generated by the Monitor regarding
the status of processing may require operator inter­
vention.

The IBM 1620 Monitor I System is comprised of
four separate programs:

Supervisor Program
Disk Utility Program
SPS II-D

FORTRAN II-D

The material contained in this publication is organ­
ized and presented under these headings.

Monitor I (Figure 1), a collective name for four dis­
tinct but interdependent programs - Supervisor, Disk
Utility, SPS II-D, and FORTRAN I1-D programs - is a
powerful, combined operating and programming sys­
tem. Systems of this type have previously been avail­
able only on other large-storage capacity computers.
The 1311 Disk Storage Drive with two-million posi­
tions of storage makes possible the implementation of
such a system on the 1620. Although both SPS and
FORTRAN are included with the Monitor System, either
may be deleted from the system, if desired.

The complete Monitor System resides in disk stor­
age and only those routines or programs required at
anyone time are transferred to core storage for exe­
cution. This feature, which is common to a Monitor
System, minimizes core storage requirements and per­
mits segmenting of long programs. It makes anyone
of many programs accessible to the computer with
minimum delay or manual operation.

Inclusion of SPS and FORTRAN programming lan­
guages in the Monitor System facilitates development
of a library of user object programs. Programs can
be stored in cards or paper tape, as they were stored

r-------

~
1620

FORTRAN n-o
Compiler

1620
Monitor I

System

1620
Supervisor

Program

1620/1710
SPS n-o

Assembler

-------,

~
1620

Disk Utility
Program

'------------
_____ ...J

Figure 1. 1620 Monitor I System

IBM 1620 Monitor I System

in the past. In addition, they can be stored in disk
storage without the necessity of assigning actual stor­
age areas, rem em bering or documenting the storage
assignments, and updating assignments and documen­
tation as conditions change. These disk-stored pro­
grams can be referred to by a name or number when
called for execution. If a program is added to the
user's repertoire of programs, the storage locations of
the other programs may be adjusted to prevent the
overlapping of data in disk storage. An account of
available disk storage is kept for the user as adjust­
ments are made to disk storage.

To make effective use of disk storage, a common
disk working area is maintained for all facets of the
Monitor System. One use for this area is to store inter­
mediate output from FORTRAN compilations or sps
assemblies to speed up these operations.

Approximately 22 percent of disk module zero is
used for the Monitor System itself. The remainder
of disk storage, with the exception of a few sectors
on each additional disk module, can be used for user
programs and data records.

The use of disk storage is controlled by three disk­
stored tables. The first and major table is the Disk
Identification Map known as DIM. Each disk-stored
item (program, data, or table) has a DIM entry which
contains information on where the item is stored,
how many disk sectors it occupies, and, if it is a
program, its core storage address. Thus, to refer to
an item, it is only necessary to use its DIM entry num­
ber. For those who prefer to use an alphabetic name
instead of a number, a second table, called Equiva­
lence table, lists the names and their equivalent DIM

entry numbers. The third table, a Sequential Program
table, shows the assignment of disk storage by DIM

entry numbers and the availability of unassigned
storage. Maintenance of these tables is performed
automatically by the Monitor without user supervision
or direction.

To examine the Monitor System, it is best to sum­
marize the functions of its various parts: Supervisor
Program, Disk Utility Program, SPS, and FORTRAN.

Subsequent sections present the detailed information

IBM 1620 Monitor I System 5

for each, required to program and operate.
The four primary functions of the Supervisor Pro­

gram are:

• Input/output
• I/O error detection and correction
• Program loading
• Control

Individual routines which perform these functions
follow.

Input/Output routine, which performs all I/O
functions (card, paper tape, typewriter, or disk)
for the Monitor System.

I/O Error routine, which provides for error detec­
tion and correction for all I/O operations per­
formed by the Input/Output routine.

Loader routine, which loads object programs into
core storage from card, paper tape, typewriter
or disk input.

Monitor Control Record Analyzer routine, which
records and interprets jobs to be performed, and
transfers control to other routines or programs
while maintaining communication so that control
may eventually be returned to itself.

Because all input/output is processed by the In­
put/Output routine, all data, programs, or control in­
formation from any input unit enter the 1620 CPU

through this routine. The Input/Output routine is able
to segment the continuous How of input information
into discrete jobs. Certain information is recognized
as control information. With the proper control infor­
mation, the Monitor could, for example, execute a
particular series of jobs consisting of (1) compil~ng
a FORTRAN program and executing it using supphed
data from any input source, (2) loading an SPS object
program from disk storage and executing it using
data supplied. from any input source. All of this can
proceed automatically from one task to the next
without stopping the machine for operator action.
Thus, ease of operation is achieved with increased
efficiency and throughput.

The Input/Output routine recognizes Monitor con­
trol information by two record marks (=l==l=). If the
first two columns of a card or tape record contain
record marks, the control information is examined by
the Monitor Control Record Analyzer routine to see
which one of twelve possible tasks is to be performed
next.

6

1. =l==l= JOB, initiates a new job.

2. =l==l= SPS, indicates that an SPS source program (s)
is to be assembled.

3. =l==l= SPSX, indicates that an SPS source program
is to be assembled and executed.

4. =l==l= FOR, indicates that a FORTRAN source pro­
gram (s) is to be compiled.

5. =l==l= FORX, indicates that a FORTRAN source pro­
gram is to be compiled and executed.

6. =l==l= DUP, indicates that a Disk Utility routine is
to be executed.

7. =l==l= TYPE, indicates the next control record is
to be entered from the typewriter by th~ opera­
tor.

8. =l==l= PAUS, allows operator action.

9. =l==l= XEQ, initiates loading and execution of an
SPS object program.

10. =l==l= XEQS, initiates loading and execution of
FORTRAN or SPS object programs with subroutines.

11. =l==l==l==l=, is used to indicate the end of a job.

12. =l==l=, serves as a Comments record.

These control records can be classified as being one
of three types. Type 1 provides control information
which is used as instructions to the Supervisor Pro­
gram. Type 2 provides for loading and starting the ex­
ecution of user-written programs, using data from con­
trol records to initialize various subroutines used by
programs. Type 3 provides for functions similar to
type 2 except that the FORTRAN, SPS or the Disk Utility
Program with its functional capabilities is also execut­
ed.

When FORTRAN, SPS, or the Disk Utility Program
is executed, all input records are examined for
an asterisk (0) in the first position to determine
if they are control records. These records have two
functions: (1) they provide information about specific
Disk Utility jobs to be performed, (2) they provide
the specifications for FORTRAN compilations or sps
assemblies.

Ten Disk Utility Control records provide various
user options. Each of these control records transfers
control to an individual routine to perform the desired
function.

1. ° DWRAD, indicates sector addresses are to be
written on a disk pack.

2. °DALTR, allows the operator to alter disk-stored
data from the typewriter.

3. °DDUMP, indicates disk-stored data or programs.
are to be outputted in cards, paper tape or on
the typewriter.

4. °DLOAD, indicates a program is to be loaded into
disk storage from cards, paper tape, or the work­
ing cylinders.

5. °DREPL, indicates a disk-stored program is to be
replaced by another.

6. ° DCOPY, indicates that data or programs are to
be copied into another area of disk storage.

7. oDELET, indicates a program is to be deleted
from disk storage.

8. °DFINE, allows changes to be made to the Moni­
tor System specifications.

9. °DLABL, is used to write identity labels on disk
packs.

10. °DFLIB, allows names to be assigned to FORTRAN
library subroutines.

Examples of FORTRAN and sps asterisk control records
are:

FORTRAN
°pOBJP4

SPS
°OUTPUT CARD

°PUNCH SYMBOL
TABLE

DeSCription
Punch object program

into cards
Punch Symbol Table

into cards

The many routines of the Disk Utility Program are
designed to perform the necessary but tedious disk
housekeeping functions. Items stored on the disk or
items to be stored On the disk can be referred to
symbolically; that is, by a symbolic name. The Moni­
tor System will allocate and keep track of disk storage
areas for the user.

The sps II-D assembler translates programs written
in symbolic language into machine language. The
symbolic language is an extension of 1620/1710 SPS.
Only one pass of the source statements is required be­
cause intermediate output is stored on the disks. Also,
the Symbol table is disk stored, thereby allowing for
assembly of programs with a great number of labels.
An additional symbol table, known as the System
Symbol table allows different SPS source programs to
use common labels.

I/O macro-instructions are provided in the SPS
language to relieve the programmer of writing Input/
Output routines in source programs for card, paper
tape, or disk operations. Thus, all I/O functions in­
cluding error detection and correction can be stand­
ardized. GET and PUT macro-instnlCtions are used for
reading and writing. These instructions generate ap­
propriate linkages to the Input/Output routine which
does the actual reading or writing (card, paper tape,
or disk).

To eliminate the necessity of having an entire ob­
ject program in core storage for execution at anyone
time, a CALL macro-instruction is provided. This in­
struction enables an object program in core storage
to be overlayed with instructions from disk storage.
Thus, the size of an object program can be virtually
unlimited.

Immediately following assembly, an object program
is located in the disk working cylinders. It can be
stored in disk storage without outputting it in some
other form, thereby greatly reducing program loading
time. Program listings can be obtained in either card
or typewriter form. The program can also be immedi­
ately executed or punched out into cards or paper
tape for loading and executing at any later time.

Any library subroutine set may be used by an
object program. User-written relocatable programs
can be automatically added to the library subroutine
set, if desired.

The FORTRAN compiler translates programs written
in the FORTRAN I1-D language into 1620 machine lan­
guage. Because of the large storage capacity of the
1311, source programs are read into the computer
just once. Intermediate output is stored in the disk
work area to minimize input/output time. Following
compilation, an object program may be executed im­
mediately, punched into cards or paper tape, or stored
in disk storage for execution at a later time.

Statements are provided in the FORTRAN language
that permit the use of disk storage. These statements
provide for (1) defining the size and quantity of data
records to be stored, (2) reading and writing on disks,
(3) positioning the disk access mechanism for read­
ing or writing, (4) returning control to the Supervisor
after execution of a FORTRAN object program, (5) over­
laying programs in core storage with other programs
from disk storage and executing the overlaying pro­
grams.

Subprograms can reside in either core or disk stor­
age. Disk-stored subprograms can be called into core
storage only when needed. Thus very large problems
caT! be accommodated.

New floating-point and subSCripting subroutines,
which use the Indirect Addressing feature and com­
piler algorithms, provide for efficient object program
execution. Subroutines written in SPS II-D language
can easily be added to the FORTRAN subroutine library.
Also, subprograms written in SPS can be called for
execution by FORTRAN programs or subprograms.

Object programs, either SPS or FORTRAN, can be
punched into cards or paper tape following assembly

IBM 1620 Monitor I System 7

or compilation, if desired. However, assembly or
compilation time is shortened if the object program
is stored in disk storage rather than cards or paper
tape. A standard System Output format, which may
be in absolute or relocatable form, is used to output
object programs. Only the programs outputted in the
standard format can be reloaded by the Monitor
System.

sps and FORTRAN source programs are assembled or
compiled using a given mantissa length, noise digit,
subroutine set, etc., specified in a common Communi­
cations Area. These given specifications are used for
all assemblies or compilations; however, the user may
change one or more of the specifications, such as
mantissa length, with control records for a particular
assembly or compilation.

sps or FORTRAN source programs can be entered into
the 1620 from cards, paper tape, or typewriter. Object
programs, however, can be entered from cards, paper
tape, or disk storage. Data, of course, can be entered
from any input source as directed by an object pro­
gram.

SPS II-D and FORTRAN II-D object programs will be
in a System Output format. System Output consists
of relocatable or absolute records. The relocatable
format allows the programmer to specify a different
core storage address for the start of a program each
time it is loaded. All addresses within a program that
are being relocated are adjusted relative to a new
starting address. The starting address (relocation ad­
dress) is specified by means of a control card at load
time. Absolute format, which can be generated by the
SPS II-D assembly program, is assembled to load to a
fixed core storage area.

Machine Requirements

The Monitor I System operates on a 1620 System,
Models 1 or 2, which has a minimum of 20,000 posi­
tions of core storage, a 1311 Disk Storage Drive,
Model 3, and the special features, Indirect Addressing
and Automatic Divide. Automatic Divide is required
only for execution of FORTRAN II-D and for SPS II-D

programs which use the Arithmetic and Functional
subroutines.

Operation

The Monitor I System is available in either card or
paper tape versions, ready for loading to disk storage.
After either version is loaded, both cards and paper
tape may be used with the programs.

8

The system is self-loading, i.e., it contains the load­
ing instructions that enable it to load itself into disk
storage. For handling convenience, a sequence num­
ber is punched in card columns 76-80 of card input.
Disk storage drive 0 (address block 00000-19999) is
required for storing the Monitor I System. A descrip­
tion of the loading process, including operating pro­
cedures, is included under MONITOR I SYSTEM LOADER.

To begin operation of the Monitor I System, load
the Supervisor Program into core storage from disk
storage. This is accomplished by entering from the
typewriter or a card, the following instructions:

Core Storage
Address of
Instruction

00000
00012
00024
00031
00032

Instruction

34 00032 00701
36 00032 00702
4902402
X
Y1963611300102

X identifies the form of input for the Monitor Control
records: 1 for typewriter, 3 for paper tape, and 5 for
cards. Y specifies the disk drive code (1, 3, 5, 7) iden­
tifying the disk module where the Monitor I System is
loaded. (Any time the Monitor pack is moved to a
different drive, this sequence of instructions must be
repeated.)

When the Release and Start key or Load key is
depressed, the Supervisor Program is read into core
storage and the first Monitor Control card is read
in under control of the Supervisor Program by the
Monitor Control Record Analyzer routine.

This routine reads all control records and types
them out to inform the operator of the status of proc­
essing. If operator intervention is required for any
reason, the routine will type a message and halt the
1620. Processing can be resumed as explained in the
section concerning the MONITOR CONTROL RECORD ANA­

LYZER ROUTINE.

The Parity, I/O, and Overflow Program switches
should be on to operate the Monitor I System.

Disk Storage Requirements

Portions of cylinders 24-25 and 80-99 of module 0 are
used by the Monitor I System. Unused portions of
these cylinders can be listed using the -Disk-to-Output
routine to obtain an availability list. A list of the as­
signed cylinders and DIM entry numbers associated
with the programs, routines, and tables stored in this
disk area follows.

Pro~ram/Table

Working Storage
DIM table
Equivalence table
FORTRAN Subprogram

Loader
FORTRAN Library Sub-

routines
SPS Library Subroutines
FORTRAN I/O and Arithme-

tic Subroutines
FORTRAN Compiler
Disk Utility Program
SPS Assembler
SPS Subroutine Supervisor
Supervisor Program with I/O

Routine
System Output Loader Routine
1440, 1401, 1410, Systems

Header Label Area ***
Monitor Disk P::lck Labpl***
Mutual Disk Pack Identifica-

tion Label ***
Sequential Program table ***
System Area

Cylinders

00-23
24
25
80, 84

81

82-83
84, 97

86-90
85,91-92

93-96
85
98

98
99

99
99

99
99

DIM NnmhArs

1
3
2
138, 147, 149,

150, 152, 157
*10-39

**40-130
144-146

136-137, 153, 156
139-143, 154, 155
8, 9, 131, 132
133
134, 148

135
166-169

158-161
162-165

4,5,6,7
151

*Only DIM entries 10-25 are in use when the system is
delivered.

**Only DIM entries 40-57, 70-87, 100-117, and 130 are in
use when the system is delivered.

* * * Present on all available modules.

Any program or routine not to be used may be de­
leted from disk storage using the Disk Utility Pro­
gram, Delete Programs routine. All areas are assigned
automatically to module 0 when the system is initially
loaded; however, certain assignments can be altered
by the user as described in the section concerning
1620 Disk Utility Program, under DEFINE PARAMETERS

(DFINE) CONTROL CARD. With this entry it is possible
to utilize more than one disk storage drive and to
enlarge or shorten the tables used by the Monitor
System.

WORK CYLINDERS

Cylinders 00-23, reserved for working storage, are
available to every program. This area is not available
for permanent storage of programs and data. This
area is identified by DIM entry 0001.

The working cylinders may be thought of as a
"scratch pad"; i.e., an area for storing intermediate
results. These results should be moved to another disk
area if they are to be retained for further use. Be­
cause the Monitor I System uses this area to perfonn
its function, the contents of the area are continually
changing. However, an object program will occupy
the area at the beginning of the work cylinders im­
mediately after compilation or assembly is completed.

EQUIVALENCE TABLE

When a user's object program, identified by name,
is loaded into disk storage by it~ compil~r or by the
DLOAD or DREPL routines of the Disk Utility Program,
its name as well as its DIM entry number is entered in
the E<luivalence table. Sixteen-digit positions are re­
quired for each entry, twelve for the 6-character al­
phabetic name and four for the DIM entry number
that starts with 0001. Eighty sectors with a capacity
of 500 program names are reserved to store the Equiv­
alence table immediately following the standard DIM

table (cylinder 24).
When the· Monitor System is delivered, the first 51

entries are reserved for the system, fifty for FORTRAN

library subroutine names, and one for the SPS II-D

modification program. Unused names in the first 50
entries will be identified by a field of 16 nines.

When a name, other than a FORTRAN subroutine, is
added to the table, it is placed in the 16 positions fol­
lowing the last entry. When a name, other than a
name from the first 50 entries, is deleted from
the table, all entries in higher-numbered positions are
shifted left to overlay the deleted entry. Thus, the
table, with the exception of the first 50 entries, will
contain only those entries that are in force at any
one time. The rightmost position of the table is identi­
fied by a record mark

DISK IDENTIFICATION MAP (DIM) TABLE

The Supervisor Program, Disk Utility Program, SPS

assembler, and FORTRAN compiler use this table to find
subroutines, data areas, or tables in disk storage. The
DIM table on cylinder 24 can accommodate up to 999
20-digit entries. One entry is required for each pro­
gram or data area pennanently stored in disk storage.

The format of the 20-digit DIM entry follows:

DDDDDDSSSCCCCCEEEEE =F
DDDDDD is the disk sector address of the program or

data.
sss is the sector count.
ccccc is the core address. If this field is all 9' s, the

program is in System Output format (see SYSTEM

OUTPUT FORMAT). If the units position is flagged,
the Subroutine Supervisor is used to load the pro-'
gram.

EEEEE is the entry address. This address is relative to
the load address (first core address to be loaded)
for programs in relocatable format.

=t:, .:i, =F, or =t is the rightmost character of a DIM

entry.
These characters indicate the following conditions
about a referenced program.

IBM 1620 Monitor I System 9

Character File Protected Permanently Assigned

=1= Yes No

=$ Yes Yes

=t= No No

=* No Yes

NOTE: (1) That a file-protected program can be
read but not written because it has read-only flags
written in all (or anyone) of the sector addresses in
the disk area which it occupies. If read-only flags are
written by a user's program in sector addresses where
a program is stored, that disk storage area will not
be "file protected," however, data cannot be written
in individual sectors which contain read-only flags.
(2) That a permanently assigned program cannot be
repositioned (moved) in disk storage because it has
been assigned to a given address by the user.

The Supervisor Program locates a DIM entry in the
following manner:

1. It refers to the Equivalence table to find the
4-digit DIM entry number.

2. It doubles this number and adds the sum to
048000.

3. It uses the leftmost five digits of the result to
locate the disk sector of the DIM table.

4. It uses the rightmost digit of the result to find
the particular DIM entry.

The DIM table can be expanded (see DEFINE P ARAM­

ETERS ROUTINE) to contain up to 4995 DIM entries, an
increase of 999 entries for each additional cylinder, 4
additional cylinders maximum.

SEQUENTIAL PROGRAM TABLE

The second through eighty-first sectors (80 sectors) of
cylinder 99 are reserved on each disk pack for a Se­
quential Program table which lists the programs,
tables, and data areas sequentially by DIM numbers,
and available storage space by special coding. The
Sequential Program table is used by the 1620 Disk
Utility Program to determine the order of programs
and available storage space. When a program is add­
ed to or deleted from disk storage, the table is updat­
ed to reflect the new squence. Each 80-sector table
will accommodate up to 2000 4-digit entries. Three
types of entries are included in a table.

10

1. DIM entry numbers for every program or data
area specified in the DIM table.

2. Availab1e sector count to indicate the number
of available sectors between programs or data
within cylinders.

3. Cylinder entry numbers to identify the beginning
of each cylinder.

Available sector numbers always begin with 9
(9xxx); the three rightmost digits denote the number
of consecutive available sectors. For example, 9021
indicates that 21 consecutive sectors are unused with­
in a cylinder. A maximum of 200 available sectors
can be represented by an entry.

Cylinder entry numbers always begin with 70
(70xx); the two rightmost digits represent the cylin­
der number. One hundred of these entries are con­
tained in the table, one for each of the 100 cylinders
numbered 00-99.

An example of how the three types of entries might
appear in a Sequential Program table for cylinders
48-52 follows:

7048 0434 0435 7049 0436 9010 0437 7050 0437
7051 0437 7052 0437

where the programs identified by DIM entry numbers
0434 and 0435 occupy all 200 sectors of cylinder 48,
and the programs identified by DIM entry numbers
0436 and 0437 occupy all sectors of cylinders 49-52,
with the exception of 10 unused sectors between the
two programs in cylinder 49. Note that programs that
overlap cylinders will have the associated DIM entry
number repeated for each cylinder on which it is
stored.

The length of the Sequential Program table is 80
sectors unless changed by a DFINE control record (see
DISK UTILITY PROGRAM). Fifty sectors should provide
sufficient space in the table if 1000 programs are to
be written on a disk pack. Therefore, the user may
want to lengthen or shorten the table for his particular
needs.

IBM 1440, 1401, 1410, Systems Header Label Area

To facilitate the processing of common disk packs, a
standard alphabetic identification label is created on
the 1401, 1410, or 1440 Systems. This label is not used
by the 1620 System. The disk storage area (first 19
sectors of the last disk track of the last cylinder) re­
served for this label can be released for other storage
purposes, using the DELET Disk Utility routine, if a
disk pack will be used with the 1620 only. The DIM

entries for the four modules that may be connected
to the system are 166, 167, 168, and 169.

Mutual Disk Pack Label

A 5-digit disk pack identification label that can be
used by the other systems (1440, 1401, or 1410) must
be written on the 32nd through 36th position on the
last sector of cylinder 99. This sector should be given
the sector address 00199 regardless of the addressing

scheme used on the remainder of the disk pack. The
sector can be labeled automatically using the Define
Disk Pack Label routine of the Disk Utility Program.

Monitor Disk Pack Label

The first sector of cylinder 99 is a label sector, that
is, it contains a label to identify the disk pack. Each
disk pack used by the Monitor System must include
this label. A 5-digit disk pack identification number
in the five leftmost positions of the sector constitutes
the label. This number is used to- provide protection
for user's records as explained in the section entitled
DISK PACK IDENTIFICATION NUMBERS. This file-protected
label must be generated using the Define Disk Pack
Label routine. The DIM numbers for these labels are:
0158, 0159, 0160, and 0161 for packs placed on
modules 0, 1, 2, and 3, respectively.

Core Storage Requirements

The Monitor I System requires ce!tain areas of core
storage in order to operate. Core storage positions
00100-02401 must be permanently assigned to the
Monitor I System; however, positions 00000-00099 and
02402-19999 are only temporarily assigned to the
system. A temporary area is available to the user for

execution of object programs. The core storage layout
for the Monitor I System follows.

Inter-Phase - May be Used by Object Program 00000 - 00099

00100 - 00400
Arithmetic Table

System Communications 00402 - 00439
00440 - 02401

I/O Routine,
I/O Error Routine,
loader Routine and
Initializing Routines.

02402 - 19999

SupelVisor Program, Monitor
Control Record Analyzer
Routine, SPS Processor,
and FORTRAN Compiler.

(May be Used by Object Programs.)

20000-
Available Storage

r 1

IBM 1620 Monitor I System 11

Supervisor Program

The Supervisor Program performs the control func­
tions and Input/Output (I/O) functions for the 1620
Monitor I System. The FORTRAN II-D compiler and the
SPS II-D processor, under control of the Supervisor Pro­
gram, can be used to compile or assemble machine
language object programs. The Disk Utility Program,
also under control of the Supervisor Program, can be
used to write disk addresses, to alter a disk sector of
data from the typewriter, to load, update, and move
programs in disk storage, to delete programs from
disk storage, and to copy data, disk to disk.

SPS II-D or FORTRAN II-D object programs can be
loaded from cards or paper tape into disk storage un­
der control of the Supervisor Program. Because the
I/O functions are performed by a routine contained
in the Supervisor Program, the programmer need not
concern himself with writing these routines in sps
source language. By use of a macro-instruction in the
sps source program, cards and paper tape can be
read and punched, data can be stored and retrieved
from disk storage, and data can be read and typed
from the typewriter under control of the I/O routine
in the Supervisor Program. When a macro-instruction
is encountered in a source program, linkage instruc­
tions, which provide an exit to an I/O routine, are
created in the object program. If desired, the user
may manually code linkage instructions without the
use of macro-instructions. Manually coded linkage
instructions offer certain input/output options, unob­
tainable with macro-instructions. Error· checking and
correction procedures are a part of the I/O routine.
The Supervisor and Disk Utility Programs use the
I/O routine to perform their assigned tasks.

Monitor Control Records

Although the Monitor Control records are described
in terms of cards, these records can be in paper tape
or typewriter form.

The input to the Supervisor Program consists of
one or more "job decks" (Figure 2). A job deck, as
the term is used in this manual, may be a program
to be compiled or assembled, a combination of these
two (including data); it may also be a series of Disk
Utility Program operations. The Processing of each

12

jo b deck is controlled by the Supervisor as specified
by the Monitor Control card that precedes it.

When a Monitor Control card is read, the program
required to do the job is read into core storage from
disk storage. The program then processes input until
the end of the job deck is reached, a new Monitor
Control card is encountered, or an error occurs. When
the end of a job deck is reached or a new Monitor
Control card is encountered, the Supervisor Program
is reloaded into core storage from disk storage, and
the process is repeated. If an error occurs, a message
will print to identify the error, and the remainder of
the job will be processed. If it is not possible for the
job to continue, the Supervisor Program will skip to
the next job. All Monitor Control records, with the
exception of those entered from the typewriter, will
be typed out on the 1620 console typewriter.

The 1620 Monitor I System uses eleven Monitor
Control cards to indicate the processing required of
the 1620 Supervisor Program. The manner in which
the Supervisor handles each of these cards is describ­
ed in Figure 3.

Operation Codes

An alphabetic psendo operation code, left-justified in
columns 3-6, is used to identify each of the eleven
Monitor Control cards. By examining the operation
code, the Supervisor Program is able to· detennine
what processing action is required.

JOB

A JOB operation causes (1) the description or operat­
ing instructions contained in the JOB Monitor Control
card to be typed, (2) modifies the module, if re­
quired, and (3) checks to ensure that the proper disk
packs have been attached by the operator.

sps

This operation causes the SPS II-D assembly program
to be read into core storage from disk storage and to
be executed. The assembled object program may be
stored in disk storage and an entry made in the DIM

(Disk Identification Map) table.

SPSX

The spsx operation is similar to the SPS operation,
with one exception: after the object program is as­
sembled, it is then executed.

FOR

A FOR operation causes the FORTRAN II-D compiler
program to be read into core storage from disk stor­
age and to be executed. The object program can be
stored in disk storage. If this occurs, an entry will be
made in the DIM table.

FORX

The FORX operation is the same as the FOR operation,

Stacked Input (Card,
or Paper Tape)

Program
Monitor Contra I
Card

1620

Drive 1

Figure 2. Processing Input Data Under Supervisor Control

with one exception: the object program is executed
after it is compiled.

XEQ

The XEQ operation causes the SPS II-D object program,
identified by the Monitor Control card data, to be
read into core storage from the input device indicated
in column 27, and then to be executed. If the object
program requires any of the SPS subroutines to oper­
ate, or if the object program is a FORTRAN compiled
program, the XEQS operation must be used instead of
the XEQ operation. Each disk-stored program, called
by the XEQ operation, must have a DIM entry to enable
the Supervisor Program to find it.

1311 Drive 0

Drive 2 Drive 3

Disk Storage I/O

Supervisor Program 13

1620
Super· isor
with I/O
Routine

No

STACKED INPUT
(Monitor Control Cords,
Data Cords, SPS and
FORTRAN SOtlrce Cards,
Disk Utility Program
Control Cards)

Type
Description

Load SPS JI-D
Processor into
Core Storage
from Disk Storage
and Execute

Load FORTRAN
JI-D Compiler into
Core Storage from
Disk Storage and
Execute

Load Disk Utility
Program into Core
Storage from Disk
Storage and
Execute

Enter Succeedi n9
Monitor Control
Records fro",
Typewriter

.HAlf
Depress Start
Key to Resume
Processin9

Load SPS JI-D
Object Pro9ram
withOut Subroutines
into Care Storage
from Disk Storage
and Execute

Load FORTRAN II-D
or SPS JI-D Object
Program with Sub­
routines into Core
Storage from Disk
Storage and Execute

Poss Cords
10 next
Monitor
Control Card

Pass Cords to
Next Monitor
Job Cord

Figure 3. Logic of Supervisor

14

XEQS

This operation causes an SPS II-D or FORTRAN II-D

object program, identified in the Monitor Control
card, to be read into core storage from disk storage,
cards, or paper tape, and to be executed. If the object
program uses any of the sps subroutines, the XEQS

operation must be used. Each disk-stored program
called by the XEQS operation must have ~ DIM entry
to enable the Supervisor Program to find it.

DUP

The])UP operation causes the 1620 Disk Utility Pro­
gram to be read into core storage from disk storage
and to be executed.

TYPE

The TYPE operation causes a message - which re­
quests the operator to enter the next ~1onitor Control
record from the typewriter - to be typed and the
program to stop to await keyboard input. After the
operator enters the Monitor Control record, the Re­
lease and Start key should be depressed to resume
computer operation. All succeeding control records
must be entered from the Typewriter until a JOB Con­
trol record is entered to change the source of input.

PAUS

The PAUS operation halts the program to allow the
operator to change paper tapes, load input cards, etc.
Job processing is resumed by depressing the Start key .

=t==t= (END-OF-JOB)

The =t= =t= (end-of-job) operation causes the message

END OF JOB

to be typed, if a job has actually started, and control
is to be resumed by the Supervisor Program. An end­
of-job record must follow each job. If this record is
not present erroneous results may be obtained.

Monitor Control Card Formats

JOB.

Columns 1-2

3-6
7

=t==t= (identification r e cor d
marks)
Operation (JOB, left-justified).
Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

8-11 Module change numbers (for
disk input only).

12-31 Disk pack identification num­
bers (for disk input only),
12-16 drive O.
17-21 drive 1.
22-26 drive 2.
27-31 drive 3.

32-80 Description.

SPS, FOR, DUP, TYPE, PAUS.

Columns 1-2 *=1= (identification r e cor d
marks).

SPSX.'

3-6 Operation (sps, etc., left-justi­
fied).

7 Source of input, for sPs, FOR, or
DUP Monitor Control cards,

5 = card.
3 = paper tape.
1 = typewriter.

Columns 1-2 =1==1= (identification r e cor d

3-6
7

marks).
Operation (spsx).
Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

°8-9 SPS subroutine set identification
number.

010 N (Noise) digit.
011-12 Two digits for indicating length

of mantissa.
o Required only when the program to be executed
uses other than the standard operating specifications
(02 standard subroutine set, 0 standard N digit, 08
standard mantissa length).

FORX.
Columns 1-2 =1==1= (identification r e cor d

XEQ.

3-6
7

marks).
Operation (FORX).
Source of input,

5 = card.
3 = paper tape.
1 = typewriter.

8 FORTRAN subroutine set identifi­
cation number.

9-10 Control card count (number of
LOCAL control cards).

Columns 1-2 *=1= (identification r e cor d
marks). --

XEQS.

3-6
7-i2 -

13-16 -
17-21

22-26 -

27 -

Operation (XEQ, left-justified).
N arne of user's program, to be
executed (same name assigned
in Equivalence table).
DIM (Disk Identification Map)
entry number.
Note that either the name or the
DIM entry number must be given
(if program is in disk storage),
but if both are given, the name
takes precedence.
Address where loading of user's
program begins if program is not
in core image. If not supplied,
address 02402 is assumed.
Address where execution of
user's program is to begin if pro­
gram is not in core image. This
address must be relative to the
start of the program if the pro­
gram is relocatable; otherwise,
the absolute entry address must
be supplied.
Source of input,

Blank = disk.
5 = card.
3 = paper tape.

(Note that card or paper tape
input must be in System Output
format).

Columns 1-2 *=1= (identification r e cor d

3-6
7-12

13-16

17-21

marks).
Operation (XEQS).
N arne of user's program to be
executed (same name assigned
in Equivalence table).
DIM (Disk Identification Map)
entry number.
Note that either the name or the
DIM entry number must be given
(if program is in disk storage),
but if both are given, the name
takes precedence.
Address where loading of user's
SPS object program begins if pro-
gram is not in core image. If not
supplied, address 02402 is as­
sumed.

22-26 Address where execution of
user's SPS object program begins
if program is not in core image.

Supervisor Program 15

This address must be relative to
the start of the program if the
program is relocatable; other­
wise, the absolute entry address
must be supplied.

27 Source of input,
Blank = disk.
5 = card.
3 = paper tape.

(Note that card or paper tape
input must be in System Output
format).

28 Subroutine set identification
number for FORTRAN programs
only.

29-30 Control card count (number of
LOCAL control cards) for FOR­

TRAN programs only.
~31-32 SPS subroutine set identification

number (e.g., 00 = fixed-length
divide subroutine for machines
not equipped with the Automat­
ic Divide feature, etc.).

~33 N (Noise) digit for sps subrou­
tines.

~34-35 Two digits for indicating length
of mantissa for sps subroutines.

~Required only when the program to be executed uses
other than the standard operating specifications (02
standard subroutine set, 0 standard N digit, 08 stand­
ard mantissa length).

=F=F (End-of-Job).
Columns 1-2

3-4

Comments Records

=F=t= (identification record
marks).
Operation (=F=t=, end-of-job).

Comments records - in card, paper tape, or typewriter
form - can be used to specify operating instructions
and identify each job. Any number of these records may
be inserted in front of a job in the stacked input. Usually
they are inserted behind a JOB Monitor Control record.
Comments records, unlike Monitor Control records,
have no control over the Supervisor. When Comments
records are encountered in the stacked input, they are
typed out. The format of the Comments record in terms
of cards follows:

Columns 1-2

3-6

16

=F=F (identification record
marks).
Operation (blanks or any com­
bination of letters and/or digits

other than the eleven monitor
pseudo operation codes, JOB, SPS,

spsx, etc.).
7-80 Comments.

When the Supervisor Program reads a Comments
card, it will pass subsequent cards until another card
with =1==1=, columns 1-2, is encountered. Therefore a
Comments card should be followed by another Com­
ments card or a Monitor Control card.

Module Change Numbers

Module change numbers, punched in card columns 8-11
of the JOB Monitor Control cards, can be used on 1620
Systems with more than one 1311 Disk Storage Drive to
alter the normal assignment of disk storage drives for
any job. For example, a job that uses drive 0 in the exe­
cution of its program could use drive 1 instead of drive 0
by the entry of a JOB Monitor Control card with the ap­
propriate module change numbers.

Card columns 8, 9, 10, and 11 of the JOB card repre­
sent disk storage drives 0, 1, 2, and 3, respectively. A
change to the normal program assignment of a disk stor­
age drive is made by punching the number of the sub­
stitute drive into the card column which represents the
normal drive. Therefore, in the preceding example, a
digit 1 would be punched into card column 8 to alert
the program that drive 1 should be used for the job in­
stead of drive O. Card columns 9, 10, and 11 could b~ left
blank because only the assignment changes must be
punched. The assignment of disk storage drives, placed
in eHect by a JOB card, remains in effect until changed
by a succeeding JOB card. If the system is redefined to
use more than one drive, a JOB card with module change
numbers punched in columns 8-11 must be entered be­
fore the additional drives will be accepted by the Super­
visor program.

To overlap the time required to change disk packs for
one job with the processing time for a different job, the
operator may choose to alternate the use of disk storage
drives from one job to the next. Alternating drives is
possible only when all drives are not in use for anyone
job. For example, assume that job A is to be followed by
job B in the stacked input and the programs for both of
these jobs use disk storage drives 0 and 1. Assume fur­
ther that four disk storage drives are available to the
1620 System that is to perform these jobs. By entering a
module change number in the JOB Monitor Control card
for job B, the operator can use disk storage drives 2 and
3 for job B in place of drives 0 and 1. Therefore, while
job A is being done, the operator could mount the disk
packs for job B on drives 2 and 3,thus saving valuable
operating time. The JOB card module change numbers

should be punched
Card columns
Module change numbers I : I ~ 1

10 I 111
so drives 2 and 3 will be used in place of drives 0
and 1, respectively, for job B.

Disk Pack Identification Numbers

Card columns 12-31 of the JOB Monitor Control card
can be punched with the four 5-digit disk pack identi­
fication numbers, one identification number for each
disk storage drive.

Disk Pack
Identification Number

Card columns 12-16
17-21
22-26
27-31

Disk Storage
Drive

o
1
2
3

The disk pack identification number from the JOB

card is compared with the identification numbers re­
corded on the respective disk packs. If the proper
disk packs are not attached by the operator, the
Supervisor will halt for operator instructions. If it is
desired to omit this check for any disk storage drive,
the card field representing the disk storage drive may
be left blank. When the operator enters a module
change number, no change to the disk pack identi­
fication numbers (card columns 12-31) is required.

Stacked Input
Stacked input consists of control records (Monitor,
Disk Utility Program, SPS, and FORTRAN), source pro­
grams, object programs, and data arranged logically
by job. Each job consists of phases which must fit into
one of four categories:

1. sps source program (s) to be assembled.
2. FORTRAN source program (s) to be compiled.
3. Disk Utility routine (s) to be executed.
4. FORTRAN or SPS object program (s) to be called

from disk storage with subroutines and executed;
or SPS program (s) to be called from disk storage
without subroutines and executed.

The order in which jobs are executed is not impor­
tant, i.e., a Disk Utility routine may be executed be
fore a FORTRAN compilation or vice versa. Jobs are
executed in the order in which they are encountered
in the stacked input. Each job must be preceded by a
JOB Monitor Control card and followed by an end-of­
job (=f= =f= =f= =f=) Monitor Control card.

Job Arrangement

A Disk Utility, FORTRAN or SPS job is always represent­
ed by at least three Monitor Control records.

Card

1. JOB Monitor Control
Record

2. DUP, SPS, SPSX, FOR,

FORX, XEQ, or XEQS,

Monitor Control
record

3. End-of-job Monitor
Control record.

Purpose

Identify beginning of
job.

Transfer control to Disk
Utility Program, FOR­

TRAN compiler, sps As­
sembler, user's object
program.

Identify end of job.

In addition to the Monitor Control records, there
may be one or more Disk Utility Program, sps or
FORTRAN system control records. These records are a
part of the input for the individual system.

TYPE or PAUS Monitor Control records may be insert­
ed immediately preceding any of the records in the
above sequence. Any number of Comments records
may be inserted in front of type 2 records. Source
programs or input data can be entered immediately
following type 2 records.

The following three points must be taken into con­
sideration when arranging the input for any job.

1. All Monitor Control records, with the exception
of Monitor records that follow a TYPE Monitor
Control record, must be read from the same in­
put source. The input source can only be chang­
ed at the beginning of each job or by a TYPE

Monitor Control record.

2. A job, with the exception of a Disk Utility job~
may consist of several system functions possibly
terminated by execution of a user's program. Ex­
ecution of a user's program is considered as the
end-of-job. If any cards remain in the stacked
input for a job when it is ended in this manner,
they will be passed without processing. Process­
ing resumes with the first Monitor Control card
of the next job in sequence.

3. If an error is detected in an SPS assembly or
FORTRAN compilation, the resulting object pro­
gram or any programs that follow within the job
cannot be executed.

Examples of stacked jobs are given in Figure 4 and
Figure 5. In these examples:

Job A assembles two SPS source programs and stores
the assembled programs in disk storage. The second
sps program is executed after assembly. This job in­
cludes Comments cards to instruct the operator and a
PAUS Monitor Control card to allow the operator to
intervene and change program switch settings.

Job B compiles and executes a FORTRAN source
program.

Job C replaces an existing object program in disk
storage with a new object program and copies a pro-

Supervisor Program 17

gram from disk-to-disk. Job C calls a program from
disk storage with subroutines and executes it.

Monitor Control Record Analyzer Routine
This routine, a part of the Supervisor Program, is used
to read the Monitor Control records and Comments

records, which are identified by =t= =t= in columns
1-2, and to analyze these records, and to perfonn the
operations or transfer control as directed by the
pseudo operation codes. The first Monitor Control
record is read from the input source that is specified
by the operator when the Supervisor Program is orig­
inally loaded into core storage from disk storage to

Job "B"

,"-------------------(
Source Program

--- ----:-:=:=.:..::--=~ -- -=------ ,~
*SPS Control

Records

*:f: SPSX Monitor

i *~AME PAYROL

Source Program

Figure 4. Stacked Input, SPS and FORTRAN Jobs

18

---------1

I

I
I

I
I

I
I

SPS Control
Records

I
I

I
I

Job "A'-

start the entire operation. Subsequent Monitor Con­
trol records and Comments records are read from the
same input source until a JOB Monitor Control record
changes the input source by specifying a different
"source of input" or a TYPE card is encountered. Read­
ing of Monitor Control records continues from the
new source until again changed by another JOB Moni­
tor Control record.

When the input source is the "typewriter," the
Monitor Control Record Analyzer routine types the
message

ENTER MONITOR CONTROL RECORD

The operator may then enter the next control rec­
ord. The record is not typed out if the entry is made
by the typewriter.

If the operator makes a mistake while entering the
record, he may correct the error by turning on Pro­
gram Switch 4 and depressing the R-S key on the
typewriter. Switch 4 should then be turned off and
the entire record re-entered.

When an SPS, sPSX, FOR, FORX, DUP, XEQ, or XEQS
Monitor Control record is read, control is transferred
from the Analyzer routine to the individual program
specified by the control record. Control is returned to
the Analyzer routine after the program is executed.
When control is returned, the Analyzer routine will
pass records, provided the input source is other than
the typewriter, until a Comments or Monitor Control
record is encountered in the stacked input. Therefore,
the last job to be executed should be followed by a
TYPE or PAUS control card. If this control card is not
present, the 1620 will stop on a Read Select instruc­
tion, expecting another control card.

ERROR MESSAGES

During execution of the Monitor Control Record
Analyzer routine, certain error messages may be
typed. After typing a message, the 1620 will stop if
any operator action is required. A list of these mes­
sages, the conditions which cause them, and the cor­
rective actions required of the operator, follows.

Message

Cause

Action

ERROR IN FIELD AT COL. XX.
SET SW4 TO IGNORE, OFF TO
RE-ENTER CARD
An illegal character has been de­
tected in a JOB Record data field.
To ignore the error tum Program
Switch 4 on and depress the Start
key. The message "CONDITION
IGNORED" is typed and process­
ing continues. To correct the error,

Message

Cause

Action

Message
Cause

Action
Message

Cause

Action

Message
Cause

Action
Message
Cause

Action

tum Program Switch 4 off and de­
press the Start key. The Monitor
Control record input source will be
changed to the typewriter, and the
operator may then re-enter the
control record. If it is desired to
read succeeding records from the
original input source, column 7
must identify the input source.
PACK NUMBER. ERROR ON
MODULE X. SET SSW4 TO IG­
NORE OFF TO RECOMPARE
Disk pack identification numbers
compare "unequal."
To ignore the error, turn Program
Switch 4 on and depress the Start
key. The message "CONDITION
IGNORED" is typed and process­
ing is resumed. To correct the er­
ror, place the correct disk packs on
the disk drives and depress the
Start key. The disk pack identifica­
tion number will again be checked
by the program. If the pack
involved was a Monitor pack, the
instruction sequence previously de­
scribed under operation must be
repeated.
END OF JOB
The end of a job has been reached.
(This message will not be typed, if
the input source is the typewriter.)
None required.
CANNOT RESTORE COMMON
-RESET AND START TO RE­
TRY
Common area does not read into
core storage from disk storage
correctly.
Depress Reset and Start keys to re­
try the read operation.
EXECUTION
Loading and execution of user's
object program has started.
None required.
JOB CARD GROUP ONLY
Control Record Analyzer routine is
expecting a JOB, TYPE, or PAUS
Monitor Control record, but it does
not find one.
Enter JOB, PAUS, or TYPE, Monitor
Control record from typewriter and
depress the Release and Start keys.

Super0i8or Program 19

Message

Cause

Action

Message

Cause

* * Job Iv\onitor

ERROR IN FIELD AT COLUMN
XX. PHASE TERMINATED

A Monitor Control record contains
an invalid code in the field start­
ing at column xx.
The phase is skipped and the su­
pervisor will pass records from the
control record source until it en­
counters the next Monitor Control
record.

EXECUTION IS INHIBITED

An error has occurred within a job
which may prevent successful ex-

::j: * Comments Monitor

Ob ject Program

Figure 5 Stacked Input, DUP and XEQS Jobs

20

Action

Message

Cause

Action

ecution of the user's object pro­
gram.
None required. No user object pro­
gram can be executed until the
next JOB Monitor Control record
is encountered.

OBJECT DIM ERROR PHASE
TERMINATED
The Supervisor is unable to find
the DIM entry specified by an XEQ

or XEQS control record.
None required. The phase in which
the error occurred is terminated
and processing continues.

:f: * PAUS Monitor

Job "0"

Job "C"

Message

Cause

Action

Message

Cause

Action

Message

Cause

Action

110 Routine

OBJECT NAME ERROR PHASE
TERMINATED

The Supervisor is unable to find a
name in the Equivalence table
which corresponds to the name
supplied in an XEQ or XEQS control
record.

None required; the phase is termi­
nated.

ENTER MONITOR CONTROL
RECORD

A "=F =F TYPE" Monitor Control
record has been encountered.

Enter a Monitor Control record
from the typewriter. (Monitor in­
put source is changed to the type­
writer.)

SYSTEM DIM ERROR PHASE
TERMINATED

Supervisor is unable to find DIM

entry for SPS assembler, FORTRAN

compiler, or Disk Utility Program.

None required; the phase is termi­
nated.

The I/O routine is designed to relieve programmers
of the necessity for writing input/output subroutines.
The I/O function is performed automatically by the
I/O routine. Therefore, the programmer can concen­
trate on describing his files and disregard the actual
operation of the I/O function. Provision is also made
in this routine for error detection and correction. If
Parity, Wrong-Length Record Check, or Address
Check disk errors occur in a disk operation, the routine
will repeat the operation which had the error, up to
nine times, in an attempt to correct the error. The
Monitor System uses this routine for I/O operations.

The I/O functions performed by the I/O routine
include reading and punching cards or paper tape,
reading or writing typewriter, reading or writing disk
records, and seeking disk cylinders. These functions
may be used in an SPS object program by entering
I/O macro-instructions (GET, PUT, SEEK, or CALL) in
the user's source program. These macro-instructions,
as well as the associated declarative statements for de­
fining declarative constants (DTN, DTA, etc.), are de­
scribed in the section concerning SPS II~D.

All linkages for I/O routines are generated auto­
matically through the use of macro-instructions in
sps source programs or the I/O statements (e.g., FIND,

RECORD, FETCH, PUNCH, READ, etc.) in FORTRAN

source programs. The data and addresses supplied in
a macro-instruction or the parameters in a FORTRAN

statement are incorporated into the linkage instruc­
tions where they are made available for use by the
I/O routine.

Each time the I/O routine is entered as the result
of an SPS macro-instruction or FORTRAN statement,
the read, write, and parity check indicators are turn­
ed off. If a read or write error occurs that cannot be
corrected without operator intervention, an error
message is typed and the program halts. A restart
procedure is specified for all error conditions (see I/O

ERROR ROUTINE). An error count is maintained by the
I/O routine for inspection by the user or for diagnos­
tic analysis by an IBM Customer Engineer.

In addition to using the I/O routine with SPS macro­
instructions and FORTRAN statements, the routine may
be used by coding the general form of I/O routine
linkage directly in the user's program.

I/O Routine Linkage

General Form.

TFM
B

IORT, 0 + 23
ENTRY, DEF, 7

10RT is the address (00565) of a 5-position stor­
age area in the I/O routine.

ENTRY may be anyone of the four possible entry points
in the I/O routine represented by the following
symbolic addresses:

Actual
Entry Point Address Function

10RBC 00520 Write record into disk stor-
age with Read-Back
Check.

10PT 00532 Write a record to an out-
put device.

10SK 00554 Seek a disk record.

10GT 00566 Read a record from an in-
put device.

DEF can be the address of any I/O declarative con­
stant (see I/O CONSTANTS).

CALL LINK or CALL LOAD Linkage. These link­
ages are usually used to call programs from disk stor­
age, with or without execution. Linkages may be in
either a short or long sequence form. Both forms are
alike with the exception that the long sequence form
contains a relocation address.

Supervisor Program 21

Short Sequence
TFM 10RT, It + 19
B7 lOCAL
DC 1, Mo

DC }
or 1, Ml

DSC
DSC 1,0
DC 5,1111 @

Long Sequence
TFM 10RT, It + 19
B7 lOCAL
DC 1, Mo

DC }
or 1, Ml

DSC
DC 1,0
DC 4,1111
DSA LLLLL
DSC 1,@

lOCAL is an entry to the I/O routine (core storage
address 00716).

Mo Ml is a constant 32 for CALL linkages, Ml is flag­
ged for CALL LINK only.

illI is the DIM entry number of the program to be
called.

LLLLL is the relocation core storage address where the
program is to be loaded.

If the short sequence is used to call a relocatable
program, LLLLL is assumed by the I/O routine to be
the address contained in the "high" indicator field of
the Communications Area. If the long sequence is
used to call a core image program, the I/O routine
will disregard LLLLL.

CALL EXIT Macro-Instruction Linkage.

B7 MONCAL

MONCAL (core storage address 00796) is an entry
to the I/O routine which will call in the Monitor
Control Record Analyzer routine.

CALL EXIT linkage is used at the end of the execution
of an object program to return control to the Moni­
tor Control Record Analyzer routine to read another
Monitor Control record. If, during execution of an
object program, an error is encountered which will
not allow normal exit to the Analyzer routine, the
operator may manually branch the program to
MONCAL (00796) to resume processing.

22

1/0 Constants

An I/O constant for card, paper tape, or typewriter
consists of eight digits.

CCCCC Mu Ml =F

CCCCC is the address of an I/O area.
Mn M 1 is one of the following codes which identifies

the operation:

00 Typewriter Numerical
02 Paper Tape Numerical
04 Card Numerical
06 Typewriter Alphameric
08 Paper Tape Alphameric
10 Card Alphameric

Disk I/O constants may be in any of the following
four forms:

1.
2.
3.
4.

Mo Ml nDDDD =F
MoMl DDDDD LLLLL =F
Mo M 1 0 jIll LLLLL =F
Mo Ml 01111 =F

BDDDD is the address of the leftmost position of the
associated disk control field.

LLLLL is a relocation core storage address of a pro­
gram to be called.

1111 is the DIM entry number of a program to be called.

Mo and Ml provide various disk options for the user.
A list of these codes and their associated options
follows.

Mo (code)

o

1

2

Option

Add the starting address of the
work cylinders from the Com­
munications Area (core positions
422-425) to the sector address
in the disk control field. (Used
with constant types 1 and 2
only.)

Same as option zero, except the
''high''indicator in the Commu­
nications Area will also be up­
dated for disk read operations
only. This indicator is merely a
field which contains the core
storage address of the highest
position to be loaded plus one.

Use the sector address in the disk
control field for the disk opera­
tion (SEEK, READ, or WRITE).

3

Ml (code)

o

2

4

6

DISK CONTROL FIELD

Use the sector address in the disk
control field for the disk opera­
tion. Also, update the "high" in­
dicator in the Communications
Area for read operations only.

A flag over the code Ii, (n == 0, 1, 2,
or 3) causes the read/write
heads to be repositioned to an
assigned cylinder (specified in
the Communications Area) after
any disk I/O operation, except
seek.

Option

Disk read or write in sector mode
with WLRC. NOTE: The user must
place a group mark (=F) in the
core storage location following
the last character position of the
last sector of the record.

Disk read or write in sector mode
without WLRC.

Disk read or write in track mode
with WLRC. NOTE: The user must
place a group mark (:$) in the
core storage location following
the last character position of the
last sector of the record.

Disk read or write in track mode
without WLRC.

A flag over code Ii (n == 1, 2, 4,
or 6) causes the I/O routine to
branch to a given address after
a disk read operation. The given
address will be the "execution
address" if an extended disk
control field is used. Otherwise,
it will be the "core address" of
the disk control field. If code n
is unflagged, the I/O routine
will branch to the first instruc­
tion following the disk opera­
tion calling linkage in the object
program. If the entry address is
not specified, the entry is made
to the (possibly relocated) first
card address of the deck to be
loaded.

The disk control field, associated with I/O constants,
types 1 and 2, may be in either of the following for-

mats:

DiSDDDD SSS CCCCC =f=
DnDDDD SSS CCCCC EEEEE =f=

DDDDDD is the first sector address of the data or pro­
gram.

sss is the number of sectors to be read or written.
CCCCC is the core address (must be an even-numbered

address) of the data or program.
EEEEE is the execution address where program execu­

tion is to continue after a disk read operation is
completed. The second disk control field, known as
an extended disk control field, is used when Ml of
the I/O constant is flagged.

Card I/O

Cards are read or punched in alphameric or numer­
ical form from a user-specified constant (generated
from an I/O declarative statement) designated in
general linkage. If a punch error is detected during
a write instruction, the instruction is again executed
to correct the error. If the error persists or a parity
error occurs during a write operation, an error mes­
sage is typed and the program halts (see I/O ERROR

ROUTINES). Error messages will be typed for all read
errors.

Typewriter I/O

A specified I/O declarative constant designated in
general linkage will be used by read or write type­
writer instructions (alphameric or numerical). If a
read error or a parity error occurs during reading, the
program will branch back to the read instruction and
await entry of data. The operator can then type in the
data and return control to the program. If a parity
error or write check occurs during writing, it will be
counted and the indicators will be turned off - but
the program will not halt. Control operations (RCTY,

SPTY, TBTY) are not executed in the I/O routine. These
must be handled in the main program coding.

Paper Tape I/O

Paper tape is read or punched in alphameric or nu­
merical form from a specified I/O declarative con­
stant designated in general linkage. If a parity read
error occurs during a read operation, an error message
is typed and the program halts.

Disk Storage I/O

Disk storage will be read or written as specified by
the I/O declarative constant designated in general

Supervisor Program 23

linkage. Also, disk seek operations will be initiated to
disk addresses contained in the I/O declarative con­
stant designated in general linkage. For a CALL macro­
instruction, disk data records or programs will be
written in the area of core storage designated by the
relocatable address in CALL linkage. If this address is
not present for a relocatable program, the processor
selects the address. If the relocation address is present
but the program is not relocatable (i.e., it is in either
Absolute or Core Image format), the relocation ad­
dress is ignored and the program is stored at the core
address specified by the DIM entry.

Disk storage indicators are reset by the I/O rou­
tine. If the Cylinder OverHow indicator (38) is turn­
ed on before the sector count reaches zero, a seek to
the next cylinder is initiated and reading or writing
is resumed. If read, write, or parity indicators, or in­
dicators 36 or 37 are turned on, the instruction associ­
ated with the error will again be executed up to nine
times. If the error persists, an error message is typed
and the program halts.

The seek only linkage

TFM
B

IORT, ~ + 23
IOSK, DEF, 7

will allow computing time and seek time to overlap.
DEF refers to any disk I/O constant.

The cylinder location of the arm on each drive is
entered into a list by the I/O routine. Every time the
I/O routine executes a disk operation, the current
entry cylinder is compared to the previous cylinder
and the arm is instructed to SEEK only if it is not al­
ready located at the current cylinder.

REPOSITIONING OF ACCESS ARMS

The I/O routine contains four 2-digit cylinder indi­
cators that can be used to reposition the access arm
on each of the four possible disk drives to a new
cylinder following a read or write operation. The four
cylinder indicator core storage locations and their
associated drives follow:

Indicator Addresses Drive

00512 - 00513 0
00514 - 00515 1
00516 - 00517 2
00518 - 00519 3

These indicator positions are reset to 00000000 by
the Monitor Control Record Analyzer routine. There­
fore, a program which uses other cylinders for re­
positioning must provide for changing the indicators.

Repositioning the access arm following a GET or
PUT macro-instruction is optional. If Mo of the I/O
constant used by a GET or PUT is Hagged, the read!
write heads will be repositioned.

24

FULL TRACK OPERATION

If any I/O operation is to be attempted with the
Write Address light on, the programmer must set a
Hag at OLDDA + 14 (core position 00455) before en­
tering the I/O routine. The Hag will prevent accumu­
lating error counts (which is a write disk sector oper­
ation). The Hag must be cleared before terminating
the routine in which the Write Address light "on"
condition is present.

If an I/O operation is attempted with the Write
Address light on, no Hag present at OLDDA + 14, and
an indicator 06, 07, 16, 17, 36, 37, or 38 on or turned
on by the I/O operation, the program will stop with
the instruction at 00728. To save the error count, the
operator must (1) turn the Write Address light off,
(2) depress the STOP/SIE key, (3) turn the Write
Address light on, if desired, and (4) depress the Start
key to resume automatic operation.

I/O Error Routine

Each time the I/O routine begins execution, it tests
indicator 19 (any check) to determine if an error had
occurred prior to entry. If the indicator is on, the I/O
error routine will be called into core storage and ex­
ecuted. This routine records a count of errors by type
(for indicators 06, 07, 16, 17, 36, 37, and 38), and pro­
vides the necessary error messages and corrective op­
erating options. In addition the error routine turns
off the individual indicators (06,07,16,17,36,37, and
38), by testing them.

After an I/O function is executed, indicator 19 is
again tested. If- it is on, the I/O error routine is en­
'tered to process the error.

Error Detection and Correction

During execution of the I/O error routine, error mes­
sages are typed to describe errors and the operator is
allowed to intervene to decide how errors should be
treated by the program. A list of error correction
options available to the operator follows.

Error Correction

Code

00

05

Option

Ignore the error. When this option
is used, the I/O routine will fin­
ish processing the I/O operation
as though the error had not oc­
curred.

Re-execute the I/O operation. If
an error recurs during the next
execution, an error message is

10

15

again typed, the computer stops,
and the operator can exercise the
same option or another option.

Skip this phase of the job if error
occurs at system time (sps as­
sembly, FORTRAN compiling, Disk
Utility Program, or Supervisor
Program execution time) and re­
turn control to the Monitor Con­
trol Record Analyzer routine and
pass records to the next Monitor
Control record.

Discontinue execution and return
control to the Monitor Control
Record Analyzer routine and pass
records to the next JOB Monitor
Control Record.

iO Continue processing by branching
to a specified core storage ad­
dress without further processing
of the I/O request. When this
option is exercised, the operator
enters the 5-digit branch address
from the typewriter.

After each error message is typed, the computer
halts. The operator then depresses the Start key, en­
ters a 2-digit error correction code from the type­
writer, and depresses the R-S key to resume pro­
cessing.

If an error is made while entering a 2-digit cor­
rection code, it may be corrected by turning Program
Switch 4 on, depressing the typewriter R-S key, turn­
ing Program Switch 4 off, and re-entering the 2-digit
code.

The I/O error routine has the facility to handle any
of the following errors.

Entry Check
Typewriter write
Typewriter read
Paper tape write
Paper tape read
Card write
Card read
Cylinder overflow
Write error count
Illegal DIM entry
System
Unavailable disk drive
Control record trap

Error messages, conditions, and corrective operator
action associated with each type of error is described
as fonows:

Entry Check: If indicator 19 (any check) is on,
when tested in the preprocessing phase, the message

ENT ERROR 06071617363738
is typed on the console typewriter. Each pair of in­
dicator numbers is flagged in the leftmost digit. If an
indicator was on when tested, the rightmost digit
will also be flagged.

Typewriter Write: For this error, no error message
is typed; however, the error is automatically indicated
by over-printing the error character(s) with a hori­
zontal line.

Typewriter Read. For this error, the message

TYP ERR XXXXX 06071617363738
is typed, where XXXXX is the 5-digit return address to
the calling program, and the indicators are as de­
scribed for ENT ERROR. To restart the computer, the
operator exercises one of the error correction options.

Paper Tape Write. For this error, the message

PTP ERR XXXXX o607i6I7363738
is typed, where XXXXX and the indicators are as
described above. To restart the computer, the operator
should exercise one of the error correction options.

Paper Tape Read. The message

PTR ERR XXXXX 0607i617363738
is typed, where XXXXX and the indicators are as de­
scribed above. The operator must backspace the tape
to the beginning of the record before exercising error
option 05.

Card Write. For this error, the I/O error routine
retries the operation once for a write check error (indi­
cator 07). If the error is corrected by the retry, con­
trol is returned to the I/O routine; if the error is not
corrected, the message

CDP ERR XXXXX 06071617363738
is typed, where XXXXX and the indicators are as de­
scribed above. The error option can then be exer­
cised by the operator.

Card Read. For this error, the I/O error routine
retries the operation once for a read check error
(indicator 06). If the error is corrected by the retry,
control is returned to the I/O routine; if the error is
not corrected, the message

CDR ERR XXXXX 06071617363738
is typed, where XXXXX and the indicators are as de­
scribed above. The error option can then be exercised
by the operator.

Cylinder Overflow. For this error, the I/O error
routine tests to determine if a legitimate overflow has I

occurred during a disk read or write operation. For
a legitimate overSaw, a seek operation to the next
cylinder is automatically initiated and reading or writ-

Supervisor Program 25

ing continues. A maximum of three seek operations
will be performed if sufficient core storage is available
to accommodate the data being read or written.

If the disk read or write operation results in an at­
tempt to read or write data beyond the highest sector
address of the addressed disk module, the message

DSK OFL

is typed. All error correction options, except 05, are
available to the operator. If 05 was inadvertently en­
tered, it would have the same effect as error correc­
tion option 00.

For a disk error, which is other than a legitimate
overflow, the disk read or write operation causing the
error is retried up to nine times; if this fails to cor­
rect the error, the message

DSK ERR XXXXX 06071617363738

is typed, where XXXXX is the 5-digit return ad­
dress to the object program. A flag is typed over the
leftmost position of each pair of indicator numbers.
The indicator (s) which identifies the type of error
will also be flagged in the rightmost position. If indi­
cator 38 is flagged in its rightmost position, it may
mean either of two things:

1. A legitimate overflow did occur, but another
type of error occurred in attempting to trans­
mit data to or from the succeeding cylinder.

2. A machine malfunction occurred.

If the operator exercises error correction option 05,
but this does not correct the error, he should turn the
Disk, Parity, and I/O Check switches to STOP, and
again exercise option 05. The console lights may then
be examined to determine the nature of the error.

If a legitimate cylinder overflow condition occurs,
a seek operation to the next cylinder is automatically
initiated and reading or writing continues.

Write Error Count. If an error occurs while the I/O
error routine is writing the error count in disk stor­
age, the message

BAD DISK WRITE, RESET START

will be typed. In this case, the operator does not
exercise an error correction option, but he must:

1. Clear the Select-Lock light, if it is on.

2. Depress the Reset and Start keys.

Illegal DIM entry. If the user supplies an illegal
DIM number (not in DIM table) in a CALL statement,
the I/O routine will transfer control to the I/O error
routine and the message

MAP ERR XXXXX 1111

is typed, where xxxxx is the core storage position im­
mediately follOWing the call linkage, and 1111 is the
illegal DIM entry number. The operator then enters

26

error correction code 00 and depresses the ~elease
and Start keys. The computer will again halt. The
operator must then type in a corrected 4-digit DIM

entry number and depress the Release and Start keys.

System. If the I/O error routine cannot interpret
the nature of the error, the message

IMP ERR

is typed and control is returned to the Monitor Control
Record Analyzer routine without stopping to allow
operator intervention.

In addition to the system error just described, the
computer may halt in the I/O routine at core storage
address 00467 without typing a message. This halt
occurs if a read error occurs while the I/O routine is
reading one of its subroutines from disk storage. To
retry the operation, the operator should

1. Clear the Select-Lock light if it is on.

2. Depress the Reset and Start keys.

If this error persists, it may mean either of two things.

1. The user inadvertently altered the I/O routine
in core storage.

2. A machine malfunction occurred.

Unavailable Disk D1·ive. If the programmer speci­
fies a logical module for which there is no physical
disk storage drive, the message

MOD ERR XXXXX

is typed, where xxxxx indicates the return address to
the object program. The operator must enter the error
correction code 00 and depress the Release and Start
keys. The computer will again halt. The operator
must then enter a corrected I-digit drive code and
depress the Release and Start keys to continue.

Illegal Drive Code. If the user gives an illegal drive
code in thn disk control field for a disk operation, the
message

MOD ERR XXXXX

is typed, where xxxxx is the 5-digit return address
to the object program. To continue, the operator
should enter an error correction code 00 and depress
the Release and Start keys. The computer will halt
to allow the operator to enter a corrected I-digit
drive code from the typewriter. Depress the Release
and Start keys to resume operation.

Cont1'ol Record Trap. To prevent the I/O routine
from inadvertently reading a control record as a data
record, the I/O routine is deSigned to trap control
records, if they are read from the Supervisor input
source. Each record read is tested for =F =F in its first
two positions. If present, control is transferred to the
I/O error routine and the message

TRP ERR

is typed. If the control record was read in numerical

mode and it was not an end-of-job record (=f==f==f==f=),
an additional message is typed:

MUST RELOAD

The operator then depresses the Start key and reo
enters the record. The Monitor Control Record Ana­
lyzer routine assumes control and processes the trap­
ped control record. If the control record was read in
alphameric mode, it is processed in the normal man­
ner by the Supervisor.

