
NDIED

OCT 1 3198,

G. L.M.

North American Response Center

HP 3000 APPLICATION NOTE #34

Process Handling
(Using COBOLII Examples)

Flibl HEWLETT
~~ PACKARD

Octobe r 1, 1987
Document PIN 5958-5824R2740

RESPONSE CENTER APPLICATION NOTES

HP 3000 APPLICATION NOTES are published by the North American Response Center twice a
month and are distributed with the Software Status Bulletin. These notes address topics where the
volume of calls received at the Center indicates a need for addition to or consolidation of information
available through HP support services.

Following this publication you will find a list of previously published notes and a Reader Comment
Sheet. You may use the Reader Comment Sheet to comment on the note, suggest improvements or
future topics, or to order back issues. We encourage you to return this form; we'd like to hear from you.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are
reserved. Permission to copy all or part of this document is granted provided that the copies are not
made or distributed jor direct commercial advantage; that this copyright notice, and the title oj the
publication and its date appear; and that notice is given that copying is by permission of
Hewlett-Packard Company. To copy otherwise, or to republish, requires prior written consent oj
Hewlett-Packard Company.

Copyright @ 1987 by HEWLETT-PACKARD COMPANY

PROCESS HANDLING

The purpose of this document is to give experienced programmers a guide to the use of process handling
techniques. COBOLII is used in the examples since it is a common language of HP 3000 users.

Overview

Process Handling is a programming technique that allows a process tv .;reate descendant processes called
sons or 'child processes'. In order for a process to use this technique it must possess the 'PH' (Process
Handling) capability. This capability is granted to a program when it is PREPARED either by using the
MPE PREP command or the SEGMENTER PREPARE command. The user who 'preps' the program must
possess PH capability. The group and account in whirh the program resides must also possess PH. End
users of the application do not require PH capability in order to run the programs possessing it.

The PROCESS TREE Structure

Each job or session on MPE consists of at least a Command Interpreter process. This is referred to as the
CI process or UMAIN (User Main process). Underneath this process, created VIa the : RUN Command, is the
first user process or USONM (User Son of Main). Decendants of the USONM are referred to as USER
processes. The structure that results is called a process tree which in its simplest form is made up of only
a CI process and one program created using the MPE RUN command.

Following is an illustration of how a process tree structure is represented. This example contains two
generations below the CI.

CI·
User Main Process (UMAIN>1create using the :RUN command

father
User Son of Main (USONM)

son 1
User process

son 2
User process

Process Tree (illustration 1)

The intrinsics used in a process handling environment are:

ACTIVATE

CR.EATE

CREATE PROCESS

FATHER

GETORIGIN

GETPRIORITY

GETPROCID

GETPROCINFO

KILL

MAIL

RECEIVEMAIL

SENDMAIL

SUSPEND

Used to execute a created process and optionally, to suspend the calling
process.

Used to create the process. Its parameters are similar to those specified
on a : RUN command.

Also used to create a process. This intrinsic allows $STDLIST and
$STDIN to be redirected for the new process and passes an INFO string
to it.

Returns the PIN (Process Identification Number) of the father (or
parent) of the calling process.

Determines the source of the calling process' last activation.

Changes the priority of the calling process or that of its sons.

Returns the PI Nof a son process.

Returns a double word containing information about the calling
process.

Used to terminate a son process.

Checks the status of the mailbox for incoming or out going mail.

Transfers data contained in the mailbox to the calling process' stack.

Transfers data from the calling process' stack to the mailbox.·

Causes the calling process to give up the CPU or suspend pending a
future reactivation by some other process. This intrinsic will also
unlock a local RIN prior to suspending the caller.

The following System Intrinsics do not require PH capability but are applicable in a process handling
environment:

PROCINFO

PROCTIME

QUIT

QUITPROG

Uses ITEMNUM/ITEM pairs to return information about the caller or
other processes in the tree. It duplicates the fuctionality of other
process handling intrinsics.

Returns the number of milliseconds of CPU usage of the caller.

Allows a process to abort itself and all of its descendants. Causes the
PROGRAM ERROR #18 message to be displayed.

Similar to QUIT, it aborts all processes below the 'CI' process and issues
the PROGRAM ERROR #19 message.

2

Application of Process Handling

Process Handling can be used in many diverse applications. One common use is in menu driven systems.
This design allows a main 'driver' program to manage seperate processes for the various functions of the
applications. The benefit of this design is that is simplifies maintenance since an individual program can
be modified without the need to recompile other parts of the system not affected.

Using the Process Handling Intrinsics

Note that the CREATE and ACTIVATE intrinsics are used in this discussion. For information on the use of
the CREATEPROCESS Intrinsic, refer to Application Note #31, Calling the CREATEPROCESS Intrinsic.

Following are the Working-Storage definitions that are referred to in this discussion:

01 PROCESS-HANDLING-DATA.
05 PROG-NAME PIC X(36) VALUE SPACES.
05 ENTRY-NAME PIC X(8} VALUE SPACES.
05 PIN PIC 59(4) COMP VALUE o.
05 PARM PIC S9(4) COMP VALUE O.
05 FLAGS PIC 59(4) COMP VALUE O.
05 INFO °IC X(80) VALUE SPACES.
05 INFO-LEN PIC 59(4) COMP VALUE o.
05 GETINFOERR PIC 59(4) COMP VALUE O.
05 STACK-SIZE PIC S9(4) COMP VALUE o.
05 DL-SIZE PIC S9(4) COMP VALUE O.
05 MAXDATA PIC S9(4) COMP VALUE o.
05 PRIORITY-CLASS PIC X(2) VALUE SPACES.
05 RANK PIC 59(4) COMP VALUE O.
05 SUSP PIC 59(4) COMP VALUE o.
05 ACTIVATE-SOURCE PIC S9(4) COMP VALUE O.

01 PROCINFO-DATA.
05 ERROR-1 PIC S9(4) COMP VALUE o.
05 ERROR-2 PIC S9(4) COMP VALUE O.
05 ITEM-NUMBERS.

10 ITEM-NUM-1 PIC S9(4) COMP VALUE 1.
10 ITEM-NUM-2 PIC S9(4) COMP VALUE 2.
10 ITEM-NUM-3 PIC S9(4) COMP VALUE 3.
10 ITEM-NUM-4 PIC S9(4) COMP VALUE 4.
10 ITEM-NUM-5 PIC S9(4) COMP VALUE 5.
10 ITEM-NUM-6 PIC S9(4) COMP VALUE 6.
10 ITEM-NUM-7 PIC S9(4) COMP VALUE 7.
10 ITEM-NUM-8 PIC S9(4) COMP VALUE 8.
10 ITEM-NUM-9 PIC S9(4) COMP VALUE 9.
10 ITEM-NUM-10 PIC S9(4) COMP VALUE 10.

05 ITEM-NUM REDEFINES ITEM-NUMBERS
PIC S9(4) COMP OCCURS 10 TIMES.

05 ITEM-VALUES.
10 MY-PIN PIC S9(4) COMP VALUE O.
10 FATHER-PIN PIC S9(4) COMP VALUE o.
10 SONS-CREATED PIC S9(4) COMP VALUE o.
10 NUM-SONS PIC S9(4) COMP VALUE o.
10 NUM-DESCENDANTS PIC S9(4) COMP VALUE O.

I
/

3

10 NUM-GENERATIONS PIC 59(4) COMP VA~ UE O.
10 SONS-PIN-ARRAY.

20 SONS-PIN PIC S9(4) COMP OCCURS 10 TIMES.
10 ALL-DECENDANTS.

20 PINS-OF-TREE PIC S9(4) COMP OCCURS 20 TIMES.
10 PINS-PRIORITY PIC X(2) VALUE SPACES.
10 ACTIVATE-STATE PIC S9(4) COMP VALUE O.
10 PROGRAMS-NAME PIC X(28) VALUE SPACES.

01 MISCELLANEOUS-DATA.
05 LOCK-CONDITION PIC S9(4) COMP VALUE O.
05 STATINFO PIC S9(9) COMP VALUE o.
05 STATINFO-ARRAY REDEFINES STATINFO.

10 STAT-WORD1 PIC S9(4) COMPo
10 STAT-WORD2 PIC S9(4) COMPo

05 MODULO-VAR PIC S9(4) COMP VALUE O.
05 CPU-USAGE PIC S9(9) COMP VALUE O.
05 CPU-MASK PIC ZZ,ZZ9.999.
05 DEASSEMBLE-PROG-NAME.

10 DPN-PROGRAM-NAME PIC X(9) VALUE SPACES.
10 DPN-GROUP-NAME PIC X(9) VALUE SPACES.
10 DPN~ACCOUNT-NAME PIC X(9) VALUE SPACES.

01 MAIL-DATA.
05 MAIL-STATUS
05 MAIL-MESSAGE
05 MAIL-WAlT-FLAG
05 MAIL-LENGTH

PIC S9(4) COMP VALUE O.
PIC X(BO) VALUE SPACES.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE o.

4

Creating A Process

In its simplest form process handling means that a process creates and activates another process. After this,
the creating or father process suspends and is reactivated when the son process terminates. The following
is an example of a user written process to create an EDITOR process:

NOTE

In these examples double backslashes '\\' are used to indicate parameters
that are not being passed to the intrinsic. Since the call specifies
INTRINSIC these are not required to act as place holders and are used
simply to add to the clarity of the code.

CREATE-EDITOR.
MOVE "EDITOR.PUB.SYS " TO PROG-NAME.
MOVE 1 TO FLAGS.
CALL INTRINSIC "CREATE lI USING PROG-NAME, \\, PIN, \\,

FLAGS, \\, \\, \\, \\, \\.
IF C-C NOT = 0 THEN

PERFORM INTRINSIC-ERROR-ROUTINE
CALL INTRINSIC "QUIT II USING 1.

MOVE 2 TO SUSP.
CALL INTRINSIC "ACTIVATE II USING PIN, SUSP.
IF C-C NOT = o THEN

PERFORM INTRINSIC-ERROR-ROUTINE
CALL INTRINSIC lIQUIT" USING 2.

In this example a value of '1' is moved to the item FLAGS. This sets bit 15 (the right most bit) on to tell
MPE that when the newly created process terminates, the calling process is reactivated. Reference the
MPE System Intrinsics Manual for further information. Your program can be reactivated by MPE when
EDITOR ends (when the user enters EXIT). If this bit is not set, MPE assumes that you intend to handle
reactivation which, in this case, would be impossible.

FLAGS can be used for several other purposes by moving the appropriate values to it. These options
require bits to be set on or off. If you want more information on how to do this using COBOLII, please
refer to APPLICATION NOTE #21, COBOLII and MPE Intrinsics.,

After the process is CREATEd it must be ACTIVATEd. You can use the ACTIVATE intrinsic to both
activate the new process and (optionally) suspend the caller. In the example a value of '2' is moved to
SUSP. This indicates that the calling process will be suspended while the SON is running and the calling
process expects to be ACTIVATED by the SON. Since EDITOR is being run this will actually never occur.
That is, the EDITOR program will not explicitly call the ACTIVATE intrinsic to wake up the program that
created it. This action will be carried out by MPE based on the value in FLAGS when the EDITOR process
terminates.

The value of SUSPpassed toACTIVATE is used primarily in more complex process handling environments.
In simple examples like the one presented, it serves only to ensure the calling process suspends during the
active life of its son. Remember, if bit 15 of FLAGS is not equal to '1' then MPE does not activate the
caller when the son process ends! (This would not, however, create a program hang situation since BREAK
and ABORT can still be used.)

5

Creating Several Processes in One Generation

Any process tree structure may contaIn at most 255 processes. This is not a configurable value. Since a
generation is a layer of processes that share a ~ommon father or parent process, the maximum number of
generations possible is also 255 (assuming that each generation consists of a single process.)

The following example demonstrates how several processes, in this case 5 copies of a program called
SONPROG, are created. It also demonstrates how a local RIN is used to syncronize the operation of these 5
processes. Note that the first process created cannot begin execution until the last son has started running.
The father process first acquires and locks one local RIN. When execution begins each son attempts the
same lock. As each son is c.reated it receives a PARM value equal to the order in which it was created. For
example, the first son created receiv~s a '1' as PARM. This is equivalent to the; PARM parameter that can be
used on a RUN statement.

CREATE-SONS.
CALL INTRINSIC "CREATE" USING PROG-NAME, \\, PIN, PARM,

FLAGS, \\, \\, \\, \\ \\.
IF C-C NOT = 0 THEN

PERFORM INTRINSIC-ERR9R-ROUTINE
CALL INTRINSIC "QUIT" USING PARM.

CALL INTRINSIC "ACTIVATE" USING PIN, SUSP.
IF C-C NOT = 0 THEN

PERFORM INTRINSIC-ERROR-ROUTINE
CALL INTRINSIC "QUIT" USING PARM.

SONS-CREATED.
EXIT.

The main body of the program sets up the necessary values and performs CREATE-SONS, for example:

CALL INTRINSIC "GETLOCRIN" USING 1.
MOVE 1 TO LOCK-CONDITION.
CALL INTRINSIC "LOCKLOCRIN" USING 1, LOCK-CONDITION.
IF C-C NOT = 0 THEN

PERFORM INTRINSIC-ERROR~ROUTINE

CALL INTRINSIC "QUIT" USING %1001.
MOVE 0 TO FLAGS, SUSP.
MOVE "SONPROG " TO PROG-NAME.
PERFORM CREATE-SONS VARYING PARM FROM 1 BY 1

UNTI L PARM > 5.
MOVE 2 TO SUSP.
CALL INTRINSIC "SUSPEND" USING SUSP, 1.
IF C-C NOT = 0 THEN

PERFORM INTRINSIC-ERROR-ROUTINE
CALL INTRINSIC "QUIT" USING %1000.

ALIVE-AGAIN.
DISPLAY "All done! "
STOP RUN.

Note that both SUSP and FLAGS are zero for the five iterations of CREATE-SONS. This allows the calling
program to remain active. Also notice that the call to SUSPEND includes the local RIN this process has
locked. The SUSPEND intrinsic can unlock a local RIN prior to suspending the calling process. The
following is an example of a SON PROG:

6

WORKING-STORAGE SECTION.

01 DISPLAY-DATA.
05 MESSAGE-TO-DISPLAY.

10 MSG-1 PIC X(40) VALUE
"Shift to the left ... "

10 MSG-2 PIC X(40) VALUE
"Shift to the right ... II .

10 MSG-3 PIC X(40) VALUE
"pOp up! II.

10 MSG-4 PIC X(40) VALUE
II Push down! II

10 MSG-5 PIC X(40) VALUE
IIByte, byte, byte!!".

05 DISPLAY-MSG REDEFINES MESSAGE-TO-DISPLAY
PIC X(40) OCCURS 5 TIMES.

01 PARM
01 DUMMY
01 LOCK-CONDITION
01 SON-MASK

PIC S9(4) COMP VALUE o.
PIC S9(4) COMP VALUE O.
PIC S9(4) COMP VALUE 1.
PIC Z9.

PROCEDURE DIVISION.
GET-PARM.

CALL ·INTRINSIC "GETINFO Il USING \\, \\, PARM
GIVING GETINFOERR.

IF PARM = 0 THEN
CALL INTRINSIC "QUITPROG" USING 900.

LOCK-LOCAL-RIN.
CALL INTRINSIC IILOCKLOCRINII USING 1, LOCK-CONDITION.
IF C-C NOT = 0 THEN

CALL INTRINSIC IIQUITPROG" USING 901.
PRINT-MESSAGE.

MOVE PARMTO SON-MASK.
DISPLAY DISPLAY-MSG (PARM), II(From SON #11, SON-MASK, II)".

UNLOCK-LOCAL-RIN.
CALL INTRINSIC IIUNLOCKLOCRINII USING 1.
IF C-C NOT = 0 THEN

CALL INTRINSIC IIQUITPROG II USING 902.
FINISH-UP.

IF PARM = 5 THEN
CALL INTRINSIC IIACTIVATE" USING 0, 0
IF C-C NOT = 0 THEN

CALL INTRINSIC "QUITPROG II USING 903.
STOP RUN.

In this example the paragraph named FINISH-UP determines whether or not the father process should be
activated based on the value of PARM. If this is the last process to run, then it wakes up the father before
it terminates. The call specifies zero for BOTH parameters so the calling process is not SUSPENDED as a
result of the call.

Note also that local RINs are acquired for use by all processes in the process tree therefore SONPROG did
not need to call the GETLOCRIN intrinsic;this had already been done by the father process.

7

Using PARM and INFO

In the previous examples PARM wa:s used to communicate a creatIOn order to each of the sons. This value
also determined which array element was displayed. The values of PARM and I NFO can be used to pass 'one
time only' information from a process to a son at creation time. The son need not check the values, and
the information contained in PARM or I NFO can be reaquired by the son as often as necessary. The
intrinsic GETI NFO, available with MPE version 6.02.00 (U -MIT) or later, can be used to retrieve these
values. For example:

MOVE 80 TO INFO-LEN.
CALL INTRINSIC "GETINFO" USING INFO, INFO-LEN, PARM

GIVING GETINFOERR.
IF GETINFOERR NOT = 0 THEN

Communication Between Processes

In addition to the 'one time only' communication available through PARM and INFO there exists theabilty
for processes both inside and outside the 'process tree' to communicate. This is known as Interprocess
Communication (IPC).

Interprocess Communication can be accomplished in one of two ways: through the use of MESSAGE files or
by using the MAl L intrinsics. This is not to be confused with electronic mail! The most efficient and easy
method is through the use of MESSAGE files.

Refer to the MPE File System Reference Manual, Section 8 for a more complete discussion on this topic.

To demonstrate the MESSAGE file communication between processes you can try this brief example using
FCOPY and two terminals.

You'll need to log on to each of the two terminals. You need not be the same user nor in the same
account. The limitation is that each of the two users must have appropriate access to the message file you
will need to create. That is, the reader process needs at least READ access and the writer process must
have WRITE access.

To build the file issue the following BUI LD com"mand:

:BUILD MSGFILE;REC=-80",ASCII;MSG

At one terminal type:

:FCOPY FROM= ;TO=MSGFILE

This will be the writer process. On the other terminal type:

:FCOPY FROM=MSGFILE;TO=

This is the reader process. Whatever is typed onto the writer's terminal will be read by the reader FCOPY
process, and displayed on its terminal. When youte"rminate the writer process either by a CONTROL Y or
: EOD the reader process will also end since FCOPY will receive the EOD OF FI LE.

8

The MAIL Intrinsics

These intrinsics are an older form of IPC. Communication is limited between processes to those in a
process tree. The intrinsics are, in general, more difficult to use than MESSAGE LIe IPC and require that
programs be PREPARED with 'PH' capabilty. Message file IPC has no special capability requirements.

Another limitation of MAIL IPC is that communication is limited to father and son processes only.
Processes in the same generation, sometimes refered to as 'brothers', may only communicate through the
father. No such limitation exists for Message File IPC.

The MAILBOX

This is a term used in MAIL IPC that defines the location used to store incoming or outgoing mail
between two processes. There can be only one mailbox per pair of commumicating processes. That is, a
father may have one mailbox for each of its sons, but they do not all share the same mailbox. Each son
will have one mailbox for each of its sons.

A mailbox is an extra data segment. If, however, the mail is one word (2 bytes) in length an extra data
segment is not created. Rather, a portion of the calling process'stack is used. Since mailboxes are extra
data segments, the number and maximum size that may be created is configurable.

Checking the MailBox

The MAl L intrinsic is used to check the mailbox. This intrinsic returns the state of the mailbox and, if
incoming mail exists, will return the length in words of that mail. For example:

CALL INTRINSIC "MAIL" USING 0, MAIL-LENGTH
GIVING MAIL-STATUS.

IF MAIL-STATUS > 2 THEN

Rather than the condition code, the STATUS variable is checked since it indicates the success of the call.
Refer to the MPE System Intrinsic Reference Manual for a definition of the values returned.

Sending Mail

This intrinsic transmits data from the calling process into the mailbox. Depending on the value passed as
WAITFLAG the intrinsic will cause the process to wait for the mail to be read or continue without waiting.

MOVE 1 TO MAIL-WAlT-FLAG.
CALL INTRINSIC "SENDMAIL" USING PIN,

MAIL-LENGTH,
MAIL-MESSAGE,
MAIL-WAlT-FLAG

GIVING MAIL-STATUS.
IF C-C NOT = 0 THEN

9

Note, this intrinsic returns a status and also sets the condition code. Please refer to the MPE System
Intrinsics Reference Manual for an 'explanation of the values returned in STATUS.

In this example a MAIL -WAIT- FLAG of '1' is used to cause the calling process to wait until any prior mail
is collected. A zero value would have caused any uncollected mail to be overwritten and the calling
process would not have waited for the receiving process to collect the message.

Receiving Mail

To read the contents of the mail box the RECEIVEMAIL intrinsic is used. It acts in a similar way as
SENDMAI Lin that it can be used to cause the calling process to wait until mail is received, for example:

MOVE 1 TO MAIL-WAlT-FLAG.
CALL INTRINSIC "RECEIVEMAIL" USING PIN,

MAIL-MESSAGE,
MAIL-WAlT-FLAG

GIVING MAIL-STATUS.,
IF C-C NOT = 0 THEN

IF MAIL-STATUS = 3 THEN

This intrinsic does not return the length of the mail received. Before attempting to receive mail it is
recommended to call MAl L to determine if mail exists and to determine the length of the message. If it is
determined that an incoming message is longer than can be accomodated, there would be no way to safely·
transfer the mail to the callers stack without the possiblity of data corruption occuring.

Using the Mail Intrinsics

If you have purchased TDP (Text and Document Processor) you can easily demonstrate Mail IPe. To do
this alter the earlier example that created an EDITOR. PUB. SYS process so that PROG-NAME contains
TDP.PUB.SYS. Then, in between the code that calls CREATE and the code that calls ACTIVATE add the
following:

SEND-MAIL.
MOVE

"Q'Please enter II when thru adding, thanks';Make Demo;k;e"
TO MAIL-MESSAGE.

MOVE 0 TO MAIL-WAlT-FLAG.
CALL INTRINSIC "SENDMAIL" USING PIN,

40,
MAIL-MESSAGE,
MAIL-WAlT-FLAG

GIVING MAIL-STATUS.
IF MAIL-STATUS NOT = 0 THEN

CALL INTRINSIC "QUIT" USING MAIL-STATUS.

10

NOTE

Mail messages sent to TDP must be at least 72 bytes (36 words).

TOP will check tne mailbox after it is activated and trr·.,t the contents as a command to be executed
before prompting for the first user command from the standard input device ($STOIN). In this example
four commands are sent separated by semicolons. The first displays a message on· the current $STDLIST
device. The second MAKEs a file which then automatically causes TOP to prompt for input to the file. The
third causes the file to be kept after the user has terminated additions with the '//' command. The last
command exits TDP and returns to the process that created it.

Additional Process Handling Concepts

The FATHER Intrinsic

If your system has TDP then it also has a program called SCRIBE in the PUB group of the SYS account.
This program is the formatter used by TDP when you issue a DRAFT or FINAL command. SCRIBE is
specifically written to determine how it was created and act accordingly. Your programs may be written
to behave this way as well. Try running SCRIBE and see what happens.

In the Computer Scientist's Cheer program, for example, you might not want SONPROG to be : RUN by
other users. To prevent this, add the following code as the first executable statements in the program: .

CALL INTRINSIC "FATHER" GIVING DUMMY.
IF C-C > 0 THEN

DISPLAY "Sorry , you may not :RUN this program."
STOP RUN.

Notice there is no USING parameter since the intrinsic returns the PIN in DUMMY. This name was selected
since its contents are not needed. The condition code returned indicates the type of process that created
the caller. In this caseCCG is checked since this indicates that the creating process is a User Main or
Command Interpreter process.

The GETORIGIN Intrinsic

This intrinsic is used primarily in more complex process handling environments. Specifically when a
process calls SUSPEND or ACTIVATE and passes the value of '3' for SUSP. This indicates that the caller
expects to be activated either by a son or by its father. If this is the case it may be advantageous to know
who woke up the process. To do this you would call the GETORIGIN intrinsic. For example:

CALL INTRINSIC "GETORIGIN" GIVING ACTIVATE-SOURCE.
IF ACTIVATE-SOURCE = 0 THEN

This intrinsic does not return a condition code so the value of ACTIVATE-SOURCE must be checked. A
value of zero would indicate the caller was not activated by either a son or its father.

11

The GETPRIORITY Intrinsic

This intrinsic allows a process to alter its own priority or that of one of its sons. Priority may be no larger
than the MAXPRI value of the USER running the program. For example, to reschedule a son process into
the ES Subqueue or 'EQ' a call to GETPRIORITY might look like this;

MOVE liES" TO PRIORITY-CLASS.
MOVE 0 TO RANK.
CALL INTRINSIC "GETPRIORITY" USING PIN,

PRIORITY-CLASS,
RANK.

IF C-C NOT = 0 THEN

The GETPROCID Intrinsic

This intrinsic may be used to 'take inventory' of son processes. It is beneficial in process handling
environments where it is natural for some sons to end while others may continue processing. The father
can periodically find out who's left. To illustrate this it will be necessary to alter the Computer Scientist's
Cheer program example so that instead of a STOP RUN each son calls the SUSPEND intrinsic. The fifth son
must still ACTIVATE the father! When the father begins execution again it can find out which of its sons
still remain 'alive' using the following example;

MOVE 0 TO NUM-SONS.
MOVE 5 TO SONS-CREATED.

TAKE-INVENTORY.
ADD 1 TO NUM-SONS.
CALL INTRINSIC "GETPROCID" USING' NUM-SONS

GIVING SONS-PIN (NUM-SONS).
IF SONS-PIN (NUM-SONS) NOT = 0 THEN

IF NUM-SONS < SONS-CREATED
GO TO TAKE-INVENTORY.

As long as the value in NUM-SONS does not exceed the number of sons still in existence a non-zero PIN
will be returned. It should also be noted that had, for example, son number 2 expired son 3 would become
son 2 and so forth, son 5 would then not exist.

The KILL Intrinsic

This is a rather aptly named intrinsic that does precisely what its name implies, it kills a son process. To
illustrate this, alter the TAKE INVENTORY example above to include a call to KI LL as follows:

IF SONS-PIN (NUM-SONS) NOT = 0 THEN
CALL INTRINSIC "KILL" USING SONS-PIN (NUM-SONS)
IF C-C NOT = 0 THEN

12

The GETPROCINFO Intrinsic

This intrinsic returns information about the PIN passed to it. The value is returned in a double word. To
make effective use of the information returned, redefine the STATI NFO variable so that it could be
referenced as two seperate integer variables as described in the WORKING-STORAGE example.

CALL INTt<INSIC "GETPROCINFO" USING PIN
GIVING STATINFO.

IF C-C NOT = 0 THEN

Please refer to Application Note #21. CobolII and MPE lntrinsics. Using the table at the top of page 10
of that publication asa guide here is an example of how to use the various bit settings returned in
STATI NFO. In this example you will extract bits 4, 5 and 6 which will define the queue characteristics of
the PIN.

First you need to shift bits 4, 5 and 6 so they are in positions 13, 14 & 1S. This is done by dividing
STAT-WORD1 by 512 which corresponds to bit 6 in the table. Store the result in MODULO-VAR. For
example:

COMPUTE MODULO-VAR = STAT-WORD2 / 512.

10 extract the value of bits 13 through 15 you will need to calulate the MODULO 8 of MODULO-VAR or the
remainder of MODULO-VAR divided by 8 which would be the value of these three bits. Since there is no
MODULO function in COBOL it can be accomplished using the following calculation:

COMPUTE MODULO-VAR = MODULO-VAR - (MODULO-VAR / 8) * 8.

Additional Intrinsics

The following intrinsicsdo not require PH capabilty but are relevant in a process handling environment.

QUIT and QUITPROG

Both intrinsics accept an integer variable as a parameter, but the QUIT intrinsic differs from the
QUITPROG intrinsic in that it will cause the caller and all of its descendants to be aborted. QUITPROG can
be called by any process in the tree and will cause all processes in the tree to abort. For example:

CALL INTRINSIC "QUIT" USING 901.

might look like:

ABORT :DEMO.PROG.DEVEL~%0.%1

PROGRAM ERROR 118 :PROCESS QUIT .PARAM = 901

PROGRAM TERMINATED IN AN ERROR STATE. (CIERR 976)

Had QUITPROG been called the message would have changed slightly to read:

PROGRAM ERROR 119 :PROCESS QUIT .PARAM = 901

13

The octal values %0.%1 are the code segment and offset into this segment where the call to QUIT took
place, Using a PMAP and output from the VERBS compiler directive it would be possible to locate the QUIT
statement using this data. It is common, however, to use the value of PARAM as an indicator of where and
possibly why the call was made.

The PROCTIME Intrinsic

As its name implies, this intrinsic returns the number of milliseconds (thousandths of seconds) of CPU time
used by the caller. For example:

CALL INTRINSIC II PROCTIME" GIVING CPU-USAGE.
MOVE CPU-USAGE TO CPU-MASK.
DISPLAY CPU-MASK.

This intrinsic does not return conditIon codes.

The PROCINFO Intrinsic

This intrinsic is similar in structure to the FFI LEINFO and JOBINFO intrinsics. It is more difficult to use
but returns some valuable information.

The intrinsic accepts up to six ITEM-NUM/ITEM pairs where the value of ITEM,-NUM determines the data
type of ITEM. At a minimum, the intrinsic will have five parameters and at a maximum, fifteen.

Refer to the MPE System Intrinsic Reference Manual for complete information on the use of this
intrinsic.

With normal (non -privileged mode) capabilities this intrinsic replaces many of the intrinsics already
discussed. For example, to find the PI Nsof all surviving son processes using a single call:

MOVE 10 TO SONS-PIN (1).
MOVE 0 TO PIN, ERROR-1, ERROR-2.
CALL I~TRINSIC "PROCINFO" USING ERROR-1,

ERROR-2,
PIN, '
ITEM-NUM (6),
SONS-PIN-ARRAY.

IF ERROR-1 NOT = 0 THEN

In this example a zero is moved to PIN since the information required is for sons of the calling process.
Also, a '10' is moved to the first element of SONS-PIN-ARRAY to indicate the length, including this
element, of the array. Please see 'Note l' under the PROCINFO intrinsic in the MPE System Intr,insics
Reference Manual.

The difference between item 6 and item 7 is that item 7 will return the PI Ns of all processes both direct
and indirect. That is, all decendants of the PIN specified rather than just the processes created by the PIN
specified.

14

A feature of PROCINFO not found in any other process handling related intrinsics is the ability to return
the actual name of a process. ITEM-NUM (10) returns the fully qualified name of the process identified
by the PI Npassed to it. This means that it is possible for a program to know its name or the name of any
of of the programs currently running in the process tree.

For example, a program could determine its own name by calling PROCINFO as follows:

MOVE 0 TO PIN, ERROR-1, ERROR-2.
CALL INTRINSIC "PROCINFO" USING ERROR-1,

ERROR-2,
PIN,
ITEM-NUM (10),
PROGRAMS-NAME.

IF ERROR-1 NOT = 0 THEN

This can be valuable when process handling is implemented in a menu driven application. If the
application has been design~d so that all programs in the process tree reside in the same group and
account, then it is not necessary for programs needing to create sons to know any more than their names.
The group name (and optionally the account name) can be extracted from the string returned by
PROCINFO.

For example, using the COBOLII STRING and UNSTRING verbs the callers name can be disassembled and
then reassembled to be the name of program to be passed to the CREATE intrinsic. For example:

DELIMITED BY SPACE
DELIMITED BY SIZE
DELIMITED BY SPACE
DELIMITED BY SIZE
DELIMITED BY SPACE

II II

II II

DPN-GROUP-NAME

DPN-ACCOUNT-NAME
INTO PROG-NAME.

UNSTRING PROGRAMS-NAME DELIMITED BY 11.11 INTO
DPN-PROGRAM-NAME, DPN-GROUP-NAME, DPN-ACCOUNT-NAME.

MOVE "S0NPROG" TO DPN-PROGRAM-NAME.
MOVE SPACES TO PROG-NAME.
STRING DPN-PROGRAM-NAME

Configuration Considerations

If you plan to make extensive use of process handling or are contemplating the purchase ofa software
product that uses Process Handling you should consider the following system configuration values.

Please refer to the MPE System Operation and Resource Management Reference Manual, Section 7, for
additional information.

The Process Control Block Table

This table contains a 21 word entry (16 words on MPE IV systems) for each process running on the
system. This includes system processes as well as user processes. The number associated with the process'
entry in this table is refered to as its PIN. If this table is underconfigured system failures will result.

15

The CST Block Table

This table limits the number of concurrently running programs on the system. Since executable code is
shared on MPE this refers to different programs rather than differnt processes.

The Swap Table

This table is used to keep track of a process' locality or the code and data segments it needs in memory in
order to run. When possible a process' entire locality is tracked through this table however it must be able
to hold the minimum locality of each process running. If this table is underconfigured a system failure will
result.

Additional Considera tions

If your programs intend to make extensive use of MAIL IPC you will need to consider the following
configuration values:

• The Maximum Extra Data Segment Size

• The number of Extra Data Segments per Process

• The amount of Virtual Memory configured on your system

Remember that VIRTUAL MEMORY (VM) may be changed on Logical Device OneONL Y during a
RELOAD. VM allocations to other disc devices may be made using a COOL or COLD Start.

Virtual Memory needs to be considered if MAIL IPC is used because it creates Extra Data Segments if
needed. Any time new data segments are created space is also allocated in Virtual Memory. This space is
used to hold them when they no longer need to be resident in main memory.

16

BACK ISSUE INFORMA TION

Following is a list of the Application Notes published to date. If you would like to order single copies of
back issues please use the Reader Comment Sheet attached and indicate the number(s) of the note(s) you
need.

Note # Published

1 2/21/85
2 10/15/85
3 4/01/86
4 4/15/86
5 5/01/86
6 5/15/86
7 6/01/86
8 6/15/86
9 7/01/86

10 7/15/86
11 8/01/86
12 8/15/86
13 9/01/86
14 9/15/86
15 10/01/86
16 10/15/86
17 11/01/86
18 11/15/86
19 12/01/86
20 1/01/87
21 1/15/87
22 2/15/87
23 3/01/87
24 3/15/87
25 4/01/87
26 4/15/87
27 5/01/87
28 5/15/87
29 6/01/87
30 6/15/87
31 7/01/87
32 8/01/87
33 9/01/87

Topic

Printer Configuration Guide (superseded by note #4)
Terminal types for HP 3000 HPIB Computers (superseded by note #13)
Plotter Configuration Guide
Printer Configuration Guide - Revised
MPE System Logfile Record Formats
Stack Operation
COBOL II/3000 Programs: Tracing Illegal Data
KSAM Topics: COBOL's Index I/O: File Data Integrity
Port Failures, Terminal Hangs, TERMDSM
Serial Printers - Configuration, Cabling, Muxes
System Configuration or System Table Related Errors
Pascal/3000 - Using Dynamic Variables
Terminal Types for HP 3000 HPIB Computers - Revised
Laser Printers - A Software and Hardware Overview
FORTRAN Language Considerations - A Guide to Common Problems
IMAGE: Updating to TurboIMAGE & Improving Data Base Loads
Optimizing VPLUS Utilization
The Case of the Suspect Track for 792X Disc Drives
Stack Overflows: Causes & Cures for COBOL II Programs
Output Spooling
COBOLII and MPE Intrinsics
Asynchronous Modems
VFC Files
Private Volumes
TurboIMAGE: Transaction Logging
HP 2680A, 2688A Error Trailers
H PTrend: An Installation and Problem Solving Guide
The Startup State Configurator
A Programmer's Guide to VPLUS/3000
Disc Cache
Calling the CREATEPROCESS Intrinsic
Configuring Terminal Buffers
RIN Management (Using COBOLII Examples)

