
HP 9000 Computers

HP-UX Technical BASIC
Reference Manual, Vol. 1

rll~ HEWLETT
~a PACKARD

HP-UX Technical BASIC
Reference Manual, Vol. 1

for HP 9000 Computers

HP Part Number 97068-90050

© Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett­
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1980, Bell Telephone Laboratories, Inc.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

February 1986 ... Edition 1

ii

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,

or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Table of Contents

Volume 1
Chapter 1: Introduction

How to Use This Manual .. 1-1
Using the Keyword Dictionary , 1-2

Legal Usage Table .. , 1-2
The Syntax Diagram .. 1-2
Table of Parameters ... , 1-3
Spaces ... 1-3
Line Length. , 1-4
Variables , 1-5
Line Numbers and Line Labels , 1-6
Comments. ... , 1-6
Multistatement Lines , 1-6
Hardware Dependencies .. 1-7

BASIC Files ... 1-7
File Structure .. 1-7
Files Types. .. 1-10
File Security .. 1-10

The BASIC Metacharacter .. 1-11
BASIC Function Keys. .. 1-12

Chapter 2: Keyword Dictionary

Volume 2
Chapter 3: Glossary

Chapter 4: Reference Tables
Math Hierarchy .. , 4-1
String Hierarchy .. 4-1
US ASCII Character Set , 4-2
Roman Extension Character Set , 4-5
Reset Conditions ., 4-8
Boundaries and Scaling .. 4-10
Reflecting Plots With LIMIT, LOCATE, SCALE, and SHOW. 4-11
Pen Up/Down Status .. 4-11
Pen Control With PLOT, IPLOT, and RPLOT .. 4-12
Branch Precedence Table. .. 4-13
HP-IB Control-Line Signals. .. 4-14
HP-IB Multiple-Line Commands .. 4-15

iii

Chapter 5: I/O Registers
I/O Buffer Registers ... " 5-1
HP-IB Interface ... " 5-2
GPIO Interface ... 5-5

Chapter 6: Error Messages

Chapter 7: Keyword Summary

iv

General Math Functions and Operators 7-1
Trigonometric Functions and Operations 7-2
Logical Operators ... " 7-2
Binary Functions .. " 7-3
String Operations ... 7-4
Clock and Time Functions ... " 7-5
Program Entry and Editing ... " 7-5
Debugging .. " 7-6
Variable Allocation. " 7-6
Display Control ... " 7-7
Program Control . " 7-8
Subprogram Control 7-10
Binary Program Control. .. 7 -1 0
HP-UX Shell Commands ... 7-11
Mass Storage. .. 7 -11
Graphics Boundaries, Scaling, and Control 7-12
Graphics Plotting. .. 7-13
Graphics Labeling .. 7-14
Event-Initiated Branching .. 7-14
Input/Output. .. 7-15
Numeric Array Functions ... 7-16
Numeric Array Operations. .. 7-17

Introduction 1
How to Use This Manual
The HP-UX Technical BASIC Reference Manual is designed to provide reference information to
experienced BASIC programmers. The manual is divided into seven sections:

• The Introduction provides general information that applies to all BASIC keywords. The
introduction also explains how to interpret tables and syntax diagrams in the keyword
dictionary.

• The Keyword Dictionary contains an alphabetical listing of all the operators, functions and
statements provided with the language. Each entry contains syntax information, examples,
and a description of how the keyword interacts with other related BASIC statements.

• The Glossary defines many of the technical 'terms used repeatedly in the keyword dictio­
nary. Certain terms include a syntax diagram to help you understand the definition.

• Reference Tables contains a variety of useful tables, including the character set, system
reset conditions, and various graphics conditions.

• The I/O Registers section contains tables of buffer and interface status and control regis­
ters.

• Error Messages lists all error messages and probable causes for the errors.

• The Keyword Summary groups all the BASIC keywords by function, allowing you to
qUickly locate the proper keyword for a particular task.

Introduction 1-1

Using the Keyword Dictionary
The keyword dictionary contains an alphabetical listing of all the HP-UX Technical BASIC key­
words. Each keyword entry consists of a legal usage table, a definition of the keyword, a syntax
diagram, a table of parameters, usage examples, and some additional descriptive information on
the use of the keyword within programs.

Legal Usage Table
The legal usage table describes in general terms the conditions under which the keyword can be
used.

• If a keyword is Keyboard Executable, a properly constructed statement can be typed into
the current alphanumeric (alpha) display input line and executed by pressing I Return 11. This
type of immediate execution is sometimes referred to as execution "from the keyboard"
or execution in "edit mode."

• If a keyword is Programmable, a properly constructed statement can be placed after a
valid line number and stored in memory as part of a BASIC program. Many keywords are
both keyboard executable and programmable. Nonprogrammable keywords are referred
to as commands.

• If a keyword can be included in an IF ... THEN, a statement containing the keyword can be
placed after THEN or ELSE in an IF ... THEN ... ELSE statement.

The Syntax Diagram
The syntax diagram describes pictorially how to construct a proper statement or command using
that keyword. The items enclosed in ovals, circles, and rectangles are the various elements of
the statement:

• The elements enclosed in ovals and circles are keywords and punctuation that must be
typed in exactly as shown, except that lowercase letters can be substituted for uppercase
letters.

• The elements enclosed in rectangles are parameters. Each parameter is described in the
table of parameters underneath the syntax diagram. In most instances, uppercase and
lowercase letters are not interchangeable.

1 I Return I is used throughout this manual to represent the key generating a carriage-return character (CR), decimal value 13.

1-2 Introduction

The elements are connected by lines and arrows that illustrate how they fit together. Each
line segment has only one arrow, meaning that the line can be followed in only one direction.
Starting with the left side of the diagram, you can use any combination of elements generated
by following the lines in the indicated direction. If an element is optional, a path exists around
it. Many optional elements have default values listed in the table of parameters or description
section. Whatever path you choose, it must terminate at the right side of the diagram.

The syntax diagram does not show line numbers or line labels.

Table of Parameters
The Table of Parameters describes each parameter in the syntax diagram. Where proper syntax
or practical semantics requires a parameter to evaluate within a certain range, that range is given.
A dash ("-") indicates no range restrictions. For example, in the case of numeric expressions,
the parameter can be any REAL number.

Spaces
The syntax diagrams do not fully describe the use of spaces. In general, when two elements are
connected by a line and arrow, any number of spaces can be inserted between the elements.
In some cases, spaces are optional. For example, when a syntax diagram shows parameters
separated by commas, spaces between the commas and the parameters are optional.

When two elements are drawn adjacent to one another, there must be no spaces between them.

The syntax requires spaces between BASIC keywords, variable names, statement labels, and
numeric constants. Valid sequences of letters and digits not recognized as BASIC keywords are
interpreted as variable names.

Spaces are not required between keywords or variable names and arithmetic and relational
operators. However, logical operators must be separated from keywords and variable names by
spaces.

Spaces should not be inserted within keywords unless explicitly shown.

Introduction 1-3

Example: Examine the syntax diagram for the· CONVERT statement:

To construct a valid statement, type the keyword CONVERT, followed by one or more spaces.
Then, type the keyword IN or OUT, followed by one or more spaces. You must then type a valid
interface select code (defined in the glossary) or I/O buffer name. The rest of the statement is
optional. After leaving one or more spaces, you may type the word PAIRS or INDEX, followed
by a semicolon and the name of a string variable.

Line Length
There can be up to 160 characters in a Technical BASIC program line, including the trailing
carriage-return character. This includes the line number, any embedded blank spaces, and a
carriage-return character (CHR$ (13)) placed at the end of the line when it is entered into system
memory.

You can enter a line this large by:

• using a non-line-oriented terminal or console

• specifying "non-line-mode" operation when calling BASIC (type basic -t to enter the
system), and then entering the line with the BASIC editor

• writing a program into a file by using OUTPUT statements

• using another editor to enter the line

However, when using most line-oriented terminals to enter program lines, the maximum line width
is 80 characters. In addition, you cannot edit any lines longer than a line-oriented terminal's
(or window's) line width. For instance, if you enter a 130-character line on a non-line-oriented
terminal or window, SAVE the program, and then GET the file on a terminal or window with
line-width of 80 characters, you cannot edit the line. (You can, however, list and run the
program.)

1-4 Introduction

Variables
BASIC uses the following variable types:

• Simple numeric:

Precisions: REAL, SHORT, or INTEGER (default=REAL)

• Numeric array:

Precisions: REAL, SHORT, or INTEGER (default=REAL)

Dimensions: one or two

Lower bound (option base): 0 or 1 (default=O)

Maximum upper bound: 65,530

• Simple string:

Maximum string length: 65,530 (default=18)

• String array:

Maximum string length: 65,530 (default=18)

Dimensions: one or two

Lower bound (option base): 0 or 1 (default=O)

Maximum upper bound: 65,530

String variables are differentiated from numeric variables by using a dollar sign ($) as the final
character in all string variable names. Variable names can be up to 32 characters long. Any
sequence of letters, numbers, and the underscore character can be used, except that the first
character must be a letter. Uppercase and lowercase letters are not interchangeable in variable
names. (Combinations of uppercase and lowercase letters can be used to form BASIC keywords;
however, they are listed as all uppercase.)

Introduction 1-5

Line Numbers and Line Labels
Every line in a program must be preceded by a unique line number-an integer in the range 1
through 65 535. The line number can be followed by an optional line label. A line label consists
of a sequence of up to 32 letters, digits, and the underscore character; the first character must
be a letter. The label is followed by a colon in the labeled line; the colon is not used when the
line is referenced.

Example:

300 IF X<5 THEN Finished Referencing line.

800 Finished: END Labeled line.

Comments
Comments can be added to any program line except a DATA statement. A comment is created
by placing an exclamation point (!) after the last character in the statement. Comments can
also be created using the REM statement. Comments can contain any sequence and number of
characters up to the maximum allowable line length.

If a comment is added to a multistatement line, it must be placed at the end of the line.

Multistatement Lines
A multistatement line contains two or more BASIC statements joined by the character"@". For
instance:

100 DrSp II Warning II (Q BEEP (Q BEEP

Multistatement lines can be executed both within programs and from the keyboard. The DATA

and REM statements are not allowed in multistatement lines. If GOTO branching occurs in the
middle of a line, the remaining statements on the line are not executed.

Like single-statement lines, multistatement lines are limited to 159 characters (plus a carriage­
return termination character) or the line length of your terminal or window during entry and
editing operations (see preceding description).

1-6 Introduction

Hardware Dependencies
Certain features of this BASIC language are dependent on how it is implemented on various
HP-UX systems. Factors such as the internal precision of numbers, the keyboard, the character
set, size of the display, availability of display windows and display graphics, multiuser capabilities,
and ability to mount a removable file structure affect the use of certain keywords.

Most hardware dependencies are described in this manual. Differences between this system
and the Integral PC BASIC system are listed in the Implementation Specifics appendix. For
other dependencies, such as the implementation of escape sequences for displays, etc., see the
hardware documentation for your particular device.

BASIC Files
BASIC creates its own file environment within the HP-UX file structure. This environment
includes certain file types and file security. BASIC-type files can be created, accessed, copied,
and purged within BASIC.

File Structure
BASIC uses the HP-UX hierarchical file structure. The structure takes the form of an upside
down tree, as shown on page 1-8. Each box is a file. To help with this discussion, file names are
drawn inside some of the boxes. Files with shaded boxes are directory files containing cataloging
information for the files branching from them. The other boxes represent non-directory files.
There are many different types of non-directory files, and they are utilized by the system in a
number of different ways. For the purpose of this discussion, however, it is enough to distinguish
between directory and non-directory types.

Introduction 1-7

""'" I
00

[
~ o
Q.
s::
~ o·
::I

'Tj
cQ'
c
~
~

:c
"'tI
C
:><:

::!'
~
(J)
pot.
"1
C n
pot.

C
"1
(t)

CI

= Q.

o
(ii'
n

::!'
~
(/l

Relative path to ThisFile

"Directory3b/ThisFile"

Absolute path to ThisFile

"/Directory1 b/Directory2a/Directory3b/ThisFile"

current working
directory

} L~elO

} L~el 1

}~el 2

} L~el ,

} L~.I 4

The file at the apex of the structure is called the root directory. Underneath the root directory
are a variety of files, including the dev (device) directory and the top-level directory of each
mounted disc. In single-user systems with removable file structures, the file name of the top
level directory is the volume name of the disc. Every directory file can have underneath it both
directory and non-directory type files. Thus, a branching structure is produced. Within this
structure, a path exists between any file and every other file in the system. This path is defined
by a path name, which lists the route to a file from directory to directory.

At any given time, the user is working in a particular directory, called the current working
directory. Files within this directory can be accessed by file name alone. Files outside the
current working directory must be accessed by an HP-UX path name. Two types of path names
exist:

• An absolute path name describes the path beginning at the root directory and moving
downward to the file.

• The relative path name describes the path to the file beginning at the current working
directory. As it winds its way through the file structure, a relative path can move both
upward and downward.

Figure 1 illustrates a current working directory (Directory2a) and the absolute and relative paths
to the file ThisFile. The path names to ThisFile are:

Absolute pathname: /Directorylb/Directory2a/Directory3b/ThisFile
Relative pathname: Directory3b/ThisFile

Introduction 1-9

Files Types
The following file types can be created within BASIC:

Table 1.1 BASIC Files

Statement Statement(s)
File Type Contents Creating the File Accessing the File

BASIC/PROG BASIC program STORE LOAD

BASIC/SUBP Subprogram STORE FINDPROG, CALL

BASIC/DATA Data CREATE ASSIGN#, PRINT#, READ#

BASIC/GRAF Graphics GSTORE GLOAD

text/data* ASCII data SAVE GET
ASSIGN OUTPUT,ENTER

text/data* Object code HP-UX system LOADBIN
SCRATCHBIN

*Not a BASIC-type file.

Certain BASIC statements and commands (for example, ASSIGN, SAVE, and LOADBIN) access
text/data type files. Strictly speaking, these files are not BASIC-type files, even though some
BASIC statements create and/or use them.

In HP-UX, all files created in BASIC are regarded as type text/data, even though they are
shown as a different type when viewed by the BASIC CAT statement.

File Security
BASIC files are created with complete user read/write permission. File security is provided by
the SECURE statement. In general, user permission status of BASIC files should not be changed
outside of BASIC.

1-10 Introduction

The BASIC Metacharacter
A metacharacter sequence is used to enter non-displayable characters and quotation marks into
quoted strings. The sequence consists of the BASIC metacharacter character "~,, (decimal code
126) followed by one through three digit characters or by a quotation mark. The metacharacter
itself is ignored, in that: it is not output by PRINT, DISP, and OUTPUT; it does not occupy a
character position (POS); and it is not counted in the computation of the string length (LEN).
However, the metacharacter is output by LIST and PLIST.

When the metacharacter is followed by one, two, or three digits in the range 0 through 255, that
number is interpreted as a character decimal code. For example, "~7" is equivalent to CHR$ (7) ,

and "~2558A" is equivalent to CHR$(255)&"8A". If a number is in the range 256 through 999,
it is moduloed 256. Thus, "~580" is equivalent to CHR$ (68). A minus sign is treated like any
other non-digit character.

When the metacharacter is followed by a quotation mark, that quotation mark is not interpreted
as a string delimiter. For example, the statement:

DISP "Type -libeginner- li or -lladvanced- IIII

displays:

Type II beginner II or "advanced"

Elsewhere, the metacharater is ignored. For example,

DISP II-abc"

displays

abc

To include the character ~ in a string, preface it by a metacharacter; i.e., "~~".

Introduction 1-11

BASIC Function Keys
Where possible, BASIC makes the following "typing-aid" assignments to the function keys.
Immediate-execute keys include a terminating carriage return; pressing the key is equivalent to
typing the command and pressing I Return I.

Table 1.2 BASIC Function Keys

Key Key Label Typing Aid ImmediateExecute?

OIl LIST LIST (without parameters) Yes

@] RUN RUN (without parameter) Yes

[ill STEP SINGLESTEP Yes

[ill CONT CONT (without parameter) Yes

[![] SCRATCH SCRATCH No

[l[) PRT. IS PRINTER IS No

OIl PLIST PLIST Yes

[][] KEY LAB. KEY LABEL Yes

You can display the current typing-aid key definitions by executing the KEY LABEL statement.
You ean also re-define these keys using the ON KEY# statement. See "Using Typing-Aid Keys"
in the HP-UX Technical BASIC Getting Started Guide for further information.

1-12 Introduction

ABS
Keyboard Executable Yes

Programmable Yes
In an IF ... THEN Yes

The ABS function returns the absolute value of the numeric argument.

Item Description

numeric argument numeric expression

Examples
PositiveValue=ABS(Value)
DISP ABS(Variable)

Related Keywords
SGN

Range

Keyword Dictionary 2-1

ABSUM
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The ABSUM function returns the sum of the absolute values of the elements in an array.

Item Description Range

array name name of a one- or two-dimensional numeric array any valid name

Examples
IF ABSUM(Array1) > 1 THEN 200
Arraysum=ABSUM(A)

Related Keywords
AMAX. AMIN. CNORM

2-2 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes
In an IF ... THEN Yes

The ACS function returns the arccosine of a numeric argument.

Item Description

numeric argument numeric expression

Examples
Theta=ACS(Y)
DISP ACS (.5)

Description

ACS

Range

-1 through + 1

The function returns a REAL number. The value returned depends on the current trigonometric
mode. In RAD (the default) mode, the value returned is in the range 0 through 7r radians. In
DEG mode, the value returned is in the range 0 through 180 degrees. In GRAD mode, the value
returned is in the range 0 through 200 grads.

Related Keywords
cos, DEG, GRAD, RAD

Keyword Dictionary 2-3

ALPHA
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ALPHA statement toggles the alpha raster on and off (useful on machines with separate alpha
and graphics rasters). When the optional parameters are included, the cursor is moved to the
specified position.

Item

row

column

Description Range

numeric expression, rounded to an integer and ~O
moduloed to a value in the range 1 through the
number of rows in alpha display memory·

numeric expression, rounded to an integer and ~O
moduloed to a value in the range 1 through the
number of columns in alpha display memory·

*The number of rows and columns in alpha display memory is machine-dependent.

Examples
ALPHA
ALPHA 5
ALPHA ScreenRow
ALPHA 5,7
ALPHA ScreenRow,ScreenCol
ALPHA ,50

2-4 Keyword Dictionary

Description
When ALPHA is executed without parameters, the cursor remains in its previous position, and
no scrolling is performed. The main intent of this syntax is to alternately turn the alpha raster
on and off (on displays that support this type of operation). Some computers have alpha and
graphics on separate rasters (such as most graphics terminals, and some Series 200 and 500
displays); on that type of display, this statement toggles the alpha raster (on if currently off,
and off if currently on). Other computers have alpha and graphics on the same raster (such as
Series 300 bit-mapped alpha/graphics displays and most non-graphics terminals); on that type
of display, this statement performs no action (when no parameters are included).

When parameters are included, the cursor is moved to the specified position. The row parameter
specifies the row to which the cursor is moved. If necessary, alphanumeric display memory scrolls
up or down to display the specified row on the bottom or top row of the display.

When ALPHA is executed with a row parameter and no column parameter, the cursor remains in
the current column. If you specify only the column parameter, the cursor moves to the specified
column and remains in the current row.

When either or both parameters are 0, the cursor moves to the upper left corner of the current
screen.

Related Keywords
CURSCOL. CURSROW. GRAPHICS

Keyword Dictionary 2-5

AMAX
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The AMAX function returns the value of the largest element in the specified array.

Item Description Range

array name name of a one- or two-dimensional numeric array any valid name

Examples
N = AMAX(Array)/10
IF AMAX(Array1) = AMAX(Array2) THEN 500

Related Keywords
AMAXROW, AMAXCOL, AMIN

2-6 Keyword Dictionary

AMAXCOL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The AMAXCOL function returns the column number of the largest element in the array specified
most recently in an AMAX function.

(AMAXCOL >---
Examples
YSubscript = AMAXCOL
MAT B = A(,l:AMAXCOL)

Description
If two or more elements in different columns have the largest value, the lowest column number
is returned.

Related Keywords
AMAX, AMAXROW, AMINCOL, AMINROW

Keyword Dictionary 2-7

AMAXROW
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The AMAXROW function returns the row number of the largest element in the array specified most
recently in an AMAX function.

(AMAXROW }---

Examples
XSubscript = AMAXROW
MAT B = A(1:AMAXROW,)

Description
If two or more elements in different rows have the largest value, the lowest row number is
returned.

Related Keywords
AMAX, AMAXCOL, AMINCOL, AMINROW

2-8 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The AMIN function returns the value of the smallest element in the specified array.

Item Description Range

array name name of a one- or two-dimensional numeric array any valid name

Examples
Y = AMIN(Array2)
IF AMIN(Array2)=0 THEN 400

Related Keywords
AMAX. AMINROW. AMINCOL

AMIN

Keyword Dictionary 2-9

AMINCOL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The AMINCOL function returns the column number of the smallest element in the array specified
most recently in an AMIN function.

(AMINCOL }--

Examples
YSubscript = AMINCOL
MAT B = A(.AMINCOL:5)

Description
If two or more elements in different columns have the smallest value, the lowest column number
is returned.

Related Keywords
AMAXCOL. AMAXROW. AMIN. AMINROW

2-10 Keyword Dictionary

AMINROW
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The AMINROW function returns the row number of the smallest element in the array specified most
recently in an AMIN function.

(AMINROW }--

Examples
XSubscript = AMINROW
MAT B = A(AMINROW:3.)

Description
If two or more elements in different rows have the smallest value, the lowest row number is
returned.

Related Keywords
AMAXCOL. AMAXROW. AMIN. AMINCOL

Keyword Dictionary 2-11

AND
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The AND operator returns a 1 or 0 based on the logical AND of the operands.

----..J operand ~ operand ~

Item

operand

Examples
8=J(1) AND J(2)

Description

numeric expression

IF 8 AND P THEN G08UB 400

Description

Range

A non-zero operand (positive or negative) is interpreted as a logical 1; an operand of zero is
interpreted as a logical O. The following table describes the result of performing a logical AND.

Logical AND

A B AANDB

0 0 0

0 1 0

1 0 0

1 1 1

Related Keywords
EXOR, NOT, OR

2-12 Keyword Dictionary

AREAD
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The AREAD statement reads characters from the alpha display and copies the characters into the
specified string variable l .

Item

string name

subscript

beginning position

ending position

Description

string variable name

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range

any valid name

1 through 65,530; maximum of
two allowed

1 through 65,530

1 through 65,530

This statement works only on "line-oriented" terminals. A line-oriented terminal is one that can send and receive blocks of characters
one line at a time. Here is how to determine whether your terminal is line-oriented: type in a BASIC statement or command; execute it;
move the cursor back onto the line; and then re-execute it. If the line is re-executed successfully, then you have a line-oriented terminal.

In addition, if you used basic -t to enter the BASIC system, then you have specified "non-line-mode" operation, and this statement
cannot read lines of characters from even a line-oriented terminal.

Keyword Dictionary 2-13

Examples
AREAD Screen$
AREAD Screen$(3)
AREAD Screen$[5]

Description
AREAD begins copying characters at the current cursor location. The number of characters
copied equals the size of the explicitly or implicitly dimensioned string variable, or the number
of characters in the specified substring.

Copying preserves the characters just as they appear on the display, including leading and trailing
blanks. The cursor is not copied.

If the dimensioned size of the AREAD string is larger than the number of characters following the
cursor in display memory, the string is filled with trailing blanks.

Related Keywords
ALPHA, AWRIT, OFF CURSOR, ON, CURSOR

2-14 Keyword Dictionary

Keyboard Executable Yes
Programma ble Yes
In an IF ... THEN Yes

The ASN function returns the arcsine of the numeric argument.

Item Description

numeric argument numeric expression

Examples
Theta=ASN (.5)
DISP ASN(X*Y)

Description

ASN

Range

-1 through + 1

The function returns a REAL number. The value returned depends on the current trigonometric
mode. In RAD (the default) mode, the value returned is in the range -7r /2 through +7r /2 radians.
In DEG mode, the value returned is in the range -90 through +90 degrees. In GRAD mode, the
value returned is in the range -100 through + 100 grads.

Related Keywords
DEG, GRAD, RAD, SIN

Keyword Dictionary 2-15

ASSERT
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The ASSERT statement sets and/or clears control lines of the specified interface.

(ASSERT H s~~~~~~r ~

Item

device selector

byte

Examples
ASSERT 7; 12
ASSERT Isc;X

Description

Description

numeric expression, rounded to an integer

numeric expression, truncated to an integer and
moduloed 256

Range

3 through 10

The binary value of the byte sets or clears the control lines. The action taken is interface
dependent:

• HP-IB-immediately writes the value of the byte to control register 2, regardless of whether
an I/O operation is in progress. IFC bit (decimal value 128) is ignored.

HP-IB nodes must be in "raw" mode-that is, there can be no address specified in the
minor number of the corresponding special (device) file.

• GPIO-immediately writes the value of the byte to control register 2, regardless of whether
an I/O operation is in progress.

Related Keywords
CONTROL

2-16 Keyword Dictionary

ASSIGN
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

ASSIGN assigns a numeric value to an interface, device, or file. The numeric value can then
be used in OUTPUT, ENTER, CRT IS, PRINTER IS, PLOTTER IS, or other I/O-related statements.
ASSIGN can also cancel these assignments.

y

special (device)
file

special (device)
file

graphics output device

special (device)
file

graphics i~put device

Keyword Dictionary 2-17

Item Description Range

device selector numeric expression, rounded to an integer 3 through 10

I/O driver type

Star base driver
type

literal hpib or gpio

literal any valid Star base driver type
(see table in "Description" sec­
tion)

special (device) file name of the special (device) file associated with any currently valid special (de­
an interface or device; (default=either /dev/hpib vice) file
or /dev/gpio, whichever matches the I/O driver
type; or / dev / Starbase driver type for graphics
output devices)

file selector numeric expression, rounded to an integer

HP-UX path name path name of an ordinary file or special (device)
file

Examples
ASSIGN 7 TO "hpib"
ASSIGN 7 TO "hpib.device_01"

ASSIGN 8 TO "gpio"
ASSIGN 8 TO "gpio ,1dev/gpio_device"

ASSIGN 5 TO "hp2627.tty"
ASSIGN 5 TO "hp98700./dev/crt; hil.hi12"

ASSIGN 11 TO "/dir1/dir2/myfile"
ASSIGN 20 TO "/dev/lp"

ASSIGN 7 TO "*"
ASSIGN 15 TO "*"

2-18 Keyword Dictionary

11 through 20

Description
Assigning Device Selectors to 1/0 Resources
Before performing I/O operations with an interface, or with a device connected to an interface
(using CONTROL, STATUS, OUTPUT, ENTER, etc.), the corresponding resource must be assigned a
unique device selector-a numeric value the range 3 through 10.

The I/O driver type identifies the type of interface driver that is to be used with this resource.
(A driver is a program that is used by the system to communicate with a particular device or
interface.) On this system, the I/O driver type must be either hpib or gpio, since these are the
only type of interfaces supported for general I/O operations. Assignments for plotting operations
require Starbase (graphics library) drivers; see the next section for details.

The special (device) file parameter is the actual name of an HP-UX file that the System Adminis­
trator associated with an interface or device (using the mknod, "make node," command described
on subsequent pages). This file is assumed to be in the /dev directory if a path name is not
specified. This file's type must match the type of the specified I/O driver (but the file name does
not have to be the same as the driver type). For instance, if the I/O driver type is hpib, then the
device file must be associated with an HP-IB interface or device; however, the device file need
not be named hpib. If this parameter is omitted, the default is either /dev/hpib or /dev/gpio,
whichever matches the specified I/O driver type.

GPIO Device Selectors: Here is an example of assigning a device selector to a GPIO node.
The special (device) file is named gpio_device; since it is in the /dev directory, you need not
specify the pathname:

ASSIGN 8 TO "gpio,gpio_device"
OUTPUT 8;OutputValue
ENTER 8;InputValue

This assignment assumes that a node has been created for this device using something like the
following HP-UX commands (which require superuser capabilities, usually possessed only by the
System Administrator l):

/etc/mknod /dev/gpio_device c 18 Ox030000 I Return !
chmod 666 /dev/gpio_device I Return !

The driver number (also called the major number) for GPIO interfaces on Series 200/300 com­
puters is 22; on Series 500 computers, the GPIO driver number is 18.

You can check to see what the current device files are by using the HP-UX long list (11) command.

$ 11 /dev/gpio_device I Return !
crw-rw-rw- 1 root other 18 Ox030000 Feb 4 15:24 /dev/gpio_device
$

For further explanation of special (device) files and associated major and minor node numbers, see the HP-UX System Administrator

Manual.

Keyword Dictionary 2-19

HP-IB Device Selectors: There are two types of HP-IB nodes:

• Those with primary addressing ("auto-addressed")-used to communicate with specific
devices.

• Those without primary addressing ("raw")-used to communicate with interfaces. (Ad­
dressing can be supplied, when needed, in BASIC I/O statements to address specific HP-IB
devices.)

An HP-IB Node without Addressing (Raw Node): This type of node is created using something
like the following HP-UX commands:

/etc/mknod /dev/hpib2 c 12 Ox021fOO I Return I
chmod 666 /dev/hpib2 I Return I

The driver number (also called the major number). for HP-IB interfaces on Series 200/300
computers is 21; on Series 500 computers, the HP-IB driver number is 12.

The minor number should contain a value of 1f in the primary address field, which specifies that
the node is in "raw" mode.

You can check to see what the current device files are by using the HP-UX long list (II) command.

$ 11 /dev/hpib* I Return I
crw-rw-rw- 1 root other 12 Ox021fOO Feb 4 15:18 /dev/hpib2
$

Now you can ASSIGN a device selector to this type of device file, and then use the device selector
in I/O statements. For instance:

ASSIGN 7 TO "hpib.ldev/hpib2"
OUTPUT 701;"This is sent to the HP-IB device at address 01."
ENTER 722;Voltage
STATUS 7.1;Register_1
CONTROL 7.1;SRQ_line

Note that when using a raw-mode device file, you can specify the primary address of HP-IB
devices, such as in the above OUTPUT 701;... and ENTER 722;... statements.

2-20 Keyword Dictionary

An HP-IB Node with an Address (Auto-Addressed Node): This type of node is created using
something like the following HP-UX commands:

/etc/mknod /dev/hpib_01 c 12 Ox020100 I Return I
chmod 666 /dev/hpib_01 I Return I

With a device selector assigned to this type of node, you could not use any primary addressing
in I/O statements that use this device selector. You could only use statements such as the
following (which do not specify any primary addressing information):

ASSIGN 3 TO "hpib .Idev/hpib_01 11

OUTPUT 3; "Send to 201. II

ENTER 3;From201

Note that statements like CONTROL and STATUS statements will not work, since they do not allow
primary addressing information in the device selector.

With HP-IB nodes, you can use whichever of the above method works best for your purposes.

Assigning Device Selectors to Starbase Resources
Before performing plotting operations with a Starbase resource (with PLOTTER IS, PLOT, DIGI­

TIZE, etc.), the corresponding resource must be assigned a unique device selector-a numeric
value the range 3 through 10.

The Starbase driver type identifies the type of Starbase (graphics library) driver that is to be
used with this resource. (A driver is a program that is used by the system to communicate with
a particular device or interface.) On this system, the Starbase driver type must be one of the
following literals (the corresponding device is also given in the table on the next page, along with
the type of operations that are supported on the device).

Keyword Dictionary 2-21

Driver Name

hp2623

hp2627

hp262x

Starbase Driver Names for Graphic I/O Devices

Description

2623 Terminal

2627 Terminal

Operations Supported

Input and Output l

Input and Output

2623 or 2627 or other 262x Graph- Input and Output
ics Terminal

hp2625 2625 Terminal Output only

Output only hp2628 2628 Terminal

hp9837 9837 Display Output, block read/write2

Input, output, block read! write hpwindow9837 Graphics Windows on HP 9837

hp3001

hpwindow3001

hp300h

Series 300 low-resolution Graphics Output, block read/write
Display

Graphics Windows on Series 300
low-resolution Graphics Display

Input, output, block read/write

Series 300 high-resolution Graphics Output, block read/write
Display

hpwindow300h Graphics Windows on Series 300
high-resolution Graphics Display

Input, output, block read/write

hp98700 98700 Display Controller Output, block read/write

hpwindow98700 Graphics Windows on 98700 Input, output, block read/write

hp98710

hp98760

hp9020

hpgl

hphil

hil

hp-hil

98710 Display Output, block read/write

98760 Display Output only

9020 Display Output, block read/write

HPGL 3 devices (includes I/O capabilities are device-dependent
most HP-IB plotters and some
input devices)

HP-HIL devices4 Input only

HP-HIL devices Input only

HP-HIL devices Input only

1 "Output" specifies plotting (DRAW, MOVE, PLOT, etc.); "Input" specifies digitizing (DIGITIZE, CURSOR, etc.).
2 "Block read/write" indicates that byte-plotting and byte-reading operations are supported for this device (EPLOT and BREAD).
3 "HPGL" (Hewlett-Packard Graphics Language) devices include most plotters and HP-IB graphics tablets.
4 HP-HIL (Hewlett-Packard Human Interface Link) devices include the mouse, HIL tablets, TouchScreens, and other graphics input devices

connected to the computer through the HP-HIL interface.

2-22 Keyword Dictionary

The special (device) file parameter is the actual name of an HP-UX file that the System Adminis­
trator associated with an interface or device (using the mknod, "make node," command described
momentarily). This file is assumed to be in the /dev directory if a pathname is not specified.
This file's type must match the specified Starbase driver type (but the file name does not have
to match the driver type). For instance, if the Starbase driver type is hp300h, then the device
file must be associated with a Series 300 high-resolution display; however, the device file does
not have to be called hp300h. If this parameter is omitted (possible only with output devices,
when no input device is specified), the default is the device file in the /dev directory of the same
name. Also note that its type must match the type of the specified Starbase driver.

Output Devices: Here is an example of assigning a device selector to a Series 300 graphics
display. The special (device) file is named crt; since it is in the /dev directory, you need not
specify the pathname:

ASSIGN 5 TO "hp3001,crt"
PLOTTER IS 5
MOVE 10,30
DRAW 100,100

Since this is device has "output" (plotting) capabilities, but no "input" (digitizing) capabilities,
no DIGITIZE or CURSOR statements can be executed. See the "Separate Graphics Output and
Input Devices" section below for an example of specifying a separate input device when using
this type of output device.

This assignment assumes that a node has been created for this device using something like the
following HP-UX commands (which require superuser capabilities, usually possessed only by the
System Administrator!):

/etc/rnknod /dev/crt c 12 OxOOOOOO I Return I
chmod 666 /dev/crt I Return I

The driver number (also called the major number) for this Series 300 display is is 12.

You can check to see what the current device files are by using the HP-UX long list (11) command.

$ 11 /dev/crt I Return I
crw-rw-rw- 1 root other 12 OxOOOOOO Feb 5 13:05 /dev/crt
$

For further explanation of Starbase drivers, special (device) files, and associated major and minor numbers, see the Starbase Device

Drivers Library manual.

Keyword Dictionary 2-23

HP Windows/9000: Here is an example of assigning a device selector to an HP Windows/9000
"graphics window." The special (device) file is named screen/basic-graph; since it is in the
/ dev directory, you need to specify the full pathname:

ASSIGN 5 TO Ihpwindow98700,screen/basic-graph"
PLOTTER IS 5
MOVE 10,30
DRAW 100, 100

Since this type of device has "output" (plotting) capabilities, but no "input" (digitizing) capabilities,
no DIGITIZE or CURSOR statements can be executed. See the "Separate Graphics Output and
Input Devices" section below for an example of specifying a separate input device when using
this type of output device.

This assignment assumes that a window has been created using something like the following
commands (in an HP-UX shell):

$ wmstart I Return I
$ wcreate -w graphics -s800,600 basic-graph I Return I

You can check to see what the current device files are by using the HP-UX long list (11) command.

$ 11 /dev/screen/basic-graph I Return I
crw--w--w- 2 mark 17 OxOOOOll Feb 19 12:18 basic-graph
$

Separate Graphics Output and Input Devices: Some graphics devices are listed in the preced­
ing table as having only "output" capabilities-that is, plotting capabilities (MOVE, DRAW, PLOT,

etc). If you also want to perform graphics input operations (digitizing operations using DIGITIZE

and CURSOR), then you will need to specify a separate input device in the ASSIGN statement.

Here is an example of assigning a device selector to an HP 98700 Display (output device) and
a mouse (input device). The Starbase driver type for this output device is hp98700. The special
(device) file for the output device is named crt; since it is in the /dev directory, you need not
specify the pathname. The Starbase driver type for the input device is hphil. Its device file is
named hil2. (Again, there is no need to specify the /dev/ pathname, since the device file is in
this directory.)

ASSIGN 6 TO Ihp98700,crt;hphil,hiI2"
PLOTTER IS 6

2-24 Keyword Dictionary

This assignment assumes that nodes have been created for this device using something like the
following HP-UX commands (this example is for a Series 300 system):

/etc/mknod /dev/crt c 12 OxOOOOOO I Return!
chmod 666 /dev/crt I Return!

/etc/mknod /dev/hi12 c 24 Ox000002 I Return !
chmod 666 /dev/hi12 I Return!

The minor number of the output device indicates that it is connected to an "internal" HIL
interface (internal/external mode of operation is set by a switch on the 98287 interface card).

The minor number of the input device indicates that it is the 2nd device (from the computer)
on an HP-HIL interface. For instance, a keyboard is the "first" HIL device when it is connected
directly to the computer's HIL interface; the mouse is then the "second" device when it is
connected to the keyboard.

You can check to see what the current device files are by using the HP-UX long list (11) command.

$ 11 /dev/hp98700 I Return !
crw-rw-rw- 1 root other 12 OxOOOOOO Feb 5 11:12 /dev/hp98700
$ 11 /dev/hi12 I Return!
crw-rw-rw- 1 root other 12 Ox000002 Feb 5 11:12 /dev/hi12
$

HPGL Devices: Here is an example of assigning to a Hewlett-Packard Graphics Language
(HPGL) plotter. If the HPGL device has both output and input capabilities (the plotter's operating
manual will list its specific capabilities), then you can plot and digitize after making the proper
assignments.

The special file is named plotter; since it is in the /dev directory, you need not specify the
pathname:

ASSIGN 5 TO "hpgl,plotter"
PLOTTER IS 5
MOVE 10,30
DRAW 100,100
DIGITIZE Xpenpos,Ypenpos

Keyword Dictionary 2-25

This assignment assumes that a node has been created for this device using something like the
following HP-UX commands (this example is for a Series 500 system):

/etc/mknod /dev/plotter c 12 Ox020500 I Return I
chmod 666 /dev/plotter I Return I

The driver number for HP-IB interfaces on Series 200/300 computers is 21; on Series 500
computers, the HP-IB driver number is 12.

You can check to see what the current device files are by using the HP-UX long list (11) command.

$ 11 /dev/plotter I Return I
crw-rw-rw- 1 root other 12 Ox020500 Feb 4 15:24 /dev/plotter
$

If you change the size of paper on an external plotter, then you must close the device selector
assigned to the plotter and then re-open it. Otherwise, BASIC will not be aware of the change.

Assigning File Selectors
File selectors in the range 11 through 20 may be assigned to HP-UX text/data files. More
than one file selector may be assigned to a given file; however, this practice is not recommended
when one file selector is being used to write to the file. ASSIGN may not be used to assign a file
selector to BASIC/DATA files; use ASSIGN# instead.

Cancelling Assignments
Once a device or file selector is assigned to a resource, that assignment should be cancelled (or
"closed") before a new device selector is assigned to the same resource.

To cancel an assignment, assign the device selector to "*". For example, the statement ASSIGN
7 TO "*" cancels the current assignment of device selector 7.

Related Keywords
OUTPUT, ENTER, CONTROL, STATUS, CRT IS, PRINTER IS, PLOTTER IS

2-26 Keyword Dictionary

ASSIGN#
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The ASSIGN# statement opens a BASIC/DATA file by assigning to it a mass storage buffer.

Item Description Range

buffer number numeric expression, rounded to an integer 1 through 10

file name literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

HP-UX path name literal; an absolute or relative path name (see glos­
sary)

string expression expression evaluating to a file name or HP-UX -
path name

Examples
ASSIGN# 1 TO "myfile"
ASSIGN# 10 TO "system/accounting/may"
ASSIGN# 3 TO A$

Keyword Dictionary 2-27

Description
If the file name is used alone (rather than as part of an HP-UX path name), the file must be in
the current working directory.

A data file must be opened before it can be accessed. Once a buffer is assigned to a file, it
. remains associated with that file until the file is closed. When a file is opened, the file pointer
is placed at the beginning of the file.

A file can be closed by:

• Executing ASSIGN# buffer number TO *.

• Assigning its buffer to another file.

The following operations cause data to be transferred from the buffer to the disc:

• The buffer becomes full.

• The file is closed.

• Program execution is halted.

• A new logical record located in a new disc block is accessed using a random access PRINT#.

• A PRINT# statement is executed from the keyboard.

Related Keywords
PRINT#, READ#

2-28 Keyword Dictionary

Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ATN function returns the arctangent of the numeric argument.

Item Description

numeric argument numeric expression

Examples
Theta=ATN(1)
DISP ATN(A)

Description

ATN

Range

The function returns a REAL number. The value returned depends on the current trigonometric
mode. In RAD (the default) mode, the value returned is in the range -7r /2 through 7r /2 radians.
In DEG mode, the value returned is in the range -90 through 90 degrees. In GRAD mode, the
value returned is in the range -100 through 100.

Related Keywords
DEG, GRAD, RAD, TAN

Keyword Dictionary 2-29

ATN2
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ATN2 function returns the arctangent of Y IX in the proper quadrant.

Item

argument Y

argument X

Examples
Theta=ATN2(4,3)

Description

numeric expression

numeric expression

DISP ATN2(PointY,PointX)

Description

Range

The function returns a REAL number. The value returned depends on the current trigonometric
mode. In RAD (the default) mode, the value returned is in the range -7r through 7r radians. In
DEG mode, the value returned is in the range -180 through 180 degrees. In GRAD mode, the
value returned is in the range - 200 through 200.

Related Keywords
ATN, DEG, GRAD, RAD, TAN

2-30 Keyword Dictionary

AUTO
Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The AUTO command provides automatic line numbering during program entry.

Item

beginning line
number

increment

Examples
AUTO 50
AUTO 100,2

beginning line
number

Description

integer constant (default= 1 0)

integer constant (default= 10)

Description

Range

1 through 65,535

1 through 65,535

Executing AUTO displays the specified beginning line number. When that line has been entered, a
new line number, computed by increasing the current line number by the increment, is displayed.

Automatic line numbering is halted by pressing I Return I in response to a new line number. 1

Related Keywords
NORMAL

1 Pressing I Return I immediately after a line number does not delete that line. For example, typing 100 I Return I does not delete line

100.

Keyword Dictionary 2-31

AWRIT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The AWRIT statement displays the specified string at the current cursor location on the alpha
display.

Item

string
expression

Description Range

string expression string expression containing characters that are to any valid string expression
be sent to the display

Examples
AWRIT StringS
AWRIT String$(3.5) [1.10]&"--------"

Description
The string copied to the display by AWRIT can be up to 65,530 characters in length. If necessary,
the alphanumeric display scrolls to display the string as it is being copied. If the string is shorter
than the size of display memory, AWRIT has no effect on cursor position; the cursor remains
positioned at the first character of the AWRIT string. If the string is longer than the size of
alphanumeric display memory, lines are lost from the top of display memory.

Related Keywords
ALPHA. AREAD

2-32 Keyword Dictionary

AXES
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

x-intersection y-intersection

The AXES statement draws a pair of axes, with optional major and minor ticks, on the plotting
device.

Item

x-tick spacing

y-tick spacing

x-intersection

y-intersection

x major count

y major count

major tick size

Description

numeric expression, interpreted in the current units (de­
fauit=10 ticks on the x axis)

numeric expression, interpreted in the current units (de­
fauit=10 ticks on the yaxis)

numeric expression, interpreted in the current units (de­
fauit=lower-left corner when no tick-spacing is specified;
and 0,0 when tick-spacing is specified)

numeric expression, interpreted in the current units (de­
fault=lower-left corner when no tick-spacing is specified;
and 0,0 when tick-spacing is specified)

numeric expression, rounded to an integer, specifying the
number of tick intervals between major tick marks on the
x axis (default=l)

numeric expression, rounded to an integer, specifying the
number of tick intervals between major tick marks on the
y axis (default=l)

length of a major tick, in graphics units (default=2)

Range

Keyword Dictionary 2-33

Examples
AXES 1,2
AXES 1,2,X(1) ,Y(1)
AXES 1,2,40,20,3,6

Description
The axes are drawn inside the plotting boundaries using the current line type. Tick marks are
drawn symmetrically from the intersection of the two axes such that a major tick mark on each
axis corresponds with the origin.

The x- and y-tick spacing parameters specify the distance between tick marks on each axis.
Negative numbers are interpreted as positive values by taking the absolute value. When no x­
and y-tick spacing parameters are specified, 10 ticks are drawn on each axis.

The x-intersection parameter specifies, in current x-axis units, the point where the x-axis inter­
sects the y-axis. The y-intersection parameter sepcifies, in current y-axis units, the point where
the y-axis intersects the x-axis.

The x- and y-major count parameters specify the number of intervals between major ticks. For
example, a major count of 4 means that every fourth tick is a major tick. The default value of
one draws each tick as a major tick.

The major tick size parameter specifies the length of the major ticks in graphics units. The
default length is 2 GU's. Minor ticks are always 112 the size of major ticks.

Related Keywords
GRID, LINE TYPE, LAXES, LGRID, XAXIS, YAXIS

2-34 Keyword Dictionary

BEEP
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The BEEP statement produces an audible tone (on machines with the corresponding hardware
capability).

Examples
BEEP
IF TimeIsUp THEN BEEP

Keyboard Dictionary 2-35

BINAND
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The BINAND function returns the bit-by-bit AND of the binary representation of two integer argu­
ments.

Item Description Range

numeric argument numeric expression, rounded to an integer range of integers

Examples
x = BINAND(A(1).31)
DISP BINAND(4X*2.Y)

Description
The arguments are represented as two's complement integers. The results of each bit-by-bit AND
are used to construct the integer returned by the function. Each bit is computed according the
following truth table.

Logical AND Used in BINAND

Argument #1

Related Keywords
BINCMP. BINEOR. BINIOR. BIT

2-36 Keyboard Dictionary

o
o
1

1

Argument # 2 Result

a a
1 a
a a
1 1

BINeMP
Keyboard Executable Yes

Programmable Yes
In an IF ... THEN Yes

The BINCMP function returns the binary (one's) complement of an integer.

Item Description

numeric argument numeric expression, rounded to an integer

Examples
Tflag=BINCMP(Z)
DISP BINCMP(2X+4)

Description

Range

range of integers

The argument is represented as a two's complement integer. Each bit of the result is the inverse
of the corresponding bit in the argument (that is, the one's complement). If the argument is
smaller than the number of bits per integer, leading zeros are assumed.

Related Keywords
BINAND. BINEOR. BINIOR. BIT

Keyboard Dictionary 2-37

BINEOR
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The BINEOR function returns the bit-by-bit exclusive OR of the binary representation of two integer
arguments.

Item Description Range

argument numeric expression, rounded to an integer range of integers

Examples
A=BINEOR(S(l) ,S(2»
DISP BINEOR(2X,6)

Description
The arguments are represented as two's complement integers. The result of each bit-by-bit
exclusive OR is used to construct the integer returned by the function. Each bit is computed
according the the following truth table.

Exclusive OR Used in BINEOR

Argument #1

Related Keywords
BINAND, BINCMP, BINIOR, BIT

2-38 Keyboard Dictionary

a
a
1

Argument # 2 Result

a a
1 1

a
1 a

BINIOR
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The BINIOR function returns the bit-by-bit inclusive OR of the binary representation of two integer
arguments.

Item Description Range

numeric argument numeric expression, rounded to an integer range of integers

Examples
DISP BINIOR(X(1) ,C(1»
IF BINIOR(B,1)=8 THEN 200

Description
The arguments are represented as two's complement integers. The result of each bit-by-bit
inclusive OR is used to construct the integer returned by the function. Each bit is computed
according the the following truth table.

Inclusive OR Used in BINIOR

Argument #1

Related Keywords
BINAND, BINCMP, BINEOR, BIT

o
o
1

1

Argument # 2 Result

o 0

1 1

o 1

1 1

Keyboard Dictionary 2-39

BIT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The BIT function returns the value (0 or 1) of the specified bit of the argument.

Item Description Range

numeric argument numeric expression, rounded to an integer range of integers

bit position numeric expression, rounded to an integer, indi- 1 through the number of bits

Examples
Flagl=BIT(A(l).O)

eating which bit is returned per integer

IF BIT(Rl.15)=1 THEN Rl$="ON"

Description
The argument is represented as a two's complement integer. Bit 0 is the least significant bit.

Related Keywords
BINAND. BINCMP. BINEOR

2-40 Keyboard Dictionary

BPLOT

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The BPLOT (byte-plot) statement plots groups of pixels (dots) on graphics raster-type displays!.

~bYte-Plot~ pixels per L---J
~ str Ing r--v---IL....-___ ----'r--'

Item Description

byte-plot string string expression

pixels per row numeric expression, rounded to an integer

*The number of raster pixels per row is machine-dependent.

Examples
BPLOT CHR$(PenNumber),1
BPLOT RPT$(CHR$(1),5),5
BPLOT A$&111("&CHR$(122) , N

Range

non-displayable characters must
be specified using CHR$ or a
metacharacter sequence

cannot exceed the pixel-width
of the display·

1 BPLOT is only possible on devices which are capable of block read/write operations. If BPLOT is attempted on any other device, BASIC

will report the error:

Display type: hpxxxx doesn't support this operation
Error 126 PLOTTER

See ASSIGN for a list of devices that support this type of operation.

Keyboard Dictionary 2-41

Description
BPLOT plots pixels on the current PLOTTER IS device.

Plotting starts at the current pen position and moves across rows of pixels from left to right.
Each character (byte) in the byte-plot string corresponds to one pixel on the display.

• On monochrome displays, only the value of bit 0 is used; thus, bytes with odd values turn
pixels on, and bytes with even values turn them off.

• On color displays, the lower bits of each byte determine the pen number; for instance,
on devices with 8 pen colors, bits 2 through 0 determine the pen color used to draw the
pixel.

The pixels per row parameter determines how many pixels (and therefore characters) are plotted
on a row. When the specified number of pixels are plotted, the pen is moved down one row,
and remains just below the left-most pixel of the preceding row.

The sign of the pixels per row parameter determines how BPLOT pixels interact with existing
pixels. If the parameter is positive, BPLOT performs an exclusive OR with existing pixels. When
the parameter is negative, new BPLOT pixels overwrite existing pixels. Here are several examples
to illustrate these effects.

2-42 Keyboard Dictionary

BPLOT Interaction With Exisiting Dots

Pen Default Color l

0 Black

1 White

2 Red

3 Yellow

4 Green

5 Cyan

6 Blue

7 Magenta

New Pixel
(on display)

BPLOT Byte / PEN # Existing Pixel Positive Ne~tive
(in byte-810t (on display) By-tes Per Row By-tes er Row

string Parameter Parameter
(EXOR) (Dominant Write)

0 a a 0

0 1 1 0

1 a 1 1

1 1 0 1

2 a 2 2

2 1 3 2

2 2 a 2

3 a 3 3

3 1 2 3

3 2 1 3

3 3 0 3

At the conclusion of the byte-plot, the pen is moved to the next row of pixels, directly beneath
the left-most pixel just plotted.

Related Keywords
BREAD

1 The colors of these pens can be changed with Starbase (graphics library) calls.

Keyboard Dictionary 2-43

BREAD
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The BREAD (byte-read) statement reads groups of pixels (dots) from the current graphics raster
display, converts each pixel into a character, and stores the character(s) in the specified string
variable l .

Item Description Range

string name name of a simple string variable or string array any valid name
element

pixels per row numeric expression, rounded to an integer

·The number of raster dots per row is machine-dependent.

Examples
BREAD PixelColors$,3
BREAD String$(3) , N

cannot exceed pixel-width of
the display·

1 BREAD is only possible on devices which are capable of block read/write operations. If BREAD is attempted on any other device, BASIC
will report the error:

Display type: hpxxxx doesn't support this operation
Error 126 PLOTTER

See ASSIGN for a list of devices that support this type of operation.

2-44 Keyboard Dictionary

Description
BREAD reads pixels from the current PLOTTER IS device.

BREAD starts reading at the current pen position, and reads across the row of pixels from left to
right. Each pixel is converted to a character whose binary equivalent is the pen number used to
draw the pixel. For instance, if a pixel was drawn with pen 1, then the corresponding character
in the string is CHR$ (1) -assuming the default color map is in effect.

The pixels per row parameter determines how many pixels are read on a row. When the specified
number of characters has been read, the pen moves to the next row, and byte-reading continues.
At the conclusion of the byte-read, the pen is moved down one row, and remains just below the
left-most pixel of the preceding row read with BREAD.

The BREAD string can contain characters with decimal codes in the range 0 through 255. If the
contents of the string are to be displayed (on the alpha display) or printed, the characters with
decimal codes in the range 0 through 31 should be converted to decimal numbers (using NUM)

to avoid unpredictable display or printer activity.

Related Keywords
BPLOT

Keyboard Dictionary 2-45

BTD
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The BTD (binary-to-decimal) function interprets the string argument as the binary representation
of a number and returns the numeric decimal equivalent.

Item Description Range

string argument string expression containing the base 2 represen- O's and 1 's only; cannot exceed

Examples
Y=BTD(H$)+X

tation of an integer the range of integers

DISP BTD("11010000")

Related Keywords
DTB$. DTH$. DTO$. HTD. OTD

2-46 Keyboard Dictionary

CALL
Keyboard Executable No

Programmable Yes

In an IF ... THEN Yes

The CALL statement transfers program execution to the specified subprogram and, optionally,
passes parameters into the subprogram.

Item

subprogram
name

HP-UX path
name

string expression

simple variable
name

array element

numeric constant

literal

arithmetic or
relational ex-

Description Range

literal; name of a BASIC/SUBP file in the current 14 characters maximum;
working directory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a subprogram name or
HP-UX path name

name of a simple numeric or string variable

element of a numeric or string array

none

string constant containing keyboard characters,
the CHR$ function, and/or metacharacter se­
quences

expression containing variables and/or constants,
along with arithmetic or relational operators

any valid name

Keyword Dictionary 2-47

Examples
CALL Solstice"
CALL "SUB#l" (Number. String$. Array$ 0 . Element$ (3.7) [4.9] • A*B/2)
CALL "/Dl/D2/SUB1"«a»

Description
The CALL statement searches system memory and, if necessary, the current working directory or
specified mass storage location, for the designated subprogram. The HP-UX path name must be
used if the subprogram file is located elsewhere than computer memory or the current working
directory. When the subprogram is found (and, if necessary, loaded), execution begins.

There are three ways to pass parameters between the calling (sub)program and the called sub­
program:

• The variables can be included in COM statements in the main program and one or more
subprograms. Changes in the values assigned to these variables are returned to the calling
program. Numeric and string constants cannot be transferred this way.

• Parameters can be passed by address. The declared precision of numeric variables ac­
companies them into the subprogram. Changes in the values assigned to the variables are
returned to the calling program. Entire arrays can be passed this way, as well as individual
elements of arrays. When an array is passed to a subprogram, the option base of the
program and subprogram must agree.

• Parameters can be passed by value. Changes in the values assigned to the variables are
local to the subprogram; they are not transferred back to the calling program. Individual
elements of arrays can be passed this way; entire arrays cannot be passed unless they are
specified element by element. Numeric and string expressions can be passed by value.

Parameters are passed in the order in which they appear, left to right. The CALL statement
can contain fewer parameters than the SUB statement of the subprogram it calls. Optional
parameters are listed following the required parameters. The number of parameters passed into
the subprogram is returned by the NPAR function. At the beginning of subprogram execution,
unfilled numeric parameters are set to 0, type REAL; unfilled string parameters are set to the
null string.

2-48 Keyword Dictionary

Certain system properties are global; they are passed between the main program and subpro­
grams. Other properties are localknown only to the program or subprogram in which they are
set or enabled. The following declarations are local; all others are global:

Local Properties

OFF ERROR ~ ON ERROR
OFF KEY# ~ ON KEY#
OFF KYBD ~ ON KYBD
OFF TIMEOUT ~ ON TIMEOUT
OFF TIMER# ~ ON TIMER#

When SUBEND or SUBEXIT is executed, program execution returns to the statement immediately
following CALL. Subprograms cannot be invoked by event-initiated branching.

Refer to the table of Reset Conditions in the "Reference Tables" section for additional information.

Related Keywords
COM, FINDPROG, NPAR, STORE, SUB

Keyword Dictionary 2-49

CALLBIN
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CALLBIN statement calls (passes control to) an entry point in a binary program.

pass parameters

arithmatic and/or
relational expression

2-50 Keyword Dictionary

>­
.0

Ll
W
(f)

(f)

~

Item

entry point name

string expression

pass parameters

simple variable
name

array element

numeric constant

literal

arithmetic or
relational ex­
pression

Examples

Description

literal; name of an entry point

expression evaluating to an entry point name

(see diagram)

name of a simple numeric or string variable

element of a numeric or string array

none

string constant containing keyboard characters,
the CHR$ function, and/or metacharacter se­
quences

expression containing variables and/or constants,
along with arithmetic or relational operators

CALLBIN IEntryPoint"
CALLBIN EntryPt$
CALLBIN IEntryPoint" (PassByRef.ByVa11+ByVa12)

Range

language-dependent
(usually 8 to 16 characters)

any valid name

CALLBIN "drawpattern" (AO. (B) .C$.D(4.5) .2E12. l abcde".4*A)

Description
Binaries can make no references to BASIC system entry points-all communication with BASIC
is through pass parameters listed in the CALLBIN statement.

Compiling and Linking Binaries
Once a binary is written in another language, you should use the following procedure to compile
it and link it to BASIC:

1. Use the appropriate script supplied with the BASIC system (the default location is in the
/usr/bin directory);

• makebin_c-compiles and links C binaries to BASIC.

• makebin_p-compiles and links Pascal binaries to BASIC.

• makebin_f-compiles and links Fortran binaries to BASIC.

2. The output file specified in the shell call now contains the compiled, linked binary. The
binary can then be loaded using LOADBIN.

Keyword Dictionary 2-51

Loading and Calling Binaries
Before being called by BASIC, binary programs must have been previously loaded with LOADBIN.
In addition, Pascal and Fortran require initialization routines to be run before calling the binary
routines.

Pascal Binary Calls

100 INTEGER echo
110 echo=O
120 LOADBIN "PMod" !
130 CALLBIN "brt_pascalinit"(echo)
140
150 CALLBIN "PMod_EntPt" (PassParms)
160
110 CALLBIN "brt_pascalwrap"
180 SCRATCHBIN "PMod" !

Load binary (a 'module').
Initialization.

Call the binary.

Call 'wrap-up' routine.
Unload binary.

Note the naming convention for Pascal entry points. They consist of the Pascal module name
(PMod above), an underscore (J character, and finally the Pascal procedure name (EntPt above).

Fortran Binary Calls

120 LOADBIN "Ftn" ! Load binary.
130 CALLBIN "finit" Initialization.
140
150 CALLBIN " EntryPt" (PassParms) Call the binary.
160
110 SCRATCHBIN "Ftn! ! Unload binary.

The of a Fortran entry point is the name of the SUBROUTINE in the object file produced by the
makebin_f script.

When the binary has finished execution, BASIC resumes execution at the statement following
CALLBIN.

If duplicate entry point names are present, the first entry point retrieved into memory is executed.

2-52 Keyword Dictionary

Passing BASIC Variables Into Binaries
The following rules apply to CALLBIN pass parameters:

• Variables can be passed from BASIC by reference (address) or by value to C and Pascal
binaries (see syntax diagram). However, parameters must be passed to Fortran Ionly by
reference.

• The routine to which the BASIC parameters are passed must have matching parameters­
in type and in number. In "C", for example, BASIC INTEGER variables and integer constants
become C type int; SHORT variables become C type float; REAL variables, and all numeric
expressions except integer constants, becomes C type double.

• Array dimensions must be declared in the binary to match those in the BASIC program.

Related Keywords
CALL, LOADBIN, SCRATCHBIN

Keyword Dictionary 2-53

CAT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CAT statement displays the contents of the current working directory, the specified directory,
or the directory listing of a particular file.

Item

file name

HP-UX path
name

string expression

Examples
CAT "/voli"
CAT I voli/dir2"

Description

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

When no file or directory is specified, CAT catalogs the current working directory.

The output from CAT depends on whether the file is a directory or non-directory file, and whether
the non-directory file was created in BASIC or elsewhere.

2-54 Keyword Dictionary

Cataloging Directory Files
When the specified file is a directory, CAT displays the path to the specified directory (as specified
in the CAT parameter) and a list of the directory contents. The directory entry for each file
contains the following information:

• name - the file name.

• size - the size of the file in bytes.

• type - directory, text/data, fifo/pipe, or device.

• permission - read, write, read/write, or none.

• date modified - the date the file was last modified.

When CAT is executed without parameters, the contents of the current working directory and
the directory's absolute path name are listed. Files with file names beginning with a period will
not be listed.

Cataloging BASIC Files
When the specified file is a BASIC file, CAT displays the following information about the file:

• name - the file name.

• bytes - the number of bytes per file record.

• recs - the number of records in the file.

• blocks - the number of blocks occupied by the file.

• type - BASIC/DATA, BASIC/PROG (program), BASIC/SUBP (subprogram),
BASIC/GRAF (graphics).

• date modified - the date the file was last changed.

If the file name is used alone rather than as part of an HP-UX path name, the file must be
located in the current working directory. Files beginning with a period will be listed.

Cataloging Non·BASIC Files
If the specified file is not a directory and is not a BASIC-type file, the catalog consists of a
file header followed by one line one line containing the name, size, type, permission, and date
modified.

Keyword Dictionary 2-55

CEIL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CEIL function returns the smallest integer greater than or equal to the numeric argument.

Item

numeric

argument

Examples
T=CEIL (x)
RoundUpX=CEIL(X)

Description

Description Range

numeric expression

The CEIL and IP functions return the same result for negative arguments.

Related Keywords
IP, INT

2-56 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CFLAG statement clears the specified flag.

§--I numeric ~ CFLAG argument

Item

flag number

Examples
CFLAG 25

Description

numeric expression, rounded to an integer

IF X#4 then CFLAG 2*I

Description

CFLAG

Range

+ 1 through +64

The CFLAG statement clears one flag at a time. SFLAG is used to clear from 1 to the entire 64
flags at once.

All flags are cleared when RUN. IN IT , or CHAIN is executed.

Related Keywords
FLAG. FLAG$. SFLAG

Keyword Dictionary 2-57

CHAIN
Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

The CHAIN statement scratches the current BASIC program, retrieves the specified
BASIC/PROG file, and starts program execution.

Item

file name

HP-UX path
name

string expression

Examples
CHAIN "Filename"
CHAIN FILE$

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

CHAIN I/Dir1/Dir2/filename"

2-58 Keyword Dictionary

Description
If the file name is used alone (rather than as part of an HP-UX path name), the file must be in
the current working directory.

When a program is chained:

• All variable assignments are scratched except those declared in common by COM statements
in the calling program and chained program.

• Assignments made to the user-defined keys by the previous program are scratched.

• Event-initiated branches (ON ERROR. ON TIMER#. ON KEY#. ON KYBD. ON TIMEOUT)

are disabled.

• Binary programs in memory remain intact.

• Program flags are cleared.

• All subprograms in memory are scratched.

Refer to the table of Reset Conditions in the "Reference Tables" section for additional information.

Related Keywords
COM

Keyword Dictionary 2-59

CHECK READ#
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CHECK READ# statement enables and disables an optional verification of data written on a
disc.

Item

buffer number

Examples
CHECK READ# 1

Description

numeric expression, rounded to an integer

CHECK READ# BufferNumber
CHECK READ OFF# 1

Description

Range

1 through 10

When check read is enabled, the system performs an immediate read-after-write verification
whenever data is transferred from the specified buffer to the disc. If a byte-by-byte comparision
detects a difference, an error is reported.

Check read is disabled by executing CHECK READ OFF#.

Related Keywords
PRINT#

2-60 Keyword Dictionary

CHR$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CHR$ function converts a numeric value into a string character according to the machine
character set.

Item Description Range

numeric
argument

numeric expression, rounded to an integer and numbers outside the range
moduloed 256 to evaluate within the range 0 -32768 through +32767 are
through 255 interpreted as 255.

Examples
PRINT A,B,CHR$(13), C
IF A$[X,X]=CHR$(10) THEN 300

Description
CHR$ can be used to include non-displayable characters and quotation marks in literals. (The
metacharacter, "', can also be used. Refer to the glossary for further information.)

Related Keywords
NUM

Keyword Dictionary 2-61

CLEAR

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

When executed without a device selector, the CLEAR statement clears the contents of the alpha
(CRT IS) display. When a device selector is specified, CLEAR clears the corresponding interface
or resets the peripheral device.

Item

device selector

Examples
CLEAR
CLEAR 7
CLEAR 705
CLEAR 922. 924

Description

Description

numeric expression, rounded to an integer

CLEAR Without Parameters

Range

When CLEAR is executed without parameters, it clears all of alpha display memory and moves
the cursor to home position (row 1, column 1).

2-62 Keyword Dictionary

CLEAR With Parameters
The following interface-dependent action is taken:

• HP-IB (must currently be the active controller):

The node to which the device seletor is assigned must be in "raw" mode; that is, there can
be no primary addressing in the node's minor number. See ASSIGN for further information.

If the device selector contains no addressing information (must be assigned to a "raw"
node), then Device Clear (DCL) is sent.

If the device selector contains a primary address, then Unlisten (UNL), Listen Ad­
dress(es)(LAD), and Selected Device Clear (SOC) are sent.

When two or more device selectors are specified, they must be at the same select code
and each must contain an address.

• GPIO: An error is reported.

Related Keywords
CONTROL, GCLEAR, SEND

Keyword Dictionary 2-63

CLIP
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CLIP statement specifies plotting boundaries (the soft clip area) in the current scale units.

Item

x min

x max

y min

y max

Examples
CLIP 0,50,0,10

Description

numeric expression, interpreted in current units

numeric expression, interpreted in current units

numeric expression, interpreted in current units

numeric expression, interpreted in current units

CLIP 10*0, 10*0+50, 0,100

Description

Range

The CLIP parameters, expressed in current units, define the boundaries of the plotting area.
These boundaries replace any previously established plotting boundaries. No lines can be drawn
beyond the plotting boundaries, but labels can be drawn outside the plotting area and within the
graphics limits.

Executing CLIP without parameters provides for digitizing the plotting boundaries. Program
execution halts until two diagonal corners of the boundaries are entered from the plotting device.

The plotting area defined by CLIP cannot be scaled by SCALE, MSCALE, or SHOW. When a scaling
statement is executed after a CLIP statement, the new user units are mapped onto the LOCATE

plotting area or onto the graphics limits.

Plotting boundaries set by CLIP are canceled when LIMIT, PLOTTER IS, or UNCLIP is executed.
The SETGU statement deactivates the plotting boundaries; they are restored by executing SETUU.

Related Keywords
LOCATE, UNCLIP

2-64 Keyword Dictionary

CNORM
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CNORM function returns the column norm of an array. The column norm is computed by
summing the absolute values of the elements in each column of the array and selecting the
largest sum.

Item

array name

Examples
SUM=CNORM(Array1)

Description

name of a one- or two-dimensional array

IF CNORM(A)hlpv,CDE CNORM(B) THEN Y=CNORM(A)

Related Keywords
ABSUM, CNORMCOL, FNORM, RNORM

Range

any valid name

Keyword Dictionary 2-65

CNORMCOL
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CNORMCOL function returns the column number of the column having the largest sum of
absolute values, using the array specified in the most recently executed CNORM function.

(CNORMCOL)---

Examples
MAT B = MAT A(,CNORMCOL)
Arrayl(3,CNORMCOL)=O

Related Keywords
ABSUM, CNORM

2-66 Keyword Dictionary

COM
Keyboard Executable No

Programmable Yes

In an IF ... THEN No

The COM statement dimensions variables, reserves memory for them, and preserves variable
assignments when chaining programs or calling subprograms.

Item

numeric name

upper bound

string name

string length

Examples

Description Range

name of a simple numeric variable or numeric ar- any valid name
ray

integer constant 1 through 65,530

name of a simple string variable or string array any valid name

integer constant 1 through 65,530

100 COM Number.Array(3.10).String$.SArray$(12) [30]
300 COM REAL A.B(5).INTEGER I(50).d$

Keyword Dictionary 2-67

Description
COM declares variables to be held "in common" between programs and subprograms. When a
variable is held in common, its precision (REAL, SHORT, or INTEGER), properties (array lower and
upper bounds, string length), and assigned value are preserved.

COM has two purposes:

• To preserve variables during program chaining. When a program chains another program,
all program variables are scratched except those held in common .

• To pass variables between a program and a subprogram.

Common variables are scratched by executing RUN, IN IT , or SCRATCH.

When variables are held in common, matching COM statements must appear in the originating
program and the (sub)program (accessed by CHAIN or CALL). Variables held in common must
agree in type (numeric versus string, simple versus array), precision, option base, upper bound,
and maximum string length. When precision is not specified, the variable is assumed to be REAL.