Error Count Retrieval Routine

Each time an error is detected by the I/O error rou­
tine, an error count is incremented by one. An error
count is maintained for each of the following error
indicators:

06 Read Check
07 Write Check
16 MBR-E Check
17 MBR-O Check
36 Address Check
37 WLR-RBC

38 Cylinder Overflow

The error counts can be typed out and reset to
zeros by entering the following instructions and data
from the typewriter:

34 00032 00701
36 00032 X0702
49 00070 0
11975400100046 (disk control field)

X is the drive code for the Monitor I System.
The Release and Start keys are depressed to start

the operation. The seven indicator counts are then
typed in sequence in 14 consecutive positions with
a Hag over the leftmost position of each count.

XX XX XX XX XX Xx XX
The error counts are reset to zeros after the typeout.

loader Routine

The Loader routine, a part of the Supervisor Program,
is used to load user's object programs into core stor­
age from cards, paper tape and disk storage. To per­
form the loading function, the Loader routine is called
into core storage whenever an object program is to
be loaded into core storage. The user's object program
could be any program in System Output format.

Programs are sequence checked as they are loaded
if input is from cards. This check is performed on the
last five digits of each input record. If any records
are out of sequence, an error message is typed and
the operator is allowed to intervene to correct the
sequence error. Patch cards may be interspersed with
other cards of an object program to be loaded.

The sequence number of card input appears in
columns 76-80. Sequence numbers start with 00001
and must have a flag over their leftmost position in
order to be sequence checked.

System Output Format

The general format in which FORTRAN I1-D and SPS I1-D

object programs will be outputted to paper tape, disk,
and cards is shown below:

Columns 1-5
6
7-8
9-75

76-80

Address of data.
Indicator code.
Length of data.
Data, indicator codes, etc.
Sequence number.

Patch cards should be prepared in the same format.
However, the sequence number must be all zeros
without Hags. All patch cards must precede the card
that defines the end of a relocatable program (see
INDICATOR CODE 6). The entries shown above are de­
scribed as follows:

NOTE: The descriptions given here will be in terms of
cards; however, paper tape and disk formats will be
the same with the exception of the sequence number.

Address of Data - This entry will always refer to
the location where the first digit of data on the card
is to be loaded. This entry will appear in columns
1 through 5 of a reloadable card. The address is an
absolute address, i.e., no relocation increment (pre­
suming this program is relocatable) has been added
yet.

I ridicator Code - This I-digit entry is used to either
define the type of data that is to follow or to con­
vey certain loading instructions to the loader. There
are thirteen different indicator codes that may be
used; some are applicable to SPS I1-D only (see INDI­

CATOR CODES).

Length of Data - This field is used in conjunction
with certain indicator codes (1, 2, 2, 3, 3, 4, 4) to
specify how many digits of data are to follow. With
other indicator codes, this field becomes part of a
larger field and assumes a different role.

Supervisor Program 27

Data - This field contains actual data to be loaded,
Data may be instructions; constants, etc., depend­
ing upon the indicator code. All instructions for re­
locatable programs will contain flags over 00, 0 1

of the operation code to specify if the P and Q ad­
dresses, respectively, should be incremented by the
relocation address. If patch cards are prepared,
these flags must be punched for addresses to be
adjusted. Instructions of programs in absolute for­
mat must not be flagged.

INDICATOR CODES

Although the output format is shown divided into
specific fields, these same fields do not always make
up the columns that are indicated. As will be seen
by the descriptions of the various indicator codes, the
format varies considerably as the type of data on the
card changes.

The indicator codes are described as follows:

NOTE: Those codes marked with an asterisk are used
in SPS II-D output only.

o

=F - This digit indicates that a change is being
made in the sequence of loading addresses
for the program. The five digits that follow
the record mark denote the new address or
origin. After the 5-digit address, there will
be another indicator code to define the data
that follows.

=+= - This digit is used whenever the data that
follows is an instruction or relative address
which cannot be fully contained before the
seventy-fifth column of the card has been
reached.

o - This digit is used when a TRA-TCD declara­
tive combination is assembled in any re­
locatable sps program. The five digits that
follow the zero constitute a branch address
for entrance to a routine.

o 0 - This digit is used in the same manner as 0
above, except the Hag denotes an sps pro­
gram with absolute addresses.

28

1 - This digit indicates that the data to follow
after the "length of data" field are instruc­
tions.

2 - This digit indicates that' the data following
the "length of data" field are constants that
are to be relocated.

2 - This digit indicates that the data following
the "length of data" field are constants that
are not to be relocated.

o

3 - This digit indicates that the data following
the "length of data" field are relative ad­
dresses to be relocated.

3 - This digit indicates that the data following
the "length of data" field are relative ad­
dresses that are not to be relocated.

4 - This digit is used to supply numeric blanks
when a relocatable program is loaded. The
2-digit "length of data" field following the
indicator specifies how many numeric blanks
are desired. Thus a 412 will cause twelve
numeric blanks to be inserted into core stor­
age when loading.

4" - This digit is used in the same manner as
the digit 4 above except that the flag indi­
cates the program is in "absolute" form.

6 - This digit indicates the end of a relocatable
program. In SPS I1-D, the five digits immedi­
ately preceding a 6 or 6 (described below)
will be the number of core positions needed
for this program. In SPS or FORTRAN, the
card that follows a card containing a 6 or 6
will contain five 9's in columns 1-5.

6 - This digit indicates the end of an "absolute"
program.

EXAMPLE

The first 35 columns contain the follOWing:

01012112490036600000=FOI01920500428~

Columns 36 through 75 are blank and columns 76-80
contain 00101.

Explanation
Column Contents Description

1-5 01012 Loading address of first in-
formation.

6 1 Code indicating the follow-
ing information is an instruc-
tion.

7-8 12 Length of the following in-
formation.

9-20 490036600000 The information to be loaded,
which is a Branch instruction
with a relocatable P field.

21 Code indicating a change in
the loading address se-
quence.

22-26 iho19 Loading address of the fol-
lowing information.

27 2

28-29 05

30-34 00428

35

Code indicating the follow­
ing infonnation to be loaded
is a relocatable constant.

Length of the following in­
formation.

The infonnation to be loaded,
which is a relocatable con-
stant.

Code indicating nothing fur­
ther is to be loaded from
this card.

76-80 00101 Sequence number.

With a relocation factor of 14000 the above data
would be loaded starting at 15012 as 491436600428.

Error Messages

If an error occurs during execution of the Loader rou­
tine, an error message will be typed and the 1620 will
stop to await operator action. A list of error messages,
the conditions which cause them, and the corrective
action required, follows.

Message - XXXXX LD1 (XXXXX is the sequence
number of the last card read in correct se­
quence).

Cause - Card sequence error.
Action - Correct the order of input cards, starting

with the card following XXXXX, and place them
in the card reader. Depress the Start key.

Message - LD2
Cause - Card read error.
Action - Reread card by depressing the Check

Reset and Start keys on the card read punch.

Message - LD 3
Cause - Disk read error.
Action - Depress Start key and retry.

Message - LD 4

Cause - Disk read error while reading Loader rou­
tine into core storage.

Action - Depress Start key to retry.

Monitor I System Communications Areas

Core storage positions 402 through 439 and disk sector
19663 are reserved for use by the Supervisor Program,
SPS assembler, FORTRAN compiler, Disk Utility Pro­
gram, and other programs as common communica-

tions areas. The Communications Areas are automat­
ically established when the Monitor I system is load­
ed. Changes to the communications areas are made
as specified by control records (see DFINE CONTROL

CARD) or by the Supervisor program itself. Care should
be taken by the user, so that the communications
areas are not inadvertently altered. A description of
each of the fields in the core storage and disk sector
communications areas follows.

Core Storage Area

Core Storage
Positions

402-421

422-425

426

427

428

429

Description

A 20-digit DIM entry or a 14-digit
disk control field being used by
the I/O routine, Disk Utility Pro­
gram, or other programs.

Starting address of work cylinder.
Only the four leftmost positions
of the sector address are given.
This address will be 1000 (with
the flag) unless changed by a
DFINE control card.

Source of SPS or FORTRAN source
program input,

1 typewriter.
3 == paper tape.
5 == card.

If this position is flagged, loading
resumes after a TeD at core stor­
age address 00000. If unHagged,
loading resumes at the core stor­
age address specified by posi­
tions 435-439 of this Communi­
cations Area.

Source of object program being
loaded,

3 == paper tape.
5 == card.
7 = disk.

A flag in this position indicates that
a DEND type entry starts execu­
tion of the object program. No
flag indicates that a TRA-TCD type
entry starts execution of the ob­
ject program.

Source of monitor control input,
1 typewriter.
3 paper tape.
5 card.

Supervisor Program 29

430-434

435-439

A flag is present in this position if
library subroutines are to be
called with sps or FORTRAN ob­
jects programs.

"High" indicator, i.e., the core stor­
age address of the highest posi­
tion to be loaded plus one.

Address where loading is resumed
following an SPS TRA statement.
This address will always be one
of the following: 00000, 00075,
00150, or 00225.

Disk Sector Area (Sector 19663)

Disk Sector
Positions

00-19

20-21

22

23

24-35

36-39

40-410

42-43 0

Description

DIM entry used by I/O routine and
Supervisor program.

Not Used. Available for use by the
1620 user.

o indicates that the program to be
loaded into disk storage is in
core image format; I indicates
that the program to be loaded
into disk storage is in relocatable
format.

o indicates card output; I indicates
paper tape output.

Six-character alphabetic name of
user's source program to be load­
ed into disk storage after as­
sembly.

Four-digit DIM entry number of
user's source program to be load­
ed after assembly.

Two digits (xx) indicating length
of mantissa for SPS subroutines.
(Standard mantissa length is 08.)

Two-digit SPS subroutine set identi­
fication number. (Standard set
number is 02.)

o These items are the systems standards. See Define
Parameters under Disk Utility Program.

30

44 0

45-46°

49

N (noise) digit for sps subrou­
tines. (Standard N digit is 0.)

Two digits (H) indicating length
of mantissa for FORTRAN sub­
programs. (Standard mantissa
length is 08.)

Two digits (kk) indicate FORTRAN

fixed-point word length (04
standard length).

Digit indicates number of disk
storage drives available to the
Monitor System.

50-72 Supervisor Program indicators.

73

74-75

76

77

78-79

80-81

82

84-88

89-93

94-98
99

Source of input, other than disk,
for FORTRAN subprograms (from
DFINE control record; 5 is stand­
ard, 3 == paper tape, 5 == card).

Number of control cards for FOR­

TRAN at load time.

Object machine core size (from
DFINE control record; 1 when
system is delivered).

N (noise) digit for SPS subroutines
(from Noise Digit control rec­
ord).

Mantissa length for SPS subrou­
tines (from Mantissa Length con­
trol record).

SPS subroutine set identification
number (from Subroutine Set
control record).

FORTRAN A and I/O subroutine set
numbers (from FORX or XEQS con­
trol record).

FORTRAN A and I/O standard sub­
routine set number (from DFIXE

control record; 1 when system is
delivered) .

First core storage address of a re­
locatable object program.

Computed relocation address of a
relocatable object program.

Card sequence number.
A record mark (=t=).

In every data processing installation there are certain
operations that must be performed frequently. These
operations may differ in detail, depending on the
user's particular machine configuration and data for­
mat, but essential functions remain the same. Because
of their frequent use, the burden of programming
these operations can become a costly, time-consuming
task. Therefore, there is a need for generalized
routines which will satisfy specific functions and allow
the user the flexibility of assigning the specifications
for his particular problem.

The generalized routines, provided by IBM Pro­
gramming Systems, described in this publication, are
grouped under the heading Disk Utility Program.
They are designed to assist the user in the day-to-day
operation of his installation. By means of these rou­
tines, certain frequently required operations, such as
loading or unloading disk storage (data or programs)
from cards or paper tape, etc., can be performed with
minimum programming effort by the user.

The routines described in this publication are:

1. Write Addresses. This routine writes sector ad­
dresses on a disk pack as specified by the user.
Data on the disk pack can be replaced by zeros
or left unchanged.

2. Alter Sector. This routine uses the typewriter to
change data in a sector of disk storage. In most
cases, only the digits to be changed must be
typed.

3. Disk-to-Output. This routine unloads disk stor­
age containing data or programs into cards,
paper tape, or on the typewriter.

4. Load Programs. This routine loads one or more
programs from cards or paper tape to disk stor­
age at either a specified address or an address
selected by the load routine itself, and checks
for an overlap of previously stored programs.

5. Replace Programs. This routine implements the
changes or additions necessary to update a pro­
gram on disk storage. Input can be in either card
or paper tape form.

6. Disk-to-Disk. This routine copies data or pro­
grams from one area of disk storage to another.

7. Delete Programs. This routine effectively deletes
programs from the system by deleting their
associated DIM entries and Equivalence table

Disk Utility Program

entries without actually removing the programs
themselves.

8. Define Parameters. This routine redefines certain
essential parameters of the 1620 Monitor I Sys­
tem.

9. Define Disk Pack Label. This routine writes the
"label sectors" (first and last sectors, cylinder 99)
and establishes a Sequential Program table on a
disk pack. It can be used to initialize new disk
packs.

10. Define FORTRAN Library Subroutine Name.
This routine generates an entry in the Equiva­
lence table for FORTJ\AN subroutines that have
multiple entries. Thus, a name can be assigned
to all entries in a subroutine.

Each routine can be entered and executed by
means of control records read by the Disk Utility
Program. In addition, the routines are used by
both SPS II-D and FORTRAN II-D to output as­
sembled programs into cards or paper tape and
to load and replace programs in disk storage.

The Equivalence table, DIM table, and Sequential
Program tables are used and modified by the Disk
Utility Program in the execution of its routines. These
tables are updated automatically for each disk stor­
age change when the user adds, deletes, or replaces
a program. Entries are created in the tables whenever
a new program is loaded to disk storage.

Operation

The Disk Utility Program, a self-loading program, is
loaded into disk storage along with the other pro­
grams that make up the Monitor I System. When a
DUP Monitor Control card (=F=F DUP in card columns
1-5) is recognized by the Supervisor Program, the
Disk Utility Program will take control and select the
appropriate Disk Utility routine as identified by the
next card in seqence, which should be a Disk Utility
Program Control card. This card is identified by an
asterisk in card column 1. Card columns 2-6 contain
a code word to identify the Disk Utility routine de­
sired: such as, Alter Sector, Load Programs, etc., and
the remaining card columns provide additional con­
trol information to be used by the Disk Utility routine
itself. The user supplies the control information which
describes the function he desires. Because the control

Disk Utility Program 31

information for each type of Disk Utility Program
Control card is different, the format of each is describ­
ed separately in the separate routine descriptions.
After the execution of a Disk Utility routine is com­
pleted, control is returned to the Monitor Control
Record Analyzer routine.

A DUP Monitor Control card, as well as a Disk Utili­
ty Program Control card, is required each time a Disk
Utility routine is to be executed. These cards are
stacked with the other input cards to be processed by
the Monitor I System. This stacked input may be in
card or paper tape form or it may be entered from
the typewriter.

If the code word contained in a Disk Utility Pro­
gram Control card is not one of the ten legitimate
codes (DWRAD, DALTR, DDUMP, DLOAD, DREPL, DELET,
DFINE, DCOPY, DLABL or DFLIB) an error mes­
sage will be typed and the computer will halt. This
message will be comprised of the data from the con­
trol card and a constant, ERR CONTROL. When the
Start key is depressed, the Disk Utility routine will
return control to the Monitor Control Record Analyzer
routine which will pass all cards until the next Moni­
tor Control card is reached.

If the control record is entered from the typewriter,
the message

ENTER DUP CNTRL REC

is typed and the computer halts. The user may then
enter the next Disk Utility Control record from the
typewriter and depress the R-S key to continue pro­
cessing. Records are entered in the alphameric mode

The Disk Utility Program uses the I/O routine of
the Supervisor Program to perform its I/O functions
Therefore, error messages associated with that rou­
tine will be typed if an I/O error occurs. The I/O
error messages, as well as operating options for I/O
errors, are described under, I/O ERROR ROUTINE, in the
Supervisor Program section.

Whenever a Disk Utility routine is instructed by a
control record to write read-only Hags with sector
addresses, the message

DUP I> TURN ON WRITE ADDRESS KEY, START

is typed and the program halts. The operator should
turn on the Write Address key (to allow read-only
Hags to be written) and depress the Start key to con­
tinue processing. After the program has been com­
pletely loaded, the message

DUP I> TURN OFF \V'RITE ADDRESS KEY, START

is typed and the program again halts to allow the

32

operator to turn off the Write Address key.
Whenever a program of less than 200 sectors is

assigned to disk by any Disk Utility routine,
it will always be placed in consecutive sectors of one
cylinder. However, a program can be assigned by the
user, to any available disk storage area as described
under LOAD PROGRAMS ROUTINE .. Programs as large as
999 sectors long can be processed by the Disk Utility
Program.

After a program is loaded to disk by any Disk
Utility Program routine, the message

DK LOADED AAAAAA nn DiSDDDD
SSS CCCCC EEEEE =1=

is typed to inform the user about the assigned DIM
entry.
AAAAAA is the assigned program name, 1111 is the as­

signed DIM entry number and the remainder of the
message is the DIM entry itself.

Write Addresses Routine
The Write Addresses routine ~s used to write sector
addresses on a disk pack. Addresses may be written
with or without read-only Hags over the leftmost
pOSitions. Data positions of each sector may be
changed to zeros or left unchanged.

When the Write Addresses routine is executed,
the Write Address key must be turned on. The mes­
sage:

DUP I> TURN ON WRITE ADDRESS KEY, START

is typed to signal the operator to turn the switch on.
After the routine has been executed, the message:

DUP I> TURN OFF WRITE ADDRESS KEY, START

is typed to signal the operator to turn the switch off.
The format of the control card follows.

Control Card (DWRAD).

Columns 1
2-6
7-12

17

18

Asterisk (I»
Code word, DWRAD.
Disk sector address where
writing is to start (seek ad­
dress).

Letter P if read-only Hags
are to be written over ad­
dresses; 0 the r w is e leave
blank.

Letter Z if data positions
are to be changed to zeros;
letter S if data positions are
to remain unchanged.

21-26 Address to be written at sec­
tor where writing is to start.

27-32 Final address to be written.

When the DWRAD Control card is read, control is
transferred to the Write Addresses routine and the
message

WRITE AND SAVE
SEEK START STOP

XXXXXX XXXXXX XXXXXX

or the message

WRITE AND ZERO
SEEK START STOP

XXXXXX XXXXXX XXXXXX

is typed to allow verification of control record data
and the computer is halted. (Note that the second
form of the message indicates that sector data posi­
tions are to be changed to zeros.) Six X's indicate the
respective seek, start, and stop addresses. Depressing
the Start key causes execution of the routine. The
routine seeks the disk sector address specified in
columns 7-12. The address specified in columns 21.,26
is written in that sector; the address is then increment­
ed by one and written in the next sector. Writing
continues in this manner until the incremented ad­
dress is equal to the final address (columns 27-32)
and the final address has been written.

If the program is unable to find the starting address
(columns 7-12), or any address that should be on the
specified track in disk storage, an error message ER
SK XXXXXX will be typed. XXXXXX is the disk
address on the last sector examined when no equal
comparison could be made with the sector addresses
that should be on the track that has been read. In
addition, the 20 sector addresses f~om the selected
track will be typed and the progra~ will halt. \Vhen
the Start key is depressed, control is returned to the
Monitor Control Record Analyzer routine to read the
next Monitor Control record.

Alter Sector Routine

This routine allows the user to alter the data in any
selected sector of disk storage. The sector data to be
changed is typed out. All, or selected portions of the
sector may then be updated. After the changes have
been made, the old and the new data are typed out
for visual comparison and verification. If the changes
are satisfactory, the new data is stored on the disk
pack. As many sectors as desired may be altered each

time this routine is used. Control is transferred to
the Alter Sector routine when the control card is read.

Control Card (DALTR).
Columns 1 Asterisk (0)

2-6 Code word, DALTR.

After the control card is read, the message

SECTOR

is typed and the program halts.
The operator types in the 6-digit address of the

sector to be altered and depresses the Release and
Start key. If more or less than six digits are typed,
the message

SECTOR ADDRESS ILLEGAL,
START TO RE-ENTER °DALTR

is typed and the machine halts. Pushing the Start key
will restart all operations on the given sector. "The
routine reads the sector and types 'it out in the fol­
lowing format.

1st Half xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx ORIGI NAl

2nd Half xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx ORIGI NAl

Note that the two halves of the sector are identified by
the phrases, "1st Half" and "2nd Half," respectively.
(Typewriter margins must be at least 70 spaces apart
to permit this format.)

Each group of ten characters is assigned a section
number by the routine. The first five groups are as­
signed numbers 01-05; the last five groups are assigned
numbers 06-10. After the sector data is typed out, the
routine requests the number of the section in which
the first change will be made.

The message typed out is shown below:

SECTION

The user now types in one 2-digit section num­
ber between 01 and 10. After depressing the Release
and Start key, the message

SECTION NUMBER ILLEGAL,
START TO RE-ENTER °DALTR

is typed if the section number is greater than 10. If
the section number is correct .(between 01 and 10),
the selected section is typed out for verification as
shown below.

XXXXXXXXXX TYPE CHANGE

The changes can now be entered directly under
the typed section. If a particular character does not

Disk Utility Program 33

require changing, an "x" may be typed under that
character, or the character itself may be retyped.
Although only one section is typed out for anyone
selection, succeeding sections may be altered by con­
tinuing to type changes. Spacing is optional except
that the number of characters (including spaces) can­
not exceed 100. Spaces (alpha blanks) will not be­
come part of the sector data. For example, assume that
section 3 is selected and is typed out as shown below:

3574246798

The operator desires to make some changes in section
3 and section 4. For this example, the typewritten
page may look like this:

3574246798 TYPE CHANGE
XXX7625X82 75234XX479

Typing may be terminated as soon as the last digit
to be changed is typed; that is, if the fifth digit in
section 4 (previous example) is the last change, the
last five digits of section 4 do not have to be typed in.

If the user does not type changes but simply de­
presses the Release and Start key, the message

CORRECTIONS HAVE NOT BEEN ENTERED

is typed and the computer will halt on a read alpha­
meric instruction to allow the user to enter the
changes.

If more digits are entered than the sector can con­
tain, the message

TYPE-IN EXCEEDS SECTOR LENGTH, START

is typed. Depressing the Start key allows the operator
to begin again and enter a new sector address. Spaces
are optional and do not becom'e part of the sector
data; however, they are counted toward the maximum
allowable number of characters which is 100.

After all changes have been made, the operator
depresses the Release and Start key. The routine then
types out the original sector data along with the
changes that were typed in. The output appears as
shown below:

151 Half 1234567890 1234567890357424679886542132120987654321 ORIGINAL

lsI Half 1234567890 12345678903577625782 75234134790987654321 CORRECTED

2nd Holf 7265417623 0176421432 8543217290 5482797654 8243176521 ORIGINAL

2nd Holf 7265417623 017642143285434172905482797654 8243176521 CORRECTED

34

At this point the routine will again type the word

SECTION

If other changes must be made, the operator enters
a new (or possibly the same) section number and de­
presses the Release and Start key. The SECfION change
routine is now repeated. When all the changes prove
satisfactory, the operator enters a record mark instead
of a section number and depresses the Release and
Start key. The routine then writes the updated sector
back on the disk pack and types the message

DISK SECTOR DDDDDD CORRECTED

DDDDDD is the sector address that was selected to be
changed. The routine then branches to the part of
the routine that types the message "SECfOR~~ to allow
the user to choose another sector address and change
another sector.

When all desired sectors have been altered, this
routine is concluded by typing a record mark instead
of a sector address after the word SECfOR has been
typed out. This will cause control to be returned to
the 1620 Supervisor Program, which will read another
1620 Monitor I control statement.

Operating Notes

When the routine is ready to accept the new data
(after the section number is typed in), it positions
the console typewriter in the "alphameric shift" mode.
Therefore, typing numerical data requires the opera­
tor to manually shift into numerical mode.

Flagged digits 1-9 may be inserted by typing the
corresponding alphabetic letters J-R. Flagged zeros,
numeric blanks, Bagged record marks, and flagged
group marks may be entered by using minus (-) key,
@ key, W key, and G key, respectively. Alpha blanks
(spaces) do not become a part of the sector data.

Disle-to-Output Routine
The Disk-to-Output routine transfers data from se­
lected portions of disk storage to cards, paper tape,
or the typewriter. This routine enables the user to
preserve original records before they are updated or
changed, thus providing an audit trail. The card or
paper tape output will be in numerical form and will
contain record marks and group marks. Numerical
blanks result in blank card columns.

This routine can be used to obtain any of the fol-
l~wing items of output as directed by the user.

1. Program or data identified by name.
2. Program or data identified by DIM number.
3. Data between sector limits.
4. DIM table.
5. Equivalence table.
6. Availability list (extracted from Sequential Pro­

gram table).
7. Sequential Program table.

The routine is executed whenever a DDUMP control
card is read by the Disk Utility Program or wherever
a FORTRAN compilation or sps assembly requires
punching into cards or paper tape.

The Disk-to-Output routine can be used to trans­
mit any number of disk sectors to cards, paper tape,
or typewriter. Transmission will start with the first
sector specified in a DIM entry or with a beginning
sector specified by the user. Transmission will end
when the sector count in the DIM entry reaches zero
or when a specified ending sector is found. The out­
put following compilation or assembly is terminated
by a "9's" trailer record. The trailer record format is
five 9' s followed by a record mark, 69 zeros and a
sequence number. This record always follows all sps
and FORTRAN object programs. During execution of
the Disk-to-Output routine, resulting from DUP control
records, error messages 01, 04, 06 or 20 may be typed
(see ERROR DETECfION AND CORRECfION).

The control card used to transfer control to the
Disk-to-Output routine is punched in the following
format.

Control Card (DDUA.f.P).

Columns 1 Asterisk (0).

2-6 Code word, DDUMP.

7-12 Alphabetic name of pro­
gram or data to be punched
or typed (same name that
a p pea r s in Equivalence
table).

13-16 DIM entry number of pro­
grams to be punched or
typed. (If the letter M is
present in column 18, either
a name or DIM entry num­
ber must be present, but
both need not be present.)

17 Output device,
C == card
P == paper tape
T == typewriter
~ ~ \/'\<.I N'"('fi~

Output Format

CARD

18 Identify output
I == Dis k Identification

Map (DIM).

E == Equivalence table
A == Avalability entries

from the sequential pro­
gram table from the
disk module specified
by column 19 (typed
output only).

S == E n t ire sequential
program table from the
disk .module specified
by column 19.

M == Program identified
by columns 7-12 or 13-
16 of this card.

L == The sectors between
limits as specified by
columns 21-26 and 27-
32 of this card.

19 Module number (0, 1, 2, or
3) to be used if output
options S or A are exercised
(see column 18 above).

21-26 Beginning disk storage ad­
dress of output (lower lim­
it) .

27-32 Ending disk storage address
of output (upper limit).

Each 300 positions of disk storage (three sectors)
will be punched into four successive cards; 75 columns
of disk data followed by a five-column sequence num­
ber in each card. When 2 sectors are to be outputted,
3 cards are punched. When 1 sector is outputted, 2
cards are punched. Therefore, all disk data is punched
from 1 or 2 sector outputs.

A special trailer card containing 9's in columns 1-5,
a record mark in column 6, zeros in columns 7 ~ 75, and
a sequence number in columns 76-80 will be punched
following the last output card. This record is used to
temlinate loading when the output is reloaded by the
Load Programs routine or Replace Programs routine.
If the output deck is reloaded by the Load Programs
routine or Replace Programs routine, the trailer card
must remain behind the deck for control purposes.

DiBle Utility Program 35

The 9's trailer record will load into the 'work cylinders
along with the balance of the data; however, the
trailer record will not require extra disk storage posi­
tions if the data is moved to another disk location.
If the output is a program to be reloaded by the
loader routine, the entire program must be outputted.
The System Output Loader routine requires an entire
program, with all of its indicator codes, in- order to
operate.

When either the DIM table or Equivalence table is
punched out, they will be in a loadable format; Le.,
alphameric characters will be in 2-position alpha­
meric coding form.

PAPER TAPE

This output will be in standard loadable format, i.e.,
it may be reloaded to disk storage by the Replace
Programs routine. The output will be identical to the
card format described above, except that the sequence
number will not be punched with paper tape records.
The last output sector will be followed by a trailer
record for control in the event that the output is re­
loaded into disk storage.

TYPEWRITER

With the exception of the Availability list and Equiva~
lence table, all typewriter output will be in a standard
format. Each IOO-character sector will be typed on
two lines as shown below.

,1

1001

,1

1001

,1

100 I

Availability Lists. AvailabiHty lists are typed as
follows:

AAAAA
BBBBB CCCCC
BBBBB CCCCC
BBBBB CCCCC

AAAAA is the disk pack identification number.
BBBBB is the starting disk address of an unused area

of storage.
ccccc is the ending disk address for the unused area.

These entries, one per line, are extracted from the

36

Sequential Program table by the Disk-to-Output
routine.
Equivalence -Table. Equivalence tables are typed

in the following format with five entries per line.

NNNNNNill1 NNNNNNtll1 NNNNNNill1 NNNNNNill1 NNNNNNil1l

- - - - -
NNNNNN 1111 NNNNNN 1111 NNNNNN 1111 NNNNNN 1111 NNNNNN 1111

NNNNNN is the alphameric name.
fUI is the DIM entry number. Available FORTRAN library

entries will appear as RRRRRR 9999 in place
of NNNNNN IIIl.

Load Programs Routine
The Load Programs routine is used initially to load
SPS U-D or FORTRAN II-D object programs from the
working cylinders or programs previously dumped
by the Disk-to-Output routine, from cards or paper
tape into disk storage. Overlap of occupied areas of
disk storage is prevented by the routine. Programs
cannot be loaded in the work cylinders with this
routine. Programs will be loaded into areas of disk
storage selected by the routine itself, if the user
does not specify a storage area preference. If the
routine selects the storage area, it will always store
the program on a single cylinder, without overlapping
cylinders, unless it is longer than an entire cylinder.
If the user selects the storage area, it will be stored
in the selected area regardless of cylinder overlap
conditions.

This routine provides the following program load­
ing options.

1. A name may be assigned to the program and
placed in the Equivalence table.

2. A DIM entry may be assigned to the program.
3. The disk storage location can be specified and

permanently assigned (fixed).
4. An entry address (execution address) can be

assigned in the DIM entry to the program.
S. Read-only £lags can be written in the sector ad­

dresses ..
6. The disk storage location for the program ca~ be

specified by cylinder (s) without causing, perma­
nent assignment. Thus, several associated pro'­
gram·s can be aSSigned to the same- cylinder or
group of cylinders by the us-erwithout actually
specifying sector addresses.

7. Programs in either core-image or system output
formats can be loaded; and programs in system
output format can be converted to core image
while loading.

It is possible, by exercising option 3, to permanently
assign the sectors where the program is to 'be loaded
in disk storage. This capability is provided in this
routine only. When using this option, any programs
already in the specified load area, but not permanently
assigned, will be moved. The overlapped program
is moved to the area which immediately follows the
new program. If this in turn would result in additional
overlapping of other programs, the process of moving
programs continues until available space is found.
If any program, _ in this move, is a permanently
assigned program, or contains read-only Hags in its
sector addresses, no programs are moved and the
new program will not be loaded.

A program is considered immovable if it is either
permanently assigned by the Load Programs routine
or if it contains read-only Hags in any of its sector
addresses. Permanently assigned programs can be

1. Deleted by the Delete Programs routine.
2. Copied by the Disk-to-Disk routine.
3. Changed by the Alter Sector routine.
4. Dumped into card or paper tape or printed on

the typewriter.
S. Read for any purpose with normal read com­

mands.
However, a permanently assigned program will not

be moved in disk storage by the Disk Utility Program.
Programs being loaded can be "file protected" by

writing read-only Hags over the disk addresses of the
storage sectors. All loading options are indicated by
the control card.

Control Card (DLOAD).

Columns 1
2-6
7-12

17-20

21-26

Asterisk (0)
Code word, (DLOAD).

Alphabetic name (left-justi­
fied) of program to be load­
ed into disk storage.
A DIM entry number to be
given the program to be
loaded. (This number will
not be used by the routine
if it is already assigned to
another program.)
Beginning disk sector ad­
dress in the work cylinders
that contains the program to
be permanently loaded. The

-first digit of the sector ad­
dress selected must be 1, 3,
S, or 7.

27-32 Ending disk address in the
work cylinders that contains
the program to be perma­
nently loaded. The first digit
of the sector address select­
ed must be 1, 3, S, or 7.

33-38 Assigned disk storage ad­
dress of the program to be
loaded. (If this' address is
included, the program will
be permanently assigned to
the given address.) The first
digit of the sector address
selected must be 1, 3, S, or 7.

39-43 Core storage address for a
program that is placed in
disk storage in core-image
format. This address will be
placed in the CCCCC por­
tion of the associated DIM

entry.
44-48 Entry address (address of

the first instruction to be ex­
ecuted) for a program that
is being loaded. This address
is placed in the EEEEE por­
tion of the associated DIM

entry. This address is used
for reading programs from
disk in core-image format
with the I/O routine.

49 Input device,
C == card
P paper tape.
D == disk storage w 0 r k

cylinders.
SO Letter I, if program to be

loaded is in Core
Image format.

S, if program to be
- loaded is in Sys­

tem Output for­
mat.

M, if program to be
loaded is in Sys­
tem Output for­
mat, and it is to be
converted to Core
Image format be­
fore loading t 0

disk storage.
51 Letter P, if read-only Hags

are to be written over disk
addresses of storage sectors;

Disk Utility Program 37

otherwise leave blank
52-54 Beginning cylinder (three

, digits XYY, where X is the
module, 0, 1, 2, or 3, and YY
is the cylinder number 00-
99) to define lower limit
where program can be load­
ed.

55-57 Ending cylinder (three dig­
its XYY, where X is the
module 0, 1, 2, or 3, and YY
is the cylinder number 00-
99) to define upper limit
where program can be load­
ed. (Note that both the
upper and lower limits will
be ignored by the routine
if columns 33-38 of this card
are punched.)

60 Any non-blank Character, if
program to be loaded is a
FORTRAN or sps object pro­
gram which requires sub­
routines.

Replace ,Programs Routine

The Replace Programs routine is used to replace pro­
grams in disk storage with updated, changed, or new
programs. Programs can be loaded to a disk storage
area from cards, paper tape, or from another assigned
disk storage area. In addition to loading disk stored
programs, identified by DIM entries, programs can be
loaded from work cylinders.

A program can be given another name in the Equiv­
alence table by reloading the program over its original
assigned disk area using a different name. The pro­
gram can then be called by either name since both
names are maintained in the Equivalence table.

With this routine, it is possible to load a program
to itself adding read-only flags to the disk addresses.
A permanently assigned program in disk storage can­
not be replaced by this routine. To replace a perma­
nent program, (1) delete the program with the Delete
Programs routine and, (2) load the replacement pro­
gram with the Load Programs routine.

The format of the control card for this routine fol­
lows. All fields are optional with the exception of
columns 1-6, 17-20, and 49.

Control Card (DREPL).

38

Columns 1
2- 6
7-12

Asterisk (0).
Code word, DREPL.

Alphabetic name of pro-

gram.
13-16 The DIM en try number

which identifies the program
to be loaded if the program
is from another assigned
disk storage area. (The pro­
gram to be loaded will be
deleted from its original disk
storage location.)

17-20 The DIM en try number
which identifies the program
to be replaced.

21-26 Beginning disk sector ad­
dress if the program to be
loaded is in the work cylin­
ders. The first digit of the
sector address selected must
be 1, 3, 5, or 7.

27 -32 Ending disk sector address
if the program to be loaded
is in the work cylinders. The
first digit of the sector ad­
dress selected must be 1, 3,
5, or 7.

39-43 Core storage address for a
program that is to be placed
in disk storage in core-image
format. This address will be
placed in the CCCCC por­
tion of the associated DIM

entry.

44-48 Entry address (address of
the first instruction to be
executed) for a program
that is being loaded. This
address is placed in the
EEEEE portfon of the asso­
ciated DIM entry.

49 Input device,
C == card.
P == paper, tape.
D == disk storage.

50 Letter I, if program to be
loaded is in Core
Image format.

S, if the program to
be loaded is in
S y s tern Output
format.

M, if program to be
loaded is in Sys­
tem Output for­
mat, and it is to
be converted to

51

core image format
before loading to
disk storage.

Letter P, if read-only flags
are to be written
on disk addresses
of storage sectors;
otherwise I e a v e
blank.

60 Any non-blank character, if
program to be loaded is a

Disk-to Disk Routine

FORTRAN or sps object pro­
gram which requires sub­
routines.

This routine can be used to copy data or programs in
disk storage to any available (unoccupied) disk stor­
age area including the work cylinders. A program to

38.1

be copied should be specified by a DIM entry, an al­
phabetic name that is in the Equivalence table, or a
sector address given by the user. The program cannot
be copied into an area which is already identified by a
DIM entry number, except the work area (DIM entry
00(1). Read-only flags may be written with the disk
sector addresses of the copy, except in work cylinders,
at the option of the user. When this routine is used,
the DIM table and the original program remain un­
changed. It is not possible to copy a program over a
portion of that same program. It is not possible to
copy a program into the work cylinders if that pro­
gram exceeds the work cylinder limits. Data can be
copied from one portion of the work area to another;
however, no check will be made for overlapping of
data within the work area. If a program or data
to be copied is less than 100 sectors, there is no dan­
ger of overlap.

If any read-only Hags are encountered in sector
addresses within the copy area, an I/O routine error
message is indicated. The program will be copied up
to the point of the error.

The options offered by this routine are identified
in the control card that follows.

Control Card (DCOPY).

Columns 1 Asterisk (0)

2-6 Code word, DCOPY.

7-12 Alphabetic name of program to
be copied.

13-16 The DIM entry number which
identifies the program to be
copied.

21-26 Beginning sector address of pro­
gram or data to be copied.

27-32 Ending sector address of pro­
gram or data to be copied.
(Note that the beginning and
ending sectors will always be
used if present.)

33-38 Beginning disk sector address
of the new copy. This address
must be that of work cylinders
or available disk storage. This
field must always be punched.

51 Letter P, if read-only Hags are
to be written on disk sector ad­
dresses at the new location of
the program; otherwise leave
blank.

The sectors that are to contain the copy must not

have read-only flags in the sector address initially or
an error will be indicated and copying will be termi­
nated.

After the data is successfully copied, the message

NNNNN SECTORS OF DATA
COPIED FROM xXxxxx TO YYYYYY

is typed, where NNNNN specifies the number of
copied sectors and xxxxxx and yyyyyy are the be­
ginning sector addresses of the From and To areas,
respectively. If the copied data is written with read­
only flags, an additional message is typed.

AND FILE PROTECTED

To move a program or data from one disk area to
another, it should be: (1) copied to the work cylinders
from the original. area, (2) deleted from the original
area, and (3) loaded to the new area from the work
cylinders. This can be accomplished by using the
Disk-to-Disk, Delete Programs, and Load Programs
routines, in that order. A °DCOPY control record is used
to copy the program into the work cylinders; a oDELET

control record is used to make the original storage area
available by deleting its DIM entry and Equivalence
table entry; and a °DLOAD control record is used to
load the program to a specified sector address and to
generate the new DIM entry and Equivalence table
entry.

Delete Programs Routine
This routine can be used to delete a program and its
associated DIM entry, Sequential Program table entry,
and Equivalence table entry (if any) or entries
(where the program has more than one name) from
disk storage. When a program is deleted, read-only
Hags will be removed and programs in succeSSively
higher disk storage positions will not be moved up
to fill the vacated storage area.

The format of the control card follows.

Control Card (DELET).

Columns 1 Asterisk(0)
2-6 Code word, DELET.

7-12 Alphabericname of program to
be deleted (same name that ap­
pears in Equivalence table).

13-16 DIM entry number of program
to be deleted. (Note that either
a Name or DIM entry number
must be present, but not both.)

Disk Utility Program 39

Define Parameters Routine
This routine can be used to alter the assignment of work
cylinders, DIM table, Equivalence table, Sequential Pro­
gram table, or certain system specifications in the Sys­
tem Communications Area for the Monitor I System.
The DIM table may be lengthened or shortened, but may
not be moved from cylinder 24. The Sequential Program
table may be shortened, but must remain on cylinder
99. The Equivalence table may be lengthened or short­
ened. It will always immediately follow the DIM table,
even if the DIM table is altered in length. This routine
can also be used to indicate that more than one disk
storage drive is to be used with the 1620.

'''hen the size of the DIM table is changed, the Equiv­
alence table will be moved to immediately follow the
DIM table. When redefinition of an area (work cylin­
ders, DIM table, or Sequential Program table) is at­
tempted, the area must be available; i.e., it must not
be occupied by programs with assigned DIM entries. If
an area is unavailable, it will not be redefined and the
message

DUP 0 ERROR 08

will be typed.
The normal assignment of disk storage for the above

mentioned tables is as follows.

Cylinder
Description Assignment

Work Cylinders 00-23
DIM table 24
Equivalence table
Sequential Program table

25 (first eighty sectors)
99 (second through

eighty-first sector)

To make any of the allowable alterations to these as­
signments,or to the system specifications, the user must
enter a control card containing the new parameters.
Only the parameters to be changed need to be punched
in the control card. The parameters from a control card
are processed from left to right by the routine. If any
parameter is invalid, those parameters to its right will
not be processed.

Control Card (DFINE).

40

Columns 1 Asterisk(0).

2-6 Code wQtd, DFINE.

7-12 Beginning disk sector address of
work cylinders (must be first ad­
dress of a cylinder).

14-16 Number of cylinders to be re­
served for work cylinders (11
minimum, 99 maximum).

18 Number of disk storage drives on
system (1-4). This must be de-

fined before the user attempts to
reassign the work cylinders to any

disk drive other than the first.
20-22 Number of sectors to be reserved

for DIM table (35 minimum, 999
maximum).

24-26 Number of sectors to be reserved
for Equivalence table (9 mini­
mum, 999 maximum).

28-30 N umber of sectors reserved for
Sequential Program table (80 sec­
tors maximum).
(Note that the same number of
sectors is reserved for each disk
storage drive on the system as
defined in column 18.)

37-38 Standard length of mantissa for
sps floating-point subroutines (disk
sector positions 40-41 of the Com­
munications Area; 08 when the
system is delivered). This value
may be any number between
02-45.

40-41 Standard sps subroutine set identi­
fication number (disk sector posi­
tions 42-43 of the Communications
Area; 02 when the system is de­
livered).
00 - Divide Subroutine only.
01 - Fixed length mantissa (08)

floating-point subroutines for
machines equipped with Au­
tomatic Divide feature.

02 - Variable-length mantissa
floating-point subroutines for
machines equipped with the
Automatic Divide feature.

03 - Variable-length mantissa
floating-point subroutines for
machines equipped with the
Automatic Floating-point
feature.

43 Standard N (noise) digit (any
number 0-9) for sps subroutines
(disk sector position 44 of Com­
munications Area; 0 when the sys­
tem is delivered).

45-46 Standard length of· mantissa (any
num ber 02-28) for FORTRAN pro­
grams (disk sector positions 45-46
of Communications Area; 08 when
the system is delivered).

48-49 Standard fixed-point word
length (any number 04-10) for

FORTRAN programming system
(disk sector positions 47-48 of
Communication Area, 04 when
the system is delivered).

51 Source of Input, other than disk
input, for FORTRAN subpro­
grams (disk sector position 73
of Communications Area; 5
when the system is delivered).

3==paper tape
5== card

53 Core storage capacity of object
machine (disk sector position
76 of Communications Area; 1
when the system is delivered).

1==20,000
3==40,000
5==60,000

57 FORTRAN Arithmetic and I/O
subroutine set identification
number (disk sector position
83 of Communications Area; 1
when the system is delivered).

1 == disk storage version

2 == core storage version

3 == disk storage version for
machines equipped with
the Automatic Floating
Point feature.

4 == core storage version for
machines equipped with
the Automatic Floating­
point feature.

The number of disk storage drives on the system
may be 1, 2, 3 or 4. The Supervisor Program and the
Disk Utility Program will need to know this number
in order to utilize all available disk storage. The sys­
tem will utilize only the first disk storage drive unless
additional drive availability is specified by a DFINE

control card. Therefore, it may be necessary for the
user to process a DFINE control card immediately after
initially loading the Monitor I System. When loading
programs and assigning addresses, the Monitor System
will start with the first available sector on the first
available disk drive and proceed sequentially higher
to available drives. Also, the user may want to change
some of the other parameters of the system before
any actual processing is initiated. If any errors are
found in any data on a DFINE control card, all data to
the left of the data in error will have been processed
and data to the right will be ignored. See ERROR DETEC-

TION AND CORRECTION for a description of possible
DFINE errors.

When the routine is used to enlarge or shorten the
tables or to change the number of disk storage drives
for the system, the °DFINE record should be followed
by a =t= =FPAUS record. After the routine is executed,
=F =FPAUS record will halt the computer to allow the
operator to reinitialize the System; i.e., to reload the
Monitor System into core storage. The procedure for
calling the System into core storage from disk storage
is described under OPERATION in the Monitor I System
Section.

Define Disk Pack Label

This routine can be used to initialize a new disk pack
for the Monitor System by writing the disk pack iden­
tification number in the label sectors (first and last
sectors of cylinder 99) and the Sequential Program
table in cylinder 99. All di3k packs used by the Moni­
tor System must be labeled and must contain a Se­
quential Program table. The disk pack identification
number is written in the first five positions of the first
sector in cylinder 99 and a read-only Hag is written
over the corresponding sector address. The same
number is also written in the 31st through 35th posi­
tions of positions 1-100 of the last sector of the disk
pack. This sector address is changed to 00199 regard­
less of the addressing scheme used for the remainder
of the disk pack.

Note that it is necessary to initialize the disk pack
which contains the Monitor system because the sys­
tem pack is not automatically initialized when the
system is loaded. Label sectors on a pack which con­
tains the Monitor I System may be changed by this
routine; however, the Sequential Program table will
not be re-initialized. The Monitor System disk pack is
identified by 04800 in the sector address portion
of DIM entry 3.

The format of the control card follows.

Control Card (DLABL)

Columns 1 Asterisk (0).

2-6 Code word, DLABL.

7-11 Disk pack indentification num­
der to be assigned.

12 Disk drive number (0, 1, 2, or
3) of the disk drive that con­
tains the disk pack to be label­
ed.

Both a disk pack identification number and disk
drive number must be given. If either one is missing,

Disk Utility Program 41

the message

DUP 0 ERROR 01

is typed and the computer halts without writing label
sectors. To correct the error, the operator may enter
a corrected control card in the stacked input. Depress­
ing the Start key will return control to the Monitor
Control Record Analyzer routine to read the next
Monitor Control record in the stacked input.

Only numerical characters may be entered for the
disk pack identification number. If this number is all
zeros or any position contains a letter or special char­
acter, the message

DUP 0 ERROR 10

is typed and the computer halts without writing a
label sector. The restart procedure is the same as
that given above for ERROR 01.

Define FORTRAN Library Subroutine Name

This routine permits the user to assign additional
names (synonyms) for the FORTRAN library subrou­
tines or to assign names to user-written library subrou­
tines. Any user-written library subroutine with more
than one entry will require this routine in order to
place the name of the additional entries in the Equiv­
alence table. These names are added to the Equiva­
lence table within the first 50 entries of the system
disk pack.

The control card format follows.

Control Card (DFLIB).

Columns 1 Asterisk (0).

2-6

7-12

14-15

Code word, DFLIB.

Name of library subroutine,
left-justified.
DIM number. This number was
originally specified by the user
when the subroutine was added
to the system disk pack. The
abbreviated 2-digit DIM num­
bers for the sixteen standard
library subroutines may be
found in the FORTRAN II-D Li­
brary Subroutines table in the
FORTRAN section.

When a name is entered in the Equivalence table,
the message

FORTRAN LIB NAME ENTERED NNNNNNIIII

42

is typed, where NNNNNN is the name specified in col­
umns 7-12 and IUI is the DIM number specified in
columns 14-15 (preceded by two zeros).

Both a Name and DIM entry number must be given.
If either is omitted, error message 01 will be typed.

Error message 10 will be typed for any of the fol.;.
lowing conditions.

1. The Name is all numbers, its first character is not
alphabetical, or it contains special characters, in­
cluding nonterminating blanks.

Z. Columns 7-15 contain a record mark or group
mark in any position or column 13 is not blank.

3. The DIM number is outside the range 10-39 or it
contains letters or special characters.

Error message 54 will be typed if no space is
available for the Name within the first 50 entries of the
Equivalence table. Also, the Name itself will be typed.

Error message 51 will be typed if the name is a
duplicate of another name in the Equivalence table.
If operator action is required for any of the above
messages, refer to ERROR DETECTION AND CORRECTION.

Error Detection and Correction

In addition to the messages described with the indi­
vidual Disk Utility routines, other numbered error
messages may be typed. These messages, described
here, may be common to more than one Disk Utility
Program as well as FORTRAN or sps output operations
that follow compilation or assembly. Table 1 indicates,
by message number, the error messages that may be
generated by each routine. A list of the error mes­
sages and their cause, and a list of operator actions
for the associated messages follow.

Error Messages

DUP 0 ERROR 01

DUP 0 ERROR 02

DUP 0 ERROR 03

DUP 0 ERROR 04

DUP 0 ERROR 05

Cause

Field missing from control
card.
"TO" DIM entry number
specified in DREPL control
card is not in use in DIM
table.
"TO" DIM entry number,
specified in a DREPL con­
trol card refers to perma­
nently assigned program.

"FROM" DIM entry number
·specified ina DDUMP,

DREPL, or DCOPY control
card is not in use in the DIM

table
W 0 r k cylinders illegally
specified for program stor-

DUP 0 ERROR 06

DUP 0 ERROR 07

DUP 0 ERROR 08

DUP 0 ERROR 09
DUP 0 ERROR 10

DUP 0 ERROR 11

DUP 0 ERROR 12

age by DLOAD or DREPL

control card entry.

DIM entry number specified
in a DDUMP, DLOAD, DREPL,

DCOPY, or DELET control card
is out of range of DIM table
entry capacity.
"FROM" DIM entry number
in a DREPL control card re­
fers to an immovable pro­
gram.

Insufficient available storage
space at location specified
by a DLOAD, DREPL, DCOPY,

DFINE control card.
DIM table is full.

Field in DFLIB, DCOPY or
DLABL control car d con­
tains invalid data.
Number of modules speci­
fied in DFINE control card
is greater than 4, or less
than 1.
Beginning disk sector ad­
dress of work cylinder, in
DFiNE control card, is not
first address in cylinder.

DUP 0 ERROR 13

DUP 0 ERROR 14

DUP 0 ERROR 15

DUP 0 ERROR 16

DUP 0 ERROR 17

DUP 0 ERROR 18

DUP 0 ERROR 19

Table 1. Numbered Error Messages Generated by Disk Utility Routines

ERROR MESSAGE NL lAB :R
ROUTINE I 2 3 4 5 6 7 8 9 1O " 12 13.14 IS 16 7 18 J920 21

Write Addresses (DWRAD) X X X

Alter Sector (DALTR)

Disk-to-Output (DDUMP) X .X X X X

load Programs (DLOAD) X X X XX X X X

Replace Programs (DREPl) X X X X X X 'X X X X .X

Disk-to-Di.k (OCOPV) X . X' X X X X X X X'

Delete Program, (DElET) X 'X X X X

o.fine Poramete-rs (OF.Nt) X X X X.)(X· X

Define Oisk Pack Label (DLAk} X X

Oefi;w FORTRAN librQl'Y SU'brout1ne
Nome (~lt8) X X

FORT~AN or SPS Output .

24

X

Insufficient available stor­
age for specified work cyl­
inder (DFIKE control card).

N umber of sectors specified
by DFINE control card for
Sequential Program table
exceeds 80 sectors.
Sector address is non-numeri­
cal in a DWRAD, DDUMP, DLOAD,

DREPL, DCOPY, or DELET con­
trol record.
Storage location specified by
a DCOPY con t r 0 I car d
would cause program stor­
age to overlap work cylin­
ders if allowed.
Starting sector address is
greater than ending address
for DWRAD, DLOAD, DREPL, or
DCOPY control card.

Sequential Program table is
defined as less than required
by the present contents of
that table (DFINE control
card).

Core storage address of a
program to be placed in

5152 5~~4 55 56 57~8 59 60 61

)'(X X X X

X X X X

X X

X X X X X XX X X

Disk Utllit" I'rogrllnJ ~3

DUP ° ERROR 20

DUP ° ERROR 21

DUP ° ERROR 24

DUP ° ERROR 51

DUP ° ERROR 52

DUP ° ERROR 53
AAAAAA

DUP ° ERROR 54
AAAAAA

DUP ° ERROR 55
CARD SEQUENCE
NNNNN

44

disk storage in core image
format is less than 02302. A
blank address will be treat­
ed as 02402. If the program
is a Library function (DIM

entries between 10 and
130), the message will not
be indicated.
Name specified by DDUMP,

DCOPY, or DELET control card
is not used in Equivalence
table.
DIM num ber specified by
DELET control card is not in
use.
Cylinder limits specified in
°DLOAD control card are
greater than allowed by sys­
tem parameters.
N arne specified is a DLOAD,

DREPL, or DFLIB control card
or a FORTRAN or sps control
card has been rejected be­
cause a duplicate name exists
in the Equivalence table.

"TO" DIM entry number spe­
cified in DLOAD control card
is in use in DIM table (The
routine will load the pro­
gram and assign the DIM

entry.)
Name specified in a DLOAD

or DREPL control card or a
FORTRAN or sps control card
has been rejected because
the Equivalence table (with
the exception of the first 50
entries) is full. AAAAAA is
the rejected name.
N arne specified in a DLOAD,

DREPL, or a DFLIB control
card or a FORTRAN or SPS

control card has been reject­
ed because the first 50 en­
tries of the Equivalence
table are full. AAAAAA is
the rejected name.
Sequence error has been
found while reading a pro­
gram to be loaded to disk
storage. NNNNN is the se­
quence number of the card
that is out of sequence.
Only cards with an eleven

DUP ° ERROR 56

DU.P ° ERROR 57

DUP ° ERROR 58

DUP ° ERROR 59

DUP ° ERROR 60

DUP ° ERROR 61

Operator Action

punch over the leftmost po­
sition of the sequence num­
ber (column 76) are se­
quence-checked; therefore,
patch cards are excluded
. from the check.

DIM number supplied in
FORTRAN or sps control card
is in use in DIM table, and
Name specified in the same
card has a different DIM

number in the Equivalence
table.
DIM number supplied in
FORTRAN or sps control card
is in use in DIM table, and
Name specified in the same
card has no matching name
in the Equivalence table.
(<<TO" DIM entry number spe­
cified in FORTRAN or SPS con­
trol card refers to a per­
manently-assigned program
storage area.
DIM entry number specified
in a FORTRAN or SPS control
card is out of range of DIM

table entry capacity.
Insufficient available storage
space for a function speci­
fied by a FORTRAN or SPS con­
trol card.
DIM table full.

Messages 1-24. After the message is typed, the com­
puter halts. The operator may then enter a corrected
control record. Depressing the Start key returns con­
trol to the Monitor Control Record Analyzer routine
to read the next Monitor Control record.

Message 51. No operator action required. The rou­
tine continues and loads the program without placing
the name in the Equivalence table.

Message 52. The routine continues; it assigns a DIM

entry and loads the program.
AI essages 53, 54. No operator action required. The

routine ~ontinues and loads the program without
placing a name in the Equivalence table.

"AI essage 55. After the message is typed the com-
puter halts. To restart:

1. Remove the cards from the hopper.
2. Depress the Nonprocess Runout key.
3. Remove the lsst two cards from the stacker.

4. A rrange cards from steps 1 and 3 in correct
sequence and place them in the hopper.

5. Depress the Reader Start key. Note that paper
tape contains no sequence number, therefore,
it can never generate this type of error.

Message 56. No operator action required. The rou­
tine continues and loads the program, generating a
DIM entry,)Vithout placing the name in the Equiva­
lence table.

Message 57. No operator action required. The rou­
tine continues and loads the program, generating a
DIM entry, and places the name in the Equivalence
table.

Messages 58, 59. No operator action required. The
routine continues generating a DIM entry and loading
the program to disk storage.

Messages 60, 61. After the message types, the com­
puter halts without loading the programs, providing no
other output is requested. (If a FORTRAN or SPS control
record is included with the source data to indicate
that the compiled or assembled object program is to
be punched, the program is outputted without halting
the computer.) To correct the error, a DLOAD, DREPL,

or DDUMP Monitor Control record can be entered in the
stacked input to load the program to a different loca­
tion from the work cylinders or to output the program.
Depressing the Start key returns control to the Moni­
tor Control Record Analyzer routine to read the next
Monitor Control record.

FORTRAN and SPS Output
The Disk Utility Program contains the output routines
for both FORTRAN and sps. These routines load object
programs to disk storage and punch them out into
cards or paper tape.

Following compilation or assembly, the message

DK LOADED AAAAAA nn DnDDDD
SSS CCCCC EEEEE =t=

is always typed to inform the user about the assigned
DIM entry. AAAAAA is the supplied name, IllI is the

DIM entry number, and the remainder of the message
is the DIM entry.

For programs being loaded into disk storage, the
user may select the DIM entry and/or name. Names
and DIM numbers are supplied in FORTRAN (OLDISK) or
SPS (ONAME, om NUMBER) control records.

Processing of the Equivalence table and DIM table
and the actual loading is dependent upon whether
the user supplies a Name and DIM number, Name
only, or DIM number only.

Name and number supplied by user.
1. If DIM entry is in use in DIM table.

a. and Name is already in Equivalence table.
1) If Name in table references number sup­

plied, replace old program with new
program.

2) If Name in table references another num­
ber, type error message 56, and load pro­
gram with available DIM entry number
and no Name.

b. and Name is not in Equivalence table, type
error message 57 and load new program with
available DIM entry number and add Name in
Equivalence table.

2. If DIM entry is not in use in DIM table.
a. and N arne is already in Equivalence table,

type error message 51 and load program with
assigned DIM entry number without assigning
Name.

b. and Name is not in Equivalence table, load
program and place Name in Equivalence
table.

Name only supplied by. user.
1. If an identical Name is in the Equivalence table,

the program is loaded without the supplied name
(error 51 will be indicated).

2. If an identical Name is not in the Equivalence
table, the object program is loaded, an available
DIM entry is assigned, and the name is added
to the Equivalence table.

DIM entry number only supplied by user.
1. Program i~ loaded. If number was in use, object

program replaces old programs. Names refer­
encing the old program are deleted from the
Equivalence table.

Disk UtiUtfi Program 45

SPS 11-0

SPS I1-D is a disk-oriented assembly program designed to
simplify the preparation of programs for the IBM

1620 Data Processing System and the IBM 1710 Con­
trol System. The development of larger and more
versatile data processing systems like the 1620 and
1710 has resulted in a greater number of, and more
complex, machine language instructions. The diffi­
culties of coding in machine language - a tedious and
time-consuming task - have been recognized and one
of the efforts toward simplification is the system
known as Symbolic Programming.

A Symbolic Programming System (SPS) permits
the programmer to code in a symbolic language that
is more meaningful and easy to handle than numeri­
cal machine language. SPS II-D automatically assigns
and keeps a record of storage locations and checks
for coding errors. By relieving the prograrpmer of
these burdensome tasks, SPS I1-D significantly reduces
the amount of programming time and effort required.

This section is intended to serve as a reference text
for the SPS II-D Programming System. It assumes that
the programmer is familiar with the methods of data
handling and the functions of instructions used in the
1620 Data Processing System and the 1710 Control
System. For those without this knowledge, informa­
tion on 1620 and 1710 systems can be found in the
appropriate reference manuals. Refer to IBM 1620
Bibliography (Form A26-5692) and IBM 1710 Bibliog­
raphy (Form A26-5695).

IntroductIon
The SPS It-D Programming System may be divided into
the symbolic language used in writing a program, the
library containing the subroutines and the linkage
instructions (macro-instructions) that may be incor­
porated into the program, and the processor program
that is used to assemble the user's program.

Symbolic Language

Symbolic language is the notation used by the pro­
grammer to write (code) the program. The program
written in SPS language is called a "source program."
This language provides the programmer with mne­
monic operation codes, special characters~ and other

46

necessary symbols. The use of symbolic names (la­
bels) makes a program independent of actual machine
locations. Programs and routines written in SPS lan­
guage can be relocated and combined as desired.
Routines within a program can be written indepen­
dently with no loss of efficiency in the final program.
Symbolic instructions may be added or deleted with­
out reassigning storage addresses.

Macro-Instructions, Subroutines, and Subprograms

The macro-instructions that are written in a source
program are commands to the processor to generate
the necessary linkage instructions. Linkage instruc­
tions provide the path to a subroutine or subprogram
and a return path to the user's program. These sub­
routines may be special subroutines prepared by the
user or any of seventeen IBM Library subroutines,
such as floating divide, square root, and arctangent.
(Subprograms are user-written only.) The ability to
process macro-instructions simplifies programming and
reduces the time required to write a program.

SPS 11-0 Processor

After a source program is written, it is punched into
cards, or into paper tape if the system is equipped
with an IBM 1621 Paper Tape Reader. It is then "as­
sembled" into a finished machine language program
known as the "object program."

Assembly is accomplished by the SPS II-D processor
program which is stored on the disk. The function of
the processor program is to translate the symbolic
language of the programming system into the]an­
gllage of the 1620 or 1710. The translation is one for
one - the processor produces one machine language
instruction for each machine instruction (except
macro-instructions) written in symbolic form.

Symbolic Programming

Symbolic programming may be defined as a· method
wherein names, characteristics of instructions, or
closely related symbols are used to write programs.
The core of the symbolic language is the operation
code. SPS II-D permits the programmer to write
programs in a simple, familiar language. It does not

require a detailed knowledge of the machine because,
in coding the program, the programmer uses opera­
tion codes that are in easily remembered mnemonic
form rather than in the numerical language of the
machine. Operation codes are of three types: Declara­
tive, Imperative, and Control.

Declarative Operation Codes

Declarative operation codes are used for the assign­
ment of core storage for input areas, output areas,
and working areas. The assigned areas are utilized bv
the object program and may contain the data to be
processed and/or the constants (numerical or alpha­
meric characters) required in the object program
when the data is processed. Declarative statements
never generate instructions in the object program, but
may generate constants that are assembled as part
of the object program.

Imperative Operation Codes

Imperative operation codes specify the operations or
instructions that the object program is to perform. In
this group are included all arithmetic, branching, and
input/output statements. Most statements on the cod­
ing sheet prepared by the programmer are of this
type. These statements are translated one for one
(except macro-instructions) and are assembled as
the machine language instnlctions of the object pro­
gram.

Control Operation Codes

Control operation codes are commands to the proces­
sor that provide the programmer with control over
portions of the assembly process. Instructions of this
type do not normally generate instructions in the ob­
ject program.

The actual and mnemonic operation codes within
these categories are presented under PROGRAMMING

THE 1620/1710 USING SPS II-D.

The statements or instructions in the source pro­
gram must be entered by the programmer in logical
sequence on the coding sheet.

Coding Sheet
The programmer enters all information relevant to
the coding of the source program and subsequent
assembly of the object program on a coding sheet,
Form X26-5627 (Figure 6). Figure 7 shows a sample
input card, Form }59692. The format of the input
card or paper tape record follows the headings on
the coding sheet. In paper tape, the first punching

position of a record is said to be column 1. The card
columns assigned to a single heading are referred to
as a field. The following is an explanation of the
headings in the order of their appearance on the
sheet.

Heading Line

Space is provided at the top of each page for the
name of the Program. Routine, Programmer, and for
the Date. This information does not constitute part
of the source program language and is not punched.

Page Number (Columns 1-2)

A 2-digit page number is entered to maintain the
order of the program sheets. This normally numeri­
cal entry becomes the Rrst two digits of each state­
ment that is punched from the sheet.

Line Number (Columns 3-5)

A 3-digit line number is entered on the sheet to main­
tain the sequence of the statements coded. The first
20 lines on each sheet are prenumbered 010, 020, 030:
etc., through 200. At the bottom of the sheet. six
unnumbered lines are provided for inserts or for con­
tinuing the line numbering. The inserted statement
should be numbered so that it falls sequentially be­
tween the statements immediately preceding and
follOwing it. The arrangement of the prenumbered
lines, 010, 020, etc., permits up to nine statements to
be inserted between any two statements. After the
cards for each of the lines are punched, they should
be placed in correct numerical order.

Label (Columns 6-11)

The label field represents the machine location of
either data or instructions. The field may be left blank
or may be filled with a symbolic address. Only the
data or instructions that are referred to elsewhere in
the program need a label.

A label may consist of up to six alphameric charac­
ters beginning at the leftmost position in the label
field. At least one of the characters must be alphabetic
or one of four permissible special characters, namely,
the equal sign (==), slash symbol (/), "at" sign (@),
and period (.).

The best labels to select are those that are mnemon­
ically descriptive of the area or instructions to which
they are assigned. Labels that have an obvious mean­
ing not only provide easily remembered references
for the original programmer but also assist others who
may assume responsibility for the program.

