
Programming and Protocols
for NFS Services

Programming and Protocols
for NFS Services

HP 9000 Computers

FfJDW HEWLETT
a:~ PACKARD

HP Part No. 81013·90010
Printed in England February 1991 .

First Edition
E0291

Notice
Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

Hewlett-Packard shall not be liable for errors contained herein or for incidental
or consequential damages in connection with the furnishing, performance, or
use of this material.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as
set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Software
clause in DAR 7-104.9(a).

© Copyright 1980, 1984, AT&T, Inc.

© Copyright, 1986, 1987, 1988 Sun Microsystems, Inc.

© Copyright 1979, 1980, 1983, 1985-1990, The Regents of the University of
California.

This documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

DEC R and VAX R are registered trademarks of Digital Equipment Corp.

NFS R is a registered trademark of Sun Microsystems, Inc.

MS-DOS R is a registered trademark of Microsoft Corp.

UNIX R is a U.S. registered trademark of AT&T in the U.S.A. and other
countries.

Note The Network Information Service (NIS) was formerly known as
Yellow Pages (YP). The functionality of the two remains the
same, only the name has changed. The name Yellow Pages
is a registered trademark in the United Kingdom of British
Telecommunications pIc.

© Copyright 1991, Hewlett-Packard Company.

Hewlett-Packard Company
19420 Homestead Road
Cupertino, CA 95014 U.S.A.

Print History
First Edition February 1991

iv

Contents

1. Documentation Overview
Contents

Chapter 1: Documentation Overview
Chapter 2: NFS Services Overview .
Chapter 3: RPC Programming Guide
Chapter 4: RPCGEN Programming Guide
Chapter 5: XDR Protocol Specification
Chapter 6: RPC Protocol Specification
Chapter 7: NIS Protocol Specification
Index

Conventions
Documentation Guide .

2. NFS Services Overview
Remote Procedure Call (RPC)
Remote Procedure Call Protocol Compiler (RPCGEN)
External Data Representation (XDR)
Network Information Service (NIS)

NIS ASCII Source Files

3. RPe Programming Guide
Layers of RPC
Highest RPC Layer .. .
Intermediate RPC Layer

callrpcO
registerrpc()
Program Numbers
Pass Arbitrary Data Types .

Lowest RPC Layer
RPC Server Side

1-2
1-2
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-4
1-6

2-2
2-3
2-4
2-5
2-6

3-3
3-4
3-6
3-7
3-9

3-10
3-11
3-16
3-17

Contents-1

Nlemory Allocation with XD R
RPC Calling Side

Additional RPC Features
Select on the Server Side .
Broadcast RPC

Broadcast RPC Synopsis .
Batching . ~

Authentication
RPC Client Side
RPC Server Side
Using inetd

Additional RPC Examples
Versions
TCP
Callback Procedures .

Synopsis of RPC Routines

4. RPCGEN Programming Guide
The Remote Procedure Call Protocol Compiler
Converting Local Procedures into Remote Procedures
Generating XDR Routines ...

Files you must produce
Files produced by RPCGEN
The Protocol Description File (The Input File)
The Header File
The Client Side File
The Client Side Subroutines File
The Server Side Skeleton File .
The Server Side Function File
XD R Routine File
Compiling the Files
RPCGEN Syntax .
The C Preprocessor

RPC Language .
Definitions
Structures . .
Unions
Enumerations

Contents-2

3-20
3-23
3-26
3-26
3-27
3-28
3-29
3-34
3-34
3-35
3-38
3-40
3-40
3-42
3-46
3-52

4-2
4-2

4-12
4-12
4-12
4-13
4-15
4-16
4-18
4-19
4-21
4-23
4-25
4-26
4-28
4-30
4-30
4-31
4-32
4-33

Typedef
Constants
Programs
Declarations

Simple Declarations
Fixed-Length Array Declarations
Variable-Length Array Declarations
Pointer Declarations.

Special Cases
Booleans .
Strings

Opaque Data .
Voids

RPCGEN Error Messages
Command Line Error Messages
RPCGEN Execution Error Messages
Parsing Error Messages

Expecting a Keyword
Array of Pointers
Bad Union
Opaque Declarations

String Declaration Error .
Void Declarations
Unknown Types
illegal Characters
Missing Quotes

General Syntax Errors .

5. XnR Protocol Specification
Justification

XDR Library
XDR Library Primitives

Number Filters . . .
Floating Point Filters
Enumeration Filters .
No Data
Constructed Data Type Filters .

Strings

4-34
4-34
4-35
4-36
4-36
4-36
4-37
4-37
4-38
4-38
4-38
4-38
4-38
4-39
4-39
4-39
4-40
4-40
4-41
4-41
4-42
4-42
4-43
4-43
4-44
4-44
4-44

5-2
5-7

5-11
5-11
5-12
5-13
5-13
5-14
5-14

Contents-3

Byte Arrays . .
Arrays
Opaque Data . .
Fixed Sized Arrays
Discriminated Unions
Pointers
Pointer Semantics and XDR

Non-filter Primitives. . .
XD R Operation Directions

XDR Stream Access ..
Standard I/O Streams . .
Memory Streams
Record (TCP /IP) Streams

XDR Stream Implementation ..
XDR Object .. .

XnR Standard .. .
Basic Block Size
Integer
Unsigned Integer
Enumerations
Booleans.
Floating Point and Double Precision
Opaque Data.
Counted Byte Strings
Fixed Arrays . .
Counted Arrays. . .
Structures
Discriminated Unions
Missing Specifications
Library Primitive / XDR Standard Cross Reference .

Advanced XDR Topics
Linked Lists
Record Marking Standard

Synopsis of XnR Routines .

Contents';'4

5-16
5-17
5-21
5-22
5-23
5-25
5-27
5-28
5-29
5-30
5-30
5-31
5-31
5-34
5-34
5-36
5-36
5-36
5-37
5-37
5-37
5-38
5-39
5-39
5-40
5-40
5-41
5-41
5-41
5-42
5-43
5-43
5-49
5-50

6. RPC Protocol Specification
RPC Model

Transports and Semantics
Message Authentication .

RPC Protocol Requirements
Remote Programs and Procedures ..
Authentication
Program Numbers
Additional RPC Protocol Uses

Batching
Broadcast RPC

RPC Message Protocol
Authentication Parameter Specification

NULL Authentication .
UNIX Authentication

Record Marking Standard . .
Port mapper Program Protocol

RPC Protocol
RPC Procedures

1. NIS Protocol Specification
Map Operations
Remote Procedure Call (RPC)
External Data Representation (XDR)
NIS Database Servers

Maps and Map Operations .
Map Structure
Match Operation . . .
Map Entry Enumeration .
Entire Map Retrieval
Map Update

Master and Slave NIS Database Servers
Map Propagation and Consistency

Functions to Aid in Map Propagation
NIS Domains
NIS Non-features

Map Update wi thin the NIS
Version Commitment Across Multiple Requests .

6-2
6-3
6-3
6-4
6-4
6-6
6-7
6-8
6-8
6-8
6-9

6-13
6-14
6-14
6-16
6-17
6-17
6-17

7-2
7-3
7-4
7-5
7-5
7-5
7-5
7-5
7-6
7-6
7-6
7-6
7-7
7-7
7-8
7-8
7-8

Contents-S

Guaranteed Global Consistency ...
Access Control

NIS Database Server Protocol Definition .
RPC Constants
Other Manifest Constants . . .
Remote Procedure Return Values
Basic Data Structures
NIS Database Server Remote Procedures. .

NIS Binders
NIS Binder Protocol Definition . .

RPC Constants
Other Manifest Constants . . .
Basic Data Structures . . .
NIS Binder Remote Procedures .

Index

Contents-6

7-8
7-8
7-9
7-9
7-9

7-10
7-12
7-15
7-19
7-20
7-20
7-21
7-22
7-23

1
Documentation Overview

This manual was developed for programmers who write applications using NIS
(Network Information Service), RPC (Remote Procedure Call), RPCGEN
(Remote Procedure Call Protocol Compiler), and XDR (eXternal Data
Representation).

If you are using NFS Services but not writing applications, refer to the
Installing and Administering NFS Services manual for system administration
information. For day-to-day use of NFS, refer to the "Common Commands"
chapter of the Using NFS Services manual.

Before using this manual you should be familiar with the C programming
language and the HP -UX operating system. You should also have access to the
HP- UX Reference manuals.

Note The information in this manual applies to all HP 9000
computer systems. Exceptions are specifically noted.

Documentation Overview 1·1

Contents
Refer to the following list for a brief description of the information contained in
each chapter and appendix.

Chapter 1: Documentation Overview

This chapter describes who should use this manual, what is in this manual, and
where to find more information.

Chapter 2: NFS Services Overview

This chapter provides a brief overview of the NFS Services product, including
RPC, RPCGEN, XDR, and NIS facilities.

Chapter 3: RPC Programming Guide

This chapter provides instructions and examples for writing applications using
the RPC services. It also provides a synopsis of RPC routines to describe the
RPC functional interface.

Chapter 4: RPCGEN Programming Guide

This chapter describes the RPC Protocol Compiler. It provides instructions
and examples for writing RPC applications using the RPCGEN compiler.

Chapter 5: XDR Protocol Specification

This chapter describes the XDR protocols. It also provides a synopsis of XDR
routines to describe the XDR functional interface.

Chapter 6: RPC Protocol Specification

This chapter describes the RPC and portmap protocols.

1·2 Documentation Overview

Chapter 7: NIS Protocol Specification

This chapter describes the NIS protocols.

Index

The index provides a page reference to the subjects contained within this
manual.

Documentation Overview 1-3

Conventions
The table below explains the conventions used in this manual.

Conventions

Notation Description

Boldface Boldface type is used when a term is defined.

Computer Text Computer type is used for commands and other keyboard
entries that must be typed exactly as shown. It is also used for
on-screen prompts and messages.

italics Italic type is used for emphasis and titles of manuals. It is also
used to represent a syntax name or a variable.

CiBiill This font is used to indicate a key on the computer's keyboard.
When two or more ~ appear together with a dash between
them, such as ([CTRL) l-@I), press those keys simultaneously to
execute the command .

.... : .. '.:"':':':':::':::':':';':':':'::':.

§g±~~:i¥I This font is used to represent function keys. It may refer to
keyboard soft keys , such as or labels that appear on the

bottom of your screen.

[] An element inside brackets in a syntax statement is optional.
Several elements stacked inside brackets means you may select
anyone or none of these elements. For example:

[A]

[B] You may select A, B, or neither.

1·4 Documentation Overview

Conventions (continued)

Notation Description

{ } When several elements are stacked within braces in a syntax
statement, the user must select one of those elements. For
example:

{A}
{B}
{c} You must select A, B, or C.

... A horizontal ellipsis in a syntax statement indicates that a
previous element may be repeated. For example:

[option] [option] ...

In addition, vertical and horizontal ellipses may be used in
examples to indicate that portions of the example have been
omitted.

Documentation Overview 1·5

Documentation Guide

For More Information Read

ARPA Services: Daily Use Using ARPA Services

ARPA Services: System Administration Installing and Administering ARPA
Services

C Programming Language C Programming Guide, Jack Purdum,
Que Corporation, Indianapolis, Indiana
Th.e C Programming Language, Brian
W. Kernighan, Dennis M. Ritchie;
Prentice-Hall, Inc.

Commands and System Calls HP- UX Reference manuals

Section 1: User Commands
Section 1M: System Maintenance
Section 2: System Calls
Section 3: Subroutines
Section 4: Special Files
Section 5: File Formats
Section 7: Miscellaneous Facilities
Section 9: HP-UX Glossary

HP-UX: Installation Installing and Updating HP- UX

HP-UX: Operating System (HP 9000) How HP- UX Works
Concepts for the System Administrator

Installing and Updating HP- UX
HP- UX Reference manuals
HP- UX System Administration Tasks
A Beginner's Guide to HP- UX

1·6 Documentation Overview

For More Information Read

HP-UX: System Administration HP- UX System Administration Tasks

Installing and Updating HP- UX

Networking: General Information Networking Overview

NFS Services: Common Commands Using NFS Services, "Common
Commands" chapter

NFS Services: Programming and Programming and Protocols
Protocols for NFS Services

NFS Services: System Administration Installing and Administering NFS
Services

• Configuration
• Installation

• Maintenance
• Migrating from NFS to RFA
• NFS in an HP-UX Cluster

Environment

• NFS Services vs. Local HP-UX

• Troubleshooting

NS System Administration Installing and Administering NS Services

ARPA System Administration Installing and Administering
ARPA Services

Documentation Overview 1· 7

2
NFS Services Overview

The NFS (Network File System) Services product provides remote access
to shared file systems over local- area networks. Nodes running NFS and
sharing files can range from personal computers and minicomputers to high
performance workstations and supercomputers. Almost any user command
(e.g., list J remove J copy) that can be performed locally will operate on an
attached remote "NFS file system.

NFS nodes can access remote databases containing drawings, schematics,
netlists, models, or source code. This access method eliminates the needs to
maintain consistency between multiple file copies and to store information
locally.

NFS features include the following:

• An NFS server can provide remote access privileges to a restricted set of
clients. Clients can attach a remote directory tree to any point on a local file
system.

• NFS is stateless: a server does not need to maintain state information about
any of its clients to function correctly. With stateless servers, a client need
only retry a request until the server responds. It does not need to know if a
server is not working.

• Clients access server information and processes by using RPC (Remote
Procedure Call). RPC allows a client process to execute functions on a server
via a server process. Although these processes can reside on different network
hosts, the client process does not need to know about the networking
implementations.

• RPC uses the XDR (eXternal Data Representation) functionality to translate
machine-dependent data formats (Le., internal representations) to a universal
format used by all network hosts using RPC/XDR.

NFS Services Overview 2·1

• NFS also provides an optional Network Information Service (NIS) that
provides read access to replicated databases. NIS also uses RPC and XDR
library routines.

Remote Procedure Call (RPC)
Clients make an RPC for these reasons:

• To access server information.

• To request action from servers.

The RPC protocol allows a client process to request that a function be
performed by a server process. These processes can reside on different hosts on
the network, though server processes appear to be running on the client node.

The client first calls an RPC function to initiate the RPC transaction. The
client system then sends an encoded message to the server. This message
includes all the data needed to identify the service and user authentication
information. If the message is valid (Le., calls an existing service and the
authentication is accepted), the server performs the requested service and sends
a result message back to the client.

The RPC protocol is a high-level protocol built on top of low-level transports.
HP supports both the UDP lIP (user level and kernel level) and TCP lIP (user
level only) transport protocols for RPC.

The RPC protocol includes space for authentication parameters on every call.
The contents of the authentication parameters are determined by the ftavor
(type of authentication used by the server and client). One server may support
several different flavors of authentication at once.

The pre-defined authentication flavors are AUTH_NULL and AUTH_UNIX.
AUTH_NULL (the default) passes no authentication information (null
authentication). AUTH_UNIX passes the UNIX UID, GID, and groups with each
call.

2·2 NFS Services Overview

RPC provides a version number with each RPC request. Thus, one server can
simultaneously service requests for several different versions of the protocol.

Note

Client Node Server Node

Client Process Server Process

I ,
RPC
I
~ ,
XOR XDR

I ,
Network Network

RPC and XDR Data Transfer

To ensure proper operation on the 8.0 release of the HP-UX
operating system, you may need to recompile applications
that use RPC. For more information, see Appendix E of the
Installing and Administering NFS Services manual.

Remote Procedure Call Protocol Compiler (RPCGEN)
RPCGEN is a Remote Procedure Call compiler. It simplifies the creation of
RPC applications by eliminating the time-consuming and difficult task of
writing XnR routines. You have more time to debug your applications without
having to debug network interface code.

RPCGEN compiles your remote program interface definitions, and produces C
output files which you may use to produce remote versions of applications.

NFS Services Overview 2-3

External Data Representation (XDR)
RPC uses an XDR to translate machine-dependent data formats (Le., internal
representations) to a universal format used by other network hosts using XDR.
Therefore, XDR enables heterogeneous nodes and operating systems to talk
wi th each other over the network.

The common way in which XDR represents a set of data types over a
network takes care of problems such as different byte ordering on different
communicating nodes. XnR also defines the size of each data type so that
nodes with different structural alignment can share a common format over the
network.

The XDR data definition language specifies the parameters and results of
each RPC service procedure that a server provides. The XDR data definition
language reads similarly to C language, although it contains a few new
constructs.

2·4 NFS Services Overview

Network Information Service (NIS)
NIS is an optional distributed network lookup service that provides read access
to replicated databases.

Lookup Service:

Network Service:

Distributed:

NIS maintains a set of databases for querying.
Programs can ask for the value associated with a
particular key or keys in a database.

Programs do not need to know the location of data
or how it is stored. Instead, they use a network
protocol to communicate with a database server
that knows those details.

NIS is a collection of cooperating server processes
that provide NIS clients access to data. One NIS
master server propagates data across the network to
other servers. Thus, it does not matter which server
answers a request because the answer is the same
everyw here.

Since the NIS interface uses RPe and XDR, the service may be available to
non- UNIX operating systems and machines from other vendors.

NFS Services Overview 2·5

NIS ASCII Source Files

NIS databases are constructed from ASCII files usually found in / etc. HP
provides some standard functions for accessing the ASCII files' information.
For example, the functions getgrent and getpwent are available to retrieve
entries from the / etc/ group and / etc/passwd files, respectively. These
functions may also obtain data from NIS databases, if the databases exist.

By using the standard programmatic interfaces, you do not need to know where
and how the data is stored.

If you write your own routines to retrieve data from these ASCII files rather
than using the standard functions, you may receive results that are different
from what the standard functions return. Note that HP does not support
access other than through the standard HP-UX library routines. Therefore, we
advise that you use the standard functions to access the ASCII files from which
the standard NIS maps are built.

Refer to ypclnt (section 3C) and yppasswd (section 3N) of the HP- UX
Reference for more information.

2·6 NFS Services Overview

3
RPC Programming Guide

This chapter will help you write network applications using RPCs (Remote
Procedure Calls), thus avoiding low-level system primitives based on sockets.
You must be familiar with the C programming language and should have a
working knowledge of networking.

Programs communicating over a network need a paradigm for communication.
A low-level mechanism might send a signal on the arrival of incoming packets,
causing a network signal handler to execute. A high-level mechanism would
be the Ada rendezvous. This method is the RPC paradigm in which a client
communicates with a server. The client first calls a procedure to send a data
packet to the server. When the packet arrives, the server does the following:

• Extracts the procedure's parameters.

• Computes the results.

• Sends a reply message.

• Waits for the next call message.

You can use RPC to communicate between processes on the same node or on
different nodes. This chapter discusses the C interface only.

RPe Programming Guide 3·1

I

Client Service
I
I

Program Daemon I
I

~ call~c() ,
Machine 8 -.

Function
Execute

Machine A : Request
: 1~ Call -

I Service -
I Executes I

: I ,~ervice : I Return -: - Answer :
Request

Return
: Completed : 1r

r Reply :
Program : r

Continues : t

Network Communication with the Remote Procedure Call

3·2 RPC Programming Guide

Layers of RPC
The RPC interface has three layers.

Highest Layer The highest layer uses the network and is transparent to
the programmer. For example, at this level a program can
contain a call to rnusers 0 to return the number of users
on a remote node. You do not have to know that RPC is
being used since you simply make the call in a program
(just as you would call mallocO to allocate memory).

Internnediate Layer The middle-layer routines are for common applications;
you do not need to know about sockets.

To make RPC calls, use the registerrpcO
and callrpcO routines. The registerrpcO routine
obtains a unique system-wide number on the server;
callrpc 0 executes a remote procedure from the client.
For example, these routines are used to implement
rnusers().

Lowest Layer The lowest layer is for more sophisticated applications
that require altering the routine defaults. You can
explicitly manipulate sockets that transmit RPC messages.
HP recommends that you avoid this layer unless the upper
two layers are not adequate.

RPC Programming Guide 3·3

Highest RPC Layer
The following table lists the RPC service library routines available to
C programmers. (Refer to the HP-UX Reference for detailed information.)

RPC Library
Routine Description

rnusers() Return the number of users on a remote node

rusers() Return information about users on a remote node

havediskO Determine if a remote node has a disc

rstat() Obtain performance data from a remote node

rwallO Write to the specified remote nodes

getmasterO Obtain the name of an NIS master server

getrpcport() Obtain an RPC port number

yppasswdO Update the user password in NIS

The other RPC services (mount and spray) are not available as library
routines. They do, however, have RPC program numbers so you can invoke
them with callrpc() as discussed in the next section.

3·4 RPe Programming Guide

EXAMPLE: To determine how many users logged on to a remote node, call
the library routine rnusers ().

#include <stdio.h>

main (argc. argv)
int argc;
char *argv [] ;

{

}

int num, rnusers();

if (argc < 2) {

}

fprintf(stderr. "usage: rnusers hostname\n");
exit (1) ;

if ((num • rnusers(argv[1]» < 0) {
fprintf(stderr. "error: rnusers\n");
exit(1) ;

}

printf("%d users on %s\n". num. argv[1]);
exit(O);

RPC library routines like rnusers () are in the RPC services library
librpcsvc. a. Thus, you should compile the above program to create the
rnus ers program as follows.

% cc program.c -0 rnusers -lrpcsvc

RPe Programming Guide 3·5

Intermediate RPC Layer
The intermediate RPC layer is the simplest interface that explicitly makes
RPC calls using the functions callrpc 0 and registerrpc O.

A program number, version number, and procedure number define each RPC
procedure. The program number defines a group of related- remote procedures,
each of which has a different procedure number. Each program also has a
version number, so when a minor change is made to a remote service (e.g.,
adding a new procedure), you do not have to assign a new program number.
When you want to call a remote procedure (e.g., to find the number of remote
users) you look up the appropriate program, version, and procedure numbers
similar to when you look up the name of the memory allocator when wanting
to allocate memory.

EXAMPLE: This example shows you a way of using the intermediate RPC
layer to obtain the number- of remote users.

#include <stdio.h>
#include <rpcsvc/rusers.h>

main(argc t argv)
int argc;

{

}

char *argv[] ;

unsigned long nusers;

if (argc < 2) {

}

fprintf(stderr t "usage: nusers hostname\n");
exit (1) ;

if (callrpc(argv[l]t

}

RUSERSPROG t RUSERSVERS t RUSERSPROC_NUM t
xdr_void t Ot xdr_u_long t tnusers) != 0) {

fprintf(stderr t "error : callrpc\n");
exit (1) ;

printf("%d users on %s\n" t nusers t argv[l]);
exit(O);

3·6 RPC Programming Guide

callrpc()

The simplest routine in the RPC library for making remote procedure calls is
callrpc () , which has eight parameters:

• The first parameter is the name of the remote node.

• The second through fourth parameters are the program, version, and
procedure numbers.

• The fifth and sixth parameters define the argument of the RPC call.

• The final two parameters define the results of the call.

The callrpc() function returns zero if it completes successfully, or nonzero if
it does not.

The meaning of the return values is an anum clnt_stat cast into an integer.
You can find the enum clnt_stat definition in <rpc/ clnt . h>.

Since data types may be represented differently on different nodes,
callrpc () needs both the type of the RPC argument and a pointer to the
argument. (Note, callrpc () needs similar information for the result.)

For RUSERSPROC_NUM, the return value is an unsigned long. Therefore,
callrpc() has xdr_u_long as its seventh parameter, which means the result is
of type unsigned long. The final parameter is inusers, which is a pointer to
where the unsigned long result will be placed. Since RUSERSPROC_NUM takes no
argument, the parameters defining the callrpc () argument are zero (0) and
xdr_void.

If callrpc() does not receive an answer after trying several times to deliver a
message, it returns with an error code. The delivery mechanism is UDP (User
Datagram Protocol). Methods for adjusting the number of retries or for using a
different protocol require you to use the RPC library lowest layer. The remote
server procedure that would reply to the call in the above program might look
like the procedure that follows.

RPC Programming Guide 3· 7

EXAMPLE:

char *
nuser(indata)
char *indata;
{

static int nusers;

/*
* code here to compute the number of users
* and place result in variable nusers
*/

return«char *)tnusers);
}

This procedure takes one argument, which is a pointer to the input of the
RPC (ignored in the example). It also returns a pointer to the result. In C,
character pointers are the generic pointers, so both the input argument and the
return value are cast to char *.
A server usually registers all the RPC procedures it plans to handle and then
goes into an infinite loop waiting to service requests. If there is only a single
procedure to register, the main body of the server would look as follows.

#include <stdio.h>
#include <rpcsvc/rusers.h>

char *nuser();

mainO
{

}

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
nuser, xdr_void, xdr_u_long);

svc_run(): /* never returns */
fprintf(stderr, "Error: Bvc_run returned!\n"):
exit (1) ;

3·8 RPe Programming Guide

registerrpc()

The registerrpc () routine establishes which C procedure corresponds to each
RPC procedure number .

• The first three parameters, RUSERPROG, RUSERSVERS, and RUSERSPROC_NUM
are the program, version, and procedure numbers of the remote procedure to
be registered. In the previous example, nuser argument is the name of the C
procedure implementing the remote procedure .

• The xdr _ void and xdr _u_long types are the type of input to and output
from the procedure.

Only the UDP transport mechanism is used by registerrpc(); thus, it is
always safe to use registerrpc 0 in conjunction with calls generated by
callrpc() .

Note The UDP transport mechanism can only deal with arguments
and results that are less than 8K bytes in length.

RPC Programming Guide 3-9

Program Numbers

Program numbers are assigned in groups of Ox20000000 as follows.

o - lfffffff defined by Sun
20000000 - 3fffffff defined by user
40000000 - 5fffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

o - lfffffff defined by Sun

Sun Microsystems, Inc. administers the first group of numbers which should be
identical for all systems. If you develop an application of general interest, that
application should receive an assigned number in the first range.

20000000 - 3fffffff defined by user

The second group of numbers is reserved for specific customer applications.
This range is primarily for debugging new programs.

40000000 - 5fffffff transient

The third group is reserved for applications that generate program numbers
dynamically.

60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

The final groups are reserved for future use and should not be used.

3·10 RPe Programming Guide

To register a protocol specification, send a request to the following location.
Please include a complete protocol specification, similar to those in this
manual. In return, you will receive a unique program number.

Network Administration Office, Dept. NET
Information Networks Division
19420 Homestead Road
Cupertino, California 95014
408-447-3444

Pass Arbitrary Data Types

RPC can handle arbitrary data structures, regardless of different nodes' byte
orders or structure layout conventions. RPC handles these structures by
converting them to a network standard form called XDR (eXternal Data
Representation) before sending them over the network. The process of
converting from a particular node representation to XDR format is serializing,
and the reverse process is deserializing. The type field parameters of
callrpc() and registerrpcO can be a built-in procedure (like xdr_u_longO
in the previous example) or a user supplied one. XDR has the following
built-in type routines:

• xdr_bool() • xdr _opaque ()

• xdr_charO • xdr_doubleO

• xdr_shortO • xdr_u_charO

• xdr_enumO • xdr_u_intO

• xdr_tloat() • xdr_u_longO

• xdr_intO • xdr _u_short 0

• xdr_long() • xdr_voidO

RPC Programming Guide 3·11

EXAMPLE: This example describes a user-defined type routine.

1. Send the following structure.

struct simple {
int a;
short b;

} simple;

2. Call callrpc () as follows.

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple, tsimple ...);

3. Write xdr_simpleO as follows.

#include <rpc/rpc.h>
xdr_simple(xdrsp, simplep)

XDR *xdrsp;

{

}

struct simple *simplep;

if (!xdr_int(xdrsp, tsimplep->a»
return (0);

if (!xdr_short(xdrsp, tsimplep->b»
return (0);

return (1);

An XDR routine returns nonzero (true for C) if it completes successfully, or
zero (false) if it does not. (Refer to the "XDR Protocol Specification" chapter
for more XDR implementation examples.)

3-12 RPe Programming Guide

In addition to the built-in primitives, there are the following prefabricated
building blocks:

• xdr_array()

• xdr_bytes()

• xdr_point-er() • xdr _ret erence ()

• xdr_vector()

EXAMPLE:

1. To send a variable array of integers, you might package them as a structure.

struct varintarr {
int *data;
int arrlnth;

} arr:

2. Make an RP C call.

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_varintarr ,tarr ...):

3. Define the xdr_varintarr().

xdr_varintarr(xdrsp, arrp)
XOR *xdrsp:
struct varintarr *arrp:

{

xdr_array(xdrsp, tarrp->data, tarrp->arrlnth, MAXLEN,
sizeof(int), xdr_int):

}

RPC Programming Guide 3-13

The previous xdr _arrayO routine takes the following as parameters:

• The XDR handle.

• A pointer to the array.

• A pointer to the size of the array.

• The maximum allowable array size.

• The size of each array element.

• An XDR routine for handling each array element.

EXAMPLE: If both the client and server know the array size in advance,
you could use the following function to send out an array of
length SIZE.

int intarr[SIZE];

xdr_intarr(xdrsp.intarr)
XDR *xdrsp;

{

}

int intarr[];

int i;

for (i - 0; i < SIZE; i++) {

}

if (!xdr_int(xdrsp.lintarr[i]»
return (0);

return (1);

XDR always converts objects such that their lengths are each a multiple of
4-bytes. Thus, if either of the above examples involved characters instead of
integers, each character would occupy 32 bits. The XnR routine xdr_bytes()
is like xdr_array() except that it packs characters; xdr_bytes() has
four parameters, similar to the first four parameters of xdr _array O. For
null-terminated strings, the xdr_stringO routine is the same as xdr_bytes()
without the length parameter. When serializing, it obtains the string length
using strlenO; when deserializing, it creates a null-terminated string.

3·14 RPe Programming Guide

EXA1IPLE: This example calls the previously written xdr_simpleO and
the built-in functions xdr_string() and xdr_reference().
The xdr _reference() function dereferences pointers.

struct finalexample {
char *string;
struct simple *simplep;
} finalexample;

xdr_finalexample(xdrsp,finalp)
XDR *xdrsp;
struct finalexample *finalp;

{

if (!xdr_string(xdrsp, lfinalp->string, MAXSTRLEN»
return (0);

}

if (!xdr_reference(xdrsp, lfinalp->simplep,
sizeof(struct simple), xdr_simple»;
return (0);

return (1);

RPC Programming Guide 3·15

Lowest RPC Layer
In the previous examples RPC automatically takes care of many details for
you. Refer to this section to change the defaults by using the RPC library
lowest layer. You should be familiar with sockets and system calls before
attempting to use them.

You may have several occasions to use RPC lower layers:

• You may need to use TCP. The higher layers use UDP, which restricts RPC
calls to 8K bytes of data. Using TCP permits calls to send longer streams of
data. (See the "Additional RPC Examples, TCP" section.)

• You may want to allocate and free memory while serializing or deserializing
with XDR routines. The higher layer does not contain a call to let you free
memory explicitly. (See the "Memory Allocation with XDR" section.)

• You may need to perform authentication on either the client or server side by
supplying credentials or verifying them. (See the "Additional RPC Features,
Authentication" section.)

3·16 RPe Programming Guide

RPC Server Side

The server for the nusers program shown below performs the same function as
the one using registerrpc(), except it uses a lower RPC layer.

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

maine
{

}

SVCXPRT *transp;
int nuserO;
transp - svcudp_create(RPC_ANYSOCK);
if (transp == NULL){

}

fprintf(stderr, "cannot create an RPC server\n");
exit(l);

pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

nuser, IPPROTO_UDP» {

}

fprintf(stderr, "cannot register RUSERS service\n");
exit (1) ;

svc_run(); /* never returns */
fprintf(stderr, "should never reach this point\n");

nuser(rqstp, transp)

{

struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0» {
fprintf(stderr, "cannot reply to RPC call\n");
exit(!) ;

}

return;

RPe Programming Guide 3-17

}

case RUSERSPROC_NUM:
1*
* code here to compute the number o£ users
* and put in variable nusers
*1

i£ (lsvc_sendreply(transpt xdr_u_long t inusers) {

}

£print£(stderr t "cannot reply to RPC call\n");
exit(1) ;

return;
default:

}

svcerr_noproc(transp);
return;

First, the server receives a transport handle for sending RPC messages. The
registerrpc() function uses svcudp_create() to obtain a UDP handle. If
you require a reliable protocol, call svctcp_createO instead. If the argument
to svcudp_create() is RPC_ANYSOCK, the RPC library creates a socket on
which to send RPC calls. Otherwise, svcudp_create() expects its argument
to be a valid socket number. If specifying your own socket, it can be bound
or unbound. If it is bound, the port numbers of svcudp_create() and
clntudp_create() (the low-level client routine) must match.

When you specify RPC_ANYSOCK for a socket or give an unbound socket, the
system determines port numbers in the following way:

• The server selects a port number for the RPC procedure if the socket
specified to svcudp_create() is not already bound.

• When a server starts, it registers that port number with the portmapper
daemon on its local node.

• When the clntudp_createO call is made with an unbound socket, the
system queries the portmapper on the node to which the call is being made
and obtains the appropriate port number.

• The RPC call fails if the portmapper is not running or has no port
corresponding to the RP C call.

3-18 RPe Programming Guide

You can make RPe calls directly to the portmapper using the appropriate
procedure numbers defined in the include file <rpc/pmap_prot .h>.

After creating a service transport, call pmap_unset 0 so if the nusers server
crashed earlier, any previous trace of it is erased before restarting. The
pmap_unset 0 call erases the entry for RUSERSPROG from the portmapper's
tables.

Associate the program number for nusers with the procedure nuser(). The
final argument to svc_register () is the protocol being used; in this case,
it is IPPROTO_UDP. Notice that unlike registerrpc(), no XnR routines are
involved in the registration process. The registration occurs on the program,
rather than procedure level.

The user routine nuserO must call and dispatch the appropriate XnR
routines based on the procedure number. Note that nuser() handles two items
that registerrpc ()handles automatically:

• First, the procedure NULLPROC (currently zero) returns with no arguments.
You can use NULLPROC as a simple test for detecting if a remote program is
running .

• Second, a check occurs for invalid procedure numbers. If one is detected,
svcerr _noproc () is called to handle the error.

The user service routine serializes the results and returns them to the RPe
caller via svc_sendreply (). Its first parameter is the service transport
handle, the second is the XnR routine, and the third is a pointer to the data to
be returned.

A server can handle an RPe program that passes data.

RPe Programming Guide 3-19

EXAMPLE: This example adds a procedure RUSERSPROC_BOOL that has
an argument nusers. The procedure returns TRUE or FALSE,
depending on whether nusers users are logged on to the node.

case RUSERSPROC_BOOL: {

}

int bool;
unsigned long nuserquery;
if (!svc_getargs(transp. xdr_u_long. tnuserquery» {

}

svcerr_decode(transp);
return;

* code to set nusers - number of users
*1

if (nuserquery -- nusers)
bool :a: TRUE;

else
bool - FALSE;

if (!svc_sendreply(transp. xdr_bool. tbool){
fprintf(stderr. "cannot reply to RPC call \nlt);
exit (1) ;

}

return;

The relevant routine is svc_getargs 0, which takes the following arguments: a
service transport handle, the XDR routine, and a pointer to where the input is
to be placed.

Memory Allocation with XDR

XDR routines not only perform input and output, they may also perform
memory allocation. For this reason the second parameter of xdr_array()
is a pointer to an array, rather than the actual array. If it is NULL when
deserializing, xdr_array() allocates space for the array and returns a pointer
to it, putting the size of the array in the third argument.

3·20 RPC Programming Guide

EXAMPLE: The following XDR routine xdr_chararrl() has a fixed array
of bytes with length SIZE.

:xdr _chararrl (:xdrsp, chararr)
XDR *:xdrsp;

{

}

char chararr [] ;

char *p;
int len;

p = chararr;
len = SIZE;
return (:xdr_bytes(:xdrsp, lp, lIen, SIZE));

The routine may be called from a server as follows.

char chararr[SIZE];

svc_getargs(transp, :xdr_chararrl, chararr);

The chararr has already allocated space. If you want XD R to do the
allocation, you would have to rewrite this routine in the following way.

:xdr _chararr2 (:xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;
{

int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, lIen, SIZE));

}

Then the RPC call might look as follows.

char *arrptr;
arrptr - NULL;
svc_getargs(transp, xdr_chararr2, larrptr);
1*
* use the result here
*1

svc_freeargs(transp, xdr_chararr2, larrptr);

RPe Programming Guide 3·21

After using the character array, it can be freed with svc_freeargs (). In the
routine xdr_finalexampleO given earlier, if finalp->string was NULL in the
call

svc_getargs(transpt xdr_finalexample t tfinalp);

then,

svc_freeargs(xdrsPt xdr_finalexample t tfinalp);

frees the array allocated to hold finalp->string; otherwise, it frees nothing.
The same is true for finalp->simplep.

Each XDR routine is responsible for serializing, deserializing, and allocating
memory:

• When an XDR routine is called from callrpc(), the serializer part is used.

• When an XDR routine is called from svc_getargs 0, the deserializer is used.

• When an XDR routine is called from svc_freeargs() the memory
deallocator is used.

When building simple programs like the examples in this section, you do
not have to worry about the three modes. Refer to the "XDR Protocol
Specification" chapter for examples of more sophisticated XDR routines that
determine which of the three modes to use.

3·22 RPC Programming Guide

RPC Calling Side

When using callrpcO you have no control over the RPC delivery mechanism
or the socket used to transport the data. To illustrate the RPC layer that lets
you adjust these parameters, consider the following code that calls the nusers
service.

EXAMPLE:

include
#include
#include
#include
include
#include

<stdio.h>
<rpc/rpc.h>
<rpcsvc/rusers.h>
<sys/socket.h>
<time.h>
<netdb.h>

main (argc, argv)
int argc;

{
char *argv [] j

struct hostent *hpj
struct timeval pertry_timeout, total_timeoutj
struct sockaddr_in server_addrj
int sock = RPC_ANYSOCKj
register CLIENT *clientj
enum clnt_stat clnt_statj
unsigned long nuserSj

if (argc < 2) {
fprintf(stderr, "usage: nusers hostname\n")j
exit(l)j

}

if «hp - gethostbyname(argv[l]» == NULL) {
fprintf(stderr, "cannot get addr for %s\n",argv[l])j
exit (1) j

}

pertry_timeout.tv_sec = 3j
pertry_timeout.tv_usec = OJ
aemcpy«caddr_t)lserver->addr.sin_addr, hp->h_addr, hp->h_Iength)j
server_addr.sin_family - AF_IUET;
server_addr.sin_port - 0;
if «client - clntudp_create(lserver_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, lsock» _. NULL) {

RPC Programming Guide 3·23

}

}

clnt_pcreateerror(flclntudp_create fl);
exit (1) ;

total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat - clnt_call(client, RUSERSPROC_NUM, xdr_void,

0, xdr_u_long, tnusers, total_timeout);
if (clnt_stat !- RPC_SUCCESS) {

clnt_perror(client, flrpc");
exit (1);

}
clnt_destroy(client);

The low-level version of callrpc() is clnt_call(); it takes a CLIENT pointer
rather than a host name. The parameters to clnt_call() are the following:

• The CLIENT pointer.

• The procedure number.

• The XDR routine for serializing the argument.

• A pointer to the argument.

• The XDR routine for deserializing the return value.

• A pointer to where the return value will be placed.

• The length of time to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. The callrpc ()
routine uses UDP and thus, calls clntudp_createO to obtain a CLIENT
pointer. To use TCP, call clnttcp_createO instead.

The parameters to clntudp_createO are the following:

• The server address.

• The program number.

• The version number.

• A timeout value (between tries).

• A pointer to a file descriptor for a socket.

3-24 RPC Programming Guide

The final argument to clnt_callO is the total time to wait for a
response. The number of tries is the clnt_callO timeout divided by the
clntudp_create() timeout rounded down to the nearest integer.

The clnt_destroy() call deallocates any space associated with the CLIENT
handle. It does not close the associated socket that was passed as an argument
to clntudp_create O. The reason is that if there are multiple client handles
using the same socket, then you can close one handle without destroying the
socket that other handles are using.

To make a stream connection, replace the call to clntudp_create() with a call
to clnttcp_create O.

clnttcp_create (iserver_addr,prognum, versnum isocket,inputsize, outputsize);

No timeout argument exists; instead, you must specify the receive and send
buffer sizes. When the clnttcp_createO call is made, a TCP connection is
established. All RPC calls using that CLIENT handle will use this connection.
The server side of an RPC call using TCP has svcudp_create() replaced by
svctcp_create ().

RPe Programming Guide 3·25

Additional RPC Features
This section contains other RPe features you may occasionally find useful.

Select on the Server Side

Suppose a process is processing RPe requests while performing some other
activity. If the other activity includes periodically updating a data st,ructure,
the process can set an alarm signal before calling svc_runO. However, if the
other activity involves waiting on a file descriptor, the svc_run() call will not
work. The code for svc_runO is as follows:

}

fd_set readfds;

for (;;) {

}

readfds = svc_fds;
switch (select (FD_SETSIZE. treadfds. NULL. NULL. NULL» {

case -1:

case 0:

if (errno == EINTR)
continue;

perror(ltsvc_run : select");
return;

break;
default:

svc_getreqset(readfds);
}

You can bypass svc_runO and call svc_getreqset(). You only need to know
the file descriptors of the socket associated with the programs on which you are
waiting. Thus, you can have your own select() waiting on both the RPe
socket and your own descriptors.

3-26 RPe Programming Guide

Broadcast RPC

The portmapper is a daemon that converts RPC program numbers into IP
protocol port numbers. (See portmap in section 1M of the HP- UX Reference.)
You cannot perform broadcast RPC without the portmapper in conjunction
with standard RPC protocols. Refer to the following list of differences between
broadcast RPC and normal RPC calls:

• Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answers from each responding node).

• Only packet-oriented (connectionless) transport protocols (like UDP lIP) can
support broadcast RPC.

• The broadcast RPC implementation ignores all unsuccessful responses. Thus,
if a version mismatch occurs between the broadcaster and a remote service,
the user of broadcast RPC never knows.

• Broadcast RPC sends all messages to the portmap port. Thus, only services
that register with their portmapper are accessible via the broadcast RPC
mechanism.

RPC Programming Guide 3·27

Broadcast RPC Synopsis

#include <rpc/rpc.h>

enUlD clnt_stat
clnt_broadcast(prog. vers. proc. xargs. argsp. xresults.

resultsp. eachresult)
u_Iong prog;
u_Iong vers;
u_long proc;
xdrproc_t xargs;
caddr_t argsp;
xdrproc_t xresults;
caddr_t resultsp;
bool_t (*eachresult)();

1* program number *1
1* version number *1
1* procedure number *1
1* xdr routine for args *1
I*.pointer to args *1
1* xdr routine for results *1
1* pointer to results *1
1* call with each result gotten *1

The eachresul t () function is called each time a valid result is obtained. It
returns a boolean indicating whether the client wants more responses.

bool_t
eachresult(resultsp. raddr)
caddr_t resultsp;
struct sockaddr_in *raddr;

1* location of results *1
1* IP addr of responding machine *1

If eachresult() returns TRUE, broadcasting stops and clnt_broadcastO
returns successfully. Otherwise, the routine waits for another response. The
request is rebroadcast after a few seconds of waiting. If no responses come
back, the routine returns with RPC_TIMEDOUT. To interpret clnt_stat errors,
call clnt_perrno() with the error code.

3·28 RPC Programming Guide

Batching

In the RPC architecture, clients send a call message and wait for servers to
reply that the call succeeded. This procedure implies that clients do not
compute while servers are processing a call. It is inefficient if the client does
not want or need an acknowledgement for every message sent. Using RPC
batch facilities, clients can continue computing while waiting for a response.

Batching is the process of placing RPC messages in a pipeline of calls to a
desired server. Batching assumes the following items:

• Each RPC call in the pipeline requires no response from the server, and the
server does not send a response message .

• The pipeline of calls is transported on a reliable byte stream transport (Le.,
TCP/IP).

Since the server does not respond to every call, the client can generate
new calls in parallel with the server executing previous calls. The TCP lIP
implementation can buffer many call messages and send them to the server
in one write() system call. This overlapped execution greatly decreases the
interprocess communication overhead of the client and server processes and
therefore, decreases the total elapsed time of a series of calls.

Note Since the batched calls are buffered, the client should
eventually make a non-batched call to flush the pipeline.

RPC Programming Guide 3·29

EXAJvIPLE: Assume a string rendering service (like a window system) has
two similar calls: one renders a string and returns void results,
while the other renders a string and remains silent. The service
using the TCP lIP transport may look like this example.

#include <stdio.h>
#include <rpc/rpc.h>
#include "1lindo1ls.h" /* contains the values of WINDOWPROG

* and WINDOWVERS
*/

void 1lindo1ldispatch();

maine)
{

}

void

SVCXPRT *transp;

transp - svctcp_create(RPC_ANYSOCK. 0. 0);
if (transp -- NULL){

}

fprintf(stderr. "cannot create an RPC server\n");
exit (1) ;

pmap_unset(WINDOWPROG. WINDOWVERS);
if (!svc_register(transp. WINDOWPROG. WINDOWVERS.

1lindo1ldispatch. IPPROTO_TCP» {

}

fprintf(stderr. "cannot register WINDOW service\n");
exit (1) ;

svc_run(); /* never returns */
fprintf(stderr. "should never reach this point\n");

1lindo1ldispatch(rqstp. transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{

char *s .. NULL;

s1litch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp. xdr_void. 0» {

}

fprintf (stderr. "cannot reply to RPC call \n") ;
exit(1);

3·30 RPC Programming Guide

}

return;
case RENDERSTRING:

if (!svc_getargs(transp. xdr_wrapstring. is» {
fprintf(stderr. "cannot decode arguments\n");
1*

}

1*

* tell caller that a problem exists
*1

svcerr_decode(transp);
break;

* call here to render the string s
*1

if (!svc_sendreply(transp. xdr_void. NULL» {

}

break;

fprintf(stderr. "cannot reply to RPC call\n");
exit (1) ;

case RENDERSTRING_BATCHED:

default:

}

1*

if (!svc_getargs(transp. xdr_wrapstring. is» {
fprintf(stderr. "cannot decode arguments\n");
1*

}

1*

* the server cannot return errors to the client
* when using batched RPC
*1

break;

* call here to render string s. but send no reply!
*1
break;

svcerr_noproc(transp);
return;

* now free string allocated while decoding arguments
*1

svc_freeargs(transp. xdr_vrapstring. is);

RPe Programming Guide 3-31

The service could have one procedure that takes the string and a boolean to
indicate whether the procedure should respond. For a client to take advantage
of bat ching , the client must perform RPC calls on a TCP-based transport and
the actual calls must have the following attributes:

• The result's XDR routine must be zero .

• The RPC call's timeout must be zero.

EXAMPLE: This is an example of a client using batching to render strings.
The batching is flushed when the client receives a null string.

'include <stdio.h>
'include <rpc/rpc.h>
'include <sys/socket.h>
'include <time.h>
'include <netdb.h>
'include "windows.h"

main (argc, argv)
int argc;

{
char *argv [] i

struct hostent *hp;
struct tiaeval total_timeout;
struct sockaddr_in server_addri
int sock - RPC_AlYSOCK;
register CLIENT *client;
enum clnt_stat clnt_statj
char buf [BUFSIZ], *s - buf;

if (argc < 2) {

}

fprintf(stderr, "usage: nusers hostname\n");
exit(l) ;

if «hp - gethostbyname(argv[l]» -= NULL) {

}

fprintf(stderr, "cannot get addr for %s\n",argv[l]) j
exit (1) j

aeacpy«caddr_t)iserver->addr.sin_addr, hp->h_addr, hp->h_length)j
server_addr.sin_family - AF_lRET;
server_addr.sin_port - OJ

3·32 RPe Programming Guide

}

if «client = clnttcp_create(tserver_addr.

}

WINDOWPROG. WINDOWVERS. tsock. 0. 0» == NULL) {
clnt_pcreateerror(lIclnttcp_create");
exit(t) ;

total_timeout. tv_sec - 0;
total_tiaeout.tv_usec - 0;
vhile (scanf("y's". s) !- EOF) {

}

clnt_stat - clnt_call(client. RENDERSTRING_BATCHED.
xdr_vrapstring, ts. NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {
clnt_perror(client, "batched rpc") ;
exit(l) ;

}

/* nov flush the pipeline
*/

total_tiaeout.tv_sec - 20;
clnt_stat - clnt_call(client, NULLPROC. xdr_void. NULL,

xdr_void, NULL, total_timeout);
if (clnt_stat !- &PC_SUCCESS) {

clnt_perror(client, "rpC ll
);

exit(1);
}

clnt_destroy(client);

Since the server sends no message, the clients cannot be notified of any failures
that may occur.

RPe Programming Guide 3-33

Authentication

In the previous examples the caller never identified itself to the server, and the
server never required an ID from the caller. Some network services, such as a
network file system, require stronger security than what has been presented
thus far.

The RPC package on the server authenticates every RPC call, and similarly,
the RPC client package generates and sends authentication parameters. Just
as different transports (TCP lIP or UDP lIP) can be used when creating RPC
clients and servers, different forms of authentication can be associated with
RPC clients. The authentication type used as a default is type AUTH_NULL.

The authentication subsystem of the RPC package is open ended; numerous
types of authentication are easy to support. However, this section deals only
with UNIX type authentication which is the only supported type except
AUTH_NULL.

RPC Client Side

When a caller creates a new RPC client handle as in

clnt - clntudp_create(address, prognua, versnum, wait, sockp);

the appropriate transport instance defaults the associate authentication handle
to be as follows.

clnt->cl_auth - authnone_create();

The RPC client can choose to use UNIX style authentication by setting
clnt->cl_auth after creating the RPC client handle.

This authentication causes each RPC call associated with clnt to carry the
following authentication credentials structure.

3·34 RPC Programming Guide

/*
* Unix style credentials.
*/

struct authunix_parms {

}

u_long aup_time;
char *aup_machnaae;
int aup_uid;
int aup_gid;
u_int aup_len;
int *aup_gids;

/* credentials creation time */
/* host naae where client is */
/* client's effective UID */
/* client's effective GID */
/* element length of aup_gids */
/* array of groups to which the user belongs */

These fields are set by authunix_create_default() by invoking the
appropriate system calls. Since the RPC user created this new style of
authentication, the user is responsible for destroying it to conserve memory.

auth_destroy(clnt->cl_auth);

RPC Server Side

Service implementors have a harder time handling authentication issues
since the RPC package passes the service dispatch routine a request with an
associated arbitrary authentication style. Consider the fields of a request
handle passed to a service dispatch routine.

/*
* An RPC Service request
*/

struct svc_req {
u_long rq_prog;
u_long rq_vers;
u_long rq_proc;

};

struct opaque_auth rq_cred;
caddr_t rq_clntcred;

/* service prograa number */
/* service protocol vers num */
/* desired procedure number */
/* raw credential from network */
/* credentials (read only) */

RPC Programming Guide 3·35

The rq_cred is mostly opaque except for one field of interest:
the style of authentication credentials.

1*
* Authentication info. Mostly opaque to the programmer.
*1

struct opaque_auth {

};

enum_t oa_flavor;
caddr_t oa_base;
u_int oa_length;

1* style of credentials *1
1* address of more auth stuff *1
1* not to exceed MAX_AUTH_BYTES *1

The RPC package guarantees the following two items to the service dispatch
routine:

• The request's rq_cred is well-formed. Thus, the service implementor may
inspect the request's rq_cred.oa_flavor to determine which style of
authentication the caller used. The service implementor may also inspect the
other fields of rq_cred if the style is not supported by the RPC package .

• The request's rq_clntcred field is either NULL or points to a well-formed
structure corresponding to supported authentication credentials. Only UNIX
rq_ clntcred could be cast to a pointer to an authunix_parms structure.
If rq_ clntcred is NULL, the server may wish to inspect the other (opaque)
fields of rq_cred if it knows about a new type of authentication about which
the RP C package does not know.

Note The RP C protocol allows you to specify your own form of
authentication, but to do so you must have access to the RPC
authentication source files. Implementations based on NFS 3.2
(including HP-UX 8.0 on HP 9000 computers) do not allow you
to define your own form of authentication.

3·36 RPe Programming Guide

EXAMPLE: This example extends the remote users service example so that
it computes results for all users except UID 16.

nuser(rqstp, transp)

{

struct svc_req *rqstp;
SVCXPRT *transp;

struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

/*
* we do not care about authentication for null proc
*/

if (rqstp->rq_proc -- NULLPROC) {

}

/*

if (Isvc_sendreply(transp, xdr_void, 0» {
fprintf(stderr, "cannot reply to RPC call\n");
exit (1) ;

}

return;

* now get the uid
*/

switch (rqstp->rq_cred.oa_flavor) {
case AOTH_UNIX:

unix_cred - (struct authunix_parms *)rqstp->rq_clntcred;
uid - unix_cred->aup_uid;
break;

case AOTH_NULL:
default:

}

svcerr_weakauth(transp);
return;

switch (rqstp->rq_proc) {
case RUSERSPROC_NUM:

/*
* make sure caller is allowed to call this proc
* this disallows uid 16 to use this service
*/

if (uid -- 16) {
svcerr_systemerr(transp);
return;

}

RPe Programming Guide 3-37

}

1*
* code here to compute the number of users
* and put in variable nusers
*1

if (!svc_sendreply(transp, xdr_u_long, tnusers» {
fprint£(stderr, "cannot reply to RPe call\n");
exit(l);

}

return;
default:

}

svcerr_noproc(transp);
return;

It is customary not to check the authentication parameters associated with the
NULLPROC (procedure number zero).

If the authentication parameter's type is not suitable for your service, you
should call svcerr _ weakauth 0 .

The service protocol should return status for access denied. In the above
example, the protocol does not have such a status, so the service primitive
svcerr _systemerr 0 is called instead. This point underscores the relation
between the RPe authentication package and the services; RPe deals only
with authentication and not with individual services' access control. The
services must implement their own access control policies and reflect these
policies as return statuses in their protocols.

Using inetd

An RPe server can start from inetd. The only difference from the usual code
is that svcudp_createO should be called as

transp = svcudp_create(O);

since inetd(1M) passes a socket as file descriptor zero (0). You should call
svc_register() as

svc_register(transp, PROGNUM, VERSNUM, service, 0);

with the final parameter set to zero (0), since the program would already be
registered by inetd. If you want to exit from the server process and return
control to inetd, you must explicitly exit since svc_run() never returns.

3-38 RPe Programming Guide

To use TCP based RPC from the inetd daemon, call svcfd_create()
instead of svctcp_createO since the socket (file descriptor zero (0)) is
already an active socket.

The entry formats in /etc/inetd.conf for RPC services are as follows:

UDP:

rpc dgram udp wait user server program version name

TCP:

rpc stream tcp nowait user server program version name

/ etc/inetd.conf Fields Description

user The user name that the process executes as

server The server program

program Program number of the service

version Version number of the service

name The server name and optional arguments

EXAMPLES:

rpc dgram udp wait root /usr/etc/rpc.mountd 100005 1 rpc.mountd

If the same program handles multiple versions, the version number can be a
range as in the following line.

rpc dgram udp wait root /usr/etc/rpc.rstatd 100001 1-3 rpc.rstatd

RPC Programming Guide 3·39

Additional RPC Examples

Versions

By convention, the first version number of program PROG is
PROGVERS_ORIG, and the most recent version is PROGVERS. Suppose there is a
new version of theuser program that returns an unsigned short rather than a
long. If the name of this version is RUSERSVERS_SHORT, a server that wants to
support both versions would perform a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO_UDP» {

}

fprintf(stderr, "cannot register RUSER service\n");
exit (1);

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
nuser, IPPROTO_UDP» {

}

fprintf(stderr. "cannot register RUSER service\n");
exit (1) ;

3-40 RPe Programming Guide

The same C procedure can handle both programs.

nuser(rqstp. transp)

{

}

struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;
unsigned short nusers2;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendrepiy(transp. xdr_void. 0» {
fprintf(stderr. "cannot reply to RPC call\n");
exit(l);

}

return;
case RUSERSPROC_NUM:

1*
* code here to compute the number of users
* and put in variable nusers and in nusers2
*1

if (rqstp->rq-vers =- RUSERSVERS_ORIG) {
if (!svc_sendreply(transp.xdr_u_long. inusers» {

fprintf(stderr. "cannot reply to RPC call \n");
exit (1);

}

} else if (!svc_sendreply (transp.xdr_u_short.inusers2» {
fprintf (stderr. "cannot reply to RPe call \n");
exit (1) ;

}

return;
default:

}

svcerr_noproc(transp);
return:

RPC Programming Guide 3·41

TCP

The following example is a routine to perform a remote copy. The initiator of
the RPC call takes its standard input and sends it to the server to print it on
standard output. The RPC call uses TCP. This example also illustrates an
XDR procedure that behaves differently on serialization than on deserialization.

EXAMPLE:

/*
* The xdr routine:
* on decode, read from network, write onto fp
* on encode, read from fp, write onto network
*/

#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)
lOR *xdrs:

{
FILE *fp:

unsigned long size:
char buf[BUFSIZ], *p:

if (xdrs->x_op == lOR_FREE)
return 1:

/* nothing to free */

while (1) {

}

p = buf:

if (xdrs->x_op =- lOR_ENCODE) {

}

if «size = fread(buf, sizeof(char) , BUFSIZ,
fp» .- 0 t ferror(fp» {

fprintf(stderr, "cannot fread\n"):
exit (1) :

if (!xdr_bytes(xdrs, tp, tsize, BUFSIZ»
return (0)

if (size -. 0)
return (1)

if (xdrs->x_op -- lOR_DECODE) {
if (fwrite(buf, sizeof(char), size,

fp) !- size) {

}

fprintf(stderr, "cannot fwrite\n"):
exit(l):

3·42 RPe Programming Guide

}

}
}

/*
* The sender routines (client)
*/

#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <time.h>

int xdr_rcp(). callrpctcp();

main(argc. argv)
int argc;
char *argv 0 ;

{

int err;

if (argc < 2) {
fprintf(stderr. "usage: 1.s servername\n". argv[O]);
exit (1) ;

}

}

if «err = callrpctcp(argv[l]. RCPPROG, RCPPROC_FP,

}

RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0» {
clnt_perrno(err);
fprintf(stderr, "cannot make RPC call\n");
exit (1) ;

callrpctcp(host, prognum, procnum. versnum, inproc, in, outproc, out)
char *host, *in, *out;

{

int prognua, procnWl, versnum;
xdrproc_t inproc, outproc;

struct sockaddr_in server_addr;
int socket - RPC_ANYSOCK;
enwa clnt_stat clnt_stat;
struct hostent *hp;
register CLIENT *client;
struct timeval total_timeout;

if «hp = gethostbyname(host» _. NULL) {

RPC Programming Guide 3·43

}

/*

}

fprintf(stderr. "cannot get addr for 'y's'\n". host);
exit (1) ;

memcpy«caddr_t)iserver->addr.sin_addr. hp->h_addr. hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;
if «client - clnttcp_create(iserver_addr. prognum,

}

versnum. isocket. BUFSIZ. BUFSIZ» == NULL) {
clnt_pcreateerror ("rpctcp_create") ;
exit (1) ;

total_timeout.tv_sec - 20;
total_timeout.tv_usec - 0;
clnt_stat - clnt_call(client. procnum.

inproc. in. outproc. out. total_timeout);
clnt_destroy(client);
return (int)clnt_stat;

* The receiving routines (server)
*/

#include <stdio.h>
#include <rpc/rpc.h>

main 0
{

}

register SVCXPRT *transp;

if «transp - svctcp_create(RPC_ANYSOCK. BUFSIZ. BUFSIZ» -- NULL)
{

}

fprintf(stderr, "svctcp_create: error\n");
exit (1);

pmap_unset(RCPPROG, RCPVERS);
if (!svc_register(transp.

}

RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP» {
fprintf(stderr. "svc_register: error\n");
exit (1) ;

svc_run(); /* never returns */
fprintf(stderr. "svc_run should never return\n");

3·44 RPC Programming Guide

rcp_service(rqstp. transp)

{

}

register struct svc_req *rqstp;
register SVCXPRT *transp;

switch (rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp. xdr_void. 0) == 0) {
fprintf(stderr. "err: rcp_service\nlt);
exit(l);

}

return;
case RCPPROC_FP:

if (!svc_getargs(transp. xdr_rcp. stdout» {
svcerr_decode(transp);
return;

}

if (!svc_sendreply(transp. xdr_void. 0» {
fprintf(stderr. Itcannot send reply\nlt);
return;

}

exit(O);
default:

}

svcerr_noproc(transp);
return;

RPC Programming Guide 3·45

Callback Procedures

You may want a server to become a client and make an RPC call back to
the process which is its client. One example is remote debugging where the
client is a window system program and the server is a debugger running on the
remote node. Usually the user clicks a mouse button at the debugging window
to select a debugger command. The application then makes an RPC call to
the server (where the debugger is actually running), telling it to execute that
command. However, when the debugger reaches a breakpoint, the roles reverse
and the debugger makes an RPC call to the window program to inform the
user that a breakpoint was reached.

To perform an RPC callback, you need a program number on which to
make the RPC call. Since this program number is dynamically generated,
it should be in the transient range, Ox40000000 - Ox5fffffff. The routine
gettransientO returns a valid program number in the transient range and
registers it with the portmapper. It only talks to the portmapper running on
the same node as the gettransient 0 routine. The call to pmap_set 0 is a
test and set operation in that it indivisibly tests whether a program number
was already registered. If it was not, then the pmap_set call reserves it. On
return, the sockp argument contains a socket that can be used as the argument
to an svcudp_create() or svctcp_createO call.

3·46 RPC Programming Guide

EXAMPLE:

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>

u_long
gettransient(proto, vers, sockp)

int proto;

{

u_long vers;
int *sockp;

static u_long prognum = Ox40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch(proto) {
case IPPROTO_UDP:

socktype = SOCK_DGRAM;
break;

case IPPROTO_TCP:

default:

socktype
break;

fprintf(stderr, "unknown protocol type\n");
return 0;

}

if (*sockp == RPC_ANYSOCK) {
if «s ,. socket(AF_lNET, socktype, 0» < 0) {

perror("socket");
return (0);

}

*sockp ,. s;
} else

s ,. *sockp;
addr.sin_addr.s_addr ,. 0;
addr.sin_family = AF_INET;
addr.sin_port = 0;
len" sizeof(addr);
/*

* may be already bound, so do not check for error
*/

(void) bind(s, iaddr, len);
if (getsockname(s, taddr, llen)< 0) {

RPC Programming Guide 3·47

}

}

perror(ltgetsockname lt);
return (0);

while (!pmap_set(prognum++. vers. proto. addr.sin_port»
continue;

return (prognum-l);

The following pair of programs illustrate how to use the gettransient()
routine:

• The client makes an RPC call to the server, passing it a transient program
number.

• The client then waits to receive a callback from the server at that program
number.

• The server registers the program EXAMPLEPROG so it can receive the RP C call
informing it of the callback program number.

• After receiving a SIGALRM signal, the server sends a callback RPC call using
the program number it received earlier.

3-48 RPe Programming Guide

EXAMPLE:

/*
* client
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include "example.h"

int callback 0 j
u_Iong gettransient(), Xj
char hostname[256]j

main (argc , argv)
int argcj

{

}

char *argv [] j

int ans, Sj
SVCXPRT *xprtj

gethostname(hostname, sizeof(hostname»;
s -= RPC_ARYSOCK;
x = gettransient(IPPROTO_UDP, 1, ts);
fprintf(stderr, "client gets prognum %ld\n", x)j
if «xprt - svcudp_create(s» -- NULL) {

}

fprintf(stderr, "rpc_server: svcudp_create\n");
exit(1) ;

/* protocol is 0 - gettransient() does registering
*/

(void)svc_register(xprt, x, 1, callback, 0);
ans - callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, xdr_int, tx, xdr_void, 0);
if (ans !- RPC_SUCCESS) {

fpr'intf(stderr, "call: II);
clnt_perrno(ans);
fprintf (stderr, "\n");

}

svc_runO;
fprintf(stderr, "Error: svc_run should not return\n");

callback(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transpj

RPe Programming Guide 3-49

{

}

/*

switch (rqstp->rq_proc) {
case NULLPROC:

case 1:

}

if (!svc_sendreply(transp, xdr_void, 0» {
fprintf(stderr, "err: callback\n");
exit (1) ;

}

pmap_unset (x, 1) ;
exit (0);

if (!svc_getargs(transp, xdr_void, 0» {
svcerr_decode(transp);
exit (1) ;

}

fprintf(stderr, "client got callback\n");
if (!svc_sendreply(transp, xdr_void, 0» {

}

fprintf(stderr, "err: callbackd\n");
exit (1) ;

* server
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>
#include "example.h"

char *getnewprog();
char hostname[256];
int docallback();
u_long pnum-O;

main (argc, argv)
int argc;
char *argv 0 ;

{

/* program number for callback routine */

gethostname(hostname, sizeof(hostname»;
registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
signal (SIGALRK, docallback);
alarm(10) ;

3-50 RPC Programming Guide

svc_runO;
fprintf(stderr. "Error: svc_run shouldn't return\n");

}

char *
getnewprog(pnump)

u_long *pnump;
{

}

pnum • *pnump;
return NULL;

docallbackO
{

int anSi

ans • callrpc(hostname. pnum. 1. 1. xdr_void. O.
xdr_void. 0);

}

if (ans ,- 0) {

}

fprintf(stderr. "server: II);

clnt_perrno(ans);
fprintf (stderr. II \n") ;

RPC Programming Guide 3-51

Synopsis of RPC Routines

Routine auth_destroyO

Description A macro that destroys the authentication information associated
with auth. Destruction usually involves deallocation of private data
structures.

The.use of auth is undefined after calling auth_destroyO.

Synopsis void
auth_destroy(auth)

AUTH *auth;

Routine authnone_create()

Description Creates and returns an RPC authentication handle that passes no
usable authentication information with each remote procedure call.

This routine returns NULL if it fails.

Synopsis AUTH *
authnone_create()

3·52 RPC Programming Guide

Routine authunix_create()

Description Creates and returns an RPC authentication handle that contains
authentication information.

The parameter host is the node name on which the information was
created.

The parameter uid is the user's user ID.

The parameter gid is the user's current group ID.

The parameters len and aup_gids refer to a counted array of groups
to which the user· belongs.

This routine returns NULL if it fails.

Synopsis AOTH *
authunix_create(host. uid. gid. len. aup_gids)

char *host;
int uid. gid. len. *aup_gids;

Routine authunix_create_default()

Description Calls authunix_createO with the appropriate parameters.

Synopsis AOTH *
authunix_create_default()

RPC Programming Guide 3·53

Routine callrpcO

Description Calls the remote procedure associated with prognum, versum, and
procnum on the host node.

The parameter in is the address of the procedure's argument(s),
and out is the address of where to place the results.

The parameter inproc encodes the procedure's parameters, and
outproc decodes the procedure's results.

The clnt_perrno() routine is useful for translating clnt_stat
return values into messages. This routine returns zero if it succeeds
or the value of enum clnt_stat cast to an integer if it fails.

Synopsis
int
callrpc(host,prognum,versnum,procnum,inproc, in,outproc,out)

char *hostj
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_ t inproc, outproc;

Note Calling remote procedures with this routine uses UDP lIP as a
transport. See clntudp_createO for restrictions.

3-54 RPC Programming Guide

Routine

Description

Synopsis

clnt_broadcast()

Works like callrpc 0 except the call message is broadcast to all
locally connected broadcast networks.

Each time this routine receives a response, it calls eachresul t (),
whose form is as follows.

bool_t
eachresult(out, addr)

char *out;
struct sockaddr_in *addr;

The parameter out is the same as out passed to
clnt_broadcast () except the remote procedure's output is
decoded in eachresult ().

The parameter addr points to the host address that sent the results.

If eachresult() returns FALSE, clnt_broadbast() waits for more
replies. Otherwise, it returns the appropriate status.

enum clnt_stat
clnt_broadcast (prognum, versnum, procnum, inproc,

in, outproc, out, eachresul t)
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_ t inproc, outproc;
bool_t eachresult;

RPC Programming Guide 3-55

Routine clnt_callO

Description A macro that calls the remote procedure procnum associated with
the client handle clnt. The clnt handle is obtained with an RPC
client creation routine such as clntudp_createO.

The parameter in is the address of the procedure's arguments, and
out is the address of where to place the results.

The parameter inproc encodes the procedure's parameters, and
outproc decodes the procedure's results.

The parameter tout is the total time allowed for results to return.

Synopsis procnumenum clnt_stat
clnt_call(clnt, procnUDl, inproc, in, outproc, out, tout)

CLIENT *clnt;
long procnUll;
xdrproc_ t inproc, outproc;
char *in, *out;
struct timeval tout;

3-56 RPe Programming Guide

Routine clnt_control()

Description A macro that changes or retrieves information about an RPC client.
The req parameter determines the type of operation and info is a
pointer to the information. The information will be contained in
various types of struct's depending on the value in req.

req info action

CLGET_TIMEOUT struct timeval Returns the value for
the amount of time the
client will wait on the
server before returning a
timeout error

CLSET _TIMEOUT struct timeval Sets the value for the
amount of time the
client will wait on the
server before returning a
timeou terror

CLGET-SERVER-ADDR struct sockaddr Returns the address of
the server

Note CLGET _ TIMEOUT, CLSET _ TIMEOUT, and
CLGET_SERVER_ADDR are valid ONLY for UDP
based RPC.

CLG ET -RETRY _TIMEOUT struct timeval Returns the value for
the amount of time the
client will wait before
resending a request

CLSET -RETRY _TIMEOUT struct timeval Sets the value for the
amount of time the
client will wait before
resending a request

RPC Programming Guide 3-57

Synopsis

Note

Routine

Description

Synopsis

bool_t
clnt_control(cl. req. info)

CLIENT *cl;
int reqj
char *info;

If CLSET_TIMEOUT is used to set the timeout value, then the values
that are sent in future calls to clnt_callO are ignored because the
value set with clnt_control has overriding precedence.

A routine that will create an RPC client handle.

host identifies the name of the remote host where the server is
located.

prog and vers are the program number and the version number of
the server program.

proto indicates which kind of transport protocol to use to link the
server and client. Currently udp and tcp are the supported values
for this parameter. Default timeout values are set, but can be
modified using clnt_control.

CLIENT *
clnt_create(host. prog. verSt proto)

char * host;
u_long prog. vers;
char *proto;

Note A UDP-based RPC message can hold up to 8K bytes of encoded
data.

3-58 RPe Programming Guide

Routine clnt_destroy()

Description A macro that destroys the client's RPC handle. Destruction usually
involves deallocation of private data structures, including clnt.

You have the responsibility of closing sockets associated with clnt,
and must do so before calling clnt_destroy().

Use of clnt is undefined after calling clnt_destroy().

Synopsis void
clnt_destroy(clnt)

CLIENT *clnt;

Routine clnt_treeres()

Description A macro that frees any data allocated by the RPC /XD R system
when it decoded the results of an RPC call on clnt.

The parameter out is the address of the results, and outproc is the
XDR routine describing the results in simple primitives.

This routine returns TRUE if the results were successfully freed or a
FALSE if they were not.

Synopsis bool_t
clnt_freeres(clnt t outproc tout)

CLIENT *clnt;
xdrproc_ t outproc;
char * out;

RPC Programming Guide 3·59

Routine clnt_geterrO

Description A macro that copies the error structure out of the client handle to
the structure at address errp.

Synopsis void
clnt_geterr(clnt t errp)

CLIENT *clnt;
struct rpc_err *errp;

Routine clnt_pcreateerror()

Description Prints a message to standard error indicating why a client RPC
handle could not be created; prints the string s and a colon {:}
before the message.

Use clnt_pcreateerrorO after a clntraw_createO

Synopsis void
clnt_pcreateerror(s)

char *s;

3·60 RPC Programming Guide

Routine clnt_perrnoO

Description Prints a message to standard error corresponding to the condition
indicated by stat.

Use clnt_perrnoO after callrpcO.

Synopsis void
clnt_perrno(stat)

enUlll clnt_stat stat;

Routine clnt_perror()

Description Prints a message to standard error indicating why an RPC call
failed; prints the string s and a colon (:) before the message.

Use clnt_perrorO after clnt_callO.

Synopsis void
clnt_perror(clnt t s)

CLIENT *clnt j
char *Sj

RPe Programming Guide 3·61

Routine clnt_spcreateerror()

Description Returns a string that contains a message telling why a client RPC
handle could not be created. The message in the returned string
will be preceded with the string s and a colon (:). The string will
contain the same text as is printed when clnt_pcreateerrorO is
called.

Synopsis char *
clnt_spcreateerror(s)

char *s;

Note clnt_spcreateerrorO returns a pointer to static data so the
contents of the string are overwritten on each call to the function.

Routine clnt_sperrno()

Description Returns a string that contains a message corresponding to the
condition indicated by stat. The string will contain the same text
as is printed when clnt_perrno 0 is called.

Synopsis char *
clnt_sperror (stat)

enum clnt_stat stat;

3·62 RPC Programming Guide

Routine clnt_sperrorO

Description Returns a string that contains a message telling why an RPC call
failed. The message in the returned string will be preceded with the
string s and a colon(:). The string will contain the same text as is
printed when clnt_perrorO is called.

Synopsis char *
clnt_sperror (s)
char *s;

Note clnt_sperror returns a pointer to static data so the contents of
the string are overwritten on each call to the function.

Routine clntraw_create()

Description This routine creates a simulated RPC client for the remote program
prognum, version versnum.

The transport used to pass messages to the service is actually a
buffer within the process address space, so the corresponding RPC
server must be in the same address space.
(See svcraw_create(».
This pair of routines allow simulation of RPC and acquisition of
RPC overheads (e.g., round trip times) without kernel interference.

This routine returns BULL if it fails.

Synopsis CLIENT *
clntraw_create(prognum, versnum)

u_long prognum, versnum;

RPC Programming Guide 3·63

Routine clnttcp_create()

Description This routine creates an RPC client for the remote program
prognum, version versnum. The client uses TCP /IP as a transport.

The remote program is located at Internet address *addr.

If addr->sin_port is zero, it is set to the actual port on which the
remote program is listening. (The clnttcp_createO function
consults the remote portmap service for this information.)

The parameter *sockp is a socket file descriptor; if it is
RPC_ANYSOC, then this routine opens a new one and sets *sockp.

Since TCP-based RPC uses buffered I/O, you can specify the size
of the send and receive buffers with the parameters sendsz and
reCV$Z; using values of zero causes clnttcp_create() to choose
reasonable defaults.

This routine returns NULL if it fails.

Synopsis CLIENT $
clnttcp_create(addr,prognum,versnum, sockp,sendsz ,recvsz)

struct sockaddr_in $addr;
u_long prognum, versnum;
int $sockp;
u_int sendsz, recvsz;

3·&4 RPe Programming Guide

Routine clntudp_create()

Description This routine creates an RPC client for the remote program
prognum, version versnum; the client uses UDP lIP as a transport.

The remote program is located at Internet address *addr.

If addr->sin_port is zero, then it is sent to the port on which the
remote program is listening. (The clntudp_create () function
consults the remote portmap service for this information.)

The parameter *sockp is a socket file descriptor; if it is
RPC_ANYSOCK, this routine opens a new socket and sets *sockp.

The UDP transport resends the call message in intervals of timeval
wait until a response is received or until the call times out. Use
clnt_callO to specify the total timeout for the call.

This routine returns NULL if it fails.

Synopsis CLIENT *
clntudp_create(addr, prognUll, versnum, trait, sockp)

struct sockaddr _in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

Note UDP-based RPC messages can only hold up to 8K bytes of encoded
data.

RPC Programming Guide 3·65

Routine get_myaddress()

Description Places the node's IP address into *addr without consulting the
library routines dealing with /ete/hosts.

The port number is always set to htons (PMAPPORT) .

Synopsis void
get_myaddress(addr)

struct sockaddr,...in *addr;

Note Use this routine to avoid using the NIS service.

Routine gettransientO

Description This function chooses a valid program number in the transient
range (Ox40000000 - Ox5fffffff) and registers it with the portmapper
using the requested protocol proto and version verso The value of
proto is either IPPROTO_TCP or IPPROTO_UDP.

If *sockp is RPC_ANYSOCK, then gettransientO obtains a new
socket and sets *sockp to it.

This routine returns the program number it registered or zero if it
fails.

Synopsis u_long
gettransient (proto, vers, sockp)

int proto;
u_long vers;
int *80Ckp;

3·66 RPC Programming Guide

Routine pmap_getmaps()

Description A user interface to the portmap service; returns a list of the current
RPC program-to-port mappings on the host located at IP address
*addr.

The command rpcinfo -p uses this routine.

This routine returns NULL if no mappings exist.

Synopsis struct pmaplist *
pmap_getmaps(addr)

struct sockaddr_in *addr;

Routine pmap_getport()

Description A user interface to the portmap service; returns the port number
associated with a service that supports program number prognum
and version versnum, and speaks the transport protocol associated
with protocol.

A return value of zero means the mapping does not exist or the
RPC system failed to contact the remote portmap service. In the
latter case, the global variable rpc_createerr contains the RPC
status.

Synopsis u_short
pmap_getport(addr t prognum t versnum t protocol)

struct sockaddr_in *addr;
u_long prognum t versnum t protocol;

RPC Programming Guide 3·67

Routine pmap_rmtcall()

Description A user interface to the portmap service; instructs portmap on the
host at IP address *addr to make an RPC call on your behalf to a
procedure on that host.

The parameter *portp is modified to the program's port number if
the procedure succeeds.

Calls the remote procedure associated with prognum, versnum, and
procnum on the host node.

The parameter in is the address of the procedure's argument(s),
and out is the address of where to place the results.

The parameter inproc encodes the procedure's parameters, and
outproc decodes the procedure's results.

The parameter tout is the time allowed for results to return.

Use this procedure for an "are you there" query and nothing else.
(See clnt_broadcast ().)

Synopsis enWll clnt_stat
pmap_rDltcall (addr, prognWll, versnum, procnum,

inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum, versnum, procnum;
char * in, *out;
xdrproc_ t inproc, outproc;
struct tilleval tout;
u_long *portp;

3-68 RPC Programming Guide

Routine pmap_set()

Description A user interface to the portmap service; establishes a mapping
between the triple [prognum, versnum,protocol] and port on the
node's portmap service.

The value of protocol is either IPPROTO_UDP or IPPROTO_TCP.
The svc_register() function automatically calls the pmap_set 0
function.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
pmap_set(prognum. versnum. protocol. port)

u_long prognum. versnum. protocol;
u_short port;

Routine pmap_unsetO

Description A user interface to the portmap service; destroys all mappings
between the triple [prognum, versnum, *] and ports on the node's
portmap service.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
pmap_unset (prognum. versnum)

u_long prognum. versnum;

RPe Programming Guide 3-69

Routine registerrpc 0

Description Registers procedure procname with the RPC service package.

If a request arrives for program prognum, version versnum, and
procedure procnum, procname is called with a pointer to its
parameter(s).

The parameter procname should return a pointer to its static
result(s).

The parameter inproc decodes the parameters while outproc
encodes the results.

This routine returns a 0 (zero) if the registration succeeds or -1 if it
does not.

Synopsis int
registerrpc (prognUDl. versnWll. procnUDl. procname.

inproc. outproc)
u_long prognUDl. versnUDl. procnWll;
char *(*procname)();
xdrproc_t
inproc. outproc;

Note Remote procedures registered in this form are accessed using the
UDP lIP transport; see svcudp_createO for restrictions.

3-70 RPC Programming Guide

Variable

Description

Synopsis

Routine

Description .

Synopsis

Routine

Description

Synopsis

Note

rpc_createerr

A global variable whose value is set by any RPC client creation
routine that does not succeed. Use the clnt_pcreateerrorO
routine to print the reason why the creation routine did not
succeed.

struct rpc_createerr rpc_createerr;

svc_destroy()

A macro that destroys the RPC service transport handle xprt.
Destruction usually involves deallocation of private data structures;
including xprt.

Use of xprt is undefined after calling this routine.

void
svc_destroy(xprt)

SVCXPRT *xprt;

svc_fds

A global variable reflecting the RPC service side's read file
descriptor bit mask. This variable is of interest only if you do not
call svc_runO, but rather implement asychronous event processing.

This variable is read-only, yet it may change after calls to
svc_getreq 0 or any creation routines.

int svc_fds;

Do not use svc_fds by itself as an argument to select 0 since
select 0 modifies its arguments. (Doing so will remove the RPC
service side file descriptor mask.) You should copy the svc_fds

value to a temporary variable for use.

RPC Programming Guide 3· 71

Routine svc_fdset

Description A global variable reflecting the RPC service side's read file
descriptor bit mask.

This variable is of interest only if you do not call svc_runO, but I

rather implement asychronous event processing.

This variable is read-only, yet it may change after calls to
svc_getreqsetO. It can handle up to FD_SETSIZE (as defined in
/usr/include/sys/types .h) number of descriptors.

Synopsis fd_set svc_fdset;

Note Do not use svc_fdset by ,itself as an argument to selectO since
selectO modifies its arguments (doing so will remove the RPC
service side file descriptor mask). You should copy the svc_fdset
value to a temporary data structure for use.

Routine svc_freeargs()

Description A macro that frees any data allocated by the RPC /XD R system
when it decoded the arguments to a service procedure using
svc_getargs O.

This routine returns TRUE if the results were successfully freed or
FALSE if they were not.

Synopsis bool_t
svc_freeargs(xprt. inproc. in)

SVCXPRT *. xprt ;
xdrproc_t inproc;
char *in;

3· 72 RPC Programming Guide

Routine svc_getargs()

Description A macro that decodes the arguments of an RPC request associated
with the RPC service transport handle xprt.

The parameter in is the address where the arguments will be
placed.

The parameter inproc is the XDR routine used to decode the
arguments.

This routine returns TRUE if decoding succeeds or FALSE if it does
not.

Synopsis bool_t
svc_getargs(xprt, inproc, in)

SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

Routine svc_getcallerO

Description The approved way in which the server with the RPC service
transport handle xprt obtains the network address of the caller.

This routine returns lULL if it fails.

Synopsis struct sockaddr _in *
svc_getcaller(xprt)

SVCXPRT *xprt;

RPe Programming Guide 3· 73

Routine svc_getreq()

Description This routine is of interest only if you do not call svc_run, but
rather implement custom asynchronous event processing. Use
svc_getreq () when the select () system call determines that an
RPC request arrived on an RPC socket.

The parameter rdfds is the read file descriptor bit mask as modified
by the select() call.

The routine returns after all sockets associated with the value of
rdfds are serviced.

Synopsis void
svc_getreq(rdfds)

int rdfdsj

Routine svc_getreqset()

Description This routine is of interest only if you do not call svc_run, but
rather implement custom asynchronous event processing. Use
svc_getreqsetO when the selectO system call determines that
an RPC request arrived on an RPC socket.

The parameter rdfds is the read file descriptor bit mask as modified
by the selectO call.

The routine returns after all sockets associated with the value of
rdfds are serviced. It can handle up to FD_SETSIZE (as defined in
/usr/include/sys/types .h) number of descriptors.

Synopsis void
svc_getreqset(rdfds)

fd_set * rdfds j

3-74 RPC Programming Guide

Routine svc_registerO

Description Associates prognum and versnum with the service dispatch
procedure dispatchO.

If protocol is zero, the service is not registered with the portmap
serVIce.

If protocol is non-zero, a mapping of the triple
[prognum, versnum,protocolj to xprt->xp_port is established with
the local portmap service (generally protocol is zero, IPPROTO_UDP,
or IPPROTO_TCP).

The procedure dispatchO has the following form.

dispatch(request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_register() routine returns TRUE if it succeeds or FALSE if
it does not.

The procedure dispatchO has the following form.

Synopsis bool_t
svc_register(xprt, prognum, versnum, dispatch, protocol)

SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch) 0 ;
u_long protocol;

RPC Programming Guide 3·75

Routine svc_runO

Description This routine never returns. It waits for RPC requests to arrive and
calls the appropriate service procedure using svc_getreqset 0
when one arrives.

This procedure is usually waiting for a select 0 system call to
return.

Synopsis void
svc_runO

Routine svc_sendreplyO

Description Called by an RPC service's dispatch routine to send the results of a
remote procedure call.

The parameter xprl is the caller's associated transport handle.

The parameter outproc is the XnR routine used to encode the
results.

The parameter out is the address of the results.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
svc_sendreply(xprt, outproc, out)

SVCXPRT *xprt ;
xdrproc_ t outproc;
char *out;

3· 76 RPe Programming Guide

Routine svc_unregister()

Description Removes all mappings of the double [prognum,versnum] to dispatch
routines and of the triple [prognum,versnum, *] to port number.

Synopsis void
svc_unregister(prognum t versnum)

u_long prognum t versnum;

Routine svcerr_authO

Description Called by a service dispatch routine that refuses to perform a
remote procedure call because of an authentication error.

See <rpc/auth.h> for valid auth_stat values.

Synopsis void
svcerr_auth(xprt t why)

SVCXPRT *xprt;
enum auth_stat why;

Routine svcerr_decode()

Description Called by a service dispatch routine that cannot successfully decode
its parameters. (See svc_getargs 0 .)

Synopsis void
svcerr_decode(xprt)

SVCXPRT *xprt;

RPC Programming Guide 3· 77

Routine svcerr_noproc()

Description Called by a service dispatch routine that does not implement the
desired procedure number the caller requested.

) .
SynopsIS void

svcerr_noproc(xprt)
SVCXPRT *xprt;

Routine svcerr_noprog()

Description Called when the desired program is not registered with the RPC
package.

Synopsis void
svcerr_noprog(xprt)

SVCXPRT *xprt;

Routine svcerr_progvers()

Description Called when the desired version of a program is not registered with
the RPC package.

Synopsis void
svcerr_progvers(xprt)

SVCXPRT *xprt;

3· 78 RPe Programming Guide

Routine svcerr_systemerr()

Description Called by a service dispatch routine when it detects a system error
not covered by any particular protocol. For example, if a service
can no longer allocate storage, it may call this routine.

Synopsis void
svcerr_systemerr(xprt)

SVCXPRT *xprt;

Routine svcerr_weakauth()

Description Called by a service dispatch routine that refuses to perform a
remote procedure call because of insufficient, but possibly correct,
authentication parameters.

Synopsis void
svcerr_veakauth(xprt)

SVCXPRT *xprt;

RPC Programming Guide 3· 79

Routine svctd_createO

Description This routine creates a TCP /IP-based RPC service transport from
an existing socket to which it returns a pointer. Use this routine
when you receive a socket from the inetd.

The sock parameter must be a valid file descriptor for an active
socket (Le., you already executed the listen() and accept()

calls to obtain this socket).

Since TCP-based RPC uses buffered I/O, you can specify the size
of the sendO and recvO buffers. Using values of zero causes
svctd_createO to choose reasonable defaults.

Upon completion, the xp_sock field contains the transport's socket
number and the xp_port field contains the transport's port number.
See clnttcp_createO.

This routine returns NULL if it fails.

Synopsis SVCXPRT *
svcfd_create(sock, send_buf_size, recv_buf_size)

int sock;
u_int send_buf_size, recv _buf_size;

Routine svcraw_createO

Description This routine creates a simulated RPC service transport to which it
returns a pointer.

The transport is a buffer within the process' address space, so the
corresponding RPC client must exist in the same address space.
(See clntraw_createO.)

This routine allows simulation of RPC and acquisition of RPC
overheads (e.g., round trip times) without kernel interference.

This routine returns NULL if it fails.

Synopsis SVCXPRT *
svcrall_createO

3·80 RPC Programming Guide

Routine svctcp_createO

Description This routine creates a TCP lIP-based RPC service transport to
which it returns a pointer.

The transport is associated with the socket file descriptor sock; if
the sock is RPC_AHYSOCK, a new socket is created.

If the socket is not bound to a local TCP port, this routine binds it
to an arbitrary port.

Since TCP-based RPC uses buffered I/O, you can specify the size
of the sendO and recvO buffers; using values of zero causes
svctcp_createO to choose reasonable defaults.

Upon completion, the xp_sock field contains the transport's socket
number and the xp_port field contains the transport's port number.

See clnttcp_createO.

This routine returns HULL if it fails.

Synopsis SVCXPRT.
svctcp_create(sock, send_buf_size, recv_buf_size)

int sock;
u_int send_buf_size. recv_buf_size;

RPC Programming Guide 3·81

Routine svcudp_create()

Description This routine creates a UDP lIP-based RPC service transport to
which it returns a pointer.

The transport is associated with the socket file descriptor sock; if
sock is RPC_ANYSOCK, a new socket is created.

If the socket is not bound to a local UDP port, this routine binds it
to an arbitrary port.

Upon completion, the xp_sock field contains the transport's socket
number and the xp_port field contains the transport's port number.

Th,is routine returns lULL if it fails.

Synopsis SVCXPRT *
svcudp_create(sock)

int sock;

Note UDP-based RPC messages only hold up to 8K bytes of encoded
data.

Routine xdr_accepted_reply()

Description This routine is useful if you wish to generate RPC-style messages
without using the RPC package.

The a.ccepted_reply structure is defined in <rpc/rpc_msg. h>.
This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_accepted_reply(xdrs, ar)

XDR *xdrs;
struct accepted_reply *ar;

3·82 RPe Programming Guide

Routine xdr_authunix_parms()

Description This routine is useful if you wish to generate these credentials
without using the RPC authentication package.

The authunix_parms structure is defined in <rpc/auth_unix.h>

Synopsis bool_t
xdr_authunix_parms(xdrs, aupp)

XOR *xdrs;
struct authunix_parms *aupp;

Routine xdr_ca11hdr()

Description (This routine is useful if you wish to generate RPC-style messages
without using the RPC package.

The rpc_msg structure is defined in <rpc/rpc_msg. h>.

Synopsis bool_t
xdr_callhdr(xdrs, chdr)

XOR *xdrs;
struct rpc_msg *chdr;

RPC Programming Guide 3-83

Routine xdr_callmsg()

Description This routine is useful if you wish to generate RPC-style messages
without using the RPC package.

The rpc_msg structure is defined in <rpc/rpc_msg. h>.

Synopsis bool_t
xdr_callmsg(xdrs, cmsg)

XDa *xdrs;
struct rpc_msg *cmsg;

Routine xdr_opaque_auth()

Description This routine is useful if you wish to generate RPC-style messages
without using the RPC package.

The opaque_auth() structure is defined in <rpc/auth.h>.

Synopsis bool_t
xdr_opaque_auth(xdrs, ap)

XDa *xdrs;
struct opaque_auth *ap;

Routine xdr_pmap()

Description This routine is useful if you wish to use XDR to encode or decode
portmap structures without using the pmap interface.

The pmap structure is defined in <rpc/pmap_prot.h>.

Synopsis bool_t
xdr_pmap(xdrs, regs)

XDa *xdrs;
struct pmap *regs;

3·84 Rf'C Programming Guide

Routine xdr_pmaplist()

Description This routine is useful if you wish to use XDR to encode or decode
portmap structures without using the pmap interface.

The pmaplist structure is defined in <rpc/pmap_prot .h>.

Synopsis bool_t
xdr_pmaplist(xdrs. rp)

XOR *xdrs;
struct pmaplist **rp;

Routine xdr_rejected_reply()

Description This routine is useful if you wish to generate RPC-style messages
without using the RPC package.

The rejected_reply structure is defined in <rpc/rpc_msg.h>.

Synopsis bool_t
xdr _rej ected_reply (xdrs. rr)

XOR *xdrs;
struct rejected_reply *rr:

Routine xdr_replymsg()

Description This routine is useful if you wish to generate RPC-style messages
without using the RPe package.

The rpc_msg structure is defined in <rpc/rpc_msg.h>.

Synopsis bool_t
xdr _replymsg (xdrs. rmsg)

XOR *xdrs:
struct rpc_msg *rmsg:

RPe Programming Guide 3·85

Routine xprt_register()

Description After RPC service transport handles are created, they should
register with the RPC service package.

This routine modifies the global variable sve_fds.

Synopsis void
xprt_register(xprt)

SVCXPRT *xprt ; .

Routine xprt_unregister()

Description Before an RPC service transport handle is destroyed, it should
unregister with the RPC service package.

This routine modifies the global variable svc_fds.

Synopsis void
xprt_unregister(xprt)

SVCXPRT *xprt;

3-86 RPC Programming Guide

4
RPCGEN Programming Guide

This chapter explains the use of the Remote Procedure Call Protocol Compiler
(RPCGEN) to convert applications that run on a single computer to ones that
run over a network.

The information in this chapter is based on the assumptions that you are
familiar with HP-UX, the C programming language, Remote Procedure Calls
(RPC), and networking. If you need a review of RPC programming without
RPCGEN, see the "RPC Programming Guide" chapter.

Writing applications to use Remote Procedure Calls can be time-consuming
and difficult. Perhaps the most difficult part is writing XDR routines necessary
to convert arguments and results into their network form and vice versa.
RPCGEN helps you write RPC applications simply and directly. It allows you
to concentrate on debugging the main features of your application instead of
the network interface code.

RPCGEN Programming Guide 4·1

The Remote Procedure Call Protocol Compiler
RPCGEN is a compiler. It accepts remote program interface definitions written
in RPC (Remote Procedure Call) language, which is similar to C. It produces
C language output including the following:

• A header file.

• A client side subroutine file (client stub).

• A server side skeleton file (server side stub).

• An XDR routines file.

The client side subroutine file and the server side skeleton file are called
"stubs." The client stubs interface with the RPC library, and effectively
shield the user from the network. The server stub similarly shields the server
procedures, invoked by remote clients, from the network.

RPCGEN's output files can be compiled and linked in the normal way with
your C compiler. You write server procedures and link them with the server
skeleton produced by RPCGEN to produce an executable server program.
To use a remote program, you write an ordinary main program that makes
local procedure calls to the client stubs produced by RPCGEN. Linking this
program with RPCGEN's stubs creates an executable program.

Converting Local Procedures into Remote Procedures
The following section illustrates the conversion of a simple example application
program running on a single computer to a version that runs over the network.

The first file is the user's application. The program prints a message on the
console.

4·2 RPCGEN Programming Guide

EXAMPLE:

/*
* printmsg.c:print a message on the console
*/

#include <stdio.h>

main(argc. argv)
int argc;
char *argv [] ;

{

char *message;

if (argc !- 2) {
fprintf(stderr. "usage: 1.s (message>\n". argv[O]);
exit(l);

}

message - argv[l];

if (!printmessage(message» {

}

fprint(stderr. "1.s: couldn't print your message\n".
argv[O]) ;

exit (1) ;

printf("Message delivered!\n");
exit(O);

}

/*
* Print a message to the console.
* Return a boolean indicating vhether the message vas actually
* printed.
*/

printmessage(msg)
char *msg;

{

}

FILE *f;

f - fopen("/dev/console". "v");
if (f _. NULL) {

return (0);
}

fprint (f. "1.s\n". msg);
fclose(f);
return(1) ;

RPCGEN Programming Guide 4·3

When you compile and run this simple application, this message is printed on
your console:

% cc printmsg.c -0 printmsg
% printmsg "Hello, there."
Message delivered!
%

If you were to convert your printmessage application into a remote procedure,
it could be called from anywhere on the network. To convert a procedure into
a remote procedure, you must work within the constraints of the C language,
since it existed before RPC did. But even without language support, it is not
very difficult to make a procedure remote.

In general, you must determine the types for all procedure inputs and outputs.
In this case, you have a procedure printmessage which takes a string as input
and returns an integer as output.

4·4 RPCGEN Programming Guide

1. Writing the RPC Protocol Specification.

The first step in converting a program to a remote procedure is to write a
protocol description file in RPC language that describes the remote version of
your application program (printmessage in this case). The code for the msg.x
description file is as follows:

1*
* msg.x: Remote message printing protocol

*1
program MESSAGEPROG {

version MESSAGEVERS {

} = 1;

} = 99;

int PRINTMESSAGE(string) - 1;

Remote procedures are part of remote programs, so you actually declared an
entire remote program here which contains the single procedure PRINTMESSAGE.
This procedure was declared to be in version 1 of the remote program. No
null procedure (procedure 0) is necessary because RPCGEN generates it
au tomatically.

The program, version, and procedure are declared using all capital letters. This
is not required, but is a good convention to follow.

Notice that the argument type is string and not char*. This is because
a char* in C is ambiguous. Programmers usually intend it to mean a
null-terminated string of characters, but it could also represent a pointer to a
single character or a pointer to an array of characters. In RPC language, a
null-terminated string is unambiguously called a string.

RPCGEN Programming Guide 4-5

2. Writing the Remote Procedure.

The second step is to write the remote procedure itself. Following is the
definition of a remote procedure (msg_proc. c) to implement the PRINTMESSAGE
procedure you declared above:

EXAMPLE:

*msg_proc.c: implementation of the remote procedure "printmessage"
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include "msg.h"

/* alvays needed */
/* need this too: msg.h viII be generated by rpcgen

/*
* Remote version of " printmessage"
*/

int *
printmessage_1{msg)

{

}

char **.sg;

static int result; /* must be static! */
FILE *f;

f • fopen{"/dev/console". "v");
if (f ... NULL) {

result .. 0;
return (lresult);

}

fprint{f. "%s\n". *msg);
fclose{f);
result .. 1;
return (lresult);

4·6 RPCGEN Programming Guide

The declaration of the remote procedure printmessage_l differs from that of
the local procedure printmessage in three ways:

• It takes a pointer to a string instead of a string itself. This is true of all
remote procedures: they always take pointers to their arguments rather than
the arguments themselves.

• It returns a pointer to an integer instead of an integer itself. This is true of
remote procedures: they always return a pointer to their results.

• It has a _1 appended to its name. In general, all remote procedures called
by RPCGEN are named by the following rule: convert the name in the
program definition (here PRINTMESSAGE) to all lowercase letters, and append
an underbar (_) and the version number (in this case, number 1).

RPCGEN Programming Guide 4·7

3. Creating the Main Client Program.

The third step is to create the main client program (rprintmsg.c) that will
call the remote procedure. .

EXAMPLE:

1*
* rprintmsg.c: remote version of "printmsg.c"
*1

#include <stdio.h>
#include <rpc/rpc.h>
#include "msg.h"

1* always needed *1
1* need this too: msg.h will be generated by rpcgen *1

main (argc. argv)
int argc;

{
char *argv [];

CLIENT *cl;
int *result;
char *server;
char *message;

if (argc < 3) {

}

fprint(stderr. "usage: 1.s host message\n". argv[O]);
exit (1) ;

1*
* Save values of command line arguments
*1

server • argv[l];
message • argv[2];

1*
* Create client "handle" used for calling MESSAGEPROG on the
* server designated on the command line. You tell the RPe
* package to use the "tcp" protocol when contacting the server.
*1

cl • clnt_create(server, MESSAGEPROG. MESSAGEVERS. "tcp");
if (cl .- NULL) {

1*
* Couldn't establish connection with server.
* Print error message and quit.

4-8 RPCGEN Programming Guide

}

}

1*

*1
clnt_pcreateerror(server);
exit(l);

* Call the remote procedure "printmessage" on the server
*1

result = printmessage_l(imessage. cl):
if (result -- NULL) {

}

1*

1*
* An error occurred while calling the server.
* Print error message and quit.
*1

clnt_perror(cl. server);
exit (1) ;

* Okay. you successfully called the remote procedure.
*1

if (*result -- 0) {
1*

* Server was unable to print our message.
* Print error message and quit.
*1

fprint(stderr. II1.S: 1.s couldn't print your message\n",
argv[O]. server);

exit (1) ;
}

1*
* The message got printed on the server's console.
*1

printf(IIMessage delivered to 1.s!\n". server);

A client handle is created using the RPC library routine clnt_create (a
handle is a data structure that is used to specify a certain client when the rpc
routines are called). This client handle will be passed to the stub routines
which call the remote procedure.

The remote procedure printmessage_l is called the same way as it is declared
in msg_proc. c except for the inserted client handle as the second argument.

RPCGEN Programming Guide 4·9

4. Compiling the Files.

The next step is to execute RPCGEN on the msg. x file and then compile and
link the files to form the client and server programs that comprise the example
remote message printing application. The following example shows what to
enter:

1. rpcgen msg.x
1. cc rprintmsg.c msg_clnt.c -0 rprintmsg
1. cc msg_proc.c msg_svc.c -0 msg_server

From the protocol description file (the input file msg.x), RPCGEN creates the
following files:

• A header file namedmsg. h containing #define's for MESSAGEPROG,
MESSAGEVERS, and PRINTMESSAGE for use in the other modules.

• Client stub routines in the msg_clnt. c file. In this case, there is only one:
the printmessage_1 that was referred to from the printmsg client program.
The name of the output file for client stub routines is always formed in this
way: if the name of the input file is TEST. x, the client stubs output file is
called TEST_clnt. c.

• The server side skeleton file msg_svc. c. This server program calls
printmessage_1 in msg_proc. c. The rule for naming the server output file
is similar to the previous one: for an input file called TEST. x, the server side
skeleton file is named TEST _svc . c.

In addition, two programs are produced by the compiler:

• The client program rprintmsg.

• The server program msg_server.

4·10 RPCGEN Programming Guide

5. Testing the Results.

Now you are ready to test the results.

1. Copy the server program to a remote computer and run it. In this example,
the computer is named nodel. Server processes are run in the background
because they never exit.

nodel% msg_server t

2. On your local computer (node2), print a message on nodel's console-.

node2% rprintmsg nodel "Hello nodel".

The message will be printed on nodel's console. You can print a message on
anyone's console (including your own) with this program if you are able to copy
the server to their computer and run it.

RPCGEN Programming Guide 4·11

Generating XDR Routines
The example in the previous section only demonstrated the automatic
generation of client and server RPC code. RPCGEN may also be used to
generate XDR routines-the routines necessary to convert local data structures
into network format and vice-versa.

You must provide three of the files required to convert a single-system
application to run on a network. Four of the files are produced by the
RPCGEN compiler.

Files you must produce

• Protocol description file (suffixed with . x).

• Client side file (suffixed with . c).

• Server side function file (suffixed with _proc. c).

Files produced by RPCGEN

In addition to the file you create, RPCGEN produces four files from your. x
file:

• Header file (suffixed with .h) containing the const's, typedef's, and
struct's used to communicate data structures among all of the portions of
the application program.

• Client side subroutine file (suffixed with _clnt.c) which is a collection of the
function stubs.

• Server side skeleton file, (suffixed withsvc.c), the main C program for the
server process.

• xnR routine file (suffixed with ..xdr.c) used to translate the arguments and
results between the client and server processes.

All of these files are prefixed with the main portion of the name of the. x file.
For example, if you have a . x file named remsh. x, RPCGEN will produce the
following files: remsh.h, remsh_clnt. c, remsh_svc. c, and remsh_xdr. c.

4·12 RPCGEN Programming Guide

The .following example files illustrate a complete RPC service-a remote
directory listing service that uses RPCGEN not only to generate stub routines,
but also to generate the XDR routines. The following illustration shows the
files produced by RPCGEN acting on your rls . x file and the additional files
that you must create.

rpcgen -u rls.X+

rls.h
rls clnt.c
rls-svc.c
rls:xdr.c

rls.c /* The client side program */
rls J)roc.c '* The server side functions *'

Relationship of programmer supplied files to files created by RPCGEN

The Protocol Description File (The Input File)

The first file, produced by you, is the protocol description file (the input file).
It is written in a C-like language and is stored in a file suffixed with . x. This
file describes the necessary data structure involved in producing a remote
directory listing.

RPCGEN Programming Guide 4·13

EXAMPLE:.

/*
* rls.x: Remote directory listing protocol
*/

const MAXMANELEN = 255; /* maximum length of a directory entry */

/* This definition is specific to RPCGEN. It is */
/* different from C syntax. It defines a variable */
/* length string. */

typedef string nametype<MAXNAMELEN>; /* a directory entry */

typedef struct namenode *namelist; /* a link in the listing */

/*
* A node in the directory listing
*/

struct namenode {

};

/*

namet ype name;
namelist next;

/* name of directory entry */
/* next entry */

* The result of a READDIR operation.
*/

union readdir_res switch (int errno) {
case 0:

namelist list;
default:

void;
};

/*

/* no error: return directory listing */

/* error occurred: nothing else to return */

* The directory program definition
*/

/* This definition is specific to RPCGEN. It is */
/* different from C syntax. It defines what a remote */
/* program consists of. */
prograa RLSPROG {

version RLSVERS {

} • 1;
} - 76;

readdir_res
READDIR(nametype) - 1;

4·14 RPCGEN Programming Guide

The Header File

The next file is the header file (rls.h in this example). It is created by
RPCGEN. This file ties all of the other files together. rls.h is a C language
version of the rls. x file.

EXAMPLE:

#define MAXNAMELEN 255

typedef char *nametype;
bool_t xdr_nametype();

typedef struct namenode *namelist;
bool_t xdr_namelist();

struct namenode {
nametype name;
namelist next;

};

typedef struct namenode namenode;
bool_t xdr_namenode();
struct readdir_res {

};

int errno;
union {

namelist list;
} readdir_res_u;

typedef struct readdir_res readdir_res;
bool_t xdr_readdir_res();

#define RLSPROG «u_Iong)76)
#define RLSVERS «u_Iong)l)
#define READDIR «u_Iong)l)
extern readdir_res *readdir_l();

RPCGEN Programming Guide 4·15

The Client Side File

The client side file (rls. c in this example) is produced by you. It includes
code to do the following:

• Create the user interface.
• Make the connection to the server computer.
• Make the call to the server and read a directory on the server.
• Decode and print the results.

EXAMPLE:

1*
* rls.c Remote directory listing client
*1

#include <stdio.h>
#include <rpc/rpc.h>
#include "rls.h"

1* always need this *1
1* need this too: generated by rpcgen *1

extern int errno:

main (argc. argv)
int argc;

{
char *argv [] :

CLIENT *cl. *clnt_create():
char *server;
char *dir;
readdir_res *result:
namelist nl:

if (argc !-3) {

}

fprint(stderr. "usage: Yes host directory\n". argv[O]):
exit (1) :

1*
* Remember what our command line arguments refer to
*1

server - argv[l];
dir - argv[2]:

1*
* Create client "handle" used for calling MESSAGEPROG on the
* server designated on the command line. You tell the rpc

4·16 RPCGEN Programming Guide

}

* package to use the "tcp" protocol when contacting the server.
*/

cl = clnt_create(server, RLSPROG, RLSVERS, "tcp");
if (cl == NULL) {

/*
* Couldn't establish connection with server.
*/

clnt_pcreateerror(server);
exit (1) ;

}

/*
* Call the remote procedure "readdir" on the server
*/

result = readdir_l(ldir, cl);
if (result =- NULL) {

}

/*
* An error occurred while calling the server.
* Print error message and die.
*/

clnt_perror(cl, server);
exit (1) ;

/*
* Okay. You successfully called the remote procedure.
*/

if (result->errno != 0) {

}

/*
* A remote system error occurred.
* Print error message and die.
*/

ermo - result->ermo;
perror(dir);
exit(!) ;

/*
* Successfully got a directory listing.
* Print it out.
*/

for (nl - result->readdir_res_u.list; nl !- NULL; nl - nl->next) {
printf(lI~s\n". nl->name);

}

RPCGEN Programming Guide 4·17

The Client Side Subroutines File

The next file (rls_clnt.c in this example) is created by RPCGEN. The
rls_clnt. c file contains the client side stubs that are called by rls. c to
transmit the arguments and receive the results. The rls_cInt . c file defines
only one routine, readdir _1 (). This is because the program definition in the
rls. x file contained only one procedure.

EXAMPLE:

#include <rpc/rpc.h>
#include <sys/time.h>
#include Itrls.hlt

#ifdef hpux

#ifndef NULL
#define
#endif

#endif hpux

NULL
NULL

o

static struct timeval TIMEOUT = { 25. O}:

readdir _res *
readdir_l(argp. clnt)

nametype *argp;
CLIENT *clnt;

{

static readdir_res res;

#ifdef hpux
memset(tres. O. sizeof(res»;

#else hpux
memset(tres. sizeof(res»;

#endif hpux

}

if (clnt_call(clnt. READDIR. xdr_nametype. argp.
xdr_readdir_res. tres. TIMEOUT) !=RPC_SUCCESS) {

return (NULL);
}

return (tres);

4·18 RPCGEN Programming Guide

The Server Side Skeleton File

The next file (rls_svc. c in this example), created by RPCGEN, contains
the main program for the server side. It registers the rlsprog_l () routine
with the server computer and then waits for an incoming request by calling
svc_run(). Note that by default, RPCGEN provides code to handle both TCP
and UDP protocols. You can specify which protocol the server code will use by
invoking the -s option when you execute RPCGEN. When svc_run receives a
request, it calls rlsprog_l 0 which connects to the function supplied by you in
the rls_proc. c file which does the actual work. The result of the call is then
transmitted back to the requestor. The signal handling code is added when the
"-u" option is used with RPCGEN.

EXAMPLE:

#include <stdio.h>
#include <rpc/rpc.h>
#include "rls.hl!

void un_register_prog(signo)
int signo;
{

}

pmap_unset(RLSPROG,RLSVERS);
exit(l);

static void rlsprog_l();

mainO
{

SVCXPRT * transp;

pmap_unset(RLSPROG, RLSVERS);

(void)
(void)
(void)
(void)

signal(SIGHUP, un_register_prog);
signal(SIGINT, un_register_prog);
signal (SIGQUIT, un_register_prog):
signal (SIGTERM, un_register_prog);

transp - svcudp_create(RPC_ANYSOCK);
if (transp _. NULL) {

fprintf(stderr, "cannot create udp service.\n");
exit(l);

RPCGEN Programming Guide 4-19

}

}

if (!svc_register(transp, RLSPROG, RLSVERS, rlsprog_l, IPPROTO_UDP» {
fprint(stderr,

}

"unable to register (RLSPROG, RLSVERS, udp).\n");
exit(l) ;

transp. svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp •• NULL) {

}

fprint (stderr , "cannot create tcp service.\n");
exit (1) ;

if (!svc_register(transp, RLSPROG, RLSVERS, rlsprog_l, IPPROTO_TCP» {
fprintf(stderr,

exit (1) :
}

svc_runO:

"unable to register (RLSPROG, RLSVERS, tcp).\n");

fprintf(stderr, "svc_run returned\n");
exit(1):

static void
rlsprog_l(rqstp, transp)

{

struct svc_req *rqstp:
SVCXPRT *transp;

union {
nametype readdir_l_arg:

} argument;
char *resul t ;
bool_t (*xdr_argument)(),(*xdr_result)():
char *(*local)():

switch (rqstp->rq_proc) {
case NULLPROC:

svc_sendreply(transp, xdr_void, NULL):
return;

case READDIR:
xdr_argument • xdr_nametype:
xdr_result • xdr_readdir_res;
local • (char *(*) (» readdir_l:
return;

default:
svcerr_noproc(transp)

4·20 RPCGEN Programming Guide

return;
}

#ifdef hpux
memset(targument. 0. sizeof(argument»;

#else hpux
memset(targument. sizeof(argument»;

#endif hpux

}

if (!svc_getargs(transp, xdr_argument. targument» {
svcerr_decode(transp);
return;

}

result = (*local)(targument. rqstp):
if (result != HULL tt !svc_sendreply(transp. xdr_result.

result» {
svcerr_systemerr(transp);

}

if (!svc_freeargs(transp. xdr_argument, targument» {
fprintf(stderr. "unable to free arguments\n");
exit (1) ;

}

The Server Side Function File

This file (rIs_proc. c in this example) is written by you. It contains the
code to produce the actual server portion of the application. In the following
example, the code opens a directory, reads it and places the results in the
result structure (struct) that was defined by the rls. x file.

EXAMPLE:

/*
* rls_proc.c: remote readdir implementation
*/

#include <rpc/rpc .h>
#include <sys/dir.h>
#include <stdio.h>
'include "rls.h"

extern int ermo;
extern char *malloc();
extern char *strcpy();

readdir_res*

RPCGEN Programming Guide 4·21

readdir_l(dirname)
nametype *dirname;

{

}

DIR *dirp;
stuct direct *d;
namelist nl;
namelist *nlp;
static readdir_res res;

1*
* Free previous result
*1

1* must be static! *1

xdr_free(xdr_readdir_res, tres);

1*
* Open directory
*1

dirp • opendir(*dirname);
if (dirp _. HULL) {

}

1*

res.ermo ,. errno;
return (tres);

* Collect directory entries
*1

nIp" tres.readdir_res_u.list;
while (d ,. readdir(dirp» {

}

nl=*nlp ,. (namenode *) malloc(sizeof(namenode»;
nl->name ,. malloc(strlen(d->d_name)+l);
strcpy(nl->name, d->d_name);
nIp" tnl->next;

*nlp ,. HULL;

1*
* Return the result
*1

res.ermo ,. 0;
closedir(dirp) ;
return (tres);

4·22 RPCGEN Programming Guide

XDR Routine File

The rls_xdr. c file is created from the rls. x file by RPCGEN. This file
manages the details of the XDR translation of requests and results. This file
uses the definitions of the data structures in the . x file to produce functions
which do the proper XDR translations. If there are data types in the. x file
that you have not defined, the XDR routines for those data types will not be
found in the rls_xdr. c file. RPCGEN will not object to having undefined
data types. You must produce the translation functions for these data types.

EXAMPLE:

#include <rpc/rpc.h>
#include !lrls.hl!

bool_t
xdr_nametype(xdrs, objp)

XDR *xdrs;
nametype *objp;

{

if (!xdr_string(xdrs, objp, MAXNAMELEN» {
return (FALSE);

}

return (TRUE);
}

bool_t
xdr_namelist(xdrs, objp)

XDR *xdrs;
namelist *objpi

{

if (!xdr_pointer(xdrs, (char **)objp, sizeof(struct namenod~),
xdr_namenode» {

return (FALSE);
}

return (TRUE);
}

bool_t
xdr_namenode(xdrs, objp)

IDR *xdrs;
namenode *objp;

{

if (!xdr_nametype(xdrs, tobjp->name» {

RPCGEN Programming Guide 4·23

}

return (FALSE);
}

if (!xdr_namelist(xdrs, ~objp->next» {
return (FALSE);

}

return (TRUE);

bool_t
xdr_readdir_res(xdrs, objp)

XDR *xdrs;

{

}

readdir_res *objp;

if (!xdr_int(xdrs, ~objp->errno» {
return (FALSE);

}

switch (objp->errno) {
case 0:

}

if (!xdr_namelist(xdrs, ~objp->readdir_res_u.list» {
return(FALSE);

}

break;

return (TRUE);

4·24 RPCGEN Programming Guide

Compiling the Files

The last step is to compile and link all of the files. The following example
shows what to enter to compile and link everything, forming the client and
server programs that comprise the example remote directory read application:

EXAMPLE:

nodel%
nodel%
nodel7-
nodel7-
nodel%
nodel7-
nodel%
nodel%

rpcgen-urls.x
cc-crls_proc.c
cc-crls_svc.c
cc-crls_xdr.c
cc-crls.c
cc-crls_clnt.c
cc-orls_svcrls_proc.orls_svc.orls_xdr.o
cc-orlsrls.orls_clnt.orls_xdr.o

You can test the client program and the server procedure together as a single
program by linking them with each other rather than with the client and server
stubs. The procedure calls will be executed as ordinary local procedure calls
and you can debug the program with a local debugger such as xdb. When
the program is working, you can link the client program to the client stub
produced by RPCGEN, and you can link the server procedures to the server
stub produced by RPCGEN.

Note If you do this, you should comment out calls to the RPC
library routines and have client routines call server routines
directly.

The following illustration shows the entire RPCGEN process.

RPCGEN Programming Guide 4·25

rfs.x rls.h
rls.c rpcgen -u rls clnt.c
rlsJ)roc.c ... rls-sYc.c

rls.x rls:xdr.c

rls.c
rls clnt.c

cc-o+ rls:syc.e
rls xdr.e
rls:proc.c

rls.o
ec~ rls_clnt.o ...

rls_xdr.o

rls sVO.o
cc-~ rls:proo.o+

The RPCGEN process

RPCGEN Syntax

The syntax of the RPCGEN compiler is as follows:

rpcgen [-u] infile
rpcgen -c [-0 outfile] [infile]
rpcgen -h [-0 outfile] [infile]
rpcgen -1 [-0 outfile] [infile]
rpcgen -Il [-0 outfile] [infile]
rpcgen -8 transport [-u] [-0 outfile] [infile]

Options.

-c Compile into XDR routines.

rls.o
rls clnt.o
rls-sYc.o
rls-xdr.o
rls:proc.o

rls

rls_sve

-h

-1

Compile into C data-definitions (a header file).

Compile into client-side stubs.

4·26 RPCGEN Programming Guide

-8 transport

Note

-m

-u

Note

-0 outfile

Compile into server-side stubs, using the given transport.
Supported transports are UDP and TCP. This option may
be invoked more than once to compile a server using multiple
transports.

If RPCGEN is called without the -8 option, the server-side
code that is generated will serve both UDP and TCP
transports.

Compile into server-side stubs, but do not produce a MainO
routine. This option is useful if you want to supply your own
main().

Insert code into the server side. c stub file which traps signals
sent to the server program.

This signal code will cause the RPC server program to unmap
itself from the portmapper on the server computer. If this
is not done, when the server receives a signal, it will stop
execution and leave the portmapper thinking that it has that
server program ready for incoming requests. This can cause a
misleading error to be given on the client.

The signals SIGHUP, SIGINT, SIGQUIT, and SIGTERM are
trapped by the signal handler. They are signals often sent
to a program to cause it to terminate execution. The signal
SIGKILL is not caught because it is not possible to trap it. Th~
other available signals are not trapped because they are not
associated with the concept of terminating a process.

The -u option can only be used when a server-side stub that
contains a main() program is produced. It can be' used with no
other options given or with the -8 option. It cannot be used
when the -h, -c, -1, or -m options are present.

Specify the name of the output file. If none is specified,
standard output is used. This is usable only with the -h, -c,
-1, or -m options.

RPCGEN Programming Guide 4·27

Caution Nesting is not supported. As a work-around, structures can
be declared at the top-level and their names used inside other
structures in order to achieve the same effect. Name clashes
can occur when using program definitions, since the apparent
scoping does not really apply. Most of these can be avoided by
using unique names for programs, versions, procedures, and
types.

The C Preprocessor

The C preprocessor is run on the input file before it is compiled, so all the
preprocessor directives are legal within .x files. Four symbols may be defined,
depending upon which output file is being generated. The symbols are:

Symbol Usage

RPC-HDR for header file output

RPC-XDR for XDR routine output

RPC..sVC for server skeleton output

RPC_CLNT for client stub output

RPCGEN also does some preprocessing. Any line that begins with a percent
sign is passed directly into the output file, without any interpretation of the
line.

4·28 RPCGEN Programming Guide

EXAMPLE The following example demonstrates the RPCGEN
preprocessing features.

1*
*time.x: Remote time protocol
*1

program TlMEPROG {
version TlMEVERS {

unsigned int TlMEGET(void) = 1;
} • 1;

} = 44;
#ifdef RPC_SVC
7.int * 1* This will only be added to *1
7.timeget_1() 1* the _svc.c file *1
7.{
7. static int thetime;
7.
7. thetime • time(O);
1. return (tthetime):
1.}
#endif

Note The '%' feature is not generally recommended as there is no
guarantee that the compiler will place the output where you
intended.

RPCGEN Programming Guide 4·29

RPC Language
The RPC language is similar to C. If you know the C language, you will
understand RPC. This section describes the RPC language syntax, showing a
few examples along the way. This section also describes how the various RPC
and XDR type definitions are compiled into C type definitions in the output
header file.

Definitions

An RPC language file consists of a series of definitions:

definition-list;
definition "; II
definition ";" definition-list

Specifically, the six types of definitions are as follows:

enum-definition
struct-definition
union-definition
typedef-definition
const-definition
program-definition

The first five definitions are used to define data representations and are known
as XDR definitions. The last definition is the RPC program definition.

4·30 RPCGEN Programming Guide

Structures

An XDR structure (struct) in the RPC language is declared virtually the same
as its C counterpart.

EXAMPLE: Following is an example of an XDR structure:

struct-definition
"struct" struct-ident II{II

declaration-list
II} II

declaration-list:
declaration ";"
declaration "; II declaration-list

EXAMPLE: The following example of an XDR structure defines a
two-dimensional coordinate and the C structure into which it is
compiled in the output header file.

XD R structure C structure

struct coord { struct coord{

int x; int x;

int y; int y;

}; };

typedef struct coord coord;

The output is identical to the input except for the added typedef at the end
of the output. This allows one to use "coord" instead of "struct coord" when
declaring items.

RPCGEN Programming Guide 4·31

Unions

XDR unions are discriminated unions and look quite different from C unions.
They are more analogous to Pascal variant records than they are to C unions.

union-definition
"union" union-ident "switch" "("simple-declaration")" "{"

case-list
"}"

case-list
"case" value":" declaration";"
"default" ":" declaration";"
"case" value":" declaration";" case-list

EXAMPLE: Following is an example of a type that might be returned as
the result of a "read data" operation. If there is no error, a
block of data is returned; otherwise, nothing is returned:

union read_result switch (int errno) {
case 0:

opaque data[1024];
default:

void;
};

After it is compiled, the union component of output structure has the same
name as the name type (except for the trailing _ u):

struct read_result {

};

int errno;
union {

char data[1024];
} read_result_u;

typedef struct read_result read_result;

4·32 RPCGEN Programming Guide

Enumerations

XDR enumerations have the same syntax as C enumerations.

enum-definition:
"enum" enum-ident II{II

enum-value-list

enum-value-list;
enum-value
enum-value

enum-value

II " . enum-value-list

enum-value-ident
enum-value-ident "=" value

EXAMPLE: The following example illustrates an XDR enumeration and the
C enumeration that results after being compiled:

xnR enumeration C enumeration

enum colortype { enum colortype {

RED = o. RED - o.

GREER = 1. GREER - 1.

BLUE - 2 BLUE - 2
};

};

typedef enum colortype colortype;

RPCGEN Programming Guide 4·33

Typedef

XDR typedefs have the same syntax as C typedefs.

typedef-definition
"typedef" declaration

EXAMPLE: The following example defines a fname_type used for declaring
file name strings that have a maximum length of 255
characters.

typedef string fname_type<255>;--> typedef char *fname_type;

Constants

XDR constants are symbolic constants that may be used wherever an integer
constant is used, for example, in array size specifications.

const-definition
"const" const-ident "=-" integer

EXAMPLE: The following example defines a constantDOZEN equal to 12.

const DOZEN - 12; --> #define DOZEN 12

4-34 RPCGEN Programming Guide

Programs

RPC programs are declared using the following syntax:

program-definition
"program" program-ident II{II

version-list
"}" "=" value

version-list:
1t.1t , version

version ft.1f , version-list

version:
"version" version-ident "{"

procedure-list
"}" "=" value

procedure-list:
procedure
procedure

procedure:

";"
It." , procedure-list

type-ident procedure-ident "(" type-ident ")" 11",,11 value

EXAMPLE: In the following example, we take another look at time
protocol:

1*
* time.x: Get or set the time. Time is represented as number of
* seconds since 0:00, January 1, 1970.
*1

program TlMEPROG {
version TlMEVERS {

unsigned int TlMEGET(void) • 1;
void TlMESET(unsigned) = 2;

} • 1;
} • 44;

This file compiles into #defines in the output header file:

'define TlMEPROG 44
'def ine TlMEVERS 1
#define TlMEGET 1
#define TlMESET 2

RPCGEN Programming Guide 4·35

Declarations

In XnR there are only four types of declarations:

declaration:
simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

Simple Declarations

Simple XnR declarations are the same as simple C declarations.

simple-declaration
type-ident variable-ident

EXAMPLE:

colortype color; --> colortype color;

Fixed-Length Array Declarations

XnR fixed-length array declarations are the same as C array declarations:

fixed-array-declaration:
type-ident variable-ident It[It value It]It

EXAMPLE:

colortype palette[8]; --> colortype palette[8];

4-36 RPCGEN Programming Guide

Variable-Length Array Declarations

Variable-length declarations have no explicit syntax in C, so XDR invents its
own using angle-brackets.

variable-array-declaration:
type-ident variable-ident It<It value It>It
type-ident variable-ident It<It It>It

The maximum size is specified between the angle brackets. The size may be
omitted, indicating that the array may be of any size.

int heights <12>;
int widths <>;

/* at most 12 items*/
/* any number of items */

Since variable-length arrays have no explicit syntax in C, these declarations
are actually compiled into structs (structures). For example, the heights
declaration is compiled into the following struct:

struct {
u_int heights_len;
int *heights_val;

} heights;

/* # of items in array */
/* pointer to array */

Note The number of items in the array is stored in the _len
component and the pointer to the array is stored in the _val
component. The first part of each of these components' names
is the same as the name of the declared XDR variable.

Pointer Declarations

Pointer declarations are made the same in XDR as they are in C. You cannot
use pointers over the network, but you can use XDR pointers for sending
recursive data types such as lists and trees.

pointer-declaration
type-ident It*It variable-ident

EXAMPLE:

listitea *next; --> listitem *next;

RPCGEN Programming Guide 4-37

Special Cases

There are a few exceptions to the rules described above.

Booleans

C has no built-in boolean type. However, the RPC library includes a boolean
type called bool_ t that is either TRUE or FALSE. Things declared as type bool
in XDR language are compiled into bool_ t in the output header file.

EXAMPLE:

bool married; --> bool_t married;

Strings

C has no built-in string type, but instead uses the null-terminated "char*"
convention. In XDR language, strings are declared using the "string" keyword,
and compiled into "char *"s in the output header file. The maximum size
contained in the angle brackets specifies the maximum number of characters
allowed in the strings (not counting the NULL characters). The maximum size
may be omitted, indicating a string of arbitrary length.

EXAMPLES:

string name<32>;
string longname < >;

--> char *name;
--> char *longname;

Opaque Data. Opaque data is used in RPC and XDR to describe untyped data,
that is, sequences of arbitrary bytes. It may be declared either as a fixed or
variable length array.

EXAMPLES:

opaque diskblock[512];
opaque filedata <1024>;

--> char diskblock[512];
--> struct {

u_int filedata_len;
char *filedata_val;

} filedata;

Voids. In a void declaration, the variable is not named. The declaration is just
void and nothing else. Void declarations can only occur in two places:

• Union definitions .

• Program definitions (as the argument or result of a remote procedure).

4·38 RPCGEN Programming Guide

RPCGEN Error Messages

Command Line Error Messages

usage: rpcgen [-u] infi1e
rpcgen [-c I -h I -1 I -m I -u] [-0 outfile] [infile]
rpcgen [-s udp I tcp]. [-0 outfile] [infile]

Cause: This message is given if the wrong number of arguments, the wrong
arguments, or the wrong options are given when executing RPCGEN.

RPCGEN Execution Error Messages

RPCGEN: output 1l0u1d overllrite <input-file>

Cause: If the name of the input file and the name specified for the output file
are the same, RPCGEN will print this message and quit. The name of the
input file will be substituted for <inpuLfile> in the message.

rpcgen: unable to open < output-file>: < perror message>

Cause: If RPCGEN is unable to open the output file, the message listed above
appears. Possible causes are many, such as not having write permission to th~
parent directory. This is why the perror message is printed. It gives a text
message for the ermo that resulted during the attempt to open the file. The
name of the output file will be substituted for <outpuLfile> in the message.

rpcgen: No more processes

Cause: RPCGEN will try to execute the C preprocessor. If it cannot do this, it
will print a perror() message stating what the problem was. The text message
is based on the value in errno.

rpcgen: RPCGEN has too many files open

Cause: If RPCGEN opens too many files at once, this error message appears.
Since RPCGEN only has a few files open at anyone time, the message would
appear if RPCGEN is executed from a process that had almost the maximum
number of files already open.

RPCGEN Programming Guide 4-39

Parsing Error Messages

The next group of error messages is produced because of an error detected in
the contents of the . x file. They are similar to having compilation errors in a C
program and as such are very context dependent. The general rule of thumb
is that either RPCGEN could not recognize any of the input it is given, or it
was able to start parsing a legal construction, but ran into a symbol that did
not match what it expected. Because some of the messages are long, some
have been placed on two lines in order to fit within the margin. In reality,
they will be printed on one line. In addition to an error message, the line that
contains the error is printed with the part of the line that caused the problem
underscored with "A A A" characters.

<beginning of the line><error> <rest_of_the_line>

< input-file>, line <line_number>: < error message>

EXAMPLE:

If the following line appeared in a . x file:

const ducks "mallard"

This is what the error message would look like:

const ducks "mallard"

err.x, line 5: expected '-'

Expecting a Keyword

<input_file>, line <line_number>: definition key word expected.

Cause: RPCGEN was expecting the start of a legal construction
such as a struct declaration and it encountered a token from
the input file that did not match one of the legal keywords
(struct, union, typedef, enum, program, or const).

4·40 RPCGEN Programming Guide

Array of Pointers

< input_file>. line < line_number>:
no array-of-pointer declarations -- use typedef

Cause: You tried to declare an array of pointers.

EXAMPLE: This example shows how an array of pointers can be declared.
If you wish to refer to an array of pointers, use typedef to do
so (as in the GOOD line shown in the following example).

typedef struct z *zptr;
struct z {

};

Bad Union

int a;
zptr t [2];
struct z *y[2];
struct z *y<2>;

/* GOOD LINE */
/* BAD LINE #1 */

/* BAD LINE #2 */

When declaring a union, do not use an array in the switching variable (as
shown in the following example).

EXAMPLE:

union xxx switch (int the_array[2]) { /* File bad_union.x */
case 0:

int a;
default:

void;
}

If you do, the following message will be displayed:

bad_union.x. line 1: only simple declaration allowed in switch

RPCGEN Programming Guide 4·41

Opaque Declarations

<input-file>. line <line_number>: array declaration expected

Cause: Data object incorrectly declared.

If you want to declare a data object to be opaque, declare it as an array.

EXAMPLE: The following example shows a correct and incorrect method of
using the opaque declaration:

opaque group_of_bytes[777J; /*CORRECT*/
opaque bad_declaration; /*IHCORRECT*/

String Declaration Error

< input-file>. line < line_number>:
variable-length array declaration expected

A string must be declared using left and right angle braces ("<" and ">").

EXAMPLE:

rrectan

The following example shows a correct and incorrect method of
using the string declaration:

string first_name<50>;
string last_name 50;

/*CORRECT*/
/*IHCORRECT*/

4·42 RPCGEN Programming Guide

Void Declarations

< input-file>, line < line_number>:
voids allowed only inside union and program definitions

Cause: A void declaration used improperly.

The input language for RPCGEN has the concept of void declaration. This
can be used only as a declaration for a variant in a union or as the argument or
result of a remote procedure.

EXAMPLE: The following example shows a correct and incorrect method of
using the void declarations:

void TIMESET(unassigned) = 2;
voidbad_var;

1* CORRECT */
1* INCORRECT */

Unknown Types

<input-file>, line <line_number>: expected type specifier

Cause: An attempt was made to declare a variable to be something
RPCGEN does not understand.

EXAMPLE: In the following example, the line with the comment of OK
will not produce the "expected type specifier" message. This
is because even though "fiawid" is not a normally defined
type specifier, it is simply a legal identifier and is the name
of an unknown data type. RPCGEN assumes that the you
will provide the appropriate definition and XDR routines for
"fiawid" data type in other files that will make up the client
and server programs. The line with the comment -of NOT OK will
produce the "expected type specifier" message. This is because
the "=" is not a legal value for a type specifier.

struct namenode {
flawid a_var; /* OK */
• wont_work; 1* HOT OK *1

};

RPCGEN Programming Guide 4-43

Illegal Characters

<input-file>. line < line_number>: illegal character in file:

Cause: An illegal character, such as "?", in the input file.

Missing Quotes

< input-file>. line < line_number>: unterminated string constant

Cause: A string constant is missing the terminating double quote.

General Syntax Errors

Other RPCGEN error messages that you may encounter are parsing errors
that are context dependent. Because these messages depend on the type of
construct being parsed, all possible messages and examples of their causes
cannot be listed here.

4·44 RPCGEN Programming Guide

5
XDR Protocol Specification

The RPC (Remote Procedure Call) package uses XDR (eXternal Data
Representation) conventions for transmitting data. XDR works across different
programming languages, operating systems, and node architectures.

This chapter explains library routines that allow you to describe arbitrary data
structures in a machine-independent manner. It describes the following:

• XDR library routines.

• A guide to accessing currently available XDR streams.

• Information on defining new streams and data types.

• A formal definition of the XDR standard.

XDR Protocol Specification 5·1

Note C programs using XDR routines must include the <rpc/rpc .h>
file containing all the necessary interfaces to the XDR system.
Since the C library libc. a contains all the XDR routines,
compile programs as usual.

1. cc program. c

Justification
The following two programs (Writer and Reader) appear to be portable
because of the following:

ill They pass lint checking .

• They exhibit the same behavior when executed locally on two different
hardware architectures: an HP 9000 running HP-UX and a DEC VAX
computer running the Berkeley Standard Distribution (BSD 4.3 or later)
version of the UNIX operating system.

5·2 XDR Protocol Specification

Writer Program

#include <stdio.h>

maine) 1* writer.c *1
{

long i;

for (i = 0; i < 8; i++) {
if (fwrite«char *)ii, sizeof(i) , 1, stdout) !- 1) {

fprintf(stderr, "failed!\n");

}

}

}

Reader Program

#include <stdio.h>

maine) 1* reader.c *1
{

long i. j;

exit(1) ;

for (j = 0: j < 8: j++) {
if (fread«char *)ii, sizeof (i), 1. stdin) !- 1) {

fprintf(stder,r, "failed!\n");
exit(1):

}

printf(II~ld ". i):
}

printf("\n") ;
}

XDR Protocol Specification 5·3

The concept of network pipes can be explained as a process producing data on
one node and a second process consuming data on another node.

Piping the output of the Writer program to the Reader program gives identical
results on an HP computer running the HP-UX operating system, or a DEC
VAX computer running 4.3 BSD.

hp% writer I reader
o 1 2 345 6 7
hp%

vax% writer I reader
o 1 2 345 6 7
vax%

EXAMPLE: You can construct a network pipe with Writer and Reader
programs. This example shows the results if the first process
produces data on an HP computer and the second process
consumes data on a DEC VAX computer.

hp% writer I remsh vax reader
o 16777216 33554432 50331648 67108864 83886080 100663296 117440512
hp%

You can obtain . similar results by executing Writer on a
DEC VAX computer running 4.3 BSD and Reader on an HP
computer. These results occur because the byte ordering of
long integers differs between the DEC VAX computer and the
HP computer even though word size is the same. Note that
16777216 is 224. When 4 bytes are reversed, the 1 is in the
24th bit.

5·4 XDR Protocol Specification

Whenever two or more machine types share data, the data format must be
portable. You can make this program data-portable by replacing the read()
and writeO calls with calls to an XDR library routine xdr_longO. This filter
knows the standard representation of a long integer in its external form.

EXAMPLE: Revised versions of Writer and Reader Programs

Writer Program

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

maine) /* vriter.c */
{

}

XDR xdrs;
long i;

xdrstdio_create(txdrs. stdout. XDR_ENCODE);
for (i - 0; i < 8; i++) {

}

if (!xdr_long(txdrs. ti» {
fprintf(stderr. "failed!\n");
exit(1) ;

}

XDR Protocol Specification 5·5

Reader Program

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

maine) /* reader.c */
{

}

XDR xdrs;
long i. j;

xdrstdio_create(ixdrs. stdin. XDR_DECODE);
for (j = 0; j < 8; j++) {

}

if (!xdr_long(ixdrs. Ii)) {
fprintf(stderr, "failed!\n");
exit(l);

}

printf("1.1d ", i);

printf("\n");

5-6 XDR Protocol Specification

The new programs are executed on an HP computer, on a DEC VAX computer
running 4.3 BSD, and from an HP to a DEC VAX computer running 4.3 BSD.
The following sample shows the results.

hpY. writer I reader
o 1 2 3 4 5 6 7
hpY.

vaxY.writer I reader
o 1 2 3 456 7
vaxY.

hpY. writer I remah vax reader
o 1 2 345 6 7
hpY.

Arbitrary data structures present portability problems, particularly with
respect to alignment and pointers. Alignment on word boundaries may cause
the size of a structure to vary from system to system. Pointers are convenient
to use, but have no meaning outside the process where they are defined.

XDR Library

The XDR library solves data portability problems. It allows you to write and
read arbitrary C constructs in a consistent and specific manner. Thus, the
XDR library is useful even if not sharing data among network nodes.

The XDR library has filter routines for strings (null-terminated arrays of
bytes), structures, unions, and arrays. Using more primitive routines, you can
write specific XDR routines to describe arbitrary data structures, including
elements of arrays, arms (members) of unions, or objects pointed at from other
structures.

XDR Protocol Specification 5· 7

These structures may contain arrays of arbitrary elements or pointers to other
structures.

In a family of XDR stream creation routines each member treats the stream of
bits differently. In this case, data is manipulated using standard I/O routines,
so we use xdrstdio_create(). The parameters to XDR stream creation
routines vary according to their function. For example, xdrstdio_create()
takes a pointer to an XDR structure that it initializes, a pointer to a FILE
that the input or output is performed on, and the operation. The operation
may be XDR_ENCODE for serializing in the Writer program, or XDR_DECODE for
deserializing in the Reader program.

Note If using standard RPC library routines, you will not need to
create your own XDR streams since the RPC system creates
them. The streams created by RPC are then passed to the
programs.

The xdr_long() primitive is characteristic of most XDR library primitives and
client XDR routines:

• The routine returns TRUE (1) if it succeeds and FALSE (0) if it fails .

• For each data type, xxx, there is an associated XDR routine of the following
form.

bool_t
xdr_xxx(xdrS t fp)

XDR *xdrs;

{
}

xxx *fp;

5·8 XDR Protocol Specification

In this case xxx is long so the correspondingXDR routine is the primitive
xdr _long. The client could also define an arbitrary structure xxx. If it did
so it would also supply the routine xdr _xxx describing each field by calling
XDR routines of the appropriate type. You can treat the first parameter
xdrs , as an opaque handle and pass it to the primitive routines. (An
opaque handle is an object given to you from a lower level routine that you
do not use directly, but pass it along elsewhere.)

XDR routines are direction independent; the same routines can serialize or
deserialize data. This feature is critical to software engineering of portable
data. You can call the same routine for either operation. (This process helps
ensure serialized data can also be deserialized.) Both producer and consumer of
networked data can use one routine. This is implemented by always passing the
address of an object rather than the object. Only in the case of deserialization
is the object modified. The value of this feature becomes obvious when
nontrivial data structures are passed among nodes. If needed, you can obtain
the direction of the XDR operation.

EXAMPLE:

Assume the following items .

• A person's gross assets and liabilities are to be exchanged among processes .

• These values are important enough to warrant their own data type.

struct gnumbers {
long g_assets;
long g_liabilities;

};

XDR Protocol SpeCification 5·9

• The corresponding XnR routine describing this structure would be as
follows.

bool_t /* TRUE is success.FALSE is failure*/
xdr _gIlumbers (xdrs. gp)

{

}

XOR *xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs .igp->g_assets) it
xdr_long(xdrs. tgp->g_liabilities»
return(TRUE) ;

return(FALSE);

The parameter xdrs is never inspected or modified; it is only passed to the
subcomponent routines. You must inspect the return value of each XnR
routine call. If the subroutine fails, quit immediately and return FALSE.

The above example also shows the type bool_ t is an integer whose only values
are TRUE (1) and FALSE (0). This document uses the following definitions.

'define bool_t int
'define TRUE 1
#define FALSE 0

#define enWD_t int /* enWD_t used for generic enWDS */

Keeping these conventions in mind, you can rewrite xdr _gnumbers () as
follows.

bool_t
xdr _gnuabers (xdrs. gp)

XOR *xdrs;

{

}

struct gnuabers *gp;

return(xdr_long(xdrs t tgp->g_assets) tt
xdr_lons(xdra, tgp->g_liabilities»;

This document uses both coding styles.

5·10 XDR Protocol Specification

XDR Library Primitives
This section gives a synopsis of each XD R primitive. It explains basic data
types, constructed data types, and XDR utilities. The interface to these
primitives and utilities is defined in the header file <rpc/xdr. h> that is
automatically included by <rpc/rpc. h>.

Number Filters

The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the following set of
numbers.

[signed t unsigned] x [short tint t long]

Specifically, the six primitives are as follows.

bool_t
xdr_int(xdrs, ip)

lOR *xdrs;
int *ip;

bool_t
xdr_Iong(xdrs, lip)

lOR *xdrs;
long *lip;

bool_t
xdr_short(xdrs, sip)

lOR *xdrs;
short *sip;

bool_t
xdr_u_int(xdrs, up)

lOR *xdrs;
unsigned int *up;

bool_t
xdr_u_Iong(xdrs, lup)

lOR *xdrs;
u_Iong *lup;

bool_t
xdr_u_short(xdrs, sup)

lOR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XnR stream handle. The second parameter
is the address of the number that provides data to the stream or receives data
from it. All routines return TRUE if they complete successfully or FALSE if they
do not.

XDR . Protocol Specification 5·11

Floating Point Filters

The XDR library also provides primitive routines for C's floating point types.

bool_t
xdr_floatexdrs. fp)

XOR *xdrs;
float *fp;

bool_t
xdr_doubleexdrs. dp)

XOR *XdrB;
double *dp;

The first parameter, xdrs, is an XD R stream handle. The second parameter is
the address of the floating point number that provides data to the stream or
receives data from it. All routines return TRUE if they complete successfully or
FALSE if they do not.

Note The numbers are represented in ANSI-IEEE 754-1985
(ANSI-IEEE 754-1985 is a floating point standard that is
accepted by the American National Standards Institute and the
Institute of Electrical and Electronic Engineers.) floating point.
Therefore, routines may fail when decoding a valid ANSI-IEEE
754-1985 representation into a machine-specific representation
that is not ANSI-IEEE 754-1985, or vice versa.

5-12 XDR Protocol Specification

Enumeration Filters

The XDR library provides a primitive for generic enumerations. This primitive
assumes a C anum has the same representation inside the node as a C integer.

The boolean type is an important instance of the anum. The external
representation of a boolean is always 1 (one) if TRUE or 0 (zero) if FALSE.

EXA11PLE

#define boo1_t int
#define FALSE 0
#def ine TRUE 1

boo1_t
xdr_enua(xdrs, ep)

InR *xdrs;
enWl_t *ep;

boo1_t
xdr_boo1(xdrs, bp)

Ina *xdrs;
boo1_t *bp;

The second parameters ep and bp are addresses of the associated type that
provides data to the xdrs stream or receives data from it. The routines return
TRUE if they complete successfully or FALSE if they do not.

No Data

Use the following function if an XnR routine must be supplied to an RPC
routine even though no data is passed or required.

boo1_t
xdr_void()j /* a1vays returns TRUE */

XDR Protocol Specification 5·13

Constructed Data Type Filters

This section includes primitives for strings, arrays, unions, and pointers to
structures. These constructed or compound data type primitives require more
parameters and perform more complicated functions than the basic data type
primitives previously discussed.

The three XnR directional operations are XDR_ENCODE, XDR_DECODE, and
XDR_FREE. Constructed data type primitives can use memory management. In
many cases, memory is allocated when deserializing data with XDR_DECODE.
Therefore, the XnR package must provide a means to deallocate memory. The
XDR_FREE operation performs this deallocation.

Strings

In C, a string is a sequence of bytes terminated by a null byte. However, when
a string is passed or manipulated, a pointer to it is employed. Therefore, the
XnR library defines a string to be a char *, not a sequence of characters.

The external representation of a string is very different from its internal
representation. Externally, strings are sequences of ASCII characters;
internally, they are character pointers. The routine xdr _stringO converts the
two representations.

bool_t
xdr_string(xdrs. sp. aaxlength)

XDa *xdrs;
char .*sp;
u_int maxlength;

The first parameter, xdrs, is the XnR stream handle. The second parameter,
sp, is a pointer to a string (type char **). The third parameter, maxlength,
specifies the maximum number of bytes allowed during encoding or
decoding; its value is usually specified by a protocol. For example, a protocol
specification may say a file name cannot be longer than 255 characters. The
routine returns FALSE if the number of characters exceeds maxlength or if any
other error occurs; it returns TRUE otherwise.

5·14 XDR Protocol Specification

The behavior of xdr _string() is similar to the behavior of other routines
discussed in this section. The direction XDR_ENCODE is easiest to understand.
The parameter sp points to a string of a certain length. If it does not exceed
maxlength, the bytes are serialized.

The effect of deserializing a string is subtle.

• First, the length of the incoming string is determined. It must not exceed
maxlength.

• Next, sp is dereferenced. If the value is NULL, a contiguous set of bytes
of the appropriate length is allocated and *sp is set to this string. If the
original value of *sp is non-null, the XDR package assumes a target area was
allocated that can hold strings no longer than maxlength.

• In either case, the string is decoded into the target area. The routine then
appends a null character to the string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If
the string is not NULL, it is freed and *sp is set to NULL. In this operation,
xdr _string ignores the maxlength parameter.

XDR Protocol Specification 5·15

Byte Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays
differ from strings in the following three ways.

• The length of the array (the byte count) is explicitly located in an unsigned
integer.

• The byte sequence is not terminated by a null character.

• The external representation of the bytes is the same as their internal
representation. The primitive xdr _bytes 0 converts between the internal
and external representations of byte arrays.

bool_t
xdr_bytes(xdrs, bpp, Ip, maxlength)

XDa *xdrs;
char **bpp;
u_int *lp;
u_int aaxlength;

The usage of the first, second, and fourth parameters are identical to the first,
second, and third parameters of xdr _string (), respectively. The length of the
byte area is obtained by dereferencing Ip when serializing; *lp is set to the byte
length when deserializing.

5·16 XDR Protocol Specification

Arrays

The XnR library package provides a primitive for handling arrays of arbitrary
elements. The xdr_bytes() routine treats a subset of generic arrays in
which the size of array elements is one byte and the external description of
each element is built-in. The generic array primitive, xdr_arrayO, requires
parameters identical to those of xdr _bytes () plus two more: the size of array
elements and an XnR routine to handle each of the elements. Call this routine
to encode or decode arrays.

bool_t
xdr_array(xdrs, ap, Ip, maxlength, elementsiz, xdr_element)

xoa *xdrs;
char **ap;
u_int *lp;
u_int maxlength;
u_int elementsiz;
bool_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is NULL
when the array is being deserialized, XnR allocates an array of the appropriate
size and sets *ap to that array. The element count of the array is obtained
from *lp when the array is serialized; *lp is set to the array length when the
array is deserialized. The parameter maxlength is the maximum number of
elements the array is allowed to have; elementsiz is the byte size of each
element of the array. (You can use the C function sizeof 0 to obtain this
value.) The xdr_array() function calls the xdr_elementO routine to serialize,
deserialize, or free each element of the array.

XDR Protocol Specification 5·17

EXA~IPLES:

Example A Identify a user on a networked node by the following:

• The host name, such as krypton (see gethostname).

• The user's UIn (see geteuid).

• The group numbers to which the user belongs (see
getgroups).

A structure with this information and its associated XnR
routine could be coded as follows.

struct net user {
char *nu_aachinename;
int nu_uid;
u_int nu_glen;
int *nu_gids;

};

.def ine lLEI 266
'define IGRPS 20

/* aachine noes < 266 chars */
/* user cannot be in > 20 groups */

bool_t
xdr_netuser(xdrs. nup)

XDa *xdrs;

{

}

struct netuser *nup;

return (xdr _string (xdrs. tnup->nu_aachinenaae. lLEN) tt
xdr_int (xdrs. tnup->nu_uid) tt
xdr _array (xdrs. tnup->nu_gids. tnup~>nu_glen. IGRPS.

sizeof (int). xdr_int»;

5-18 XDR Protocol Specification

Example B Identify a party of network users as an array of netuser
structures. The declaration and its associated XnR routines
are as follows.

struct party {
u_int p_len;
struct netuser *p_nusers;

};

#define PLEN 500 1* max number of users in a party *1

bool_t
xdr_party(xdrs. pp)

XDa *xdrs;
struct party *pp;

{

return(xdr_array(xdrs. tpp->p_nusers. tpp->p_len. PLEN.
sizeof (struct netuser). xdr_netuser»;

}

XDR Protocol Specification 5-19

Example C You can combine the well-known parameters tomain() (argc
and argv) into a structure. An array of these structures can
make up a history of commands. The declarations and XnR
routines might look like the following code.

struct cmd {

};

u_int c_argc;
char **c_argv;

#define ALEB 1000
#define BARGC 100

/* args cannot be > 1000 chars */
/* commands cannot have > 100 args */

struct history {
u_int h_len;
struct cmd *h_cmds;

};

#define NeMOS 75 /* history is no more than 75 commands */

bool_t
xdr _vrap_string(xdra, ap)

lOR *xdra:
char **sp;

{

return (xdr_string(xdra, sp, ALEN»;
}

bool_t
xdr_cmd(xdrs, cp)

{

}

lOR *xdra;
atruct cad *cp;

return(xdr_array(xdra. tcp->c_argv, tcp->c_argc, NARGC,
aizeof (char *). xdr_vrap_atring»;

bool_t
xdr_hiatory(xdra. hp)

lOR *xdra;

{

}

atruct hiatory *hp;

return (xdr_array(xdra, thp->h_cada, thp->h_len, ICMOS,
aizeof (atruct cmd) , xdr_cad»;

5-20 XDR Protocol Specification

The xdr _ array () function can only pass two arguments to the array element
description routine, but the xdr _string 0 routine requires three arguments.
The xdr _wrap_stringO function requires only two arguments and provides
the third argument to xdr _stringO.

Opaque Data

In some protocols the server passes a handle to the client, and the client later
passes the handle back to the server. Handles are opaque and never inspected
by clients; they are obtained and submitted. Use the primitive xdr_opaque()
for describing fixed sized, opaque bytes.

bool_t
xdr_opaque(xdrs, p, len)

XDa *xdrs;
char *pj
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the
opaque object. The actual data contained in the opaque object are system
dependent.

XDR Protocol Specification 5·21

Fixed Sized Arrays

The XnR library does not provide a primitive for fixed-length arrays. (The
primitive xdr _array() is for varying-length arrays.)

EXA1'IPLE: You could rewrite the previous Example A to use fixed-sized
arrays in the following manner.

#define NLElf 255 1* machine names must be < 256 chars *1
#define NGRPS 20 1* user cannot belong to > 20 groups *1

struct netuser {

};

char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];

bool_t
xdr_netu.er(xdr., nup)

XDR *xdr8;

{

}

8truct netu.er *nup;

int i;

if (! xdr _string (xdr., tnup->nu_aachinenaae, lfLElf»
return(FALSE);

if (!xdr_int(xdr., tnup->nu_uid»
return(FALSE);

for (i • 0; i < NGRPS; i++) {

}

if (!xdr_int(xdrs, tnup->nu_gid.[i]»
return(FALSE);

return(TRUE) ;

5·22 XDR Protocol Specification

Discriminated Unions

The XnR library supports discriminated unions. A discriminated union is a C
union and an enum_t value that selects a member of the union.

struct xdr_discrim {
enUDl_t value;
bool_t {*proc)()i

};

bool_t
xdr_union{xdrs, dscmp, unp, arms, defaultarm)

XDa *xdrs;
enUDl_t *dscmpi
char *unp;
struct xdr_discria *arms;
bool_t {*defaultarm)()j /* may equal NULL */

First, the routine translates the discriminant of the union located at *dscmp.
The discriminant is always an enum_t. Next, the union located at *unp is
translated. The parameter arms is a pointer to an array of xdr _discrim
structures. Each structure contains an order pair of [value,proc}. If the union's
discriminant is equal to the associated value, the proc is called to translate the
union.

The end of the xdr _discrim structure array is denoted by a routine of value
NULL (0). If the discriminant is not found in the arms array, the defaultarm
procedure is called if it is not null. Otherwise, the routine returns FALSE.

XDR Protocol Specification 5-23

EXANIPLE: Assume the type of a union may be integer, character pointer
(a string), or a gnumbers structure. Also, assume the union
and its current type are declared in a structure.

enum utype { INTEGER-1. STRING-2. GNUMBERS-3 }i

struct u_tag {

}j

enUll utype utype; /* the union's discriminant */
union {

} uvali

int ivali
char *pvali
struct gnumbers gni

The following structure and XnR procedure serialize or
deserialize the discriminated union.

struct xdr_discria u_tag_arms[4] • {
{ INTEGER. xdr _ int }.

}

{ GNUMBERS, xdr _gnumbers }
{ STRING, xdr_vrap_string },
{ dontcare, NULL }
/* always terminate arms with a NULL xdr_proc */

bool_t
xdr_u_tag(xdrs, utp)

XDR *xdrSj

{

}

struct u_tag *utpj

return (xdr_union(xdrs, tutp->utype, tutp->uval,
u_tas_arms, NULL»j

5·24 XDR Protocol Specification

The routine xdr _gnumbers () was presented earlier; xdr _wrap_string ()
was presented in the previous Example C. The default arm parameter to
xdr _union () (the last parameter) is NULL in this example. Therefore, the
value of the union's discriminant may legally take on the values listed in the
u_ tag_arms array. This example also demonstrates that the elements of the
arm's array do not need to be sorted.

The values of the discriminant may be sparse, though in the above example
they are not. It is always good practice to assign explicitly integer values to
each element of the discriminant's type. This practice documents the external
representation of the discriminant and guarantees that different C compilers
emit identical discriminant values.

Pointers

In C it is often convenient to put pointers to another structure within
a structure. The primitive xdr_reference() makes it easy to serialize,
deserialize, and free these referenced structures.

bool_t
xdr_reterence(xdrs. pp. size. proc)

lOa *xdrs;
char **pp:
u_int ssize;
bool_t (*proc)():

Parameter pp is the address of the pointer to the structure; parameter ssize is
the size in bytes of the structure. (Use the C function sizeof 0 to obtain this
value.) The XnR routine proc describes the structure. When decoding data,
storage is allocated if *pp is NULL.

The primitive xdr _struct 0 does not need to describe structures within
structures since pointers are always sufficient.

XDR Protocol Specification 5·25

Note The xdr _ref erence () and xdr _ arr ay () are not
interchangeable external representations of data.

EXAlIPLE: Suppose a structure contains a person's name and a pointer to
a gnumbers structure contains the person's gross assets and
liabilities. The construct is as follows.

struct pgn {
char *name;
struct gnumbers *gnp;

};

The corresponding XDR routine for this structure is as follows.

bool_t
xdr_pgn(xdrs. pp)

XDa *xClrs;

{

}

struct pgn *pp;

it (xdr_string(xdrs. tpp->nue. MLEM) tt
xdr_reterence(xdrs. tpp->gnP.
sizeot(struct gnuabers). xdr_gnuabers»

return(TRUE) ;
return(FALSE)j

5·26 XDR Protocol Specification

Pointer Semantics and XDR

In many applications C programmers attach double meaning to the values of a
pointer. Typically the value NULL (or zero) means data is not needed, yet some
application-specific interpretation applies. The C programmer is encoding a
discriminated union efficiently by overloading the interpretation of the value of
a pointer. In the above example, a NULL pointer value for gnp could indicate
that the person's assets and liabilities are unknown.

The pointer value encodes two things: whether or not the data is known and if
it is known, where it is located in memory. Linked lists are an example of the
use of application-specific pointer interpretation.

The primitive xdr_reference() cannot attach any special meaning to a
null-value pointer during serialization. Passing an address of a pointer whose
value is NULL to xdr_referenceO when serialing data may cause a memory
fault and, on UNIX operating systems, a core dump for debugging.

You must expand non-dereferenceable pointers into their specific semantics.
This process usually involves describing data with a two-armed discriminated
union. One arm is used when the pointer is valid; the other is used when the
pointer is NULL.

XDR Protocol Specification 5·27

Non-filter Primitives

You can manipulate XDR streams with the primitives discussed in this section.

u_int
xdr_getpos(xdrs)

XOR *xdrs;

bool_t
xdr_setpos(xdrs, pos)

XOR *xdrSj
u_int POSj

bool_t
xdr_destroy(xdrs)

XOR *xdrSj

The routine xdr _getpos 0 returns an unsigned integer that describes the
current position in the data stream.

Note In some XDR streams the returned value of xdr getpos() is
meaningless. In this case, the routine returns a (u_int) -1.

The routine xdr_setpos() sets a stream position to pos.

Note In some XDR streams, setting a position is impossible. In such
cases xdr_setposO returns FALSE.

5-28 XDR Protocol Specification

This routine fails if the requested position is invalid (out of bounds). The
definition of bounds varies from stream to stream.

The xdr_destroyO primitive destroys the XDR stream. Using the stream
after calling this routine is undefined.

XDR Operation Directions

You may wish to optimize XnR routines by taking advantage of the
direction of the operation: XDR_ENCODE, XDR_DECODE, or XDR_FREE. The value
xdrs->x_op always contains the direction of the XnR operation. Though
you generally will not need this information, the field may be needed in some
circumstances.

XDR Protocol Specification 5·29

XDR Stream Access
Obtain an XnR stream by calling the appropriate creation routine. These
creation routines take arguments tailored to the specific properties of the
stream.

Streams currently exist for serialization and deserialization of data to or from
standard I/O FILE streams, TCP /IP connections, UNIX operating system files,
and memory.

Standard I/O Streams

The routine xdrstdio_create 0 initializes an XnR stream, pointed to by
xdrs using the standard I/O library routines. The fp parameter is an open file,
and x_op is an XnR direction.

#include <stdi.o.h>
#include <rpc/rpc.h> /* xdr streams part of rpc */

void
xdrstdio_create(xdrs, fp, x_op)

XDR *xdrsi
FILE *fPi
enua xdr_op x_op;

5·30 XDR. Protocol Specification

Memory Streams

Memory streams allow the streaming of data into or out of a specified area of
memory.

'include <rpc/rpc.h>

void
xdrmem_create(xdrs. addr. len. x_op)

xoa *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdrmem_create() initializes an XDR stream in local memory.
The addr parameter points to the memory; the len parameter is the length
in bytes of the memory. The parameters xdrs and x_op are identical to the
corresponding parameters of xdrstdio_create. Currently, the UDP lIP
implementation of RPC uses xdrmem_create. Complete call or result messages
are built in memory before calling the sendto () system routine.

Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard
that is built on top of the UNIX operating system file or 4.3 BSD connection
interface.

'include <rpc/rpc.h> /* xdr streams part of rpc */

void
xdrrec_create(xdrs. sendsize. recvsize. iohandle, readproc. vriteproc)

xoa *xdrs;
u_int sendsize. recvsize;
char *iohandle;
int (*readproc)(), (*vriteproc)();

XDR Protocol Specification 5·31

The routine xdrrec_createO provides an XDR stream interface that allows
for a bidirectional, arbitrarily long sequence of records. The contents of
the records should be data in XDR form. The stream's primary use is for
interfacing RPC to TCP connections. However, you can use it to stream data
into or out of normal UNIX operating system files.

The parameter xdrs is similar to the corresponding parameter of
xdrstdio_create(). The stream performs its own data buffering similar to that of
standard 1/0. The parameters sendsize and recvsize determine the size in bytes
of the output and input buffers, respectively. If their values are zero (0), then
predetermined defaults are used. When a buffer needs to be filled or flushed,
the routine readprocO or wri teproc() is called, respectively. The usage
and behavior of these routines are similar to the UNIX system calls read()
and writeO. However, the first parameter to each of these routines is the
opaque parameter iohandle. The other two parameters bu! and nbytes and the
results (byte count) are identical to the system routines. If xxx is readproc or
wri teproc, then it has the following form:

/*
* returns the actual number of bytes transferred.
* -1 is an error
*/

int
xxx (iohandle, buf t nbytes)

char *iohandle;
char *buf;
int nbytes;

5·32 XDR Protocol Specification

The XDR stream provides a means for delimiting records in the byte stream.
Refer to the "Synopsis of XDR Routines" section for implenlentation details of
delirillting records in a stream. The primitives specific to record streams are as
follows.

bool_t

Primitives Specific to
Ilecord Streams

xdrrec_endofrecord(xdrs t flushno'll)
XOR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)

XOR *xdrs;

bool_t
xdrrec_eof(xdrs)

XOR *xdrs;

Description

The routine xdrrec_endofrecordO
causes the current outgoing data to be
marked as a record. If the parameter
flushnow is TRUE, the stream's
writeprocO is called; otherwise,
writeprocO is called when the output
buffer is filled.

The routine xdrrec_skiprecordO
causes an i,put stream's position to be
moved past the current record boundary
and onto the beginning of the next record
in the stream.

If there is no more data in the stream's
input buffer, the routine xdrrec_eofO
returns TRUE. Note, this condition does
not imply there is no more data in the
underlying file descriptor.

XDR Protocol Specification 5-33

XDR Stream Implementation
This section provides the abstract data types needed to implement new
instances of XnR streams.

XDR Object

The following structure defines the interface to an xnR stream.

enum xdr_op { XDR_ENCODE=O, XDR_DECODE-1, XDR_FREE=2 };
typedef struct {

enum xdr_op x_op; 1* operation; fast added param *1
struct xdr_ops {

bool_t (*x_getlong)();
bool_t (*x_putlong)();
bool_t (*x_getbytes)();
~ool_t (*x_putbytes)();
u_int (*x_getpostn)();
bool_t (*x_setpostn)();
caddr_t (*x_inline)();
VOID (*x_destroy)();

} *x_ops;
caddr_t x_public;
caddr_t x_private;
caddr_t x_base;
int x_handy;

} XDR;

1* get long from stream *1
1* put long to stream *1
1* get bytes from stream *1
1* put bytes to stream *1
1* return stream offset *1
1* reposition offset *1
1* ptr to buffered data *1
1* free private area *1

1* users' data *1
1* pointer to private data *1
1* private for position info *1
1* extra private word *1

The x_op field is the current operation being performed on the stream. This
field is important to the XnR primitives, but should not affect a stream's
implementation. A stream's implementation should not depend on this value.
The fields x_private, x_base, and x_handy are private to the particular
stream's " implementation. The field x_pUblic is for the XnR client and should
never be used by the XnR stream implementations or the XnR primitives.

The operation x_inline() takes two parameters: an xna * and an unsigned
integer that is a byte count. The routine returns a pointer to a piece of the
stream's internal buffer. The caller can then use the buffer segment for any
purpose. From the stream's point of view, the bytes in the buffer segment
were consumed or put. The routine may return NULL if it cannot return a
buffer segment of the requested size. (The x_inline () routine is for directly
accessing the underlying buffer. Use of the resulting buffer is not data-portable;
therefore, we recommend you do not use this feature.)

5·34 XDR Protocol Specification

The operations x_getbytes () and x_putbytes () blindly obtain and put
sequences of bytes from or to the underlying stream; they return TRUE if they
are successful or FALSE if they are not. The routines have identical parameters.

EXAMPLE:

bool_t
x_getbytes(xdrs, buf, bytecount)

XDR *xdrs;
char *buf;
u_int bytecount:

The operations x_getlongO and x_putlong() receive and put long numbers
from and to the data stream. These routines translate the numbers between
the node representation and the (standard) external representation. The
UNIX operating system primitives htonl() and ntohl() can be helpful in
accomplishing this translation. The higher-level XnR implementation assumes
the following:

• Signed and unsigned long integers contain the same number of bits .

• Non-negative integers have the same bit representations as unsigned integers.

The routines return TRUE if they succeed or FALSE if they do not. They have
identical parameters.

EXAMPLE:

bool_t
x_put long (xdrs, lp)

XDR *xdrs:
long *lp:

XDR Protocol Specification 5·35

XDR Standard
The XDR standard is independent of languages, operating systems, and
hardware architectures. Once data is shared among nodes, it should not
matter if the data was produced on an HP computer and consumed by another
vendor's computer, or vice versa. Similarly, the choice of operating systems
should have no influence on how the data is represented externally. For
programming languages, data produced by a C program should be readable by
a Fortran or Pascal program.

The XDR standard depends on the assumption that bytes (or octets) are
portable. (A byte is eight bits of data.) Hardware that encodes bytes onto
various media should preserve the bytes' meanings across hardware boundaries.
Both HP and DEC VAX computer hardware implementations adhere to the
standard.

The XDR standard also suggests a language used to describe data.
The language is a "changed" Cj it is a data description language, not a
programming language.

Basic Block Size

The representation of all items requires a multiple of 4 bytes (or 32 bits) of
data. The bytes are numbered 0 through n-1, where (n mod 4) = o. The bytes
are read, or written to, a byte stream such that byte m always precedes byte
m+l.

Integer

An XD R signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,21.47483647]. The integer is represented in two's complement
notation. The most and least significant bytes are 0 and 3, respectively. The
data description of integers is integer.

5·36 XDR Protocol Specification

Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a non-negative
integer in the range [0,4294967295]. It is represented by an unsigned binary
number whose most and least significant bytes are 0 and 3, respectively. The
data description of unsigned integers is unsigned.

Enumerations

Enumerations have the same representation as integers and are useful for
describing subsets of the integers. The data description of enumerated data is
as follows.

typede£ enum { name - value, ... } type-name;

For example, you could describe the three colors red, yellow, and blue by an
enumerated type.

typede£ enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

Booleans

Since booleans are important and occur frequently, they warrant their own
explicit type in the standard. The boolean type is an enumeration with the
following form.

typede£ enum { FALSE = 0, TRUE = 1 } boolean;

XDR Protocol Specification 5·37

Floating Point and Double Precision

The standard defines the encoding for the floating point data types float (32
bits or 4 bytes) and double (64 bits or 8 bytes). The standard encodes the
following three fields to describe the floating point number.

s

E

F

The sign of the number. Values 0 and 1 represent positive and
negative, respectively.

The exponent of the number, base 2. Type float devotes 8
bits to this field; double devotes 11 bits. The exponents for
float and double are biased by 127 and 1023, respectively.

The fractional part of the number's mantissa, base 2. Type
float devotes 23 bits to this field; double devotes 52 bits.

Therefore, the floating point number is described as follows.

(-1)8 * 2(E-Bias) * (l.f)

Just as the most and least significant bytes of a number are 0 and 3, the most
and least significant bits of a single-precision floating point number are 0 and
31. The beginning bit (and most significant bit) offsets of S, E, and Fare 0, 1,
and 9, respectively.

Type double has the analogous extensions. The beginning bit (and most
significant bit) offsets of S, E, and Fare 0, 1, and 12, respectively.

Consult the ANSI-IEEE 754-1985 specification concerning the encoding for
signed zero, signed infinity (overflow), and denormalized numbers (underflow).
Under ANSI-IEEE 754-1985 specifications, the "NaN" (not a number) is a
system dependent and should not be used.

5-38XDR Protocol Specification

Opaque Data

You may need to pass fixed-sized uninterpreted data among nodes. This data is
called opaque and is described as follows.

typedef opaque type-name[n];
opaque name[n];

The n is the (static) number of bytes necessary to contain the opaque data.
If n is not a multiple of four, then the n bytes are followed by enough (up to
three) zero-valued bytes to make the total byte count of the opaque object a
multiple of four.

Counted Byte Strings

The XnR standard defines a string of n (numbered 0 through n-l) bytes to be
the number n encoded as unsigned and followed by the n bytes of the string.
If n is not a multiple of four, the n bytes are followed by enough (up to three)
zero-valued bytes to make the total byte count a multiple of four. The data
description of strings is as follows:

typedef string type-name<N>;
typedef string type-name<>;
string name<N>;
string name<>;

Note that the data description language uses angle brackets « and» to
denote anything that varies in length (instead of square brackets to denote
fixed-length sequences of data).

The constant N denotes an upper bound of the number of bytes that a string
can contain. The protocol using XnR specifies N which must be less than
2 32 - 1. For example, a filing protocol may state that a file name can be no
longer than 255 bytes.

string filename<255>;

The XnR specification does not define what the individual bytes of a string
represent. This important information is left to higher-level specifications. A
reasonable default is to assume the bytes encode ASCII characters.

XDR Protocol Specification 5·39

Fixed Arrays

The data description for fixed-size arrays of homogeneous elements is as
follows.

typedef elementtype type-name[n];
elementtype name[n];

Fixed-size arrays of elements numbered 0 through n-1 are encoded by
individually encoding the elements of the array in their natural order, 0
through n-1.

Counted Arrays

Counted arrays provide the ability to encode variable-length arrays of
homogeneous elements. The array is encoded as the element count n (an
unsigned integer), followed by the encoding of each of the array's elements.
Array elements start with element 0 and progress through element n -1.

The data description for counted arrays is similar to that of counted byte
strings.

typedef elementtype type-name<N>;
typedef elementtype type-name<>;
elementtype name<N>;
elementtype name<>;

The constant N specifies the maximum acceptable element count of an array
that must be less than 2 32 - 1.

5·40 XDR Protocol Specification

Structures

The data description for structures is very similar to that of standard C.

typedef struct {
component-type component-name;

} type-name;

An XDR routine generally encodes the structure components in the order of
their declaration in the structure, but need not do so.

Discriminated Unions

A discriminated union is a type composed of a discriminant followed by a
type selected from a set of pre-arranged types according to the value of the
discriminant. The type of the discriminant is always an enumeration. The
component types are called "arms" of the union. The discriminated union is
encoded as its discriminant followed by the encoding of the implied arm. The
data description for discriminated unions is as follows.

typedef union switch (discriminant-type) {
discriminant-value: arm-type;

default: default-arm-type;
} type-name;

The default arm is optional. If it is not specified, a valid encoding of the union
cannot take on unspecified discriminant values. Most specifications do not need
or use default arms.

Missing Specifications

The XDR standard lacks representations for bit fields and bitmaps since it is
based on bytes. However, this lack of representations does not mean bit fields
and bit maps cannot be represented.

XDR Protocol Specification 5·41

Library Primitive I XDR Standard Cross Reference

The following table describes the association between the C library primitives
and the standard data types.

C Primitive XnR Type

xdr _int xdr _long xdr _short Integer

xdr_u_int xdr_u_long xdr_u_short Unsigned

xdr_tloat Float

xdr_double Double

xdr_enum enum_t

xdr_bool booLt

xdr_string xdr_bytes String

xdr_array (Varying arrays)

xdr_vector (Fixed arrays)

xdr_opaque Opaque

xdr_union Union

xdr _ret erence xdr _pointer Pointers

xdr _char xdr _u_char Char

User Provided Struct

5-42 XDR Protocol Specification

Advanced XDR Topics
This section describes techniques for passing data structures that are not
covered in the preceding sections. Such structures include linked lists (of
arbitrary lengths).

Unlike the simpler examples covered in the earlier sections, the following
examples use both the XDR C library routines and the XDR data description
language.

Linked Lists

The following C data structure example contains XDR routines for a person's
gross assets and liabilities.

EXAMPLE:

struct gnumbers {
long g_assetsj
long g_liabilitiesj

}j

bool_t
xdr_gnumbers (xdrs t gp)

XDa *xdrSj
struct gnumbers *gPj

{

if (xdr_long(xdrs t I:(gp->g_assets»)
return(xdr_long(xdrs t i(gp->g_liabilities»)j

return(FALSE)j
}

XDR Protocol Specification 5-43

Now assume you wish to implement a linked list of such information. You
could construct a data structure as follows.

typedef struct gnnode {

};

struct gnumbers gn_numbers;
struct gnnode *nxt;

typedef struct gnnode *gnumbers_list;

Think of the head of the linked list as representing the entire link list. The
nxt field indicates whether or not the object has terminated. If the object
continues, the nxt field is also the address of where it continues. The link
addresses carry no useful information when the object is serialized.

The XnR data description of this linked list is described by the recursive type
declaration of gnumbers_list.

struct gnumbers {

};

unsigned g_assets;
unsigned g_liabilities;

typedef union switch (boolean) {
case TRUE: struct {

};

struct gnumbers current_element;
gnumbers_list rest_of_list;

case FALSE: struct {};
} gnumbers_list;

In this description, the boolean indicates whether there is more data following
it. If the boolean is FALSE, it is the last data field of the structure. If
it is TRUE, it is ~ollowed by a gnumbers structure and (recursively) by a
gnumbers_list (the rest of the object). Note that the C declaration has no
boolean explicitly declared in it (though the nxt field implicitly carries the
information). The XnR data description has no pointer explicitly declared in
it.

5·44 XDR Protocol Specification

Hints for writing a set of XDR routines to successfully serialize or deserialize
a linked list of entries are in the XDR description of the pointer-less data.
This set includes the mutually recursive routines xdr _gnumbers_list,
xdr_wrap_list, and xdr_gnnode.

bool_t
xdr_gnnode(xdrs. gp)

XOR *xdrs;
struct gnnode *gp;

{

return(xdr_gnumbers(xdrs. t(gp->gn_numbers)) t
xdr_gnumbers_list(xdrs. t(gp->nxt)));

}

bool_t
xdr_wrap_list(xdrs. glp)

XOR *xdrs;
gnumbers_list *glp;

{

return(xdr_reference(xdrs. glp. sizeof(struct gnnode).
xdr_gnnode));

}

struct xdr_discrim choices[2] • {
1*
* called if another node needs (de)serializing
*1
{ TRUE. xdr_wrap_list }.
1*
* called when no more nodes need (de)serializing
*1
{ FALSE. xdr_void }

}

XDR Protocol Specification 5·45

bool_t
xdr_gnumbers_list(xdrs. glp)

XDR *xdrs;
gnumbers_list *glp;

{

}

more_data" (*glp != (gnumbers_list)NULL);
return(xdr_union(xdrs. tmore_data. glp. choices. NULL»;

The entry routine is xdr_gnumbers_list(); it translates between the boolean
value more_data and the list pointer values. If there is no more data, the
xdr_union() primitive calls xdr_void() and the recursion terminates.
Otherwise, xdr _union 0 calls xdr _wrap_list () to dereference the list
pointers. The xdr _gnnode () routine actually serializes or deserializes data of
the current node of the linked list and recursively calls xdr_gnumbers_list()
to handle the remainder of the list.

These routines function correctly in all three directions (XDR_ENCODE,
XDR_DECODE, and XDR_FREE) for linked lists of any length (including zero).
Note, the boolean more_data is always initialized, but in the XDR_DECODE case
it is overwritten by an externally generated value. Also note the value of the
bool_ t is lost in the stack. The value is reflected in the list's pointers.

If serializing or deserializing a list with these routines, the C stack grows
linearly with respect to the number of nodes in the list. This linear growth
is due to the recursion. The routines are also hard to code and understand
due to the number and nature of primitives involved (e.g., xdr _reference,
xdr _union, and xdr _ void).

5-46 XDR Protocol Specification

EXA1IPLE: This example routine collapses the recursive routines. It also
has other optimizations as discussed afterwards.

bool_t
xdr_gnumbers_Iist(xdrs, glp)

XOR *xdrs;

{

}

gnumbers_Iist *glp;

while (TRUE) {
more_data - (*glp !- (gnumbers_Iist)NULL);
if (!xdr_bool(xdrs, tmore_data»

return(FALSE);
if (! more_data)

return (TRUE) ; 1* we are done *1
if (!xdr_reference(xdrs, glp, sizeof(struct gnnode).

xdr _gnumbers))
return(FALSE);

glp - t«*glp)->nxt);
}

This routine is easier to code and understand than the above three recursive
routines, but still has difficulties. The parameter glp is treated as the address
of the pointer to the head of the remainder of the list to be serialized or
deserialized. Thus, glp is set to the address of the current node's nxt field at
the end of the while loop. The discriminated union is implemented in-line; the
variable more_data has the same use in this routine as in the above routines.
Its value is recomputed and re-serialized or re-deserialized each iteration of
the loop. Since *glp is a pointer to a node, the pointer is dereferenced using
xdr _reference. Note that the third parameter is truly the size of a node (data
values plus nxt pointer), while xdr_gnumbers() only serializes or deserializes
the data values. This optimization works only because the nxt data occurs
after all legitimate external data.

The routine has difficulties in the XDR_FREE case. The xdr_reference() frees
the node *glp. Upon return, the assignment glp = 1:((*glp) ->nxt) cannot be
guaranteed to work since *glp is no longer a legitimate node.

XDR Protocol Specification 5·47

The following rewrite works in all cases. Avoid dereferencing a pointer that was
not initialized or already freed.

bool_t
xdr_gnumbers_Iist(xdrs, glp)

XDR *xdrs;
gnumbers_Iist *glp;

{

}

bool_t more_data;
bool_t freeing;
gnumbers_Iist *next; /* the next value of glp */

freeing· (xdrs->x_op •• XDR_FREE);
while (TRUE) {

}

more_data - (*glp !- (gnumbers_Iist)NULL);
if (!xdr_bool(xdrs, imore_data»

return(FALSE);
if (!more_data)

return(TRUE); /* we are done */
if (freeing)

next • i«*glp)->nxt);
if (!xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnumbers»
return(FALSE);

glp - (freeing) ? next: i«*glp)->nxt);

Note that the previous example inspects the direction of the operation
xdrs->x_op. The correct iterative implementation is still easier to understand
or code than the recursive implementation. It is certainly more efficient with
respect to C stack usage.

5·48 XDR Protocol Specification

Record Marking Standard

Record marking (RM) is the process of delimiting one message from another
when RPC messages pass on top of a byte stream protocol (like TCP lIP). RM
helps detect and possibly recover from user protocol errors. This RM/TCP lIP
transport passes RPC messages on TCP streams. One RPC message fits into
one RM record. A record contains one or more record fragments. A record
fragment is a 4-byte header followed by 0 to 231 _1 bytes of fragment data. The
bytes encode an unsigned binary number; as with XDR integers, the byte order
is from highest to lowest. The number encodes two values:

• A boolean indicating whether the fragment is the last fragment of the record
(bit value 1 implies the fragment is the last fragment) .

• A 31-bit unsigned binary value that is the length in bytes of the fragment's
data.

The boolean value is the highest-order bit of the header; the length is the 31
low-order bits. (Note that this record specification is not in XDR standard
form.)

XDR Protocol Specification 5·49

Synopsis of XDR Routines

Routine xdr_arrayO

Description A filter primitive that translates between arrays and their
corresponding external representations.

The parameter arrp is the address of the pointer to the array.

The parameter sizep is the address of the element count of the
array; this element count cannot exceed maxsize. The parameter
elsize is the sizeofO each of the array's elements.

The parameter elproc is an XDR filter that translates between
the array elements' C form and their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_array(xdrs. arrp. sizep. maxsize. elsize, elproc)

XDR*xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elrpoc;

5·50 XDR Protocol Specification

Routine xdr_bool()

Description A filter primitive that translates between booleans (C integers)
and their external representations.

When encoding data, this filter produces values of either TRUE or
FALSE. This routine returns TRUE if it succeeds or FALSE if it does
not.

Synopsis bool_t
xdr_bool(xdrs, bp)

XDa *xdrs;
bool_t *bp;

Routine xdr_bytesO

Description A filter primitive that translates between counted byte strings
and their external representations.

The parameter sp is the address of the byte string pointer.

The length of the byte string is located at address s izep; byte
strings cannot be longer than maxsize.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_bytes(xdrs, sp, sizep, maxsize)

XDa *xdrs;
char **sp;
u_int *sizep, maxsize;

XDR Protocol Specification 5-51

Routine xdr_char()

Description A filter primitive that translates between C characters and their
external representations. This routine returns TRUE if it succeeds
or FALSE if it does not.

Synopsis bool_t
xdr_char(xdrs. cp)

XDR *xdrSj
char *cp;

Routine xdr _destroy ()

Description A macro that invokes the destroy routine associated with the
XD R stream xdrs.

Destruction usually involves freeing private data structures
associated with the stream.

Using xdrs after invoking xdr_destroyO is undefined.

Synopsis void
xdr_destroy(xdrs)

XDR *xdrs;

5·52 XDR Protocol SpeCification

Routine xdr_double()

Description A filter primitive that translates between C double precision
numbers and their external representations.

This routine returns TaUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr _double (xdrs, dp)

XDa *xdrs;
double *dpj

Routine xdr_enum()

Description A filter primitive that translates between the C enum (an integer)
and its external representation.

This routine returns TaUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_enUlll(xdrs, ep)

XDa *xdrSj
enUlll_ t *ep j

XDR Protocol Specification 5·53

Routine

Description

Synopsis

Routine

Description

Synopsis

xdr _float ()

A filter primitive that translates between the C float and its
external representation.

This routine returns TRUE if it succeeds or FALSE if it
does not.

bool_t
xdr_float(xdrs. fp)

XOR *xdrs;
float *fp;

xdr_getpos()

A macro that invokes the get-position routine associated with the
XDR stream xdrs.

The routine returns an unsigned integer to indicate
the XDR byte stream position. A desirable feature of XDR
streams is that simple arithmetic works with this number,
although the XDR stream instances need not guarantee this.

If this routine fails, it returns (u_int) -1.

u_int
xdr_getpos(xdrs)

XOR *xdrs;

5·54 XDR Protocol Specification

Routine xdr_free

Description This routine frees the memory that an XDR data structure
occupies. It can be used on arbitrary structures.

The first parameter, proc, is a pointer to the XDR routine for
the object being freed. The second parameter, objp, points to
the object to be freed.

Synopsis void
xdr_free(proc, objp)

xdrproc_ t proc;
char *objp;

Note The pointer passed to this routine is NOT freed, but what it
points to is freed.

Routine xdr_inlineO

Description A macro that invokes the in-line routine associated with the
XDR stream xdrs.

The routine returns a pointer to a contiguous piece of the
stream's buffer; len is the byte length of the desired buffer.

The pointer is cast to long *.

Synopsis long *
xdr _inline (xdrs, len)

XDR *xdrs;
int len;

Note The xdr _inline () function may return NULL if it cannot
allocate a contiguous piece of a buffer; therefore, the behavior
may vary among stream instances. The xdr_inline() routine
exists for the sake of efficiency, though HP recommends that you
do not use it.

XDR Protocol Specification 5·55

Routine xdr_intO

Description A filter primitive that translates between C integers and their
external representations.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool_ t xdr _mt (xdrs tip)
XOR *xdrsi
int *iPi

Routine xdr_longO

Description A filter primitive that translates between C long integers and
their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_Iong(xdrs t Ip)
XOR *xdrsi
long * IPi

5-56 XDR Protocol Specification

Routine xdr _opaque 0

Description A filter primitive that translates between fixed size opaque data
and its external representation.

The parameter cp is the address of the opaque object, and cnt is
its size in bytes.

This routine returns TRUE if it succeeds or FALSE if it does
not.

Synopsis bool_t
xdr _ opaque (xdrs. cp. cnt)

XDR *xdrs;
chap *cp;
u_int cnt;

Routine xdr _pointerO

Description A routine that is similar to xdr_reterenceO in that it
provides pointer dereferencing within structures. It differs
from xdr_reterenceO in its ability to handle NULL
pointers. Therefore xdr_pointerO can create recursive data
structures, such as binary trees or linked lists, correctly, whereas
xdr _ret erence () will fail.

The parameter xproc is an XDR procedure that
filters the structure between its C form and its external
representation.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis xdr_pointer(xdrs. objpp. objsize. xproc)
XDR *xdrs;
char **objpp;
u_int objsize;
xdrproc_ t xproc;

XDR Protocol Specification 5·57

Routine xdr _reterence ()

Description A primitive that provides pointer dereferencing within structures.

The parameter pp is the address of the pointer.

The parameter size is the sizeot () the structure to which *pp

points.

The parameter proc is an XnR procedure that filters the
structure between its C form and its external representation.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr _reference (xdrs t PP t size t proc)

XOR *xdrs;
char **pp;
u_int size;
xdrproc_ t proc;

Routine xdr_setpos()

Description A macro that invokes the set position routine associated with the
xn R stream xdrs.

The parameter pos is a position value obtained from
xdr_getpos.

This routine returns TRUE if the XnR stream could be
repositioned or FALSE if it could not.

Synopsis bool_t
xdr_setpos(xdrs t pos)

XOR *xdrs;
u_int pos;

Note Since it is difficult to reposition some types of XnR streams,
this routine may fail with one type of stream and succeed with
another. ,

5-58 XDR Protocol Specification

Routine xdr _short ()

Description A filter primitive that translates between C short integers and
their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_short(xdrs, sp)

IDR .xdrs;
short .sp;

Routine xdr_string()

Description A filter primitive that translates between null-terminated strings
and their corresponding external representations.

Strings cannot be longer than maxsize.

The parameter sp is the address of the string's pointer.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_string(xdrs, sp, maxsize)

IDR .xdrs;
char •• SPi
u_int maxsize i

XDR Protocol Specification 5·59

Routine xdr_u_char()

Description A filter primitive that translates between C unsigned characters
and their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_u_char(xdrs, ucp)

XDa *xdrs;
uns igned char *ucp;

Routine xdr_union()

Description A filter primitive that translates between a discriminated C
union and its corresponding external representation.

The parameter dscmp is the address of the union's discriminant.

The parameter unp in the address of the union.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_union(xdrs, dscmp, ump, choises, dfault)

XOR *xdrSj
int *dBcmpi
char *unp;
Btruct xdr _diBcrim *choiseB;
xdrproc_ t df aul t ;

5-60 XDR Protocol Specification

Routine xdr_vectorO

Description A filter primitive that translates between fixed-length arrays and
their corresponding external representations.

The parameter arrp is the address of the beginning of the
array. The parameter elsize is the sizeof of each of the array's
elements, and elproc is an XDR filter that translates between
the array elements' C form and their external representation.

This routine returns TRUE if it succeeds and FALSE if does not.

Synopsis bool_t
xdr_vector(xdrs. arrp. size. elsize. elproc)

XOR *xdrs;
char *arrp:
u_int size. elsize:
xdrproc_t elproc:

Routine xdr_void()

Description This routine takes no arguments and always returns TRUE.

Synopsis bool_t
xdr_void()

Note Use this routine when an XDR routine is required

XDR Protocol Specification 5-61

Routine xdr _wrapstring()

Description A primitive that calls xdr _string (xdrs ,sp ,MAXUNSIGNED)
where MAXUNSIGNED is the maximum value of an unsigned

integer.

This routine is useful because the RPC package passes only
two parameter XnR routines; xdr_string(), one of the most
frequently used primitives, requires three parameters.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_wrapstring(xdrs. sp)

xnR *xdrs;
char **sp;

Routine xdr_u_int()

Description A filter primitive that translates between C unsigned integers
and their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_u_int(xdrs, up)

xnR *xdrs;
uns igned *up;

5·62 XDR Protocol Specification

Routine xdr_u_Iong()

Description A filter primitive that translates between C unsigned long
integers and their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr _u_Iong (xdrs t ulp)

XOR *xdrs;
unsigned long *ulp;

Routine xdr_u_short()

Description A filter primitive that translates between C unsigned short

integers and their external representations.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdr_u_short(xdrs t usp)

XOR *xdrs;
unsigned short *usp:

XDR Protocol Specification 5-63

Routine xdrmem_create ()

Description This routine initializes the XDR stream object pointed to by
xdrs.

The stream's data is written to, or read from, memory at
location addr whose length is no more than size bytes long.

The op determines the direction of the XDR stream
(either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Synopsis void
xdrmem_create (xdrs, addr, size, op)

XOR *xdrs;
char *addr;
u_int size;
enum xdr _op op;

5·64 XDR Protocol Specification

Routine xdrrec_create{)

Description This routine initializes the XDR stream object pointed to by
xdrs.

The stream's data is read from a buffer of size recvsize; it can
also be set to a suitable default by passing a zero value.

The stream's data is written to a buffer of size send-
size; it can also be set to a suitable default by passing a zero
value.

When a stream's input buffer is empty, readit() is called. When
a stream's output buffer is full, writeit() is called.

The behavior of these two routines is similar to the UNIX system
calls read() and write (), except that handle is passed to the
former routines as the first parameter.

The XDR stream's op field must be set by the caller.

Synopsis void
xdrrec_createexdrs. sendsize. recvsize. handle. readit.

vriteit)
XOR *xdrs;
u_int sendsize. recvsize;
char *handle;
int e*readit) (). (*writeit) () ;

Note Additional bytes in the stream are used to provide record
boundary information.

XDR Protocol Specification 5-65

Routine xdrrec_endofrecord()

Description Invoke this routine only on streams created by xdrrec_create.

The data in the output buffer is marked as a completed record.

The output buffer is optionally written out if sendnow is nonzero.

This routine returns TRUE if it succeeds or FALSE if it does not.

Synopsis bool_t
xdrrec_endofrecord(xdrs, sendnow)

XOR *xdrs;
int sendnow;

Routine xdrrec_eof ()

Description Invoke this routine only on streams created by xdrrec_create.

After consuming the remainder of the current record in the
stream, this routine returns TRUE if the stream has no more input
or FALSE if it does.

Synopsis bool_t
xdrrec_eof(xdrs)

XOR *xdrs;

5·66 XDR Protocol Specification

Routine xdrrec_skiprecord()

Description Invoke this routine only on streams created by xdrrec_create.

This routine tells the XnR implementation that the rest of the
current record in the stream's input buffer should be discarded.

This routine returns TRUE if it succeeds or FALSE if it
does not.

Synopsis bool_t
xdrrec_skiprecord(xdrs)

XOR *xdrs;

Routine xdrstdio_create()

Description This routine initializes the XnR stream object pointed to by
xdrs.

The XnR stream data is written to or read from the Standard
I/O stream tile.

The parameter op determines the direction of the XnR stream
(either XDR_ElCODE, XDR_DECODE, or XDR_FREE).

Synopsis void
xdrBtdio_create(xdrB, file, 0p)

XOR *XdrB;
FILE *file;
enUll xdr _ op op;

Note The destroy routine associated with such XnR streams calls
ttlush() on the tile stream.

XDR Protocol Specification 5·67

6
RPC Protocol Specification

This chapter explains the message protocol that is used to implement the RPC
(Remote Procedure Call) package. The protocol is specified with the XDR
(eXternal Data Representation) language.

You should be familiar with both RPC and XDR before reading this chapter.

RPC Protocol Specification 6-1

RPC Model
The RPC model is similar to the local procedure call model. In the local case,
the caller places arguments to a procedure in a specific location (e.g., a result
register). It then transfers control to the procedure and eventually gains back
control. The results of the procedure are extracted from the specified location,
and the caller continues execution.

The remote procedure call is similar, except that one thread of control winds
through two processes: one is a caller's process, the other is a server's process.

The caller process sends a call message to the server process and waits (blocks)
for a reply message. The call message contains the procedure's parameters,
and the reply message contains the procedure's results. After receiving the
reply message, the caller process extracts the procedure results and resumes
execution.

On the server side, a process is dormant while awaiting the arrival of a call
message. When one arrives, the server process does the following:

• Extracts the procedure's parameters.

• Computes the results.

• Sends a reply message.

• Waits for the next call message.

Note that only one of the two processes is active at any given time. The RPC
protocol does not explicitly support simultaneous execution of caller and server
processes.

6·2 RPC Protocol Specification

Transports and Semantics

Since the RPC protocol is independent of transport protocols, it does not
care how a message passes from one process to another. It determines the
specification interpretation of messages, but does not determine the specific
semantics.

An RPC message-passing protocol using UDP lIP is unreliable. Thus, if the
caller retransmits call messages after short time-outs, the only thing it can
determine from no reply message is that the remote procedure was executed
zero or more times. The only thing is can determine from a reply message is
that the remote procedure was executed one or more times.

An RPC message-passing protocol using TCP lIP is reliable. No reply message
means the remote procedure was executed at most once. A reply message
means the remote procedure was executed exactly once.

Note RPC is implemented on top of the TCP lIP and UDP lIP
transports.

Message Authentication

The RPC protocol provides the fields necessary for a client to identify itself to
a service and vice versa. You can build security access-control mechanisms on
top of the message authentication.

RPC Protocol Specification 6·3

RPC Protocol Requirements
The RPC protocol must provide for the following:

• Unique specification of a procedure to be called.

• Provisions for matching response messages to request messages.

• Provisions for authenticating the caller to service and vice versa.

The features that detect the following are required because of protocol roll-over
errors, implementation defects, user error, and network administration:

• RPC protocol mismatches.

• Remote program protocol version mismatches.

• Protocol errors (e.g., mis-specification of a procedure's parameters).

• Reasons why remote authentication failed.

• Any other reasons why the desired procedure was not called.

Remote Programs and Procedures

The RPC call message has three unsigned fields:

• Remote program number.

• Remote program version number.

• Remote procedure number.

These fields uniquely identify the procedure being called. A central authority
administers the program numbers. Once you have a program number, you can
implement a remote program; the first implementation would most likely have
the version number of 1. Since most new protocols evolve into more stable and
mature protocols, a version field of the call message identifies which protocol
version the caller is using. Version numbers enable you to speak old and new
protocols through the same server process.

The procedure number identifies the procedure being called. These numbers
are in the specific program's protocol specification. For example, a file service's
protocol specification may state that its procedure number 5 is read and
procedure number 12 is write.

6-4 RPC Protocol Specification

Just as remote program protocols may change over several versions, the actual
RPC message protocol can also change. Therefore, the call message also has
the RPC version number in it. This documentation describes version 2 of the
RPC protocol.

The reply message to a request message has ample information to distinguish
the following error conditions.

• The remote implementation of RPC does not speak protocol version 2.

• The remote program is not available on the remote system.

• The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are returned.

• The requested procedure number does not exist. This is usually a caller side
protocol or programming error).

• The parameters to the remote procedure are invalid from the server's point
of view. (This error results from a disagreement about the protocol between
caller and service.)

RPe Protocol Specification 6-5

Authentication

The call message has two authentication fields: the credentials and verifier.
The reply message has one authentication field: the response verifier. The RPe
protocol specification defines all three fields as the following opaque type.

enum auth_flavor {
AUTH_NULL= 0 ,
AUTH_UNIX- 1,
AUTH_SHORT- 2
/* and more to be defined */

};
struct opaque_auth {

union switch (enum auth_flavor) {
default: string auth_body<400>;

};
};

Any opaque_auth structure is an auth_flavor enumeration followed by a
counted string whose bytes are opaque to the RPe protocol implementation.

Independent authentication protocol specifications describe the interpretation
and semantics of the data contained within the authentication fields.

If the server rejects the RPe call due to authentication parameters, the
response message states why they were rejected.

Refer to the "Portmapper Program Protocol" section for the definition of the
three authentication protocols.

6·6 RPC Protocol Specification

Program Numbers

Program numbers are assigned in groups of Ox20000000 as follows.

o - 1fffffff defined by Sun
20000000 - 3fffffff defined by user
40000000 - 5fffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

o - lfffffff def ined by Sun

Sun Microsystems, Inc. administers the first group of numbers which should be
identical for all systems. If you develop an application of general interest, that
application should receive an assigned number in the first range.

20000000 - 3fffffff defined by user

The second group of numbers is reserved for specific customer applications.
This range is primarily for debugging new programs.

40000000 - 5fffffff transient

The third group is reserved for applications that generate program numbers
dynamically.

60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

The final groups are reserved for future use and should not be used.

RPC Protocol Specification 6· 7

To register a protocol specification, send a request to the following
address. Please include a complete protocol specification similar to those in
this manual. In return, you will receive a unique program number.

Network Administration Office, Dept. NET
Information Networks Division
Hewlett-Packard Company
19420 Homestead Road
Cupertino, California 95014
408-447-3444

Additional RPe Protocol Uses

This protocol is for calling remote procedures. Each call message generates a
matching response message.

The protocol is also a message passing protocol with which you can implement
other non-RPC protocols. RPC message protocols are used for the following
two non-RPC protocols: batching (or pipelining) and broadcast RPC.

Batching

Batching allows a client to send an arbitrarily large sequence of call messages
to a server; it uses reliable byte stream protocols (like TCP lIP) for their
transport.

The client never waits for a reply from the server, and the server does not
send replies to batch requests. A non-batched RPC call usually terminates a
sequence of batch calls to flush the batched requests by waiting for positive
acknowledgement.

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to
the network and waits for numerous replies. Broadcast RPC uses unreliable,
packet-based protocols (like UDP lIP) as their transports. Servers that support
broadcast protocols only respond when the request is successfully processed
and are silent when errors occur.

6·8 RPC Protocol Specification

RPC Message Protocol
This section defines the RPC message protocol in the XDR data description
language.

Note The following code is an XDR specification, not C code.

enum msg_type {
CALL· 0,
REPLY· 1

};

/*
* A reply to a call message can take on two forms:
* the message was either accepted or rejected.
*/

enum reply_stat {
MSG_ACCEPTED • 0,
MSG_DENIED • 1

};

/*
* Given that a call message was accepted,the following is
* the status of an attempt to call a remote procedure.
*/

enum accept_stat {
SUCCESS· 0,
PROG_UNAVAIL=l,
PROG_MISMATCH • 2,
PROC_UNAVAIL = 3,
GARBAGE_ARGS = 4

};

/* RPC executed successfully */
/* remote has not exported program */
/* remote cannot support version # */
/* program cannot support procedure */
/* procedure cannot decode params */

RPC Protocol Specification 6·9

1*
* Reasons why a call message was rejected:
*1

enum reject_stat {
RPC_MISMATCH 0. 1* RPC version number != 2 *1
AUTH_ERROR = 1 1* remote cannot authenticate caller *1

};

1*
* Why authentication failed:
*1

enum auth_stat {

};

1*

AUTH_BADCRED = 1.
AUTH_REJECTEDCRED=2,
AUTH_BADVERF = 3,
AUTH_REJECTEDVERF=4.
AUTH_TOOWEAK • 5.

* The RPC message:

1* bad credentials (seal broken) *1
1* client must begin new session *1
1* bad verifier (seal broken) *1
1* verifier expired or replayed *1
1* rejected for security reasons *1

• All messages start with a transaction identifier. xid.
* followed by a two-armed discriminated union. The union's
* discriminant is a msg_type which switches to one of the
• two types of the message. The xid of a REPLY message
* always matches that of the initiating CALL message. NB:
* The xid field is only used for clients matching reply
* messages with call messages; the service side cannot
* treat this id as any type of sequence number.
*1

struct rpc_msg {
unsigned xid;

};

union switch (enum msg_type) {
CALL: struct call_body;
REPLY: struct reply_body;

};

6·10 RPC Protocol Specification

1*
* Body of an RPC request call:
* In version 2 of the RPC protocol specification. rpcvers
* must be equal to 2. The fields prog. verso and proc
* specify the remote program. its version number. and the
* procedure within the remote program to be called. After
* these fields are two authentication parameters: cred
* (authentication credentials) and verf (authentication
* verifier). The two authentication parameters are
* followed by the parameters to the remote procedure.
* which are specified by the specific program protocol.
*1

struct call_body {

};

1*

unsigned rpcvers; 1* must be equal to two (2) *1
unsigned prog;
unsigned vers;
unsigned proc;
struct opaque_auth cred;
struct opaque_auth verf;
1* procedure specific parameters start here *1

* Body of a reply to an RPC request.
* The call message was either accepted or rejected.
*1

struct reply_body {

};

union switch (enum reply_stat) {
MSG_ACCEPTED:struct accepted_reply;
MSG_DENIED:struct rejected_reply;

};

RPC Protocol Specification 6·11

1*
* Reply to an RPC request that was accepted by the server.
* Note: there could be an error even though the request
* was accepted. The first field is an authentication
* verifier that the server generates in order to validate
* itself to the caller. It is followed by a union whose
* discriminant is an enum accept_stat. The SUCCESS arm
* of the union is protocol specific. The PROG_UNAVAIL,
* PROC_UNAVAIL, and GARBAGE_ARGS arms of the union are
* void. The PROG_MISMATCH arm specifies the lowest and
* highest version numbers of the remote program that are
* supported by the server.
*1

struct accepted_reply {

};

struct op aque_authverf;
union switch (enum accept_stat) {

SUCCESS: struct {

};

1*
* procedure-specific results start here
*1

};

PROG_MISMATCH: struct {
unsigned low;
unsigned high;

};

default: struct {

};

1*
* void. Cases include PROG_UNAVAIL,
* PROC_UNAVAIL, and GARBAGE_ARGS.
*1

6·12 RPC Protocol Specification

1*
* Reply to an RPC request that was rejected by the server.
* The request can be rejected because of two reasons:
* either the server is not running a compatible version of
* the RPC protocol (RPC_MISMATCH), or the server refuses
* to authenticate the caller (AUTH_ERROR). In the case
* of refused authentication, failure status is returned.
*1

struct rejected_reply {

};

union switch (enum reject_stat) {
RPC_MISMATCH: struct {

unsigned low;
unsigned high;

};
AUTH_ERROR: enum auth_stat;

};

Authentication Parameter Specification

The RPC protocol does not define how to use authentication parameters.
Instead, it passes them, unmodified, between client and server. The client
and server applications are responsible for interpreting the authentication
parameters.

Note The RPC protocol allows you to specify your own form of
authentication, but to do so you must have access to the RPC
authentication source files. Implementations based on NFS 3.2
(including HP-UX 8.0 for HP 9000 computers) do not allow
you to define your own form of authentication.

RPe Protocol Specification 6·13

NULL Authentication

The caller may not know who it is, or the server may not care who the caller is.
In this case, the auth_flavor value (the discriminant of the opaque_auth' s
union) of the RPC message's credentials, verifier, and response verifier
is AUTH_NULL (0). The bytes of the auth_body string are undefined. We
recommend the string length be zero.

UNIX Authentication

The caller of a remote procedure may wish to identify himself as he is identified
on a UNIX system .

• The value of the credential's discriminant of an RPC call message is
AUTH_UNIX, which has a value of one (1) .

• The bytes of the credent ial'8 string encode the following XD R structure.

struct auth_unix
{

};

unsigned stamp;
string machinename<255>;
unsigned uid;
unsigned gid;
unsigned gids <8>;

6·14 RPe Protocol Specification

Field Description

stamp An arbitrary ID the caller node may generate

machinename The caller's host name

uid The caller's effective user ID

gid The caller's effective group ID

gids A counted array of group IDs containing the caller as a member.

The verifier accompanying the credentials should be AUTH_UNIX.

The discriminate value of the response verifier received in the server's reply
message may be AUTH_NULL or AUTH_SHORT.

For AUTH_SHORT, the bytes of the response verifier's string encode an
auth_opaque structure. This new auth_opaque structure may now be passed
to the server instead of the original AUTH_UNIX flavor credentials. The server
keeps a cache that maps shorthand auth_opaque structures (passed back in
a AUTH_SHORT style response verifier) to the caller's original credentials. The
caller can save network bandwidth and server CPU cycles by using the new
credentials.

The server may flush the shorthand auth_opaque structure at any time.
If this happens, the remote procedure call message is rejected due to an
authentication error. The reason for the failure is AUTH_REJECTEDCRED.
The caller may wish to try the original AUTH_UNIX style of credentials.

RPC Protocol Specification 6·15

Record Marking Standard

Record marking (RM) is the process of delimiting one message from another
when RPC messages pass on top of a byte stream protocol (like TCP lIP). RNI
helps detect and possibly recover from user protocol errors. This RM/TCP lIP
transport passes RPC messages on TCP streams. One RPC message fits into
one RM record.

A record contains one or more record fragments. A record fragment is a 4-byte
header followed by 0 to 231 _1 bytes of fragment data. The bytes encode an
unsigned binary number; as with XDR integers, the byte order is from highest
to lowest. The number encodes two values:

• A boolean indicating whether the fragment is the last fragment of the record
(bit value 1 implies the fragment is the last fragment) .

• A 31-bit unsigned binary value that is the length in bytes of the fragment's
data.

The boolean value is the highest-order bit of the header. The length is the 31
low-order bits. (Note that this record specification is not in XDR standard
form.)

6-16 RPC Protocol Specification

Portmapper Program Protocol
The portmapper program maps RPC program and version numbers to UDP lIP
or TCP lIP port numbers. This program makes dynamic binding of remote
programs possible.

This binding is desirable because the range of reserved port numbers is very
small and the number of potential remote programs is very large. By running
only the portmapper on a reserved port, the program can ascertain the port
numbers of other remote programs by querying the portmapper.

RPe Protocol

The XDR description language specifies the portmapper RPe protocol.

Port Mapper RPe Program Number: 100000
Version Number: 2
Supported Transports:

UDP/IP on port 111
RM/Tep/IP on port 111

RPe Procedures

The following subsections describe the RPC procedures of the portmapper.

RPC Protocol Specification 6·17

Function
Procedure

Version

Do Nothing

Procedure 0
Version 2

Set a
Mapping

Procedure 1
Version 2

Unset a
Mapping

Procedure 2
Version 2

Remote Procedure

o. PMAPPROC_NULL 0 returns 0

This procedure performs no work. By convention, procedure zero of
any protocol takes no parameters and returns no results.

1. PMAPPROC_SET (prog, vers ,prot ,port)
returns (resp)

unsigned prog;
unsigned vers;
uns igned prot;
uns igned port;
boolean resp;

• When a program is first available on a node, it registers with the
portmapper program on the same node.

• The program passes its program number prog, version number
vers, transport protocol number prot, and the port port on which
it awaits service requests.

• The procedure returns resp, whose value is TRUE if the procedure
successfully established the mapping or FALSE if it did not.

• The procedure refuses to establish a mapping if one already exists
for the tuple [prog, vers,prot].

2. PMAPPROC_UNSET (prog, vers, dummy 1 ,dummy2)
returns (resp)

unsigned prog;
uns igned vers;
unsigned dUlUlyl; /. value always ignored ./
unsigned dUlUly2; /. value always ignored ./
boolean resp;

When a program becomes unavailable, it should unregister with the
portmapper program on the same node. The parameters and results
have meanings identical to those of PMAPPROC_SET.

6·18 RPC Protocol Specification

I

I

I

I

Function
Procedure

Version Remote Procedure

Look Up 3. PMAPPROC_GETPORT (prog,vers,prot,dummy)

Mapping returns (port)

Procedure 3
unsigned prog;
uns igned vers;

Version 2 uns igned prot;
unsigned dummy;/* this value always ignored */
unsigned port; /* zero means program not registered */

Given a program number prog, version number vers, and transport
protocol number prot, this procedure returns the port number on
which the program is awaiting call requests. A port value of zero
means the program is not registered.

Dumping 4. PMAPPROC_DUMP 0 returns (maplist)

Mappings struct maplist {
union switch (boolean) {

Procedure 4 FALSE: struct { /* void, end of list */ };
Version 2 TRUE: struct {

unsigned prog;
unsigned vers;
unsigned prot;
uns igned port;
struct maplist the_rest;
};

};

} maplist;

This procedure enumerates all entries in the portmapper's database.
It takes no parameters and returns a list of program, version,
protocol, and port values.

RPC Protocol Specification 6·19

Function
Procedure

Version

Indirect Call
Routine

Procedure 5
Version 2

Remote Procedure

5. PMAPPROC_CALLIT (prog.vers.proc.args)
returns (port.res)

unsigned prog;
uns igned vers;
unsigned proc;
string args<8K>;
uns igned port;
string res<8K>;

This procedure allows a caller to call another remote procedure
on the same node without knowing the remote procedure's port
number. Its supports broadcasts to arbitrary remote programs via
the well-known portmapper's port.

Note: This procedure only sends a response if the procedure was
successfully executed and is silent (no response) otherwise.

6·20 RPC Protocol Specification

I

I

7
NIS Protocol Specification

The NIS (Network Information Service) distributed lookup service is a network
service providing read access to replicated databases. The client interface uses
the RPC (Remote Procedure Call) mechanism to access the NIS database
servers.

The NIS operates on an arbitrary number of map databases. Map names
provide the lower of two levels of a naming hierarchy. Maps are grouped into
named sets called NIS domains. NIS domain names provide the second, higher
level of naming. Map names must be unique within a domain, but may be
duplicated in different NIS domains. The NIS client interface requires both a
map name and an NIS domain name to access the NIS information.

The NIS achieves high availability by replication. Global consistency among
the replicated database copies should be addressed, though it is not covered
by the protocol. Every implementation should yield the same result at
steady state when a request is made of any NIS database server. Update and
update-propagation mechanisms must be implemented to supply the required
degree of consistency.

NIS Protocol Specification 7·1

Map Operations
Translating or mapping a name to its value is a very common operation
performed in computer systems. Common examples include translating the
following:

• A variable name to a virtual memory address.

• A user name to a system ID or list of capabilities.

• A network host name to an internet address.

You can perform two fundamental read-only operations on a map: match and
enumerate. Match means to look up a name (a key) and return its current
value. Enumerate means to return each key-value pair, one at a time.

The NIS supplies match and enumerate operations in a network environment.
It provides availability and reliability by replicating both databases and
database servers on multiple nodes within a single network. The database
is replicated, but not distributed; all changes are made at a single server and
eventually propagate to the remaining servers without locking.

7·2 NIS Protocol Specification

I"

'~

I

I

Remote Procedure Call (RPC)
The RPC (Remote Procedure Call) mechanism defines a paradigm for
interprocess communication modeled on function calls. Clients call functions
that optionally return values. All inputs and outputs to the functions are in
the client's address space. A server program executes the function.

Using RPC, clients address servers by a program number (to identify the
application level protocol that the server speaks) and a version number.
Additionally, each server procedure has a procedure number assigned to it.

In an internet environment, clients must also know the server's host internet
address and the server's port number. The server listens for service requests at
ports associated with a particular transport protocol: TCP lIP or UDP lIP.

The header files (included when the client interface functions are compiled)
typically define the format of the data structures used as inputs to and outputs
from the remotely executed procedures. Levels above the client interface
package need not know specifics about the RPC interface to the server.

NIS Protocol Specification 7·3

External Data Representation (XDR)
The XDR (eXternal Data Representation) specification establishes standard
representations for basic data types (e.g., strings, signed and unsigned integers,
structures, and unions) in a way that allows them to be transferred among
nodes with varying architectures. XDR provides primitives to encode and
decode basic data types. Constructor primitives allow arbitrarily complex data
types to be madefrom the basic types.

The NIS uses XDR's data description language to describe RPC input and
output data structures. Generally, the data description language looks like
the C language with a few extra constructs. One such extra construct is the
discriminated union. This construct is like a C language union in that it can
hold various objects; it differs in that it indicates which object it currently
holds. The discriminant is the first item across the network.

EXAMPLE:

union switch (long int) {

}

1: string exmpl_name<16>
0: unsigned int exmpl_error_code
default: struct {}

The first object (the discriminant) encoded or decoded is a long integer. If it
has the value one, the next object is a string. If the discriminant has the value
zero, the next object is an unsigned integer. If the discriminant takes any other
value, do not encode or decode any more data. The string data type in the
XDR data definition language adds the ability to specify the maximum number
of elements in a byte array or string of potentially variable size. For example

string domain<YPMAXDOMAIN>;

states that the byte sequence domain can be less than or equal to YPMAXDOMAIN
bytes long.

An additional primitive data type is a boolean that takes the value one to
mean TRUE and zero to mean FALSE. .

7·4 NIS Protocol Specification

I

NIS Database Servers

Maps and Map Operations

Map Structure

Maps are named sets of key-value pairs. Keys and their values are counted
binary objects and may be ASCII information. The client applications that
retrieve data from a map interpret the data comprising the map. The NIS has
neither syntactic nor semantic knowledge of the map contents. Neither does
the NIS determine or know any map's name. The NIS clients manage the map
names. An administrator outside the NIS system should resolve conflicts in the
map name space.

NIS maps are typically implemented as files or databases in a database
management system. The design of the NIS map database is an
implementation detail that the protocol does not specify.

Match Operation

The NIS supports an exact match operation in the YPPROC_MATCH procedure. If
a match string and a key in the map are exactly the same, the value of the key
is returned. The NIS does not support pattern matching, case conversion, or
wild carding.

Map Entry Enumeration

You can obtain the first key-value pair in a map with YPPROC_FIRST and
the next key-value pair with YPPROC_NEXT. To retrieve each entry once, call
YPPROC_FIRST once and YPPROC_NEXT repeatedly until the return value
indicates there are no more entries in the map. Making the same calls on the
same map at the same NIS database server enumerates all entries in the same
order. The actual order, however, is unspecified. Enumerating a map at a
different NIS database server does not necessarily return entries in the same
order.

NIS Protocol Specification 7·5

Entire Map Retrieval

The YPPROC_ALL operation retrieves all key-value pairs in a map with a single
RPC request. This operation is faster than map entry enumeration and it is
more reliable since it uses TCP. Ordering is the same as when enumeration is
applied.

Map Update

Updating the contents of an NIS map is an implementation detail that is
outside the NIS service specification.

Master and Slave NIS Database Servers

Each map has one NIS database server called the map's master. Map updates
occur only on the NIS master server. An updated map should transfer from the
master to the rest of the NIS database servers (slave servers).

Each map may have a different NIS database server as its master, all maps may
have the same master, or any other combination may exist. Implementation
and administrative policy determine how to configure the map masters.

Map Propagation and Consistency

Map propagation is the process of copying map updates from the master to
the slaves. The protocol does not specify technology or algorithms for map
propagation. Map propagation may be entirely manual. For exam pIe, you can
copy the maps from the master to the slaves at a regular interval or when a
change is made on the master.

To escape from the idiosyncrasies of any particular implementation, all maps
should be uniformly timestamped.

7·6 NIS Protocol Specification

Functions to Aid in Map Propagation

The NIS protocol does not specify the way a map transfers from one server to
another. One possibility is to transfer them manually. Another is for the NIS
database server to activate another process to perform the map transfer. A
third alternative is for a server to enumerate a recent version of the map using
the normal client map enumeration functions.

The YPPROC_XFR procedure requests the NIS server to update a map and
permits the actual transfer agent (a server process) to call back the requestor
with a summary status.

NIS Domains

NIS domains provide a second level for naming within the NIS subsystem.
Since they are names for sets of maps, you should create separate map name
spaces. NIS domains provide an opportunity to divide large organizations into
administrable portions and the ability to create parallel, non-interfering test
and production environments.

Ideally, the NIS domain of interest to a client is associated with the invoking
user. However, it is useful for client nodes to be in a default NIS domain.
Implementations of the NIS client interface should supply some mechanism for
telling processes the NIS domain name they should use. This mechanism is
necessary because of the following:

• The NIS domain concept is not essential to most applications .

• It allows you to write programs that are insensitive to both location and the
invoking user.

NIS Protocol Specification 7 • 7

NIS Non-features

The following capabilities are not included in the current NIS protocols.

Map Update within the NIS

Direct modification to a NIS map is outside the NIS subsystem.

Version Commitment Across Multiple Requests

The NIS protocol keeps the NIS database server stateless with regard to
its clients. Therefore, you do not have a facility for requesting a server to
pre-allocate any resource beyond that required to service any single request.
You do not have a way to commit a server to use a single version of a map
while trying to enumerate that map's entries. Using YPPROC_ALL should help
you avoid problems.

Guaranteed Global Consistency

No facility exists for locking maps during the update or propagation phases;
therefore, map databases will probably be globally inconsistent during these
phases. The set of client applications for which the NIS is an appropriate
lookup service must be tolerant of transient inconsistencies.

Access Control

The NIS database servers do not attempt to restrict access to the map data.
They will service all syntactically correct requests.

7·8 NIS Protocol Specification

I

I

I

I

I

NIS Database Server Protocol Definition

This section describes the protocol version 2.

RPC Constants

All numbers are in decimal.

NIS RPC Constant

YPPROG 100004

YPVERS 2

Other Manifest Constants

All numbers are in decimal.

NIS Constants

YPMAXRECORD 1024

YPMAXDOMAIN 64

YPMAXMAP 64

YPMAXPEER 64

Description

NIS database server protocol program
number

Current NIS protocol version

Description

The total maximum size of key and value
for any pair The absolute sizes of the
key and value may divide this maximum
arbitrarily

The maximum number of characters in a
NIS domain name

The maximum number of characters in a
map name

The maximum number of characters in a
NIS host name

NIS Protocol Specification 7·9

Remote Procedure Return Values

This section presents the return status values returned by several of the NIS
remote procedures. All numbers are in decimal.

Remote Procedures

ypstat

Return Status Values

t ypedef enWll {
YP _TRUE - 1. 1* General purpose success code. *1
YP_NOMORE = 2. 1* No more entries in map. *1
YP _FALSE - o. 1* General purpose failure code. *1
YP _NOMAP = -1. 1* No such map in domain. *1
YP _NODOM = -2. 1* Domain not supported. *1
YP _NOKEY - -3. 1* No such key in map. *1
YP_BADOP - -4. 1* Invalid operation. *1
YP _BADDB - -5. 1* Server database is bad. *1
yP _ YPERR - -6. 1* YP server error. *1
YP _BADARGS - -7. 1* Request arguments bad. *1
YP _VERS - -8 1* YP server version mismatch. *1

} ypstat

7·10 NIS Protocol Specification

I

I

I

Remote Procedures

ypxfrstat

Return Status Values

t ypedef enum {
YPXFR_SUCC 1. 1* Success *1
YPXFR_AGE 2. 1* Master's version not never *1
YPXFR_NOMAP = -1. 1* Cannot find server for map *1
YPXFR_NODOM = -2. 1* Domain not supported *1
YPXFR_RSRC = -3. 1* Local resource alloc failure *1
YPXFR_RPC = -4. 1* RPC failure talking to server *1
YPXFR_MADDR = -5. 1* Cannot get master address *1
YPXFR_ YPERR = -6. 1* YP server/map db error *1
YPXFR_BADARGS= -7. 1* Request arguments bad *1
YPXFR_DBM = -8. 1* Local database failure *1
YPXFR_FILE = -9. 1* Local file 1/0 failure *1
YPXFR_SKEW = -10. 1* Map version skew in transfer *1
YPXFR_CLEAR = -11. 1* Cannot clear local ypserv *1
YPXFR_FORCE = -12. 1* Must override defaults *1
YPXFR_XFRERR = -13. 1* ypxfr error *1
YPXFR_REFUSED= -14 1* ypserv refused transfer *1

} ypxfrstat

NIS Protocol Specification 7·11

Basic Data Structures

This section defines the data structures used as inputs to and outputs from the
NIS remote procedures.

Data Structure Definition

domainname typedef string domainname<YPMAXDOMAIN>

keydat typedef string keydat<YPMAXRECORD>

mapname typedef string mapname<YPMAXMAP>

peername typedef string peername<YPMAXPEER>

valdat typedef string valdat<YPMAXRECORD>

ypmaplist typedef struct {
mapname
ypmaplist *

} ypmaplist

ypmap_parms typedef struct {
domainname
mapname
unsigned long ordernum
peername

} ypmap_parms

This structure contains parameters giving information
about map mapname within NIS domain domainname.

The peername element is the name of the map's NIS
master database server.

If any of the three strings is null, the information is
unknown or unavailable.

The ordernum element contains a binary value
representing the map's creations time (order number); if
unavailable, this number is zero.

7 ·12 NIS Protocol Specification

I

I

I

Data Structure Definition

ypreq_key typedef struct {
domainname
mapname
keydat

} ypreq_key

ypreq_nokey typedef struct {
domainname
mapname

} ypreq_nokey

ypreq_xJr typedef struct {
struct ypmap_parms map_parms
unsigned long transid
unsigned long prog
unsigned short port

} ypreq_xfr

ypresp_all typedef union switch (boolean more) {
TRUE:

ypresp_key_val
FALSE:

struct { }
} ypresp_all

ypresp_key_val typedef struct {
ypstat
keydat
valdat

} ypresp_key_val

ypresp_maplist t ypedef s truct {
ypstat
ypmaplist *

} ypresp_maplist

ypresp_master typedef struct {
ypstat
peername

} ypresp_master

I

I NIS Protocol Specification 7 -13

I

Data Structure Definition

ypresp_order typedef struct {
ypstat
unsigned long ordernum

} ypresp_order

ypresp_val typedef struct {
ypstat
valdat

} ypresp_ val

ypresp_xfr typedef struct {
unsigned long transid
yp:drstat xfrstat

} ypresp_xfr

I

7·14 NIS Protocol Specification

I

NIS Database Server Remote Procedures

This section contains a specification for each function you can call as a remote
procedure. The XDR data definition language describes the input and output
parameters.

Function
Procedure

Version Remote Procedure

Do Nothing o. YPPROC_NULL () returns ()

Procedure 0 This procedure takes no arguments, does no work, and returns
Version 2 nothing. It is made available in all RPC services to allow server

response testing and timing.

Do You Serve 1. YPPROC_DOMAIR (domain) returns (serves)

This Domain? domainname domain;
boolean serves; I

Procedure 1
Version 2 This procedure returns TR UE if the server serves domain or

FALSE if it does not.

This procedure allows a potential client to determine if a given
server supports a certain NIS domain.

Answer Only If 2. YPPROC_DOMAIlCNONACK (domain) returns (serves)

You Serve This domainname domain;

Domain boolean serves;

Procedure 2 This procedure returns TRUE if the server serves domain;

Version 2 otherwise, it does not return.

This function is useful in a broadcast environment when you
want to restrict the number of useless messages.

If you call this function, the client interface implementation must
regain control in the negative case (e.g., by means of a timeout
on the response).

Note: The current implementation returns in the FALSE case by
forcing an RPC decode error.

NIS Protocol Specification 7·15

Function
Procedure

Version Remote Procedure

Return Value of a 3. YPPROC_MATCH (req) returns (resp)

Key ypreq_key req;
ypresp_ val resp;

Procedure 3 This procedure returns the value associated with the datum

Version 2 keydat in req.

If resp.stat has the value YP_TRUE, the value data are returned
in the datum valdat.

Get First 4. YPPROC_FIRST (req) returns (resp)

Key-Value ypreq_nokey req;

Pair in Map ypresp_key _val resp;

Procedure 4 If resp.stat has the value YP_TRUE, this procedure returns the

Version 2 first key-value pair from the map named in req to the keydat and
valdat elements within resp.

When status contains the value YP_NOJrIORE, the map is
empty.

Get Next 5. YPPROC_NEXT (req) returns (resp)
Key-Value Pair in ypreq_key req;

Map ypresp_key _val resp;

Procedure 5 If resp.stat has the value YP_TRUE , this procedure returns the

Version 2 key-value pair following the key-value named in req to the keydat
and valdat elements within resp.

If the passed key is the last key in the map, the value of resp.stat
is YP_NOMORE.

7 ·16 NIS Protocol Specification

Ftmction
Procedure

Version Remote Procedure

Transfer Map 6. YPPROC_XFR (req) returns (resp)
ypreq_xfr req;
ypresp_xfr resp;

Procedure 6 The NIS protocol specification does not declare what action is
Version 2 taken in response to this request. The action is implementation

dependent. Use this procedure for the following:

• To indicate to the server that a map should be updated

• To allow the actual transfer agent (whether it be the NIS
server process, or some other process)to call back the requestor
with a summary status.

The transfer agent should call back the program running on the
requesting host with program number req.prog, program version
1, and listening at port req.port.

The procedure number is 1, and the callback data is of type
ypresp_xfr.

The transid field should turn around req. transid, and the xfrstat
field should be set appropriately.

Re-ini tialize 7. YPPROC_CLEAR () returns ()
Internal State

The NIS protocol specification does not declare what action is
Procedure 7 taken in response to this request. The action is implementation
Version 2 dependent.

Different server implementations may have different amounts of
internal state (e.g., open files or the current map). This request
signals that all such state information should be erased.

NIS Protocol Specification 7 ·17

Function
Procedure

Version

Get All
Key-Value Pairs
in Map

Procedure 8
Version 2

Get Map Master
Name

I Procedure 9
Version 2

Get Map Order
Number

Procedure 10
Version 2

Get All Maps in
Domain

Procedure 11
Version 2

lteDnote Procedure

8. YPPROC_ALL (req) returns (resp)
ypreq_nokey req;
ypresp_all resp;

This procedure transfers all key-value pairs from a map with a
single RPC request.

When the union's discriminant is FALSE, no more key-value
pairs are returned.

The status field of the last ypresp_key_va/ structure should be
examined to determine why the flow of returned key-value pairs
stopped.

9. YPPROC_MASTER (req) returns (resp)
ypreq_nokey req;
ypresp_master resp;

I
This procedure returns the NIS master server's name inside the
resp structure.

10. YPPROC_ORDER (req) returns (resp)
ypreq_nokey req;
ypresp_order resp;

This procedure returns a map's order number as an unsigned
long integer to indicate when the map was built. This quantity
represents the number of seconds since 00:00:00 January 1, 1970,
GMT.

11. YPPROC_MAPLIST (req) returns (resp)
domainname req;
ypresp_maplist resp;

This procedure returns a list of all the maps in a NIS domain.

7 ·18 NIS Protocol Specification

I

NIS Binders
For any network service to work, potential clients must be able to find the
servers. This section describes the NIS binder, an optional element in the
NIS subsystem that supplies NIS database server addressing information to
potential NIS clients.

To address an NIS server in the Internet environment, a client must know the
following:

• The server's internet address.

• The port at which the server is listening for service requests.

This addressing information is sufficient to bind the client to the server. One
way to provide the addressing information is to allocate one entity on each
NIS client to keep track of the NIS servers and provide that information
to potential NIS clients on request. An NIS binder is useful under these
conditions:

• It is easier for a client to find the NIS binder than to find a NIS database
server.

• The NIS binder can find a NIS database server.

Assume the following statements about NIS binders to be true:

• An NIS binder should be present at every network node. This makes
addressing the NIS binder easier than addressing an NIS database server.
The scheme for finding a local resource is implementation specific. However,
given that a resource is guaranteed to be local, there may be an efficient way
of finding it.

• The NIS binder should be able to find an NIS database server. The means of
doing so, however, may be complicated and consume time and resources.

If either of these assumptions is incorrect, your implementation of NIS binders
is probably not a good solution for an NIS binder.

NIS Protocol Specification 7 ·19

If an NIS binder is implemented, it can provide added value beyond the
binding. For example, it can verify that the binding is correct and that the NIS
database server is working. The degree of certainty in a binding that the NIS
binder gives to a client is a parameter that can be configured appropriately in
the implementation.

NIS Binder Protocol Definition

This section describes version 2 of the protocol.

RPC Constants

All numbers are decimal.

RPC Constant Description

YPBINDPROG 100007 NIS binder protocol program number

YPBINDVERS 2 Current NIS binder protocol version

7 ·20 NIS Protocol Specification

I

I

I

Other Manifest Constants

All numbers are decimal.

RPC Constant

YPMAXDOMAIN
64

ypbind_resptype

ypbinderr

Description

The maximum number of characters in an NIS domain name

This constant is identical to the constant defined above in the
"NIS Database Server Protocol" section.

enum ypbind_resptype {
YPBIND_SUCC_VAL • 1.
YPBIND_FAIL_VAL • 2

}

This constant discriminates between success responses and
failure responses to a YPBINDPROC_DOMAIN request.

t ypedef enum {

YPBIND_ERR_ERR - 1. 1* Internal error *1
YPBIND_ERR_NOSERV = 2. 1* No bound server *1
YPBIND_ERR_RESC = 3 I * Can't allocate resource *1

} ypbinderr

The error case of most interest to an NIS binder client is
YPBIND_ERR~OSERV. This error means the binding request
cannot be satisfied because the NIS binder does not know how
to address any NIS database server in the named NIS domain.

NIS Protocol Specification 7·21

Basic Data Structures

This section defines the data structures used as inputs to and outputs from the
NIS binder remote procedures.

Remote
Procedures Return Status Values

domainname typedef string domainname <YPMAXDOMAIN>

This structure is identical to the domainname string defined
above in the "NIS Database Server Protocol" section.

ypbind_binding typedef struct {
uns igned long ypbind_binding_addr
unsigned short ypbind_binding_port

} ypbind_binding

This structure contains the information necessary to bind a
client to an NIS database server in the Internet environment.

The element ypbind_binding_addr holds the host IP address
(4 bytes), and ypbind_binding_port holds the port address
(2 bytes).

Both IP address and port address must be in ARPA network
byte order (most significant byte first), regardless of the host
node's native architecture.

ypbind_resp typedef struct {
union switch (enum ypbind_resptype status) {

YPBIND_SUCC_VAL:
ypbind_binding

YPBIND_FAIL_VAL:
ypbinderr

default:
{ }

}

} ypbind_resp

This structure is the response to a YPBINDPROC_DOMAIN
request.

7 -22 NIS Protocol Specification

Remote
Procedures

ypbind_setdom

Return Status Values

typedef struct {
domainname
ypbind_binding
version

} ypbind_setdom

This structure is the input data structure for the
YP BINDP ROC_SETDOM procedure.

NIS Binder Remote Procedures

The XDR data definition language describes the NIS binder remote procedures.

Function
Procedure \

Version Binder Remote Procedure

Do Nothing o. YPBINDPROC_NULL () returns ()

Procedure 0 This procedure does no work. It is made available in all RPC
Version 2 services to allow server response testing and timing.

Get Current 1. YPBINDPROC_DOMAIN (domain) returns (resp)

Binding for a domainname domain;

Domain ypbind_resp resp;

Procedure 1 This procedure returns the binding information necessary to

Version 2 address an NIS database server within the Internet environment.

Set Domain 2. YPBINDPROC_SETDOM (setdom) returns ()
Binding ypbind_setdom setdom;

Procedure 2 This procedure instructs an NIS binder to set its current binding
Version 2 using the passed information. This provides a way to override

the process the NIS binder usually uses to bind to an NIS server.

NIS Protocol Specification 7 ·23

Index

A

Access Control, NIS, 7-8
Addressing Information, NIS, 7-19
Arbitrary Data Structures, XDR, 5-7
Arbitrary Data Types, RPC, 3-11
Arrays, Fixed, 5-22, 5-40
ASCII Source Files, NIS, 2-6
Assign Program Numbers, 6-7
Authentication, RPC, 3-34, 6-3, 6-6, 6-13

B

NULL, 6-14
Parameter Specification, 6-13
UNIX, 6-14

Bad Union, 4-41
Basic Data Structures, NIS, 7-12, 7-22
Batching, RPC, 3-29, 6-8
Binders, NIS, 7-19

Protocol Definition, 7-20
Remote Procedures, 7-23

Block Size, XDR, 5-36
Booleans, XDR, 5-37
Broadcast RPC, 3-27-28, 6-8
Byte Arrays, XDR, 5-16

C

Callback Procedures, RPC, 3-46
callrpcO, 3-7
Client Side, RPC, 3-23, 3-34, 6-2
cl nLc all 0 , 3-56
clnt_destroyO, 3-59
clnLfreeresO, 3-59

clnt_geterrO, 3-60
clnt_perrnoO, 3-61
clnLperrorO, 3-61
clntraw _createO, 3-63
clnttcp_createO, 3-63
clntudp_createO, 3-64
Constants

ypbinderr, 7-21
ypbindJesptype, 7-21
YPBINDVERS 2, 7-20
YPMAXMAP 64,7-9
YPMAXRECORD 1024,7-9
YPPROG 100004, 7-9

Constants, Manifest, 7-9, 7-21
Constants, NIS, 7-9, 7-20
Constructed Data Type Filters, XDR, 5-

14
Counted Arrays, XDR, 5-40
Counted Byte Strings, XDR, 5-39
Credentials, RPC Authentication, 6-6

o
Database Servers, NIS, 7-5-6, 7-15
Data Structures

keydat, 7-12
mapname, 7-12
valdat, 7-12
ypmaplist, 7-12
ypmap_parms, 7-12
ypreq_key, 7-12
ypreq_nokey, 7-12
ypreq..xfr, 7-12

Index-1

ypresp_all, 7-12
ypresp_key _val, 7-12
ypresp_maplist, 7-12
ypresp_master, 7-15
ypresp_order, 7-12
ypresp_val, 7-12
ypresp-xfr, 7-15

Declarations
fixed-array, 4-36
pointer, 4-36
simple, 4-36
variable-array, 4-36

Deserializing, 3-11, 5-9
Discriminated Unions

NIS, 7-4
XDR, 5-23, 5-41

Documentation
Contents, 1-2
Guide, 1-6
Overview, 1-1

domainname, 7-22
Domains, NIS, 7-7
Double Precision, XDR, 5-38

E

Enumerations
NIS, 7-5
XDR, 5-13, 5-37

Error :Messages
General Syntax Errors, 4-44
Illegal Characters, 4-44
String Declaration, 4-42
Unkown Types, 4-43
Void Declarations, 4-43

Error Messages
IVIissing Quotes, 4-44

F

Filter Routines, XDR, 5-7
Filters

Constructed Data Type, 5-14

Index-2

Enumeration, 5-13
Floating Point, 5-12
Number, 5-11

Fixed Arrays, XDR, 5-22, 5-40
Floating Point, XDR, 5-12, 5-38

G
get..myaddressO, 3-66
gettransientO, 3-66

inetd, 3-38
inetd.confO Entry Formats, 3-39
inetd.confO Fields, 3-39
Integers

Signed, 5-36
Unsigned, 5-37
Variable Array, 3-13

I/O Streams, XDR, 5-30

J
Justification, XDR, 5-2

K

keydat, 7-12
Keyword, 4-40

L

Linked Lists, XDR, 5-43

M
Main Client Program, 4-8
Manifest Constants, NIS, 7-9, 7-21
Map

Consistency, 7-6, 7-8
Operations, 7-2,7-5
Propagation, 7-6
Retrieval, 7-6
Structure, 7-5
Update, 7-6, 7-8

mapname, 7-12

I

Master Servers, NIS, 7-6
Match Operation, NIS, 7-5
Memory Allocation, XDR, 3-20
Memory Streams, XDR, 5-31
Message Authentication, RPC, 6-3
Missing Specifications, XDR, 5-41
Multiple Requests, NIS, 7-8

N

Network Pipes, 5-4
NFS

Clients, 2-1
Description, 2-1
Servers, 2-1

NIS
Access Control, 7-8
Addressing Information, 7-19
ASCII Source Files, 2-6
Basic Data Structures, 7-12, 7-22
Binder Protocol Definition, 7-20
Binder Remote Procedures, 7-23
Binders, 7-19
Constants, 7-9, 7-20
Database Servers, 7-5-6, 7-15
Description, 2-5, 7-1
Discriminated Unions, 7-4
Domains, 7-7
Enumerations, 7-5
Manifest Constants, 7-9, 7-21
Map Consistency, 7-6, 7-8
Map Operations, 7-2, 7-5
Map Propagation, 7-6
Map Retrieval, 7-6
Map Structure, 7-5
Map Update, 7-6, 7-8
Master Servers, 7-6
Match Operation, 7-5
Multiple Requests, 7-8
Procedure 0 , 7-15
Procedure 1 , 7-15
Procedure 10 , 7-19

Procedure 11 ,7-19
Procedure 2 , 7-15
Procedure 3 , 7-15
Procedure 4 , 7-15
Procedure 5 , 7-15
Procedure 6 , 7-15
Procedure 7 , 7-15
Procedure 8 , 7-19
Procedure 9 , 7-19
Protocol Specification, 7-1
Remote Procedure Return Values, 7-10
Remote Procedures, 7-15, 7-22
RPC, 7-3
RPC Constants, 7-9,7-20
Slave Servers, 7-6
Source Files, 2-6
Version Commitment, 7-8
XDR, 7-4

NIS Binder
Procedure 0 , 7-23
Procedure 1 , 7-23
Procedure 2 , 7-23

Non-filter Primitives, XDR, 5-28
NULL Authentication, RPC, 6-14
Number Filters, XDR, 5-11

o
opaque_auth, 6-6
Opaque Data, XDR, 5-21,5-39
Opaque Declarations, 4-42
Operation Directions, XDR, 5-29

p

Parameter Specification, RPC Authenti-
cation, 6-13

pmap_getmapsO, 3-67
pmap~etportO, 3-67
pmap-rmtcallO,3-68
pmap.1)etO, 3-69
pmap_unsetO, 3-69
Pointer Semantics, XDR, 5-27

Index-3

Pointers, XDR, 5-25
Portable Data Format, XDR, 5-5
Portmap

Procedure 1 , 6-18
Procedure 2 , 6-18
Procedure 3, 6-18
Procedure 4 , 6-18
Procedure 5 , 6-18
Protocol Specification, 6-17

Primitives
Non-filter, 5-28
Record Streams, 5-33
XD R, 5-11, 5-42

Programming with RPC, 3-1
Programming with RPCGEN, 4-1
Program Numbers, Assignment of, 6-7
Protocol Specification

R

NIS, 7-1
NIS Binders, 7-20
Portmap, 6-17
RPC, 6-1
RPC Message, 6-9
RPC Requirements, 6-4
XDR,5-1

Record Marking Standard, 5-49, 6-16
Record Streams

Primitives, 5-33
TCP lIP, 5-31
XDR, 5-31

registerrpcO, 3-9, 3-70
Remote Procedure, 4-6
Remote Procedure Call Protocol Com-

piler, 4-2
Remote Procedure Number, 6-4
Remote Procedure Return Values, 7-10
Remote Procedures, 6-4

NIS, Answer if Serve Domain, 7-15
NIS Binder, Do Nothing, 7-23
NIS Binder, Get Current Binding, 7-23

Index-4

NIS Binder, Procedure 0 , 7-23
NIS Binder, Procedure 1 , 7-23
NIS Binder, Procedure 2 , 7-23
NIS Binder, Set Domain Binding, 7-23
NIS, domainname, 7-22
NIS, Do Nothing, 7-15
NIS, Get All Key-Value Pairs, 7-19
NIS, Get All Maps in Domain, 7-19
NIS, Get First Key-Value Pair, 7-15
NIS, Get Map Master Name, 7-19
NIS, Get Map Order Number, 7-19
NIS, Get Next Key-Value Pair, 7-15
NIS, Procedure 0 , 7-15
NIS, Procedure 1 , 7-15
NIS, Procedure 10 , 7-19
NIS, Procedure 11 , 7-19
NIS, Procedure 2 , 7-15
NIS, Procedure 3 , 7-15
NIS, Procedure 4 , 7-15
NIS, Procedure 5 , 7-15
NIS, Procedure 6 , 7-15
NIS, Procedure 7, 7-15
NIS, Procedure 8 , 7-19
NIS, Procedure 9 , 7-19
NIS, Re-initialize Internal State, 7-15
NIS, Return Value, 7-15
NIS, Serve this Domain?, 7-15
NIS, Transfer Map, 7-15
NIS, ypbind..setdom, 7-22
Portmap, Dumping Mappings, 6-18
Portmap, Indirect Call Routine, 6-18
Port map , Look Up Mapping, 6-18
Portmap, Procedure 1 , 6-18
Portmap, Procedure 2, 6-18
Portmap, Procedure 3 , 6-18
Portmap, Procedure 4 , 6-18
Port map , Procedure 5, 6-18
Portmap, Set Mapping, 6-18
Portmap, Unset Mapping, 6-18

Remote Procedures, NIS, 7-15, 7-22
Remote Program Number, 6-4

Itemote Programs, 6-4
Remote Program Version Number, 6-4
Response Verifier, RPC Authentication,

6-6
rnusersO, 3-5
Itoutines

callrp cO, 3-7
clnt_callO, 3-56
clnt_createO, 3-58
clnLdestroyO, 3-59
clnt..freeresO, 3-59
clnLgeterrO, 3-60
clnt_perrnoO, 3-61
clnt_perrorO, 3-61
clntraw _create 0 , 3-63
clnt..spcreateerrorO, 3-62
clnt..sperrnoO, 3-62
clnt..sperrorO, 3-63
clnttcp_createO, 3-63
clntudp_createO, 3-64
Filter, 5-7
get-myaddressO, 3-66
gettransientO, 3-66
pmap_getmapsO, 3-67
pmap_getportO, 3-67
pmap-I'mtcallO, 3-68
pmap..setO, 3-69
pmap_unsetO, 3-69
registerrpcO, 3-9, 3-70
rnusersO, 3-5
ItPC, 3-4
Stream Creation, 5-8
svc_destroyO, 3-71
svcerr_authO, 3-77
svcerr _decodeO, 3-77
svcerr_noprocO, 3-77
svcerr_noprogO, 3-78
svcerr _progversO, 3-78
svcerr..systemerrO, 3-79
svcerr_weakauthO, 3-79
svcfd_createO, 3-80

svc_fdsO, 3-71
svc_fdsetO, 3-72
svc_freeargsO, 3-72
svc_getargsO, 3-72
svc_getcallerO, 3-73
svc_getreqO, 3-74
svc_getreqsetO, 3-74
svcraw_createO, 3-80
svc_registerO, 3-75
svc_runO, 3-75
svc..sendreplyO, 3-76
svctcp _createO, 3-81
svc-unregisterO, 3-77
XDR, 5-7
xdr_accepted-I'eplyO, 3-82
xdr_arrayO, 5-17
xdr_authunix_parmsO, 3-82
xdr_bytesO, 5-16
xdr _callhdrO, 3-83
xdr _callmsgO, 3-84
xdr_charO, 5-52
xdr ..free 0 , 5-54
xdr -tongO, 5-5, 5-8
xdr _opaqueO, 5-21
xdr _opaque_au thO, 3-84
xdr_pmapO, 3-84
xdr_pmaplistO, 3-85
xdr_pointerO, 5-57
xdrrec_eofO, 5-33
xdr-I'ejected-I'eplyO, 3-85
xdrJeplymsgO, 3-85
xdr-u_charO, 5-60
xprt_registerO, 3-85
xprt_unregisterO, 3-86

RPC
Additional Features, 3-26
Arbitrary Data Types, 3-11
Authentication, 3-34,6-6, 6-13
Batching, 3-29, 6-8
Booleans, 4-38
Broadcast, 3-27-28, 6-8

Index-5

Callback Procedures, 3-46
callrpcO, 3-7
Client Side, 3-23, 3-34, 6-2
Declarations, 4-36
Definitions, 4-30
Description, 2-2, 3-3
inetd, 3-38
Layers, 3-3
Layers, Highest, 3-4
Layers, Intermediate, 3-6
Layers, Lowest, 3-16
Message Authentication, 6-3
Message Protocol Specification, 6-9
NIS, 7-3
NULL Authentication, 6-14
Opaque Data, 4-38
Portmap Protocol Specification, 6-17
Programming, 3-1
Program Numbers, 3-10,6-7
Programs, 4-35
Protocol Requirements, 6-4
Protocol Specification, 6-1, 6-9
Record Marking Standard, 6-16
Routines, 3-4
rpc_createerr, 3-71
rq _cred, 3-36
Semantics, 6-3
Server Side, 3-17, 3-26,3-35,6-2
TCP, 3-42
Transports, 6-3
UNIX Authentication, 6-14

RPC Constants, NIS, 7-9, 7-20
rpc_createerr, 3-71
RPCGEN

Array of Pointers, 4-41
Bad Union, 4-41
Command Line Error Messages, 4-39
C-Preprocessor, 4-28
Error Messages, 4-39
General Syntax Errors, 4-44
Illegal Characters, 4-44

Index-6

MissingQuotes, 4-44
Parsing Error Messages, 4-40
Unknown Types, 4-43
Void Declarations, 4-43

RPCG EN Files
client side file, 4-12, 4-16
client side subroutine file, 4-12
client side subroutines file, 4-18
header file, 4-12, 4-15
protocol description file, 4-12
server side function file, 4-12, 4-19, 4-21
server side skeleton file, 4-12
XDR routine file, 4-12, 4-23

RPCG EN Options
-c, 4-26
-m,4-27
-0,4-27
-s, 4-27
-u,4-27

RPC Protocol Specification, 4-5
rq_cred, 3-36
RUSERSPROC-BOOLO, 3-20

S
Semantics, RPC, 6-3
Serializing, 3-11, 5-9
Server Side, RPC, 3-17,3-26,3-35,6-2
Slave Servers, NIS, 7-6
Source Files, NIS, 2-6
Streams

Access, 5-30
Creation Routines, XDR, 5-8
Implementation of, 5-34
1/0,5-30
Memory, 5-31
Record (TCP /IP), 5-31

Strings, XDR, 5-14
Structures, XDR, 5-41
svc_destroyO, 3-71
svcerr~uthO, 3-77
svcerr _decode 0 , 3-77

svcerr JloprocO, 3-77
svcerr JloprogO, 3-78
svcerr _progversO, 3-78
svcerr -systemerrO, 3-79
svcerr_weakauthO, 3-79
svcfd_createO, 3-80
svc.J"reeargs(), 3-72
svc_getargsO, 3-72
svc_getcallerO, 3-73
svc_getreq (), 3-74
svc_getreqsetO, 3-74
svcraw _create 0 , 3-80
svcJegisterO, 3-75
svcJunO, 3-75
svc-sendreplyO, 3-76
svctcp_createO, 3-81
svc_unregisterO, 3-77

T

TCP, 3-42
Transports, RPC, 6-3

U
UNIX Authentication, RPC, 6-14

V

valdat, 7-12
Verifier, RPC Authentication, 6-6
Version Commitment, NIS, 7-8
Voids, 4-38

X

XDR
Arbitrary Data Structures, 5-7
Block Size, 5-36
Booleans, 5-37
Byte Arrays, 5-16
Constants, 4-34
Constructed Data Type Filters, 5-14
Counted Arrays, 5-40
Counted Byte Strings, 5-39

Description, 2-4
Discriminated Unions, 5-23, 5-41
Double Precision, 5-38
Enumeration Filters, 5-13
Enumerations, 4-33, 5-37
Filter Routines, 5-7
Fixed Arrays, 5-22, 5-40
Floating Point, 5-38
Floating Point Filters, 5-12
Integers, 5-36
I/O Streams, 5-30
Justification, 5-2
Library, 5-7
Linked Lists, 5-43
Memory Allocation, 3-20
Memory Streams, 5-31
Missing Specifications, 5-41
NIS, 7-4
No Data Required, 5-13
Non-filter Primitives, 5-28
Number Filters, 5-11
Object, 5-34
Opaque Data, 4-38,5-21,5-39
Operation Directions, 5-29
Pointer Declarations, 4-37
Pointers, 5-25
Pointer Semantics, 5-27
Portability, 5-5, 5-7
Primitives, 5-11, 5-42
Protocol Specification, 5-1
Record Marking Standard, 5-49
Record Streams, 5-31, 5-33
Routines, 5-7
Standard, 5-36
Stream Access, 5-30
Stream Creation Routines, 5-8
Stream Implementation, 5-34
Streams, 5-30
Strings, 4-38, 5-14
Structures, 4-31, 5-41
Unions, 4-32

Index-7

Variable-Length Array Declarations, 4-
37

xdr_accepted-I'eplYO, 3-82
xdr_arrayO, 5-17
xdr _au thunix_parmsO, 3-82
xdr_bytesO, 5-16
xdr_callhdrO, 3-83
xdr _callmsgO, 3-84
xdr-IongO, 5-5, 5-8
xdr_opaqueO, 5-21
xdr_opaque_authO, 3-84
xdr_pmapO, 3-84
xdr_pmaplistO, 3-85
xdrrec_eofO, 5-33
xdr-rejected-I'eplyO, 3-85
xdr-replymsgO, 3-85
xp rt-I'egister ° , 3-85
xprt_unregisterO, 3-86

Index-8

y

ypbinderr, 7-21
ypbind-I'esptype, 7-21
ypbind...setdom, 7-22
YPBINDVERS 2, 7-20
ypmaplist, 7-12
ypmap_parms, 7-12
YPMAXMAP 64, 7-9
YPMAXRECORD1~4,~9

YPPROC-MATCH, 7-5
YPPROG 100004, 7-9
ypreqJcey, 7-12
ypreq-nokey, 7-12
ypreq-xfr, 7-12
ypresp..all, 7-12
ypresp -key _val, 7-12
ypresp-maplist, 7-12
ypresp -master, 7-12
ypresp -order, 7-12
ypresp_val, 7-12
ypresp-Xfr, 7-15

Please send directory correction,to:
Test & Measurement Catalog
Hewlett-Packard Company
3200 Hillview Avenue
Palo Alto, CA 94304
Tel: (415) 857-4706
Fax: (415) 857-3880

HEADQUARTERS OFFICES
If there is no sales office listed for your area, contact one of these
headquarters offices.

ASIA
Hewlett-Packard Asia Ltd.
22/F Bond Centre, West Tower
89 Queensway, Central
HONG KONG
G.P.O. Box 863, Hong Kong
Tel: 5-8487777
Telex: 76793 HPA HX
Cable: HPASIAL TO

CANADA
Hewlett-Packard (Canada) LId.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 11.18
Tel: (416) 678-9430
Fax: (416) 678-9421

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72
A-1222 VIENNA, Austria
Tel: (222) 2500
Telex: 134425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.
V. D. Hooplaan 241
P.O. Box 999
NL-118 LN 15 AMSTELYEEN
The Netherlands
Tel: 20 5479999
Telex: 18919 hpner

SOUTH EAST EUROPE
Hewlett-Packard SA
World Trade Center
110 Avenue Louis-Casai
1215 Cointrin, GENEVA, Switzerland
Tel: (022) 98 96 51
Telex: 27225 hpser
Mail Address:
P.O. Box
CH-1217 Meyrin 1
GENEVA
Switzerland

European Operations
Hewlett-Packard SA
150, Route du Nant d'Avril
1217 Meyrin 2
GENEVA, Switzerland
Tel: (41122) 780.8111
Fax: (41/22) 780.8542

UNITED KINGDOM
Hewlett-Packard LId.
Nine Mile Ride
WOKINGHAM
Berkshire, RG 113LL
Tel: 0344 773100
Fax: (44/344) 763526

UNITED STATES OF
AMERICA
Customer Information Center
(800) 752-0900
6:00 AM to 5:00 PM Pacific Time

EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 670-4300

MIDWESTERN USA
Hewlett-Packard Co.
5201 T ollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.
2015 South Park Place
AnANTA, GA 30339
Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
5161 Lankershim Blvd.
NORTH HOll YWDOD, CA 91601
Tel: (818) 505-5600

MIDDLE EAST OTHER
AND CENTRAL AFRICA INTERNATIONAL
Hewlett-Packard SA AREAS
International Sales Branch
Middle East/Africa
7, rue du Bois-du-Lan
P.O. Box 364
CH-1217 Meyrin 1
GENEVA
Switzerland
Tel: (41/22) 780 7111
Fax: 783 7535

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-5027
Telex: 034-8300
Cable: HEWPACK

Hewlett-Packard Trading SA
Bureau de LiaisonlBureau de Spport
Villa des Lions
9, Hai Galloul
DZ·BORDJ El BAHRI
Tel: 760207
Fax: 281 0387

ANGOLA
Telectra Angola LOA
Empresa Tec:nica de Equipamentos
16 rue Cons. JuliO de Vilhema
lUANDA
Tel: 35515,35516
Telex: 3134

ARGENTINA
Hewlett-Packard Argentina SA
Montaneses 2140/50
1428 BUENOS AIRES
Tel: (54/1) 7814059

(54/1) 781-4090

Laboratorio Rodriguez
Corswant S.R.L.
Misiones, 1156 - 1876
Bernal, Oeste
BUENOS AIRES
Tel: 252-3958, 252-4991

Argentina Esanco S.R.L.
A/ASC02328
1416BUENOSAIRES
Tel: 541-58-1981, 541-59-2767
Telex: 22796 HEW PAC-AR

AUSTRALIA
Customer Inlormalioll Centre
Tel: (008) 033821

Adelaide, South
Australia Office
Hewlett-Packard Australia LId.
PARKSlDE, S.A. 5063
153 Greenhill Road
ADELAIDE (Parkside) Sales
Tel: (61-8-) 272-5911
Fax: (61/8) 373-1398

Brisbane, Queensland
Office
Hewlett-Packard Australia LId.
10 Payne Road
THE GAP, Queensland 4061
Tel: 61-7-300-4133
Telex: 42133
Cable: HEWPARD Brisbane

Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia LId.
Thynne Street, Fern Hill Park
BRUCE, A.C.T. 2617
P.O. Box 257,
JAMISON, A.C.T. 2614
Tel: 61-62-51-6999
Telex: 62650
Cable: HEWPARD Canberra

Melbourne, Victoria
Office
Hewlett-Packard Australia LId.
31-41 Joseph Street
P.O. Box 221
BLACKBURN, Victoria 3130
Tel: (61/3) 895-2895
Fax: (6113) 898-7831
Cable: HEWPARD Melbourne

SALES OFFICES n
Arranged alphabetically by country U

Perth,
Western Austrana
Office
Hewlett-Packard Australia Ltd.
Herdsman Business Park
Cnr. Hasler & Gould Strs.
Osborne Park
CLAREMONT, W.A. 6017
Tel: (61/9) 242 1414
Fax: (61/9) 242-1682
Cable: HEWPARD Perth

Sydney, New South
Wales Office
Hewlett-Packard Australia Ltd.
17-23 Talavera Road
P.O. Box 308
NORTHRYDE, N.S.w. 2113
Sydney, Australia
Tel: (61/2) 888-4444
Fax: (6112) 888-9072
Cable: HEWPARD Sydney

AUSTRIA
Hewlett-Packard GmbH
Verkaufsbuero Graz
Grottenhofs\rasse 94
A-8052GRAZ
Tel: 43-316-291-5660
Telex: 312375

Hewlett-Packard GmbH
Lieblgasse 1
P.O. Box 72
A-1222 VIENNA
Tel: (43/222) 2500
Fax: (48/222) 2500 Ext 444

BAHRAIN
Modern Electronic
Establishment
Hewlett-Packard Division
P.O. Box 22015
RIYADH 11495
SAUDI ARABIA
Tel: (966/1) 4763030
Telex: 595 (0495) 202049

WaelPharmacy
P.O. Box 648
MANAMA
Tel: 256123
Telex: 8550 WAEL BN

BELGIUM
Hewlett-Packard Belgium S.A.lN.V.
Blvd de la Woluwe, 100
Woluwedal
1200 BRUSSELS
Tel: (32/2) 761.31.11
Fax: (32/2) 763.06.13

BENIN
S.I.T.E.L.
Immeuble Ie General
Av. General de Gaulle
P.O. Box 161
ABIDJAN 01
Ivory Coast
Tel: 3212 27
Telex: 22149

BERMUDA
Applied Computer Technologies
Atlantic House Building
P.O. Box HM 2091
Par-la-Ville Road
HAMILTON 5
Tel: 295-1616
Telex: 380 35891 ACT BA

BOLIVIA
Arrellano Ltda
Av. 20 de Octubre 1#2125
Casilla 1383
LAPAZ
Tel: 368541

Siser Llda. (Sistemas de
Importacion y Servicios Llda.)
Gabriel Gozalvez 221
Casilla 4084
LAPAZ
Tel: (591/2) 3409621

363365/343245
Fax: 35-9268

BRAZIL
Hewlett-Packard do Brasil SA
Praia de Botafago 228-A-614
6. AND.-CONJ. 601
Edificio Argentina - Ala A
22250 RIO DE JANEIRO, RJ
Tel: (55/21) 552-6422
Telex: 21905 HPBR BR
Cable: HEWPACK Rio de Janeiro

BRUNEI
Komputer Wisman Sdn Bhd
GS, Chandrawaseh Cmplx,
Jalan Tutong
P.O. Box 1297,
BANDAR SERiBEGAWAN
NEGARA BRUNI DARUSSALAM
Tel: 673-2-2000-70/26711

BURKINA FASSO
S.I.T.E.L.
Immeuble Ie General
Avenue General de Gaulle
P.O. Box 161
ABIDJAN 01
Ivory Coast
Tel: 3212 27
Telex: 22149

CAMEROON
R.T.I.
175 Rue Blomet
75015 PARIS
France
Tel: (1)45 310906
Telex: 203376
Fax: (1) 45 310918

CANADA

Alberta
Hewlett-Packard (Canada) LId.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A 6T7
Tel: (1/403) 235-3100
Fax: (1/403) 272-2299

Hewlett-Packard (Canada) Ltd.
11120-178th Street
EDMONTON, Alberta T5S 1 P2
Tel: (1/403) 486-6666
Fax: (1/403) 489-8764

0 SALES OFFICES
Arranged alphabetically by country (cont'd)

CANADA (Cont'd) CHILE CYPRUS ETHIOPIA Hewlett-Packard France

Ricardo Borzutsky Hellamco - M. Cotoyannis R.T.I. Miniparc-ZIRST
British Columbia 2, Sikelianou SI. & Kifissias Av. 175 rue Blomet Chemin du Vieux Ch8ne
Hewlett-Packard (Canada) Ltd. Avanzados Sistemas de

P.O. Box 65074 75016 PARIS 38240 IIEYLAN (Grenoble)
10691 Shellbridge Way Conocimientos S. A.

N. Psyhiko 15410 France Tel: (76) 90-38-40
Austria 2041 RICHMOND,
SANTIAGO

ATHENS Tel: (1) 4531 0906 Hewlett-Packard France
British Columbia V6X 2W8

America del Sur Greece Telex: 203376 Ru de I'H6telierie
Tel: (1/604) 270-2277

Tef: (562) 223-5946/6148
Tel: 647 79 426, 647 79427 Fax: (1) 45 3109 18 Le Petit Bel Air

Fax: (1/604) 270-0859 Telex: 224903 44470 CARGUEFOU (Nantes)

Manitoba Telerexa ltd. FINLAND Tel: 40-30-38-38
CHINA, People's Hewlett-Packard Finland Telex: 711085F Hewlett-Packard (Canada) Ltd. P.O. Box t 152

1825 Inkster Blvd. Republic of Valentine House FieidOy
Hewlett-Packard France

WINNIPEG, Manitoba R2X lR3 China Hewlett-Packard Co., ltd. 8 Stassandrou SI. Niittytanpolku 10
Parc Tertiaire Heliopolis 00620 HELSINKI

Tel: (204) 694-2777 22/F Bond Centre, West Tower NICOSIA Route de Micy
89 Queensway, Central Tel: 45 628, 62 698 Tel: (90) 757-1011

45380 La CHAPELLE ST MESMIN Telex: 122022 Field SF New Brunswick HONG KONG Telex: 5845 tlrx cy (Orl8ans)
Hewlett-Packard (Canada) ltd. Tel: (852/5) 8487777

DEMSTAR Ltd. Hewlett-Packard Oy Tel: 38-43-93-56
814 Main Street Fax: (852/5) 868 4997 P.O. Box 2260 Piispankalliontie 17 Telex: 783 497F
MONCTON, New Brunswick EIC lE6 China Hewlett-Packard Co., Ltd. NICOSIA 02200ESPOO

Hewlett-Packard France T ef: (506) 855-2841 P.O. Box 9610, Beijing Cyprus Tel: (358/0) 88721
Zone Industrielle de Courtaboeuf

38 Bei San Huan XI Road Tel: 4410 64 Fax: (358/0) 887 2277
I, avo du Canada Nova Scotia

Hewlett-Packard (Canada) Ltd.
Shuang Yu Shu, Hai Dian District Telex: 3085 Hewlett-Packard Oy 91947 LES ULlS Cedex (Orsay)
BEIJING Fax: 46 46 35 Vainonkatu 9 C Tel: 69-82-60-60 201 BrownlOW Avenue
Tel: 256-6888 40100 JYVASKYLA

DARTMOUTH, Nova Scotia B3B lW2 Telex: 600048F
Fax: 256-3207 DENMARK Tel: (358/41) 21 85 11

Tel: (1/902) 469-7820
Hewlett-Packard AlS R. T.I. (Realisations

Fax: (1/902) 468-2817 China Hewlett-Packard Co., ltd.
Kongevejen 25

Hewlett-Packard Oy T eternatiques Internationales)
23/F Shanghai Union Building Valtatie 57 175, rue Blomet Hewl~tt-Packard 100 Van An Road 3460 BlRKEROD

9OSOOOULU F-75015 PARIS (Canada) ltd.
SHANG-HAI Tel: (45/42) 816640

Tel: (358/81) 340 144 Tel: (33/1)45310906 475 Hood Rd., Unit #2 Tel: 203-240 Fax: (45/42) 815810
Telex: 42/203376 MARKHAM, l3R 8H 1 Fax: 202-149 Hewlett-Packard AlS FRANCE Tel: (416) 479-1770

Rolighedsvej 32 Hewlett-Packard France
Hewlett-Packard France

COLOMBIA DK-824O RlSSKOY, Aarhus 2.1. Mercure B
Parc d' activites de la Poterie

Ontario Rue louis Kerautel-Botmel
Hewlett-Packard (Canada) Ltd. Instrumentacion Tel: 45-06-17-6000 Rue Berthelot

35000 RENNES
552 Newbold Street H. A. langebaek & Kier SA Telex: 37409 hpas dk 13763 Les Mil/es Cedex

Tel: 99-51-42-44
LONDON, Ontario N6E 255 Carrerra 4A No. 52A-26 AIX-EN-PIIOYENCE

Telex: 740912F
Tel: (11519) 686-9181 Apartado Aereo 6287 DOMINICAN REPUBLIC Tel: 33-42-59-41-02

Fax: (1/519) 686-9145 BOGOTA I, D.E. Microprog S.A. Telex: 410770F Hewlett-Packard France
Tef: 212-1466 Juan Tomas Mejia y Cotes No. 60

Hewlett-Packard France
45, rue des 3 Soeurs

Hewlett-Packard (Canada) Ltd. Telex: 44400 INST CO Arroyo Hondo
ZA Kergaradec

Centre d' Alfaires Paris Nord II
6877 Goreway Drive Cable: AARIS Bogota SANTO DOMINGO F-93420 VII/epinte
MISSISSAUGA, Ontario L4V lM8 Tel: 565-6268

Rue Fernand Forest
B.P.6002O

Tel: (11416) 678-9430 CONGO Telex: 4510 ARENTA DR (RCA)
29239 GOUEESNOU (Brest)

F-95971 ROISSY
Fax: (1/416) 673-7253 Sema-Metra

Tel: (98) 41-87-90
CHARLES DE GAULLE cedex

Hewlett-Packard (Canada) Ltd. 16-18 Rue Barbes ECUADOR Hewlett-Packard France Tel: (33/48) 91-68-00
2670 Queensview Dr. 92126 Montrouge Cedex CYEDE Cia. Ltda. Chemin des Mouilles Telex: 232366

OTTAWA, Ontario K2B 8K 1 FRANCE Avenida Eloy Alfaro 1749 Boite Postale 162 Fax: 632183

Tel: (1/613) 820-6483 Tel: (1) 657/300 Y Belgica 69131 ECULLY Cedex (lyon)
Hewlett-Packard France

Fax: (1/613) 820-0377 Telex: 200601 Semetra Casilla 6423 CCI Tel: (33) 72-29-32-93
PAT. lavatlne

Fax: (1) 46 56 96 53 QUITO Telex: 310617F
3, rue Jacques Monod Hewlett-Packard (Canada) Ltd.

Tel: 9-011-593-2-450975
3790 Victoria Park Ave. Hewlett-Packard France BP 185

WILLOWDALE, Ontario M2H 3H7
COSTA RICA Telex: 39322548 CYEDE ED Z.I. Mercure B 76136MONT-8T-AIGNAN(Rouen)

Tel: (1/416) 499-2550
Cientifica Costarricense S.A. Rue Berthelot Tef: 35-59-19-20

~ Avenida 2, Calle 5 EGYPT F-13763 LES MILLES cedex Telex: 770035F
San Pedro de Montes de Dca International Engineering Associates Aix-en-Provence

Quebec Apartado 10159 6 EI Gamea Street Tel: (33/42) 59-41-02
Hewlett-Packard France

Hewlett-Packard (Canada) ltd. SAN JOse Agouza Telex: 410770
Innoparc

17500 Trans Canada Highway Tel: 9-011-506-243-820 CAIRO Fax: 594872
BP 167 - Vole n' 7

South Service Road Telex: 3032367 GAlGUR CR Tel: 71-21-6813480904 31328 LABEGE Cedex (T' ,JUse) I KIRKUND, Quebec H9J 2X8 Telex: 93830 lEA UN Hewlett-Packard France Tef: 61-39-11-40
Tel: (1/514) 697-4232 Continex S.A.

Cable: INTEGASSO Pare Club des Tanneries Telex: 531639F
Fax: (11514) 697-6941 Avenida 10C BatimentB4

Apartado 746-1000 Hewlett-Packard France
ELSALVADOR 4, Rue de la Faisanderie

34-36 SAN JOSE 67381/UNGOLStlEIM (Strasbourg)
Les Cardoullnes

Saskatchewan Tel: (506) 33-0933 IPESA de EI Salvador S.A.
Tel: (88) 76-15-00 BatimentB2 ; Hewlett-Packard (Canada) ltd. Telex: 2310Continex CR 29 Avenida Norte 1223
Telex: 890141F Route des Dotines

#1,2175 Airport Rd. Fax: 21-6905 SAN SALVADOR Pare d'activite de Valbonne
SASKATOON, Saskatchewan S7L 7El Tel: 9-011-503-266-858 Hewlett-Packard France Sophia Antipolis
Tel: (306) 242-3702 O. Fischel R. Y. Cia. SA Telex: 301 205391PESA SAL Pare d'activites Cadera 06560 YALBONNE (Nice)

Apartados 434-10174 Quartier Jean-Mermoz Tel: 93-65-39-40

~ SAN JOSE Avenue du President JF Kennedy
Tel: 23-72-44 33700 MERIGNAC (Bordeaux)

Hewlett-Packard France
Telex: 2379 Tel: (33) 56-34-00-84 Pare d'activite des Pres
Cable: OFIR Telex: 550 105F

I, Rue Papin Cedex
59658 VILLENEUVE D'ASCQ

I Tef: 20-91-41-25
Telex: 160124F

EJ
FRENCH WEST Hewlett-Packard GmbH GUINEA Blue Star Ltd. Computation and Measurement

INDIES Vertriebszentrum Nord R.T,I. 2-2-47/1108 Bolarum Rd. Systems (CMS) Ltd.

(Antilles) Kapstadtring 5 175. Rue Blomet SECUNDERAIAD 500 003 11 Masad Street

R.T.I.
0-2000 HAMBURG 60 75015 PARIS Tel: 72057. 72058 67060

175. Rue Blomet
Tel: 49-40-63-804-0 France Telex: 0155-459 TEL-AVIV

75015 PARIS
Telex: 021 63 032 hphh d Tel: (1) 45 3109 06 Cable: BlUEFROST Tel: 388388

FRANCE Hewlett-Packard GmbH Telex: 203376 Blue Star Ltd.
Telex: 33569 Motlill

Tel: (1) 45310906 GeschAftsstelle Fax: (1) 45 3109 18 T.C. 7/603 Poomima
Telex: 203376 Heidering 37-39 Maruthunkuzhi ITALY
Fax:(1)45310918 0-3000 HANNOVER 61 HONG KONG TAIVANDAUII 695 013 Hewlett-Packard Italiana Spa

Tel: (49/511) 5706-0 Hewlett-Packard Asia. Ltd. Tel: 65799. 65820 Via G. di Vittorio 10

GABON Fax: (49/511) 5706-126 22/F. West Tower Bond Centre Telex: 0884-259 20094 CORSICO (II)

R.T.I. Cameroon Hewlett-Packard GmbH
89 Queensway Central Cable: BlUESTAR Tel: 02/4408351

Distribution/Services Geschiiftsstelle
HONG KONG Fax: 02/4409964

B.P.3899 Tel: (852/5) 848-7777 Hewlett-Packard India

DOULA, CAMEROON
Rosslauer Weg 2-4 Fax: (85215) 868-4997 Meridian Commercial Complex Hewlett-Packud Italiana Spa

(Please contact R.T,I. France.)
0-6800 MANNHEIM Cable: HEWPACK HONG KONG 6th Floor Via Nuova Rivoltana 95

Tel: 49-0621-70-05-0 8 Windsor Place 20090 LMTO(II)
Tel: (237) 423291
Telex: 970/5385

Telex: 0462105 hpmhm ICELAND Janpath Tel: 02/75761

Hewlett-Packard GmbH Hewlett-Packard Iceland
NEW DELHI 110 001 Fax: 02/7576230

R.T,I. GeschAftsstelle Hoeldabakka 9
Tel: 91-11384911 Hewlett-Packard Italiana Spa

175. rue Blomet Messerschmittstrasse 7 112 REYKJAVIK
Telex: 31-4935 HPNOIN Via Emilia 51/C

75015 PARIS 0-7910 NEU ULM Tel: 354-1-67-1000 40011 ANZOlA
France Tel: 49-0731-70-73-0 Telex: 37409 INDONESIA DELL'EIIIIJA(BO)
Tel: (1) 45 31 0906 Telex: 0712816 HP UlM-O Fax: 354-1-673031 BERCA Indonesia P.T. Tel: 051/731061
Telex: 203376 P.O.Box 496/Jkl.
Fax: (1) 45 310918 Hewlett-Packard GmbH

INDIA JI. Abdul Muis 62
Hewlett-Packard Itallana Spa

Geschiiftsstelle JAKARTA
Via M. Ricci 17 - Palombina Nuova

GERMAN FEDERAL Emmericher Strasse 13 Computer products are sold through
Tel: 21-373009

60100 ANCONA

REPUBLIC 0-8500 NURNBERG 10 Blue Star ltd. All computer repairs
Telex: 46748 BERSAllA

Tel: 071/883782

Tel: (0911) 5205-0 and maintenance service is done
Hewlett-Packard GmbH

Telex: 0623 860 hpnbg through Computer Maintenance Corp.
Cable: BERSAl JAKARTA Hewlett-Packard Italiana Spa

Vertriebzentrale Deutschland Traversa 99C Giulio Petroni 19

Hewlett-Packard-Strasse Hewlett-Packard GmbH Blue Star Ltd.
BERCA Indonesia P.T.

701248AA1

Postlach 1641 Vertriebszentrum Ratingen B. O. Patel House
P.O.Box 2497/Jkt

Tel: 080/410744

0-6380 BAD HOMBURG y.d.H Berliner Strasse 111 Near Sardar Patel Colony Antara Bldg .• 12th Aoor
Fax: 080/417891

Tel: (06172) 400-0 0-4030 RATINGEN AHMEDABAD 380 014
JI. Medan Merdeka Selatan 17

Telex: 410 844 hpbhg Postlach 3112 Tel: 403531. 403532
JAKAATA-PUSAT Hewlett-Packard ItaIlana Spa

Tel: (02102) 494-0 Telex: 0121-234
Tel: 21-340417 Via Principe Nicola 43G/C

Hewlett-Packard GmbH
Telex: 589 070 hprad Cable: BLUE FROST Telex: 46748 BERSAllA 95126CATAfIA

Geschaftsstelle Tel: 095/371087

Keithstrasse 2-4 HeWlett-Packard GmbH Blue Star Ltd.
BERCA Indonesia P.T.

Fax: 095/388569

0-1000 BERliN 30 Vertriebszentrum Muchen 40/4 lavelle Road
Jalan Kutai 24

Tel: (030) 2199 04-0 Eschenstrasse 5 BANGALOAE 560 001
SUAABAYA Hewlett-Packard Italiana Spa

Telex: 018 3405 hpbln d 0-8028 TAUFKIRCHEN Tel: 57881. 867780 Tel: 67118 Via G. Oi Vittorio 9

Tel: 49-89-61-2070 Telex: 0845-430 BSlBIN
Telex: 31146 BERSAlSB 20063 CEllNUSCO SIN (III)

Hewlett-Packard GmbH
Telex: 0524985 hpmch Cable: BlUESTAR

Cable: BERSAl-SURABAYA Tel: 02/923691

Verbindungsstelle Bonn Fax: 02/9237746

Friedrich-Ebert-Allee 26 Hewlett-Packard GmbH Blue Star Ltd. IRAQ
5300 BONN GeschAftsstelle Sahas Hewlett-Packard Trading S.A.

Hewlett-Packard Italiana Spa
Via Sacco e Vanzetti 11 A

Tel: (0228) 234001 Ermlisallee 41412 Vir Savarkar Marg Service Operation 50145 FIIENZE
Telex: 8869421 7517 WALDIAONN 2 Prabhadevi AI Mansoor City 609/1017

Postfach 1251 BOMBAY 400 025 BAGHDAD
Tel: 055/318533

Hewlett-Packard GmbH
Tel: (07243) 602-0 Tel: 422-6155

Fax: 055/373965

Vertriebszentrun Stidwest
Tel: 551-49-73

Schickardstrasse 2
Telex: 782 838 hepk Telex: 011-71193 BSSS IN Telex: 212-455 HEPAIRAQ IK Hewlett-Packard Itallana Spa

0-7030 BOBLINGEN
Cable: FROSTBlUE Viale Brigata Bisegno 2

Postfach 1427 GREAT BRITAIN Blue Star ltd. IRELAND 16129 GENOVA

Tel: (49/7031) 645 See United Kingdom Kalyan. 19 Vishwas Colony Hewlett-PaCkard Ireland Ltd. Tel: 010/541141

Fax: (4917031) 645-429 Alkapuri. BARODA, 390 005 Temple House. Temple Road Fax: 010/591733

Hewlett-Packard GmbH GREECE Tel: 65235. 65236 Blackrock. Co. DUBLIN Hewlett-Packard Itallana Spa

Zeneralbereich Mktg Hewlett-Packard Hellas
Cable: BLUE STAR Tel: (353/1) 883399 Via Orazio 16

Telex: 30439
Herrenberger Strasse 130 32. Kilfissias Avenue Blue Star ltd.

80122NAPOU

0-7030 BOBLINGEN 15125 Amaroussion 7 Hare Street Hewlett-PaCkard Ltd. Tel: 081/7611444

Tel: (4~/7031) 14-0 ATHENS P.O. Box 506 75 Bellast Rd. Carricklergus Fax: 081/680164

Fax: (4917031) 14-2999 Greece CALCUTTA 700 001 Bellast BT38 8PH Hewlett-Packard Italiana Spa

Tel: 6828811 Tel: 230131. 230132 NORTHERN IRELAND ViaPeilizzo 15
Hewlett-Packard GmbH
Geschllftsstelle

Te~x: 216588 hpat gr Telex: 031-61120 BSNF IN Tel: 09603-67333 35128PADOVA

Fax: 6832978 Cable: BlUESTAR Telex: 747626 Tel: 049/8070166
Schleelstr. 28a
0-4600 DORTMUND-41 Blue Star ltd.

Fax: 0491773097

Tel: (0231) 4500 1
GUATEMALA 13 Community Center

ISRAEL
Hewlett-Packard Italiana Spa

IPESA DE GUATEMALA Bdan Electronic Instrument ltd.
Telex: 822858 hepdod Avenida Relorma 3-48. Zona 9

New Friends Colony
P.O. Box 1270

Via Del T1ntoretto 200
NEW DELHI 110 065 00144 ROllA

Hewlett-Packard gmbH GUATEMALA CITY Tel: 682547
JEAUSALEII91000

Tel: 06/54831
Reparaturzentrum Frankfurt Tel: 316627. 317853.66471/5 Telex: 031-2463

16. Ohaliav SI.
Fax: 06/5408710

Berner Strasse 117 9-011-502-2-316627 Cable: BlUEFROST
JERUSALEM 94467

6000 FRANKFURT/MAIN 80 Telex: 30557651PESA GU Tel: 533 221. 553 242

Tel: (069) 500001-0 Telex: 25231 AB/PAKRD IL

Telex: 413249 hplfm

SALES OFFICES
Arranged alphabetically by country (cont'd)

ITALY (Cont'd) Yokogawa-Hewletl-Packard Ltd. Yokogawa-Hewletl-Packard Ltd. MADAGASCAR Hewletl-Packard de Mexico,
Kumagaya Asahi 82 Bldg. 29-21 Takaido-Higashi, 3-chome R.T.I. S.A.deC.V.

Hewletl-Packard Italiana Spa 3-4 Tsukuba Suginami-ku TOKYO 168 175, Rue Blomet Condominio Kadereyta
Corso SviZzera 185 KUMAGAYA, Saitama 360 Tel: (03) 331-6111 75015 Paris Circuito del Mezon No. 186 Desp. 6
10149 TORINO Tel: (81/485) 24-6563 Telex: 232-2024 YHPTOK FRANCE Col. Del Prado - 76030
Tel: 011/744044 Fax: (811485) 24-9050 Tel: (1) 45 3109 06 ORO,Mexico
Fax: 01117710815 Yokogawa Hokushin Electric Corp.

Tlx: 203376 Tel: 463-6-02-71
Yokogawa-Hewletl-Packard Ltd. (YEW)

IVORY COAST Shin-Kyoto Center Bldg. Shinjuku-NS Bldg. 10F Fax: (1) 45 310918 Hewletl-Packard de Mexico,

Ste Ivoirienne des Techniques 614 Higashi-Shiokoji-cho 9-32 Nokacho 2 Chome SAdeC.V.

de l'lnformatique Karasuma-Nishi-Iru, Shiokoji-Oori Shinjuku-ku MALAWI Monti Morelos No. 299

Immeuble C.N.A. - 5e etage Shimogyo-Ku, KYOTO, 600 TOKYO, 163 Systron (Private) Ltd. Fraccionamiento Loma Bonita 45060

Avenue General de Gaulle Tel: (81/75) 343-0921 Tel: (03) 349-1859 Manhatlan Court GUADALAJARA, Jalisco

P.O. Box 161 Fax: (81175) 343-4356 Telex: J27584 61 Second Street Tel: (52/36) 31 4600
P.O. Box 3458 Telex: 0684 186 ECOME ABIDJAN 01 Yokogawa-Hewletl-Packard Ltd. Yokogawa-Hewletl-Packard Ltd. HARARE

TeI:321227 Mito Mitsui Bldg. Toyoda-Tokyo-Kaijo Bldg. Zimbabwe Hewletl-Packard de Mexico,
Telex: 22149 1-4-73, Sanno-Maru 1-179 Miyuki-Hon-Cho Tel: 739881/739885 S.A. de C.V.

Engineering Business Concept (E. B.C.) MITO, Ibaraki 310 TOYODA473 Telex: 4122 Monte Pelvoux No. 111

Angle Avenue J. Anoma et Bd. Tel: (81/292) 25-7470 Tel: (81/565) 27-5611 Fax: 702008 Lomas de Chapultepec
Republique Fax: (811292) 31-6589 Yokogawa-Hewletl-Packard Ltd.

11000 MEXICO, D.F.

08 B.P. 323 ABIDJAN 08 Yokogawa-Hewletl-Packard Ltd. Chiyodaseimei-Utsunomiya Bldg. MALAYSIA Tel: (52/5) 5967933

Tel: 32 50 24, 4148 70 Nagano-Tokyokaijyo Bldg. 2-3-1, OMori, UTSUNOIIIYA, Tochigi- Hewletl-Packard Sales (Malaysia)
Fax: (52/5) 596 42 08 (Ext 3231)

Fax: 3537 90 1081, Minamiagata-Machi Shi 320 Sdn. Bhd. Hewletl-Packard de Mexico,
Nagano-Shi, NAGANO,380 Tel: (81/286) 33-1153 9th Floor SA de C.V.

JAPAN Tel: (81/262) 24-8012 Fax: (81/286) 33-1175 Chung Khiaw Bank Building Czda. del Valle
Yokogawa-Hewletl-Packard Ltd. Fax: (81/262) 24-8016

Yokogawa-Hewletl-Packard Ltd.
46, Jalan Raja Laut 409 Ole. 4th Piso

Nihon-5eimei Akita 50350 KUALA LUMPUR, MALAYSIA Colonia del Valle
Chuo-Don Bldg.

Yokogawa-Hewlelt-Packard Ltd. No.2 Yasuda Bldg.
Tel: (60/3) 298-6555 Municipio de Garcia

4-2-7 Naka-dori
Nagoya Kokusai Center BuHding 2-32-12, Tsuruyo-cho

Fax: (60/3) 291-5495 66220 NUEVO LEON
AKITA, 010

1-47-1, Nagono, Nakamura-ku Kanagawa-ku, YOKOHAMA 221
Tel: 83-78-42-40

Tel: (81/188) 36-5021
NAGOYA, A1CHI450 Tel: (81/45) 312-1252 Protei Engineering

Telex: 382410 HPMY
Tel: (81/52) 571-5171 Fax: (81/45) 311-8328 P.O.Box 1917

Yokogawa-Hewlett-Packard Ltd. Fax: (81/52) 565-0896 Lot 6624, Section 64 Hewletl-Packard Co.
152-1,Onna

Yokogawa-Hewlett-Packard Ltd. KENYA 23/4 Pending Road Latin America Region
ArSUGI, Kanagawa, 243

Sai-Kyo-Ren Building ADCOM Ltd., Inc., Kenya Kuching, SARAWAK Customer Support Center
Tel: (81/462) 25-0031

1-2 Oote-cho P.O. Box 30070 Tel: 36299 7208 NW. 31st SI.
Fax: (81/462) 25-0064

OOMIYA-SHI SAITAliA 330 NAIROBI Telex: 70904 PROMAL MA MIAMI, FL 33122

Yokogawa-Hewletl-Packard Ltd. Tel: (0486) 45-8031 Tel: 331955 Cable: PROTELENG United States

3-1 Motochiba-Cho Telex: 22639 Tel: (305) 599-0465

CHlBA,280
Yokogawa-Hewletl-Packard Ltd. MALTA Telex: 441603 HPMIAMI

Tel: (81/472) 25-7701
Chuo Bldg., 5-4-20 Nishi-Nakajima KOREA R.T.I. Fax: 599-0277

Fax: (81/472) 21-0382
4-20 Nishinakajlma, 5 Chome, Samsung Hewletl-Packard Co. Ltd. 175, Rue Blomet Hewletl-Packard de Mexico,
Yodogawa-ku Dongbang Yeoeuido Building 75015 PARIS S.A.deC.V.

Yokogawa-Hewletl-Packard Ltd. OSAKA, 532 36-1 Yeoeui Oo-Oong France Blvd. Independencia No. 2000 Ole.
Dai-3 Hakata-Kaisei Bldg. Tel: (81/6) 304-6021 Youngdeungpo-Ku Tel: (1)45 3109 06 OIeZerplso
1-3-6 Hakata-eki Minami Fax: (81/6) 304-0216 SEOUL, 150 Telex: 203376 Co 1 Estrella
Hakata-Ku, FUKUOKA 812

Yokogawa-Hewletl-Packard Ltd. Tel: (82/2) 784-4666, 784-2666 Fax: (1) 45 310918 27010 TORREON, COA.
Tel: (81/92) 472-8731

1-27-15, Yabe Fax: (82/2) 784-7084 Tel: (52/171) 8 22 01
Yokogawa-Hewletl-Packard Ltd. SAGAIIIHARA Kanagawa, 229 Telex: 25166 SAMSAN K MAURITANIA
Nihon-Dantai-5eimei- Tel: (811427) 59-1311 R.T.I. MOROCCO
Koriyama Bldg. KUWAIT 175, Rue Blomet Sicotel
21-10 Toramaru-Cho,

Yokogawa-Hewletl-Packard Ltd.
AI-Khaldiya Trading & Contracting 75015 PARIS Complexe des Habous Hamamtsu Motoshiro-Cho Daichi

Koriyama FUKUSHIMA, 963 P.O. Box 830 France Tour C, avenue des Far
Tel: (81/249) 39-7111

Seimei Bldg 219-21, Motoshiro-Cho
SAFAT 13009 Tel: (1) 45 310906 CASABLANCA 01 Hamamatsu-shi
Tel: 242 4910, 24117 26 Tlx: 203376

Yokogawa-Hewlet1-Packard Ltd. SHIZUOKA, 430 Tel: 3122 70
Telex: 22481 AREEG KT Fax: (1) 45 31 09 18 Telex: 27604 Yasuda-5eimei Hiroshima Bldg. Tel: (81/534) 56-1771
Cable: VISCOUNT

6-11, Hon-dori, Naka-ku Fax: (81/534) 552371 MAURITIUS R.T.I.
HIROSHIMA, 730

Yokogawa-Hewlet1-Packard Ltd. LEBANON R.T.I. 175, Rue Blomet
Tel: (81/82) 241-0611

Shinjuku Daiichi Seimei Bldg. Computer Information Systems SAL. 175, Rue Blomet 75015 PARIS
Fax: (81/82) 241-0619

Nishi Shinjuku 2-7-1, Chammas Building 75015 PARIS France

Yokogawa-Hewlet1-Packard Ltd. Shinjuku-ku,TOKYO 163 P.O. Box 11-6274 France Tel: (1) 45 310906

Issei Bldg. Tel: (8113) 348-4611 DORA BEIRUT Tel: (1) 45 3109 06 Tlx: 203376

2-3-17 Takezono, Tsukuba Fax: (81/3) 348-7969 Tel: 893113,581835 Telex: 203376 Fax: (1)45 31 0918

IBARAGI,305
Yokogawa-Hewlet1-Packard Ltd. Telex: 42309 chacis Ie Fax: (1) 45 310918 Socofren Maroc

Yokogawa-Hewlet1-Packard Ltd. 9-1, Takakura-cho Fax: 581834 164, Boulevard D' Anfa

Mito Mitsui Bldg. Hachioji-shi, TOKYO, 192 MEXICO CASABLANCA

1-4-73, Sanna-maru Tel: 81-426-42-1231 LUXEMBOURG Hewletl-Packard de Mexico, Tel: 36 08 84, 36 01 77

Mito,IIiARAKI310 Hewlett-Packard Belgium S.A.lN.V. S.A. deC.V. Telex: 23940

Tel: (81/292) 25-7470
Yokogawa-Hewlet1-Packard Ltd. Blvd de la Woluwe, 100 Rio Nio No. 4049 Desp. 12
Tokyo-Nissam-Minato Bldg. Woluwedal Fracc. Cordoba NETHERLANDS

Yokogawa-Hewletl-Packard Ltd. 1-6-34 Konan, Minato-Ku B-1200 BRUSSELS JUAREZ, Mexico Hewletl-Packard Nederland
Towa Building 2-2-3 TOKYO 108 Tel: (32/2) 761-3111 Tel: 161-3-15-62 Startbaan 16
Kaigan-dori. Chuo-ku Tel: (8113) 458-5411 Telex: 23-494 paloben bru 1187 XR AIISTEL VEEN
KOBE,650 Tel: (31/20) 5476911
Tel: (81/78) 392-4791 Telex: 13216 HEPA NL
Fax: (81/78) 392-4839 Fax: (31/20) 471825

Hewlett-Packard Nederland B. v. PAKISTAN Hewlett-Packard Puerto Rico SINGAPORE SWEDEN
Bongerd 2 Mushko & Company Ltd. 101 Munoz Rivera Avenue Hewlett-Packard Singapore Ltd. Hewlett-Packard Sverige AB
NL2900AA CAPELLE AID IJSSEL House No. 16, Street No. 16 Esu. Calle Ochoa 1150 Oepot Road astra Tullgatan 3
Tel: 31-20-51-6444 Sector F-6/3 HATOREY,00918 SINGAPORE, 0410 200 11 lIAIJIO
Telex: 21261 HEPAC NL ISUMA8AD Tel: (809) 754-7800 Tel: (65) 273 7388 Box 6132

Hewlett-Packard Nederland B.V. Tel: 824545 Fax: (65) 278 8990 Tel: (46/40) 702 70

Pastoor Petersstraat 134-136 Telex: 54001 Muski Pk QATAR Telex: (854) 17886 (via SpAnga

P.O. Box 2342 Cable: FEMUS Islamabad Qatar Datamation Systems SOUTH AFRICA office)

NL5600 CH EINDHOVEN Mushko & Company Ltd.
P.O. Box 350 Hi Per!ormance Systems (Ply.) Ltd. Fax: (46/40) 97 7418

Tel: 31-40-32-6911 Oosman Chambers
DOHA P.O. Box 120. Howard Place Hewlett-Packard Sverige AB

Telex: 51484 hepae nl Abdullah Haroon Road
Tel: 4132 82 CAPE TOWN 7450 Elementvagen 16

Fax: (31/40) 446546 KARACHI 0302
Tlx: 4833 Tel: (27/21) 53-7954 S-7022 7 OAEBAO

Tel: 524131. 524132
Fax: 42 63 78 Fax: (27/21) 53-5119 Tel: (49/19) 1048 80

NEW ZEALAND Telex: 2894 MUSKO PK
REUNION ISLAND Hi Performance Systems (Ply.) Ltd. Telex: (854) 17886 (via SpAnga office)

Hewlett-Packard (N.Z.) Ltd. Cable: COOPERATOR Karachi
R.T.I.

Private Bag Wendywood Hewlett-Packard Sverige AB
5 Owens Road SANDTON 2144
P.O. Box 26-189 PANAMA 175. Rue Blomet

Tel: (27/11) 802-5111
Skalholtsgatan 9, Kista

75015 PARIS P.O. Box 19 Epsom, AUCKLAND Electronico Balboa. S.A.
France

Fax: (27/11) 802-6332 8-16493 KISTA Tel: (64/9) 605-651 Calle Samuel Lewis, Ed. Alia
Tel: (33/1) 45310906 Tel: 46/8/750-200

Fax: (64/9) 600-507 Apartado 4929
Telex: 42/203376 SPAIN Telex: (854) 17886

Hewlett-Packard (N.Z.) Ltd. PANAMA CITY Hewlett-Packard Espailola. S.A. Telefax: (08) 7527781
186-190 Willis Street Tel: 9-011-507-636613

RWANDA Avda. Diagonal. 605
P.O. Box 9443 Telex: 368 3483 ELECTRON PG 08028-8AACELONA Hewlett-Packard Sverige AB

R.T.1.
Tel: (34/3) 4019100 Box 266

WEWNGTON 175. Rue Blomet Topasgatan lA Tel: (64/4) 820-400 PERU 75015PAAIS
Telex: 52603 hpbee

S-42123 YASTAA.FJIOLUNDA Fax: (64/4) 843-380 Cia Electro Medica S.A. (ERMED) France Bilbao (Vizcaya) Sales (Gothenburg)

NIGER
Los Flamencos 145. Ofc. 301/2 Tel: (33/1) 45310906 Hewlett-Packard Espailol. S.A Tel: (031) 891000
San Isidro Telex: 42/203376 Avda. Zugazarte. 8 Telex: (854) 17886 (via SpAnga

S.I.T.E.l. Casilla 1030 Fax: (1) 45 31 0918 48930 - Las Arenas - YlZCAYA office)
Immeuble Ie General UMA 1 Peru
Avenue General de Gaulle Tel: 9-011-511-4-414325. 41-3705 SAUDI ARABIA

Hewlett-Packard Espailola, S.A.
SWITZERLAND

PO Box 161 Telex: 39425257 PE PB SIS Modern Electronics Establishment
Crta. N-VI. Km. 16.500

ABIDJAN 01 Las Rozas Hewlett-Packard (Schweiz) AG
P.O. Box 281 E-MADRID Clarastrasse 12 Ivory Coast

PHILIPPINES Thuobah Tel: (34/1) 6370011 CH-4058 BASEL
Tel: 3212 27 AL-KHOBAR 31952
Telex: 22149 The Online Advanced Systems Corp. Telex: 23515 HPE Tel: (41/61) 6815920

2nd Roor, Electra House
Tel: 895-1760. 895-1764 Fax: (41/61) 681 9859

115-117 Esteban Street
Telex: 671106 HPMEEK SJ Hewlett-Packard Espailola. S.A.

NIGERIA Cable: ELECTA AL-KHOBAR .Avda. S. FranciSCO Javier. SIN Hewlett-Packard (Schweiz) AG
Management Information Systems Ltd. P.O. Box 1510 Planta 10. Edificio Sevilla 2 7. rue du Bois-du-Lan
3 Gerrard Road. Ikoyi Legaspi Village, Makati Modern Electronics Establishment E-SEVILLA 5, SPAIN Case postale 365-1366
LAGOS Metro MANILA P.O. Box 1228 Tel: (34/54/64) 4454 CH-121711EY1UN 1
Tel: 68 08 87 Tel: 815-38-10 (up to 16) Redec Plaza. 6th Floor Telex: 72933 Tel: (41/22) 7804111
Telex: 23582 Telex: 63274 ONLINE PN JEDDAH Telex:27333 HPAG CH
Fax: 68 54 87 Tel: 644 96 28 Hewlett-Packard Espailola. S.A.

PORTUGAL Telex: 402712 FARNAS SJ IsabelLa Catolica. 8 Hewlett-Packard (Schweiz) AG

NORTHERN IRELAND Mundinter Intercambio Cable: ELECTA JEDDAH 46004 VALENCIA Allmend
Tel: (34/6) 351 59 44 CH-8967 WIDEN Mundial de Commercio Modern Electronics Establishment See United Kingdom Avenida Antonio 2761 Telex: 63435 Tel: (41/57) 321111

LISBON
P.O.Box 22015 Fax: (34/6) 351 59 44 Telex: 53933 HPAG CH
RIYADH 11495 Fax: (41/57) 321 475

NORWAY Tel: 53 2131.532137 Tel: 4763030 Hewlett-Packard Espailola. S.A.

Hewlett-Packard Norway A/S
Telex: 16691 Telex: 402040 MEERYD SJ Avda. de Zugazarte, 8 SYRIA

Oesterndalen 16-18 CPC Instrumentacao 48930 - Las Arenas
Middle East Electronics

P.O. Box 34 Torre de Santo Antonio SCOTLAND VIZCAYA
P.O.Box 2308

N-I345 OESTERAAS rue Gregorio Lopes. Lote See United Kingdom
Tel: (34/4) 464 32 55

Abu Rumaneh
Tel: (4712) 24-6090 Restelo Telex: 33032

DAMASCUS
Telex: 76621 HPNAS N 1400 LISBON

SENEGAL Tel: 33 45 92

'Hewlett-Packard Norway A/S Tel: 617343/44/'15/46 SUDAN Telex: 411771 Meesy
Telex: 27432126054 2SC Mediterranean Engineering &

Boemergt. 42
Fax: 617345 10, rue Tolbiac Trading Co .• Ltd. TAIWAN Box 2470 B.P.3716 P.O. Box 1025

N-5037 SOLHEIMSYIK C.P.C.S.1. DAKARR.P. KHARTOUM
Hewlett-Packard Taiwan Ltd.

Tel: (5/29) 10 72 Rua de Costa Cabral 575 (Please contact R.T.I. France.) Tel: (249) 41184
Taipei Office

4200POATO Tel: (221) 222248 Telex: 24052
8th Floor. Hewlett-Packard Building

OMAN Tel: 493122 Telex: 906/671 337 Fu HSing North Road

Suhail & Saud Bahwan Telex: 26054. 27432 R.T.I. TAIPEI

P.O.Box 169 Fax: 48 87 21 R.T.I. 175. Rue Blomet Tel: (02) 712-0404

MUSCAT/SULTANATE OF OMAN
175. Rue Blomet 75015PAAIS Telex: 24439 HEWPACK

Tel: 79 37 41 PUERTO RICO 75015 PARIS France Cable: HEWPACK Taipei

Telex: 3585 mb Hewlett-PaCkard Puerto Rico
France Tel: (1) 45 310906

Hewlett-Packard Taiwan Ltd.
Fax: 79 6158 Box 4048

Tel: 45310906 Tlx: 203376
Telex: 203376 Fax: (1) 45 310918 THMOffice

Imtac LLC
Aguadilla. PR 00605

Fax: (1) 45 310918 2, Huan Nan Road

P.O. Box 9196
Tel: (809) 891-5235 CHUNG U, Taoyuan

MlNA AL FAHAUSULTANATE Tel: (034) 929-666

OF OMAN
Tel: 70-77-27. 70-77-23
Telex: 3865 Tawoos On

SALES OFFICES
Arranged alphabetically by country (cont'd)

TAIWAN (Cont'd) TURKEY Hewlett-Packard Ltd. NORTHERN IRELAND California
E.MA Customer Sales & Support Hewlett-Packard (Ireland) Ltd. Hewlett-Packard Co.

Hewlett-Packard Taiwan Ltd. Mediha Eidem Sokak No. 4116 Building 1. Filton Road Carrickfergus Industrial Centre 26701 W. Argoura Rd.
Taichung Office

Yenisehir Stoke Gifford 75 Belfast Road. Carrickfergus CALABASAS, CA 91302
5FL. 67. Sec. 3. ANKARA BRISTOL, BS12 6QZ CO. ANTRIM BT38 8PM Tel: (818) 880-3400
Wen-Hsin Road.

Tel: 1314695. 131 9175 Tel: (44/272) 236000 Tel: 09603 67333 Fax: (818) 880-3437
TAICHUNG Telex: 46912n emsetr
Tel: (04) 254-1201 Hewlett-Packard Ltd. Unit 5 Hewlett-Packard Co.

Cable: EMATRADE ANKARA Oakfield House. Oakfield Grove Bridgewood House 353 Lakeside Dr
Hewlett-Packard Taiwan Ltd. Hewlett-Packard Bilgisayar Ve Oleum Clifton BRISTOL, Avon BS8 2BN Newforge Lane FOSTER CITY, CA 94404
Kaohsiung Office Sistemieri A.S. (Headquarter) Tel: 44-272-736 806 Malone Road Tel: (415) 378-8400
l1/F. 456, Chung Hsiao 1st Road Mesrutiyet Mah. 19 Mayis Cad. Telex: 444302 BELFAST BT95 NW Fax: (415) 378-8405
KAOHSIUNG Nova-Baran Plaza Kat: 11-12 Tel: (3531232) 664-851 Hewlett-Packard Ltd. Hewlett-Packard Co. Tel: (07)2412318

SlSLlIIST ANBUL 9 Bridewell Place Fax: (353/232) 665-619 1907 North Gateway Blvd.

TANZANIA
Tel: 1752970 LONDON EC4V 6BS SCOTLAND FRESNO, CA 93727
Telex: 39150 Tel: (44/583) 6565 Tel: (209) 252-9652

Adcom LId, Inc. Kenya Fax: 1752992 Fax: (44/583) 6565, Ext 4713
Hewlett-Packard Ltd.

Fax: (209) 456-9302
P.O. Box 30070 1/3 Springburn Place
NAIROBI Hewlett-Packard Bilgisayar Ve Oleum Hewlett-Packard Ltd. College Milton North Hewlett-Packard Co.
Kenya Sistemleri A.S. Heathside Park Rd. EAST KILBRIDE, G74 5NU 14215. Manhattan Av.
Tel: 3319 55 PariS Caddesi No 3 Cheadle Heath, Stockport Tel: 035-52-49261 FULLERTON, CA 92631
T alex: 22639 Diare9 GB-MANCHESTER SK3 ORB Fax: 03552-35929 Tel: (714) 999-6700

06670 ANKARA Tel: (44/61) 428-0828 Telex: 779615 Fax: (714) 778-3033
THAILAND Tel: 1258313 Telex: 668068
Unimesa Co. LId. Telex: 46180 Fax: 4955009

Hewlett-Packard LId. Hewlett-Packard Co.

2540 Sukumwit Avenue Fax: 1254745 SOUTH QUEENSFERRY 7408 Hollister Ave. #A
Hewlett-Packard Ltd. West Lothian, EH30 9TG GOLETA, CA 93117

Bangna
UGANDA Harman House Tel: 031-331-1188 Tel: (805) 685-6100

BANGKOK 10260 No. 1 George 51. Fax: 031-331-7412 Fax: (805) 685-6163
Tel: 662-398-6953 Adcom LId, Inc. Kenya

Telex: 84439 Simonco TH POBox 30070 Uxbridge,
Hewlett-Packard Co.

Cable: UNIMESA Bangkok NAIROBI
GB-MIDDLESEX UB8 1YH UNITED STATES 9800 Muirlando Ave.

Kenya
Tel: (44/895) 72020 Hewlett-Packard Co. IRVINE, CA 92718

TOGO Tel: 331955
Telex: 893135 Customer Information Center Tel: (714) 472-3000
Fax: 73684 Tel: (800) 752-0900

S.I.T.E.L. Telex: 22639 Fax: (714) 581-3607 (Direct Dial only)

Immeuble Ie General Hewlett-Packard Ltd. Hours: 6:00 AM to 5:00 PM

UNITED ARAB Pontefract Road Pacific Time Hewlett-Packard Co.
Avenue General de Gaulle 2525 Grand Avenue
P.O. Box 161 EMIRATES NORMANTON, Alabama LONG BEACH, CA 90815
AlllDJANOI Emitac Ltd. West Yorkshire WF6 lRN

Hewlett-Packard Co. Tel: (213) 498-1111
Ivory Coast P.O. Box 1641 Tel: (44/924) 895-566

2100 Riverchase Center Fax: (213) 494-1986
Tel: 3212 27 SHARJAH Fax: (44/924) 896-691

Building 100 - Suite 118
Telex: 22149 Tel: 591181 Telex: 557355

BIRMINGHAM, AL 35244
Hewlett-Packard Co.

Telex: 48710 EMITAC EM 5651 West Manchester Ave.
Societe Africaine De Promotion Hewlett-Packard Ltd. Tel: (205) 988-0547

Cable: EMITAC SHARJAH The Quadrangle Fax: (205) 988-5308
LOS ANGELES, CA 90045

Immeuble Segeb Tel: (213) 337-8000
Rue d' Atakparne EmitacLtd. 106-118'Station Road

Hewlett-Packard Co. Fax: (213) 337-8338
P.O. Box 4150 P.O. Box 2711 REDHlLL, Surrey RH lIPS

620 Discovery Dr.
LOME ABU DHABI Tel: 44-737-686-55

HUNTSVILLE, AL 35806
Hewlett-Packard Co.

Tel: 21-62-88 Tel: 820419-20 Telex: 947234
Tel: (205) 830-2000

321 E. Evelyn Ave.

Telex: 5357 Cable: EMITACH ABU DHABI Hewlett-Packard Ltd. Fax: (205) 830-1427
Bldg. 330
MOUNTAIN VIEW, CA 94039

EmitacLtd. Avon House
Tel: (415)694-2000 TRINIDAD &: TOBAGO P.O. Box 8391 435 Stratford Road Alaska
Fax: (415) 694-0600 Caribbean Telecoms Ltd. DUBAI, Shirley, SOLIHULL, West Midlands Hewlett-Packard Co.

Corner McAllister Street & Tel: 377591 B904BL 4000 Old Seward Highway Hewlett-Packard Co.
Eastern Main Road, Laventille Tel: 44-21-745-8800 Suite 101 5161 Lankershim Blvd.
P.O. Box 732 EmitacLtd. Telex: 339105 ANCHORAGE, AK 99503 NORTH HOLLYWOOD, CA 91601
PORT-GF·SPAIN P.O. Box 473 Tel: (907) 563-8855 Tel: (818) 505-5600
Tel: 624-4213 HAS AL KHAIMAH Hewlett-Packard Ltd.

Fax: (907) 561-7409 Fax: (818) 505-5875
Telex: 22561 CARTEL WG Tel: 28133, 21270 Heathside Park Road

Cable: CARTEL, PORT OF SPAIN Cheadle Heath, Stockport Arizona Hewlett·Packard CO.

UNITED KINGDOM Cheshire SK3 ORB Hewlett-Packard Co. 5725 W. Las Positas Blvd.
Computer and Controls lid. Tel: (44/61)428-0828 8080 Pointe Parkway West PLEASANTON, CA 94566
P.O. Box 51 ENGLAND Fax: (44/61) 495-5009 PHOENIX, AZ 85044 Tel: (415) 460-0282
1 Taylor Street Hewlett-Packard Ltd. Telex: 668068 Tel: (602) 273-8000 Fax: (415) 460-0713
PORT-oF-SPAIN Customer Information Centre Hewlett-Packard Ltd. Fax: (602) 273-8080 Hewlett-Packard Co.
Tel: (809) 622-7719/622-7985 King SI. Lane Harman House 4244 So. Market Court, Suite A
Telex: 38722798 COMCON WG Winnersh, Wokingham No. 1 George Street

Hewlett-Packard Co.
SACRAMENTO, CA 95834

LOOGO AGENCY 1264 GS-BERKSHIRE RG 11 5AR UXBRIDGE, Middlesex UB8 1YH
3400 East Britannia Dr.

Tel: (916) 929-7222
Tel: (441734) 784774 Bldg. C, Suite 124

TUNISIA Telex: 847178
Tel: (44/895) 72020 TUCSON, AZ 85706 Fax: (916) 927-7152

Precision Electronique Fax: 777285
Fax: (44/895) 73684 Tel: (602) 573-7400 Hewlett-PaCkard Co.

5. rue de Chypre Hewlett-Packard Ltd. Fax: (602) 573-7429 9606 Aero Drive

Mutuelleville Hewlett-Packard Ltd. King Street Lane SAN DIEGO, CA 92123
1002 TUNIS BELVEDERE Miller House Winnersh, WOKINGHAM Arkansas Tel: (619) 279-3200

Tunisia The Ring, BRACKNELL Berkshire RG 11 5AR Hewlett-Packard Co. Fax: (619) 268-8487
Tel: 78 50 37 Berkshire RG 12 lXN Tel: (44/734) 784774 10816 Executive Center Dr

Tlx: 13238 Tel: (44/344) 424-898 Fax: (44/734) 777285 Ext 52285 Conway Bldg. Suite 116
Fax: (44/344) 860015. Ext 56023 LITTLE ROCK,AR 72211

Tel: (501) 225-7178
Fax: (501) 221-3614

EJ
Hewlett-Packard Co. Georgia Hewlett·Packard Co. Minnesota Hewlett·Packard Co.
50 Fremont SI. Suite 200 Hewlett·Packard Co. 4201 Corporate Dr. Hewlett-Packard Co. 130 John Muir Dr.
SAN FRANCISCO, CA 94105 2015 South Park Place WEST DES MOINES, IA 50265 2025 W. Larpenteur Ave. AMHERST, NY 14228
Tel: (415) 882-6800 ATLANTA, GA 30339 Tel: (515) 224-1435 ST. PAUL, MN 55113 Tel: (716) 689-3003
Fax: (415) 882·6805 Tel: (404) 955-1500 Fax: (515) 224-1870 Tel: (612) 644-1100 Fax: (716) 636-7034

Hewlett-Packard Co. Fax: (404) 980-7669
Kansas

Fax: (612) 641·9787 Hewlett-Packard Co.
3003 Scott Boulevard Hewlett-Packard Co. Hewlett·Packard Co. Mississippi

200 Cross Keys Office Park
SANTA CLARA, CA 95054 3607 Parkway Lane FAIRPORT, NY 14450

North Rock Business Park Hewlett-Packard Co. Tel: (716) 223-9950 Tel: (408) 988-7000 Suite 300 3450 N. Rock Rd. 800 Woodland Parkway, Suite 101 Fax: (408) 988·7103 NORCROSS, GA 30092 Suite 300 RIDGELAND, MS 39157
Fax: (716) 223·6331

Hewlett-Packard Co. Tel: (404) 448-1894 WICHITA, KS 67226 Tel: (601) 957-0730 Hewlett-Packard Co.
5280 Valentine Rd. Suite 205 Fax: (404) 246-5206 Tel: (316) 636-4040 Fax: (601) 957·2515 7641 Henry Clay Blvd.
YENTURA, CA 93003 Fax: (316) 636-4504 UYEIIPOOL, NY 13088
Tel: (805) 658-6898 Hawaii Missouri Tel: (315) 451-1820
Fax: (805) 650-0721 Hewlett·Packard Co. Kentucky Hewlett-Packard Co. Fax: (315) 451·1820 x 255

Pacific Tower Hewlett-Packard Co. 1300 1 Hollenberg Drive Hewlett-Packard Co. Colorado 1001 Bishop SI. 305 N. Hurstbourne Lane, BRIDGETON 63044
No. 1 Pennsylvania Plaza Hewlett-Packard Co. Suite 2400 Suile 100 Tel: (314) 344·5100

2945 Center Green Court South HONOlULU, HI 96813 LOUISYlW, KY 40222 Fax: (314) 344-5273
55th Floor
34th Street & 7th Avenue Suite A Tel: (808) 526-1555 Tel: (502) 426-0100

Hewlett-Packard Co. MANHATTAN NY 10119 BOULDER, CO 80301 Fax: (808) 536-7873 Fax: (502) 426-0322
6601 Winchester Ave. Tel: (212) 971-0800 Tel: (303) 938-3065

Fax: (303) 938-3025 Louisiana KANSAS CITY, MO 64133 Fax: (212) 330·6967
Idaho Hewlett-Packard Co. Tel: (816) 737-0071

Hewlett-Packard Co. Hewlett-Packard Co. Hewlett-Packard Co. 160 James Drive East Fax: (816) 737-4690
2975 Westchester Ave 24 Inverness Place. East 11309 Chinden Blvd. ST. ROSE, LA 70087 PURCHASE, NY 10577 ENGLEWOOD, CO 80112 BOISE, 10 83714 Tel: (504)467-4100 Montana
Tel: (914) 935·6300 Tel: (303) 649-5000 Tel: (208) 323-2700 Fax: (504) 467-4100 x 291 Hewlett-Packard Co.
Fax: (914) 935-6497 Fax: (303) 649-5787 Fax: (208) 323-2528 13001 Hollenberg Drive

Maryland BRIDGETON, MT 63044 Hewlett-Packard Co.
Connecticut Illinois Hewlett-Packard Co. Tel: (314) 344·5100 Executive Square Office Bldg.
Hewlett-Packard Co.

Hewlett-Packard Co. 3701 Koppers Street Fax: (314) 344-5273 66 Middlebush Rd.
3 Parkland Dr.

2205 E. Empire SI. BALnMORE, MD 21227 WAPPINGERS FALLS, NY 12590
DARIEN, CT 06820

BLOOMINGTON, IL 61704 Tel: (301) 644-5800 Nebraska Tel: (914) 298-9125
Tel: (203) 656-0040

Tel: (309) 662-9411 Fax: (301) 362-7650 Hewlett-Packard Fax: (914) 298-9154
Fax: (203) 656-5563 11626 Nicholas SI.

Fax: (309) 662-0351 Hewlett-Packard Co. OMAHA, NE 68154 Hewlett-Packard Co.
Hewlett-Packard Co.

Hewlett-Packard Co. 2 Choke Cherry Road Tel: (402) 493-0300 3 Crossways Park West
115 Glastonbury Blvd

525 W. Monroe St., Suite 1308 ROCKVILLE, MD 20850 Fax: (402) 493-4334 WOODBURY, NY 11797
GLASTONBURY, CT 06033

CHICAGO, IL 60606 Tel: (301) 948-6370 Tel: (516) 682·7800
Tel: (203) 633-8100

Tel: (312) 930-0010 Fax: (301) 948-5986 New Jersey Fax: (516) 682-7806 (2)
Fax: (203) 659-6087

Fax: (312) 930-0986 Hewlett-Packard Co.
Massachusetts 120 W. Century Road North Carolina

Florida Hewlett·Packard Co. Hewlett-Packard Co. PARAMUS, NJ 07653 Hewlett-Packard Co.
Hewlett·Packard Co. 1200 East Diehl Road 1775 Minuteman Road Tel: (201) 599-5000 305 Gregson Dr.
5900 N. Andrews, Suite 100 NAPERYW,IL 60566 ANDOVER, MA 01810 Fax: (201) 599-5382 CARY, NC 27511
FORT LAUDERDALE, FL 33309 Tel: (312) 357-8800 Tel: (508) 682-1500 Tel: (919) 467-6600
Tel: (305) 938-9800 Fax: (312) 357-9896 Fax: (508) 794-2619 Hewlett-Packard Co. Fax: (919) 460-2296
Fax: (305) 938-2293

Hewlett-Packard Co.
10 Sylvan Way (919) 460-2297

Hewlett-Packard Co. PARSIPPANY, NJ 07054
Hewlett-Packard Co. 5201 Tollview Drive 29 Burlington Mall Rd. Tel: (201) 682-4000 Hewlett-Packard Co.
6800 South POint Parkway ROLUNG MEADOWS, IL 60008 BURUNGTON, MA 01803-4514 Fax: (201) 682-4031 P.O. Box 240318
Suite 301 Tel: (312) 255-9800 Tel: (617) 270-7000 CHARLOTTE, NC 28224
JACKSONYIW, FL 32216 Fax: (312) 259·5878 Fax: (617) 221·5240 Hewlett-Packard Co. Tel: (704) 527-8780
Tel: (904) 636-9955 20 New England Av. Fax: (704) 523-7857
Fax: (904) 636-9955 Indiana Michigan PISCATAWAY, NJ 08854

Hewlett-Packard Co.
Hewlett-Packard Co.

Hewlett-Packard Co. Hewlett-Packard Co. Tel: (201) 562-6100
11911 N. Meridian SI. Fax: (201) 562-6246 7029 Albert Pick Rd. #100

255 East Drive, Suite B 3033 Orchard Vista S.E. GREENSBORO, NC 27409
MELBOURNE, FL 32901 CARMEL, IN 46032 GRAND RAPIDS, MI 49546 Tel: (919)665-1800 Tel: (317)844-4100 Tel: (616) 957-1970 New Mexico
Tel: (407) 729-0704 Fax: (919) 668-1797 Fax: (317) 843-1291 Fax: (616) 956-9022 Hewlett-Packard Co.
Fax: (407) 723-4557 7801 Jefferson N.E. Mailing Address

Hewlett-Packard Co. Hewlett·Packard Co. Hewlett-Packard Co. ALBUQUEROUE, NM 87109 PO Box 26500

6177 Lake Ellenor Drive
111 E. Ludwig Road 39550 Orchard Hill Place Drive Tel: (505) 823-6100 Greensboro. NC 27426

ORLANDO, FL 32809
Suite 108 NOYI, MI48050 Fax: (505) 823-1243

Tel: (407) 859-2900 FT. WAYNE, IN 46825 Tel: (313) 349-9200 Ohio
Fax: (407) 826-9309 Tel: (219) 482-4283 Fax: (313) 349·9240 Hewlett-Packard Co. Hewlett-Packard Co.

Fax: (219) 482-9907 1362-C Trinity Dr. 2717 S. Arlington Rd.
Hewlett-Packard Co. Hewlett-Packard Co. LOS ALAMOS, NM 87544 AKRON 44312
4700 Bayou Blvd. Iowa 560 Kirts Rd. Tel: (505) 662-6700 Tel: (216) 644-2270
Building 5 Hewlett-Packard Co. Suite 101 Fax: (505) 662-4312 Fax: (216) 644-7415
PENSACOLA, FL 32503 4050 River Center Court TROY, MI48084

Tel: (904) 476-8422 CEDAR RAPlDS,IA 52402 Tel: (313) 362·5180 New York Hewlett-Packard Co.

Fax: (904) 476-4116 Tel: (319) 393-0606 Fax: (313) 362·3028 Hewlett-Packard Co. 450 1 Erskine Road

Fax: (319) 378-1024 5 Computer Drive South CINCINNAn, OH 45242
Hewlett-Packard Co. ALBANY, NY 12205 Tel: (513) 891-9870
5550 Idlewild, # 150 Tel: (518) 458-1550 Fax: (513) 891-0033
TAMPA, FL 33634 Fax: (518) 458-1550 x 0393
Tel: (813) 884-3282
Fax: (813) 889-4445

SALES OFFICES
Arranged alphabetically by country (cont'd)

UNITED STATES Hewlett·Packard Co. Hewlett·Packard Co. Hewlett·Packard CO. YUGOSLAVIA
(Cont'd) 111 Zeta Drive 10535 Harwin Drive N. 1225 Argonne Rd Do Hermes

PITTSBURGH, PA 15238 HOUSTON, TX 77036 SPOKANE, WA 99212·2657 General Zdanova 4
Hewlett·Packard Co. Tel: (412) 782-0400 Tel: (713) 776·6400 Tel: (509) 922·7000 YU·l1000 BEOGRAD
Moutroffe West Ave. Fax: (412) 963·1300 Fax: (713) 776-6495 Fax: (509) 927·4236 Tel: (011) 342641
COPLEY, OH 44321

Hewfett·Packard Co. Hewfett·Packard Co. Telex: 11433
Tel: (216) 666-7711 West Virginia
Fax: (216) 666-6054 2750 Monroe Boulevard 3301 Wesl Royal Lane Hewlett·Packard Co. Do Hermes

VALLEY FORGE, PA 19482 IRVING, TX 75063 501 56th Street Celovska 73
Hewfett·Packard Co. Tel: (215) 666-9000 Tel: (214) 869·3377 CHARLESTON, WV 25304 YU·61000UUBUANA
7887 Washington Village Or. Fax: (215) 666-2034 Fax: (214) 830·8951 Tel: (304) 925-0492 Tel: (061) 553170
DAYTON, OH 45459

Hewlett·Packard Co. Fax: (304) 925·1910 Telex: 31583
Tel: (513) 433·2223 South Carolina
Fax: (513) 433·8633 Hewfett·Packard Co. 109 E. Toronto, Suite 100

Wisconsin ZAIRE McALLEN, TX 78503
Hewfett·Packard Co. Brookside Park, Suite 122

Tel: (512) 630·3030 Hewlett·Packard Co. C.I.E.
9080 Springboro Pike 1 Harbison Way

Fax: (512) 630·1355 275 N. Corporate Dr. Computer & Industrial Engineering
MWIIS8URG 45342 COLUMBIA, SC 29212 BROOKFIELD, WI 53005 25 Ave. de la Justice Gombe
Tel: (513) 433-2223 Tel: (803) 732-0400 Hewlett·Packard Co. Tel: (414) 792·8800 Boile Postale 10976
Fax: (513) 433-3633 Fax: (803) 732-4567 930 E. Campbell Rd. Fax: (414) 792-0218 KINSHASA

Hewfett·Packard Co. RICHARDSON, TX 75081 Tel: 32 063,32633,28251
Hewlett·Packard Co.

545 N. Pleasantburg Dr. Tel: (214) 231·6101 URUGUAY Telex: 21552
15885 Sprague Road

Suite 100 Fax: (214) 699-4337 Pablo Ferrando SAC. e I. Fax: 22 850
STRONGSVILLE, OH 44136

GREENVUE, SC 29607 Hewlett·Packard Co. Avenida Italia 2877 Tel: (216) 243·7300
Tel: (803) 232·8002 14100 San Pedro Ave., Suite 100 Casilla de Correo 370 ZAMBIA Fax: (216) 234-7230
Fax: (803) 232·8739 SAN ANTONIO, TX 78232 MONTEVIDEO R.J. Tilbury (Zambia) Ltd.

Hewlett·Packard Co. Tel: (512) 494·9336 Tel: 59-82·802·586 P.O. Box 32792
One Maritime Plaza, 5th Roor Tennessee Fax: (512) 491·1299 Telex: 398802586 LUSAKA
720 Water Street HewIett·Packard Co.

Olympia de Uruguay SA Tel: 2155 80
TOLEDO, OH 43604 One Energy Center Suite 200 Utah Telex: 40128
Tel: (419) 242·2200 Pellissippi Pkwy. Hewlett·Packard Co. Maquines de Oficina

Fax: (419) 241·7655 KNOXVILLE, TN 37932 3530 W. 2100 South Avda. del Libertador 1997
ZIMBABWE Casilla de Correos 6644

Hewlett·Packard Co.
Tel: (615)966-4747 SALT LAKE CITY, UT 84119

MONTEVIDEO Field ConSOlidated (Private) Ltd.

675 Brooksedge Blvd.
Fax: (615) 966-8147 Tel: (801) 974·1700

Tel: 91·1809, 98·3807 Systron DiviSion

WESTERVUE, OH 43081 Hewlett·Packard Co. Fax: (801) 974-1780
Telex: 6342 OROU UY Manhattan Court

Tel: (614) 891-3344 889 Ridge Lake Blvd., Virginia
61 Sacond Street

Fax: (614) 891·1476 Suite 100 P.O. Box 3458

MEMPHIS, TN 38119
Hewlett·Packard CO. VENEZUELA HARARE

Oklahoma Tel: (901) 763-4747
640 Greenbrier Circle Analytical Supplies, CA Tel: 73 98 81

Hewlett·Packard Co. Fax: (901) 762·9723
Suite 101 Quinta #103lmpermes Telex: 26241

3525 N.W. 56th SI. CHESAPEAKE, VA 23320 Av EI Centro Fax: 702008
SuiteC-l00 Hewlett·Packard Co. Tel: (804) 424·7105 Los Chorros

OKLAHOMA CITY, OK 73112 44 Vantage Way, Fax: (804) 424-1494 Apartado 75472 PIe_1IIId directCIrJ comctioM 10:
Tel: (405) 946-9499 Suite 160 Hewlett·Packard Co. CARACAS Test & Measurement Catalog

Fax: (405) 942·2127 NASIMW, TN 37228 4401 Water Front Dr. Tel: 364904, 2394047 Hewfett·Packard Company
Tel: (615) 255-1271 GLEN ALLEN, VA 23060 Telex: 26274 CABIC 3200 Hillview Avenue

HewIett·Packard Co. Fax: (615) 726-2310 Tel: (804) 747·7750 Palo Alto, CA 94304
6655 South Lewis, Hewlett·Packard de Venezuela C.A.
Suite 105 Texas Fax: (804) 965·9297 Residencias Tia Bet1y Local 1

Tel: (415) 857-4706

TULBA,OK 74136 HewIett·Packard Co. Hewlett·Packard Co. Avenida 3 Y con Calle 75 Fax: (415) 857·3880

Tel: (918) 481-8700 9050 Capital 01 Texas Highway, North 2800 Electric Road Suite 100 MARACAIBO, Estado Zulia
Fax: (918) 481·2250 #290 ROANOKE, VA 24018 Apartado 2646

AUSTIN, TX 78759 Tel: (703) 774-3444 Tel: 586175669
Oregon Tel: (512)346-3855 Fax: (703) 989·8049 Telex: 62464 HPMAR
HewIett·Packard Co. Fax: (512) 338-7201
9255 S. W. Pioneer Court Mailing Address Washington
WILSONVILLE, OR 97070 PO Box 9431 Hewlett·Packard Co.
Tel: (503) 682-8000 Austin, TX 78766-9430 15815 S.E. 37th Street September 1989
Fax: (503) 682-8155 BELLEVUE, WA 98006

Hewlett·Packard Co. Tel: (206) 643-4000
Pennsylvania 5700 Cromo Dr

EL PABO, TX 79912
Fax: (206) 643-8748

Hewlett·Packard Co. Tel: (915) 833-4400
Heatherwood Industrial Park
50 Dorchester Rd.

Fax: (915) 581·8097

P.O. Box 6080
HARRIBBURG,PA 17112
Tel: (717) 657·5900
Fax: (717) 657·5946

I

Reader Comment Card

HP 9000 Computers
Programming and Protocols for NFS Services
81013-90010 E0291

We welcome your evaluation of this manual. Your comments and sugges­
tions will help us improve our publications. Please tear this card out and
mail it in. Use and attach additional pages if necessary.

Please circle the following Yes or No:
• Is this manual well organized?
• Is the information technically accurate?
• Are instructions complete?
• Are concepts and wording easy to understand?
• Are examples and pictures helpful?
• Are there enough examples and pictures?

Comments:

Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No

--

Name: -------------------------------------
Tjde: _______________________ _

Company: ________________ _

Address: ------------------------
City & State: ______________ _

WJ .. HEWLETT
a:~ PACKARD

Zip: _______ _

Printed in USA

Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Information Networks Division
19420 Homestead Road
Cupertino, CA 95014

A TIN: Network Usability Department

Fold Here

Please do not staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Tape

".

~

)

Copyright © 1991 ;
Hewlett-Packard Company
Printed in England 02/91 -- ,

Customer Order No. Manufacturing No.
BI013-90010 BlO13-91010

Mfg. number i5 for HP internal use only

11I

BI013-91010

