BEATLET T-PACK AR

—

: veclrd

HP Vectra Technical Reference Manual
Volume 2: System BIOS

rAHewlett-Packard

IBM is a U.S. registered trademark of International
Business Machine Corporation.
Intel is a U.S. registered trademark of Intel Corporation.
Mouse System is a registered trademark of Mouse Systems
Corporation.
Vectra is a registered trademark of Hewlett-Packard Company.
MS-DOS is a registered trademark of Microsoft, Inc.

Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
program language without the prior written consent of Hewlett-Packard Company.

Vectra is a U.S. registered trademark of Hewlett-Packard Company
MS-DOS is a U.S. registered trademark of Microsoft, Incorporated
WordStar is a U.S. registered trademark of MicroPro International Corporation.

© 1985 by Hewlett-Packard Co.
Personal Office Computer Division
974 East Arques Avenue

P.O. Box 486

Sunnyvale, CA 94086, U.S.A.

First Edition - September 1985
Printed in U.S.A.

FCC Statement

Federal Communications Commission Radio Frequency Interference Statement

Warning: This equipment has been certified to comply with the limits for a Class B computing
device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached to
this computer. Operation with non-certified peripherals is likely to result in interference to radio
and TV reception.

More About Radio and Television Interference

Because the HP Vectra PC generates and uses radio frequency energy, it may cause interference
with radio and television reception in a residential installation.

Hewlett-Packard'’s system certification tests were conducted with HP-supported peripheral
devices and HP shielded cables, such as those you receive with your system. The HP Vectra PC
meets the requirements for a Class B computing device in accordance with the specifications of
Part 15, Subpart J, of protection against interference with radio and television reception in a
residential installation.

Hewlett-Packard provides instructions for using this computer in manuals covering setup,
connection of peripheral devices, operation, service, and technical reference.

Installing and using the computer in strict accordance with Hewlett-Packard's instructions will
minimize the chances that the HP Vectra PC will cause radio or television interference. However
Hewlett-Packard does not guarantee that the computer will not interfere with radio and
television reception. If you think your computer is causing interference, turn it off to see if the
radio or television reception improves. If the reception:

’

® Does not improve, your computer is not causing the problem.
® Does improve, your computer is causing the problem.
To correct interference, take one or more of the following steps:
® Relocate the radio or television antenna.

® Move the computer away from the radio or television.

® Plug the computer into a different electrical outlet, so that the computer and the radio or
television are on separate electrical circuits.

Make sure that all of your peripheral devices are certified Class B by the FCC.
Make sure you use only shielded cables to connect peripheral devices to your computer.

Consult your computer dealer, Hewlett-Packard, or an experienced radio/television technician
for other suggestions.

Order the FCC booklet called How to Identify and Resolve Radio-TV Interference Problems for
the U.S. Government Printing Office, Washington, D.C. 20402.

Warning: Electrical Safety

For the user’s safety, the power cords supplied with this product have grounded
plugs. The power cords should be used with properly grounded (3-hole) wall outlets
to avoid electrical shock. (You can also use multiple-outlet strips that have their own
circuit breakers.)

vi

Printed U.S.A.
part number 45961-90001

TABLE OF CONTENTS

1. INTRODUCTION 1

2. ROM BIOS OVERVIEW 5

3. VIDEO ... 25

4. INPUT SYSTEM ANDHP-HIL 51

5. KEYBOARD 135

6. MOUSE 197

7. SERIAL AND PARALLELIO. 215

8. DISC. . 237

9. SYSTEMDRIVERS 261

10. SYSTEM PROCESSES. 311
Appendices

A. BIOS INTERRUPTS. 327

B. MEMORY MAP ... 349

C. CMOS MEMORY LAYOUT AND REAL-TIME CLOCK. 371

D. WOPORTMAP 381

E. SYSTEMEQUATEFILE 395

F. DEFAULT DEVICEMAPPING 423

G. DRIVERWRITER'SGUIDE 425

H. ASCIl AND SCANCODE CONVERSION TABLES 483

I. CONVERSION TABLES 489

GLOSS ARY . 493

REFERENGCES 500

INDEX 501

SECTION 1

TABLE OF CONTENTS

1. INTRODUCTION
1.1 System Software............... ...
1.2 ROMBIOS

2 Introduction

SECTION 1. INTRODUCTION

This manual contains a detailed description of the ROM Basic Input/Output System (BIOS) of the
HP Vectra Personal Computer. Entry points, including the industry standard ROM BIOS entry
points and function calls, are documented in this manual.

This manual deals extensively with programming and programming concepts. It presumes that
the reader is familiar with the Microsoft Macro Assembler (MASM) and the Intel iAPX 80286
processor architecture.

Related documents which may be of interest to programmers and advanced users are listed at
the end of this volume in the References section.

1.1 System Software

Software operating on the system may be viewed as a three-level hierarchy: application
programs, operating system, and ROM BIOS. These three levels are defined as follows:

Application Programs—An application program is the top level of software. It performs
application-specific functions (i.e., spreadsheet or word processing functions). Application

programs rely on either DOS or the ROM BIOS for system functions such as character or disc
/0.

Operating System—The operating system provides the control and support functions
necessary for an application program to be executed. The operating system provides file-
oriented functions, as well as providing basic support for character I/O.

ROM BIOS—The ROM BIOS provides the interface between operating system software and
the hardware. The ROM BIOS provides a dual function; it constitutes the low level interface

between the hardware and operating system, as well as providing extended functions to
application programs.

Introduction 3

The higher the software level, the more powerful the functions provided by the software.
However, along with this power often comes additional overhead which reduces performance
and flexibility. A system programmer should choose the level of software interface required by
the individual set of design constraints. It is good programming practice to use the highest level
of system software that gets the job done. Some system functions can only be performed on the
highest level, since only system software supports the function. However, other system functions
may be performed at more than one level. Using a lower level such as the ROM BIOS provides
improved speed of execution and additional flexibility. Using ROM BIOS routines may affect
program portability to future HP products, and to other industry standard PC's.

1.2 ROM BIOS

The ROM BIOS provides a powerful set of system functions, allowing application programs full
access to the capabilities of the system while maintaining a hardware-independent interface.

The ROM BIOS allows the programmer or system designer to tailor the system to a specific set of
design constraints. Some of the tailoring methods provided to the programmer are:

® The number of interrupts can logically expand to fit requirements.

® Adapter cards can obtain a limited amount of RAM from the system BIOS without installing
device drivers.

® Applications can expand the features of the keyboard without replacing the industry
standard driver (INT 16H).

® The ROM resident mouse driver system can provide the ability to use various input
peripherals with applications not specifically written for them.

These methods maintain application compatibility with minimal effect on system performance.

4 Introduction

“N

SECTION 2

TABLE OF CONTENTS

2. ROM BIOS OVERVIEW 7
2.1 Memory Locations...................... 7
2.2 Interrupts 9
2.3 ROM BIOS, Drivers and Functions 12
2.3.1 STD-BIOS Drivers................. 12
2.3.2 EX-BIOS Drivers 13
2.3.3 EX-BIOS Standard Functions 14
2.3.4 EX-BIOS Parameter Passing Functions. 16
2.3.5 EX-BIOS Return StatusCodes 16
2.4 Data Structures................ ... 18
2.4.1 STD-BIOS Data Structures 18
2.4.2 EX-BIOS Data Structures. 19

6 ROM BIOS Overview

SECTION 2. ROM BIOS OVERVIEW

The ROM BIOS is divided into two components, the Standard BIOS (STD-BIOS) and the Extended
BIOS (EX-BIOS). The STD-BIOS supports the industry standard set of BIOS functions. The EX-BIOS
is unique to the HP Vectra. It provides a wide range of system functions and support for HP
peripherals. The STD-BIOS and EX-BIOS are discussed later in this section. Both the STD-BIOS and
the EX-BIOS are contained in the system ROM which resides at the top of system memory.

Note

Throughout the remainder of this manual the terms BIOS, STD-BIOS, and EX-BIOS will
be used. STD-BIOS and EX-BIOS are defined above. The term ROM BIOS will be used
to indicate the union of STD-BIOS and EX-BIOS.

This section contains an overview of the components of the ROM BIOS. These components are
the interrupt vectors, code modules, and data structures. Interrupt vectors form the link between
the operating system, applications, and the ROM BIOS. The code modules perform the ROM
BIOS functions. Data structures provide the means for the ROM BIOS (and to some extent the
applications) to maintain driver variables, data buffers, etc.

2.1 Memory Locations

Code modules are accessed through interrupt vectors. The interrupt vectors reside in the first
1KB of system RAM. Usually a code module has an associated data structure. The data structures
for the STD-BIOS code modules reside in system RAM in absolute memory locations 00400H
through 005FFH. The data structures for the EX-BIOS code module reside at the top of system
RAM. The address of the EX-BIOS data area will vary depending on the particular configuration
of the system.

Figure 2.1 shows the components of the ROM BIOS and their location within the system
memory. Each of the ROM BIOS components is discussed in detail in the remainder of this
section.

ROM BIOS Overview 7

Memory Map Block Diagram

000000H
Interrupt Vectors

000400H
STD-BIOS Data Area

000600H
STD-BIOS Data Expansion Area and
Temporary DOS Buffers

000700H
Disc Operating System — (DOS)

Variable*

Application Program Area

Top of Available RAM**
EX-BIOS Data Area

Top of RAM***

0A0000H
Video Display Memory

0CO0000H
Video Adapter Card ROM

0C8000H
Adapter Card Option ROM

O0E0000H
Processor ROM Extension

0F0000H
BIOS ROM

100000H
Extended Memory (Up to 15MB)

OFEO000H

Image of ROM at OEO0O00OH — OFFFFFH

*The length of the operating system is revision dependent.

**The Top of Available RAM is dependent on system configuration, in a
256KB system it is usually 03FO00H while in 640KB system it is usually
09FO000H.

***The Top of RAM is dependent on system configuration, in a 256KB
system it is 03FFFFH while in 640KB system it is 09FFFFH.

8 ROM BIOS Overview

Figure 2.1

2.2 Interrupts

The interface to the BIOS is through the interrupt structure of the 80286. The system allows for
three types of interrupts.

® Processor Interrupts—These interrupts allow system software to recover from error
conditions and other hardware exceptions.

® Hardware Interrupts—These interrupts are generated by the 8259A interrupt controllers on
the processor board. Hardware interrupts indicate that a system hardware component or
peripheral requires service.

® Software Interrupts—These interrupts are generated through the software ‘INT n’
instruction. Software interrupts allow system functions to be quickly and easily called by any
program.

Interrupt vectors for the processor interrupts are defined by the 80286. Interrupt vectors for the
hardware interrupts are mapped by the values programmed into the 8259A interrupt controllers
which are initialized by the ROM BIOS. Processor and/or hardware interrupts may be ‘simulated’
by a software interrupt mapped to the same interrupt vector. For example, Interrupt O is mapped
by the 80286 for Divide by O error. The service routine for this error condition may be executed
by an INT O instruction.

Each interrupt has an interrupt vector associated with it. The interrupt vector contains the Code
Segment and Instruction Pointer of the service routine for that interrupt. Each of these vectors
consists of two words (four bytes). The iIAPX 80286 architecture supports 256 interrupt vectors
which occupy the first 1024 bytes (00000H-003FFH) of system memory.

The interrupt vectors maintain industry standard compatibility while offering the expanded
capabilities of the HP EX-BIOS functions. Table 2.1 lists these assignments.

In order for the system to function properly, processor and hardware interrupt vectors are
initialized to valid service routines. Most unused vectors point to a null routine in the BIOS which
issues an End-of-Interrupt (EOI) signal to the 8259A(s) when required and returns. The Keyboard
Break and Timer Tick software interrupt vectors point to an IRET instruction in the BIOS. These
vectors are indicated by an IRET in table 2.1. Several software vectors are used as pointers to
data blocks instead of interrupt service routines. These vectors are indicated by a PT in table 2.1.

ROM BIOS Overview 9

Table 2.1

Interrupt Vector Assignments

Address Int Function Type* Service Routine**
000-003H O Divide by Zero PI STD-BIOS (Ul
004-007H 1 Single Step Pl STD-BIOS (U)
008-00BH 2 Nonmaskable Interrupt Pl STD-BIOS
00C-00FH 3 Breakpoint Pl STD-BIOS (Ul
010-013H 4 Arithmetic Overflow PI STD-BIOS (UI)
014-017H 5 Print Screen SW STD-BIOS (DRVR)
018-01BH 6 Invalid Opcode PI STD-BIOS (U
01C-01FH 7 Reserved Pl STD-BIOS (Ul
020-023H 8 Timer Interrupt (IRQO) HW STD-BIOS
024-027H 9 Keyboard ISR (IRQ 1) HW STD-BIOS
028-02BH A Reserved (IRQ2) HW STD-BIOS
02C-02FH B Serial Port 1 ISR (RQ 3) HW STD-BIOS (UI)
030-033H C Serial Port O ISR (IRQ4) HW STD-BIOS (Ul)
034-037H D Printer Port 1 ISR (IRQ5) HW STD-BIOS (U
038-03BH E Diskette ISR (IRQ6) HW STD-BIOS
03C-03FH F Printer Port O ISR (RQ7) HW STD-BIOD (Ul)
040-043H 10 Video SW STD-BIOS (DRVR)
044-047H 11 Equipment Check SW STD-BIOS (DRVR)
048-04BH 12 Memory Size SW STD-BIOS (DRVR)
04C-04FH 13 Diskette/Hard Disc SW STD-BIOS (DRVR)
050-053H 14 Serial SW STD-BIOS (DRVR)
054-057H 15 System Functions SW STD-BIOS (DRVR)
058-05BH 16 Keyboard SW STD-BIOS (DRVR)
05C-05FH 17 Printer SwW STD-BIOS (DRVR)
060-063H 18 Reserved SW N/A RET)
064-067H 19 Boot SW STD-BIOS (DRVR)
068-06BH 1A Time and Date SW STD-BIOS (DRVR)
06C-06FH 1B Keyboard Break SW STD-BIOS (IRET)
070-073H 1C Timer Tick SwW STD-BIOS (IRET)
074-077H 1D Video Parameter Table PT STD-BIOS
078-07BH 1E Diskette Parameter Table PT STD-BIOS
07C-07FH 1F Graphics Character Table PT STD-BIOS
080-083H 20 Program Terminate SW DOS

084-087H 21 DOS Function Calls SW DOS

088-08BH 22 DOS Terminate Address PT DOS

10 ROM BIOS Overview

Address Int Function Type* Service Routine**
08C-08FH 23 DOS < CTRL>-<Break>

Address SW DOS
090-093H 24 DOS Critical Error SW DOS
094-097H 25 DOS Absolute Disc Read SW DOS
098-09BH 26 DOS Absolute Disc Write SW DOS
09C-09FH 27 DOS Terminate Stay Resident ~ SW DOS
OAO-0CBH 28-32 Reserved for DOS SW DOS
0OCC-0OCFH 33 HP Mouse SW EX-BIOS (DRVR)
ODO-OFFH 34-3F Reserved for DOS SW DOS
100-103H 40 Alternate Diskette SW STD-BIOS
104-107H 41 Hard Disc Parameter Table (0) PT STD-BIOS
108-117H 42-45 Reserved SW STD-BIOS
118-11BH 46 Hard Disc Parameter Table (1) PT STD-BIOS
11C-17FH 47-5F Reserved SW STD-BIOS
180-19FH 60-67 Reserved for User Programs SW N/A
1A0-1A3H 68 8041 Service Request ISR HW EX-BIOS
1A4-1A7H 69 Keyboard OBF ISR HW EX-BIOS
1A8-1ABH 6A Reserved HW EX-BIOS
1AC-1AFH 6B Reserved HW EX-BIOS
180-1B3H 6C HP-HIL Controller ISR HW EX-BIOS
1B4-1B7H 6D Reserved HW EX-BIOS
1B8-1BBH 6E Reserved HW EX-BIOS
1BC-1BFH ©6F EX-BIOS Entry Point SW EX-BIOS (DRVR)
1C0-1C3H 70 Real-time Clock ISR (IRQ 8 HW STD-BIOS
1C4-1C7H 71 SW Redirected (IRQ9 HW STD-BIOS
1C8-1CBH 72 Reserved (IRQ 10) HW STD-BIOS (UI)
1CC-1CFH 73 Reserved (IRQ 11) HW STD-BIOS (UI)
100-1D3H 74 Reserved (IRQ12) HW STD-BIOS (Ul)
104-1D7H 75 Coprocessor (IRQ 13) HW STD-BIOS
108-1DBH 76 Hard Disc ISR (IRQ 14) HW STD-BIOS (UI)
10C-1DFH 77 Reserved (IRQ 15) HW STD-BIOS (UI)
1E0-1FFH 78-7F Not Used SW N/A
200-3C3H 80-FO Reserved SW N/A
3C4-3FFH F1-FF Not Used SW N/A

* Pl—Processor interrupt
HW—Hardware interrupt
SW—Software interrupt
PT—Interrupt vector used as pointer to data.
N/A—Not applicable

** Ul—Unused interrupt ISR
IRET—Interrupt returned
DRVR—Application callable entry point

ROM BIOS Overview 11

2.3 ROM BIOS, Drivers and Functions

The ROM BIOS is comprised of many drivers. For example, there is a driver to perform video
functions, one to perform disc functions, etc. The ROM BIOS drivers are organized into two
components. One component contains the STD-BIOS drivers that support the STD-BIOS

functions. The second component contains EX-BIOS drivers that support unique HP features.

Each driver supports one or more functions. A function can be viewed as a specific task. For
example, the Video Driver supports 22 separate functions that perform tasks such as setting the
display mode, moving the cursor, and displaying characters.

2.3.1 STD-BIOS Drivers

Drivers in the STD-BIOS are accessed through an interrupt. STD-BIOS drivers are accessed through
interrupts 05H and 10H through 1CH. Drivers are accessed by performing a software INT n
instruction, where n is the interrupt number assigned to the driver (refer to table 2.1.)

The function code and any required data are passed in the 80286 registers. Data passing
conventions for STD-BIOS drivers vary, however, there are aspects which are common.

® Most of the STD-BIOS drivers support more than one function. Therefore, multi-function
drivers must have the desired function code passed as part of the data. The AH register is
used on all multi-function drivers to pass the function code.

® Byte and word data is passed in the internal registers of the 80286. Registers AL, BX, CX,
and DX are usually used for this purpose. The register assignments and number of registers
used depend on the driver and driver function.

® |f the amount of data cannot fit in the internal registers of the 80286, a data buffer in
system memory is used. This buffer is usually pointed to by ES:BX, ES:BP or ES:SI.

® Drivers may modify one or more registers. The registers which are maintained and the

registers which are modified vary from driver to driver. The registers which are modified are
listed in each function description.

12 ROM BIOS Overview

Calling STD-BIOS Drivers

The following program example demonstrates accessing a typical STD-BIOS driver. The function
sets the position of the cursor on display page 0 to row 20, column 10. The function code (02H)
is passed in register AH. The row position, the column position, and the page number are passed
respectively in DH, DL, and BH.