SPS II-D 47

IBM 1620/1710 Symbolic Programming System
Coding Sheet

Program: __ _ Date: ___________ _ Page No. ~ of ___ _
I 2

Routine: Programmer: ___ _

Line label !Operation Operands & Remarks

3 5 6 11 12 15 16 20 25 30 35 40 45 50 55 60 65 70 75

0 1 0 I . · I I . I

0 2 0 1 1 1 , · , I I , I

0 3 0 . I , , , ., I I I ·
0 1 4 1 0 , , 1 I I 1 I I I 1 1 I I I 1 I I I 1 1 1 I 1 1 1 I I I I , I 1 1 1 , 1 I I 1 , 1

0 5 0 I I I 1 1 I I I I I I I I . I I ·
0 6,0 I I I I I I 1 1 1 I I I 1 I I 1 I I L ...I 1 I · 1 , 1 1 I I

0 7 0 I I I J. .1 . I I ·
0 ·8 0 1 I I I I I I I I , I ·
0,9 0 I , 1 I I I I I I I 1 1 1 , ,

1 0 0 .L...L I 1 1 I · I I i I , I , · ·
1 1 0 1 · . · , 1 I ·
1 2 0 I I · ·
1 3 0 · L I ·
1 4 0 I I 1 I 1 I I I 1 I I I I , I 1 , I

1 5 0 ., , I I I · , I

-.../

1 6 0 , I , , , , , I I, 1 1 1 I I I I , I , , , I , , I

1 7 0 I I I I I I 1 1 , I I .-l........L... · I I

1 8 0 I I I 1 I I I I I I 1 I 1 I

rJ..J..L.Q. I 1 I I I I I I I 1 ,

2 0 0 I I 1 1 1 • I , 1 I 1 I 1 I I (I · · , I

I I .1 I , I 1 1 _. "-~ __ I_L-L-1-LJ.----L I I I I I I L~ I I I I I I I I I I I I L....L I I I I I I , ·
I I I I I I I I 1 I -L-l. I I I I I I I I I I .L--L-L-L-I I I I I I I I I I I 1 1 I 1 , , , 1 I , I ,

I I I I I I I 1 1 1 I .LJ--.!. I I , I I I L-.L.L-1.--LLJ I , 1

1 I 1 , I I I • I I I I I I , I I I I I I I I I I I 1 1 1 1 I I 1 I I. I I I I

, I I I I 1 , , 1 , I I I I I I I I I I I , I I I I I I I I I I I I I I '-L-L-L.J--L-

, I 1 , I I I I I I I I , I I I 1 I , 1 I 1 I , , I I

Figure 6. 1620/1710 SPS Coding Sheet

----- ~ PAG[I LINE I LABEL _LOPER, ~ERANDS AND REMARKS I r --- O;~~+';ERANDS AND REMARKS PAGE I LINE I LABEL
-----------_. __ ._-------------

00000 0000000000 00
1 2 3 4 5 , 1 •• 1011 1213 14 15 ~Ud~~~nnNnHnHH~~UUM~~n~H~~UU~U.~UUM~~~~"~~~"Y~UUMU"~""~nnnu~

1 1 1 1 1 111111 1111 11

22 22,2 222222 22

33 333 333333 33 i mM 1620 SYMBOLIC PROGRAMMINGS~STEM -;;;O-'-l3 3 3 3 3 3 3 3 3 3 3

44 444 444444 4 4 4 4 444444444'4 4 4 4 4 4 4 4 4 41444 4 4 44 4 4 4 4 4 4 4 4 4 4 4TITIl4~ 4 444 4 4 4 4 4 4 4

55 555 555555 5555 555S5555

166 i6 6 6 1666666 16666 166666666666666666666666666~666666i~6666666666666666i,~

PAGE LIHE LABEL OPER, OPERANDS AND REMARKS

~ 111 118888 f'rS-8 '8 8 a 8 a 8 a a a a 8 a-a 8 8 8 8 8 8 8 8 a 8 a 8 8 8 a 8 8 8 8' a 8 8 a 8 8 8 a a 8 8 8 8 8 a 8 8 a 8 a 8 a 8 8 a ffs8

99999 9999999999 99
~Ud~w~nnNn~nnn~~UUM~~n~~~~uu~uu~~U~~~~~"~~"~~~unu~"~""ronngu~ I 2 3 4 5 6 1 • 9 10 11 12 13 1. 15

laM J59fi92

Figure 7. SPS Source Program Card

Operation (Columns 12-15)

The 4-position operation field contains the actual
2-digit numerical operation code or the mnemonic
representation of the operation code to be performed.
In either case, the first character of the operation code
must start in the leftmost position;. column 12, of the
operation field. Listings of pennissible mnemonic
codes and actual operation codes are shown under
PROGRAMMING THE 1620/1710 USING SPS II-D.

Operands and Remarks (Columns 16-75)

The operands and remarks field is used to specify the
information that is to be operated upon and may con­
tain, if desired, any additional remarks concerning
the statement.

For declarative operation statements, the first oper­
and usually defines the length; the remaining oper­
ands, if present, specify constants, an address, and
remarks.

For imperative operation statements, the operands
and remarks field contains, at most, four items: three
of these arc operands and the fourth, remarks. The
first two operands may be the symbolic or actual
addresses of data or instructions, i.e., the P and Q por­
tions of the instruction. The third operand, which
should be numerical, is called the Hag indicator oper­
and and is used to set Hags in the assembled instruc­
tion. The final item consists of the remarks associated
with each statement. Imperative statements need not
contain all four items. Anyone or more than one may

be omitted. The two special characters which may not
be used in an operand are the right and the left paren­
thesis,) (.

A control operation statement normally contains
only one operand.

Statement Writing

Certain rules must be observed in writing or coding
the statements that make up the source program. This
section contai.ns rules that apply to the statements and
their elements, rules governing the length and 'types
of statements, use of special characters, the Hag indi­
cator operand and immediate (Q) operand, types of
addresses used as operands, and address adjustment
by arithmetic, a method that relieves the programmer
of considerable effort and reduces the number of
symbols required for a source program.

Statements

Symbolic statements are classed according to the op­
eration code they contain, and thus are designated
Declarative, Imperative, or Control statements. In
addition to the page and line number a statement
may contain a label, operation code, operands, and
remarks. No statement in the source program may
exceed 75 characters in length. Since page number,
line number, label, and operation require 15 positions,
the operands and remarks field may not exceed 60
characters. In the case of the paper tape SPS, the
end-of-line character is considered to be part of the
operands and remarks field.

SPS II-D 49

Use of Special Characters in Statement Writing

The comma, asterisk, end-of-line character, blank,
"at" (@) sign, and dollar sign are special characters
that possess distinct meanings in the writing of
source programs. Their use, as well as that of the
special characters used as operators for address ad­
justment, are explained in detail in this section.

Comma

The comma is normally used to separate items in a
statement. The term item refers here to parts of the
operands and remarks field, such as the P and Q
operands, the Hag indicator operand, remarks, length,
constants, etc. An imperative statement may consist
of four items: the P and Q operands, the Hag indicat­
or operand, and remarks, but need not contain all
fOLlr items. Anyone or more than one may be omitted.

If one item is omitted and more items foHow, the
comma. that normally follows the omitted item must
be present. For example, if the Hag indicator operand
is omitted but remarks are present in the ins tnlCtion ,
the format of the field will be:

Operand. & Remark.

20 2l 30

f-'L'-'-"'-t--'....J.......L~fLL-'-'--fP"-"E=L=T..:..!A~X ,.x" "T I? AN S,H. I,T ,V,A l U E· ,

AH imperative statements that contain remarks must
include three commas in the operands field, even
when the operands are omitted. During assembly. the
omitted P or Q operands will be replaced by zeros in
the P or Q portion of the assembled instruction.

Commas indicating omission need not be present
in statements in which the last item (s) is omitted.
For example, in the statement in which both the Hag
indicator operand and reI!larks are omitted, no com­
mas need be used following the second operand.

Operand. & Remark.

50

EXAMPLES

Line label ()peration Operand. & Remark.

3 S 6 1112 1516 20

It...!..&. -' • /I ""HAL T INSTil (jeT 101{

~ ~ A, f,63~2.-:t78t5.-'-',:A'D.D. 'FA:c:r:O,R, B: :T:O: A: : , , , :

50

Statement 010 is a halt operation that requires
three commas ("') in front of the remarks; these take
the place of the P, Q, and flag indicator operands. In
I)tatement 020, the first two commas set off the P and.
Q operands, whereas the third comma takes the place
of the omitted Hag indicator operand. The number
of commas required for declarative statements may
be one or two as explained under DECLARATIVE OPERA­

TIONS.

Asterisk

The asterisk has three uses: in writing comments,
as an operand or term of an operand, and in address
adjustment.

Lines of descriptive information may be inserted
in the program by placing an asterisk (0) in column
6 of the label field. Comments then may be written
in columns 7 through 75. Comments inserted in this
way will appear in the symbolic output, but will not
affect in any way the operation of the program. A
comment statement does not produce an entry in the
object program.

Line Label p".ation Operand. & Remark.

3 5 , 1112' 15 '6 20 25 30 35 40 '5

I .REMA~ KS CAN 8E WRI TTEN IN $(JCH A .,.,.11 NNE.R, SO

0·' 0 '" AS, 0 P,~5CIV8,E T.N.£. PROG.f(,A,f+(

0 oi HAj~ ~R,(, GRAH. FOt L OIY.S I I I I I I I I I I I I

Statements 010,. 020, and 030 are remarks that do not
generate instructions.

50

The asterisk can be used as the first character or
term of an operand in an imperative statement and is
interpreted by the program as the address of the high­
order (leftmost) position of the address of the instruc­
tion. It may also be used as any term of the operand to
indicate the high-order (leftmost) position of the
address of the instruction.

\Vhen the asterisk is used in address adjustment as
an operator) it indicates to the processor that a mul­
tiplication must be performed in order to adjust the
address.

End-of-Line Character

An end-of-line character ® is required only on source
statements that are to be processed on paper tape.
Use of this character allows statements to be located
on the tape immediately adjacent to each other, with
no intervening blank characters. The statements are
in "free" form; that is, they are not assigned a fixed
number of positions.

,

Source statements that are to be processed in
punched card form do not require an end-of-line
character; the remainder of the line is left blank and
this is recognized by the processor as the end of the
statement.

When the end-of-line character is punched in a
card for off-line conversion to paper tape, it is rep­
resented by a 12-5-8 punch combination.

Blank Character

A blank character in operands of the source statement
is ignored by the processor except in DAC statements
(alphameric constants), in which blanks are consid­
ered valid characters. In effect, the statement is con­
densed before it is processed.

Because blanks are ignored by the processor, the
programmer, to achieve clarity on his coding sheets
and output listing, may write his statements in modi­
fied "fixed" form (see Figure 8).

In this example, columns 16, 36, and 57 are arbitrary
choices for the locations of the operands. The comma
following or replacing the P operand may be in any
column from 16 through 35.

Blanks are permitted in any position within a Hag
indicator operand except between the 1 and 0 in num­
ber 10, and between the 1 and 1 in number 11. A
blank or blanks in the address operand of a declara­
tive statement, when set off by commas, is interpreted
by the processor as a zero address.

"At" Sign

\Vhen the "at" sign (@) is used as part of a constant
being defined by a DC, DSC, or DAC statement, a record

mark (=f=) is created by the processor and inserted
into the constant in place of the @. Specific rules
for use of the @ are covered under DECLARA'rIVE op­
ERATIONS.

Dollar Sign

The dollar sign ($) is used in an operand to instruct
the processor that the symbolic address in an operand
has a specific heading character. The $ is written
bt~tween the heading character and the symbol. For
example, in an operand the heading character "5"
and the symbol "SUM" appear as 5$SUM. For addi­
tional information on the use of the $, refer to HEAD­

HEADING in the PROCESSOR CONTROL OPERATIONS sec­
tion.

Operands

Flag Indicator Operand

The Hag indicator operand specifies the positions that
are to be flagged in the assembled instruction. These
positions are numbered from left to right, 0 through
11, and must be Hsted sequentially. For example, if
positions 2 7, and 10 are to be flagged, the Hag indi­
cator operand should be coded 2710, not 2107. All
positions may be flagged, if desired. The operand
then will be coded 01234567891011 and must be writ­
ten in that order.

Normally, no Hags are set when the Hag indicator
operand is omitted. However, if the Hag indicator op­
erand is omitted from immediate instructions
(except TDM), a Hag is automatically set in position

Line label ppe;atiar Operands & Remarks

3 5 6 11 12 15 16 20 25 30 35 40 45 50 5S 60 65 70 7S

10 1 0 SW2 B ODDVN.
0.2.0 A AREA. ,TEH.PJ-4 .,. , F.Ot FNE
0.3 o~, I N./J IAI.I ZA,TION FOR FS(}8.0b.D. . · ·
o 4 0 TF. !x,$.UBN ,I PEL TA.X · . · .
o S 0 r,FM. Itf,V,L T+ f J · .1.4. . It 10
o 6.0 rJ).N, S W,Z+ J · ,9 .
o 7 0 rF. ACCM · . .J Z

o 8 0 r.F. rE"1.P3 ".PE I. TA X ·
10 9 0 ~, 7.E I1.P.3 ,TE H.P.3 · · ·

1 0 0 IB. A,S 1/tI.£ - 3. L . ·
1 1 0 ODDVN, A ACC(JM, , TE.MP I ·
1 2 0 A X S /J.B.N. , r[Jtl.P3
1 3 0 C X SV.BN. , NI N.ES
1 4 0 B.N.H A.S / N,l-.3- L · ·
1 5 0 f.1.v'L T liM .4. CCU.H ·
1 , 0 SF. 88

Figure 8. SPS Statements in Modified "Fixed" Form

SPS Il-D 51

Qi' If the operand is present, only the positions indi­
cated are Hagged.

The Hag indicator operand can be used to insert
a Hag over the units position of the P and Q addresses,
if the source program is written for a 1620 or 1710
that has Indirect Addressing (special feature).

Immediate (0 Operand)

With immediate-type instructions such as Add Im­
mediate (AM), Subtract Immediate (SM), and with
actual operation codes that begin with the digit 1,
the Q operand represents the actual data to be used
by the instruction. It may be absolute or symbolic as
previously defIned. High-order zeros of absolute data
may be eliminated.

During assembly) the processor automatically places
a Hag over position Q7 of an immediate instruction
unless a Hag indicator operand indicates otherwise.
For example, the statement

Operand. & Remark.

111, lSI' 20 2S

TO TilL, 1 002.3

causes the number 10023 to be subtracted from the
fIeld called TOTAL because the Hag that terminates
the fIeld to be subtracted is automatically placed
over position Q7' However, the statement

Operand. & Remark.

15" 20 2S 30 "I) 50

TO TIt L , 100.23. 1 0

will cause only the number 23 to be subtracted from
the fIeld called TOTAL because the Hag indicator oper­
and directs that the field-terminating Hag be placed
over position QlO rather than Q7' There is one excep­
tion to this rule: a transmit digit immediate instruc­
tion (TDMJ code 15) does not require a Hag; therefore)
none is automatically set by the processor.

Types of Addresses Used as Operands
Operands assembled by the processor may be of
three types: actual) symbolic, and asterisk. The indi­
vidual applications for a particular type of address
are described in the section PROGRAMMING THE

1620/1710 USING SPS lI-D.

52

Actual Address

An actual address consists of five digits (00000-19999)
for a standard capacity machine and is, as the name
implies, the actual core storage address of a piece of
data or an instruction. High-order zeros of an actual
address may be eliminated. Fot example, the state­
ment

Operand. & Remark.

1516 20 25 30 50

3681f.J2~5.1

causes the data in storage location 12251 to be added
to the data in storage location 03684.

Symbolic Address

A symbolic address is the name assigned by the pro­
grammer to the location of an instruction or a piece
of data. A symbolic address is valid only if it is de­
fined (giveri an actual numerical value) by a declara­
tive statement somewhere in the source program, or if
it is used as the label of an instruction. Symbolic ad­
dresses may contain from one to six characters
(letters~ digits, or special characters) with the follow­
ing restrictions:

1. At least one character must be nonnumerical.
2. The only permissible special characters are:

equal sign (=), slash symbol (/), "at" sign (@),
and period (.) .

Blanks are permitted within a symbol; however,
they are ignored by the processor during assembly.

The example shown below contains both an actual
address and a symbolic address.

Operand. & Remarks

50

.12251

In this example) the data in the fIeld whose actual
address is 12251 is added to a fIeld whose address is'
the symbolic name TOTAL.

Asterisk Address

\\Then the asterisk is used as the first character of an
operand in an imperative operation, it is interpreted
by the processor to be the address of the high-order
(leftmost) position of the instruction. For example,

the statement

,,~

indicates to the processor that the Q portion of the
instruction should contain the address of the instruc­
tion. This instruction is assembled as 44 01234 01876
where START equals 1234 and the address assigned t~
the instruction is 1876. Thus, when executed in the
object program, this instruction examines its own
leftmost position (1876) for a Hag and either branches
to the instruction at location 01234 or continues, on
the basis of the examination, to the next. instruction
located at 01888.

When an asterisk (.,) address is used with either
declarative or control operations, it refers to the
rightmost position of storage last assigned by the
location assignment counter of the processor - not to
the leftmost character of the instruction. For example,
the statements

Line I.aboI p....;.. Operands & ... rb

LJ I III .. II .. • IS • 21 .. ., .
1 •. 1 TFIf. J 20."'.5..7000.0.
Lt.2 DoC J .• Ii.f

produce the instruction

16 12045 7000=1=

Since record marks can be defined only in declara­
tive operations, an imperative statement should be
followed by a DC statement when a record mark is
required in the instnlCtion. The rightmost position
of the instruction is the rightmost position of storage
last assigned; therefore, it is also the position where
the =1= (constant) is stored.

Address Adiustment of Operands

Address adjustment is used to tell the processor to
arithmetically adjust the addresses in operands. It is
permitted with all types of addresses: actual symbol­
ic, and asterisk, and is used to refer to a loc~ti~n that
is a given number of positions away from a specific
address. Use of this feature of the language reduces
the number of symbols necessary for a source pro­
gram.

By writing a +. (plus sign) for addition, - (minus
sign) for subtraction, and ., (asterisk) for multiplica­
tion, immediately after the first or subsequent term

of an operand (an asterisk as a term of an operand
does not represent multiplication but means the ad- .
dress of the instruction, as previously explained), the
programmer indicates to the processor that the ad­
dress is to be adjusted.

AritJ:.metic~lly ad~usted operands may take the form
of A + B + C + D, where the terms A, B, C,
and D may be numerical quantities. The number of
terms in the operand is limited only by the size of
the operand and remarks field. Thus the operand
A + B ., C - D may be ~rther adjusted by writing
after the last term another term, E, for example,
A+BoC-D+E.

In arithmetically adjusted operands, the operation
or operations of multiplication are always performed
first, followed by the addition and subtraction re­
quired to calculate the adjusted address. Intermediate
results that are greater than ten digits;. or a final result
(adjusted address) that is over five digits, cannot be
calculated by the processor.

For the 1620 or 1710 with standard storage capaci­
ty (20,000 storage positions), addresses that exceed
19999 are considered errors; however, they will not
b~ detected as such. Therefore it is possible, with a
standard capacity machine, to assemble an object
program for a machine with 40~000 or 60,000 positions
of storage. For machines that have 40,000 or 60,000
positions of core storage, the processor is automatical­
ly modified to use the additional storage to enlarge
the size of the symbol table. In that case, addresses
that do not exceed 39999 or 59999, depending upon
the storage capacity) are considered valid addresses.

In using address adjustment, the programmer
should be careful that insertions or deletions do not
affect the adjusted address. For example, if a P oper­
and in a branch (B) instruction refers to an address
as ., +48 (i.e., branch to the instruction that fol­
lows the next three sequentially higher instructions),
the programmer must ensure that no new instructions
are introduced within the three instructions to make
the ., +48 incorrect. In this example, the asterisk (.,)
is the leftmost position of the instruction itself.

EXAMPLES

Line Label p,.....;.. AD1UUfD ARITHMETIC rb

lL ~~ 1112 I 116 20 21 ADDRESS
-/I-

IAL.PH.J 0 . OJO'.O - 1DOD+lI.()
".2 IALPHJ -30 00970 - 1()DO-30

~

lLLJ IA.L PH +2*L 01008 = 100lJ+ (2n)
.....L..L ... ALPH., .. a 03000 ~ 1000X3
-L-L

Ltu ALP/9 .L 011-000
-L-L

- iDOl} XII.
10, •• 0 500~0*3 -11 00n9 - 500-t(20](3) -11

-L-L

10,1,0 100*5:+20*3 - U 005'''' - (100 "" + (2OXI)-11 ~
lLI. 0 ... 12 . 020U. = 2JJ(J() + 12.

LL t,o 1-.3*2. 12000 = (2IWOXS) Xl
.........
.........

SPS Il-D 53

The operands shown will produce the adjusted ad­
dresses, as indicated, provided the location 1000 has
been assigned to the symbolic address ALPHA, the lo­
cation 4 has been assigned the symbolic address L,
and the instruction location (I,)) is equivalent to 2000.

Branch Operands

In some instructions such as Branch and Branch Back,
the Q address is not used, although a zero (00000)
address is generated. Thus the instruction uses twelve
storage positions. By using an 0 address in the follow­
ing statements,

line label ~otion Operands & Remarks

3 5, 1516 20 so

U!,IO B 13668
O,~

0" 0 NeiT

the instructions are condensed, to eliminate four posi­
tions of the unused (zero) Q address, and are stored
as

49136680161204570000

whereas the statements

line Lobel ~eration Operands & Remarks

1516 20

:0,10 ~ 13668
0,2 NEXT TFM 1201,.5,70000,

are stored as
491366800000161204570000

because the unused Q address is not eliminated. In
the first example, only four positions of storage are
saved; however, a considerable amount of storage
can be saved in a program that contains many instruc­
tions where the Q or both the Q and P portions of
instructions are unused. Because the !,) in the DORG

statements (see PROCESSOR CONTROL OPERATIONS) re­
fers to the rightmost position of storage last assigned
(Qll of the B instruction), I,) -3 is the address where
the next instruction starts.

To automatically eliminate the unused storage as­
signed to Branch or Branch Back instructions, the
following two imperative mnemonics are included in

54

the SPS II-D language:

Mnemonic
B7

BB2

Meaning
Branch and adjust location

assignment counter
Branch Back and adjust lo­

cation assignment counter

These, mnemonics are written left-justified in the
operation field of the statements as shown in the
following example.

line lobel p"erotion Operands & Remarks

1112 1516

Q,IO B7 ADDR

~-~~~+B~B~'~~~~~~~~~~~~~~~~~~

~JO~~~~"~~~~~ __ ~~~~~~~~~~~~

The first statement is equivalent to the following
symbolic instructions:

B
DORC

ADDR
o -4

where ADDR is the address used by the branch instruc­
tion (B). The second statement is equivalent to the
following symbolic instructions:

BB
DORC o -9

For all imperative statements, except B7 and BB2,
the address assignment counter is incremented by 12.
For B7 and BB2 statements, the address assignment
counter is incremented by 7 and 2, respectively. A
label may be included with a B7 or BB2 statement.

Inserting Flags

By placing a minus sign in front of the first term of
an operand, a flag (minus sign) can be inserted
over the units position of the adjusted address. This
feature of address adjustment can be used for insert­
ing flags required for Indirect Addressing (special
feature). However, an operand written as -0 (minus
zero) does not insert the flag in the units position over
the zero. When the minus sign is written in front of
the first term of the operand in order to set a flag
over the units position, other signs following the first
term should be reversed so that the correct address
is obtained.

Programming the 1620/1710
Usi ng SPS 11-0

This section describes in detail the various steps to be
followed in writing a program for the 1620 or 1710
using SPS II-D. The material has been divided into
three categories: Declarative Operations, Imperative
Operations, and Processor Control Operations. The
imperative operations that apply to the 1710 only are
listed in Table 22 in the Appendix.

Declarative Operations

In programming the 1620 or 1710, all records, and any
other data that is to be processed by the program,
must be assigned storage areas. Normally, all records
and data to be processed consist of fields of known
length and arrangement. Unless otherwise specified,
areas are automatically assigned core storage locations
in the order in which they appear in the source
statements.

The declarative statements provide the object pro­
granl with the input/output areas, work areas, and
constants it requires to accomplish its assigned task.
These statements do not produce instructions that are
executed in the object program. The entries, DS, DSS,

DAS, and DSB assign storage. The entries, DC, DSC, DVLC,

DAC, DSAC, DSA, DNB, DDA, DGM, and DMES usually assign
storage, and also produce, in the object program, both
the machine address of the area assigned and the con­
stants that are to be stored in this area. Constants
are then loaded with the object program.

Declarative statements may be entered at any point
in the source program. However, these statements
are normally placed by themselves, preferably at the
beginning or end of the program - not within the
instruction area. If not placed at the beginning or end,
the programmer is required to branch around an area
assigned to data so the program will not attempt to
execute what is in a data area as an instruction.

The declarative mnemonic operation codes and
their meanings follow:

Code

DS

DSS

DAS

Meaning

Define Symbol (Numerical)
Define Special Symbol (Numerical)
Define Alphameric Symbol

DC

DSC

DVLC

DAC

DSAC

DSA

DSB

DNB

DDA

DCM

DMES

Define Constant (Numerical)
Define Special Constant (Numerical)
Define Variable Length Constant
Define Alphameric Constant
Define Special Alphameric Constant
Define Symbolic Address
Define Symbolic Block
Define Numerical Blank
Define Disk Address
Define Group Mark
Define Message (1710 Only)

os - Define Symbol (Numerical)

A DS statement may be used to define symbols used
in the source program (i.e., to assign storage address­
es or values to symbolic addresses or labels) and to
assign storage for input, output, or working areas.
A DS statement does not cause any data to be loaded
with the object program.

The length of the field is defined by the first oper­
and. This operand must be positive and may be an
absolute value or a symbolic name. If a symbolic
name is used, the symbol must previously have been
defined as an absolute value, that is, it must have
appeared in the label field in a statement of the
source program preceding the one in which it is
used. Address adjustment may be used with this
operand.

The address in core storage of the field being de­
fined may be assigned by the programmer or the
programmer may let the processor clssign the address.
If the processor assigns the address, the statement
is terminated after the first operand. If the program­
mer assigns the address, a second operand, which
mav be svmbolic, asterisk, or actual, is used to estab­
lish the ~ddress of the field. Since data fields are
addressed at their rightmost (low-order) digit, the
processor assigns this position as the address of the
field. Address adjustment may be used with the sec­
ond operand. If the second operand is symbolic, it
also must previously have been defined. Addresses
assigned by the programmer do not disrupt the se­
quence of addresses assigned by the processor.

A DS statement may also be used to define a symbol.
without assigning any storage, ie., to define it as an
absolute value. In this case, the first operand is omit ..
ted (Ot' written as 0) and the second operand
represents the value (may not exceed five digits in
length). The second operand may be an actual value
or a previously defined symbol. To define storage
which will not be referred to symbolically, the label
of the DS statement may be omitted.

SPS II .. D ,t)t;

The fol1owing statements define the field length
only. \\Then remarks are added to the statement) the
field length must be followed by two commas.

In the next example, the programmer assigns the
address of the field and excludes the field length (the
first operand) from the statement because it is with­
out significance) and replaces it with a comma. The
following statements cause the processor to associate
the address 12930 with the label SUM:

Again) in this example, two commas are required
when remarks form part of the statement.

The following statement, which is similar to the
one previously given, is assigned a value that is other
than an address.

This statement defines the symbol FL as being equiva­
lent to the value 17. Subsequent uses of this symbol are
permitted because the symbol has been defined.

It should be noted that an area defined by the
. processor for a DS statement is always addressed at
the rightmost position. However, to use this area for
input/output, the leftmost digit must be addressed.
This is done by using a DSS statement in place of a
DS statement or by address adjustment with a DS

statement) which subtracts a number that is one less
than the length of the area from the address of the
area. In a previonsexample, where DELTAX was de­
fined as having a field length of 7, the operand of
another instruction to read numerical data into the
DELTAX field should be written as DELTAX -6.

56

DSS - Define Special Symbol (Numerical)

The DSS statement is similar to the DS statement with
one exception: when the second operand is omitted,
the processor assigns the leftmost position as the ad­
dress of the field. If the second operand is assigned
by the programmer) this address is assumed to be
equivalent to the leftmost position of the field. A
DSS statement is normally used to define a storage area
for input/output. The data in such an area may be
moved during execution of the object program by a
Transmit Record instruction which requires that an
address assigned to an area mnst be that of the left­
most position.

DAS - Define Alphameric Symbol

The DAS statement is similar to the DS statement with
two exceptions:

1. The length specified by the first operand is auto­
matically doubled by the processor to allow for
alphameric data. Each alphameric character re­
quires two storage positions.

2. The address of the field, if generated by the proc­
essor) is the leftmost position of the field plus
one. The position is always odd-numbered, as it
must be with any alphameric field.

The following example illustrates a DAS statement.

This statement defines an area for input/output that
can contain 30 alphameric characters. The processor
assigns 60 positions in core storage to accommodate
alphameric coding. The output listing indicates this
by typing 60 when this statement is assembled and
Hsted. The omission of the second operand causes the
processor to assign an address. During internal trans­
mission of a field which utilizes an input-output area
that is defined with a DAS, the area must be addressed
at its rightmost position. In the example, the addres3
may be achieved through address adjustment) i.e.,
TITLE + 2 0 30 - 2.

DC - Define Constant (Numerical)

The DC statement may be used to enter numerical
constants into the object program, and, for ease of
reference, to assign names to the constants. The label

field contains the name by which the constant is
known. DC statements consist of three operands. The
first operand, which must be positive, indicates the
length of the constant field; the second, the actual
constant; the third, the storage address of the con­
stant. The third operand is not used when the pro­
grammer prefers to let the processor assign the
storage address. The assigned address is the rightmost
storage position of the constant. The leftmost storage
position is the position over which the processor
places a Hag.

Whenever remarks form a part of a DC statement,
three commas must be included in the statement.
The first and third operands may be symbolic or
actual. They are subject to address adjustment. A
symbolic address must previously have been defined
to be valid.

If the first operand (length of constant) is smaller
than the constant, an invalid condition results (see
Error 10). If it is larger than the constant, zeros are
inserted to the left of the constant so that the num­
ber of zeros plus the number of positions in the con­
stant equals the length of the field (first operand).

A constant that is a positive number will be stored
in the form of an up-signed integer; a negative num­
ber, in the form of a signed integer. A negative num­
ber has the minus sign written in front of the con­
stant as part of the second operand. During assembly,
a negative number produces a Hag (minus sign) over
the units position of the constant.

If the constant 0100000 and -0004337769 are re­
quired, they may be defined as follows:

Line Lobel p,.-;c. Operand. & a.marles
I, 5 , 1112 151, 20 2S :JO » ~ 45 50

la, , Ic.ON.ST,j J).c. 17.. J oaooo ,

I •. , It!.O.N.$.T..1 DC. 7 .• t do. 0.00. '" 3, C OM,I'l.AS F.D Il .R.£.H.A ~K.s.

o I .• Co.N.$T.~ D,C. J 0 .• -.11..3377.69.

, CC.W.,sT';' D.C 11.0.. - .4.337, 7.6.9. t. 9,3 COHHA.S J:'.o.!!. /1.l.t!A,~K,S,

In both cases, constant 1 and constant 2, the length of
the field is greater than the constant, and the address
of these constants is assigned by the processor. These
constants will appear in the object program as

(hooooo
0004337769

A record mark may be used in a constant but must
be in the units position and must be written as the
character @. The following example contains state-

I

ments that:
1. Store a record mark by itself, as a constant.
2. Store a constant 6 and record mark.
3. Store a minus 0773 and record mark.

These constants appear in the object program as:

A constant 7 with a Hag (7) is generated byeither
of the following statements:

A Hag is always placed over a I-digit constant (except
a record mark) regardless of the sign (positive or
negative). Therefore, the programmer must use two
positions to define a positive I-digit constant.

Constants may not exceed 50 characters. The fol­
lowing statement generates a constant containing 50
zeros.

r--r---~'---'------------- .-----
Operonds & Remarks

so

To store a zero with a Hag at location 401, the fol­
lowing statement can be used:

'-~--.--.r---------------'-----

Operands & Remarks

SPS lI-D 57

DSC - Define Special Constant (Numerical)

This statement is similar to the DC statement in that
the first, third, and fourth operands are written in
the same manner as a DC statement. The second oper­
and (the constant itself) is assigned an address that
corresponds to the leftmost digit of that constant. The
constant may contain digits) flagged digits, and the @
character. The @ character is translated by the proc­
essor into a record mark and may appear only as
the low-order character of the constant. The high­
order digit of the constant is not automatically flagged
by the processor. Flagged digits in the constant are
specified by J-R for 1-9. A flagged zero is indicated by
an 11-0 punch (card only). A flagged zero may not be
llsed when input is from the paper tape reader or
from the typewriter.

DVLC - Define Variable Length Constant

The DVLC statement permits the programmer to speci­
fy one or more constants of the same or different
lengths with one statement. The statement requires a
minimum of three operands; the first specifies the
address of the low-order position of the first con­
stant; the second, which must be positive, specifies the
length of the first constant; the third specifies the con­
stant itself. Each constant after the first will require
two operands, one for the length and one for the
constant. All operands may be actual or symbolic
and may be arithmetically adjusted.

The first operand is used only if the programmer
wishes to specify an address. If it is omitted, the
processor will assign the address of the first constant.
The total length of all constants must not exceed 50
digits.

Constants are flagged in the high-order position.
The address of the low-order position of the first
constant (third operand) is assigned to the label of
the statement. Negative constants should be preceded
by a minus sign. Symbols used in the constant oper­
and need not have been previously defined, but may
have appeared as labels in any part of the program.
No remarks or @ characters are permitted within
this statement.

The constant operands are treated as normal DSA

operands. "{his means that the constant, if specified as
an actual number, ma,y not exceed five digits. How­
ever, ina DVL.C statement, address adjustment may be
used within the constant operand to obtain an output
of up to ten significant digits. If the address adJust­
ment results in a number greater than ten digits in
length, only the ten right-most digits will be retained.

58

The following statement defines a constant of
10000 which can he referred to by two different la­
bels:

r---.---,.-----,,------------___ ~---
Operands & Remarks

'1 J<)

DAC - Define Alphameric Constant

To define a constant consisting of alphameric data, the
operation code DAC is used. The DAC statement is sim­
ilar to the DC statement with three exceptions:

1. The first operand (length) is automatically
doubled by the processor to allow two st<;>rage
positions for each alphameric character.

2. The storage address of the constant is the ad­
dress of the leftmost position plus one. This
address must be an odd-numbered address to
comply with the requirements for alphameric data
storage. An odd-numbered address will auto­
matically be assigned, if it is assigned by the
processor. If it is specified by the programmer
(as in line 020 of the following example), the
processor assigns the specified address and pro­
vides that the constant is stored beginning one
position to the left of the specified address. In
the latter case, the processor makes no test of
whether or not the address is odd-numbered or
whether the address (or the position to the left)
has been previously assigned.

3. High-order zeros are not automatically inserted
in the constant by the processor, as is the case
with a DC statement when the field length ex­
ceeds the number of characters. The number of
characters, including blank characters, should not
be greater or less than the specified length
(first operand) . When the rightmost position or
positions of the constant are blank characters,
they should be followed by a comma or end-of­
line character. For card input, the rightmost
position must be followed by a comma or a
record mark.

NOTE: Only DAC and DNB i,nstructions may be
used to insert blank characters into storage.

lin. label 'j6PeraliOil Operand. & Remark.

II '5·6 is I, '20 25 30]5 40 45 SO

10 I 0 HOTEL DAC l7",D£CI{ 311: 78 PUNCHED, ,END J!!£SSAGE

10'0 CONST ~AC 1~, DHT AX,= O. OOO~" STo,~£'JJ.NST'"R!"'~-'--'--.I.

In the example shown:
1. Statement 010 uses 34 storage positions to store

the 17 -position constant (deck 3478 punched).
2. Statement 020 places 6 alphameric blanks into

storage locations 900 through 911. Also, a Hag is
set in location 900.

3. Statement 030 records an alphameric record mark
in storage.

4. Statement 040 places a 13-position constant, in-
cluding a record mark, in storage.

A 50-character alphameric constant (maximum allow­
able) occupies 100 positions of storage. A Hag is set
over the leftmost position of the field. Addressing
this constant for internal field transmission requires
the address OUTPUT +50 0 2-2, where OUTPUT is the
symbol (label) which represents the leftmost address
plus one.

DSAC - Define Special Alphameric Constant

This statement is similar to the DAC statement with
one exception. The constant in a DSAC statement is
addressed by the low-order digit of the field. The
high-order digit of the field is flagged as in a DAC
statement.

DSA - Define Symbolic Address

The DSA statement may be used to store a series
of up to ten addresses as constants, as part of the
object program. These addresses can be used for in­
struction modification or for setting up a table of
addresses through which the programmer may index
to modify a routine.

Each entry (symbolic or actual) in the operands
field, with the exception of the last entry, is followed
by a comma. The equivalent machine address of each
entry is stored as a 5-digit constant. The constants
are stored adjacent to each other with a Hag over the
high-order position of each. The label field of this
statement must contain the symbolic name by which
the table of constants may be referred to. An address
at which this table is stored in core storage may not
be assigned by the programmer nor may any re­
marks be included in the DSA statement. The address
aSSigned by the processor is the address at which the
rightmost digit of the first constant will be located.

NOTE: If the last operand is followed by a comma~ an
additional zero address (00000) is assembled in the
table.

In the example that follows, symbols ALPHA, ORIGIN,
and OUTPUT are equivalent to addresses 3200, 3600,

and 15000, respectively.

Operand. & Remorles

~» ~ ~

OR/~/N 3234 QVTPVT-50

The constants are stored as

03200036000323414950

(ooJ)) 1
(06204)

If the leftmost digit of these four constants is located
at 06200, then the address equivalent to TABLE will be
06204, the location of the rightmost digit of ALPHA.

DSB - Define Symbolic Block

A DSB statement is used to define an area of storage
for storing a numerical array. A DSB statement does not
cause any data to be loaded with the object program.
The label of this statement is converted to the address
at which the first element of the array is stored (i.e.,
the rightmost position of the first element). The first
operand indicates the size of each element; the sec­
ond, the number of elements. Both operands must be
positive.

Either or both operands may be symbolic or actual.
If symbolic) the symbol must have been previously de­
fined. A third operand is required if the programmer
wishes to assign the address. For example, to store
an array of 75 elements, with each element containing
15 digits, the statement used would be:

Operands & R.marles

50

In this example, the array begins at location 07500
(leftmost position of the first 15-digit element). ARRAY
is equivalent to 07514 (address of the first element).

DNB - Define Numerical Blank

A DNB statement is used to define a field of numerical
blanks. (The 8-4 card code denotes a numerical
blank.) Up to 99 blanks may be specified in each
DNB statement. In addition to a label, two operands
can be assigned by the programmer. The first of
these c;pecifies the number of blank characters desired
(field length). This number must be positive. The sec­
ond operand specifies the rightmost address of the

SPS II-V 59

field where the blanks are stored in the object pro­
gram.

If the second operand is omitted and the statement
is labeled, the address assigned to the label by the
processor is the rightmost storage position of the
blank field. The blank field does not contain a Hag
in its leftmost position.

If the programmer wishes to move a blank field in
core storage, he must either define a single-digit
constant with a Hag bit in the position in front of the
leftmost position of the blank field, or a record mark
in the position following the rightmost position of
the blank field.

If six numerical blanks are required, they may be
defined as follows:

Operand. & Remark.

20 25 '5 ~

The processor assigns the storage address of the six
blank positions to the label BLANKS. In the example
that follows, the programmer assigns the storage ad­
dress as 08625.

Operand. & Remarks

20 ~ ~ ~ ~ ~ ~

8625",5Ta1U 51 Nv. E1UCIIL BLANI{S

In a DNB statement, two commas are required when­
ever remarks are included in the statement; the first
after the length operand and the second after, or in
place of, the address operand.

DDA - Define Disk Address

The DDA statement allows the programmer to define
the disk control field of a seek, read, write, or check
operation. This field is assembled as a 14-digit con­
stant divided in the following manner:

I X I X Ix I X I X I X I X I X I X I X I X I X I X I X I
'-t-J'-' ---__ ---'" • '" • '
Drive Sector Sector Core
Code Address Count Address

60

The statement requires five operands, each of which
may be actual or symbolic and may use address
adjustment.

1. The first operand specifies the address of the
high-order position (drive code) of the disk
control field. This address must be even. If the
operand is omitted, the processor assigns the next
valid address. A comma indicating the end of
the operand must be present.

2. The second operand specifies the module (drive)
to be acted upon by the input/output or control
instruction that addresses the disk control field.
During assembly, this operand becomes the first
digit of the 14-digit constant. If the digit is even
or zero, the module to be used by the instruction
is determined by the second digit (high-order
digit of the sector address) of the constant; if it
is odd, the module is determined by the digit
itself. When the operand is in symbolic form, the
low-order digit of the equivalent numerical value
of the symbol becomes the first digit of the
assembled 14-digit constant. See Example 1
(EXl).

3. The third operand specifies the 5-digit sector
address (00000-79999) where reading, writing,
or checking begins. From this address the com­
puter detennines the correct cylinder, head, and
sector. It also determines the drive module un­
less overridden by the second operand.

4. The fourth operand indicates the number of sec­
tors (1 to 200) to be read, written, or checked.

5. The last operand specifies the 5-digit core stor­
age address used for data transfers to and from
disk storage. Reading or writing begins at the
specified address and extends into successively
higher-numbered core storage locations. This
address must be even.

Each of the last three operands assembles with a
Hag over the high-order digit. If a label is used with
this mnemonic, it is assigned the address of the drive
code.

EXAMPLES

Line Label

Assume: M==02

Operation

DISK==14540
SECT==150
CORE==10000

3 5 , 1112 1516 20 25 ~ 35

1 •. 10 £Xl D.DA • M,P,ISI< • .s£cr,COR£

1.2. FI ELD IJ,DA C YLD~ M",!.6 2 50..5 Fe T+ 2., CORE

Operand. & Remark.

~ '5 SO

For these examples, the assembled output (disk
control field) would appear as follows:

21454015010000
21625015210000

t
Address of FIELD and CYLD

DGM - Define Group Mark

A DCM statement is used to place a group mark at
some specific address in core storage. It needs only
one operand; the address where a group mark is de­
sired. The operand can be actual, symbolic, or arith­
metically adjusted. If no operand is specified, a group
mark is placed in the next available core storage lo­
cation. Only one group mark may be defined with
each DCM statement.

DMES - Define Message (1710 Only)

The DMES instruction is designed to aid the 1710 user
in programming the output control codes of the Serial
Input/Output Channel (SIOC). With one DMES state­
ment, a complete message of alphabetic, numerical, or
mixed-mode data can be specified. Although this
mnemonic is oriented to the SIOC output printer, it
may be used to program other devices which are
wired to accept the control codes of SIOC.

The DMES statement requires three operands; ad­
dress, starting mode, and message. Remarks are not
permitted.

1. The address operand may be used by the pro­
grammer to assign an address to a message, in
which case he assumes the responsibility of cor­
rectly positioning the message if alphabetic out­
put is indicated. If no particular address is de­
sired, a comma must be placed in lieu of the
address operand. The processor will then assign
a valid address.

2. The second operand specifies the starting mode;
an A indicates the alphabetic mode; the omission
of the operand indicates the numerical mode.
Even though this operand may specify· an alpha­
betic starting mode, the correct positioning of
the message is still dependent upon the address
operand.

3. The message operand consists of alphabetic, nu­
merical, or mixed-mode data, and special charac­
ters which have been assigned to the control
functions for use in a DMES statement (see Table
2).

The special characters are enclosed in parentheses
and inserted into the message wherever they are

Table 2. DMES Representation of Output Printer Control

Codes

ASSEMBLED
CONTROL CODE

DMES
CHAR- ALPHA- NUMER-
ACTER MERIC ICAL FUNCTION

{P} 0*71 *1 Type numerical period

(M) 0*72 *2 Change mode

(C) 0*73 *3 Type numerical comma

(B) 0*74 *4 Shift printer ribbon to black

(A) 0*75 *5 Shift printer ribbon to red (Alert)

(T) 0*76 *6 Tabulate printer carriage

(S) 0*77 *7 Space printer carriage one position

(R) 0*78 *8 Return printer carriage and advance
one line

(F) 0+79 *9 Advance printing form to next form
feed stop

(E) 0*0* ** End of message

needed. (NOTE: Parentheses are not permitted in the
"data" portion of a message operand.)

If information is to be placed into a message some­
time after it is stored, the space must be reserved by
the programmer when the statement is written. This
is normally done by writing zeros in the message in
place of the data which is to be inserted later.

The length of the message need not be specified
by the programmer; however, if the number of core
storage locations needed to contain the message ex­
ceeds 100, an error is indicated. NOTE: Control charac­
ters require two core locations when in numerical
mode and fOlIr locations when in alphabetic mode.)

Flagged digits can be placed into a numerical mes­
sage by substituting the letter J-R for 1-9. A flagged
zero is indicated by a 0 (card only).

Some examples of DMES statements are shown in
Figure 9. In the example of alphabetic mode, notice
that the programmer has assigned the symbolic ad­
dress MESAG and therefore is responsible for the cor­
rect positioning of the entire message. Since the mes­
sage begins in the alphabetic mode, the address
assigned to. MESAG corresponds to the second digit of
the stored data.

In the example of a mixed-mode message, zeros
were phlced in the message to reserve space for tem-
perature and pressure readings. These are normally
inserted in the message before it is typed out.

Invalid Mode Changes

Since the IBM 1717 Output Printer and the IBM 1620
console typewriter both require alpha messages to

SPS II-D 61

Numerical Mode

Line Label Operation Operands & Remarks

3 5 6 1112 15 16 20 25 30 35 40 45 50 55 60

o 1 0 IN.U.N. DM.£S ' .. , (In 00000.(rJ 1,8.5 (.5) 000 (5) 7 Z (R) 827 (E,) I

CORE STORAGE

TYPED OUTPUT

:1:800000 *6185 :f:7000:f:772:1:8827**

Alphabetic Mode

Line Label pperation

3 5 6 11 12 15 16

00000

827

20

185 000 72

Operands & Remarks

25 30 35 40 45 50 55 60

,0 1 0 ALP HA DMES N/cSAG A (R)S TART PR,O,6(S)AT(R.)5.9,8.7(~) ,

CORE STORAGE ~\\~a~\~\
(Address of ALPHA and MESAG)--.J

TYPED OUTPUT

Mixed Mode

L,ne Label "peratlo~

5 6 11 12 15 16

10M/XED DMES .4

CORE STORAGE

TYPED OUTPUT

START PROG AT

5987

TEMP 000.0

PRES 0000

Figure 9. Examples of SPS DMES Statements

start at even core addresses, an invalid message can
be created when programming a change from numeri­
cal to alphabetic mode. The invalid mode change
occurs when the alphabetic characters following the
change are assigned addresses starting at an odd core
location instead of an even core location. Such an
assignment is incorrect and is indicated as an error.
The user may either enter the correct DMES statement
manually from the console typewriter, or he may
anow the processor to:

1. Assemble the mode change (=1=2).
2. Place a 0 in' the location following the mode

change (i.e., =1=20).
3. Assemble the remainder of the message.

Summary of Declarative Operations

As stated earlier, areas being defined by the processor
are assigned core storage locations ill the order in

62

Operands & Remarks

which they are processed. To do this, the processor
program uses a location assignment counter to keep
track of the address of the last assigned storage loca­
tion. Table 15 in the Appendix shows the amount add­
ed to the location. assignment counter for each instruc­
tion and summarizes the coding and operation of each
declarative mnemonic.

1620/1 71 0 Imperative Operations

Imperative operations may be divided into five classes:

1. Arithmetic
2. Internal data transmission

3. Branch
4. Input/Output and control

5. Miscellaneous

This section describes the five classes of imperative
operations and gives some examples of statements
written in symbolic language. For a detailed descrip­
tion of the function of each machine language in­
struction, refer to the appropriate machine reference
manuals.

Arithmetic

Arithmetic operations are those that involve adding,
subtracting, multiplying, or dividing. Table 16 in the
Appendix is a list of all arithmetic mnemonics and
a brief description of their P and Q address functions.

Some examples of arithmetic statements written in
symbolic language follow:

Line Label p.watior Operand. & Remarlc.

3 5 , 1112 1514 20 25 30 35 '0 '5 50

, 0 A COST",LABO.R

0,2,0 [4, COs.T., LABOR, , ADD. LABOR ro. COST.

0,30 S,H, STORE.+,4",2,I,l,o. , , , , , , ' , , , I I I I I I I I I I I ,

',0 Al1 8 8,1 D,s.., 1 0. I HAL f-,A.D.J:IJST POSITIVE AMT

05,0 LD i9,7",DDND
~

0,60 D, is,6,,,D,V.R1..." ! I I I I I I , ,

These statements cause the following operations
to be performed:

Line 010 - Add labor amount to cost amount.

020 - Same as line 010 except three commas
are required for remarks.

030 - Subtract a constant 02 from the field
located at STORE PLUS 4.

040 - Add a constant 05 to the field at storage
location 00088.

050 - Move DDND (dividend) to the product
area (storage location 00097).

060 - Divide the dividend by successive sub­
tractions of the DVR (divisor) starting
in storage location 00086.

Internal Data Transmission

Internal data transmission operations are those that
cause the movement of data from one core storage
location to another. They require both a P and a Q
address. Table 17 in the Appendix lists all internal
data transmission mnemonics and their P and Q
functions.

Some examples of internal data transmission state­
ments written in symbolic language follow:

Line Label pPeratiOO' Operand. & Remark.

3 5 , 1112 lS16 20 25 30 35 40 '5 50

10,' rD, F I ELJ)"DI G.I T

~2.0 r,DM. F.I f L.D"J,

030 TF. S,TOIl.£ "RAT.£ J, t, ,J1.av.E RA T.£ 1 TO. ST.ORE

10,. 0 TFI'I. $T.OR.I" Js'2.s,,,.JII/.OV.E 0.3,5,25 ra srall.£

l.o"5,Q 1".F,H. *;-11",4,1, •. 1 0, ,CII.GE P/UV O,P, ,C,O,D,£, ,T,O, ,N,Op.

1.0.,' 0 T.N.S, A",B" CO.N,v'E,RT. E...~1l. ,A, ,T,D, lfPll,£,R CD,DI!!,G ,

~70 TN.! C,D"CONV,£RT FLD D TO. ALPH.A COIUlflL..

These statements cause the following instructions
to be executed:

Line 010 - A numerical digit at the location called
DIGIT is moved to the location called
FIELD.

020 - A digit 3 is moved to the location called
FIELD.

030 - Rate 1 is moved to the field called
STORE.

040 - A constant 3525 is moved to the loca­
tion called STORE.

050 - A constant 41 is moved to the 0 0 and 0 1

positions of the preceding instruction in
the object program.

Branch

060 - Field A is moved to field B and con­
verted from alphameric coding (2 digits
per character) to numerical coding (1
digit per character).

070 - Field D is moved to field C and con­
verted from numerical coding to alpha­
meric coding.

Branch operations are used to alter the normal se­
quence of instruction execution. They may be con­
ditional or unconditional. Table 18 in the Appendix
lists the branch mnemonics and their P and Q address
functions. Also listed in this table are the two com­
pare mnemonics. Compare operations, though arith­
metic in nature, perform a distinctly logical function.

SPS II-D 63

Some examples of branch and compare statements
written in symbolic language follow:

line Label Operand. & Remark.

3 56 1516 20 25 30 lS 40 "5

10 C B"A"COH.PAIU FIELD A. ,W-IT.H. F.ULI),8

j~"O 8. SIT,A/1,r,,,,,,.BR.A1NCH, .7;0, ,LAI8,E.L, ,Sr.A,R,T, 1 ' , 1 1 1

030 8,[, S,TAll,T",100",J,F. SW,I ON., 8/lr-os~

[0,5.1 BN.CISTA,R,T,t,3,*,12""I" 1""""""" 1'"

~O 88

These statements cause the following operations to
be performed in the object program.

Line 010 Compare field A with field B.
020 Branch to an instruction labeled

START.

030 If Program Switch 1 is on, branch
to the instruction labeled START.

040 Same as line 030 with the exception
that the unique mnemonic operation
code used does not require a Q
address.

050 If Program Switch 1 is not on, branch
to the third instruction following the
one labeled START.

060 - Branch unconditionally to an in­
struction whose address is saved in
IR-2 or PR-l.

Input/Output and Control

Input/Output operations enable the transfer of data
between core storage and various I/O units; control
operations do not aHect data, but rather pertain to
electro-mechanical operations of I/O units. Table 19
in the Appendix lists the input/output and control
mnemonics and their P and Q functions.

Some examples of input/output and control state­
ments written in symbolic language follow:

Line Label p...ratior Op*rand. & Remark.

56 1117 1516 20 25 30 .0 45 50

10 . 1 IWA OU:£P,II.T.LJOo.

10.2,0 w,lInOv.TPII.T, ",SAJt1.£ ,A.S L/IU 010.

64

These statements cause the following operations to
be performed in the object program:

Line 010 - Type out alphameric data from a stor­
age location called OUTPUT.

020 - Same as line 010; however, a unique
mnemonic is used.

030 - Single space on the typewriter.
040 - Same as line 030; however, a unique

mnemonic is used.

Miscellaneous

Miscellaneous operations are those that do not fall
into any of the operations described previously. Table
20 in the Appendix lists the miscellaneous mnemonics
and their P and Q functions.

Some examples of miscellaneous statements written
in symbolic language follow:

Line Label Operatior Op*rand. & Remarlts

56 1112 1516 20 25 45 50

.L 1,0 CF OUrpUr-5"

I I! I!!'!" r "!,!" '" I!!! "

.~4.0 H,OP

These statements cause four diHerent operations to
be performed in the object program as foIIows~

Line 010 - Clear a Hag at the storage location,
OUTPUT minus 5.

020 - Move a Hag from storage location 2694
to storage location 3332.

030 - Cause the program to halt.
040 - Perform no operation but proceed to

the next sequential instruction.

Processor Control Operations

The SPS language includes the following five control
operations:

DORG

DEND

llEAD

TeD

TRA

Define Origin
Define End
Heading
Transfer Control and Load
Transfer to Return Address

These operation codes are orders to the processor
that give the programmer control over portions of the
assembly process. Specifically, DORG gives the pro­
grammer control over the placement of his program

in storage. DEND, TeD, and TRA order the processor to
produce up conditional branches to locations specified
by the programmer. HEAD assigns unique characters
to labels or symbols used within a source program.

With the exception of TRA and DORC, none of the
preceding operations may be labeled.

DORG - Define ORiGin

The DORC statement instructs the processor to over­
ride its automatic assignment of storage and to begin
the assignment of succeeding entries at the particular
location specified by the programmer. In this way,
the programmer is able to control assignment of stor­
age to instructions, constants, and data.

A define origin statement is coded as follows:

Operand. & Remark.

AO '5

o

This statement directs the processor to reset its loca­
tion assignment counter to the particular address spe­
cified in the operand (actual or symbolic). This
causes the assignment of· succeeding entries to begin
at this address. When an actual address is entered by
the programmer, care must be taken to avoid inad­
vertent overlapping of areas assigned by the proc­
essor.

If the operand is left blank, assignment of storage
starts with an address of 00000. Since the Monitor I
System occupies locations 00000 through 02401, con­
stants and instructions at object time cannot occupy
these storage locations.

If a symbolic address is entered, it must appear as
a label earlier in the program sequence. An 0 address
refers to the current contents of the location assign­
ment counter. A define origin statement can take any
of the following individual forms:

Line Label pP.atiar Operand. & Remark.

l1 5 , 1112 15" 20 2S 30 35 AO 45 50

I D. 1.0 !f>.OA.G XY.Z:

!D., OJUGIA DOR.G XY.Z+50

OJ 'oR.I.G.I" DO.R.G *+.5.0., LOCA.T.ION A.SSIGII. C.OIJ.N.T.£~+S.O

If XYZ (label) is previously defined as 7002, the
first entry directs the processor to begin the assign­
ment of succeeding entries at location 7002. The sec­
ond entry directs the processor to begin the assign­
ment of succeeding entries at the location that has

been assigned to the symbol XYZ plus 50. The symbol
ORICIN can be used at any point in the program to
refer to that address. The third entry directs the proc­
essor to begin the assignment of succeeding entries
at the address specified'by the current contents of the
location assignment counter plus 50. A comma must
follow the operand when remarks are included in the
DORC statement.

DEND - Define END

The DEND statement is the last statement entered in
the source program; it informs the processor that all
statements of the source program have been process­
ed. The DEND statement requires' the presence of an
operand representing the starting address of the pro­
gram. The operand may be actual or symbolic.

The following statement illustrates a DEND statement.

Operand. & Remark.

35

HEAD - HEADing

It is frequently convenient, and sometimes necessary,
to write a source program piecemeal and to assemble
these pieces into the total program. Parts of the pro­
gram may be written by different programmers, or by
the same programmer at different times with consid­
erable time lapses between.

Suppose, in such a situation, that a program block,
say B1, has been written; that another program block,
B!!, is in the course of being written; and that Bl and
B2 eventually are to be joined to compose a single
program. Certain symbols may already have been
used to write block Bb and certain symbols, varying
from the symbols used in Bb may be used to write
block B2 • To avoid duplication of symbols in each
block, the programmer writing block B!! must be con­
cerned with the symbols used in B1 .

Symbols used in block B2 can duplicate those in
Bb provided they are less than six characters in length
and have been prefaced by a HEAD statement. The
programmer can completely ignore the symbols in Bl
by prefacing B!! with the following control statement:

Operand. & Remarks

50

where the single character X may be anyone of the
characters A to Z, 0 to 9, or blank.

SPS II-D 65

The control statement, HEAD x, generates no in­
structions or data in the object program. When the
processor encounters a HEAD statement, it treats the
symbols in the label or operands fields of the follow­
ing statements, provided the symbols are less than six
characters in length, as though they were headed by
the character X. The processor continues to do this
until it encounters another head statement.

Thus, the symbols used in block Bl which contain
less than six characters cannot possibly conflict with
the symbols used in block B2 • Six-chara.cter symbols
are not affected, that is, a 6-character label, COMMON,

following the control statement HEAD 9 is not treated
as 9 COMMON, for it would be a 7 -character symbol,
and only a maximum of six characters can be handled
by the symbol table.

A symbol is said to be "unheaded" if, and only if,
its representation uses exactly six characters. The sym­
bol COMMON, for example, is unheaded. The symbol
ALPHA whose length is less than six characters is con­
sidered to be headed, whether under a HEAD control
statement or not. If ALPHA is under control of HEAD x,
then ALPHA is said to be ''headed by x." If ALPHA is
not under control of any HEAD statement, then ALPHA

is said to be "headed by blank."
A symbol, ALPHA, headed by the character x, is not

identical to the symbol XALPHA. The heading char­
acter is essentially on a different level from the char­
acters which make up the symbol. However, ALPHA

headed by a blank should be regarded as identical to
the symbol ALPHA used without a heading statement.

If a HEAD statement with a nonblank character does
not occur in the entire source program, all considera­
tions of heading can be ignored. This is the reason
for not introducing the concept of headed symbols
earlier.

A HEAD statement with a blank character must be
used if the programmer desires to modify the heading
process in the example. Note that the statement HEAD

and the statement HEAD 0 are quite different. For ex­
ample, if blocks Bl and B2 are to be joined in one pro­
gram, and B2 must be nested somewhere in the middle
of Bb as follows:

Operation

HEAD

HEAD

66

Operands

} first part of block B,

X

J block B,

:} second part of block B,

the entire program might have been prefaced by
a HEAD statement with a blank character operand. As
implied previously, however, such a HEAD instruction
is superfluous, since the symbols in the first part of
block Bl are automatically headed by blank, being
under the control of no HEAD instruction at all.

Often it is inconvenient to refer to a symbol that is
defined in another headed region because of the
requirement that the symbol be six characters in
length. To facilitate cross referencing between headed
blocks, the following convention can be used:

Suppose that a symbol, say SUM, under HEAD 1, has
been defined by some instruction. Suppose further
that this symbol is to be referred to in an instruction
under the control of the instruction HEAD 2. Then the
desired reference can be made by writing l$SUM as it
appears in the following instruction.

Operand. & Remark.

35 50

TOTAl. I 1 $5 UM

In general, if the two characters "C$," where C is
any allowable heading character, are placed in front
of the headed reference symbol SUM, then the result
is SUM headed by C. To specify SUM headed by
blank, one simply write£ $sUM, with no character

.. preceding the $ character.
If the processor finds an operand containing a 6-

character symbol plus a head character, such as
9COMMON, the processor will produce an error mess­
age indicating that the symbolic address contains
more than six characters.

If a label is used in a HEAD statement, it is ignored.

TCD - Transfer Control and loaD

The TCD statement may be used to cause the loader
to execute an unconditional branch instruction. When
this statement is encountered during the loading of
the object (machine language) program, it causes the
loader to break the nonnal loading process and to
branch to the location (ADDR) specified in the op-erand.

Operand. & Remark.

25 30 .5 50

ADDR may be actual or symbolic.
This statement allows programs which are too large

to fit into core storage to be loaded and executed

piecemeal, by terminating each piece with a TRA

statement. In effect, a TCD instruction can be used in
conjunction with a DORG statement to execute portions
of the program that have already been loaded into
storage and to overlap these with other instructions.
. During assembly, the TCD instruction does not affect
the location assignment counter or alter the symbol
table.

TRA - Transfer to Return Address

The TRA statement causes the normal loading se­
quence of an object program to be resumed once it
has been broken by a TCD statement.

This processor control operation increments the
location assignment counter by 42. The last statement
of that part of a source program that is executed, when
loading is interrupted by a TCD statement, must be a
TRA statement. When the TRA instruction equivalences
are encountered in the object program, the normal
loading process is resumed. The TRA statement; which
takes the following form, uses no operands.

35

The following example illustrates the use of the
TCD and TRA mnemonics.

Line Label ~ior Operonel. & R_rb

11 5 , 1112 1516 20 2S 30 35 «I 45 50

~,.§ START (fi,.,t iI.strucflo,,)
I I I I I

10 ••

lLLo.
o .0

10,5

10., TR.A.
10.7, TC]). START.
10 •• 0 DON.' START.
10, '.0 (".",~i "i,nS Il!4lructt'O"f)
1.0 0 ·
11 . ·
1 2 0 ·

The TCD statement causes a branch to the location
assigned to the symbol START, followed by the execu­
tion of instructions from START through the TRA state­
ment. The TRA statement causes a branch to the load
program, which resumes loading the remainder of the
object program beginning with the location labeled
START.

Product-Area Mnemonics
Two mnemonics, SAVE and RSTR, are provided to allow
1710 interrupt programs to make use of the product
area (locations 00080 through 00099) during their
operation, even though that area was being used by
the main program when. the interrupt occurred. The
SAVE mnemonic should be inserted at the beginning
of the interrupt routine where it will generate in-line
instructions to store the contents of the product area
in a specified location. The interrupt routine may then
use the area but must restore the original contents
(RSTR) before returning control to the main program.
The .P and Q operands of these statements may be
actual or symbolic and may be arithmetically adjusted.

SAVE

EXAMPLE

XFER SAVE A, B

where XFER is the address of the first instruction gen­
erated by the use of the SAVE mnemonic.

A is the symbolic address of the leftmost position
in the temporary storage area. This area can be re­
served with a DSS statement. The length of the area
must be N + 1 digits where N is the number of digits
in the product area to be saved.

If LOCA is the label of the first digit of a 26-digit
area in core storage, the statement:

A10 SAVE LOCA, 75

will cause the contents of the product area from ad­
dress 00075 to 00099 to be stored in the first 25 loca­
tions reserved at LOCA. A record mark will be placed
in the 26th location.

If LOCB is the -label of the first digit of a 21-digit
area in core storage, the statement:

A100 SAVE LOCB

will store the cont~nts of the product area from ad­
dress 00080 through 00099 and a record mark in the
21 locations reserved at LOCB. The SAVE mnemonic
generates the following instructions:

TDM 00100,0
DC 1,@,·
TR LOCB, 00080
TDM 00100,0

RSTR

EXAMPLE

XFER RSTR A, B
where XFER is the address of the first instruction gen-

SPS II-D 67

erated by the RSTR mnemonic. A represents the loca­
tion in the product area into which the leftmost digit
of the temporarily stored information is placed. This
address should always be less than 99. If it is left blank,
the product area between 00080 and 00099 will be filled
in with the stored data.

B represents the address of the leftmost digit in the
record of information to be returned to the product
area.

If LOCA is the label of the first digit of an area
where locations 75-99 have been stored by ~ SAVE

instruction, the statement:

RSTR 75, LOCA

will cause the product area from addresses 00075
through 00099 to be restored with the information in
the first 25 locations reserved at LQCA.

If LOCB is the label of the first digit of an area where
locations 80-99 have been stored by a SAVE instruc­
tion, the statement:

RSTR , LOCB

will return the information which was stored in the
21 locations reserved at LOCB to product area address­
es 00080 through 00099.

The RSTR mnemonic generates the following instruc­
tions:

TR
TDM

00080, LOCB
00100, 0

Since each of these two mnemonics generate in-line
instructions, care should be taken when using address
adjustment in the same areas where these mnemonics
are used.

1620 Subroutines

A program or routine consists of a set of coded in­
structions arranged in logical sequence; it is used to
direct the 1620, 1710, or any IBM data processing sys­
tem to perform a desired operation or series of oper­
ations. Generally, programs contain one or more short
sequences of instructions that are parts or subsets of
the entire program, and that are used to solve a par­
ticular part of a problem. These parts of the program
or routine are called subroutines.

68

Usually, a subroutine performs a specific function,
is common to a number of programs, and may be
executed several times during the course of the pro­
gram of which it is a part (main program). For ex­
ample, a subroutine that extracts the square root of
a number may be required during the execution of a
pipe stress analysis program. The same subroutine
may be used to extract a square root in a bridge and
truss design program.

