
HP 9000 Networking

NetlPC Programmer's Guide

Flin- HEWLETT a:aI PACKARD

Edition 2
E0792

98194-60532
Printed in U.S.A. 0792

Preface

Network Interprocess Communication (NetIPC) is a programmatic service provided
by the HP 9000 Networking product. The NetIPC Programmer's Guide is the primary
reference manual for programmers who write or maintain NetIPC applications on HP
9000 computers. This manual should also be read by Node Managers before
designing an HP 9000 network, so that they have a clear understanding of the features
provided by NetIPC.

This manual is organized as follows:

Chapter 1

Chapter 2

Chapter 3

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

"NetIPC Concepts," explains how NetIPC establishes and
terminates connections between processes to exchange data. This
chapter also introduces the NetlPC calls that perform these tasks.

"Cross-System NetIPC," describes special programming
considerations you should be aware of when writing an HP 9000
NetlPC program that will communicate with a peer NetIPC process
at an HP 1000 A-Series, HP 3000, or HP 3000 Series 900.

"NetIPC Calls," provides a detailed description of each NetIPC call
in alphabetical order. This chapter also explains the structure and
function of several parameters that are common to multiple NetlPC
calls.

"Sample NetlPC Programs," presents NetlPC sample programs in C
and FORTRAN.

"Error Messages," lists and describes the error messages that can be
produced by NetlPC.

"System Calls and NetIPC Sockets," lists and describes the HP-UX
system calls that operate on NS sockets.

"LAN/9000 Series 600/800 Migration," compares the NS/9000
Series 600/800 and HP 9000 Series 600/800 products to the NS/1000
and NS/9000 products.

"Porting NetIPC Programs," summarizes the differences and
provides information to help you port NetlPC programs between an
HP 1000 and an HP 9000 Series 600/800 computer.

3

Documentation Map

The following documentation map lists the manuals containing information related to
the product described in this manual. You may need information from one or all of
these manuals.

NS/1000 User/Programmer Reference Manual

NetIPC 3000/V Programmer's Reference Manual

NetIPC 3000/XL Programmer's Reference Manual

HP 9000 Using Network Services

HP-UX Reference Manual

PORT/HP-UX Migration Analysis Utility Manual

HP FORTRAN 77/HP-UX Reference Manual

HP C Reference Manual

HP C/HP-UX Reference Manual Supplement

HP Pascal Reference Manual

FORTRAN 77 Reference Manual

Pascal/1000 Reference Manual

HP FORTRAN 77/HP-UX Migration Guide

HP Pascal/HP-UX Migration Guide

4

Contents

Chapter 1 NetlPC Concepts
Chapter Overview 1-3
Sockets 1-4
Connections 1-5

Descriptors 1-6
Socket Ownership 1-7

Establishing a VC Connection 1-8
1. Creating a Call Socket 1-9
2. Naming a Call Socket 1-10
3. Finding A Call Socket Name 1-11
4. Requesting a Connection . 1-12
5. Receiving a Connection 1-13
6. Checking the Status of a Connection 1-14

Connection Establishment Summary 1-15
Sending and Receiving Data 1-17

Stream Mode 1-17
Interpreting Data Received 1-18

Synchronous and Asynchronous Socket Modes 1-19
Altering the Synchronous Time-out 1-20
Read and Write Thresholds 1-20
Signals 1-22

Shutting Down a Connection 1-23
Summary of NetIPC Calls 1-24

Chapter 2 Cross-System NetlPC
Chapter Overview 2-2
Software Revision Codes 2-3
Local and Remote N etIPC Calls 2-4

Local N etIPC Calls 2-4
Remote NetIPC Calls 2-7

HP 9000 to HP 1000 NetIPC 2-8
N etIPC Error Codes 2-10

5

HP 9000 to HP 3000 N etIPC 2-11
NetIPC Error Codes 2-14

HP 9000 to PC NetIPC 2-15
N etIPC Error Codes 2-17

Process Scheduling 2-18
Remote HP 9000 Process 2-18
Remote HP 1000 Process 2-18
Remote HP 3000 Process 2-19
Remote PC NetIPC Process 2-19

Chapter 3 NetlPC Calls
Programming Languages 3-2
Include Files and Libraries 3-3
HP 1000 to Series 600/800 Migration 3-4
NetIPC Common Parameters 3-5

Flags Parameter 3-5
Using Flags in a C Program 3-6
Using Flags in a Pascal Program 3-7
Using Flags in a FORTRAN Program 3-7

Opt Parameter 3-8
Using Opt in a C Program 3-9
Using Opt in a Pascal Program 3-10
Using Opt in a FORTRAN Program 3-11
Opt Parameter Structure 3-11

Data Parameter 3-13
Result Parameter 3-15

Using Result in a C Program 3-15
Using Result in a Pascal Program 3-15
Using Result in a FORTRAN Program 3-15

Socket Name Parameter 3-16
Node Name Parameter 3-16

Syntax Conventions 3-17
NetIPC Reference Pages 3-18

addopt() 3-19
initopt() 3-23
ipcconnect() 3-27
ipccontrolO 3-31
ipccreateO 3-36
ipcdest() 3-39

6

ipcerrmsg() 3-42
ipcerrstr() 3-44
ipcgetnodenameO 3-46
ipclookuPO 3-47
ipcname() 3-51
ipcnameraseO 3-54
ipcrecv() 3-56
ipcrecvcnO 3-63
ipcselectO 3-67
ipcsend() 3-75
ipcsetnodenameO 3-79
ipcshutdownO 3-80
optoverheadO 3-83
readopt() 3-85

Appendix A Sample NetlPC Programs
HP 9000 to HP 9000 Examples A-2
Cross-System NetIPC Examples A-3
Make File for Sample Programs A-4
Example 1: Server in C A-5
Example 2: Client in C A-9
Example 3: Server in FORTRAN A-II
Example 4: Client in FORTRAN A-15
Example 5: Cross-System Server in C A-20
Example 6: Cross-System Client in C A-28
Example 7: Cross-System Server in FORTRAN A-31
Example 8: Cross-System Client in FORTRAN A-39
Example 9: Cross-System Server in PASCAL A-43
Example 10: Cross-System Client in PASCAL A-56

~ppendix B Error Messages

~ppendix C System Calls and NetlPC Sockets

~ppendix D LAN/9000 Series 600/800 Migration
LAN/9000 Series 600/800 for DS/l000-IV Users D-2

Migration Analysis Utility D-2
Feature Comparison D-2

7

Interprocess Communication D-3
NS/1000 to LAN/9000 Series 600/800 Migration D-8
NS/9000 to LAN/9000 Series 600/800 Migration D-I0

Interprocess Communication D-ll

Appendix E Porting NetlPC Programs
LAN/9000 Series 600/800 and NS/l000 E-3

Path Report and Destination Descriptors E-3
Socket Ownership E-3
Socket Shut Down E-4
Signals E-4
TCP Checksum E-5
Remote Process Scheduling E-5

Remote NS/1000 Process E-5
Remote LAN/9000 Series 600/800 Process E-5

Case Sensitivity E-6
N etIPC Calls E-6

Unique NetIPC Calls E-7
Common NetIPC Calls E-7
Call Comparison E-7

8

Figures

Figure 1-1. ipccreateO (Server) 1-9
Figure 1-2. ipcnameO (Server) 1-10
Figure 1-3. ipclookupO (Client) 1-11
Figure 1-4. ipcconnectO (Client) 1-12
Figure 1-5. ipcrecvcnO (Server) 1-13
Figure 1-6. ipcrecvO (Client) 1-14
Figure 1-7. Establishing Connection with ipclookup Call 1.,.15
Figure 1-8. Establishing Connection with ipcdest Call 1-16
Figure 3-1. Opt Parameter Structure 3-12
Figure 3-2. OPTARGUMENT Structure 3-12
Figure 3-3. Vectored Data 3-14

9

Tables

10

Table 1-1. Descriptor Type and Definitions 1-7
Table 2-1. NetlPC Calls Affecting the Local Process 2-5
Table 2-2. NetlPC Calls Affecting the Remote Process 2-7
Table 2-3. Calls That Affect HP 9000 to HP 3000 NetlPC 2-10
Table 3-1. Special NetlPC Calls 3-9
Table C-l. System Calls and NetlPC Sockets•.... C-2
Table D-l. DS/1000-IV vs. LAN & NSj9()()() Series 800 D-2
Table D-2. PTOP Calls vs. NetlPC Calls D-4
Table D-3. NS/l000 vs. LAN & NSj9()()() Series 800 D-9
Table D-4. NSj9()()() vs. NS & LANj9()()() Series 800 D-10
Table E-l. Identical NetlPC Calls ...•................. E-7
Table E-2. NS/1000 and LANj9()()() Series 800 Call Comparison E-8

NetlPC Concepts

Note The information contained in this manual applies to both the Series
300/400 and Series 6OOnOO/800 HP 9000 computer systems. Any
differences in installation, configuration, or operation are specifically
noted.

1

Network Interprocess Communication (NetlPC) is a service that enables processes on
the same or different nodes to communicate using a series of programmatic calls.
Processes that use NetlPC calls gain access to the communication services provided by
the network protocols utilized by the HP 9000 networking products. N etIPC does not
encompass a protocol of its own, but acts as a generic interface to these protocols.

A NetlPC process running on an HP 9000 computer can communicate with a peer
process at:

• Another HP 9000 computer (Series 6OOnOO/800 or 300/400).

• An HP 1000 A-Series computer.

• An HP 3000 computer (MPE-V or Series 900).

• A PC on an HP OfficeShare Network.

NetIPC communication between processes running on computers of different types
(between an HP 9000 and an HP 3000, for example) is referred to as cross-system
NetIPC.

NetlPC Concepts 1-1

Note NetlPC communication between an HP 9000 Series 600/700/800 and HP
9000 Series 300/400 is not considered cross-system NetIPC because both
systems are HP 9000s.

HP 9000 NetIPC for the Series 300/400 and Series 600/700/800 is not
compatible with Berkeley IPC (also known as "Berkeley Sockets" or
"BSD IPC") or the interprocess communication service that is part of the
NS/9000 Series 500 product.

The "Cross-System NetIPC" chapter describes special programming considerations
you should be aware of when writing an HP 9000 NetlPC program that will
communicate with a peer NetIPC process at a different type of computer system. For
information about writing a NetIPC program to run on an HP 1000 A-Series, PC, HP
3000, or HP 3000 Series 900, you must refer to the following manuals:

• NS/1000 User/Programmer Reference Manual

• Net/PC 3000/V Programmer's Reference Manual.

• Net/PC 3000/XL Programmer's Reference Manual

• PC Net/PC/RPM Programmer's Reference Guide.

1-2 NetlPC Concepts

Chapter Overview
The information presented in this chapter is organized into the following major
sections:

• Sockets. Describes the fundamental building block of interprocess communication,
the socket.

• Connections. Defines key terms used to describe NetlPC connections.

• Establishing a VC Connection. Explains how to use NetIPC calls to establish a
virtual circuit (VC) connection.

• Connection Establishment Summary. Describes the sequences of NetIPC calls
used to establish a virtual circuit connection.

• Sending and Receiving Data. Describes the different modes of data exchange
provided by NetIPC and explains how to use NetIPC calls to send and receive data.

• Shutting Down a Connection. Explains how to use NetIPC calls to close a virtual
circuit connection.

• Summary of NetIPC Calls. Presents a brief description of each of the HP 9000
NetIPC calls.

NetlPC Concepts 1-3

Sockets
NetIPC processes communicate with each other by means of sockets. A socket is an
endpoint through which connections can be established, and data can be sent and
received. Processes communicate through sockets via NetIPC calls. The Transport
Layer's Transmission Control Protocol (TCP) regulates the transmission of data to
and from sockets. Although data must pass through the control of lower-level
protocols and, if necessary, through intervening nodes, these details are transparent to
NetIPC processes when they send and receive data.

1-4 NetlPC Concepts

Connections
Before two processes can communicate, one side (the passive side or the server) must
create a call socket by calling i pccreate. The process which creates the call socket
may name the socket by calling i pcname. This allows the other side (the active side
or client) to obtain address information regarding the server by calling i pel ookup.
Alternatively, the client may obtain address information regarding the server by calling
ipcdest.

The routines ipcname, ipclookup, and ipcnamerase allow sockets to be referred to
by ASCII names rather than protocol addresses. When i pename is called, the ASCII
name and information identifying the call socket being named are recorded in a table.
When i pc lookup is called, the nodename is examined first. If the nodename
parameter specifies the local node, then the name table on that local node is searched
for the specified socket name. If the nodename refers to a remote node, then

1. the address of that remote node is determined,

2. a request is sent to that node,

3. the name table on that remote is searched, and

4. the result of that search is returned in a reply message to the local node indicating
i pcl ookup is complete.

An alternative to i pc lookup is i pcdest which allows you to specify a protocol
address, also known as a port, rather than a socket name. The network address of the
node specified by the nodename is obtained and stored along with the protocol
address, and i pcdest is complete.

Both ipclookup and ipcdest return a destination descriptor. A destination
descriptor is an integer which indexes a data structure just as a file descriptor is an
integer which indexes a file. A destination descriptor contains address information
which identifies a node on the network and a call socket at that node. The
information in a destination descriptor is the same address information passed to the
BSD IPC networking routine "connect."

Once a client process has obtained a destination descriptor, it may initiate a virtual
circuit connection by calling i pcconnect. A virtual circuit is a connection using a
reliable transport protocol, in this case TCP, which guarantees that data are not
corrupted, lost, duplicated, or received out of order.

NetlPC Concepts 1-5

Descriptors
N etIPC processes acting as clients reference destination descriptors and virtual
circuit socket descriptors. NetIPC processes acting as servers reference virtual
circuit socket descriptors and call socket descriptors. A single process can act as both
a client and a server.

• Call Socket Descriptor. A call socket descriptor references a data structure
created by calling i pccreate which allows server processes to create virtual circuit
connections. The NetIPC routine i pccreate is equivalent to the BSD networking
routines "socket," "bind," and "listen."

• Destination Descriptor. A destination descriptor references a data structure that
contains address information about a destination call socket. A destination _
descriptor must be obtained before a process can connect to the destination call
socket. A process obtains a destination descriptor by invoking i pc lookup () or
ipcdest().

• VC Socket Descriptor. A VC socket descriptor refers to a VC socket. A VC
socket is the endpoint of a virtual circuit connection betwen two processes. VC
socket descriptors are returned by i pcrecvn () and i pcconnect ().

Socket descriptors are allocated from the same space as file descriptors. A process
may have a maximum of 1024 socket and file descriptors. Therefore, sockets are
accessible through the standard HP-UX file system calls such as read(), write(),
i octl (), fentl (), sel ect (), stat (), dup (), wri tev() and readv(). For more
information on using these calls with NetIPC sockets, refer to Appendix C of this
manual.