MOV AH,02H ;Function number

MOV DH, 14H ;Row number (Row 20)

MOV DL,0AH ,Column number (Column 10)
MoV BH,0H ,Page number

INT 10H ;Call Video driver

The STD-BIOS drivers support all industry standard BIOS functions. In addition, many of the
drivers have additional functions that support enhanced features. These functions are referred to
as 'HP extensions’ throughout the remainder of this manual. These enhancements are accessed
through function code (06FH) of their respective driver. Most of these extended functions are
further divided into subfunctions. For example, the HP extended function for the Video driver has
six subfunctions which allow access to the enhanced features of the Multimode Video Display
Adapter. The function code (06FH) is placed in the AH register and the subfunction code in AL
for all HP extensions.

The following example uses HP extensions to turn off the cursor control pad on the keyboard.

MOV AH,6FH ; HP Function

MOV AL 07H ;. Switch Keyboard

MoV BL,02H ; Disable CCP: Turn Cursor Control
, Pad Off

INT 16H . Call Keyboard Driver

2.3.2 EX-BIOS Drivers

The EX-BIOS drivers provide a wide range of functions not found in the STD-BIOS drivers. The EX-
BIOS drivers are accessed through a single software interrupt vector. This interrupt (06FH) will be
referred to as INT HP__ENTRY. Due to the large number of EX-BIOS drivers, it would be
impossible to give each driver its own interrupt vector and still maintain industry standard
compatibility. Therefore, each driver is assigned its own number which is placed in the BP
register. This manual refers to these numbers by the names assigned in Appendix E.

ROM BIOS Overview 13

Calling EX-BIOS Drivers

As with the STD-BIOS drivers, each EX-BIOS driver may support one or more functions. A
function code placed in the AH register selects the desired function within the driver. In addition,
a subfunction code passed in the AL register is required by many EX-BIOS functions.

The following program example demonstrates access to a typical EX-BIOS driver. The function
executes a ‘beep’ on the speaker.

MOV AH,3AH ; Function: F__SND__BEEP
MoV BP,12H , Driver Name: V_SYSTEM
PUSH DS ;
INT 6FH , EX-BIOS Call: HP_ENTRY
POP DS ;

On leaving the EX-BIOS driver the BP and DS registers will be modified while the AH register
usually contains the return status of the driver call.

2.3.3 EX-BIOS Standard Functions

Many EX-BIOS drivers support a standard set of functions and subfunctions as listed in table 2.2.
While these functions and subfunctions are defined, it is not required that they all be
implemented by every driver. In addition, EX-BIOS drivers may implement functions other than
those listed. Most EX-BIOS drivers use a standard set of return status codes reported in the AH
register at the completion of a driver’s function call. Some of these return status codes and their
definitions are listed in table 2.3. A driver may report a return status code of
RS_UNSUPPORTED (02H) for a given function.

Function codes and return statuses are described in detail in Appendix G.

14 ROM BIOS Overview

Table 2.2
EX-BIOS Defined Functions

Function Register
Subfunction AH AL Definition
F__ISR 00 Responds to a logical Interrupt Service Request (ISR).
F_ SYSTEM Executes one of several standard subfunctions.
SF__INIT 02 00 Starts the initialization of a driver.
SF__START 02 02 Completes the initialization process of the driver.

SF__REPORT__STATE 02 04 Reports the state of the driver.
SF__VERSION__DESC 02 06 Reports the revision number and datecode of the

driver.
SF__DEF__ATTR 02 08 Reports the default configuration of the driver.
SF_GET__ATTR 02 OA Reports the current configuration of the driver.
SF__SET__ATTR 02 0C Overrides the current configuration of the driver.
SF__OPEN 02 OE Reserves the driver for exclusive access. Requests
any resources required by the driver.
SF__CLOSE 02 10 Releases the driver from exclusive access.
SF_TIMEOUT 02 12 Reports to the driver that a requested timeout has
occurred.
SF__INTERVAL 02 14 Reports to the driver that a requested 60 Hz interval
has expired.
SF__TEST 02 16 Performs a hardware test.
F__IO_CONTROL Executes the following subfunctions and any driver
dependant subfunctions.
SF__LOCK 04 00 Reserves the sub-address device specified for
exclusive access.
SF__UNLOCK 04 02 Releases the sub-address specified from the
exclusive access.
F_PUT__BYTE 06 Writes a byte of data.
F_GET__BYTE 08 Reads a byte of data.
F__PUT__BUFFER 0A Writes a variable length buffer of data (supported
by character devices).
F__PUT_BLOCK 0A Writes a fixed length buffer of data (supported by
block devices).
F__GET__BUFFER 0C Reads a variable length buffer of data (supported by
character devices).
F_GET_BLOCK 0C Reads a fixed length block of data (supported by
block devices).
F__PUT_WORD OE Writes a word of data.
F__GET_WORD 10 Reads a word of data.

ROM BIOS Overview 15

2.3.4 EX-BIOS Parameter Passing Conventions

When calling EX-BIOS drivers, the function code is placed in the AH register, and the subfunction
code (if any) in the AL register. Note that the function and subfunction codes are multiples of
two in order to facilitate decoding by the drivers.

The general parameter passing conventions used by the EX-BIOS drivers are also defined. These
register conventions are as follows:

On Entry: BP = V__DRIVER_NAME
AH = F__FUNC__CODE
AL = SF_FUNC__CODE (if required by driver)
CX = On write: byte count (if required by driver)
On read: maximum permissible byte count (if required by driver)
ES:DI = Buffer pointer or context area (if required by driver)
On Exit: AH = Return status
CX = On read: byte count (if required by driver)
On write: number of bytes written (if required by driver)
ES:DI = Buffer pointer or context area (if required by driver)

DS,BP Always modified (unless otherwise indicated)

2.3.5 EX-BIOS Return Status Codes

EX-BIOS drivers are expected to report a Return Status Code upon completion. This code is
returned in the AH register. Several status codes have been defined and are listed in table 2.3.

16 ROM BIOS Overview

~

Table 2.3

EX-BIOS Return Status Codes

Return Status Code Indication

RS_SUCCESSFUL 000H The requested function executed correctly.

RS_UNSUPPORTED 002H The requested function or subfunction is
not implemented or is unsupported.

RS__FAIL OFEH (-02H) The driver failed the operation in an error
state.

RS_BAD__PARAMETER OFAH (-06H) The driver received a bad parameter.

RS__BUSY OF8H (-08H) The requested driver is busy.

RS__NO__VECTOR OF6H (-0AH) EX-BIOS Vector table is out of RAM or
room for more drivers.

RS__OFFLINE OF4H (-OCH) Device is offline.

RS_OUT__OF_PAPER OF2H (-OEH) Device is out of paper.

If additional drivers are installed in the system, they should conform to the defined statuses
wherever possible. However, to maintain coding efficiency and/or functional accuracy, a driver
may create a return status other than those listed in Table 2.3.

Note

Return status conditions are always multiples of two. Negative return status codes
indicate error conditions, while positive status codes indicate exceptional conditions
to the caller. For example, the status code RS_UNSUPPORTED indicates the driver
does not support a function which may or may not be an error, while RS_OUT__
OF__PAPER requires some kind of response by the caller.

ROM BIOS Overview 17

2.4 Data Structures

BIOS drivers require RAM data area to perform their functions. The layout and placement of the
data areas for the STD-BIOS and EX-BIOS drivers differ. This is discussed in the following
subsections.

2.4.1 STD-BIOS Data Structures

The data area for the STD-BIOS is in absolute memory locations 00400H through 005FFH, which
conforms to the industry standard. Table 2.4 summarizes the assignments within this block of
memory. Refer to Appendix B for a detailed description of these data fields.

Table 2.4

STD-BIOS Data Area Summary

Address Function

400H-407H RS-232 Communications Port Addresses
408H-40FH Parallel Printer Port Addresses
410H-416H System Data and Flags

417H-43DH Keyboard Data Area

LIEH-448H Flexible Disc Data Area

4L49H-4L66H Video Display Data Area

4L67H-46BH System Data and Flags

4L6CH-470H Timer Data Area

471H-473H System Data Flags

LT74H-47T7H Hard Disc Data Area

478H-47BH Printer Timeout Counters

47CH-47FH RS-232 Communications Port Timeout Counters
480H-483H Keyboard Data Area

48BH-496H Diskette/Hard Disc Data Area
498H-504H System Data and Flags

505H-5FFH Reserved

18 ROM BIOS Overview

2.4.2 EX-BIOS Data Structures

Data structures for the EX-BIOS drivers are located in a block of memory at the top of system
RAM. The address of this block varies depending on the amount of RAM contained in the system
and the hardware configuration.

There are three types of data structures in the EX-BIOS data area. These structures are:
the HPbrVECTOR__TABLE and its associated HP__ENTRY__CODE, the driver data areas, and the
EX-BIOS global data area.

HP_VECTOR_TABLE

Each of the 80286 interrupt vectors contains the Code Segment (CS) and Instruction Pointer (IP)
of its associated service routine. The HP__ENTRY interrupt vector (06FH) contains the CS:IP of the
HP_ENTRY__CODE. This routine uses the value contained in the BP register (an offset into the
HP_VECTOR__TABLE, vector address) to branch to the appropriate EX-BIOS driver. The
HP_VECTOR__TABLE resides at the base of the EX-BIOS data area. The HP__VECTOR__TABLE
consists of an array of 3-word (six bytes) entries, one for each EX-BIOS driver. Each entry consists
of the IP, CS, and Data Segment (DS) of a driver.

Figure 2.2 illustrates the relationship between the 80286 interrupt vectors, the
HP_VECTOR__TABLE, HP__ENTRY__CODE, and the EX-BIOS drivers.

HP_ENTRY__CODE

The CS:IP in the HP__ENTRY interrupt vector points to a piece of code which branches to the
desired EX-BIOS driver. The vector address passed in BP must be a multiple of six. The code is as
follows:

HP_ENTRY__CODE:
MoV DS,CS:[BP +4]
JMP FAR PTR CS:[BP]

This code resides directly after the last entry in the HP__VECTOR__TABLE. Therefore, the CS:IP

entry in the HP__ENTRY interrupt vector provides two further pieces of information. CS:0 is the
starting address of the HP__VECTOR__TABLE and IP is the length of the HP__VECTOR__TABLE.

ROM BIOS Overview 19

Interrupt Vectors and HP__VECTOR__TABLE

20 ROM BIOS Overview

STD-BIOS
»| DRIVER
INTERRUPT HP_VECTOR__
VECTORS TABLE EX-BIOS DRIVER
INT OH
IP IP
cs
cs DS EX-BIOS
DRIVER
IP IP a CODE
(o cs 5
DS ¢
IP P
cs (ofS 0
DS %
INT 06FH
. . HP__HEADER
EX-BIOS
INT OFFH DRIVER
P DATA
cs HP_ENTRY__ AREA
CODE
Figure 2.2

Driver Data Areas

Each driver has an independently specified data area. Some EX-BIOS drivers share the same data

areas. The data areas for the EX-BIOS drivers are above the HP__VECTOR__TABLE and the

HP__ENTRY__CODE shown in figure 2.2. Although each driver has its own data area, the DS for

each driver is stored in the HP__VECTOR__TABLE, and its data area must start at DS:0. Each data
f‘ area must reside on a paragraph boundary.

The data area for each driver consists of a driver header, followed by an optional variable storage
area. The variable storage area is unique to each driver. Table 2.5 provides a general description
of the contents of an EX-BIOS driver header.

Each driver’s header and/or variable storage area is described in a following section.

Table 2.5
HP_DRIVER__HEADER

Variable Offset Type Offset Definition
DH__ATR 0 Word Driver Attribute Field

f‘ DH_NAME__INDEX 2 Word Driver String Index Field
DH__V__DEFAULT 4 Word Driver’s Default Logical Device Vector
DH__P__CLASS 6 Word Driver's Parent Class
DH__C__CLASS 8 Word Driver’s Child Class
DH__V__PARENT OAH Word Driver’s Parent Vector
DH__V__CHILD OCH Word Driver’s Child Vector
DH_MAJOR OEH Byte Sub Address Field
DH__MINOR OFH Byte Sub Address Field

EX-BIOS Driver Headers

The definition of each of these fields is listed in the following. Additional information on these
fields can be found in Appendix G.

~ DH__ATR: Each bit in the DH__ATR field indicates a property of the
driver for device mapping purposes. These bits are
defined in Appendix G.

ROM BIOS Overview 21

DH_NAME__INDEX: The DH__NAME__INDEX is used to derive the
localization string index of the driver. This is given by the
function F_STR__GET__STRING in the V_SYSTEM
driver. See Section 9 for additional information.

DH__V__DEFAULT: The DH__V__DEFAULT field contains the driver’'s default \
vector address.

DH__P__CLASS and DH__C__CLASS: In conjunction, these fields indicate which drivers may be
mapped together. DH__P__CLASS and DH__C__CLASS
are bit masks. Each bit position represents a set of
drivers. If a bit is set then the driver is in that set of
drivers. The DH__P__CLASS field indicates a driver is in
from 0 to 16 different driver sets. A driver can only map
to another driver if its DH_P__CLASS field matches at
least one bit position of the other driver’s
DH__C__CLASS field. Furthermore, the DH__ATR field is
another condition of mapping. The bits are defined in
Appendix G.

DH__V__PARENT: The DH__V__PARENT field contains a vector to the driver
that is called when the current driver receives an F__ISR
function code that it cannot or doesn’t know how to
process.

DH__V__CHILD: The DH__V__CHILD field contains a vector to the driver
that is called if this driver decides it cannot handle the
request function (as long as that function is not F__ISR).

DH__MAJOR and DH__MINOR: Device bus address information.

EX-BIOS Global Data Area

The method for locating the EX-BIOS global data area is found in the “EX-BIOS Data Area Map”’

of Appendix B. The EX-BIOS global data area is shared between several EX-BIOS drivers. It

contains temporary and permanent variables that are required by the BIOS to function properly.

Some of these variables can be modified by application programs. As with any modification to

the STD-BIOS data area, care should be taken with the EX-BIOS global data area. Table 2.6

defines the contents of this area. N

22 ROM BIOS Overview

Table 2.6

Global Data Area

Byte Name Type Definition
00-013H Reserved
14 T_SND__FLAG Byte Sound Driver Status
Bit Definition
7 1" Click enabled
6 1" Beep enabled
5-0 Reserved
15 T_SND__CLICK__COUNT Byte Contains number of pending key
clicks. Maximum of four.
16 T_SND__CLICK_DURA Byte Contains current tick duration
scaler.
17 T_SND__CLICK_VOLUME Byte Contains current key click volume.
18 T_SND__BEEP_CYCLE Word Contains current beep period in
ten microsecond increments.
1A T_SND__BEEP_DURA Word Contains current duration of the
beep in 10 microsecond
increments.
1c T_SND__BEEP__COUNT Byte Contains number of pending beep
functions. Maximum of four.
1D Reserved Byte
1E T_STR__NEXT__INDEX Word Next unused string index number.
20 and up Reserved

ROM BIOS Overview 23

24 ROM BIOS Overview

()

SECTION 3

TABLE OF CONTENTS

3. VIDEO . 27
3.1 OVervieW 27
3.2 Data Structures. 27
3.3 Video Driver (INT 10H) 33
Video Driver Function Definitions 35
F10__SET__MODE (AH = Q0H).......... 35
F10__SET__CURSIZE (AH = OTH) 35
F10__SET__CURPOS (AH = 02H) 36
F10__RD__CURPOS (AH = O3H).......... 36
F10__RD__PENPOS (AH = 04H) 36
F10__SET_ PAGE (AH = O5H).......... 37
F10__SCROLL__UP (AH = 06H).......... 37
F10__SCROLL__DN (AH = O7H) 38
F10__RD__CHARATR (AH = O8H) 38
F10__WR__CHARATR (AH = Q9H) 39
F10__WR__CHARCUR (AH = OAH) 39
F10__SET__PALLET (AH = OBH).......... 40
F10__WR__PIXEL (AH = OCH) 40
F10__RD__PIXEL (AH = ODH) 41
F10__WR__CHARTEL (AH = OEH) 42
F10__GET_ STMODE (AH = OFH) 42

Write String (AH = 13H) 42
F10__WRS__00 (AX = 1300H) 42
F10__WRS__01 (AX = 1301H) 43
F10__WRS__02 (AX = 1302H) 43
F10__WRS__03 (AX = 1303H) a4

3.4 HP Video Extension Functions.. a4
F10__INQUIRE (AX = 6FO0H) 45
F10__GET__INFO (AX = 6FOTH) 45
F10__SET__INFO (AX = 6FO2H) 47
F10__MOD__INFO (AX = 6FO3H) 47
F10__GET__RES (AX = 6FO4H) 48
F10__XSET__MODE (AX = 6FOSH) 49

25

26 Video

SECTION 3. VIDEO

The HP MultiMode Video Display Adapter provides a wide variety of display modes, resolution,
character attributes, and other features. The purpose of the video driver is to allow programs to
access these features and control the video display.

3.1 Overview

In the text mode, the MultiMode Video Display Adapter uses an 8 X 16 character cell which
generates high quality characters. Access to the display memory is fully synchronized to eliminate
the “snow"’ problem present in many color display adapters. (Snow occurs when writing a
character to display memory while the video memory is being accessed by the display refresh
circuitry.) This full synchronization makes the INT 10H video driver faster, since there is no need
to wait for a vertical retrace to place characters on the screen.

The MultiMode Video Display Adapter provides seven more display modes than the industry
standard color graphics adapter. Four of the modes allow 27 lines of text on the screen. The
other three modes allow graphics modes that double the graphics resolution of the display

(320 % 400 and 640 x 400 pixels). The standard INT 10H video driver has been extended to allow
the programmer to set these modes. No other support is provided to make use of these modes.
Refer to HP Veectra Technical Reference Manual Volume I: Hardware for more information on the
MultiMode Video Display Adapter.

3.2 Data Structures

The MultiMode Video Display Adapter has 32KB of video memory starting at address OBS8OOOH.
This allows graphics resolutions of 320 x 400 in medium resolution modes and 640 X 400 in
high resolution modes. The following is a discussion of how this memory is organized depending
on the video mode selected.

Video 27

In either of the text modes (80 x 25 or 40 x 25) memory is organized as sequential pages. Each
page contains character cells that are made up of an 8 bit character code and an 8 bit attribute

(see Figure 3.1).