Classification of Subroutines

An efficient programming procedure is obviously one
in which all necessary subroutines are coded only
once, are retained on file, and are incorporated into a
program whenever the operation performed by the
subroutine is required. IBM Programming Systems has
developed, for the SPS II-D Symbolic Programming
System, a group of subroutines that are more fre­
quently required because of their general applicabil­
ity. Seventeen subroutines are available; they fall into
three general catgories: arithmetic, data transmission,
and functional.

Arithmetic subroutines
Floating-Point Add
Floating-Point Subtract
Floating-Point Multiply
Floating-J>oint Divide
Fixed-Point Divide

Data Transmission subroutines
Floating Shift Right
Floating Shift Left
Transmit Floating
Branch and Transmit Floating

Functional subroutines (those that evaluate)
Flo~Jing-Point Square Root
Floating-Point Sine
Floating-Point Cosine
Floating-Point Arctangent
Floating-Point Exponential (natural)
Floating-Point Exponential (base 10)
Floating-Point Logarithm (natural)
Floating-Point Logarithm (base 10)

The methods used by the functional floating-point
subroutines to evaluate the functions of arguments
are shown in Table 3.

The subroutines are written in machine language
and are provided in card or paper tape form for
floating-point numbers with either a fixed-length or

Table 3 SPS Subroutine Method of Evaluating Arguments

METHOD

SUBROUTINE FIXED LENGTH VARIABLE LENGTH

Square Root Odd integer Odd integer

Sine and Based on Hastings' Series approx imation
Cosine approx imation*

Arctangent Truncated series Series approx imation fOj"
arctangent

Exponential Hastings' approximation Series approx imations of
(natural and lOB. lOB is converted lOB and convert to e B
base 10)

to e B

Logarithm Truncated series for Series approx imation of
(natural and In B. In B is converted In B and convert to log B

base 10) to log lOB

* Hastings, Ceci I Jr., Approximations for Digital Computers,
Princeton University Press, Princeton, New Jersey. The
Rand Corporation, 1955.

variable-length mantissa. The terms "variable length"
and "fixed length," as applied to subroutines in this
manual, refers to the number of digits (L) in the
mantissa, not to the length of the subroutine itself.

The four sets of subroutine card decks or paper
tapes with their identifying set numbers follow.

Subroutine Set Set Number

Divide subroutine for machines 00
not equipped with the Automatic
Divide feature. Does not call
out or utilize the PICK subroutine

Fixed-length subroutine for
machines equipped with the
Automatic Divide feature.

Variable-length subroutines for
machines equipped with the Auto­
matic Divide feature.

Variable-length subroutines for
machines equipped with the Auto­
matic Floating-Point feature (The
Automatic Divide feature is a
prerequisite) .

01

02

03

A PICK subroutine is included at object time when
any of the seventeen subroutines previously mention­
ed have been called by the object program. This sub­
routine performs the function of obtaining the data
specified for a subroutine, storing the result produced
by that subroutine, and furnishing a return address
to the mainline program.

In addition to the Library subroutines, the user
may include up to twelve subroutines of his own. The
method used to incorporate these routines into the
proper subroutine set on disk is explained under
ADDING SUBROUTINES. Subroutines appear with the ob­
ject program only at execution time.

Subroutine Macro-Instructions
All linkages for the 1620 subroutines are generated au­
tomatically through the use of certain macro-instruc­
tions. The programmer places the macro-instruction,
related to a particular subroutine, in the source pro­
gram at the point where the subroutine is desired.
This causes the SPS II-D processor, during assembly, to
generate linkage to the desired subroutine. In addi­
tion, the processor arranges for the subroutine to be
added to the object program at object time.

The data and addresses required by the subroutine
and supplied in the macro-instruction are incorporat­
ed into the linkage instructions where they are made
available for use. In this way, the subroutine obtains
the information it requires to perform its given task
and also to compute a return address to the main
program. Control is returned to the main program
at the completion of the subroutine by transferring to
the return address (first instruction after the macro­
instruction). The macro-instruction statement related
to each subroutine is as follows:

Arithmetic Subroutines

line label p...roliCl' Operand. & Remarlt.

3 5 , 1112 1516 '5 SO

10,1 FA A,"B (Flo.tins AJd)
10.2 FS A .)J, (F/oafing S/lP1,.,d) , , I I ,
10,3 F.M. A.B (F/odlll' Multi,I.,) I , , I I I I I I I

FD A.B (Float tng Divide)
~.! I I I I I I I

050 DIV IA. B,A 1 ,~J (Divitl.)
L.;.........J...' I I I I I I ,

Data Transmission Subroutines

line label ~oIiCl' Operand. & R.mark.

3 5, 1516 '5 SO

La.I.O FSRS A.,.
10, FSLS A ,;B,
I •• 0 TFLS A~~
o •• IBTF,S A"B,

Functional Subroutines

Lint Lab.1 OperatiCI' Operand. & Remarlt.

3 5, 1112 15"

~ 1.0 FSQR A.B

"
FS 1(1j A,B

,1. FCOS A,B
o , 0 .F,A,T,f'1 A",B,
• 5 FEX A",B,

I. FEXT A,~

". __ ='5_--,SO",-

1-"'-'-'",+-,'--'-'-4-L+.::':;~:I--a'-'-"';;t--'~ (F/oGt"~ Slll/emr'RootJ .L , 0

1-"-'-'"",,+-,'--'-'-4-L~~:f-&C-~L....J. (FIOelf/IIS Sine) 0 I '" I •

• (Flo<1t/ft~ Cos",.) L I I I I I I I I I

J (FIDd.tm'1 Al'I:t.IIS_/lt) L-L I I I ! I I I I !

J (Flofltl"S £.pon.nt,<11. N.tll~./) " I 0 I •

I (rto«tltlfi E Iponentilll, Bcorse 10) , , " '"
1.7 FLN A",B
1.10 FLO,G A"S

(Flolltins Lo,.rifltm. N.tllr~/) L.~..l " , ,

P'-'-'-'''''+-'L...J......L-'-'-~~P.L~L....J. (FIt/dtil/fA Los.rltlom, B.s. to) '_' ,,0, I 0

SPS Il-D 69

In the arithmetic statements, the B operands repre­
sent the addresses of quantities to be added, subtract­
ed, etc. For the fixed-point divide routine, two addi­
tional operands, Al and Bl are required. These oper­
ands, as well as the A and B operands for data trans­
mission statements, are explained in greater detail
under each macro-instruction as it is described.

In the case of functional subroutine macro-instruc­
tions, the B operand represents the address of the
argument to be evaluated, while the A operand repre­
sents the address where the result is placed in storage.

When using a macro-instruction, the programmer
must code the exact number of operands required for
that macro-instruction. Every macro-instruction used
with subroutines supplied by IBM Library Services
has at least two operands. Added subroutines may
have macro-instructions with up to nine operands.
Remarks and Hag operands are not permitted in
macro-instructions. Omitted operands require the in­
sertion of commas as in imperative statements.

All operands in macro-instructions may be symbolic
or actual; all are subject to address adjustment. If an 4)

is used as an operand, its address is that of the left­
most position of the first linkage instructien.

Many subroutines have been paired (i.e., add and
subtract, sine. and cosine, natural and base 10 ex­
ponential, natural and base 10 logarithm) into single
subroutines to conserve storage by sharing those pro­
gram steps common to both. The individual subrou­
tines within each pair are distinguished from each
other solely by the point at which they are entered.
The correct entry point is obtained through the use
of the macro-instruction pertaining to the particular
subroutine desired.

All subroutines are identified by a 5-digit code. This
code identifies the subroutine as follows:

Set Number-----~--' ----'~x xl IX X JX
Subroutine Number

Number of Entries

Table 4 shows the palnng arrangements of the
subroutines together with their respective identifica­
tion numbers and their sequence in core when used by
an object program.

NOTE: The location of the PICK routine is determined
by the last address assigned by the sps processor dur­
ing assembly. All other required subroutines will fol­
low PICK (in core) in the sequence of Table 4. Sub­
routines not required are omitted.

70

Table 4. SPS Subroutine Group and Identification Numbers

IDENTIFICA TION NUMBERS

SUBROUTINE FIXED LENG TH VARIABLE LE NG TH

With
Without With With Automatic

Automatic Automatic Automatic Floating
Divide Divide Divide Point

PICK 01001 02001 03001

DIV· 00011 01011 02011 03011

FA }
} 02~4 } W~4 01022

FS.

FM 01041

FD 01051

FSQR 01061 02061 03061

FCOS } } 02072 } 01072 03072
FSIN

FATN 01091 02091 03091

FEXT } } 02102 } 01102 03102
FEX

FLOG } } 02122 } 01122 03122
FLN

FSRS 01141 02141

} Wl~ FSLS 01151 02151

TFLS 01161 02161

BTFS 01171 02171

The assigned address may be determined by in­
serting a DORG statement, with the desired address,
immediately preceeding . the DEND statement.

Linkage

For each macro-instruction statement in a source pro­
gram, two machine language linkage instructions, a 5-
digit address for each operand, and a record mark are
generated by the processor in the object program.
These linkage instructions replace the macro-instruc­
tion which never appears in the object program. A
label written with a macro-instruction references the
leftmost position of the first linkage instruction gen­
erated. If the programmer wishes to use this label in
address adjustment, he must remember that the loca­
tion of the instruction following a macro-instruction is
not LABEL + 12.

The linkage instructions generated by the processor
for a macro-instruction are equivalent to the follow-

ing series of symbolic instructions:

Line Labol C)perotior Operand. & R_,u

1112 Illf .. 2S 30 15 40 45 "
~ TF.~ PCK+20,.+I9 87 SUBR, ,5

10.3.0 DSA A,S
.J

[LoUt D,C, ll,,(j I ~

In this sequence of instructions,
PCK is the address of a fixed work area that is used

to contain the operands of the macro-instruction.
SUBR is a fixed location that contains the address of

the desired subroutine.
A, B . .. are the 5-digit addresses that are equivalent

to the operands specified in the macro-instruction.

Floating-Point Arithmetic
Scientific and engineering computations frequently in­
volve lengthy and complex calculations necessitating
the manipulation of numbers that may vary widely in
magnitude. To obtain a meaningful answer, prob­
lems of this type usually require retention of as many
significant digits as possible during calculation, and
correct positioning of the decimal point at all times.
When the computer is used for such problems, several
factors must be considered, the most important of
which is the location of the decimal point.

In general, a computer does not recognize the pres­
ence of a decimal point in any quantity during cal­
culation. A product of 414154 results whether the fac­
tors are 9.37 x 44.2, 93.7 x .442, or 937 x 4.42, etc. The
programmer must be cognizant of the loca~ion of the
decimal point during and after the calculation and
arrange the program accordingly. In adding, the
decimal points of all numbers must be lined up to
obtain the correct sum. The programmer facilitates
this arrangement by shifting the quantities as they
are added. In the manipulation of. numbers that vary
greatly in magnitude, it is conceivable that the result­
ing quantity could exceed allowable working limits.

Processing numbers which are expressed in ordinary
form, e.g., 427.93456, 0.0009762, 5382, -623.147,
3.1415927, etc., can be accomplished on a computer
only with extensive analysis to determine the size and
range of intermediate and final results. The percent­
age of time required for this analysis and subsequent
number scaling is frequently much larger than the
percentage of time required to perform the actual
calculation. Moreover, number scaling requires com-

plete and accurate information regarding the bounds
on the magnitude of all numbers that come into the
computation (input, intermediate, output). Since pre­
diction of the size of all numbers in a given calcula­
tion is not always possible, analysis and number scal­
ing are sometimes impractical.

To alleviate this programming problem, a system
must be employed which provides information re­
garding the magnitude of all numbers in the calcula­
tion along with the quantities in the calculation. Thus,
if all numbers are represented in some standard pre­
determined format that instructs the computer in an
orderly and siinple fashion as to the location of the
decimal point, and if this representation is acceptable
to the routine that performs the calculation, th~n
quantities that range from minute fractions having
many decimal places to large whole numbers having
many integer places can be handled. The arithmetic
system most commonly used, in which all numbers are
expressed in a format that has these characteristics,
is called "floating-point arithmetic."

The notation used in floating-point arithmetic is
basically an adaptation of the scientmc notation that
is widely used today. In scientific work very large or
very small numbers are expressed as a number, be­
tween one and ten, times a power of ten. Thus,

427.93456 is written as 4.2793456 x 102

and
0.0009762 is written as 9.762 x 10-4

In the 1620 floating-point arithmetic system, the
range of the fractional part of the number is modified
to extend between .10000000 and .99999999, that is,
the decimal point of all numbers is placed to the left
of the high-order (leftmost) nonzero digit. Hence, all
quantities may be thought of as a decimal fraction
times a power of ten. For example,

427.93456 becomes .42793456 x 103

and
0.0009762 becomes .97620000 x 10-3

where the fraction is called the mantissa, and the
power of ten, indicating the number of places the dec­
imal point was shifted, ~s called the exponent. The
use of floating-point numbers during processing, be­
sides offering advantages inherent in scientific nota··
tion, eliminates the need for analyzing operations in
order to determine the positioning of the decimal
point in intermediate and final results, since the deci­
mal point is always immediately to the left of the
high-order, nonzero digit in the mantissa.

SPS II-D 71

Format

In 1620 Boating-point operations, a Boating-point
number is a field consisting of a variable-length or
fixed-length mantissa and a 2-digit exponent. The ex­
ponent is in the two low-order positions of the field,
and the mantissa is in the remaining high-order posi­
tions, as shown:

M MEE

For the subroutines, the variable-length mantissa
may have a minimum of two digits and a maximum of
45 digits. Two operand fields that are added together
must have mantissas of the same length. A Bag over
the high-order digit marks the extremity of the field.
A fixed-length mantissa must have eight digits.

The exponent is established on the premise that the
mantissa is less than 1.0 and equal to or greater than
0.1. The exponent always consists of two digits rang­
ing between -99 and +99. A Bag over the high-order
(tens) digit defines the exponent.

The high-order digit of the mantissa and the high­
order digit of the exponent must contain Bag bits to
operate properly with Boating-point subroutines.

The mantissa and the exponent, if negative, must
have an algebraic sign, represented by a Bag, over the
units position of the respective fields; if they are posi­
tive, they are not Bagged. A Boating-point number
with a negative mantissa and a negative exponent is
represented as follows:

M MEE

Sign control of the results of all computations is
maintained according to the standard rules of arith­
metic operations.

Normalizing

In all Boating-point numbers, the decimal point is
assumed to be at the left of the high-order digit,
which must be a nonzero digit. Such a number is
referred to as normalized. When a number has one
or more high-order zeros, it is considered to be un­
normalized, unless the number itself is zero. An un­
normalized number resulting from a Boating-point
subroutine computation is normalized automatically,
but unnormalized terms are not recognized as such
when entered as data. Therefore, it is necessary for
all data to be entered in normalized form. Although
unnormalized numbers will be processed, correct re­
sults cannot be assured. For example, the number
0682349405 should be entered as 6823494004, as sum-

72

ing the fixed-point number is 6823.494 and an 8-digit
mantissa is required.

The following examples demonstrate the conversion
of numbers in ordinary form to 1620 Boating-point
notation for an 8-digit mantissa.

Number

123.45678
.00765438

-.12348693
-.00000070

.00000000

Normalized

.12345678 x loa

.76543800 x 10-2

-.12348693 X 100

-.70000000 X 10-(1
.00000000 X 10-99

1620
Floating Point

12345678(13
7654380002
1234869300
7000000006
0000000099

NOTE: A zero mantissa is associated with a 99 expon­
ent. With any other representation of zero, accuracy
cannot be assured.

The result of a Boating-point operation is normaliz­
ed automatically. For example, the result .00123456
when normalized becomes 123456NN02, where N is
an inserted digit (0 through 9) and 02 is the expon­
ent. The value of the N digit (sometimes referred to
as a noise digit) is determined by the programmer,
who in most cases will choose to use zero. At object
time the noise digit can be found at location 02401.

Effects of Normalizing

In normalizing, certain low-order digits in the man­
tissa may lose significance. To recognize these digits,
the Boating-point arithmetic can be performed twice,
using a different N digit for each run, e.g., zero for
the first run and nine for the second run. The sig­
nificance of these digits can be readily distinguished
by comparing the two results. For example, if the
programmer compares the following:

Result, 1st run
Result, 2nd run

Mantissa

.12345000

.12345099

Exponent

04
04

he will see that the two low-order positions of the
mantissa have lost significance because they are sig­
nificantly different.

When intermediate Boating-point results enter into
additional Boating-point calculations, inserted digits
may become a part of the result of the additional
calculation.

In the case of lengthy computations using Boating­
point results, precision gradually decreases because
of truncation. The magnitude of the truncation error
depends on the individual computation process and
cannot be predicted without a knowledge of the
process in question. However, the truncation error in
such cases is usually no greater than the degree of

error present in a rounded amount. Results in floating­
point subroutines are not rounded. The maximum
truncation error for a fixed-length mantissa will not
exceed 10-8 or, for a variable-length mantissa, 10-L,
except under certain conditions described in the ex­
planation of floating-point functional subroutines.

grammer is not given a visual innication when an
error occurs; however, a core storage location (00401)
is set to reflect the type of error. The programmer can
interrogate this location for the following digits:

Exponent Overflow and Underflow

=F- no error
I - exponent overflow
1 - exponent underflow
'0 - value cannot be calculated

In the 1620 floating-point subroutines, numbers with
a magnitude equal to or greater than 1099 create a
condition called exponent overflow; those with a mag­
nitude of less than 10-99 create a condition called
exponent underflow.

o - loss of accuracy in FSIN or Feos, or negative
input argument to FSQR or FLN

Location 00401 is reset to the "no error condition"
(=F) by the pick subroutine; therefore if it is to be
interrogated, the interrogation must be done before a
new subroutine is entered.

If either of these conditions is generated as a result
of an arithmetic operation, the resultant field is set to
the most reasonable value under the circumstances,
and operation is resumed (see Table 5). The pro-

When the digit in location 00401 indicates that an
error has occurred, the user will most likely initiate
some corrective action. The information that follows
should be of some assistance if this situation arises.

Table 5. SPS Subroutine Errors

DESCRIPTION OF ERROR

FA or FS, exponent overflow

FA or FS, exponent underflow

FM, exponent overflow

FM, exponent underflow

FD, exponent overflow

FD, exponent underflow

FD, attempt to divide by zero

FSQR, input argument is negative

FSIN or FCOS, input argument has
exponent value greater than the
mantissa length

FSIN or FCOS, input argument has
exponent value (X) such that, 03~X::::!l,
where L is the mantissa length

FEX or FEXT, exponent overflow

FEX or FEXT, exponent underflow

FLN or FLOG, attempt to take log
of zero

FLN or FLOG, input argument is
negative

CONTENTS
OF 00401

-
1

1

1

1

o

o

o
1

1

o

o

RESULTANT FIELD

99. .999

00. .099

99. .999

00. .099

99 ••• 999

00 •.• 099

If 0 In
mantissa of dividend unchanged,
exponent of dividend = E + 99.
If 010 :
mantissa of dividend unchanged,
exponent of dividend;;; -99

vTxT

00 ••• 099

SI N (X) or COS (X)

99 ••• 999

00 ••• 099

99 ... 999

LN (I x I) or LOG (I x I)

SPS II-D 73

Symbolic Addresses Description of Data
PCK + 10 Return address of mainline pro-

PCK + 15

PCK + 20
PCK + 33
PCK + 36

gram
Address of A operand data (re­

sult)
Address of B operand data
Mantissa length in use
Noise digit in use

NOTE: PCK == 02365, a fixed location in core storage at
object time.

Overflow and/or underflow conditions can arise in
only six of the floating point subroutines presented in
this manual, namely, the four arithmetic subroutines
and the two exponential functional subroutfnes.

Arithmetic Indicators

During the execution of arithmetic subroutines, the
overflow, high/positive, and equal/zero indicators are
used. The overflow indicator is always reset at the
beginning of each arithmetic subroutine. If it is desir­
ed to determine its status prior to the execution of an
arithmetic subroutine, the indicator must be tested
and its condition stored before the linkage instruc­
tions are executed. The high/positive and equal/zero
indicators are set according to the mantissa of the
result. Whenever a zero mantissa results (0 099),
the equal/zero indicator is turned on.

At the conclusion of a functional subroutine, the
status of the high/positive, equal/zero, and overflow
indicators does not necessarily reflect the result of the
operation, because the indicators are disturbed during
the execution of a functional subroutine. Therefore,
their status at the conclusion of a functional sub­
routine should not be assumed to be the same as it
was prior to the execution of the subroutine.

Description of 1620 Subroutines
In this section the various subroutines are described
together with examples of how the associated macro­
instructions are written. For average execution times
of all subroutine macros, refer to Table 23 in the
Appendix.

PICK

This subroutine is common to all fixed-length and
variable-length subroutines. The pick subroutine, dur­
ing execution of the object program:

74

1. Sets up A and B operands to be operated upon,
calculates the return address to the mainline pro­
gram, and then returns to the user's subroutine.

2. Resets location 00401 to "no error condition"
(=F).

3. Stores the calculated result in the proper storage
area and branches back to the mainline program.
This function is used as required by the indi­
vidual subroutine.

4. Provides constants and working storage for the
other subroutines.

The average execution time for the pick subroutine
can be determined by the formula:

Average time (in ILsec) == 40 L + 4640

where L == the length of the mantissa. The numbers
are expressed in microseconds. Therefore, an 8-digit
mantissa (same as fixed-length mantissa) requires
4960 JLsec.

40 x 8 == 320
4640
4960 ILsec

or approximately five milliseconds (ms).

NOTE: For the variable length subroutines used with
the Automatic Floating-Point feature:

Average time (in ILsec) == 40 L + 2080

Floating Add

Macro-instruction

25

Operandi & Remarb

30

The A and B addresses refer to the units position of
the exponent of the fields:·

MMMMMMMMEE

t
address of field

where the E's represent digits of the exponent and the
M's represent digits of the mantissa. Neither A nor B
should reference any location within the Product Area
(i.e., the area used to contain products and quotients).

Operation. Field B is added to field A. The floating­
point sum replaces field A; field B remains unchanged.

Floating Subtract

Macro-instruction

10 :u
Operand. & I >marlco

40 50

The A and B addresses refer to the units position of
the exponents of the fields. Neither A nor B should refer­
ence any location within the Product Area.

Operation. Field B is subtracted from field A. The
floating-point difference replaces field A; field B re­
mains unchanged.

Floating Multiply

Macro-instruction

10 :u
Operand. & ._rIco

40 ., 50

The A and B addresses refer to the units position of
the exponents of the fields. Neither A nor B should refer­
ence any location within the Product Area.

Operation. Field A is multiplied by field B. The
floating-point product replaces field A; field B re­
mains unchanged.

Floating Divide

Macro-instruction

Operand. & __ rico

., 4J 59

Operation. Field A is divided by field B. The float­
ing-point quotient replaces field A; field B remains
unchanged. Neither A nor B should reference any loca­
tion within the Product Area.

Fixed-Point Divide

Macro-instruction

f til I" 20 2S 1""1- ~ : J : fi A. B. A,l. B 1 J

10 • ., ... 50

In addition to the A and B operands, which represent
the addresses of the dividend and divisor, the divide

macro-instruction requires two additional operands;
one specifies the number of zeros to be inserted to the
right of the dividend (AI operand) and the other,
the shift factor needed by the subroutine (BI oper­
and). Specifically,

A operand is core storage address of dividend (must
not reference Product Area).

B operand is core storage address of divisor (must
not reference Product Area).

Al operand is 00099 minus the number of zeros de­
sired to the right of the units position of the
dividend.

BI operand is 00100 minus the length of the quo­
tient. The quotient must be at least two digits
in length.

NOTE: The quotient address after the division is ex­
ecuted will be equal to 00099 minus the length of the
divisor.

Prior to the divide operation, the divide subroutine
always resets to zeros (clears) positions 00080
through 00099, the product area where the 20-digit
quotient and remainder are developed. For variable­
length mantissa subroutines, the divide subroutine
clears core storage positions 00001-00099 to zeros.
When the quotient plus the remainder exceeds the
number of positions cleared to zeros,. positions lower
than the last position cleared must be reset to zeros
by programming. One additional position should also
be cleared to allow for a possible overdraw. For ex­
ample, if 25 positions are required for the quotient
and remainder in a fixed-Itmgth mantissa subroutine,
00074-00079 should be reset to zeros before the divide
macro-instruction is given.

The fixed-point divide macro-instruction may be
used with any of the subroutine sets. Whenever it is
used, the fixed-point divide subroutine will be incor­
porated into the object program at object time. For the
subroutine sets that are designed to work with auto­
matic divide, the fixed-point divide subroutine uses
automatic divide in performing its operation. For the
subroutine set that is designed to work without auto­
matic divide, the fixed-point divide subroutine per­
forms its operation as instructed by the routine with­
out the aid of the Automatic Divide feature. Coding of
the macro-instruction is the same for all of the sub­
routine sets.

Operation. The area to be cleared is automatic­
ally reset to zeros. The dividend (A address) is trans­
mitted to the product area (AI address), beginning
at the low-order dividend digit and terminating at
the flag bit marking the high-order position of the
dividend field. The Al address is 00099 minus the

SPS II-D 75

number of zero positions desired to the right of the
dividend.

The algebraic sign of the dividend is automatically
placed in location 00099, regardless of where the
rightmost dividend digit is placed by the Al address.
A flag bit automatically marks the high-order digit
of the dividend.

The divisor (B address) is successively subtracted
from the dividend. The Bl address of the divide macro­
instruction positions the divisor for the first subtrac­
tion from the high-order position (s) of the dividend,
as in manual division. The Bl address is determined
by subtracting the number of digits in the quotient
from 100. For subroutines using program divide, the
value of Bl must be between 0 and 99. For subrou­
tines using automatic divide, the value of Bl is not
restricted.

The quotient and remainder replace the dividend
in the product area. The address of the quotient is
00099 minus the length of the divisor. The algebraic
sign of the quotient (determined by the signs of the
dividend and divisor) is automatically placed in the
low-order position of the quotient. The address of the
remainder is 00099; a flag bit is automatically placed
in the high-order position of the remainder. The re­
mainder has the sign of the dividend and the same
number of digits as the divisor.

The high/positive indicator is on if the quotient is
positive and not zero; the equal/zero indicator is on
if the quotient is zero. Neither indicator is on if the
quotient is negative.

The quotient must be at least two digits in length.
This is the minimum field length that the 1620 will
accept.

EXAMPLES

1. The macro-instruction

DIV A, B, 99, 96

will perform the division for 0273 }3972 and
store the result 0014 in storage locations 00092
through 00095.

2. The macro-instruction

DIV A, B, 96, 93

will perform the division for 0273)3972.000 and
store the result 0014.549 in storage locations
00089 through 00095.

NOTE: In examples 1 and 2, A represents the address
of the dividend 3972, and B represents the address of
the divisor 0273.

76

Incorrect Positioning of Divisor. The following
error conditions are caused by an incorrect Bl
address.

1. An incorrectly positioned divisor can cause more
than nine successful subtractions and an incor­
rect quotient. The divide operation is terminated,
the Overflow indicator and Overflow Arithmetic
Check light are turned on, but processing will
not stop unless the Overflow Check switch is
set to STOP. A divide by zero (K/O) causes the
same error conditions just described.

2. The high-order digit of the dividend is assumed
by the 1620 to be one position to the left of the
high-order digit of the divisor. The high-order
digits of the dividend are lost if the divisor is
positioned too far to the right. Processing con­
tinues with no indication of an incorrect quotient.

3. If the B address is less than 10000, i.e., between
00100 and 00999, the divide operations will ter­
minate when a subtraction occurs at OXX99. This,
in effect, restricts the size of the dividend to
10,020 digits if only 20,000 positions of core stor­
age are installed.

Floating Shift Right

Macro-instruction

Operand. & Remarles

The effect of this macro-instruction is to shrink the
mantissa by shifting it to the right and truncating the
low-order digits. The A address is normally the units
position of the mantissa.

- -MMMMMMMMEE

t. .. f t' umts pOSItion 0 man Issa

The B address specifies the digit of the mantissa
which will become the low-order digit of the mantissa.

Operation. The field at the B address (the portion
of the mantissa to be retained) is shifted right to the
location specified by the A address. The exponent is
not moved or altered. For example, the macro-instruc-

tion

FSRS 00097,00093

causes the mantissa

30590011325701

t t
Storage Storage
Address Address

00093 00097

to be shifted, producing the following result

00003059001101
t t

Storage Storage
Address Address

00093 00097

Vacated high-order positions are set to zeros, an exist­
ing flag at the A address is retained for algebraic sign,
and the field flag bit is transmitted with the high­
order digit of the B field.

Floating Shift Left

Macro-instruction

The effect of this macro-instruction is to expand the
mantissa by shifting it to the left and filling the vacat­
ed positions with zeros. It is important to note that
the B address is the low-order position of the field
moved, and the A address is the high-order position
of the resultant field.

Operation. The field at the B address, which is the
low-order digit of the mantissa, is shifted left so that
the high-ordet· digit is moved to the location specified
by the A address. The exponent is not moved or alter­
ed. For example, the macro-instruction:

FSLS 00090,00097

causes the mantissa

0011325701

t t
Storage Storage
Address Address

00090 00097

to be shifted, producing the following result

i132570001

t t
Storage Storage
Address Address

00090 00097

An existing flag bit at the Q address is retained for
algebraic sign; the field flag bit is transmitted with
the high-order digit of the Q field.

Transmit Floating

Macro-instruction

The B address refers to the low-order digit of the
floating-point field exponent, whereas the A address
refers to the low-order position to which the field is
transmitted.

Operation. The field at the B address is transmitted
to the location specified by the A address. The B field
remains unchanged in storage. Flag bits in the three
low-order positions of the B field are also transmitted.
Starting with the fourth low-order position, only one
additional flag bit is transmitted, and it stops trans­
mission.

Branch and Transmit Floating

NIacro-instruction

The B address is normally the low-order position of
the floating-point field exponent, whereas the A ad­
dress is the leftmost position of the next instruction to
be executed.

Operation. The address of the instruction following
the macro-instruction is saved at a storage location
in the BTFS subroutine, and the field at the B address
is transmitted to the A address minus one. The normal
exit of a routine which is entered by a BTFS is a Branch
Back (BB) instruction. The instruction at the A ad­
dress is the next one executed. The B field remains

SPS II-D 77

unchanged in core storage. Any flag bits in the three
low-order positions of the B field are transmitted.
Starting with the fourth low-order position, only one
additional flag is transmitted, and it stops trans­
mission.

Floating Square Root

Macro-instruction

20

Operands & Remark.

50

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The square root of argument B is ex­
tracted and the result, in floating point form, is stored
at A. The argument, which must be in floating-point
form, is unchanged by the operation.

The floating-point square root subroutine accepts all
numbers within the floating-point range that are
greater than or equal to zero. If the argument is less
than zero, a 0 is placed in location 00401 and A is set
equal to SQR IAI.

Floating Sine

Macro-instruction

20 25

Operands & Remar10s

50

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The sine of argument B is computed and
the result, in floating-point form, is stored at A. the
argument must be in radians and in floating-point
form. The computation does not disturb the original
value of the argument.

The Boating-point sine subroutine accepts all num­
bers of floating-point range up to and including ex­
ponent 08 (fixed length mantissa) or L (variable
length mantissa).

For arguments with exponents less than 03, the
magnitude of the maximum truncation error in the
mantissa of the result does not exceed 10-L. Accuracy
in the mantissa of the result decreases as the size of
the argument (exponent of 03 or greater) increases.
For error codes, see Table 5.

78

Floating Cosine

Macro-instruction

20 25

Operand. & Remark.

50

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The cosine of argument B is computed
and the result, in floating-point form, is stored at A.
The argument must be in radians and in Boating­
point form. The computation does not disturb the
original value of the argument.

The allowable range of the argument, maximum
accuracy, etc., for the cosine subroutine is the same
as that previously described for the sine subroutine.

Floating Arctangent

Macro-instruction

20

Operands & RemarXs

.5 50

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The Boating-point value of the arctan­
gent of B is computed and the result is stored at A.
The argument must be in floating-point form; the re­
sult in radians will also be in Boating-point form.

The arctangent subroutine accepts any number
within the floating-point range. During the evalua­
tion of the arctangent of B, use will be made of the
divide subroutine.

The maximum truncation error in the mantissa of
the result is ± 10-L, except for results having an ex­
ponent less than or equal to 02 (E L 02). The maxi­
mum error for these results is ± 1 in the (L+1)th
decimal place. L == 08 for the fixed length mantissa.

Floating Exponential (Natural)

Macro-instruction

20 30

Operands & RemorXs

.5

Operation. The A and B addresses refer to the units
position of the exponents of the fields. The value of

the eB, where B is in floating-point form, is computed
and the result, also in floating-point form, is stored
at A. An input value that exceeds

227.955924206n n(227955924206n n(3)

causes an exponent overflow, and one which is less
than

-227.955924206n n (227955924206n ii03)

causes an exponent underflow. Depending on the type
of error, a 1 or I is placed in location 00401.

For negative arguments, the subroutine uses the
absolute value of the argument to evaluate the func­
tion and then finds the reciprocal value.

For positive and negative arguments, the maximum
truncation error in the mantissa of the result is ± 10-L.

Floating Exponential (Base 10)

Macro-instruction

20

Operand. & Remarks

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The value of lOB is in floating-point
form; it is computed and the result, also in floating­
point form, is stored at A. An input value that exceeds

98.9n ... n(989n ... n(2)

causes an exponent overflow, and one which is less
than

-98.9n ... n (989n ... il(2)

causes an exponent underflow.
This subroutine handles negative arguments in the

same manner as they are handled by the natural ex­
ponential subroutine. Maximum accuracy is the same.

Floating Logarithm (Natural)

Macro-instruction

20 25 30

Operand. & Remarks

35 50

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The floating-point value of the In B is
computed and stored at A. Input arguments must be
in floating-point form.

This subroutine accepts all arguments greater than
zero within the floating-point range. For error codes,
see Table 5.

Floating Logarithm (Base 10)

Macro-instruction

20 35

Operand. & Remarks

50

The A and B addresses refer to the units position of
the exponents of the fields.

Operation. The floating-point value of the log lOB
is computed and stored at A. Input arguments must
be in floating-point form.

This subroutine accepts all arguments greater than
zero within the floating-point range. For error codes
see Table 5.

Adding Subroutines

The user may add from one to twelve subroutine
macros to subroutine sets 01, 02, and 03. Each new
subroutine may use from two to nine operands. Al­
though the minimum number of operands allowed is
two, both the A and B operands may be the same.

To add a subroutine, it is necessary to:
1. Modify the Op Code table to include the new

mnemonic (see SPS II-D MODIFICATION PROGRAM).

2. Write the subroutine in sps language, keeping in
mind certain factors regarding PICK, mantissa
length (L), and modifications with regard to the
subroutine itself.

3. Assemble the subroutine in relocatable form, and
store it on the disk.

Modifying the Op Code Table

The Op Code table is modified by executing the
SPS II-D Modification Program. This program is part
of the Monitor system; it is described later in the
manual.

Writing a Subroutine

When writing a subroutine, the programmer should
be aware of certain information ronceming PICK,

namely: the functions of PICK, PCK area, linkages,
common work areas in PICK, and the means of signi­
fying operands that are relative to PICK and/or are a
function of mantissa length.

SPS II-D 79

FUNCI'IONS OF PICK

PICK is common to all subroutines in the subroutine
set. Therefore, it is to the advantage of the subroutine
writer to make use of PICK. The listing of the appro­
priate PICK subroutine (furnished with the Library
package) should be .studied. Briefly, PICK performs
the following operations:

1. Resets location 00401 (subroutine error digit).

2. Moves A and B operands into PCK + 15 and
PCK + 20, respectively. If more than two oper­
ands are used, all should be handled by the
user's subroutine.

3. Calculates the return address to the mainline
program. However, if a subroutine uses more
than two operands, the return address must be
calculated by the subroutine itself. To calculate
the return address, use the following formula:

(PCK +10) + 5n + 1 if n is even, or

(PCK +10) + 5n + 2 if nis odd

where PCK + 10 (before entering the PICK sub­
routine) is the address of the high-order digit
of the first operand, and n is the number of
operands.
If PICK calculates the return address (two oper­

ands), eleven is added to PCK + 10.

4. Moves the B operand (mantissa and exponent)
into working area beta. If the A operand is also
used by the subroutine for calculation, it (the
A operand) must be moved by the subroutine
itself. This requires two instructions:

TF ALPHA, PCK + 15, 11

TF ALPHA -2, PCK + 25, 11

or one instruction if TFL is available on the
machine.

TFL ALPHA, PICK + 15, 11

5. Sets error indicator 00401 for overflow and
underflow.

6. Stores the computed floating-point result in the
location specified by the A operand.

The functions of PICK are not mandatory, but are
under control of the user. When a subroutine is call­
ed, the object program branches directly to the sub­
routine. If the functions of PICK are desired, the user
may branch to PICK via the following linkage:

TFM PCK + 5, 0 + 20

B7 PCK, , 6

80

OPERANDS THAT ARE FUNCI'IONS OF PICK

AND/OR MANTISSA LENGTH

Whenever PICK is used, the programmer must use
instructions in his subroutine which make reference to
the PICK subroutine (All references to PICK must be writ­
ten as relocatable quantities.) The operands of these in­
structions are then adjusted to make them correspond to
the actual addresses of PICK in the object program.
This is done by using a pseudo constant (DC state­
ment). The constant does not become a part of the
object program; its only function is to indicate that
the instructions that follow are to be modified.

One DC statement can modify up to 25 instructions.
Each instruction, whether it is to be modified or not,
requires two digits in the pseudo constant, one for
the P operand and one for the Q operand. The state­
ment itself consists of three operands: the first speci­
fies the length of the constant which may not be
greater than 50 nor less than 2; the second, the actual
constant; the third, the storage address of the con­
stant. This address must be specified as an absolute
address of 00350. The P and Q operand modifier con­
stants follow:

P and Q Operand

Modifiers

o
1
2
3
4
5

6

7

8

9

Modification

No Modification
AddL
Subtract L
Add 2L
Subtract 2L
Modify with respect to PICK,

no L modification
Modify with respect to PICK,

addL
Modify with respect to PICK,

subtract L
Modify with respect to PICK,

add 2L
Modify with respect to PICK,

subtract 2L

The following example shows how a variable­
length mantissa subroutine may be modified by the
use of modifier constants.

DC 6, 527005, 350
TF SAVE, 98
SF SAVE
TFL PCK + 15, SAVE, 6
B7 PCK + 10, , 6

NOTE: (1) Intervening DORG statements and constants
between instructions are never modified in this manner.

(2) SAVE is a relocatable quantity.

Assembling a Subroutine

When a subroutine is assembled, it must be "Assem­
bled Relocatable," stored in relocatable format, and
must have the following items defined:

1. Disk Identification Map (DIM) entry
2. Subroutine identification number
3. Desired entry points

Subroutine DIM Entry

A subroutine DIM entry is in the same general format
as that described in the Supervisor section of this
manual. However, the last two 5-digit fields specify
the length of the subroutine and the subroutine identi­
fication number instead of a core address and a start­
ing or entry address.

Subroutine DIM entries occupy fixed locations in
the DIM table. There are 30 entries . reserved for sub­
routine sets 01,02, and 03 (this includes an entry for
PICK in each set); only one entry is needed for set 00.
The 30 entries are needed for the 17 subroutines (plus
PICK) provided by IBM plus 12 subroutines that may
be added by the user.

To calculate the DIM entry number for a new sub­
routine, add the new subroutine number (18-29) to
the base DIM number for the applicable subroutine
set. The base numbers for each set are as follows:

Base Number Subroutine Set

130 Fixed Point Divide - 00
100 Fixed Length - 01
70 Variable Length - 02
40 Automatic Floating Point - 03

For example, the DIM entry number for the first
user-written subroutine to be added to the variable
length set would be 70 + 18 == 88.

A DIM entry number is assigned to a subroutine by
including an "ID NUMBER" control record when the
subroutine is assembled (see SPS CONTROL RECORDS).

SUBROUTINE LENGTH

The length of a particular subroutine is automatically
placed in its respective DIM entry when an LIBR con­
trol record (see sPS CONTROL RECORDS) precedes the
subroutine source program.

SUBROUTINE JDENTIFICA TION NUMBER

As stated previously, all subroutines are identified by
a 5-digit code number. When a subroutine is being
added, this number must be supplied by the user.
The number is composed of two digits for "subroutine
set number" (00, 01, 02, 03), two digits for "subrou-

tine number" (01-29), and one digit for "number of
entry points" (1-9). The number will automatically be
loaded to its proper position in the DIM table if it is
used as the address operand of the DEND statement
that terminates the subroutine source program.

Example DEND 02182

This code number identifies subroutine number 18,
a "2-entry point subroutine" that is to be placed in
the variable-length subroutine set.

SUBROUTINE ENTRY POINTS

Each subroutine requires at least one entry point but
may have as many as nine entry points. These must
be specified at the beginning of the user's source
program. Two records of data are needed:

ORIGIN DSA ENTRYl, ENTRY2, etc.

DORG ORIGIN-4

In the preceding statements, ORIGIN is any label not
otherwise used in the subroutine; ENTRyl is the label
of the first entry point; ENTRy2 is the label of the sec­
ond entry point. The DORG is needed to ensure that
the subroutine will begin at relocatable 00000.

SUMMARY OF ASSEMBLY PROCEDURE

By inserting a DSA for entry points and placing the
subroutine identification number in the DEND state­
ment of the source program, it is possible through the
use of proper control records to assemble a subroutine
and have it loaded to disk and ready to use all in
one operation. Of course, the mnemonic of the added
subroutine must be defined in the Op code table prior
to assembly of a program that uses it.

Example

This example illustrates how a subroutine is added to
the subroutine library of the Monitor I System. In
this example, the new subroutine is assembled along
with a mainline program and both are then executed
(Figure 10). The example assumes that the Super­
visor program is already in core storage.

GIVEN:

PROCEDURE:

Macro - EXCH A, B
Function- to exchange Hoating­

point numbers between A
and B

Identity - Subroutine No. 18,
Set No. 02

1. Modify Op Code table by
loading the following rec­
ords;

SPS II-V 81

Source Main line

/

Source S ubrout i ne

I ,
I

I

I ,
I

SPS Control Records

I
I

I ,
I

------ - - - -1

, ,

I ,
I

I

Monitor Control Records
I

__________ __ J

,
I

I

,
, ,

SPS LI.B Co'ntrol Records

I

-------------.,
I ,

,
I

Monitor C~ntrol Records
I "------------------------_ - ---- - - - -- - -'

Figure 10. Stacked Input for "Adding SPS Subroutine" Example

82

Line Label pperatian Operands & Remarks

3 5 6 11 12 15 16 20 25 30 35 40 45 50 55 60 65 70 75

~ 10 DS'A ENTRY .
o .2.0 -If DSA IS USED TO D£F"IN£ S VB NO U1' N E ENTRY PO I WT ,
o ,3 0 ZERO D01Hi if-If , ,D,E. FIN E S TiELOCATABL£ ZERO

1

o 4 0 BETA DS .Z£RO+196 , , ,D,E F I N.CS REtOCATABL£ SYMBOL

o 5 0 PCK DS ,2365 , , DEFINES ABSOLUTE SYMBOL ,
10.6,0 ENTRY TFM PCK+5 1,* + 2 0

o 7 0 B7 PCK , ,6 , LINKAGE TO PIC/(,

o 8 0 TF PC K+2.. 0 I PCK+1 5 .6 11 • MOV £ A £XP TO B OP£RAND £XP Pos J T W

10 9 0 TF PCK't30 , PCK+,2 S , 61 1 , MOV [A CHAR TO B OPR,AN D C,HAR POSITN
1 0 0 DC 4- ,05"05" ,350, PSEUDO CONSTANT FOR P' C K AND L, R£F

1 1 0 TF Pc Xi- 1 5 , BETA , fj , MOVE B TO A
1 2 0 TF PCJ(+2.5 • BE TA - 2 ,6 .• NOTE .TI-IAT PI elf PUT B' IN BETA
1 3 0 B7 PC K t1 0 , ,6, RETURN TO MAl N LIN£'
1 4 0 '/J,fNP 02. 18 1 , ID FOR SU B,R. , ,

Figure 11. Source Program for "Adding SPS Subroutine" Example

Monitor Control - XEQ specifying SPSLIB

SPSLIB Control DEFINE OP CODE

EXCH - 181 (Col. 12-19)
ENDLIB

NOTE: The above four records must be entered from
the same input unit.

2. Precede the source subroutine
(Figure 11) in the stacked
input with the following
control records:

Monitor Control - JOB

SPs

SPS Control -

1/0 Macro-Statements

ASSEMBLE RELOCATABLE

LIBR

ID NUMBER 0088
STORE RELOADABLE

LIST CARD

ERROR STOP

The I/O macro-statements are provided to relieve
the programmer of the task of writing his own I/O
subroutine in a source program each time he wants to
read or punch cards or tape, read or write disk stor­
age, or read or write typewriter. I/O macro-statements
may be inserted anywhere in the user's program.
When an I/O macro-statement is encountered in thf
source program during assembly, linkage instructions
to the I/O routine (part of the Supervisor program)
are generated in the object program.

The macro-instruction mnemonic operation codes
and their meanings follow:

Mnemonic
GET

PUT

SEEK
CALL

Meaning
Read card, paper tape, typewrit­

er, or disk.
Punch card, paper tape, or write

typewriter, or write disk rec­
ords with or without read­
back check.

Seek disk record.
Read disk stored subprogram

and execute (requires LINK

operand), or read disk stored
subprogram or data without
execution (requires LOAD oper­
and) , or return control to
Supervisor (requires EXIT

operand).

The six types of macro-statements that use the I/O
routine are written as follows:

label pPerati"" Operands & Remarks

, 1112 1516 20 25 JO 35 <0 .5 50

1. GET 'D£F

~-
PUT DEF I I I I I I I I I I I I

,p,U,T DEF J,fi,B,C
2.

3.
~.

S£E,I<])£F

...
-'

CAL~ LI II,X.. IJ I NENT , RE L OC

. .l.-
CIIL L LI NK, NAME, REL O,C

4.

"L..I.
tAL L LOAJ)"DIM£.NT,RELOC

----i.._
CA Lt L DAD, NAME "Ii EL OC . 5.

-~

6. -> ell.L L EXI T

SPS II-D 83

A label and remarks may be included with each of
these statements. The address associated with the
label will be that of the first instruction in the gen­
erated linkage. The operands RBC, LINK, LOA))". and
EXIT are fixed symbols, i.e., they must be written ex­
actly as given. The symbol DEF is the address of the
associated I/O constant generated by an 110 declara­
tive statement. DIMENT is the DIM entry number of a
program to be called from disk storage; RELOC is the
relocation core storage address of a program to be
called; and NAME is the name of a program (as it
appears in the Equivalence table) to be called. DEF,

DIME NT, and RELOC may be in actual or symbolic form.
PUT statements may be specified with or without

read-back check (RBc), as shown. EIther a DIM entry
number or the program name can be given with CALL

LINK or CALL LOAD statements. Also, the relocation ad­
dress is optional with these statements, i.e., the pro­
grammer does not have to include a relocation
address.

A CALL EXIT statement should be included in the
user's source program. This statement, when executed
at the end of the object program, causes control to
be returned to the Supervisor program.

All linkages for I/O routines are generated auto­
matically through the use of macro-instructions. The
data and addresses supplied in the macro-instruction
are incorporated into the linkage instructions where
they are made available for use by the 1/0 routine.
The linkage instructions generated in an object pro­
gram for macro-instructions by the processor are
equivalent to the followin~ series of symbolic instruc­
tions.

Linkage for GET, PUT, and SEEK
TFM IORT, 0 + 23
B ENTRY, DEF,7

IORT is the address of a 5-positfon storage area in the
I/O routine.

ENTRY is one of the four possible entry points in the
I/O routine (see I/O ROUTINE LINKAGES).

DEI" is the address of the I/O constant.

Linkages for CALL LINK and CALL LOAD

84

Without a relocation address

TFM
B
DORC
DC

10RT, 0 + 19
lOCAL
0_4
1, Mo

DSC 1, Ml
DSC 1,0
DC 5, IIII@

With a relocation address

TFM
B
DORC
DC
DSC
DSC
DC
DSA
DSC

10RT, 0 + 19
lOCAL
0_4
1, Mo
1, Ml
1,0
4, 1111
LLLLL
1, @

lOCAL is an entry to the I/O routine (core storage ad­
dress 00716).

Mo Ml is a constant 32 for call linkages.
nn is the DIM entry number of the program. to be

called.
LLLLL is the relocation core storage address where the

program is to be loaded.

Linkage for CALL EXIT
B MONCAL
DORC 0 - 4

MONCAL is an entry (core storage address (0796) to
the I/O routine which will call in the Monitor
Control Record Analyzer routine.

Input/Output Declarative Statements

Input/output core storage areas to be used by a pro­
gram for reading or punching cards, reading or punch­
ing tape, reading or writing disk storage, and reading
or writing typewriter must be allotted by the program­
mer. These I/O areas may be allotted and defined
using DSS or DAS declarative statements. Each I/O
area used by an I/O macro-statement (GET or PUT)

must be identified by an I/O declarative statement.
The I/O declarative mnemonic operation codes and

their meanings are as follows:

. Code
DTN,
DTA
DCN
DCA
DPTN
DPTA
DDW
DD

Meaning
Define Typewriter Numerical
Define Typewriter Alphameric
Define Card Numerical
Define Card Alphameric
Define Paper Tape Numerical
Define Paper Tape Alphameric
Define Disk with WLRC
Define Disk without WLRC

DTN, DTA, DCN, DCA, DPTN, and DPTA Statements

These statements may be used in the source program
to identify numerical or alphameric typewriter, card,
or paper tape I/O areas. Each statement causes an
8-digit I/O constant to be generated in the object pro­
gram. Two operands are required for each statement.
The first operand is used to specify the address where
the I/O constant is to be loaded into core storage.
The operand may be an absolute value or a symbolic
name. If a symbolic name is used, the symbol must
have been previously defined as an absolute value;
that is, it must have appeared in the label field of a
statement preceding the statement in which it is used.
If the first operand is omitted, the processor assigns
the address to which the constant will be loaded in
core storage.

The second operand, which may be symbolic or
. actual, is the leftmost core storage address of an as­
signed I/O area. This address will be included in the
constant in the object program. Remarks are per­
mitted following the second operand. Items (operands
or remarks) of a statement must be separated by
commas. Address adjustment may be used with either
operand.

If a label is included with the statement, the storage
address assigned to it will be that of the leftmost
position of the 8-position I/O constant.

The following example illustrates a DCN statement.

The first statement defines an 80-position numerical
card I/O area and the second statement identifies it.
The i/O constant generated in the object program
for the DCN statement is equivalent to the following
symbolic instructions,

DEF DS
DSA
DC

r

where the label DEF is the leftmost address of this 8-
position constant and CARDIO is the address of the
associated I/O area. The code 04 is generated for a
DCN statement only. A complete list of the codes gen-

erated for each type of statement follows:

DTN 00 (Typewriter Numerical)

DTA 00 (Typewriter Alphameric)

DCN 04 (Card Numerical)

DCA 10 (Card Alphameric)

DPTN 02 (Paper Tape Numerical)

DPTA 08 (Paper Tape Alphameric)

DDW and DD Statements

These statements are used to specify the disk control
field (defined by a DDA statement) to be used for a
disk operation (SEEK, GET, or PUT) and to specify cer­
tain options. Each statement (DDW or DD) is assembled
as an 8- or I3-digit I/O constant depending upon the
number of given operands.

A minimum of two operands is required with a DDW

or DD declarative statement. The first operand, which
may be symbolic or actual, is used to specify the
address where the generated I/O constant is to be
loaded into core storage. If this operand is omitted,
the processor will assign the address.

The seCQnd operand is the address of the leftmost
position of the disk control field (defined by a DDA

statement). The operand may be in actual or sym­
bolic fonn.

The third operand, which is optional, specifies a
relocation core storage address of a program or data
to be read into core storage from disk storage (when
the object program is executed). It may be in actual
or symbolic fonn. If the programmer does not want
to include a relocation address, and another operand
or re~ark is to follow, a comma must be present.

The fourth operand, also optional, can cause the
read/write heads to be repositioned to an assigned
cylinder (specified in the System Communications
Area) after a disk read or write instruction is execut­
ed asa result of a GET or PUT input/output macro­
instruction. The operand letter "R" causes reposition­
ing. If the operand is a blank or a letter UN," no re­
positioning takes place. If the programmer does not
enter a letter N or R, and another operand or remark
is to follow, a comma must be present.

The fifth operand, also optional, may be the letter
A or a blank. If it is the letter A, the sector address
in the disk control field will be used for the disk oper­
ation initiated by a SEEK, GET, or PUT macro-instruc­
tion. If the operand is blank, an effective sector ad­
dress, produced by adding the sector address to the
address of the beginning work cylinder, is used for
the disk operation.

SPS II-D 85

If this operand does not contain the letter A and
remarks are to follow, the operand must be a comma.

Address adjustment may be used with any of the
first three operands. If a label is given with a DDW or
DD statement, the associated· address in the assembled
object program will be that of the leftmost position
of the resulting I/O constant.

The following example illustrates a DDW statement.

Operand. & Remarks

.5 50

R. A lD£NT! F" CTRL F"lD

This declarative statement:
1. Identifies the address of the disk control field

by the symbol DCTRL.

2. Indicates by the letter "R" that the read/write
heads are to be repositioned to a previously
assigned cylinder after a GET or PUT is executed.

3. Indicates by the letter "A" that the sector ad­
dress in the disk control field is to be used for
the disk operation.

The I/O constant generated in the object ptogram
for a DDW or DD statement is equivalent to the follow­
ing symbolic instructions:

For statements without a relocation address (third
operand)

DEF DSC 1, Mo
DSC 1, MI
DSA DCTRL
DC 1,@

For statements with a relocation address

DSC 1, Mo
DSC 1, MI
DSA DCTRL
DSA RELOC
DC 1, @

where Mo and MI are codes generated by the pro­
cessor for use by the I/O routine when the object
program is executed. DCTRL is the address of the
disk control field. RELOC is the relocation core stor­
age address.

All disk I/O options are specified by the codes in
positions Mo MI' Only certain options are utilized by
the DD and DDW statements. A complete list of options
available to the user by hand coding Mo and MI are
given under I/O CONSTANTS in the Supervisor Program
section.

To define a disk control field for a seek, read, or
write operation, a DDA statement may be used. The

86

memory address in the DDA statement specifies the
core location where reading or writing of data is to
begin. Any DDA statement used by the I/O routine
must be followed by a statement that defines a record
mark (e.g., DC 1, @). Data or programs which oc­
cupy a read area are replaced by data read from disk
storage. Provision should be made to save the replac.:.
ed data or program, if necessary.

SPS 11-0 . Processor

The 1620/1710 SPS II-D processor, available in either
card or paper tape form, is designed to use the IBM

1311 Disk Storage Drive as an integral unit in the as­
sembling of user-written source programs. By using
the large storage capacity of the disk drive, program
assembly can be accomplished quickly and efficiently.

A typical assembly procedure might proceed as
follows:

1. The source program is loaded together with the
applicable Monitor Control records and SPS II-D

Control records (see SPS II-D CONTROL RECORDS).

2. The source input is read into core storage, one
statement at a time. During assembly, the work
cylinder area of disk storage is used for inter­
mediate output.

3. If a program listing (typewriter) or a list deck
(cards) has been requested, the output will ap­
pear after all statements have been read.

4. After assembly, the object program is stored or
outputted as directed by the SPS II-D control
statements that were loaded with the source in­
put. Subroutines used by an object program and
subprograms are not stored or outputted as part
of the object program.

Operating Procedures
These operating procedures are written assuming that
the SPS II-D processor and all subroutine sets are al­
ready on disk storage.

Assembly Set-Up

To assemble an SPS II-D source program, proceed as
follows: Load the source program preceded by the

applicable Monitor Control record (sPs or spsx) and
the desired SPS II-D control records. The source pro­
gram must end with a DEND statement. Following
the DEND statement is either the first card of the next
"job," or data if the program is to be executed imme­
diately after assembly.

The loading procedure for SPS programs is more
fully described in the Supervisor section of this
manual.

SPS II-D Control Records

SPS control records must be provided to control the
assembly of SPS programs. These records may be
in card, paper tape, or typewritten form, and are in­
serted in the stacked input behind the Monitor Con­
trol record (sPs or spsx) to control the specified SPS
assembly. SPS control records are typed out when
they are encountered in the stacked input. The for­
mat of an SPS control record in terms of cards is as
follows:

Columns 1 0

2-75 Control statement

Only one control statement may be entered in each
control card. The 24 control statements must be writ­
ten exactly as given, except for blanks which are per­
mitted anywhere in the control statement (TWO PASS
MODE, OBJECT CORE .0, etc.). Control statements may be
,followed by remarks. Any statement, other than those
'listed below (e.g., an identification statement) will
be typed, but will have no effect on the assembly. The
processor will indicate an identification statement by
typing (ID) to the right of such a statement.

Intervening blanks between the letters of a control
statement do not invalidate the statement.

TWO PASS MODE. This control statement causes
the object program to be produced by entering the
source program twice (two passes). Two passes are
required when the space allotted for work storage
is too small to contain the intermediate output from
the assembly. (The space required for one-pass opera­
tion is approximately one sector per source state­
ment.) If one-pass assembly is attempted with too
large a source program, an error message is typed
out.

OBJECT CORE n. This statement specifies the core
storage capacity (20,000, 40,000, or 60,000) of the
object machine (machine on which the object pro­
gram will be run). If the storage capacity of the as­
sembly machine (machine on which the object pro­
gram will be assembled) and the object machine are
the same, this statement is not needed. The n digit of

the statement is one of the coded digits 2, 4, or 6
which represent 20,000, 40,000, and 60,000, respective­
ly.

SUBROUTINE SET nn. This statement specifies a
sub'routine set number, 00, 01, 02, or 03. When the
program being assembled is to be executed, this set
number will be used to load the proper subroutines
into core storage. This subroutine set specification can
be overridden, however, by specifying a different
number in the XEQS Monitor Control card (see SUPER­
VISOR PROGRAM) when the program is executed. If no
subroutine set control statement is present at assembly
time or at execute time, the assembler will use the set
number that was previously stored in the System Com­
munication Area (see section on Supervisor Program).

MANTISSA LENGTH nn. This statement specifi~s
the mantissa length (02 to 45) for subroutines sets 02
or 03. The mantissa length that will ultimately be used
for execution purposes is determined in the same
manner as the subroutine set number described above.

NOISE DIGIT n. This statement specifies the noise
digit (0-9) to be used by the subroutines. The noise
digit that will ultimately be used for execution pur­
poses is determined in the same manner as the sub­
routine set number described above.

ERROR STOP. This statement instructs the proces­
sor to stop whenever a source statement containing an
error is encountered. When this occurs, an error mes­
sage will be typed (see ERROR MESSAGES). The operator
can then enter a corrected source statement and con­
tinue assembly (see ON-LINE ERROR CORRECTION). If an
Error Stop control statement is omitted, the processor
will not stop for erroneous source statements; how­
ever, an error message will still be typed.

ASSEMBLE RELOCAT ABLE. This statement
causes the processor to assemble a relocatable object
program in System Output format. If this statement
is omitted, the processor will produce an "absolute,"
nonrelocatable program.

BEGIN CARD INPUT, BEGIN PAPER TAPE IN­
PUT, BEGIN TYPEWRITER INPUT. These three
statements cause the loading program to begin read­
ing input from the newly designated unit. These state­
ments can be used as "last" control statements when
the source program is to be entered from a different
input medium than were the control statements.

TYPE SYMBOL TABLE. This statement causes the
symbol table to be typed after all source statements
have been read (see TYPEOUT OF SYMBOL TABLE).

SPS II-V 87

PUNCH SYMBOL T ABLE.This statement causes the
symbol table to be punched into cards after all source
statements have been read. These cards may be listed
80-80 on an IBM 407 to obtain a printed symbol table.

LIST TYPEWRITER. This statement causes a pro­
gram listing (containing both source and object data)
to be typed as the program is being assembled.

LIST CARD. This statement causes the program to
be punched into cards which may be used to make a
program listing (IBM 407 80-80). If desired, both the
List Typewriter and List Card statements may be used
in one assembly ..

OUTPUT CARD. This statement causes the object
program to be punched into cards in a reload able for­
mat (see SYSTEM OUTPUT FORMAT in the Supervisor sec­
tion). This output will occur after any symbol table and
listing outputs.

OUTPUT PAPER TAPE. This statement causes the
object program to be punched into paper tape in a
reloadable format (see SYSTEM OUTPUT FORMAT in the
Supervisor section). Either an Output Card or an Out­
put Paper Tape statement may be used for an assembly,
but not both.

STORE CORE IMAGE. This statement causes an
assembled program to be permanently stored on the
disk ina format that is identical to the format of an
executable program in core storage. Subroutines re­
quired by the program, however, remain in relocatable
format until the program is executed. For a method of
storing subroutines in core image format with the main
program, while overcoming other limitations inherent
in this statement, refer to the section entitled, CON­
VERTING sPS OBJECT PROGRAMS TO CORE IMAGE. The Store
Core Image statement may not be used in an assembly
that also contains an Assemble Relocatable statement.

STORE RELOADABLE. This statement causes the
assem bled program to be stored on the disk in a re­
loadable format. This format is identical to that de­
scribed under SYSTEM OUTPUT FORMAT. If neither Store
Core Image nor Store Reloadable is specified, the as­
sembled program will not be permanently stored on
the disk. However, the program will remain in the
work cylinders until destroyed by another job.

SYSTEM SYMBOL TABLE. This statement allows
the source program to use symbols stored in the Sys­
tem Symbol table without defining them in the source
program itself. There is a provision in SPS II-D for de­
fining user symbols in the System Symbol table (see
SPS II-D MODIFICATION PROGRAM).

NO SUBROUTINES. This statement is used, when
assembling subprograms for a mainline program, to

88

prevent subroutines from being called with subpro­
grams. When the mainline program is assembled, it
must specify or call all the subroutines used by it, as
well as those used by its subprograms.

ID NUMBER dddd. This statement assigns a 4-digit
DIM entry number (dddd) to a program being assem­
bled. Exactly four digits, including leading zeros, must
be entered.

N AM E aaaaaa. This statement can be used to assign
a Name in the Equivalence table for an assembled
program which is to be stored in disk storage. aaaaaa
is a 6-character alphameric name. At least one of these
characters must be alphabetic.

LIBR. This statement must be entered when assem­
bling a user-written subroutine that is to be added to
the library subroutines.

PUNCH RESEQUENCED SOURCE DECK. This
statement causes the processor to punch a new source
deck in sequence by page and line number. The page
and line field will contain a 5-digit number starting
with 00010 and will increase by ten for each successive
card, e.g., 00010, 00020, etc. The resequenced deck is
punched while the old source cards are being read. The
output appears in the punch stacker ahead of any other
punched output. When operating in two-pass mode,
the resequenced source deck should be used for the
second pass. Corrections to source statements made
from the typewriter will not appear in a resequenced
source deck.

Error Messages

The error message codes that might be typed out on
the typewriter during an assembly are listed in Table
6. Error messages take the following general form:

ppppp ALABEL + CCCC ERn

where PPPPP is the page and the line number of the
statement in error, ALABEL is the last label used, and
cccc is the number of statements from that label to the
statement in error.

When ER5 (see Table 6) is typed out, the erroneous
symbol is also typed.

Table 7 shows what the processor will do about each
error if no Error Stop control statement has been in­
cluded in the assembly.

On-Line Error Correction
One-Pass Mode. If the operator wishes to correct

source program errors during the assembly process,

Table 6. Description of SPS Error Codes

ERROR
CODE CAUSE OF ERROR

ERI The capacity of the machine on which the object pro-
gram is to be executed has been exceeded. The proc-
essor does not take subroutines into account when
determining this error.

ER2 Invalid label or record mark is in a label field.

ER3 Invalid OP code or record mark is in on OP code field.

ER4 A label is defi ned more than once.

ER5 I. A symbolic address contains more than six
charac ters •

2. An actual address contains more than five digits.
3. An undefined symbolic address is used in an operand.
4. A HEAD character ($) is improperly specified.

ER6 A DSA statement has more than ten operands.

ER7 A DSBstatement has the second operand missing.

ER8 1. A DC, DSC, or DAC has a specified length greater
than 50.

2. A DVLC has a length greater than 50.
3. A DMES has a length greater than 100.
4. A DNB has a length greater than 99.

ER9 A DC, DSC, DAC, DVLC, or DMES statement has no
constant specified.

';-

ERIO I. A DC or DSC statement has a specified length
which is less than the number of digits in the
constant itself.

2. A DAC statement has a specified length which is
less than or greater than the number of digits in the
constant itself. ~

ERIl An invalid character is used as a HEAD character in a
HEAD statement.

ERI2 A HEAD operand contains more than one character.

ERI3 A DMES statement contains an invalid starting mode
character.

ERI4 1. A DMES statementcontoins a control character

2.
which is incorrectly specified.
A DMES statement has an invalid format, i.e.,
stray parenthesis, etc.

ERI5 A DMES statement contains an alpha character in a
numerical field.

ERI6 A DMES statement contains an inval id mode change.

ERI7 I. A relocatable assembly contains either a relocation
error (see Rules of Relocatability) or,

2. A DORG with an absolute operand.

ERI8 A symbolic nome used in a CALL LINK or CALL
statemert is not in the Equivalence table.

LOAD

ERI9 The storage area allotted for the symbol table has been
exceeded.

ER20 Intermediate output has exceeded disk storage work
area (program requires two passes).

ER21 Object output has exceeded disk storage work area.

ER22 Improper "select" operand is in a CALL statement; i.e.,
neither LINK, LOAD, nor EXIT is specified.

Table 7. Disposition of SPS Errors When 110 Error Stop

Statement is used

NOTE: Assembly and outputting continues in
all cases except ER 19,20, and 21.

ERROR
CODE DISPOSITION

ERI No disposition.

ER2 The label is ignored.

ER3 A NOP is assembled.

ER4 The second definition of the label is ignored; the first
definition of the label is used in the assembly.

ER5 The operand is assembled as an absolute 00000.

ER6 The first ten operands are assembled; any remaining
operands are ignored.

ER7 The number of elements is set to I.

ER8 I. Length is set to 50.
2. Length is set to 50.
3. Length is set to 100.
4. length is set to 99.

ER9 A field of zeros is generated, equal to the size of the
length operand for the DC, DSC, DAC, or DVLC
constant. In the case of a DMES, an end of message
('*' *) is assembled and the address counter is increased
by 100.

ER 10 For a DC or DSC, the length of the constant is used as
the length operand; for a DAC, the specified length is
used, and"the programmer-assigned address, if present,
is ignored.

ER II The HEAD character is set to blank.

ER 12 The first character of the operand is used as the HEAD
character.

ER 13 The starting mode is assembled as the alphabetic mode.

ER 14 An end of message ('*' *) is inserted into the constant.

ER 15 An end of message (* *) is inserted into the constant.

ER 16 A 0 is placed in the next available locotian following
the mode change.

ERI7 I. The operand is assembled as an absolute 00000.
2. The DORG is ignored.

ERI8 A DIM number of 0000 is assembled.

ER 19 Processing continues but no more labels are stored.
After completion of the intermediate phase, processing
stops, the following message is typed, and control
returns to the Supervisor Program.

DISK AREA TOO SMALL. ASSEMBLY DELETED

ER20 Processing continues, but no more intermediate data is
sent to disk storage. After completion of the inter­
mediate phase, processing stops, the following message
is typed, and control returns to the Supervisor Program.

DISK AREA TOO SMALL. ASSEMBLY DELETED

ER21 Processing stops immediately and control is returned to
the Supervisor Program.

ER22 The statement is ignored.

SPS II-D 89

he must use the Error Stop control statement. When
an error occurs, the appropriate error message is
typed out along with one of the following instructions
to the operator:

RE-ENTER STATEMENT or
RE-ENTER OPERANDS

At this point, the processor returns the typewriter
carriage and types the full erroneous source state­
ment. If only the operands are to be re-entered, thf:
processor will then retype the source statement up
to the operand field. The processor at this point re­
quires that the operator enter either an entire correct­
ed source statement or a corrected operand field. The
operator should use the previously typed original
statement as a guide to the positions of the Page,
Line, Label, Op code~ and Operand fields.

Two-Pass Mode. The error correction procedure in
two-pass mode is identical with that of the one-pass
mode, with one exception. During the second pass,
the processor might type an error message containing
·'ER xx." This message always refers to a statement
corrected during the first pass. The operator should
scan the typewritten record of the corrections made
during the first pass to find the one identical in page
and line number, label, and increment. When the
processor types RE-ENTER STMT and returns the car­
riage, the operator must re-enter the entire corrected
statement, exactly duplicating the statement entered
during the first pass.
Post Assembly Phase

After assembly is completed and listings, if desired,
have been outputted, the following messages are
typed:

END OF ASSEMBLY
XXXXX CORE POSITIONS REQUIRED
XXXXX STATEMENTS PROCESSED

In the above typeouts, xxxxx is a 5-digit number.
In the case of CORE POSITIONS REQUIRED. any needed
subroutines are included in the count of core posi­
tions.

SYMBOL TABLE OUTPUT

If either of the statements Type Symbol Table or
Punch Symbol Table are present in an assembly, the
symbol table will be typed or punched during as­
sembly. This output, if punched, will precede the list
deck in the punch stacker.

90

All 6-character labels are listed first in reverse
alphameric order, i.e., 9 to 0, Z to A. All other labels
follow in normal alphameric order with their head
characters. In the case of an assembly in which the
number of symbols exceeds 235 (some symbols will
then have to be stored on disk), the listing is broken
into two or more blocks, each of which is sorted as
described above.

The format of the symbol table output is as follows:

Typewriter. The typed output lists all labels and
their numerical equivalences, five to a line. The for­
mat is as shown.

Label
LLLLLL

Equivalence
AAAAA(-)

Here LLLLLL refers to a 6-character label or a 5 or
fewer character label with a head character.

AAAAA refers to the numerical equivalence of the sym­
bol. The minus sign, if present, denotes a negative
quantity. If the program is being "assembled relo­
eatable," the minus sign is replaced by an R to
denote a relocatable quantity.

Card. The card output format of the symbol table
is as follows:

Columns 1-13

17-29
33-45

49-61
65-77

1st label plus equivalence
2nd label plus equivalence
3rd label plus equivalence
4th label plus equivalence
5th label plus equivalence

FORMATS OF TYPEWRITER LISTING AND PUNCHED DECK

If desired, the operator can obtain a typewriter list­
ing and/or a punched list deck of an assembled pro­
gram. The formats of each type of output are de­
scribed here.

Typewriter. A typewriter listing consists of a source
statement together with its associated assembled ma­
chine language instruction.

Card. A card list deck usually consists of one card
for each source statement. The format is as follows:

Columns 1-5
6
7-12

13
14-17

Page and line number.
Blank.
Label as on source card.
Blank.
Op mnemonic as on source
card.

18
19-78

61-65

66

Blank.
Operand fields as on source
card. If the fields extend be­
yond column 59, the object
i n for mat ion (normally
found in columns 61-80 of
first card) is placed on a
subsequent card or cards.
Actual address of assembled
instruction or constant.
Blank.

NOTE: The data in columns 67-80 is peculiar to the
type of statement assembled.

Imperative Statements.
Columns 67-68 Op code in machine lan-

guage.
69 Blank.
70-74 P operand in machine lan-

guage.
75 Blank.
76-80 Q operand in machine lan-

guage.

Non-imperative Statements.

Columns 67 -71 Length of assembled data.
72 Blank.
73-80 If these columns are punch­

ed, they will contain actual
assembled data.

ERROR MESSAGES AFTER ASSEMBLY

The following error messages are applicable after
assembly.

EXCEEDED SPECIFIED CAPACITY BY XXXXX

The above message indicates that the object pro­
gram together with applicable subroutines would ex­
ceed the available core storage if the program were
to be executed. The available core storage is deter­
mind by the user's Object Core control card.

This error does not invalidate the assembly, how­
ever, since a different set of subroutines may be speci­
fied at execution time. A different subroutine set
might occupy less core storage; therefore, the error
may no longer apply.

SUBROUTINES OTHER THAN PGM DIV USED

The above message is typed when subroutine set
00 (programmed divide) is specified and the mainline
source program calls a subroutine in another set. This
error does not invalidate the assembly since the user
may specify a different subroutine set at execution
time.

NO DIM ENTRY FOR SUBROUTINE

The above message is typed out when the DIM entry
which corresponds to a called subroutine cannot be
found in the map. This would indicate that the entry
was either deliberately deleted from the map or other·­
wise destroyed. The assembly will continue, however.
and the object program will be stored. But if execu­
tion was planned immediately after assembly (SPsx
card), assembly would be deferred and control would
return to the Supervisor program.

MORE THAN 5 CYLINDERS OF

RELOADABLE OUTPUT SSW4

ON TO DU!\1P OUTPUT OFF

TO CONTINUE, NO OUTPUT

The above message is typed when the reloadable
object output would occupy more than 999 sectors on
disk storage (approximately 5 cylinders). This situ­
ation is an error because programs greater than 999
sectors cannot be specified in the Disk Identification
Map.

After the message is typed out, the computer halts.
At this time the user can either turn Program Switch 4
on and depress START to have the program outputted
on a pre-chosen output unit, or turn Program Switch 4
off and depress START to continue, in which case the
program is not outputted. In either case the program
is not stored on disk storage.

Execution of SPS II-D Object Programs

'Vhen SPS II-D object programs are to be executed,
they are read into core storage from disk storage,
paper tape, or cards by the use of Monitor Control
records. The subroutines which are called for in the
program are loaded from disk storage at execution
time. Neither subroutines nor subprograms are ever
a part of the mainline object program. They are stored
on disk in relocatable form and brought into core
storage if needed. The selection of proper subroutines
at execution time is made by referring to an "indicator
record" which is stored with the mainline object pro­
gram. This record, generated at assembly time, con­
tains a I-digit location for each of the subroutines in
a set. At assembly time, as the individual subroutine
macro-instructions are encountered in the source pro­
gram, a 1 is placed in the I-digit location that corres­
ponds to the subroutine being called. The record is
then a "map" of the subroutines needed for the par­
ticular mainline object program.

SPS II-V 91

ment. Thus, an address assigned by the program­
mer, e.g., DC 1, @, 19999, would not be included
unless it fell within the addresses assigned by the
processor.

• No TRA-TCD sequences are allowed.

• A program which requires subroutines and is as­
sembled with an 0 ASSEMBLE RELOCATABLE control
record cannot be converted to core image using the
methods mentioned above.

A procedure which will overcome all these limitations
is outlined below.

1. End the source program with a sequence of in­
structions which will dump the program into the
work cylinders when it is called for execution.
When the program is called the first time, only the
special instructions will be executed. An assembly
of this type is shown in the following example:

=t==t=JOB
=t==t=SPS
°NAME TEMP
°STORE RELOADABLE
°Other control records -listings, symbol table,

etc.
START XX etc.

end of regular source program
STORE PUT X, RBC

CALL EXIT
X DD ,XDDA
XDDA DDA , 1,00000, SSS, CCCCC

DC 1, @

DEND STORE

In the special sequence of instructions, sss is a
sector count sufficient to store the entire core
image program with applicable subroutines. The

transfer into the work cylinders will start from
core address ccccc. If subroutines are used, ccccc
should be 02276 so as to include the subroutine
transfer vector area.

2. Assemble the program .
3. Call the program as if it were to be executed. This

will cause the special sequence of instructions to
be executed, thereby dumping the program and
subroutines into the work cylinders in core image
format.

4. Using the disk utility routine, DLOAD or DREPL, load
the program from the work cylinders into per­
manent disk storage. If DLOAD is used, give the
program a different name and delete the old name,
so as not to duplicate names in the DIM table. The
parameters for the DLOAD or DREPL operation can
be obtained either from the listing or from the mes­
sages typed out after the assembly; e.g., xxxxx CORE

POSITIONS REQUIRED gives the highest processor­
aSSigned address, including subroutines. An ex­
ample of how to implement steps 3 and 4 is shown
below:

=t==t=JOB
=t==t=XEQS NAME
=t==t=JOB
=t==t=DUP
°DLOAD or °DREPL

~~~~.: NAME }not needed if DREPL is used 

To call and execute a core image program which 
has been converted by this method, use an XEQ 

control record. 

SPS II-D Modification Program 

This program allows the user to modify the SPS II-D 

assembler by: (1) Adding or deleting operation codes 
from the System Op code table, and (2) Adding or 
deleting symbols from the System Symbol table. The 
SPS II-D Modification program is loaded into disk stor­
age as part of the Monitor I system. It is identified in 
the Equivalence table by the name "SPSLIB." 

92.1 



Error Messages at Execution Time 

The following error messages are applicable at execu­
tion time. Their occurrence tenninates loading and 
returns control to the Supervisor program. 

CORE CAPACITY EXCEEDED 
BY XXXXX LOCATIONS 
PROGRA~1 IS TERMINATED 

The above message is typed out when the total core 
storage required for the object program and all ap­
plicable subroutines exceeds the available core stor­
age. Note that there is a similar message at assembly 
time if available core storage is exceeded. However, 
it is possible to get the message at execution time 
without having gotten it at assembly time. This could 
happen if a different subroutine set is specified at 
execution time (in XEQS card) than that which was 
assembled with the source program. 

SUBR NOT LOCATED IN SUBROUTINE MAP 

The above message occurs if a subroutine that is 
specified in the "indicator record" of the object pro­
gram cannot be found in the subroutine section of the 
Disk Identification Map. 

IMPROPER IND CODE IN SUBR XXXX 

The above message occurs when an invalid "reload­
able indicator code" (see SYSTEM OUTPUT FORMAT in 
Supervisor section) is found in the object output of 
a subroutine. In this message, xxxx are the first four 
digits of the subroutine identification number; two 
digits are for the set number, and two digits are for 
the subroutine number. 

Rules 01 Relocolobilily 

When a program is relocated, as specified by an As­
semble Relocatable statement, certain addresses with­
in the program are adjusted relative to the relocation 
( starting) address. Only relocatable quantities are ad­
justed. Absolute quantities are not adjusted. Examples 
of both relocatable and absolute quantities follow: 

92 

relocatable 
~ 

B ° + 24 
absolute 
~ 

AM X, 12345 

The processor recognizes relocatable and absolute 
quantities by applying the following rules: 

1. An integer (e.g., 1, 12345, etc.) is an absolute 
value. 

2. A processor-assigned address, which is associated 
with a label (i.e., the address of an instruction or 
constant with an associated label), is a relocatable 
quantity. An asterisk address (0) is also relocatable. 

3. A symbol defined as equal to some quantity has 
the same relocation property as the associated 
quantity. An example follows: 

SYMBOL DS ,QUAN 

4. The product of two absolute quantities is an ab­
solute quantity. 

5. The sum or difference of two absolute quantities 
is an absolute quantity. 

6. The sum or difference of a relocatable quantity 
and an absolute quantity is a relocatable quantity. 

7. The difference between two relocatable quantities 
is an absolute quantity. 

The processor will recognize any of the following 
situations as "relocation errors." 

1. The sum of two relocatable quantities. 
2. The product of a relocatable quantity and any 

other quantity. 
3. An operand below the relocatable address of 

00000. For example, RELOC -10000, where RELOC 
is a relocatable quantity of less than 10000. 

NOTE: The exact negative of a valid relocatable 
quantity is a valid relocatable quantity. 

Although the quantity defined by an operand may 
be either positive or negative, a symbol may be equiv­
alent to a positive quantity only. If a symbol is de­
fined ,equal to a negative quantity, any reference to 
that symbol by the assembler will produce the abso­
lute value of the quantity. 

Converting SPS Obiect Programs to Core Image 

Two methods of storing object programs in core image 
have been described in this manual. One is by using the 
disk utility routines DLOAD and DREPL (see DISK UTILITY 
PROGRAM), and the other is by using a STORE CORE 
IMAGE control card when the program is assembled. 
Both of these methods have the following limitations: 

• Subroutines cannot be converted and stored with 
with the main program. 

• The core storage limits of the program image do 
not extend beyond the last processor-assigned state-



An XEQ Monitor Control record with the assigned 
name SPSLIB punched in columns 7-12 is used to call 
the modification program for execution. To specify 
the type of modification desired, the user places modi­
fication control records following the ;XEQ record. 
These records and any other input data to the Modi­
fication program must be entered from the same input 
device that was used to enter the XEQ record. 

Modification program control records, in terms of 
cards, use the same format as that used for SPS control 
records. The five'modification control statements must 
be written exactly as given (DEFINE OP CODE, DELETE 
OP CODE, DEFINE SYSTEM SYMBOL TABLE, LIST OP CODE, 
ENDLIB. Only one statement may be included in a 
('ontrol record. These statements are typed when they 
are read. A description of the five control statements 
follows. 

DEFINE OP CODE. This statement causes user­
assigned Op (operation) codes, specified in Op code 
definitions cards, to be added to the SPS II-D System 
Op code table. The Op code definition card (s) must 
follow the control record in the stacked input. The 
format of the Op code definition card follows: 

Columns 12-15 New mnemonic Op code (left 
justified) . 

16-75 A 3-digit code which determines 
the instruction generated by the 
Op code. (The code may be 
preceded by a minus sign.) 

The allowable 3-digit codes that may be entered in 
columns 16-75 are shown in Table 8. 

The digits X and Y may be any number 0-9. A sep­
arate Op code definition card should be entered for 
each Op code that is to be defined. If an attempt is 
made to define an Op code that is already present 
in the Op code table, the message 

ALREADY DEFINED 

wiJI be typed and the new Op code \viU be ignored. 
If space is unavailable in the Op code table for a 
new Op code, the message 

NO ROOM IN TABLE 

will be typed and the new Op code will be ignored. 
DELETE OP CODE. This statement causes Op 

codes, specified in Op definition cards, to be de­
leted from the SPS II-D System Op code table. The Op 
code definition card ( s ), which must follow the control 
record in the stacked input, specifies in columns 12-15 
the code to be deleted; columns 16-75 may be blank. 
Only one Op code may be specified per card. If an 
attempt is made to delete an Op code that is not in 

the Op code table, the message 

NOT IN TABLE 

win be typed and no change will be made to the 
table. 

DEFINE SYSTEM SYMBOL TABLE. This state­
ment is used to modify the System Symbol table. The 
System Symbol table consists of certain symbols that 
were defined when the Monitor System was assembled 
plus any symbols the user adds by means of the Define 
System Symbol Table statement. Any symbol that is in 
the System Symbol table may be used in any assembly 
without defining the symbol within the program being 
assembled. When used, the Define System Symbol 
statement first causes all user-defined symbols to be 
deleted from the table. Then all symbols which fol­
low the Define System Symbol statement are added 
to the System Symbol table. Symbols to be added 
are defined in the Symbol Definition record. The for­
mat of this record in terms of cards is as follows: 

Columns 6-11 Symbol to be defined (left justi­
fied). 

16-75 An operand, symbolic or actual, 
but not asterisk. (If a symbolic 
operand is used, it must have 
been previously defined in the 
System Symbol table.) 

If a symbolic operand, contained in the operand field. 
(columns 16-75) of a Symbol Definition card, cannot 
be matched with a previously defined symbol in the 
System Symbol table: the message 

UNDEFINED SYMBOL XXXXX 

is typed out, where xxxxx is the undefined symbolic 
operand; no change is made to the System Symbol 
table. Up to 150 user-defined symbols may be added 
to the System Symbol table. Any attempt to insert 
more symbols causes an error message to be typed 
and control to be returned to the Supervisor program, 
thus terminating the add-to-symbol-table function. 
Symbols that have less than six characters will be de­
fined with a blank "heading character" in the System 
Symbol table. Symbols defined as positive quantities 
will be treated as pOSitive-absolute quantities in both 
absolute and relocatable assemblies. Negative quanti­
ties will be treated as negative-absolute quantities in 
an absolute assembly and positive-relocatable quanti­
ties in a relocatable assembly. 

LIST OP CODE. This statement causes the proces­
sor to type a listing of the Op code table. All Op codes 
are listed in tabular form with their associated 3-digit 
codes. 

SPS II-D 93 



ENDLIB. This statement causes control to be re­
turned to the Supervisor program. In the stacked in­
put, it must follow other control statements which 
utilize the modification program. 

IBM Defined System Symbols 

The following symbols will be available to the user 
in the System Symbol table. 

Symbol 

9RCYLO 
9RCYL1 
9RCYL2 
9RCYL3 

9CCYLO 
9CCYLl 
9CCYL2 
9CCYL3 

94 

Equivalence 

00513 
00515 
00517 
00519 

02111 
02113 
02115 
02117 

Description 

These are the low-order posi­
tions of four 2-digit fields 
which contain the numbers of 
cylinders (00-99), where the 
disk access arm is repositioned 
after a disk operation in which 
a reposition has been request­
ed. The four fields refer to 
drives 0, I, 2, and 3, respec­
tively. 

These are the low-order posi.,. 
tions of four 2-digit fields, sim­
ilar to the previous four. How­
ever, these positions contain 
the cylinder numbers of the 
current access arm positions 
(the position of the arm after 
the last disk IORT operation). 

Table 8. Codes and Assembled Data for SPS Modification 
Program 

CODE ASSEMBLED DATA USE 

XYO XY PPPPP QQQQQ Any instruction 

-XYJ Macro-instruction subroutine 
I inkage to subrouti ne XY Subroutine Macros 

-XY2* ax PPPPP YQQQQ SIOC instructions 

-XY4 4X PPPPP QOOQY Mask and Unmask instruc-
tions 

XY2 3X PPPPP Q07QY Disk instructions 

XY3 3X PPPPP QOYQQ I/O instructions 

XY4 34 PPPPP QOXQY Control instructions 

XY6 46 PPPPP QXYQQ Branch Indicator instruc-
tions 

XY7 47 PPPPP QXYQQ Branch No I ndi cator 
instructions 

*If the first character of the Op code contained in columns 12-15 
is the letter "R/" position OJ of the assembled instruction will be 
flagged. 



The FORTRAN I1-D programming system consists of 
the FORTRAN I1-D language and the processor. The 
FORTRAN I1-D language is comprised of a number of 
types of statements that the programmer may use in 
defining the problem to be solved. The FORTRAN I1-D 

processor is a program that accepts the source pro­
gram statements as input and produces, as output, a 
machine language program, known as the object pro­
gram. The FORTRAN I1-D processor can operate only 
under control of the Monitor System and the object 
programs it produces can be reloaded only by the 
Monitor Input/Output routine. It is possible for the 
user to remove the FORTRAN portion of Monitor I and 
still utilize the remainder of the system. It is also pos­
sible to remove some of the FORTRAN library subrou­
tines that are supplied and still utilize the remainder 
of the FORTRAN system (see DISK STORAGE LOCATION 

OF THE FORTRAN COMPILER). 

fORTRAN II-D Language 

The FORTRAN I1-D source program consists of a num­
ber of statements. Each statement deals with one 
aspect of the problem; that is, it may cause data to 
be fed into the computer, calculations to be perform­
ed, decisions to be made, results to be printed, etc. 

Some statements do not cause specific computer 
action, but rather provide information to the process­
or program. 

FORTRAN I1-D statements are arranged in five groups: 
Arithmetic statements which specify the mathematical 
calculations to be performed. 
Control statements which govern the sequence in 
which the statements will be followed. 
Subprogram statements that enable the programmer 
to define and use subprograms. 
Input/Output statements that read data into the pro­
gram or print or punch the results of the program. 
Specification statements that provide information 
about the data that the object program is to process. 

The above statement types are explained in detail 
later in this manual. 

FORTRAN II-D statements are written on a standard 
FORTRAN Coding Form which is designed to organize 
the statements into the special format required by the 
processor program. All statements and comments of 
the source program are written on this form. 

FORTRAN 11-0 

The function of each portion of the coding form 
shown in Figure 12 is explained below. 

Space is provided at the top of each page for the 
name of the program, date, etc. This information does 
not constitute part of the source program and is not 
punched into cards. 

The series of numbers (1, 5, 6, 7, 10, ... , 72) 
across the top of the form indicates the card column 
that the information is punched into. 

Comments to explain the program are written in 
columns 2-72 of a line with a C in column 1. A com­
ment line is not processed by the FORTRAN II-D pro­
gram but is listed when the source program cards 
are listed. 

Columns 2 through 5 are used for the statement 
number. Any number from 1 through 9999 may be 
used as a statement number. Statement numbers are 
used for cross reference within a program (see ex­
planations of DO and GO TO statements) or may be 
used merely as a means of identifying statements. 
Statements should be numbered only when they are 
referenced by another statement and no two state­
ments can have the same number. Also, there is no 
requirement that every statement must have a num­
ber, nor that statements must be numbered in 
sequence. 

Column 6 of the initial line of a statement must 'be 
blank or zero. If a statement is too long to be written 
on one line it can be continued on as many as four 
"continuation lines." Continuation lines are written by 
placing in column 6 any character or any number 
from 1 through 9 (zero allowed only for initial line). 
The normal method is to number the initial line zero, 
the second line one (first continuation line), the third 
line two, etc. A statement other than a comment state­
ment may not consist of more than 330 characters 
(i.e., 5 lines). 

The body of the statements themselves are written 
in columns 7 through 72. Blank columns for the most 
part are ignored by the processor and may be used 
freely to improve the readability of the source pro­
gram listing. 

Columns 73 through 80 are not processed and 
therefore may contain any identifying information. 

The information on each written line in the state­
ment section of a coding form is punched into a card. 

FORTRAN II-D 95 



A standard FORTRAN card is shown in Figure 13. 
After the cards are punched, they should be veri­

fied to lessen the chances of clerical errors causing 
source and object program errors. 

Arithmetic Mode 

Quantities used in the FORTRAN statements may be ex­
pressed in either fixed-point or floating-point form. 
Numbers expressed as integers (whole numbers) a:e 
considered fixed-point. Thus, the integers 3, 57, and 
1008 are fixed-point numbers. 

Floating-point arithmetic is a technique used to 
eliminate the complex programming required for cor­
rect placement of the decimal point in arithmetic 
operations. Floating-point numbers are represented 
in a standard format which specifies the location of 
the decimal point. With this method, quantities which 

range from minute fractions to large numbers may be 
handled by the computer. Floating-point numbers 
are expressed as decimal fractions times a power of 
ten. For example: 

3.14159 is expressed as .314159 x 101 

4800.0 is expressed as .48 x 104 

0.0187 is expressed as .187 x 10-1 

The numerical part of the floating-point number is 
cal~ed the mantissa and the power of ten is called the 
exponent. For a floating-point number, the decimal is 
always moved to the left of the high-order nonzero 
digit. This is called normalizing the number. 

In FORTRAN II-D, fixed-point or floating-point num­
bers can be used, subject to the rules described under 
ARITHMETIC STATEMENTS. 

IBlt1 FORTRAN CODING FORM 
Form X28· 7327 • 3 
Printed in U.S.A. 

Program 
Coded By 
Checked By 

STATEMENT ~ 
NUM8ER ~ 

~ C FOR COMMENT 

I 5 6 7 10 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

15 20 

I I 

I I 

I 

I I 

I I 

I I 

I I 

I 

I I 

I 

I I 

I I 

I I 

I 

I I 

I I 

I I 

I I 

I I 

Figure 12. FORTRAN Coding Form 

96 

Identification 

73 80 

FORTRAN STATEMENT 
25 30 35 40 

I I I I 

I I I I 

I I 

t I I I 

I I I I 

I 

I I I I 

I 

I 

I I I I 

I 

I I I I 

I 

I I I I 

I I I I 

I I I I 

I I I I 

I I I I 

Date _____ _ 
Page __ of __ _ 

45 50 55 60 65 70 72 

I I I I I I 

I I .L i I I 

I I I I 

t L ~-- I I I 

I I 

I 

L 

I I I 

I I I 

I I I I 

I I I I I I 

I I 

I I' I 

I '- I 

I I I I 

I I I I I 

I I .1 .1 I 

I I I I 

I I I I I 

I I .L 

I I I I 



/ 

/ C4'(O::~NT 
STATEMENT FORTRAN STATEMENT IDE"'TlriCATIOIt 

"'UMIUI 

010000 000000000000000000000000000000000000000000000000000000000000000000 00000000 
112 3 4 5 7 I I 10 11 12 13 14 15 16 17 11 II 20 21 22 23 24 25 2& 27 21 21 30 31 32 33 34 3& 36 37 38 39 40 41 42 43 44 45 46 47 41 (9 flO 51 52 53 5( 55 5& 57 SI 59 60 61 62 53 64 65 66 67 68 89 70 71 72 7l74~7177787910 

1 il 1 1 1 111111111111111111111111111111111111111111111111111111111111111111 1 1 1 1 1 1 1 1 
I 

2122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 22222222 

3133 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3'3 3 3 3 3 3 3 3 

4:4 t 4 4 4444444444444444444444444444444444444444444444444444444444'444444444 44444444 

515 5 5 5 5555555555555555555555555555555555555555555555555555555555555555555 55555555 

616 & 6 & 6666666666666666666666666666666666666666666666666666666666666666666 66666666 
I 

711777 7777777777777777777777777777777777777777777777777777777777777777777 77777777 

8'8 8 8 8 8888888888888888888888888888888888888888888888888888888888888888888 88888888 
I' 

919999 999999999999999999999999999999999999999999999~999999999999999999999 99999999 
I I 2 3 4 5 • 7 • I 10 II 12 13 14 IS II 11 11 It 211 1I 22 23 24 25 21 27 21 21 30 31 32 33 34 35 36 37 31 3t «I 41 42 43 44 «I «I 47 41 «I 50 51 52 53 54 !II SI 57 5& SIlO II 12 13 84 65 86 67 66 &I 70 71 72 ~3 74 75 7. 77 7. 7. 10 

II. 8881~7 

Figure 13. FORTRAN Source Program Card 

Constants, Variables, Subscripts, and Expressions 

Mathematical problems usually contain some data 
that does not change throughout the entire problem, 
and other data that may change many times during 
calculation. These two kinds of data are referred to 
as constants and variables, respectively. Both con­
stants and variables can be used in FORTRAN II-D, but 
they must be written so the processor can distinguish 
one from the other. 

Constants 

A constant is any number which is used in computa­
tion without change from one execution of the pro­
gram to the next. A constant appears in numerical 
form in the source statement. For example, in the 
statement 

J=3+K 
3 is a constant, since it appears in actual numerical 
form. Two types of constants may be written in 
'FORTRAN II-D: fixed-point (restricted to integers), and 
floating-point (characterized by being written with a 
decimal point). 

FIXED-POINT CONSTANT 

A fixed-pOint constant is an integer consisting of 1 to 
10 numerical characters (see ARITHMETIC PRECISION). 

A preceding plus sign is optional for positive num­
bers. An unsigned constant is assumed to be positive. 

EXAMPLES 

3 
+1 
-28987 

FLOATING-POINT CONSTANT 

A floating~point constant may be in either of two 
forms: 

1. Any number consisting of 1 to 28 decimal digits 
with a decimal point at the beginning, at the 
end, or between two digits (see ARITHMETIC 

PRECISION). A preceding plus sign is optional for 
positive numbers. Zeros to the left of the decimal 
point are permissible. 

EXAMPLES 

17. 
5.0 
-.0003 
0.0 

2. An integral decimal exponent preceded by an E 
may follow a floating-point constant. The magni­
tude thus expressed must be between the limits 
of 10-100 and 1099 or must be zero (see ARITH­

METIC PRECISION). 

EXAMPLES 

Variables 

5.0E3 
5.0E+3 
3.14E 

= (5.0 x 103
) 

:= (5.0 X 103 ) 

= (3.14 x 100 ) 

A FORTRAN variable is a symbolic name which will as­
sume a' value during execution of a program. This 
value may change either for different executions of 
the program or at different times within the program. 

FORTRAN II-D 97 



For example, in the statement 

A = 3.0 + B 

both A and B are variables. The value of B will be 
assigned by a preceding statement and may change 
from time to time, and A will change whenever this 
computation is performed with a new value of B. 

As with constants, a variable may be in fixed-point 
or Boating-point form. 

FIXED-POINT VARIABLES 

A fixed-point variable is named by using 1 to 6 alpha­
betic or numerical characters (not special characters) 
of which the first must be I, J, K, L, M, or N. 

EXAMPLES 

I 
M2 
JOBNOI 

A fixed-point variable can assume any integral value 
provided the magnitude is less than the maximum 
size as defined through the use of a control record as 
stated under ARITHMETIC PRECISION. (If not defined, 
the maximum size will be 4 decimal positions for 
fixed-point numbers.) 
FLOA TING-POINT VARIABLES 

A Boating-point variable is named by using 1 to 6 
alphabetic or numerical characters (not special char­
acters), of which the first is alphabetic but not I, J, 
K, L, M, orN. 

EXAMPLES 

A 
B7 
DELTA 

A Boating-point variable may assume any value ex­
pressible as a normalized Boating-point number, i.e., 
zero or any number between 10-100 and 1099 • The 
number of mantissa characters may be from 2 to 28 
(see ARITHMETIC PRECISION). If not defined, the maxi­
mum size will be 8 characters for the mantissa. 

Arithmetic Precision 

The precision of the quantities used in the calculation 
is an important consideration in most types of scien­
tific computation. For example, the computation of 
7.19 x 3.14 would not be as precise as 7.19286 x 
3.14159. 

In the FORTRAN II-D system, the variable-field length 
capacity of the 1620 is used to allow varying the de­
gree of precision from one program to another. The 

98 

user has the ability to define the precision to which 
fixed-point and Boating-point values should be car­
ried. Floating-point precision, denoted in this publica­
tion as f, may be varied from 2 to 28 places; fixed­
point precision, denoted by k, may be varied from 4 
to 10 places. 

The precision of the values may be changed by the 
use of a control record which must precede the source 
program (see FORTRAN II-D CONTROL RECORDS, FANDK) 

or the values may be changed by use of the Disk 
Utility Program DEFINE control record. If not redefin­
ed (by either of these methods), the value of f is 8 
and k is 4. 

Values for f and k must be the same for subpro­
grams and link programs called by the main program. 

Subscripts 

An array is a group of quantities. It is often advan­
tageous to be able to refer to this group by one name 
and to refer to each individual quantity in this group 
in terms of its place within the group. For example, 
assume the following is an array named NEXT: 

15 
12 
18 
42 
19 

If it were desired to refer to the second quantity in 
the group, the ordinary mathematical notation would 
be NEXT2. In FORTRAN this becomes 

NEXT (2) 

The quantity in parentheses is called a subscript. Thus 

NEXT (2) has the value of 12 
NEXT (4) has the value of 42 

The ordinary mathematical notation might be NEXTi, 

to represent any element of the array NEXT. In FOR­

TRAN, this is written 

NEXT (I) 

where I equals 1, 2, 3, 4, or 5. A program may also 
use two or three-dimensional arrays. For example, the 
following is a two-dimensional array named MRA TE. 

Column 1 Column 2 Column 3 

ltow 1 14 12 8 
Row 2 48 88 4 
Row 3 29 25 17 
Row 4 1 3 43 

To refer to the quantity in Row 4, Column 2, the 
FORTRAN statement would be written as MRATE (4,2). 

The value of MRA TE (4, 2) is 3. 



The value of MRATE (3,3) is 17. 
Thus, subscripts are positive fixed-point quantities 

whose values determine the member of the array to 
which reference is made. 

GENERAL FORM 

Let v represent any fixed-point variable and c (or c') 
any fixed-point constant. Then, a subscript is an ex­
pression in one of the following forms. 

v, c, v+c, v-c, cOv, 
cOv+c' or cOv-c' 

(The symbol ° denotes multiplication.) 

EXAMPLES 

I 
3 

MU+2 
5°J 
50 J-2 

The variable in a subscript must not itself be sub­
scripted. 

Subscripted Variables 

A fixed or floating-point variable may be subscripted 
by enclosing up to three fixed-point subscripts in par­
entheses to the right of the variable. 

EXAMPLES 

A(I) 
K(3) 
BETA (5°J-2, K+2, L) 

The commas separating the subscripts are required 
punctuation. Note that subscript arithmetic may take 
place as shown in the third example above. For in­
stance, if J is equal to 20, the first subscript will be 
98. (The symbol ° denotes multiplication.) 

The value of a subscript (including the added or 
subtracted constant, if any) must be greater than 
zero and not greater than the corresponding array 
dimension. Each subscripted variable must have the 
size of its array (i.e., the maximum values which its 
subscripts can attain) specified in a DIMENSION state­
ment preceding the first appearance of the variable 
in the source program. 

Expressions 

An expression in FORTRAN language is any sequence 
of constants, variables (subscripted or not subscript­
ed ), and functions (explained later), separated by 

operation symbols, commas, and parentheses, which 
comply with the rules for constructing expressions. 
Expressions appear on the right-hand side of arith­
metic statements. 

In arithmetic-type operations, the following opera­
tion symbols are used: 

+ addition 
subtraction 

° 
/ 

multiplication 
division 

° ° exponentiation 
a power) 

(i.e., raising to 

RULES FOR CONSTRUCfING EXPRESSIONS 

Since constants, variables, and subscripted variables 
may be fixed-point or floating-point quantities, ex­
pressions may contain either fixed-point or floating­
point quantities; however, the two types may appear 
in the same expression only in certain ways. (In the 
following description, no mention is made of the rules 
for using fixed-point and floating-point quantities in 
functions. These rules will be stated when functions 
are discussed and will be considered as addenda to 
the following rules.) 

1. The simplest expression consists of a single con­
stant, variable, or subscripted variable. If the 
quantity is an integer quantity, the expression 
is said to be in the fixed-point mode. If the 
quantity is a floating-point quantity, the expres­
sion is said to be in the floating-point mode. 

EXAMPLES 

Expression Type of Quantity Mode of Expression 

3 Fixed-Point Fixed Point 
constant 

3.0 Floating-Point Floating Point 
constant 

I Fixed-Point Fixed Point 
variable 

A Floating-Point Floating Point 
variable 

I(J) Fixed-Point Fixed Point 
subscripted 
variable 

A{J) Floating-Point Floating Point 
su bscripted 
variable 

In the last example, note that the subscript, which 
must be a fixed-point quantity, does not affect 
the mode of the expression. The mode of the 
expression is determined solely by the mode of 
the quantity itself. 

FORTRAN II- D 99 



2. Exponentiation of a quantity does not affect the 
mode of the quantity; however, a fixed-point 
quantity may not be given a Boating-point ex­
ponent. The following are valid: 

I~nJ Fixed Point 
A ~nI Floating Point 
A 0 °B Floating Point 

The following is not valid: 

100 A (Violates the rule that a 
fixed-point quantity must not 
have a Boating-point exponent) 

NOTE: The expression A oOBooC is not permitted. It 
must be written A OO(BOOC) or (AOOB) oOC, 
whichever is intended. 

3. Quantities may be preceded by a + or a - or 
connected by any of the operators (+, -, 0, /, 

° 0) to form expressions, provided: 
a. No two operators appear consecutively. 
b. Quantities so connected are all of the same 

mode. (Exception: Boating-point quantities 
may have fixed-point exponents.) 

The following are valid: 

The following are not valid expressions: 

A+-B 
A+I 
3J 

(must be written as A+ (-B) 
(variables are of different modes) 
(must be written as 3 ° J if multipli-

cation is intended) 

4. The use of parentheses in forming expressions 
does not affect the mode of the expression. Thus, 
A, (A), and (( (A) )) are all Boating-point 
expressions. 

5. Parentheses may be used to specify the order of 
operations in an expression. Where parentheses 
are omitted, the order is taken to be from left 
to right as follows: 

Order 

1 
2 
3 

Symbol 

° and / 
+ and-

Operation 

Exponentiation 
Multiplication and Division 
Addition and Subtraction 

For example, the expression 

100 

will be taken to mean 

A+ BOC + EF - G 
D 

Using parentheses, the expression could be written 

which would be taken to mean 

(A+B)OC +EF-G 
D 

A valid expression will be evaluated when the object 
program is executed. An invalid expression may re­
sult in an error message from the FORTRAN II-D pro­
cessor or may result in inaccurate object program 
results. 

Arithmetic. Statements 

GENERAL FORM 

where A is a variable (subscripted or not subscript 
ed) and B represents an expression. 

EXAMPLES 

Q == K+1 
A(I) == 2(1) + SINF (C(I)) 

The numerical calculations to be performed in the 
object program are defined by arithmetic statements. 
FORTRAN arithmetic statements closely resemble con­
ventional arithmetic formulas. They contain a variable 
to be computed, followed by an equal (==) sign, fol­
lowed by an arithmetic expression. In FORTRAN lan­
guage, the equals sign means "is to be replaced by" 
rather than "is equivalent to." For example, the arith­
metic statement 

Y == N - LIMIT (J-2) 

means that the value in the storage area assigned to 
Y is to be replaced by the value of N-LIMIT (J-2). 
The equal sign description can be emphasized more 
with the example of 

1=1+1 

which means that the variable I is to be replaced with 
its ola value plus one. 



The result of the expression is stored in fixed-point 
form if the variable on the left of the equals sign is a 
fixed-point variable, or in floating-point form if it is 
a floating-point variable. 

If the variable on the left is in fixed-point form and 
the expression on the right is in floating-point form, 
the result is first computed in floating-point, then 
truncated (the fractional value is dropped) and con­
verted to a fixed-point number. Thus, if the result of 
an expression is 3.872, the fixed-point number stored 
is 3, not 4. Likewise, the statement 

J == AlB 

where the value of A is 7, 
and the value of B is 4, 
produces a result of 1. 

If the variable on the left is in floating-point form 
and the expression on the right is in fixed-point form, 
the expression will be computed in fixed-point and 
then converted to floating-point before it is stored as 
the new value of the variable. 

Example 

A==B 
I == B 

A I 

A 3 0 B 

Meaning 

Store the value of B in A. 
Truncate B to an integer, convert to 

fixed point, and store in I. 
Convert I to floating-point, and store 

in A. 
Replace A with 3 times B. 
Not permitted. The expression is mix­

ed, i.e., contains both fixed-point 
and floating-point variables. 

Not permitted. The expression is 
mixed. 

Control Statements 

The second class of FORTRAN II statements is com­
prised of control statements that enable the program­
mer to state the flow of the program. Normally, state­
ments may be thought of as being executed sequen­
tially. That is, after one statement has been executed, 
the statement immediately following is executed. How­
ever, it is often undesirable to proceed in this man­
ner. The following descriptions discuss statements 
which may be used to alter the sequence of a program. 

GO TO Statement (Unconditional) 

This statement interrupts the sequential execution of 
statements, and specifies the number of the next state­
ment to be performed. 

GENERAL FORM 

COTOn 

where n is a statement number. 

EXAMPLES 

CO TO 1009 
GOT03 

A coding sample is shown below: 

J • - - ( fOR COMMENT 

.;. ~'AItAo<t"" C. 
NUMeu~ j FORTRAN 5 T A TEMENT 

I S, , Ie IS 10 15 30 JS 'J 

I 

1A=4 
IB==.7. 
GO TO 6 

IIJ C=3."A 
6 C-3'f1cS . 

.S 

The GO TO statement transfers the program to state­
ment 6 where the result 21 is obtained. 

Computed GO TO 

This statement also indicates the statement that is to 
be executed next. However, the statement number 
that the program is transferred to can be altered dur­
ing the program. 

GENERAL FORM 

where nb n:! .. , n lll are statement numbers and i is 
a non-subscripted fixed-point variable. 

The parentheses enclosing the statement numbers, 
the commas separating the statement numbers, and 
the comma following the right parenthesis are all re­
quired punctuation. 

This command causes transfer of control to the 1st, 
2nd, 3rd, etc., statement in the list depending on 
whether the value of i is 1, 2, 3, etc. 

The variable i must never have a value greater than 
the number of items in the list. 

FORTRAN II-D 101 



EXAMPLES 

GO TO (3,4,5), L 

GO TO (4,4,5,2), J 

Meaning 
If L is 1, transfer to 

statement 3. 
If L is 2, transfer to 

statement 4. 
If L is 3, transfer to 

statement 5. 
If J is 1 or 2, transfer 

to statement 4. 
If J is 3, transfer to 

statement 5. 
If J is 4, transfer to 

statement 2. 

Further examples of the Computed GO TO and the 
Unconditional GO TO statements are illustrated below: 

,---- C fOR COMMENT 

~!""'HMl .... r C 
HUMIU ~ FORTRAN S TA TEMENT 

I 56' 10 15 20 25 30 35 '0 ') 

• ~ 

A-3. 
8=.4 .• I 

CaS. 
/(-0. • 

J K.-K+J ~ 

GO T.O (l0 .•. 20 .•. 30). K 

• 

. 3.0 F-A-B 
GO 7.0 12. 

2~ E.-A-C 
GO r.o J 

1.tJ D.= B- C 
GO TaO 1 
. 

1.J.. 

In the example, D, E, F are computed in that order, 
and the program is transferred to statement 12. This 
.is a simplified example and if these were the only 
computations in the program, the programmer would 
simply list the arithmetic statements to compute D, E. 
and F in any desired order without using the Com­
puted GO TO statement. 

IF Statement 

This statement permits the programmer to change the 
sequence of the statement execution, depending upon 
the value of the arithmetic expression. 

102 

GENERAL FORM 

where a is an expression and nt, n2, ns are statement 
numbers. 

The expression must be enclosed in parentheses and 
the statement numbers must be separated by commas. 
The expression may be in either fixed or floating 
mode. 

Control is transferred to statement number Dt, n2, ns 
depending on whether the value of a is less than, 
equal to, or greater than zero, respectively. 

EXAMPLE 

IF (A-B) 10, 5,7 

which means "If the value of A minus B is less than 
zero, transfer to statement 10. If the value of A minus 
B is equal to zero, transfer to statement 5. If ... A 
minus B is greater than zero, transfer to statement 7:-

Suppose a value, X, is being computed. Whenever 
this value is negative or positive, it is desired to pro­
ceed with the program .. Whenever the value is zero, 
an error routine is to be followed. This may be coded 
as: 

1"- C fOR COMMENT 

+SfAHMtNr c 
NUMIU j: FORTRAN STATEMENT 

I 56' Ie I) 20 2) JO 35 '0 ., 

• 
X= (8,+ C /F** E) -z/c 
IF (,X }1 0 .40..1 0 

1.0 
~ . 

40 (ERROR ROUTINe) 

IF (SENSE SWITCH) Statement 

This statement permits the program to transfer to a 
particular statement depending on the setting of any 
one of the four Console Program Switches. 

GENERAL FORM 

IF (SENSE SWITCH i) nl, n2 

where i is the number of one of the Console Program 
Switches, and nt, n2 are statement numbers. 

The parentheses enclosing the words SENSE SWITCH, 

and the commas separating the statement numbers 
are required punctuation. 

The program transfers to the statement number nl 
when the designated Program switch is on, or to the 
statement numbered n2 when it is off. 



EXAMPLE 

IF (SENSE SWITCH 3) 14, 10 

which means, "If Sense Switch 3 is on, transfer to 
statement 14, otherwise transfer to statement 10." 

DO Statement 

GENERAL FORM 

DOni ==mbm2 
or 

DO n i == mb m2, rna 

where n is a statement number, i is a non-subscripted 
fixed-point variable, and mb m2, and rna are either an 
unsigned fixed-point constant or a non-subscripted 
fixed-point variable. If ma is not stated, it is under­
stood to be 1. 

EXAMPLES 

DO 30 J == 1,10 
DO 30 J - 1, K, 3 

The DO statement is a command to repeatedly exec­
cuate the statements that follow, up to and including 
the statement with statement number n . , i.e., it forms 
a program loop. 

The statements are executed with i == ml the first 
time. For each succeeding execution, i is increased 
by rna. After the statements have been executed with 
i equal to m2 (or as near as possible without exceed­
ing m2), control passes to the statement following the 
last statement in the range of the DO. 

DO Range 

The range of a DO is that set of statements which are 
executed repeatedly; i.e., it is the sequence of con­
secutive statements immediately following the 00, up 
to and including the statement numbered n. 

DO Index 

The index of a DO statement is the fixed-point variable 
i, which is controlled by the 00 in such a way that its 
value begins at mb and is increased each time by rna, 
up to, but not including the value which exceeds m2' 
Throughout the range, the i-value is available for 
computation, either as an ordinary fixed-point variable 
or as the variable of a subscript. After the last execu­
tion of the range, the 00 is said to be "satisfied." 

Suppose for example, that control has reached 
statement 10 of the program: 

10 DO 11 I == 1, 10 
11 A (I) == I" N (I) 
12 ... 

The range of the DO is statement 11, and the index 
is I. The DO sets I to 1 and control passes into the 
range. The value of ION ( 1) is computed, converted 
to floating-point and stored in location A( 1). Since 
statement 11 is the last statement in the range of the 
DO and the DO is unsatisfied, I is increased to 2 and 
control returns to the beginning of the range, state­
ment 11. The value of 2 0 N (2) is then computed and 
stored in location A (2). The process continues until 
statement 11 has been executed with I == 10. Since 
the DO is satisfied (ml == m2), control then passes to 
statement 12. 

DO's Within DO's 

There may be other DO statements among the state­
ments in the range of a DO. When this is so, the fol­
lowing rule must be observed. 

If the range of a DO includes one or more other 
DO's, then all of the statements in the range of the 
latter must also be in the range of the former. 

A set of DO'S satisfying this rule is called a "nest of 
DO'S." This rule is illustrated in the drawing below. 
(Brackets are used to illustrate the range of a 00). 

Permitted Not Permitted 

DO 

DO 

DO 

DO DO 

FORTRAN Il.:.D 103 



Transfer of Control and DO's 

Transfers of control from and into the range of a 00 

are subject to the following rule: 
No transfer is permitted into the range of any DO 

from outside its range. Thus, 1, 2, and 3 are allowable 
transfers in the drawing below, but 4,5, and 6 are not. 

DO 

..---0_0 ____ .. ____ ) 1 4 

• 2 

a non-executable statement, such as END, CONTINUE, 

and FORMAT statements. Also a DO loop cannot end 
with a transfer statement. 

CONTINUE Statement 

CONTINUE is a dummy statement which results in no 
instructions in the object program. It is most fre­
quently used as the last statement in the range of a 
DO to provide a transfer address for IF and GO TO 

statements that are intended to begin another repeti­
tion of the DO loop . 

EXAMPLE 

CONTINUE 

...... &_------- 5 As an example of a program which requires a 

1...-___ ..... __ --.... ) 3 6 

Preservation of Index Values. When control leaves 
the range of a DO in the ordinary way (i.e., when 
the 00 becomes satisfied and control passes on to 
the next statement after the range) the exit is said 
to be a normal exit. After a nonnal exit from a DO 

occurs, the value of the index controlled by that DO 

is not defined, and the index cannot be used again 
until it is redefined. However, if the exit occurs by 
virtue of a transfer out of the range, the current 
value of the index remains available for any sub­
sequent use. If the exit occurs because of a transfer 
which is in the ranges of several oo's, the current 
values of all the indexes controlled by those 00' s 
are preserved for any subsequent use. 

Exits. When a CALL statement (see CALL STATEMENT) 

is executed in the range of a 00, care must be taken 
that the called subprogram does not alter the DO 

index or indexing parameters. This applies as well 
when a FORTRAN function is called for in the range 
of a 00. 

Restrictions on Statements in the Range of a DO. 
A statement which redefines the value of the index 
or of any of the indexing parameters (m' s) is the 
only type of statement not permitted in the range 
of a 00. In other words, the indexing of a DO loop 
must be completely set before the range is entered. 
The first statement in the range of a DO must not be 

104 

CONTINUE, consider the table search: 

10 DO 12 I == 1, 100 
IF ( ARC·- VALUE (I) ) 12, 20, 12 

12 CONTINUE 
13 

This program causes a scan of the l00-entry VALUE 

table until it finds an entry that equals the value of 
the variable ARG, whereupon it exits to statement 20 
with the value of I available for fixed point use; if no 
entry in the table equals the value of ARG, a normal 
exit occurs to the statement ( 13) following the 
CONTINUE. 

PAUSE Statement 

GENERAL FORM 

PAUSE or PAUSE n 

where n is an unsigned fixed-point constant. 

EXAMPLES 

PAUSE 
PAUSE 33333 

This statement halts the machine. Depressing the 
Start key causes the program to resume execution of 
the object program with the next statement. In a 
PAUSE n statement, where n is a 5-digit number within 
the range of valid 1620 addresses, the n can be dis­
played on the 1620 console in OR-2. 



CALL EXIT Statement 

This statement is used at the end of a FORTRAN pro­
gram to return control to the Monitor Control Record 
Analyzer routine. 

EXAMPLE 

CALL EXIT 

STOP Statement 

GENERAL FORM 

STOP or STOP n 

where n is an unsigned fixed-point constant. 

EXAMPLES 

STOP 
STOP 33333 

When the object program is executed, the machine 
types STOP on the console typewriter, halts, and n can 
be displayed as it is for the PAUSE n statement. De­
pressing the Start key causes control to be returned 
to the Monitor Control Record Analyzer routine. 

END Statement 

GENERAL FORM 

where I is 0, 1, or 2. 
EXAMPLES 

END 
END (1,2,0,1,1) 

This statement differs from the previous control state­
ments in that it does not affect the How of control in 
the object program being compiled. Its application is 
to the FORTRAN II-D processor during compilation. An 
END statement will generate a halt and branch (to the 
Monitor Control Record Analyzer routine) in the 
object program. The statement END (It, 12 , la, 14, 15) 
is acceptable; however, the I's specified are meaning­
less in 1620 FORTRAN II-D. 

The END statement must be the last statement 
( physically) of the source program. 

'nput IOutput Statements 

Input statements are used to read data into core' stor­
age and output statements are used to print or punch 
or store data. The READ, ACCEPT, ACCEPT TAPE, PUNCH, 

PUNCH TAPE, PRINT, and TYPE statements require the 
use of the FORMAT statement which is described under 
the section entitled SPECIFICATION STATEMENTS. 

In addition to the statements listed above, the 
RECORD and FETCH statements also must include an 
ordered list of the quantities to be transmitted (see 
SPECIFYING LISTS OF QUANTITIES) • 

All FORTRAN II-D Input/Output statements cause the 
object program to make use of the Supervisor I/O 
routine (see section entitled I/O ROUTINES under su­
PERVISOR PROGRAM). 

Specifying Lists of Quantities 

The input/output statements that call for ,transmission 
of data must include an ordered list of the quantities 
to be transmitted. The listed order must be the same 
as the order in which the words of information exist 
(for input), or the desired order for the output. 

The formation and meaning of a list is best de- , 
scribed by an example. Assume that the value pf K 
has been previously defined. 

A, B(3), (C(I), D(I, K), I = 1, 10) 
( (E ( I,J ), I = 1, 10, 2), F (J, 3), J = 1, K) 

If this list is used with an output statement, the infor­
mation will be written on the output medium in this 
order: 

A, B(3), C(l), D(l, K), C(2), D(2, K), . " 
C(10), D(10, K), E(l, 1), E(3,1), ... , E (9,1), 
F( 1, 3), 
E(l, 2), E(3, 2), ... , E(9, 2), F(2, 3), 

E'(i,'K), E(3, K), ... , E(9, K), F(K, 3) 

Similarly, if this list is used with an input statement, 
the successive values, as they are read from the ex­
ternal medium, are placed into core storage in the 
indicated order. The list reads from left to right with 
repetition for variables enclosed within parentheses. 
Only variables, not constants, may be listed. 

If such a list is used, the execution is exactly that 
of a 00 loop. It is as though each opening parenthesis 
(except subscripting parentheses) were a 00, with 
indexing given immediately before the matching clos­
ing parenthesis, and with the DO range extending up 
to that indexing information. The order of the above 
list can thus be considered the equivalent of the fol­
lowing "program": 

1. OUTPUT A 
2. OUTPUT B(3) 
3. DO 5 I = 1, 10 
4. OUTPUT C(I) 

FORl'RANII-D 105 



5. OUTPUT D(I, K) 
6. DO 9 J = 1, K 
7. DO 8 I = 1, 10, 2 
8. OUTPUT E (I, J) 
9. OUTPUT F (J, 3) 

Note that indexing information, as in Do'S, consists of 
three constants or fixed-point variables, and that the 
last of these may be omitted, in which case, it is 
assumed to be.I. 

For a list of the form K, A ( K) or of the form K, 
(A(I), 1 = 1, K), where an index or indexing para­
meter itself appears earlier in the list of an input state­
ment, the indexing will be carried out with the newly 
read-in value. 

Input/Output in Matrix Form 

As outlined in a previous section, FORTRAN I1-D treats 
variables according to conventional matrix practice. 
Thus, the input/output statement 

READ 1, ( ( A (I, J), 1 = 1, 2), J = 1, 3) 

causes the reading of I x J (in this case, 2 x 3) items 
of information. The data items are read into storage 
in the same order as they are found on the input 
medium. 

INPUT/OUTPUT OF ENTIRE MATRICES 

When input/output of an entire matrix is desired, 
an abbreviated notation may be used for the list of 
the input/output statement; only the name of the 
array need be given and the indexing information 
may be omitted. 

Thus, if A has previously been listed in a DIMENSION 

statement, the statement, 

READ I,A 

is sufficient to read in all the elements of the array. 
The elements of the array are stored in successively 
higher storage locations. (If A has not previously ap­
peared in a DIMENSION statement, only the first ele­
ment would be read in.) 

Lists for the RECORD and FETCH statements must be 
formed in the following manner: 

1. Matrix Lists 

106 

If any item in the list is a matrix, all items in the 
list must be matrices. All matrices will start at 
the beginning of a record. Matrices written with 
a matrix list must be read with a matrix list. 

2. Element Lists 
An element list may consist of anyone or more 
of the following types (assume K previously 
defined). 
a. A 
b. B( 1) 
c. C(I, K) 
d. (B(I), D (I, K), 1 = 1, 10) 
e. ( (E (I, J), 1 == 1, 10, 2), F (J, 3), J = I, K) 

3. The mode and order of lists must be the same 
for the reading and writing of the same data. 

Arrangement of Arrays in Storage 

Arrays are stored "column-wise," with the first of their 
subscripts varying most rapidly, and the last varying 
least rapidly. Arrays which are I-dimensional are sim­
ply stored sequentially. A 2-dimensional array named 
A would be stored sequentially in the order AI,I' 
A2,I"'" AM l' A I,2' A 2,2"'" AM,N' A 3-dimensional 
array named T would be stored in the order 

T 1,1,1' T 2,1,1' T 3,1,1' ••• , T M,I,I' T 1,2,1' ••• , T M,N,I' T 1,1,2' 

T2,1,2"" , 

The storage of arrays is in ascending order, i.e., the 
elements are stored sequentially in locations with 
ascending addresses. 

READ Statement 

The READ statement is used to read data into core 
storage from the 1622 Card Read-Punch. 

GENERAL FORM 

READ n, List 

where n is the statement number of a FORMAT state­
ment and List is a list of the quantities to be read. 

EXAMPLES 

READ 8, A, B, C 
READ 211, VOLT (I), OHM (J) 

The READ statement causes data to be read from a 
card and causes the quantities from the card to be­
come the values of the variables named in the list. 
Successive cards are read until the complete list has 
been "satisfied," i.e., all data items have been read, 
converted, and stored in the locations specified by the 
list of the READ statement. The FORMAT statement to 
which the READ refers, describes the arrangement of 
information on the cards and the type of conversion 
to be made. 



ACCEPT TAPE Statement 

The ACCEPT TAPE statement is used to cause data 
to be read into core storage from the 1621 Paper Tape 
Reader. 

GENERAL FORM 

ACCEPT TAPE n, List 

where n is the statement number of a FORMAT 
statement, and List is as described under INPUT/ 

OUTPUT STATEMENTS. 

EXAMPLE 

ACCEPT TAPE 30, K, A (J) 

The ACCEPT TAPE statement causes the object program 
to read information from the paper tape reader. Rec­
ord after record is brought in, in accordance with 
the FORMAT statement, until the complete list has 
been satisfied. 

ACCEPT Statement 

The ACCEPT statement is used to allow data to be 
read in from the console typewriter. 

GENERAL FORM 

ACCEPT n, List 

where n is the statement number of a FORMAT state­
ment, and List is as described under INPUT/OUTPUT 

STATEMENTS. 

EXAMPLE 

ACCEPT 20, A, B, C, D (3) 

The ACCEPT statement causes the object program to 
return the carriage of the console typewriter to await 
the. entrance of data. The information is entered in 
accordance with the FORMAT statement until the com­
plete list has been satisfied. 

PUNCH Statement 

The PUNCH statement is used to cause data to be 
punched out in cards by the 1622 Card Read-Punch. 

GENERAL FORM 

PUNCH n, List 

where n is the statement number of a FORMAT state­
ment, and List is as described under INPUT/OUTPUT 

STATEMENTS. 

EXAMPLE 

PUNCH 40, (A 0), } = 1, 10) 

The PUNCH statement. causes the object program to 
punch cards in accordance with the FORMAT statement 
until the complete list has been satisfied. 

PRINT and TYPE Statements 

The PRINT statement and the TYPE statement are 
u,sed to type out data on the console typewriter. 

GENERAL FORM 

PRINT n, List 
TYPE n, List 

where n is the statement number of a FORMAT 
statement and List is as described under INPUT/OUTPUT 

STATEMENTS. 

EXAMPLE 

PRINT 2, ( A (}), J = 1, 10) 

The PRINT and TYPE statements cause output data to 
be typed on the console typewriter. A carriage return ' .. 
occurs and successive lines are typed in accordance 
with the FORMAT statement, until the complete list 
has been satisfied. 

PUNCH TAPE Statement 

The PUNCH TAPE statement is used to cause data to 
be punched by the 1624 PAPER TAPE PUNCH. 

GENERAL FORM 

PUNCH TAPE n, List 

where n is the statement number of a FORMAT state­
ment, and List is as described under INPUT/OUTPUT 

STATEMENTS. 

EXAMPLE 

PUNCH TAPE 25, ( A (}), } = 1, 10) 

The PUNCH TAPE statement causes information to be 
punched by the paper tape punch. 

Successive records are punched in accordance with 
the FORMAT statement until the complete list has been 
satisfied. 

FIND Statement 

This statement is used to position the disk access arm 
over a cylinder. 

FORTRAN II-D 101 



GENERAL FORM 

FIND (I) 

where I specifies the record number where reading or 
writing will start. The parameter I must be either: 

1. A. nonsubscripted fixed-point variable. 

EXAMPLE 

FIND (IMAX) 

or 

2. A subscripted fixed-point variable. 

EXAMPLE 

FIND (IMAX(3)) 

The FIND statement causes the disk access arm to be 
positioned over a cylinder which will subsequently 
be read from or written on. The FIND statement may 
precede a FETCH or RECORD statement that contains 
the same 1 parameter, and, in this manner, takes ad­
vantage of additional processing time while the access 
arm is moving. 

The record numbers (I) start at 1, and correspond 
to every sector if one-sector records are specified in 
the DEFINE DISK statement; if two-sector records are 
specified, the record numbers correspond to every 
second sector. 

Only areas of disk storage within the area defined 
by a DEFINE DISK statement can be specified by a 
FIND. 

FETCH Statement 

This statement is used to read data from the 1311 
Disk Storage Drive. 

GENERAL FORM 

FETCH (I) List 

where I specifies the record number and List is as 
described under INPUT/OUTPUT STATEMENTS. 

EXAMPLE 

FETCH (IMAX (3) ) (A 0), J = 1,10) 

The FETCH statement may be preceded by a FIND 

statement containing the same I parameter. When the 
FETCH statement is executed, a check is performed to 
determine if the access arm is positioned over the 
proper cylinder. If the access arm is properly position­
ed, reading begins; if it is not, a seek is initiated 
(seek time is not available for computation). 

The data designated by the list is read from the 
. record specified by (I). If the list specifies more items 
than can be obtained from one record, then the value 

108 

of (I) is incremented by one and reading proceeds 
from the next sequential record. This procedure con­
tinues until either the list has been "satisfied," i.e., 
until the data for all the variables in the list has been 
read in, or until the end of the area specified by N 2 

(see DEFINE DISK) has been reached. At the conclusion 
of a read operation, the value of 1 is one greater than 
the number of the last record read. The parameter 
( I) is the same as described for the FIND (I) state­
ment. 

The compiled instructions for the FETCH statement 
cause control to be transferred to the Monitor Input/ 
Output routine (see Supervisor section). 

RECORD Statement 

This statement is used to write data on the 1311 Disk 
Storage Drive. 

GENERAL FORM 

RECORD (I) List 
where I specifies the record number and List is as 
described under INPUT/OUTPUT STATEMENTS. 

EXAMPLE 

RECORD (IMAX (3) ) (A 0), J = 1, 10) 

The RECORD statement may be preceded by a FIND 

statement containing the same I parameter. When the 
RECORD statement is executed, a check is performed 
to determine if the access arm is positioned over the 
proper cylinder. If the access arm is properly position­
ed, writing begins; if it is not, a seek is initiated (seek 
time is not available for computation). 

The data designated by the list is written on the 
record specified by (I). If the list specifies more items 
than can be contained in one record, then the value 
of (I) is incremented by one and writing proceeds to 
the next sequential record. This procedure continues 
until either all items in the list have been written or 
until the end of the area specified by N2 (see DEFINE 

DISK) has been reached. At the conclusion of a write 
operation, the value of I is one greater than the num­
ber of the last record written. The parameter (I) is 
the same as described for the FIND (I) statement. 

The compiled instructions for the RECORD statement 
cause control to be transferred to the Monitor Input/ 
Output routine (see Supervisor section). 

Specification Statements 
The SPECIFICATION statements supply necessary infor­
mation to the FORTRAN processor, or information to in­
crease program efficiency. No executable instruCtions 
are created in the object program for a SPECIFICATION 

statement. 



DIMENSION Statement 

The DIMENSION statement provides the information 
necessary to allocate storage for arrays in the object 
program. 

GENERAL FORM 

DIMENSION v, v, v, ... 

where each v is the name of a variable, subscripted 
with, 1, 2, or 3 unsigned fixed-point constants. Any 
number of v's may be given. 

EXAMPLE 

DIMENSION A(10), B(5, 15), CVAL (3,4,5) 

Each variable which appears in subscripted form 
in a program or subprogram must appear in a DIMEN­

SION statement of that program or subprogram; the 
DIMENSION statement must precede the first appear­
ance of that variable. The DIMENSION statement lists 
the maximum dimensions of arrays; in the object pro­
gram, references to these arrays must never exceed 
the specified dimensions. 

The above example indicates that B is a two-dimen­
sional array for which the subscripts never exceed 5 
and 15. The DIMENSION statement, therefore, causes 
75 (i.e., 5 x 15) fields to be set aside for the array B. 

A single DIMENSION statement may specify the di­
mensions of a number of arrays. The maximum num­
ber is limited by the number of continuation cards 
permitted. A program must not contain a DIMENSION 

statement which includes the name of the program it­
self, or any program which it calls. If any of the sub­
scripts in a DIMENSION statement exceeds 9999, an 
error will be indicated. 

EaUIV ALENCE Statement 

The EQUIVALENCE statement provides one method of 
controlling the allocation of data storage in the object 
program. 

GENERAL FORM 

EQUIVALENCE (a, b, c, ... ), (d, e, f, ... ) , ... 
where a, b, c, d, e, f, ... are variables that may be 
subscripted with constants only. 

EXAMPLE 

EQUIVALENCE ( A, B(I), C(5) ), ( D (17), E(3) ) 

When the logic of the program permits, the number 
of storage locations used can be reduced by causing 

locations to be shared by two or more variables. The 
EQUIVALENCE statement should not be used to obtain 
mathematical equality between two or more elements. 
If fixed-point and floating-point variables are equiva­
lenced, their word lengths must be the same, i.e., 
t, + 2 must equal k. 

An EQUIVALENCE statement may be placed anywhere 
in the source program, except as the first statement 
in the range of a DO. Each pair of parentheses of the 
statement list encloses the names of two or more 
quantities which are to be stored in the same loca­
tions during execution of the object program; any 
number of equivalences may be given. 

In an EQUIVALENCE statement, a term such as C(p) 
can be defined for p>O to mean the pth location of 
the C array. For example, C ( 5) would be the fifth 
location in the C array. Note that in an EQUIVALENCE 

statement a two- or three-dimensional array must be 
referenced by a linear subscript (a single subscript 
notation which denotes the element of an array re­
gardless of how the array is dimensioned). If p is not 

specified, it is understood to be 1. 
Thus, the example indicates that the A, B, and C 

arrays are to be assigned storage locations such that 
the elements A( 1), B ( 1), and C( 5) are to occupy the 
same location. In addition, it specifies that D( 17) and 
E ( 3) are to share the same location. 

Quantities or arrays which are not mentioned in an 
EQUIVALENCE statement are assigned unique locations. 

COMMON Statement 

Variables, including arrays, appearing in COMMON 

statements are assigned to specific storage ·locations. 
Storage is assigned separately for each program 
compiled. 

GENERAL FORM 

COM::MON A, B ... 
where A, B . . . are the names of variables and non­
subscripted array names. 

EXAMPLE 

COM~10N X, ANGLE, MATA, MATB 

The COMMON storage area may be shared by a pro­
gram and its subprograms. In this way, the COMMON 

statement enables a data storage area to be shared . 
between programs in a way analogous· to that by 
which the EQUIVALENCE statement permits data stor­
age-sharing within a single program. Where the logic 
of the programs permits, this can result in a large 
saving of storage space. 

Array names appearing in the COMMON statement 
must previously have appeared in a DIMENSION state­
ment in the same program. 

FORTRAN II-V 109 



The COMMON storage area is located at the high end 
of core storage, starting with address 19999, 39999 or 
59999. Variables in a COMMON statement are assigned 
storage locations in descending sequence. For ex­
ample: 

COMMON A, B, C 

With f == 10, A, B, and C would be stored in locations 
19999, 19987, and 19975 and similarly for 40,000 or 
60,000 positions. If C is dimensioned as C ( 10), then 
19975 is the address of C ( 10), which is the last ele­
ment in the array, and 19867 is the address of C( 1). 

The COMMON statement takes precedence over the 
EQUIVALENCE statement. Due to the complex interac­
tion of these two statements, the programmer must 
adhere to the following two rules: 

1. Variables which are to be placed in COl\lMON 
storage must be assigned prior to any EQUIVA­
LENCE statement containing these variables. For 
example, 

COMMON A 
EQUIVALENCE (A, B, C) 

The order in which the variables appear in the 
EQUIVALENCE statement is irrevelent and rule 1 
applies if the COMMON variable is B or C. 

2. Within an EQUIVALENCE list there may be no 
more than one variable which previously has 
been: 
a. equivalenced, or 
b. placed in ~OMMON. 

The following sequence of statements is invalid: 

EQUIVALENCE (A, B, C) 
EQUIVALENCE (X, Y, Z) 
EQUIVALENCE (A, Z) Violates (a) above 
COMMON D 
EQUIVALENCE (D, X, P) Violates combina­

tion of ( a ) and 
(b). 

The sharing of storage locations desired in the 
above statements can be achieved by writing the 
statements as follows: 

or 

110 

COMMON D 
EQUIVALENCE (D, X, P) 
EQUIVALENCE (A, B, C, X) 
EQUIVALENCE (X, Y, Z) 

COMMON D 
EQUIVALENCE (D, A, P, B, C, X, Y, Z) 

A diagnostic error message results if either Rule 
1 or 2 is violated. 

Arguments in Common Storage 

COMMON statements may be used as a medium for 
transmitting arguments from the calling program to 
the called FORTRAN function or SUBROUTINE subpro­
gram. In this way, they are implicitly, rather than 
explicitlY transmitted as when listed in the parentheses 
following the subprogram name. 

To obtain implicit arguments, it is necessary to have 
only the corresponding variables in the two programs 
occupy the same location. This can be accomplished 
by having them occupy corresponding positions in 
COMMON statements of the two programs. For ex­
ample, (A, B, C) and (E, F, G) become implicit ar­
guments when the calling program contains the state­
ment COMMON A, B, C, and the called subroutine 
contains the statement COMMON E, F, G. 
NOTES: 

1. To force correspondence in storage locations be­
tween two variables in different programs which 
otherwise would occupy different relative posi­
tions in COMMON storage, it is valid to place 
dummy variable names in a COMMON statement. 
These dummy names, which may be dimension­
ed, will cause reservation of the space necessary 
to cause correspondence. 

2. While implicit arguments can take the place of 
all arguments in CALL-type subroutines, there 
must be at least one explicit argument in a 
FORTRAN function. Here, too, a dummy variable 
may be used for convenience. 

When one variable is EQUIVALENCED to a sec­
ond variable which appears in a COMMON state­
ment, the first variable is also located in COMMON 
storage. 

DEFINE DISK Statement 

The DEFINE DISK statement specfies to the FORTRAN 
processor the size and quantity of data records that 
will be used with a particular program and its associ­
ated subprograms. This statement must appear in the 
main program (or link program) and may appear only 
once in that program, when Disk I/O statements ap­
pear in any part of the program or subprograms. 
Thus, all subprograms used by that main program or 
link program must use the same size record defined 
in the statement. 



GENERAL FORM 

where the parameters Nl and N2 are defined as 
follows: 

N1 - a fixed-point constant which specifies the 
number of words contained in a record of data. 
The value chosen for N 1 depends upon two 
things: (1) the word length (w) specified when 
the program was compiled, and (2) whether the 
user wants the length of a record of data to be 
one or two physical sectors. 

The value (N 1) is determined by following two rules: 
If w times (N 1) L. 100, then the record length 
will be one disk sector. 
If w times (N 1) is more than 100 and L. 200, 
then the record length will be two disk sectors. 

For example, assume that the word lengths specified 
at compile time were 8 for floating-point numbers (f) 
and 4 for fixed-point numbers (k). Since a record 
might contain all floating-point or all fixed-point num­
bers (words) , the larger of the two specified word 
lengths must be used to determine w. In this ex­
ample, the floating-point length is the larger of the 
two word lengths; its total length is 10 (word length 
== f + 2). Therefore, if a data record is to be con­
tained in one physical disk sector (100 disk locations), 
then Nl must be in the range of 1 to 10. An N1 of 10 
would be making the most efficient use of the avail­
able disk storage. In this example, if the length of a 
data record is to be two physical disk sectors, then 
N 1 would be in the range of 11 to 20. A data record 
may not be greater than 2 sectors (200 digits). 

If arrays are read or written, the variables are not 
moved to a buffer area before going to or coming 
from the disk provided that both f and k are even in 
length. In this case, a group mark is placed at the 
end of the array before writing to disk. If 10-digit 
variables are used, the most efficient use of the disk 
would be with arrays containing 9, 19, 29, 39, etc. 
variables, so that the group mark is placed in the 
same sector as the variables to be recorded. 

N2 - a fixed-point constant which specifies the num­
ber of data records that will be used by this main 
program and its associated subprograms. N2 is used 
by the compiler to reserve a portion of the specified 
work cylinder area (see DEFINE PARAMETERS ROUTINE 

in the DISK UTILITY PROGRAM section of this man­
ual) for the purpose of transferring data to and 
from disk storage. The number of sectors that the 
compiler will reserve depends upon the record 
length specified by N1• If one-sector records are 
specified, then N2 sectors will be reserved; if two­
sector records are specified, then 2 times N2 sectors 
will be reserved. 

FORMAT Statement 

The FORMAT statement is used to describe the format 
of data being transmitted to and from the typewriter, 
card, or paper tape units. 

GENERAL FORM 

FORMAT (SI' .. , sn) 

where S1 is a format specification. The FORMAT speci­
fications must be separated by commas, slashes, or 
left parentheses. 

EXAMPLE 

FORMAT (12/ (EI2A, FI0A) ) 

The Input/Output statements, in addition to the 
list of quantities to be transmitted, contain the state­
ment number of a FORMAT statement describing the 
information format to be used. The FORMAT statement 
also specifies the type of conversion to be performed 
between the internal machine language and the ex­
ternal notation. FORMAT statements are not executable: 
their function is merely to supply information to the 
object program. Therefore they may be placed any­
where in the source program (except as the first state­
ment in the range of a DO). 

For the sake of clarity, examples given in this sec­
tion are for typing on the console typewriter. How­
ever, the description is valid for any input/output 
unit simply by generalizing the concept of "typewrit­
ten line" to that of the unit record in the selected 
input/output unit. Thus, a unit record may be: 

1. A typewritten line with a maximum of 87 char­
acters. 

2. A punched card with a maximum of 80 char­
acters. 

3. A paper tape record with a maximum of 87 
characters. (The input record length may be 
variable up to 87; the output record length is 
fixed at 87.) 

FORTRAN Il-D 111 



Numerical Fields 

Three forms of conversion for numerical data are 
available: 

FROM/TO TO/FROM 
INTERNAL TYPE EXTERNAL 

Floating-point E Floating-point 
variable number with 

exponent 
Floating-point F Floating-point 

variable number without 
exponent 

Fixed-point I Integer 
variable 

These types of conversion are specified in the forms: 

Ew.d, Fw.d, and Iw. 

where wand d are unsigned fixed-point constants. 
Format specifications are used to describe the input 

and output format. The format is specified by giving, 
from left to right, beginning with the first character 
of the record; 

1. The control character (E, F, or I) for the field. 

2. The width (w) of the field. The value of w must 
be large enough to include the field d, plus 
spaces for a sign and the decimal point. In ad­
dition, four spaces for the exponent are needed 
in E-type conversion. The width specified may 
be greater than required to provide for spacing 
between numbers. 

3. For E- and F -type conversions, the number of 
decimal positions' ( d) (of the field) which ap­
pear to the right of the decimal point. 

Specifications for successive fields are separated by 
commas. No format specification should be given that 
provides for more characters than the input/output 
unit record. Thus, a FORMAT statement for typewriter 
output should not provide for more than 87 characters 
per line, including blanks. For example: the state­
ment FORMAT (12, EI2A, FIOA) might cause the fol­
lowing line to be typed: 

12 E12.4 F10.4 
~. £ " • , 

b 7 - 9 2 • 3 100 E + 0 0 b b b b - .00 7 6 

(In these examples, b is included to indicate blank 
spaces.) 

112 

Alphameric Fields 

FORTRAN II-D provides a method by which alphameric 
information may be read or written. 

The specification for this purpose, wH, is followed 
in the FORMAT statement by w alphameric characters. 
For example: 

24H THIS IS ALPHAMERIC DATA 

Note that blanks are considered alphameric characters 
and must be included as part of the count w. 

Information handled with the H specification is not 
given a name and may not be referred to or manipu­
lated in storage in any way. 

The eHect of wH depends on whether it is used 
with input or output. 

1. Input, w characters are extracted from the input 
record and replace the w characters included 
with the specification. 

2. Output. The w characters following the speci­
fication, or the characters which replaced them, 
are written as part of the output record. Blanks 
are not ignored in an H specification as they are 
elsewhere. 

For example: The statement FORMAT (3HXY 
F8.3) could produce any of the following lines: 

XY b-93.210 
XY == b999.999 
XY == bb28.768 

Another alphameric specification, Aw, causes w 
alphameric characters to be read into or written from 
a variable or array name. Since each alphameric char­
acter is represented in core storage by two decimal 
digits, w must be less than, or equal to, the largest 
whole number resulting from k/2 or f /2, depending 
on whether the variable or array name is fixed or 
floating. If k or f is odd, a zero will be supplied as the 
least significant digit for the field in core storage. To 
facilitate manipulation of alphameric fields which are 
stored as floating-point numbers, the numbers will 
have zero as an exponent. This will have no eHect on 
input/output. However, if the first character in a field 
is a blank, decimal point, or close parenthesis, the 
field will be treated as zero in the floating-point arith­
metic subroutines. 

Blan k Fields 

Blank characters may be provided in an output rec­
ord, and characters of an input record may be skip­
ped, by means of the specifications wX where 0":::::: w ..:::::: 
87 (w is the number of blanks provided or characters 
skipped). When the specification is used with an in-



put record, w characters are considered to be blank, 
regardless of what they actually are, and are skipped 
over. 

Repetition of Field Format 

It may be desired to print n successive fields within 
one record, in the same fashion. This may be specified 
by giving n (where n is an unsigned fixed-point con­
stant which must be ::;; 99) before E, F, I, or A. Thus, 
the statement FORMAT (12, 3E12.4) might result in: 

27 - 92.3100E + OOb75.8000E - 02b55.3600E - 02 

Repetition of Groups 

A limited parenthetical expression is permitted in or­
der to enable repetition of data fields according to 
certain format specifications within a longer FORMAT 

statement specification. Thus, FORMAT (2( FlO.6, 
ElO.2), 14) is equivalent to FORMAT (F10.6, ElO.2, 
FlO.6, ElO.2, 14). The number of repetitions is limit­
ed to a maximum of 99. 

Scale Factors 

The E-type specification implies a scale factor. There­
fore, E16.8 for an output field will result in the print­
ing or punching of a maximum of ten significant digits 
in the form (- )XX.XXXXXXXXE( - )XX. A maxi­
mum of f digits can be placed to the right of the 
decimal point if the d specification is greater than f. 
In this case, d-f low-order zeros will be inserted to 
satisfy the d specification. The following guide may 
be used when working with E-type specifications. 

1. If f (floating-point precision) L w-6, then f 
significant digits will be printed or punched. 

2. If f > w-6, then w-6 significant digits will be 
printed or punched. For example, if f == 10 and the 
floating-point number is stored as 123456789135, it 
will be printed as -12.34567891E-37, according to 
specification E16.8. 

The F -type specification also implies a scale factor. 
Therefore, F16.8 for an output field will result in the 
printing or punching of a maximum of fourteen sig­
nificant digits in the form (-) XXXXXX.XXXXXXXX. 
However, a maximum of f digits will be placed to 
the right of the decimal point and the result will be 
right justified in the output field. If f is larger than 
w-2, only w-2 digits will appear in the output. 

The X specification should be used to space fields 
in the E-type format. In the statement 

E16.8, IX, E16.8, IX, E16.8 

a space will be provided between adjacent fields. 
A field read according to the E-type format need 

not have the exponent E( - )XX; i.e., it may actually 
take the same form as the F -type format. 

The P -scale factor may be used in a specification 
but it will be ignored by the FORTRAN II-D processor. 

Multiple Record Formats 

To deal with a block of more than one typewritten 
line, a FORMAT specification may have several differ­
ent one-line formats, separated by a slash (/) to indi­
cate the beginning of a new line. Thus, FORMAT 

(3F9.2, 2Fl0.4/8E14.5) specifies a multiline typewrit­
ten block in which line 1 has format 3F9.2 and 2Fl0.4, 
and line 2 has format 8E14.5. 

If a multiple-line format is desired, such that the 
first two lines are typed according to a special format 
and all remaining lines are typed according to an­
other format, the last line specification should be en­
closed in a second pair of parentheses; e.g., FORMAT 

(12, 3E12.4/2FlO.3, 3F9.4/ ( 10F12.4) ). If data items 
remain to be transmitted after the last line format spe­
cification has been completely satisfied, the format 
repeats from the last left parenthesis. 

As these examples show, both the slash and the 
closing parenthesis of the FORMAT statement indicate 
the termination of a record. 

Blank lines may be introduced into a multiline 
FORMAT statement by listing consecutive slashes. 

Format and Input/Output Statement Lists 

The FORMAT statement indicates, among other things, 
the maximum size of each record to be transmitted. In 
this connection it must be remembered that the 
FORMAT statement is used in conjunction with the list 
of some particular input/output statement, except 
when a FORMAT statement consists entirely of alpha­
meric fields. When the, FORMAT statement is used 
with the list, control in the object program switches 
back and forth between the list (which specifies wheth­
er data remains to be transmitted) and the FORMAT 

statement (which gives the specifications for trans­
mission of that data). 

FORTRAN II-D 113 



Automatic Fix/Float 

During execution of input/output statements, it is 
permissible to read a fixed-point argument into a 
Boating-point field or a Boating-point argument into 
a fixed-point field, and to write from a Boating-point 
field in a fixed-point format or from a fixed-point field 
in Boating-point format. During reading, the format 
specification dictates the data conversion, and the 
list designation controls the mode of storing the argu· 
ment. During writing, the format specification dic­
tates the mode of the. field printed or punched. 

Ending a Format Statement 

During input/output of data, the object program 
scans the FORMAT statement to which the relevant 
input/output statement refers. When a specification 
for a numerical field is found and list items remain to 
be transmitted, input/output takes place according 
to the specification, and scanning of the FORMAT state­
ment resumes. If no items remain, transmission ceases 
and execution of that particular input/output state­
ment is terminated. Thus, a numerical input! output 
operation will be brought to an end when a specifica­
tion for a numerical field or the end of the FORMAT 

statement is encountered, and there are no items re­
maining in the list. 

Data Input to the Obiect Program 

Input data to be read when the object program is ex­
ecuted must be in essentially the same format as given 
in the previous examples. Thus, a card to be read ac­
cording to FORMAT (12, E12A, F10A) might be 
punched: 

27b-O.9321Eb02bbb-O.OO76 

Within each field, all information must appear at 
the extreme right. Plus signs may be omitted or in­
dicated by a b (blank) or +. Blanks in numerical 
fields are regarded as zeros, but zeros may not be 
substituted for blanks. For example, a sign cannot 
be preceded by zeros. Numbers for E-type and F-type 
conversion may contain any number of digits, but only 
the high-order f digits are retained. Numbers for 
I-type conversion may not contain more than k sig­
nificant digits. The concept of f and k is treated 
in this manual under CONSTANTS, VARIABLES, SUBSCRIPTS, 

AND EXPRESSIONS. 

To permit economy in punching, certain relaxations 
in input data format are permitted. 

1. Numbers for E-type conversion need not have 
four columns devoted to the exponent field. The 

114 

start of the exponent field must be marked by an 
E, or if the E is omitted, by a + or - (not a 
blank). Thus E2, E02, +2,02, Eb02, and E+02 
are all permissible exponent fields. Blanks are not 
permitted between characters in the exponent field 
except for the optional blanks which may replace 
a plus sign. Numbers for E-type conversion must 
be right-justified in the data record field. 

2. Numbers for E-type or F-type conversion need 
not have their decimal points punched. If not 
punched, the FORMAT speCification will supply 
them; for example, the number -09321+2 with 
the specification E12A will be treated as though 
the decimal point has been punched between the 
o and the 9. If the decimal point is punched in 
the card, its position overrides the indicated posi­
tion in the FORMAT specification. 

Library Functions 
There are seven library functions (which are a part 
of 16 FORTRAN relocatable subroutines) included in 
the 1620 Monitor I system. These subroutines are 
selected for loading only when called for in the object 
program. The functions are: 

TYPE OF FUNCTION 
Logarithm (natural) 
Exponential 
Cosine of an angle given 

in radians 
Sine of an angle given 

in radians 
Arctangent of an angle 

given in radians 
Square Root 
Absolute Value 

FORTRAN NAME 
LOGF 
EXPF 
CO~F 

BINF 

ATANF 

SQRTF 
ABSF 

The name of the library function is followed by the 
argument enclosed in parentheses. The argument can 
be a v.ariable (subscripted or not subscripted), or an 
expression. 

EXAMPLES 

A == COSF (B) 
A == SQRTF (BETA) 
Y == A - SINF (BO SQRTF (C) ) 

For the last example, the assembled instructions of 
the object program will: 

1. Branch to the square root subroutine to compute 
the value of C. 

2. Multiply the square root value of C (obtained 
in step 1) by B. 



3. Branch to the SINF subroutine to compute the 
sine of the value obtained from step 2. 

4. Subtract the value computed so far from the 
variable A. 

5. Replace the present value of the variable Y with 
the value of the complete ttxpression. 

Approximation Method and Estimated Errors 

Results of the library subroutines are truncated, and, 
in general, errors are no greater than one in the last 
digit of the mantissa. Approximation methods and 
errors for functional subroutines are described in 
greater detail in the following paragraphs. 

1. Logarithm. The natural logarithm of the frac­
tional part of the positive argument is evaluated 
by using a power series expansion. The exponent 
of the argument is multiplied by In 10. The prod­
uct is added to the logarithm of the fraction, and 
the sum is the logarithm of the argument. For 
an argument with its value A in the range 
.99< A L 1.01, the leading digits of its logarithm 
will be zeros, and the result will contain less 
than f significant digits because of normalization. 
The maximum truncation error in the result is 
+ 10-f 

2. Exponential. The value of eA, where A is the 
value of the argument, is calculated by using a 
series approximation for lOA. For IAI 
227.955924206 ... an exponent overflow will re­
sult for A>O or exponent underflow for A<O. 
The value of A is multiplied by log e and the 
product separated into an integer and a fraction­
al part. The integer becomes the exponent of the 
result and the fractional part is used to produce 
its mantissa by series approximation. If A is 
greater than zero, the maximum error in the re­
sult is ±5 x 10-f. 

3. Cosine-Sine. The cosine and sine functions of an 
argument with value A in radians are computed 
by using a series approximation for cosine A with 
sine A == cosine ( 'IT - A). The value A is re-

2 
duced to within the range - 1T L A L 'IT. For 

2" "2 
arguments with exponents less than 03, the mag­
nitude of the maximum truncation error in the 
mantissa of the result does not exceed 10-f. Ac­
curacy in the mantissa of the result decreases as 
the size of the argument (exponent 03 or great­
er) increases. 

4. Arctangent. The arctangent function of an argu­
ment with value A is evaluated by using a series 

approximation. The result is given in radians. 
The maximum truncation error in the mantissa 
of the result is ±10 f , except for results with an 
exponent less than or equal to -2. The maximum 
error for these results is ± 1 in the (f + 1) deci­
mal place. 

5. Square Root. The square root i.s derived by the 
odd integer method. The result is accurate to 1 
in the last digit of the mantissa. 

6. A 00 B. AD is evaluated as EXPF (BOLOGF 
(A)). Three subroutines, logarithm, multiply, 
and exponential, are involved. An error in one 
of these subroutines may propagate other errors 
or increase the error in a succeeding subroutine. 
Normally, the magnitude of the error does not 
exceed 101- f • 

Additional Library Functions 

Up to fourteen additional functions can be added to 
the library of subroutines. These functions are defined 
( written) in machine language or SPS (see ADDING 

SUBROUTINES TO FORTRAN LIBRARY). 

GENERAL FORM 

NAME (A) 

where NAME is 1 to 6 alphabetic or numerical char­
acters (no special characters) of which the first is 
alphabetic, and A is the argument enclosed in paren­
theses. 

EXAMPLE 

TIME (A) 

The mode of the additional library function is deter­
mined by its argument. 

EXAMPLE 

TIME (ABLE) Floating point 
TIME (LABEL) Fixed point 

Library functions can be called by means of an arith­
metic expression that includes the name of the func­
tion. The appearance of the name in the arithmetic 
expression serves to call the function; the value (a 
single numerical quantity) of the function is then 
computed, using the argument which is supplied in 
the parentheses following the function name. Only 
one value is produced by a given Library function. 
The mode of a Library subroutine is determined by 
its argument. 

FORTRAN II-D 115 



EXAMPLES 

COS (A) 
COSH (I) 

Floating point 
Fixed point 

The relocatable Library subroutines supplied with the 
1620 FORTRAN II-D System, with the exception of Ab­
solute Value Function (ABSF), will not accept fixed­
point arguments. 

Arithmetic Statement Functions 

These functions are defined by a single FORTRAN II-D 

arithmetic statement and apply only to the particular 
program in which they appear. They are named in 
the same manner as the Library functions: 

The name of the function consists of 1 to 6 alpha­
betic or numerical characters (not special char­
acters) of which the first must be alphabetic. The 
name of the function is followed by parentheses 
enclosing the arguments, which are separated by 
commas. 

The function statement is defined as follows: 

GENERAL FORM 

NAME(ARG)== E 

where NAME is a function name followed by paren­
theses enclosing its arguments ( which must be 
non-subscripted variables) separated by commas, 
and E is an expression which does not involve 
subscripted variables. Any functions appearing in E 
must be available to the program or already defined 
by preceding arithmetic statements. The function 
names in the main program must agree with those de­
fined in the arithmetic statements and FUNCTION 

statements. 

EXAMPLES 

FRSTF (X) == A °X+B 
SCNDF (X,B) == AOX+B 
THRDF (D) == FRSTF(E)/D 
FRTHF (F, G) == SCNDF (F, THRDF (G) ) 
FFTHF (I, A) == 3.00 A 001 

SXTHF (]) == J + K 

As is the case with the Library functions, the ap­
pearance of the name in the arithmetic statements 
serves to call the function. The value of the function 
(a single numerical quantity) is then computed, using 
the arguments which are supplied in the parentheses 
following the function name. Only one value is pro­
duced by a given arithmetic statement function. 

116 

In 1620 FORTRAN I1-D, the mode of the value is de­
termined by the function name, e.g., if the function 
name begins with I through N, the mode will be fixed 
point. 

The right-hand side of a function ~tatement may be 
any expression not involving subscripted variables that 
meets the requirements specified for expressions. In 
particular, functions may be used freely, provided that 
any such functions, if it is not a Library function, has 
been defined in a preceding function statement. No 
function can be used as an argument of itself. 

As many as desired of the variables appearing in 
the expression on the right-hand side may be stated 
on the left-hand side as arguments . of the function. 
Since the arguments are really only dummy variables, 
their names are unimportant (except insofar as they 
indicate fixed-point or floating-point mode) and they 
may even be the same as names appearing elsewhere 
in the program. 

Those variables on the right-hand side which are 
not stated as arguments are treated as parameters 
Thus, if FRSTF is defined in a function statement as 
FRSTF ( X) == A oX + B then a later reference to 
FRTSF(Y) will cause ay+b, based on the current 
values of a, b, and y, to be computed. The naming of 
parameters, therefore, must follow the nonnal rulf\.~ 
of uniqueness. 

A function defined by a function statement may be 
used in the same way as any other function. Its argu­
ments may be expressions and may involve subscript­
ed variables; thus, a reference to FRSTF (Z+ Y (I) ), 
as a result of the previous definition of FRSTF, will 
cause a( z + Y i) + b to be computed on the basis of 
the current values of a, b, y , and z. 