All string variables must include an explicitly dimensioned string length.

When COM includes one or more precision declarations, all numeric variables following the decla­
ration have that precision until another declaration is encountered.

A (sub)program can have any number of COM statements. However, the same variable can­
not appear in more than one COM statement. The variable names need not match between
(sub)programs. Variable assignments and properties are passed based on the order in which
they appear in the (sub)program's COM statement(s).

If an OPTION BASE statement is used in a program, it must appear before any COM statements.
If one or more arrays are held in common during chaining, the option base of the two programs
must agree. Likewise, the option base of a program and subprogram must agree if arrays are
passed into the subprogram.

A COM statement cannot be included within a function definition. COM cannot be used to pass
numeric and string constants to subprograms.

Related Keywords
DIM, INTEGER, REAL, SHORT

2-68 Keyword Dictionary

CONT
Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The CONT command resumes execution of a program at the specified line after it has been
paused.

Item

line number

Examples
CONT 100

Description

Description Range

integer constant identifying a program line (de- 1 through 65,535
fault=next program line)

Executing CONT without a line number causes program execution to resume at the line at which
execution was paused. When a line number is specified, execution resumes at that line in the
current program or subprogram. If the specified line number does not exist, execution resumes
at the next higher-numbered line.

When a program is continued, variables retain their current values. If a program is edited while
paused, it cannot be continued. Instead, it must be run.

Related Keywords
IN!T. PAUSE. RUN

Keyword Dictionary 2-69

CONTROL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CONTROL statement writes one or more bytes of data to interface registers or I/O buffer
registers.

Item

device selector

I/O buffer name

register number

control byte

Examples
CONTROL 7,16; 3

Description

numeric expression, rounded to an integer

name of string variable declared an I/O
buffer

numeric expression, rounded to an integer

I numeric expression, rounded to an integer

CONTROL 1,17; C(1),C(2),C(3)

Description

Range

3 through 10

o through 23

a through 255

The register number specifies the first register to be used. If more than one control byte is listed,
the values are written to consecutive registers. The binary equivalent of each control byte sets
and clears bits in the register(s}.

With HP-IB interfaces, the node to which the device selector is assigned must be in "raw" mode;
that is, there can be no primary addressing in the node's minor number. See ASSIGN for further
information.

Related Keywords
ASSERT, STATUS

2-70 Keyword Dictionary

CONVERT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CONVERT statement enables or disables a specified character conversion table to be used
during ENTER and OUTPUT operations on devices and I/O buffers.

Item

device selector

I/O buffer name

string name

Examples

Description

numeric expression, rounded to an integer

name of a string variable previously declared as
an I/O buffer

name of string variable containing the conversion
table

CONVERT IN 7 PAIRS; A$
CONVERT OUT 3 INDEX; B$

CONVERT OUT 3
CONVERT IN Buff Name

Range

3 through 10

Keyword Dictionary 2-71

Description
CONVERT converts incoming or outgoing data for the specified device or I/O buffer. The OUT

option specifies that the conversion is to be used on all OUTPUT data on the specified I/O device
or buffer; IN specifies that the conversion is to be used on all ENTER operations on that device
or I/O buffer. The conversion is not performed on SEND operations.

Separate IN and OUT conversions can be specified for the same device or I/O buffer.

When the optional parameters are omitted, the previously specified conversion for that device
or I/O buffer and direction is disabled.

CONVERT by PAIRS.
PAIRS specifies that the conversion string contains pairs of characters. Each pair consists of the
original character and the character to which it is converted. Before each character is moved
through the interface or buffer, it is compared to the original characters in the conversion string.
If a match is found, it is replaced by the character following the original character.

CONVERT by INDEX
INDEX defines a conversion table based on the string variable. The decimal value of each incoming
or outgoing character is interpreted as a character position value in the table. For example, an
incoming # (decimal value 35) is converted to the 35th character in the string variable.

Related Keywords
ENTER. OUTPUT

2-72 Keyword Dictionary

COpy

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The COpy statement copies an individual file or all the files in a specified directory.

Item

file name

HP-UX path
name

string expression

Examples

Description

literal

literal (see glossary)

expression evaluating to an HP-UX path
name

COpy "/discA/testI/tria15" TO "/discB/testia/tria15"
COpy "/MyDir" TO "/YourDir"

Range

14 characters maximum;
slash, quotation marks, and
leading colon not allowed;

Keyword Dictionary 2-73

Description
Two copying operations are available. File-to-file copy copies the contents of a non-directory file
to a new file. The new file can be in the same directory or in another directory. Directdry-to­
directory copy copies the contents of all the files in a directory to another directory. The syntax
of both operations is the same; the type of copying that occurs depends on whether the file to
be copied is a directory file.

files secured with type 1 security cannot be copied. No error is generated, but the copying
operation does not occur.

Attempting to copy a file to a disc with insufficient space for that file causes an error. If the
error occurs during a directory-to-directory copy, all files copied before the error remain intact.

File-to-File Copy
When the file to be copied is a non-directory file, file-to-file copying occurs. file-to-file copying
creates a new file with the specified name in the directory indicated by the path name of the
new file. The contents of the source file is copied into the new file, and the directory in which
the new file is located is updated. The source file and the new file can be in the same directory
if they have unique file names. If a file name is used alone, that file must be located in, or will
be created in, the current working directory.

Directory-to-Directory Copy
When the file to be copied is a directory file, all the files in the source directory are copied to
the destination directory, and the destination directory is updated to add the new files. The
destination directory must have been previously created. The names of the copied files are not
changed. Subdirectories are not copied.

If a duplicate file name or other non-fatal copying error occurs during copying, that file is skipped
and copying continues. An error message is displayed when copying is completed. If more than
one non-fatal error occurs, only one message corresponding to the first error is displayed.

If a file name alone is used, it must be the name of a directory file in current working directory.

Related Keywords
SECURE, UNSECURE

2-74 Keyword Dictionary

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The cos function returns the cosine of the angle argument.

Item

numeric

argument

Examples
Y=COS(Angle)
X=R*COS(Theta)

Description

Description

numeric expression

cos

Range

The angle argument is interpreted according to the current trigonometric mode: RAD {radians),
DEG (degrees), or GRAD (grads). The default mode is RAD.

Related Keywords
ACS. DEG. GRAD. RAD

Keyword Dictionary 2-75

COT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The COT function returns the cotangent of the angle numeric argument.

Item

numeric
argument

Examples
Y=COT(Theta)

Description

numeric expression

DISP "Cotangent of angle is"; COT(A)

Description

Range

The angle argument is interpreted according to the current trigonometric mode: RAD (radians),
DEG (degrees), or GRAD (grads). The default mode is RAD.

Related Keywords
ATN. ATN2. DEG. GRAD. RAD. TAN

2-76 Keyword Dictionary

CREATE
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The CREATE statement creates a BASIC/DATA file on a disc.

Item Description Range

file name literal; name of a file in the current working direc- 14 characters maximum;

HP-UX path
name

string expression

number of
records

record length

Examples

tory slash and leading colon not al­
lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX
path name

numeric expression, rounded to an integer limited by capacity of
medium

numeric expression, rounded to an integer (de- ~4 bytes
fault=256)

CREATE "newfile", 20, 64
CREATE "/disc1/newfile", Recs, Size

Keyword Dictionary 2-77

Description
If the file name is used alone (rather than as part of an HP-UX path name), the file is created
in the current working directory. When an HP-UX path name is used, the file is created in the
specified directory. An error is returned if the file name already exists.

When the file is created, space is allocated to it on the disc, and a directory entry is made. The
file is not opened when it is created.

Regardless of the file size, the first 256 bytes of a BASIC/DATA file is set aside to store file
management information, and is unavailable for data storage. Minimum file size is one blockl024
bytes. Files are created in integer number of blocks, and additional logical records of the specified
record size are added, if necessary, to fill the file. For example, CREATE "file". 50.30 creates
a 2-block file containing 59, 30-byte records and 256 bytes of ovehead.

Related Keywords
ASSIGN#

2-78 Keyword Dictionary

CRT IS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The CRT IS statement selects the destination device for the DISP statement and for system
responses.

Item

device selector

file selector

line length

Examples
CRT IS 1
CRT IS Printer701

Description

Description Range

numeric expression, rounded to an integer

numeric expresison, rounded to an integer 11 through 20

numeric expression, rounded to an integer (de- 1 through 220
fault=80)

Output from DISP (USING), LIST, and CAT is sent to the CRT IS device or file.

The line length specifies the maximum number of characters sent to the CRT IS device before an
end-of-line (EOL) sequence is sent. EOL character(s) are not counted as part of the line length.
When a DISP USING format string specifies output that exceeds the CRT IS line length, the line
is broken at the line length and the format is continued at the beginning of the next line.

Related Keywords
ASSIGN, DISP, IMAGE

Keyword Dictionary 2-79

esc

The CSC function returns the cosecant of the angle argument.

Item

numeric
argument

Description

numeric expression

Examples
Cosecant=CSC(Angle)
DISP CSC(Theta)

Description

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

Range

The angle argument is interpreted according to the current trigonometric mode - RAD (radians),
DEG (degrees), or GRAD (grads). The default mode is RAD.

Related Keywords
DEG, GRAD, RAD

2-80 Keyword Dictionary

CSIZE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CSIZE statement specifies the height, aspect ratio (width/height), and slant of LABEL char­

acters.

Item

space height

aspect ratio

character slant

Examples
CSIZE 12
CSIZE 12 .. 8

Description

numeric expression, interpreted in graphics units
(default=3 GUs)

numeric expression (default=O.6 for pen
plotters; machine dependent for the display)

numeric expression, interpreted according to the
current trigonometric mode (default=O)

CSIZE Height.Shape.Slant

Range

-7r /2 < slant < 7r /2
(RAD mode)
-90 < slant < +90
(DEG mode)
-100 < slant < + 100
(GRAD mode)

Keyword Dictionary 2-81

Description
The space height parameter is the height, in graphics units, of the character space (see glossary).
The aspect ratio is the ratio of the width of the character to its height.

The slant parameter specifies, in the current trigonometric mode, the clockwise slant of the
character from vertical. If the slant parameter is out of range, the character slant defaults to O.

The following diagram and table describes how pen plotters position characters in the character
space. 1

CHARACTER
HEIGHT

SPACE WIDTH

CHARACTER WIDTH

• Character dimensions on the graphics display are device-dependent.

2-82 Keyword Dictionary

SPACE
HEIGHT

CSIZE Character Dimensions

Character Dimension

Space height

Symbol height

Space width

Symbol width

Description

CSIZE space height parameter

1f2 the space height

3/4 aspect ratio parameter X height parameter

2/3 space width

Labels can be reflected by changing the sign of the CSIZE parameters:

Reflecting Labels

Sign of Height

positive

positive

negative

negative

Related Keywords
DEG, GRAD, RAD

Sign of Aspect Ratio

positive

negative

negative

positive

Effect

unreflected

reflected across y-axis

reflected across x-axis

reflected across origin

Keyword Dictionary 2-83

CURSCOL

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CURSCOL function returns the current column location of the cursor in alpha display memory.

(CURSCOL }--

Related Keywords
CURSROW

2-84 Keyword Dictionary

CURSOR

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The CURSOR statement reads the current location of the graphics input device and places those values in
the specified numeric variables.

Item

x-coordinate
variable

y-coordinate
variable

pen status
variable

Examples

Description

simple numeric variable or array element

simple numeric variable or array element

simple numeric variable or array element

CURSOR Xposition. Yposition
CURSOR X. Y. PenDown
CURSOR Cx(I). Cy(I)

Range

any valid name

any valid name

any valid name

Keyword Dictionary 2-85

Description
There are two general cases of graphics input and output devices. They can be separate devices
(such as a display and a mouse), or they can be the same (such as with plotters, in which the
pen is both output and input locator). See ASSIGN and PLOTTER IS for details of selecting these
devices. With separate input and output deVices, the CURSOR statement reads the location of the
input device. When input and output devices are the same physical device, CURSOR also reads
the location of the output device (since it is the same as the input deVice).

The input device's x and y coordinates are interpreted according to the current units.

Normally, a pen status of 1 means pen down and 0 means pen up. However, on this system the
pen status variable does not necessarily contain the current up/down pen status. It is set by the
last plotting operation. For instance:

DRAW 10,10
CURSOR X,Y,PenStatus

Sets the variable PenStatus to 1, regardless of the current up/down status of the pen.

Related Keywords
DIGITIZE, WHERE

2-86 Keyword Dictionary

CURS ROW
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The CURSROW function returns the current row location of the cursor in alpha display memory.

(CURSROW }--

Description
The row number returned by CURSROW corresponds to the cursor position on the screen when
row 1 of display memory is at the top of the screen.

Related Keywords
CURSCOL

Keyword Dictionary 2-87

Notes

2-88 Keyword Dictionary

DATA
Keyboard Executable No
Programma ble Yes

In an IF ... THEN No

The DATA statement contains numeric and/or string data which is assigned to program variables
listed in one or more READ statements. (For information about using DATA as a secondary
keyword, see SEND.)

Item

numeric constant

literal

Examples
DATA 2, 4, 6, 8

Description

numeric quantity consisting of digits a through 9
with optional decimal point, sign, and exponential
notation

string constant consisting of characters entered
from the keyboard

DATA ABC,2.5E20,DEF,3," leadingspaces"

Range

Keyword Dictionary 2-89

Description
A program can contain any number of DATA statements. The statement is declaratory, and extra
data is ignored if there are no corresponding READ variables. A data pointer is used to access
data items. A (sub)program's READ operations start with the first item in the lowest numbered
DATA statement. When all data items in a DATA statement have been read, the pointer moves to
the next-higher numbered DATA statement.

When a READ statement accesses a DATA statement for a numeric variable assignment, the data
constant must be a numeric value. When the READ statement is assigning a value to a string
variable, the DATA statement can contain a numeric value, an unquoted string, or a quoted string;
a numeric value is interpreted as a literal containing digits. Quotation marks are regarded as
string delimiters, and are not part of the string. Strings delimited by quotation marks, however,
can contain commas and leading and trailing blanks.

Quotation marks around literals are optional and are not part of the assignment; the quotation
marks make it possible to include leading and trailing blanks in literals.

If the keyword is not followed by a numeric constant or literal, the statement is interpreted as
DATA "" (null string).

Subprograms maintain their own data pointers. When a subprogram is being executed, READ

statements access DATA statements within the subprogram, starting with the lowest numbered
DATA statement in the subprogram. When program execution returns to the calling program,
READ operations resume where they left off when the subprogram was called.

DATA statements cannot be included in multistatement lines. Comments (using the comment
delimiter!) cannot be added to DATA statements.

Related Keywords
INPUT, READ, RESTORE

2-90 Keyword Dictionary

DATE
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The DATE function returns the current value of the system clock date counter.

Description
The date counter is in the form YYDDD where YY is the year and DDD is the day number in
the range 1 through 366.

Related Keywords
DATE$. TIME

Keyword Dictionary 2-91

DATE $
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The DATE$ function returns the current value of the system clock date counter in YY /MM/DD
format.

Related Keywords
DATE. TIME

2-92 Keyword Dictionary

DEF FN
Keyboard Executable No

Programmable Yes

In an IF . .. THEN No

The DEFFN statement defines a single-line user-defined function and its formal parameters. For
multiple-line functions, DEF FN defines the beginning of the function and the formal parameters
used within the function.

numeri~a~~nction~ ____________ '-______________ '-r-____________ ~~ ________ r-~

formal parameters

y

reuired for single-

line functions

required for single­
line functions

A

strin~:m~nction ~------------'---------------'-r-------------~~------~~~

formal parameters

Keyword Dictionary 2-93

Item

numeric function
name

numeric
parameter

string parameter

numeric
expression

string function
name

string expression

string length

Examples

Description

name of the user-defined function

numeric variable name

string variable name

(see glossary)

name of the user-defined function

(see glossary)

numeric expression, rounded to an integer

DEF FNCube(Number)=Number-3
DISP FNCube(Side)

DEF FNSlash$(String$[30])
FOR 1=1 TO 30
IF String$[I.I]=I/" THEN String$[I.I]=I;"
NEXT I
FNSlash$=String$[1.18]

FN END
PRINT# 1.A(1); FNSlash$(B$)

2-94 Keyword Dictionary

Range

any valid numeric variable
name

subscripted variables not
allowed

subscripted variables not
allowed

any valid string variable name

1 through 65,530

Description
A maximum of 30 parameters can be passed into the function. The formal parameters listed
in the DEF FN statement must match the actual parameters listed in the calling FN statement in
type-numeric versus string. The actual parameters are passed into the user-defined function by
value; any changes made to parameters within the user-defined function are local to the function
and not available to the rest of the program. However, all program variables (except those whose
names are the same as formal function parameters) are available in the user-defined function.

Function definitions are local to the program or subprogram in which they are located.

If a string parameter passed into a function is longer than 18 characters, it must be dimensioned
within the function DEF FN statement. When a string user-defined function passes a string
expression back to the program, that expression can be no longer than 18 characters.

User-defined functions must not be recursive. DEF FN cannot be included in a multistatement
line.

Single-Line Functions
DEF FN is a declaratory statement; it is ignored if the function is not referenced. Single-line
functions must include the function assignment (= numeric expression or = string expression).

Disable any ON ERROR statements before executing a single-line function. Otherwise, an error
may result in a premature exit from the function.

Multiple-Line Functions.
The DEF FN statement defines the beginning of the function; FN END defines the end. An FN ... =

statement within the function defines the value passed back to the program. Branching statements
should not be used to exit the function.

The block of statements defining the function can be placed anywhere within the program, except
that a function cannot be nested within another function.

Related Keywords
FN

Keyword Dictionary 2-95

DEFAULT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The DEFAULT statement specifies how warnings are handled by the system.

(DEFAULT~
ON

Examples
DEFAULT OFF
IF Angle=O THEN DEFAULT ON

Description
With default on, warnings generate a message and, if relevant, a default value. With default off,
warnings generate a message and halt execution. The power-on condition is default on.

2-96 Keyword Dictionary

DEG
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DEG statement sets degrees as the unit in which angles are measured.

Description
When DEG is executed, all angle parameters in statements and functions are interpreted as
degrees. (There are 360 degrees in a circle.) All functions returning an angle return a value in
degrees.

The angle mode of a program is global. When a subprogram is called, the current angle mode
is carried into the subprogram. If a subprogram changes the angle mode and then returns to
the main program, the new mode is carried back to the main program.

Related Keywords
GRAD. RAD

Keyword Dictionary 2-97

DELETE
Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The DELETE command deletes program lines from the current program or subprogram in memory.

Item

beginning line
number

beginning line
number

Description

integer constant identifying a program line

ending line number integer constant identifying a program line

Examples
DELETE 30
DELETE 30,90

Description

Range

1 through 65,535

1 through 65,535

Specifying only the beginning line number deletes that line. Specifying both parameters deletes
all lines within that range.

When both a main program and one or more subprograms are present in memory, DELETE acts
upon the program specified by the previous FINDPROG statement.

Related Keywords
FINDPROG, SCRATCH, SCRATCHSUB

2-98 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DET function returns the determinant of the specified matrix.

Item Description

matrix name name of a two-dimensional numeric array

Examples
Denominator=DET(Matrix1)
IF DET(A)=O THEN 300

Description

DEY

Range

any valid name

The specified matrix must be a square matrix. (The number of rows must equal the number of
columns.)

Related Keywords
DETL

Keyword Dictionary 2-99

DETL
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DETL function returns the determinant of the last matrix inverted in a MAT ... INV statement,
or the determinant of the cofficient matrix (first argument in parentheses) in the most recently
executed MAT ... SYS statement.

Examples
A=DETL
IF DETL=O THEN 400

Description
The matrix whose determinant is returned must have been previously specified in a MAT ... INV
statement or a MAT ... SYS. The most recently executed statement is used.

Related Keywords
DET. MAT ... INV. MAT ... SYS

2-100 Keyword Dictionary

DIGITIZE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DIGITIZE statement reads the graphics input locator's position, and assigns its x and y
coordinate values to the specified variables.

Item Description

x-coordinate simple numeric variable or array element
variable

y-coordinate simple numeric variable or array element
variable

pen status variable simple numeric variable or array element

Examples
DIGITIZE Xposition. Yposition. PenStatus
DIGITIZE xCI). y(I)

Description

Range

any valid name

any valid name

any valid name

The current graphics input device is determined by the PLOTTER IS statement.

• If this device has only "output" capabilities (see the table in ASSIGN), then DIGITIZE cannot
be executed.

• If the input and output devices are one in the same (such as with most plotters), the input
device's locator is the physical pen of the current plotting device.

• If you have specified separate graphics input and output devices (such as a display and a
mouse), DIGITIZE reads the input device's locator position.

The pen x- and y-coordinates are interpreted according to the current units_

Keyword Dictionary 2-101

The pen status variable is assigned the value ° if the pen is up, and 1 if the pen is down. (Note
that this parameter is not the current status of the input locator's pen. Instead, it is set by the
last plotting statement. For instance, MOVE sets it to 0, and DRAW sets it to 1.)

When DIGITIZE is executed, program execution is suspended until the pen coordinates (and
optional status) are entered from the input device. Digitizing can be aborted by pausing the
program, or by resetting the console or terminal. To reset an HP 262x terminal, press I CTRL I
W (or whatever key sequence is currently defined to generate the "SIGQUIT" signal). To pause
a program, press I CTRL I W (or whatever key sequence is currently defined to generate the
"interrupt" signal.)

Note that it is occasionally possible to digitize a point outside the current LIMIT boundaries.

Related Keywords
CURSOR. WHERE

2-102 Keyword Dictionary

DIM
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN No

The DIM statement allocates memory for REAL numeric arrays, string variables, and string arrays.

Item

numeric array
name

upper bound

string variable
name

string length

Examples

Description

name of a numeric array

integer constant

name of a simple or array string variable

integer constant

DIM A(300). B(2.50). C$[20]
DIM 0$(25)[30]. E$(3.3) [3]

Range

any valid name

1 through 65,530

any valid name

1 through 65,530

Keyword Dictionary 2-103

Description
One- and two-dimensional arrays are allowed.

If an array is to be explicitly dimensioned, the dimensioning statement must be executed before
any of the elements of the array are referenced. If an element is referenced before the array is
explicitly dimensioned, an array is implicitly dimensioned with upper bound(s) equal to 10. If a
string variable is referenced before the string length is dimensioned, the string length is implicitly
dimensioned to 18.

A variable can be dimensioned only once within a program; an attempt to dimension a variable
that has already been explicitly or implicitly dimensioned causes an error.

A program can contain any number of DIM statements. If the program contains an OPTION BASE
statement, dimensioning statements must occur after the option base has been declared.

The dimension(s) of a variable are global, known to the program and any subprograms to which
the variable is passed.

Related Keywords
INTEGER. REAL. SHORT

2-104 Keyword Dictionary

DIRECTORY
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DIRECTORY statement displays a directory of the main program and the subprograms cur­
rently in system memory.

(DIRECTORY ~

Description
The directory lists the subprograms in their order in system memory, along with the deallocated
size (the size before RUN or INIT), the number of lines, and the allocation status of each sub­
program. An arrow (» indicates the current (sub)program. The subprogram names listed in the
directory are the names with which the subporgrams were initially created (using FINDPROG) and
stored.

Related Keywords
FINDPROG, SCRATCHSUB

Keyword Dictionary 2-105

DISP
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The DISP statement outputs the display items to the current display (selected by CRT IS).

items diSPlayl

TAB not allowed
with USING.

Item Description Range

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

IMAGE line label name identifying an IMAGE statement any valid line name

format string

column

numeric
expression

string expression

string expression containing one or more field
specifiers (see IMAGE statement for syntax)

numeric expression, rounded to an integer

2-106 Keyword Dictionary

-99,999 through 99,999;
negative numbers are inter­
preted as 1

Examples
DISP Number; Letter$
DISP TAB(10);A$."Results=";Result
DISP USING "DC3D.5D.4X.7A";A."dollars"
DISP USING 100; A.B$.C

Description
The keyword USING provides for specifying the format of output. When DISP is executed without
USING, a standard format is used.

Simple DISP (Without USING)
Simple DISP uses standard number format (see glossary) for numeric items, and displays numeric
and string items in either of two field widths:

• When display items are separated by semicolons, they are displayed in narrow format with
a leading blank or minus sign. Strings are output with no leading or trailing blanks.

• When display items are separated by commas, they are displayed in wide format, left­
justified in 21-column fields. Items longer than 21 characters occupy more than one field.

When the TAB function is included as a display item, the cursor moves to the designated column.
Negative column numbers are treated as TAB(l). Column numbers greater than the line length
are reduced MOD (line length). When TAB is used to control format, display items should be
separated by semicolons; using commas causes output to be displayed in wide format.

When the list of display items is exhausted, an end-of-Line (EOL) sequence, ordinarily carriage
return/line feed, is sent to the display. The EOL can be suppressed by including a comma or
semicolon after the last display item.

Control Characters
Control characters can be included as display items by specifying their ASCII code as argument
in the CHR$ function or by using the metacharacter - followed by the character decimal code.

Formatted Output
DISP USING uses a format string contained in the statement itself or in a referenced IMAGE
statement to format the output. (Refer to IMAGE for the syntax of the format string.) The format
string, consisting of one or more field specifiers separated by delimiters (comma or slash), is used
from left to right. Display items are paired with their corresponding field specifiers. Certain field
specifiers do not use a display item (for example, X).

Keyword Dictionary 2-107

If the format string is exhausted before all the display items have been processed, the format
string is reused from the beginning. Extra field specifiers are ignored. If a field is larger than
the numeric item, the number is right-justified in the field. A warning is issued if the number
is larger than the field. (A minus sign requires a digit position if M or S is not included in the
field specifier.) Numbers are rounded to the number of decimal placed indicated by the field
specifier. Standard number format can be chosen by using the image specifier K.

The TAB function cannot be used with DISP USING.

When the list of display items is exhausted, an end-of-line (EOL) sequence, ordinarily carriage
return/line feed, is sent to the display. The EOL can be suppressed by placing the image
specifier # at the beginning the format string. Unlike with simple DISP, a terminating semicolon
or comma is ignored and does not suppress the EOL sequence.

Related Keywords
IMAGE. OUTPUT. PRINT

2-108 Keyword Dictionary

DIY
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DIV operator returns the integer portion of the quotient resulting from a division operation.
The DIV operation can also be indicated by the symbol \.

Item

dividend

divisor

Examples
C=A DIV B
DISP (A+B)\C

Description

Description

numeric expression

numeric expression

A DIV B is equivalent to the expression IP (A/B) .

Related Keywords
MOD

Range

Keyword Dictionary 2-109

DOT

The DOT function returns the dot product of two vectors.

Examples
DISP DOT(A,B)
IF DOT(C,D)=O THEN 600

Description

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The dot product (scalar product) of two vectors is computed by summing the products of the
corresponding elements of the two vectors. The two vectors must be the same size.

Related Keywords
MAT

2-110 Keyword Dictionary

DRAW
Keyboard Executable Yes
Programmable Yes

In an IF . ; . THEN Yes

The DRAW statement lowers the pen and moves it to the specified X-, y-coordinate position. The
pen remains down until it is raised by another statement.

~ x-coordinate ~ y-coordinate H

Item

x-coordinate

y-coordinate

Examples
DRAW 10,10

Description

numeric expression,
units

numeric expression,
units

DRAW XPosition, XPosition*5

Description

interpreted in

interpreted in

Range

the current

the current -

DRAW uses the current units mode (UU's or GU's) and line type. In UU's mode, lines cannot be
drawn outside the plotting boundaries. In GU's mode, the plotting boundaries become equivalent
to the graphics limits; therefore, lines can be drawn anywhere within the graphics limits.

In both UU's mode and GU's mode, the logical pen can be moved outside the plotting area.
However, the physical pen cannot be moved beyond the plotting boundaries.

Related Keywords
I DRAW , LINETYPE, MOVE, PLOT

Keyword Dictionary 2-111

DTB$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The DTB$ (decimal-to-binary) function returns a string containing the base 2 representation of the
decimal argument.

Item

numeric

argument

Examples
A$=DTB$(45)

Description

numeric expression, truncated to an integer

DISP DTB$(X(1)/X(2»

Related Keywords
BTD, DTH$, DTO$, HTD, OTD

2-112 Keyword Dictionary

Range

DTH$
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The OTH$ (decimal-to-hexadecimal) function returns a string containing the base 16 representation
of the decimal argument.

Item

numeric
argument

Examples
DISP OTH$(5700)

Description

numeric expression, truncated to an integer

IF OTH$(I(5»="A4" THEN J=12

Related Keywords
BTO, OTB$, OTO$, HTO, OTO

Range

Keyword Dictionary 2-113

DTO$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The OTO$ (decimal-to-octal) function returns a string containing the base 8 representation of the
decimal argument.

Item

numeric

argument

Examples
Y$=OTO$(A(l))
OISP OTO$(512+X)

Description

numeric expression, truncated to an integer

Related Keywords
BTO, OTB$, OTH$, HTO, OTO

2-114 Keyword Dictionary

Range

DTR
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The OTR (degrees-to-radians) function interprets the numeric argument as an angle measured in
degrees, and returns the value of the angle in radians.

Item

numeric
argument

Description

numeric expression

Examples
Radians=OTR(Oegrees)
DISP OTR(90)

Description

Range

The argument and value returned by OTR are independent of the current trigonometric mode.

Related Keywords
RTO

Keyword Dictionary 2-115

DUMP ALPHA
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The DUMP ALPHA statement copies the contents of the current alpha (CRT IS) display to the
current PRINTER IS device. (This statement only works with "line-oriented" terminals!.)

(DUMP ALPHA H

Description
It is best not to dump the alpha display directly to a printer. Instead, you should first direct the
dump to an HP-UX file, and then spool this file to a printer. Here is an example:

ASSIGN 11 TO IIDwnpA_File ll

PRINTER IS 11

DUMP ALPHA

PRINTER IS 1

ASSIGN 11 TO 11*11

SHELL

$ Ipf DwnpA_File

I CTRL I D I

Note that, depending on system load, there may be duplicate, partial, or missing lines in the
alpha dump.

Related Keywords
DUMP GRAPHICS

A "line-oriented" terminal is one that can send and receive characters one line at a time_ If you can type in a BASIC statement or
command, execute it, move the cursor back onto the same line, and successfully re-execute it, you have a "line-oriented" terminal.

2-116 Keyword Dictionary

DUMP GRAPHICS
Keyboard Executable Yes
Programmable Yes
In an IF . .. THEN Yes

This statement copies the contents of the current graphics (PLOTTER IS) display! to the current
PRINTER IS device2 .

(DUMP GRAPHICS ~

Description
The contents of the graphics display are copied dot-by-dot to the printer.

Related Keywords
DUMP ALPHA

The graphics display must support block read/write operations. See ASSIGN for a list of devices that support this type of operation.
2 The printer must conform to the HP Raster Interface standard. See your printer's documentation to determine whether it conforms to

this standard.

Keyword Dictionary 2-117

Notes

2-118 Keyword Dictionary

ENABLE KBD

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The ENABLE KBD statement enables and disables various keyboalld keys during program execution
and/ or keyboard input (INPUT and LINPUT).

(ENABLE KBD >----B---t

Item Description

mask numeric expression, rounded to an integer

Examples
ENABLE KBD 16
ENABLE KBD KeyMask

Description

Range

a through 255

The binary equivalent of the decimal mask is used to activate (enable) and deactivate (disable)
various portions of the keyboard. The keyboard is divided into four areas:

• The ~1 key.

• The I PAUSE 12 key.

• The special function keys.

• All other keys.

Keys can be activated and deactivated separately for program execution (while the program is
running) and keyboard input (while the program is halted at an INPUT or LINPUT statement).
Setting a bit (1) activates the key(s); clearing a bit (0) deactivates the key(s}.

The default key sequence is

r=-:~==Y::===:;-' key is the key sequence currently defined to generate the interrupt ("SIGINT") signal. The default key sequence is

Keyword Dictionary 2-119

Bit Number Decimal Value Operating Mode Key(s) Affected

7 128 program execution I RESET I
6 64 program execution I PAUSE I
5 32 program execution special function keys

4 16 program execution all other keys

3 8 keyboard input I RESET I
2 4 keyboard input I PAUSE I
1 2 keyboard input special function keys

and all other keys

0 1 keyboard input special function keys
and all other keys

Related Keywords
INPUT, LINPUT, ON KEY#, ON KYBD

2-120 Keyword Dictionary

END
Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

The END or STOP statement is the last statement executed by a program.

®----r
s--J
Description
END and STOP are interchangeable. The statements are optional and can appear anywhere in the
program. More than one END and/or STOP statements are allowed.

Related Keywords
STOP

Keyword Dictionary 2-121

ENTER
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ENTER statement inputs bytes of data from a device or buffer and assigns the data to the
specified numeric and/or string variables.

2-122 Keyword Dictionary

Item

device selector

I/O buffer name

IMAGE line
label

Description

numeric exprssion, rounded to an integer (see
glossary)

name of a string variable declared as an I/O buffer

name identifying an IMAGE statement

Range

any valid line label

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

format string string expression consisting of one or more field
specifiers (see page 2-126 for syntax)

numeric name name of a numeric variable

string name name of a string variable

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

Examples
ENTER 701 USING Enterformat; A. B$. C
ENTER 5; Var1. Var2. Var3

Description

any valid name

any valid name

1 through 65,530

1 through 65,530

1 through 65,530

The bytes of data entered from the specified device are used to build a number or string, which
is then assigned to the specified variable. If a CONVERT operation is enabled, the conversion
occurs immediately after the character is taken from the interface or buffer.

Simple ENTER (without USING)
Numeric and string variables are handled differently:

• Numeric values are entered using free field format. The ASCII characters representing
the number are read into the variable starting with the first numeric character. Numeric
characters include the digits 0 through 9, and the characters +. -. ., and E when they
occur as part of a numeric entry in a meaningful way. Leading non-numeric characters
are ignored. Once the computer is entering a number, a non- numeric value terminates
that number. All spaces (leading, embedded, and trailing) are ignored. Entry of characters
stops when a line-feed character is read.

Keyword Dictionary 2-123

• String data is entered by placing the ASCII characters into the specified string variable
using free field format. Characters are placed in a string variable until:

• The string is full.

• A line feed character is encountered.

• A carriage return/line feed sequence is encountered.

If a carriage return is not followed by a line feed, the carriage return is entered into the string.
Entry of characters stops when the last enter item is completed.

Formatted ENTER
The ENTER USING statement uses a format string contained in the statement itself, or in a
referenced IMAGE statement, to format the input. The format string, consisting of one or more

field specifiers separated by delimiters (, or I)' is used from left to right. Input items are paired
with their corresponding field specifiers, which consist of one or more image specifiers. If the
format string is exhausted before all the output items have been processed, the format string is
reused from the beginning. Extra field specifiers are ignored.

format string

2-124 Keyword Dictionary

field specifier

Keyword Dictionary 2-125

Table of Image Specifiers and Delimiters for ENTER

Image Specifier Meaning

X Directs the computer to skip one character.

D. Z. *. .. S. M All six specifiers accept one character to be used in building a numeric variable.
The characters may be the digits 0 through 9, the decimal point, and signs.
The six different specifiers are proVided for documentation purposes and for
compatibility between OUTPUT and ENTER format strings.

K The number of string in input in free field format (see glossary).

A Inputs one string character.

B Inputs one byte of binary data and enters its decimal equivalent into a numeric.

W Inputs two bytes of binary data to be used in building a 16-bit, 2's complement bi­
nary word. The first byte entered is the most significant. The decimal equivalent
of the resulting word is entered into a numeric variable.

D Accepts one character for building a numeric variable, and proVides for ignoring
all commas while the number is being entered. (Without this specifier, a comma
ends the entry of the number.)

E Inputs an exponenet consisting of the letter E, a sign, and three digits.

e Inputs an exponent consisting of the letter E, a sign, and two digits.

/ Causes computer to skip to the beginning of a new field. The new field is
indicated by a line feed.

When used as a statement terminator specifier, eliminates the requirement for
a line feed to terminate the ENTER statement; the ENTER statement terminates
as soon as the last variable in the statement has been satisfied. When uses as
a field terminator specifier, eliminates the line feed as a terminating condition
during free-field entry; line feeds entered are placed in the string.

% When used as a statement terminator specifier, allows EOI or line feed as ter­
mination condition. When used as a field terminator spcifier, allows EOI as an
additional terminating condition.

Related Keywords
CONVERT. IMAGE. IOBUFFER

2-126 Keyword Dictionary

EPS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The EPS function returns machine epsilon, the smallest positive REAL number.

Examples
DISP EPS

Related Keywords
INF

Keyword Dictionary 2-127

ERRL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The ERRL function returns the line number of the program line generating the most recent error
or warning.

Examples
PRINT ERRL
IF ERRL=200 THEN GOSUB 700

Related Keywords
ERRM, ERRN, ERROM, ERRSC, ON ERROR

2-128 Keyword Dictionary

ERRM
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The ERRM statement displays the error message generated by the most recent error.

Description
If no error has occurred since power on, reset, SCRATCH, LOAD, or GET, the system displays
Error 0 : O.

ERRM is useful as part of an ON ERROR recovery routine, where no error message would otherwise
be displayed.

Related Keywords
ERRL, ERRN, ERROM, ERRSC, ON ERROR

Keyword Dictionary 2-129

ERRN
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The ERRN function returns the error number of the most recent error or warning.

Examples
OISP ERRN
IF ERRN=49 THEN GOSUB Assignment

Description
If no error has occurred, ERRN returns O.

Related Keywords
ERRL, ERRM, ERROM, ERRse, ON ERROR

2-130 Keyword Dictionary

ERROM
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The ERROM function returns a number indicating which BASIC module returned the most recent
error or warning.

Examples
Drsp ERROM
IF ERRN=113 AND ERROM=232 THEN 400

Description
ERROM is used to distinguish between two or more errors having the same error number but
originating from different BASIC modules. (See the "Error Messages" section for examples).

Related Keywords
ERRL. ERRM. ERRN. ERRSC. ON ERROR

Keyword Dictionary 2-131

ERRSC
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ERRse function returns the interface select code of the interface that generated the most
recent interface-dependent error.

Examples
IF ERRSe=7 THEN STATUS 7,l;C
DISP ERRSe

Description
When an interface error occurs, ERRSe returns the interface select code of that interface until
another I/O error occurs at another interface. If no interface error has occurred, ERRse returns
o.

Related Keywords
ERRL, ERRM, ERRN, ERROM, ON ERROR

2-132 Keyword Dictionary

EXOR

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The EXOR operator returns a 1 or 0 based on the logical exclusive-OR of the operands.

--1 operand ~ operand r
Item

operand

Examples
T=A(1) EXOR A(2)

Description

numeric expression

IF You EXOR Cize THEN YouHealthy

Description

Range

A non-zero operand (positive or negative) is interpreted as a logical 1. An operand of zero
is interpreted as a logical o. The following table describes the results of performing an EX OR
operation.

Exclusive OR
A B A EXOR B

0 0 0

0 1 1

1 0 1

1 1 0

Related Keywords
AND, NOT, OR

Keyword Dictionary 2-133

EXP
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The EXP numeric function returns the natural (base e) antilogarithm by raising e to the power of
the argument.

Item Description

numeric argument numeric expression

Examples
K=A*EXP(-E/RT)
PRINT A;EXP(A)

Related Keywords
LOG

2-134 Keyword Dictionary

Range

FINDPROG
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN No

The FINDPROG statement locates (and retrieves, if necessary) the specified subprogram in system
memory or mass storage. ,When FINDPROG is executed from the keyboard, a system pointer is
positioned at the subprogram so that it can be listed and edited.

string
expression

Item Description

subprogram name literal

HP-UX path name literal; an absolute or relative path name (see glos­
sary)

Range

14 characters maximum;
slash and leading colon not al­
lowed

string expression expression evaluating to a file name or HP-UX -
path name

Examples
FINDPROG
FINDPROG "SubSort"
FINDPROG FileName$&"2"

Keyword Dictionary 2-135

Description
When FINDPROG is executed without a parameter, the pointer is moved to the main program.

FINDPROG first searches computer memory for the specified subprogram. If the subprogram is
not found, the current working directory or specified mass storage location is searched. The
HP-UX path name must be used if the subprogram is not located in computer memory or in the
current working directory. If the subprogram is found in mass storage, it is brought into system
memory.

If the specified subprogram is not found in system memory or in mass storage, the pointer is
moved to a new block of system memory. The system displays NEW PROGRAM, indicating that
a new subprogram can now be entered from the keyboard without overwriting other programs
currently in memory. The FINDPROG name must be used when the new subprogram is stored
(when the SUB statement creates the subprogram in memory.)

Related Keywords
CALL, DIRECTORY, STORE

2-136 Keyword Dictionary

FLAG
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The FLAG function returns the status of the specified flag-set (1) or clear (0).

Item Description

flag number numeric expression, rounded to an integer

Examples
IF FLAG(1) THEN 200
IF FLAG(A)=FLAG(B) THEN GOSUB 1000

Related Keywords
CFLAG. FLAG$. SFLAG

Range

+ 1 through +64

Keyword Dictionary 2-137

FLAG$
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The FLAG$ function returns an eight-character string whose binary representation shows the
status of the 64 flags.

Examples
DISP FLAG$
IF FLAG$="H2a?"&CHR$(12)&"lfM" THEN GOTO 400

Description
The left-most (most significant) bit of the left-most character represents the status of flag 1.

When the FLAG$ string is displayed, executable control characters are interpreted. Non­
executable control characters are ignored.

Related Keywords
CFLAG. FLAG

2-138 Keyword Dictionary

FLIP
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The FLIP statement caU5~S the keyboard to toggle between typewriter mode operation and
BASIC mode operation'"

Description
In typewriter mode, the keyboard produces unshifted lowercase letters and shifted uppercase
letters. In BASIC mode, the keyboard produces unshifted uppercase and shifted lowercase
letters. Only letter keys are affected. The default condition is typewriter mode.

When ON KYBD branching has been enabled for alphabet keys, the branch is taken only when the
typed character exactly matches a character in the ON KYBD string expression. Thus, if you have
specified an interrupt for "m" and FLIP has put the keyboard into "BASIC" (uppercase) mode,
pressing the 00 key will not generate an interrupt (unless you either press I Shift I with the key,
or you have also enabled branches for the uppercase letter "M").

Related Keywords
ON KYBD

1 Implementation of FLIP is termimal-dependent.

Keyword Dictionary 2-139

FLOOR

See INT

2-140 Keyword Dictionary

FN
Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

The FN keyword is a prefix used before the name of a user-defined function to identify a call
to the function. Optional parameters in parentheses are passed to the function. The function
returns a value used by the expression containing the function call.

FN ... = is used within a multiple-line, user-defined function to assign a value to the function. FN

END defines the end of multiple-line functions.

(FN END H

Assignment for multiple-
line function; expression must
match function name in type.

Keyword Dictionary 2-141

Item Description Range

numeric name name of a simple numeric variable or numeric ar- any valid name
ray

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

literal

numeric constant

string name

numeric or string
expression

Examples

string constant

a numeric expression that can contain digits 0
through 9, plus or minus sign, a decimal point,
and exponential notation

name of a simple string variable or string array

(see glossary)

Y=FNlnverse
FNMultilineFunction$=A$ & "***"

Description

1 through 65,530

1 through 65,530

1 through 65,530

any valid name

When FN invokes a user-defined function, the function type (numeric versus string) must match
the context of the expression invoking the function. For example, the value returned by a string
function cannot be assigned to a numeric variable.

The parameters passed into a user-defined function by FN must match the DEF FN parameter list
in number and type (numeric versus string). The parameters are passed by value; any changes
made to the value of program variables within a user-defined function are not carried back to the
program. Numeric and string variables, elements of numeric and string arrays, and substrings
can be passed to a function.

The FN ... = statement must appear somewhere within a multiple- line function to assign the
function a value which is returned to the program.

Recursive user-defined functions are not allowed; a function cannot invoke itself.

Related Keywords
DEF FN

2-142 Keyword Dictionary

FNORM
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The FNORM function returns a value computed by squaring each element of the specified array,
summing the squares, and then taking the square root of the sum.

Item

array name

Examples
M=FNORM(Array3)

Description Range

name of a one- or two-dimensional numeric array any valid name

Related Keywords
CNORM. RNORM

Keyword Dictionary 2-143

FOR ... NEXT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The FOR and NEXT statements together define a program loop that is repeated until a loop counter
passes a specified value.

Item

loop counter

initial value

final value

step size

loop
counter

Examples

Description

simple numeric variable name

numeric expression

numeric expression

numeric expression (default= 1)

100 FOR Counter=l TO 100
110 DISP Counter
120 NEXT Counter

200 FOR I=N TO N+M STEP stepsize
220 A(I)= .592*ABS(I AA 3)
230 IF A(I»X THEN 400
240 PRINT I, A(I)
250 NEXT I

2-144 Keyword Dictionary

Range

cannot be an array variable

YES

FOR Statement

loop counter = initial value

Store final value and step size

Body of loop

NEXT Statement

loop counter =

loop counter + step size

Statement following

NEXT

Keyword Dictionary 2-145

Description
The FOR statement defines the beginning of the loop, sets the loop counter equal to the specified
value, and stores the final value and step size. Each time the NEXT statement is executed, the
loop counter is incremented (or decremented, in the case of a negative step value) by the step
value and then compared to the final value. If the final value has not been passed, program
execution is transferred to the statement immediately following the FOR statement. If the final
value has been passed, program execution continues with the line immediately following the NEXT

statement. (The loop counter is not equal to the final value when the loop has been exited.)

Because the loop counter is tested immediately after the FOR statement is executed (see
flowchart), the loop is not executed at all if the loop counter initial value is already greater
than the final value. For example, a loop beginning with the statement FOR I=6 TO 5 will not
be executed, since 6 is already greater than the final value 5.

The loop can be exited by unconditional or conditional branching; the loop counter retains is
current value. The loop may be re-entered in the body of the loop or at the FOR statement.
Entering a loop at the FOR statement reinitializes the loop counter.

The FOR statement stores the loop counter, final value, and step size, and these values remain
unchanged for the loop until the FOR statement is executed again. When the loop counter, final
value, and step size are numeric expressions containing variables, the values of those variables
can be changed within the loop without affecting how many times the loop is executed. However,
changing the value of the loop counter within the loop can affect how many times the loop is
executed. The loop counter can be used in expressions defining the initial value, final value, and
step size.

Each FOR statement must have one, and only one, matching NEXT statement. When FOR ... NEXT

loops are nested, one loop must be contained entirely within another.

2-146 Keyword Dictionary

FP
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The FP function returns the fractional part of the numeric argument. The function returns a
value greater than -1 and less than + 1. A negative argument returns a negative value.

Item Description

numeric argument numeric expression

Examples
Y=FP(X+Q)
IF FP(X)=O THEN DISP "X IS AN INTEGER"

Related Keywords
IP

Range

Keyword Dictionary 2-147

FRAME
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The FRAME statement draws a frame around the plotting area using the current line type and
pen number.

Description
After the frame is drawn, the pen is positioned at the lower left corner of the frame and the pen
is up.

Related Keywords
CLIP, LINE TYPE, LOCATE

2-148 Keyword Dictionary

FXD
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The FXO statement specifies the number of digits to the right of the decimal point in labels
plotted by LAXES and LGRIO.

@----..jX-digitSI-I--.----------r--.....-I·1

LO +_"'''' ~
Item

x-digits

y-digits

Examples
FXO 3
FXO 3,5

Description

Description

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range

parameters outside the range
o through 7 are interpreted as
FXD(O)

parameters outside the range
o through 7 are interpreted as
FXD(O)

FXO allows for formatting LAXES and LGRIO labels with 0 through 7 digit positions to the right
of the decimal point. A maximum of eight digits plus sign are allowed in the label. The x-digits
parameter specifies the format for x-axis labels; y-digits specifies the format for y- axis labels.
If the y-digits parameter is omitted, the x-axis and y-axis labels are formatted using the x-digits
parameter.

If a label is too large or too small for the specified label format, it is plotted in exponential
notation.

Related Keywords
LAXES, LGRIO

Keyword Dictionary 2-149

Notes

2-150 Keyword Dictionary

GCLEAR
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

When the display is the current plotting device, the GCLEAR statement clears the graphics display
to the current background color.

Item Description

y-coordinate numeric expression

Examples
IF X=O THEN GCLEAR
GCLEAR YtoBottom

Description

Range

If a y-coordinate position is specified, the screen in cleared from that position to the bottom of
the display. The y-coordinate is interpreted in the current scaling units.

The current background color is the current color of PEN (0) (default is black).

If the current plotting device is a peripheral plotter, GCLEAR may send a "page eject" command
(hardware-dependent).

Related Keywords
PEN

Keyword Dictionary 2-151

GET

Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The GET command retrieves the specified text file from mass storage and attempts to enter the
contents into memory as program lines, checking for proper syntax as each line is retrieved.

Item Description Range

file name literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

HP-UX path name literal; an absolute or relative path name (see glos­
sary)

string expression expression evaluating to a file name or HP-UX -
path name

Examples
GET laPet"
GET A$

2-152 Keyword Dictionary

Description
GET retrieves ASCII character strings from the specified HP-UX "ASCII" text file; the file must
not contain control characters. Each record is read as a separate character string. When a string
consists of a valid BASIC program statement preceded by a line number, the string is entered
into system memory as a program line. If a string cannot be properly interpreted as a program
line, due to a syntax error, it is entered into system memory as a comment line. When GET

encounters a character string that is not preceded by a valid line number, it displays the line.

The retrieved lines are read into system memory without scratching the program already there.
If an incoming line has the same line number as a line already in memory, the new line overwrites
the original line.

When the GET operation is finished, the system displays Get finished.

Related Keywords
LOAD

Keyword Dictionary 2-153

GLOAD
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The GLOAD statement retrieves the specified BASIC/GRAF file and enters its contents into graphics
display memory.

Item

file name

HP-UX path
name

string expression

Examples

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

iiteral; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

GLOAD "Filename"
GLOAD II/v1/filename"
GLOAD "/Dir1/Dir2/filename"

2-154 Keyword Dictionary

Description
Executing GLOAD overwrites the contents of the graphics raster display as the contents of the
BASIC/GRAF file are entered into graphics display memory. This file must be compatible with
the raster into which it is being loaded; that is, it should have been created with GSTORE on a
raster of the same size, or created specifically for this size of display.

The alpha display can be viewed again by executing ALPHA.

If the file name is used alone (rather than as part of an HP-UX path name), GLOAD uses the
current working directory.

Related Keywords
MASS STORAGE IS, GSTORE

Keyword Dictionary 2-155

GOSUB
Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

The GOSUB statement causes program execution to branch unconditionally to the subroutine
located at the specified line.

Item

line number

line label

Examples
GOSUB 760
GOSUB marine

Description

Description

integer constant identifying a program line

name of a program line

Range

1 through 65,535

any valid name

The specified line must be in the same program or subprogram as the GOSUB statement. If the
specified statement is declaratory (for example, DIM, REM, or DATA), the program branches to
the next executable statement.

When GOSUB is executed, execution of the subroutine continues until a RETURN statement causes
branching to the statement following the GOSUB statement.

Subroutines can be recursive; i.e., a subroutine can invoke itself.

Related Keywords
GOTO, ON ... GOSUB, ON ... GOTO, RETURN

2-156 Keyword Dictionary

GOTO
Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

The GOTO statement causes program execution to branch unconditionally to the specified line.

Item

line number

line label

Examples
200 GOTO 1000

Description

integer constant identifying a program line

name of a program line

300 GOTO Increment
400 IF Happy THEN Smile

Description

Range

1 through 65,535

any valid name

The specified line must be within the same program or subprogram as the GO TO statement. If
the specified statement is declaratory (for example, DIM, REM, or DATA), the program branches
to the next executable statement.

When GOTO is used after THEN or ELSE in an IF ... THEN (... ELSE) statement, the GOTO keyword
can be omitted.

Related Keywords
GOSUB, IF ... THEN ... ELSE, ON ... GO SUB , ON ... GOTO

Keyword Dictionary 2-157

GRAD
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The GRAD statement sets grads as the unit in which angles are measured.

Description
When GRAD is executed, all angle parameters in statements and functions are interpreted as
grads. (There are 400 grads in a circle.) All functions returning an angle return a value in grads.

The angle mode of a program is global. When a subprogram is called, the current angle mode
is carried into the subprogram. If a subprogram changes the angle mode and then returns to
the main program, the new mode is carried back to the main program.

Related Keywords
DEG. RAD

2-158 Keyword Dictionary

GRAPHICS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The GRAPHICS statement toggles the graphics raster on and off I .

(GRAPH I CS}---t

Description
The display must be the current PLOTTER IS device. The GRAPHICS statement has no effect on
the contents of alpha or graphics CRT memory. The GRAPHICS and ALPHA statements allow you
to alternately view the graphics and alpha displays without affecting display memory (supported
only on terminals-devices associated with tty nodes).

Related Keywords
ALPHA

1 On displays with separate alpha and graphics rasters.

Keyword Dictionary 2-159

GRID
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The GRID statement draws a grid pattern onto the plotting area using the current line type and
pen number.

x-intersection y-intersection

2-160 Keyword Dictionary

Item

x-tick spacing

y-tick spacing

x-intersection

y-intersection

x-grid spacing

y-grid spacing

minor tick size

Examples
GRID 5,10

Description

numeric expression, interpreted in current units
(default= 1 ° ticks on the x axis)

Range

numeric expression, interpreted in current units -
(default= 1 ° ticks on the y axis)

numeric expression interpreted in the current x­
axis units (default=lower-left corner when no tick­
spacing is specified; and 0,0 when tick-spacing is
specified)

numeric expression interpreted in the current y­
axis units (default=lower-left corner when no tick­
spacing is specified; and 0,0 when tick-spacing is
specified)

numeric expression, rounded to an integer, speci­
fying the number of tick intervals between vertical
grid lines (default= 1)

numeric expression, rounded to an integer, spec­
ifying the number of tick intervals between hori­
zontal grid lines (default= 1)

length of a minor tick, in graphics units (default=2)

GRID 5,10,Xcross,Ycross
GRID t(l) ,t(2) ,30,30,2,4,3

Keyword Dictionary 2-161

Description
The grid is drawn across the entire plotting area using the current line type. Grid lines are drawn
symetrically from the intersection of the two axes such that a grid line on each axis corresponds
with the origin.

The x- and y-tick spacing parameters specify the distance between tick marks on each axis.
Negative numbers are interpreted as positive values by taking the absolute value. When no x­
and y-tick spacing parameters are specified, 10 ticks are drawn on each axis.

The x-intersection parameter specifies, in current x-axis unlts, the point where the x-axis inter­
sects the y-axis. The y-intersection parameter specifies, in current y-axis units, the point where
the y-axis intersects the x-axis.

The x- and y-grid spacing parameters specify the number of intervals between grid lines. For
example, a major count of 4 means that, every fourth tick is a grid line. The default value of
one draws each tick as a grid line.

The minor tick size parameter specifies the length of the ticks in graphics units. The default
length is 2 GU's.

Note that if negative pen numbers are used, the axis may be destroyed by GRID; if this happens,
you should use a positive pen number.

Related Keywords
AXES. LGRID. LINE TYPE

2-162 Keyword Dictionary

GSTORE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The GSTORE statement stores the contents of graphics display memory into a BASIC/GRAF file
with the specified name.

Item

file name

HP·UX path
name

string expression

Examples
GSTORE IIFilename ll

GSTORE FILE$

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX
path name

GSTORE II/Dirl/Dir2/filename ll

Keyword Dictionary 2-163

Description
If the file name is used alone (rather than as part of an HP-UX path name), the GSTORE operation
uses the current working directory.

When GSTORE is executed, the system searches the specified directory for a BASIC/GRAF file
with the specified name. If the file is found, the current contents of the graphics display memory
is stored in that file, overwriting the previous contents. If no such file is found, then the file is
created.

An error is returned if the file name exists with another file type.

Related Keywords
GLOAD, MASS STORAGE IS

2-164 Keyword Dictionary

HMS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The HMS function converts a string in hours:minutes:seconds (HH:MM:55) format to an integer
number of seconds.

Item Description

string argument string expression

Examples
DISP HMs(n09:55:34 n)
LoopTime$=HMS (A$&n : n&B$&n : n&C$)

Description

Range

(see Description)

The string expression must evaluate to a string in the form HH:MM:55, where:

• HH (hours) consists of two digits in the range 00 through 99.

• MM (minutes) and 55 (seconds) are each two digits in the range 00 through 59.

Related Keywords
DATE, HMS$, MDY, MDY$, TIME

Keyword Dictionary 2-165

HMS$
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The HMS$ function converts a specified number of seconds to hours:minutes:seconds (HH:MM:SS)
format.

Item Description Range

numeric argument non-negative numeric expression, rounded to an <360,000
integer, interpreted as number of seconds

Examples
Header$=HMS$(A)
DISP HMS$(12000)

Description
HMS$ returns a string in the range 00:00:00 (HMS$ (0») through 99:59:59 (HMS$ (359999»).

Related Keywords
DATE, HMS, MYD. MYD$. TIME

2-166 Keyword Dictionary

HTD
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The HTD (hexadecimal-to-decimal) function interprets the string argument as the hexidecimal (base
16) representation of an integer and returns the numeric decimal equivalent.

Item

string argument

Examples
Y=HTD(J$&"B")

Description Range

string expression containing the base 16 represen- characters must be a through
tation of an integer 9, A through F; cannot exceed

the range of integers

IF D=HTD("A") THEN 700

Related Keywords
BTD, DTB$, DTH$, DTO$, OTD

Keyword Dictionary 2-167

Notes

2-168 Keyword Dictionary

IDRAW
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The IDRAW statement draws a line from the current pen position to a position calculated by
incrementing the current position by the specified x- and y-increments.

~ x-increment ~ y-increment ~

Item

x-increment

y-increment

Examples
IDRAW 10,50

Description

numeric expression

numeric expression

IDRAW RATIO*10, B(l)

Description

Range

IDRAW uses the current units mode (UU's or GU's) and line type. In UU's mode, lines cannot be
drawn outside the plotting boundaries. In GU's mode, the plotting boundaries become equivalent
to the graphics limits; therefore, lines can be drawn anywhere within the graphics limits.

In both UU's mode and GU's mode, the logical pen can be moved outside the plotting area.
However, the physical pen cannot be moved beyond the plotting boundaries.

Related Keywords
DRAW, IMOVE, IPLOT, LINE TYPE, PLOT

Keyword Dictionary 2-169

IF ... THEN ... (ELSE)
Keyboard Executable No
Programmable Yes

In an IF ... THEN No

The IF ... THEN ... (ELSE) statement causes conditional branching to the specified program line,
based on the value of a relational or numeric expression.

Item

relational
expression

Description

an expression comparing two numeric or string
expressions using relational operators (=, <, >,
::;, ~, <> or #).

numeric expression evaluated as true if non-zero and false if zero

statement

line number

line label

Examples

a programmable statement allowable
"In an IF ... THEN"

integer constant identifying a program line

name of a program line

IF SIN (Angle) THEN DrawLine
IF Variable<5 THEN 200 ELSE PRINT Variable

2-170 Keyword Dictionary

Range

refer to individual keyword legal
usage tables

1 through 65,535

any valid name

Description
When the expression following IF evaluates as true (non-zero), the portion of the statement
following THEN is executed. When the expression following IF is false and the statement includes
ELSE, the portion of the statement following ELSE is executed. When the expression following
IF is false and the statement does not include ELSE, program execution proceeds to the next
line.

THEN and ELSE can be followed by:

• A line number or line label. This is interpreted as an implied GOTD.

• An executable statement. The statement must be one permitted "In an IF ... THEN." If
the executable statement is a GOSUB statement, the subroutine RETURN statement returns
execution to the line following the IF ... THEN statement.

• A sequence of statements concatenated with co.

Related Keywords
GOSUB, GOTO

Keyword Dictionary 2-171

IMAGE
Keyboard Executable No
Programmable Yes

In an IF ... THEN No

The IMAGE statement contains a format string referenced by DISP USING. ENTER USING. LABEL

USING. OUTPUT USING. or PRINT USING. The format string contains one or more field specifiers
that describe the format of the incoming or outgoing data.

~
~

format string

Item

field specifier

repeat factor

format string

Description

literal consisting of one or more image specifiers
(see subsequent syntax diagram)

integer constant

character string consisting of one or more field
specifiers

2-172 Keyword Dictionary

Range

>0

Examples
IMAGE 2ZCDDD.2D,4X,12A,K
IMAGE #, 4(M3*.3DE,2X,2(3A»
IMAGE "Results = ",2(4D.2D,3X)

Description
When the format string is part of an IMAGE statement, it is not enclosed in quotes. A format string
is enclosed in quotes when it is part of a DISP USING, ENTER USING, LABEL USING, OUTPUT

USING, or PRINT USING statement.

The format string consists of one or more field specifiers, separated by delimiters. Most field
specifiers designate a format for a particular item. Items are paired with their corresponding field
specifiers from left to right. Certain field specifiers are not paired with an item. For example,
X specifies a blank space between two items and / specifies an end-of-line sequence.

A field specifier consists of one or more image specifiers. The image specifiers within a field
specifier describe the format of one PRINT, DISP, LABEL, OUTPUT, or ENTER item. Items must
match their field specifiers in type. For example, a string expression must be formatted with
a field specifier appropriate for string data rather than one for numeric items. Certain image
specifiers can be preceded by a repeat factor. For example, 4A specifies four character spaces.
Certain image specifiers are used to control the EOL sequence sent to devices.

If the format string is exhausted before the entire list of items is output, the format string is
reused from the beginning. Extra field specifiers are ignored.

If a field specifier is larger than a numeric item, the number is right- justified in the field. An
IMAGE overflow occurs when a numeric item requires more digits spaces to the left of the decimal
point than are specified. The overflow is reported as a warning (DEFAULT ON) or error (DEFAULT

OFF). In the case of a warning, the default value assigned to the item may be incorrect. If a
numeric item contains more decimal places than the field specifier, the number is rounded to fit
the field.

If a string item is longer than the field specifier, it is truncated to fit the field. If the string item
is shorter than the field specifier, the string is left-justified in the field.

IMAGE statements are declaratory; they are ignored if they are not referenced.

Keyword Dictionary 2-173

field specifier

2-174 Keyword Dictionary

Table of Image Specifiers and Delimiters for DISP, PRINT, OUTPUT, and LABEL l

Image Specifier Meaning

X Outputs a blank space.

D Digit position to left or right of the radix symbol. If the field to the left of the radix is
larger than the number, the number is right-justified with leading blanks. If no sign is
specified, a minus sign occupies one digit position. If a sign image is specified, the sign
is positioned to the left of the left-most digit.

Z Digit position to left of the radix symbol. If the field to the left of the radix is larger
than the number, the number is right-justified with leading zeros.

* Digit position to left of the radix symbol. If the field to the left of the radix is larger
than the number, the number is right-justified with leading asterisks.

K

A

B

w

R

literal3

Strings are in compact format with no leading or trailing blanks. Numbers are in
standard number format with no leading or trailing blanks.

Character position for a string character; When the specified field is larger than the
string, characters are left-justified.

Outputs a value as one 8-bit byte of data. Values outside the range 0 through 255 are
reduced MOD (256). Numbers outside the range 0 through 32,767 return the character
•. Numbers are rounded to the nearest integer. 2

Outputs a value as two, 8-bit bytes of a 16-bit word. The most significant byte is output
first. Numbers outside the range -32,768 through 32,767 uses 32,767. Negative
numbers are output in 16-bit 2's complement format. 2

Radix; specifies a decimal point in that postion.

Radix; places a comma in that position.

String constant consisting of any of the following: keyboard characters, the CHR$ func­
tion, and metacharacter sequences. The literal image is output without quotation marks.

This table applies to formatted D1SP, PRINT, OUTPUT, and LABEL. See ENTER for additional information.
2 When output is directed to the printer or display, the character(s) with decimal codes corresponding to the data bytes are output.
3 Literal images cannot be used with OUTPUT USING.

Keyword Dictionary 2-175

Table of Image Specifiers and Delimiters for DISP, PRINT, OUTPUT, and LABEL (Continued)1

Image Specifier

c

P

E

e

S

M

""
/

Meaning

Digit separator; places a comma in that position. Comma is output only if digits on
both sides of the separator are output.

Digit separator; places a period in that position. Period is output only if digits on both
sides of the separator are output.

Exponential format; exponent consists of three digits plus sign.

Exponential format; exponent consists of two digits plus sign.

Sign; + or -.

Sign; blank or -.

literal; outputs characters enclosed between quotes.

Image specifer or delimiter; performs a carriage return/line feed.

Placed at beginning of format string to suppress output of an end-of-line sequence.

Related Keywords
DISP, ENTER, PRINT, OUTPUT

1 This table applies to formatted DISP, PRINT, OUTPUT, and LABEL. See ENTER for additional information.

2-176 Keyword Dictionary

IMOVE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The IMOVE statement lifts the pen and moves it from the current position to a position calculated
by incrementing the current pen position by the specified x- and y-dispiacements.

~ x-increment ~ V-increment ~

Item

x-increment

Description

numeric expression, interpreted in the current
units

Range

y-increment numeric expression, interpreted in the current -
units

Examples
IMOVE 5,10
IMOVE A-l0,B

Description
IMOVE uses the current units mode (UU's or GU's). The physical pen cannot move beyond the
plotting boundaries (eqUivalent to the graphics limits in GU's mode). However, the logical pen
can be moved beyond the plotting boundaries or graphics limits.

Related Keywords
DRAW, IDRAW, IPLOT, LINE TYPE, MOVE, PLOT

Keyword Dictionary 2-177

INF
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The INF function returns machine infinity, the largest positive REAL number.

Examples
DISP INF

Related Keywords
EPS

2-178 Keyword Dictionary

Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The INIT command initializes the BASIC program currently in memory.

Description
Initializing a program:

• Erases variable assignments made from the keyboard.

INIT

• Allocates memory to all program variables and assigns them values of 0 and the null string.

• Checks the program for prerun errors; for example, referencing a nonexistent line, dupli-
cate user-defined functions, and dimensioning the same variable more than once.

• Sets the lowest numbered line as the first line to be executed when the program is run.

• Cancels any enabled event-initiated branching.

• Clears program flags.

Refer to the table of Reset Conditions for additional information.

Related Keywords
CONT, PAUSE, RUN

Keyword Dictionary 2-179

INPUT
Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

The INPUT statement is used to assign values entered from the keyboard to program variables.

Item

numeric name

string name

subscript

beginning position

ending position

Description Range

name of a simple numeric variable or numeric ar- any valid name
ray

name of a simple string variable or string array

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, rounded to an integer

any valid name

1 through 65,530

1 through 65,530

1 through 65,530

2-180 Keyword Dictionary

Examples
30 INPUT Variablel,Variable2$,Arrayl(2,3)
50 INPUT Array2$(3) ,Array2$(4) [3,5] ,Array2$(6) [3]

Description
Executing INPUT causes program execution to halt until a value has been entered from the
keyboard for each input item. Items are separated by commas. The entire list of items must be
entered at once. An error is returned if the number of items entered does not equal the number
of items listed in the input statement.

Individual items must match the specified INPUT variable(s) in type (numeric versus string). The
input statement can include simple numeric and string variables, numeric and string array el­
ements, and substrings. Entries from the keyboard can include numbers, numeric expressions
containing numbers and operators, and character strings. If quotation marks appear anywhere
in the input string, they are. regarded as part of the string. The null string can be assigned to
an INPUT string variable only when the INPUT statement contains only that item.

When INPUT is executed, a question mark is displayed on the current alpha display line. A
DISP (USING) statement, executed just before the INPUT statement, can be used to display a
more informative prompt. The question mark appears on a separate line from the DISP (USING)

prompt unless that statement suppresses the end-of-line sequence. If the EOL sequence is
suppressed, the question mark is displayed on the same line as the prompt, immediately after
the last character. The DISP EOL sequence is suppressed by terminating the statement with a
semicolon. The DISP USING EOL sequence is suppressed by including the # image specifier in
the format string.

Live keyboard operations are not allowed while the program is halted at INPUT. If a program is
paused from the keyboard at an INPUT statement, executing CONT resumes program execution
at the line following the INPUT statement; the INPUT variables do not receive assignments.

ON KEY#, ON KYBD, ON TIMER#, and ON ERROR branching are temporarily disabled during exe­
cution of an INPUT statement.

Related Keywords
LINPUT

Keyword Dictionary 2-181

INT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The INT function returns the greatest integer less than or equal to the numeric argument.

Item Description

numeric argument numeric expression

Examples
orsp INT(35.77*X)
IF X/2=INT(X/2) THEN PRINT "Variable X is Even"

Description

Range

The functions INT and FLOOR perform identical operations. INT differs from IP for negative
arguments. For example, IP (-5.6) returns -5, whereas INT(-5.6) returns -6.

The FLOOR function is identical to INT.

Related Keywords
FLOOR, FP, IP

2-182 Keyword Dictionary

INTEGER
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN No

The INTEGER statement declares and reserves memory for integer variables.

Item Description Range

numeric name name of a simple numeric variable or numeric ar- any valid name
ray

upper bound integer constant 1 through 65,535

Examples
INTEGER IntegerVariable.IntegerArray1(10).IntegerArray2(5.3)

Description
All numeric variables are REAL unless declared SHORT or INTEGER.

When the numeric variable name is used with one or two upper bound(s) enclosed in parentheses,
the variable is dimensioned to be a one- or two- dimensional array. The default lower bound of
the array is O. The OPTION BASE statement is used to set the lower bound equal to 1.

When a REAL number is assigned to an INTEGER variable, the number is rounded. Overflow
occurs if the value of the number is outside the range of integers.

When variables are passed to a subprogram by address, the precision declarations accompany
the variable into the subprogram.

Related Keywords
DIM. SHORT. REAL

Keyword Dictionary 2-183

IOBUFFER
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The IOBUFFER statement declares a string variable as an I/O buffer.

~
~

Item Description

string name name of a simple string variable

Examples
IOBUFFER OneDollar$

Description

Range

any valid name

The previously dimensioned length of the string is the size of the buffer. When the buffer is
declared, two pointers (empty and fill pointers) are established for contrulling buffer activity. In
addition, two status and two control registers provide for monitoring the buffer pointers:

I/O Buffer Status Registers

Register Default Value Function

SRa I Buffer empty pointer

SRI a Buffer fill pointer

I/O Buffer Control Registers

Register Default Value Function

CRa I Buffer empty pointer

CRI a Buffer fill pointer

2-184 Keyword Dictionary

• The buffer empty pointer has an initial value of 1. Its value changes when data bytes are
removed from the buffer:

1. A byte of data is accessed by an ENTER statement.

2. The buffer empty pointer is incremented by 1.

The value of the buffer empty pointer is stored in controlj status register O. The value of
the pointer is restored to 1 when the buffer is empty .

• The buffer fill pointer has an initial value of O. Its value changes as bytes of data are
placed in the buffer:

1. The buffer fill pointer is incremented by 1.

2. A byte of data is placed in the buffer.

The value of the buffer fill pointer is stored in controlj status register 1. The value of the
pointer is restored to 0 when the buffer is empty.

A buffer is empty when the buffer empty pointer equals the buffer fill pointer plus one. A buffer
is full when the buffer fill pointer equals the dimensioned length of the string variable. When a
buffer becomes empty, the buffer fill pointer is reset to 0 and the buffer empty pointer is reset
to 1. The data can be accessed again by changing the value of the buffer fill pointer.

If a conversion table is to be used for a buffer, the CONVERT statement must be executed after
the buffer has been declared with an IOBUFFER statement.

Related Keywords
CONTROL, CONVERT, ENTER, OUTPUT, STATUS

Keyword Dictionary 2-185

IP

The IP function returns the integer part of the numeric argument.

Item Description

numeric argument numeric expression

Examples
PRINT IP(number)
Counter=IP(X+9.6)

Related Keywords
FLOOR, FP, INT

2-186 Keyword Dictionary

Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

Range

IPLOT

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The IPLOT statement moves the pen from the current pen position to a position calculated by
incrementing the current pen position by the specified x- and y-displacements. The optional pen
control parameter specifies the up/down status of the pen.

Item

x-increment

y-increment

pen control

Examples
IPLOT X,Y,P
IPLOT 5,10

Description

numeric expression, interpreted in
units

numeric expression, interpreted in
units

numeric expression, rounded to an
fault=+ 1; pen lowered after move)

Range

the current

the current -

integer (de- -

Keyword Dictionary 2-187

Description
IPLOT uses the current units (GU's or UU's) and line type. In UU's mode, lines cannot be drawn
outside the plotting boundaries. In GU's mode, the plotting boundaries are equivalent to the
graphics limits; therefore, lines can be drawn anywhere within the graphics limits.

In both UU's mode and GU's mode, IPLOT can position the logical pen outside the plotting area.
However, IPLOT cannot position the physical pen outside the plotting boundaries. If none of
the line is inside the current plotting area, the physical pen is not moved, but the logical pen
position is updated.

The optional pen control parameter specifies the up and down position of the pen as follows:

Pen Control

Pen Control Parameter Pen Action

positive, even pen moved and then lifted

positive, odd pen moved and then lowered

negative, even pen lifted and then moved

negative, odd pen lowered and then moved

If no pen control parameter is specified, the up/down status of the pen before IPLOT is executed determines
whether the pen is up or down as it moves. If the pen is up, it is lowered when it reaches its new position.

Related Keywords
LINE TYPE. PLOT. RPLOT

2-188 Keyword Dictionary

KEY LABEL
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The KEY LABEL statement displays the key labels assigned to the user-defined (special function)
keys during program execution.

(KEY LABEL ~

Examples
IF KCode=150 THEN KEY LABEL

Description
When it is executed in a program, KEY LABEL displays the key labels assigned by ON KEY#

statements in the program.

Executing KEY LABEL from the keyboard displays the key labels for the typing aids assigned to
the user-defined keys. The typing aid assignments are changed by executing ON KEY# from the
keyboard.

Related Keywords
OFF KEY#, ON KEY#

Keyword Dictionary 2-189

LABEL
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The LABEL statement plots alphanumeric labels on the plotting device at the current pen postion.

label
items

TAB not allowed
with USING.

Trailing punctuation
ignored with USING.

Item Description . Range

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

IMAGE line label name identifying an IMAGE statement any valid line name

format string

column

numeric expression

string expression

string expression containing one or more field
specifiers (see IMAGE statement for syntax)

numeric expression, rounded to an integer

2-190 Keyword Dictionary

-99,999 through 99,999; neg­
ative numbers are interpreted
as 1

Examples
LABEL "Velocity (m/s)"
LABEL A$
LABEL USING "5Z.2D"; Earnings
LABEL USING Format; Ylabel$ &"(millions) "

Description
Labels can be positioned anywhere within the graphics limits. They are drawn using the current
pen and line type 1. (The current line type remains in effect for lines and axes.) If a negative
pen number is currently in effect, portions of labels may disappear.

LABEL Without Using
Simple LABEL statements use either of two formats:

• When label items are sparated by semicolons, they are drawn in narrow format:

• Numerics are output using standard number format (see glossary), with only a leading
blank or minus sign and no trailing blanks.

• Strings are output with no leading or trailing blanks.

• When label items are separated by commas, they are drawn in wide format:

• Left-justified in 21-column fields, padded with trailing blanks as necessary. (Items
longer than 21 characters occupy more than one field.)

When the TAB function is included as a label item, the cursor moves to the designated column.
Negative column numbers are treated as TAB (1). Column numbers greater than the line length
are reduced MOD (line length). When TAB is used to control format, label items should be separated
by semicolons; using commas causes output to be displayed in wide format.

After all the label items have been drawn, an end-of-line sequence is sent to the logical pen,
moving the pen to a position underneath the first character of the label. The EOL sequence -can
be suppressed by including a comma or semicolon after the last label item.

LABEL Appearance and Position
The following statements control the appearance of labels:

• The CSIZE statement determines the height, aspect ratio, and slant of the label characters.

• The LORG statement determines the position of the label with respect to the pen position
at the time the LABEL statement is executed.

• The LDIR statement determines the angle at which the label is drawn.

Keyword Dictionary 2-191

Formatted Labels
The LABEL USING statement uses a format string contained in the statement itself or in an
accompanying IMAGE statement to format the output. The format string, consisting of one or
more field specifiers separated by delimiters (. or I), is used from left to right. Label items
are paired with their corresponding field specifiers. Certain field specifiers do not use a label
item (for example, X). If the format string is exhausted before all the display items have been
processed, the format string is reused from the beginning. Extra field specifiers are ignored. If
a field is larger than the numeric item, the number is right-justified in the field. A warning is
issued if the number is larger than the field. (A minus sign requires a digit position if M or S

is not included in the field specifier.) Numbers are rounded to the number of decimal places
indicated by the field specifier.

Refer to IMAGE for the syntax of the format string.

Related Keywords
CSIZE. IMAGE. LDIR. LORG

2-192 Keyword Dictionary

LAXES
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

LAXES (label axes) statement draws a pair of axes and labels them with the current scale units at
each major tick mark.

Item

x-tick spacing

y-tick spacing

x-intersection

y-intersection

x-major count

y-major count

major tick size

x-intersection y-intersection

Description

numeric expression, interpreted in the current
units (default= 1 ° ticks on the x axis)

Range

numeric expression, interpreted in the current -
units (default=10 ticks on the yaxis)

numeric expression, interpreted in the current
units (default=lower-left corner when no tick­
spacing is specified; and 0,0 when tick-spacing
is specified)

numeric expression, interpreted in the current
units (default=lower-left corner when no tick­
spacing is specified; and 0,0 when tick-spacing
is specified)

numeric expression, rounded to an integer, spec­
ifying the number of tick intervals between major
tick marks on the x-axis (default=l)

numeric expression, rounded to an integer, spec­
ifying the number of tick intervals between major
tick marks on the y-axis (default=l)

length of a major tick, in graphics units

Keyword Dictionary 2-193

Examples
LAXES (Xmax-Xmin)/10,2
LAXES 1,2,Xsect,Ysect
LAXES 1,2,40,20,3,1

Description
The axes are drawn across the entire plotting area using the current line type. Tick marks are
drawn symmetrically from the intersection of the two axes such that a major tick mark on each
axis corresponds with the origin. Labels are drawn using line type 1. They are placed outside
the plotting boundaries below the x-axis and to the left of the y-axis.

The x and y tick-spacing parameters specify the distance between tick marks on each axis.
When the tick-spacing parameter is positive, the labels are drawn perpendicular to the axis.
When the tick-spacing parameter is negative, the labels are drawn parallel to the axis. When no
tick-spacing parameters are included, 10 ticks are drawn on each axis.

The x-intersection parameter specifies, in current x-axis units, the point where the x-axis inter­
sects the y-axis. The y-intersection parameter specifies, in current y-axis units, the point where
the y-axis intersects the x-axis.

The x- and y-major count parameters specify the number of intervals between major ticks. For
example, a major count of 4 means that every fourth tick is major tick. The default value of 1
draws each tick as a major tick.

The major tick size parameter specifies the length of the major ticks in graphics units. The
default length is 2 GU's. Minor ticks are always the size of major ticks.

If LAXES has been reflected (such as by reversing the parameters in a LIMIT statement), you may
have to reflect the labels back by using the converse reflection operation in a CSIZE statement.

Related Keywords
AXES, GRID, LGRID, LINE TYPE

2-194 Keyword Dictionary

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LBND function returns the lower bound of the specified array.

Item

array name

subscript

Examples

Description Range

name of a one- or two-dimensional numeric array any valid name

numeric expression, rounded to an integer 1 through 2

DISP LBND(array, 1)
MAT S=B(LBND(B,l) :5,3)

Description

LBND

LBND always returns the current option base. The second parameter (subscript) is ignored. (The
parameter is used with the corresponding UBND function to specify which upper bound is to be
returned in the case of two-dimensional arrays.)

Related Keywords
UBND

Keyword Dictionary 2-195

LDIR
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LDIR (label direction) statement specifies the angle at which labels are drawn.

C§)~'I
run , rIse

Item

angle

run

Description

numeric expression, interpreted according to the
current trigonometric mode

numeric expression, interpreted in the current
scale units

Range

rise numeric expression, interpreted in the current -
scale units

Examples
LDIR 60
LDIR A(I).A(I)*1.3

Description
The specified angle is interpreted according to the current trigonometric mode (DEG. RAD, or
GRAD). This angle measures the counterclockwise rotation between the horizontal axis and the
label direction.

The run and rise parameters determine the direction of a vector drawn in the new label direction.

Related Keywords
DEG. GRAD. LABEL. PDIR. RAD

2-196 Keyword Dictionary

LEN
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The LEN (length) numeric function returns the number of characters in the string argument.

Item

string argument

Examples
Y=LEN(A$)

Description

string expression

IF LEN(String$)<=10 THEN String$=String$&1I1I

Description

Range

The value returned is the current number of characters in the string, regardless of its dimensioned
length. The length of the null string is O.

Keyword Dictionary 2-197

LET
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LET statement assigns values to variables. The keyword is optional in program lines.
Assignments from the keyboard must include the keyword.

* Keyword is optional when
statement is in a program line.

Item Description Range

numeric name name of a simple numeric variable or numeric ar- any valid name
ray

string name name of a simple string variable or string array

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

2-198 Keyword Dictionary

any valid name

1 through 65,530

1 through 65,530

1 through 65,530

Examples
LET Variable=5*X
Svariable$=IIABCII&H$
LET A(2,4), B(2,5)=7
Stringl$(3) [2,5]=lIfghi ll

Description
LET assigns the numeric or string value on the right side of the equation to one or more variables
on the left side. Any variables used on the right side must previously have been assigned.

A REAL expression is rounded when assigned to an INTEGER or SHORT variable. The REAL

expression must evaluate to a number within the INTEGER or SHORT range.

When a string expression is assigned to a string variable, the expression must evaluate to a
sequence of characters less than or equal to the dimensioned size of the string variable. When
a string expression is assigned to a substring, excess characters are truncated. For example,
A$ [1 ,2] = II abcde II assigns the characters ab to the first two characters of variable A$.

The following rules apply to string assignments:

• The expression on the right must evaluate to a string less than or equal to the dimensioned
size of the variable.

• When an expression is assigned to a substring, excess characters are truncated. For
example, A$ [n,n+l] =lIabcde ll assigns ab to positions nand n+ 1 of A$.

• When a substring reference contains only the beginning position, characters are entered
into the string starting at that position. For example, A$ En] =lIqrsll assigns qrs to character
positions n, n+ 1, and n+2.

• A$ [n , n] = II abc II assigns a to position n.

• A substring in which the ending position is one less than the beginning position specifies
the null string. For example, A$=B$ [4,3] is equivalent to A$=IIII.

• Substring expressions A$[n+2,n], A$[n+3,n], etc., return an error.

Keyword Dictionary 2-199

LGRID
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LGRID statement draws a grid within the current plotting area and labels each grid line with
the current scale units.

Item

x-tick spacing

y-tick spacing

x-intersection

y-intersection

x-grid spacing

y-grid spacing

minor tick size

x-intersection y-intersection

Description

numeric expression, interpreted in current units
(default= 1 o ticks on the x axis)

numeric expression, interpreted in current units
(default=10 ticks on the yaxis)

numeric expression interpreted in the current x­
axis units (default=lower-left corner when no tick­
spacing is specified; and 0,0 when tick-spacing is
specified)

numeric expression interpreted in the current y­
axis units (default=lower-left corner)

numeric expression, rounded to an integer, speci­
fying the number of tick intervals between vertical
grid lines (default=l)

numeric expression, rounded to an integer, spec­
ifying the number of tick intervals between hori­
zontal grid lines (default=l)

length of a minor tick, in graphics units (default=2)

2-200 Keyword Dictionary

Range

Examples
LGRID 5,10
LGRID Xspace,Xspace*2,Xsect,Ysect
LGRID 5,10,30,30,2,4,3

Description
The grid is drawn across the entire plotting area using the current line type. Grid lines are
drawn symmetrically from the intersection of the two axes such that a grid line on each axis
corresponds with the origin. Each grid line is labeled with the current scale units. Labels are
drawn outside the plotting boundaries below the x-axis and to the left of the y-axis using line
type 1.

The x- and y-tick spacing parameters specify the distance between tick marks on each axis.
When the tick-spacing parameter is positive, the labels are drawn perpendicular to the axis.
When the tick-spacing parameter is negative, the labels are drawn parallel to the axis. When no
tick-spacing parameters are specified, 10 ticks are drawn on each axis.

The x-intersection parameter specifies, in current x-axis units, the point where the x-axis inter­
sects the y-axis. The y-intersection parameter sepcifies, in current y-axis units, the point where
the y-axis intersects the x-axis.

The x- and y-grid spacing parameters specify the number of intervals between grid lines. For
example, a major count of 4 means that every fourth tick is a grid line. The default value of
one draws each tick as a grid line.

The minor tick size parameter specifies the length of the ticks in graphics units. The default
length is 2 GU's.

If LGRID is executed without parameters, two labeled axes are drawn.

If LGRID has been reflected (such as by reversing the parameters in a LIMIT statement), you may
have to reflect the labels back by using the converse reflection operation in a CSIZE statement.

Related Keywords
AXES, GRID, LAXES, LINE TYPE

Keyword Dictionary 2-201

LOT

The LGT function returns the base 10 logarithm of the argument.

Item Description

numeric argument numeric expression

Examples
A(2)=A(1)*LGT(T)
IF LGT(X)=2 THEN DISP X

Related Keywords
LOG

2-202 Keyword Dictionary

Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

Range

>0

LIMIT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LIMIT statement specifies the graphics limits of the plotting device and activates the graphics
default conditions (see glossary). The graphics limits must be within the physical limits of the
plotting device.

~-T------------------------r----+l.1

Item

x-min

x-max

y-min

y-max

Examples
LIMIT 0,125,0,75

Description

numeric expression, interpreted as millimeters

numeric expression, interpreted as millimeters

numeric expression, interpreted as millimeters

numeric expression, interpreted as millimeters

LIMIT A(1),A(2),A(3),A(4)

Description

Range

The LIMIT parameters specify the coordinates, in millimeters, of the lower- left and upper-right
corners of the plotting area. The origin is the lower- left corner of the physical limits. The
parameters must specify coordinates within the physical limits of the plotting device. When
LIMIT is executed, the physical and logical pens are moved to the lower left corner of the
graphics limits(O,O) in GU's.

Executing LIMIT overrides any previously set graphics limits; the new limits remain in effect
until a new LIMIT statement is executed, or until the default graphics limits are activated (see
glossary) by reset or by executing a PLOTTER IS statement.

When LIMIT is executed without parameters, program execution halts until coordinates are
entered from the plotting device.

Keyword Dictionary 2-203

The order of LIMIT parameters can be changed to produce reflected graphics output:

Reflecting Plots

LIMIT Statement Parameters Effect

x-max, x-min, y-min, y-max

x-min, x-max, y-max, y-min

x-max, x-min, y-max, y-min

reflects output across y-axis

reflects output across x-axis

reflects output across origin

Some reflections will also affect labels. However, you can reverse these effects by using negative
CSIZE parameters.

Related Keywords
CSIZE, LOCATE, PLOTTER IS, RATIO, SCALE, SETGU, SETUU, SHOW

2-204 Keyword Dictionary

LINE TYPE
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LINE TYPE statement selects the line type for drawing lines, axes, frames, and grids on
the graphics display. For some peripheral plotters and displays, LINE TYPE also provides for
selecting the repeat length of the line pattern.

Item

type number

repeat length

Examples
LINE TYPE 5
LINE TYPE A.10

Description

Description

numeric expression, rounded to an integer (de­
fault=l)

numeric expression, rounded to an integer, in­
terpreted as GU's (default=4 GU's for peripheral
plotters)

Range

Line types 1 through 8 are available on the graphics display. Type numbers outside this range
default to line type 1.

The repeat length is always expressed in GU's, regardless of the current units. The default value
of the display repeat length is machine-dependent. The repeat length parameter may be ignored
by some display devices.

Keyword Dictionary 2-205

Typical Display Line Types

Here is an example of the line types available on an HP 2627 terminal. Note that they may vary
from device to device.

Type Number Pattern

LUI: TYPE B

LUI: TYPE 7

LIt£ TYPE 6

LIt£ TYPE 5

LIt£ TYPE 4

LINE TYPE 3

LINE TYPE 2

LINE TYPE 1

Related Keywords
PEN

2-206 Keyword Dictionary

LINPUT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The LINPUT statement accepts alphanumeric input from the keyboard, interprets the input as a
character string, and assigns the character string to the specified string variable.

Item

prompt string

string name

subscript

Description Range

literal composed of characters from the keyboard

name of a simple string variable or string array any valid name
element

numeric expression, rounded to an integer 1 through 65,530; maximum of
two allowed

beginning position numeric expression, rounded to an integer 1 through 65,530

1 through 65,530 ending position numeric expression, rounded to an integer

Keyword Dictionary 2-207

Examples
LINPUT "Enter your data". A$
LINPUT Variable$

Description
When LINPUT is executed, a prompt appears on the current line of the alphanumeric display and
remains there until the LINPUT item is satisfied. If no prompt is specified, the default prompt?
is used. Using a null string for the prompt string suppresses the default prompt.

The LINPUT statement allows commas, quotation marks, and leading and trailing blanks in the
character string assigned to the string variable. Unlike the INPUT statement, multiple inputs and
variable assignments are not allowed.

Pressing I Return I terminates data input. If no characters are entered, the null string is assigned
to the string variable.

Event-initiated branching (ON KEY#. ON ERROR. ON KYBD. ON TIMEOUT. ON TIMER#) is disabled
while LINPUT is being executed.

Related Keywords
INPUT

2-208 Keyword Dictionary

LIST
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The LIST statement lists the current program or subprogram in system memory on the alpha
display.

Item Description

beginning line num- integer constant
ber
ending line number integer constant

Examples
LIST
LIST 40,40

Description

Range

1 through 65 535

1 through 65 535

The beginning line number and ending line number specify the portion of the program to be
listed. If no ending line number is specified, listing begins at. the beginning line number and fills
the display.

When both parameters are omitted, the listing fills the screen. Listing begins at the first line of
the program except in the following cases:

• When program execution has been halted by a program error, by execution of PAUSE, or
by pausing the program from the keyboard, listing begins at the line at which execution
halted .

• Executing LIST repeatedly displays successive segments of the program.

Related Keywords
PLIST

Keyword Dictionary 2-209

LOAD
Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The LOAD command retrieves the specified BASIC/PROG file and loads the program into system
memory.

Item Description Range

file name literal; name of a file in the current working direc- 14 characters maximum;

HP-UX path
name

string expression

Examples
LOAD "Filename"

tory slash and leading colon not al­
lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX
path name

LOAD l/vol1/filename"
LOAD I/Directoryl/Directory2/filename"

Description
If the file name is used alone (rather than as part of an HP-UX path name), the LOAD operation
uses the current working directory.

LOAD scratches any BASIC programs, subprograms, and variable assignments in memory.

LOAD cannot be used to load subprograms. FINDPROG retrieves subprograms and makes them
available for editing.

Related Keywords
FINDPROG. MASS STORAGE IS. STORE

2-210 Keyword Dictionary

LOADBIN
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The LOADBIN statement retrieves the specified binary file, enters it into BASIC memory, and
makes all the binary program entry points available to CALLBIN.

Item

file name

HP-UX path
name

string expression

Examples
LOADBIN "Gdraw"

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

LOADBIN "mylogon/gdraw"
LOADBIN FILE$

Keyword Dictionary 2-211

Description
Linking of binaries to BASIC must be done outside the BASIC environment before LOADBIN is
executed. You must also make sure that all external references in the binary have been resolved.
The -r and -d flags for HP-UX link edit command (ld) must be used for the linking procedure.
Three scripts are supplied with the BASIC system for compiling and linking binaries. Their
default location is in the /usr/bin directory.

• makebin_c-used for compiling and linking C binaries.

• makebin_p-used for compiling and linking Pascal binaries.

• makebin_f-used for compiling and linking Fortran binaries.

LOADBIN loads the binary program without scratching BASIC memory. If duplicate entry point
names are loaded, the first entry point loaded into memory is the one that will be used by
CALLBIN.

Related Keywords
CALLBIN. SCRATCHBIN

2-212 Keyword Dictionary

LOCAL
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The LOCAL statement returns one or more an instruments to local control after they have been
placed under remote control by the REMOTE statement.

Item

device selector

Examples
LOCAL 703,706
LOCAL 7

Description Range

numeric expression, rounded to an integer

Keyword Dictionary 2-213

Description
Interface-dependent action:

• HP-IB:

The node to which the device selector is assigned must be in "raw" mode; that is, there
can no primary address in the special (device) file's minor number. See ASSIGN for further
information.

If the computer is System Controller and the device selector contains no primary address­
ing, Remote Enable (REN) is set false.

If the computer is Active Controller and the device selector is contains primary addressing,
the specified device(s) are addressed, and the Go To Local (GTL) message is sent. ATN
is left true.

If two or more device selectors are specified, each must contain a primary address. In
addition, the devices must all be on the same interface.

If the device is in remote with local lockout set, the device must receive GTL or have REN
set false to be returned to local control.

• GPIO: Error.

Related Keywords
LOCAL LOCKOUT, REMOTE

2-214 Keyword Dictionary

LOCAL LOCKOUT

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The LOCAL LOCKOUT statement sends the Local Lockout message (LLO), which prevents an
operator from placing the specified device(s) under manual (local) control.

(LOCAL LOCKOUT ~ s~~~~~~r ~

Item

device selector

Examples
LOCAL LOCKOUT Isc
LOCAL LOCKOUT 7
Description

Description

numeric expression, rounded to an integer

Range

3 through 10

The computer must be active controller. The LLO message is received by all devices on the
interface. If a device is in the LOCAL state when LLO is sent, the message does not take affect
until the device receives a Remote message and becomes addressed to listen.

Interface-dependent action:

• HP-IB: ATN is left true. Local Lockout remains in effect until the Remote Enable (REN)
line is set false .

• GPIO: Error.

Related Keywords
LOCAL, REMOTE

Keyword Dictionary 2-215

LOCATE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The LOCATE statement specifies plotting boundaries in graphics units (GU's).

(LOCATE)t----r----------------------r~.1

~
Item

x-min

x-max

y-min

y-max

Examples

Description

numeric expression, interpreted as GU's

numeric expression, interpreted as GU's

numeric expression, interpreted as GU's

numeric expression, interpreted as GU's

LOCATE 20,60,50,100
LOCATE 20,20+X,50,50+Y

2-216 Keyword Dictionary

Range

Description
The LOCATE parameters define the plotting boundaries in GU's. These boundaries replace any
previously defined plotting boundaries. When the system is in UU's mode, no lines can be drawn
beyond the plotting boundaries. However, labels can be drawn outside the plotting area and
within the graphics limits.

When LOCATE is executed prior to SCALE, MSCALE, or SHOW, the user units are mapped onto the
LOCATE-defined plotting area. If a CLIP statement is executed after LOCATE, the CLIP boundaries
replace the LOCATE boundaries.

The LOCATE plotting boundaries are canceled when LIMIT, PLOTTER IS, or UNCLIP are executed.
The SETGU statement deactivates the plotting boundaries; they are restored by executing SETUU.

When LOCATE is executed without parameters, program execution halts until plotting boundaries
(two diagonal points) are entered from the plotting device.

The order of LOCATE parameters can be changed to produce reflected graphics output, if followed
by some scaling operation (such as SCALE). See LIMIT for further information.

Related Keywords
CLIP, LIMIT, LOCATE, PLOTTER IS, SETGU, SETUU, UNCLIP

Keyword Dictionary 2-217

LOG
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The LOG numeric function returns the natural (base e) logarithm of the argument.

Item Description

numeric argument numeric expression

Examples
T=1/K*LOG(Nl/N2)
IF LOG(A)<=2 THEN 900

Related Keywords
EXP, LGT

2-218 Keyword Dictionary

Range

>0

LORG
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LORG (label origin) statement specifies the position of labels relative to the current pen
position.

§---+I label ~ LORG position

Item

label position

Examples
LORG 5
LORG X

Description

Description Range

numeric expression, rounded to an integer (de- 1 through 9
fault=l)

Label positions outside the range 1 through 9 are interpreted as LORG 1.

The following illustration shows the relationship between the label and the logical pen position.
The numbers show the logical pen position before the label is drawn using the various label
position numbers.

3

.-~ L H"r---···· L

1

Related Keywords
LABEL. LDlR

6

E~
4

3

EL CI ,_,

7

Keyword Dictionary 2-219

LWC$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The LWC$ function returns a string formed by replacing all uppercase letters in the argument with
lowercase letters.

Item Description Range

string argument string expression

Examples
DISP LWC$(IIQWERTY")
IF LWC$(A$)=" y " THEN GOSUB Positive

Description
The LWC$ function affects only the letters A through Z (characters with ASCII code 65 through
90).

Related Keywords
UPC$

2-220 Keyword Dictionary

MASS STORAGE IS
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The MASS STORAGE IS statement designates the specified directory file as the current working
directory.

MASS STORAGE IS

Item

file name

HP-UX path
name

string expression

Examples

Description Range

literal; name of a directory file in the current work- 14 characters maximum;
ing directory slash and leading colon not al­

lowed

literal; an absolute or relative path name of a di­
rectory file (see glossary)

expression evaluating to a file name or HP-UX -
path name of a directory file

MASS STORAGE IS "textfiles"
NASS STORAGE IS "/vol1/dir2/dir3"

Description
The specified file must be a directory file. Once a directory file has been designated the current
working directory, files in that directory can be accessed by file name alone.

Keyword Dictionary 2-221

MAT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MAT statement performs a number of operations on arrays. The statement can be constructed
to perform arithmetic and scalar operations, matrix multiplication, and to initialize arrays to
constant values. Through the use of secondary keywords, the statement performs a variety of
special vector and matrix operations.

Item

array name

vector name

matrix name

Description Range

name of a one· or two-dimensional numeric array any valid name

name of a one-dimensional array any valid name

name of a two-dimensional array any valid name

scalar operator operator used in scalar arithmetic with an array + - • /

arithmetic operator operator used in arithmetic operations involving + - . I
two arrays

numeric expression (see glossary)

row #

col #

numeric expression, rounded to an integer

numeric exression, rounded to an integer

2-222 Keyword Dictionary

valid row number

valid column number

sign change

Linear
equations

Scalar
operation

Arithmetic
operation

Matrix
multiplication

Assignment

Keyword Dictionary 2-223

Examples
MAT NegArray=-PosArray

MAT A=(B)

MAT A=CSUM(Array)

MAT A=SYS(Matrix.Array)

MAT A=INV(M)*C

MAT Q=(2*X)/Array

MAT Q=Array1.Array2

MAT B=ZER(3.3)

MAT A=Array

MAT A(3:5.2:7)=Array(1:3.1:6)

MAT Vector=CROSS(Vector1.Vector2)

Description
The MAT statement allows you to:

Sign change.

Arithmetic assignment.

Sum of columns.

System of linear equations.

Inverse; matrix multiplication.

Scalar operation.

Arithmetic operation.

Initializing an array (redimensioning, if necessary).

Copying an entire array.

Copying a portion of an array.

Cross product.

• Change the sign of every element in an array.

• Calculate the Inverse (INV), and Transpose (TRN) of a matrix.

• Produce an identity matrix (IDN).

• Calculate the cross product (vector product) of two, 3-element vectors (CROSS).

• Calculate the sum of the rows (RSUM) and the sum of the columns (CSUM) of an array.

• Solve a system of n linear equations with n unknowns (SYS).

• Assign the value 1 (CON) or zero (ZER) to all the elements of an array.

• Add, subtract, multiply, and divide a numeric expression and an array (scalar operation).

• Add, subtract, multiply, and divide the elements of two arrays (arithmetic operation).

• Perform matrix multiplication between two arrays.

• Copy all or a portion of an array into all or a portion of another array.

2-224 Keyword Dictionary

Identity (IDN)
The secondary keyword ION produces an identity matrix by assigning the value 1 to all diagonal
elements (elements for which the row subscript equals the column subscript). If the matrix is not
a square matrix before execution of the MAT = ION statement, the matrix must be redimensioned
within the statement by specifying redimension subscripts.

Inverse (lNY)
The secondary keyword INV calculates the inverse of a square matrix. (A matrix multiplied by
its inverse produces an identity matrix.) When the determinant of a matrix equals 0, the inverse
cannot be calculated.

If the result matrix is not the same size and shape as the operand matrix, the system attempts
to redimension it. An error is returned if the result array is not large enough to be properly
redimensioned.

Transpose (TRN)
The secondary keyword TRN produces the transpose of' a array by exchanging the rows and
columns of the operand array. The transpose of an n-by-m array is an m-by-n array; each
element is defined by interchanging the subscripts.

The result array must be dimensioned to be at least as large as the current size of the operand
array. If necessary, the system redimensions the result array to the proper shape.

Cross Product (CROSS)
The secondary keyword CROSS calculates the cross product (vector product) of two, 3-element
vectors. The two operand arrays and the result array must be vectors.

Summing Rows and Columns (RSUM and CSUM)
The secondary keyword R3UM computes the sum of each row of the operand array and assigns
those values to the elements of a one-column vector. If the result array is a vector, it is
redimensioned, if necessary, to have as many elements as the number of rows in the operand
array. If the result array is a matrix, it is first redimensioned to have one column and as many
rows as the operand array.

The secondary keyword CSUM computes the sum of each column of the operand array and assigns
those values to the elements of a one-row vector. As with RSUM the result array is redimensioned,
if necessary, to a vector of the proper size.

Keyword Dictionary 2-225

Solving the Matrix Equation AX=B
The secondary keyword SYS solves the matrix equation AX=B for the unknown array X. This
statement is most often used when solving a system of n linear equations in n unknowns:

allXI + aI2 X 2 + ... + aInXn = bl

a2I X I + a22 X 2 + ... + a2nXn = b2

where

A = [;~~ ... ~~~ ~~~] ,X = [x~n~ 1 ,andB = [b~·n~ 1
anI a n 2 ... ann

A is the coefficient matrix, B is the constant array, and X is the result array containing the
solution to the system of equations. When B and X are matrices, SYS simultaneously solves two
different systems of n equations in n unknowns.

Assigning Values 1 and 0 To Elements
The secondary keyword CON assigns the value 1 to all elements of the result array. Optional
parameters redimension the array to the specified size.

The secondary keyword ZER assigns the value 0 to all elements of the result array. As with CON

the optional parameters redimension the array to the specified size.

2-226 Keyword Dictionary

Scalar Operations
A scalar operation statement performs an arithmetic operation between a numeric expression
and each element of the operand array. Array elements can be added to (+), subtracted from
(-), multiplied by (*), and divided into (I) a specified numeric value.

A scalar operation can also be used to change the sign of every element in an array. For example,

MAT B = -A

assigns values to the elements of array B by changing the sign of every element in array A.

Arithmetic Operations Between Arrays
An arithmetic operation statement performs addition (+), subtraction (-), multiplication (.), or
division (I) between corresponding elements of two arrays.

Matrix Multiplication
If A and B are the two operand arrays and C is the result array, matrix multiplication is defined
by the equation:

n

Cij = L aikbkj

k=l

where n is the number of elements in a column in array A.

Matrix multiplication follows these general rules:

• The result array has the same number of rows as the first operand array and the same
number of columns as the second operand array.

• Matrix multiplication is legal only if the column size of the first operand array equals the
row size of the second operand array.

• The system allows multiplication of a row vector and a column vector. However, two row
vectors or two column vectors are not allowed.

Arithmetic Assignment
An arithmetic assignment evaluates the numeric expression enclosed in parentheses and assigns
that value to every element of the specified array.

Keyword Dictionary 2-227

Copying Arrays
An array copy statement copies all or a portion of an operand array to all or a portion of a
result array.

The following rules apply to copying an entire array to another entire array:

• If both arrays are matrices, the result array is first redimensioned to have the same number
of rows and columns as the operand matrix.

• If the result array is a vector, the operand array must be a vector, a one- column matrix,
or a one-row matrix. The result vector is first redimensioned to have the same number of
elements as the operand array.

• If the result array is a matrix and the operand array is a vector, the result matrix is first
redimensioned to have one column and as many rows as the number of elements in the
operand vector.

The following rules apply to copying values from and/or into a portion of an array (subarray):

• If all elements of the operand array are to be copied, do not specify row or column numbers
after the operand array name. If all elements of the result array are to be assigned values,
do not specify the row or column numbers after the result array name. The values of array
elements are transferred in order from left to right along each row, and from top row to
bottom row.

• If no row or column numbers are specified after the result array, the result array is
redimensioned before the values are assigned. If row or column numbers are specified
after the result array, values are assigned to the specified elements, but no redimensioning
occurs.

• If an array is a vector, specify only the row number.

• If an entire row is to be copied or assigned values, the column numbers may be omitted;
however, a comma must be placed after the row number. If an entire column is to be
copied or assigned values, the row numbers may be omitted; however, a comma must be
placed before the column number. For example, MAT B(,4)=MAT A copies all the elements
in vector A into column 4 of array B.

• If only one row or column is to be copied, specify the row or column number.

• If more than one row or column are copied, specify the beginning and ending row or
column number, separated by a colon. For example, MAT B(3,l:4)=MAT A(2:5,2) copies
elements from column 2, rows 2 through 5 of array A into row three, columns 1 through
4 of array B. If the operand and result arrays are ·both matrices, the number of rows (and
columns) specified after the result array must equal the number of rows (and columns)
copied from the operand array.

2-228 Keyword Dictionary

A column from an operand matrix cannot be copied into a row of a result array using one
statement. Conversely, a row from an operand matrix cannot be copied into a column of the
result arrary using one statement. In both cases, values must first be copied to an intermediate
vector.

Related Keywords
REDIM

Keyword Dictionary 2-229

MAT DISP
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MAT OISP statement displays the specified array(s}.

Item Description Range

array name name of a numeric array any valid variable name

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

IMAGE line label name identifying an IMAGE statement any valid line name

format string

terminator

Examples
MAT OISP A

string expression consisting of one or more field
specifiers (see IMAGE statement for syntax)

comma, semicolon, or slash

MAT OISP ROW A$; COL B/
MAT OISP USING 200; COL Array1

2-230 Keyword Dictionary

Description
MAT OISP provides two forms of output: simple (without USING) and formatted (with USING).

The optional keywords ROWand COL specify the arrangement of the displayed array elements.
Specifying ROW causes elements to be displayed by rows. Each row begins on a new line, and the
elements in each row are displayed in order from the first column to the last column. Specifying
COL causes elements to be displayed by columns. Each column begins on a new line, and the
elements of a column are displayed in order from the top row to the bottom. The default
arrangement is ROW. More than one line may be required to display a row or column.

Simple MAT DISP (without USING)
A terminator is placed after the array name to specify the horizontal spacing between elements.
A final terminator after the last array name in the statement. specifies spacing for that array.

Unlike the OISP statement, the end-of-line sequence is not suppressed.

MAT DISP Terminators

Terminator Spacing Between Elements

Close spacing; elements are separated by two spaces.
A minus sign occupies one space.

Wide spacing; elements are left-justified in 21-column
fields.

/ One element per line.

Formatted MAT DISP (with USING)
MAT OISP USING uses a format string contained in the statement itself, or in a referenced IMAGE
statement, to define the format of the output. The format string, consisting of one or more
field specifiers separated by delimiters, is used from left to right. Elements are paired with their
corresponding field specifiers. If the format string is exhausted before all the display items have
been processed, the format string is reused from the beginning. Extra field specifiers are ignored.
If a field is larger than a number, the number is right-justified in the field. A warning is issued
if an element is larger than the field. Numbers are rounded to the number of decimal places
indicated by the field specifier.

The comma, semicolon, and slash terminators can be used interchangeably. Spacing is controlled
entirely by the format string. A final terminator does not suppress the end-of-line sequence.

Refer to IMAGE for the syntax of the format string.

Related Keywords
IMAGE, MAT PRINT

Keyword Dictionary 2-231

MAT INPUT

The MAT INPUT statement inputs values into the specified array(s}.

Item

array name

Examples
MAT INPUT B

Description

name of a numeric array

MAT INPUT NumericArray. StringArray

Description

Keyboard Executable No
Programmable Yes

In an IF ... THEN Yes

Range

any valid variable name

When MAT INPUT is executed, the program prompts for elements of the first specified array by
displaying the variable name of the first elementfor example, Array (0.0). One or more values,
separated by commas, can be entered at a time. Values are assigned to array elements from
left to right along a row, from top row to bottom. When one or more values have been entered,
MAT INPUT prompts for the next element to be assigned. Input into the array continues until all
the elements have been assigned values. If an array becomes full in the middle of an input line,
the remaining elements on the line are ignored.

If a second array is specified, input into it starts at the next input line after the first array is full.

Input continues until all the specified arrays are full.

Related Keywords
MAT READ

2-232 Keyword Dictionary

MAT PRINT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The MAT PRINT statement outputs the specified array(s) to the PRINTER IS device.

Item Description Range

array name name of a numeric array any valid variable name

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

IMAGE line label name identifying an IMAGE statement any valid line name

format string

terminator

Examples
MAT PRINT A

string expression consisting of one or more field
specifiers (see IMAGE statement for syntax)

comma, semicolon, or slash

MAT PRINT ROW A; COL B/
MAT PRINT USING 200; COL Array!

Keyword Dictionary 2-233

Description
MAT PRINT provides two forms of output: simple (without USING) and formatted (with USING).

The optional keywords ROWand COL specify the arrangement of the printed array elements.
Specifying ROW causes elements to be printed by rows. Each row begins on a new line, and the
elements in each row are printed in order from the first column to the last column. Specifying COL
causes elements to be printed by columns. Each column begins on a new line, and the elements
of a column are printed in order from the top row to the bottom. The default arrangement is
ROW. More than one line may be required to print a row or column.

Simple MAT PRINT (without USING)
A terminator is placed after the array name to specify the horizontal spacing between elements.
A final terminator after the last array name in the MAT PRINT list specifies spacing for that array.
Unlike the PRINT statement, the end-of-line sequence is not suppressed.

MAT PRINT Terminators

Terminator Spacing Between Elements

Close spacing; elements are separated by two spaces.
A minus sign occupies one space.

Wide spacing; elements are left-justified in 21-column
fields.

/ One element per line.

Formatted MAT PRINT (with USING)
MAT PRINT USING uses a format string contained in the statement itself, or in a referenced IMAGE
statement, to define the format of the output. The format string, consisting of one or more
field specifiers separated by delimiters, is used from left to right. Elements are paired with their
corresponding field specifiers. If the format string is exhausted before all the print items have
been processed, the format string is reused from the beginning. Extra field specifiers are ignored.
If a field is larger than a number, the number is right-justified in the field. A warning is issued
if an element is larger than the field. Numbers are rounded to the number of decimal places
indicated by the field specifier.

The comma, semicolon, and slash terminators can be used interchangeably. Spacing is controlled
entirely by the format string. A final terminator has no effect on the output.

Refer to IMAGE for the syntax of the format string.

Related Keywords
OISP, IMAGE, MAT, OISP

2-234 Keyword Dictionary

MAT READ
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes

The MAT READ statement reads values from DATA statements and assigns them to array elements.

Item Description

array name name of a numeric array

Examples
MAT READ NumericArray
MAT READ A. B

Description

Range

any valid name

The values are read from DATA statements and assigned to array elements from left to right along
a row, from top row to bottom. Arrays are filled in the order in which they are listed. If there
are not enough data elements to satisfy MAT READ the program returns an error and program
execution halts.

Related Keywords
MAT. INPUT

Keyword Dictionary 2-235

MAX
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The MAX function compares two numeric arguments and returns the larger of the two values.

Item Description

numeric argument numeric expression

Examples
Y=MAX(10,X)
Counter=IP(MAX(I,J»

Related Keywords
MIN

2-236 Keyword Dictionary

Range

MAXAB
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The MAXAB function computes the absolute value of each element in the specified array and
returns the largest value.

Item Description Range

array name name of a one- or two-dimensional numeric array any valid name

Examples
DISP MAXAB(Arrayl)
IF MAXAB(Arrayl)=l THEN 500

Related Keywords
AMAX. AMAXCOL. AMAXROW. MAXABCOL. MAXABROW

Keyword Dictionary 2-237

MAXABCOL
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MAXABCOL function returns the column number of the element whose absolute value was
returned by the most recently executed MAXAB function.

(MAXABCOL)--

Examples
YSubsript=MAXABCOL
A(3.MAXABCOL)=12

Description
If two or more elements in different· columns have the largest absolute value, the lowest column
number is returned.

Related Keywords
AMAXCOL. MAXAB. MAXABROW

2-238 Keyword Dictionary

MAXABROW
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The MAXABROW function returns the row number of the element whose absolute value was returned
by the most recently executed MAXAB function.

(MAXABROW)--

Examples
XSubscript=MAXABROW
MAT C=Array2(1:MAXABROW,4)

Description
If two or more elements in different rows have the largest absolute value, the lowest row number
is returned.

Related Keywords
AMAXCOL, MAXAB, MAXABCOL

Keyword Dictionary 2-239

MDY
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MDY function converts a string expression in the form MM/DD /YYYY to the equivalent
Julian Day number.

Item

string argument

Examples

Description

string expression in the form
"MM/DD /yyyy"

DISP MDY("04/20/1984")-MDY("10/03/1983")
IF MDY(Day$)<2446160 THEN 2000

Description

Range

"10/15/1582" through
"11/25/4046"

The allowable parameters correspond to Julian Day numbers 2299 161 through 3 199 160.

Related Keywords
DATE, DATE$, MDY$

2-240 Keyword Dictionary

MDY$
Keyboard Executable Yes
Programmable Yes

In an IF. , . THEN Yes

The MDY$ function interprets a numeric expression as the Julian Day number and converts it to
a string expression in the form MMjDD jYYYY.

Item Description Range

Julian Day number numeric expression, rounded to an integer, inter- 2299161 through 3 199160
preted as the Julian Day number

Examples
Drsp MDY$(3000000)
Day$=MDY$(X)

Description
The allowable parameters correspond to October 15, 1582 through November 25, 4046.

Related Keywords
DATE, DATE$, MDY

Keyword Dictionary 2-241

MERGE
Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The MERGE command merges a program or subprogram retrieved from mass storage with the
current program or subprogram in system memory.

Item

file name

HP-UX path
name

string expression

beginning line number
of merged line

Description Range

literal; name of a BASIC/PROG or BASIC/SUBP 14 characters maximum;
file slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

beginning line num- integer constant identifying a program line (de- 1 through 65,535
ber of fault=last line number of current program+ 10)
merged lines

increment of
merged lines

integer constant (default= 1 0)

2-242 Keyword Dictionary

1 through 65,535

Examples
MERGE IITraffic ll

MERGE IIER1I200.5

Description
If the file name is used alone (rather than as part of an HP-UX path name), the MERGE operation
uses the current working directory. The current working directory is selected by the MASS
STORAGE IS statement.

MERGE retrieves the specified BASIC/PROG or BASIC/SUBP file from mass storage, renumbers the
retrieved program lines, and adds them to the current (sub)program in system memory. The
merged program is renumbered according to the beginning line number of merged lines and
the increment of merged lines specified in the MERGE command. If the optional parameters are
omitted, the beginning line number of merged lines is obtained by incrementing the last line
number in system memory by 10.

When programs are merged using the optional parameters, any merged lines renumbered to the
same line numbers as lines currently in memory overwrite those lines,

The message ... end of merge is displayed at the conclusion of the merge operation.

Related Keywords
FINDPROG. REN

Keyword Dictionary 2-243

MIN
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MIN function compares two numeric arguments and returns the smaller of the two values.

Item Description

numeric argument numeric expression

Examples
Y=MIN(10,X)
Counter=IP(MIN(I,J»

Related Keywords
MAX

2-244 Keyword Dictionary

Range

MOD
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MOD operator returns the remainder resulting from a division operation.

--...J dividend r-®--I divisor ~

Item

dividend

divisor

Examples
C=8 MOD 3

Description

numeric expression

numeric expression

IF Hours MOD Trip<3 THEN 300

Description
The MOD operation is defined by the equation:

A MOD B = A - B * INT(A/B)

Range

where INT (A/B) is the greatest integer less than or equal to A/B. By definition, A MOD 0 is A.

Related Keywords
DIV

Keyword Dictionary 2-245

MOVE
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The MOVE statement lifts the pen and moves it to the specified x,y coordinate. The pen remains
up until it is lowered by another statement.

~ x-coordinate ~ y-coordinate H

Item

x-coordinate

y-coordinate

Examples
MOVE 10,10

Description

numeric expression,
units

numeric expression,
units

MOVE XPosition,XPosition*5

Description

interpreted

interpreted

Range

in the current

in the current -

MOVE uses the current units mode (UU's or GU's). The physical pen cannot move beyond the
plotting boundaries (equivalent to the graphics limits in GU's mode). However, the logical pen
can be moved beyond the plotting boundaries or graphics limits.

Related Keywords
IMOVE, PLOT

2-246 Keyword Dictionary

MSCALE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The MSCALE statement specifies millimeter user units scaling of the plotting area and the location
of the origin.

(MSCALE H x-offset ~ y-offset ~

Item

x-offset

y-offset

Examples
MSCALE 10,5
MSCALE A*10,A

Description

Description

numeric expression, interpreted as millimeters

numeric expression, interpreted as millimeters

Range

The MSCALE parameters specify, in millimeters!, the offset of the origin.from the lower-left corner
of the plotting area. MSCALE scales the current plotting area, which is a function of the units
mode (GU's or UU's) and the previously executed statements.

In GU's mode, MSCALE scales the entire graphics area previously specified by PLOTTER IS or
LIMIT).

In UU's mode, MSCALE scales the plotting area previously specified by LOCATE. If LOCATE has not
been executed, the entire graphics area is scaled.

After executing MSCALE the system in set to UU's mode.

Related Keywords
LIMIT, LOCATE, PLOTTER IS, SCALE, SHOW

1 Accuracy of the millimetre scale is hardware-dependent.

Keyword Dictionary 2-247

Notes

2-248 Keyword Dictionary

NEXT

See FOR ... NEXT.

@---1 loop ~
counter

Keyword Dictionary 2-249

NORMAL

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The NORMAL statement cancels print-all mode and program tracing (TRACE, TRACE VAR, and TRACE

ALL) operations.

(NORMAL)---t

Related Keywords
AUTO, PRINTALL, TRACE

2-250 Keyword Dictionary

NOT
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The NOT operator returns 1 if its operand equals O. Otherwise, 0 is returned.

Description
A non-zero expression (positive or negative) is interpreted as a logical 1; a zero is interpreted as
a logical O. The following table describes the results of performing a NOT operation.

Logical NOT

Related Keywords
AND, EXOR, OR

A NOTA

o 1

non-zero 0

Keyword Dictionary 2-251

NPAR
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The NPAR function returns the number of parameters passed to a subprogram by a CALL statement.

Examples
ON NPAR GOTO 200.300.400
IF NPAR=2 THEN SUBEXIT

Related Keywords
CALL. SUB

2-252 Keyword Dictionary

NUM
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The NUM numeric function returns the decimal value of the first character in the string argument.

Item Description

string argument string expression

Examples
X=NUM(String$[A,A])
IF NUM(A$)=32 THEN Skip

Description

Range

The value returned is in the range 0 through 255. When the argument is the null string, NUM
returns O.

Related Keywords
eHR$

Keyword Dictionary 2-253

Notes

2-254 Keyword Dictionary

OFF CURSOR
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The OFF CURSOR 1 statement removes the cursor from the alpha display. The cursor position
remains unchanged. OFF CURSOR also turns off the graphics cursor, if it is currently displayed2 .

(OFF CURSOR)---.t

Related Keywords
ON CURSOR

1 Implementation of OFF CURSOR is terminal-dependent.
2 Only on display devices that support block read/write operations.

Keyword Dictionary 2-255

OFF ERROR

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes
The OFF ERROR statement cancels event-initiated branching previously enabled by a ON ERROR

statement. Further errors halt program execution.

Related Keywords
ON ERROR

2-256 Keyword Dictionary

OFF KEY#
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The OFF KEY# statement cancels end-of-line branching previously enabled by an ON KEY# state­
ment.

(OFF KEY*)f--..-~-_-_-~~~=:-~--r--~.1
Y key number ~

Item

key number

Examples
OFF KEY# 1
OFF KEY# N

Description

Description

numeric expression, rounded to an integer

Range

must correspond to a special
function key

If the key number is omitted, all current run-time ON KEY# assignments are canceled.

Related Keywords
ON KEY#

Keyword Dictionary 2-257

OFF KYBD
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The OFF KYBD statement cancels end-of-line branching previously enabled by an ON KYBD state­
ment.

(OFF KYBOH

Item

string
expression

Description

string expression characters and/or escape sequences representing
the keys for which branching is disabled.

Exampless
OFF KYBD "1234567890"
OFF KYBD A$ & "#*"

Description

Range

When the optional parameter is omitted, OFF KYBD cancels branching for all previously enabled
keys.

Related Keywords
OFF KEY#. ON KYBD

2-258 Keyword Dictionary

OFF TIMEOUT
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The OFF TIMEOUT statement cancels end-of-line branching for timeouts on the specified interface.

(OFF TIMEOUT~ s~~~~~~r ~

Item Description

device selector numeric expression, rounded to an integer

Examples
OFF TIMEOUT DeviceSelector
OFF TIMEOUT 7

Description

Range

3 through 10

When a timeout (specified by SET TIMEOUT) occurs after OFF TIMEOUT has been executed, the
system retains a pending end-of-line branch. The branch is taken immediately when ON TIMEOUT

is executed for that interface.

Related Keywords
ON TIMEOUT

Keyword Dictionary 2-259

OFF TIMER#
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The OFF TIMER# statement cancels end-of-line branching for the specified timer.

(OFF TIMER' H timer number ~

Item

timer number

Examples
OFF TIMER# 3

Description

numeric expression, rounded to an integer

OFF TIMER# TimerNumber

Related Keywords
ON TIMER#

2-260 Keyword Dictionary

Range

1 through 3

ON
Keyboard Executable No

Programmable Yes

In an IF ... THEN Yes

The ON ... GOTO/GOSUB statements transfer program execution to one of the specified program
lines based on the value of a pointer.

Item

pointer

line number

line label

Examples

Description

numeric expression, rounded to an integer

integer constant identifying a program line

name of a program line

250 ON P(l) GOTO 200, 400,640
740 ON .5*Pointer1 GOSUB Subroutine1,Subroutine2
612 IF Y THEN ON Y GOTO 330, Odd, 700

Description

Range

(see "Description")

1 through 65,535

any valid name

When the pointer evaluates to 1, execution is transferred to the first line number or line label.
When the pointer evaluates to 2, execution is transferred to the second line number/label, and
so on. An error is returned if the pointer evaluates to a number less than 1 or greater than
the number of line numbers/labels. In practice, the maximum value of the pointer equals the
number of line numbers/labels that can be typed into a program line.

If the GOSUB keyword is used, execution is tranferred to the specified subroutine. When the
subroutine RETURN statement is executed, execution branches to the statement immediately
following ON ... GOSUB.

Related Keywords
GOSUB, GOTO, RETURN

Keyword Dictionary 2-261

ON CURSOR
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ON CURSOR 1 statement displays the cursor after it has been previously turned off by the OFF

CURSOR statement.

(ON CURSOR ~

Related Keywords
OFF CURSOR

1 Implementation of ON CURSOR is terminal-dependent.

2-262 Keyword Dictionary

ON ERROR
Keyboard Executable No

Programmable Yes

In an IF ... THEN Yes

The ON ERROR statement defines and enables an event-initiated branch to be taken when a run­
time error occurs.

Item

line number

line label

Examples

Description

integer constant identifying a program line

name of a program line

ON ERROR GOSUB 100
ON ERROR GOTO Recovery

Description

Range

1 through 65,535

any valid name

ON ERROR branching occurs immediately when a run-time error is detected, and has higher
priority than any other event-initiated routine. When an ON ERROR ... GOSUB statement is used,
the recovery routine RETURN statement returns execution to the program line following the one
that generated the error. If an error occurs in the middle of a multistatement line, the rest of
the line is not executed.

The ON ERROR declaration remains active during the recovery routine unless it is disabled by
executing OFF ERROR. In general, OFF ERROR should be executed at the beginning of the recovery
routine to prevent an infinite loop between the line containing the error and the beginning of the
recovery routine.

ON ERROR branches take precedence over all other end-of-line branches. (Refer to the Branch
Precedence Table in the Appendix.)

ON ERROR declarations are local to the program or subprogram in which they are executed.

Related Keywords
OFF ERROR

Keyword Dictionary 2-263

ON KEY#
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The ON KEY# statement defines the functions of the user- defined (special function) keys.

Item

key number

key label

line number

line label

typing aid

Examples

Description Range

numeric expression, rounded to an integer must correspond to the number
of one of the special function
key

literal or string expression evaluating to display- 1 through 8 characters
able characters

integer constant identifying a program line 1 through 65,535

name of a program line any valid name

literal composed of displayable characters and/or 1 through 32 characters
control characters

ON KEY# 3, "BREAK" GOSUB Break
ON KEY# 4, "Path", "dir1/dir2/dir3"

2-264 Keyword Dictionary

Description
The syntax and function of ON KEY# has two forms:

When ON KEY# is executed within a program, it defines and enables a branch to be taken when the
specified user-defined key is pressed. The optional key label parameter provides for displaying
a key label when KEY LABEL is executed in the program. When ON KEY# is executed from the
keyboard, it defines a typing aid for a sequence of characters. Typing aids are in effect whenever
a program is not running. The optional key label parameter provides for displaying a key label.

If the the typing aid string consists of a keyboard executable statement or command followed by
a carriage return, pressing the key executes the statement or command immediately.

When ON KEY# is executed within a program, end-of-line branching is enabled for the speci­
fied key. If the ON KEY# ... GOSUB statement is used, the subroutine RETURN statement causes
branching to the statement following the one being executed when the key was pressed.

ON KEY# end-of-line branching is disabled by executing OFF KEY#.

Refer to the Branch Precedence Table on page 4-13 for additional information.

Related Keywords
ENABLE KBD, KEY LABEL, OFF KEY#

Keyword Dictionary 2-265

ON KYBD

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The ON KYBD statement defines and enables an event-initiated branch to be taken when the
specified key(s) is(are) pressed during program execution.

Item

numeric name

string expression

line number

line label

Examples

Description

name of a simple numeric variable or numeric ar­
ray element.

characters and/or escape sequences representing
the keys for which branching is enabled

integer constant identifying a program line

name of a program line

ON KYBD Keys. 111234567890" GOSUB Nwnberkeys
ON KYBD A1.CHR$(27)&"w li GOTO 130

2-266 Keyword Dictionary

Range

1 through 65,535

any valid name

Description
Executing ON KYBD enables end-of-line branching to the specified program line when any of the
keys listed in the string expression are pressed. Alphanumeric keys are identified in the string
expression by their displayable character (for example, a and A for the unshifted and shifted m
key) or by their numeric key code (for example, CHR$ (65) for m). Keys without displayable
characters (special keys, such as tab, cursor control, and special function keys) must be identified
by their escape sequences l . For example, the following statement enables ON KYBD branching
'for m and GJ, assuming ESC D for the GJ key:

ON KYBD KeyVar. I AI&CHR$(27)&ID" GOTO 100

When a keystroke triggers an interrupt that causes branching to the specified program line,
the key code of the key pressed is assigned to the numeric variable. That variable assignment
remains in effect until the variable is reassigned by an assignment statement or by pressing
another key specified in the ON KYBD statement. For example, pressing m assigns the value
65 to variable KeyVar.

The most recent ON KYBD declaration overrides any previous ON KYBD statement. Keys enabled
in the previous statement remain active; however, branching will occur to the most recently
specified program line, and the variable assignment will be made to the most recently specified
variable.

When the optional string expression is omitted, branching remains in effect for all previously
specified keys.

When ON KYBD branching is enabled for any of the special function keys, it overrides ON KEY#

branching previously specified for those keys. ON KYBD declarations are local to the program or
subprogram in which they are enabled.

One or more enabled keys can be disabled by executing OFF KYBD.

Related Keywords
OFF KYBD. ON KEY#

1 Escape sequences are machine dependent.

Keyword Dictionary 2-267

ON TIMEOUT
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes

The ON TIMEOUT statement enables end-of-line branching when an interface timeout occurs on
the specified interface.

Item

device selector

line number

line label

Examples

Description

numeric expression, rounded to an integer

integer constant

name of a program line

ON TIMEOUT 7 GOTO 300
ON TIMEOUT Isc GOSUB Recover

Description

Range

3 through 10

1 through 65,535

any valid name

The amount of time the system will wait for completion of a handshake is set by SET TIMEOUT.
If ON TIMEOUT is executed after the SET TIMEOUT limit has been exceeded for that interface, the
end-of-line branch is taken immediately.

ON TIMEOUT overrides any previous ON TIMEOUT for the specified interface.

Related Keywords
OFF TIMEOUT, SET TIMEOUT

2-268 Keyword Dictionary

ON TIMER#
Keyboard Executable No

Programmable Yes

In an IF ... THEN Yes

The ON TIMER# statement defines an end-of-line branch to be taken when the specified time
interval has elapsed.

Item

timer number

milliseconds

line number

line label

Examples

Description

numeric expression, rounded to an integer

numeric expression

integer constant identifying a program line

name of a program line

ON TIMER# 2, 5000 GO TO Service
ON TIMER# TNumber,TLimit GOSUB 1000

Range

1 through 3

~1

1 through 65,535

any valid name

Keyword Dictionary 2-269

Description
When ON TIMER# is executed, the specified timer is set to zero and activated. When the specified
interval has elapsed!, the branch is taken at the end of the current program line. After the branch
has been taken, the timer is reset to zero and immediately reactivated. If the ON TIMER# ... GOSUB

statement is used, the subroutine RETURN statement causes branching to the statement following
the one being executed when the key was pressed.

ON TIMER# branching remains in effect until an OFF TIMER# statement is executed for that timer,
or until the program chains another program into memory. Timers continue to come due when
the program is paused or delayed (by a WAIT statement), but the branch is not immediately
taken. Pending branc~es are taken when the program is continued or when the WAIT interval
has elapsed.

Related Keywords
OFF TIMER#

1 The resolution of timers is machine-dependent; the range is from 1 millisecond to 1 second.

2-270 Keyword Dictionary

OPTION BASE
Keyboard Executable No

Programma ble Yes

In an IF ... THEN Yes

The OPTION BASE statement specifies the lower bound of all arrays in a program.

(OPTION BASE~ bound

Item

lower bound

Examples
OPTION BASE 1

Description

Description

integer constant (default=O)

Range

o or 1

An OPTION BASE statement can occur only once in a program, and must precede any explicit
variable declarations. The option base is the lower bound of all numeric and string arrays in the
program. (Upper bounds are declared in the dimensioning statements-REAL. SHORT. INTEGER,
and DIM.)

The option base declaration is global; the option base is passed to any subprograms called by
the program. An error may result if a subprogram attempts to specify another option base.

When a program chains another program, the option base of the two programs must agree.

Related Keywords
DIM. INTEGER. REAL. SHORT

Keyword Dictionary 2-271

OR
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The OR operator returns a 1 or 0 based on the logical inclusive-OR of the operands.

---.j operand ~ operand ~

Item Description

operand numeric expression

Examples
IF A OR B THEN C
Decision=Yes OR No

Description

Range

A non-zero operand (positive or negative) is interpreted as a logical 1; an operand of zero is
interpreted as a logical O. The following table describes the result of performing a logical OR.

Inclusive OR

A B AORB

0 0 0

0 1 1

1 0 1

1 1 1

Related Keywords
AND, EXOR, NOT

2-272 Keyword Dictionary

OTD
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The OTD (octal-to-decimal) function interprets the string argument as the octal (base 8) represen­
tation of an integer and returns the numeric decimal equivalent.

Item

string argument

Examples
U=OTD("3567")

Description Range

string expression containing the base 8 represen- characters must be 0 through
tat ion of an integer 7; cannot exceed the range of

integers

IF I=OTD(H$) THEN 45

Related Keywords
BTD. DTB$. DTH$. DTO$. HTD

Keyword Dictionary 2-273

OUTPUT

The OUTPUT statement outputs items to the specified destination.

destination
~

Item Description

device selector numeric expression, rounded to an integer

I/O buffer name name of a string variable declared as an I/O buffer

IMAGE line label name identifying an IMAGE statement

Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

Range

trailing punctuation
ignored with USING

any valid line label

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

format string

numeric expression

string expression-

string expression consisting of one or more field
specifiers (see IMAGE for syntax)

2-274 Keyword Dictionary

Examples
OUTPUT 701,702; "abcde", D1; Q$
OUTPUT Buffer$ USING 300;A,A$,B,"Hello"

Description
Bytes of numeric or string data are output to the specified device(s) or I/O buffer. If a CONVERT

operation is enabled for that device or buffer, the conversion is performed immediately before
the byte is output.

Simple OUTPUT (without USING)
The simple OUTPUT statement (without USING) outputs items using two different field widths:

• When items are separated by semicolons, they are output in narrow format. Numbers are
output in standard number format with a leading blank or minus sign and a trailing space.
Strings are output with no leading or trailing blanks.

• When items are separated by commas, they are output in free field format, left-justified in
21-column fields. Numbers are output in standard number format with a leading space or
minus sign. Trailing spaces are output to fill the unused portion of the field. Strings have
no leading spaces; trailing spaces are added to fill the field.

Automatic End-of-Line Sequence
When the output list is exhausted, an end-of-Line (EOL) sequence, ordinarily carriage return/line
feed, is sent. The EOL can be suppressed by placing the image specifier # at the beginning of the
format string in the OUTPUT USING or IMAGE statement. The EOL sequence is also suppressed
by placing a comma or semicolon at the end of the output list in a simple OUTPUT statement.

Formatted Output
The OUTPUT USING statement uses a format string contained in the statement itself, or in an
accompanying IMAGE statement, to format the output. The format string, consisting of one or
more field specifiers separated by delimiters (, or I), is used from left to right. Output items are
paired with their corresponding field specifiers. A field specifier consists of one or more image
specifiers. Certain field specifiers do not use a display item (for example, X).

If the format string is exhausted before all the output items have been processed, the format
string is reused from the beginning. Extra field specifiers are ignored. If a field is larger than
the numeric item, the number is right-justified in the field.

A warning is issued if the number is larger than the field, and the number output may be
incorrect. (A minus sign requires a digit position if M or S is not included in the field specifier.)
Numbers are rounded to the number of decimal places indicated by the field specifier.

Keyword Dictionary 2-275

A trailing comma or semicolon after the last output item is ignored; trailing punctuation does
not suppress the EOL sequence.

Refer to IMAGE for the syntax of the format string.

Related Keywords
CONVERT, DISP, IMAGE, IOBUFFER, PRINT

2-276 Keyword Dictionary

PASS CONTROL
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The PASS CONTROL statement passes Active Controller responsibility to the specified device.

Item

device selector

Examples
PASS CONTROL 710
PASS CONTROL 820

Description

numeric expression, rounded to an integer

Description
Interface-dependent action:

• HP-IB:

Range

Since the device selector in PASS CONTROL must contain primary addressing, the node to
which the device selector is assigned must be in "raw" mode; that is, there can be no
primary address specified in the special (device) file's minor number. (See ASSIGN for
further information.)

The specified HP-IB interface sends the specified device's talk address, followed by the
Take Control (TCT) message. The specified device becomes the active controller (the
device must have this capability) .

• GPIO: Error.

Related Keywords
REQUEST, RESET

Keyword Dictionary 2-277

PAUSE
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes

The PAUSE statement pauses program execution.

Description
When PAUSE is executed, program execution is suspended at the end of the current line. To
resume execution, execute CONT.

If a halted program is edited, it must be initialized before execution can continue. To continue
an edited program, use RUN, or INIT followed by CONT.

Related Keywords
CONT, INIT, RUN

2-278 Keyword Dictionary

PAUSING PROGRAMS FROM THE KEYBOARD

To pause a running program at any time, use the interrupt signal (rather
than the I Break I key). The interrupt signal ("SIGINT") is usually generated
by pressing I CTRL I []] (it is set up by executing the HP-UX command
stty intr \ -c).

When a program is paused from the keyboard during execution of a
multi statement line, the line)s completed before the program halts. If
the line includes a branching statement, execution halts at the end of
the statement to which the program branched.

When a graphics program is paused in this way, you must wait for the
graphics to complete before proceeding (for example, do not turn off
the plotter). When performing long graphics operations, such as GRID,

you may have to use the interrupt signal twice.

If the BASIC system does not respond with <PAUSE>, then you can reset
the system by issuing a "SIGQUIT" signal (usually I CTRL I [3].

Keyword Dictionary 2-279

PDIR
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The PDIR (plot direction) statement specifies a rotation of coordinates which is applied to incre­
mental plotting (IPLOT, IMOVE, and IDRAW) and relative plotting (RPLOT).

~I--~~---+fangle

~

Item

angle

run

rise

Examples
PDIR ACS(P(I»
PDIR 30,30

Description

Description

numeric expression, interpreted according to the
current trigonometric mode

numeric expression, interpreted according to the
current scale units

numeric expression, interpreted according to the
current scale units

Range

The angle measures the conterclockwise rotation between the horizontal axis and the new x
axis. The run and rise parameters determine a vector drawn in the direction of the new x axis.

Axes and labels are not affected by PDIR.

Related Keywords
DEG, GRAD, RAD

2-280 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The PEN statement selects a pen on the current plotting device.

@---+l pen number ~

Item

pen number

Examples
PEN 1
PEN Color
PEN -1

Description

Description

numeric expression, rounded to an integer

PEN

Range

device dependent

On a periperal plotter, no checking is done to verify that the specified pen number exists. PEN

o mayor may not return the current pen to its stall.

When the display is the plotting device, pen numbers are interpreted as follows (pen numbers
effects with plotters are device-dependent):

Monochromatic Pens

Pen Number Effect

PEN 1 white pen-turns pixels on

PEN 0 black pen-turns' pixels off

PEN -1 complementing pen-white pixels are changed to black, and black pixels are changed
to white (providing the display supports block read/write operations; see ASSIGN in the
BASIC Reference Manual for a list of displays with this capability).

Keyword Dictionary 2-281

Default Color Pens l

Related Keywords
CLEAR, GCLEAR

Pen Number

PEN 7

PEN 6

PEN 5

PEN 4

PEN 3

PEN 2

PEN 1

PEN 0

Negative pens2

Default Color

Magenta

Blue

Cyan

Green

Yellow

Red

White

Black

Complementing pens

Other displays may have a different or larger set of color pens available. For instance, on a 4-plane color display, you may have up to
16 pens available. Your display's documentation, or the Starbase manuals, should describe the pens available on your display.

In addition, you can also re-define the default color map on some color displays. See "Section 3: Starbase Color Graphics" of the HP-UX

Concepts and Tutorials. Vol. 6: Graphics manual for details. It is possible to either do this while in the HP-UX system and then enter
BASIC, or to do it in a binary program that the BASIC system calls (see one of the "Binaries" chapters for examples of calling a routine
written in another language).

2 All positive pen numbers write in "dominant" mode-that is, they overwrite any color (or black) that is currently on the screen.
"Complementing" pens are also available by using the negative of the pen number. For instance, on the 98700 display, dominant red is
PEN 2 and complementing red is PEN - 2. The resultant operations for the complementing pens are as follows: for each pixel drawn
on the screen, take the bits of the screen pixel (the destination) and exclusive or them with the bits of the pen color (the source); the
resultant value is placed into the screen pixel (destination).

2-282 Keyword Dictionary

PENUP
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The PENUP statement lifts the pen on the current plotting device.

Description
After PENUP is executed, no drawing takes places until the pen is dropped manually or by
executing a statement that drops the pen:

PLOT
DRAW
XAXrS
GRID

IPLOT
I DRAW
YAXIS
LGRID

RPLOT
LABEL
AXES
LAXES

Keyword Dictionary 2-283

PI
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN No

The PI function returns the value of 1r with full machine precision.

Examples
C=2*PI*R
IF A<2*PI THEN GOSUB 500

2-284 Keyword Dictionary

PLIST
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The PLIST statement lists the current program or subprogram in system memory on the PRINTER
IS device.

Item Description

beginning line num- integer constant
ber

ending line number integer constant

Examples
PLIST 100
PLIST 100,200

Description

Range

1 through 65,535

1 through 65,535

The beginning line number and ending line number specify the portion of the program to be
listed. If no ending line number is specified, listing begins at the beginning line number and
continues for the entire (sub)program. When both parameters are omitted, the entire program
is listed.

Related Keywords
LIST

Keyword Dictionary 2-285

PLOT

Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The PLOT statement moves the pen from the current pen position to the specified x- and y­
coordinate position. The optional pen control parameter specifies the up/down status of the
pen.

Item

x-coordinate

y-coordinate

pen control

Examples
PLOT X,Y,P
PLOT 5,10

Description

numeric expression, interpreted in the current
units

Range

numeric expression, interpreted in the current -
units

numeric expression, rounded to an integer (de- -
fault=+ 1; pen lowered after move)

2-286 Keyword Dictionary

Description
PLOT uses the current units (GU's or UU's) and line type. In UU's mode, lines cannot be drawn
outside the plotting boundaries. In GU's mode, the plotting boundaries are equivalent to the
graphics limits; therefore, lines can be drawn anywhere within the graphics limits.

In both UU's mode and GU's mode, PLOT can position the logical pen outside the plotting area.
However, PLOT cannot position the physical pen outside the plotting boundaries. If none of the
line is inside the current plotting area, the physical pen is not moved, but the logical pen position
is updated.

The optional pen control parameter specifies the up and down position of the pen as follows:

Pen Control

Pen Control Parameter Pen Action

positive, even pen moved and then lifted

positive, odd pen moved and then lowered

negative, even pen lifted and then moved

negative, odd pen lowered and then moved

If no pen control parameter is specified, the up/down status of the pen before PLOT is executed
determines whether the pen is up or down as it moves. If the pen is up, it is lowered when it
reaches its new position.

Related Keywords
IPLOT, LINE TYPE, RPLOT

Keyword Dictionary 2-287

PLOTTER IS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The PLOTTER IS statement specifies the graphics output and input device(s).

(PLOTTER IS H s~~~~~~r H

Item Description Range

device selector numeric expression, rounded to the nearest inte- 1, and 3 through 10
ger

Examples
PLOTTER IS 1
PLOTTER IS 5
PLOTTER IS PltDevice

Description
PLOTTER IS 1 only works on certain types of displays/terminals where the corresponding device
file (in the /dev directory) is named crt or tty, and the TERM environment variable is set to a
corresponding Starbase driver type. In all other cases, you must use ASSIGN to assign a device
selector to a graphics resource before using the device selector in a PLOTTER IS statement. (See
ASSIGN.)

In addition to selecting the plotting device, the PLOTTER IS statement:

• Reads the graphics limits of the plotting device .

• Activates the graphics default conditions (see graphics default conditions in the glossary).

Related Keywords
ASSIGN, LIMIT

2-288 Keyword Dictionary

POS
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The POS numeric function returns the position of the first character of a substring within another
string.

Item

string searched

substring
searched for

Examples
Index=POS(A$,1I111)

Description

string expression

string expression

DISP String$[POS(String$, IILII) ,30]

Description

Range

If the substring searched for is the null string or is not contained within the string searched, POS

returns O. If the substring searched for occurs in more than one place, only the first occurence
is returned.

Keyword Dictionary 2-289

PPOLL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The PPOLL numeric function returns the results of a parallel poll operation.

Item Description Range

device selector numeric expression, rounded to an integer; must 3 through 10
contain HP-IB primary address

Examples
ParPol=PPOLL(7)
IF PPOLL(Isc)=8 THEN GOSUB 300

Description
Interface-dependent action:

• HP-IB: The node to which the device selector is assigned must be in "raw" mode; that is,
there can be no primary address specified in the special (device) file's minor number, See
ASSIGN for further information.

The computer must be active controller. The value returned is a byte representing eight
status-bit messages of devices on the interface bus. Each device capable of responding
asserts one bit of the response byte .

• GPIO: Error.

Related Keywords
SPOLL

2-290 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The PRINT statement outputs the print items to the current PRINTER IS device.

PRINT
items

\
TAB not allowed
with USING

Item Description Range

IMAGE line number integer constant identifying an IMAGE statement 1 through 65,535

IMAGE line label name identifying an IMAGE statement any valid line name

format string string expression containing one or more field
specifiers (see IMAGE statement for syntax)

PRINT

column numeric expression, rounded to an integer negative numbers are inter­
preted as 1

numeric expression

string expression

Keyword Dictionary 2-291

Examples
PRINT Number; Letter$
PRINT TAB (10) ;A$. "Results=" ; Result
PRINT USING "DC3D.SD.4X.7A";A."dollars"
PRINT USING 100; A.B$.C

Description
The keyword USING provides for specifying the format of output. When PRINT is executed
without USING, a standard format is used.

Simple PRINT (Without USING)
Simple PRINT uses standard number format (see glossary) for numeric items, and displays numeric
and string items in either of two field widths:

• When display items are separated by semicolons, they are displayed in narrow format with
a leading blank or minus sign. Strings are output with no leading or trailing blanks .

• When display items are separated by commas, they are displayed in wide format, left­
justified in 21-column fields. Items longer than 21 characters occupy more than one field.

When the TAB function is included as a print item, the column parameter positions the next
character on the print line. Negative column numbers are treated as TAB (1). Column numbers
greater than the line length are reduced MOD (line length). When TAB is used to control format,
display items should be separated by semicolons; using commas causes output to be displayed
in wide format.

When the list of print items is exhausted, an end-of-line (EOL) sequence, ordinarily carriage
return/line feed, is sent to the printer. The EOL can be suppressed by including a comma or
semicolon after the last print item.

Control Characters and Alternate Character Sets
Control characters are included as print items by specifying their ASCII code as argument in the
CHR$ function or by using the metacharacter - followed by the character decimal code.

2-292 Keyword Dictionary

Formatted Output
The PRINT USING statement uses a format string contained in the statement itself or in a refer­
enced IMAGE statement to format the output. The format string, consisting of one or more field
specifiers separated by delimiters (comma or slash), is used from left to right. Print items are
paired with their corresponding field specifiers. Certain field specifiers do not use a print item
(for example, X).

If the format string is exhausted before all the print items have been processed, the format
string is reused from the beginning. Extra field specifiers are ignored. If a field is larger than
the numeric item, the number is right-justified in the field. A warning is issued if the number
is larger than the field. (A minus sign requires a digit position if M or S is not included in the
field specifier.) Numbers are rounded to the number of decimal placed indicated by the field
specifier. Standard number format can be chosen by using the image specifier K.

TAB cannot be used with PRINT USING.

When the list of print items is exhausted, an end-of-line (EOL) sequence, ordinarily carriage
return/line feed, is sent to the display. The EOL can be suppressed by placing the image
specifier # at the beginning the format string in the PRINT USING or IMAGE statement. Unlike
with simple PRINT, a terminating semicolon or comma is ignored and does not suppress the EOL
sequence.

Refer to IMAGE for the syntax of the format string.

Related Keywords
DISP, IMAGE, OUTPUT

Keyword Dictionary 2-293

PRINT#

The PRINT# statement outputs data to an open BASIC/DATA file.

Item

buffer number

record number

Description

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression (see glossary)

string expression (see glossary)

array name name of a numeric or string array

Examples
PRINT# 1; Variable
PRINT# BufferNumber. record; A(4)*7,B$[7,12]

2-294 Keyword Dictionary

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

Range

1 through 10

any valid name

Description
The buffer number must have been previously assigned to the file with an ASSIGN# statement.
The ASSIGN# statement places the file pointer at the beginning of the file.

Serial Access
When the record number is omitted, data is written serially. In serial access, data is written to
the file sequentially; items are placed in the next logical record when the current record becomes
full.

As each PRINT# item is written into the file, the file pointer advances beyond that data. When
the entire list of PRINT# items has been written, the file pointer remains positioned after the
last data item read and an end-of-file (EOF) marker is positioned there. A subsequent PRINT#

statement continues writing data from that position.

Serial printing continues until all the data is printed, or until the medium is full. The data file is
automatically expanded, if necessary, to accommodate all the PRINT# items. Serial printing also
halts when the file is closed, or when a random access READ# or PRINT# is executed.

Random Access
When the record number is included, data is written using random access. The record number
must not exceed the total number of records in the file.

When the PRINT# statement is executed, the file pointer is moved to the beginning of the specified
logical record. As an item of data is written into the record, the file pointer advances to the
next position in the record and an end-of-record marker is placed in that position. A random
PRINT# operation cannot extend across logical record boundaries. An error is returned if the file
pointer moves beyond the end of the record.

Executing a random access PRINT# without a list of data causes the file pointer to move to the
beginning of the specified logical record.

Related Keywords
ASSIGN#. READ#

Keyword Dictionary 2-295

PRINT ALL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The PRINT ALL statement directs the system to enter a mode in which a printed copy of al­
phanumeric information as it is displayed on the alpha display. (Use NORMAL to restore the
default display mode.)

Description
PRINT ALL directs a copy of all displayed alphanumeric output to the PRINTER IS device. This in­
cludes output from DISP. DISP USING, and LIST, keyboard input, and error messages generated
from the keyboard or from a running program.

Related Keywords
CRT IS. NORMAL. PRINTER IS

2-296 Keyword Dictionary

PRINTER IS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The PRINTER IS statement selects the destination for PRINT and PLIST output.

Item

device selector

Description

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range

11 through 20 file selector

line length numeric expression, rounded to an integer (de- 1 through 220
fault=80)

Examples
PRINTER IS 701
PRINTER IS Printer8

Description
Output from PRINT (USING) and PLIST is sent to the PRINTER IS device or to the specified file.
The alpha display is the default printing device at power-on.

The line length specifies the maximum number of characters sent to the PRINTER IS device before
an end-of-line (EOL) sequence is automatically sent. The EOL character(s) are not counted as
part of the line length. When a PRINT USING format string specifies output that exceeds the
PRINTER IS line length, the line is broken at the line length and the format is continued at the
beginning of the next line.

Related Keywords
ASSIGN. IMAGE. PLIST. PRINT

Keyword Dictionary 2-297

PURGE
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The PURGE statement deletes the entry for the specified file from its directory.

Item Description Range

file name literal; name of a file in the current working direc- 14 characters maximum;

HP-UX path
name

string expression

Examples
PURGE "myfile"

tory slash and leading colon not al­
lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX
path name

PURGE l/vol1/dir1/dir2/myfile"

Description
If the file name is used alone rather than as part of an HP-UX path name, the file must be
located in the current working directory.

A purged file can no longer be accessed. The space previously occupied by the file becomes
available for creation of other files.

Related Keywords
ASSIGN#

2-298 Keyword Dictionary

RAD
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The RAD statement sets radians as the unit in which angles are measured.

Description
When RAD is executed, all angle parameters in statements and functions are interpreted as
radians. (There are 27r radians in a circle.) All functions returning an angle return a value in
radians.

The angle mode of a program is global. When a subprogram is called, the current angle mode
is carried into the subprogram. If a subprogram changes the angle mode and then returns to
the main program, the new mode is carried back to the main program.

Related Keywords
DEG. GRAD

Keyword Dictionary 2-299

RANDOMIZE
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The RANDOMIZE statement specifies a new seed for the RND function.

(RANDOMIZE)J----r"-----r----.~I

La-J
Item

seed

Examples
RANDOMIZE
RANDOMIZE Seed,

Description

Description

numeric expression, rounded to an integer

Range

range of integers

The seed determines the sequence of pseudorandom numbers generated. Using the same seed
causes RND to generate the same series of numbers.

The seed is global, and is passed between the main program and any subprogram(s).

Related Keywords
RND

2-300 Keyword Dictionary

RATIO
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The RATIO function returns the ratio of the dimensions of the graphics limits-horizontal dimen­
sion divided by vertical dimension.

Examples
R=RATIO
LOCATE 5.RATIO*20.10.50

Description
The graphics limits from which RATIO is computed are set by executing PLOTTER IS or LIMIT.

Floating-point math accuracy may vary depending on the display or plotter used, as well as from
machine to machine.

Related Keywords
LIMIT. PLOTTER IS

Keyword Dictionary 2-301

READ
Keyboard Executable No

Programmable Yes

In an IF ... THEN Yes

The READ statement reads numeric and/or string constants from one or more DATA statements
and assigns those values to program variables.

Item Description Range

numeric name name of a simple numeric variable or numeric ar- any valid name
ray

string name name of a simple string variable or string array

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

2-302 Keyword Dictionary

any valid name

1 through 65,530

1 through 65,530

1 through 65,530

Examples
READ Variable1.Variable2$
READ A(1.2) .B.C$.D$[3.5] .E$(4) [7]

Description
READ uses a data pointer to indicate the data item to be read. When program execution begins,
the data pointer is positioned at the left-most item in the lowest-numbered DATA statement. When
the data list in a particular DATA statement is exhausted, the pointer moves to the next-higher
numbered DATA statement. Attempting to read past the last data item in the program generates
an error.

The order in which DATA statements are used can be changed using the RESTORE statement.

Each subprogram has its own data pointer, and can use only its own DATA statements. When a
subprogram is called, its first READ statement uses the first DATA statement in that subprogram.
When execution returns to a calling program, the calling program resumes use of its own data
pointer starting from the pointer's last position.

Related Keywords
DATA. RESTORE

Keyword Dictionary 2-303

READ#
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The READ# statement retrieves data from an open BASIC/DATA file and assigns the data to the
specified variable(s}.

2-304 Keyword Dictionary

Item

buffer number

record number

Description

numeric expression, rounded to an integer

numeric expression, rounded to an integer

Range

1 through 10

none

numeric name name of a simple numeric variable or numeric ar- any valid name
ray element

string name name of a simple string variable or string array any valid name
element

array name name of a numeric or string array

subscript numeric expression, rounded to an integer

beginning position numeric expression, rounded to an integer

ending position numeric expression, rounded to an integer

Examples
READ# l;Variable
READ# BufferNumber,record;A(4),B$[7,12]

Description

any valid name

1 through 65,530

1 through 65,530

1 through 65,530

The buffer number must have been previously assigned to the file with an ASSIGN# statement.
The ASSIGN# statement places the file pointer at the beginning of the file.

Data read from the file must match the READ# variables in type (numeric versus string). Numeric
data need not agree in precision. The data is converted to the precision of the READ# variable.

Serial Access
When the record number is omitted, data is read serially. As an item of data is read from the
file into a READ# variable, the file pointer advances to the next item. When the entire list of
READ# variables has been satisfied, the file pointer remains positioned after the last data item
read. A subsequent READ# statement continues reading data from that position. Serial access
continues until the file is closed, all the data has been read, or a random access READ# or PRINT#
statement is executed.

Keyword Dictionary 2-305

Random Access
When the record number is included, data is read using random access. The record number
must not exceed the total number of records in the file.

When the random READ# statement is executed, the file pointer is moved to the beginning of the
specified logical record. As an item of data is read from the record into a READ# variable, the
file pointer advances to the next item in the record. A random READ# operation cannot extend
across logical record boundaries. An error is returned if the file pointer encounters the end of
the logical record before all the READ# variables have been satisfied.

Executing a random access READ# without a list of variables moves the file pointer to the beginning
of the specified logical record.

Related Keywords
ASSIGN#, PRINT#

2-306 Keyword Dictionary

READTIM
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The READTIM function returns the integer number of seconds elapsed on the specified system
timer after the timer is set by an ON TIMER# statement in a program.

Item Description

timer number a numeric expression, rounded to an integer

Examples
IF READTIM(1)<5 THEN GOSUB SendData
DISP READTIM(A)

Description

Range

a through 3

If the timer has not been set or has been disabled by OFF TIMER#. READTIM returns O. Timer
#0 is the system clock; READTIM(O) returns the value of the clock seconds counter.

Related Keywords
OFF TIMER#. ON TIMER#. SETTIME

Keyword Dictionary 2-307

REAL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN No

The REAL statement declares and reserves memory for full precision floating point numeric
variables.

Item Description Range

numeric name name of a simple numeric variable or numeric ar- any valid name
ray

upper bound integer constant 1 through 65,530

Examples
REAL Variable,Arrayl(10),Array2(5,3)

Description
All numeric variables are REAL unless declared SHORT or INTEGER.

When the numeric variable name is used with one or two upper bound(s) enclosed in parentheses,
the variable is dimensioned to be a one- or two- dimensional array. The default lower bound of
the array is O. The OPTION BASE statement is used to set the lower bound equal to 1.

When variables are passed to a subprogram by address, precision declarations accompany the
variable into the subprogram.

Related Keywords
DIM, INTEGER, SHORT

2-308 Keyword Dictionary

REDIM
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The REDIM statement changes the subscript range of a previously dimensioned array.

Item Description Range

name of a numeric array any valid name array name

lower bound numeric expression, rounded to an integer (de- 1 through 65,530
fault=option base value)

upper bound

Examples
REDIM A(3)

numeric expression, rounded to an integer

REDIM FirstArray(4,5),SecondArray(5)

Description

1 through 65,630

Redimensioning an array reassigns elements to different positions in the array. Elements are
stored in order from left to right along each row, from the top row to the bottom.

The following rules apply to redimensioning arrays:

• The number of dimensions of the array must not change.

• The total number of elements in the new working size cannot exceed the number originally
dimensioned.

If REDIM specifies an array that has not yet been explicitly dimensioned, the array is first di­
mensioned to a two-dimensional array with upper bounds equal to 10, and then immediately
redimensioned.

Keyword Dictionary 2-309

REM
Keyboard Executable No
Programmable Yes
In an IF ... THEN No

The REM statement allows comments in a program.

Item Description Range

literal string constant composed of characters from the characters with ASCII codes 0
keyboard through 31 not allowed

BASIC program
line

a proper BASIC program line or multi-statement
line

Examples

10 REM Written 12/5/83
20 !
30 DIS? "Insert disc in drive"

Description

User must insert disc #4

The comment delimiter, !, can be used anywhere after the line number; all characters following
the delimiter are considered part of the comment.

If a REM statement is included in a muItistatement line, it must be the last statement in the line.

2-310 Keyword Dictionary

REMOTE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The REMOTE statement places the specified device(s) into remote control.

Item

device selector

Examples
REMOTE 710
REMOTE Al.A2.A3

Description Range

numeric expression, rounded to an integer

Keyword Dictionary 2-311

Description
Interface-dependent action:

• HP-IB: The computer must be system controller.

The bus is placed in remote operation.

The node to which the device selector is assigned must be in "raw" mode; that is, there
must be no primary address in the special (device) file's minor number. (See ASSIGN for
further information.)

If no addressing is included in the device selector, the remote state is enabled for all devices
on the bus having remote/local capabilities. The interface sets Remote Enable (REN) true.
Devices do not go into remote state until they are addressed to listen.

If the device selector contains a primary address, the interface sets HEN true, sends
Unlisten (UNL), and then sends the listen address of the specified device(s). REMOTE leaves
ATN true.

If two or more device selectors are listed, they must include primary addresses, and the
devices must be on the same interface .

• GPIO: Error.

Related Keywords
LOCAL, LOCAL LOCKOUT, RESUME

2-312 Keyword Dictionary

REN
Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The REN command renumbers all or portions of the current program or subprogram.

Item Description

new initial line num- integer constant (default= 1 0)
ber

new increment integer constant (default= 1 0)
value

original initial line integer constant (default=l)
number

original ending line integer constant (default=65,535)
number

Examples
REN 500,2,1,60000
REN 10,1

original ending
line number

Range

1 through 65,535

1 through 65,535

1 through 65,535

1 through 65,535

Keyword Dictionary 2-313

Description
The program lines to be renumbered are delimited by the original initial line number and the
original ending line number. Both original line numbers must exist in the program. The first line
in the delimited segment is assigned the new initial line number. Successive lines are renumbered
according to the specified new increment value. An error occurs if renumbering causes the new
ending line number to exceed 65,535, or if either original line number does not exist.

When REN changes a line number, all references to that line number within the (sub)program (for
example, GOTO line number) are automatically updated.

REN cannot be used to change the order of program lines. An error occurs if renumbering causes
newly renumbered program lines to overlap previous or following lines. In the case of an error,
renumbering halts and line numbers are returned to their original values.

Related Keywords
SCAN, XREF L

2-314 Keyword Dictionary

RENAME
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The RENAME statement changes the name of the specified file in its directory.

Item

file name

HP-UX path
name

string expression

Examples

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed, BASIC/SUBP files not
allowed

literal; an absolute or relative path name (see glos- BASIC/SUBP files not allowed
sary)

expression evaluating to a file name or HP-UX
path name

RENAME "name1" TO "name2"
RENAME "/disc1/o1dname" TO "newname"

Description
RENAME removes the old name from the directory and replaces it with the new name. The
parameter following TO must be a simple file name.

If the old file name is used alone rather than as part of the HP-UX path name, the file must be
located in the current working directory.

Keyword Dictionary 2-315

REPLACEVAR
Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The REPLACEVAR command replaces all occurrences of the specified variable name in a program
or subprogram with another variable name.

Item

simple variable
name

Description

simple numeric or string variable name

array variable name numeric or string array name

Examples
REPLACEVAR A BY B
REPLACEVAR string$() BY twine$()

Description

Range

any valid name

any valid name

The new variable name must match the replaced variable name in typesimple numeric, simple
string, numeric array, or string array. A one-dimensional array variable is indicated by parentheses
following ·the variable name. For two-dimensional arrays, a comma must be included within the
parentheses.

The messages Replacing. .. and ... end of replace indicate the beginning and end of the
replacement operation.

Related Keywords
SCAN. XREF L. XREF V

2-316 Keyword Dictionary

REQUEST
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The REQUEST statement is used by the non-active controller to send a response byte to the active
controller.

Item

device selector

response byte

Examples
REQUEST 7;64

Description

numeric expression, rounded to an integer

numeric expression, truncated to an integer and
moduloed 256

REQUEST DevSelector;64+X

Description
Interface-dependent action:

Range

3 through 10

• HP-IB: The computer must not be the active controller of the specified interface.

The node to which the device selector is assigned must be in "raw" mode; that is, there
can be no primary address specified in the special (device) file's minor number. See ASSIGN
for further information.

Executing REQUEST sets up a serial poll response byte, which is sent to the active controller
in response to a serial poll operation. If bit 6 (decimal value 64) of the response byte is
set, the computer sends Service Request (SRQ) to the active controller in response to the
incoming serial poll. The active controller's serial poll clears SRQ .

• GPIO: Error.

Related Keywords
PASS CONTROL, SPOLL

Keyword Dictionary 2-317

RESET
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The RESET statement performs a hardware reset of the interface, returning it to its power-on
state.

§---I device r---t RESET selector

Item

device selector

Examples
RESET 7
RESET DevSel

Description

Description

numeric expression, rounded to an integer

Range

3 through 10

When RESET is executed, the interface performs a self-test, and the control registers are set to
their default values.

Interface-dependent action:

• HP-IB: The node to which the device selector is assigned must be in "raw" mode; that is,
there can be no primary address specified in the special (device) file's minor number, See
ASSIGN for further information.

If the computer is system controller, HP-IB sends Interface Clear (IFC), then Remote Enable
(REN) .

• GPIO: Pulses the PRESET line, and restores the card to its powerup state.

Related Keywords
ASSIGN, CONTROL

2-318 Keyword Dictionary

RESTORE
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes

The RESTORE statement specifies which DATA statement will be accessed by the next READ oper­
ation.

Item

line number

line label

Examples
100 RESTORE
200 RESTORE 130

Description

Description Range

integer constant identifying a program line (de- 1 through 65,535

fault=first DATA statement in a program or sub-
program)

name of a program line any valid name

The specified statement must be a DATA statement located in the same program or subprogram.
When that data statement has been used, the data pointer moves to the next-higher numbered
DATA statement.

Related Keywords
DATA. READ

Keyword Dictionary 2-319

RETURN
Keyboard Executable No

Programmable Yes

In an IF ... THEN Yes

The RETURN statement is used within a subroutine to cause branching to the statement following
the invoking GOSUB.

(RETURN ~

Description
When an invoking GOSUB (or ON ... GOSUB) is embedded in a multistatement line, RETURN returns
program execution to the statement following the GOSUB on that line. A GOSUB interrupt (for
example, ON KEY# 5 GOSUB 100) returns execution to the line following the line on which the
interrupt occurred.

Related Keywords
GOSUB, ON ... GOSUB

2-320 Keyword Dictionary

REV$
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The REV$ function returns a string formed by reversing the sequence of characters in the specified
string.

Item Description

string argument string expression

Examples
Backwards$=REV$ (II ABCDE II)
DISP REV$(String$[2,7])

Range

Keyword Dictionary 2-321

RMD
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The RMD function divides the first numeric argument by the second numeric argument and returns
the remainder from the division.

Item

dividend

divisor

Examples
ANGLE=RMD(A,360)

Description

numeric expression

numeric expression

IF RMD(X,Y)=O THEN 300

Description

Range

For non-zero values of Y, RMD(X,Y) returns a value according to the equation:

RMD(X,Y) = X - Y * IP(X/Y)

When y=O, RMD (X, y) =x. RMD and the MOD operator return the same result when X and Y have
the same sign.

Related Keywords
MOD

2-322 Keyword Dictionary

RND
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The· RND function returns a pseudorandom number greater than or equal to 0 and less than 1.

Examples
IF RND>=.5 THEN DISP "HEADS"

Description
The sequence of random numbers returned depends on the seed. BASIC uses a default seed
whenever the system is reset. The RANDOMIZE statement is used to change the seed.

Related Keywords
RANDOMIZE

Keyword Dictionary 2-323

RNORM
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The RNORM function returns the row norm of an array. The row norm is computed by summing
the absolute values of the elements in each row of the array and selecting the largest value.

Item

array name

Examples
SUM=RNORM(Arrayl)

Description

name of a one· or two-dimensional array

IF RNORM(A)<>=>RNORM(C) THEN B=RNORM(A)

Related Keywords
CNORM. FNORM. RNORMROW

2-324 Keyword Dictionary

Range

any valid name

RNORMROW
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The RNORMROW function returns the row number of the row having the largest sum of absolute
values, using the array specified in the most recently executed RNORM function.

(RNORMROW}---

Examples
A(RNORMROW.3) = 2.SE4
OISP RNORMROW

Description
Row numbering starts with zero for option base O.

Related Keywords
ABSUM. RNORM

Keyword Dictionary 2-325

ROTATE$
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The ROTATE$ function shifts the characters in a string by the specified number of positions,
rotating characters "bumped" off one end of the string to the other end.

Item

string argument

shift factor

Examples

Description

string expression

numeric expression, rounded to an integer

DISP ROTATE$(IABCDEFG".2)
IF ROTATE$(Line1$.1)=lx" THEN Y=2

Description

Range

The sign of the shift factor determines which way characters are rotated. A positive shift factor
causes characters to be right-shifted, with characters at the end of the string rotated to the
beginning. A negative shift factor causes characters to be left-shifted, with characters at the
beginning of the string rotated to the end.

2-326 Keyword Dictionary

RPLOT

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The RPLOT statement moves the pen from the current pen position to the specified x- and y­
coordinate position, using a local coordinate origin. The optional pen control parameter specifies
the up/down status of the pen.

Item

x-coordinate

y-coordinate

pen control

Examples
RPLOT X.Y.P
RPLOT 5.10

Description

numeric expression, interpreted in the current
units

Range

numeric expression, interpreted in the current -
units

numeric expression, rounded to an integer (de- -
fault= 1; pen lowered after move)

Keyword Dictionary 2-327

Description
The x- and y-coordinates are interpreted as increments to a local origin. RPLOT does not affect
the local origin.

The local origin is the current logical pen position at the completion of any of the following
statements:

AXES DRAW FRAME GRID IDRAW IMOVE IPLOT LABEL MOVE PLOT

RPLOT uses the current units (GU's or UU's) and line type. In UU's mode, lines cannot be drawn
outside the plotting boundaries. In GU's mode, the plotting boundaries are equivalent of the
graphics limits; therefore, lines can be drawn anywhere within the graphics limits.

In both UU's mode and GU's mode, RPLOT can position the logical pen outside the plotting area.
However, RPLOT cannot position the physical pen outside the plotting boundaries.

The optional pen control parameter specifies the up and down position of the pen as follows:

Pen Control

Pen Control Parameter Pen Action

positive, even pen moved and then lifted

positive, odd pen moved and then lowered

negative, even pen lifted and then moved

negative, odd pen lowered and then moved

If no pen control parameter is specified, the up/down status of the pen before RPLOT is executed
determines whether the pen is up or down as it moves. If the pen is up, it is lowered when it
reaches its new position.

Related Keywords
IPLOT. LINE TYPE. PLOT

2-328 Keyword Dictionary

RPY$
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The RPT$ function returns a string consisting of the string argument repeated the specified
number of times.

Item

string argument

repeat factor

Examples

Description

string expression

numeric expression, rounded to an integer

DISP RPT$(String$,5)
Q$=RPT$(112345",N)

Description

Range

A repeat factor less than + 1 returns a null string. A repeat factor that produces a result string
greater than 65,530 characters causes an error.

Keyword Dictionary 2-329

RTD
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The RTD (radians-to-degrees) function interprets the numeric argument as an angle measured in
radians, and returns the value of the angle in degrees.

Item Description

numeric argument numeric expression

Examples
Degrees= RTD(Radians)
DISP RTD(PI*B)

Description

Range

The argument and value returned by RTD are independent of the current trigonome~ric mode.

Related Keywords
DTR

2-330 Keyword Dictionary

RUN
Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The RUN command starts program execution from the beginning or from the specified line.

@-T"-------r-.-

~
Item

line number

Examples
RUN
RUN 4500

Description

integer constant (default=first program line)

Range

1 through 65,535

Keyword Dictionary 2-331

Description
If a line number is specified, it must be a valid line number in the main program. If the main
program does not contain the specified line, execution starts at the next higher number line. An
error results if no higher numbered line exists.

Execution of RUN occurs in two steps: pre-run initialization, and program execution. During
pre run initialization:

• Memory is allocated to all program variables, and the variables are then initialized: numeric
variables are set to 0, and string variables are set to the null string.

• Any variable assignments previously made from the keyboard are scratched.

• The program is checked for prerun errors; for example, referencing a non-existent program
line, duplicate user-defined functions, dimensioning the same variable more than once.

If an error is detected, pre-run is terminated and an error message is reported.

When prerun initialization is completed, program execution begins. If the specified line number
does not exist, execution begins with the next higher numbered line.

Refer to the table of Reset Conditions in Appendix 4 for additional information.

Related Keywords
CONT, INIT, PAUSE

2-332 Keyword Dictionary

SAVE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SAVE statement converts program lines currently in memory to ASCII character strings and
copies the strings to the specified text file.

Item Description Range

file name literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

HP-UX path
name

string expression

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX
path name

beginning line num- integer constant (default=first program line)
ber

ending line number integer contant (default=last program line)

1 through 65,535

1 through 65,535

Keyword Dictionary 2-333

Examples
SAVE ITheWhales"
SAVE "MyDir/MyFile".50.200

Description
If the specified file of the proper type already exists, the saved lines are copied to that file,
erasing and overwriting the current contents. If the file does not exist, it is created in the
specified directory. The current working directory is used if the file name is used without an
HP-UX path name.

The beginning line number and ending line number specify the portion of the program to be
saved. If the ending line number is omitted, lines from the beginning line number to the end of
the program are saved. If both parameters are omitted, the entire program is saved.

The text files created and accessed by SAVE are non-BASIC files.

Related Keywords
GET. STORE

2-334 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SCALE statement specifies a user units scale of the plotting area.

Item Description

x-min numeric expression

x-max numeric expression

y-min numeric expression

y-max numeric expression

Examples
SCALE 0,100,0,100
SCALE G,G+300,G-50,2G

Description

Range

SCALE

SCALE scales the current plotting area, which is a function of the units mode (GU's or UU's) and
the previously executed statements.

In GU's mode, SCALE scales the entire graphics area previously specified by PLOTTER IS or
LIMIT. In UU's mode, SCALE scales the plotting area previously specified by LOCATE. If LOCATE
has not been executed, the entire graphics area is scaled.

The SCALE statement must be executed after the plotting area (graphics limits or LOCATE-defined
area) has been established. Regardless of the current units mode, executing SCALE leaves the
system in UU's mode.

SCALE parameters can be exchanged to reflect the plot (see LIMIT).

Related Keywords
LIMIT, LOCATE, MSCALE, SHOW, PLOTTER IS, SETGU, SETUU

Keyword Dictionary 2-335

SCAN
Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The SCAN command searches the current program or subprogram and displays all lines containing
the specified variable name or character string. The messages Scanning ... and ... end of scan
indicate the beginning and end of the scan operation.

Itein

literal

Description

string constant composed of characters from the
keyboard

name of simple numeric or string variable

name of numeric or string array

Range

simple variable

array variable

line number integer constant identifying a program line (de- 1 through 65,535
fault=first program line)

Examples
SCAN AO
SCAN II CALL ". 2000

Related Keywords
REPLACEVAR. XREF L. XREF V

2-336 Keyword Dictionary

SCRATCH
Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The SCRATCH command erases portions of computer memory, including the current BASIC pro­
gram, sUbprogram(s), and variable assignments.

(SCRATCHM

Description
Executing SCRATCH:

• Erases the current BASIC program.

• Erases any subprograms in memory.

• Erases all variable assignments made from the keyboard or within programs, including
common variables.

• Cancels all I/O buffer and mass storage buffer assignments.

Binary programs are not affected.

Refer to the table of Reset Conditions in Section 4 for further information.

Related Keywords
INIT, SCRATCHSUB

Keyword Dictionary 2-337

SCRATCHBIN
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The SCRATCHBIN statement erases the specified binary program from BASIC memory and re­
claims the memory used by the binary.

Item Description

file name literal; name of the binary program

string expression expression evaluating to a file name

Examples
SCRATCHBIN "thisbinary"
SCRATCHBIN A$

Related Keywords
CALLBIN

2-338 Keyword Dictionary

Range

14 characters maximum;
slash and leading colon not al­
lowed

SCRATCHSUB
Keyboard Executable Yes

Programmable Yes
In an IF ... THEN Yes

The SCRATCHSUB statement scratches the specified subprogram(s) from system memory.

Item Description

subprogram name name of the subprogram to be scratched

Examples
SCRATCHSUB "SubSort"
SCRATCHSUB "DeleteData" TO END

Description

Range

14 characters maximum;
slash and leading colon not al­
lowed

SCRATCHSUB deletes the specified subprogram(s) without affecting the main program or other
subprograms. When SCRATCHSUB is executed without the optional TO END keywords, only the
specified subprogram is scratched. When SCRATCHSUB is executed from the keyboard with the
optional TO END keywords, the specified subprogram and all subprograms located after it in the
directory listing are scratched.

SCRATCHSUB can be executed within the main program or within subprograms. However, a
subprogram cannot scratch itself ar any subprogram from which it was directly or indirectly
called.

Related Keywords
DIRECTORY, SCRATCH

Keyword Dictionary 2-339

SEC

The SEC function returns the secant of the angle argument.

Item Description

numeric argument numeric expression

Examples
C=SEC(Angle)
IF SEC(Angle)=T THEN 400

Description

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

Range

The angle argument is interpreted according to the current trigonometric mode - RAD (radians),
DEG (degrees), or GRAD (grads). The default mode is RAD.

Related Keywords
DEG, GRAD, RAD

2-340 Keyword Dictionary

SECURE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SECURE statement secures BASIC files against being listed, copied, or overwritten.

Item

file name

HP-UX path
name

string expression

security code

security type

Examples

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX
path name

string expression; only the first two characters are ~2 characters
used

numeric expression, rounded to an integer and security type 3 is ignored
moduloed 4

SECURE IImyfiIe ll , IInlll,O
SECURE lI/voI1/dir1/dir2/dir3/myfile ll ,Sc$,2

Keyword Dictionary 2-341

Description
If the file name is used alone (rather than as part of an HP-UX path name), the file must be in
the current working directory.

Only the first two characters of the security code are used; any others are ignored.

Non-BASIC files cannot be secured within BASIC.

File Security

Security Type File Type

o BASIC/PROG
BASIC/SUBP

1 BASIC/PROG

2

BASIC/SUBP

BASIC/PROG
BASIC/SUBP
BASIC/DATA
BASIC/GRAF

Protection

Prevents LIST, PLIST, and editing.

Prevents LIST, PLIST, editing, and
file-to-file COPY. The file is ignored
during directory-to-directory COPY.

Prevents the file from being overwrit­
ten by STORE, GSTORE, or PRINT#.

A file can be secured with types 0, 1, and 2 security at the same time. However, a file cannot
be secured twice with the same security type.

Files can be secured against cataloging by using a period as the first character of the file name.
The file will not be listed in a directory catalog. However, the file itself can be cataloged (Le.,
CAT filename or CAT HP-UX path name).

Regardless of the security status of a file, it can always be purged.

Related Keywords
PURGE, UNSECURE

2-342 Keyword Dictionary

SEND
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SEND statement sends the specified command(s) or data to one or more devices.

Item Description Range

device selector numeric expression, rounded to an integer 3 through 10

primary address numeric expression, rounded to an integer o through 31

secondary address numeric expression, rounded to an integer o through 31

Keyword Dictionary 2-343

Examples
SEND 7; CMD NumberX DATA "Hello"
SEND 7; MTA UNL LISTEN 6,14 CMD CHR$(15) SCG 6

Description
The secondary keywords that can be used and the action taken are interface-dependent.

HP-IB
The node to which the device selector is assigned must be in "raw" mode; that is, there can be
no primary address specified in the special (device) file's minor number. See ASSIGN for further
information.

The computer must be active controller when commands are sent. The ATN line is set true
while commands are sent; the ATN line is set false while data is sent.

• CMD (commands)-sends a list of 8-bit expressions with ATN true. Primary commands have
a bit pattern in the form XOOCCCCC, where X=don't care and C=bits of the command
(decimal value 0 through 31).

• DATA (data)-sends list of numeric or string expressions with ATN false. Any 8-bit pattern
may be sent. If EOL is specified, the interface end-of-line sequence is sent following the
data.

• TALK-sends a device Talk Address (TAD), decimal value 0 through 31.

• LISTEN-sends a device Listen Address (LAD), decimal value 0 through 31.

• SCG (secondary command group)-sends a secondary address to a device.

• UNL-sends the Unlisten command (decimal value 63). ATN is true.

• UNT-sends the Untalk command (decimal value 95). ATN is true.

• MLA (My Listen Address)-sends the listen address of the interface.

• MTA (My Talk Address)-sends the talk address of the interface.

GPIO
UNL, UNT, MLA, and MTA are ignored. CMD, LISTEN, TALK and SCG return an error.

The following secondary keyword can be used:

• DATA-sends the list of numeric and/or string expressions. Data is sent as 8-bit bytes. If
EOL is specified, the interface's end-of-line sequence is sent.

Related Keywords
OUTPUT

2-344 Keyword Dictionary

SETGU
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SETGU statement sets the computer to graphics units (GU's) mode. In GU's mode, the
plotting boundaries are equal to the graphics limits, and the plotting area is scaled in graphics
units.

Examples
SETGU
IF X#O THEN SETGU

Description
A graphics unit (GU) is defined as 1/100 of the shortest axis on the plotting device.

At power-on, reset, and when LIMIT or PLOTTER IS is executed, the computer is set to user
units mode, with user units (UU's) set equal to graphics units. SCALE, MSCALE, or SHOW establish
new user units. Executing SETGU permits plotting in GU's. After executing SETGU, plotting can
be restored to previously established user units by executing SETUU.

Executing SETGU sets the plotting boundary to the graphics limits established by LIMIT or PLOTTER

IS. In GU's mode, plotting boundaries set by LOCATE or CLIP are not active.

Related Keywords
LIMIT, LOCATE, MSCALE, PLOTTER IS, SCALE, SETUU, SHOW

Keyword Dictionary 2-345

SETUU
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The SETUU statement sets the computer to user units (UU's) mode. In UU's mode, user units
are the current unit scaling of the plotting area.

Examples
SETUU
IF Y$="Y" THEN SETUU

Description
When SETUU is executed, plotting boundaries set by LOCATE or CLIP which were previously
cancelled by SETGU are reactivated. If that plotting area was previously scaled by SCALE, SHOW,

or MSCALE, those user units are reactivated.

Executing SCALE, SHOW, or MSCALE also places the system in UU's mode.

Related Keywords
CLIP, LIMIT, LOCATE, PLOTTER IS, SETGU

2-346 Keyword Dictionary

SET 1/0
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SET I/O statement writes a byte of data to the specified interface register.

Item

device selector

register number

data byte

Examples
SET I/O 7,16,3

Description

numeric expression, rounded to an integer

numeric expression, rounded to an integer

numeric expression, truncated to an integer and
moduloed 256

SET I/O Isc,RegNum,BTD("10000011")

Description

Range

3 through 10

o through 23

The binary equivalent of the data byte is used to set and clear bits of the specified control
register. SET I/O performs the same operation as the CONTROL statement, except that SET I/O
can write to only one register at a time.

With HP-IB interfaces, the node to which the device selector is assigned must be in "raw" mode;
that is, there can be no primary address specified in the special (device) file's minor number.
See ASSIGN for further information.

Related Keywords
CONTROL

Keyword Dictionary 2-347

SET TIMEOUT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The SET TIMEOUT statement sets the maximum amount of time the system will wait for the
specified interface to complete a handshake during an I/O operation.

Item

device selector

milliseconds

Examples

Description

numeric expression, rounded to an integer

numeric expression, rounded to an integer

SET TIMEOUT DevSelector; MilliSeconds
SET TIMEOUT 7; 5000

Description

Range

3 through 10

>0

If an ON TIMEOUT end-of-line branch has been enabled, the branch is taken when the SET TIMEOUT

limit is exceeded. If no ON TIMEOUT branching is in effect when the SET TIMEOUT time limit is
exceeded, the system retains a pending end-of-line branch; when an ON TIMEOUT statement is
executed, the branch is immediately taken.

I/O operations for which time outs can occur include any OUTPUT, ENTER, PRINT, and plotting
operations that access an interface.

With HP-IB interfaces, the node to which the device selector is assigned can be either in "raw"
or "auto-addressed" mode; that is, it mayor not contain a primary address. (See ASSIGN for
details.)

Related Keywords
OFF TIMEOUT, ON TIMEOUT

2-348 Keyword Dictionary

SFLAG
Keyboard. Executable Yes
Programmable Yes

In an IF ... THEN Yes

The SFLAG statement sets and clears one or more flags.

Item Description Range

flag number numeric expression, rounded to an integer + 1 through +64

string expression eight characters, each interpreted as eight data (use CHR$ or the metacharacter
bits - for non-keyboard characters)

Examples
IF X=5 THEN SFLAG 6
SFLAG I
SFLAG "abcdefgh"

Description
When the SFLAG, parameter is a numeric expression, it is interpreted as a flag number, and
the specified flag is set. When the SFLAG parameter is a string expression, each of the eight
characters are interpreted as one byte.

The 8-bit binary value of each character sets (1) and clears (0) eight flags. The first character
represents flags 1 through 8, the second character, flags 9 through 16, etc. If the string
expression contains more than eight characters, it is truncated after the eighth character. If the
string expression contains fewer than eight characters, CHR$ (0) characters are appended to fill
the string, and those flags are cleared. .

Related Keywords
CFLAG, FLAG, FLAG$

Keyword Dictionary 2-349

SON
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The SGN function returns 1 if the numeric argument is positive, -1 if the argument is negative,
and 0 if the argument is o.

Item Description

numeric argument numeric expression

Examples
IF SGN(Y)=l THEN GOSUB 400
Root=SGN(X)*SQR(ABS«X»

Related Keywords
ABS

2-350 Keyword Dictionary

Range

SHELL
Keyboard Executable Yes
Programmable No
In an IF ... THEN No

The SHELL command temporarily exits from BASIC back to the HP-UX Bourne shell, without
losing the current BASIC environment.

Description
When SHELL is executed, the current BASIC environment is saved and the HP-UX Bourne shell
is invoked to permit you to execute HP-UX commands.

After any number of HP-UX commands, enter the ASCII "EOT" character (usually I CTRL I [[])
to restore the previous BASIC environment. The following prompt will be given upon re-entry
to the BASIC system:

Basic ready

Keyword Dictionary 2-351

SHORT
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The SHORT statement declares and reserves memory for short-precision, floating-poi nt-numeric
variables.

Item

numeric name

upper bound

Examples

Description Range

name of a simple numeric variable or numeric ar- any valid name
ray

integer constant 1 through 65,535

SHORT ShortVariable,ShortArrayl(10),ShortArray2(5,3)

2-352 Keyword Dictionary

Description
All numeric variables are REAL unless declared SHORT or INTEGER.

When the numeric variable name is used with one or two upper bound(s) enclosed in parentheses,
the variable is dimensioned to be a one- or two- dimensional array. The default lower bound of
the array is o. The OPTION BASE statement is used to set the lower bound equal to 1.

When a SHORT simple variable or array element is printed to a data file, the value is stored in the
file with REAL precision. If an entire SHORT array is printed to a data file with one statement (for
example, PRINT# 1; ShortArray 0), the elements are printed to the file with SHORT precision.

When a REAL number is assigned to a SHORT variable, the number is rounded. Overflow occurs
if the number is outside the range of SHORT numbers.

When variables are passed to a subprogram by address, precision declarations accompany the
variable into the subprogram.

Related Keywords
DIM, INTEGER, REAL

Keyword Dictionary 2-353

SHOW
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The SHOW statement specifies a user units scale of the plotting area such that one unit of x equals
one unit of y (equal unit scaling). Thus, the plotting area is scaled with unit squares.

Item

x-min

x-max

y·min

y-max

Examples
SHOW -2,2,-4,4
SHOW A,2*B,O,3

Description

Description

numeric expression

numeric expression

numeric expression

numeric expresison

Range

SHOW scales the current plotting area, which is a function of the units mode (GU's or UU's) and
the previously executed statements.

In GU's mode, SHOW scales the entire graphics area previously specified by PLOTTER IS or LIMIT).

In UU's mode, SHOW scales the plotting area previously specified by LOCATE. If LOCATE has not
been executed, the entire graphics area is scaled.

The user units are established such that the specified area is as large as possible and is centered
within the plotting area. After executing SHOW, the system is set to UU's mode.

The order of the parameters can be changed to produce reflected output (see LIMIT).

Related Keywords
LIMIT, LOCATE, PLOTTER IS, SCALE

2-354 Keyword Dictionary

Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SIN function returns the sine of the angle argument.

Item Description

numeric argument numeric expression

Examples
SineX = SIN(X)
If SIN (Theta) =1 THEN DISP "Theta equals 90 degrees"

Description

SIN

Range

The angle argument is interpreted according to the current trigonometric mode-RAD (radians),
DEG (degrees), or GRAD (grads). The default mode is RAD.

Related Keywords
ASN. DEG. GRAD. RAD

Keyword Dictionary 2-355

SINGLESTEP
Keyboard Executable Yes
Programmable No

In an IF ... THEN No

The SINGLESTEP command executes the current program line and then halts execution.

(SINGLESTEP)--.I

Description
The program must be initialized (by having previously executed INIT or RUN). A paused, unaltered
program need not be reinitialized. However, if a paused program is edited, it must be initialized
before singlestepping.

Related Keywords
CONT. INIT

2-356 Keyword Dictionary

SPOLL
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The SPOLL function returns an integer representing the status byte of the specified device.

Item Description Range

device selector numeric expression, rounded to an integer

Examples
DeviceStatus=SPOLL(712)
IF SPOLL(D4)<64 THEN GOSUB 800

Description
The computer must be active controller in order to perform a serial poll.

Interface-dependent actions:

• HP-IB:

With HP-IB interfaces, the node to which the device selector is assigned must be in "raw"
mode; that is, there can be no primary address specified in the special (device) file's minor
number. See ASSIGN for further information.

If the device selector contains no primary address, the interface sends Serial Poll Enable
(SPE) , sets ATN false, receives the status byte, sends Serial Poll Disable (SPD), and sends
Untalk (UNT)

If the device selector contains a primary address, the interface sends Unlisten (UNL), My
Listen Address (MLA), the device Talk Address (TAD), Serial Poll Enable (SPE), and then
sets ATN false. The interface receives the status byte and then sends Serial Poll Disable
(SPD) and Untalk (UNT).

Related Keywords
PPOLL

Keyword Dictionary 2-357

SQR
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The SQR function returns the square root of the numeric argument. Negative arguments return
an error.

Item Description

numeric argument numeric expression

Examples
DISP SQR(X)
C=SQR(AAA2+B AA 2)

2-358 Keyword Dictionary

Range

~o

STATUS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The STATUS statement returns the contents of one or more interface or I/O buffer status registers.

Item

device selector

I/O buffer name

register number

numeric name

Examples

Description

numeric expression, rounded to an integer

name of a string variable declared as an I/O buffer

numeric expression, rounded to an integer

name of numeric variable

STATUS 7.0;RegisterO
STATUS 7.3;Register3.Register4.Register5

Description
The register number must be valid for the specified interface.

Range

3 through 10

o through 15

any valid name

When more than one numeric variable is listed, consecutive status registers are read starting at
the specified register number. If the number of variables listed exceeds the number of existing
registers, an error is returned; there is no wraparound to the first register.

With HP-IB interfaces, the node to which the device selector is assigned must be in "raw" mode;
that is, there can be no primary address specified in the special (device) file's minor number.
See ASSIGN for further information.

Related Keywords
ASSERT, CONTROL. IOBUFFER

Keyword Dictionary 2-359

STOP
See END.

2-360 Keyword Dictionary

STORE
Keyboard Executable Yes

Programmable No

In an IF ... THEN No

The STORE command stores the current BASIC program or subprogram into a disc file of the
specified name.

Item

file name

HP-UX path
name

string expression

Examples
STORE "filename"

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

STORE "/disci/filename"
STORE I/Directoryi/Directory2/filename"

Keyword Dictionary 2-361

Description
If the file name is used alone (rather than as part of an HP-UX path name), the STORE operation
uses the current working directory.

When STORE is executed, the system searches the specified directory for a BASIC/PROG file with
the indicated name. If the file is found, the current (sub)program is stored in that file, overwriting
the previous contents. If no such file is found, the file is created in that directory. An error is
returned if the file name already exists in the directory with another file type.

When a new subprogram is stored, the file name must be the same as the FINDPROG name.

Related Keywords
LOAD, MASS STORAGE IS

2-362 Keyword Dictionary

SUB
Keyboard Executable No

Programmable Yes

In an IF ... THEN No

The SUB statement is the first statement in a subprogram. It defines the beginning of the
subprogram and lists the formal parameters passed into the subprogram.

Item Description

subprogram name literal

Range

14 characters maximum;
slash and leading colon not al­
lowed

variable name name of a numeric or string variable (see glossary) any valid name

Examples
SUB II Count II
SUB II SubPlot II (Xmin. Xmax. Yvar 0 . Zvar C.) S$)

Keyword Dictionary 2-363

Description
All subprograms must begin with a SUB statement. The statement cannot be part of a multi­
statement line. A subprogram can contain only one SUB statement.

The optional variable names enclosed in parentheses list the formal parameters passed from
the calIing (sub)program to the subprogram. The parameters become associated, from left to
right, with the pass parameters listed in the CALL statement. The variable type (simple numeric,
simple string, numeric array, string array) must agree with the parameters listed in the CALL
statement. Arrays are designated by a pair of parentheses after the array name; an optional
comma documents 2-dimensional arrays. Variables in the main program not explicitly passed to
the subprogram or held in COMmon with the subprogram are unknown to the subprogram.

The pass parameter list does not include precision declarations (REAL, SHORT, and INTEGER), nor
does it specify the dimensions of simple string variables and numeric and string arrays. The
precision and dimensions of variables passed by address accompany them as they are passed.
When a string expression is passed by value, the formal parameter to which it is passed is
dimensioned to the current length of the string.

The SUB statement can list more parameters than the calling subprogram's CALL statement. Extra
parameters are set to 0 and the null string. NPAR returns the number of parameters actually
passed.

Common variables can be passed into subprograms by including them in a COM statement. Un­
like the parameter list of the SUB statement, the COM statement must contain both precision
declarations and array size declarations.

When a subrogram is stored, it is entered into the directory as a type BASICjSUBP file.

Related Keywords
CALL, FINDPROG, SCRATCHSUB, SUBEND, SUBEXIT

2-364 Keyword Dictionary

SUBEND
Keyboard Executable No
Programmable Yes
In an IF ... THEN Yes

The SUBEND statement returns program execution to the calling program or subprogram.

Description
When SUBEND is executed, program execution resumes at the statement in the calling program
that immediately follows the CALL statement. Comments following SUBEND are part of the sub­
program.

SUBEND and SUBEXIT are interchangeable.

Related Keywords
CALL, SUB, SUBEXIT

Keyword Dictionary 2-365

SUBEXIT

See SUBEND

(suBExnH

2-366 Keyword Dictionary

SUM
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The SUM function returns the sum of all the elements in the specified array.

Item

array name

Examples
DISP SUM(Vector1)
Y=SUM(A)

Description

name of a one- or two-dimensional array

Related Keywords
ABSUM

Range

any valid name

Keyword Dictionary 2-367

Notes

2-368 Keyword Dictionary

TAB

The TAB function is used with simple DISP, LABEL, and PRINT (without USING) to specify the
column in which the next output item is placed. (See DISP, LABEL, and PRINT).

Keyword Dictionary 2-369

TAN

The TAN function returns the tangent of the angle argument.

Item Description

numeric argument numeric expression

Examples
Tangent=TAN(Theta)
Vertical=Horizontal*TAN(x)

Description

Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

Range

The angle argument is interpreted according to the current trigonometric mode - RAD (radians),
DEG (degrees), or GRAD (grads). The default mode is RAD.

Related Keywords
ATN. DEG. GRAD. RAD

2-370 Keyword Dictionary

TIME
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The TIME function returns the current value of the system clock seconds counter.

Description
The seconds counter usually represents the number of seconds elapsed since midnight. The
largest value returned is 86,399. When the counter reaches this value, it is reset to 0 and the
date is incremented.

Related Keywords
DATE, DATE$, TIME$

Keyword Dictionary 2-371

TIME$
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The TIME$ function returns the system clock reading in HH:MM:SS notation.

Examples
DISP TIME$
IF TIME$=B$ THEN 200

Description
The string returned is in 24-hour notation in the range 00:00:00 through 23:59:59.

Related Keywords
DATE. DATE$. TIME

2-372 Keyword Dictionary

TRACE

Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The TRACE statement traces program variable assignments and/or the order in which program
lines are executed.

Item

program variable

program array name

Examples
TRACE
TRACE ALL

Description

name of a simple or array program variable

name of a program array

TRACE VAR Varl, Var2$, Arrayl(6),Wholearray$()

Description

Range

any valid name

any valid name

Three tracing options are available: TRACE, TRACE VAR, and TRACE ALL. Tracing results are
output to the display.

When tracing statements are executed within a program or subprogram, tracing is local, and
halts when execution is transferred to another subprogram or back to the main program. When
TRACE or TRACE ALL is executed from the keyboard, it applies to the main program only. When
TRACE VAR is executed from the keyboard, it applies to the current program or subprogram.

Tracing operations are canceled by executing NORMAL.

Keyword Dictionary 2-373

TRACE
TRACE traces the order in which program lines are executed. Nothing is output when execution
proceeds sequentially from statement to next-higher numbered statement. When branching
occurs, TRACE outputs branching information in the form:

TRACE VAR
TRACE VAR traces assignments to the specified program variables during program execution.
Variables to be traced must be allocated before TRACE VAR is executed. If TRACE VAR is executed
from the keyboard before the program is run, the program must first be initialized by executing
INIT.

TRACE VAR outputs changes in variable assignments of program variables to in the form:

When a numeric variable receives a new assignment, the variable name and new value are
output. When a string variable is assigned a new value, TRACE VAR outputs the name of the
string variable without printing its new value. When a statement operates on an entire numeric
array, the new value of the first element only is output.

TRACE ALL
TRACE ALL traces program execution and variable assignments from line to line, regardless of
whether or not branching occurs. Changes in the values assigned to variables are reported in
the same format as TRACE VAR output.

Related Keywords
NORMAL

2-374 Keyword Dictionary

TRIGGER
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The TRIGGER statement sends a Group Execute Trigger message to the specified device(s).

Item

device selector

Examples
TRIGGER 7
TRIGGER 724

Description

numeric expression, rounded to an integer

TRIGGER DevSelectorl, DevSelectorN

Range

Keyword Dictionary 2-375

Description

• HP-IB:

The node to which the device selector is assigned must be in "raw" mode; that is, there
cannot be a primary address specified in the special (device) files's minor number. See
ASSIGN for further information.

The computer must be active controller in order to execute TRIGGER.

If the device selector contains no primary address, the interface sends the "Group Execute
Trigger" (GET) message to devices which are currently addressed to listen.

If the device selector(s) contain a primary address, the specified HP-IB interface sends
these commands: Unlisten (UNL); the listen addresses (LAD) of the specified device(s);
and the "Group Execute Trigger" (GET) message.

If more than one device selector is specified, all device selectors must include a primary
address. In addition, all devices must be located on the same interface.

• GPIO: Error

Related Keywords
RESUME, SEND

2-376 Keyword Dictionary

TRIM$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The TRIM$ function returns a string stripped of all leading and trailing spaces (ASCII decimal
code 32). Embedded blanks are unaffected.

Item Description

string argument string expression

Examples
DISP TRIM$(Title$)
Sortdata$=TRIM$(LastName$)

Range

Keyword Dictionary 2-377

TYP
Keyboard Executable Yes
Programmable Yes
In an IF ... THEN Yes

The TYP function returns the data type of the next item in a BASIC/DATA file.

Item Description

buffer number numeric expression, rounded to an integer

Examples
IF TYP(3)=1 THEN READ# 3;Number
DISP TYP(Buffer)

2-378 Keyword Dictionary

Range

1 through 10

Description
The file must be opened.

TYP returns an integer in the range 1 through 4, 8 through 10, according to the position of the
file pointer and the contents of the data file. The number returned indicates the nature of the
item following the current pointer location.

Values Returned by TYP

TYP Value Data Type

1 Numeric

2 Complete string

3 End-of file

4 End-of-record

5 through 7 Not used

8 Beginning of string; the string extends into the
following record

9 Middle of string; the string extends into the pre­
vious and following records

10 End of string; the string is continued from the
previous record

Related Keywords
READ#

Keyword Dictionary 2-379

Notes

2-380 Keyword Dictionary

UBND
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The UBND function returns the dimension (upper bound) of the first or second subscript of the
specified array.

Item Description Range

array name

subscript

name of a one-or two-dimensional numeric array any valid name

numeric expression, rounded to an integer 1 or 2

Examples
FOR 1=1 TO UBND(A,2)
LET Y(UBND(Y,l),UBND(Y,2»=3

Related Keywords
LBND

Keyword Dictionary 2-381

UNCLIP
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The UNCLIP statement cancels plotting boundaries set by CLIP or LOCATE, and sets the plotting
boundaries equal to the graphics limits.

(UNCLIP ~

Examples
UNCLIP
IF A$="Y" THEN UNCLIP

Description
Both SETGU and UNCLIP set the plotting boundaries equal to the graphics limits. The differences
between the two statements are:

• UNCLIP does not switch the current plotting units to GU's. The computer remains in the
current units mode .

• UNCLIP completely cancels the CLIP or LOCATE plotting boundaries. SETGU changes the
current plotting area but does not cancel the plotting boundaries set by CLIP or LOCATE;

they can be restored by executing SETUU.

Related Keywords
CLIP, LOCATE, SETGU, SETUU

2-382 Keyword Dictionary

UNSECURE
Keyboard Executable Yes
Programmable No
In an IF ... THEN No

The UNSECURE command cancels security previously specified for BASIC files.

Item

file name

HP·UX path
name

string expression

security code

security type

Examples

Description Range

literal; name of a file in the current working direc- 14 characters maximum;
tory slash and leading colon not al­

lowed

literal; an absolute or relative path name (see glos­
sary)

expression evaluating to a file name or HP-UX -
path name

string expression

numeric expression, truncated to an integer and
moduloed 4

first two characters are used

UN SECURE "myfile". "nl".O
UNSECURE "/vol1/dirl/dir2/myfile".Code$.2

Keyword Dictionary 2-383

Description
The security type must match the security type specified for the file when it was secured. For
types 0 and 1 security, the first two characters of the security code must match the code that
became associated with the file when it was secured, except that lowercase and uppercase letters
are interchangeable. The security code is ignored for type 2 security. UNSECURE has no effect
for security type 3.

The following rules apply to unsecuring files:

• Files secured with type 0 can be unsecured with type 0 or 1.

• Files secured with type 1 can be unsecured for LIST, PLIST, and editing by unsecuring for
type O. COPY security remains.

• Files secured with types 0 and 1 can be unsecured for type 1. Type 0 security is auto­
matically removed.

• When unsecuring a file for LISTrm, the security must be removed before the file
is loaded.

Related Keywords
SECURE

2-384 Keyword Dictionary

UPC$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The UPC$ string function returns a string in which all the lowercase letters in the argument are
converted to uppercase.

Item Description

string argument string expression

Examples
IF UPC$(String$)=IYES" THEN 200
DrSp UPC$(String$)&I ... "

Related Keywords
LWC$

Range

Keyword Dictionary 2-385

Notes

2-386 Keyword Dictionary

VAL
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The VAL function converts a string expression containing digits into a numeric value.

Item Description

string argument string expression

Examples
DISP VAL(A$)
Z=X(l)+VAL(Baseline$(X»

Description

Range

The string can contain leading blanks and tab characters. The mantissa begins with the first
non-blank/tab character, which must be a plus or minus sign, decimal point, or digit. Additional
characters can be digits or a decimal point; there can be only one decimal point per number.

If exponential notation is used, the exponent following E or e consists of an optional sign folowed
by two or three digits.

VAL parameter

The argument must contain at least one digit. Embedded blanks and non-digit characters not
used to build an exponent terminate the number.

Related Keywords
VAL$

Keyword Dictionary 2-387

VAL$
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The VAL$ function evaluates the numeric argument and returns the string representation of the
argument in standard number format.

Item Description

numeric argument numeric expression

Examples
C$=VAL$(D)&"OO"
PRINT# l;VAL$(Xcoordinate)

Description

Range

The string returned has no leading or trailing blanks. Decimal numbers have a leading zero
preceding the radix.

Related Keywords
VAL

2-388 Keyword Dictionary

WAIT
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The WAIT statement causes a delay in program execution until the specified number of millisec­
onds has elapsed.

@--1 mi 11 iseconds ~

Item

milliseconds

Examples
WAIT N*250

Description

numeric expression

IF X=7 THEN WAIT 5000

Description

Range

2:1

The WAIT statement can be interrupted by pausing the program. When the program is continued,
execution continues at the next statement.

With Series 200/300 and 500 HP-UX systems, the timer resolution is 1 second.

Related Keywords
PAUSE

Keyword Dictionary 2-389

WHERE
Keyboard Executable Yes

Programmable Yes

In an IF ... THEN Yes

The WHERE statement assigns the last known location and status of the plotting device's logical
pen to the specified numeric variables.

Item

x-coordinate variable

y-coordinate variable

pen status variable

Examples

Description

name of a numeric variable

name of a numeric variable

name of a numeric variable

WHERE Xposition. YPosition. Penstatus
WHERE x(I). y(I)

Description

Range

any valid name

any valid name

any valid name

The pen x- and y- coordinates are interpreted according to the current units. The pen status
variable is assigned the value ° if the pen is up, 1 if the pen is down.

The location and status of the logical pen is determined by the most recently executed statement
affecting the pen. This includes all plotting statements and all statements and conditions which
activate the graphics default conditions (see glossary). When the graphics default conditions are
activated, the logical pen is lifted and moved to the origin (0,0).

Related Keywords
CURSOR. DIGITIZE

2-390 Keyword Dictionary

XAXIS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The XAXIS statement draws a horizontal axis, with optional tick marks, at the specified y­
intercept.

Item

y-intercept

tick-spacing

x-min

x-max

Examples
XAXIS 3

Description

numeric expression, interpreted according to the
current units

numeric expression, interpreted according to the
current units (default=O; no ticks)

numeric expression, interpreted according to the
current units (default=the left plotting bound)

numeric expression, interpreted according to the
current units (default=the right plotting bound)

XAXIS (Ymax-Ymin)/2.1
XAXIS Y(1).2.-12.12

Range

Keyword Dictionary 2-391

Description
The axis and optional tick marks are drawn using the current line type, and are clipped at the
plotting boundaries. The y-intercept may lie outside the plotting area; only the portion of the
axis within the plotting area is shown. The x-min and x-max parameters provide for drawing an
axis across a portion of the plotting area. Parameters outside the plotting area are ignored. The
default axis length is the entire plotting area.

Tick marks are 2 GU's long. The sign of the tick spacing parameter determines where ticks are
placed. If the tick-spacing parameter is positive, ticks are left-justified on the x-axis. If the tick
spacing parameter is negative, ticks are right-justified.

Related Keywords
AXES. LAXES. YAXIS

2-392 Keyword Dictionary

XREF L
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The XREF L statement displays a line cross-reference table of program line numbers, line labels,
and user-defined functions in the current (sub)program.

(XREF L)----i

Description
XREF L generates an entry in the line cross-reference table whenever a line number or line label
is referenced. Table entries are in the form:

Line Cross Reference Table

referenced line [line label] occurs on referencing liners)

For example, these program lines:

30 IF X<>5 THEN Loop
500 Loop: FOR I=l TO 5

generate the following entry:

500 Loop:_______ occurs on 30

The system displays ... end of xrefl when the entire table has been displayed.

Related Keywords
LIST, SCAN, XREF V

Keyword Dictionary 2-393

XREFV
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The XREF V statement displays a cross-reference table of all the variables and user-defined func­
tions in the current sub(program).

(XREF V ~

Description
The XREF V table contains the following information about each program variable:

Variable-the name of the variable or user-defined function.

Diml-the upper bound of the first subscript in an array variable.

Dim2-the upper bound of the second subscript in an array variable.

MaxI-the maximum length of a string variable.

Type-REAL, SHORT, INTEGER, or string.

References-lines referencing the variable or user-defined function, including function definitions
(DEF FN statements), function value assignments (FN ... =), and function calls (FN).

The system displays:

... end of xrefv

when the entire table has been generated.

Related Keywords
LIST, SCAN, XREF L

2-394 Keyword Dictionary

YAXIS
Keyboard Executable Yes
Programmable Yes

In an IF ... THEN Yes

The YAXIS statement draws a vertical axis, with optional tick marks, at the specified x-intercept.

Item

x-intercept

tick-spacing

y-min

y-max

Examples
YAXIS 3
YAXIS X(I)/3,l
YAXIS 3,1,2,2

Description

numeric expression, interpreted according to the
current units

numeric expression, interpreted according to the
current units (default=O; no ticks)

numeric expression, interpreted according to the
current units (default=the left plotting bound)

numeric expression, interpreted according to the
current units (defau1t=the right plotting bound)

Range

Keyword Dictionary 2-395

Description
The axis and optional tick marks are drawn using the current line type, and are clipped at the
plotting boundaries. The x-intercept can lie outside the plotting area; only the portion of the
axis within the plotting area is shown. The y-min and y-max parameters provide for drawing
an axis across a portion of the plotting area. Parameters outside the plotting boundaries are
ignored. The default axis length is the entire plotting area.

Tick marks are 2 GU's long. The sign of the tick spacing parameter determines where ticks are
placed. If the tick spacing parameter is positive, ticks are bottom-justified on the y-axis. If the
tick spacing parameter is negative, ticks are top-justified.

Related Keywords
AXES, LAXES, XAXrS

2-396 Keyword Dictionary

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD

HP-UX Technical BASIC
Reference Manual, Vol. 1

for HP 9000 Computers

Manual Reorder No. 97068-90050

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on ___________ _

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

111111
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Name:

Company:

Address:

Phone No:

MANUAL COMMENT CARD
HP-UX Technical BASIC
Reference Manual, Vol. 1

for HP 9000 Computers

Manual Reorder No. 97068-90050

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on ___________ _

HP Part Number
97068-90050
Printed in U.S.A. 2/86
Microfiche No. 97068-99050

F/iOW HEWLETT
a!~ PACKARD

97068-90604
For Internal Use Only