1-6 NetlPC Concepts

Table 1-1. Descriptor Type and Definitions

Descriptor Parameter Description Returned as
Type Name Output From

call socket calldesc Refers to a call socket. ipccreate()
descriptor A call socket is used by

server processes to build
a VC socket.

destination destdesc Refers to descriptor ipclookup()
descriptor referencing address ipcdest()

information used to
direct requests to a
certain call socket at a
certain node.

VCsocket vcdesc Refers to a VC socket. ipcconnect()
descriptor A VC socket is the ipcrecvcn()

endpoint of a virtual
circuit connection
between two processes.

Socket Ownership
When a NetIPC process creates a call socket by calling i pccreate (), or
creates a VC socket by calling i pcconnect () or i pcrecvcn (), it is said to
own the socket.

A process can also become an owner of a socket by inheriting a socket
descriptor. NetIPC descriptors (call socket, VC socket, and destination), like
file descriptors, are copied to the child process when a process forks. As a
result, more than one process can have a descriptor for the same socket. Any
process that has a descriptor is considered to be an owner of that descriptor.
As a programmer, you are responsible for regulating the use of shared
descriptors.

A process may have access to a maximum of 1024 descriptors at one time.
This limit includes file descriptors as well as socket descriptors.

NetlPC Concepts 1-7

Establishing a VC Connection
Establishing a connection between two processes requires that one process create a
call socket which the other process can connect to. The process which creates the call
socket is often referred to as· the passive side or the server. The process which
initiates the connection is often referred to as the active side or client. The typical
use of the client-server model involves a server process which creates a call socket,
receives a connection, and forks a child to handle that connection while the server
listens for another connection.

As a programmer, you are responsible for synchronizing your NetIPC programs so
that the NetIPC calls are executed in the manner illustrated by the following drawings
and text.

Although only two processes are shown in this example, this is not meant to imply
that communication cannot exist between more than two processes. Either or both of
the processes shown can establish virtual circuit connections with other processes.
Secondary or auxiliary connections can also be set up between the same two processes ..

NetIPC does not provide a call to schedule a remote process. Remote HP 9000
processes must be manually started or can be scheduled by user-written daemons.
You can start the daemon at system start up by invoking the daemon from the
/etc/netl inkrc file.

For information about scheduling remote programs on other HP computers, refer to
the "Cross-System NetIPC" chapter.

1-8 NetiPC Concepts

1. Creating a Call Socket
Before communication can begin, the server process must create a call socket by
calling i pccreate. The; pccreate routine creates a call socket and returns a call
socket descriptor in its ca 77 desc parameter. The call socket descriptor is used in
subsequent NetlPC calls.

Server

Call
Socket

Descriptor

Figure 1·1. ipccreateO (Server)

NetlPC Concepts 1-9

2. Naming a Call Socket
Mter the server creates the socket, it may optionally name that socket. Naming the
socket allows client processes to make a connection if they know the socket name, but
not the protocol specific address. Alternatively, the server could create a call socket
at a specific protocol address. In that case the client process would need to know the
protocol address instead of the socket name. Socket names are considered an
advantage over protocol addresses because when a server names a socket, that socket
is guaranteed to get a unique protocol address. Several users or programs can
operate using named sockets without danger of accidentally using a common protocol
address.

The server process names a call socket by calling i pcname. The socket name is then
recorded in the local socket registry name table. Remember that the server process
must name the socket before the client process calls i pc lookup.

Server

Socket Registry

·NAME·

Figure 1-2. ipcnameO (Server)

1-10 NetlPC Concepts

3. Finding A Call Socket Name
The client process must get address information regarding the server process by
calling either i pc lookup or i pcdest. If the selVer process named the call socket,
then the client process must call i pcl ookup. If the selVer process created the call
socket at a specific protocol address, then the client process must call i pcdest.

Both ipclookup and ipcdest return a destination descriptor to the user. The
destination descriptor identifies a data structure which contains address information
about the selVer's call socket.

It may be difficult to ensure that a socket name is placed in the socket registry prior
to being "looked up" by another process. Several ways to avoid this timing problem
are outlined in the discussion of i pc lookup () in the "NetIPC Calls" chapter.

Client

Socket Registry

"NAME"

Server

Figure 1-3. ipclookupO (Client)

NetlPC Concepts 1-11

4. Requesting a Connection
The client process specifies the destination descriptor returned by i pc lookup or
i pcdest when it calls i pcconnect. The routine i pc connect will create a virtual
circuit socket and initiate, but not complete, a connect. The virtual circuit socket (vc
socket) is returned to the user in the vcdesc parameter. The vc socket may not be
used to send or receive data until the connection has been completed. The client
process must call i pcrecv to determine when the connection is complete.

Client Server

Socket Registry

Figure 1-4. ipcconnectO (Client)

1-12 NetlPC Concepts

5. Receiving a Connection
The server process receives a connection by calling i pcrecvcn. The routine
i pcrecvcn references the call socket descriptor and returns a virtual circuit socket
descriptor to the user. The vc socket descriptor can be used to send and receive data.
Note that the connection is automatically accepted on the server's behalf when the
connection is initially requested by the client process. The client process can
determine that the connection is "established" before the server calls i pcrecvcn.
Any data which the client sends before the server calls i pcrecvcn is queued. If the
client expects data from the server, it may timeout waiting for data even though the
server has not done an i pcrecvcn. After the server calls i pcrecvcn, it can call
i pcrecv to read data sent by the client.

Client

Socket Registry

Figure 1-5. ipcrecvcn 0 (Server)

Server

VC
Socket

Descriptor

NetlPC Concepts 1-13

6. Checking the Status of a Connection
After the client calls i pceonneet, it must call i pereev to determine when the
connection is completed.

Client

Socket Registry

"NAME"

VIRTUAL CIRCUIT CONNECTION

Figure 1·6. ipcrecvO (Client)

Server

Note When the client considers the connection established, it may be different
from when the selVer considers the connection established as described
above. Once the connection is established, data transfer can begin using
the vc socket descriptors and the i pesend and i pereev commands.
Refer to the "NetIPC Calls" chapter for a detailed description of i pes end
and i pereev.

1-14 NetlPC Concepts

Connection Establishment Summary
Figures 1-7 and 1-8 illustrate the two alternate sequences of NetIPC calls that are
used to establish a virtual circuit connection. Figure 1-7 summarizes the information
presented in Figures 1-2 through 1-6.

Client

ipclookup()

ipcconnectO

ipcrevcO

1. "Look up· name

2. Request connection

3. Check status of
connection

Server

ipccreateO

ipcnameO

ipcrecvcn{)

1. Create call socket

2. Name call socket

3. Receive connection
request

Figure 1-7. Establishing Connection with ipclookup Call

NetlPC Concepts 1-15

Figure 1-8 summarizes a different way to establish a virtual circuit connection using
ipcdest.

Client

ipcdestO

ipcconnect(}

ipcrecvO

1. ipcdest to well-known

address
2. Request connection

3. Check status of
connection

Server

ipccreateO

ipcrecvcnO

1. Create call socket with

well-known address
2. Receive connection

request

Figure 1-8. Establishing Connection with ipcdest Call

In both figures on the client side (that is, at the client's node), steps 2 and 3 are the
same. i pc lookup and i pcname reference a destination call socket by name whereas
i pcdest references the destination call socket by its well-known address. Note that
the advantage of using ipclookup is that names might be easier to remember and
use. With i pcdest, the address must be unique and other processes must cooperate
and not use that same address.

1-16 NetlPC Concepts

Sending and Receiving Data
Once a virtual circuit connection is established, processes can send and receive data
using the NetIPC calls i pesend () and i pereev (). i pesend () is used to send data
on an established connection. i pereev() is used to receive data on an established
connection. (Note that i pereev () has a dual function: to establish a virtual circuit
connection and to receive data on a previously established connection.)

Stream Mode
All data transfers between NetIPC processes are in stream mode. Stream mode
adheres to the Transport Layer's Transmission Control Protocol (TCP). In stream
mode, data is transmitted in a stream of bytes; there are no end-of-message markers.
This means that the data received by an individual i pereev () request may not be
equivalent to a message sent by an individual i pesend () call. In fact, the data
received may contain part of a message or multiple messages sent by multiple
i pes end () calls. Although no attempt is made to preserve boundaries between data
sent at different times, the data received will always be in the correct order (in the
order that the messages were sent).

You may specify the maximum number of bytes that you are willing to receive through
a parameter of the i pereev () call. When the call completes, this parameter will
contain the number of bytes actually received. The amount of data received will
never be more than the amount that was requested, but it may be less. Whether or
not an i pereev () call will receive less data than it requested is determined by the
NSF _DATA_WAIT bit of the flags parameter. If the NSF _DATA_WAIT bit is set,
i pereev () will never receive less than the requested amount; if the NSF _DATA_WAIT
bit is not set, i pereev () may receive less data than was requested.

NetlPC Concepts 1-17

Caution The NetlPC NSF DATA WAIT flag can cause a program to block for an
extreme period of time-(for example, eight minutes for 8 bytes). It is
recommended that NetlPC programs not use NSF DATA WAIT but
loop until all data is received instead. Refer to the-"Receiving Data"
section of the "NetIPC Calls" chapter for the specific loop information.

If an i pcrecv () call requests more data than is queued on a VC socket, one of the
following situations will result:

• If the VC socket is in synchronous mode, the calling process will suspend until
enough data is queued to satisfy the i pcrecv () request. If enough data does not
arrive within the synchronous time-out period to satisfy the request, a "time out"
error (error code 59) will be returned.

• If the VC socket is in asynchronous mode, a "would block" error (error code 56)
will be returned.

For more information on receiving data, refer to the discussion of i pcrecv () in the
"NetIPC Calls" chapter.

Interpreting Data Received
As stated in the previous discussion of stream modes, the data received by an
i pcrecv () call may contain part of a message or multiple messages sent by multiple
i pcsend () calls. In addition, if the NSF _DATA_WAIT bit of the flags parameter is not
set, the receiving process may receive less data than it requested.

If an application does not need to receive data in the form of individual messages, it
can simply process the data on the receiving side. However, if an application is
concerned about messages, the programmer must devise a scheme to allow the
receiving side to determine what the messages are and whether all of the expected
messages have been received.

If the messages are of a known length, the receiving process can execute a loop which
calls i pcrecv () with a maximum number of bytes equal to the length of the portion
of the message not yet received. Since i pcrecv () returns the actual number of bytes
received in its d7 en parameter, the loop can continue to execute until all of the bytes
of the message have been received as indicated by this parameter.

1-18 NetlPC Concepts

If the length of the messages are not known, the sending side may send the length of
the message as the first part of each message. In this scenario, the receiving side must
execute two i pcrecv () loops for each message: the first to receive the length; the
second to receive the data.

Synchronous and Asynchronous Socket Modes
When a send operation is performed on a socket, data is moved out of process space
into an outbound transmission buffer. Similarly, when a receive operation is
performed on a socket, data is moved from an inbound transmission buffer into
process space. Sometimes a send or receive request cannot be immediately satisfied.
In the case of i pcsend (), an empty transmission buffer may not be available; an
i pcrecv () request may not be satisfiable because data-filled transmission buffers are
not queued on the referenced socket. When either of these situations occur, NetlPC
must decide whether to fail the request or suspend the process until the request can
be satisfied. This decision is based upon whether the socket being manipulated is in
synchronous or asynchronous mode.

Sockets are automatically placed in synchronous mode when they are created. When
a socket is in synchronous mode, send and receive requests that reference it cause the
the calling proc~ss to be suspended if the requests cannot be immediately satisfied. A
process that has been suspended will remain suspended until the request is satisfied, a
synchronous time-out occurs, a signal arrives, or an error is detected. Each
synchronous socket has a timer associated with it that can be modified with an
i pccontro 1 () call. This timer determines how long a NetlPC call will block on the
socket while waiting for its request to be satisfied. A NetIPC call will not block
forever unless the synchronous time-out value is set to zero with an i pccontro 1 ()
call.

Three NetIPC calls, i pcsend (), i pcrecv () and i pcrecvcn (), support
asynchronous as well as synchronous I/O. (The i pc connect () call is by definition an
asynchronous call; the remaining NetIPC calls do not support asynchronous I/O.)
Sockets can be placed in asynchronous mode by calling i pccont ro 1 () and specifying
NSC_NBIO_ENABLE (code 1) in the request parameter. Send and receive requests
directed against a socket in this mode do not cause the calling process to be
suspended if the requests cannot be immediately satisfied. Instead, an
NSR_WOULD_BLOCK (code 56) error is returned and the process is free to perform
other tasks before retrying the request.

Refer to the discussion of i pcrecvcn () in the "NetIPC Calls" chapter for
information about how this call functions in synchronous and asynchronous mode.

NetlPC Concepts 1-19

Altering the Synchronous Time-out

If the NetIPC calls i pcsend (), i pcrecv (), and i pcrecvcn () are used
synchronously, it may be necessary to alter the synchronous time-out value by calling
i pccont ro 1 (). The default synchronous time-out is 60 seconds. The synchronous
time-out determines:

• How long i pcsend () will suspend the calling program if it cannot immediately
obtain the buffer space needed to accommodate its data or if the process on the
receiving end cannot receive the data being sent to it.

• How long i pcrecv () will suspend the calling program if its request for data cannot
be satisfied or if a "successful" connection status cannot be obtained.

• How long i pcrecvcn () will suspend the calling program while waiting for a
connection request.

For information on changing the synchronous time-out for specific calls, refer to the
call descriptions in the "NetIPC Calls" chapter.

Read and Write Thresholds
For efficiency, a process using asynchronous sockets must be able to determine
whether a VC socket can satisfy an i pcsend () or i pcrecv () call before the request
is issued. The ipcselect() call addresses this problem by providing socket
status information. Included in this information is whether or not:

• A VC socket is readable.

• A VC socket is writable.

The i pcse 1 ect () call determines whether or not a VC socket is readable by
examining the socket's read threshold. A VC socket is considered readable if it can
immediately satisfy an i pcrecv () request for a number of bytes greater than or
equal to its read threshold. The read threshold is used by i pcse 1 ect () to check if
there are at least that many bytes in the system ready for reading.

1-20 NetlPC Concepts

Similarly, i pcse 1 ect () determines whether or not a VC socket is writable by
examining the socket's write threshold. A VC socket is considered writable if it can
immediately satisfy an i pcsend () request for a number of bytes greater than or
equal to its write threshold. The write threshold is used by i pcse 1 ect () to check if
there are at least that many bytes in the system to be used as a buffer space for
writing. If i pcse 1 ect indicates that a socket is writable, the subsequent write may
still fail due to lack of memory available. System memory may be consumed between
the i pcse 1 ect and the subsequent i pcsend.