Functions defined by arithmetic statements are al­
ways compiled as closed subroutines. 

All the arithmetic statements defining functions to 
be used in a program must precede the first execut­
able statement of the program. 

FORTRAN Functions and tVethod of tVethod of Method of 
Subprograms Naming Defining Calling 

"" "" 
library (closed) function Individual 

Same 
Arithmetic Statement function 

Same 
Individual for 

~ for three 

FUNCTION subprogram 
four 

} So~ for 
." 

two 
SUBROUTINE subprogram Individual 

-" 



Dummy Variables within an Arithmetic 
Statement Function 

A variable appearing as a dummy argument within an 
arithmetic statement function must not previously 
have been defined except as a dummy argument in a 
previous arithmetic statement function. After the vari­
able is used as a dummy argument, it may appear 
elsewhere in the program. 

Subprogram Statements 

Subroutines which are referred to by other FORTRAN 

II-D programs can be written as subprograms in the 
FORTRAN II-D language. A subroutine is considered to 
be any sequence of instructions that performs a de­
sired operation. A subprogram is defined as a program 
written in FORTRAN language that is referred to or 
used by another FORTRAN source program. 

Two types of FORTRAN II-D coded subprograms are 
available: the FUNCTION subprogram and the SUBROU­

TINE subprogram. Four statements, SUBROUTINE, FUNC­

TION, CALL, and RETURN, are necessary for their defini­
tion and use. 

Although FUNCTION subprograms and SUBROUTINE 

subprograms are treated together and may be viewed 
as similar, it must be remembered that they differ in 
two fundamental respects: 

l. The FUNCTION subprogram, which results in a 
FORTAN function, as defined under FUNCTIONS, is 
always single-valued, whereas the SUBROUTINE 

subprogram may be multivalued. 
2. The FUNCTION subprogram is called or referred 

to by the arithmetic expression containing its 
name; the SUBROUTINE subprogram can only be 
referred to by a CALL statement (see CALL ST ATE­

MENT). 

Subprograms of each of these two types are coded 
in FORTRAN II-D language. In all respects, they con­
form to the rules for FORTRAN programming. 

FUNCTION Statement 

The FUNCTION statement, always first in a FUNCTION 

subprogram, defines it as a FORTRAN FUNCTION sub­
program. 

GENERAL FORM 

FUNCTION Name (a" a:!, ... , an) 

where Name is the symbolic name of a single-valued 
function, and each argument ab a:!, ... ,an, of which 
there mnst be at least one, is a non subscripted variable 
name. 

The function name consists of 1 to 6 alphabetic or 
numerical characters, the first of which must be al­
phabetic. 

EXAMPLES 

FUNCTION ARCSN (RADS) 
FUNCTION ROOT (B, A, C) 
FUNCTION INTRT (RATE, YEARS) 

In a FUNCTION subprogram, the name of the func­
tion must appear either in an input statement list, or 
at least once as the variable on the left-hand side of 
an arithmetic statement. An example of the latter is: 

FUNCTION NAME (A, B) 

RETURN 

The value of the function is returned to the calling 
program. The mode of a function subprogram is de­
termined by its name. 

EXAMPLES 

FUNCTION AMAST (A, K) Floating point 
FUNCTION IAMAST (A, K) Fixed point 

The arguments following the name in the FUNCTION 

statement may be considered as "dummy" variable 
names, that is, during object program execution other 
actual arguments are subsituted for them. Therefore, 
the arguments which follow the function reference in 
the calling program must agree in number, order, and 
mode with those in the FUNCTION statement in the 
subprogram. Furthermore, when a dummy argument 
is an array name, the corresponding actual argument 
must also be an array name. Each of these an-ay 
names must appear in similar DIMENSION statements 
within its respective program. N one of the dummy 
variables may appear in EQUIV ALENC E statements 
in the FUNCTION subprogram. 

SUBROUTINE Statement 

GENERAL FORM 

SUBROUTINE Name (ab a::!, ... , an) 

where Name is the symbolic name of a subprogram, 

FORTRAN II-V 117 



and each argument, ah a2 , ••• , an, if any, is a nonsub­
scripted variable name. The name of the subprogram 
consists of 1 to 6 alphabetic or numerical characters, 
the first of which must be alphabetic. 

EXAMPLES 

SUBROUTINE MATMP (A, N, M, B, L, C) 
SUBROUTINE QDRT (B, A, C, ROOT 1, ROOT 2) 

The SUBROUTINE statement, always first in a SUBROU­

TINE subprogram, defines it as a SUBROUTINE subpro­
gram. A subprogram introduced by the SUBROUTINE 

statement must be a FORTRAN program and may con­
tain any FORTRAN I1-D statements except FUNCTION, 

DEFINE DISK, or another SUBROUTINE statement. 
A SUBROUTINE subprogram must be referred to by 

a CALL statement in the calling program. The CALL 

statement specifies the name of the subprogram and 
its arguments. 

Unlike the FUNCTION subprogram which results in 
the calculation of only a single numerical value, the 
SUBROUTINE subprogram uses one or more of its argu­
ments to return results. Therefore, the arguments so 
used must appear on the left side of an arithmetic 
statement in the subprogram (or alternately, in an 
input statement list within the subprogram). 

The arguments of the SUBROUTINE statements are 
dummy names that are replaced, at the time of execu­
tion, by the actual arguments supplied in the CALL 

statement. There must, therefore, be correspondence 
in number, order, and mode, between the two sets 
of arguments. Furthermore, when a dummy argument 
is an array name, the corresponding actual argument 
must also be an array name. Each of these array 
names must appear in similar DIMENSION statements 
within its respective program. 

For example, the subprogram headed by 

SUBROUTINE MATMP (A, N, M, B, L, C) 

could be called by the main program through the 
CALL statement 

CALL MATMP (X, 5, 10, Y, 7, Z) 

where the dummy variables, A, B, C, are the names 
of matrices. A, B, C must appear in a DIMENSION 

statement in subprogram MATMP, and X, Y, Z must 
appear in a DIMENSION statement in the calling pro­
gram. The dimensions assigned must be the same in 
both statements. 

None of the dummy variables may appear in 
EQUIVALENCE statements in the SUBROUTINE subpro­
programs. These subprograms may be independently 

118 

compiled or used in a multiple compilation with 
others. 

CALL Statement 

The CALL statement refers only to the SUBROUTINE sub­
program, whereas the RETURN statement is used by 
both the FUNCTION and SUBROUTINE subprograms. 

GENERAL FORM 

CALL Name (a" a;l,"" an) 

where Name is the name of a SUBROUTINE subprogram, 
and ah a2, ... , an are arguments. 

EXAMPLES 

CALL MATMP (X, 5, 10, Y, 7, Z) 
CALL QDRT (po9.732, Q/4.536, R-soo2.0, Xl, X2) 

This statement is used to call SUBROUTINE subpro­
grams; the CALL transfers control to the subprogram 
and presents it with the parenthesized arguments. 
Each argument may be one of the following types: 

1. Fixed-point constant. 
2. Floating-point constant. 
3. Fixed-point variable, with or without subscripts. 
4. Floating-point variable, with or without sub­

scripts. 
5. Arithmetic expression. 

The arguments presented by the CALL statement 
must agree in number, order, mode, and array size 
with the corresponding arguments in the SUBROUTINE 

statement of the called subprogram, and none of the 
arguments may have the same name as the SUBROU­

TINE subprogram being called. 

RETURN Statement 

EXAMPLE 

RETURN 

This statement terminates any subprogram of the 
type headed by either a SUBROUTINE or a FUNCTION 

statement, and returns control to the calling program. 
A RETURN statement must, therefore, be the last exe­
cuted statement of the subprogram. It need not be 
the last statement of the subprogram physically, but 
can be any point reached by a path of control. Any 
number of RETURN statements may be used. 



CALL LINK Statement 

This statement is used to call a new program from 
disk storage and transfer to the first executable state­
ment in that program. 

GENERAL FORM 

CALL LINK (NAME) 

where NAME is the name of a FORTRAN program as 
contained in the Equivalence table. The program 
name must be formed with one to six alphabetic or 
numerical characters (no special characters) of which 
the first is alphabetic. 

EXAMPLES 

CALL LINK (JOE) 
CALL LINK (PROG18) 

The CALL LINK statement is used to call another pro­
gram into core storage. The program that is called will 
cause all subprograms and library subroutines that 
it references to be read into core storage (the arith­
metic and I/O subroutines are also reloaded). Any 
program called by using the CALL LINK statement must 
be in disk storage or it is assumed that the '1ink" pro­
gram ·is the first mainline program encountered by 
the system input unit. If the logic of the program 
allows one of several links to possibly be called, it 
is necessary that the link programs be on disk storage. 
If a subprogram is not available (in disk storage) 
that the '1ink" program references, the FORTRAN load­
er will request that the missing subprogram be load­
ed into core from cards or paper tape. 

Only SO links that call LOCAL subprograms can ap­
pear_ in anyone FORTRAN job. 

The COMMON area is not destroyed during the 
loading of the link programs. If the size of COMMON 

differs (between the calling program and the link pro­
gram being called), the COMMON area size will be the 
size defined for the new program. 

FORTRAN 11-0 Processor 
The 1620 FORTRAN I1-D Processor program is used to 
change a user-written FORTRAN source program into 
an obiect program of 1620 machine language instruc­
tions. All programs are compiled in relocatable for­
mat, i.e., the program instruction addresses are com­
piled relative to a starting address of 00000. The in­
struction addresses must be modified before execution 
can take place. 

The processor operates under control of the Moni­
tor I Supervisor program. It can be called into opera­
tion only by use of the FOR or FORX Monitor Control 
records. 

The Monitor I system permits the following FOR­

TRAN operations: 

1. FORTRAN source program compilation. 
2. FORTRAN source program compilation and imme­

diate execution of the compiled program. From 
the programmer's point of view, this is equiva­
lent to entering a source program into the ma­
chine as an object program. 

3. Object programs may be placed in disk storage 
after compilation and/or they may be punched 
in cards or paper tape. 

4. Execution of FORTRAN object programs that are 
in disk storage or are in cards or paper tape. 

S. Execution of programs in "links," a procedure 
necessary where the total program is too large 
to fit into core storage at one time. A "link" is a 
section of the total program ( see CALL LINK 

STATEMENT) • 

General Compilation Process 

Although the process of compiling an object program 
is a continuous one, there are two phases through 
which the source statements pass before an object 
program is compiled. The user enters the source state­
ments using cards, paper tape, or typewriter input 
and obtains output in cards, paper tape, or on the 
typewriter or disk storage. The input and output 
units are selected by the use of control records. The 
object program may be placed. permanently on disk 
and it may be punched out in either paper tape or 
cards. 

The source statements are analyzed during Phase 
I and broken apart into instruction generating ele­
ments that are strings of 4-digit codes. These strings 
are then written ori disk storage for use by Phase II, 
which outputs the 1620 coding in relocatable format. 
Errors are indicated on the console typewriter as 
they are detected. The final output of any compilation 
is a single program or subprogram. Unless this pro­
gram is an independent entity, capable of being 
executed without other programs or library functions, 
the user will need to load the other programs before 
execution can take place. To initiate the loading 
process, the user may (1) call the compiler with a 
FORX Control record, or (2) call the compiled pro­
gram using an XEQS Control record (see MONITOR I 

CONTROL RECORDS). A program loaded by means of a 
FORX or XEQS Control record will also have all associ­
ated subroutines and subprograms loaded with it. 
(All associated subprograms are loaded except those 
defined as "load-on-call"; see LOCAL CONTROL RECORD). 

FORTRAN II-D 119 



The arrangement for stacked input to process a 
source program is shown in Figure 14. the FOR or 
FORX Monitor Control record is followed by optional 
FORTRAN Control records, followed by the source pro­
gram. The inclusion of a PAUS Monitor Control record 
will allow the operator to set the Console Program 
switches to the desired position (options for Program 
switches are shown in Table 9.) After setting the 
switches, the operator depresses START and the Super­
visor reads the FOR or FORX record, the FORTRAN Con­
trol records, if any, and begins compilation of the 
source program. 

During Phase I (reading the source program and 
creating instruction generating element~ the Phase 
I source program errors that are listed in Table 10 may 
be detected. The Phase I errors are of two types: 
Type I, compilation continues, but outputting of 
intermediate output is stopped; Type II, compilation 
and outputting both continue. 

As a program is being compiled, it is placed in a 
disk storage area used for temporary storage. When 
all source statements have been read and the instruc­
tion generating elements entered in the temporary 
storage area, Phase II of the processor takes control. 
Phase II converts the Phase I instruction codes into 
machine language instructions and places the instruc­
tions in the temporary disk storage area. When all 
intermediate output is processed, a message denoting 
the end of compilation is printed. Depending on the 
FORTRAN Control records loaded with the source pro­
gram, any of the following options can occur: 

1. Control is returned to the Supervisor. Control 
records for output were not used; compilation 

* * * * (End of job) 

~----------------------

FORTRAN II - 0 
Control Records 

--- .... -- --, I 
I 

MONITOR 
Contro! Records 

I ________ 1 

Figure 14. Typical Stacked Input for FORTRAN Compilation 

120 

was apparently for editing only of source pro­
gram. 

2. Object program is loaded to permanent area of 
disk storage and/or outputted in cards or paper 
tape. 

3. Object program is executed using data from 
input unit or disk storage. 

The compiled object program contains a header 
record which specifies various parameters and infor­
mation needed when it is to be loaded for execution, 
such the program name, length of the program, f 
and k, FORTRAN program constant, and indicators to 
specify the Library subroutines used. 

Subprogram identification records, consisting of 18 
digits of name and address information, are created 
for each subprogram called by a program. Up to 100 
subprograms may be used with anyone FORTRAN main 
program or Link program. 

FORTRAN II-D Control Records 

The FORTRAN Compiler can utilize four control records 
that specify output options, etc. When they are used, 
these records may be in any order but they must be 
read in between the FOR or FORX Control record and 
the sOurce program statements as shown in Figure 15. 

The FORTRAN Control records must have an asterisk 
in column 1 and the Name mu:st be punched begin­

ning in column 2. If a control record (0 in column 
1) is read and is not a legally named record, the 
message shown below is typed and the program halts. 

ERROR, INVALID CONTROL RECORD 

The operator must correct the invalid record in 
the input unit and depress START. 

The prescribed format and specific function of each 
control record is described below. 

FANDK. The FORTRAN II-D Compiler, as delivered 
to the user, will process an object program with a 
floating-point word length of 10 digits (f of 08 + 
2==10) and a Bxed-point word length of 4 digits. The 
operator may vary these lengths, at compilation time, 
by using the F ANDK control record. The format of the 
F ANDK Control record is as follows: 

Columns 1-6 
7-8 
9-10 

11-80 

o FANDK 

If 
kk 
not used 

where ff is the floating-point mantissa length and kk 
is the fixed-point word length. 



-------7 

(Punch Symbol Table & Statement No.) 

FOR or FORX 
Monitor Control Record 

---------

Figure 15. FORTRAN II-D Control Records 

I 

I 
I 

I 

Optionol 

I 
I 

I 

I 
I 

If entry is from the console typewriter, the same 
format must be followed. 

The range of f is 2 through 28, of k, 4 through 10. 
If f or k is out of the prescribed range, the following 
message is typed: 

ERROR, F OR K OUTSIDE RANGE 

PSTSN. This control record causes the symbol table 
and addresses of numbered statements to be punched. 

The format is as follows: 

Columns 1-6 
7 
8-80 

~PSTSN 

n 
not used 

where n is 2 if paper tape output is desired or 4 for 
card output. See NOTE below. 

POB]P. The POBJP Control record causes the object 
program to be punched following compilation. The 
forma t is as follows: 

Columns 1-6 
7 
8-80 

~POBJP 

n 
not used 

where n is the same as for the PSTSN Control record. 
The format of the processor output (object pro­

gram) is given under LOADER ROUTINE of the SUPER­
VISOR section of this publication. 

NOTE: If n is not 2 or 4 in the PSTSN or POBJP Control 
records, the following message is typed out on the 
console typewriter and the program will halt. 

ERROR, INVALID OUTPUT UNIT CODE 

The operator must correct the record that contains 
the error and depress the 1620 Start key. 

LDISK. The LDISK Control record causes the object 
program to be moved to a permanent area of disk 
storage following compilation. The format for the 
LDISK control statement is: 

Columns 1-6 
7-12 

13-16 
17-80 

°LDISK 
name (optional) 
number (optional) 
not used 

where Name is the left-justified program name, and 
number is a 4-digit DIM entry number not already 
in use. If a DIM entry is not supplied, the Disk Utility 
program will assign one. 

After compilation, the Disk Utility Program will 
load the programs to disk and create a DIM entry for 
the program. At that time, the Name supplied (in the 
LDISK record) will be placed in the Monitor Equiva­
lence table. It is not necessary to supply the name 
of a FUNCTION or SUBROUTINE subprogram. The name 
used in the FUNCTION or SUBROUTINE statement will be 
used. 

Entering the Source Program 

The source program can be entered in the form of a 
punched paper tape, a deck of punched cards, or a list 
of statements to be typed in at the console typewriter. 
This entry option is specified in the FOR or FORX Moni­
tor Control record. 

OPERATING PROCEDURES 

All of the following operations may be performed be­
fore the processor is called, except possibly items 1 
and 3. If the operation taking place just prior to the 
compilation of a source program required the Console 
Program switches to be set differently than the desired 
settings for compiling a Monitor PAUS Control record 
should have been inserted before the FOR or FORX 
record. This will allow time for the operator to change 
the switches. 

The operations required to process a source pro­
gram are as follows: 

1. Set the Console Program switches for the desired 
compilation operations (see Table 9). 

2. Set all check switches to PROGRAM. 
3. If punching is to take place, ready the paper 

tape punch with feed code leader or, ready the 
card punch by loading blank cards and depress­
ing the Punch Start key. 

4. Place a FOR or FORX Control record in the input 
unit (see the Monitor I Control Records section 
for format). 

FORTRAN II-D 121 



Table 9. Program Switch Settings for FORTRAN II-D 

SWITCH ON OFF 

1 Source statements are Source statements are not 
typed on the console type- listed. 

2 

3 

writer as they are proc-
essed • 

Source statement errors 
are typed in the form 
ERROR n.* 

A t the end of Phase I, 
symbol table and statement 
numbers are typed out. 

Trace instructions for 
arithmetic statements are 
compiled but no additional 
i nstructi ons are generated. 

A trace instruction is com­
piled to trace the value of 
the expression generated 
in an IF statement. An 
additional instruction is 
generated in the object 
program for every IF state­
ment. 

4 Errors made while typing 
source statements can be 
corrected by 

Source statement errors 
are typed in the form SSSS 
and ccce ERROR n. * 

Symbol table and statement 
numbers are not typed out. 

Trace instructions for 
ari thmeti c statements are 
not compi led. 

Trace instructions for IF 
statements are not com­
piled. 

a. turning on switch 4, rc, turning off switch 4, 

b. pressing the Release d. retyping statement. 
and Start keys, -

*See description under Phase 1 Errors 

5. Place any desired FORTRAN Control records in the 
input unit (see FORTRAN II-D CONTROL RECORDS). 

6. Place the source program statements in the input 
unit (specified in the FOR or FORX record). 

To resume machine operation, if the machine was 
stopped to allow the operator to perform any of the 
above operations, depress the Start key. 

Typewriter Input. If source statements are entered 
by way of the console typewriter, each statement 
must be terminated with a record mark. After a state­
ment is typed, the operator must depress the R-S key 
to process that statement. As soon as a statement is 
processed, the carriage returns to await entry of the 
next statement. A statement of up to 330 characters 
may be typed with. no intervening punctuation, spac­
ing, etc. 

Normally card format need not be followed, how­
ever, in a comment statement the C must be followed 
by at least two blanks (spaces) before the comment 
is typed. 

122 

Phase I Errors 

During Phase I of compilation, a number of tests are 
made for source program errors. If an error is found 
in a source statement and Program Switch 1 is on, a 
message in the form 

ERROR n 

is typed, where n is the error code (see Table 10). If 
switch 1 is off, the error message is in the form 

SSSS + CCCC ERROR n 

where ssss is the last statement number encountered 
by the program prior to the error, and cccc is the 
number of statements following the last numbered 
statement. ssss + cccc is the statement that contains 
the error. For example the message 

0509 + 0012 ERROR 1 

means that the twelfth statement follOWing the state­
ment numbered 509 is incorrect. If an error occurs 
before a statement number is encountered, ssss will 
be 0000. Errors detected after processing the END 

statement reference the END statement. Comment 
cards, blank cards, and continuation cards are not 
included in the statement count. 

If any Type I errors (see Table 10) are found during 
Phase I, no attempt is made to process the source 
program through Phase II. At the completion of Phase 
I, control is returned to the Monitor I Supervisor 
program (Monitor Control Record Analyzer routine). 

If a Type II error is found (other than Error 60), 
compilation continues on through Phase II. However, 
any FORTRAN Control records specifying output that 
were included with the source program will be dis­
regarded and control will transfer to the Supervisor 
program at the completion of Phase II. If Error 60 
is encountered, normal processing is continued since 
Nt and N2 can be corrected when loading the object 
program (see SUBROUTINE ERROR CHECKS). 

Phase II Errors 

During processing of the intermediate output, cer­
tain checks are performed which were impossible to 
perform during Phase I. If an error is detected, an 
error message in one of the following forms is typed: 

XXXX SYMBOL TABLE FULL 
XXXX IMPROPER DO NESTING 

XXXX DO TABLE FULL 

XXXX MIXED MODE 



Table 10. FORTRAN Phase I Source Program Errors 

TYPE 1: Compilation continues but outputting of intermediate output is stopped. Only one error of this type is detected in anyone statement. 

Error No. Condition Error No. Condition 

I Undeterminoble, misspelled, or incorrectly 
formed statement. 

22 Dimensioned variable used within an 
arithmetic statement function. 

2 Syntax error in a nonorithmetic statement 
(exception: DO statements). 

23 More than four conti nuation cords. 

24 Statement number in a DO statement 

3 Dimensioned voriable used improperly, 
appeared on a previous statement. 

i.e., without subscripting, or subscripting 
oppears on 0 variable not previously 
di mensi oned. 

25 Syntax error in a DO statement. 

26 FORMAT number missing in an input/ 

4 Symbol toble full {processing may not be 
cont i nued} • 

5 Incorrect subscript. 

6 Some statement number assigned to more 

output statement. 

27 Statement number in on input/output 
statement appeared previously on a state-
ment other than a FORMAT statement, or 
a number on a FORMAT statement appeared 
in other than an input/output statement. 

than one statement. 

7 Control transferred to FORMA T statement. 

28 Syntax error in input/output I ist or on 
invalid list element. 

8 Variable narne greater than 6 alphameric 
characters. 

29 Syntax error in CALL statement, or an 
invalid argument. 

9 Variable name used both as a nondimensioned 
variable nome and as a Subroutine or Function 

30 SUBROUTINE or FUNCTION statement 
not the first statement in a subprogram. 

name. 31 Syntax error or invalid parameter in a 
SUBROUTINE or FUNCTION statement. 

10 Invalid variable within an EQUIVALENCE 
statement. 32 Syntax error or invalid variable in a 

COMMON statement. 
II Subroutine or Function name or dummy var-

iable used in an EQUIVALENCE state-
ment (subprogram only). 

33 Variable in a Common list previously 
placed in Common or previously equivalenced. 

12 k not equal to f + 2 for equivalence of 
fixed paint ta floating point variables. 

34 Library function name appeared to the left 
of an equal sign or in a COMMON, 
EQUIVALENCE, DIMENSION, or input/ 

13 Within on Equivalence list, placement of 
two variables previously in Common, or one 
variable previously equivalenced and 
another either equivalenced or placed in 
Common. 

output statement; or function name not 
followed by a left parenthesis. 

35 Syntax error in FORMAT statement, or 
invalid FORMAT specifications. 

14 Sense Switch number missing in an IF 
(Sense Swi tch n) statement. 

15 Statement number or numbers missing, 

36 Inval id expression to the left of an equol 
sign in on ari thmetic expression. 

37 Arithmetic statement function preceded 
by the first executable statement. 

not separated by commas, or nonnumerical 
in a transfer statement. 

16 Index of a computed GO TO missing, 

38 Invalid expression in an IF or CALL state-
ment, or invalid expression to the right of 
on equal sign in an arithmetic statement. 

invalid, or not preceded by a comma. 
39 Unbal.;nced parenthesis. 

17 Fixed point number greater than k digits. 40 Invalid argument used in calling on 

18 Invalid floating point number. 
Arithmetic statement function or Function 
subprogram. 

19 Incorrect subscripting within a DIMENSION 
statement. 41 Syntax error in disk I/O statement. 

20 First character of a nome not alphabetic. 42 Disk I/O list omitted. 

43 Disk I/O list contains bath simple variables 

21 Variable within a DIMENSION statement and array names. 
previously used as a nondimensioned 
variable, or previously dimensioned or 
used as a Subrouti ne or Function nome. 

44 COMMON exceeds core storage size. (May 
occur when large array is defined.) 

TYPE 2: Compilation of intermediate output continues. 

Error No. ConditiO'l Error No. Condition 

51 DO loop ended with a transfer statement. 

52 No statement number for next executable 
statement following a transfer statement. 

57 RETURN statement appeared in program 
other than a subprogrom (statement ignored). 

58 RETURN statement not contained in a Sub-
53 Improperly ended nonorithmetic statement. routine or Function subprogram. 

54 Unnumbered CONTINUE statement. 59 Statement number not defined. See note at 

55 Number of Common addresses assigned in 
end of Table. 

excess of storage capacity because of 
Equivalence. See note at end of Table. 

60 Syntax error in DEFINE DISK statement, 
invalid use of, or DEFINE DISK statement 

56 Statement number or subscript greater than missing. 
9999 (only first 4 significant digits are retained). 

NOTE: Errors 55 and 59 are not detected if Type I errors occur during compilation. 

FORTRAN II-D 123 



where xxxx is the relative number of the statements 
within the program, not counting storage allocation 
statements, comments, or blank cards. The number 
does not correlate with an actual statement number. 

If an IMPROPER DO NESTING or MIXED MODE message 
occurs, compilation is continued,· but only to check 
for other errors. The FORTRAN Control records, PSTSN, 

POB]P, and LDISK will be disregarded. the object pro­
gram will not be executed and control will be return­
ed to the Supervisor program. 

Compilation stops immediately after the SYMBOL 

TABLE FULL or DO TABLE FULL message is typed and 
control is returned to the Supervisor program. The 
approximate allowable number of symbols differs 
with the core storage size of the source machine. 
For a 1620 with 20,000 positions, approximately 
200 symbols are allowed. For a 1620 with 40,000 or 
60,000 positions, the number of symbols allowed is 
approximately 1200 or 2200, respectively. 

End of Compilation 

When all of the intermediate output is processed, the 
following messages are printed: 

nnnnn CORES USED 
aaaaa NEXT COMMON 
END OF COMPILATION 

where nnnnn is the number of core positions the 
object program requires (object program and data 
areas except COMMON), and aaaaa is the next avail­
able core storage position of the COMMON area, (aaaaa 
+ 1 is the last used position of COMMON). 

If FORTRAN Control records specifying output are 
included with the source program, the outputting 
takes place following the END OF COMPILA TION 

message. 

Identification Data 

When a program (or subprogram) is compiled, it is 
headed with an identification record that will be used 
when the program is to be loaded into core storage 
for execution. 

Both main program and subprogram header identi­
fication records are shown and described as below: 

Mainline or link 

_ _ _ _ _ _ Word Rec _ _ First Next Subroutine 
,00100, 2,67,987898, NI 1 N21 Length I Length I Length I ff I kk I Core 1 Common, Indicators 1 

5 I 2 6 2 5 2 3 5 2 2 5 5 30 
Digits 

Subprogram 

Subprogram _ _ Entry Address Next Subroutine 
,00100,21 67 ,987898 1 Name I Length I ff I kk I Less Six I Common I Indicators I 

5 1 2 6 12 5 2 2 5 5 30 

124 

2 

987898 

Subprogram Name 

N1 

N2 

Word Length 

Rec. Length 

Length 

ff and kk 

Entry Address Less 
Six 

First Core 

The address of the origin of 
the program less 100. 

An indicator to the relocating 
loader that a constant to be 
relocated is forthcoming. 

The number of digits in the 
forthcoming constant. 

An arbitrarily chosen constant 
to identify this as a header 
record for a FORTRAN pro­
gram. 

The name of the program in 
double digit representation 
(left-justified). Used only 

in subprograms and FOR­

TRAN function headers. 
The number of words per disk 

record. ( From the DEFINE 

DISK FORTRAN statement. ) 
This field is present only for 
m a i n lin e programs and 
links. 

The number of logical records 
in the disk, as used by the 
FORTRAN program. ( From 
the DEFINE DISK FORTRAN 

statement. ) This field is 
only present in mainline 
program and link header 
records. 

The number of digits in the 
words used to determine a 
logical record. This value is 
the larger of the floating 
word and the fixed word 
length. 

The number of sectors to be 
used when reading or writ­
ing logical records. This 
value is limited to the num­
bers 1 and 2. 

The length of the program 
( This must be an even 

number). 
The length of the mantissa 

and the fixed point words 
in this program. 

The first location in the sub­
program, less six, to enter 
the subprogram. 

The first location in the pro­
gram to begin execution. 
Present only for mainline 
or link programs. 



Next COMMON 

Sub. Indicators 

The next location available in 
COMMON. This must be an 
even address (e.g., 19998) 
so that COMMON can cor­
rectly be written on disk 
during operation of the 
FORTRAN loader. Subpro-
grams do not use this value. 

A digit position for each li­
brary subroutine in the 
FORTRAN system. 

The identification record occupies one whole sector 
when it is on the disk. The format for the balance 
of this sector, if the program is in relocatable format, 
is shown below: 

0000021701234567891234567 

Subprograms 'Called by FORTRAN 

The names of the subprograms called by a program 
are stored at the end of the program. The address 
within the calling program where the address of the 
subprogram will be placed is also stored along with 
the name of the subprogram. These 18-digit name 
and address records are created for the subprograms 
called and the last record is followed by a record 
mark. Up to 100 subprograms may be used with any 
one FORTRAN main program or link (50 can be loaded 
with the program; 50 can be called on an as-needed 
basis, i.e., LOCAL). 

Name I Add ress I 0 I 

12 Digits 5 1 

The names and addresses of the subprograms called 
are moved to the FORTRAN loader work area when the 
subprogram is loaded. This FORTRAN loader will de­
termine which of the subroutines called by the sub­
program have not already been loaded, and will load 
those routines (exception: LOCAL subprograms cannot 
call a new subroutine; see OBJECT PROGRAM EXECU­

TION). The proper addresses are placed within the 
calling programs to link them with the subroutines 
that they call. 

Trace Feature 

Under program switch control, instructions can be 
compiled into the object program to enable the opera­
tor to trace the flow of the program when it is execut­
ed. During execution of the object program, the trace 
output is under control of Program Switch 4 as de­
scribed under OBJECT PROGRAM EXECUTION. 

The trace output contains the value of the left-hand 
side of each executed arithmetic statement and/or, 
the value of the expression calculated in an IF state­
ment. 

Subroutines 

The subroutines for 1620 FORTRAN II-D are divided into 
two groups: (1) Library subroutines and (2) Arith­
metic and Input/Output subroutines. 

LIBRARY SUBROUTINES 

Sixteen relocatable subroutines are included in 1620 
FORTRAN II-D (see Table 11). 

The Library subroutines are loaded only when they 
are used in a program, "link" program, or subprogram, 
i.e., they are loaded before any execution of the call­
ing program takes place but they are loaded only if 
required by the calling program. During compilation 
of a program, a 30-digit field of zeros is created (in 
the header record). When a subroutine is called for 
by a source statement or "required for use," a 1 is 
inserted in the proper location of the subroutine indi­
cator field. The position in the field corresponds direct­
ly to the Subroutine number given in Table 11. 

"Required for use" means that even though the 
user has not directly called a specific subroutine it 
may be required by the system. For example, the 
LOCF and EXPF subroutines are used to compute the 
values of floating-point roots and powers in arithmetic 
statements. They are loaded, if required, before execu­
tion of the program that requires them. Likewise, the 
Subscripting routines (library numbers 3, 4, 5), and 
the disk routines (library numbers 6-11), though never 
directly called, will be loaded if required. Sections 
of library routines 6-11 are loaded to disk storage 
Clyinder 1 (relative to the start of the disk work area) 
and the specific section required is loaded from the 
disk to core storage only when it is needed. All read­
ing and writing of even arrays (f and k even) will 
be done without loading additional instructions from 
disk storage. 

It is possible for the user to add 14 subroutines 
to the FORTRAN library. The subroutines can be written 
using Symbolic Programming System (sps) language. 
Procedures for adding subroutines and information 
for writing subroutines in SPS is given under ADDING 

SUBROUTINES TO THE FORTRAN LIBRARY. 

Two forms of the supplied library subroutines are 
included with the FORTRAN I1-D System. One form 
is for users that have the floating-point feature install­
ed on their machine; the other form operates without 
the floating-point feature. Only one form is loaded 
when the Monitor I System is initially loaded by the 
user. 

The FORTRAN statements FIND, RECORD, and FETCH 

are processed by relocatable subroutines numbered 
6 through 11. These routines are loaded into core 
storage only if the disk FORTRAN statements are utiliz-

FORTRAN Il-D 125 



Table 11. FORTRAN II-D Library Subroutines 

SUB- DIM 
SYMBOLIC ROUTINE ENTRY 

TYPE OF FUNCTION NAME NUMBER NUMBER 

Logarithm (natural) LOGF 1 10 

Exponential EXPF 2 11 

Subscripting (I dimension) ENTSCI 3 12 

Subscripting (2 dimensions) ENTSC2 4 13 

Subscripting (3 dimensions) ENTSC3 5 14 

FIND ENTFID 6 15 

RECORD ENTREC 7 16 

FETCH ENTFET 8 17 

Routine to load or unload disk buffer ENTSWD 9 18 

Routine to write or read arrays ENTARR 10 19 

Routine to complete FETCH or RECORD ENTCPT II 20 

Cosine COSF 12 21 

Sine SINF 13 22 

Arctangent ATANF 14 23 

Square Root SQRTF 15 24 

Absolute Value ABSF 16 25 

ed in the object program. Different routines may be 
used to RECORD (or FETCH) an array. The routines 
that will write out or read in an entire array with 
one disk instruction will be used if both the 
fixed word length and the floating word length are 
even (not necessarily equal). If either of these varia­
bles was defined as odd in length, the array will be 
split into records that are the same length as those 
used when reading or writing lists of variables. The 
maximum speed in reading and writing of data from 
and to the disk is attained with even values for f 
and k. 

The FIND statement is used to position the access 
arm in the disk storage drive in advance of a FETCH or 
RECORD. It may be necessary for the FORTRAN system 
to change the position of the arm after a FIND opera­
tion has been initiated. If this is the case, the same 
location for the arm as specified in the FIND statement 
will be sought again after the FORTRAN system opera­
tion is complete. This automatic repositioning to the 
FIND cylinder will occur after every arm disturbance 
until the next FETCH or RECORD statement has been 
executed. 

126 

STORAGE REQUIREMENTS 

WITH WITHOUT 
flOATING FLOATING 

TRANSFER POINT POINT 
ADDRESS FEATURE FEATURE 

02248 802 850 

02253 1062 1158 

02258 } 02263 510 510 

02268 
.., 

02273 

02278 

02283 ~1300 1342 

02288 

02293 

02298 ,J 

02303 
} 904 976 

,02308 

02313 1234 1258 

02318 526 538 

02323 58 82 

The FORTRAN statements that use subscripting no­
tation will determine which of three different sub­
scripting subroutines are entered by the program. 
Subroutine numbers 3, 4 and 5 are used to identify 
subscripting routines that handle one, two and three 
dimensions, respectively (this is actually one subrou­
tine with three entry points). 

ARITHMETIC AND INPUT/OUTPUT ROUTINES 

The arithmetic and input/output subroutines, includ­
ing constants and working areas, are basic routines 
needed for proper execution of the object program. 
They are loaded without being specifically called for 
by the object program. Besides performing the funda­
mental tasks of adding, subtracting, etc., these rou­
tines also perform some diagnostic testing on the data 
being manipulated. 

Two sets of these arithmetic and input/output rou­
tines are available. One set is for those users without 
the floating-point feature, and the second set for those 
users with the floating-point feature. The floating­
point set operation is faster and in some cases, re-



quires less core storage for the routines used to per­
form the arithmetic operations. 

Each set of the arithmetic and input/output rou­
tines is supplied in two forms. One form of each set 
consists of all the arithmetic and I/O routines in core 
at one time. The second form of each set is section­
alized to form groups of arithmetic and I/O routines. 
These groups each contain several routines and are 
loaded to core storage only when required. The seh 
that are divided into groups allow the user's programs 
to be loaded into core storage starting at 07500. The 
all-in-core sets allow the user's programs to be loaded 
starting at 14000. 

The routines to be read from disk when required 
will be placed in the first cylinder of the disk work 
area. (This is cylinder zero unless the user defines 
different parameters.) The routines are placed in this 
cylinder just before execution of the FORTRAN pro­
gram. The first cylinder of the work area has been 
chosen because the access time when seeking this 
cylinder will be very short, and, consequently, the 
FORTRAN programs should operate at an optimum 
speed. When the in-core form of subroutines is select­
ed, the routines are not stored in the first work stor­
age cylinder. Only one set (one in-core storage set 
and one out-of-core storage set) will be in disk stor­
age. The user selects the form according to his ma­
chine features. The user further selects either the in­
core form or the out-of-core form as being standard. 
A different form may be selected from the one indi­
cated as standard when the Monitor System is deliv­
ered (see DFINE CONTROL RECORD). The selection can 
be accomplished at load time by placing the proper 
digit in the 28th column of the XEQS Control state­
ment. If no digit is placed in this column, the system 
standard will be used. The set that contains routines 
to be read into core storage as required is the one 
that will be utilized if no new standard has been 
specified. 

The digits that may be placed in this column are 
listed below: 

I-No floating-point feature - read in when re-
quired 

2-No floating-point feature"':' in core 
3-Floating-point feature - read in when required 
4-Floating-point feature - in core 

Any digit higher than 4 will result in the error 
message below: 

ERROR L8 

Mter this message, the loading routine will set the 
digit to the system standard (specified in column 83 of 
the disk sector communications area) and continue. 

If a 3 or 4 is used for a set number and only set 1 and 2 
are on the disk, 1 or 2 will be used, respectively. Sim­
ilarly, if 1 or 2 is used and only 3 and 4 are on the disk, 
3 will be used in place of 1, and 4 will be used in place 
of 2. No message will be typed in this event. 

The arithmetic and input/output subroutines avail­
able with 1620 FORTRAN II-D are shown in Table 12. By 
referring to the symbolic names for the subroutines in 
the listing, their equivalent absolute addresses can be 
found. 

Symbol Table Listing 

If Program Switch 1 is in the ON position during the 
FORTRAN compilation, the storage addresses of the 
symbol table will be listed in the following order and 
form. 

1. Floating point constants Fixed point constants 

XXXXX MMMMMMMMCC XxxXX FFFFF 

where Xxxxx is the low-order address of the 
constant. 

Table 12. FORTRAN Arithmetic and Input/Output 

Subroutines 

Subroutine 

Floating Point Arithmetic 

Add 
Subtract 
Reverse Subtract 
Multiply 
Divide 
Reverse Divide 
Set FAC to zero 

Fixed Point Arithmetic 

Add 
Subtract 
Reverse Subtract 
Multiply 
Divide 
Reverse Divide 

Common Subroutines 

Load FAC 
Stare FAC 
Reverse Sign af FAC 
Fix a Floating Point Number 
Float a Fixed Point Number 

Exponentiation 

Fixed Point J ** I 
Floating Point A ** (tI) 
Floating Point A ... ItB) 

Input/Output 

Read Card 
Read Tape 
Read Typewriter 
Write Card 
Write Tape 
Write Typewriter 

FAC - simulated accumulator 

A & B - floating point variables 

I & J - fixed point variables 

-- - storein 

Symbol i c Nome Operation 

FAD FAC+ A -FAC 
FSB FAC - A - FAC 
FSBR A - FAC - FAC 
FMP FACx A -FAC 
FDV FAC/ A - FAC 
FDVR A/ FAC - FAC 
ZERFAC 0 II FAC 

FXA FAC+ I -FAC 
FXS FAC - I-FAC 
FXSR 1- FAC -FAC 
FXM FAC x I ~FAC 
FXD FAC/I~FAC 
FXDR I/FAC ~FAC 

TOFAC A---FAC ar I --.FAC 
FMFAC FAC ---A or FAC --- I 
RSGN - FAC -FAC 
FIX FIX (FAC) ---FAC 
FLOAT FLOAT (FAC) - FAC 

FIX I FAC ** I -FAC 
FAXI FAC ** it I) ---FAC 
FAXB FAC ** (tB)---FAC 

RACD 
RAPT 
RATY 
WACO 
WAPT 
WATY 

FORTRAN II-D 121 



MMMMMMMMCC is a floating-point con­
stant. 

FFFFF is a fixed-point constant. 
2. Simple variable Dimensioned variables 

XxxXX NAME Xxxxx NAME YYYYY 

where XxxXX for simple variables is the address 
at object time where the value for NAME will be 
stored. 

Xxxxx for dimensioned variable is the ad­
dress at object time of the first element in the 
array, NAME. 

YYYYY is the address of the last element in 
the array, NAME. 

If NAMEo is typed, this indicates a dummy 
parameter within an arithmetic statement func­
tion. 

3. Called subprograms 

XxXXX NAME 

where XXXXX is the location at which the start­
ing address of the subprogram will be stored. 

4. Statement numbers 

SSSS Xxxxx 
where XxXXX is the address of the first instruc­
tion generated for the statement numbered SSSS. 

If the statement number pertains to a FORMAT 

statement, the location XXXXX will be the actual ad­
dress of the FORMAT specification. 

Symbol Table Listing for Subprograms 

When compiling a subprogram, the dummy argu­
ments are listed after statement numbers, as follows: 

XXXXX NAME 

where XXXXX is the location at which the actual ad­
dress of the variable in the mainline program, cor­
responding to the argument, NAME, will be stored 
upon entering the subprogram. This same form is also 
used for simple and dimensioned variables. 

The addresses listed are not the actual addresses at 
object time. Since programs are relocated upon load­
ing, the listed addresses have to be adjusted relative 
to the starting location of the program or subprogram. 

Object Program Execution 

A 1620 FORTRAN I1-D program may consist of three 
parts: a main program, a group of subprograms, and 
the library subroutines utilized by the main program 
and subprograms. The main program exercises control 
over the entire operation being performed. In addition 
to the normal execution of instructions, it has the 
ability to call subprograms and subroutines. 

128 

Subprograms, defined with a FUNCfION or SUBROU­

TINE subprogram statement at compilation time, can 
be placed into two groups (which have nothing to 
do with the way they were defined at compilation). 
For execution, subprograms are either: 

1. Loaded into core along with the main program 
(or link program) that calls them, or, 

2. They may be left on disk storage and brought 
into core storage only when called. 

The use~ must determine which subprograms are 
to be loaded into core storage prior to execution and 
which are to be loaded when called for immediate 
execution. The subprograms that are to be loaded 
when called are defined by using a LOCAL Control 
record. The subprograms that are named in the LOCAL 

record will be loaded to the work area of disk storage 
prior to execution of the main program or link pro­
gram that calls them. 

A subprogram requires no changes in order to be a 
LOCAL subprogram. A subprogram written for use in 
core with the main program can be used instead as a 
LOCAL subprogram merely by naming it in a LOCAL 

control record. However, a LOCAL subprogram cannot 
call an «in core" subprogram that is not called from 
either (1) the main program, or, (2) another "in core" 
subprogram, and a LOCAL subprogram can never call 
another LOCAL subprogram. 

The following illustration shows the layout of core 
storage during execution of a typical FORTRAN 

program. 

Multiply and Add Tables 

Supervisor Routines 

02218 

Arithmetic and I/O Routines 

07500 or 14000 

Mainline Program 

In-Core Subprograms 

library Subroutines 

Routine Linkage Area and Loader Routine 

LOCAL Subprogram Reod-in Area 

COMMON 



Converting FORTRAN Obiect Programs to Core Image 

FORTRAN object programs which are stored on disk are 
in System Output format. When called for execution, 
these programs must first be converted to core image 
format before they can be executed. In cases where the 
main program and/or the in-core subprograms are very 
long, the conversion time might become excessive. To 
eliminate this conversion each time a program is exe­
cuted, the user can convert main programs and in-core 
'Subprograms to core image format and permanently 
store them on disk in that form. 

The means of conversion is the Replace Programs 
.routine, a disk utility function described earlier in this 
manual. A procedure for converting to core image for­
mat follows: 

1. Clear core storage to zeros. 
2. Load the Supervisor program to core storage. 
3. Read in the following sequence of cards: 

=l==t=JOB 
=t==t=DUP 
°DREPL NAME DIMl DIM2 CORE D M F 
Col 7 13 17 39 4950 60 

Columns 1-6 
7-12 

13-16 

17-20 

Code word 0 DREPL. 
Alpha name of program. 
DIM entry number of new pro­
gram. 
DIM entry number of program to 
be replaced. This will be the same 
as the number punched in Column 
13-16. 

39-43 Fixed core storage address where 
program will be loaded when 
called for execution. 

49 Input unit (D for disk). 
50 M denotes conversion from System 

Output format to core image for­
mat. 

60 Any non-blank character. 

NOTE: This procedure must be followed in its entirety 
each time the DREPL function is used with FORTRAN 

programs. 

128.1 



LOCAL Control Record 

Subprograms that are to be loaded when needed are 
defined at load 'time by a LOCAL Control record. The 
format of the LOCAL Control record is as follows: 

Columns 1-6 0 LOCAL 

7-80 Main program name, comma, 
Subprogram name, comma, 
Subprogram name, comma, 
etc. 

The main program may be identified in either of 
two ways. If it has a name in the system Equivalence 
table, that name may be used. If no name is in the 
Equivalence table to identify the main program, the 
name may be omitted. In this event, the comma nor­
mally following the program name must be retained. 
Blanks may not be included between names and 
commas. The commas must be placed between sub­
program names. When more than one card or tape 
record is needed to identify all LOCAL subprograms, 
a comma must be placed following the last name on 
each record that is followed by another LOCAL record. 
The name of the main program is omitted from all 
continued LOCAL records, but they must contain the 
asterisk and code word LOCAL. 

EXAMPLES 

o LOCAL MLNAME, SUBl, SUB2, SUB3, 
o LOCAL SUB4 
o LOCAL LNKNAM, SUB2, SUB6 
o LOCAL LNK2, SUB2, SUB6, SUB7 

Up to 100 subprograms (50 maximum, in core; 50 
maximum, LOCAL) may be called by a main program 
or link. 

LOCAL records to be entered into the system must 
follow the FORTRAN source program when compiling 
and executing a program (see Figure 16). The number 
of LOCAL records to be read must be placed in col­
umns 9-10 of the FORX record or columns 29-30 of the 
XEQS Control record. When typing the LOCAL record, 
no more than 79 columns may be used. When the 
LOCAL record is in paper tape, only 79 positions may 
be used and the positions used must be followed by 
a blank. 

Library subroutines to be loaded at load time are 
selected by interrogation of the subroutine indicators 
in the header record that precedes each program, link, 
and subprogram. Each indicator, one for each sub­
routine, must be a numerical 1 if the corresponding 
subroutine is to be loaded to core storage at load time. 
,All subroutines are loaded if called in the main pro­
gram or if called in subprograms that are loaded to 
core storage. A LOCAL subprogram must not call for 
a subroutine that was not called for by the main pro­
gram or a subprogram loaded to core storage ( see 
Table 13). 

DAY A Control Record 

The purpose of the DATA control record is to indicate 
to the FORTRAN loader that all segments of the pro­
gram have been loaded prior to beginning execution. 

Monitor Control Record Monitor Control Record 

Figure 16. Positioning of LOCAL and DATA Control Records in FORTRAN Stacked Input 

FORTRAN II-D 129 



The rules for inclusion of the DATA control record 
.lre: 

1. If the mainline or link program, or any of its 
associated subprograms are loaded from the 
paper tape reader or card reader, a DATA control 
record must be included in the stacked input 
whether or not any data is to be read by the 
program. 

2. If the mainline or link program, and its associat-

ERROR 
CODE MEANING, REASON RESULT 

Ll Invalid LOCAL control record Typeout JOB ABAN-
Word LOCAL misspelled, mis- DONEDi branch to 
placed, or no asterisk MONCAL* 

L2 Invalid name in LOCAL record Typeout JOB ABAN-
Not formed according to DONED; branch to 
FORTRAN rules MONCAL* 

l3 Multiple name in LOCAL record Typeout JOB ABAN-
Same subprogram name appears DONED; branch to 
more than once for some pro- MONCAL* 
gram or link, or prc:am or link 
name appears more t an once 

L4 LOCAL subprogram table full Typeout JOB ABAN-
Greater than 50 LOCAL sub- DONED; branch to 
programs per I ink not allowed MONCAL* 

Mainline table (link names) full 
More than 50 links calling 
LOCALS not allowed 

L5 Inval id header record Branch to MONCAL * 
Does not conform to standard 
FORTRAN header record 

L6 Unequal ForK Subprogram not 
Subprogram F and/or K does loaded 
not compare with moin program 
For K 

L7 New subroutine called from LOC- Subprogram loaded; 
AL subprogram subroutine not loaded 

LOCAL subprogram cannot call 
new subroutine 

La Invalid arithmetic and input/output 
subroutine set 

Set defined as system 
standard is loaded, 

Not defined as 1, 2, 3, or 4 depending on group 
loaded 

L9 In-core subprQS'ram table full Ig~ore above 50th 
Greater than 50 subprograms subprogram 
not allowed 

Ll0 New subprogram called from LOC- LOCAL subprogram 
AL subprogram loaded; new sub-

LOCAL subprogram cannot call program not loaded 
new subprogram 

Lll LOCAL subprogram disk storage LOCAL subprogram 
area overlaps reserved disk work is not loaded 
area 

*MONCAL is the symbolic name for Monitor Control Record 
Analyzer routine. 

Table 13. FORTRAN Loader Errors 

130 

ed subprograms are all loaded from disk a DATA 

control record must not be included in the stack­
ed input. 

The format for the DATA Control record is as 
follows: 

Card 

Columns 1-5 
6-80 

Paper Tape 

• DATA 
must be blank 

t--75 zeros • I 
·DAT AOOOOOOOOOOOOOOOOOOOO® 

When the DATA record is recognized by the loading 
routine, a check is made to determine which subpro­
grams have not yet been loaded. If there are any 
such subprograms, they are listed on the console type­
writer, and the machine halts. The operator must then 
see that these subprograms are made available for the 
loading routine to load before depressing the Start 
key. If all subprograms have been loaded, any remain­
ing data in the input unit will be skipped until the 
DATA record is read. 

Console Program Switch SeHings 

Switch 1. When switch 1 is on, a list of the pro­
grams being loaded is typed on the console type­
writer. The format of the list is: 

XXXXXX NNNNN LLLLL LOADED 

where xxxxx is the name of the program or subpro­
gram or the number of the subroutine, NNNNN is the 
beginning core storage address, and LLLLL is the 
length of the program. 

Switch 4. When switch 4 is on, and trace instruc­
tions have been compiled into the object program, 
the trace output is listed on the console typewriter. 
The trace output contains the value of the left-hand 
side of each executed arithmetic statement and/ol', the 
value of the expression in an IF statement. 

If the typewriter input is called for by the object 
program the operator must: 

1. Type in the required data. 
2. Tum Console Program Switch 4 to the OFF posi­

tion. 
3. Depress the Release key. 
4. Depress the Single Instruction key 7 times. 



5. Turn Console Program Switch 4 to the ON posi­
tion. 

6. Depress the Start key. 
If the operator makes a mistake when typing the input 
data it is necessary only to depress the R-S key and 
retype the required data. 

Operating Procedure 

To execute a previously compiled FORTRAN program, 
the following items must be placed in the input unit. 

1. JOB Control record. 

2. XEQS Control record. 

3. LOCAL Control records (if required). 

4. Main program (if not previously loaded to disk 
storage ). 

5. Subprograms (if required and not previously 
loaded to disk storage). 

6. DATA Control record. Note: This must be sup­
plied even if data has been loaded to disk stor­
age. 

7. Input data (if not previously loaded to disk stor­
age). 

8. Job End Control record. 

When called for execution, the main program is 
converted from relocatable format and loaded into 
core storage (see LOADER ROUTINE in Supervisor sec­
tion of this manual for a description of operation and . 
errors). Following the loading of the main program 
the "in-core" subprograms are loaded. If any subpro­
grams are not available the message 

LOAD SUBNAM 

is typed, where SUBNAM is the name of the subpro­
gram that must be loaded in the input unit. 

When all "in-core" subprograms are loaded, the 
library subroutines needed by the main program 
and "in-core" subprograms are loaded into core stor­
age. Following the loading of the subroutines, if any 
subprograms have heen defined as LOCAL subpro­
grams, an "object-time read-in routine" is loaded and 
following it a linkage area is reserved for each LOCAL 

subprogram. 
Then, the' first :';'OCAL subprogram is loaded into core 

storage. The address to which this subprogram is 
loaded 'will be the input address for all LOCAL sub­
programs. The first LOCAL subprogram is then moved 
to the top end of the work area of disk storage and 
the next LOCAL subprogram is loaded to core storage. 
LOCAL subprograms may be loaded to the system by 

way of the input unit, however they must be stacked 
following any 'in-core" subprograms to be loaded. 

OV.ERLAP Errors 

During the loading of the main program, subpro­
grams, subroutines, or the read-in routine or the pro­
gram linkage areas, the available core storage area 
may be exceeded. 

If a main program· or link program would exceed 
the available area the following message is typed 
and control is transferred to the Supervisor program 
(see MONITOR CONTROL RECORD ANALYZER ROUTINE). 

NAME XXXXX OVERLAP 
JOB ABANDONED 

NAME is the name of the program or link program, 
xxxxx is the number of core storage positions re­
quired by that program. If the program has no as­
signed name, MAIN is printed for NAME. 

If a subprogram would exceed the available area 
the NAME XxxXX OVERLAP message is typed and the 
named program is not loaded. Subprograms following 
the "overlap subprogram" are loaded if possible. 

If a subroutine would overlap the available core 
sterage area the message 

NN XXXXX OVERLAP 

is typed, where NN is the library subroutine number 
and xxxxx is the length of the subroutine. The sub­
routine is not loaded. 

If the LOCAL subprogram read-in routine or program 
linkage areas exceed the available COl'e stGrage areas, 
the message 

FLIPER XXXXX OVERLAP 

is typed. FLIPER is the name assigned to represent the 
read-in routine and xxxxx is the length of the routine 
and linkage area required. The read-in routine and 
the linkage area are not loaded. 

After all possible programs are loaded, and there 
is any error - overlap or others - the message 

EXECUTION INHIBITED 

is typed and a branch to MONCAL is executed. 
(MONCAL is the symbolic name for the entry point to 
the Monitor Control Record Analyzer routine.) 

During loading of a FORTRAN program, the errors 
listed in Table 13 may appear. 

FORTRAN II-V 131 



Subroutine Error Checks 

A number of error checks have been built into the 
library subroutines. The basic philosophy in the dis­
position of an error is to type an error message, set 
the result of the operation to the most reasonable 
value under the circumstances, and continue the 
program (note error D1 exception, described below). 
Subroutine error codes, the nature of the error, and 
the value of the result in FAC (symbolic name of the 
accumulator in which arithmetic operations are per­
formed) are listed in Table 14. 

Table 14. FORTRAN Subroutine Error Codes 

ERROR CODE ERRO~ RESULT IN FAC 

01 Disk I/O used without a DEFINE 
DISK statement. 

02 Logical record specified exceeds 
N2. 

03 No group mark found at end of 
an array that was read from disk. 

- -
El Overflow in FAD or FSB 99 ...... 999 - --
E2 Underflow in FAD or FSB 00 ...... 099 

E3 Overflow in FMP 99 ...... 999 

E4 Underflow in FMP 00 ...... 099 

E5 Overflow in FDV or FDVR 99 ...... 999 

E6 Underflow in FDV or FDVR 00 ...... 099 

E7 Zero division in FDVor FDVR 99 ...... 999 

E8 Zero division in FXD or FXDR 999 ..... 

E9 Overflow in FIX 99 ...... 

Fl Loss of all significance in FSIN 
000 ••••• 099 or FCOS 

F2 Zero argument in FLN 99 ...... 999 

F3 Negative argument in FLN In/x/ 

F4 Overflow in FEXP 99 ...... 999 

F5 Underflow in FEXP 00 ...... 099 

F6 Negative argument in FAXB /A/B 
Negative argument in FSQR SQR/x/ 

F7 Input data in incorrect form or 
outside the allowable range 

F8 Output data outside the allow-
able range 

F9 Input or output record longer 
than 80 or 87 characters (wh ich-
ever is applicable to the I/o 
medium being used) 

Gl Zero to minus power in FIXI 999-: .... 

G2 Fixed-point number to negative 
power in FIX I 000 ..... 

G3 Overflow in FIX I 999 ••••• 

G4 Floating-point zero to negative 
99 ...... 999 power in FAXI 

G5 Overflow in FAXI 99 ...... 999 - --
G6 Underflow in FAXI 00 ...... 099 

G7 Ze~o to negative power in FAXB 99 ...... 999 

132 

The error printout is in the fonn 

ER XX 

where x)( is the error code in the table. 
If error D1 occurs, the machine halts, the typewrit­

er carriage returns, and the operator must enter the 
DEFINE DISK statement parameters by means of the 
typewriter in the form of 

NNXXXXX 

where NN corresponds to N1, and xxxxx corresponds 
to N2 as described for the DEFINE DISK statement. Error 
D1 will be indicated until the values of Nl and N2 
are within the correct range. 

The FORTRAN loader further checks the value of N 2 

(number of data records as specified in the DEFINE 

DISK statement) to see if the N2 disk work area would 
be overlaid by operation of the FORTRAN loader. The 
FORTRAN loader uses the disk working area (starting 
from the high-order positions) for tables, COMMON 

save area, and LOCAL subprograms. Also. the first 
( low-order) 21B sectors of the disk work area are 
reserved to store the short fonn groups of the arith­
metic and input/output subroutines. If N2 times 
Record length plus 21B is greater than the lowest 
disk address used by the FORTRAN loader, N2 will be 
redefined as 

X-21B 
Record Length 

where X is the lowest disk address used by the FOR­

TRAN loader. The user is notified of this action by the 
following message: 

MAX N2 ALLOWABLE XXXXX 

where xxxxx is the maximum allowable value for N 2 

Loading and execution of the programs continues. 
If Error D2 occurs, the specified record will not 

be written (or read), and the index value (I) may 
be incorrect. 

If Error F7 occurs, the field which is incorrect is 
replaced by zeros, and processing continues. 

The exponent portion of an E-type input data field 
must be right-justified in that field and may contain 
only one sign. Deviations from this rule are not check­
ed. For exponents greater than 99 (absolute value), 
the value is reduced modulo 100. 

If Error FB occurs, the incorrect field is set to 
blanks in the output record, and an additional record 
is' typed. This record contains the incorrect field in 



the fonn 

E (f + 6). f for floating-point numbers, and 
I (k + 1) for fixed-point numbers. 

This additional record is also produced on the output 
unit (card punch, tape punch, or typewriter) called 
for by the source statement. 

If Error F9 occurs, the incorrect field is ignored 
and processing continues. However, a remote possi­
bility exists that part of the subroutines and the object 
program may have been destroyed by the abnormal 
record. In this case, the program may inexplicably 
halt at some later point in its execution. 

Oblect Program Subroutine Linkage 

The linkage generated by the FORTRAN II-D compiler 
is in the fonn 

BTM SUBR, A 

where SUBR is the name of the entry point for the sub­
routine and A is the address of the operand. For the 
relocatable library subroutines, an indirect address is 
used in the linkage. The actual address of the library 
subroutine entrance is stored at locations 02244-02248, 
02249-02253, etc. The FORTRAN object program linkage 
for entrance to the first library subroutine will ap­
pear as, 

BTM-02248, A 

Adding Subroutines to the FORTRAN Library 

The user may write library subroutines in SPS lan­
guage and have them placed in the FORTRAN library. 
The subroutine must be assembled using the SPS II-D 
program, and may be loaded to disk storage at as­
sembly time or at a later time using the Disk Utility 
program. 

When the subroutine is loaded, a special DIM entry 
number which is reserved for FORTRAN library sub­
routines, must be used. This number is specified using 
the SPS control statement, ID NUMBER. Only 30 DIM 
entries are reserved, and, of these, the first 16 are 
in use when the system is delivered. The first 11 
must not be replaced - they are required for correct 
operation of the FORTRAN system - but the user is 
free to replace any of the others if he desires. 

If a subroutine has multiple entries, the first DIM 
entry will define the subroutine, but a DIM entry is 
required for each entry point, and no subroutine may 
have more than 9 entry points. 

All entry points for a subroutine must be indicated 
in the follOwing manner at the beginning of the 
source statements. 

SUB DSA ENTRYl, ENTRY2, .. , ENTRY9 
DORC SUB-4 

ENTRYI 

where ENTRyl is the name of the first entry point, and 
ENTRy2 is the name of the second, etc. 

The user must provide a 5-position area immediate­
preceding each entry point. This space will be used 
to contain the address of the parameter for the sub­
routine when the subroutine is entered. 

The symbolic name for each entry point must be 
specified in a DSA statement at the beginning of the SPS 
source program when it is assembled (even if only 
one entry point is desired). Also the number of entry 
points to the subroutine must be defined in a special 
DEND statement. The operand of the DEND statement 
must specify the number of entries to the subroutine. 

Working Areas 

In writing the subroutine, the programmer may first 
move the argument into one of the working areas 
such as FAC, BETA, or SAVE. In arithmetic subroutines, 
the exponent of a floating point result is usually stored 
in SAVE before being moved to F AC. A careful study 
of the arithmetic subroutines may reveal that the relo­
catable subroutine to be added can share the normali­
zation, sign determination, overflow, underflow, and 
error typeout sections. The value calculated by the 
subroutine must be left in F AC. Even if no value is 
calculated, it is advisable to place a col1$tant in F AC. 

When programming a subroutine with variable 
length floating-point numbers, it may be necessary 
to use certain addresses and constants available in 
the arithmetic and input/output subroutines. A refer­
ence to the listings of these subroutines will yield the 
information on these addresses and constants. As the 
mode of operation (fixed or floating point) is deter­
mined by the argument of the subroutine, the FOR­
TRAN II-D Processor does not distinguish fixed-point 
from floating-point subroutines. It is up to the user 
to have a thorough knowledge of the added subrou­
tines and to use them correctly. 

Loading the Library Subroutine 

The Disk Utility Program can be utilized to add a 
subroutine to the FORTRAN library or it can be added 
at assembly time. 

FORTRAN II-D 133 



An example of the control records required for add­
ing a subroutine directly to the FORTRAN library at as­
sembly time follows: 

=t==f= SPS 
• LIBR 
o NAME HCOS 
o ASSEMBLE RELOCATABLE 
o STORE RELOADABLE 
o ID NUMBER 0026 

SUB DSA HCOS, HSIN 
DORG SUB-4 

BCOS OP 

HSIN OP 

DEND 2 

Monitor and 
SPS control 

records 

The 
User-
written 
library 
function 
SPS 
instructions 

The Disk Utility Program can be utilized to load the 
subroutine to the library in which case the NAME, 
STORE RELOADABLE and m NUMBER statements can be 
omitted, but an OUTPUT CARD or OUTPUT PAPER TAPE 
statement would have to be included. 

The DLOAD (or DREPL) Control record must contain 
the information as shown in the following example: 

°DLOAD HCOS 0026 0101200002 C I .. ........ 
Col. 7 17 39 44 49 50 

Columns 1-6 Code word °DLOAD. 
7-12 Alpha name of program to be 

used in FORTRAN arithmetic state­
ments. 

17-20 DIM entry number. 
39-43 The length of the subroutine. This 

number must be even. 
44-48 The number of entry points. 

49 Input unit (P for paper tape). 
50 Core image format. 

Other options, such as read-only protection, are 
available if they are desired (see DLOAD CONTROL REC­
ORD in the Disk Utility Program section of this man­
ual). 

Additional Entries and Synonyms 

A DFLIB Control record must be entered if the sub­
routine contains more than one entry point or if one 
entry point is to be called by more than one name. 

134 

The format for the DFLIB Control record to add the 
second entry for the preceding examples is as follows: 

Columns 1-6 °DFLIB 
HSINbb 
Not used 
27 

7-12 
13 
14-15 
16-80 Not used 

where HSIN is the user-assigned name, left-justified, of 
the subroutine being added, and 27 is the next con­
secutive DIM entry number, after the DIM entry num­
ber used for the original entry. The DIM entry number 
must be between 21 and 39 and must correspond with 
the sequential position of the entry as it is written in 
the operands of the DSA statements in the source pro­
gram. As delivered, the system already makes use of 
DIM entry numbers 10 through 25 for FORTRAN library 
subroutines. However, the last 5 may be removed, if 
desired. If no subroutines are removed from the 
FORTRAN library set, the available DIM entry num­
bers for additional library subroutines are 26 through 
39. 

The sequence of input to assemble and load a sub­
toutine is shown in Figure 17. 

FORTRAN Subprogram Written in SPS 
The FORTRAN user is able to create subprograms using 
SPS and have these subprograms available immediately 
for call by FORTRAN programs. To accomplish this he 
must follow the writing specifications outlined here. 

The Indicator Record 

Each subprogram to be called by a FORTBAN program 
must contain a header record to identify the routine 
and to provide other essential information. The SPS 
instructions necessary to create this record are shown 
below: 

S DS 
DC 
DAC 
DVLC 

DSC 
DORG 

,0+101 

6, 987898, 5-S 
6,NAMEbb, 7-S 
22-S, 5, LAST, 2, if, 2,kk, 5, Entry 

Address-6, 5, 0, 30, 0 
17, 0, 0 
S-I00 

where LAST is the address of a =F or the first digit of a 
subprogram name in the call list (see CALLING OTHER 
SUBROUTINES) . 



* DFUB 

Object Program 
Output from Assembly 

* DLOAD 

* * SPS * * DUP 
Monitor Control Record Monitor Control Record 

, 
; 
! 

Used to Define 
Additional Entry 
Point Names and 
Synonyms. 

Figure 17. Adding Subroutines for FORTRAN Subroutine Library 

Calling Library Subroutines 

If the subprogram or function is to call FORTRAN 

library subroutines, the user must write out the nVLe 
operand that contains the 30 zeros in the example. 
Those positions that correspond to specific subroutines 
must contain a one instead of a zero. The correspond­
ence between the positions in this field and the 
standard library subroutines are presented in Table 
11 so that the user may select any subroutine in the 
library. To effect a transfer to any library subroutine 
from the sps written subprogram, the user must write 
the following instruction; BTM-SUBR, PARAM, where 
P ARAM is the address of the parameter required by 
the subroutine and -SUBR is the address for the sub­
routine entry shown in Table 11. The subroutine 
entry address must be indirect. 

Calling Other Subroutines 

If the user wishes to call other subprograms from an 
SPS written, subprogram, he may do so. To do this the 
user must code: 

BTM NAMESP, °+11 
DSA A,B, ... , Z 

for each transfer to another subprogram. and must in­
clude the name of the subprogram' called. Each 

named subprogram must have a 5-digit address field 
reserved in the subroutine. The names of the sub­
programs to be called must be placed, in double digit 
form, at the end of the subprogram along with the 
addresses of the reserved address fields within the 
subprogram. A record mark must follow the last sub­
program name and address. The length of the pro­
gram, which is specified using LAST in the previous 
example, must not include the names and addresses 
that are at the end of the subprogram. These names 
and addresses must follow the last location of the 
subprogram. They can be coded as shown below: 

DAC 
DVLC 
DAC 
DVLC 
DC 

This coding will cause the 
6, NAMlbb, two subprograms named 
, 5, NILOC NAMI and NAM2 to be 
6, NAM2bb, called out and made avail­
, 5, N2LOC able when the SPS routine 
2,0 @ that requires them is load-

ed. 

where NILOC is the low-order address of the P field 
of the BTM instruction that calls this subprogram. For 
example; 

BTM XXXXX, °+11 
NILOC~ 

FORTRAN II-D 135 



TIle SPS instructions . corresponding to a CALL 
SUBP (A, B, C,. . N) are: 

BTM SUBP, 0 +11 
DSA A,B,C, ... N 

The entry address, SUBP, is determined when the 
program is loaded, so it need not be included in the 
BT~I instruction, i.e., BTM, 0+11. 

Writing FORTRAN Subprograms in SPS 

In addition to the header record described above, 
linkage to obtain the subprogram parameters must 
be included in the subprogram. If no parameters are 
needed, or if the subprogram knows the location of 
the parameters, the user writes: 

DC 5,0 
SUBNAM AM SUBNAM-I,I,10 } 

sub:O;ram 
B SUBNAM-I" 6 
DC 1, @ 

If one parameter is needed, and this subprogram is 
never nested within any other function or subpro­
gram, the user writes: 

DC'5, 0 
SUBNAM AM SUBNAM-I, 5, 10 

TF INSUB, SUBNAM-I, 11 
AM SUBNAM-I, 2 

B SUBNAM-I" 6 
DC 1, @ 

} 

The 
subprogram 

If several parameters are to be moved to the subpro­
gram, a loop may be utilized to conserve core storage. 
The parameters must be stored in the subprogram in 
consecutive order. An example of the coding to ac­
complish this for three parameters is shown below: 

INSUB 

SUB 

CF 

TF 

136 

DSA 
DC 
DC 
TFM 
AM 
AM 
TF 
BNF 
CF 
TF 
TF 

0, 0, 0 
1, @ 
5,0 
TF +6, INSUB-4 
TF+6, 4, 10 
SUB-I, 5, 10 
CF +11, SUB-I, 11 
°+36, CF+II 
CF+II 
CF+II, CF+II, 11 
INSUB, CF+II 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

AM TF +6, 1, 10 
BNR SUB+I2, TF+6, 11 
AM SUB-I, 2, 10 (7) 

B SUB-I, , 6 (8) 
DC 1, @ 

The instructions that constitute the body of the sub­
program are placed between number 7 and 8 above. 
Instruction 7 must add "two" if the number of para­
meters is an odd number, or "one" if this number is 
even. The record mark must be in the first even loca­
tion following the subprogram. 

The instruction numbered 8 (B SUB-I, , 6) returns 
control to the calling program. When writing subpro­
grams in SPS the user must place this instruction at 
every point that a return is required. 

Writing FORTRAN FUNCTION Subprograms in SPS 

The user must add one instruction to the set required 
for SUBROUTINE subprograms written in SPS in order 
to write FORTRAN FUNCTION subprograms (subroutines 
normally produced by FORTRAN statements preceded 
by a FUNCTION statement). This instruction is BTM 

TOF AC, ANS. TOF AC is the entry point of a FORTRAN 

system routine that will put the value at the address 
ANS into FAC, the FORTRAN accumulator. In this in­
struction ANS is the location where the result of the 
subroutine calculation is stored. This instruction must 
precede each instruction that returns control to the 
calling program (e.g., the BTM instruction must pre­
cede the number ( 8) instruction in the preceding 
example). Each time a retuq1 is desired, this BTM 

instruction must be repeated. The actual address of 
TOFAC is constant and is available in the FORTRAN I1-D 

listing. 

Disk Storage location of the FORTRAN 
Compiler 

The FORTRAN compiler and operating system is an 
integrated part of the Monitor I system. It is possible, 
however, to eliminate the programs that constitute the 
FORTRAN portion of the Monitor I, and still utilize the 
remainder of the system. It is also possible to delete 
specinc FORTRAN library subroutines and to utilize the 
remainder of the FORTRAN . system. The procedure to 
follow in order to delete any program from the disk 
is described in the DUP section. The DIM entry num­
bers that may be specified for deletion are shown 



below. 

DIM No. 

FORTRAN Compiler 136, 137, 153, 
156 

FORTRAN Subprogram 138, 147, 149, 
Loader 150,152,157 

FORTRAN Arithmetic 144, 145, 146 
and I/O 

FORTRAN Library °10-39 
Subroutines 

Disk 
Location 

Cylinder 86, 
87,88,89,90 

Cylinder 80, 
84 

Cylinder 84, 
85 

Cylinder 81 

If the FORTRAN system is deleted using the DUP rou­
tines, the portion of the disk which it occupies will 
become available for assignment of other user writ­
ten programs. 

°When the system is delivered, 10 through 25 are in 
use. The symbolic names of the subroutines that may 
be deleted are COSF, SINF, ATAN, SQRTF, and ABSF. The 
other subroutines may be deleted only if the com­
plete FORTRAN system is deleted. 

FORTRAN II-V 137 



IBM 1620-1443 Monitor I System 

A printer-oriented Monitor I System is available for 
1620 Systems that are equipped with an mM 1443 
Printer. This system is an extension of the standard 
Monitor I System described in the preceding pages of 
this publication. Only the differences between the 
standard (system and the printer-oriented system are 
described here. Specifications and operating pro­
cedures pertaining to the standard system are valid for 
the printer-oriented system if no specific mention is 
made of them in this section. 

General Description 
The 1620-1443 Monitor I System requires that an IBM 

printer be included in the 1620 system configuration. 
Of course, any other applicable input/output units, 
special features, etc., may also be attached to the 
system. 

The principle advantage of a printer-oriented system 
is that it provides a convenient and relatively fast 
means of obtaining listings of assembled or compiled 
programs, symbol tables, and any other data that might 
be desired. The component programs of the Monitor I 
System have been modified to make the best possible 
use of the printer. The console typewriter is used only 
for messages which must be acted upon immediately by 
the operator. 

The following paragraphs were written under the as­
sumption that the reader has a practicable knowledge 
of the IBM 1443 Printer. Those without such knowledge 
should read the publication, mM 1443 On-Line Printer 
for 1620/1710 Systems (Form A26-5730). 

Supervisor Program 
The I/O routine of the Supervisor Program has been 
modified to handle printer output for both SPS and 
FORTRAN object programs. This was accomplished with­
out changing entry pOints, linkages, or core storage re­
quirements. The language used to gain access to the 
I/O routine is described in the respective SPS and FOR­

TRAN portions of this supplement. 

Printer Errors 

If a printer error (indicator code 25) occurs, the 
message 

PRT ERR XXXXX 

137.1 

is typed out, and control is returned to core address 
xxxxx in the calling program. In addition, the error is 
recorded in a printer error counter which has been 
added to the error counters used in the standard sys­
tem. Whenever the error indicators or error counters 
are typed out, they will be in the follOWing sequence: 

The only change is the addition of the Printer Check 
indicator (code 25). 

NOTE: If a haIt occurs at address 00467, either with or 
without a prior error message, the program can be re­
sumed by pressing the Reset and Start keys. 

Programming Considerations 
1. The Printer Busy indicator (code 35) is not tested 

by the I/O routine; therefore, if the test is desired, 
the user must perform it before executing a call to 
the printer. 

2. Carriage control operations must be handled in 
the user's program. 

Disk Utility Program 

Disk-to-Output Routine 

The Disk-ta-Output routine has been modified to use 
the printer for all output that fonnerIy was typed out 
on the console typewriter. To specify the printer as an 
output unit, the user must punch the letter L in col­
umn 17 of the DDUMP control card. 

The format of all printed output (in this routine) 
will be 100 characters (1 sector) per line, with the ex­
ception of the ·availability list and the equivalance table 
which will retain the format that was used in the 
standard system. 

Define Parameters Routine 

The define parameters routine in this system allows 
the FORTRAN I1-D to be set for either 120 or 144 
print position usage of the 1443 Printer during com­
pilation and execution. The user may either put a 
"zero" in column 59 of the °DEFINE record for 120 
print position operation or a "one" in that column for 
144 positions. This indicator is set in disk sector posi­
ton 65 of the Communications Area and is a "zero" 
when the system is delivered. 



SPS II-D 
The SPS lI-D assembly program has been modified to in­
clude twelve printer-oriented imperative mnemonics, 
two printer declarative mnemonics, and three new sps 
control statements. 

Printer Imperative Mnemonics 
The imperative mnemonics included in the printer­
oriented Monitor I System are listed in Table 14.1. 
Also shown are the actual OP codes generated and the 
P and Q address functions. Table 14.2 shows the Q­
address modifiers that are generated in the object 
program. 

Table 14.1 Imperative Printer Mnemonics 

OPERATION CODE 

OPERATION MNEMONIC ACTUAL 

Printer Dump PRO 35 

Printer Dump and Suppress PROS 35 
Spacing 

Print Numericaily PRN 38 

Print Numerically and PRNS 38 
Suppress Spaci ng 

Print Alphamerically PRA 39 

Print Alphamerically and PRAS 39 
·Suppress Spacing 

Skip Immediate SKIP 3 .. 

Skip after Printing SKAP 34 

Space Immediate SPIM 34 

Space after Printing SPAP 34 

Branch on channel 9 BCH9 46 

Branch on channel 12 BCOV 46 

Some examples of printer statements are shown 
below: 

(abo! p..-.. Opotooch & __ 

"III 1110 IS.. IS .. .. It .. 
P.R.N. DAT.A .•.•.•. PJO NT N(J.H.E.I(f CALL.Y. 

P .R.NJDA. T A.. •. P.R.I.N. T N.u'If.EII.I.c.A.L 1. Y. A.N.D. .s.u.p P.R.E.SS S PAC litO 

SKIJ 2.S-KIP. I.JIJIII.DI.A.T.E 7.0 CARR.IA.S.E. CJl.AII.N.I.L 2. 

IC! n t: H P. A.r.r.E..R P R I NT I.H.G TO CA.R.R.I A.G.£ C HAlili.E.L 5. 

SP. ~ MOVE CA.R.R.IA.G£ .. l .• SPA.CES .•. IH.If£DIAT.E 

SPII ;" .III1I1EC.AlIlI.lA.G£:J. SPACES AFTLIl. PAINTIN.G. 

OPERANDS 

P ADDRESS Q ADDRESS 

Storage address from 
which leftmost (first) 

None Required 

numerical chcracter is 
written 

SClTle as Printer Dump None Required 

SClTle as Printer Dump None Required 

SClTle as F rinter Dump None Required 

Storage address from None Required 
which leftmost Alpha-
meric character is 
wri tten (odd numbered 
address) 

Same as Print Alpha- None Required 
merically 

Not used Control Code 

Not used Control Code 

Not used Control Code 

Not used Control Code 

Address branched to if indi- None Required 
cator 33 is on. This indica-
tor is turned on by the detec 
tion of a hole in channel 9 
of the carriage tape. 

Address branched to if indi- None Required 
cator 34 is on. This indica-
tor is turned on by the detec 
tion of a hole in channel 12 
pf the carriage tape. 

IBM 1620-1443 Monitor I System 137.2 



In these examples, the operand DATA represents the 
core storage address of the data to be printed; the nu-

" rlrerical operands, (2, 5, 3, 3) are either channel num­
bers for skip operations or the number of spaces for 
space operations. Table 14.3 shows the Q operands to 
be placed in the skip and space statements for all 
possible skip and space operations. 

Printer Declarative Statements 

Two printer declarative mnemonics are included in the 
printer-oriented Monitor System. Descriptions of the 
mnemonics 'follow together with the two-digit code 
that is generated for the I/O constant. Note the two 
forms of each declarative. 

Mnemonic 
DPRN 
DPRN" S 

DPRA 
DPRA" S 

Code 
14 
22 

Is 
26 

Name 
Define Printer Numerical 
Define Printer Numerical-

Suppress Spacing 
Define Printer Alphameric 
Define Printer Alphameric 

.- Suppress Spacing 

These declarative operations generate an I/O con­
stant in the object program which can be used by a 
PUT I/O macro-instruction to print data under control 
of the I/O routine. When used in the source program, 

Table 14.2 OP Codes and Q Modifiers Generated for Printer 
Mnemonics 

Q MODIFIERS 
OP Q

8 
Q

9 Ql0 Q
11 MNEMONIC OPERATION CODE 

PRO Printer Dump 35 0 9 

PROS Printer Dump and 
Suppress Spacing 35 0 9 

Not 
PRN Print Numerically 38 0 9 used, 

will 
PRNS Print Numerically and be 

Suppress Spacing 38 0 9 zero 

PRA Print Alphamerically 39 0 9 

PRAS Print Alphamerically 
and Suppress Spacing 39 0 9 

SKIP Skip Immediate 34 0 9 * 
SI(AP Skip After Printing 34 0 9 • 
SPIM Space Immediate 34 0 9 * 

SPAP Space After Printing 34 0 9 * 

*Modifiers which specify the particular skip or space operation 
(see Table 14.3). For a detailed description of these modifiers, 
refer to the publication entitled IBM 1443 On-line Printer for 
1620/1710 Systems (Form A26-5730). 

137.3 

0 

1 

0 

1 

0 

1 

Table 14.3 Q Operands and Q Modifiers for Skip and Space 
Operations 

ACTUAL Qla' Q 11 MODIFIERS 

AFTER PRINTING 
CONTROL CODES IMMEDIATE (DELAY) 

Skip to ChaMel 1 71 41 

2 72 42 

3 73 43 

4 74 44 

5 75 45 

6 76 46 

7 77 47 

8 78 48 

9 79 49 

10 70 40 

11 33 03 

12 34 04 

Number of Spoces 1 51 21 
(SPIM or SPAP) 

2 52 62 

3 53 63 

they identify the output record area. Three operands 
are required for each statement. The first operand is 
used to specify the address where the I/O constant is 
to be loaded into core storage. This operand may be an 
absolute value or a symbolic name. If a symbolic name 
is used, the symbol must previously have been defined 
as an ,absolute value. If the operand is omitted, the pro­
cessor will assign the address to which the constant will 
be loaded in core storage. 

The second operand, which may be symbolic or ac­
tual, is the address of the output record area. This ad­
dress will be included in the I/O constant in the object 
program. The third operand may be 'a letter S or it may 
be omitted. If the letter S is present, the automatic sin­
gle space after printing will be suppressed whenever 
the associated output record is printed. Remarks are 
permitted following the third operand. 

If a label is included with this statement, the storage 
address aSSigned to it will be that of the leftmost posi­
tion of the generated I/O constant. 

The statements which follow show how a DPRA de­
clarative statement is used with a PUT I/O macro-state­
ment to print a IIO-alphameric character record under 
control of the Supervisor I/O routine. In this example, 



the first two statements define the output area where 
the record is stored. 

Lobo! p.-..... Opo_,,,I_rb 
'" " ,. IS ,. " .. ., ,. .. • 

RfC.OIUiDAS IIIO .•. t,DEFt N.£ ALPHAMERIC OU.TPUT IUCORO 
lur- II .Ii , .•. /'I.I/.$.T FOLLO.tI. IIIIT.H lUCORlJ. MARK 

iiii'T /iiiiif.if. •.• ~i.R.,:T£ Ou'TPUT :R.£C is SP£'C IF I E,I) IY DPM 

The declarative statements are usually written pre­
ceding or following the program; however, the macro­
statement is entered in the program at the point where 
printing is to take place. 

Printer Control Records 

In the printer-oriented'Monitor I System, there are 
three SPS control records that pertain to printer opera­
tions. The first two described here are modifications of 
sps control records used in the standard system; the 
third is a new control record. 

o LIST PRINTER - This record replaces the LIST 

TYPEWRITER record used, in the standard systeI.... It 
causes a listing to be printed by the printer during 
assembly. 

The format of the listing is as follows: page and line 
number, label, op code, operands, remarks, core loca­
tion, and object instruction. 

°PRINT SYMBOL TABLE - This record replaces 
the TYPE SYMBOL T,ABLE record used in the standard 
system. It causes the symbol table to be printed by the 
printer following assembly. 

00 XXXXXXXXXXX _ This record is used to print a 
heading above listings and/or symbol table printouts. 
The data (signified by Xs above) that follows the two 
asterisks is printed at the top of the respective printouts. 
When this record is typed out during assembly, it is 
shown as an Identifi.cation record with the code (ID) 
typed to the left of the two asterisks. This is also true of 
all Identification records used in the printer-oriented 
system; that is, the code (ID) is typed to the left of the 
record instead of to the right as in the standard system. 

IBM-Defined System Symbols 

In the printer-oriented system, the following system 
symbols are available to the user. Notice that the sym­
bols are the same as those used in the standard system, 
but .some of the equivalences are changed. 

Symbol 
9RCYLO 
9RCYL1 
9RCYL2 

Equivalence 
00513 
00515 
00517 

Description 
These are the low-order po­
sitions of four 2-digit fields 
which contain the numbers 

9RCYL3 

9CCYLO 
9CCYL1 
9CCYL2 
9CCYL3 

00519 

02132 
02134 
02136 
02138 

Assembly Errors 

of cylinders (00-99) where 
the disk access arm is repo­
sitioned after a disk opera­
tion in which a reposition 
has been requested. The 
four fields refer to drives 0, 
I, 2, 3, respectively. 

These are the low-order po­
sitions of four 2-digit fields, 
similar to the previous four. 
However, these positions 
contain the cylinder num­
bers of the current access 
arm positions (the position 
of the arm after the last disk 
IORT operation). 

In addition to the SPS II-D error codes and descriptions 
listed in a previous section of this manual, the following 
error conditions will cause an error typeout: 

1. A space specification that is either 0 or greater 
than 3 

2. A skip specification that is either 0 or greater than 
12 

Either of the above conditions will be indicated by 
the error code ER5. 

If no Error Stop control record is included in the as­
sembly, the processor will cause an erroneous space or 
skip specification to be set to l. 

Error messages will appear on the typewriter, not on 
the printer. 

fORTRAN II-D 
The FORTRAN II-D compiler has been modified to take 
advantage of the printer while compiling object pro­
grams. Although the basic FORTRAN language remains 
unchanged, the specifications of several FORTRAN out­
put statements have been modified. Also, the printer 
has replaced the console typewriter as the basic 
printed-output medium. 

Language 

PRINT - In th~.)?r~~~~E:.Q!j~.nted .. system,aPRINT state­
ment is used" to transfer data to the 1443 Printer. A 
TYPE statement is still used to transfer data to the 
console typewriter. 

FORMAT - A FORMAT' statement, when used in con­
junction with a PRINT statement, can provide for up to 
120 characters for each printed line (or 144 char-

IBM 1620-1443 Monitor 1 System 137.4 



acters if the system has been properly defined). A 
FORMAT statement used with a TYPE statement is still 
limited to 87 characters for each typed line. 

In addition to the normal function of a FORMAT 
statement, there is another function that it must per­
form when used with a PRINT statement. This func­
tion consists of designating the desired space or skip 
operation for each printed line. A printer-oriented 
FORMAT statement must begin with 1H followed by 
a control character which specifies the desired oper-

. ation. The control characters and their effects are: 

blank - single space before printing ° -double space before printing 
1-9 - immediate skip to channels 1-9 

The control character itself does not become part of 
the printed output. 

EXAMPLE 

PRINT 2, A, B, J 
2 FORMAT (lHO,F8.2,F8.2, 18) 

This specification will provide a double space between 
the line being printed and the previous printed line. 

NOTE: The control carriage specification is applicable 
to the first line of print only. If more than one line is 
called for, the user must be sure that the carriage con­
trol specification precedes the normal specifications for 
each line of print. For example: 

2 FORMAT (lHO, F8.2/1HO, E14.6) 

Control Records 

The five new control records that have been added to 
FORTRAN II-D for the printer-oriented Monitor System 
are: 

o LIST PRINTER 
o ARITHMETIC TRACE 
o IF TRACE 
o ALL STATEMENT MAP 

00 XXXXXXXXX 

The first four in the list are compile-time options 
previously available through console switch settings. 
The last record is a means of obtaining a. heading at 
the top of each printed page. 

The format of these records is the same as described 
in the section entitled FORTRAN II-D CONTROL RECORDS. 

o LIST PRINTER - This record will cause program 
listings and symbol table output to be printed. 

o ARITHMETIC TRACE - This record will cause 
trace instructions to be compiled for arithmetic 
statements. 

137.5 

o IF TRACE - This record will cause trace instruc­
tions to be compiled for the purpose of tracing the 
value of the expression generated in an IF state­
ment. 

o ALL STATEMENT MAP- This record will cause 
the address of the first instruction generated for 
each statement to be printed. 

00 XXXXXX xxx - This record will cause a heading 
to be printed at the top of each printed page. The 
Xs represent the heading. Up to 78 characters may 
be specified. 

Listings and Symbol Table Output 

Listings and symbol table output will appear on the 
printer instead of the console typewriter. The control 
records used to obtain these outputs are described 
above. The formats of the outputs have been changed 
to take advantage of the characteristics of the printer. 
The loader map also appears on the printer. 

Error Messages 

All error messages will appear on the printer except 
loader error messages; in addition, error message D1 
will also appear on the console typewriter. Instructions 
to the operator, for example, LOAD SUBNAM, will appear 
on the console typewriter. 

Subroutine error code F9 has been modified to in­
clude any printer records that exceed 120 characters 
(or 144 characters if the system has been so defined). 

When a phase 2 error is detected, an error message 
in one of the following forms is printed on the 1443 
printer. 

SSSS+CCCC SYMBOL TABLE FULL 
SSSS+CCCC IMPROPER DO NESTING 
SSSS+CCCC DO TABLE FULL 
SSSS+CCCC MIXED MODE 

where ssss is the last statement number, encountered 
by the program prior to the error, and cccc is the 
number of statements following the last numbered 
statement. ssss + cccc is the statement that contains 
the error. Comment cards, blank cards, and continua­
tion cards are not counted in the statement count. 

Trace Routine 

If the trace routine is used, its output will appear on 
the printer. If the 144 print position subroutines are 
used, floating variables will appear in E-type format 
and fixed variables in I-type format. 



Carriage Control Tape 

The carriage control tape, when used for assembling 
and compiling, should be punched in channell to indi­
cate the beginning of a page, and punched in channel 
12 to indicate the end of a page. When the program 
senses the hole in channel 12, it automatically executes 
a skip to the channel 1 hole, which indicates the be­
ginning of the next page. 

Arithmetic and I/O Subroutines 

The arithmetic and I/O subroutine sets used in the 
1620-1443 Monitor I System are longer than the sets 
used in the standard 1620 Monitor I System. This 
means that the starting addresses of FORTRAN object 
programs are higher in the printer-oriented system, as 
shown below: 

120 144 
Standard Printer Printer 
System System System 

U sing in-core arithmetic 
and I/O subroutines 

Using out-of-core arithmetic 

14000 

and I/O subroutines 07500 

14300 14600 

07800 08100 

Furthermore, the subroutine entry points for both 
the in-core and out-of-core subroutines used with the 

printer system are different from those in the standard 
system. 

Therefore, FORTRAN object programs compiled by 
the 1620 Monitor I System must be recompiled if they 
are to be used by the 1620-1443 Monitor I System. 

However, programs compiled for 1620-1443 Moni­
tor I version 1 (120 print positions) do not have to be 
recompiled to operate on 1620-1443 Monitor I version 
2 (144 print positions). 

Eight subroutine sets are available with the Moni­
tor I version 2 System. They are identified as follows: 

OPTION A -120 print position 
Set 1 short form - without floating point feature 
Set 2 long form - without floating pOint feature 
Set 3 short form - with floating point feature 
Set 4 long form - with floating point feature 

OPTION B - 144 print position 
Set 1 short form - without floating point 
Set 2 long form - without floating point feature 
Set 3 short form - with floating point feature 
Set 4 long form - with floating point feature 

Only the floating point sets or the non-floating point 
sets of a given option are loaded to the disk at anyone 
time. For example, a user who has a 120 print position 
printer and has the automatic floating point feature 
would load only OPTION A, sets 3 and 4 on his disk 
pack. 

137.6 



Monitor I System Loader 

This program is used initially to load the Monitor I 
System from cards or paper tape into disk storage. 
Cards contain 75 columns of data followed by a 5-
l?osition sequence number. Sequence numbers are not 
present with tape data. 

The system to be loaded, in card or paper tape 
form, is comprised of several blocks of data, each 
with a unique deck number, a Heading Control rec­
ord, and a 9's trailer record. With this arrangement 
it is possible to load each new block of data to a 
different area of disk storage as specified by the 
Heading Control records. For card input, the cards 
within a data block must be consecutively numbered 
in ascending sequential order. 

The combined input data, i.e., all data blocks, must 
be preceded by the Loader Program itself. This pro­
gram is contained in approximately forty cards. If the 
sequence of the first four cards is inadvertently alter­
ed, the program may not operate correctly. The load­
er program is deck number 00, columns 30-31. All 
input cards, with the exception of the first four cards 
of deck 00, are sequence checked by the loader. 

Card Formats 

Heading Control 

Columns 1 

2-7 
9-14 

16-21 

23-28 

30-32 

138 

Asterisk (0). 

Code word, LDCNTR. 
Name of data block (program, 
table, etc.) to follow. 
Address of first sector to be 
loaded. 
Address of last sector to be 
loaded. 
Deck number. This number, com­
bined with the two positions 79-
80, constitutes the sequence 
number. Blanks are interpreted 
as zeros. Therefore,' the number 
55 and a blank in columns' 30-32 
are interpreted as sequence 
number 55000. The first card of 
the data block must then begin 

Data 

Columns 1-75 
76-80 

Trailer 

Columns 1-5 
6 

7-8 

with the sequence number 55001 
in columns 76-80. 

Data to be loaded to disk storage. 
Sequence number. 

99999 
=l= 
00 

Operating Procedures 

Switches 

The Parity, I/O and O"FLOW check switches should 
be in the PROGR.t\.M position for either card or tape 
loading. For card or tape input, the program will halt 
after each trailer card if Program Switch 1 is off. If 
the switch is on, all data blocks are loaded without 
stopping the computer. Therefore, the user can stack 
input, if desired. 

Paper Tape Loading 

1. Ready the paper tape reader with the Loader 
tape reel. 

2. Enter 36 00000 00300 from the typewriter. 
3. Depress the Release and Start keys. 
4. Ready the tape reader with the Data tape reel. 
5. Depress the 1620 Start key. 
6. Return to step 4 to load successive Data tapes. 

NOTE: When loading with Switch lon, the Loader 
will continue to read more data after each data group 
has been loaded. Therefore, several such data input 
groups may be present on one input reel. 

Card Loading 

1. Ready the ~ard reader with deck number 00, 
Loader Program. The remaining decks may be 
stacked behind deck 00 as explained under 
SWITCHES. 

2. Depress the 1622 Load key. 



Messages 

FOR BOTH PAPER TAPE AND CARD LOADERS 

Message/Cause/Operation Action 

AAAAAA LOADED FROM FFFFFF TO LLLLLL, 
where AAAAAA is the name of a data block, FFFFFF 
is the address of the first sector loaded, and LLLLLL 
is the address of the last sector loaded. This message 
will type following each successful deck loading. If 
Program Switch 1 is on, it is an indication to the 
operator to load the next deck. 

DISK RD WR ERROR, START TO RETRY. This 
message will type if a disk write error occurs that 
cannot be corrected by one automatic retry. De­
pressing the Start key will cause the write opera­
tion to be retried twice. If the error is not correct­
ed by the retries, the message will again be typed. 

RD ER. This message will type if a paper tape or card 
reading error occurs. To correct the error, ready the 
reader with the corrected record and depress the 
Start key. (An error card will be located next to the 
last card in the stacker when a halt occurs for a 
card reading error.) 

CONTROL STATEMENT INVALID, HE-ENTER. 
This message will ty-pe if any of the following con­
ditions are encountered in Heading Control record 
data. 

1. A misspelled code word. 
2. A record mark in column 6. 
3. First sector to be loaded is greater than last 

sector to be loaded. The user must supply a 
corrected control record and depress the 1620 
Start key. 

FOR CARD LOADER ONLY 

M essage/ Cause/ Operator Action 

SEQ. This message will type and the program will 
halt if any of the cards in the loader program, 
with the exception of the first four cards, is out of 
sequence. To resume loading, (I) restore the cards 
to their correct sequence and place them in the 
card hopper, (2) depress the Start keys on both 
the card reader and 1620 console. 

NNNNN CARD SEQ ERROR, CORRECT AND 
START, where NNNNN is the sequence number of 
the first data card out of consecutive ascending se­
quence. After the message is typed, the program 
will halt. To restart the computer, (1) restore the 
sequence of data cards, starting with the card in 
error, (2) place the resequenced cards in the card 
read hopper, ( 3) depress the Start keys on both 
the card reader and 1620 console. 

NO TRAILER REC. CORRECT, RE-LOAD COM­
PLETE DECK WITH CNTR REC, AND BR TO 
7404. This message will type and the program will 

halt if a g's trailer record is missing following any 
data block. To restart the computer, the user 
should (1) restack the cards in the card reader so 
as to restart card reading with the Header card of 
the data block which had the missing trailer rec­
ord. (2) Depress the Reset and Insert keys. (3) En­
ter 49 07404 from the typewriter. (4) Depress the 
Release and Start keys. (5) Depress the card read­
er Start key. 

TRAILER CARD SEQ ERROR, CORRECT AND 
START. This message will be typed if the sequence 

number on the trailer card is incorrect. The pro­
cedure for restarting as the same is for any other 
card sequence error. 

-Monitor System Loader 139 



Appendix A 

SPS Tables 

Table 15. Summary of SPS Declarative Operations 

NOTE: Except for the constants in DC, DSC, and DAC, all operands may be actual or symbolic. All symbolic length and address 
operands must be previously defined. All operands may use address adjustment. Remarks may follow operands except in DSA and DVLC 
statements. "Alpha Record Address" in the table refers to the leftmost position plus one of an alphameric field, whereas "Field Address" 
refers to the rightmost position of a field. The term II Numerical Record Address" refers to the leftmost position of a field. 

DECLARATIVE STATEMENT AMOUNT ADDED TO LOCA- VALUE STORED IN SYMBOL DA TA FIELDS WHICH ARE 
FORMA TION ASSIGNMENT COUNTER TABLE AS EQUIVALENT LOADED AS A PART OF 

LABEL OP OPERANDS IF ADDRESS (A) IS BLANK TO "SYMBOL" THE OBJECT PROGRAM 
CODE 

SYM OS L,A L (length). A address. If A is blank, the None. 
If L is blank, 0 is added. field address from the location 

assignment counter is stored. 

SYM DSS L,A L (length). A address. If A is blank, the None. 
If L is blank, 0 is added. numerical record address from 

the location assignment counter 
is stored. 

SYM DAS L,A 2 x L is added. If L is blank, A address must be add. If A is None. 
o is added. blank, the alpha record address 

from the location assignment 
counter is stored. 

SYM DC L,C,A L is added. A address. If A is blank, the C, the (numerical) constant. 
field address from the location 
assignment counter is stored. 

SYM DSC L,C,A L is added. A address. If A is blank the C, the (numerical) constant. 
numerical record address from 
the location assignment counter 
is stored. 

SYM DVLC A, L,C, L is added. First C address. C, C, etc., the (numerical) 
L,C, etc. constants . 

SYM DAC L,C,A 2 x L is added. A address must be odd. If A is 
blank, the alpha record address 

C, the (alphameric) constant. 

from the· location assignment 
counter is stored. 

SYM DSA D,E,F,G, 5 x (number of addresses) is Field address of the first address A list of the actual addresses 
H, I, J, K, added. on list. that correspond to D,E,F, etc. 
L,M 

SYM DSB L,N,A Length of each element times A address. If A is blank, field None. 
the number of elements is added • address of the first element is 

stored. 

SYM DNB L,A L is added. A address. If A is blank, the Number of blank characters 
field address from the location that equal l. 
assignment counter is stored. 

SYM DDA A, D,F ,S, 14, length of a disk control (Same as DSC) • D,F,S,M. 
M field. 

SYM DGM A I A address or location counter. ... (Group Mork) • 

140 



Table 16. Summary of SPS Arithmetic Instructions 

NOTE: IndirectAddressing (special feature) is allowablewith all P address operands listed below. 
An * to the left of the Q operand indicates that this feature may be used with it. 

OPERA'"T'ON OPERATION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Add A 21 Storage address of units *Storage address of 
position of augend units position of addend 

Add Immediate AM 11 Same as code 21 Qll of instruction is 
units position of addend 

Subtract S 22 Storage address of uni ts *Storage address of 
position of minuend units position of sub-

trahend 

Subtract SM 12 Same as code 22 Qll of instruction is 
Immediate units position of sub-

trahend 

Multiply M 23 Storage address of uni ts *S torage address of 
position of multiplicand units position of 

multiplier 

Multiply MM 13 Same as code 23 Q 11 of instruction is 
units position of 
multiplier 

load Dividend lD 28 Storage address in pro- *Storage address of 
(special feature) duct area to which units position of 

units position of field dividend 
(dividend) is to be 
transmi tted 

load Dividend lDM 18 Same as code 28 Q 11 of instruction is 
Immediate UOits position of divi-
(special dend 
feature) 

Divide (special 0 29 Storage address at *Storage address of 
feature) which first subtraction units position of 

of the divisor occurs divisor 

Divide OM 19 Same as code 29 Q lJ of instruction is 
Immediate unl s position of divisor 
(special 
feature) 

Floating Add FADD 01 Storage address of units *Storage address of 
(special posi tion of exponent of units position of ex-
feature) augend ponent of addend 

Floating Sub- FSUB 02 Storage address of units *Storage address of 
trec t (specia I position of exponent of units position of ex-
feature) minuend ponent of subtrahend 

Floating FMUl 03 Storage address of units *Storage address of 
Multiply position of exponent of units position of ex-
(special multiplicand ponent of multiplier 
feature) 

Floating FDIV 09 Storage address *Storage address of 
Divide of units position units position of ex-
(special of exponent of ponent of divisor 
feature) dividend 

Appendix 141 



Table 17. Summary of SPS Internal Data Transmission Instructions 

NOTE: IndirectAddressing (special feature) is allowable with all P address operands listed below. 
An * to the left of the Q address operand indicates that this feature may be used with it. 

OPERATION OPERATION CODES OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Transmit Digit TO 25 Storage address to *Storage address of 
which single digit is single digit to be trans-
transmi tted mitted 

Transmit Digit TOM 15 Same as code 25 Q 11 of instruction is 
Immediate the single digit to be 

transmi tted 

Transmit Field TF 26 Storage address to *Storage address of 
which units position of units position of field 
field is transmitted to be transmitted 

Transmit Field TFM 16 Same as code 26 Q 11 of instruction is 
Immediate the units position of the 

field to be transmitted 

Transmit Record TR 31 Storage address to *Storage address of 
which high-order posi- high-order position of 
tion of the record is the record to be trans-
transmitted mitted 

Transfer TNS 72 Storage address of right *Storage address of the 
Numerical most position of alpha- units position of the 
Strip (special meric field to be trans- numerical field 
feature) mitted 

Transfer TNf 73 Storage address of righ t- *Storage address of the 
Numerical Fill most position of alpha- units position of the 
(special meric field numerical fie1d to be 
feature) transmitted 

Floating Shift FSR 08 Storage address to *Storage address (right-
Right (special which units (rightmost) most) digit of mantissa 
feat-ure} digit of mantissa is to be transmitted 

transm i tted 

Floating Shift FSl 05 Storage address to *Storage address of low;. 
left (special which high-order digit order digit of mantissa 
feature) of the mantissa is trans- to be transmitted 

mitted 

Transmit TFL 06 Storage address to *Storage address of units 
Floating which units position of position of exponent of 
(special exponent is transmi tted field to be transmitted 
feature) 

142 



Table 18. Summary of SPS Logic (Branch and Compare) Instructions 

NOTE: Both the BI (Branch Indicator) and BNI (Branch No Indicator) instructions require one. of 
the switch or indicator codes listed in Table 21 as a Q address. The code indicates the switch or 
indicator to be interrogated for status. To relieve the programmer of having to code a Q address, 
unique mnemonics are included in SPS languoge for both BI- and BNI-type instructions. For a 
unique mnemonic, the processor generates the actual machine language code 46 (Branch Indicator) 
or 47 (Branch No Indicator) and the Q address that represents the swi tch or indicator. 

Indirect Addressing (special feature) is allowable with all P address operands listed below except 
Branch Back. An * to the left of the Q address operond indicates that this feature may be used 
with it. 

OPERATION OPERATION CODES OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Compare C 24 Storage oddress of units *Storage address of 
position of the field to units position of the field 
which another field is to be comfXIred wi th the 
compared field at the P address 

ComfXIre CM 14 Same as code 24 Q II of instruction is 
Immediate Un! ts posi tion of the field 

to be canpared with the 
field at the P address 

Branch B 49 Storage address of the Not used 
leftmost digit of the next 
instruction to be exe-
cuted 

Branch and B7 49 Storage address of the Not used. However, 
adjust assign- lefhnost digit of the nex these five locations ~ 
ment counter instruction to be exe- .used by the next instruc-

cuted tion in sequence 

Branch BNF 44 Storage oddress of the *Storage address to be 
No Flag leftmost digit of next interrogated for presence 

instruction to be exe- of a flag bit 
cuted if branch occurs 

Branch No BNR 45 Same as code 44 *Storage address to be 
Record Mark interrogated for presence 

of a record mark char-
acter 

Branch No SNG 55 Same as code 44 *Storage address to be 
Group Mark interrogated for presence 

of a group mark character 

Branch on Digit SO 43 Same as code 44 *Storage address to be 
interrogated for a digi t 
other than zero 

Branch BI 46 Storage address of left- Q a and Q 9 of instruction 
Indicator most position of next specify the program swit~" 

instruction to be exe- or indicator to be inter-
cuted if indicator tested rogated (see Table 21) 
is on 

Unique Branch 
Indicator 
Mnemonics: 

Branch High BH 46 Same as BI None required 

Appendix 143 



Table 18. Summary of SPS Logic (Branch and Compare) Instructions (cont'd.) 

OPERATION OPERATION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q Annp~<:<: 

8ranch Positive BP 46 Same as 81 None required 

8ranch Equal BE 46 Same as 81 None required 

8ranch Zero 8Z 46 Same as 81 None required 

8ranch Over- BY 46 Same as 81 None required 
flow 

8ranch Any BA 46 Same as 81 None required 
Data Check 

Branch Not low BNl 46 Same as 81 None required 

Branch Not BNN 
Negative 

46 Same as B1 None required 

Branch Conso Ie BCI 46 Same as 81 None required 
Switch I On 

Branch Console BC2 46 Same as BI None required 
Switch 2 On 

Branch Console BC3 46 Same as BI None required 
Switch 3 On 

Branch Console 8C4 46 Same as BI None required 
Switch 4 On 

Branch last BlC 46 Same as BI None required 
Card 

Branch Expon- BXY 46 Same as BI None required 
ent Check 
(special feature) 

Branch No BNI 47 Storage address of left- Qa ond Q9 of instruction 
Indicator most position of next specify program switch 

instruction to be exe- or indicator to be inter-
cuted if indicator tested rogated (see Table 21) 
is off 

Unique Branch 
No Indicator 
Mnemonics: 

Branch Not BNH 47 Same as 8NI None required 
High 

Branch Not BNP 47 Same as BNI None required 
Positive 

Branch Not 8NE 47 Same as BNI None required 
Equal 

Branch Not BNZ 47 Same as BNI None required 
Zero 

144 



Table 18. Summary of SPS Logic (Branch and Compare) Instructions (cont'd.) 

OPERATION OPERATION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Branch No BNV 47 Same as BNI None required 
Overflow 

Branch Not Any BNA 47 Same as BNI None required 
Data Check 

Branch Low BL 47 Same as BNI None required 

Branch Negati ve BN 47 Same as BNI None req u ired 

Branch Consol e BNCI 47 Same as eNl None required 
Switch I Off 

Branch Console BNC2 47 Same as BNI None required 
Switch 2 Off 

Branch Console BNC3 47 Same as BNI None required 
Switch 3 Off 

Branch Console BNC4 47 Same as BNI None req u ired 
Switch 4 Off 

Branch Not BNLC 47 Same as BNI None required 
Last Card 

Branch Not BNXV 47 Same as BNI None required 
Exponent Check 
(special feature) 

Branch and BT 27 P address minus one is *Storage address of units 
Transmit the storage address to b:ition of the field to 

which the units position e transm i tted 
of the Q field is trans-
mitted. P address is 
leftmost digit of the next 
instruction to be exe-
cuted 

Branch and BTM 17 Same as code 27 QII of instruction is units 
Transmit position of field to be 
Immediate transm i tted 

Branch Back BB 42 Not used Not used 

Branch Back B82 42 Not used. However, Not used. However, these 
and Adjust these five locations 2.!:s2 five locations ~ used by 
Assignment used by the next instruc- the next instruction in 
Counter tion in sequence sequence 

Branch and BTFL 07 P address minus one is *Storage address of units 
Transmit the storage address to position of exponent of 
Floating which the units position fie Id to be transmi tted 
(spec ial feature) of the exponent portion 

of the Q field is trans-
mitted. P is the storage 

·address of the leftmost 
digit of the next instruc-
tion to be executed 

Appendix 145 



Table 19. Summary of SPS Input and Output Instructions 

NOTE: Indirect Addressing (special feature) is allowable with all P address operands, where a P 
operand is required. None of the Q operands shown may be used with Indirect Addressing. 

OPERA TlON OPERATION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Read Numeri- RN 36 Storage address at which Q8 and Q9 of instruction 
cally leftmost (first) numeri- specify input device ) 

cal character is stored 

Unique Read 
N umeri call y 
Mnemonics: 

Read Numeri- RNTY 
cally Typewriter 

36 Same as RN None required 

Read Numeri- RNPT 36 Same as RN None required 
cally Paper Tape 

Read Numeri- RNCD 
cally Card 

36 Same as RN None required 

Write Numeri- WN 38 Storage address from Q 8 and Q9 of instruction 
cally which leftmost (first) specify output device 

numerical character is 
written 

Unique Write 
Numerically 
Mnemonics: 

Write Numeri- WNTY 38 Same as WN None required 
cally Typewriter 

Write Numeri- WNPT 38 Same as WN None required 
cally Paper Tape 

Write Numeri- WNCD 38 Same as WN None required 
cally Card 

Dump Numeri- ON 35 Same as WN Same as WN 
cally 

Unique Dump 
Numeri call y 
Mnemonics: 

Dump Numeri- DNTY 35 Some os WN None required 
colly Typewriter 

Dump Numeri- DNPT 35 Same as WN None required 
cally Paper Tope 

Dump Numeri- DNCD 35 Same as WN None required 
cally Card 

Read Alpha- RA 37 Storage address at which QS and Q9 of instruction 
merically numerical digit of left- specify input device 

most (first) character is 
stored. (Zone digit of 
first character is at P 
minus one) 

Unique Read 
Alphamerically 
Mnemonics: 

Read Alpha-
merically 

RATY 37 Same as RA None required 

Typewriter 

Read Alpha- RAPT 37 Same as RA None required 
merically 
Paper Tape 

146 



Table 19. Summary of SPS Input .and Output Instructions (cont'd.) 

OPERATION OPERATION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Read Alpha- RACD 37 Same as RA None required 
merically Card 

Write Alpha- WA 39 Storage address of nu- Q8 and Q9 of instruction 
merically merical digit of leftmost specify output device 

(fi rst) character to be 
written. (Zone digit of 
first character is at P 
minus one) 

Unique Write 
Alphamerically 
Mnemonics: 

Write Alpha- WATY 39 Same as WA None required 
merically 
Typewriter 

Write Alpha-
merically 

WAPT 39 Same as WA None required 

Paper Tape 

Write Alpha- WACO 39 Same as WA None required 
merically Card 

Control K 34 Not used Q8 and Q9 specify input/ 
output device. Q 11 
specifies control func-
tions 

Unique Control 
Mnemonics: 

Tabulate TBTY 34 Not used None required 
Typewriter 

Return Carriage RCTY 34 Not used None required 
Typewriter 

Space Typewrite SPTY 34 Not used None required 

Seek SK 34 Storage address of disk X07Xl 
control field 

~ead Disk/WLRC RDGN 36 Same as SK X07XO 

Write Disk/ WDGN 38 Sante as SK X07;(O 
WLRC 

Check Disk/ CDGN 36 Same as SK X07Xl 
WLRC 

Read Disk RTGN 36 Same as SK X07X4 
Track/WLRC 

Write Disk WTGN 38 Same as SK X07X4 
Track/WLRC 

Check Disk CTGN 36 Same as SK' X07X5 
Track/WLRC 

Read Disk RON 36 Same as SK X07X2 

Write Disk WON 38 Same as SK X07X2 

Check Disk CON 36 Same as SK X07X3 

Read Disk Track RTN 36 Same as SK X07X6 

Appendix 147 



Table 19. Summary of SPS Input and Output Instructions (cont'd.) 

OPERATION OPERA TION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Write Disk WTN 38 Same as SK X07X6 
Track 

Check Disk CTN 36 Same as SK X07X7 
Track 

Table 20. Summary of SPS Miscellaneous lnstructionS 

NOTE: Indirect Addressing (special feature) is allowable with all P or Q address operands that 
are marked with an * . 

OPERATION OPERA TION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Set Flag SF 32 *Storage address at Not used 
which flag bit is placed 

Clear Flag CF 33 *Storage address from Not used 
which flag bit is cleared 

Move Flag MF 71 *Storage address to *Storage address of flag 
(spec ial feature) which flag bit is moved bit to be moved 

Halt H 48 Not used Not used 

No Operation NOP 41 Not used Not used 

148 



Table 21. 1620/1710 Indicator Codes for SPS BI-BNI 

Instructions 

NOTE: "Olis table lists mly those indicators that do not have unique 
mnemonics. 

INDICATOR Q ADDRESS 

Q
7 

Q
8 

Q
9 QIO Q II 

Read Check 0 6 

Write Check 0 7 

MAR Check 0 8 

MBR-E Check I 6 

MBR-O Check I 7 

Operator Entry 1 8 

Terminal Address Selector (lAS) 
Check 2 I 

Function Register Check 2 2 

Analog Output (AO) Check 2 3 

Mask 2 6 

Customer Engineer (CE) Interrupt 2 7 

Analog Output Setup 2 8 

Multiplexer Busy 2 9 

Multiplex Complete 4 0 

Analog Output Setup Interrupt 4 1 

One Minute Interrupt 4 3 

One Hour Interrupt 4 4 

Any SIOC Interrupt 4 5 

Process Interrupt I 4 8 

Process Interrupt 2 4 9 

Process Interrupt 3 5 0 

Process Interrupt 4 5 1 

Process Interrupt 5 5 2 

Process Interrupt 6 5 3 

Process Interrupt 7 5 4 

Process Interrupt 8 5 5 

Process Interrupt 9 5 6 

Process Interrupt 10 5 7 

Process Interrupt II 5 8 

Process Interrupt 12 5 9 

Process Branch Indicator I 7 0 

Process Branch Indicator 2 7 I 

Process Branch Indicator 3 7 2 

Process Branch Indicator 4 7 3 

Process Branch Indicator 5 7 4 

Process Branch Indicator 6 7 5 

Process Branch Indicator 7 7 6 

INDICATOR Q ADDRESS 
Q 7 

Q
8 

Q
9 QIO Q II 

Process Branch Indicator 8 7 7 

Process Branch Indicator 9 7 8 

Process Branch Indicator 10 7 9 

Process Branch Indicator 1 1 8 0 

Process Branch Indicator 12 8 I 

Process Branch Indicator 13 8 2 

Process Branch Indicator 14 8 3 

Process Branch Indicator 15 8 4 

Process Branch Indicator 16 8 5 

Process Branch Indicator 17 8 6 

Process Branch Indicator 18 8 7 

Process Branch Indicator 19 8 8 

Process Branch Indicator 20 8 9 

S I OC 0 utput Error 6 0 4 3 

Alert 6 0 4 5 

SIOC Unit I Response 6 0 7 0 

SIOC Unit 2 Response 6 0 7 I 

SIOC Unit 3 Response 6 0 7 2 

S I OC Un i t 4 Response 6 0 7 3 

S IOC Un i t 5 Response 6 0 7 4 

S IOC Un i t 6 Response 6 0 7 5 

SIOC Unit 7 Response 6 0 7 6 

SIOC Unit 8 Response 6 0 7 7 

SIOC Unit 9 Response 6 0 7 8 

SIOC Unit 10 Response 6 0 7 9 

SIOC Unit II Response 6 0 8 0 

SIOC Unit 12 Response 6 0 8 I 

SIOC Unit 13 Response 6 0 8 2 

SIOC Unit 14 Response 6 0 8 3 

SIOC Unit 15 Response 6 0 8 4 

SIOC Unit 16 Response 6 0 8 5 

SIOC Unit 17 Response 6 0 8 6 

SIOC Unit 18 Response 6 0 8 7 

SIOC Unit 19 Response 6 0 8 8 

SIOC Unit 20 Response 6 0 8 9 

Disk Address Check 3 6 

WLR/RBC 3 7 

Cylinder Overflow 3 8 

Any Disk Check 3 9 

Seek Complete 4 2 

Appendix 149 



Table 22. 1710 SPS Operation Codes 

OPERATION OPERATION CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Se lec t Address SAO 84 Not used Q7 specifies operation; 
and Operate Q9 - Q)) specify a 

terminal address 

Unique Select 
Address arid 
Operate 
Mnemonics: 

Select Address SA 84 Same as SAO Q7 == ); Q9 - Q)1 
specify terminal address 
of analog input point 

Select Address SACO 84 Scme as SAO Q7 == 2; Q9 - Q)) 
and Contact specify terminal addreSs 
Operate of contact point 

Select Analog SAOS 84 Same as SAO Q 7 == 3; Q 9 - Q)) 
Output Signal specify terminal address 

of analog output 
channel 

Select Read SLRN 86 Depends upon particular Depends upon particular 
Numerically operation operation 

Unc!due Select 
Re Numeri-
cally 
Mnemonics: 

Select TAS SLTA 86 Core location where Q7== 1; Q8 - Qll are 
high-order position of not used 
TAS is transferred 

Select ADC SLAR 86 Core location where Q7==2; Q9- Q l1 
Register high-order position of specify analog input 

ADC register is trans- address 
ferred 

Select Contact SLCB 86 Core location where Q7 == 7; Q9 - Q) ) 
Block status of the first contact specifies the contact 

scanned is stored block address where 
reading begins 

Select Real- SLTC 86 Core location where Q7 == 4; Q8 - Q)) are 
Time Clock high-order digit of RTC not used 

is transferred 

Select ADC SLAD 86 Core location where Q7 == 6; Q8 - Q)) are 
and Increment high-order position of not used 
(1711 Model I) ADC is transferred 

Select Manual SLME 86 Core location where Q7 == 8; Q8 - QII are 
Entry Switches high-order digit of not used 

Manual Entry switches 
is transferred 

Branch Out Of BO 47 Address to be placed in Q8 - Q9 == 00; Q 11 == 0 
Non interrup- IR-3 
tible Mode 

Branch Out Of BOLD 47 Address to be placed in Q8 - Q9 == 00; Q 11 == I 
Noni nterrup- IR-I 
tible Mode and 
Load 
Mask MK 46 Not used Q8 - Q9 == 00; Q )) == I 

Unmask UMK 46 Not used Q8 - Q9 == 00; Q II == 0 

Select Input slIe 86 Not used Q)O - Qll specify the 
Channel address of an 5 lOe input 

unit 

150 



Table 22. 1710 SPS Operation Codes (cont'd.) 

OPERATION OPERA TlON CODE OPERANDS 

MNEMONIC ACTUAL P ADDRESS Q ADDRESS 

Read Numerical RNIC 86 Core storage location Q7 = 5; Q8 - Q 11 not 
Input Channel where data is to be read used 

Read Alpha- RAIC 87 Same as RNIC Same as RNIC 
meric Input 
Channel 

Write Numerica WNOC 88 Core storage location Q 10 - Q 11 specify an 
Output Channel from which data is to SIOC output unit 

be written 

Write Alpha- WAOC 89 Same as WNOC Same as WNOC 
meric Output 
Channel 

Unique SIOC 
Branch Indicator 
Mnemonics: 

~ 

Branch Outeut 80R 46 Core storage address of None required 
Record Mar leftmost posi tion of next 

instruction to be exe-
cuted if indicator tested 
is on 

Branch End of BRE 46 Same as BOR Same as BOR 
Message 

Branch Mode BMC 46 Some as BOR Some as BOR 
Shift 

Branch Data BIR 46 Same as BOR Same as BOR 
Ready 

Branch SIOC BCNB 46 Same as BOR Same as BOR 
Not Busy 

Unique SIOC 
Branch No 
Indicator 
Mnemonics: 

Branch No BNOR 47 Core storage address of None requ ired 
Outrt Record leftmost position of next 
Mar instruction to be exe-

cuted if indicator tested 
is off 

Branch No End BNRE 47 Same as BNOR Same as BNOR 
of Message 

Branch No BNMC 47 Same as BNOR Same as BNOR 
Mode Shift 

Branch No BNIR 47 Same as BNOR Same as BNOR 
Data Ready 

Branch-No BCB 47 Same as BNOR Same as BNOR 
SIOC Not Busy 

Appendix 151 



Table 23. SPS Subroutine Macro-instruction Execution Times 

NOTE: These execution times depict the total time from the encountering of a Macro-statement to the "return to mainline." 

SUBROUTINE AVERAGE EXECUTION TIME 

Floating Add Fixed length 
! 

Average time = 9 ms 
Variable length 2 

Average time (inl-/s) = 5L + 482L + 6854 where L=length of mantissa 

Floating Subtract Fixed length 
Average time = 10.5 ms 

Variable length 2 
Average time (inl-/s) = 5L + 482L + 7474 

Floating Multiply Fixed length 
Average time = 18 ms 

Variable length 2 
Average time (inl-/s) = I68L + 240L + 7400 

Floating Divide Fixed length 
Average time = 55 ms 

Variable length 2 
Average time (in I-/s) = 520L + 1500L + 7890 

Fixed Point Divide Fixed length and variable length 
Average time (in ms) =9.80 +.040 LOVD + (.520 LDVR + .740) (100-BI) 

where LDVD is len~th of dividend field, 
LDVR is length of divisor field, and B 1 is value specified in macro-instruction 

Floating Shift Right Fixed length and variable length 
Average time (in I-/s) = 4960 + 960L - 880 (A-B) 

Floating Shift Left Fixed length and variable length 
Average time (in I-/s) = 6460 + 1520 (B-A) - 360L 

Transmit Floating Fixed'length and variable. length 
Average time (in I-/s) = 400 + 40L 

Branch and Transmi t Floati ng Fixed length and variable length 
Average time (in I-/s) = 2280 + 40L 

Floating Square Roat Fixed length 
Average ti me = I 20 ms 

Variable length 2 
Average time (in I-/s) = 620L + 9776L + 5328 

Floating Sine Fixed length 
Average time = 150 ms 

Variable length 3 2 
Average time (inl-/s) = I68L +3792L + I 3340L +4708 

NOTE: These executions times are for arguments less than 2n. Arguments greater than 2IT are 
reduced by subtractions of 2. unti I within range. Therefore, the time required to perform these 
subtractions should be added to the average tim'e required for an argument less than 2n. 

Floating Cosine Fixed length 
Average ti me = 155 ms 

Variable length 3 2 
Average time (in I-/s) = I68L + 3792L + I 3420L + 5228 

Floating Arctangent Fixed length 
Average time = 260 ms 

Variable length 3 2 
Average time (in I-/s) = I68L + 2996L + 7792L + 7260 

Floating Exponential (Natural) Fixed length 
Average time = 160 ms 

NOTE: Add 70 ms to the average time if B is negative. 

Variable length 3 2 
Average time (in I-/s) = I68L + 3582L + 15890L + 26418 

Floating Exponential (Base 10) Fixed length 
Average time = 145 ms 

NOTE: Add 70 ms to the average time if 8 is negative. 

Variable length 3 2 
Average time (in I-/s) = I68L + 3656L + 15414L + 24538 

Floating Logarithm (Natural) Fixed length 
Average time = 290 ms 

Variable length 3 2 
Average time (in 1-15) = I68L + 3440L + 10530L + 12180 

Floating Logarithm (Base 10) Fixed length 
Average time = 305 ms 

Variable length 3 2 
Average time (in 1-15) = I68L + 3608L + 11610L + 15108 

152 



Table 24. 1620 Character Coding 

ALPHAMERIC 
MODE 

NUMERICAL 
MODE 

Character 
Input 

Typewriter Tape 

(Blank) (Space) C 

• (Period) X0821 

) ) XOC84 

+ + XOC 

$ $ XC821 

* * X84 

- (Hyphen) - X 

/ / OC1 

, (Comma) , OC821 

( ( ()ij4 

= = 821 

@ @ C84 

A-I A-I XO,1-9 

° (-) (None) (None) 

J-R J-R X,1-9 

1-9 (-) J-R X,1-9 

S-Z s-z 0,2-9 

° (+) ° 0 

1-9 (+) 1-9 1-9 

* * 082 

~rrf~~~~m~~~trr~~!~r};~~~~~ 

(Blank) (Space) C 

° (+) 0 ° 
0(-) 0 X,XOC 

1-9 (+) 1-9 1-9 

1-9 (-) 1-9 X, 1-9 

* * 082 

* * X82 

=- * 08421 

=- * X8421 

Num 
Blank t @ C84 

t For Card Fonnat Use Only 
* Dump Numerically Operation 11 only 

Write Numerically Operation 11,0 
** Recorded as 0,8,4,2,1 in disk storage 

Card 

(Blank) 

12,3,8 

12,4,8 

12 

11,3,8 

11,8,4 

11 

0, 1 

0,3,8 

0,4,8 

3,8 

4,8 

12, 1-9 

11,0 

11,1-9 

11,1-9 

0,2-9 

° or 12,0 

1-9 

0,2,8 

(Blank) 

0 

11,0 

1-9 

11,1-9 

0,2,8 

11,8,2 

0,7,8 

12,7,8 

4,8 

Core Storage Output 

Alpha Num Typewriter Tape Card 

C C (Space) C (Blank) 

C 3 X0821 12,3,8 

C 4 ) XOC84 12,4,8 

1 C + XOC 12 

1 3 $ XC821 11,3,8 

1 4 * X84 11,4,8 

2 C - X 11 

2 1 / OC1 0,1 

2 3 , OC821 0,3,8 

2 4 ( , 084 0,4,8 

3 3 : 821 3,8 

3 4 @ C84 4,8 

4 1-9 A-I XO,1-9 12, 1-9 

5 C - (Hyphen) X 11,0 

5 1-9 J-R X,1-9 11,1-9 

5 1-9 J-R X, 1-9 11,1-9 

6 2-9 S-Z 0,2-9 0,2-9 

7 C ° ° ° 
7 1-9 1-9 1-9 1-9 

C C82 (Stop) EOL 0,2,8 

C ° ° ° 
C ° 0 ° 
F ° X 

*11or 
11,0 

1-9 1-9 1-9 1-9 

F,1-9 1-9 X, 1-9 11,1-9 

C82 (Stop, WN) EOL(WN) 0,2,8 
:t (ON) 082 (ON) 

F82 * X82 11,8,2 

**C8421 $ 08421 0,7,8 

F8421 $ X8421 12,7,8 

>,' 

/ C84 @ C84 (Blank) 

Appendix 153 



Table 25, Core Storage Data Resulting From Reading Alphameric Card Data with RN Instruction 

Alpha 
Bits Entered into Core Storage 

by Read Numerically Instruction 
Character 

C F " .. 2 I 

Alpha 
Bits Entered into COrt' Sf() .. a~t· 

bl Read NUllleri(:all~' Instructioll 
Character 

(: F H 4 2 I 

A X 0 X 

B X 1 X 
C X X X 2 X 
0 X 3 X X X 

E X X X 4 X 

F X X X 5 X X X 

G X X X 6 X X X 

H X 7 X X X 
I X X X 8 X 

J X X X 9 X X X 

K X X X I X 

L X X X • , (period) X X X 

~1 X X X ., (comma) X X X 
N X X X @ X X X 

0 X X X ( X X X 

P X X X X X ) X X X 

Q X X X .- X X X 

H X X X * X X X 

S X - X 

T X X X + X 

U X Card 11 t) X 

V X X X 
flO 

12,0 X Only 
W X X X ::f: X X X 
X X X X • $ X X X X X 
y X Blank X 

Z X X X • Intnpretcd as Record Mark on W:'I: and TR iIlSlru('(iolls. 

154 



Appendix B 

Alphabetic Listing of all Messages 

Message Program Pages Message Program Pages 

XXXX DO TABLE FULL FORTRAN 122 DUP 0 TURN ON WRITE 
XXXX IMPROPER DO NESTING FORTRAN 122 ADDRESS KEY, START DUP 32 
XXXX MIXED MODE FORTRAN 122 END OF ASSEMBLY 
XXXX SYMBOL TABLE FULL FORTRAN 122 XXXXX CORE POSITIONS 
XXXXX ALABEL + XXXX ERN REQUIRED XXXXX 

(see Table 6) SPS 88 STATEMENTS PROCESSED SPS 90 
XXXXX CARD SEQ ERROR, END OF JOB Supervisor 14, 19 

CORRECT AND START Loader 139 
XXXXX CORES USED 

ENT ERROR 06 07 1617 3637 38 Supervisor 25 

XXXXX NEXT COMMON 
ENTER DUP CNTRL REC DUP 32 

END OF COMPILATION FORTRAN 124 
ENTER MONITOR CONTROL 

XXXXX LDI Supervisor 28 
RECORD Supervisor 19,21 

XXXXX NAME FORTRAN 128 
ER Dl (01 through G7) FORTRAN 132 

XXXXX SECTORS OF DATA 
ERROR Ll (Ll through LlO) FORTRAN 130 

COPIED FROM XXXXXX TO ERROR X FORTRAN 122 

XXXXXX DUP 39 ERROR IN FIELD AT COL. XX. 

XXXXXX LOADED FROM SET SW 4 TO IGNORE, OFF TO 

XXXXXX TO XXXXXX Loader 139 RE-ENTER CARD Supervisor 19 

XX XXXXX OVERLAP FORTRAN 131 ERROR IN FIE:LD AT COLUMN 
XXXXXXXXXX TYPE CHANGE DUP 33 XX. PHASE TERMINATED Supervisor 20 
XXXXXX XXXXX XXX XX LOADED FORTRAN 130 ERROR, INVALID CONTROL 
XXXX + XXXX ERROR N FORTRAN 122 RECORD FORTRAN 120 

XXX ... X (ID) SPS 87 ERROR, INVALID OUTPUT 

ALREADY DEFINED SPS 93 UNIT CODE FORTRAN 121 

AND FILE PROTECTED DUP 39 EXCEEDED SPECIFIED 

BAD DISK WRITE. RESET START Supervisor 26 CAPACITY BY XXXXX SPS 91 

CANNOT RESTORE COMMON - EXECUTION Supervisor 19 

RESET AND START TO RETRY Supervisor 19 EXECUTION INHIBITED FORTRAN 131 

CDP ERR XXXXX ir6 -n7 16 17 36 Supervisor 25 EXECUTION IS INHIBITED Supervisor 21 

37 38 ERROR, F OR K OUTSIDE RANGE FORTRAN 121 

CDR ERR XXXXX 06 07 16 17 36 Supervisor 25 FORTRAN LIBR NAME ENTERED 
37 38 XXXXXXXXXX DUP 42 

CONDITION IGNORED Supervisor 19 FLIPER XXXXX OVERLAP FORTRAN 131 

CONTROL STATEMENT INVALID, IMP ERR Supervisor 26 
RE-ENTER Loader 140 IMPROPER IND CODE IN 

CORE CAPACITY EXCEEDED BY SUBR XXXX SPS 92 
XXXXX LOCATIONS PROGRAM JOB ABANDONED FORTRAN 131 
IS TERMINATED SPS 92 JOB CARD GROUP ONLY Supervisor 19 

CORRECTIONS HAVE NOT LD2 Supervisor 28 
BEEN ENTERED DUP 34 LD 3 Supervisor 28 

DISK RD WR ERROR, START LD4 Supervisor 28 
TO RETRY Loader 139 

DISK SECTOR XXXXX 
LOAD SUBNAM FORTRAN 131 

CORRECTED DUP 34 
MAP ERR XXXXX XXXX Supervisor 26 

DK LOADED XX ..... XX DUP 32, 45 MAX N2 ALLOWABLE XXXXX FORTRAN 132 

DSK ERR XXXXX 06 07161736 MOD ERR XXXXX Supervisor 26 

37 38 Supervisor 26 MORE THAN 5 CYLINDERS OF 
DSKOFL Supervisor 26 RELOADABLE OUTPUT SSW 4 
DUP 0 ERROR 01 (01 through 21 ) DUP 40, 42, 43, 44 ON TO DUMP OUTPUT, OFF 
DUP 0 ERROR 51 (51 through 61) DUP 44 TO CONTINUE, NO OUTPUT SPS 91 

DUP 0 TUI\N OFF WRITE MUST RELOAD Supervisor 27 
ADDRESS KEY, START DUP 32 NAME XXXXX OVERLAP FORTRAN 131 

Appendix B 155 



Message Program Pages Message Program Pages 

NO DIM ENTRY FOR SECTION NUMBER ILLEGAL, 
SUBROUTINE SPS 91 START TO RE-ENTER 0 DALTR DUP 33 

NO ROOM IN TABLE SPS 93 SECTOR ADDRESS ILLEGAL 
NO TRAILER REC. CORRECT, START TO RE-ENTER 0 DALTR DUP 33 

RELOAD COMPLETE DECK SEQ Loader 139 
WITH CNTR REC, AND BR TO SUBR NOT LOCATED IN 
7404 Loader 139 SUBROUTINE MAP SPS 92 

NOT IN TABLE SPS 93 SUBROUTINES OTHER THAN 
OBJECT DIM ERROR PHASE PGM DIV USED SPS 91 

TERMINATED Supervisor 20 SYSTEM DIM ERROR PHASE 
OBJECT NAME ERROR PHASE TERMINATED Supervisor 21 

TERMINATED Supervisor 21 TRAILER CARD SEQ ERROR, 
PACK NUMBER. ERROR ON CORRECT AND START Loader 140 

MODULE X. SET SSW4 TO TRP ERR Supervisor 26 
IGNORE OFF TO RECOMPARE Supervisor 19 TRP ERROR MUST RELOAD Supervisor 27 

PTR ERR XXXXX 06 07161736 TYP ERR XXXXX 06 07 16 17 36 
37 38 Supervisor 25 3738 Supervisor 25 

PTP ERR XXXXX 06 07 16 17 36 TYPE-IN EXCEEDS SECTOR 
3738 Supervisor 25 LENGTH~ START DUP 34 

RDER Loader 139 UNDEFINED SYMBOL XXXXX SPS 93 
RE-ENTER STATEMENT SPS 90 WRITE AND SAVE (SEEK 
RE-ENTER OPERANDS SPS 90 START STOP) DUP 33 
SECTION DUP 33,34 WRITE AND ZERO (SEEK 
SECTOR DUP 33 START STOP) DUP 33 

NOTE: X's represent variable characters. 

156 



Page 
Absolute program .................................. 8 
ACCEPT statement ................................ 107 
ACCEPT TAPE statement . . . . . . . . . . . . . . . . . . . . . . . . . .. 107 
Add (A) instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 63, 141 
Add Immediate (AI) instruction . . . . . . . . . . . . . . . . . .. 63, 141 
Adding macro-instructions to processor . . . . . . . . . . . . .. 79, 93 
Adding subroutines 

FORTRAN ..................................... 133 
SPS ........................................... 79 

Address 
actual, ........................................ . 
adjustment, .................................... . 
equivalents for PICK, ............................ . 
length of, ... ' ................................... . 
symbolic, ...................................... . 
types of, used as operands ........................ . 

Address Check indicator ............................ . 
Altering assignment of disk storage drives ............. . 
Alter Sector routine ............................... . 
Analog Output Check code ......................... . 
Analog Output Setup code .......................... . 
Arguments 

FORTRAN .................................... . 
SPS .......................................... . 

52 
53 
74 
52 
52 
52 
27 
16 
33 

149 
149 

110 
69 

Arithmetic Instructions summary ..................... 141 
Arithmetic mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 96 
Arithmetic precision (FORTRAN) .................... 98 
Arithmetic statement functions ....................... 116 
Arithmetic statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 
Arithmetic subroutines 

FORTRAN ..................................... 126 
SPS ........................................... 68 

Arithmetic subroutine macro-instructions . . . . . . . . . . . . . .. 69 
Arrays ........................................ 98,106 
Assignment of DIM entries and/or names, rules for. . . . . .. 45 
ASSEMBLE RELOCATABLE, SPS Control record . . . . .. 87 
Assignment of System DIM numbers . . . . . . . . . . . . . . .. 9, 131 
Asterisk 

FORTRAN ..................................... 99 
SPS ......................................... 50,53 

At (@) sign (special character) .................... 47, 51 
Automatic Fix/Float ................................ 114 
Availability list .................................... 3A 

BEGIN CARD INPUT, SPS Control record............. 87 
BEGIN PAPER TAPE INPUT, SPS Control record.... ... 87 
BEGIN TYPEWRITER INPUT, SPS Control record. . . . .. 87 
Blank ch~racter .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 

headed by, .... ... . .. ... ... . .. .. .. . .. ...... .... .. 66 
Branch and Adjust Assignment Counter (B7) ........ 54,143 
Branch and Transmit (BT) instruction . . . . . . . . . . . . . . . .. 145 
Branch and Transmit Floating 

instruction (BTFL) .............................. 145 
subroutine (BTFS) ............................ 68, 77 

Branch and Transmit Immedi;:tte (BTM) instruction ..... 145 
Branch Any Data Check (BA) instruction .............. 144 
Branch Back and Adjust Assignment Counter (BB2) .. 54, 145 

Index 

Page 
Branch Back (BB) instruction . . . . . . . . . . . . . . . . . . . . . . .. 145 
Branch Console Switch instructions (BC1, BC2, BC3, BC4) 144 
Branch Data Rea~y (BIR) instruction . . . . . . . . . . . . . . . .. 151 
Branch End of Message (BRE) instruction . . . . . . . . . . . .. 151 
Branch Equal (BE) instruction . . . . . . . . . . . . . . . . . . . . . .. 144 
Branch Exponent Check (BXV) instruction . . . . . . . . . . . .. 144 
Branch High (BH) instruction ....................... 143 
Branch Indicator (BI) instruction. . . . . . . . . . . . . . . . . . . .. 143 

Indicator Codes summary .......................... 149 
Branch instructions ......................... 143, 144, 145 
Branch Last Card (BLC) instruction . . . . . . . . . . . . . . . . .. 144 
Branch Low (BL) instruction . . . . . . . . . . . . . . . . . . . . . . .. 145 
Branch Mode Shift (BMC) instruction . . . . . . . . . . . . . . . .. 151 
Branch Negative (BN) instruction . . . . . . . . . . . . . . . . . . .. 145 
Branch No Data Ready (BNIR) instruction. . . . . . . . . . . .. 151 
Branch No End of Message (BNRE) instruction. . . . . . . .. 151 
Branch No Flag (BNF) instruction .... . . . . . . . . . . . . . .. 143 
Branch No Indicator (BNI) instruction . . . . . . . . . . . . . . . .. 144 

Indicator Codes summary .......................... 149 
Branch No Mode Shift (BNMC) instruction ............ 151 
Branch No Output Record Mark (BNOR) instruction . . . .. 151 
Branch No Overflow (BNV) instruction ................ 145 
Branch No Record Mark (BNR) instruction ............. 143 
Branch No SIOC Not Busy (BCB) instruction . . . . . . . . .. 151 
Branch Not Any Data Check (BNA) instruction ......... 145 
Branch Not Equal (BNE) instruction . . . . . . . . . . . . . . . . .. 144 
Branch Not Exponent Check (BNXV) instruction. . . . . . .. 145 
Branch Not High (BNH) instruction . . . . . . . . . . . . . . . . .. 144 
Branch Not Last Card (BNLC) instruction . . . . . . . . . . . .. 145 
Branch Not Low (BNL) instruction ................... 144 
Branch Not Negative (BNN) instruction. . . . . . . . . . . . . .. 144 
Branch Not Positive (BNP) instruction ................. 144 
Branch Not Zero (BNZ) instruction ................... 144 
Branch on Digit (BD) instruction . . . . . . . . . . . . . . . . . . .. 143 
Branch Out of Noninterruptible Mode (BO) instruction . .. 150 
Branch Out and Load (BOLD) instruction . . . . . . . . . . . .. 150 
Branch Output Record Mark (BOR) instruction . . . . . . . .. 151 
Branch Overflow (BV) instruction . . . . . . . . . . . . . . . . . . .. 144 
Branch Positive (BP) instruction . . . . . . . . . . . . . . . . . . . . .. 144 
Branch SIOC Not Busy (BCNB) instruction ............ 151 
Branch Zero (BZ) instruction . . . . . . . . . . . . . . . . . . . . . . .. 144 

CALL EXIT linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
CALL EXIT statement 

FORTRAN ..................................... 105 
SPS ........................................... 83 

CALL LINK linkage....... ...... ... ............ ... 21 
CALL LINK statement 

FORTRAN ..................................... 119 
SPS ........................................... 83 

CALL LOAD 
linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
macro-statement ................................. 83 

CALL statement 
FORTRAN ..................................... 118 
SPS ........................................... 83 

Index 157 



Page 
Card 1/0 ......................................... 23 
Card read error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 
Card write error .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 
Carriage, printer ............................ 137.2, 137.5 
Check Disk (CDN) instruction ....................... 147 
Check Disk Track (CTN) instruction .................. 148 
Check Disk Track/WLRC (CTGN) instruction .. . . . . . .. 147 
Check Disk/WLRC (CDGN) instruction .............. 147 
Clear Flag (CF) instruction . . . . . . . . . . . . . . . . . . . . . . . .. 148 
Coding sheet 

FORTRAN ..................................... 96 
SPS ..................................... ....... 47 

Commas.......................................... 50 
Comments 

FORTRAN ..................................... 95 
SPS 

with asterisk .................................. 50 
see Remarks 

Comments Monitor Control record. . . . . . . . . . . . . . . . . . . . 16 
COMMON statement ............................... 109 
Communications Areas ............ , ............ 29,40,41 
Compare Immediate. ( CM) instruction .. . . . . . . . . . . . . . .. 143 
Compare (C) instruction ............................ 143 
Constants 

FORTRAN ...................................... 97 
SPS 

at sign ...................................... . 
Define Alphameric Constant (DAC) .............. . 
Define Constant (DC) ......................... . 
Define Special Alphameric Constant (DSAC) ...... . 
Define Special Constant (DSC) ................. . 
Define Variable-Length Constant (DVLC) ........ . 

CONTINUE statement ........................... . 
Control (K) instruction ............................ . 
Control operation 

51 
58 
56 
59 
58 
58 

104 
147 

codes ....................................... 47, 147 
Control record trap error ............................ . 26 
Control records 

DUP ........................................ 32-42 
FORTRAN ......•............................... 120 
MONITOR..................................... 14 
SPS ..................... ;..................... 87 

Control statements (FORTRAN) ............ , " ...... 101 
Converting FORTRAN Object Programs to Core Image ... 128.1 
Core storage requirements ....... . . . . . . .. . . . . . . . . . . . • 11 
Customer Engineer (CE) Interrupt code . . . . . . . . . . . . . .. 149 
Cylinder Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 
Cylinder Overflow indicator . . . . . . . . . . . . . . . . . . . . . . .. 26, 27 

DALTR, DUP control record ......... '" .. . ... ... .... 33 
DATA control record ............................... 129 
Data transmission subroutine macro-instructions .. . . . . . .. 69 
Data transmission subroutines .... . . . . . . . . . . . . . . . . . . . . 68 
DCOPY, DUP control record ........ '" ..... " . .. . . .. 39 
DDUMP, DUP control record. ... ....... .. . .. ... ..... 35 
Declarative operations 

card format (list) ................................ 90 
codes ........................................ 47,55 
functions ........... ;........................... 55 
summary ...................................... . 

Define Alphameric Constant (DAC) statement ......... . 
at sign .... '" ....................... , ......... . 
blank' character ................................. . 

Define Alphameric Symbol (DAS) statement .......... . 
Define Card Alphameric (DCA) ..................... . 

158 

140 
58 
51 
51 
56 
84 

Page 
Define Card Numerical (DCN) ................ _.. .... 84 
Define Disk without WLRC (DD) .................... 84 
Define Disk with WLRC (DDW) ................... " 84 
Define Constant (DC) statement ..................... 56 

at sign ......................................... 51 
Define Disk Address (DDA) statement . . . . . . . . . . . . . . .. 60 
Define Disk Pack Label Routine. . . . . . . . . . . . . . . . . . . . .. 41 
DEFINE DISK statement . . . . . . . . . . . . . . . . . . . . . . . . . .. 110 
Define END (DEND) statement ................... , . 65 
Define FORTRAN Library Subroutine Name routine..... 42 
Define Group Mark (DGM) statement . . . . . . . . . . . . . . .. 61 
Define Message (DMES) statement . . . . . . . . . . . . . . . . . .. 61 
Define Numerical Blank (DNB) statement. . . . . . . . . . . . .. 59 
DEFINE OP CODE, SPS Modification Control record . . .. 93 
Define Origin (DORG) statement. . . . . . . . . . . . . . . . . . . .. 65 
Define Paper Tape Alphameric (DPTA) ............... 84 
Define Paper Tape Numerical (DPTN) .......... . . . . .. 84 
Define Parameters routine ................ . . . . . . . . . .. 40 
Define Printer Alphameric (DPRA) ................. 137.3 
Define Printer Numerical (DPRN) .................. 137.3 
Define Special Constant (Numerical) DSC statement . . . .. 58 
Define Special Symbol (Numerical) DSS statement. . . . .. 56 
Define Symbol (Numerical) DS statement. . . . ... . . . .. .. 55 
Define Symbolic Address (DSA) statement . . . . . . . . . . . .. 59 
Define Symbolic Block (DSB) statement . . . . . . . . . . . . . .. 59 
DEFINE SYSTEM SYMBOL TABLE, SPS Modification 

Control record ................................. " 93 
Define Typewriter Alphameric (DTA) ................ 84 
Define Typewriter Numerical (DTN) ................. 84 
Define Variable-Length Constant (DVLC) statement .... 58 
DELET, DUP control record ........................ 39 
DELETE OP CODE, SPS Modification Control record . . .. 93 
Delete Programs routine . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 
DFINE, DUP control record ...... , ........ , . .. . . . ... 40 
DFLIB, DUP control record ....... , .... ,. . .. . . . ... .. 42 
DIM entry ................ , ........ , ............. 9,45 
DIM numbers for Monitor System ................. " . . 9 
DIM table........................................ 9 
DIMENSION statement . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 109 
Disk control field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 
Disk I/O constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
Disk 1/0 options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
Disk pack identification numbers ................ , 11, 17,41 
Disk pack label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 41 
Disk storage I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 
Disk storage requirements ........................... 8 
Disk Utility Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 
Disk Utility Program, printer. . . . . . . . . . . . . . . . . . . . . .. 137.1 
Disk-to-Disk routine .............................. " 38 
Disk-to-Output routine ............................ " 34 
Divide (D) instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 141 
Divide Immediate (DM) instruction. . . . . . . . . . . . . . . . . .. 141 
Divide subroutine .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 
Divisor, incorrect positioning . . . . . . . . . . . . . . . . . . . . . . . .. 76 
DLABL, DUP control record . . . . . . . . . . . . . . . . . . . . . .. 37,41 
DO statement ...... , ..... , ......................... 103 
Dollar sign (special character) .................. 50, 51, 66 
DREPL, DUP control record ........................ 38 
Drive code ..................................... 16,60 
Dummy variables .............................. 117,118 
Dump Numerically Card (DNCD) instruction ......... 146 
Dump Numerically (DN) instruction ................. 146 
Dump Numerically Paper Tape (DNPT) instruction ..... 146 
Dump Numerically Typewriter (DNTY) instruction ..... 146 



Page 
DUP, Monitor Control record . .. ................... 14, 15 
Duplicate symbols (labels) ....................... 65, 89 
DWRAD, DUP control record. '" ..... , ... ... ..... .. 32 

END statement ................................... 105 
End-of-Job Monitor Control record ................. 14, 16 
End-of-line character ............................... 50 
ENDLIB, SPS Modification Control record ............ 94 
Entry Check error ................................. 25 
Entry points of I/O routine. . . . . . . . . . . . . . . . . . . . . . . . .. 21 
Equal sign (SPS special character) .................. 50 
EQUIVALENCE statement ......................... 109 
Equivalence table ................................ 9, 36 
Error checking, FORTRAN ......................... 132 
Error correction (SPS) 

assembly time .................................. 88 
Error correction codes, I/O Error routine .............. 24 
Error Count Retrieval routine . . . . . . . . . . . . . . . . . . . . . . .. 27 
Error detection and correction, DUP .................. 42 
Error Messages - (see Appendix B) ................... 155 
ERROR STOP, SPS control record ................... 87 
Evaluation of arguments (subroutines) 

FORTRAN ..................................... 115 
SPS ........................................... 69 

Execution times (SPS subroutines) ................... 152 
Exponents 

FORTRAN ..................................... 96 
SPS ........................................... 72 

Expressions, FORTRAN ............................ 99 

FANDK Control record ............................ 120 
FETCH statement ................................. 108 
File protected programs ............................ 10 
FIND statement .................................. 107 
Fixed length, defined (SPS) ......................... 69 
Fixed-length mantissa subroutines (SPS) .............. 68 
Fixed-Point Divide (FD) subroutine . . . . . . . . . . . . . . . . .. 68 
Fixed-point variables (FORTRAN) ................... 98 
Flag indicator operand. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 

in immediate instructions ... .- . . . . . . . . . . . . . . . . . . . . .. 52 
in indirect addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52 

Flags, set .................................... 49,51, 72 
Floating Add 

instruction (FADD) ............................. 141 
subroutine ( FA) .............................. 68, 74 

Floating Arctangent (FA TN) subroutine ............ 68, 78 
Floating Cosine (FCOS) subroutine ................ 68, 78 
Floating Divide 

instruction ( FD IV) .............................. 141 
subroutine (FD) .............................. 68, 75 

Floating Exponential (Base 10) FEXT subroutine .. . .. 68, 79 
Floating Exponential (Natural) FEX subroutine . . . . .. 68, 78 
Floating Logarithm (Base 10) FLOG subroutine . . . . .. 68, 79 
Floating Logarithm (Natural) FLN subroutine .... . .. 68, 79 
Floating Multiply 

instruction (FMUL) ............................. 141 
subroutine (FM) .............................. 68, 75 

Floating-point arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71 
Floating-point variables (FORTRAN) ................. 98 
Floating Shift Left 

instruction (FSL) ................................ 142 
subroutine ( FSLS ) ............................ 68, 77 

Floating Shift Right 
instruction (FSR ) ............................... 142 

Page 
subroutine (FSRS) ............................ 68, 76 

Floating Sine (FSIN) subroutine . . . . . . . . . . . . . . . . . .. 68, 78 
Floating Square Root (FSQR) subroutine . . . . . . . . . . .. 68, 78 
Floating Subtract 

instruction (FSUB) .............................. 141 
subroutine (FS) ............................... 68, 75 

FOR Monitor Control record ...................... 13, 15 
Format of DIM entry ...... , ........... , ... . . . .... . . 9 
FORMAT statement .............................. " III 
FO RMA T statement (Printer) ..................... 137.4 
FORTRAN and SPS output ........................ " 45 
FORTRAN Control records ........................ " 120 
FORTRAN Control Records (Printer) ............... 137.5 
FORTRAN II-D ................................. " 95 
FORTRAN II-D language ......................... " 95 
FORTRAN subroutine error codes .......... , ....... " 132 
FORX Monitor Control record . . . . . . . . . . . . . . . . . . . . .. 13, 15 
Full track disk operation .......................... " 24 
Function Register Check Indicator code ............... 149 
FUNCTION statement ............................. 117 
Functional subroutine macro-instructions . . . . . . . . . . . . . .. 69 
Functional subroutines ............................. 68 

GET macr.o-statement .............................. 83 
GO TO statements .......... '" .................. " 101 

Halt (H) instruction .............................. " 148 
Halt at core address 00467 .......................... 26 
Head character .................................. " 66 
Heading 

for combining programs ......................... " 65 
in nesting ..................................... " 66 
line ... , ................ , ..... , .. , ....... " . . ... 47 

High indicator .................................... 29 

I/O constants ..................................... 22 
I/O Error routine ................................ " 24 
I/O routine ....................................... 21 
ID NUMBER dddd, SPS control record .............. " 88 
Identification records, FORTRAN . . . . . . . . . . . . . . . .. 124, 134 
IF statement ...................................... 102 
IF (SENSE SWITCH) statement ................... " 102 
Immediate-type instructions ......................... 52 
Imperative operations .............................. 62 

arithmetic ....... " . . . . . . . . . . . . . . . . . . . . . . . . . .. 63, 141 
branch ...................................... 63, 143 
card format (list) ................................ 90 
codes, 1710 ............. ' ...................... " 150 
input/output ................................. 64, 146 
internal data transmission ...................... 63, 142 
miscellaneous ................................ 64, 148 

Index, DO ........................................ 103 
Indicator codes (1620/1710) ........................ 149 
Indirect addreSSing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 
Initializing the Monitor System ... . . . . . . . . . . . . . . . . . . . . 8 
Input/Output options ............................. " 22 
Input/Output statements ( FORTRAN) ................ 105 
Input instructions .......................... 146, 147, 148 
Internal Data Transmission instructions ................ 142 
I/O declarative statements ......................... " 84 
I/O macro-statements .............................. 83 

Job arrangement ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
JOB Monitor Control record ....................... 12, 14 

Index 159 



Page 

Label (SPS) 
characters permitted in . . . . . . . . . . . . . . . . . . . . . . . . . . .. 47 
five characters dr less, headed .... . . . . . . . . . . . . . . . . .. 66 
Symbol table ....................... . . . . . . . . . . • .. 90 
table, see Symbol table 

Label, disk pack 
1401, 1410, 1440 ................................ 10 
Monitor ...................................... 11,41 
Mutual.......... ................ ........... .... 10 

LDISK Control record .............................. 121 . 
LIBR, SPS control record . . . . . . . . . . . . . . . . . . . . . . . . . . .. 88 
Library functions (FORTRAN) ...................... 114 

additional ...................................... 115 
writing in SPS .................................. 136 

Link program ..................................... 119 
Linkage instructions ........................... 69, 70, 80 
Linkages for Supervisor I/O routine ................... 21 
LIST CARD, SPS control record . . . . . . . . . . . . . . . . . . . . .. 88 
LIST OP CODE, SPS Modification Control record ...... , 93 
LIST TYPEWRITER, SPS control record . . . . . . . . . . . . .. 88 
LIST (FORTRAN) ................................ 113 
Load Programs routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36 
Load Dividend Immediate (LDM) instruction ......... , 141 
Load Dividend (LD) instruction. . . . . . . . . . . . . . . . . . . .. 141 
Load-on-call subprograms ........................... 119 
Loader, System .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 138 
Loader routine .................................... 27 
Loading the Monitor System to disk storage . . . . . . . . . . . . 8 
LOCAL Control record ............................. 129 
Location assignment counter (SPS) ............. 62, 65, 140 
Logic instructions .......................... 143, 144, 145 

Machine requirements .............................. 8 
Macro-instructions (see Subroutines) 

operation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 
rules for coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 

Mantissa 
FORTRAN ............................... 40,96,120 
SPS ...................................... 40, 71, 87 

MANTISSA LENGTH nn, SPS control record ......... , 87 
Manual restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
MAR Check Indicator code ........ , ................. 149 
Mask Indicator code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 149 
Mask Interrupts (MK) instruction .. . . . . . . . . . . . . . . . . .. 150 
Matrix Input/Output (FORTRAN) ................... 106 
MBR-ECheck indicator ............................ , 27 
MBR-O Check indicator ............................ 27 
Miscellaneous instructions (SPS) .................. 64, 148 
Mode of expressions (FORTRAN) .................... 99 
Modification of variable-length subroutine. . . . . . . . . . . . . . 80 
Modification program, SPS II-D ..................... , 92 
Modifier constants ................................. 80 
Module change numbers ............................. 16 
Monitor Control Record Analyzer routine ........... . . . 18 
Monitor Control Records ........................... 12 
Monitor disk pack label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Monitor I System .................................. 5 
Monitor I System loader ............................ , 138 
Move Flag (MF) instruction . . . . . . . . . . . . . . . . . . . . . . . .. 148 
Multiplex Complete, code ........................... 149 
Multiply Immediate (MM) instruction ................ 141 
Multiply (M) instruction ........................... 141 
Mutual Disk Pack Labels ........................... 10 

160 

Name, program ................................... . 
NAME, aaaaaa, SPS Control record .................. . 
N (noise) digit, defined ............................ . 
Nesting of routines ................................ . 
NOISE DICIT n, SPS Control record ................. . 
No Operation (NOP) instruction .................... . 
Normalizing ..................................... . 
NO SUBROUTINES, SPS control record ............. . 

Page 

45 
88 
72 
66 
87 

148 
72 
88 

OBJECT CORE n, SPS Control record....... .... ...... 87 
Object deck format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 
Object program execution (FORTRAN) ............... 128 
Operand ..................................... " . .. 51 

address adjustment of ........... ,................. 53 
asterisk, use of ...........•...................... 52 
at (@) sign, use of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 
blank in ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 
comma, use of .................................. , 50 
dollar sign, use of ............................... , 51 
end-of-line character, use of . . . . . . . . . . . . . . . . . . . . . .. 50 
flag indicator ................................... 51 
special characters in ..... . . . . . . . . . . . . . . . . . . . . . . . .. 50 
types of addresses used as ............. . . . . . . . . . . .. 52 
see P and Q operands 

Operating procedures (FORTRAN) ................... 121 
Operating procedures, FORTRAN object programs ...... 131 
Operating procedures (SPS) ......................... 86 
Operation code 

coding sheet field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 
Control ...................................... 47,64 
Declarative ................................... 47, 55 
Imperative .................................... 47, 62 

Operation of Monitor System ........................ 8 
Operation symbols ................................. 99 
Operator Entry Indicator code ....................... , 149 
Operators 

FORTRAN ..................................... 99 
SPS ............................................ 53 

Origin ......................................... 65, 81 
OUTPUT CARD, SPS Control record....... .......... 88 
Output format .................................... 35 

card ., ........................................ ;. 35 
paper tape ...................................... 36 
typewriter ...................................... 36 

OUTPUT PAPER TAPE, SPS Control record .......... , 88 
Output Printer (I710) control codes .............. . . .. 61 
Output unit codes ......................... 146,147, 148 
Output instructions ........................ 146,147,148 
Output listing (SPS) ............................... 90 
Overflow, exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 
Overlap errors (FORTRAN) ........................ 131 

P operand ...................................... 49-54 
modifier constants ............................... , 80 

Paper tape I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 
Paper tape read error . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 25 
Parentheses 

FORTRAN ..................................... 100 
SPS ........................................... 49 

PAUS Monitor Control record ..................... 14,15 
PAUSE statement ................................... 104 
Period (special character) ........................... 47 
Permanently aSSigned programs ...................... 10 



Page 
Pick subroutine .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71, 74 

address equivalents for ........................... 74 
functions ....................................... 80 

POB}P Control record ............... . . . . . . . . . . . . . .. 121 
PRINT statement ............................ 107, 137.4 
Printer Busy, indicator ........................... " 137.1 
Process Branch Indicators, 1-20, codes ................. 149 
Process Interrupts 1-12, codes ....................... 149 
Processor (SPS) ................................... 86 
Product area .................................... 75,76 

mnemonics ..................................... 67 
Programming SPS II-D .. , ......... ' .. , ... '" . .. . ... 55 
Program switch settings 

FORTRAN ..................................... 130 
Loader .......... .' .............................. 138 
Monitor ........................................ 98 

PSTSN Control record .............................. 121 
PUNCH RESEQUENCED SOURCE DECK, SPS Control 

record ......................................... 88 
PUNCH statement ................................. 107 
PUNCH SYMBOL TABLE, SPS Control record ........ , 88 
PUNCH TAPE statement ........................... 107 
PUT macro-statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 

Q operand ...................................... 49-54 
in Immediate instructions ..... . . . . . . . . . . . . . . . . . . . .. 52 
see Operands 

Range, DO ....................................... 103 
Read Alphamerically Card (RACD) instruction . . . . . . . .. 147 
Read Alphamerically Paper Tape (RAPT) instruction . . .. 146 
Read Alphamerically Typewriter (RA TY) instruction . . .. 146 
Read Alphamerically (RA) instruction . . . . . . . . . . . . . . . .. 146 
Read check indicator ............................. 25, 27 
Read Disk (RDN) instruction. . . . . . . . . . . . . . . . . . . . . . .. 147 
Read Disk Track (RTN) instruction. . . . . . . . . . . . . . . . . .. 147 
Read Disk Track/WLRC (RTGN) instruction ... . . . . . .. 147 
Read Disk/WLRC (RDGN) instruction . . . . . . . . . . . . . .. 147 
Read Numerically Paper Tape (RNPT) instruction . . . . .. 146 
Read Numerically (RN) instruction .................. 146 
Read Numerically Typewriter (RNTY) instruction ...... 146 
READ statement .................................. 106 
Record mark .............. '" .. , ...... , ......... 51,57 
RECORD statement ............................... 108 
Relocatable program ............................... 8 
Relocatability, rules ................................ 92 
Remarks ......................................... 49 
Replace Programs routine ........................... 38 
Repositioning of DISK access arms. . . . . . . . . . . . . . . . . . .. 24 
Restart, manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
Restore (RSTR) statement .......................... 67 
Return Carriage Typewriter (RCTY) instruction ., . . . . .. 147 
RETURN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 118 
Rules for assignment of DIM entries and/or names. . . . .. 45 
Rules for statement writing (SPS) .................... 49 

Save ( SAVE) statement ............................ 67 
Save error count procedure .......................... 24 
Sector, disk 

address ........................................ 60 
count ......•................................... 60 

Seek (SK) instruction .............................. 147 
SEEK macro-statement ............................. 83 
Select ADC and Increment (SLAD) instruction . . . . . . . .. 150 

Page 
Select ADC Register (SLAR) instruction ............ " 150 
Select Address and Contact Operate (SA CO) instruction " 150 
Select Address and Operate (SAO) instruction . . . . . . . . .. 150 
Select Address (SA.) instruction .................... " 150 
Select Analog Output and Signal (SA OS) instruction . . .. 150 
Select Contact Block (SLCB) instruction . . . . . . . . . . . . . .. 150 
Select Manual Entry Switches (SLME) instruction .... " 150 
Select Read Numerically (SLRN) instruction .......... , 150 
Select Real-Time Clock (SLTC) instruction ........... 150 
Select TAS (SL T A) instruction ...................... 150 
Sequential Program table ........................... 10 
Set Flag (SF) instruction .......................... " 148 
Sign control in floating-point arithmetic (SPS) ......... 72 
Slash symbol 

FORTRAN ..................................... 99 
SPS ........................................... 47 

Source Program 
FORTRAN ..................................... 119 
SPS .. . . . .. . . . . . . .. . . .. . . . . . . . . .. .. . . . . . . . . . . . .. 86 

Space Typewriter (SPTY) instruction ............... " 147" 
Special Characters 

for statement writing ........................... 49-51 
permitted in labels ............................. " 47 

Specification statements ............................. 108 
SPS Control records ................................ 87 
SPS Monitor Control record . . . . . . . . . . . . . . . . . . . . . . .. 12, 15 
SPSX Monitor Control record ...................... 13, 15 
Stacked input ..................................... 17 
Statements 

FORTRAN ..................................... 95 
FORTRAN (Printer) ............................ 137.4 
SPS ............................ '" .. , ....... , 47-50 
SPS (Printer) ................................. 137.2 

STOP statement .... '" ..... , .. , ................. " 105 
STORE CORE IMAGE, SPS Control record ............ 88 
STORE RELOADABLE, SPS Control record ......... " 88 
Subprogram statements ............................ " 117 
SUBROUTINE statement ............................ 117 
Subroutines 

FORTRAN 
library ....................................... 125 

adding to ................................. " 133 
Arithmetic and I/O ............................ 126 
SUBROUTINE statement ....................... 117 

SPS 
ad.ding, ...................................... " 79 
arIthmetic, .................................... 69 
data transmission, .............................. 69 
entry points ........................... . . . . .. 70, 81 
equal/zero indicator ........................... 74 
execution times ................................ 152 
functional .................................... 68 
high/positive indicator ........................ " 74 
identification number. . . . . . . . . . . . . . . . . . . . . . . . . .. 70 
overflow indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 
pairing, ...................................... 70 
sets .......................................... 70 
writing, ..................................... . 
see macro-instructions 

SUBROUTINE SET nn, SPS Control record ........... . 
Subscripted variables .............................. . 
Subscripts ....................................... . 
Suptract Immediate (SM) instruction ................ . 
Subtract (S) instruction ........................... . 

79 

87 
99 
98 

141 
141 

Index 161 



Page 

Supervisor program ................................ 12 
Symbol table 

FORTRAN ..................................... 127 
SPS .......................... , ............... 88,89 
system ....................................... 88, 93 

System error ...................................... 26 
System header label area, 1401, 1410, 1440 . . . . . . . . . . . .. 10 
System Output format ............................. 8, 27 

indicator codes ......... ' ....................... " 28 
System Symbol table ........................ 88,93, 137.4 
SYSTEM SYMBOL TABLE, SPS Control record ......... 88 

Tables 
1. Numbered Error Messages Generated 

by Disk Utility Routines . . . . . . . . . . . . . . . . . . . . . .. 43 
2. DMES Representation of Output Printer Control 

Codes ...................................... 61 
3. SPS Subroutine Method of Evaluating Arguments .. 68 
4. SPS Subroutine Group and Identification Numbers.. 70 
5. SPS Subroutine Errors ........................ 73 
6. Description of SPS Error Codes . . . . . . . . . . . . . . . .. 89 
7. Disposition of SPS Errors when no Error 

Stop Statement is used ........................ 89 
8. Codes and Assembled Data for SPS 

Modification Program ......................... 94 
9. Program Switch Settings for FORTRAN II-D 

Compilation ................................. 122 
10. FORTRAN Phase 1 Source Program Errors ....... 123 
11. FORTRAN II-D Library Subroutines ............ 126 
12. FORTRAN Arithmetic and Input/Output 

Subroutines ................................. 127 
13. FORTRAN Loader Errors ..................... 130 
14. FORTRAN Subroutine Error Codes. . . . . . . . . . . . .. 132 
14.1 Imperative Printer Mnemonics ............... 137.2 
14.2 OP Codes and Q Modifiers Generated for 

Printer Mnemonics ......................... 137.3 
14.3 Q Operands and Q Modifiers for Skip and 

Space Operations .......................... 137.3 
15. Summary of SPS Declarative Operations ......... 140 
16. Summary of SPS Arithmetic Instructions ......... 141 
17. Summary of SPS Internal Data Transmission 

Instructions ................................. 142 
18. Summary of SPS Logic (Branch and Compare) 

Instructions ................................. 143 
19. Summary of SPS Input and Output Instructions .... 146 
20. Summary of SPS Miscellaneous Instructions ...... 14'8 
21. 1620/1710 Indicator Codes for SPS BI-BNI 

Instructions ................................. 149 
22. 1710 SPS Operation Codes ................... " 150 
23. SPS Subroutine Macro-instruction Execution 

Times ...................................... 152 

162 

Page 

24. 1620 Character Coding ........................ 153 
25. Core Storage Data Resulting from Reading 

Alphameric Card Data with RN Instruction ...... 154 
Tabulate Typewriter (TBTY) Instruction ........... , .. 147 
Trace feature, FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . .. 125 
Transfer Numerical Fill (TNF) instruction . . . . . . . . . . . .. 142 
Transfer Numerical Strip (TNS) instruction ............ 142 
Transmit Floating 

instruction (TFL) ............................... 142 
Subroutine (TFLS ) ........................... 68, 77 

Transmit Record (TR) instruction . . . . . . . . . . . . . . . . . . .. 142 
TWO PASS MODE, SPS Control record . . . . . . . . . . . . . .. 87 
TYPE Monitor Control record ...................... 14,15 
TYPE statement ..... ' .............................. 107 
TYPE SYMBOL TABLE, SPS Control record .. ; . . . . . . .. 87 
Typewriter I/O ................................... 23 
Typewriter read error .............................. 25 
Typewriter write error . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 

Unavailable disk drive error. . . . . . . . . . . . . . . . . . . . . . . .. 26 
Underflow, exponent ............................... 73 
Unmask Interrupts (UMK) instruction ... , ............. 150 
Unnormalized numbers .............................. 72 

Variable length, defined ............................ 69 
Variables (FORTRAN) .............................. 97 
Variable-length mantissa subroutines (SPS) ............ 68 

WLR-RBC check indicator ...................... " ., 27 
Working areas, subroutine 

FORTRAN ......................... ;........... 133 
SPS ........................................... 80 

Working cylinders ...........•............ 9,86, 110, 132 
Write Addresses routine. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 32 
Write Alphamerically Card (WACD) instruction ........ 147 
Write Alphamerically Paper Tape (WAPT) instruction ... 147 
Write Alphamerically Typewriter (WATY) instruction .... 147 
Write Alphamerically (W A) instruction . . . . . . . . . . . . . . .. 147 
Write check indicator. . .. . . . . . . . . . . . . . . . . . . . . . . . .. 25, 27 
Write Disk (WDN) instruction ....................... 147 
Write Disk Track/WLRC (WTGN) instruction. ' ........ 147 
Write Disk Track (WTN) instruction ........... , .... , 148 
Write Disk/WLRC (WDGN) instruction ......... , .... 147 
Write error count error. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 
Write Numerically Card (WNCD) instruction ......... 146 
Write Numerically Paper Tape (WNPT) instruction ..... 146 
Write Numerically Typewriter (WNTY) instruction ..... 146 
Write Numerically (WN) instruction ................. 146 

XEQ Monitor Control record . . . . . . . . . . . . . . . . . . . . . .. 13, 15 
XEQS Monitor Control record ..................... 14, 15 



GC26~5739-4 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10801 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038.0
	038.1
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092.1
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128.0
	128.1
	129
	130
	131
	132
	133
	134
	135
	136
	137.0
	137.1
	137.2
	137.3
	137.4
	137.5
	137.6
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163