Text Display Memory Organization

Character Cell Organization

Color Values

Byte 0 Byte 1
| | I8]r]|Gc|B]I[R][G]B] | R G B Color
8 Bit Char Code | 0000 Black
0 0 0 1 Blue
0 1
Blink bit 0011 | oy
1 = Blinking on 0100 Red
0 = Blinking off 010 1 Magenta
0110 Brown
Background color 01 11 Light Grey
o 10 00 Dark Grey
Intensuty.blt <+ 1 0 0 1 Light Blue
1 = High 1 010 Light Green
0 = Low 10 1 1 Light Cyan
1100 Light Red
Foreground color ¢— 110 1 Light Magenta
1110 Yellow
11 11 White
80 x 25 Text Memory Page
Cell 0 Cell 1 Cell 79
Page 0 | Byte 0 Byte 1 | | . | Row 0
(0B800:0H) Row 1
L]
L]
L]
Row 24
Page 1 r N Row 0
(0B800:0FAQH) Row 1
Figure 3.1

Graphics modes can be of two types: medium resolution (320 X 200 or 320 x 400) and high
resolution (640 x 200 or 640 x 400). In the medium resolution mode each pixel corresponds to
two bits of memory so four colors can be displayed. In the high resolution modes each pixel
corresponds to one bit of memory and only one color can be displayed (the background color is

always black). See Figures 3.2 and 3.3 for more details.

28 Video

Graphics Display Memory Organization

320 x 200 Graphics Display Memory

Scan line
0B800:0H [Byte 0 | Byte 1 | Byte2 | oo | Byte 79 0
2
. 4

0B800:2000H | Byte 0 | Byte 1 [Byte 2 HEER [Byte 79 1

0B800:4000H

Writing to these addresses
Not Accessible actually writes to addresses
0B800:0H through 0B800:3FFFH

0B800:7FFFH

Byte / Pixel Organization

7 BIS 413 2[1]

0 1 2 3 pixel number

bit number

0 0 - 1 of 16 Background Colors
0 1 - Green/Cyan

1 0 - Red/Magenta

11

- Brown/Light Grey

Figure 3.2

Video 29

Graphics Display Memory Organization

640 x 400 Graphics Display Memory

Scan line
0B800:0H | Byte 0 | Byte 1 [Byte2 | oo [Byte 79 0
4
. 8
L]
L4 -
0B800:2000H | Byte 0 [Byte 1 [Byte2 [oo Byte 79 1
5
. 9
L]
L]
0B800:4000H | Byte 0 [Byte 1 [Byte 2| ¢ o Byte 79
. 10
L]
L]
0B800:6000H | Byte 0 | Byte 1 [Byte 2 | oo | Byte 79 3
. 11
L]
L]

Byte / Pixel Organization

7 6 54 3 210 bit number

HEEEEE

0123 456 7 pixel number

0 - Background Color (Black)
1 -1 of 16 Foreground Colors

Figure 3.3
In all the graphics modes, the memory used for scan lines is not sequential but it is interleaved at
fixed intervals of 8K. In the modes that are 200 scan lines, even scan lines start at offset 0 and

odd scan lines start at offset 2000H. In the modes that are 400 scan lines, the following table
can be used to determine the appropriate offset:

30 Video

«

r

Scan line is multiple of 4 (
Scan line is multiple of 4 plus 1 (
Scan line is multiple of 4 plus 2 (
Scan line is multiple of 4 plus 3 (

0,4,8,12 ..) use offset 0

1,5,9,13 ...) use offset 2000H
2,6,10,14..) use offset 4000H
3,7,11,15..)) use offset 6000H

All the scan lines of a particular group are organized sequentially within a particular offset. See
Figures 3.2 and 3.3.

Other video driver data structures are located in the STD-BIOS data area. They are stored in
memory addresses 449H (40H:49H) through 466H (40H:66H). Table 3.1 lists the memory

locations and their definitions.

Table 3.1

STD-BIOS Video Driver Data Area

Address Type Definition

00449H Byte Current Video Display Mode
0044AH Word Number of columns

0044CH Word Regen buffer length

0044EH Word Starting address of regen buffer
00450H Word Cursor position for Display Page 0
00452H Word Cursor position for Display Page 1
00454H Word Cursor position for Display Page 2
00456H Word Cursor position for Display Page 3
00458H Word Cursor position for Display Page 4
0045AH Word Cursor position for Display Page 5
0045CH Word Cursor position for Display Page 6
0045EH Word Cursor position for Display Page 7
00460H Word Current cursor mode

00462H Byte Active page number

00463H Word Address of current display adapter
00465H Byte Mode (current setting of status register)
00466H Byte Pallet setting

Video data structures are also maintained in the EX-BIOS data area. These structures are

accessible through the data segment of the EX-BIOS video service routine. The following code

sets the ES register to the EX-BIOS video driver's (V__SVIDEO'S) data segment:

Video 31

MOV AX,0
MOV ES,AX
MOV AX,ES: [6FH*4 + 2]

,segment at 0

;read the base address

,of the HP_VECTOR__TABLE

MOV ES,AX
MOV AX,ES: [V_SVIDEO + 4]
MOV ES,AX

;read base address of
,video parameters

The addresses listed are offsets into this data segment. The following table gives the data
maintained in V_SVIDEO's (0054H) data segment:

Table 3.2
Video EX-BIOS Data Structures

Variable Name Offset Type Definition

Driver Header 0-5 Byte Device Header Attributes, Name, Index,
and Default Vector

VID_PRIMARY 6 Byte The current primary display:

00 Card at I/0O Address 3BOH
01 Card at I/O Address 3COH
02 Card at I/0 Address 3DOH
03 Card containing ROM Code.

VID_SECONDARY 7 Byte If two cards are in the system, same
number as VID_PRIMARY for the
second card.

VID_FOUND__ROM 8 Byte Flag set to true if ROM code was found
in any video adapter card.

VID__IDS 9-0CH Byte List of IDs of all cards found.

VID__STATUS 0D-010H Byte RAM copies of the status register.

VID__EXT__STATUS 11-014H Byte RAM copies of the extended status
register for each possible card in the
system.

VID_PARM__BLOCK 15-03BH Byte Reserved for saving the video
parameters stored in the standard BIOS
data area when switching between
primary and secondary video boards.

VID__LAST__IBM_MODE 03CH Byte Used to detect if a ‘rogue’ program
changed the modes without telling the
HP system.

VID__EXT_MODE 03DH Byte Specifies the current video mode
(0...15).

3E-03FH Byte Reserved

32 Video

3.3 Video Driver (INT 10H)

The video driver functions can be broken down into the following categories.

® Display Control—These functions control the display appearance, cursor and light pen
position, active text memory page, and scrolling through text memory.

® Character Handling Functions—These functions manipulate characters on the screen.
® String Functions—These functions allow placement of strings of text on the screen.

® Graphics Functions—These functions provide a minimal interface to the graphics capabilities
of the machine.

® Extended Video Functions—These functions support extra video capabilities of the
MultiMode Video Display Adapter hardware.

Table 3.3 summarizes the functions performed by the video driver. A detailed description of the
functions is given following the table.

Video 33

Table 3.3

Video Driver Function Code Summary

INT Function/ Function

Hex Equate Value Definition

10H INT_VIDEO Video
F10_SET_MODE OOH Set video mode
F10_SET__CURSIZE O01H Set cursor size
F10__SET__CURPQOS 02H Set cursor position
F10_RD__CURPOS O3H Read cursor position
F10_RD__PENPQOS 04H Read light-pen position
F10_SET__PAGE OSH Set active display page
F10_SCROLL__UP O6H Scroll rectangle up
F10_SCROLL__DN O7H Scroll rectangle down
F10_RD_CHARATR 0O8H Read character and attribute at cursor

position
F10_WR_CHARATR (Q9H Write character and attribute at cursor
position
F10_WR_CHARCUR OAH Write character at cursor position
F10__SET__PALLET OBH Set color pallet
F10_WR_PIXEL OCH Write pixel
F10_RD__PIXEL ODH Read pixel
FI0_WR_CHARTEL OEH Write teletype character
F10_GET_STMODE OFH Get video state and mode
10H-12H Reserved

Write string functions:
F10_WRS__00 1300H global attribute
F10_WRS__01 1301H global attribute, move cursor
F10_WRS__02 1302H individual attributes
F10_WRS__03 1303H individual attributes, move cursor
F10_INQUIRE 6FOOH EX-BIOS present
F10_GET__INFO 6FO1H Get video parameters
F10_SET__INFO 6F02H Sets video parameter
F10_MOD__INFO 6F0O3H Modifies video parameters
F10_GET__RES 6F04H Reports video resolution
F10_XSET_MODE 6F0O5H Sets video resolution

34 Video

Video Driver Function Definitions

The following function definitions provide a detailed description of each of the functions in the
video driver.

F10_SET__MODE (AH = 00H)

This function sets the display mode of the video adapter. The new mode is determined by the
value passed in the AL register. Refer to the Vectra Technical Reference Manual, Volume | for
additional information on the various video display modes available on the MultiMode Video
Display Adapter.

On Entry: AH = F10__SET__MODE (00H)
AL = Mode

Data Definition
00 40 x 25 Black and White Alphanumeric

01 40 x 25 Color Alphanumeric

02 80 x 25 Black and White Alphanumeric
03 80 x 25 Color Alphanumeric

04 320 x 200 Color Graphics

05 320 X 200 Black and White Graphics

06 640 x 200 Black and White Graphics
07 Only valid if a monochrome display adapter is present.

On Exit: No values returned

Registers Altered: AX

F10_SET__CURSIZE (AH = 01H)

This function sets the size of the cursor displayed in the alphanumeric display modes. Each
character cell in the alphanumeric display modes is eight scan lines high. The cursor size is
defined by specifying the starting and ending scan lines within the character cell. The scan lines
are numbered from O (top of cell) to 7 (bottom). The starting and ending scan lines are passed in
registers CH and CL. This function performs no operation if the MultiMode Video Display
Adapter is in one of the graphics modes.

On Entry: AH = F10__SET__CURSIZE (01H)

CH = Starting scan line
CL = Ending scan line

Video 35

On Exit: No values returned.

Registers Altered: AH

F10__SET_CURPOS (AH = 02H)

This function sets the row and column address of the cursor to the specified page, and moves
the cursor to that address. When the MultiMode Video Display Adapter is in one of the graphics
modes, a page number of 0 must be specified.

On Entry: AH = F10__SET__CURPQS (02H)
BH = Display page number
DH = Row address of cursor. (0. . .24)
DL = Column address of cursor. (0. ..79)
On Exit: No values returned.

Registers Altered: None

F10_RD__CURPOS (AH = O03H)

This function returns the current address and size of the cursor on the specified page. If the
MultiMode Video Display Adapter is in one of the graphics modes, a page number of 0 must be
specified. The values returned for the cursor size in the graphics mode will be invalid.

On Entry: AH = F10_RD__CURPOS (03H)
BH = Display page number
On Exit: CH = Starting scan line
CL = Ending scan line
DH = Row address of cursor. (0. . .24)
DL = Column address of cursor. (0. . .79)

Registers Altered: CX, DX

F10_RD_PENPOS (AH = 04H)

This function returns the current state and position of the light pen if it is activated. The position
is reported in both character row/column and graphic pixel formats.

On Entry: AH = F10_RD__PENPQOS (04H)

36 Video

On Exit: AH = Light Pen state

Data Definition
0 Not activated

1 Activated
BX = Horizontal pixel position of light pen
CH = Vertical pixel position of light pen (200 line mode)
DH = Row position of light pen
DL = Column position of light pen

Registers Altered: AH, BX, CH, DX

F10_SET_PAGE (AH = O5H)

This function sets the active display page in the alphanumeric mode. Valid page numbers are 0
through 7 for 80 X 25 modes, and 0 through 7 for 40 x 25 modes. This function is not valid
for graphics modes.

On Entry: AH = F10_SET_PAGE (05H)
AL = Page number (0 through 7)

On Exit: No values returned.

Registers Altered: AX

F10_SCROLL_UP (AH = 06H)

This function scrolls the contents of a window up a specified number of lines. The window is
defined by the row and column addresses stored in the CX and DX registers. The number of lines
to be scrolled is passed in register AL. If AL is set to O, the function interprets this as a command
to scroll all lines.

On Entry: AH = F10_SCROLL__UP (06H)
AL = Number of lines to scroll (0 = scroll all)
BH = Attribute to place in blanked lines
CH = Row address of upper left corner of window (0. . .24)
CL = Column address of upper left corner of window (0. . .79)
DH = Row address of lower right corner of window (0. . .24)
DL = Column address of lower right corner of window (0. . .79)

Video 37

On Exit: No values returned.

Registers Altered: None

F10_SCROLL_DN (AH = 07H)

This function scrolls the contents of a window down a specified number of lines. The window is
defined by the row and column addresses stored in the CX and DX registers. The number of lines
to be scrolled is passed in register AL. If AL is set to 0, the function interprets this as a command
to scroll all lines. This function is only valid when the MultiMode Video Display Adapter is in one
of the alphanumeric modes.

On Entry: AH = F10__SCROLL__DN (07H)
AL = Number of lines to scroll (0 = scroll all)
BH = Attribute to place in blanked lines;
CH = Row address of upper left corner of window (0. . .24)
CL = Column address of upper left corner of window (0. . .79)
DH = Row address of lower right corner of window (0. . .24)
DL = Column address of lower right corner of window (0. . .79)

On Exit: No values returned.

Registers Altered: None

F10_RD_CHARATR (AH = 08H)

This function returns the character byte and attribute byte at the current cursor location. If the
MultiMode Video Display Adapter is in one of the alphanumeric modes, a page number must be
specified. If the video display adapter is in one of the graphics modes, only the character is
returned, since characters do not have attribute bytes in the graphics modes.

On Entry: AH = F10_RD__CHARATR (08H)
BH = Page number (alphanumeric modes only)

On Exit: AH = Attribute byte (valid only in alphanumeric modes)
AL = Character

Registers Altered: AX

38 Video

F10_WR_CHARATR (AH = 09H)

This function writes character and attribute bytes at the current cursor location. If the MultiMode
Video Display Adapter is in one of the alphanumeric modes, a page number may be specified. If
the MultiMode Video Display Adapter is in one of the graphics modes, only the character is
written. More than one character and attribute can be stored by placing the number of copies
desired in CX. This function will wrap around both line and screen if too many characters are
specified. Note that this function makes copies of a single character/attribute combination, it
does not print a string. Refer to the Write String function for that operation.

On Entry: AH = F10_WR__CHARATR (09H)
AL = Character
BH = Page number (alphanumeric modes only)
BL = Attribute byte (valid only in alphanumeric modes)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

F10_WR_CHARCUR (AH = 0AH)

This function writes a character to the current cursor location, retaining the existing attribute
byte. The function is identical to the F10_WR__CHARATR function, except that no attribute
byte is written.

On Entry: AH = F10_WR__CHARCUR (0OAH)
AL = Character
BH = Page number (alphanumeric modes only)
CX = Number of characters to write

On Exit: No values returned.

Registers Altered: None

Video 39

F10_SET__PALLET (AH = OBH)

This function allows setting the background color (if BH = 0) or the foreground color pallet
(if BH = 1).

On Entry: AH
BH

F10__SET__PALLET (OBH)
Color Select ID

Data Definition

0 Set the background color (in medium resolution modes) or the
foreground color (in high resolution modes) based on the low bits of BL
(bits 0. . .3) to one of 16 colors.

1 Select color pallet (for medium resolution modes) based on the least
significant bit of BL. If‘bit 0 of BL = ‘0’ then select the green, red, brown
pallet. If bit of BL = ‘1’ then select the cyan, magenta, light grey pallet.

BL = Color select value

On Exit: No values returned

Registers Altered: None

F10_WR__PIXEL (AH = OCH)

This function writes a pixel on the screen. If the MultiMode Video Display Adapter is in one of
the “Four color” modes (320 x 200) the color of the pixel may be passed in register AL. Bits O
and 1 of AL are interpreted as the color bits. If bit 7 of AL is set, bits 0 and 1 are ‘XOR’ed with
the current pixel color bits, otherwise they replace the current pixel color bits. If the MultiMode
Video Display Adapter is in the ““Two color” mode (640 x 200), the bit corresponding to the
desired pixel is set.

40 Video

On Entry:

On Exit:

AH
AL

F10_WR__PIXEL (OCH)
Color

In “’Four color’” mode (320x200):

Bit Data Definition

7 1 Bits 0 and 1 XORed with current pixel.
0 Bits 0 and 1 replace current pixel.
0,1 Color bits.

In ““Two color” mode (640 x 200):

Bit Data Definition

7 1 Bit 0 XORed with current pixel.
0 Bit O replaces current pixel.
0 Color bit.

CX = Horizontal pixel address
DX = Vertical pixel address

No values returned.

Registers Altered: AX

F10_RD__PIXEL (AH = ODH)

This function returns the color code of the specified pixel.

On Entry:

On Exit:

AH = F10_RD__PIXEL (ODH)
CX = Horizontal pixel address
DX = Vertical pixel address

AL = Color value of pixel

Registers Altered: AX, CX, DX

Video 41

F10_WR_CHARTEL (AH = OEH)

This function writes a character to the active page, then advances the cursor one location. At the
end of a line, the cursor will wrap to the next line; at the end of the screen, the cursor will scroll.
In the alphanumeric modes, this function maintains the current video display attributes. In the
graphics modes, the foreground color is passed in register BL. The ASCIl characters Line Feed
(OAH), Carriage Return (ODH), Backspace (08H), and Bell (07H) are interpreted by this function as
ASCIl commands and are executed as such.

On Entry: AH = F10_WR__CHARTEL (OEH)
AL = Character
BL = Foreground color (in graphics modes only)

On Exit: No values returned.

Registers Altered: AX

F10_GET__STMODE (AH = OFH)

This function returns the current MultiMode Video Display Adapter state. The mode, number of
characters per line, and current display page are returned.

On Entry: AH = F10_GET__STMODE (OFH)
On Exit: AH = Number of characters per line
AL = Current mode
BH = Current display page

Registers Altered: AX, BH

Write String (AH = 13H)

This function writes a string of characters to the screen. This function consists of four separate
subfunctions which control whether each character has its own attribute byte or not, and
whether the cursor is moved or not. Each of the subfunctions is detailed in the following. The
ASCII characters Line Feed (OAH), Carriage Return (ODH), Backspace (08H), and Bell (07H) are
interpreted by this function as ASCIl commands and are executed as such.

F10_WRS__ 00 (AX = 1300H)

Write string attribute without moving cursor.

42 Video

On Entry: AX = F10_WRS__00 (1300H)

BH = Display page number

BL = String attribute byte

CX = Length of string

DH = Row address of first character

DL = Column address of first character
ES:BP = Pointer to start of string

Format of string is:
Char, Char, .. ., Char

On Exit: No values returned.

Registers Altered: None

F10_WRS_01 (AX = 1301H)

Write string attribute and move cursor.

On Entry: AX = F10_WRS__01 (1301H)
BH = Display page number
BL = String attribute byte
CX = Length of string
DH = Row address of first character
DL = Column address of first character
ES:BP = Pointer to start of string

Format of string is:
Char, Char, . . ., Char

On Exit: No values returned.

Registers Altered: None

F10_WRS__02 (AX = 1302H)

Write character attribute without moving cursor.

Video 43

On Entry: AX F10_WRS__02 (1302H)

BH = Display page number

BL = String attribute byte

CX = Length of string

DH = Row address of first character

DL = Column address of first character “~
ES:BP = Pointer to start of string

Format of string is:
Char, Attr, Char, Attr, . . ., Char, Attr

On Exit: No values returned.

Registers Altered: None

F10_WRS__03 (AX = 1303H)

Write character attribute and move cursor.

On Entry: AX = F10_WRS__03 (1303H)
BH = Display page number
CX = Length of string
DH = Row address of first character “N
DL = Column address of first character
ES:BP = Pointer to start of string

Format of string is:
Char, Attr, Char, Attr, .. ., Char, Attr

On Exit: No values returned.

Registers Altered: None

3.4 HP Video Extension Functions

This set of functions support the features of the MultiMode Video Display Adapter which are not ~ “%y
covered using the standard video functions. This function consists of separate subfunctions

which support the various extended capabilities of the MultiMode Video Display Adapter. Each

of these subfunctions is defined in the following subsections.

44 Video

F10_INQUIRE (AX = 6FO0H)

This subfunction determines whether or not the extended HP functions are available. If the

extended video functions are available, the BX register will be set to 4850H (which is the ASCII

characters ‘HP’).

On Entry: AX = F10__INQUIRE (6FO0H)
BX = Any value except 4850H (‘HP’)

On Exit: BX

'HP’ (4850H)

Registers Altered: AX, BX

F10_GET__INFO (AX = 6F01H)

This function returns information about the primary display adapter.
On Entry: AX = F10_GET__INFO (6FO1H)

On Exit: AH = Status register information

Bit Data Definition

o 1 Display Enabled.
1 1 Light Pen Trigger Set.
2 1 Light Pen Switch Made.
3 1 Vertical Synchronization
4 Monitor Resolution
0 350 or 400 line monitor
1 200 line monitor
5 Display type
0 Color
1 Monochrome
6-7 Diagnostic Bits

Video 45

AL = Card |dentifier

Data Definition

O0OH Non HP card with ROM and possibly its own INT 10H driver.
41H MultiMode Video Display Adapter

42H Reserved

43H Reserved

44H Reserved

45H Industry Standard Monochrome Display Adapter

46H Industry Standard Color Display Adapter

51H Reserved

CL = Current value of Extended Control register. This register is only valid when the
Card Identifier is 41H.

This description applies to data returned when a MultiMode Video Display Adapter is in the
system.

Bit Data Definition

0 Current screen resolution
0 200 line
1 400 line
1 Underline enable.
0 ‘Blue’ bit of foreground attribute interpreted as color blue.
1 ‘Blue’ bit of foreground attribute interpreted as underline.
2 Font Selected.
Standard-8
HP-ROMAN-8
3 Memory disable.
Memory enabled for CPU access.
Memory disabled for CPU access.
4 16/32K Memory select.
Wrap second 16K of RAM into first 16K.
Allow access to full 32K of memory.
5 Page select.
Select first 16K of memory.
Select second 16K of memory.
6-7 Unused

- O - O - O

- O

Registers Altered: AX, CL

46 Video

F10_SET__INFO (AX = 6F02H)

This function modifies the value of the Extended Control register port 3DDH on the MultiMode
Video Display Adapter. (Refer to the Vectra Technical Reference Manual, Volume | for more
information about this port.)

On Entry: AX = F10__SET__INFO (6F02H)

BL Byte of data to be written to the Extended Control Register.
Bit Data Definition
0 Current screen resolution
200 line
1 400 line
1 Underline enable.
‘Blue’ bit of foreground attribute interpreted as color blue.
1 ‘Blue’ bit of foreground attribute interpreted as underline.
2 Font Selected.
0 Standard-8
1 HP-ROMAN-8
3 Memory disable.
0 Memory enabled for CPU access.
1 Memory disabled for CPU access.
4 16/32K Memory select.
0 Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory.
5 Page select.
0 Select first 16K of memory.
1 Select second 16K of memory.

6-7 Reserved
On Exit: No values returned.

Registers Altered: AX, BL

F10_MOD__INFO (AX = 6F03H)

This function modifies individual bits in the Extension Control register (port 3DDH) of the Multi-
Mode Video Display Adapter. A mask byte is passed in register BH, which allows individual bits to
be modified without changing the state of other mode bits in the register.

Video 47

On Entry: AX = F10_MOD__INFO (6FO3H)
BH = Mask. Bits with a mask value of ‘1" are not modified; bits with a mask value of
‘0’ are modified.
BL = Bits to change. The bits indicated by the mask (BH) take the value of the BL
register.

)
Bit Data Definition
0 Current screen resolution
0 200 line
1 400 line
1 Underline enable.
0 ‘Blue’ bit of foreground attribute interpreted as color blue.
1 ‘Blue’ bit of foreground attribute interpreted as underline.
2 Font Selected.
0 Standard-8
1 HP-ROMAN-8
3 Memory disable.
0 Memory enabled for CPU access.
1 Memory disabled for CPU access.
4 16/32K Memory select.
Wrap second 16K of RAM into first 16K.
1 Allow access to full 32K of memory. “N
5 Page select.
0 Select first 16K of memory.
1 Select second 16K of memory.
6-7 Reserved
On Exit: No values returned.
Registers Altered: AX
Example:
MOV AX,F10_MOD__INFO ; EX-BIOS Function Modify
; Ex-Reg (6FO3H)
MOV BL,000001008 , Select Character Font: HP-ROMAN-8
MOV BH,11111011B ; Only Modify Character Font
INT 10H ; Call Video Interrupt -

F10_GET__RES (AX = 6F04H)

This function returns the current video mode and screen resolution.

48 Video

On Entry: AX = F10_GET__RES (6F04H)
On Exit: AL = Current video mode (See Set Mode.)

Data Definition
OOH 40 x 25 Alphanumeric Black and White

01H 40 x 25 Alphanumeric Color

02H 80 X 25 Alphanumeric Black and White
O3H 80 x 25 Alphanumeric Color

04H 320 x 200 Graphics Color

05H 320 x 200 Graphics Black and White

06H 640 X 200 Graphics Black and White

07H 80 x 25 Only Valid for Monochrome Cards
08H 80 x 27 Alphanumeric Black and White
0%9H 80 x 27 Alphanumeric Color

0AH 40 x 27 Alphanumeric Black and White

OBH 40 x 27 Alphanumeric Color

OCH Reserved

ODH 640 x 400 Graphics Black and White
OEH 320 x 400 Graphics Color

OFH 320 x 400 Graphics Black and White

If in one of the graphics modes:

BX
X

= Horizontal resolution in pixels
= Vertical resolution in pixels

If in one of the text modes:

BX
X

Number of characters per row
Number of rows

Registers Altered: AX, BX, CX

F10_XSET_MODE (AX = 6F05H)

This function places the MultiMode Video Display Adapter in one of sixteen possible modes of
operation. Modes 0 through 7 are identical to the modes available with function
F10_SET__MODE of the video driver. Modes 8 through 15 are unique to the HP Vectra and its
MultiMode Video Display Adapter, and may only be set using this function.

Video 49

Programmers must exercise caution when setting video modes with both F10__SET__MODE (0H)
and F10__XSET__MODE (6F05H). Whenever F10_XSET__MODE is used to select one of the “"HP
only” modes (8-15), F10_XSET__MODE (not F10_SET__MODE) must be used to return to one
of the industry standard modes (0-7). This ““pairing’’ of function calls is necessary because
F10__XSET_MODE modifies an I/O port not normally affected by the industry standard modes.
F10_SET_MODE does not deal with this I/O port.

On Entry: AX = F10_XSET_MODE (6FO5H)

BL = Video mode

Data Definition

OO0H 40 x
01H 40 X
02H 80 x
03H 80 X
04H 320 x
05H 320 x
06H 640 x
07H 80 x
08H 80 X
O9H 80 x
0AH 40 x
OBH 40 X

25 Alphanumeric Black and White
25 Alphanumeric Color

25 Alphanumeric Black and White
25 Alphanumeric Color

200 Graphics Color

200 Graphics Black and White

200 Graphics Black and White

25 Only Valid for Monochrome Cards
27 Alphanumeric Black and White
27 Alphanumeric Color

27 Alphanumeric Black and White
27 Alphanumeric Color

OCH Reserved

ODH 640 x 400 Graphics Black and White
OEH 320 x 400 Graphics Color

OFH 320 x 400 Graphics Black and White

On Exit: No values returned.

Altered Registers: AX, BL
Example:
MOV AX F10_XSET_MODE

MOV BL,0DH
INT INT_VIDEO

50 Video

; Call EX-BIOS function

, Set mode (6FO5H)

; Select 640 x 400 line mode
, Call video interrupt (10H)

SECTION 4

~ Table of Contents
4. INPUTSYSTEMand HP-HIL................................... 55
4.1 OVervIeW 55
4.2 Application Interface Level. 55
4.2.1 OVeIrvieW 57
4.2.2 Data Structures. 58
4.2.2.1 Logical DescribeRecord 58
4.2.2.2 Logical ISREventRecords 61
4.2.2.3 Application EventDrivers 63
4.2.3 Logical GIDDrivers............ 63
4.2.3.1 V_LTOUCH Driver(BP = 00C6H) 64
Touch Screen Driver Function Definitions. 65
F__ISR (AH = O0H) 65
P SF__INIT (AX = 0200H) 65
SF_START (AX = 0202H) 66
SF_REPORT__STATE (AX = 0204H) 66
SF__VERSION__DESC (AX = 0206H) 66
SF__DEF_ATTR (AX = 0208H) 67
SF_GET_ATTR (AX = 020AH) 67
SF_SET__ATTR (AX = 020CH) 67
SF_TRACK_ON (AX = 0404H) 68
SF_TRACK__OFF (AX = 0406H) 68
SF_CREATE__EVENT (AX = 0408H) 68
SF__EVENT_ON (AX = 040AH) 70
SF__EVENT__OFF (AX = 040CH) n
SF__CLIPPING_ON (AX = O40EH) 71
SF__CLIPPING__OFF (AX = 0410H) 71
F__SAMPLE (AH = 06H) 72
4.2.3.2 V__LPOINTER Driver (BP = 00COH) 72
Pointer Driver Function Definitions. 73
~ F_ISR (AH = O0H) 73
SF__INIT (AX = 0200H) 74
SF_START (AX = 0202H) 75
SF_REPORT__STATE (AX = 0204H) 75
SF__VERSION__DESC (AX = 0206H) 75
SF__DEF_ATTR (AX = 0208H) 76

SF_GET_ATTR (AX = 020AH) 76

SF_SET__ATTR (AX = 020CH) 76
SF_TRACK_ON (AX = 0404H) 77
SF_TRACK__OFF (= 0406H) 77
SF__CREATE__EVENT (AX = 0408H) 77
SF__EVENT_ON (AX = 040AH) 79
SF__EVENT__OFF (AX = 040CH) 80
SF_CLIPPING_ON (AX = O40EH) 80
SF__CLIPPING__OFF (AX = 0410H) 80
F__SAMPLE (AH = 06H) 81
4.2.3.3 V__LTABLET Driver (BP = 00BAH)......... 81
Tablet Driver Function Definitions. 82
F__ISR (AH = 00H) 82
SF__INIT (AX = 0200H) 83
SF__START (AX = 0202H) 84
SF__REPORT__STATE (AX = 0204H) 84
SF__VERSION__DESC (AX = 0206H) 84
SF__DEF_ATIR (AX = 0208H) 85
SF__GET_ATTR (AX = 020AH) 85
SF__SET__ATTR (AX = 020CH) 85
SF__TRACK__ON (AX = 0404H) 86
SF__TRACK__OFF (AX = 0406H) 86
SF__CREATE__EVENT (AX = 0408H) 86
SF_EVENT__ON (AX = 040AH) 88
SF__EVENT__OFF (AX = 040CH) 89
SF__CLIPPING_ON (AX = O40EH) 89
SF__CLIPPING__OFF (AX = 0410H) 89
F__SAMPLE (AH = 06H) 90
4.2.4 Application Event Driver Example.......................... ... 90
4.3 Hardware Interface Level..................... 95
A.3.1 OVeIrVICW 95
4.3.1.1 Device Driver Mapping. i 97
4.3.1.2 Device Emulation ... 97
4.3.2 Data Structures. ... 98
4.3.2.1 Physical Describe Record il 98
4.3.2.2 Physical ISREventRecords 100
4.3.3 Hardware Interface Level Drivers............................. 102
4.3.3.1 V__S8259 Driver (BP = 001EH) 102
V__S8259 Driver Function Definitions. 103
F__ISR (AH = 00H) 103
SF__INIT (AX = 0200H) 104

52 Input System and HP-HIL

SF__START
SF_VERSION__DESC
SF__ENABLE__SVC
SF__DISABLE__SVC
SF__ENABLE__KBD
SF__DISABLE__KBD
SF__ENABLE__HPHIL
SF__DISABLE__HPHIL

4.3.3.2 V__HPHIL Driver (BP = 0114H)

V__HPHIL Driver Function Definitions
F__ISR
SF__INIT
SF__REPORT__STATE
SF_VERSION__DESC
SF__OPEN
SF__CLOSE
SF__CRV__RECONFIGURE
SF_CRV_WR__PROMPTS
SF__CRV_WR__ACK
SF__CRV__REPEAT
SF__CRV__DISABLE__REPEAT
SF_CRV__SELF__TEST
SF__CRV__REPORT__STATUS
SF_CRV__REPORT__NAME
SF_KEYBOARD__REPEAT
SF_KEYBOARD__LED
F__PUT__BYTE
F__GET__BYTE
F__PUT__BUFFER

4.3.3.3 V__SINPUT Driver (BP = 002AH)

V__SINPUT Driver Function Definitions
F__ISR
SF__INIT
SF__DEF__LINKS
SF__GET__LINKS
SF__SET__LINKS
F_INQUIRE
F__INQUIRE__ALL
F_INQUIRE__FIRST
F_REPORT__ENTRY
4.3.3.4 Physical GID Driver
Physical GID Driver Function Definitions
F__ISR
SF__INIT

b
x
I T T I T T T T

0202H) 104
0206H) 104
0400H) 105
0402H) 105
0404H) 105
0406H) 105
0408H) 106
040AH) 106
= 00H)......... 108
0200H) 108
0204H) 108
0206H) 109
020EH) 109
0210H) 110
0406H) 110
0408H) 110
040AH) 1M1
040CH) 112
040EH) 112
0410H) 113
0412H) 14
0414H) 114
0416H) 115
0418H) 116
=06H)......... 116
=08H)......... 117
= 0AH)......... 118
................ 119
= Q00H)......... 120
0200H) 120
0400H) 120
0402H) 121
0404H) 122
= 06H)......... 123
=08H)......... 123
= 0AH) 124
=0CH)......... 124
................ 125
=00H)......... 125
0200H) 126

Input System and HP-HIL 53

SF__START

SF_VERSION__DESC
4.3.3.5 V__PNULL (BP = 000CH)

4.3.4 Hardware Interface Level Services
4.3.4.1 V__STRACK (BP = 0005AH)
V__STRACK Driver Function Definitions

F__ISR
SF__INIT
SF__START

F_TRACK__INIT
F_TRACK__ON
F_TRACK__OFF
F__DEF_MASKS
F__SET__LIMITS__X
F__SET_LIMITS__Y
F__PUT__SPRITE
F_REMOVE__SPRITE

54 Input System and HP-HIL

0206H) 127
........................... 127
=00H)......... 128
0200H) 129
0202H) 129
=04H) 129
=06H)......... 130
=08H)......... 130
=0AH)......... 130
=0CH)......... 132
= O0EH)......... 132
= 10H)......... 133
=12H)......... 133

SECTION 4. INPUT SYSTEM AND HP-HIL

The Input System is a set of drivers which support the HP-HIL input devices. Up to seven HP-HIL
input devices may be connected at one time. The Input System can support properly integrated
non-HP-HIL devices as well. In its basic configuration, the system has one input device, the
keyboard.

4.1 Overview

The standard devices that connect to the system via the HP-HIL link are the keyboard, mouse,
touch screen and tablet. The application interface for the keyboard is described in Section 5. The
industry standard interface for the mouse (INT 33H functions) is provided in Section 6. The
interfaces for simple mouse, touch screen and tablet support are described in this section.

The architecture of the Input System is divided into two levels (see figure 4.1). The application
interface level allows the programmer to communicate with the HP-HIL devices with minimum
overhead. The second level, the hardware interface level, allows programmers to manipulate the
internals of the system. With this interface, support for additional devices can be added or the
data path of existing ones re-directed.

The first portion of this section provides an overview of the application interface level, a detailed

description of the actual interfaces and how to access them. The second portion of this section
describes the hardware interface level.

4.2 Application Interface Level

Application programs interface with the Input System through a set of logical device drivers. The
Input System has an application interface for keyboard, tablet, pointer (simple mouse), and touch
screen input devices. These drivers are shown in figure 4.1.

Input System and HP-HIL 55

Input System Block Diagram

Application
Touch Pointer
T
Screen (Simple Mouse) ablet
Interface Interface Interface
(V_LTOUCH) (V_LPOINTER) (V_LTABLET)

[

|

Application Interface Level

Hardware Interface Level

Hardware
Interface
Drivers

The tablet, pointer, and touch screen application program interface drivers are grouped together
in figure 4.1 as they are all Graphic Input Device (GID) drivers. GID drivers accept relative graphic
motion data, absolute graphics data, and button scancode data from the input devices. Data
from these devices is represented in a consistent manner throughout the Input System, making

programmatic access to different Graphic Input Devices a simple task (see the Application Event
Driver Example later in this section).

56 Input System and HP-HIL

Physical Input Devices

Figure 4.1

4.2.1 Overview

The Input System supports three logical GID drivers; one for each of the standard GID data types.
There is a GID driver for each of the touch screen, pointer (simple mouse), and tablet devices
called V_LTOUCH, V__LPOINTER, and V__LTABLET respectively. Each of these drivers has a fixed
location in the HP__VECTOR__TABLE. They all share a common code module (i.e., they have the
same CS:IP in the table), but have different data areas.

The GID drivers perform clipping and scaling under certain conditions. Absolute devices like the
touch screen and tablet are always scaled but clipping is user selectable. Relative devices like the
mouse can have both scaling and clipping selected by the user.

The logical GID drivers perform two additional tasks. The first is graphics cursor movement (sprite
tracking). This is performed by the EX-BIOS driver V_STRACK, which is called by the logical GID
driver if tracking is enabled. The second task is to provide interrupt service to the application. The
application may install a routine to be called by the logical GID driver every time a GID event
occurs, as opposed to the application calling the GID driver repeatedly (polling) to see if an event
has occurred.

The following text outlines the actions that occur for touch screen input; from touching the
screen to application data retrieval.

1. The user touches the screen. This causes the physical device to generate input data and
interrupt the hardware interface level.

2. The hardware interface level processes the interrupt and passes the data (ISR Event Record)
to the logical touch screen driver (V_LTOUCH).

3. V__LTOUCH scales the event to fit the current dimensions of the screen. At this point two
optional things may happen. First, the data may be clipped. Second, the user defined event
driver will be called if it is installed and enabled.

4. If the user event routine was not installed and enabled then the application must call (poll)
V__LTOUCH with the F__SAMPLE function (see subsection on V_LTOUCH functions) to get
the input data.

There are two methods for applications to receive data from the Input System: polled mode and
interrupt mode. In polled mode, the application must continually interrogate the logical GID
driver using the F__SAMPLE function to determine if any input has occurred, In interrupt mode,
the application must first install an ISR event handling routine (application event driver) using
SF__CREATE__EVENT to handle interrupt calls from the logical GID driver. After installation, the
application informs the logical GID driver that it is ready to receive interrupts by calling the
SF__EVENT__ON subfunction. After event interrupts have been enabled, the application will

receive an interrupt every time the logical GID driver receives data from the hardware interface
level.

Input System and HP-HIL 57

4.2.2 Data Structures

The application interface level uses two major data structures: the Logical Describe Record and
the Logical ISR Event Record(s). These data structures help keep track of the numerous events
occurring in the Input System.

4.2.2.1 Logical Describe Record

The Logical Describe Record is used by the logical GID drivers to keep track of the current state
of their respective devices. Each of the logical GID drivers has a Logical Describe Record
associated with it, which is located directly after the driver header starting with memory address
DS:0010H. An explanation of the Logical Describe Record fields follows, see table 4.1 for field
types and offsets.

Table 4.1

Logical GID Driver Describe Record

Field Type Offset Description

Driver Header 0O0H Driver Header (see Section 2)
LD__SOURCE BYTE 10H Device GID type

LD_HPHIL__ID BYTE 11H Physical device ID
LD__DEVICE__STATE WORD 12H Status bits for the logical device
LD__INDEX BYTE 14H Physical device vector number
LD__MAX_AXIS BYTE 15H Maximum number of axes reported
LD__CLASS BYLE 16H Device class

LD__PROMPTS BYTE 17H Number of button/prompts
LD__RESERVED BYTE 18H-1BH Reserved

LD__TRANSITION BYTE 1CH Button transitions

LD__STATE BYTE 1DH Current state of the buttons
LD__RESOLUTION WORD 1EH Logical device resolution
LD__SIZE__X WORD 20H Maximum x-axis count
LD__SIXE_Y WORD 22H Maximum y-axis count
LD_ABS__X WORD 24H X position data for absolute devices
LD_ABS_Y WORD 26H Y position data for absolute devices
LD__REL__X WORD 28H X delta for relative devices
LD__REL_Y WORD 2AH Y delta for relative devices
LD_ACCUM__X WORD 2CH X-axis scaling accumulator
LD_ACCUM_Y WORD 2EH Y-axis scaling accumulator

58 Input System and HP-HIL

~

LD__SOURCE

LD_HPHIL__ID

LD__DEVICE__STATE

This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the
appropriate logical GID data type (table 4.5). Bits 3-0 are reserved.

ID byte of the physical device which last reported data. See table 4.2 for
a list of HP-HIL ID bytes.

Status bits for the logical device

Bit

Definition

OFH-05H Reserved.

04H Event enabled when set.

03H Tracking enabled when set.
02H Clipping enabled when set.
01H Button error occurred when set.
OOH Interrupt in progress when set.

LD__INDEX This contains the vector address divided by 6 of the last physical
device that reported data.

LD_MAX_AXIS Maximum number of axes supported by the device. Valid range is
0-2.

LD__CLASS Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device
classes.

LD__PROMPTS Number of buttons and prompts supported by the device. Bits 7-4
contain the number of prompts. Bits 3-0 contain the number of
buttons.

LD__TRANSITION Transitions reported per button, i.e., a set bit indicates that the
corresponding button was either pushed or released. Bit 7
corresponds to button 7 etc.

LD__STATE Current state of the buttons. 1 is down, O is up. Bit 7 corresponds

LD__RESOLUTION

to button 7 etc. If LD_STATE is XOR'ed with LD__TRANSITION the
result is the previous button state.

This is the resolution of the logical device. For logical devices this is
typically one.

Input System and HP-HIL 59

Table 4.2

HP-HIL Device ID Bytes

Device Type ID Range Device Description
Keyboard O0OH-02H Reserved
03H Swiss-French Keyboard
04H-06H Reserved
O7H Canadian-English Keyboard
O8H-0AH Reserved
OBH ltalian Keyboard
OCH Reserved
ODH Dutch Keyboard
OEH Swedish Keyboard
OFH German Keyboard
10H-12H Reserved
13H Spanish
14H Reserved
15H Belgian (Flemish) Keyboard
16H Finnish Keyboard
17H United Kingdom Keyboard
18H French-Canadian Keyboard
19H Swiss-German Keyboard
1AH Norwegian Keyboard
1BH French Keyboard
1CH Danish Keyboard
1DH Katakana Keyboard
1EH Latin American-Spanish Keyboard
1FH United States-American Keyboard
Other 20H-2BH Reserved
2CH-2FH Tone Generator
30H-3FH Reserved
Character 40H-4FH Reserved
Entry 50H-5BH Reserved
SCH-5FH Barcode Reader
Relative 60H-67H Reserved
Positioners 68H-6BH Mouse
6CH-6FH Trackball
70H-7FH Reserved

60 Input System and HP-HIL

Device Type ID Range Device Description

Absolute 80H-87H Reserved

Positioners 88H-8BH Touchpad
8CH-8FH Touch Screen
90H-97H Graphics Tablet
98H-9FH Reserved

Keyboard OAOH-0BFH Compressed Keyboard (91-93 keys)
OCOH-0ODFH Extended Keyboard (107-109 keys)
OEOH-OFFH Standard Keyboard (85-87 keys)

LD__SIZE__X Maximum count (in units of resolution) for the x-axis.

LD_SIZE_Y Maximum count (in units of resolution) for the y-axis.

LD_ABS_X X position data for devices which report absolute coordinates
(absolute devices).

LD_ABS_Y Y position data for devices which report absolute coordinates.

LD__REL_X Latest change in x position for devices which return coordinates

relative to the previous position (relative devices).

LD__REL_Y Latest change in y position for devices which return coordinates
relative to the previous position.

LD_ACCUM__X Accumulator used to sum partial movements when scaling from
the physical device space to the logical device space. The value
stored here represents a fraction of one logical unit for the x-axis.

LD_ACCUM_Y Accumulator used to sum partial movements when scaling from
the physical device space to the logical device space. The value
stored here represents a fraction of one logical unit for the y-axis.

4.2.2.2 Logical ISR Event Records

A Logical ISR Event Record is not a data structure in the truest sense, but is a set of register
definitions for inter-driver communication of input events. These definitions apply not only to
Input System drivers but to application event drivers as well. Tables 4.3 and 4.4 define the
Logical ISR Event Records.

Input System and HP-HIL 61

Table 4.3
GID Button ISR Event Record

AH = F__ISR (00H)
DL = Physical device driver’s vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H — Reserved
07H 1 Button up
0 Button down
06H-00H — Button number (0-7)
DH = Data Type
ES:0 = Pointer to Physical device driver header and Physical Describe Record.

Table 4.4
GID Motion ISR Event Record

AH F__ISR (O0OH)
DL = Physical device driver’s vector address / 6
BX = X axis motion in raw data form.

CX =Y axis motion in raw data form.
DH = Data Type
ES:0 = Pointer to physical device driver header and Physical Describe Record.

The button number in the Button information field (BX) denotes which button on the device is
reporting data. Of special interest is button seven (proximity indicator) which is currently used by
absolute devices to indicate that the device measurement field is active. For example, someone is
touching the touch screen or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of logical GID data stored
in the event record. For button events this value will be T__KC__BUTTON. For logical GID motion
events permissible types are: T__TS, T__POINTER and T__TABLET, which correspond to data
originating from V_LTOUCH, V_LPOINTER, and V__LTABLET respectively. For a complete list of
logical GID event data types see table 4.5.

62 Input System and HP-HIL

Table 4.5

Logical GID Event Data Types

Type Value Definition

T_KC_BUTTON O0SH Button data

T_TS 45H Specially formed data (80 x 25—default) generated by
V_LTOUCH

T_TABLET 46H Specially formed data (640 x 200 range—default)
generated by V__LTABLET

T__POINTER 47H Specially formed data (640 x 200 range—default)
generated by V__LPOINTER

4.2.2.3 Application Event Drivers

As previously mentioned, applications may install a routine to handle interrupts from the logical
GID drivers. Three predefined vectors in the HP__VECTOR__TABLE are initialized to the null driver
(V__PNULL). The three vectors are V__EVENT_TOUCH, V__EVENT__POINTER, and
V__EVENT__TABLET which are called by the logical GID drivers V_LTOUCH, V__LPOINTER, and
V__LTABLET respectively when event interrupts are enabled by a call to SF_EVENT__ON. A call
to SF__CREATE__EVENT sets the corresponding event vector to point to the user application
event driver instead of the null driver.

The application event driver is required to support only one function, F__ISR. The driver should
return RS_UNSUPPORTED for all unimplemented functions.

4.2.3 Logical GID Drivers

The drivers V_LTOUCH, V__LPOINTER and V__LTABLET represent the application interface to
the Input System. These drivers provide functions to poll for data, enable/disable application
event interrupts, enable/disable tracking and enable/disable clipping and/or scaling.

Input System and HP-HIL 63

4.2.3.1 V__LTOUCH Driver

(BP = 00C6H)

This section contains a detailed description of the touch screen driver. Table 4.6 contains a

function code summary.

Table 4.6

Touch Screen Driver Function Code Summary

Vector Func. Function

Address Value Equate Definition

00C6H V__LTOUCH Application interface to Touch Screen

00Cé6H 00 F__ISR Logical Interrupt

00C6H 02 F__SYSTEM System functions

00CéH 02/00 SF__INIT Initialize the driver data area

00C6H 02/02 SF__START Start driver

00C6H 02/04 SF__REPORT__STATE Report state of device

00C6H 02/06 SF__VERSION__DESC Report driver version number

00C6H 02/08 SF__DEF_ATTR Set default logical scaling attributes

00C6H 02/0A SF__GET_ATTR Get scaling attributes

00C6H 02/0cC SF_SET__ATTR Set scaling attributes

00C6H 04 F__10_CONTROL I/0 Control functions

00C6H 04/00 SF__LOCK Unsupported

00C6H 04/02 SF_UNLOCK Unsupported

00C6H 04/04 SF_TRACK__ON Turn cursor track on

00C6H 04/06 SF__TRACK__OFF Turn cursor track off

00C6H 04/08 SF__CREATE__EVENT Establish a new routine to be called on
logical device events

00C6H 04/0A SF__EVENT__ON Enable event call to parent driver

00C6H 04/0C SF_EVENT__OFF Disable event call to parent driver

00C6H 04/0E SF_CLIPPING_ON Enable logical device clipping

00C6H 04/10 SF__CLIPPING_OFF Disable logical device clipping

00C6H 06 F__SAMPLE Report absolute position of GID

64 Input System and HP-HIL

Touch Screen Driver Functions Definitions

F_ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver
has handled the physical interrupt and updated the Physical Describe Record to reflect the event.
This function translates the physical event into the logical coordinate system and calls its parent,
V__EVENT__TOUCH, (if EVENT is enabled). In addition, this function passes the event to
V__STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response
to a logical hardware interrupt and not user callable.

On Entry: AH = F__ISR (O0H)
DH = Data Type
DL = Physical device driver’s vector index.
ES:0 = Pointer to Physical device driver header and Physical Describe Record.
BP = V__LTOUCH (00C6H)

For Button Event:
BX = Button information.

Bit Value Definition
OFH-08H _— Reserved
O07H 1 Button up

0 Button down

06H-00H Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX =Y axis motion in raw data form.
On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF__CREATE__EVENT, SF_EVENT__ON, SF_TRACK__ON
SF__INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation.

Input System and HP-HIL 65

On Entry: AH = F__SYSTEM (02H)

AL = SF__INIT (OOH)
BX = ‘'Last used DS"' in HP Data Area
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code
BX = New "last used DS" in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_START (AX = 0202H)

This subfunction starts the logical touch screen driver.

On Entry: AH = F__SYSTEM (02H)
AL = SF__START (02H)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_REPORT_STATE (AX = 0204H)
This subfunction returns the LD__DEVICE__STATE field from the Logical Describe Record.
On Entry: AH = F__SYSTEM (02H)

AL = SF_REPORT__STATE (04H)

BP = V__LTOUCH (00C6H)

On Exit: AH = Return Status Code
DX = LD__DEVICE__STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_VERSION__DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

66 Input System and HP-HIL

On Entry: AH = F_SYSTEM (02H)

AL = SF__VERSION__DESC (06H)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF_DEF__ATTR (AX = 0208H)

This subfunction sets the attributes of the logical touch screen driver to their default values. The
default attributes for the touch screen driver are: LD__SIZE__X = 79 and LD_SIZE__Y = 24,

On Entry: AH = F_SYSTEM (02H)
AL = SF__DEF__ATTR (08H)
BP = V__LTOUCH (00C6H)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS

SF__GET_ATTR (AX = 020AH)
This subfunction returns the current scaling attributes, LD_SIZE__X and LD__SIZE__Y.

On Entry: AH = F__SYSTEM (02H)
AL = SF__GET__ATIR (OAH)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code
BX = LD__SIZE__X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF_SET_ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD__SIZE__X and LD__SIZE__Y in the Logical
Describe Record.

Input System and HP-HIL 67

On Entry: AH = F_SYSTEM (02H)
AL = SF__SET__ATTR (OCH)
BX = LD__SIZE__X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)
BP = V__LTOUCH (00C6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_TRACK_ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V__STRACK will be
called to update the graphics cursor (sprite) position.

On Entry: AH = F__IO__CONTROL (04H)
AL = SF__TRACK__ON (04H)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_TRACK_OFF (AX = 0406H)
This subfunction turns tracking off.

On Entry: AH = F_IO_CONTROL (04H)

AL = SF__TRACK__OFF (06H)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CREATE__EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS
of the routine are passed to this subfunction. These values are exchanged with the vector entry
of the V_EVENT__TOUCH driver in the HP_VECTOR__TABLE, V__EVENT__TOUCH being the
parent of the logical touch screen driver. The IP, CS, and DS of the previous routine are returned
to the caller. Note that this subfunction does not enable the event call to the parent routine; this
must be done explicitly using SF__EVENT__ON.

68 Input System and HP-HIL

The ISR event records passed to the V__EVENT__TOUCH driver will have one of the following
two formats depending on the Data Type stored in DL.

V__EVENT__TOUCH Button ISR Event Record:

~ AH

DL
BX

F__ISR (O0H)
Physical device driver’s vector address / 6
Button information.

Bit Value Definition

— Reserved

1 Button up

0 Button down
06H-00H — Button number (0-7)

DH
ES:0

Data Type
Pointer to V__LTOUCH device driver header and Logical Describe Record.

V__EVENT__TOUCH Motion ISR Event Record:

AH = F__ISR (O0H)
P DL = Physical device driver's vector address / 6
BX = A number between 0 and LD__SIZE__X
CX = A number between 0 and LD__SIZE__Y
DH = Data Type
ES:0 = Pointer to V_LTOUCH device driver header and Logical Describe Record.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__CREATE__EVENT (08H)
BP = V__LTOUCH (00C6H)
DX = DS of new V_EVENT__TOUCH routine
SI' = IP of new V_EVENT__TOUCH routine
ES = CS of new V_EVENT__TOUCH routine

On Exit: AH = Return Status Code
DX = DS of previous V__EVENT__TOUCH routine
SI = IP of previous V__EVENT__TOUCH routine
ES = CS of previous V__EVENT__TOUCH routine

Registers Altered: AX, DX, S, BP, ES, DS

Related Functions: SF__EVENT__ON

Input System and HP-HIL 69

This example shows how to use the SF__CREATE__EVENT function. The routine EVENT will be
the event procedure that is called when events are enabled.

EVENT PROC FAR
CMP AH, F__JSR ; only support function F__JSR
JE PROCESS__EVENT
MOV AH, RS_UNSUPPORTED

IRET
PROCESS__EVENT:
; code to process data
; (see touch screen
. ; event record)
MOV AH, RS_SUCCESSFUL , return successful completion
IRET

EVENT ENDP

MOV AH, F__JO__CONTROL

MOV AL, SF__CREATE__EVENT

MOV BP, V__LTOUCH

MOV DX, DS , want to use the current data
, segment for event DS

PUSH CS

POP ES , current CS is also segment
; of event routine

LEA SI, CS:EVENT ; get the IP of the event
, routine

PUSH DS , save current DS

INT HP_ENTRY , call extended BIOS driver

POP DS

SF_EVENT_ON (AX = 040AH)

This subfunction enables the event (parent) call to the touch screen event routine
(V_EVENT__TOUCH). The link to the touch screen event routine must have already been
established using SF__CREATE__EVENT.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF_EVENT__ON (0OAH)
BP = V__LTOUCH (00C6H)

70 Input System and HP-HIL

On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF__CREATE__EVENT, SF__EVENT__OFF

SF_EVENT_OFF (AX = 040CH)

This subfunction disables the call to the touch screen event routine

On Entry: AH = F_IO_CONTROL (04H)
AL = SF__EVENT__OFF (OCH)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CLIPPING_ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical
space and will be clipped to avoid overflow or underflow. Clipping is activated for both absolute
and relative motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make
sure that the new position always falls within the logical space.

On Entry: AH = F_IO__CONTROL (04H)
AL = SF__CLIPPING__ON (OEH)
BP = V__LTOUCH (00C6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS
SF__CLIPPING OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical
space, but overflow or underflow may occur.

Input System and HP-HIL 71

On Entry: AH
AL
BP

F__IO_CONTROL (04H)
SF__CLIPPING__OFF (10H)
V__LTOUCH (00C6H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

F_SAMPLE (AH = 06H)

This function allows an application to poll the touch screen device. This function reports the
current absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F_SAMPLE (06H)
BP = V__LTOUCH (00C6H)
On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
DL = LD__TRANSITION field of Logical Describe Record
DH = LD__STATE field of Logical Describe Record
ES:0 = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES
The following is an example of how to call the F__SAMPLE function.

MOV AH, F_SAMPLE | load function code
MOV BP, V_LTOUCH ; load vector address

PUSH DS ; save the current DS
INT HP_ENTRY ~ ; call extended BIOS driver
POP DS ,; restore DS

4.2.3.2 V__LPOINTER Driver (BP = 00COH)

This section contains a detailed description of the pointer driver. Table 4.7 summarizes the
functions supported by this driver.

72 Input System and HP-HIL

Table 4.7

Pointer Driver Function Code Summary

Vector Func. Function

Address Value Equate Definition

00COH V__LPOINTER Application interface to Pointer/Mouse
00COH 00 F__ISR Logical Interrupt

00COH 02 F__SYSTEM System functions

00cOH 02/00 SF__INIT Initialize the driver data area

OOCOH 02/02 SF_START Start driver

00COH 02/04 SF_REPORT__STATE Report state of device
00COH 02/06 SF_VERSION__DESC Report driver version number

00COH 02/08 SF_DEF_ATTR Set default logical scaling attributes
00COH 02/0A SF_GET__ATTR Get scaling attributes

00COH 02/0cC SF_SET__ATTR Set scaling attributes

00COH 04 F__IO_CONTROL I/0 Control Functions

00COH 04/00 SF__LOCK Unsupported

0O0COH 04/02 SF__UNLOCK Unsupported

00COH 04/04 SF_TRACK__ON Turn cursor track on

00COH 04/06 SF__TRACK__OFF Turn cursor track off

00COH 04/08 SF__CREATE__EVENT Establish a new routine to be called on
logical device events

00COH 04/0A SF_EVENT__ON Enable event call to parent driver

00COH 04/0cC SF__EVENT__OFF Disable event call to parent driver

00COH 04/0E SF_CLIPPING_ON Enable logical device clipping

00COH 04/10 SF_CLIPPING_OFF Disable logical device clipping

00COH 06 F__SAMPLE Report absolute position of GID

Pointer Driver Function Definitions

F_ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver
has handled the physical interrupt and updated the Physical Describe Record to reflect the event.
This function translates the physical event into the logical coordinate system and calls its parent,
V_EVENT__POINTER, (if EVENT is enabled). In addition, this function passes the event to
V__STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response
to a logical hardware interrupt and not user callable.

Input System and HP-HIL 73

On Entry: AH = F__ISR (O0H)
DH = Data Type
DL = Physical device driver's vector index.
ES:0 = Pointer to physical device driver header and Physical Describe Record.
BP = V__LPOINTER (00COH)

For Button Event:
BX = Button information.

Bit Value Definition
OFH-08H — Reserved
O7H 1 Button up

0 Button down
06H-00H — Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX = Y axis motion in raw data form.

On Exit: AH Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF__CREATE__EVENT, SF__EVENT__ON, SF__TRACK__ON

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation.

On Entry: AH = F__SYSTEM (02H)
AL = SF__INIT (OOH)
BX = "Last used DS” in HP Data Area

BP = V__LPOINTER (O0OCOH)

On Exit: AH = Return Status Code
BX = New “last used DS"' in HP Data Area

Registers Altered: AX, BX, BP, DS

74 Input System and HP-HIL

SF__START (AX = 0202H)
This subfunction starts the logical pointer driver.
On Entry: AH = F_SYSTEM (02H)
AL = SF__START (02H)
BP = V__LPOINTER (OOCOH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_REPORT__STATE (AX = 0204H)

This subfunction returns the LD__DEVICE__STATE field from the Logical Describe Record.
On Entry: AH = F_SYSTEM (02H)

AL = SF_REPORT__STATE (04H)

BP = V__LPOINTER (00COH)

On Exit: AH = Return Status Code
DX = LD__DEVICE__STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_VERSION__DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF__VERSION__DESC (06H)
BP = V__LPOINTER (0O0OCOH)
On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

Input System and HP-HIL 75

SF__DEF__ATTR (AX = 0208H)

This subfunction sets the attributes of the logical pointer driver to their default values. The
default attributes for the pointer driver are: LD__SIZE_ X = 639 and LD__SIZE__Y = 199.

On Entry:

On Exit:

AH = F_SYSTEM (02H)
AL = SF__DEF__ATTR (08H)
BP = V__LPOINTER (O0OCOH)

AH = Return Status Code

Registers Altered: AX, BP, DS

SF_GET_ATTR (AX = 020AH)

This subfunction returns the current scaling attributes, LD__SIZE__X and LD__SIZE__Y.

On Entry:

On Exit:

AH = F_SYSTEM (02H)
AL = SF_GET__ATTR (0AH)
BP = V__LPOINTER (O0COH)

AH = Return Status Code
BX = LD__SIZE__X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF_SET__ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD__SIZE__X and LD__SIZE__Y in the Logical
Describe Record.

On Entry:

On Exit:

AH = F__SYSTEM (02H)

AL = SF__SET__ATTR (OCH)

BX = LD__SIZE__X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)
BP = V__LPOINTER (00COH)

AH = Return Status Code

Registers Altered: AX, BP, DS

76 Input System and HP-HIL

SF_TRACK_ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V_STRACK will be
called to update the graphics cursor (sprite) position.

r On Entry: AH = F__IO_CONTROL (04H)
AL = SF__TRACK__ON (04H)
BP = V__LPOINTER (O0OCOH)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS

SF_TRACK_OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF_TRACK__OFF (06H)
BP = V__LPOINTER (00COH)
r On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS
SF__CREATE_EVENT (AX = 0408H)
This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS
of the routine are passed to this subfunction. These values are exchanged with the vector entry
of the V_EVENT__POINTER driver in the HP__VECTOR__TABLE, V__EVENT__POINTER being the
parent of the logical pointer driver. The IP, CS, and DS of the previous routine are returned to the
caller. Note that this subfunction does not enable the event call to the parent routine; this must
be done explicitly using SF__EVENT__ON.
The ISR event records passed to the V__EVENT__POINTER driver will have one of the following
~ two formats depending on the Data Type stored in DL.

V__EVENT__POINTER Button ISR Event Record:

Input System and HP-HIL 77

AH
DL
BX

DH
ES:0

= F__ISR (O0H)
= Physical device driver's vector address / 6
= Button information.
Bit Value Definition
OFH-08H — Reserved
07H 1 Button up
0 Button down
06H-00H — Button number (0-7)
= Data Type
= Pointer to V__LPOINTER device driver header and Logical Describe Record.

V_EVENT__POINTER Motion ISR Event Record:

AH
DL
BX

X

DH
ES:0

On Entry: AH
AL
BP
DX
SI
ES

On Exit: AH
DX
S|
ES

F__ISR (O0OH)

Physical device driver’s vector address / 6

Relative movement in the X direction

(Positive number indicates movement to the right)

Relative movement in the Y direction

(Positive number indicates movement down)

Data Type

Pointer to V__LPOINTER device driver header and Logical Describe Record.

F__IO__CONTROL (04H)
SF_CREATE__EVENT (08H)
V__LPOINTER (00COH)

DS of new V__EVENT__POINTER routine
IP of new V__EVENT__POINTER routine
CS of new V__EVENT__POINTER routine

Return Status Code

DS of previous V__EVENT__POINTER routine
IP of previous V__EVENT__POINTER routine
CS of previous V__EVENT__POINTER routine

Registers Altered: AX, DX, SI, BP, ES, DS

Related Functions:

SF_EVENT__ON

This example shows how to use the SF__CREATE__EVENT function. The routine EVENT will be
the event procedure that is called when events are enabled.

78 Input System and HP-HIL

EVENT PROC FAR
CMP AH, F_ISR ; only support function F__ISR
JE PROCESS__EVENT
MOV AH, RS_UNSUPPORTED
IRET
™ PROCESS__EVENT:
) ; code to process data (see
, pointer event record)

MoV AH, RS__SUCCESSFUL ; return successful completion
IRET
EVENT ENDP

MOV AH, F__IO_CONTROL

MOV AL, SF__CREATE__EVENT

MOV BP, V__LPOINTER

MOV DX, DS , want to use the current data
; segment for event DS

PUSH CS

POP ES ; current CS is also segment
; of event routine

P LEA S|, CS:EVENT , get the IP of the event

; routine

PUSH DS , save current DS

INT HP_ENTRY , call extended BIOS driver

POP DS

SF_EVENT_ON (AX = 040AH)

This subfunction enables the event (parent) call to the pointer event routine
(V_EVENT__POINTER). The link to the pointer event routine must have already been established
using SF_CREATE__EVENT.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_EVENT__ON (0AH)
BP = V__LPOINTER (00COH)

P On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF__CREATE__EVENT, SF__EVENT__OFF

Input System and HP-HIL 79

SF_EVENT_OFF (AX = 040CH)
This subfunction disables the call to the pointer event routine.
On Entry: AH = F_IO_CONTROL (04H)
AL = SF__EVENT__OFF (OCH)
BP = V__LPOINTER (00OCOH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical
space and will be clipped to avoid overflow or underflow. Clipping is activated for both absolute
and relative motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make
sure that the new position always falls within the logical space.

On Entry: AH = F__IO__CONTROL (04H)
AL = SF__CLIPPING__ON (0EH)
BP = V__LPOINTER (00COH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CLIPPING_OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical
space, but overflow or underflow may occur.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__CLIPPING__OFF (10H)
BP = V__LPOINTER (OCOH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

80 Input System and HP-HIL

F_SAMPLE (AH = 06H)

This function allows an application to poll the pointer device. This function reports the current
absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F__SAMPLE (06H)
BP = V__LPOINTER (00COH)
On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
DL = LD__TRANSITION field of Logical Describe Record
DH = LD__STATE field of Logical Describe Record
ES:0 = Pointer to logical device header and Describe Record

Registers Altered: AX, BX, CX, DX, BP, DS, ES

The following is an example of how to call the F__SAMPLE function.

MOV AH, F__SAMPLE ; load function code
MOV BP, V_LPOINTER ; load vector address
PUSH DS , save the current DS

INT HP__ENTRY ; call extended BIOS driver
POP DS , restore DS

4.2.3.3 V__LTABLET Driver (BP = 00BAH)

This section contains a detailed description of the tablet driver. See table 4.8 for a summary of
functions supported by this driver.

Input System and HP-HIL 81

Table 4.8

Tablet Driver Function Code Summary

Vector Func. Function

Address Value Equate Definition

OOBAH V__LTABLET Application interface to Tablet

00BAH 00 F__ISR Logical Interrupt

00BAH 02 F__SYSTEM System functions

00BAH 02/00 SF__INIT Initialize the driver data area

0O0BAH 02/02 SF__START Start driver

00BAH 02/04 SF_REPORT__STATE Report state of device

00BAH 02/06 SF_VERSION__DESC Report driver version number

O0BAH 02/08 SF__DEF_ATTR Set default logical scaling attributes

00BAH 02/0A SF_GET__ATIR Get scaling attributes

00BAH 02/0cC SF__SET__ATTR Set scaling attributes

O0OBAH 04 F__1I0_CONTROL I/0 Control Functions

00BAH 04/00 SF__LOCK Unsupported

O0BAH 04/02 SF__UNLOCK Unsupported

O0BAH 04/04 SF_TRACK__ON Turns cursor track on

O0OBAH 04/06 SF_TRACK__OFF Turns cursor track off

O0OBAH 04/08 SF__CREATE__EVENT Establish a new routine to be called on
logical device events

O0OBAH 04/0A SF_EVENT__ON Enable event call to parent driver

O0BAH 04/0C SF__EVENT__OFF Disable event call to parent driver

00BAH 04/0E SF__CLIPPING_ON Enable logical device clipping

OOBAH 04/10 SF__CLIPPING_OFF Disable logical device clipping

00BAH 06 F_SAMPLE Report absolute position of GID

Tablet Driver Functions Definition

F_ISR (AH = OOH)

This function receives an ISR Event record from one of the physical GID drivers. The calling driver

has handled the physical interrupt and updated the Physical Describe Record to reflect the event.

This function translates the physical event into the logical coordinate system and calls its parent,
V__EVENT__TABLET, (if EVENT is enabled). In addition, this function passes the event to
V__STRACK so that the sprite can be updated (if TRACK is enabled). This function is a response

to a logical hardware interrupt and not user callable.

82 Input System and HP-HIL

ﬂ

On Entry: AH = F__ISR (O0H)
DH = Data Type
DL = Physical device driver’s vector index.

ES:0 = Pointer to physical device driver header and Physical Describe Record.
BP = V__LTABLET (OOBAH)

For Button Event:
BX = Button information.

Bit Value Definition
OFH-08H —_ Reserved
O7H 1 Button up

0 Button down
06H-00H —_ Button number (0-7)

For Motion Event:
BX = X axis motion in raw data form.
CX =Y axis motion in raw data form.
On Exit: AH = Return Status Code
Registers Altered: AX, BP, DS

Related Functions: SF_CREATE__EVENT, SF_EVENT__ON, SF_TRACK_ON

SF_INIT (AX = 0200H)

This subfunction is called to initialize the driver. Refer to Section 9 for a complete discussion of
the protocol used in data space allocation.

On Entry: AH = F_SYSTEM (02H)
AL = SF__INIT (O0OH)
BX = "Last used DS" in HP Data Area
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code
BX = New "last used DS’ in HP Data Area

Registers Altered: AX, BX, BP, DS

Input System and HP-HIL 83

SF_START (AX = 0202H)

This subfunction starts the logical tablet driver.

On Entry: AH = F__SYSTEM (02H)
AL = SF__START (02H)
BP = V__LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__REPORT_STATE (AX = 0204H)

This subfunction returns the LD__DEVICE__STATE field from the Logical Describe Record.

On Entry: AH = F__SYSTEM (02H)
AL = SF__REPORT__STATE (04H)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code
DX = LD__DEVICE__STATE from Logical Describe Record

Registers Altered: AX, DX, BP, DS

SF_VERSION__DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F_SYSTEM (02H)
AL = SF__VERSION__DESC (06H)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

84 Input System and HP-HIL

SF_DEF_ATTR (AX = 0208H)

This subfunction sets the attributes of the logical tablet driver to their default values. The default
attributes for the tablet driver are: LD__SIZE__ X = 639 and LD__SIZE__Y = 199.

On Entry: AH = F__SYSTEM (02H)
AL = SF_DEF__ATTR (08H)
BP = V__LTABLET (OOBAH)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS

SF__GET_ATTR (AX = 020AH)
This subfunction returns the current scaling attributes, LD__SIZE__X and LD__SIZE__Y.
On Entry: AH = F__SYSTEM (02H)

AL = SF_GET__ATITR (0AH)
BP = V__LTABLET (OOBAH)

On Exit: AH = Return Status Code
BX = LD__SIZE__X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)

Registers Altered: AX, BX, CX, BP, DS

SF_SET_ATTR (AX = 020CH)

This subfunction sets the scaling attributes, LD__SIZE__X and LD__SIZE__Y in the Logical
Describe Record.

On Entry: AH = F__SYSTEM (02H)

AL = SF__SET__ATTR (OCH)
BX = LD__SIZE__X (logical size along X axis)
CX = LD__SIZE__Y (logical size along Y axis)
BP = V__LTABLET (O0OBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 85

SF_TRACK_ON (AX = 0404H)

This subfunction turns tracking on. For each movement of the logical device, V__STRACK will be
called to update the graphics cursor (sprite) location.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF_TRACK__ON (04H)
BP = V__LTABLET (O0BAH)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS

SF_TRACK__OFF (AX = 0406H)

This subfunction turns tracking off.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF_TRACK__OFF (06H)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CREATE__EVENT (AX = 0408H)

This subfunction establishes the routine to be called on logical device events. The IP, CS, and DS
of the routine are passed to this subfunction. These values are exchanged with the vector entry
of the V_EVENT__TABLET driver in the HP_VECTOR__TABLE, V_EVENT__TABLET being the
parent of the logical tablet driver. The IP, CS, and DS of the previous routine are returned to the
caller. Note that this subfunction does not enable the event call to the parent routine; this must
be done explicitly using SF__EVENT__ON.

The ISR event records passed to the V__EVENT__TABLET driver will have one of the following
two formats depending on the data type stored in DL.

86 Input System and HP-HIL

V__EVENT__TABLET Button ISR Event Record:

AH = F__ISR (O0OH)
DL = Physical device driver’s vector address / 6

BX Button information.
Bit Value Definition
OFH-08H R— Reserved
O7H 1 Button up
0 Button down
06H-00H _— Button number (0-7)

DH = Data Type
ES:0 = Pointer to V__LTABLET device driver header and Logical Describe Record.

V__EVENT__TABLET Motion ISR Event Record:

AH = F__ISR (O0H)
DL = Physical device driver’s vector address / 6
BX = A number between 0 and LD__SIZE__X
CX = A number between 0 and LD__SIZE__Y
DH = Data Type
ES:0 = Pointer to V__TABLET device driver header and Logical Describe Record.
On Entry: AH = F__IO_CONTROL (04H)
AL = SF_CREATE__EVENT (08H)
BP = V__LTABLET (OOBAH)
DX = DS of new V_EVENT__TABLET routine
SI' = IP of new V_EVENT__TABLET routine
ES = CS of new V_EVENT__TABLET routine
On Exit: AH = Return Status Code
DX = DS of previous V__EVENT__TABLET routine
SI = IP of previous V_EVENT__TABLET routine
ES = CS of previous V__EVENT__TABLET routine

Registers Altered: AX, DX, SI, BP, ES, DS
Related Functions: SF__EVENT__ON

This example shows how to use the SF__CREATE__EVENT function. The routine EVENT will be
the event procedure that is called when events are enabled.

Input System and HP-HIL 87

EVENT PROC FAR

CMP AH, F__ISR ; only support function F__ISR
JE PROCESS__EVENT

MoV AH, RS_UNSUPPORTED

IRET

PROCESS__EVENT:
. , code to process data (see

; tablet event record)
MOV AH, RS_SUCCESSFUL ; return successful completion
IRET
EVENT ENDP
MOV AH, F__JO__CONTROL
MoV AL, SF_CREATE__EVENT
MoV BP, V__LTABLET
MOV DX, DS ; want to use the current data
., segment for event DS
PUSH CS
POP ES ; current CS Is also segment
; of event routine
LEA SI, CS:EVENT ; get the IP of the event
, routine
PUSH DS , save current DS
INT HP_ENTRY , call extended BIOS driver
POP DS

SF_EVENT_ON (AX = 040AH)

This subfunction enables the event (parent) call to the tablet event routine (V_EVENT__TABLET).
The link to the tablet event routine must have already been established using
SF_CREATE__EVENT.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__EVENT__ON (0AH)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Related Functions: SF__CREATE__EVENT, SF_EVENT__OFF

88 Input System and HP-HIL

SF_EVENT__OFF (AX = 040CH)

This subfunction disables the call to the tablet event routine.

On Entry: AH = F__IO__CONTROL (04H)
AL = SF__EVENT__OFF (OCH)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_ON (AX = 040EH)

This subfunction enables logical device clipping. Physical device motion will be scaled to logical
space and will be clipped to avoid overflow or underflow. Clipping is activated for both absolute
and relative motion.

When there is a relative device mapped to this device driver, clipping works the best. It will make
sure that the new position always falls within the logical space.

On Entry: AH = F__IO__CONTROL (04H)
AL = SF__CLIPPING__ON (OEH)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CLIPPING_OFF (AX = 0410H)

This subfunction disables logical device clipping. Physical device motion will be scaled to logical
space, but overflow or underflow may occur.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__CLIPPING__OFF (10H)
BP = V__LTABLET (OOBAH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 89

F_SAMPLE (AH = 06H)

This function allows an application to poll the tablet device. This function reports the current
absolute position of the logical device in a form similar to a Logical ISR Event Record.

On Entry: AH = F__SAMPLE (06H)
BP = V__LTABLET (OOBAH)
On Exit: AH = Return Status Code
BX = Current logical position along X axis
CX = Current logical position along Y axis
DL = LD__TRANSITION field of Logical Describe Record
DH = LD__STATE field of Logical Describe Record

ES:0 = Pointer to logical device header and Describe Record
Registers Altered: AX, BX, CX, DX, BP, DS, ES
The following is an example of how to call the F__SAMPLE function.

MOV AH, F_SAMPLE ;load function code
MOV BP, V__LTABLET ;load vector address

PUSH DS ; save the current DS
INT HP_ENTRY , call extended BIOS driver
POP DS , restore DS

4.2.4 Application Event Driver Example

The following program is an example of how to input touch screen data using application event
interrupts. The program installs an application event driver using the SF_CREATE__EVENT
function and enables event interrupts using the SF__EVENT__ON function. The event handler
supports only the F__ISR function which processes both button and motion Logical ISR Event
Records.

90 Input System and HP-HIL

Touch Example

.2886¢
fitl

59,132

TOUCH Example

TOUCH Example

DESCRIPTION: This program demonstrates how touch works.
LIST OF SECTIONS:

«ssDRIVER HEADERessssacscssssnasusasasassssunsasnsnsnnnsunsnsnnnnnnnns

NAME :

R RN NN
o
o
o
o

page
HP_SHEADER
DH_ATR
DH_NAME _INDEX
DH_V_DEFAULT

DH_MI

HP_SHEADER

HP_ENTRY

SYSCALL
ifnd

endif

ATR_HP

cL_RULL

F_ISR

FZI0 CONTROL

sr CREATE _EVENT
EVENT_OFF

SFEVENTON

RS”SUCCESSFUL

RS_UNSUPPORTED

T_RC_BUTTON

T_TS
V_DOLITTLE

TERMINATE_PROC

TS_EVENT_HEADR
EXEM_HP_ATTR

TLE,V_DOLITTLE>

TS EVENT_HEADR ends
DATA_SEG segment

<vector>
mov

int
endm
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ

segment

oau
HP_SHEADE

Y-Y-Y-Y-¥-¥-¥-¥-3

0BFH
vector

bp.vector
HP_ENTRY

0006H
00C8H
0060H

OlH
100000008
4CH

orted b{ the ? sical driver to the logical drive
a ITF

PG D translates

to T_KC_BUTTON and filters

any other scancode out of the daTa stream

Specially formed data

(0..80 x 0..25 range - defa

ATR_HP
CEXAM_HP_ATTR ,V_EVENT_TOUCH/8 ,V_EVENT_TOUCH,CL_NULL .CL_NULL,V_|

Input System and HP-HIL 91

Touch Example (cont.)

27227
2777
7722

50 [

?7?1?

8E D8

SAVE_CS

SAVEIP

SAVE DS

STACK
7772

STK_TOP
DATA_SEG
CODE_SEG

BEGIN:

DO
8B 26 00A6 R

™
L
1=
[=
—
o
E

@™

>
000 © NnaoTMUINO
Moo & OO0 ME -

@
S
k]

INPUT_LOOP:

EXIT_PROG:

TOUCH_ENABLE
le

3
8D 36 0048 R

BA ---- R

BD 00C6
6F

+ +

co
A3 0000 R

89 36 0002 R
89 16 0004 R

B4 04
B0 0A

BD 00Cé6
CD 6F

80 FE 45

92

++

TOUCH_ENABLE
TOUCH_HANDLER

PROCESS_ISR:

Input System and HP-HIL

dw
dw
dw
dw

dw
ends
segment
assume
mov
mov
mov
mov
call
mov
int
cmp
jne
call
mov
int
proc
mov

mov
mov
mov
lea
mov
syscall

mov
mov
mov
mov
mov
mov
syscall

ret
endp

proc
cmp
je
mov
iret
pusha
cmp
je
cmp

cs:CODE_SEG,ds:DATA_SEG,ss:DATA_SEQG

?
?
?
80 dup (?)
?
ax ,DATA_SEG
ds , ax
ll.ll

,STK TOP
T UCH_ENA

LE
l h, READ CHAR _ECHO

INPUT LOOP

TOUCH RESTORE

;h,TEFMINATE»PROC
1H

ah F_I0_CONTROL

al SF_CREATE_EVENT

bx,cs

es bx

si,TOUCH HANDLER
TS _EVENT_HEADR

V_LTOUCH

mov bp.,V LTOUCH
int HP_ENTRY
ax,es

word ptr SAVE_CS, ax
word ptr SAVE'IP,si
word ptr SAVEUDS dx

al, SF
V_LTOUCH
mov bg.v LTOUCH
int _ENTRY
F SR

SR
ah, RS UNSUPPORTED

dh,
TherT POS REPORT
dh.T_KC_BUTTON

;Load up the ds register with the data segment

;The stack segment is also in the code segment
;Point to the top of the stack

:Read a character w/echo until

;Is this the exit character?
(Exit

;Move my touch event handler into the HP vector tab

;Save the old event values

.Start accepting calls

;Logical interrupt?

yes, continue

set return code

;Save all the registers
;Is this a position report or a make/break report

N

Touch Example (cont.)

80

O HOOO0OOOOON—OUMOoONO
© OrTMOMOTMPWNOOWRNWM

04
ocC

00C6

6F

04

08

1E 0000 R
C3

36 0002 R
18 0004 R

00C6
6F

++

3

BUTTON_REPORT:

E

T
T

T
C

0S_REPORT:

UTTON_PUSH:
XIT_TOUCH:

OUCH_HANDLER
OUCH_RESTORE

OUCH_RESTORE
ODE_SEG

je
mp
mov
mov
mov
mov
int
{58
test
jz
mov
mov
mov
int
jmp
mov
mov
mov
int
popa
mov
iret
endp
proc
mov

mov
syscall

mov
mov
mov
mov
lea
mov
syscall

ret
endp
ends
end

short BUTTON REPORT
short EXIT_TOUCH
ah, 02H

rt EXIT_TOUCH
bl MAKE BREAK BIT
short BUTTON_PUSH
ch, 0EH

cl, 0FH

ah, 1

10H

short EXIT_TOUCH
ch, 0

cl 0fh

ah,1

10H

ah, RS_SUCCESSFUL

ah,F_I0 CONTROL
al SF EVENT_OFF

V_LToUCH
mov bp .V _LTOUCH
int HP _ENTRY

ah F_I0 CONTROL
al,SF_CREATE _EVENT
bx,word ptr SAVE_CS
es . bx

si . word ptr SAVE_IP
dx,word ptr SAVE_DS

V_LTOUCH

mov bp.V_LTOUCH
int HP_ENTRY
BEGIN

;That
:Make the cursor into a box on touch.

‘Move the cursor to the recieved position
;using the standard IBM BIOS int

;That finishes that ISR.
;See if this is a touch or a release.

:0n a release make the cursor back into
;a line.

finishes a release ISR.

:Restore all the registers.
;Set the return status.
Return from the ISR

;Stop accepting calls

iRestore the old event handler

Input System and HP-HIL 93

Touch Example (cont.)

Macros:

Name
SYSCALL.
Structures and records:

NP SHEADER .

DH_MINOR .

Segments and Groups:

CODE SEG .

DAT.

TS_ EVENT _HEADR .

Symbols:

ATR_HP .

BEGIN
BUTTO

N_PUSH. .
BUTTON REPORT .

T

MAKE B

CL .
EXKM HP ATTR .
PROG.

TOUCH . .
CONTROL

TRY |00
LOOP . . .
REAK_BIT .

POS_REPORT .

SA P. .
SF_CREATE_EVENT.

SF_EVE
SFTEVE
STACK.

NT_OFF
NT_ON.

CK .
STK_TOP. .
TERMINATE PROC .

TOUCH
TOUCH_
TOUCH

ENABLE .
HANDLER .
RESTORE

_KC_BUTTON.

TS™
V_DOLI

TTLE .

VZEVENT _TOUCH.

VZLTOUCR

48576

Warnin
Error:

94

Bytes free

g Severe
grrurs

Input System and HP-HIL

Length
0002

Width
Shift

Type

Number

Number
Number
L WORD
L WORD
Number
N PROC
N PROC
N PROC
Number
Number
Number
Number
Number

8 14

eld

Width

0009

-3-3-2.4

oo
o
o

BNAONOOUDOMMOMAOG OCO®OO

oo

1]
Mask Initial

Combine Class

Attr

CODE_SEG
CODE_SEG
CODE_SEG

CODE_SEG
CODE_SEG

CODE_SEG

CODE_SEG
CODE_SEG

DATA_SEQ
DATA_SEG
DATA_SEG

DATA_SEG
DATA_SEQG

CODE_SEG
CODE_SEG
CODE_SEG

Length

Length
Length
Length

=0021

4.3 Hardware Interface Level

The hardware interface of the Input System is composed of a set of drivers to respond to
hardware interrupts and process physical data from the input devices into a form usable by
the application interface drivers. These drivers are shown in Figure 4.2.

4.3.1 Overview

This section describes the drivers, data structures, and interrupt service routine (ISR) event
processing that takes place below the application interface level. The following data flow
expands on step 2 of the data flow presented in Section 4.2.1. A detailed explanation of each
step is presented after the data flow.

1. The user touches the screen. This causes a hardware interrupt which is managed by the
8259A interrupt controller service (V_S8259). V__S8259 responds to the interrupt
controller chip and transfers control to the HP-HIL driver.

2. The HP-HIL driver (V_HPHIL) services the HP-HIL controller chip, retrieving the input device
data. V__HPHIL processes the input data and transfers control to the Input System dispatch
service.

3. The dispatch service (V_SINPUT) transfers control to the appropriate physical device driver
based on the source of the input data (in this case the physical touch screen driver).

4. The physical touch screen driver builds the Physical Describe Record and transfers control to
the application interface driver V_LTOUCH.

V__S8259 provides a funnel point for managing HP specific hardware. The Input System
hardware communicates with the hardware interface drivers via three interrupts: the 8041
service request (SVC), the 8041 Output Buffer Full (OBF), and the HP-HIL controller interrupt. The
8041 SVC and OBF interrupts are discussed in the keyboard section (Section 5). The HP-HIL
controller interrupt is chained to the HP-HIL driver (V__HPHIL), i.e., when V__S8259 receives an

HP-HIL controller interrupt it generates an HP__ENTRY software interrupt to transfer control to
V__HPHIL.

The HP-HIL driver services the HP-HIL controller and generates the appropriate Physical ISR Event
Record(s). After processing the input data V__HPHIL chains to V__SINPUT.

Input System and HP-HIL 95

Hardware Interface Level Drivers

Application
Application
Interface
Drivers
Application Interface Level
Touch Screen Pointer Tablet
Physical GID Physical GID Physical GID
Driver Driver Driver

L

|

Input Dispatch

(V__SINPUT)

Service

|

HP-HIL Controller

(V_HPHIL)

Driver

l

8259A Interrupt
Controller Driver
(V__S8259)

Hardware Interface Level

Physical Input Devices

96 Input System and HP-HIL

Figure 4.2

V_SINPUT chains to the appropriate physical device driver based on the vector index (vector
address divided by six) stored in the Physical ISR Event Record (DL register). It provides an entry
point into the Input System for non-HP-HIL devices. V__SINPUT also provides driver mapping
functions that will be discussed later in this section.

Two physical drivers will be discussed later in this section. The first is the physical GID driver
(PGID) which handles both absolute and relative data. Because PGID can handle both types of
GID data, it can chain to any logical GID driver; this forms the basis for Input System device driver
mapping. The second physical driver is the null device driver (V_PNULL), which serves as a
handler for unsupported devices. The keyboard driver is discussed in Section 5.

4.3.1.1 Device Driver Mapping

Each driver in the Input System has a vector in the HP__VECTOR__TABLE, and a driver header.
Each driver header has two fields which determine the mapping of the driver. One field contains
the vector of the driver’s parent driver and the other contains the vector of the driver’s child
driver. Refer to Section 2 and Appendix G for a detailed description of driver headers.

Calls are made to the vector address contained in the parent field to pass the interrupt on to the
next driver in the device driver chain, moving the data from the hardware toward the application
via the desired logical GID driver. Hardware commands from the application are passed down
the device driver chain to the device via the vector address contained in the child vector field. By
changing the value of the parent or child vector field, the sequence of drivers called to handle an
interrupt or function request is changed. In general an application may re-map a driver by
changing the driver header directly. Functions are provided by the V__SINPUT service to map the
physical GID drivers to the logical GID drivers.

4.3.1.2 Device Emulation

Device emulation occurs when one or more physical devices are mapped to a logical device that
does not represent the original source of the data. For example, mapping a physical mouse driver
to a logical touch screen driver allows the mouse to look like a touch screen to the application.
The key requirement for a logical device driver to emulate other devices is that it accept both
absolute and relative data. Referencing the above example, the logical touch screen driver which
reports absolute data must accept both absolute (touch) data and relative (mouse) data.

Input System and HP-HIL 97

An example of device mapping and emulation occurring in the system is the translation of mouse
input to Cursor Control Pad (CCP) input. Since standard DOS processes keyboard input only, (not
mouse input), the physical GID driver which processes mouse input is mapped, in its default
state, to a driver called V_PGID__CCP. This driver causes mouse input to emulate input from the
CCP. For an application which processes industry standard mouse input (INT 33H) to use the HP
Mouse, the mouse physical GID driver should be mapped to the V__LHPMOUSE driver using the
F33__INSTALL function (see Section 6 for more details).

4.3.2 Data Structures

The hardware interface level uses two major data structures: the Physical Describe Record and
the Physical ISR Event Record(s). These data structures help keep track of the numerous events
occurring in the Input System.

4.3.2.1 Physical Describe Record

The Physical Describe Record is used by the physical GID drivers to keep track of the current state
of their respective devices. Each of the physical GID drivers has a Physical Describe Record
associated with it, which is located directly after the driver header starting with memory address
DS:0010H. An explanation of the Physical Describe Record fields follows, table 4.9 contains the
field types and offsets.

98 Input System and HP-HIL

Table 4.9

Physical GID Device Describe Record

Field Type Offset Description
Driver Header OOH Driver header (see Section 2)
D_SOURCE BYTE 10H Input type and device address
D__HPHIL__ID BYTE 11H Device ID
D_DESC__MASK BYTE 12H Describe header byte
D__I0_MASK BYTE 13H Device I/O descriptor byte
D_XDESC_MASK BYTE 14H Extended describe header byte
D_MAX_AXIS BYTE 15H Maximum number of axes
D__CLASS BYTE 16H Device class
D__PROMPTS BYTE 17H Number of button/prompts
D__RESERVED BYTE 18H Reserved
D_BURST__LEN BYTE 19H Maximum output burst length
D_WR_REG BYTE 1AH Number of write registers
D_RD__REG BYTE 1BH Number of read registers
D_TRANSITION BYTE 1CH Button transitions
D__STATE BYTE 1DH Current state of the buttons
D_RESOLUTION WORD 1EH Physical device resolution
D__SIZE__X WORD 20H Maximum x-axis count
D_SIZE_Y WORD 22H Maximum y-axis count
D_ABS_X WORD 24H X position data for absolute devices
D_ABS_Y WORD 26H Y position data for absolute devices
D_REL__X WORD 28H X delta for relative devices
D__REL_Y WORD 2AH Y delta for relative devices
D_ACCUM__X WORD 2CH Reserved
D_ACCUM_Y WORD 2EH Reserved
D__SOURCE This field is divided into nibbles. Bits 7-4 contain the graphics input
device type. This field is loaded with the low order nibble of the
appropriate physical GID data type. See table 4.12. Bits 3-0 are the link
address of the physical device.
D__HPHIL__ID ID byte of the physical device which last reported data. See table 4.2 for

D__DESC__MASK

a list of HP-HIL ID bytes.

Physical device describe byte. This byte contains information about the
physical device characteristics, see HP-HIL Technical Reference Manual
for more information.

Input System and HP-HIL 99

D_I0_MASK

D_XDESC__MASK

D_MAX_AXIS

D__CLASS

D_PROMPTS

D_BURST__LEN

D__WR__REG
D__RD_REG

D_TRANSITION

D__STATE

D__RESOLUTION

D_SIZE_X
D_SIZE_Y

D_ABS__X

D_ABS_Y

100 Input System and HP-HIL

Physical device I/O descriptor byte. This byte contains information on the
number of prompts and acknowledges the device supports. See HP-HIL
Technical Reference Manual for more information.

Physical device extended describe byte. This byte contains additional
device characteristics. See HP-HIL Technical Reference Manual for more
information.

Maximum number of axes supported by the device. Valid range is 0-2.

Device class. Bits 7-4 contain the current class. Bits 3-0 contain the
default class. See Appendix G for more information on device classes.

Number of buttons and prompts supported by the device. Bits 7-4 is the
number of prompts. Bits 3-0 is the number of buttons.

Maximum number of bytes that can be output to the device using a
single write command.

Number of write registers supported by the device.

Number of read registers supported by the device.

Transitions reported per button, i.e. a set bit indicates that the
corresponding button was either pushed or released. Bit 7 corresponds
to button 7 etc.

Current state of the buttons. 1 is down, 0 is up. Bit 7 corresponds to
button 7 etc. If D__STATE is XOR'ed with D__TRANSITION the result is
the previous button state.

This is the resolution of the physical device. The resolution is in counts
per meter for devices that report 8 bits of data. For devices that report
16 bits of data the resolution is in counts per centimeter.

Maximum count (in units of resolution) for the x-axis.

Maximum count (in units of resolution) for the y-axis.

X position data for devices which report absolute coordinates (absolute
devices).

Y position data for devices which report absolute coordinates.

D__REL_X Latest change in x position for devices which return coordinates relative
to the previous position (relative devices).

D_REL_Y Latest change in y position for devices which return coordinates relative
to the previous position.

4.3.2.2 Physical ISR Event Records

A Physical ISR Event Record is not a data structure in the truest sense, but is a set of register
definitions for inter-driver communication of input events. Tables 4.10 and 4.11 define the
Physical ISR Event Records.

Table 4.10

GID Button ISR Event Record

AH = F__ISR (O0H)
DL = Physical device driver’s vector address / 6
BX = Button information.
Bit Value Definition
OFH-08H — Reserved
07H 1 Button up
0 Button down

06H-00H Button number (0-7)

DH = Data Type

ES:0 = Pointer to physical device driver header and Physical Describe Record.

Input System and HP-HIL 101

Table 4.11

GID Motion ISR Event Record

AH = F__ISR (OOH)

DL = Physical device driver’s vector address / 6

BX = Xaxis motion in raw data form.

CX = Y axis motion in raw data form.

DH = Data Type

ES:0 = Pointer to physical device driver header and Physical Describe Record.

The button number in the Button Transition Information field (BX) denotes which button on the
device is reporting data. Of special interest is button seven (proximity indicator) which is currently
used by absolute devices to indicate that the device measurement field is active, ie. someone is
touching the touch screen or the stylus is in contact with the tablet surface.

The Data Type field (DH) contains a code representing the current type of physical GID data
stored in the event record. For button events this value will be T__KC__BUTTON. For a complete

list of physical GID event data types see table 4.12.

Table 4.12

Physical GID Event Data Types

Type Value Definition

T_KC_BUTTON 09H Button data.

T__RELO8 40H Signed 8 bit relative data
T_REL16 41H Signed 16 bit relative data
T_ABSO8 42H Unsigned 8 bit absolute data
T_ABS16 43H Unsigned 16 bit absolute data

4.3.3 Hardware Interface Level Drivers

This section describes the hardware interface level drivers in detail.

102 Input System and HP-HIL

4.3.3.1 V__S8259 Driver (BP = 001EH)

The V__S8259 driver services the HP 8259A slave interrupt controller. Three interrupt request
lines are connected to this controller; the 8041 SVC (Service port) service request, the HP-HIL
controller, and the 8041 OBF (Output Buffer Full) service request.

When this driver is initialized, the interrupt vectors for the three interrupts listed above are set for
their respective entry points into the V__S8259 driver. When an interrupt occurs, control is
transferred to one of the three entry points. The V__S8259 driver will perform an F__ISR call to
one of three drivers; the V__8041 driver for the 8041 SVC interrupt, the V__HPHIL driver for the
HP-HIL controller interrupt, and the INT 09H driver for the 8041 OBF interrupt.

In the case of the 8041 SVC interrupt and the HP-HIL controller interrupt the corresponding
interrupt is masked off on the HP slave controller and an End-of-Interrupt command is sent to the
master interrupt controller before passing the interrupt on (via F__ISR). This allows other
interrupts even of lower priority to be serviced on the HP slave 8259A but does not require
interrupt handlers to be interrupt reentrant since the same interrupt is not allowed to fire until
the entire driver chain has completed processing. When these two driver chains finish processing
the V_S8259 issues a specific End-of-Interrupt command to the HP 8259A slave controller and
then unmasks the corresponding interrupt so it can fire again.

In the case of the 8041 OBF interrupt a specific End-of-Interrupt is sent to the HP slave controller
before passing on the interrupt, allowing the industry standard INT 09H driver to manage the
master 8259A controller as if the HP slave controller were not present.

In addition to initiating response to the hardware interrupts, the 8259A driver contains other
functions which initialize the interrupt vectors, and program the proper parameters into the HP
8259A slave interrupt controller.

V__S8259 Driver Function Definitions

A summary of the V__S8259 function codes is provided in table 4.13.

Input System and HP-HIL 103

Table 4.13

V__S8259 Function Code Summary

Vector Func. Function

Address Value Equate Definition

001EH V__S8259 8259 interrupt controller support
001EH 02 F__SYSTEM System functions

001EH 02/00 SF_INIT Initialize HP slave 8259A

001EH 02/02 SF__START . Enable HP slave 8259A interrupts
001EH 02/06 SF__VERSION__DESC Report HP version number
O01EH 04 F__IO__CONTROL Entry point to I/O control functions
001EH 04/00 SF__ENABLE__SVC Unmask svc/8041 interrupt
001EH 04/02 SF-DISABLE__SVC Mask svc/8041 interrupt

O01EH 04/04 SF_ENABLE_KBD Unmask keyboard INT 9 interrupt
001EH 04/06 SF_DISABLE__KBD Mask keyboard INT 9 interrupt
0O01EH 04/08 SF_ENABLE__HPHIL Unmask HP-HIL interrupt

O01EH 04/0A SF__DISABLE__HPHIL Mask HP-HIL interrupt

F_ISR (AH = OOH)

Because this driver directly services hardware interrupts from an 8259A interrupt controller, this
function is not applicable. If called, this function will return a Return Status Code of
RS_UNSUPPORTED.

SF_INIT (AX = 0200H)

This subfunction sets the interrupt vectors for the three HP 8259A slave interrupt sources to the
appropriate entry points in the driver. In addition, the necessary 8259A parameters are
programmed into the HP 8259A slave interrupt controller. This subfunction leaves interrupts
disabled. They must be enabled with the SF__START subfunction.

On Entry: AH = F_SYSTEM (02H)
AL = SF__INIT (O0H)
BP = V__S8259 (001EH)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

104 Input System and HP-HIL

SF_START (AX = 0202H)

This subfunction enables the interrupts on the HP 8259A slave interrupt controller.
On Entry: AH = F_SYSTEM (02H)

AL = SF__START (02H)

BP = V__S8259 (001EH)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS

SF_VERSION__DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of

release. The BL register contains the number of years since 1960 and the BH register contains the
week of the year.

On Entry: AH = F__SYSTEM (02H)
AL = SF__VERSION__DESC (06H)
BP = V__S8259 (001EH)
On Exit: AH = Return Status Code
BX = Release date code
CX = Number of bytes in current version number
ES:DI = Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

SF_ENABLE__SVC (AX = 00400H)

This function unmasks (enables) the 8041 SVC interrupt on the HP 8259A slave controller.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__ENABLE__SVC (00H)
BP = V__S8259 (O01EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 105

SF__DISABLE__SVC (AX = 0402H)
This function masks off (disables) the 8041 SVC interrupt on the HP 8259A slave controller.
On Entry: AH = F__IO_CONTROL (04H)

AL = SF__DISABLE__SVC (02H)

BP = V__S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_ENABLE_KBD (AX = 0404H)

This function unmasks (enables) the 8041 OBF interrupt on the HP 8259A slave controller.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF__ENABLE__KBD (04H)
BP = V__S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_DISABLE__KBD (AX = 0406H)

This routine masks off (disables) the 8041 OBF interrupt on the HP 8259A slave controller.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__DISABLE__KBD (06H)
BP = V__S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

106 Input System and HP-HIL

SF_ENABLE__HPHIL (AX = 0408H)

This routine unmasks (enables) the HP-HIL controller interrupt on the HP 8259A slave controller.

On Entry: AH = F__IO__CONTROL (04H)
AL = SF__ENABLE__HPHIL (08H)
BP = V__S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__DISABLE__HPHIL (AX = 040AH)

This routine masks off (disables) the HP-HIL controller interrupt on the HP 8259A slave controller.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__DISABLE__HPHIL (OAH)
BP = V__S8259 (001EH)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

4.3.3.2 V__HPHIL Driver (BP = 0114H)

The HP-HIL driver retrieves input data from the HP-HIL controller and builds an ISR Event Record
to pass to V_SINPUT.

A summary of the V__HPHIL function codes is provided in table 4.14.

Input System and HP-HIL 107

Table 4.14

V__HPHIL Driver Function Code Summary

Vector Func. Function

Address Value Equate Definition

0114H V__HPHIL Setup HP-HIL to INPUT driver
linkage

01144 00 F__ISR Logical Interrupt

0114H 02 F__SYSTEM System Functions

01144 02/00 SF__INIT Initializes the driver data area.

0114H 02/04 SF__REPORT__STATE Reports state of device

0114H 02/06 SF__VERSION__DESC Reports driver version
number.

0114H 02/0E SF_OPEN Put driver in open state.

0114H 02/10 SF__CLOSE Put driver in open state.

0114H 04 F__IO__CONTROL I/0 control to driver

0114H 04/04 SF__CRV__CRV_MAJ_MIN Reserved

0114H 04/06 SF_CRV__RECONFIGURE Forces HP-HIL to reconfigure
all devices.

0114H 04/08 SF__CRV_WR__PROMPTS Write a prompt to a device

0114H 04/0A SF_CRV_WR__ACK \éVrite an acknowledge to a

evice

0114H 04/0C SF__CRV__REPEAT Sets either 30Hz or 60Hz
repeat rate

0114H 04/0E SF__CRV__DISABLE__REPEAT Cancels keyboard repeat rate

0114H 04/10 SF__CRV__SELF__TEST Issue self-test command to
physical device.

0114H 04/12 SF__CRV__REPORT__STATUS Get status from any HP-HIL
device that needs to report

0114H 04/14 SF__CRV__REPORT_NAME Returns the ASCIl name for a
device

0114H 04/16 SF_KEYBOARD__REPEAT Set typematic values

0114H 04/18 SF_KEYBOARD__LED Sets keyboard LED states

0114H 06 F_PUT__BYTE Write one byte to specified
HP-HIL device.

0114H 08 F__GET__BYTE Read one byte from specified
HP-HIL device.

0114H OA F__PUT__BUFFER Write a string of bytes to HP-
HIL device.

108 Input System and HP-HIL

V__HPHIL Driver Function Definitions

F_ISR (AH = 00H)

This function is called by the V__S8259 driver to initiate processing of an interrupt from the HP-
HIL controller. This function reads input device data from the HP-HIL controller, generates one or
more ISR Event Records, and chains to V__SINPUT. THIS FUNCTION SHOULD ONLY BE CALLED
BY THE V__S8259 DRIVER.

On Entry: AH
BP

F__ISR (O0H)
V__HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_INIT (AX = 0200H)

This subfunction initializes the driver and HP-HIL controller. Refer to Section 9 for a complete
discussion of the protocol utilized in data space allocation (“’last used DS’ passed in register BX).

On Entry: AH = F__SYSTEM (02H)
AL = SF__INIT (O0H)
BX = "Last used DS in HP Data Area
BP = V__HPHIL (0114H)

On Exit: AH = Return Status Code
BX = New "last used DS’ in HP Data Area

Registers Altered: AX, BX, BP, DS

SF_REPORT__STATE (AX = 0204H)

This subfunction returns the current status of V__HPHIL.

On Entry: AH = F_SYSTEM (02H)
AL = SF__REPORT__STATE (04H)
BP = V__HPHIL (0114H)

Input System and HP-HIL 109

On Exit:
BX = Status word

AH = Return Status Code

Bit Value Definition
OFH-ODH — Reserved
OCH 1 Timeout has occurred
OBH 1 Output request has completed
O0AH — Reserved
O9H 1 Error during output request
08H 1 HP-HIL link has been reconfigured
07H — Reserved
06H 1 HP-HIL driver is open
0 HP-HIL driver is closed
05H-04H — Reserved
03H 1 General failure
02H 1 No devices attached.
01H — Reserved
OOH 1 Link configuration in progress

Registers Altered: AX, BX, BP, DS

SF_VERSION__DESC (AX = 0206H)

This subfunction returns the release date code and a double word pointer to the current version
number. The date code consists of two BCD coded bytes containing the year and week of
release. The BL register contains the number of years since 1960 and the BH register contains the

week of the year.

Number of bytes in current version number

On Entry: AH = F__SYSTEM (02H)
AL = SF__VERSION__DESC (06H)
BP = V__HPHIL (0114H)
On Exit: AH = Return Status Code
BX = Release date code
X =
ES:DI =

Pointer to the current version number

Registers Altered: AX, BX, CX, DI, ES, BP, DS

110 Input System and HP-HIL

SF_OPEN (AX = 020EH)

This subfunction puts the HP-HIL driver in the open state. When the driver has been placed in the

open state, output to the HP-HIL devices is allowed.

On Entry: AH = F_SYSTEM (02H)
AL = SF_OPEN (OEH)
BP = V__HPHIL (0114H)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS

SF_CLOSE (AX = 0210H)

This subfunction puts the HP-HIL driver in the closed state. When the driver has been placed in

the closed state, output to the HP-HIL devices is not allowed.
On Entry: AH = F__SYSTEM (02H)

AL = SF__CLOSE (10H)

BP = V__HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CRV__RECONFIGURE (AX = 0406H)

This subfunction instructs the HP-HIL controller to reconfigure the link.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF__CRV__RECONFIGURE (06H)
BP = V__HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

Input System and HP-HIL 111

SF_CRV_WR_PROMPTS (AX = 0408H)

This subfunction issues a prompt command to a device on the HP-HIL link. The prompt command
is either specific (prompt number 1 - 7) or generic (a prompt number other than 1 - 7).

On Entry: AH
AL
BX

F__IO_CONTROL (04H)
SF__CRV_WR__PROMPTS (08H)
Device address indicator

Bit Value Definition

OFH-OEH — Reserved

ODH 1 Valid address is present in DH

0 Reserved for future enhancement, currently returns
RS__FAIL

OCH 1 Valid register is present in DL

OBH-00H — Reserved

DH
DL
BP

HP-HIL device address
Prompt number
V__HPHIL (0114H)

On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CRV_WR_ACK (AX = 040AH)

This subfunction issues an acknowledge command to a device on the HP-HIL link. The
acknowledge command is either specific (acknowledge number 1 - 7) or generic (an
acknowledge number other than 1 - 7).

On Entry: AH = F__IO__CONTROL (04H)
AL = SF__CRV_WR__ACK (0AH)
BX = Device address indicator
Bit Value Definition
OFH-OEH -— Reserved
ODH 1 Valid address is present in DH
0 Reserved for future enhancement, currently returns
RS__FAIL
OCH 1 Valid register is present in DL
OBH-00H — Reserved

112 Input System and HP-HIL

"

DH = HP-HIL device address (major address)

DL = Acknowledge number
BP = V__HPHIL (0114H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF__CRV_REPEAT (AX = 040CH)

This subfunction sets the key repeat rate of a specific HP-HIL device. A repeat rate of 30 or 60
times a second may be specified. This subfunction will only operate if the HP-HIL driver is in the
open state.

On Entry: AH = F_IO_CONTROL (04H)
AL = SF__CRV__REPEAT (0CH)
BX = Device address indicator
Bit Value Definition
OFH-OEH — Reserved.
ODH 1 Valid address is present in DH.
0 Reserved for future enhancement, currently returns
RS__FAIL.
OCH 1 Valid register is present in DL.
OBH-00H — Reserved.
CL 0 for a repeat rate of 30 Hz, 1 for 60 Hz

DH = HP-HIL device address (major address)
BP = V__HPHIL (0114H)

On Exit: AH Return Status Code

Registers Altered: AX, BP, DS
SF_CRV__DISABLE__REPEAT (AX = 040EH)

This subfunction disables the key repeat of a specified HP-HIL device. This subfunction will only
operate if the HP-HIL driver is in the open state.

Input System and HP-HIL 113

On Entry: AH = F_IO_CONTROL (04H)

AL SF_CRV__DISABLE__REPEAT (OEH)
BX = Device address indicator
Bit Value Definition
OFH-OEH — Reserved
ODH 1 Valid address is present in DH.
0 Reserved for future enhancement, currently returns
RS__FAIL.
OCH 1 Valid register is present in DL.
0BH-00H —_ Reserved
DH = HP-HIL device address (major address)
BP = V__HPHIL (0114H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

SF_CRV__SELF__TEST (AX = 0410H)

This subfunction initiates device self-test on the specified HP-HIL device. The HP-HIL device will
respond with a one byte status code indicating the result of the test. This subfunction should not
be called with an HP-HIL device address of zero (all devices), as the test could then take up to 1.5
seconds to execute. Also, if one of the devices fails, there would be no way to determine which
device reported a failure.

On exit the buffer has the return status of the self-test done on the physical device.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__CRV__SELF__TEST (10H)

BX Device address indicator
Bit Value Definition
OFH-OEH — Reserved
ODH 1 Valid address is present in DH
0 Reserved for future enhancement, currently returns
RS__FAIL
OCH 1 Valid register is present in DL
OBH-00H — Reserved
DH = HP-HIL device address (major address)
BP = V__HPHIL (0114H)
ES:SI = Pointer to a buffar area

114 Input System and HP-HIL

N\

On Exit: AH
ES:SI
X

Return Status Code
Pointer to buffer area
Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

SF__CRV__REPORT_STATUS (AX = 0412H)

This subfunction issues a send status command to a specified HP-HIL device. The returned status
information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to
the subfunction. This subfunction will only operate if the HP-HIL driver is in the open state.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__CRV__REPORT__STATUS (12H)
BX = Device address indicator
Bit Value Definition
OFH-OEH —_ Reserved
ODH 1 Valid address is present in DH.
0 Reserved for future enhancement, currently returns
RS__FAIL.
OCH 1 Valid register is present in DL.
OBH-00H _ Reserved
DH = HP-HIL device address (major address)

BP = V__HPHIL (0114H)

ES:SI Pointer to a buffer area
On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area
CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

SF_CRV_REPORT_NAME (AX = 0414H)
This subfunction issues a report name command to a specified HP-HIL device. The returned name

information ranges from 1 to 15 bytes in length. A pointer to a 15 byte buffer must be passed to
the subfunction. This subfunction will only operate if the HP-HIL driver is in the open state.

Input System and HP-HIL 115

On Entry: AH = F__IO__CONTROL (04H)

AL = SF__CRV__REPORT__NAME (14H)
BX = Device address indicator
Bit Value Definition
OFH-OEH — Reserved
ODH 1 Valid address is present in DH.
0 Reserved for future enhancement, currently returns
RS__FAIL.
OCH 1 Valid register is present in DL.
OBH-00H —_— Reserved
DH = HP-HIL device address (major address)
BP = V__HPHIL (0114H)
ES:SI = Pointer to a buffer area
On Exit: AH = Return Status Code
ES:SI = Pointer to buffer area
CX = Number of bytes in buffer

Registers Altered: AX, CX, BP, DS

SF_KEYBOARD__REPEAT (AX = 0416H)

This subfunction sets the typematic rate and delay values for the keyboard. The Cursor Control
keypad (CCP) may be set independent of the rest of the keyboard, i.e. the CCP may start
repeating and repeat at different rates from the rest of the keyboard. See Section 5 for more
information.

On Entry: AH = F__IO__CONTROL (04H)
AL = SF_KEYBOARD__REPEAT (16H)
BH = If BH = O set the typematic rate only, if BH = 1 set the delay only, if BH = 2
set both values.
BL = If BL = O the typematic rate and delay values are for the non-CCP keypads, if

BL = 1 the values are for the Cursor Control keypad only.
DL = Bits 0-3 contain the typematic rate, Bits 4-7 contain the delay value. See
Section 5, function F16_DEF__ATTR for permissable values.
BP = V__HPHIL (0114H)
On Exit: AH = Return Status Code

Registers Altered: AX, BP, DS

116 Input System and HP-HIL

SF_KEYBOARD__LED (AX = 0418H)

This subfunction controls the state of three keyboard LED indicators. See Section 5 for more

information.

If back to back calls to this function are made, only the most current value will be written to the

keyboard device.

On Entry: AH = F__IO_CONTROL (04H)
AL = SF__KEYBOARD__LED (18H)
BL = Bit mask
Bit Value Definition
07H-03H — Reserved
02H 1 Turn on Caps lock LED
0 Turn off Caps lock LED
01H 1 Turn on Num lock LED
0 Turn off Num lock LED
OOH 1 Turn on Scroll lock LED
0 Turn off Scroll lock LED
BP = V__HPHIL (0114H)
On Exit: AH = Return Status Code

Registers Altered:

AX, BP, DS

F_PUT_BYTE (AH = 06H)

This function outputs a byte of data to a specific HP-HIL device register. This function will only
operate if the HP-HIL driver is in the open state.

Input System and HP-HIL 117

On Entry: AH =
AL = Byte to output
BX =

Bit Value

F__PUT__BYTE (06H)

Device address indicator

Definition

OFH-OEH —
ODH 1
0
OCH 1
OBH-00H —

DH
DL
BP

On Exit: AH

Registers Altered: AX, BP, DS

F_GET_BYTE (AH = 08H)

Return Status Code

Reserved

Valid address is present in DH

Reserved for future enhancement, currently returns
RS__FAIL

Valid register is present in DL

Reser<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>