The i pcse 1 ect {} call will not return accurate status information unless a socket's
read and write thresholds are set to the correct number of bytes. (These thresholds
are initially set to one byte. You can alter this value by calling i pccontrol (). Refer
to the discussion of this call for more information.) The number of bytes that you
expect to send or receive on a socket should determine the correct read and write
threshold settings. As a general rule, you should set a socket's read threshold to the
same number of bytes as the length of the data you expect to receive on that socket.
Similarly, you should set a socket's write threshold to the same number of bytes you
expect to send on that socket. Consider the following example: Process B will always
issue i pcsend () calls with 64 bytes of data on VC socket X. Therefore, socket X's
write threshold should also be 64 bytes. Similarly, if Process B expects to issue
64-byte i pcrecv () requests on socket X, socket X's read threshold should be set to
64 bytes as well.

If you expect to receive variable length data on a particular VC socket, the socket's
read threshold should be set to the length of the shortest amount of data you expect
to receive. If you expect to send variable length data on a particular VC socket, the
socket's write threshold should be set to the length of the longest amount of data you
expect to send.

Note The read and write thresholds are used exclusively by the i pcse 1 ect ()
call. They have no effect on other NetIPC calls.

For more information about using sockets in asynchronous mode, refer to the
discussions of ipcselect(), ipccontrol (), ipcsend(), ipcrecv(), and
i pcrecvcn ().

NetiPC Concepts 1-21

Signals
Signals will interrupt NetIPC calls that would otherwise suspend. NetIPC calls that
are interrupted by signals are not restartable.

NetIPC calls behave the same way as interruptable HP-UX system calls with the
following exception: When a NetIPC call is interrupted by a signal and the
sc_syscall_Qction field is set to SIG_RETURN, the following occurs:

1. the NetIPC call aborts,

2. the interrupted call's result parameter is set to NSR_SIGNAL_INDICATION, and

3. the interrupted program continues past the previously blocked NetIPC call.

When an HP-UX system call is interrupted, the errno variable is set to EINTR. This
does not occur when the call is a NetIPC call. Instead, the interrupted call's result
parameter is set to NSR_SIGNAL_INDICATION.

NetIPC has also defined values to be returned to the sc_syscall field. These values
are defined in the HP-UX include file /usr/inc1 ude/sys/sysca 11. h.

For more information on signals, refer to signal (2) and s i gvector (2) described in
the HP-UX Reference Manual.

1-22 NetlPC Concepts

Shutting Down a Connection
Processes should close virtual circuit connections they no longer need by calling
i pcshutdown () to release the VC socket descriptor that references the connection.

Note The i pcshutdown () call can also be used to release call socket
descriptors and destination descriptors. Refer to the discussion of
i pcshutdown () in the "NetIPC Calls" chapter for more information on
releasing these types of descriptors.

Because i pcshutdown () takes effect very quickly, any data that is in transit on the
connection, including any data that has already been queued on the destination VC
socket, may be destroyed before its intended recipient is able to receive it. To ensure
that no data is lost during connection shutdown, specify the
NSF _GRACEFUL_RELEASE flag.

When a NetIPC process releases a VC socket descriptor that is shared by other
processes (i.e., other processes have copies of that descriptor), the descriptors owned
by the other processes are not affected. The i pcshutdown () call does not operate
on the VC socket referenced by a VC socket descriptor unless the descriptor is the
only descriptor for that socket. A VC socket is destroyed along with its VC socket
descriptor only when the descriptor being released is the sole descriptor for that socket.

NetlPC Concepts 1-23

Summary of NetlPC Calls
The following is a summary of all the HP 9000 NetIPC calls.

Call

ipcconnect()

ipccontrol()

ipccreate()

ipcdest()

ipcerrmsg()

ipcerrstr()

ipcgetnodename()

ipclookup{)

ipcname()

ipcnamerase{)

ipcrecv()

Description

Requests a virtual circuit to another program and returns a
VC·socket descriptor which identifies a VC socket endpoint
at the calling program.

Performs special operations on sockets such as enabling
synchronous and asynchronous mode, changing the
synchronous timeouts, and setting read and write thresholds.

Creates a call socket for the calling program.

Returns a destination descriptor that the calling process can
use to establish a connection to another process.

Returns an error message for a particular NetIPC error
number.

Provides text describing NetlPC error numbers.

Returns the NetIPC node name belonging to the local host.

Searches the socket registry for a socket name and returns a
destination descriptor that the calling process can use to
establish a connection to another process.

Associates a name with a call socket descriptor or
destination descriptor and stores it in the socket registry.

Removes a name associated with a call socket descriptor or
destination descriptor from the socket registry.

Checks the status of a connection or receives data on a
previously established connection.

1-24 NetlPC Concepts

ipcrecvcn()

ipcselect()

ipcsend()

ipcsetnodename()

ipcshutdown()

Receives a connection request from another program and
returns a VC socket descriptor that describes a VC socket
endpoint at the calling program.

Enables a program to detect and/or wait for the occurrence
of any of several events across multiple call or VC sockets.

Note that if i pcse 1 ect indicates that a socket is writable,
the subsequent write may still fail due to lack of memory
available. System memory may be consumed between the
i pcse 1 ect and the subsequent i pcsend.

Sends data to another program on a virtual circuit.

Defines the NetlPC node name for the local host.

Releases a descriptor. Also releases the socket referenced
by the descriptor if the descriptor is the only descriptor that
references that socket.

NetlPC Concepts 1-25

2

Cross-System NetlPC

NetIPC communication between processes running on computers of different types is
referred to as cross-system NetIPC. This chapter describes the special programming
considerations that you should be aware of when writing an HP 9000 NetIPC program
that will communicate with a peer NetIPC process at an HP 1000 A-Series computer,
an HP 3000 (MPE-V or Series 900) computer, or a PC.

NetIPC communication between an HP 9000 Series 6OOnOO/800 and HP 9000 Series
300/400 is not considered cross-system NetIPC because both systems are HP 9000s.

Cross-System NetlPC 2-1

Chapter Overview
Before reading this chapter, you must have a good understanding of the NetIPC
concepts and calls. Read the "NetIPC Concepts" chapter and review the "NetlPC
Calls" chapter before proceeding.

This chapter does not explain how to write a NetIPC program to run on an HP 1000
A-Series,PC, HP 3000 or HP 3000 Series 900 computer. For this information, refer
to the following manuals:

• N~/1000 User/Programmer Reference Manual.

• Net/PC3000/V Programmer's Reference ManuaL

• Net/PC3000/XL Programmer's Reference ManuaL

• PC Net/PC/RPM Programmer's Reference Guide.

The remainder of the material presented in this chapter is organized into the
following major sections:

• Software Revision Codes. Lists the software revision codes associated with the
NetIPC software that provides the cross-system functionality described in this
chapter.

• Local and Remote NetIPC Calls. Divides NetIPC calls into two categories, local
and remote, and describes how these calls are used in cross-system programs.

• HP 9000 to HP 1000 NetIPC. Describes differences between the HP 9000 and HP
1000 NetIPC implementations.

• HP 9000 to HP 3000 NetIPC. Describes differences between the HP 9000 and HP
3000 NetIPC implementations.

• HP 9000 to PC NetIPC. Describes differences between the HP 9000 and PC
NetIPC implementations.

• Process Scheduling. Describes how to schedule a peer NetIPC process at an HP
9000, HP 3000 and HP 1000 system.

2-2 Cross-System NetlPC

Software Revision Codes
In order for cross-system NetIPC to function properly, the HP 9000, HP 1000 and HP
3000 NetIPC software revision codes must be as follows:

• LAN/9000 Series 600/800 software revision code 1.1 or later for Series 600/800 to
HP 1000 A-Series NetIPC.

• LAN/9000 Series 600/800 software revision code 2.1 or later for Series 600/800 to
HP 3000 NetIPC.

• NS-ARP A Services software revision code 6.2 or later for the Series 300/400.

• NSI1000 software revision code 5.0 or later for the HP 1000 A-Series.

• ThinLAN 3000N Link revision code V-Delta-l MIT or later (used with IEEE
802.3 LAN only) for the HP 3000 MPE-V.

• ThinLAN 3OOO/XL Link revision code 1.2 or greater for the HP 3000 Series 900.

• PC revision B.OO.01.

Cross-System NetlPC 2-3

Local and Remote NetlPC Calls
NetlPC calls can be separated into two categories: local and remote.

Local NetlPC Calls
Local NetIPC calls are used to set up or prepare the local node for interprocess
communication with the remote node. The resulting impact of the local call is only to
the local node; no information is passed to the remote node.

Because local NetIPC calls do not affect the peer process, there are no cross-system
programming considerations associated with these calls. Table 2-1 lists the HP 1000,
HP 9000, HP 3000 and PC NetlPC calls that only affect the local process. (An
asterisk indicates that a particular call is not implemented.)

2-4 Cross-System NetlPC

Table 2·1. NetlPC Calls Affecting the Local Process

HP 1000 HP 9000 HP 3000 PC

Addopt addopt() ADDOPT AddOpt
Adrof * * *
InitOpt initopt() INITOPT InitOpt
* * IPCCHECK *
IPCControl ipccontrol() IPCCONTROL IPCControl
IPCCreate ipccreate() IPCCREATE IPCCreate
* ipcerrmsg(} IPCERRMSG *
* ipcerrstr(} * *
* ipcgetnodename() * *
IPCGet * IPCGET *
IPCGive * IPCGIVE *
IPCName ipcname() IPCNAME *
IPCNamerase ipcnamerase(} IPCNAMERASE *
IPCSelect ipcselect(} * *
* ipcsetnodename() * *
* optoverhead(} OPTOVERHEAD OptOverhead
Readopt readopt(} READOPT ReadOpt

(NetIPC 3000N
only)

* * * ConvertNetworkLong
* * * ConvertNetworkShor1
* * * IPCWait

Although the calls listed in Table 2-1 do not affect cross-system
communication, keep in mind that you may need to design NetIPC programs
for different system types differently. This is because NetIPC calls, even those
with the same name, differ from system type to system type. The following are
some local call differences to be aware of:

• Maximum Dumber of sockets. The maximum number of socket descriptors
owned by an HP 9000 process at any given time is 2048 (including file
descriptors); the HP 1000 maximum is 32; the HP 3000 maximum is 64; the
PC maximum is 21. This number includes call socket, virtual circuit socket,
and open file descriptors.

Cross-System NetlPC 2-5

• ipccontrolO parameters. The i pccont ro 1 () call supports a different set of
request codes on different system types. Refer to the NetIPC documentation for a
particular system (this manual for the HP 9000) for a full description of the request
codes available on that system.

• Destination descriptors. On the HP 1000, destination descriptors are called path
report descriptors. Both types of descriptors are used in the same way. They
contain addressing information that is used by a NetIPC process to direct requests
to a certain call socket at a certain node.

• Manipulation of descriptors. The HP 9000 and HP 1000 implementations of
NetIPC allow you to manipulate call socket and destination descriptors with the
i pcname () and i pcnamerase () calls; the HP 3000 only allows you to manipulate
call sockets with these calls. When you use the IPCGive and IPCGet calls on the
HPl000, you can manipulate call socket and destination descriptors; the HP 3000
only allows you to manipulate call and VC sockets with these calls.

• Asynchronous I/O. The HP 9000 and HP 1000 NetIPC implementations utilize the
NetIPC i pcse 1 ect () call to perform asynchronous I/O; the HP 3000 NetIPC
implementation utilizes the MPE intrinsics IOWAIT and IODONTWAIT. PC NetIPC
uses IPCWait.

• Call sockets. On the PC, call sockets are called source sockets and call socket
descriptors are called source socket descriptors. Both sets of terms are used in the
same way.

Note There are many additional differences between local NetIPC calls for the
HP 9000, HP 1000, HP 3000, and PC. Refer to the NetIPC
documentation for each system for more information.

2-6 Cross-System NetlPC

Remote NetlPC Calls
Unlike local NetIPC calls, remote NetIPC calls affect the peer process at the remote
node. Because remote NetIPC calls affect the peer process, there may be
cross-system programming considerations associated with these calls.

Table 2-2 lists the HP 9000, HP 1000, HP 3000, and PC NetIPC calls that affect the
remote process.

Table 2-2. NetlPC Calls Affecting the Remote Process

HP 1000 HP 9000 HP 3000 PC

IPCConnect ipcconnect() IPCCONNECT IPCConnect
IPCDest ipcdest() IPCDEST IPCDest
IPClookUP ipclookup() IPClOOKUP not implemented
IPCRecv ipcrecv() IPCRECV IPCRecv
IPCRecvCn ipcrecvcn() IPCRECVCN IPCRecvCn
IPCSend ipcsend() IPCSEND IPCSend
IPCShutDown ipcshutdown() IPCSHUTDOWN IPCShutdown

The remainder of this chapter describes cross-system programming
considerations for the remote NetIPC calls as they relate to the following
cross-system pairs:

• HP 9000 to HP 1000 A-Series communication.

• HP 9000 to HP 3000 (MPE-V and Series 900) communication.

• HP 9000 to PC communication.

Cross-System NetlPC 2-7

HP 9000 to HP 1000 NetlPC
When writing an HP 9000 NetlPC program that will communicate with an HP 1000
NetIPC peer process, you must be aware of certain differences in the HP 9000 and
HP 1000 NetIPC implementations. These differences, and the NetIPC calls that are
affected, are listed in Table 2-3.

Table 2-3. Calls That Affect HP 9000 to HP 1000 NetlPC

NetlPC Call Cross-System Considerations

ipcconnect() Checksumming - When an i pcconnect () call is
executed on an HP 9000 node, then TCP
checksumming is always enabled for the HP
9OOO-to-HP 1000 connection.

Send and Receive sizes - The HP 1000 send and
receive size range is 1 to 8,000 bytes. The HP 9000
send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system.

ipcdest() TCP Protocol Address - The HP 1000 and HP 9000
implementations of i pccreate () support different
ranges of permitted TCP protocol addresses that can
be specified in the opt parameter. However, both
implementations recommend that users specify TCP
addresses in the range of 30767 to 32767 decimal for
cross-system use. The i pcdest () call uses the TCP
protocol address specified in i pccreate () on the
remote process.

i pc lookup () No differences that affect cross-system operations.

2-8 Cross-System NetlPC

Table 2-3. Calls That Affect HP 9000 to HP 1000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcrecv() Receive size - The HP 1000 receive size range is 1 to
8,000 bytes. The HP 9000 receive size range is 1 to
32,767 bytes. Although the range sizes that can be
specified in the d7 en parameter are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

ipcrecvcn() Checksumming - TCP checksumming is always
enabled for the HP 9OOO-to-HP 1000 connection.

Send and Receive sizes - The HP 1000 send and
receive size range is 1 to 8,000 bytes. The HP 9000
send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system.

ipcsend() Send size - The HP 1000 send size range is 1 to
8,000 bytes. The HP 9000 send size range is 1 to
32,767 bytes. Although the range sizes that can be
specified in the d 7 en parameter are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

Cross-System NetlPC 2-9

Table 2-3. Calls That Affect HP 9000 to HP 3000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcshutdown() Socket Shut Down - The shutdown procedure for
both HP 1000 and HP 9000 processes is the same,
except that a "graceful release" flag is provided on
the HP 9000. If the graceful release flag (f7 ags bit
17) is set on the HP 9000, the HP 1000 will respond
as though it were a normal shutdown. The HP 9000
also supports "shared sockets"; the HP 1000 does
not.

Shared sockets are destroyed only when the
descriptor being released is the sole descriptor for
that socket. Therefore, the HP 9000 process may
take longer to close the connection than expected.

Note There are many additional differences between remote NetIPC
calls for the HP 9000 and HP 1000 systems. However, these
differences should not affect the cross-system communication
capabilities of your program because they affect the local node
only. Refer to Appendix E, "Porting NetIPC Programs," for a
summary of the differences between the HP 9000 and HP 1000
NetIPC implementations.

NetlPC Error Codes
NetIPC calls with the same names on HP 9000 and HP 1000 systems may
return different error codes. Refer to the system's corresponding NetIPC
documentation for a complete list of the error codes that are applicable to
that NetIPC implementation.

2-10 Cross-System NetlPC

HP 9000 to HP 3000 NetlPC
When writing an HP 9000 NetIPC program that will communicate with an HP 3000
(MPE-Vor Series 900) NetlPC peer process, you must be aware of certain
differences in the HP 9000 and HP 3000 NetIPC implementations. These differences,
and the NetIPC calIs that are affected, are listed in Table 2-4.

Table 2-4. Calls That Affect HP 9000 to HP 3000 NetlPC

NetlPC Call Cross-System Considerations

ipcconnect() Checksumming - TCP checksumming is always
enabled for the HP 9OOO-to-HP 3000 connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The HP 3000
send and receive size range is 1 to 30,000 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system. Note that the default send and
receive sizes differ on the HP 9000 and the HP
3000. On the HP 9000, the default send and receive
size is 100 bytes. On the HP 3000, the default send
and receive size is less than or equal to 1024 bytes.

Cross-System NetlPC 2-11

Table 2-4. Calls That Affect HP 9000 to HP 3000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipedest{) TCP Protocol Address - The HP 9000 and HP 3000
implementations of ipeereate{) support different
ranges of permitted TCP protocol addresses that can
be specified in the opt parameter. However, both
implementations recommend that users specify TCP
addresses in the range of 30767 to 32767 decimal for
cross-system use. The i pede s t () call uses the TCP
protocol address specified in i peereate () on the
remotepr~.

ipelookup{) No differences that affect cross-system operations.

ipereev{) Receive size - The HP 9000 receive size range is 1 to
32,767 bytes. The HP 3000 receive size range is 1 to
30,000 bytes. Although the ranges are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

iperecven{) Checksumming - TCP checksumming is always
enabled for the HP 9OOO-to-HP 3000 connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The HP 3000
send and receive size range is 1 to 30,000 bytes.
Although the ranges are different, cross-system
communication is not affected. Just be sure to
specify a buffer size within the correct range for the
respective system. Note that the default send and
receive sizes differ on the HP 9000 and HP 3000.
On the HP 9000, the default send and receive size is
100 bytes. On the HP'3000, the default send and
receive size is less than or equal to 1024 bytes.

2-12 Cross-System NetlPC

Table 2-4. Calls That Affect HP 9000 to HP 3000 NetIPC-con't

NetlPC Call Cross-System Considerations

ipcsend() Send size - The HP 9000 send size range is 1 to
32,767 bytes. The HP 3000 send size range is 1 to
30,000 bytes. Although the ranges are different,
cross-system communication is not affected. Just be
sure to specify a buffer size within the correct range
for the respective system.

Urgent Data - The HP 3000 supports an "urgent
data" option in the opt parameter. If this bit is set
by the HP 3000 program, it will be ignored by the
receiving process on the HP 9000.

ipcshutdown() Socket Shut Down - The shutdown procedure for
HP 9000 and HP 3000 processes is the same. The
HP 9000 supports "shared sockets"; the HP 3000
does not. Shared sockets are not destroyed until
only one socket descriptor exists (the last socket
descriptor). Therefore, an HP 9000 process may
take longer to close the connection than expected.

Note There are many additional differences between remote NetIPC
calls for the HP 9000 and HP 3000 systems. However, these
differences should not affect the cross-system communication
capabilities of your program because they affect the local node
only. Refer to the system's corresponding NetIPC documentation
to determine all of the differences between NetIPC on the HP
9000 and HP 3000 systems.

Cross-System NetlPC 2-13

NetlPC Error Codes
NetIPC calIs with the same names on HP 9000 and HP 3000 systems may return
different error codes. Refer to the system's corresponding NetIPC documentation for
a complete list of the error codes that are applicable to that NetIPC implementation.

2-14 Cross-System NetlPC

HP 9000 to PC NetlPC
When writing an HP 9000 NetlPC program that will communicate with a PC NetIPC
peer process, you must be aware of certain differences in the HP 9000 and PC
NetIPC implementations. These differences, and the NetlPC calls that are affected,
are listed in Table 2-5.

Table 2·5. Calls That Affect HP 9000 to PC NetlPC

NetlPC Call Cross-System Considerations

IPCConnect Checksumming - With PC NetIPC, the TCP
checksum option cannot be turned on. On the HP
9000, the TCP checksum is always on. Therefore,
the checksum is in effect on both sides of the
connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The PC send
and receive size range is 1 to 65,535 bytes. Although
the ranges are different, cross-system communication
is not affected. Just be sure to specify a buffer size
within the correct range for the respective system;
otherwise, an error will occur. For example, if a PC
sends a 60,000 byte buffer, the HP 9000 process may
get all the data by posting two i pcrecv functions of
30,000 bytes until all the data has been received.

IPCCreate TCP Protocol Address - The HP 9000 and PC
IPCDest implementations of I PCCreate support different

ranges of permitted TCP protocol addresses that can
be specified in the opt parameter. However, both
implementations recommend that users specify TCP
addresses in the range of 30767 to 32767 decimal for
cross-system use. The IPCDest call uses the TCP
protocol address specified in IPCCreate on the
remote process.

Cross-System NetlPC 2-15

Table 2-5. Calls That Affect HP 9000 to PC NetIPC-con't

NetlPC Call Cross-System Considerations

IPCRecv Receive size - The HP 9000 enables you to specify
the maximum receive size of the data buffer with the
dlen parameter through an option array. PC NetIPC
has no option array defmed for I PCConnect. This
does not affect cross-system communication. The
maximum receive size of the data in the buffer on
the HP 9000 will determine the receive size buffer
on the PC.

IPCRecvCn Checksumming - With PC NetIPC, the TCP
checksum option cannot be turned on. On the HP
9000, the TCP checksum is always on. Therefore,
the checksum is in effect on both sides of the
connection.

Send and Receive sizes - The HP 9000 send and
receive size range is 1 to 32,767 bytes. The PC send
and receive size range is 1 to 65,535 bytes. Although
the ranges are different, cross-system communication
is not affected. Just be sure to specify a buffer size
within the correct range for the respective system.

IPCSend Send size - The HP 9000 enables you to specify the
maximum send size of the data buffer with the dlen
parameter through an option array. PC NetIPC has
no option array defined for IPCConnect. This does
not affect cross-system communication. The
maximum send size of the data in the buffer on the
HP 9000 will determine the send size buffer on the
PC.

2-16 Cross-System NetlPC

Note There are many additional differences between remote NetIPC calls for
the HP 9000 and PC NetIPC systems. However, these differences should
not affect the cross-system communication capabilities of your program
because they affect the local node only. Refer to the system's
corresponding NetIPC documentation to determine all of the differences
between NetIPC on the HP 9000 and PC NetIPC systems.

NetlPC Error Codes
NetIPC calls with the same names on HP 9000 and PC NetIPC systems may return
different error codes. Refer to the system's corresponding NetIPC documentation for
a complete list of the error codes that are applicable to that NetIPC implementation.

Cross-System NetlPC 2-17

Process Scheduling
NetIPC does not include a call to schedule a peer process. In programs
communicating between multiple HP 3000s or multiple HP 1000s, you can use the
Remote Process Management (RPM) call RPMCREATE to programmatically schedule
program execution. RPM between HP 9000s and HP 1000s or HP 3000s is not
currently supported by Hewlett-Packard.

The following sections describe how to start a process at a remote HP 9000, HP 1000
and HP 3000 system.

Remote HP 9000 Process
Remote HP 9000 processes can be started manually or can be scheduled by daemons.

To manually start up a NetIPC program, simply logon to the HP 9000 system and run
the NetIPC program.

To start a NetIPC process from a daemon, start the daemon at system start up by
invoking it from the /ete/netl inkre file.

Remote HP 1000 Process
A remote HP 1000 NetIPC process must be ready to execute by being an RTE type 6
file. HP 1000 processes can be started manually or can be started at system start up.

To manually start up a NetIPC program, simply logon to the HP 1000 system and run
the NetIPC program with the RTE XQ (run program without wait) command.

To have the NetIPC program execute at system start up, put the RTE XQ command in
the WELCOME file. Refer to the RTE-A User's Manual for a description of the XQ
command.

2-18 Cross-System NetlPC

Remote HP 3000 Process
HP 3000 processes can be started manually or can be started by a job file.

To manually start up an HP 3000 NetIPC program, log on to the HP 3000 and run
the NetIPC program (with the RUN command).

You can schedule the program to start at a particular time by writing a job file to
execute the program, and then including time and date parameters in the: STREAM
command that executes the job fIle.

Remote PC NetlPC Process
To manually start up a PC NetIPC program, enter the NetIPC program name at the
MS@-DOS prompt.

To execute from within MS-Windows, copy the NetIPC program files to your windows
directory and double click with the mouse on the executable file.

Cross-System NetlPC 2-19

3

NetlPC Calls

This chapter is a reference source for programmers who code applications that utilize
NetIPC calls. It is assumed that the reader has read and understands the concepts
presented in the "NetIPC Concepts" chapter.

The information contained in this chapter is organized as follows:

• Programming Languages. Identifies the programming languages in which N etlPC
programs may be written.

• Include Files and Libraries. Describes the NetlPC include file that may be used
with NetIPC programs written in C and explains how to link and compile NetIPC
programs written in each of the supported programming languages.

• lIP 1000 to Series 600/800 Migration. Lists reference sources for programmers
who will be ~igrating HP 1000 NetIPC programs to the HP 9000 Series 600/800
programming environment

• NetIPC Common Parameters. Describes parameters that are common to most of
the NetIPC calls and explains how to use those parameters in each of the supported
programming languages.

• Syntax Conventions. Explains the syntax conventions used on the NetIPC
reference pages.

• NetIPC Reference Pages. Provides reference pages, in alphabetical order, for each
of the NetIPC calls.

NetlPC Calls 3-1

Programming Languages
NetIPC programs may be written in C, Pascal or FORTRAN. For detailed
information about programming languages, refer to the appropriate language
reference manual. Programming reference manual titles are listed in the preface of
this manual.

3-2 NetlPC Calls

Include Files and Libraries
A C include file, /usr/inc1 ude/sys/ns_ ipc. h, is provided with the NetIPC
software and should be included in all NetIPC programs that are written in the C
programming language. This include fIle contains constant definitions for socket
types, protocol types, f7 ags parameter bits, i pccont ro 1 () request codes, opt
parameter option codes, and NetIPC error codes. It also contains the type
declaration n s _ i nt _ t that can be used to describe many of the NetIPC call
parameters.

Note If you wish to use Pascal or FORTRAN, you must translate the include
file /usr/inc1 ude/sys/ns_ ipc. h into these programming languages.

A NetIPC library, /usr/1 i b/11 i b-ns i pc.1 n is also provided with the NetIPC
software for use with the lint program. For example: .

1 i nt programname -1 ns i pc

For more information on 1 int, refer to the HP-UX Reference Manual.

NetlPC Calls 3-3

HP 1000 to Series 600/800 Migration
NetIPC programs written in Pascal and FORTRAN for the HP 1000 environment
may be transported to HP 9000 Series 600/800 nodes. Refer to the migration manuals
listed in the preface of this manual for information on migrating HP 1000 Pascal and
FORTRAN programs to the HP 9000 Series 600/800 environment.

Hyou plan to transport HP 1000 NetIPC programs to the Series 600/800, refer to
Appendix E of this manual for HP 1000 to Series 600/800 NetIPC porting
information. Refer to Appendix D of this manual for general NS/l000 and
DS/1000-IV to LAN/9000 Series 600/800 migration information.

3-4 NetlPC Calls

NetlPC Common Parameters
The f7 ags, opt, data, resu7t, socketname, and nodename parameters are common
to many NetIPC calls.

The opt parameter provides functionality for NetIPC calls and usually has associated
data. The f1 ags parameter enables or disables certain functions for NetIPC calls.
The result parameter returns error codes for NetIPC calls. The socketname and
nodename parameters identify sockets and nodes, respectively.

The following paragraphs provide detailed information regarding the meaning, use
and structure of each of these parameters.

Flags Parameter
The f7 ags parameter is a 32-bit integer that represents various options. By setting
bits in the f1 ags parameter, you can invoke various services in i pcrecv (),
i pcsend (), i pccontro 1 () and i pcdest () calls.

The NetIPC calls i pcconnect (), i pccreate (), i pc lookup (), i pcrecvcn () and
i pcshutdown () also include a f7 ags parameter, but in these calls the parameter is
reserved for future use. The f7 ags parameter must be initialized to zero before it is
used in these calls. The parameter must also be cleared after it is used in these calls if
it is to be in a subsequent call that requires that the f1 ags parameter be initialized to
zero. This precaution should be taken because NetlPC calls that do not use the
f7 ags parameter on input may return non-zero values to the parameter on output.

The following paragraphs explain how the f 7 ag s parameter is declared and
manipulated in the C, Pascal, and FORTRAN programming languages.

NetlPC Calls 3-5

Note NetIPC calIs assume that the bits in the f7 ags parameter are numbered
from left to right with the most significant bit considered to be bit zero and
the least significant bit considered to be bit 31.
MSB
o 1 2 3 4 5 '" 31 Pascal, C, and NetIPC
MSB
31 30 29 28... 0 FORmAN

The remaining examples in this chapter assume the most significant bit is
O.

Using Flags in a C Program
The C include file jusr/i ncl ude/sys/ns i pc. h includes constant definitions that
should be used when setting bits in the f1 ags parameter. (Refer to the explanations
of the ipcsend(), ipcrecv(), ipccontrol (), and ipcdest() call descriptions
later in this chapter for the constants that can be used with these calIs.)

The f7ags parameter should be declared as type ns_int_t, which is defined in the C
include fIle /usr/incl ude/sys/ns~.Jpc. h. A flags option is set by assigning one of
the constants defined for the particular call to the f7 ags parameter. In the following
example, the f7 ags parameter used in an i pcrecv () call is assigned the constant
NSF_PREVIEW. (NSF_PREVIEW sets bit 30 of the f7 ags parameter.)

fl ags = NSF_PREVIEW;

In the next example, the NSF_PREVIEW and NSF _DATA_WAIT options are selected by
using the bitwise inclusive OR (I) operator. (NS F _DATA _ WA I T sets bit 20 of the
f7 ags parameter.)

flags = NSF_PREVIEW I NSF _DATA_WAIT;

3-6 NetlPC Calls

Using Flags in a Pascal Program

In Pascal, the f7 ags parameter may be represented as an array of bits:

TYPE flags_type = packed array [0 .. 31] of boolean;

VAR fl ags : fl ags type;

fl ags [0] refers to the high order bit in the boolean array; fl ags [31] refers to the
low order bit. To set a bit in the array, assign the value TRUE to the desired bit. For
example,

fl ags [21] := TRUE;

would set bit 21 of the f7 ags array. A clear bit would be assigned the value FALSE.
If you do not want to set any of the bits in the f7 ags array, but you want to be
certain that all of the bits are clear, you may make f7 ags type INTEGER and assign it
the value zero.

Using Flags in a FORTRAN Program
In FORTRAN, the f7 ags parameter must be declared as INTEGER*4 (32-bit integer).
The simplest way to set a bit in this parameter is to use the FORTRAN library
function; bset (a, b). The f7 ags parameter is passed in the first argument (a) and
the bit position to be set is passed in the second argument (b).

The i bset function assumes that bits are numbered from right to left, with the most
significant bit considered to be bit 31 and least significant bit considered to be bit O.
NetIPC calls assume that bits are numbered in the opposite direction (i.e., the most
significant bit is 0, the least significant bit is 31). Therefore, to set the proper bit in
the f7 ags parameter using; bset, you must subtract the f7 ags value from 31.

In the following example, bit 21 is set in the f7 ags parameter:

INTEGER*4 fl ags
C The fl ags value; s subtracted from 31 so that the proper
C bi t ; s set. Thi s maps i bset' s bi t number; ng convent; on ; nto
C NetIPC's.

flags = ;bset(flags,(31-21»

Multiple bits can be set by repeating the ; bset function.

NetlPC Calls 3-7

Opt Parameter
The opt parameter allows you to request optional services when invoking certain
NetIPC calls. It enables calls that include the opt parameter to accept an arbitrary
number of arguments that are either protocol or operating system specific.

Because the opt parameter has a complex structure, NetIPC provides a special set of
calls that allow you to manipulate the parameter. Table 3-1 summarizes the opt
parameter calls. Before you can invoke a NetIPC call that includes an opt parameter,
you must prepare the parameter by using the following opt parameter calls:

• First, in i topt () must be called to initialize the opt parameter. This call allows
you to specify how many arguments will be placed in the parameter.

• Next, addopt () must be called to add an argument and its associated data to the
opt parameter. (An add opt () call can add only one argument at a time, so you
must call it multiple times if you want to add multiple arguments to the opt
parameter.)

H the opt parameter is not used in a certain call (no options are defined for that call
or you do not choose to select an option), you must assign a value of zero (0) to the
opt parameter or pass the constant NSO_NULL in its place.

In addition to in i topt () and add opt (), two optional opt parameter calls are
provided: readopt () and optoverhead (). The readopt () call allows you to obtain
option code and argument data associated with a certain opt parameter. The
optoverhead{) call may be used to determine the number of bytes needed. for the
opt parameter, excluding the data area. To determine the length of the entire opt
parameter, you must add the result of the optoverhead () call to the length of the
data to be placed in it and then allocate memory for the parameter by calling
rna 11 oc (). (rna 11 oc () is documented in the HP-UX Reference Manual.)

The following formula can also be used to determine the opt parameter length before
coding your application.

total 1 ength of opt = 4 + 8 * OPTNUMARGUMENTS + DATA; - --

3-8 NetlPC Calls

In this formula, OPTNUMARGUMENTS contains the number of arguments that will be
placed in the parameter and DATA contains the length in bytes of the data associated
with all of the arguments.

Table 3-1. Special NetlPC Calls

Call Description

addopt() Adds an argument and its associated data to an opt
parameter.

initopt(} Initializes an opt parameter so that arguments can be added.

optoverhead(} Returns the amount of space needed for the opt parameter
in bytes, not including the data portion of the parameter.

readopt(} Obtains the option code and argument data associated with
an opt parameter argument.

A complete description of each opt call, including programmatic examples of the
in i topt () and add opt () calls, is provided in "Special NetIPC Calls" later in this
chapter.

The following paragraphs explain how the opt parameter is declared and manipulated
in the C, Pascal, and FORmAN programming languages.

Using Opt in a C Program
The C include file /usr/i ncl ude/sys/ns i pc. h includes constant definitions that
should be used when placing options in the -opt parameter. (Refer to the
explanations of the NetIPC calls that utilize the opt parameter for a description of
the constants that can be used.)

NetlPC Calls 3-9

The opt parameter should be declared as an array of short (l6-bit) integers. For
example:

short i nt opt [opt 1 ength] ;

When declared as a array of short integers, the opt parameter can be passed directly
to the in i topt () call. For example,

initopt (opt, optnumarguments, error);

Alternatively, you can declare the opt parameter as a pointer to a short (16-bit)
integer. For example:

short i nt *opt;

However, if you use *opt, you must allocate space for the structure before passing it
to in i topt (). This can be done by using optoverhead () and the mall oc () call as
described in the HP-UX Reference Manual. For example:

data 1 ength = 20;
opt 1 ength = optoverhead (number entri es, error);
opt = (short*) malloc (datalength + optlength);

Note The opt data structure must be aligned on a short (l6-bit) boundary.

Using Opt in a Pascal Program
In Pascal, the opt parameter should be declared as a a packed array of bytes. For
example:

TYPE
byte = O .. 255;
opt_array = packed array [0 .. optlength] of byte;

VAR
opt: opt_array;

3-10 NetlPC Calls

Using Opt in a FORTRAN Program
In FORTRAN, the opt parameter should be declared as an array of short (16-bit)
integers. For example:

SHORT INTEGER opt (opt 7 ength)

Opt Parameter Structure

Note The following description is provided for information only. The special
opt parameter calls are provided to mask this information from the user.
It is not necessary to understand the opt parameter structure in order to
use it.

The following diagrams are provided to illustrate the general form of the opt
parameter after it has been initialized with the special NetIPC call in i topt (). In
Figure 3-1, OPTLENGTH represents the length of the opt parameter from the first byte
of OPTNUMARGUMENTS to the end of the data segment:

OPTlENGTH = 8 * OPTNUMARGUMENTS + DATA

OPTNUMARGUMENTS represents the number of arguments or entries placed in the
parameter; OPTARGUMENTS is an area containing the arguments themselves; and DATA
is where the data associated with the arguments is stored.

NetlPC Calls 3-11

Byte
o ~------------~
1
2

OPTLENGTH

3 OPTNUMARGUMENTS
4

OPTARGUM ENTS

n
~------------~

n + 1

DATA
z ~ ____________ ~

Figure 3-1. Opt Parameter Structure

Figure 3-2 illustrates the structure of an opt parameter argument. OPTIONCODE is the
option code associated with the argument being added; OFFSET is a byte offset into
the opt record where any data associated with the argument is located; and
DATALENGTH is the length of the data associated with the argument. This information
is added to the opt parameter with the special NetIPC call addopt (). (An example
of adding an argument to the opt parameter is provided in the discussion of
addopt () later in this chapter.)

Byte
o~------------~

OPTIONCODE

2
OFFSET

3

4 DATALENGTH
5~ ____________ ~

6 <RESERVED>
7

Figure 3-2. OPTARGUMENT Structure

3-12 NetlPC Calls

Data Parameter
The d at a parameters present in i pcsend (), i pcrecv () and i pccont ro 1 () may
reference data vectors or data buffers.

Unlike a data buffer, which is a structure containing actual data, a data vector is a
structure that can describe several data objects. The description of each object
consists of a byte address and a length. The byte address describes where the object is
located and the length indicates how much data the object contains. Any kind of data
object (arrays, portions of arrays, records, simple variables, etc.) can be described by a
data vector.

When a data vector is used to identify data to be sent, it describes where the data is
located. This is referred to as a gathered write. When a data vector is used to
identify data to be received, it describes where the data is to be placed. This is
referred to as a scattered read.

Using data vectors may be more efficient than using data buffers in certain
circumstances. For example, a process that sends data from several different buffers
must call i pcsend () several times, or copy the data into a packing buffer prior to -
sending it, if its data parameter is a data buffer. However, if its data parameter is a
data vector, the process may describe all of the buffers in the data parameter and
transfer it using one i pcsend () call.

Note Since the data location descriptors contain machine-specific information,
code using the vectored option may not be portable to other machines.

NetlPC Calls 3-13

Figure 3-3 is an example of a data vector and the data objects that it represents. The
data vector describes the characters "HERE IS THE DATA."

DATA VECTOR

16000

8

16223

5

17542

4

BYTE
ADDRESS

LENGTH

BYTE
ADDRESS

LENGTH

BYTE
ADDRESS

LENGTH

16000

16222

17540

DATA OBJECTS

16002 16004

16224 16225

17542 17544

Figure 3-3. Vectored Data

16006

16228

17546

When a data parameter refers to a data vector, the length of the data parameter
(usually called d 7 en) refers to the length of the structure containing the vector.

For example, if an i pcsend () call were to reference the data vector in Figure 3-3
above, its d7 en parameter would be 24 bytes. (Each byte address and length totals 4
bytes; each pointer to a data object is also 4 bytes long. There are three sets of byte
addresses, lengths and pointers. Therefore, 8 * 3 = 24.)

Each length in a data vector must be greater than or equal to zero. The format for
vectors, and the maximum number of vectors that may be specified, are defined in
/usr/include/sys/uio.h.

3-14 NetlPC Calls

Result Parameter
Every NetIPC call has a resu 7 t parameter. When a NetIPC call encounters an
error, an error code is returned via this parameter.

Using Result in a C Program
Because the resu 7 t parameter is provided for error return, you should declare
NetIPC calls to be type void in C programs. In addition, a C include file called
/ us r / inc 1 ud e/ s y s / n s _ i pc • h is provided which contains constant definitions that
can be used to refer to errors in your C programs. For example, the following C
program fragment checks for the error NSR_REMOTE_ABORT (code 64) after an
i pcshutdown () call:

ipcshutdown(descriptor, &flags, opt, &result);
if (resul t == NSR REMOTE ABORT)

goto return_error; -

The resu 7 t parameter should be declared as a pointer to type n s _ i nt _ t, which is
defined in the C include file / u s r / inc 1 ud e/ sy s / n s _ i pc • h.

Note Passing an invalid or out-of-bounds pointer to the actual resu 7 t
argument in a NetIPC call will cause the program to core dump due to a
memory fault/bus error. A pointer is, in general, considered "bad" if it
points outside of the user's memory space.

Using Result in a Pascal Program
In Pascal, the result parameter should be declared as type INTEGER.

Using Result in a FORTRAN Program
In FORTRAN, the resu 7 t parameter should be declared as type INTEGER*4.

NetlPC Calls 3-15

Socket Name Parameter
The NetIPC calls ipcname(), ipcnamerase(), ipclookup() and ipcdest()
require the use of names to identify either sockets or nodes. A socket name (the
socketname parameter) may be a maximum of 16 characters long and may consist of
any ASCII character. Upper and lower case characters are not considered distinct
(for example, the socket names "john" and "JOHN" are equivalent).

Node Name Parameter'
A node name (the nodename parameter) refers to a node and has a hierarchical
structure as follows:

node[.domain[.organization]]

The domain and organization may be useful for grouping nodes and collections of
nodes, but they currently have no special meaning regarding the structure of the
network within the LAN product and are optional. They will default to the local
domain and organization if they are omitted. When all three parts of the node name
are specified, it is called a fully-qualified node name.

Each node, domain, and organization name is a maximum of 16 characters long,
and a period (.) separates each name. The maximum total length of a fully-qualified
node name is 50 characters. All alphanumeric characters are allowed, including the
underscore U and dash (-) characters, but the first character of each parameter must
be alphabetic. Upper and lower case characters are not considered distinct. For
example: AN I MAL. DC L • I NO would indicate node ANIMAL in the DCL lab (domain)
of the IND division (organization).

3-16 NetlPC Calls

Syntax Conventions
The the syntax conventions used in this chapter are described below:

• Constant names defined in the C include file /usr/i ncl ude/sys/ns i pc. hare
included in the parameter descriptions for calls that can use them. -

• A section titled "Programming Considerations" is included at the end of each
N etIPC call reference page. This section consists of a table that lists the type
dermitions and passing modes that must be used for each call parameter. This table
includes information for the C, Pascal, and FOR 1RAN programming languages.

NetlPC Calls 3-17

NetlPC Reference Pages
The following reference pages provide syntax and usage jnformation for each of the
NetIPC calls. The reference pages are organized alphabetically by NetIPC call name.

Note Standard HP-UX "manual reference page"versions of the following
NetIPC reference pages are also provided on-line and in the LAN
Reference Pages manual (for the Series 600/8(0) and the Network Services
Reference Pages manual (for the Series 3(0).

3-18 NetlPC Calls

addoptO
Adds an argument and its associated data to the opt parameter.

Syntax

addopt(opt,argnum,optioncode,datalength,data,resu7t)

Parameters

opt

argnum

optioncode

data length

data

result

Description

The opt parameter to which you want to add an argument.
Refer to "NetIPC Common Parameters" for information on
the structure and use of this parameter.

The number of the argument to be added. The first
argument is number zero.

The option code or constant definition (C programs only)
for the argument to added. These codes are described in
each NetIPC call opt parameter description.

The length in bytes of the data to be included. This
information is provided in each NetIPC call opt parameter
description.

An array containing the data associated with the argument.

The error code returned; zero or NSR_NO_ERROR if no error.

The add opt () call adds an argument and its associated data to an option buffer. The
parameter must be initialized by in i topt () before arguments can be added.

The following C program fragment illustrates the use of in i topt () and addopt () to
initialize and add two arguments to the option parameter of an i pcconnect () call.

NetlPC Calls 3-19

In this example, the opt parameter is used to specify a maximum send size and
maximum receive size of 1000 bytes. (Maximum send size indicates the maximum
number of bytes that you expect to send with a single i pcsend () ; addopt () call and
maximum receive size indicates the maximum number of bytes you expect to receive
with a single i pcrecv () call.) The opt parameter is assumed to be previously defined
as an array of short integers.

Note In the following example, it is assumed that the opt and data parameters
were previously declared as arrays of short (l6-bit) integers. Refer to
"Opt Parameter Structure" earlier in this chapter for more information
about the opt parameter.

3-20 NetlPC Calls

addopt Example
/* initopt initializes the opt parameter to contain two */
/* argume~ts one for the maximum send size and one for */
/* the maximum receive size. */

optnumarguments = 2;
initopt (opt. optnumarguments. &error);

/* perform error checking here */

/* addopt is called to add the maximum send size. The data */
/* parameter contains the value 1000. The data parameter */
/* was previously declared as an array of short integers. Note*/
/* that the first argument is number zero. */

argnum = 0;
optioncode = NSO_MAX_SEND_SIZE;
data length = 2;
data [0] = 1000;
addopt (opt. argnum. optioncode. data length. data, &error);

/* add opt is called once more to add the maximum receive size */

/* Note that the data and datalength parameters are unchanged.*/

argnum = 1; optioncode = NSO_MAX_RECV_SIZE;
addopt (opt, argnum, optioncode. datalength. data, &error);

/* perform error checking here */
/* ipcconnect can now be called with the opt parameter. */

NetlPC Calls 3-21

Programming Considerations
The following is a list of the type definitions and passing modes for the addopt () call
parameters in C, Pascal, and FOR1RAN.

Parameter C PASCAL FORTRAN

opt short int array of bytes array of integers
opt 0 by reference by reference

argnum short int int16* integer
argnum by value by value

optioncode short int int16* integer
optioncode by value by value

datalength short int int16* integer
datalength by value by value

data short int data[] int16* array of integers
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

3-22 NetlPC Calls

initopt()
Initializes the opt parameter so that arguments can be added.

Syntax

initopt(opt,optnumarguments,resu7t)

Parameters
opt

optnumarguments

resu7t

The opt parameter to be initialized. Refer to "NetIPC
Common Parameters" for information on the structure and
use of this parameter.

The number of arguments that will be placed in the opt
parameter. If this parameter is zero, the opt parameter will
be initialized to contain zero arguments.

The error code returned; zero or NSR _NO_ERROR if no error.

The in i topt () call must be used to initialize the opt parameter prior to adding
arguments to it with addopt (). The optnumarguments parameter specifies how
many arguments can be placed in the opt parameter. For example, if zero is
specified, no arguments can be added to the op t parameter; if three is specified, three
arguments must be added.

In the following C program fragment, the same opt parameter is prepared for use in
two different i pcconnect () calls. The first call will request a connection with the
default maximum send and receive sizes (100 bytes), so its option parameter is
initialized to contain zero arguments. The second i pcconnect () call will request a
connection with a maximum send and receive size of 1000 bytes. Thus, its option
parameter must be initialized to contain two arguments, the first to contain the
maximum send size, and the second to contain the maximum receive size.

NetlPC Calls 3-23

Note In the following example, it is assumed that the opt and data parameters
have been previously declared as arrays of short (l6-bit) integers. Refer to
the section titled "Opt Parameter" earlier in this chapter for more
information about the opt parameter.

/* initopt initializes the opt parameter to be used in an */
/* ipcconnect call to contain zero entries. This will cause */
/* the maximum send and receive sizes to default to 100 bytes.*/

optnumarguments = 0;

initopt (opt, optnumarguments, &error);

/*perform error checking here */

/*initopt reinitializes the opt parameter to be used in another*/
/*ipcconnect call. This call specifies the maximum */
/*send and receive sizes, so it must be initialized to contain*/
/*two arguments. */

optnumarguments = 2;
initopt (opt, optnumarguments, &error);

/* perform error checking here */

3-24 NetlPC Calls

/*The addopt call is used to add the maximum send size argument*/
/*as the first argument to the opt parameter. The maximum*/
/*send size has an option code of 3. The data parameter has been */
/*previously declared as an array of short integers and contains*/
/*the value 1000. Note that the first argument is number zero.*/

argnum = 0;
optioncode = NSO_MAX_SEND_SIZE;
data length = 2;
data[O] = 1000;

addopt (opt, argunm, optioncode, datalength, data, &error);

/* perform error checking here */

/*addopt is used again to add the maximum receive size as the*/
/*second argument to the opt parameter. The maximum receive */
/*size has an option code of 4. The data parameter contains */
/* the value 1000. */

argnum = 1;
optioncode = NSO_MAX_RECV_SIZE;

addopt (opt, argnum, optioncode,· datalength, data, &error);

/* perform error checking here */
/* ipcconnect can now be called using the opt parameter. */

NetlPC Calls 3-25

Programming Considerations
The following is a list of the type definitions and passing modes for the in i topt ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

opt short int opt[] array of bytes array of integers
by reference by reference

optnumarguments short int int16* integer
optnumarguments by value by value

en-or short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

3-26 NetlPC Calls

ipcconnectO
Requests a connection to another process.

Syntax

ipcconnect{calldesc,destdesc,flags,opt,vcdesc,resul t}

Parameters

ca17desc

destdesc

f7ags

opt

Call socket descriptor. Refers to a call socket owned by the
calling process. This parameter is optional; -1 or
NS NULL-DESC is allowed.

Destination descriptor. Refers to a structure that indicates
the location of the destination call socket (this is the call
socket to which the connection request will be sent). A
destination descriptor can be obtained by calling
ipclookup(} or ipcdest(}.

This parameter must be 0 or a pointer to o. All other values
are reserved for future use. (Refer to "Flags Parameter"
for more information on the structure of this parameter.)

Refer to "Opt Parameter" for information on the structure
and use of this parameter. The following options are
defined for this call:

• optioncode = NSO_MAX_SEND_SIZE (code 3),
data 7 ength = 2. A two-byte integer that specifies the
maximum number of bytes expected to be sent with a
single i pcsend () call on this connection. 32,767 bytes
can be specified.

NetlPC Calls 3-27

vcdesc

resu7t

Description

Default: The TCP default is 100 bytes. H this option is
not specified, i pcsend () will return an error if a call
attempts to send greater than 100 bytes.

• optioncode = NSO_MAX_RECV_SIZE (code 4),
data 1 ength = 2. A two-byte integer that specifies the
maximum number of bytes expected to be received with
a single i pcrecv () call on this connection. 32,767
bytes can be specified. Default: The TCP default is 100
bytes. H this option is not specified, i pcrecv () will
return an error if a call attempts to receive greater than
100 bytes.

VC socket descriptor. Refers to a VC socket that is the
endpoint of the virtual circuit connection at this node. May
be used in subsequent NetIPC calls to reference the
connection.

The error code returned; zero or NSR_NO_ERROR if no error.

The i pcconnect () call is used to initiate a virtual circuit on which data may be sent
and received. i pcconnect () reports only whether a virtual circuit has been initiated,
not whether it was successfully established. A successful return only indicates that a
connection request was sent without error. If the connection is successfully initiated,
i pcconnect () will return a VC socket descriptor in its vcdesc parameter. This VC
socket descriptor refers to a VC socket that is the endpoint of the virtual circuit at the
local node.

Actively establishing a virtual circuit with NetIPC calls is a three-step process:

• First, i pcconnect () is called to request a cot;lnection on the client.

• Second, i pcrecvcn () is called to receive the connection request on the server.

• Third, i pcrecv () is called to find out if the virtual circuit connection initiated with
i pcconnect () can be successfully established by the client.

3-28 NetlPC Calls

i pcconnect () I s opt parameter specifies the maximum number of bytes expected to
be sent and received on the connection. The default for both sending and receiving is
100 bytes. This information is passed to the underlying protocol. When TCP is the
underlying protocol it will be used to limit the number of bytes which can be queued
on a socket.

Note When a process calls i pcconnect (), TCP checksumming for the
connection that will be established is automatically enabled. TCP
checksum is performed in addition to data link checksum.

NetlPC Calls 3-29

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcconnect () call parameters in C, Pascal, and FORmAN.

Parameter C PASCAL FORTRAN

calldesc ns_int_t calldesc integer integer*4
by value by value

destdesc ns int t integer. integer*4
destdeSc by value by value

flags ns _int _ t *t1ags boolean. array integer *4
by reference by reference

opt short int opt[] packed array of array of 16-bit
bytes integers
by reference by reference

vcdesc ns int t *vcdesc integer integer*4
by reference by reference

result ns _int _ t *result integer integer*4
by reference by reference

Cross-System Considerations

Checksumming - When the i pcconnect () call is executed on the HP 9000 node,
checksumming is enabled for the HP 9OOO-to-HP 1000 connection, HP 9OOO-to-HP
3000 connection, or HP 9OOO-to-PC connection.

Send and Receive sizes - The HP 1000 send and receive size range is 1 to 8,000 bytes;
the HP 9000 send and receive size range is 1 to 32,767 bytes; the HP 3000 send and
receive size range is 1 to 30,000 bytes; and the PC range is 1 to 65,535 bytes.
Although the ranges are different, specify a buffer size within the correct range for
the respective system.

3-30 NetlPC Calls

ipccontrol()
Performs special operations on sockets.

Syntax

ipccontrol(descriptor,request,wrtdata,wlen,readdata,rlen,
f7ags,result) --

Parameters

descriptor

request

The descriptor that refers to the socket to be manipulated.
The descriptor is either the vcdesc parameter returned
from the i pcconnect or i pcrecvcn calls or the call
descriptor returned from i pccreate. If request is set to
NSC_GET_NODE_NAME, you must specify NS_NULL_DESC or
-1 in this parameter.

Request code. Defines which operation is to be performed.
May be one of the following:

• NSC_NBIO_ENABlE (code 1). Place the socket
referenced in the descriptor parameter in
asynchronous mode. (Refer to "Synchronous and
Asynchronous Socket Modes" in the "NetIPC
Concepts" chapter for more information on
asynchronous I/O.)

• NSC_NBIO_DISABlE (code 2). Place the socket
referenced in the descriptor parameter in
synchronous mode. (Refer to "Synchronous and
Asynchronous Socket Modes" in the "N etIPC
Concepts" chapter for information on synchronous I/O.)

• NSC_TIMEOUT_RESET (code 3). Change the referenced
socket's synchronous time-out. The default time-out

NetlPC Calls 3-31

3-32 NetlPC Calls

value is 60 seconds. The time-out value is given in
tenths of seconds. (For example, a value of 1200 would
indicate 120 seconds.) The new time-out value is
treated as a 16-bit signed integer and must be placed in
the first two bytes of the wrtdata parameter. The
time-out value must be in the range of zero to 32767.
Negative values have no meaning and will result in error.
A value of zero sets the time-out to infinity. The
time-out will not be reset if the referenced socket is
switched to asynchronous mode and then back to
synchronous mode.

• NSC_TIMEOUT_GET (code 4). Return the synchronous
time-out value for the socket referenced in the
descriptor parameter. The time-out value is treated
as a 16-bit signed integer and is returned in the
readdata parameter.

• NSC_RECV_THRESH_RESET (code 1000). Change the
read threshold of the VC socket referenced in
descriptor parameter. (Read thresholds are one byte
by default.) The descriptor parameter must reference
a VC socket descriptor. The new read threshold value
must be placed in the first two bytes of the wrtdata
parameter. Refer to "Asynchronous and Synchronous
Socket Modes" in the "NetIPC Concepts" chapter for
more information on read thresholds.

• NSC_SEND_THRESH_RESET (code 1(01). Change the
write threshold of the VC socket referenced in the
descriptor parameter. (Write thresholds are one byte
by default.) The descriptor parameter must reference
a VC socket descriptor. The new write threshold value
must be placed in the first two bytes of the wrtdata
parameter. Refer to "Asynchronous and Synchronous
Socket Modes" in the "NetIPC Concepts" chapter for
more information on write thresholds.

wrtdata

w7en

readdata

r7en
(input/output)

f7ags

resu7t

• NSC_RECV_THRESH_GET (code 1(02). Return the
current write threshold for the VC socket referenced in
the descriptor parameter. The descriptor
parameter must reference a VC socket descriptor. The
write threshold is treated as a 16-bit signed integer and
is returned in the readdata parameter.

• NSC_SEND_THRESH_GET (code 1(03). Return the
current read threshold for the VC socket referenced in
the descriptor parameter. The descriptor
parameter must reference a VC socket descriptor. The
read threshold is treated as a 16-bit signed integer and is
returned in the readdata parameter.

• NSC_GET_NODE_NAME (code 9008). Return the
fully-qualified local node name. The node name is
returned in the readdata parameter.

A data buffer or data vector used to pass time-out and
threshold information. (Refer to "Data Parameter" for
information on the structure of this parameter.)

Length in bytes of the wrtdata data buffer.

A data buffer or data vector used to contain any data
returned by the call. (Refer to "Data Parameter" for
information on the structure of this parameter.)

The length in bytes of the readdata data buffer. On
output, this parameter will contain the total number of bytes
returned to the process.

Refer to "Flags Parameter" for more information on the
structure and use of this parameter. This parameter must be
zero or a pointer to zero. All other values are reserved for
future use.

The error code returned; zero or NSR_NO_ERROR if no error.

NetlPC Calls 3-33

Description
The i pccont ro 1 () call is used to manipulate sockets in special ways. The type of
request is specified by placing a certain request code in the request parameter.
Although all of the request types require the des,criptor, request and resu7t
parameters, some of the parameters are meaningless for certain requests. If
NSC TIMEOUT RESET, NSC RECV THRESH RES£T or NSC SEND THRESH RESET is
specified, the wrtdata and-w7en parameters are used. If-NSC_fIMEOUT"=-GET,
NSC RECV THRESH GET, NSC SEND THRESH GET or NSC GET NODE NAME is
specified, the readdata and r7en parameters are used. - - -

Sockets with Multiple Descriptors
Because the i pccontro 1 () requests operate on sockets, all processes that own
descriptors to a particular socket will be affected by i pccontro 1 () operations
performed on that socket.

For example, one process can change a socket's read or write threshold, synchronous
time-out interval or synchronous/asynchronous mode while another process is reading,
writing or selecting on that socket. Exactly when the process that is sharing the
socket will be affected by these operations cannot be reliably predicted. Reads, writes
and selects in progress may complete using either previous, new or a combination of
the previous and new values.

3-34 NetlPC Calls

Programming Considerations
When using the NSC_TIMEOUT_RESET or NSC_RECV_THRESH_RESET request, you
must be sure to place the time-out value or write threshold value in the first two bytes
of the wrtdat a parameter. The following C program fragment demonstrates how this
can be achieved:

char wrtdata[128]
(short)&wrtdata = 600;
ipccontrol(descriptor,NSC TIMEOUT RESET,&wrtdata,2,0,0,&flags,&result
); --

The following is a list of the type definitions and passing modes for the
ipccontrol () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

descriptor ns int t integer integer *4
descriptor by value by value

request ns_int_t request integer integer * 4
by value by value

wrtdata char *wrtdata packed array of array of
characters characters
by reference by reference

wlen integer integer*4
by value by value

readdata char *readdata packed array of array of
characters characters
by reference by reference

rlen ns int t *rlen integer integer*4
by reference by reference

flags boolean array integer*4
by reference by reference

result ns int t *result integer integer*4
by reference by reference

NetlPC Calls 3-35

ipccreate()
Creates a call socket.

Syntax

ipccreate(socketkind,protoco7,f7ags,opt,ca77desc,resuIt)

Parameters

socketkind

protocol

flags

opt

3-36 NetlPC Calls

Indicates the type of socket to be created. Must be
NS CAll or 3 to indicate a call socket. Other values are
reserved for future use.

Indicates the protocol module that the calling process wishes
to access. If specified, can be NSP _ rcp or 4 to indicate
Transmission Control Protocol (TCP). If zero (0) is
specified, TCP will always be chosen for call sockets. Other
values are reserved for future use.

This parameter is reserved for future use. All bits must be
clear (not set). (Refer to "Flags Parameter" section of this
chapter for more information on the structure of this
parameter.)

Refer to the "Opt Parameter" section of this chapter for
more information on the structure and use of this
parameter. The following options are defined for this call:

• opt i oncode = NSO _MAX_CONN _ REQ_ BACK (code 6),
data length = 2. A two-byte integer that specifies the
maximum number of unreceived connection requests
that may be queued to a call socket. If this value is not
specified, the default maximum will be used .. Default:
One request. Range: 1-20. (NOTE: A queue limit of
one may be too few if many processes attempt to initiate

calldesc

result

Description

connections to the call socket simultaneously. If this
occurs, some connection requests may be automatically
rejected.)

• opt i oncode = NSO _ PROTOCOL_ADDRESS (code 128),
d a tal engt h = 2. A two-byte integer that specifies a
TCP protocol address to be used by the newly-created
call socket. If this option is not specified, or if zero is
specified, NetIPC will dynamically allocate an address.
You must be have superuser capability to request
protocol addresses less than 1024. Recommended Range
For Cross-System Applications: 30767 to 32767.

Call socket descriptor. Refers to the newly-created call
socket.

The returned error code; zero or NSR_ NO_ERROR if no error.

i pccreate () is used to create a call socket which will be used by subsequent NetlPC
calls to establish a virtual circuit connection between two or more processes. When
invoked successfully, i pccreate () returns a call socket descriptor that refers to the
newly-created call socket. A process may own a maximum of 2048 descriptors.
i pccreate () will return an error if a process attempts to exceed this limit. This limit
includes files as well as socket descriptors and destination descriptors. These
descriptors may reference sockets and/or files inherited by or otherwise opened by the
process.

The NSO _PROTOCOL_ADDRESS option (code 128) can be used to create a call socket
with a specific protocol address. IT this protocol address is known to the process's
peer, the peer process can call i pcdest () with this address (in i pcdest () 's
protoaddr parameter) so that it may obtain a destination descriptor that references
this call socket. Refer to the section titled "Connection Establishment Summary" in
the "NetIPC Concepts" chapter for more information.

NetlPC Calls 3-37

Programming Considerations

The following is a list of the type definitions and passing modes for the i pccreate ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

socketkind ns int t integer integer*4
soeketkmd by value by value

protocol ns _ int _ t protocol integer integer*4
by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int optO packed array of array of
bytes integers
by reference by reference

calldesc ns int t integer integer*4
*calldesc by reference by reference

result ns_int_t *result integer integer*4
by reference by reference

Cross-System Considerations
TCP Protocol Address - The HP 9000, HP 1000, HP 3000, and PC implementations
of i pccreate () support different ranges of permitted TCP protocol addresses that
can be specified in the opt parameter. All systems should specify a TCP protocol
address within the range 30767 to 32767 decimal for cross-system use.

3-38 NetlPC Calls

ipcdestO
Creates a destination descriptor.

Syntax

ipcdest{socketkind,nodename,node7en,protoco7,protoaddr,
proto7en,f7ags,opt,destdesc,resu7t)

Parameters

socketkind

nodename

node 1 en

protoco7

protoaddr

Defines the type of socket. Must be NS _CALL or 3 to
specify a call socket. Other values are reserved for future
use.

The ASCn -coded name that identifies the node where the
call socket that uses pro t 0 add r resides.

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization
or organization and domain are omitted, they will default to
the local organization and/or domain. If the node 7 en
parameter is set to zero, nodename is ignored and the node
name defaults to the local node.

The length in bytes of nodename. If this parameter is set to
zero (0), the nodename parameter is ignored and. the node
name defaults to the local node. A fully-qualified node
name may be 50 bytes long.

Defines the Transport Layer protocol to be used. Must be
NSP TCP or 4 to indicate the Transmission Control Protocol
(TCP). Other values are reserved for future use.

A data buffer containing the TCP protocol address specified
in the remote process's i pccreate () call.

NetlPC Calls 3-39

proto7en

f7ags

opt

destdesc

resu7t

Description

The length in bytes of the protocol address. TCP protocol
addresses are two bytes long.

This parameter is reserved for future use. Refer to the
"Flags Parameter" section of this chapter for information on
the structure of this parameter.

No options are dermed for this call. Refer to the "Opt
Parameter" section of this chapter for information on the
structure and use of this parameter.

Destination descriptor. Describes the destination call
socket. May be used in a subsequent i pcconnect () call to
establish a connection to another process.

The error code returned; zero or NSR _NO_ERROR if no error.

The i pcdest () call creates a destination descriptor that the calling process can use
to establish a connection to another process.

This call is similar in function to i pc lookup () because it returns a destination
descriptor. However, because ipcdest() allows you to specify a protocol address, it
allows you to obtain a destination descriptor for a call socket with a particular protocol
address. A call socket can be created with a particular protocol address by using the
ipccreate() call with the NSO_PROTOCOL_ADDRESS option.

The i pcdest () call does not verify that the remote endpoint described by the input
parameters exists. This evaluation is delayed until the destination descriptor is used in
a subsequent i pcconnect () Fall. Refer to Chapter One for more information on
using i pcdest () to establish 'a connection.

3-40 NetlPC Calls

Programming Considerations

The following is a list of the type definitions and passing modes for the i pcdest ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

socket kind ns int t integer integer*4
soekeikind by value by value

nodename char *nodename packed array of array of
characters characters
by reference by reference

nodelen ns_int_t nodelen integer integer*4
by value by value

protocol ns Jnt _t protocol integer integer *4
by value by value

protoaddr short int packed array of array of integers
protoaddr int16 by reference

by reference

protolen ns _ int _ t protolen integer integer *4
by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int optO packed array of array of integers
bytes by reference
by reference

destdesc ns int t integer integer*4
*destdesc by reference by reference

result ns_int_t *result integer integer*4
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetlPC Calls 3-41

ipcerrmsgO
Provides text describing NetIPC error.

Syntax

ipcerrmsg (error, buffer, 7en, resu7t)

Parameters

error

buffer

len

result

Description

The number of the NetIPC error being described.

The data buffer that will hold the description.

A pointer to the buffer length. On output, it will contain
the length of the description.

The error code returned; zero or NSR_NO_ERROR

ipcerrmsg copies an error message for a NetIPC error into a supplied buffer. It will
copy len-l bytes into the buffer. The result will be NULL terminated. If the error
number passed in is not a recognized NetIPC error number, then NSR _ ERRNUM (value
85) is returned.

ipcerrmsgO Example
#define BUFLEN 80
char buffer [BUFlEN];
ipcsend (,&result)
if (result != NSR_NO_ERROR)
ipcerrmsg (result,buffer,BUFLEN,result2);
printf ("NetIPC error roOd = %os\n", result, buffer);

3-42 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the i pcerrmsg ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

short int *error int16* integer
by reference by reference

buffer char *buffer packed array of array of characters
character by by reference
reference

len ns int t len integer integer *4
by value by value

result ns int t *result integer integer *4
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetlPC Calls 3-43

ipcerrstrQ
Provides text describing NetIPC error numbers.

Syntax

I ipcerrstr (error)

Parameters

error

Description

The error code returned from a NetIPC system call; zero or
NSR NO ERROR if no error.

ipcerrstr takes a NetIPC error number as input and returns a pointer to a NULL
terminated string describing the error.

ipcerrstr() Example
ipcsend (,&result);
printf {"NetIPC error rod = %s\n", result, ipcerrstr

(result»;

3-44 NetlPC Calls

Programming Considerations

The following is a list of the type definitions and passing modes for the i pee rrs t r ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

error short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

NetlPC Calls 3-45

ipcgetnodenameQ
Obtains NetIPC node name of current host.

Syntax

ipcgetnodename (nodename,size,result)

Parameters

nodename

size

result

Description

The pointer to the character array in which the
ASCIT-coded NetIPC node name is to be returned.

The length in bytes of the nodename array on input and the
length of the returned NetIPC node name on output

The error code returned; zero or NSR_ NO_ERROR if no error.

The i pcgetnodename () call is used to obtain the NetIPC node name for the current
processor as set by setnodename(2). The name is returned in the array to which the
nodename parameter points.

3-46 NetlPC Calls

ipclookup()
Obtains a destination descriptor.

Syntax

ipclookup{socketname,nlen,nodename,nodelen,flags,
destdesc,protocol,socketkind,result}

Parameters

socketname

nlen

nodename

node len

The name of the call socket to be "looked up." Upper and
lower case characters are not considered distinct. Refer to
"Socket Name Parameter" for a detailed discussion of
naming.

The length of the socket name in characters. Maximum
length is 16 characters.

The ASCII -coded name that identifies the node where the
socket specified in the socketname parameter resides.
(Refer to "Node Name Parameter" for the syntax of this
parameter.)

Default: You may omit the organization, organization and
domain, or all parts of the node name. When organization
or organization and domain are omitted, they will default to
the local organization and/or domain. If node 1 en is set to
zero, nodename is ignored and the node name defaults to
the local node.

The length in bytes of the nodename parameter. If zero (0)
is specified, NetIPC will search the local node's socket
registry. (See the nodename parameter above for more
information.)

NetlPC Calls 3-47

flags

destdesc

protocol

socketkind

resu7t

Description

This parameter is reserved for future use. All bits must be
clear (not set). (Refer to the "Flags Parameter" section of
this chapter for more information on the structure of this
parameter.)

Destination descriptor. Refers to the descriptor which
indicates the location of the named call socket. May be
used in subsequent i pcconnect and i pcname NetIPC calls.

This parameter is reserved for future use. Zero (0) is always
returned to this parameter.

Identifies the socket's type. Will always be 3 to indicate a
call socket.

The error code returned; zero or NSR_NO_ERROR if no error.

The i pc 1 00 kup () call is used to obtain a destination descriptor for a named call
socket. When supplied with valid socket and node names, it looks up the call socket
in the socket registry at the node specified in the nodename parameter and returns a
destination descriptor that can be used by subsequent NetIPC calls to locate the call
socket. A destination descriptor is required by the i pcconnect call to provide the
information necessary to direct a connection request to the proper node and call
socket and thus initiate a connection.

Timing Problems
When a process attempts to look up a socket name in the appropriate socket registry,
the name must be there or a NSR_NAME_NOT_FOUND (code 37) error will be returned
to the calling process. When two processes are running concurrently, it may be
difficult to ensure that a socket name is placed in the socket registry prior to being
"looked up" by another process.

3-48 NetlPC Calls

In order to avoid a timing problem:

• The process that calls ipcl ookup() can test for a NSR_NAME_NOT_FOUND (code
37) error in the call's resu 7 t parameter. If this error is returned, the process can
try again by entering a loop and repeating the i pc lookup () call for a specified
number of times.

• The process could also call sleep () to suspend execution for an interval and then
repeat the i pc lookup () call. (Refer to the HP-UX Reference Manual for more
information on sleep(3c»).

• The process that calls i pcname () can name its call socket and then schedule the
process that calls i pc lookup ().

Note On the Series 600/800 only, i pc lookup () implementations between
HP-UX software versions 1.0 and later software versions are incompatible.
!fyou must use NetIPC to communicate between HP-UX software
versions 1.0 and later software versions, utilize the i pedest () system call,
not i pel ookup ().

NetlPC Calls 3-49

Programming Considerations
The following is a list of the type definitions and passing modes for the i pc lookup ()
call parameters in C, Pascal, and FORmAN.

Parameter C PASCAL FORTRAN

socketname ns intt packed array of array of
sockeiname characters characters

by reference by reference

nlen ns int t nlen integer integer*4f
by value by value

nodename char *nodename packed array of array of
characters characters
by reference by reference

nodelen ns _ int _ t nodelen integer integer*4
by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

destdesc ns int t integer integer*4
*destdesc by reference by reference

protocol ns _int _ t * protocol integer integer*4
by reference by reference

socketkind ns int t integer integer *4
*sOcketkind by reference by reference

result ns _int _ t *result integer integer *4
by reference by reference

3-50 NetlPC Calls

ipcnameO
Associates a name with a call socket or destination descriptor.

Syntax

ipcname(descriptor,socketname,n7en,resu7t)

Parameters

descriptor

socket name
(input/output)

n7en

resu7t

Description

The descriptor that references the call socket to be named.
May be a call socket descriptor or a destination descriptor.

The ASCII-coded name to be associated with the descriptor.
Upper and lower case characters are considered equivalent.
NetIPC can also return a randomly-generated name in this
parameter (see n 7 en). Refer to "Socket Name Parameter"
for a detailed discussion of naming.

The length in characters of socketname. Maximum length
is 16 characters. If zero is specified, N etlPC will return a
random, eight-byte name in the socketname parameter.
The eight-byte length is not returned in the n 7 en parameter.

The error code returned; zero or NSR _NO_ERROR if no error.

i pcname () associates a name with a call socket and adds this information to the local
node's socket registry.

The name a process associates with a call socket must be known to its peer process so
that the peer process may look up the name with an i pc lookup () call. This may be
accomplished by hard-coding the name into both processes or by passing the name
from one process to another.

NetlPC Calls 3-51

The name associated with a call socket can be user-defined or randomly generated by
NetIPC and must be unique to your node (i.e., it cannot be simultaneously associated
with two descriptors.) For example, if a call socket is assigned the name "Liz" with a
call to ipcname(), a subsequent call with "Liz" will result in an error. You can
ensure that the name you assign to a call. socket is unique by using the random name
generating feature of i pcn ame (). A name can be reused only if it is not currently
being used, but a call socket may be listed under multiple names.

Under most circumstances, i pcname () should be called with a name and the call
socket descriptor that refers to a call socket owned by the calling process. If the call
completes successfully, the call socket will be listed in the socket registry at the local
node.' i pc lookup () can be called from another process to "look up" the socket
name in the local node's socket registry.

i pcname () always enters its listings into the local node's socket registry.
i pc lookup (), by contrast, can look up socket names at both the local node and at a
remote node. Because "long distance" look-ups take longer than local look-ups, it
may be helpful to use i pcname () to name destination descriptors. When a process
names a destination descriptor, the name of the descriptor is placed in the local
socket registry (the socket registry at the node where the calling process resides).
This allows other processes to look up the name in the local socket registry rather
than calling i pc lookup () to look up the name in a socket registry at a remote node.

Using i pcname () to name a destination descriptor is less reliable than looking up the
socket name at the remote node because destination descriptors, like telephone
numbers, can become outdated. As a precaution, you should periodically refresh
locally stored destination descriptors.

Note You cannot use i pcname () to name VC sockets.

3-52 NetlPC Calls

Programming Considerations

The following is a list of the type definitions and passing modes for the i pcname ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

descriptor ns int t integer integer*4
descriptor byvaIue by value

socketname char *socketname packed array of array of
characters characters
by reference by reference

nlen ns_int_t nlen integer integer*4
by value by value

result ns_int_t *result integer integer *4
by reference by reference

NetlPC Calls 3-53

ipcnameraseO
Deletes a name associated with a call socket or destination call socket.

Syntax

ipcnamerase(socketname,nlen, result)

Parameters

socket name

nlen

result

Description

The ASCll-coded name that was previously associated with
a call socket descriptor or destination descriptor via
i pcname (). Upper and lower case characters are considered
equivalent. Refer to "Socket Name Parameter" for a
detailed description of naming.

The length in bytes of the specified name. Maximum length
is 16 bytes.

The error code returned; zero or NSR_NO_ERROR if no error.

i pcnamerase () can be called to remove listings from the local node's socket registry.
Only the owner of a call socket or destination call socket may remove the socket's
name from the local socket registry. (Refer to "Socket Ownership" in the "NetIPC
Concepts" chapter for the definition of a socket owner.) A process that attempts to
erase the name of a socket it does not own will receive an NSR _ NO_OWN ERSH I P (code
38) error.

If a call socket descriptor or destination descriptor is destroyed via ipcshutdown (),
or if its sole owner terminates, then any listings for it that exist at the local socket
registry are automatically purged.

When multiple processes have descriptors for the same socket, the first
i pcnamerase () call will succeed, but subsequent calls will fail.

3-54 NetlPC Calls

Programming Considerations
The following is a list of the type definitions and passing modes for the
i pcnamerase () call parameters in C, Pascal, and FORmAN.

Parameter C PASCAL FORTRAN

socketname char *socketname packed array of array of
characters characters
by reference by reference

nlen ns_int_t nlen integer integer*4
by value by value

result ns int t *result integer integer*4
by reference by reference

NetlPC Calls 3-55

ipcrecv()
Checks the status of a connection or receives data on an established connection.

Syntax

ipcrecv{vcdesc,data,d7en,f7ags,opt,resu7t}

Parameters

vcdesc

data

d7en
(input/output)

3-56 NetlPC Calls

VC socket descriptor. Refers to a VC socket that: (1) is the
endpoint of a virtual circuit connection that has not yet
been established, or (2) is the endpoint of an established
virtual circuit on which data will be received.

A data buffer that will hold the received data, or a data
vector describing the location where the data is to be placed
Refer to "Data Parameter" for information on the structure
and use of this parameter.

If the data parameter is a data buffer, d7 en is the maximum
number of bytes you are willing to receive. If the
NSF _DATA_WAIT flag is set, the amount of data should be
75% if the maximum amount receivable. If the d a t a
parameter is a data vector, d7 en refers to the length of the
data vector in bytes. As a return parameter, d7 en indicates
how many bytes were actually received. If i pcrecv {} is
used to check the status of a connection (not to receive
data), the d7 en parameter is meaningless on input and a
value of zero (0) is returned on output.

f7ags
(input/output)

Refer to the "Flags Parameter" section of this chapter for
more information on the structure and use of this
parameter. Although f7 ags may be set on the first
i pcrecv () call, they won't take effect until subsequent
; pcrecv () calls over the established connection. The
following bits are defined for this call:

• bit 20 - NSF_DATA_ WAIT (input). When this bit is
set, ; pcrecv () will never successfully complete
receiving less data than it requested in the d 7 en
parameter. If this bit is not set, ; pcrecv () may
complete receiving less data than it requested in d7 en.
Refer to the discussion below for more information on
this bit. This bit is only meaningful when i pcrecv () is
issued against an established connection.

• bit 26-NSF_MORE_DATA (output). Whenset,this
bit indicates that the data received was not delimited by
an end-of-message marker. Since user processes always
employ stream mode, this bit will always be set. (The
Transmission Control Protocol decides how much data
to transmit, but it does not delimit the data transmitted
in the form of an individual message.)

• bit 30 - NSF_PREVIEW (input). When set, this bit
allows you to preview the data queued on the
connection. Data is placed in the d a t a parameter but
not dequeued from the connection. Because the data is
not dequeued, the next i pcrecv () call will read the
same data. This bit is only valid when i pcrecv () is
issued against an established connection.

NetlPC Calls 3-57

opt

result

Description

• bit 31 - NSF_VECTORED (input). When set, this bit
indicates that the data parameter is a data vector· and
not a data buffer. This bit is only valid when i pcrecv ()
is issued against an established connection.

An array of options and associated information. Refer to
"NetIPC Common Parameters" for information on the
structure and use of this parameter. The following option is
defined for this call:

• optioncode = NSO_DATA_OFFSET (code 8),
data length = 2. A two-byte integer that defines a byte
offset from the beginning of a data buffer where NetIPC
is to begin placing the data. This option is valid only if
the dat a parameter is a data buffer and not a data
vector.

The error code returned; zero or NSR _NO_ERROR if no error.

i pcrecv () has two functions:

• Check the status of a connection that was initiated with i pcconnect ().

• Receive data on a previously established virtual circuit connection.

Checking the Status of a Connection

When i pcrecv () is called to check the status of a connection, a zero returned in the
re su 1 t parameter indicates that the call was successful and that a virtual circuit
connection has been established. H a non-zero value is returned in the result
parameter, the call was not successful.

An i pcrecv () call can be unsuccessful for the following reasons:

• NSR _SOCKET _ TIMEOUT Error Received. The synchronous timer expired before a
"successful" connection status could be obtained. The connection is still pending
and i pcrecv () should be called again.

3-58 NetlPC Calls

• NSR _WOULD_BLOCK Error Received. The VC socket referenced by i pcrecv () is in
asynchronous mode and the call could not be satisfied. A connection is still pending
and i pcrecv () should be called again. You can perform an exception select on
the referenced socket to determine if a successful status can be obtained prior to
calling i pcrecv (). (Refer to the discussion of i pcse 1 ect () later in this chapter
for more information.)

• NSR _ SIGNAL _ I ND I CAT I ON Error Received. A signal indication was received. For
more information on signals, refer to the discussion of signals in the "NetlPC
Concepts" chapter. Signals are also described in the HP-UX Reference Manual.

• Other Errors. If i pcrecv () was unsuccessful for a reason other than those listed
above, the referenced VC socket should be shut down by calling i pcshutdown ().

Receiving Data

When i pcrecv () is called to receive data queued on a previously established virtual
circuit connection, several different alternatives are available:

• Normal reading. Data is dequeued from the connection and placed into the user's
buffer.

• Preview reading. This alternative is specified by setting the NSF_PREVIEW bit (bit
30) of the f7 ags parameter. When this bit is set, data is placed in the process's
buffer, but not dequeued from the connection. Consequently, the next i pcrecv ()
call will read the same data. Because NSF _PREVIEW enables a process to determine
what a data buffer contains before actually reading it, it is especially useful to set
this bit when the receiving process must assemble messages from the byte streams
that it receives. For example, if the sending process places the length of its
"message" in the first two bytes of its send buffer, the receiving process can use
NSF _PREV I EW to extract the length information from the data received. When the
buffer is received again with a subsequent i pcrecv () call, the receiving process
can specify this length information in the d 7 en parameter and thus reassemble the
"message. "

• Vectored or "scattered" reading. The calling process may pass a data vector
argument that describes one or more locations. Received data will be placed into
these locations. This alternative can be used with both the normal and preview
reads described above and is specified by setting the NSF_VECTORED bit (bit 31) of
the f7 ags parameter. For vectored reads, an i ovec structure contains the data
vector. An i ovec structure can be defined in Cas:

NetlPC Calls 3-59

struct i ovec {
char *iov base;
unsigned iov_len;

} ;

and the normal type for the data argument can be replaced by struct i ovec
*data. Each i ovec entry specifies the base address and length of an area in
memory where the data should be placed.

The i pcrecv () call functions differently depending on whether the socket
referenced is in synchronous or asynchronous mode, and whether or not the
NSF _DATA_WAIT bit (bit 20) is set in the f1 ags parameter.

Caution The NetlPC NSF DATA WAIT flag can cause a program to block for an
extreme period of time(for example, eight minutes for 8 bytes). It is
recommended that NetlPC programs implement a loop instead. Refer
to the next paragraph for more specific loop information.

A loop such as the following, instead of the NetIPC NSF _DATA_WAIT flag, should be
implemented to prevent a NetIPC program to block for a long period of time:

/* loop to receive 1000 bytes */
char data_array[1000];
char *copy data to;
int bytes=needed = 1000;
int bytes_received = 0;

/* stuff missing; eg ipccreate or ipcconnect, etc*/
copy_data_to = data_array;
while (bytes~received < bytes_needed) {

byte count = bytes needed - bytes received;
/* NOTE: NSF_DATA_WAIT not set */-
ipcrecv{ , start, byte_count, ...);
bytes_received += byte_count;

copy_data_to += byte_count;
}

3-60 NetlPC Calls

The following paragraphs describe how the i pcrecv() call functions depending on
whether or not the socket referenced is in synchronous or asynchronous mode, and
whether or not the NSF _DATA_WAIT flag is set. (When a socket is created, it is placed
in synchronous mode by default. You can place a socket in asynchronous mode by
calling ipccontrol (). Refer to the discussion of ipccontrol () earlier in this
chapter for more information.)

Note The "amount requested" by an i pcrecv () call refers to the number of
bytes specified by the d 7 en parameter or the amount specified in the data
vector if the NSF_VECTORED flag is set.

• Synchronous I/O, NSF _DATA_WAIT set. If the socket referenced by i pcrecv () is
in synchronous mode and the NS F _DATA _ WA I T bit (bit 20) is set, the calling process
will block until (1) the amount of data queued on the connection is greater than or
equal to the amount requested, (2) the call times out, or (3) a signal is received. If
the data queued on the connection is less than d7 en bytes, ; pcrecv () will suspend
the calling process and the synchronous timer will be set. If the timer expires
before enough data arrives to satisfy the request, the calling process will resume and
an NSR _SOCKET _ TIMEOUT error (code 59) will be returned indicating that a
time-out occurred. (The synchronous time-out can be adjusted by calling
; pccont ro 1 (). Refer to the discussion of ; pccont ro 1 () for more information.)

• Synchronous I/O, NSF _DATA_WAIT not set. If the socket referenced by
ipcrecv() is in synchronous mode and the NSF _DATA_WAIT bit (bit 20) is not set,
the the calling process will block until (1) some amount of data is queued on the
connection (the amount of data queued mayor may not be the amount requested,
and may be as little as one byte), (2) the call times out, (3) a signal is received, or (4)
the connection goes down. If no data is queued on the connection within the
synchronous time-out period, the calling process will resume and an
NSR_ SOCKET_TIMEOUT error (code 59) will be returned indicating that a time-out
occurred.

• Asynchronous I/O, NSF _DATA_WAIT set. If the socket referenced by ; pcrecv () is
in asynchronous mode and the NSF _DATA_WAIT bit is set, an NSR_WOULD_BLOCK
(code 56) error is returned to the calling process if the amount of data queued on
the connection is less than the amount requested. The calling process is not
suspended awaiting the arrival of data. You can perform a read select on the
referenced socket by invoking; pcse 1 ect (). i pcse 1 ect () determines whether
or not a socket is readable prior to calling i pcrecv () to receive data. (Refer to
the discussion of i pcse 1 ect () later in this chapter or more information.)

NetlPC Calls 3-61

• Asynchronous I/O, NSF _DATA_WAIT not set. Hthe socket referenced by
i pcrecv () is in asynchronous mode and the NSF _DATA_WAIT bit is not set, as
little as one byte of data will satisfy the i pcrecv () request. However, if no data is
queued to the connection, an NSR_WOULD_BLOCK error is returned.

For a detailed discussion of asynchronous and synchronous I/O, refer to "Synchronous
and Asynchronous Socket Modes" in the "NetIPC Concepts" chapter.

Programming Considerations
The following is a list of the type definitions and passing modes for the i pcrecv ()
call parameters in C, Pascal, and FORmAN.

Parameter c PASCAL FORTRAN

vcdesc integer integer*4
by value by value

data char *data packed array of array of
characters characters
by reference by reference

dlen ns int t *dlen integer integer*4
by reference by reference

flags boolean array integer*4
by reference by reference

opt short int opt[] array of bytes array of integers
by reference by reference

result integer integer*4
by reference by reference

Cross-System Considerations
Receive size - The lIP 1000 receive size range is 1 to 8,000 bytes, the lIP 3000 is 1 to
30,000 bytes, and the HP 9000 is 1 to 32,767 bytes. The maximum receive size of the
data buffer determines the receive size buffer on the PC.

3-62 NetlPC Calls

ipcrecycnO
Receives a connection request on a call socket.

Syntax

ipcrecvcn(ca77desc,vcdesc,f7ags,opt,resu7t)

Parameters

ca77desc

vcdesc

f7ags

opt

Socket descriptor. Refers to a call socket owned by the
calling process.

VC socket descriptor. Refers to a VC socket that is the
endpoint of the newly-established virtual circuit connection.

Refer to "NetIPC Common Parameters" for more
information on the structure of this parameter. No flags are
defmed for this call.

Refer to "NetIPC Common Parameters" for information on
the structure and use of this parameter. The following
options are defined for this call:

• optioncode = NSO_MAX_SEND_SIZE (code 3),
data7ength = 2. A two-byte integer that specifies the
maximum number of bytes you expect to send with a
single call to i pcsend () on this connection. Default:
TCP default is 100 bytes. If this option is not specified,
ipcsend() will return an error if a call attempts to send
greater than 100 bytes.

NetlPC Calls 3-63

result

Description

• optioncode = NSO_MAX_RECV_SIZE (code 4),
data 1 ength = 2. A two-byte integer that specifies the
maximum number of bytes you expect to receive with a
single call to i pcrecv () on this connection. Default:
TCP default is 100 bytes. If this option is not specified,
i pcrecv () will return an error if a call attempts to
receive greater than 100 bytes.

The error code returned; zero or NSR_NO_ERROR if no error.

When i pcrecvcn () is invoked successfully against a call socket that has queued
connection requests, it returns a VC socket descriptor to the calling process. This VC
socket descriptor can be used to specify the virtual circuit connection a process
intends to send on, receive on, or shut down with subsequent NetIPC calls.

Synchronous vs. