

HEWLETT W PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and
workmanship. For Hewlett-Packard Desktop Computer Division products
sold in the U.S.A. and Canada, this warranty applies for ninety (90) days
from date of delivery.” Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment
returned to Hewlett-Packard for repair must be shipped freight prepaid.
Repairs necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are not covered
by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service Office to
determine warranty terms.

Assembly Development ROM

HP 9835A Desktop Computer

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525
(For World-wide Sales and Service Offices see back of manual.)
Copyright by Hewlett-Packard Company 1979

7,

ii

Customer Questionnaire

To help us in preparing new manuals, there is a questionnaire in the back of this manual. Your
answers to the questions can assist in producing better, more useful manuals. Your feedback is
our only way of knowing the validity of our manuals. Please complete the questionnaire and
mail it — postage is already paid in the United States. Thank you.

System 35 Manual Reference

The following block diagram shows manuals that are included in the System 35 Documentation
scheme and suggested progression. Dotted-line borders indicate those manuals are available

with specific options; solid borders indicate those manuals that are shipped with every System
35.

Owner's
Manual
Beginner's Guide Preview
Operating Svstom Test
Reference Guide (> and - ystem Tes
f Manual
Programming Manuat

] ‘,
- ¥, ¥ 35 Y Y,

Y T T T Sl T e 1T

| Mass Storage | I

Programming | | Assembly | | Programming I I Interface Manuals I

Ml | ST L M | - i
1

| Peripheral Manuals I

Peripheral Manuals
— L

Teiniques Ma—nuzil L
[:{E 1

Mass Storage

iv

Chapter Summaries

Chapter 1. General Information. An introduction to the product and the manual. The pur-
pose and differences of the two Assembly Language ROMs are explained. ROM installation
procedures are given. A glossary is provided, along with a discussion of the syntactical forms
used in the manual.

Chapter 2. Getting Started. A general discussion of the assembly language system. A format
for the creation of an assembly language program is presented. Topics such as modules,
routines, and memory allocation are discussed, along with methods of using them effectively.

Also discussed is the storage and retrieval of modules on mass storage.

Chapter 3. The Processor and the Operating System. Necessary information on the struc-
ture of the processor and the operating system is presented. Topics covered are: machine
architecture, memory organization, data structures and arithmetic, and the machine instruc-
tions.

Chapter 4. Assembly Language Fundamentals. The basic statements and syntaxes used
throughout the assembly language are discussed. Program entry, assembling, symbolic opera-

tions, module creation, program and variable storage, and utilities are the topics covered.

Chapter 5. Arithmetic. Arithmetic operations are reviewed and the arithmetic utilities are
discussed. Floating point and BCD arithmetic are explained.

Chapter 6. Communicating between Basic and Assembly Language. The techniques used
to pass information to and from the assembly language programs are discussed. Calling assem-
bly routines and passing parameters are presented, along with issues involved with using

common. Applicable utilities are also discussed.

Chapter 7. 1/0 Handling. The various techniques of handling the receiving and sending of
information to peripheral devices is presented. Topics are: a review of [/ O-type machine
instructions, registers, applicable utilities, interrupts and interrupt service routines,

handshake-type of 1/ O, direct memory access, and mass storage devices.

Chapter 8. Debugging. Techniques for isolating and correcting logic problems in assembly
programs are discussed. Included in the discussion are techniques for stepping through prog-
rams, getting dumps, patching, and using the keyboard.

Chapter 9. Errors and Error Processing. A discussion of Assembly Language ROM and
other related errors, and what causes them. Included are methods for trapping errors and
possible methods for correcting them.

Table of Contents

Chapter 1: General Information

Structure of the Manual 2
Purpose of the ROMs 2
ROM Installation 3
Buzzwords 4
Fundamental Syntax. 6

Chapter 2: Getting Started

Developing Routines for Later Use ciiiiiiieiiiai.. 7
OVerVIeW 9
Program Creation. 9
Program Entry 14
Other Extensions 16
Modules, Routines, and Such 17
Names 17
Survey of Modules and Routines 18
Setting Aside Memory 19
Retrieving and Storing Modules i 22
Chapter 3: The Processor and the Operating System
Machine Architecture 25
Registers. 26
General Memory Organization P, 28
Protected Memory 28
Base and CurrentPage.......... 29
Data Structures 30
Integers. e 30
SHHINGS 30
Full-Precision Numbers 31
Short-Precision Numbers. 31
Machine Instructions 32
Operands 32
Indirect Addressing 34
Load /Store Group 34
Integer Math Group e 35
Branch Group 36

Test/Branch Group 37

vi

Test/ Alter / Branch Group -« -« cccreeut o 38
Shift /Rotate GrOUP -« -« v v vrmie et .. 40
LOGICAl GIOUD « - -+« « -+ vt e et 41
Stack Group -« - v 42
BCD Math GIOUP - ¢ v v vt e 44
L/ O GrOUD - v v et e e e 47
MISCEIIANEOUS « + -+ + s o v vttt et e e e e e e e e e 48

Chapter 4: Assembly Language Fundamentals

Program Entry - -« 49
Assembly Language SOUICe -« -« vveiiit 51
ACHONS -+« -« o e v et e 51

LabelS - -« eoee e 51
COMMENES - - - -« ot e e e 53
Syntaxingthe Source -« -« .o o 53
Creating Modules - - -« -« over 55
SEOTAGE - -+« e e ettt 56
MoOAUIES - -t o v e e e 56
Variables -« oo e 56
Data Generators - -« - - <« et v ot e e 57
Repeating Instructions « - - -« ..ot 59
ASSEMDIING - - -« oo e 60
Effect of BASIC ENVITONMENTS « « « « - o v oo ettt iei e e e i 60
Source Listing Control ...« 61
Page Format - - - -« oo oo 62
PagelLength - -« .. oo 63
End-of-Page Control .-« -o vt 63

Page Headings - - - - - -« -« covo e 64

Blank Line Generation - -« -« ot e ottt e e 65
Non-Listable Pseudo-Instructions - -« -+« « v vt i e 65
Conditional Assembly - 65
Relocation - ... 68
Symbolic Operationso o 69
Pre-Defined Symbols -o e 69
Defining Your Owno 71
Literals . . .o e 72
Evaluation of Literals - -« - -« -« o oot 72
Nesting Literals 73
Nonsensical Uses of Literals - - - - - - -« - oo i 74

Literal Pools . - - .o ot e e 74

Expressions ... 75

Extemal Symbols and Elements .. 77
Other Absolute Elements ... 78
Utilities .. 79

Chapter 5: Arithmetic

Binary Coded Decimal - - =« - - v cr oo 83
Arithmetic Machine INStIUCHONS -+« « -« s s v v rrr e 84
BCD Registers .. 84
BCD Arithmetic -« - - - - v v v e 84
AddItiOn = -« v v e e e 85
Ten’s Complement for BCD .. 86
Floating Point SUmMmations « -« <« -« - v v 88
Normalization -« « -« v v v v v o v vt oo e 89
Rounding .. 89
Floaﬁng Point Multlpllcatlon .. 90
Floating Point DIVISION - <« -« <<+ o v oo mese e 92
The FDV INSHUCHON « - < - - -« v v o e et 94
Thirteen-Digit Dividends -« -+« - - v 95
Floating-Point Division Example -+ -+« rroooeeee R 926
Arithmetic Utilities - - - -« - - r o v v e e 99
Utility: Rel—math -« oo e 99
Utility: Rl fOmint « - <« - <« << oo e oo 102
Utility: Rel—to——Sho < -+« -+ v oo oot PR 103
Utility: Inttor@l -« <o oo 104
Utility: ShO—tO—T@] « - -+ - v r e 105

Chapter 6: Communication Between BASIC and Assembly Language

The ICALL Statement -« -« - - - o v o e s e 107
Corresponding Assembly Language Statements -~ o-ccnveo i 108
Arguments T 109
“BHNA” PArameters -« -« -« v oo v e 112
Getting Information on Arguments .. 113

Utility: Get—info v - v 114
Retrieving the Value of an Argument 116
Utility: Get—uvalue <« c o - c e e 117
Utility: Get—element « -« - - v o 118
Utility: Get—byte,s ... 119

Utility: Get—elem-—bytes « <~ -~ v v 120

viii

Changing the Value of an Argument 122
Utility: Put—wvalue 122

Utility: Put—element 123

Utility: Put—bytes 124

Utility: Put—elem—buytes 125

Using Common 127
Busy bits 130
Utility: Busy 131

Chapter 7: 1/ O Handling

Peripheral-Processor Communication0 i, 133
Interfaces 134
Registers 134
Select Codes 134
Status and Control Registers 136
Statusand Flag Lines 137

Programmed 170 138

Interrupt 1/ O 138
Priorities. 140
Interrupt Service Routinesand Linkage. 140
ACCESS. .. 141

Utility: Ist—access 143
State Preservation and Restoration. 145
Indirect Addressing in ISRs 146

Direct Memory Access (DMA) . . 147
DMA Registers 148
DMA Transfers 149

BASIC Branching on Interrupts 150
ONINT Statement. 150
Signalling 151
Additional Pre-Defined Symbols 153
Prioritizing ONINT Branches 153
Environmental Considerations. 155
Disabling ON INT Branching 156

Mass Storage Activities 156
Reading from Mass Storage 157

Utility: Mm—read—start, 158

Utility: Mm—read—xfer 159

Writing to Mass Storage -o 160
Utility: Mm—write—start e 161
Utility: Mm—write—test 161

System File Information 163
Utility: Get—file—info 164
Utility: Put—file—info 165

Printing 166
Utility: Printer_select 166
Utility: Print_string 167

Chapter 8: Debugging

Stepping Through Programs 170
Individual Instruction Execution 170
Setting Break Points 174

Simple Pausing 174
Transfers 175
Environments 176
Data Locations 177
IBREAK Everywhere 178
Number of Break Points 179
Clearing Break Points S 179
Interrogating Processor Bits e 180
Protected Memory e 180

DUMIPS . o 181

Value Checking o P 183
Functions 184

DECIMAL .. o 184
OCT AL .. 184
JAD R . e 185
IMEM . o 186
Patching 187

Chapter 9: Errors and Error Processing

Types of Errors PO 189
Syntax-Time and Assembly-Time Errors 189
Run-Time Errors 190

Utility: Error_exit 191

Run-Time Messages i 193

Assembly-Time Messages 195

ix

Appendix A: ASCII Character Set
ASCII Character Codes 204

Appendix B: Machine Instructions

Detailed List 207

Bit Patterns and Timings . o 221
Alphabetic List 221
Approximate Numerical List 221
Appendix C: Pseudo-Instructions 223
Appendix D: Assembly Language BASIC Language Extensions Formal Syntax. 225
Appendix E: Pre-Defined Assembler Symbols 231
Appendix F: Utilities 233
Appendix G: Writing Utilities 235

Appendix H: I/ O Sample Programs

Handshake String Output 237
Handshake String Input 239
Interrupt String Output 241
Interrupt String Input 244
DMA String Output 247
DMA String Input 250
HP-IB Output/Input Drivers . 253
Real-Time-Clock Example 257

Appendix I: Demonstration Cartridge

Usingthetape 261
Typing Aids 261
Appendix J: Error Messages 265
Mass Storage ROM Errors 269
PlOtter ROM Errors ... 269
Assembly Language ROM Errors 0 270
Assembly Time Errors 271

Appendix K: Maintenance

Maintenance Agreements 273

Sales & Service Offices 274

Subject Index 277

Chapter 1
Table of Contents

General Information

Structure of the Manual
Purpose of the ROMSs e
ROM Installation e
Buzzwords
Fundamental Syntax.........

ff

Chapter 1

General Information

Welcome to the world of assembly language programming on the 9835A /B.

It is the design of the Assembly Development Read Only Memory (ROM) to help extend the
capabilities of your 9835A/B by giving you greater control and speed through the use of
machine instructions, pseudo-instructions, and extensions to the BASIC language.

The assembly language system is provided to you as ROMs which plug into the drawers
provided for that purpose in the 9835A /B. There are three physical ROMs, comprising two
“logical’’ ROMs —

e The Assembly Development ROM. Two physical ROMs. This ROM is always provided
with an Execution ROM (together comprising HP product number 98339A), and the three
ROMs as a unit constitute the assembly language system of the 9835A / B.

e The Assembly Execution ROM, HP product number 98338A. One physical ROM. Since
this ROM is an integral part of the assembly language system, the use of the capabilities in
this ROM is incorporated into the discussions in this manual. Information on this ROM can

be found separately in the Assembly Execution ROM manual (HP part number 09835-
90082).

It is assumed throughout this manual that you are familiar with the basic operation and lan-
guage of the 9835A /B. It is also assumed that you are reasonably well-acquainted with at least
one other assembly language.

“

S

2 General Information

Structure of the Manual

It is the intent of this manual that you should be able to find between its covers everything you
need to know to use the assembly language effectively. However, since assembly language
programming is a complex topic, the manual relies a great deal on your past experience. Most
of the information is in succinct presentations of a particular topic; it is not the intent to ‘‘teach”

assembly language programming to someone not familiar with the topic.

The major topics covered are: assembly language program creation (Chapter 2), the processor
and relevant operating system constructs (Chapter 3), assembly language fundamentals (Chap-
ter 4), arithmetic (Chapter 5), communications with BASIC (Chapter 6), 17O handling (Chap-
ter 7), debugging tools (Chapter 8), errors and error processing (Chapter 9). Each topic, or
chapter, has a summary at the beginning detailing the information to be presented therein. A
compilation of these summaries can be found immediately preceding the Table of Contents.

The manual is organized so that each topic can be covered completely within a given chapter.
This approach was chosen over the strict syntactical or semantical treatment of the individual
statements and instructions. As a consequence, you may find this difficult to use as a ‘‘quick

reference’’ for syntax and meaning of the individual commands.

To meet your needs for “quick reference’ material, an Assembly Language System Quick
Reference Manual (HP part number 09835-90081) is provided. In addition, you will find much
of the information in this manual condensed and tabulated in the various appendices of this

manual.

A recommended method for using the manuals is to start with this one as your basic learning
tool. Then you should be able to use the Quick Reference Manual effectively for all future

reference.

Purpose of the ROMs

The Development ROM is used to write and debug assembly language programs on the
9835A/B. The Execution ROM, provides the capability to load, run, and store assembled

routines and modules.

The Execution ROM can be used independently of the Development ROM. However, the
Development ROM cannot be used without the Execution ROM. The latter’s capabilities, there-
fore, are considered in this manual as an inherent part of the Development ROM. Because of
the overhead required by the debugging features provided by the Development ROM, pro-
grams run more rapidly if the Execution ROM is used without the Development ROM.

ROM Installation

General Information

Before assembly language programming can proceed, the ROMs must be in place. The installa-

tion is a simple process.

There are several ROM drawers for the computer: one on the right side of the machine and

four in front. Each front drawer holds up to four ROMs; the side drawer holds up to fourteen.
ROMs may be placed in any ROM slot in any drawer.

el
£
e

"
oy

il

T

-

s
i

:

s,

S f

[
e
P

i

Assembly Language System ROMs

To add the ROMs, turn off the computer and remove a ROM drawer (by pulling outwards on it

until it is completely separated from the computer). Insert the ROMs, one at a time, following

this procedure: you should orient the ROM so that its label reads the same way as the others in

the drawer (with the bottom of the lettering toward the ‘“‘front”’ of the drawer). Then insert it

vertically in one of the unused slots. Make sure that it slides in all the way to the bottom of the

connector. There are small raised ribs on both sides of each ROM which will fit into recesses in

the slot; if the ribs don’t fit, you have not oriented the ROM correctly.

After inserting both ROMs, re-insert the drawer in the machine (by pushing on it until it is flush

with the outside cover of the machine). With this done, you are now ready to begin writing

assembly language programs.

.
el

AP s

g e ey

gl e
L g

oA e

SR
G R
AW e
M
e ﬂmmmﬁﬁﬁy o

B it i ¥
ol
i
i

i
i
i

.
o
s

w%ﬁ@

il
ey

Figure 1. Installing the Development ROM

o
L
- x%g s
e i

R
e
n}é L

e

3

4 General Information

Buzzwords

During the course of the discussions in this manual, words and phrases are used which are in
common circulation among those who are familiar with assembly languages. While the mean-
ing of most are either well-known, or are deducible from the context, there are a few which may
be unfamiliar, or unique to the 9835A /B assembly language, or are variable from one assem-
bly language to the next and thus need to be defined for this one. They are —

assembled location — a reference to a location in memory which may be specified in one

of the following forms —

{symbol} [. {numeric expression}]

{expression} [. {numeric expression}]

where:

{symbol} is an assembly location. It may be either a label for a particular machine instruc-
tion (in which case the address of the associated instruction is used), or an assembler-
defined symbol (in which case the associated absolute address is used), or a symbol
defined by an EQU instruction (described in the “Symbolic Operations’ of Chapter 4).

{expression} may be a numeric expression or a string expression. If numeric, a decimal
calculation is performed and the result is interpreted as an octal value; if the result is not
an octal representation or an integer, an error results. If a string expression is used, the
string must be interpretable as either an octal integer constant or a known assembly

symbol (see {symbol} above).
{numeric expression} serves as a decimal offset from the given label or constant.
byte — a group of 8 binary digits (bits).

busy bits — each variable located in the BASIC value or common areas has associated
with it two bits: a “‘read’” busy bit, and a “write’” busy bit. When a busy bit is set, all
attempts to perform the associated function on that variable are locked out. When a busy
bit is cleared, the function may be performed on the variable.

conditional assembly — an assignation that certain portions of a module are not to be
assembled unless a condition has been set. The portions begin with any of the IFA through
IFH, and IFP, pseudo-instructions, and end with the next XIF pseudo-instruction. IFA
uses the A-condition as a test, and so on. The conditions are set by the statement assem-
bling the module (IASSEMBLE).

General Information 5

interrupt service routine (ISR) — an assembly language routine intended to perform a
certain action, or set of actions, when the computer receives a request from an external

device. An “‘active’’ ISR is one which is currently enabled for a given device.

mass storage unit specifier (msus) — a single word corresponding to the BASIC lan-
guage mass storage unit specifier as described in either the 9835A /B Operating and
Programming Manual — HP part number 09835-90000 — or the Mass Storage
Techniques Manual — HP part number 09835-90070. An msus has the following struc-

ture —
Unit HPIB Device Select
Number Address Typel Code
I] I I | | | | | | I
| |] 1]] | P 1] |

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

An msus can designate the current default as its mass storage device (meaning it will use
the device indicated by the last MASS STORAGE IS statement executed). This is desig-
nated by having the msus be all ones (i.e., equal to — 1).

object module — a section of assembled code stored in the particular region of memory
set aside for it. Though the source module for the object code may no longer be resident in
memory, when created, the module was delimited by certain pseudo-instructions (NAM
and END) and is referenced by the name given to it by the NAM pseudo-instruction.

octal expression — a numeric expression which, when displayed or printed, appears as
an octal (base-8) number. Within arithmetic operations, it has a decimal value (base-10).
Thus, the value 17s will appear as 17 (representing the value 1510), but if arithmetic was
performed on it, it would act as if it were 1710. All octal expressions are necessarily
integers in the range of 0 to 177777s.

source module — a section of assembly language source code beginning with a NAM

pseudo-instruction and ending with the END pseudo-instruction.

word — two bytes; a group of 16 binary digits (bits).

7

1 The device type is the ASCII code for the type minus 1008.

6 General Information

Fundamental Syntax

The syntax conventions used in this manual are those used in the Operating and Programming
Manual for the 9835A/B —

r 1= All syntax items displayed in dot matrix form should be pro-

grammed as shown.
[1 Itemscontained in brackets are optional items.

Ellipses mean that the previous item may be repeated

indefinitely.

In addition, the following convention is employed throughout the Assembly Language series of
manuals —

{} Items contained in braces are syntax items considered as a
unit. The names inside are usually descriptive of the function
intended for that item. Whenever an item enclosed in braces
appears in the text, the notation refers to the same notation

within an earlier syntax.

Chapter 2
Table of Contents

Getting Started

Developing Routines for Later Use 7
OVeIVIEW . .. 9
Program Creation 9
Program Entry 14
Other EXtensions 16
Modules, Routines, and Such 17
Names 17
Survey of Modules and Routines 18
Setting Aside Memory 19

Retrieving and Storing Modules 22

(ﬁ

Chapter 2
Getting Started

Summary; This chapter contains a general discussion of the assembly language sys-
tem. A format for the creation of an assembly language program is presented. Topics
such as modules, routines, and memory allocation are discussed, along with methods of
using them effectively. Also discussed is the storage and retrieval of modules on mass
storage.

The thing to remember about the éssembly language system is that it has been thoroughly
integrated into the operating system of the 9835A / B. Once the ROMs have been installed, you
are able immediately to begin programming in assembly language. In addition, you have the
capability to load and store your programs on mass storage, to assemble them separately or
leave them in source form, to execute them from BASIC and pass BASIC variables to them,
and to debug them, including a full pausing and stepping capability.

Developing Routines for Later Use

Most assembly language programs are written with the intent that theiz will be used many times,
not just at the time they are written. It is for just such program development that the full
capabilities of the assembly language system come into play. The development comes in
several stages. Each stage has its unique requirements and the tools to meet those require-
ments.

The first stage is creation of the source program. This is achieved by the use of the editing
capabilities of the 9835A /B. Additionally, the basic mass storage capabilities of the computer
can be used.

The second stage is the creation of the object (or machine) code. This requires not only an
assembly of the source, but the ability to allocate special locations in memory to hold the newly
created object code.

The third stage is the validation of the routines as written, commonly known as ‘‘debugging’’.
This is enabled by calls from a BASIC driver, followed by application of various debugging
tools provided by the assembly system. The capabilities to pause and step a program have been

extended to assembly language instructions to assist this process.

7

7,

8 Getting Started

The fourth stage is to store away the debugged object code so that it may be used at a later

time. A special mass storage statement is provided by the assembly language system. This

statement stores object code into a special assembly file.

Finally, the end-user of the routines must be able to retrieve the object code from mass storage

as it is needed. He also must be able to access the routines from BASIC programs. Both these

needs are met with the Execution ROM, so the capabilities are not only provided, but they are

provided independent of the program development capabilities located in the Development

ROM.

Each of the topics involved in these stages is discussed at length in this manual.

Figure 2 presents a graphical presentation of this overview.

Mass Storage
Capabilities Sonrce
of System 35 y Statements

Editing
Capabilities
of System 35

(Source) Program Creation

Assembly

Y

Assembly Language System’s
Debugging Tools

Memory
Allocation
Em— (Object) Module Creation
Calls from
BASIC
A
G ——
Routine Validation
(Debugging)
Storage
Special Files
\

Mass Storage

Retrieval

\

User's BASIC Programs
(includes calls to routines)

Figure 2. Overview of Assembly Language Routine Development Process

Getting Started 9

Overview

At this point, there are three fundamental structures to be explained: programs, modules, and

routines.

A program is the set of source statements from which the object (or machine) code is gener-
ated. The assembly source statements are extensions to the BASIC language which is used in
the 9835A/B. The statements themselves are stored in the machine as part of the BASIC
program in which they reside. At some point, you must take the assembly source statements
and assemble them into object code, in order that they can be run. The object code is stored in

a specified location in the machine.

A module is a subset of the object code. Itis a means of separating and identifying parts of the
code so that those parts may be used individually (as in mass storage operations). There may
be any number of modules present at any one time, limited only by the amount of memory
allocated for object code.

A routine is a ‘‘callable” section of a module. It is analogous to the subprogram in BASIC. It
has a named entry point, possibly-a parameter list, and (if programmed correctly) a return. A
module may contain any number of routines, again limited only by the amount of memory
allocated to hold the object code.

In short, the usefulness of each structure is as follows —

e Programs contain assembly language source code.
e Modules contain object code to be loaded from or stored on mass storage.

e Routines are executable sections of object code.

Program Creation

The first matter which is likely to concern you about the assembly language system is how to
create an assembly language program.

In general, the process of creating an assembly language subprogram consists of the following

steps —

1. Enter and store the source code (program).

2. Create an area in memory which will ultimately contain the object code.

’

10 Getting Started

3. Assemble the source code into object code, storing the latter into the area of memory set

aside for it.

4. Execute the object code (routines) from BASIC “‘drivers’.

Each of these steps will be discussed at length in the pages of this manual, along with a number
of not-so-incidental side-topics (such as ‘‘debugging’’ techniques). The purpose of this short
section is to give you an impression of the general procedure through which an assembly

language subprogram is created.

As an example to use to demonstrate the process, suppose the following task has been assigned

to you —

Requirement: Write an assembly language subprogram which takes two integer
values and multiplies them together as integers. If the result overflows the range of
an integer (— 32 768 to + 32 767), then the subprogram should return the same

error as the system would (i.e., error number 20).

With this task in hand, suppose that you have completed a programming analysis that suggests
that the following assembly language source code would fulfill the subprogram’s functions —!

1 The fact that it is rarely possible to create a running program at this stage should not get in the way of accepting the example.
Usually there is debugging involved in later stages.

Getting Started

Now that the routine has been developed, it is necessary to get it into the memory of the
machine as a program. This is done by preceding each and every assembly language statement
with the keyword ISOURCE and entering it as a program line. The process of entering (with the
keyword included) is the same as with any other BASIC statement — so you can use EDIT or
AUTO and the key in the same way you normally enter any BASIC statement. (This
process is fully described in the “Program Entry”’ section of this chapter.)

The final result of entering the routine would look something like —

This source code demonstrates the three critical items in assembly subprograms. First, a routine
has to be part of a module; modules are delimited with the NAM and END pseudo-instructions
(see lines 10 and 270 in the source). Second, a routine has to have an entry point; this consists
of a SUB pseudo-instruction (see line 40), any parameters (see lines 50 through 70), and a
name (the label used on the first machine instruction following the SUB, see line 80). Finally, a
routine must be able to return to the BASIC program which called it; this is accomplished with
the RET 1 instruction (see line 260).

The NAM, END, and SUB pseudo-instructions are discussed in Chapter 4. The RET 1 instruc-
tion is discussed in Chapter 3.

11

12 Getting Started

The next three steps in program creation are each satisfied with BASIC-executable statements.
Creation of a storage area for the object code for the program (which can be estimated at less
than 40 words; there is essentially one word of object code per line of source) is accomplished

by programming the statement —

IO <8
(The ICOM statement is fully discussed in the ‘‘Setting Aside Memory’’ section of this chapter.)

This can be followed in the same program by an instruction to assemble the source code into
object code —

(The IASSEMBLE statement is fully discussed in Chapter 4.)

If the assembly is successful (and it will be in this example), then the routine can be called and

used as desired. A typical call looks like —

(The ICALL statement is fully discussed in Chapter 6.)

Thus, the final result could easily be —

Getting Started

It isn’t necessary that a program be assembled in every BASIC program which uses it. Object

code can be stored on mass storage with a statement like —

ke gk ek b ek e

FT1 bt et doed

13

14 Getting Started

the object code is consequently stored into the file “MULT"’".

Later programs can retrieve the object code for use, such as in the following program —

E R T
PIEARER I

(Both ISTORE and ILOAD are discussed in the ‘“‘Retrieving and Storing Modules” section of
this chapter.)

Program Entry

The assembly lénguage source statement is an extension to the BASIC language used in the
9835A/B. This means that each assembly language statement is entered using a
‘‘keyword’’ — in this case ISOURCE — as a message to the operating system that the line is an
assembly language statement.

By looking at an example, you can see what is meant —

Lines 10, 20, 30, and 70, are all recognizable as BASIC statements. The keywords they
use — LET, PRINT, and END — direct that certain actions take place. Lines 40, 50, and 60,
are all assembly language statements; this was indicated by the ISOURCE keyword used in
these lines.

Entering assembly language statements, by using the ISOURCE keyword, is thereby the same
process as entering other types of BASIC statements. You may use all of the system editing
features that you are used to using in the creation of BASIC programs — EDIT, AUTO, etc. You
store each line with the key, as you would any other BASIC line.

Getting Started 15

Also, assembly lines do not have to be in any special place in the BASIC program. The above

example could be re-arranged as follows —

Thus, you are free to enter your assembly statements anywhere in your BASIC program. But,
you may ask, what is the effect of spreading them out like this? The answer is, simply, none.
When the time comes to use them, assembly statements and BASIC statements are separated

by the operating system and treated differently.

When the BASIC program is run, ONLY the BASIC statements are executed. The ISOURCE
statements are ignored, and, as you will be shown in Chapter 4, when the assembly language
lines are assembled, the BASIC statements are ignored. A way to consider it is that there are
two programs in one — BASIC’s and the assembler’s. So you can envision the example above

as being this way —

BASIC ASSEMBLER

You should note, then, that ISOURCE statements are not ‘‘executable’ in the usual BASIC
sense. Their location in the program does not indicate the place where they will be executed.

Assembly instructions are not executed until a routine is “‘called’’; this is discussed in detail in
Chapter 4.

Now that it has been said that the two types of statements can be thoroughly intermixed, it
should also be said that the practice is not recommended. As a good programming practice —
i.e., for readability and to preserve the self-documenting features of BASIC — it is recom-

mended that assembly statements be collected together and placed in one spot in the program.

The first example is a recommended practice over the second, even though the second is
permissible.

16 Getting Started

Other Extensions

In addition to the ISOURCE statement, there are a number of other BASIC language exten-
sions provided by the assembly languge system. Unlike the ISOURCE statement, they are
‘“‘executable’’, and their appearances are part of the BASIC lines (as distinguished from the
assembler’s). Where they appear is where the action associated with them is taken. This is

identical to the way the other BASIC statements perform. The statements involved are —

IASSEMBLE
IBREAK
ICALL
ICHANGE
ICOM
IDELETE
IDUMP
ILOAD
INORMAL
IPAUSE OFF
IPAUSE ON
ISTORE
OFF INT

ON INT

Also provided are four numeric functions —

DECIMAL
IADR
IMEM
OCTAL

The functions can be used wherever numeric functions in general may be used.

All of these statements (except ICOM and ISOURCE) and the functions are available to you as
live keyboard operations as well as programmable statements. A full discussion of each of the
statements and functions can be found within this manual.

Getting Started 17

Modules, Routines, and Such

There are three basic activities associated with using assembled modules and routines. First,
there is the need to retrieve them from wherever they may be stored (including providing a
place for them to be kept while they are resident in the memory of the machine). Second, there
is the actual execution of the routines. And third, there is the occasional requirement to store,
or re-store a module on mass storage (including, perhaps, the need to free up the space in
memory it previously occupied).

Names

Routines, modules, and files all have names. The names given them may or may not bear some

significance to one another; that depends upon you and the way that you name things.

Conventions for the naming of files and methods of general file manipulation can be found in
the Operating and Programming Manual and in the Mass Storage Techniques Manual. The

conventions are not any different than for files in general.

Names for modules are assigned with the creation of the source. In the assembly language
source code, you have a NAM pseudo-instruction. This serves two purposes — to designate the
beginning of the module and to assign the module a name. All of the assembly source state-
ments which follow the NAM are in that module until an END pseudo-instruction is encoun-

tered. Thus, recalling the previous example —.

All of the ISOURCE statements between lines 20 and 60 (in this case, just the one) form the
module called ‘“‘Example”. The formal syntaxes of these pseudo-instructions are —

1 {module name}

i
1

I {module name}

{module name} is a symbol which becomes the name of the module. It follows the same rules as
names in BASIC: up to fifteen characters; starts with a capital letter; followed by only non-
capital letters, numbers, or the underscore character.

18 Getting Started

The {module name} in the END statement must correspond to the {module name} of the NAM

statement or an assembly error (‘‘EN"’) results.

You may have any number of modules in your source code. Each module begins with a NAM
and ends with an END pseudo-instruction as above.

Mass Storage Memory User

|
|
|
!
|
| module 1 e IDELETE module 1
4 [
file 1 ILOAD | filet e |
: |
| module 2 |)
| ICQM -— ' ICOM size
region
I .]
may or | |
g":lé:m o2 ILOAD : file 2 |
er\zze | ' ICALL routine 1
| | ICALL routine 2
: | ICALL routine 3
| | ICALL routine 4
ISTORE !module 4 [~ | | ICALL routine 5
file 3 < es iTonesl 1~~~ —— | ICALL routine 6
| |
¢ module 5 |
|
L \ |
|
I
I

Figure 3. Overview of Routines and Modules.

Survey of Modules and Routines

To sketch the functional relationships of modules and routines, please refer to Figure 3 above.

Modules are stored in files and may be retrieved and placed in memory using the “ILOAD”
command. When the ILOAD command is executed, all of the modules in the file are loaded into
the memory. Note that many files can be loaded, with many modules each, with all of the

modules able to remain resident in the memory.

Getting Started 19

Alternatively, modules which are already in memory may be stored into a single file using the
“ISTORE” command. When the ISTORE command is executed, the designated modules are
stored into an ‘‘option ROM” (OPRM) type of file (on tape cartridges) or an ‘‘Assembly’
(ASMB) type of file (on non-tape mass storage media). After storage, the modules are still in
memory. They may be removed (i.e., the space they occupy in memory is “freed up’’) by using
the “IDELETE” command.

The area of memory where the modules are stored is called the “ICOM region”. It is a particu-
lar contiguous area which must be large enough to hold all of the object code you wish to have

resident in the memory at any one time.

Each module contains one or more routines. Your access to the routines is through the ICALL
statement, which is very similar to the CALL statement used for BASIC subprograms. The
ICALL statement may have arguments which you need to ‘‘pass” (send down) to the routine
itself. What these arguments, if any, may be, and what meaning they hold depends upon what
you have in mind for that routine. There are corresponding items in the assembly source code;

these are discussed in Chapter 6.

Setting Aside Memory

As indicated by Figure 3, you cannot load a module until there is an ICOM region into which to
load it. Neither can you assemble your source code into object code unless there is an ICOM

region into which the object code can go.

The statement to use to create an ICOM region is —

i} {size}

where {size} is an integer constant indicating the number of words to be used to form the ICOM
region. The maximum size is 32 718 words.

The ICOM statement is a “declaration”, that is, it is not executable, but rather is used when
assignment of memory takes place just before a program is run. This is similar to a DIM or COM
statement. As with a DIM or COM statement, the statement cannot be executed from the
keyboard.

Once created, the ICOM region remains in existence until it is explicitly destroyed. But it is
possible to change the size by using another ICOM statement.

20

Getting Started

The order in which modules appear in the ICOM region is determined by the order in which
they are loaded using the ILOAD statement discussed in the next section or are created by the
IASSEMBLE statement discussed in the next chapter.

In most cases, the space which is freed up by reducing the size of the ICOM region is returned to
your available memory space. Sometimes, however, it is not returned, this being caused by the
status of the common area allocated in memory, or by other option ROMs. The space is

returned whenever —

o There is no common area assigned (with the COM statement); and,

o The requirements of another option ROM do not interfere.
There may be any number of ICOM statements in a program. The current size of the ICOM
region is determined by the last one which appears in the program when the key is pressed

(or the command RUN is executed).

For example, suppose you have a program with the following statements in it —

Upon pressing , the ICOM region would be 2 000 words long. This is because line 610 is
the final ICOM appearance.

The region continues to exist even if you load in another program which contains no ICOM
statements. All ICOM statements must appear in the main program, not in any subprogram.

ICOM statements in a program must appear before any COM statement. This is to insure that

the ICOM region will be allocated before the common is allocated.

Getting Started 21

There are three ways to eliminate the ICOM region —

e Execute SCRATCH A
e Execute ICOM 0O in a program.

e Turn off the machine.

After any of these actions, the region is no longer in existence. If there are any modules in the
region, they disappear as well. If any of those modules contain an active interrupt service
routine, you get an error (number 193) if you try to eliminate the region using ICOM 0. If any of
your routines provided to other users contain active ISRs, your documentation for the routine

should warn the users of that fact so they can avoid this error.

The ICOM 0 procedure can be used to assure that all previous modules are deleted. For
example, the following sequence —

assures that an ICOM region of 2 000 words is in existence at the running of the program, and

one completely clear of any previously loaded modules.

When you are altering the size of the ICOM region, the new size specified becomes the size of
the region from the moment of running the program. If the size being requested is larger than
that which already exists, the additional space needed is requested from the operating system.
If the space is available, everything proceeds uneventfully. If the space is not available, an error
(number 2) results. To make the space available, one of the following procedures must be

followed —

e Execute SCRATCH A.
e Execute SCRATCH C.
Each procedure has its separate effects, and the course selected should be determined by your

circumstances at the time. Consult the Operating and Programming Manual for details on the

other effects of each of these commands.

22 Getting Started

If the size being requested is smaller, modules are deleted if they no longer fit into the smaller

region. For example, suppose the following situation existed —

: “old” ICOM size 7i
|
module module module module module
A B C D E
|

I<—— “new” ICOM size ——*l

Upon compilation of the new ICOM statement, the modules E, D, and C are deleted. None of

those modules may contain an active interrupt service routine or an error results (number 193).

Retrieving and Storing Modules

Modules are stored in files on mass storage media as Option ROM (OPRM) or Assembly
(ASMB) types of files. On tape media, they are stored in the OPRM type and on non-tape
media they are stored in the ASMB type. In this case, the two file types are equivalent.?

To retrieve a module, or modules, from mass storage, identify the file name of the file contain-
ing the module. Combine the name with the mass storage unit specifier? of the device to form a

file specifier. Then execute the statement —

{file specifier}

This retrieves ALL the modules in the file and stores them in the ICOM region.

If there are modules already loaded in the ICOM region, these additional modules are added to
them, (NOT written over them). If an existing module in the ICOM area has the same name as
one of the modules being loaded, the existing module is deleted and the loaded version takes
its place.

If you do not want all the modules in a given file, you can purge the unwanted ones from the
ICOM region using the IDELETE statement —

& {module name} [,{module name} [,...]]

1 OPRM-type files may be created by other option ROMs for their particular purposes. In those cases, the contents are entirely
different.

2 Not to be confused with the single-word msus described in Chapter 1. This form is used by BASIC’s Mass Storage statements
(see the Operating and Programming Manual or Mass Storage Techniques Manual).

Getting Started 23

For example, if you had loaded a file which had the routines Larry, Pat, Ed, and Piper, and you

want to keep only Larry, then you execute the statements —

or, more simply —

Deletions do not have to be done immediately after loading. They can be done at any time.
After the IDELETE has been executed, the portion of the ICOM region which the module
previously occupied is made available for use in loading other modules. The space is NOT
returned to the generally available memory; that action is done with an ICOM statement with a

smaller size.

Whenever a module is deleted, other modules are moved, as necessary, to take up any slack
space in the ICOM region. This is done so that all of the free space in the region is at the end. If
a module is being deleted, or being moved as above, and it contains an active interrupt service
routine, an error results (number 193).)

If you desire at any time to delete all of the modules in your ICOM region, you can do so by
executing either of the following statements —

Sometimes you may desire to move modules in the opposite direction — from memory to mass
storage. This is done with the ISTORE statement. The statement has the form —

~{module name} [, {module name} [, ...]] : {file specifier}

A {module name} must be the name of a module currently stored in the ICOM region. Upon
execution of the statement, a file with the name and mass storage unit specifier given in the {file

specifier} is created and the modules are stored in the file, in the order listed.

The file created by an ISTORE statement is an OPRM or ASMB type, as appropriate to the

medium involved. It can then be used in ILOAD statements at a later time.

24 Getting Started

In the case that you might want to store all of the routines currently in the ICOM region into a

particular file, you can use either of the following statements —

: {file specifier}

- {file specifier}

Chapter 3
Table of Contents

The Processor and the Operating System ’
Machine Architecture 25

Registers R 26
General Memory Organization 28
Protected Memory 28
Base and CurrentPage 29
Data Structures 30
Integers e 30
SHINGS 30
Full-Precision Numbers 31
Short-Precision Numbers 31
Machine Instructions 32
Operands 32
Indirect Addressing L 34
Load/Store Group 34
Integer Math Group N 35
Branch Group 36
Test/Branch Group e o 37
Test/ Alter/Branch Group 38
Shift/Rotate Group e 40
Logical Group 41
CStack Group ... e 42
BCD Math Group 44
1/O0Group i 47

MiscellaneoUus e 48

Chapter 3

The Processor and
the Operating System

Summary: This chapter contains the necessary information on the structure of the
processor and the operating system. Topics covered are: machine architecture, memory
organization, data structures, and the machine instructions.

Before proceeding to the actual assembly language, it is useful to discuss the processor and
operating system with which you are dealing. This chapter discusses various concepts related to
the processor, the machine instruction set, the operating system organization, and data struc-

tures.

Machine Architecture

The 9835A /B is developed around a set of processors called a “hybrid”’. There are actually
three processors — the Binary Processor Chip (BPC), the Input-Output Controller (I0C), and
the Extended Math Chip (EMC). Each has its own set of instructions, but all three work in
conjunction. It is not necessary in using the assembly system that you know on which chip a
particular instruction resides. In the présentation of the instruction set — and for all practical
purposes while working with the computer — no distinction need be made between the proces-
sors, and the entire instruction set may be considered as being resident on a single processor.

In addition to the processors, the hybrid also contains an 1./ O bus which is controlled by certain
instructions. The I/ O bus has an ‘“‘address” part and a ‘‘data’ part. Some of the instructions (it
is indicated which ones) cause an ‘‘input cycle’” to occur on the bus, which means that an
address is given to the address part of the bus, and the data which appears on the data part is
considered to be input. Other instructions cause an ‘“‘output cycle’’, which means that the data
is to be output to the given ‘“‘address”.

Figure 4 is a graphical representation of this architecture.

\>

26 The Processor and the Operating System

PROCESSOR
peripheral
0 address address TO
PERIPHERAL
MEMORY DEVICES
data data
Figure 4. Generalized Machine Architecture
Registers

The memory locations in the machine are addressed from 0 to 177777s. There are 32 memory
locations which are addressed as if they were part of the computer read / write memory, but
actually are part of the processor. These locations are called ‘‘internal registers”. Each register
has a specific location and has been given a name. As you will learn in “Symbolic Operations”
(Chapter 4), these names have been reserved and cannot be redefined while using the assem-

bly system.

The internal registers are —

Address
Name (Octal) Description
A 0 Arithmetic accumulator
Ar2 20-23 | BCD arithmetic accumulator
B 1 Arithmetic accumulator
C 16 Stack pointer
Cb 13 Block bit for byte pointer in C (use most significant bit only)
D 17 Stack pointer
Db 13 Block bit for byte pointer in D (use second most significant bit only)
Dmac 15 DMA count register
Dmama 14 DMA memory address register
Dmapa 13 DMA peripheral address register (use lower 4 bits only)
P 2 Program counter
Pa 11 Peripheral address register (use lower 4 bits only)
R 3 Return stack pointer
R4 4
ﬁz Z 170 (Input/ Output) registers
R7 7
Se 24 Shift-extend register

The Processor and the Operating System 27

Figure 5 is a map of where these registers lie. In addition to these registers, the addresses 25s

through 37s are also registers, but are not (except for a few isolated cases) used in assembly

programming.

address
A 0
B 1
P 2
R 3
R4 4
R5 5
R6 6
R7 7
(reserved) 10
Con, [Fa |
(reserved) 12
L] [Dmapa | 13
Db L~ Dmama 14
Dmac 15
C 16
D 17
20
Ar2 21
22
23
Se 24
25
(reserved)
37

Figure 5. Map of Lowest Memory

All of these registers can be referenced either by their names or by their actual addresses. The

two methods are equivalent, though reference by name is recommended as a programming

practice.

In addition to the above internal registers, there are some ‘‘external’’ registers which reside in

the computer read / write memory. They are —

Address
Name (octal) Description
Arl 177770-177773 | BCD arithmetic accumulator
Base page | 177620-177701 | Base_page temporary area (50 words)
Oper 1 177702 Arithmetic utility operand address registers
Oper 2 177703
Result 177704 Arithmetic utility result address register

28 The Processor and the Operating System

General Memory Organization

In order to find your way around the machine effectively, you should be aware of where things
are stored in memory. Occasionally these areas can become considerations in your

programming.
First in the memory come the internal registers. They were discussed above.

Next in the memory comes the ICOM area. The starting location is dependent upon system
needs, but is always at least 41s. The size of the ICOM region depends upon the size designated
by the ICOM statement. Its maximum ending address is 77756s. This is the reason for the
limitation on the size in the ICOM statement.

Next in the memory comes the area reserved for the system to store programs and the like. This
area extends from the end of the ICOM region to 177617s.

This area is followed by the registers in the read / write memory (see the list in the previous
section) with a number of interspersed system-reserved areas.

Figure 6 is a graphical presentation of this organization.

The immediately addressable memory consists of 65 536 words, which is all that can be ad-
dressed by a 16-bit word (the basic unit of memory in the system). Note that the memory is
divided into two blocks —an ‘“‘upper’” block and a “lower” one. This distinction between
blocks becomes significant when addressing individual bytes in memory.

Protected Memory

All of the reserved areas mentioned above are known as ‘“‘protected memory’. To give some
measure of security to the operating system, it is advised that no attempt should be made to

write or branch into these areas.

Access to certain portions of protected memory (e.g., BASIC variables) is provided by utilities
within the assembly system. The user should access those areas only through the utilities.

Some measure of protection against access into these areas is provided during debugging. See
Chapter 8 for a discussion of how this is done and the extent of the protection provided.

The Processor and the Operating System

0
CPU registers
37
40 (at(lreeas;r;/ ?«tfjc))r d) s starting address
min=41 dependent upon
} system needs
J lower block
user data
(ICOM area) T
ending address
dependent upon
max=77756 starting address,
(reserved)

Ly (at least 1710 words) length of ICOM,
100000 and system needs
(reserved) =

177617
177620
' Base_page -
177701 ‘
177702 Oper_1
177703 Oper__2
:;;;8; Result upper block
(reserved)
177767
177770
‘ Art
17777é
177774
(reserved)
177777 J
Figure 6. Memory Map

Base and Current Page

A concept that occasionally arises during discussion of the instructions and the assembler is that

of the ‘‘page’’, the “‘base’ and “‘current’’ pages in particular.

A page is 1 024 words of memory.

29

30 The Processor and the Operating System

The ‘“‘base’’ page is a wrap-around page. It consists of the upper half of the last page in the
machine (addresses 177000s to 177777s) and the lower half of the zero page (addresses 0 to
777s). This is the same as a page which runs from — 512 to + 511, effectively ‘‘wrapping
around’’ address 0.

During execution, the program counter (P) points to the address of the current instruction. The
“current’’ page is those 1 024 words of memory centered upon the current instruction. There-

fore, the current page is a continually changing page, extending from (P)— 512 to (P)+ 511.

Data Structures

It is common to access BASIC variables from an assembly language routine then retrieve the
contents, manipulate them, or alter them. To be effective at it, you should be aware of how

BASIC stores a value in each of its data types.

There are four data types in BASIC: full-precision numeric values, short-precision numeric

values, integers, and strings. Each is stored in its own unique structure.

Integers

The simplest of the types is the integer. An integer consists of a single word. Values between
— 32 768 and + 32 767 can be stored in the word. Negative values are stored in two’s com-
plement form. An integer looks like —

15 14 . . . 0 Bit

Value

T

[

{
\Sign Bit
Strings

Strings are the next simplest structure. A string is a succession of bytes, one character to a byte.
A string may be of variable length. To be able to designate the length, the string is preceded by
a word which contains the number of bytes in the string.

If a string has an odd number of bytes in it, then the left-over byte in the word containing the
last character of the string is wasted. A typical string of length n looks like —

n(length)
byte 1 byte 2
byte 3 byte 4
byte 5 byte 6

)X

byte n-2 byte n-1
byte n -

The Processor and the Operating System

Full-Precision Numbers

Full-precision numeric values are stored as 12-digit, BCD (Binary Coded Decimal), floating
point numbers. They occupy four words each. The first word contains the sign of the exponent,
a two’s-complement 10-bit exponent, and the sign of the mantissa. The other three words

contain the twelve mantissa digits, 4 to each word. The words look like this —

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 Bit
Bxp]l T 1 1 T T T T 1 T T T Ivan
Signl Exponent 0 0 0 O Isign
L
D1
(most significant digit) D2 Da D4
Ds Ds D7 Ds
D12
De D10 D11 (least significant)

The exponent is always adjusted during arithmetic routines so that there is an implied decimal
point following D1. Thus, every mantissa value looks like —

Di1. D2 D3 D4 Ds Ds D7 Dg D9 D10 D11 D12

Short-Precision Numbers

Short-precision numeric values are stored as 6-digit, BCD floating point numbers. Unlike
full-precision, they occupy two words each irnistead of four. The first word contains a 7-bit
exponent, the sign of the mantissa and the two most significant mantissa digits. The second

word contains the remaining four mantissa digits. The words look like this —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Expl ' T 1 T T [Man ' T T | T T 1
Sign! Exponent Sign D1 D2

Ds Da Ds De

As with full-precision, the exponent is stored in two’s complement form and the implied deci-

mal point follows D1.

If you are unfamiliar with BCD arithmetic or need a refresher in floating point operations, it is
suggested that you refer to Chapter 5.

31

32 The Processor and the Operating System

Machine Instructions

The machine instruction set underlying the assembly language system consists of 92 instruc-
tions, divided into eleven groups. The groups are —

Load/Store Operations placing values into registers or memory.

Integer Math Operations involving integer arithmetic.

Branch Operations altering the execution sequence unconditionally.

Test/Branch Operations altering the execution sequence, dependent upon
some condition.

Test/ Alter / Branch Operations altering the execution sequence and a value, de-

Shift-Rotate

pendent upon some condition.

Operations performing re-arrangments of the bits in the A or

B register.

Logical Operations performing logical functions on the A or B regis-
ters.

Stack Operations managing stacks.

BCD Math Operations involving BCD arithmetic.

/70 Operations specifically involving 1/ O operations.

Miscellaneous

Some unclassifiable operations.

Operands

Most instructions require operands. These operands have general forms which they may assume.

Many instructions contain an operand which is the address on which the function is to be
performed. This {location} may be a constant (octal or decimal) or it may be a symbol. It also
may be an expression containing any allowable combination of constants and symbols. For a
full discussion of allowable expressions and symbols, and the “‘types’ they are allowed to
assume, consult “‘Symbolic Operations’’ in Chapter 4.

The Processor and the Operating System 33

For example, note the operands in the following —

A {location} may be either ‘‘relocatable” or ‘‘absolute’” (see ‘‘Relocation”” and ‘‘Symbolic
Operations’’ in Chapter 4 for a full treatment of these types). If a relocatable {location} is used,
the assembler generates machine code which uses ‘‘current page’ addressing, and thus the
{location} must be within — 512 words and + 511 words of the instruction. If an absolute
{location} is used, the assembler generates machine code which uses ‘‘base page’ addressing

(meaning it takes the address as an offset from location 0).

An {address} is a {location} the same as above, except the intended location must be

relocatable and within — 32 and + 31 words of the current instructions.

A {register} may be specified either through its absolute address or by its pre-defined symbol.
The permissible registers are those with addresses between 0 and 7, inclusive. These are
registers A, B, P, R, R4, R5, R6, and R7.

A number of instructions are followed by a {value}, which is a numeric expression usually in the
range of 1 through 16. This {value} frequently indicates the number of bits involved in the

operation. For example —

right-shifts the A register by-8 bits.

N NOTE
Specifying the R4, R5, R6, or R7 registers (absolute loca-
tions 4 through 7) in an instruction causes an ‘“I/0O bus
cycle” to occur. Consult Chapter 7, IO Handling”’, for the

proper use of these registers.

Indirect Addressing

34 The Processor and the Operating System

Some instructions may also employ ‘“‘indirect addressing”. This is indicated by including the

optional indicator , I, suchas —

There is only one level of indirect addressing provided with the processor. Of course, if further

levels are desired, it is possible to implement them on your own. Some flagging scheme could

be adopted, for example. One approach could be to adopt the policy that the sign bit (bit 15) of

a word would indicate further indirection, with the remaining bits being the value. In such an

approach, a load accumulator instruction would become two instructions —

Load/ Store Group

This group of instructions allows transfers of data to take place. With the instructions below you

can move information to and from the arithmetic accumulators (the A and B registers). You can

also transfer the contents of one contiguous set of words in memory to another contiguous set.

Instruction

Description

= {location} [, 1]

E {location} [, I]

= TH {location} [, 1]

i

]

ZTE {location} [,

L F {value}

=FF {value}

Loads register A with the contents of the specified location.
Loads register B with the contents of the specified location.

Stores the contents of the A register into the specified loca-

tion.

Stores the contents of the B register into the specified loca-

tion.

Clears (zeroes out) the specified number of words, beginning
at the location specified by the A register. {value} must be an
integer between 1 and 16.

Transfers the specified number of words, from one location to
another. The starting address of the location being transfer-
red from must be stored in the A register. The starting ad-
dress of the location being transferred to must be stored in

the B register. {value} must be an integer between 1 and 16.

The Processor and the Operating System 35

Integer Math Group

This group of instructions allows you to perform fundamental arithmetic operations on the

contents of the arithmetic accumulators (the A and B registers).

Instruction Description

Adds the contents of the specified location to the contents of
the A register, leaving the result in A. If a carry occurs, the
Extend flag is set in the processor. If an overflow occurs (a
carry from bits 14 or 15, but not both), the Overflow flag is set

in the processor.

Adds the contents of the specified location to the contents of
the B register, leaving the result in B. If a carry occurs, the
Extend flag is set in the processor. If an overflow occurs (a
carry from bits 14 or 15, but not both), the Overflow flag is set
in the processor.

Performs a two’s complement of the A register (i.e., one’s
complement, incremented by 1). If a carry occurs, the Extend
flag in the processor is set. If an overflow occurs (a carry from
bits 14 or 15, but not both), the Overflow flag in the proces-

sor is set.

Performs a two’s complement of the B register (i.e., one’s
complement, incremented by 1). If a carry occurs, the Extend
flag in the processor is set. If an overflow occurs (a carry from
bits 14 or 15, but not both), the Overflow flag in the proces-
sor is set.

Binary multiply. Uses Booth’s Algorithm. The values of the A
and B registers are multiplied together with the product
placed into A and B. The A register contains the least
significant bits and the B register contains the most significant

bits and the sign. (An anomaly in the processor results in an

improper result whenever A or B equals — 32 768.)

Branch Group

36 The Processor and the Operating System

This group of instructions allows you to alter the execution sequence unconditionally. It in-

cludes the “jumps’ and ‘“‘returns” from subroutines.

Instruction

Description

* {location} [, 1]

1 {location} [, 1]

i {value}

Unconditionally branches to the specified location.

Jumps to a subroutine. The value of the R register is in-
cremented and the current value of the P register (i.e., the
location of the JSM instruction itself) is stored into the ad-
dress pointed to by the R register. Execution then proceeds to
the specified location.

Returns from a subroutine. {value} is added to the contents of
the address pointed to by the R register. The results are
stored in the P register (i.e., specifying the next location for
execution) and the R register is decremented. This is, in ef-
fect, a return from a JSM instruction to the instruction which
is {value} instructions from the JSM itself. The ‘“‘usual’’ return
is RET 1. {value} must be an integer between —32 and 31.

Test/Branch Group

The Processor and the Operating System 37

Similar to the Branch group, this group of instructions allows you to alter the execution

sequence, but conditionally upon the result of some test. Most instructions involve tests on all

or part of one of the arithmetic accumulators (the A and B registers), but a couple allow a test

on a location in memory which you can specify.

Instruction

Description

i {location} [, I]

{location} [. 1]

{address}
{address}

{address}

{address}

i {address}

t {address}

{address}

E {address}

- Compares the contents of the A register with the contents of

the specified location. Execution skips over the next word if

the contents are not equal.

Compares the contents of the B register with the contents of
the specified location. Execution skips over the next word if

the contents are unequal.

Skips to {address} if register A is O.
Skips to {address} if register B is 0.
Skips to {address} if register A is not 0.
Skips to {address} if register B is not 0.

Skips to {address} if register A is 0, then increments A regard-
less. The Extend and Overflow flags in the processor are not
affected by the incrementing action.

Skips to {address} if register B is 0, then increments B regard-
less. The Extend and Overflow flags in the processor are not
affected by the incrementing action.

Skips to {address} if register A is not 0, then increments A
regardless. The Extend and Overflow flags in the processor

are not affected by the incrementing action.

Skips to {address} if register B is not 0, then increments B
regardless. The Extend and Overflow flags in the processor
are not affected by the incrementing action.

38 The Processor and the Operating System

Test/ Alter / Branch Group

Similar to the Test/Branch group, this group of instructions allows you to conditionally alter
the execution sequence. In addition to tests, you can also alter the contents of the item being
tested (such as set or clear a bit, or increment or decrement a register). Certain bits in the

processor (Extend and Overflow) can be tested with some of these instructions, as well as
registers and memory locations.

Some instructions may be followed by either of the following —

indicating that the bit being tested by the instruction will either be set (S) or cleared (C) after the
test has been made.

Instruction Description

& {location} [, I] Increment the contents of the specified location and skip

execution of the next word if the result is 0.

Decrement the contents of the specified location and skip

execution of the next word if the resultis 0.

Skips to {address} if the A register is positive or zero (bit 15 is

0).
F {address} [. =] Skips to {address} if the B register is positive or zero (bit 15 is
 {address} [, "] 0).

Skips to {address} if the A register is negative (bit 15 is 1).

Skips to {address} if the B register is negative (bit 15 is 1).
{address} [,]

F {address} [. =] Skips to {address} if the least significant bit of the A register is
=L FH {address} [.] 0.

The Processor and the Operating System 39

Instruction Description

=i.H {address} [. =] Skips to {address} if the least significant bit of the B register is
=L E {address} [.] 0.
=i Fi{address} [, =] Skips to {address} if the least significant bit of the A register is
' i{address} [,] not 0.
Fi_F{address} [. =] Skips to {address} if the least significant bit of the B register is
Fl_E {address} [, iC] not 0.

- {address} [, =] Skips to {address} if the Overflow flag in the processor is set.

=% {address} [, 2]

Sz {address} [, =] Skips to {address} if the Overflow flag in the processor is
=i_ {address} [, i7] cleared.
ZE = {address} [, =] Skips to {address} if the Extend flag in the processor is set.

=E = {address} [,]
=E i {address} [, =] Skips to {address} if the Extend flag in the processor is
ZEC {address} [,] cleared.

NOTE
The Extend and Overflow flags can be cleared only by using
the SEC, SES, SOC, and SOS instructions with the , i_ op-
tion.

40 The Processor and the Operating System

Shift / Rotate Group

This group of instructions performs re-arrangements of bits in the arithmetic accumulators (the
A and B registers). Circular and non-circular shifts are available.

Instruction Description

Shifts the A register right the indicated number of bits with all

vacated bit positions becoming 0.

Shifts the B register right the indicated number of bits with all

vacated bit positions becoming 0.

Shifts the A register left the indicated number of bits with all
vacated bit positions becoming 0.

Shifts the B register left the indicated number of bits with all
vacated bit positions becoming 0.

Shifts the A register right the indicated number of bits with
the sign bit filling all vacated bit positions. (Arithmetic right)

Shifts the B register right the indicated number of bits with
the sign bit filling all vacated positions. (Arithmetic right)

Rotates the A register right the indicated number of bits. Bit 0
rotates into bit 15 each time. (Right circular)

Rotates the B register right the indicated number of bits. Bit 0

rotates into bit 15 each time. (Right circular)

Rotates the A register left the indicated number of bits. Bit 15
rotates into bit O each time. (Left circular)

Rotates the B register left the indicated number of bits. Bit 15
rotates into bit 0 each time. (Left circular)

The Processor and the Operating System 41

Logical Group

This group of instructions performs logical (Boolean) operations upon the contents of an
arithmetic accumulator (on A or B register). Logical “and’’ and “or’ operations are available,

along with complementing and clearing operations.

Instruction Description

Logical ‘‘and” operation. The contents of the A register are
compared bit by bit, with the contents of the specified loca-
tion. For each bit-comparison a 1 results if both bits are 1’s, a
O results otherwise. The 16-bit result is left in A.

Logical “‘inclusive or’’ operation. The contents of the A regis-
ter are compared, bit by bit, with the contents of the specified
location. For each bit-comparison, a O results if both bits are
0’s, a 1 otherwise. The 16-bit result is left in A.

Performs a one’s complement of the A register (i.e., bit-by-bit

inversion of all 16 bits).

Performs a one’s complement of the B register (i.e., bit-by-bit

inversion of all 16 bits).

Clears register A. This instruction is identical to SAR 16.

Clears register B. This instruction is identical to SBR 16.

42 The Processor and the Operating System

Stack Group

The Stack group of instructions provides you with operations for managing stacks. The instruc-
tions withdraw items from (also called ‘“‘pop’’ or ‘‘pull’’) or push items onto a stack pointed to
by either the C or D register. The items are pushed from or withdrawn into a specified register
(other than C or D) and the C or D register is incremented or decremented appropriately.

Pushing instructions increment or decrement the C or D register prior to doing the pushing.
Withdrawing instructions increment or decrement the C or D register after doing the with-
drawal. Consequently, the pointer is always left pointing to the “‘top’’ of the stack after the
operation.

Decrementing the C or D register is indicated by including . I after the operand. For “‘with-

drawing’’ instructions, D is the default. For example, the following are equivalent —

Incrementing is specified by including . I after the operand. This is also the default for “‘push-

ing’’ instructions if neither I or D is included. For example, the following are equivalent —

When using the byte instructions (PBC, PBD, WBC, WBD), the address pointed to by the C or
D register must not have an absolute address less than 40s.

When pushing or withdrawing bytes, the least significant bit of the address register (either C or
D) is used to determine which byte is desired in the stack (a O implies the left most byte of the
word being addressed). To retain the full 16-bit addressing capability, the Cb or Db register is
used, as appropriate. These one-bit registers hold the most significant bit of the word address
when the byte addressing instructions are used. They should be explicitly set or cleared,
depending upon the value of the address involved.

Instruction

The Processor and the Operating System 43

Description

_{register} ,

register} [, 1]

i{register} , I

“{register} [

register} [, 1]

I {register}

Pushes contents of {register} onto the stack pointed to by the

C register.

Pushes contents of {register} onto the stack pointed to by the
D register.

Pushes the lower byte (right half) of {register} onto the stack
pointed to by the Cb and C registers. If the least significant bit
of Cis a 1, the byte is placed in the lower byte of the word in
the stack; if it is a 0, it is pushed into the upper byte.

Pushes the lower byte (right half) of {register} onto the stack
pointed to by the Db and D registers. If the least significant bit
of Dis a 1, the byte is placed in the lower byte of the word in
the stack; if it is a O, it is pushed into the upper byte.

Withdraws a word from the stack pointed to by the C register
and stores it into {register}.

Withdraws a word from the stack pointed to by the D register
and stores it into {register}.

Withdraws a byte from the stack p;)inted to by the Cb and C
registers and places it into the lower byte (right half) of {regis-
ter}. If the least significant bit of Cis a 1, the byte is withdrawn
from the lower byte of the word in the stack; if it is a 0, it will
be withdrawn from the upper byte.

Withdraws a byte from a stack pointed to by the Db and D
registers and places it into the lower byte (right half) of {regis-
ter}. If the least significant bit of D is a 1, the byte is withdrawn
from the lower byte of the word in the stack; if it is a 0, it is
withdrawn from the upper byte.

Clears the Cb register (indicates lower block of memory).
Sets the Cb register (indicates upper block of memory).
Clears the Db register (indicates lower block of memory).

Sets the Db register (indicates upper block of memory).

44 The Processor and the Operating System

BCD Math Group

This group of instructions provides you with BCD arithmetic operations using the Arl and Ar2
registers. '

" In general, the instructions associate the Arl register with ““X’’ and the Ar2 register with “Y”’ in
the mnemonic for the instruction. Both registers contain values which are considered BCD

full-precision values when operated upon by instructions in this group.

The mantissas referred to below consist of 12 BCD digits. All the shifting operations manipulate
the digits as units (i.e., 1 digit — or 4 bits — at a time). In addition, shifting operations involve

an additional digit in the A register (located in the lower 4 bits, numbered O through 3).

All arithmetic is performed in BCD. The values being operated upon are assumed to be nor-
malized BCD floating-point (full-precision) values. Signs and exponents are left strictly alone.
There is a flag in the processor, called Decimal Carry, which is set when an overflow occurs
during a BCD operation.

A full discussion of BCD arithmetic techniques can be found in Chapter 5.

Instruction Description

Mantissa right shift on Arl. The number of digits to be shifted
is specified in the lower 4 bits (0-3) of the B register. The shift

is accomplished in three stages —

1. The digit in bits (0-3) of the A register is right-shifted into
the first digit of the mantissa, with the twelfth digit being
lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining
number of digits specified. The twelfth digit, except for the
last shift, is lost on each shift and the vacated digits are

zero-filled.

3. Finally, the last right-shift takes place with the twelfth digit
shifting into the A register. The Decimal Carry flag in the
processor is cleared along with the upper 12 bits of the A
register (4-15).

The Processor and the Operating System 45

Instruction Description

- Mantissa right-shift on Ar2. The number of digits to be shifted
is specified in the lower four bits (0-3) of the B register. The
shift is accomplished in three stages —

1. The digit in bits (0-3) of the A register is right-shifted into
the first digit of the mantissa, with the twelfth digit being
lost. This is the first shift.

2. The mantissa digits are then right-shifted for the remaining
number of digits specified. The twelfth digit, except for the
last shift, is lost on each shift, and the vacated digits are
zero-filled.

3. Finally, the last right-shift takes place, with the twelfth digit
shifting into the A register. The Decimal Carry flag in the
processor is cleared along with the upper 12 bits of the A
register (4-15).

Mantissa left-shift on Ar2 for one digit. This is a circular shift,
with the digit in bits (0-3) of the A register forming a thir-
teenth digit. The non-digit part of the A register is cleared
(i.e., bits 4-15), and the Decimal Carry flag in the processor is

cleared.

Mantissa right-shift on Arl for one digit. The twelfth digit is
shifted into the A register (bits 0-3). The non-digit part of the
A register is cleared (i.e., bits 4-15), and the Decimal Carry
flag in the processor is cleared. The first digit in the mantissa

is set to 0.

Normalizes the Ar2 mantissa. The mantissa digits are left-
shifted until the first digit of the mantissa is non-zero, or until
twelve shifts have taken place, whichever comes first. If the
original first digit is already non-zero, no shifts occur. The
number of shifts required is stored as the first four bits (0-3) of
the B register. If twelve shifts were required, the Decimal
Carry flag in the processor is set, otherwise it is cleared.

Ten’s complement of Arl. The mantissa of Arl is replaced

with its ten’s complement and Decimal Carry is cleared.

46 The Processor and the Operating System

Instruction

Description

- {address}

Ten’s complement of Ar2. The mantissa of Ar2 is replaced

with its ten’s complement and Decimal Carry is cleared.

Fixed-point addition. The mantissas of Arl and Ar2 are
added together, and the result is placed into Ar2. Decimal
Carry is added to the twelfth digit. After the addition, Decimal
Carry is set if an overflow occurred, otherwise Decimal Carry
is cleared.

Mantissa word addition. The contents of the B register are
added to the ninth through twelfth digits of the mantissa of
Ar2. Decimal Carry is added to the twelfth digit; if an over-

flow occurs, Decimal Carry is set, otherwise it is cleared.

Fast Multiply. Performs the multiplication by repeated addi-
tions. The mantissa of Arl is added to the mantissa of Ar2 a
specified number of times. The number of times is specified in
the lower 4 bits (0-3) of the B register. The result accumulates
in Ar2. If intermediate overflows occur, the number of times
they occur appears in the lower 4 bits of the A register after
the operation is complete. The upper 12 bits of the A register

are cleared along with Decimal Carry.

Fast divide. The mantissas of Arl and Ar2 are added together
until the first decimal overflow occurs. The result accumulates
into Ar2. The number of additions without overflow is placed
into the lower 4 digits of the B register (0-3). The remainder
of the B register is cleared, as is the Decimal Carry flag in the
processor.

Clears the Decimal Carry flag in the processor.

Skips to {address} if Decimal Carry is set. Decimal Carry is a
flag in the processor which may be set as the result of certain
BCD arithmetic operations (see Chapter 5 for details).

Skip to {address} if Decimal Carry is cleared. Decimal Carry is
a flag in the processor which may be set as the result of

certain BCD arithmetic operations (see Chapter 5 for details).

The Processor and the Operating System 47

I/0 Group

The 1/ O group of instructions provides you with some of the operations necessary to accessing
peripheral devices through the 170 bus. In addition to the instructions contained here, there
are instructions in other groups which can have 1/ O effects (e.g., LDA, STA...).

The techniques useful to the implementation of 1/ O operations using the instructions in this
group and the other groups are discussed in Chapter 7.

Instruction Description

= {address} Skips to {address} if the Flag line is set (true). The Flag line is
associated with a peripheral on the current select code (see
Chapter 7 for details).

i {address} Skips to {address} if the Flag line is clear (false). The Flag line
is associated with a peripheral on the current select code (see
Chapter 7 for details).

= {address} Skips to {address} if the Status line is set (true). The Status
line is associated with a peripheral on the current select code

(see Chapter 7 for details).

i~ {address} Skips to {address} if the Status line is clear (false). The Status
flag is associated with a peripheral on the current select code

(see Chapter 7 for details).

Enables the interrupt system. Cancels the DIR instruction.

Disables the interrupt system. Cancels the EIR instruction.

Sets DMA outwards. Directs that DMA operations read from
memory, write to the peripheral.

Sets DMA inwards. Directs that DMA operations read from

the peripheral, write to memory.

Enables the DMA mode. Cancels the DDR instruction.

Disables Data Request. Cancels the DMA instruction.

48 The Processor and the Operating System

Miscellaneous

The following instructions are unclassifiable into any of the other groups.

Instruction Description
Null operation. This is exactly equivalent to LDA A.
{value} [, 1] The contents of any register can be treated as the current

instruction and executed. {value} is a numeric expression in
the range 0 through 31, indicating the register to be used.
The register is left unchanged, unless the instruction code
causes it to be altered. The next instruction to be executed is
the one in the word following the EXE, unless the code in the

executed register causes a branch.

Chapter 4
Table of Contents

Assembly Language Fundamentals .

Program Entry 49
Assembly Language Source 51
ACHONS. - ot 51

Labels e 51
Comments R 53
Syntaxing the Source 53
Creating Modules 55
SHOTAGE . - oo o 56
Modules 56
Variables 56
Data Generators.o oo 57
Repeating Instructions. 59
Assembling« oo 60
Effect of BASIC ENVIrONMents . . .« .« oo v vt i 60
Source Listing Control 61
Page Format. 62
Pagelength........ ... 63
End-of-Page Control FUURUR 63

Page Headings.................... e 64

Blank Line Generation it 65
Non-Listable Pseudo-Instructions PP 65
Conditional Assembly. e 65
Relocationo 68
Symbolic Operations e 69
Pre-Defined Symbols 69
Defining Your Own oo e 71
Literals e 72
Evaluation of Literals. 72
Nesting Literals 73
Nonsensical Uses of Literals. 74

Literal Pools. 74
Expressions..................... e 75
External Symbols and Elements. 77
Other Absolute Elements. 78
Utilities. . . - o 79

a\

f(

Chapter 4

Assembly Language
Fundamentals

Summary: This chapter discusses some of the basic statements and syntaxes used
throughout the assembly language system. Program entry, assembling, symbolic opera-
tions, module creation, program and variable storage, and utilities are the topics co-
vered.

When writing assembly language programs there are a number of things with which you will be
involved constantly. In the beginning, questions arise on how to use the language: How do you
enter the source code? What kind of symbolic addressing is there? How do you create and
distinguish modules? How do you create the object code and where is it stored? What utilities
are available and how do you use them?

The answers to those questions form the underlying capabilities through which you write your
applications. These are things which nearly every assembly language program uses. As essen-
tial as they are, however, none are difficult to master.

Program Entry

You were introduced early in Chapter 2 to the integrated nature of the assembly language with
its host language, BASIC. You know from that chapter how assembly language statements can
be intermingled with BASIC statements — that you can employ the usual editing features on
the assembly statements. However, there is more to the ISOURCE statement than just its
integrated nature with BASIC.

As stated in Chapter 2, all assembly language statements are designated with the keyword
“ISOURCE”. The keyword is followed by {assembly language source}. So the syntax of the
entry line is —

{line number} [{BASIC label} :]

- {assembly language source}

49

7,

50 Assembly Language Fundamentals

Here’s a simple example of this from Chapter 2 —

The {line number} and {BASIC label} are the same as you are used to in BASIC. However, it
should be noted that the statement is not an executable one, so the BASIC label is only useful
for documentation and EDIT purposes.

To BASIC, the ISOURCE statement appears as a comment. If you were to change the above so
that it read —

and then executed a statement ““GOTO Example”’, the result would be to simply execute the
END statementin line 70. That is because, to BASIC, the lines appear the same as —

or —

The BASIC label on an ISOURCE line finds its most useful characteristic in being able to be
referenced, as any other BASIC label on any other type of line may be, with an EDIT com-

mand. Thus, if you were to execute —

on the above, you would be working in the editor, starting with line 40. This feature will

become useful during program development as will be pointed out shortly.

Assembly Language Fundamentals

Assembly Language Source

You may have recognized the assembly language instruction and pseudo-instructions to the
right of ISOURCE in the examples above. This is where your instructions and pseudo-
instructions appear. However, the source is a little more versatile than that. In general, {assem-

bly language source} has the syntax —
[{label} :]{action}[| {comment}]
Or, the action may be omitted and only a comment appears —
[{label} :] ! {comment}

A label is always optional in the source, but either an {action} or a {comment} must be present

in every source line.

Actions

An {action} in assembly language source is —

e A machine instruction, with any operand it may require. These were discussed at some
length in Chapter 3.
e A pseudo-instruction, with any operand it may require. These are discussed under the

topics to which they relate.

The actions contained in the above example were —

Labels

The {label} in assembly language source is part of the symbolic addressing capability of the
assembler. This {label} is used by the assembler only. Neither the operating system nor BASIC
is aware of its existence.

51

52 Assembly Language Fundamentals

The label follows the same form and rules as do labels in BASIC —

e Up to 15 characters long.

]

o First character must be a capital letter (i

7).

e Only the non-capital letters (:2-=), the numerals (i to =), or the underscore (_) may be

used following the first character.

No two labels are allowed to be the same in a given module. If your source consists of two or
more modules, then the same label may be defined more than once, provided each definition is
in a different module. (Distinguishing between modules is discussed in ‘‘Creating Modules’’,

later in this chapter.) So you may not code —

in one place in the module and later in the same module code —

There are other restrictions as well on the choosing of labels. For instance, there are symbols
already defined by the assembler and you are not allowed to choose one of them as a label.
This is discussed at length in ‘““Symbolic Operations” in this chapter.

Both a BASIC label AND an assembly language source label can appear in the same line, and
they are distinct from one another. BASIC does not know about the source label and the
assembly language system does not know about the BASIC label.

Since neither BASIC nor the operating system is aware of the existence of source labels, actions
ouside the assembler cannot reference these labels. Thus, if you had the source line —

You can neither say GOTO Rumpelstiltskin nor EDIT Rumpelstiltskin. Neither of these can find
“‘Rumpelstiltskin”, since only the assembler can know it is there.

Assembly Language Fundamentals

This can be a nuisance in some instances during program development. Many programmers
use labels almost exclusively and rarely consider the line number when using the editor to
change a line. For instance, in the above, they would not be used to saying, “EDIT 100 to get
at the line in order to change it. They are more used to saying, “‘EDIT Rumpelstiltskin’. A way
for them to do it would be to change the line to —

Note that, as the example demonstrates, the name can be the same in the BASIC label as in the
source. This takes advantage of the fact that BASIC and the assembler are unaware of each

other’s labels. The names do not have to be the same.

Comments

As with any BASIC line, a comment may be included by simply adding an exclamation point
(1) and typing your comment after it. Since you have a total of 160 characters for a line, your
comment may fill up the remainder of the 160 characters left after the rest of the statement has
been provided (line number, ISOURCE keyword, label, action).

Syntaxing the Source

When you are creating your source program, you are either entering-it from the keyboard or
retrieving it from mass storage (LINK or GET). In either case, as the statement is entered (the
key on the keyboard is pressed or a record is read from mass storage), the operating
system takes note of any use of the keyword ISOURCE. When a line has this keyword, the
operating system turns over the remainder of the line following the keyword to the assembly
system. The assembly system, then and there, checks the syntax of the source.

By checking the syntax at the time of entry of the statement, a considerable amount of proces-
sing time is saved when the time comes to assemble the source into object code. In addition, it
gives you, as the programmer, immediate feedback when a syntactical error occurs. You do not
have to wait until assembly time just to find out that you misspelled NOP.

53

54 Assembly Language Fundamentals

At syntax time, the assembler takes care of capitalization, lower case, and spacing for the
source. It’s quite similar to the SPACE DEPENDENT mode of entry for BASIC statements (that
mode is not required to get the effect with the assembly system). It follows the following rules in

syntaxing the source —

e Everything between the ISOURCE and the colon (if present) is the label. lts initial
character is capitalized and the remaining letters are converted to lower-case. This is
regardless of whether they were entered in that form.

e The label, if present, is left-justified to the second column following the keyword
ISOURCE.

e The first three letters following the colon (or just the first three letters, if there is no label)
are considered the machine instruction or pseudo-instruction and are capitalized. The
instruction will remain in the same column as it was entered, and, if possible, a space is
added after it.

e Everything after the instruction or pseudo-instruction is considered the operand for the
instruction, up until the exclamation point before the comment (if any). Any label (sym-
bol) in the operand will have its initial character capitalized and the remaining letters
converted to lower case automatically.

e Comments are unchanged and remain in the same columns as entered, whenever possi-
ble.

In short, simply enter the statement in your most comfortable fashion and the assembly system
automatically assures that what you enter is in the proper form (though it still can’t guarantee

that you have entered the right instruction for what you mean to do.

As a demonstration of this facility, consider the following line ready for syntaxing —

it
bl
By

It becomes —

Assembly Language Fundamentals

Creating Modules

When you were introduced in Chapter 2 to the concept of a module, it was said that a module is
given a name through the NAM pseudo-instruction.

So, when you enter a source line which has the following form —

{module name}

you are assigning a name to a module, and you are also delimiting the beginning of the module.
By the inclusion of this statement, all source lines which follow are part of the module with the
name designated in this source line, that is, all lines until the END pseudo-instruction is encoun-

tered in the source. It has the form —

{module name}
Its {module} name must be the same as in the NAM pseudo-instruction.

A {module name} follows the same rules for naming as do labels (see above).

It is by the use of these two instructions that modules are created. The source lines which
appear between them comprise a single module, and the name assigned to the module is the
one with which the module is referenced (with the ILOAD and ISTORE statement for example).

When it comes time to assemble the source into object code, the assembler treats the source

lines in a module as a unit.

In actuality, therefore, there are two modules — a source module and an object module. When
you are assembling a module, the name you use refers to the source module and creates the
object module. Later, other statements, such as ISTORE and ILOAD, refer solely to the object
module.

55

56 Assembly Language Fundamentals

Storage
Modules

When assembly converts a source module into an object module, there must be a place to keep
the object module. That is the function of the ICOM region.

You were introduced to the ICOM region in Chapter 2 in connection with the loading and
storing of modules. It is also used to hold modules which are created through assembly. Once a
module has been assembled, the object code appears in the ICOM region just as if you had
loaded it from mass storage.

Variables

Within a module, you may want to set aside one or more words of memory for your use. For
example, you might need a location to store a variable, or keep a counter, or save a register.

This is done with the BSS pseudo-instruction —

« {number}

where {number} is the number of words to be set aside. {number} can be any absolute expres-
sion, provided the expression evaluates to a positive integer (see ‘‘Symbolic Operations”
below).

This kind of storage is part of the object code and is set aside ‘‘in-line’’. This means that
wherever it appears in the source, the storage appears in the same relative location in the object

module.

For example, suppose a module contained the following source lines —

Assembly Language Fundamentals

Then, at some appropriate spot in the object module (relative to the other instructions in the

module) there would be the following contiguous locations —

Save a 1 word

Save_4 4 words

Renras some number of words equal to ‘‘the absolute symbol, Larry’’?
Again 1 word

The locations at labels Save_a, Save_4, and Renras are merely reserved by the BSS pseudo-

instructions, and their contents are not initialized to any particular value.

It is possible to accidentally execute these locations when the routine is run if you’re not
careful. Ordinarily, you should place these locations somewhere safely out of the potential
execution sequence, since they are used just for storage. Some applications, though, use
self-generating code, and a BSS is a way to set aside locations for it.

Data Generators

A ‘‘data generator’ is very much like a BSS operation. The function, as with the BSS, is to set
aside words of memory at a particular location in the object code. But in addition, the words are
to be initialized to some value. The initialization occurs at the same time the words are set aside
(i.e., at assemble-time).

This is done using the DAT pseudo-instruction which has the form —

" {expression} [, {expression}‘[fs 1]

An {expression} may be any absolute or relocatable expression. The various forms that an
expression may take are discussed in ‘‘Symbolic Operations’ later in this chapter.

As an example, suppose you want the value 100 (a decimal integer) to be located at location
“X’" in the object module. You can achieve this by identifying the location in the source code
(ultimately the object code) where you want the value to be, then placing this instruction at that

point —

’
1 Such symbols are discussed at length in the *‘Symbolic Operations’’ section later in this chapter.

57

58 Assembly Language Fundamentals

Upon encountering this pseudo-instruction, the assembler generates the words necessary to
store the value (in this case, only 1 word is necessary). It then stores the value (100) into the
word(s) and proceeds with the remaining assembly. Thus, the location of the words is depen-
dent upon the instruction’s relative position in the source module, the same as with any

machine instruction.

The number of data words generated for each {expression} is dependent upon the result of the

{expression} —

Result Words

Full-precision 4
Short-precision

2
Decimal integer | 1
Octal integer 1

1

Address!
Literal 1
String actual length (2 characters per word)

If more than one {expression} is present, the necessary data words are generated in the order in

which they appear in the list. As an example, if you were to include the instruction —

ten words would be set aside and initialized to the appropriate values —

— address of 2 in literal pool

Lincluding ‘“‘external”

Assembly Language Fundamentals 59

Repeating Instructions

To help relieve the tedium of writing the same instruction many times (which many applications

occasionally require), a ‘““repeat’ pseudo-instruction is provided —

 {expression}

The pseudo-instruction causes the immediately following machine instruction to be duplicated
in the object code {expression} number of times.

For example, suppose you are writing a real-time application where timing was critical, and to
make things work correctly you need 10 NOPs at a certain location. Ordinarily you would

type —

But all of this could be replaced with —

and the same effect would be achieved.

Some pseudo-instructions may not be replicated. They are —

60 Assembly Language Fundamentals

Assembling

Object code is created by ‘‘assembling’’ the source code. Again, modules are a key factor. The
assembly directive is aimed at modules, using the module name as a delimiter in the source
code so the assembler can tell which ISOURCE statements to assemble as part of the module.

Of course this same name is also used to store the object code using mass storage.

The IASSEMBLE statement is the vehicle for assembling modules. It has the forms —

{module} [, {module}[., ...]][; {option} [, {option}[. ...]]1]
- [HLL T {option} [, {option}[., ...]1]]

Each {module} indicated is assembled, in the order given by the statement. Only those modules
are assembled; any others which may be present in the source at the time are ignored. If the
ALL version of the statement is used (with or without the optional word ALL), every module

present in the source is assembled.

An {option} falls into one of two categories: listing directives and conditions (for conditional

assembly). These are discussed separately below. The options, and their categories, are —

b Listing directives

+ Conditions

Effect of BASIC Environments

To assemble a module, all of its source lines (between the NAM and END pseudo-instructions)
must lie within the same BASIC “‘environment’’. That is, the NAM and END for a module must
lie within the main program or within the same subprogram or multi-line function. For modules
where this is not true, an error (“‘EN’’ assemble-time error) occurs.

Assembly Language Fundamentals

Source Listing Control

Listings of the source code in a module can be obtained during an assembly. These listings
contain the line numbers, instructions, and comments from the source lines along with the

associated machine addresses and contents of that address.

Here is part of a typical listing —

)\line absolu&conten& actions \comments

numbers addresses

The addresses and contents are displayed in octal fepresentation.
Listings are not automatic. They are obtained in one of two ways —

e By using the LIST option in the IASSEMBLE statement. This directs that a listing is
desired for all the modules in the statement. The statement would look like the following

examples —

¢ By using the LST pseudo-instruction in the source code itself.

Modules can be just partially listed, if desired. This kind of control is achieved by using the LST
and UNL pseudo-instructions within the source code, placing the LST before any instructions
which you want listed, and placing the UNL before any instructions you do not want listed. For

example, if the following source lines are assembled —

only lines 430 through 500 would be listed.

61

62 Assembly Language Fundamentals

The primary purpose of this capability is to allow as much modularity in the listings as you can

get in source code. To implement this purpose, a “listing counter” is used.

Whenever an LST instruction is encountered during an assembly, the listing counter is in-
cremented. Whenever an UNL instruction is encountered during an assembly, the listing
counter is decremented. Source lines are listed whenever the counter is greater than 0.

Whenever it is equal to 0 or negative, then no lines are listed.

The counter is set to 0 upon execution of the IASSEMBLE statement. This is why there is no
automatic listing. However, if the LIST option is included in the IASSEMBLE statement, then
the counter is initialized to 1. This is why that option creates a listing. Thus, you could defeat a
LIST option by placing an UNL instruction at the beginning of a module. This initialization
occurs for each module assembled, so if you have more than one module indicated in your
[ASSEMBLE statement, the counter is set at the beginning of the assembly for each.

This capability sees its greatest usefulness during debugging stages and while working with
independently written sections of source code. For example, a number of people could be
writing different sections of code, each containing their own LST and UNL instructions. These
instructions could then be overridden when they were combined into a single module by
preceding the sections with an LST instruction {to get a listing) or an UNL (to suppress the
listings). A

Page Format
Each and every assembly listing page has the following format —

e The word ““PAGE” and the current page number of the listing occurs on the first line
starting at column 49.

o A heading occurs on the second line, left-justified. The heading always includes —

E: {name}

where {name} is the name of the module currently being assembled. Additional heading
information can be specified for this line (see ‘‘Page Heading”’ below).

Assembly Language Fundamentals

o A blank line follows the heading.

e The text follows the blank line. The number of lines printed depends upon the LINES
option in the JASSEMBLE statement, the number of source lines encountered, and the
SKP pseudo-instructions which may be encountered while assembling the source. LINES
and SKP are described in the following sections.

o If the EJECT option is not included in the IASSEMBLE statement, then a minimum of
three blank lines (carriage return/line feed, CR/LF, pairs) will be printed at the end of a
page. The number may exceed three if the number of source lines printed on a page is less
than the standard length for a listing page (see above).

Page Length
The length of the text in each page of your assembly listings can be specified through the
IASSEMBLE statement using the LINES option, which has the form —

L IHES {numeric expression}

This option directs that any listing of the routines being assembled have pages of the length
indicated by {numeric expression}, which must be a positive value. This value becomes the
“standard length” of the listing pages, specifying the number of source lines to be printed on a
page during listings of the assembly source. It is not necessary that this value be the page length
of the printing device being used, though this is frequently the value selected.

If the option is omitted from the IASSEMBLE statement, the value of 60 is assumed for page
length, giving an overall page size of 66 lines.

Printer control characters, such as line-feed and form-feed, in a comment can affect the actual
printing length of the pages independent of the length you specify. Thus, a page length of 60
could result in actually 61 lines if one of the comments in your ISOURCE statements contains a
line-feed character.

End-of-Page Control
At any time during the assembly of a module, you can force the listing to continue printing at
the top of the next physical page by including —

SKP

at the desired spot in the module. If a listing is being generated when this pseudo-instruction is
encountered in the source code, the printer is sent to top-of-form. This is physically done in one
of two ways —

63

64 Assembly Language Fundamentals

e If the EJECT option was included in the IASSEMBLE statement which is assembling the
module, then a form-feed character (ASCII character 14s), is sent to the printer.

o If the EJECT option was not included, sufficient CR/LF pairs (ASCII characters 15s and
12s) are sent to the printer to fill out the standard length of a listing page (plus three at the
end of the page). Thus, if you already have printed 10 lines on a page, and an SKP
instruction was encountered, the assembler sends (length—10 + 3) CR/ LF pairs.

The SKP instruction is not required to cause pagination to occur when the standard length of a
listing page is exceeded. Thus, if you are working with a default length of 60 for your standard
length, then each 60 lines from the last page break forces a new page break.

Page Headings
The heading for each listing page is —

: {name}

where {name} is the name of the module currently being assembled. This heading can have

additional information added to it through the HED pseudo-instruction. This instruction has the
form —

{comment}

When this instruction is encountered, and a listing is being generated, pagination immediately
occurs, the same as with the SKP instruction (see above). On the new page, and on all pages
after it, the indicated {comment} appears after {name} in the heading, replacing any previous
information specified by an earlier HED instruction.

You can change the heading any number of times in a listing. This is frequently done in order to

generate documentation by sections, even though all sections may reside in a single module.

The heading appears on the page exactly the same as in {comment}, including the positioning
of blanks, control characters, etc.

Assembly Language Fundamentals

Blank Line Generation ,
If occasional blank lines are desired in a listing (usually to set off sections of code, or com-

ments), they may be generated by including —

~ {number}

at the desired spot in the source statements. {number} designates the number of blank lines
desired. {number} can be any absolute expression, provided the expression evaluates to a
positive integer (see ‘‘Symbolic Operations” below).

Non-Listable Pseudo-Instructions
The following pseudo-instructions do not appear in a listing —

Conditional Assembly

For reasons of complexity or length, it is occasionally desirable to selectively assemble only
parts of a module. This is particularly true during the debugging §tage of longer, complex
assembly programs. ‘‘Conditional assembly” is the ability to designate certain portions of a

module for assembly, depending upon conditions established by the IASSEMBLE statement.

You may recall from the description of the IASSEMBLE statement earlier, there are options
called ‘““‘conditions’’ available with the statement. These conditions —

65

66 Assembly Language Fundamentals

are used to designate which conditions are “‘set’’ during the assembly. By including one or
more of these conditions, all conditional assembly statements predicated upon that condition
are assembled. For example, if the following statement is executed —

1M

then any occurrence of conditional assemblies based on “A’’ are assembled. Also, any condi-
tional assemblies based on B through H are not assembled, since those conditions were not
included in the options for the IASSEMBLE statement.

The conditional assembly sections are delimited by pseudo-instructions. A conditional section
begins with one of the following —

o

-

b b bt bl eed Red e

T T
B PO T L N v A T

o
T

and it concludes with —
=1F

In addition to the lettered conditions, a numeric condition can be tested by using an IFP
pseudo-instruction. It has the form —

IFF {absolute expression}

The condition is considered true if {absolute expression} evaluates as a positive value. It should
be noted that this is an assembly-time construct, meaning that the variables contained in the
expression are evaluated at the time of assembly.

The IFP instruction performs in the same manner as the IFA through IFH instructions. It also
terminates with the XIF instruction.

Assembly Language Fundamentals

The conditional assembly is based upon a flag. At the beginning of the assembly for a module

the flag is set so that object code is generated for all instructions. An IF conditional encountered

during the assembly which does not have its condition set turns off the flag so that no further
code is generated. Encountering an XIF statement resets the flag so that code generation can
" resume. For instance, if the source is —

Then if —

is executed, lines 430 through 460, 480, and 490 are assembled, but 520 through 550 are not.
Line 570 is assembled.

The one XIF actually affected both conditions. This effect is more dramatically illustrated by —

where neither A nor B is set. In this case 480, 490, 520 through 550 are not assembled. But 550

is assembled!

The effect of the XIF, then, is as a flag for all the conditions. As a consequence, it is not possible
to “nest’”’ conditional assemblies. This effect is the same with the IFP conditional.

67

68 Assembly Language Fundamentals

Relocation

The code talked about in this section is relocatable. You do not have to worry about the
absolute location of your module. The assembler automatically generates the appropriate
machine codes for each of your instructions to assure that the correct location is reached when

referenced.

Some instructions generate relocatable object code in which the eperand address is an offset
from the current address and the relocating loader has to make no changes to the object code
for them as long as they are within — 512 and + 511 of the current address.

"For indirect addressing, and for instructions which are more than 512 words away from the
current address, it is required of the loader to adjust the address in the intermediate word to
reflect the actual address being referenced. For indirect addressing generated by the assembler,
this activity is automatic.

Some instructions permit you to specify an absolute machine address for its operand. In those
cases, the assembler generates the code necessary to perform the reference to the absolute

location.

For example, if the instruction was assembled —

(which essentially says “load register A with the contents of register B) the result would be a
machine instruction which references the B register (absolute address 1). This reference would

be independent of the actual location of the instruction itself.

There are a couple of ways to produce an absolute address in an operand. The pre-defined
symbols are one way. There is a type of expression known as ‘‘absolute’’ which is another way.

Both of these are dicussed in the next section, ‘“Symbolic Operations’’.

You should never try to use absolute addressing within the ICOM region, since not only is the

location of the region itself not fixed, but modules can be moved around within the region.

Assembly Language Fundamentals

Symbolic Operations

You have been introduced, in small doses, to symbols throughout the chapters preceding this
one. The idea of symbols in an assembly language is the same as it is in a higher language such
. as BASIC — to make operations simpler and the code more understandable.

Several symbolic tools are provided for you in this assembly language system. You have
already seen one described in detail in this chapter — labels. There are some pre-defined
symbols the assembly system provides for certain locations in the machine (mostly registers).
There are ways to define your own symbols (and give them a ““type’’). And, there are ways to
access symbols in other modules.

Symbols can be used as operands in machine instructions and in some pseudo-instructions.

They can be part of expressions in an operand.

Pre-Defined Symbols

The assembler has pre-defined a number of symbols and has reserved them as references to
special locations in memory. Each of the locations has a special meaning and function. The
symbols themselves are ‘‘reserved’”’, meaning they cannot be re-defined (by using them as
labels on something else). The symbols are —

Symbol - Description
A Arithmetic accumulator
Arl
} BCD arithmetic accumlators
Ar2
B Arithmetic accumulator
Base page Global temporary area (50 words)
C Stack pointer
Cb Address:extension bit for byte pointer in C
D Stack pointer
Db Address-extension bit for byte pointer in D
Dmac DMA count register
Dmama DMA memory address register
Dmapa DMA peripheral address register
End_isr high
End_isr low
lsr flag Reserved symbols for writing interrupt service routines
lsr_pSw g

69

70 Assembly Language Fundamentals

Symbol Description
Oper_1 }
Arithmetic utility operand address registers
Oper_2
P Program counter
Pa Peripheral address register
R Return stack pointer
R4
R5
[/ O registers
R6
R7
Result Arithmetic utility result address register
Se Shift-extend register
Utlcount
Utlend Reserved symbols for writing utilities
Utltemps

The meaning of each of these locations is discussed in other chapters. The absolute locations of
the registers can be found in Chapter 2. A description of the function of the accumulators and
pointers can be found in Chapter 3 as part of the discussion on machine instructions. A
discussion of the I/ O registers and symbols can be found in Chapter 7. The arithmetic registers
are discussed in Chapter 5.

Using a pre-defined symbol in a machine instruction is the same as using its address. For
example —

means simply that register A will be loaded with the contents of register B. The same effect
could have been achieved with —

except that the symbolic form makes it more obvious what is intended by the operation. This is
true with most symbols.

Assembly Language Fundamentals

Defining Your Own

You are defining your own symbol each time you specify a label on an instruction or pseudo-
instruction. Normally the “‘value” of the label is the address associated with the instruction.
However, in two cases it is possible to create the label and specify what its value is to be. One
- case is when the label is on the EQU pseudo-instruction; the other case is when the label is on
the SET pseudo-instruction.

The EQU is an assembly-time construct. [t exists only at the time of assembly to give you
value-assigning capability to symbols. It generates no code itself, and it has no implementation
or “‘location’’ in the object module.

To define a symbol using an EQU, the form is —

{label}: Fiill{expression}

the resulting symbol ({label}) has the same ‘‘type’” as the expression (see ‘‘Expressions”

below) and it has the same value as the result of the expression.

As an example, assembling the statement —

means that in all references in the module to the symbol “‘Three”, it is the same as referring to
the value 3. Thus —

means load A with the contents of location 3.

A common use for this instruction is to assign a symbol an address which is an offset from

another address. For example, if this sequence were in a module —

then Save_b would refer to the second word in the BSS area “Save_registers”, and it would
probably be used to store away the contents of the B register sometime —

and later retrieve the value —

71

72 Assembly Language Fundamentals

The SET pseudo-instruction defines a symbol in identical fashion to an EQU. Consequently, it

has the same general form —

{label}: =ZE T {expression}

The difference between the two is that the SET instruction can have its {label} be a symbol
which has been previously defined. The effect in that case is to allow a redefinition of the
symbol. For example, after assembling the following instructions —

the symbol “Three’ has the value 30B.

Literals

Literals are a special means of defining your own symbols without actually having to go to the

trouble to do so. The result is a form of symbolic addressing without the symbol.
The form of a literal is —
= {expression} [. {expression}[....]]
where {expression} may be any absolute or relocatable expression (see “‘Expressions’ below).

Evaluation of Literals

When a literal is encountered in an operand, three things occur —

1. The literal is converted to its binary value. If there is more than one expression in the

literal, then they are all converted.

2. The binary value is stored in a literal pool. If there is more than one expression in the

literal, then they are stored contiguously in the order specified.

3. The address of where the value is stored is then substituted for the literal in the operand.

If the same literal is used in more than one instruction, only one value is generated in the literal

pool. All instructions using this literal refer to the same location.

Assembly Language Fundamentals

Literals can be part of expressions as well as having expressions as part of them. Since they
ultimately are replaced by an address (pointing to a specific location within a literal pool), their
“type’’ is ‘‘relocatable’’. See the section on “Expressions’’ later in this Chapter.

Basically, a literal means “the address of {expression}’. An example should help in the under-
standing of literals. Suppose that you want to store the value 1 into the A register. There are

two ways you could accomplish that purpose. You could code —

or, you could use a literal and code —

Using the literal method is easier and is more self-documenting. While the literal form strictly
says ‘‘load A with the contents of the address of the constant 17’ it can also be read as “load A
with the constant 1", and this short-hand version can be an excellent way of self-documenting
your programs, not to mention the elimination of a lot of unnecessary symbols.

Nesting Literals

Since literals use expressions, and literals may be used in expressions, it is possible to have a
literal within a literal (nesting). In fact, it may be done to any depth, though the most useful
form of nesting is a single level.

Suppose you want to initialize a variable to the value of pi each time you enter a routine. A
nested literal would be a way of accomplishing this in a clean, straight-forward fashion —

73

74 Assembly Language Fundamentals

and the locations starting at ‘‘Pi”’ now contains the full-precision value indicated (which is a fair
approximation to pi). This would replace coding which could have looked like this (without
using literals) —

Nonsensical Uses of Literals
A literal, basically, is an address. Since it can be used in an operand wherever an address may

be used, it is possible to use it in instructions where the result is a little nonsensical.

For example, consider the result of doing some of the following —

Caution dictates that you well consider the appropriateness of the action when using the literal.
Literals can be a highly useful tool, but only when properly employed.

Literal Pools
Literals are assemble-time constructs, but they eventually resolve to an actual address in the
object code. That address points into a literal “pool’’.

A literal pool is part of your module where the actual values of literals are stored. There is
automatically a literal pool assigned at the end of each module where literals are used. As many
literal values as possible are stored there by the assembler. However, in some cases, a literal
pool is needed earlier in the program (a need indicated by the assembler with the “LT”
assembly-time error). In that case a pool should be created using the LIT pseudo-instruction.
This instruction has the form —

LIT {size}

Assembly Language Fundamentals

where {size} is the number of words to be set aside (it may be a positive numeric expression).
The instruction acts very much like a BSS. And, like a BSS, it should be placed at a location in
your code where it is not likely to be inadvertently executed.

Most modules do not need assignment of an extra literal pool. However, one is needed where
there is a literal used beyond 512 words from the first available space in the literal pool at the
end of the module. To alleviate the problem, a literal pool must be created with the LIT
statement within 512 words of the instruction.

A common cause of this kind of problem is a large BSS assignment between the instruction and
the end of the module. Sometimes moving the BSS to some other location is a solution to the

problem.

Expressions

Literals, some pseudo-instructions (particularly EQU), and a number of machine instructions,
all permit ‘‘expressions’”’ to be used as an operand. These expressions take one of two
forms — “‘absolute’” or ‘‘relocatable”.The type of an expression depends upon the type of the

individual elements in it.
An element is of the type ‘“‘absolute” if it is any of the following —

e A decimal integer (like 0, 1, 2, 1 024).

e An octal integer (like 10B, 40B, 100000B).

o A string (enclosed by quote marks) (like ‘“‘ERROR”’)

e An ASCII character, preceded by an apostrophe (like 'A).

e A label associated with an EQU or SET pseudo-instruction whose expression is also
evaluative as type absolute (like EQU 40B).

An element is of the type ‘‘relocatable’ if it is any of the following —

o A label not associated with an EQU or SET pseudo-instruction (i.e., it is an “‘address’).
o A literal (like =0).
e An asterisk, symbolizing ‘‘current address’.

e A label associated with an EQU or SET pseudo-instruction whose expression is also
evaluative as type relocatable (like EQU *).

75

76 Assembly Language Fundamentals

An expression is a list of elements each pair of which is separated by one of the following

operators —

meaning addition, subtraction, division, and multiplication, respectively, as in BASIC.

The result of an expression is either absolute or relocatable depending upon the following

rules:

An absolute expression is any expression which contains —

e Only absolute elements.

e An even number of relocatable elements, paired in sequence and by sign (i.e., for each

relocatable element there is another relocatable element adjacent to it, of opposite sign).

These pairs may be in combination with absolute elements.

A relocatable expression is any expression which contains —

e An odd number of relocatable elements, paired in sequence and by sign, except the last,

which must be positive.

e An odd number of relocatable elements, as above, in combination with any number of

absolute elements.

Any combination of absolute or relocatable elements which does not result in either an abso-

lute or relocatable value, by the rules above, results in an error.

These rules and the rules for using # and - can be summarized as —

The expression is — The type is — | Example
absolute * absolute absolute
absolute + relocatable relocatable
relocatable = absolute relocatable
relocatable — relocatable absolute
relocatable + relocatable error
absolute — relocatable error
absolute * absolute absolute
absolute /absolute absolute
absolute * relocatable error
relocatable * absolute error
absolute /relocatable error
relocatable / absolute error

Assembly Language Fundamentals 77

Unlike BASIC, there is no precedence among the operators. All are of equal precedence.
Where precedence is desired, parentheses must be used. So where BASIC requires —

2*16+3*8

to resultin 56, the same expression in the assembly language results in 280 {assembly language
operators are evaluated from left to right). However, 56 would be the result if it were expressed

as —
(2*16)+(3*8)

An expression may be of any length and contain as many operators and parentheses as desired,
as long as the result can be evaluated and the parentheses are properly paired. All operators
are evaluated from left to right. Multiplication and division can only be used with elements that
are of type absolute.

External Symbols and Elements

There is an additional relocatable element, called ‘‘external’. It behaves in almost all respects
as does any other relocatable element, except that only one external item may appear in an

expression. Also, the expressions containing —
relocatable — relocatable

are not allowed when one of the relocatable elements is external. Externals are defined as

symbols appearing in an EXT pseudo-instruction —

ExT {symbol} [, {symbol} [, ...]]

These are entry points in another module or utility. “Entry points’’ are merely symbols in a
module which are listed in an ENT pseudo-instruction in that module —

iT {symbol} [, {symbol} [, ...]]

If one module contains —

78 Assembly Language Fundamentals

At execution time for a module with EXT instruction, all of the symbols listed in it must be either
a utility name or be contained in an ENT or SUB (described in Chapter 6) of another module. It
is not necessary that the module be in source form; it may aiready be an object module

assembled from a source module which contained the symbol as an ENT or SUB.

Other Absolute Elements

There are additional absolute elements which may be used in expressions. These are
““machine addresses”’, short-precision numbers, and full-precision numbers.

A machine address is one of the following —

e An assembler pre-defined symbol.

e A symbol associated with an EQU or SET pseudo-instruction whose expression is
evaluated as a machine address (i.e., it contains a pre-defined symbol or another EQU-
associated symbol whose expression contains a pre-defined symbol).

For the most part, machine addresses can be used just like absolutes. However, they remain
defined from assembly to assembly. By defining a machine address in one module (with an
EQU or SET), it then becomes available to you with the same value in other modules which you
assemble.

For example, if you were to assemble a module containing —

then R100 is a machine address following the above rules, just as if the assembler had pre-
defined it. If you don’t do any SCRATCH or GET statements in the meantime, then the next

assembly you do would also have this symbol available without ever having to define it.

When full-precision numbers (like — 2.5, 3E3, 3.141592) and short-precision numbers (like
1S, — 2.5S, 3.14159S, 3E3S) are used in expressions, they become the entire expression. This
is because these numbers are only intended as simple data-generating devices in literals and in

DAT pseudo-instructions. Explicitly, the rules for using full- and short-precision numbers are —

o They may only appear alone in an expression, i.e., they may not be in combination with
other elements.

e They may only appear in literals and in DAT pseudo-instructions.

Assembly Language Fundamentals

Utilities
A number of utilities have been provided to help make your programming tasks easier and to

give you direct access to some of the operating system’s capabilities and routines.

Descriptions of the utilities are made in conjunction with those topics where the utilities play a
part. The form of the description of a utility is somewhat standardized. Each description will tell
you —

o The name of the utility.

o The general procedure for using the utility.

o Any special requirements which must be satisfied for the utility to work properly.

o A step-by-step calling procedure for the utility.

e The exit conditions.
Utilities are a form of subroutine, so to execute them it is necessary to execute a jump-to-
subroutine instruction (JSM) if you want the utility to return to the routine which calls it. Most
utilities execute a RET 1 instruction to return, so in some cases where you follow a utility call

with a RET 1 of your own, you can save the RET instruction by using the JMP (unconditional
branch) instruction instead. For example, a typical utility call looks like —

but if it happened to be followed by a RET 1 —

79

80 Assembly Language Fundamentals

the calling procedure could be changed to —

and you save a word of code: the effect is otherwise the same. Check the exit conditions for a

utility before using this approach.

Utilities which you use in a module must have their names in an EXT pseudo-instruction for that
module. Otherwise, the assembler is unable to tell that you meant a utility and not one of your

own labels, causing an ‘“‘undefined reference’’ assembly error.

Appendix F contains a short description of the utilities and has cross-references to the location

in the manual of the full discussion on each utility.

Assembly Language Fundamentals

The utilities currently available are —

Utility Description
Busy Tests the busy bits of a BASIC variable
Error exit Aborts an ICALL statement with a particular error number
Get_bytes Accesses substrings (or parts of parameters)

Get_elem_bytes
Get_element
Get_file_info
Get_info

Get_value
Int_to_rel
Isr_access
Mm_read start
Mm_read xfer
Mm_ write_start
Mm_ write_test
Printer _select
Print_string
Put_bytes
Put_elem_bytes
Put_element
Put_file info
Put_value

Rel math

Rel to_int

Rel to_sho
Sho_to rel

Same as ““Get_bytes”, but used for array elements

Same as ‘““Get_value”’, but used for array elements

Accesses the file-pointer of an assigned file

Returns the characteristics of a variable passed as a
parameter or existing in common

Returns the value of a BASIC variable

Data type conversion from integer to full-precision

Establishes hardware linkages for interrupts

Prepares to read a physical record from mass storage

Reads a physical record from mass storage

Wirites a physical record to mass storage

Verifies a physical record was written to mass storage

Changes or interrogates select-code for standard printer

Outputs a string to the standard printer

Replaces substrings (or parts of parameters)

Same as “Put_bytés”, used for elements in an array

Same as “‘Put_value”, used for elements in an array

Manipulates the file-pointer of a file

Changes the value of a BASIC variable

Provides access to all the arithmetic routines

Data type conversion from full-precision to integer

Data type conversion from full-precision to short

Data type conversion from short-precision to full

81

82 Assembly Language Fundamentals

Chapter 9
Table of Contents

Arithmetic

Binary Coded Decimal - - - .- ... oo 83
Arithmetic Machine Instructionso i 84
BCD Registers e 84
BCD Arithmetic - -« -« v oo 84
Addition - [85
Ten’s Complementfor BCD 86
Floating Point Summations 88
Normalization - - - -« . e 89
Rounding -« - oo 89
Floating Point Multiplication 90
Floating Point Division - 92
The FDV Instruction - - - - - o oo e e 94
Thirteen-Digit Dividends . .- 95
Floating-Point Division Example. 926
Arithmetic ‘Utilities- - - - o v oo e 99
Utility: Rel math e 99
Utility: Rel_to_int- ... e 102
Utility: Rel to sho ...« oovot 103
Utility: Int_to_rel - e SO 104

Uti]ity; Sho_to_rel ... 105

N

Chapter 5
Arithmetic

Summary: Arithmetic operations are reviewed and the arithmetic utilities are
discussed. Floating point and BCD arithmetic are explained.

Numerical calculations are a large part of any computer’s operations. Implemented within the
9835A/B’s processor are both integer and primitive Binary Coded Decimal (BCD) floating-
point arithmetic operations. This chapter deals with those operations and is intended for those
readers who may have no acquaintance with this topic, or perhaps only a passing one. The
particular machine instructions involved with such arithmetic are reviewed.

Because the processor provides only rudimentary floating-point operations and because com-
plete floating-point operations (e.g., subtract, divide) are not easy to write, utilities have been
provided to perform these calculations. These utilities are discussed later in this chapter. If you
are not interested in doing your own BCD arithmetic, it is recommended you skip immediately
to ‘‘Arithmetic Utilities”.

Binary Coded Decimal (BCD) uses four-bit binary codes to represent decimal digfts. Thus, the
12-digit mantissa of a full-precision number is represented by 48 bits. The BCD digits are as
follows —

DECIMAL BCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

O 00 O Ov W N +H O

83

7,

84 Arithmetic

A BCD number within this manual has its digits represented as D1, Dz, D3, etc., with each digit
corresponding to some BCD digit. D1 is the most significant digit in a number. Since full-
precison numbers within the 9835A /B contain 12-digit BCD mantissas, 12-digit BCD numbers
are used as the most frequent examples in this discussion. In that case, D1z is the least signific-

ant digit in a number.

Arithmetic Machine Instructions

There are some machine instructions which specifically operate upon the BCD registers. The
discussions in this chapter will make use of the capabilities of these instructions to develop the
techniques to write BCD arithmetic routines. If you have not done so already, you should
familiarize yourself with the instructions before moving on in this chapter. A description of the
instructions can be found in ‘‘Arithmetic Group’’ in Chapter 3.

BCD Registers

There are two registers in the machine used for BCD arithmetic — Arl and Ar2. These symbols
are pre-defined by the assembly language to the registers’ locations in memory (see Chapter
3). The mnemonics for some instructions occasionally refer to these registers as X and Y

respectively (see Chapter 3).

BCD Arithmetic

To understand BCD arithmetic in the context of the 9835A /B, recall from Chapter 3 that a

full-precision value is represented in four words which contain its information as follows —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit
Exp I T |] | 1 | I] | | | | Man
Signi Exponent 0 0 O 0 O lsign
L
D1
(most significant digit) D Ds D4
Ds Ds D7 Ds
D12
Do Do D1 (least significant)

Arithmetic 85

The exponent is stored in two’s complement form. The exponent and the mantissa are always
adjusted by arithmetic routines so that there is always an implied decimal point following D1.
Thus, the mantissa of every value stored looks like —

Di1. D2 D3 D4 Ds D¢ D7 Ds Do D10 D11 D12

Except possibly for intermediate results within the individual arithmetic algorithms, the most
significant digit of a full-precision value {D1) will never be O unless the entire number is O.
Sometimes, after an individual arithmetic operation, the answer needs to be normalized, that
is, the digits of the answer shifted to the left until D1 is no longer 0. The exponent then needs to
be adjusted to reflect the change.

An important thing to keep in mind when examining BCD arithmetic, as implemented by the
processor, is that mantissas are represented in a ‘‘sign-magnitude’’ format. This means that the
absolute value is stored as the actual mantissa, and the sign of the mantissa is maintained
separately.

Addition
There is a one-bit Decimal Carry (DC) flag within the processor which serves a BCD function
similar to the Extend flag for binary addition.

DC is set to a one or zero, depending upon the occurrence or absence of a carry from the
addition of the two D1’s of the two BCD numbers being added. Since mantissas are represented
in a sign-magnitude form (with the sign in the exponent word rather than part.of what gets
added), DC represents an overflow for 12-digit mantissa additions.

DC itself is part of the addition in the D12 position. This gives it potential use with

multiple-precision floating point arithmetic. The addition process looks like this —

carry
LD1 IDz | Ds I D4J Ds l Ds |D7 I Ds I Do | D1o |D11—[D12 Ar1
+ [Dy | D2 [Ds [Da | Ds | Ds | D7 [Ds | Do | D1o | D11 | D12 | Ar2
= [pc]|Doi |p.]|Ds [Ds [Ds | De | D7 | Ds | Do | D1o | D11 | D12 | Ar2

There are three instructions which concern themselves exclusively with DC. They are — SDS
(Skip if DC set), SCD (Skip if DC clear), and CDC (Clear DC).

’

86 Arithmetic

Ten’s Complement for BCD

The addition of the ten’s complement of a number is used in lieu of a subtraction mechanism. If
the signs of the two numbers to be summed are different, one of the numbers is complemented
(it doesn’t really matter which one), before the addition.

The ten’s complement of a number with n digits to the left of the decimal pointis —

X=10.-X

The ten’s complement of a floating-point number has the same exponent as the original
number. Since the mantissa (M) of a full-precision number can be assumed to have the decimal
point implied after D1, then the number must be less than 10 (but greater than 0) and the ten’s

complement of a mantissa becomes —
M=10-M

Accordingly, all that is necessary to complement a floating-point number is to complement the
mantissa. It is immaterial whether the mantissa is treated as a 12-digit integer or as a number

between 0 and 10; the same sequence of digits results.

There are two instructions for doing ten’s complements — CMX and CMY. The only difference
between them is that CMX operates on the Arl register and CMY operates on the Ar2.

CMX and CMY leave the exponent word of a full-precision number completely alone. This
means that the sign of the mantissa and the entire exponent are left unchanged in a ten’s
complement by CMX and CMY.

Arithmetic 87

Ten’s complement helps to accomplish addition, too. Rather than go into all of the nuances and
subtleties of the arithmetic process, there is a simple rule for accomplishing decimal summa-
tions using ten’s complements. Assuming the exponents are the same for the numbers to be
added —

e [f the signs of the numbers are the same, simply add them and leave the signs alone. If DC
occurs, the result (Ar2) must be shifted to the right one place, and the exponent adjusted.

o If the signs of the numbers are different, complement, then add. A further complementing
action may be necessary: if DC occurs, then the result necessarily has the same sign as
the number which was not complemeted; if DC does not occur, then the result must be

complemented and then given the sign of the number which was complemented.

The FXA instruction is used to add mantissas. Here is a routine to implement the rule —

88 Arithmetic

Floating Point Summations

In the example just completed, you may have noted that to copy the sign the entire exponent
word was copied. What if the exponents were different? The answer is — the exponents must
have been the same. In fact, the only reason the example worked at all was that the exponents

were the same.

If exponents are different, addition of mantissas cannot proceed properly. To add the numbers
it is necessary to make the exponents the same by shifting one of the mantissas an amount

equal to the exponent difference.

This difference is easily found by subtracting the smaller exponent from the larger. If the
difference is eleven or less (the precision of the 12-digit mantissa), it is possible to offset the

mantissa of the number with the smaller exponent.
For example suppose there are two numbers to be added —

X XXXXXXXXXXX E6
Y.YYYYYYYYYYY E4

By shifting the smaller one to the right by 2 digits (the difference between 6 and 4), it is possible

to align the exponents —

X XXXXXXXXXXX E6
0.0YYYYYYYYYYYY E6

2.222227222222 E6

As can be readily seen from the example, a shift of more than 11 digits would cause the smaller

value to be all zeroes in the significant 12 digits.

The digits to the right of the 12 most significant digits are lost in the action of shifting. That is, all
except the left-most one. When using the MRX or MRY instructions, this digit is retained in the
A register (bits 0-3) so that it can be used later for rounding purposes.

To use the MRX or MRY instructions, the number of digits to be shifted must be presentin the B

register.

Arithmetic 89

The process for this “‘justification” of exponents can be summed up as follows:

e Subtract one exponent from the other storing the absolute value of the difference in the B
register.

e Execute the MRX shift if the Arl register is smaller; execute the MRY shift if the Ar2
register is smaller.

Normalization

The raw result of an arithmetic operation (such as FXA) might not be a floating-point number
that fits the standard form. It might have a leading DC needing to be incorporated into the
number, as was seen in the ‘‘Addition’’ section earlier. Another possible deviation is a resulting
D1 of zero and no overflow. There could also be several zero-valued digits as left-most digits of
the mantissa.

Such situations call for “‘normalization’’. One type of normalization is accomplished with the
NRM instruction. This instruction shifts register Ar2 left, leaving the number of shifts required in
the B register as a binary number. The maximum number of shifts NRM performsis 12. If NRM
must do all twelve shifts, Ar2 must have been 0. This is indicated by a value of 12 left in B and
DC being set. For any other shift-count, NRM will leave DC at O.

The rules for the normalization process are —

o Execute the NRM instruction.

e Follow this instruction by adding the complement of the contents of B (shiftéd left 6 bits)
to the Ar2 exponent unless DC is set. If DC is set, store 0 into Ar2.

o Test the exponent result for an underflow.

Rounding

The addition operation (FXA) does not automatically round a result, and there is no instruction
which does rounding in one step. Instead, it is necessary that a series of instructions be estab-
lished to accomplish the result.

Recalling from ‘‘Floating Point Summations’ (above) that the leftmost digit for rounding pur-
poses (if any) is typically deposited in the A register by an MRX or MRY instruction, this digit
can be checked to determine if rounding is required.

90 Arithmetic

The process of rounding, then, would have the following steps —

e Determine from register A if rounding is required (i.e., if it’s greater than or equal to 5).

¢ If rounding is not required, take no further action. If rounding is required, then load
register B with 1 and execute an MWA instruction. This has the effect of incrementing the
mantissa in Ar2 by 1. This action is an easier method than setting Arl to 1 and executing
an FXA and it’s faster, too. Don’t forget to check DC for an overflow.

o One way the sequence of rounding could appear is —

Floating Point Multiplication

Twelve-digit BCD floating-point multiplication is partially accomplished using the FMP instruc-
tion. This instruction effectively multiplies the value in the Ar]1 register by a digit contained in B
and adds the result to a partial product in Ar2.

Since, in the full multiplication process, exponents are merely added together, that part of the
process is trivial. The ultimate sign of the product is also a trivial matter, determined by
inspection of the signs of the original operands. Then the only matter of difficulty in the process
is the actual multiplication of the mantissas. By way of explanation, assume that there are two

mantissas to be multiplied —

multiplicand = ABCD
multiplier = WX Y Z

Just four digits are used to reduce the amount of symbolism required of the example. The same
procedures and conclusions are applicable to a full twelve BCD digits.

Arithmetic 91

One symbolic way to indicate how this multiplication is done is —

A B C D
x W X Y 2

0 0 O O = partial productO
Zow Z1 22 23 24 = Z(ABCD)x10°

Ps Ps Pe¢ P7 Ps = partial product 1
Yoo Y1 Y2 Y3 Ya 0O = Y(ABCD)x 10!

Ps P« Ps Ps P7 Ps = partial product 2
Xow X1 X2 X3 X« 0 0 = X(ABCD)x 10?2

P2 P P+ Ps Ps P7 Ps = partial product3
Woo W1 W2 Ws Wae 0 0 0 = W(ABCD)x 10

Pi P2 Ps Pa Ps Ps P; Ps = partial product 4 (result)

Notice that at each stage the multiple of ABCD, such as X(ABCD), must be multiplied by an
increasing power of ten in order that the digits of the multiple line up appropriately with the
digits of the last partial product. An equivalent procedure is to have the partial product shifted
right one digit at each stage.

Now, consider for a moment what is necessary within the assembly language to generate partial
product 1 = 0 + Z (ABCD). Ar2 must be cleared and Arl is loaded with ABCD. Z is stored into
B in bits O to 3. Then the FMP instruction is executed. Arl is added to Ar2 Z times, producing Z
(ABCD) in Ar2. The overflow digit, Zov, ends up in the A register (bits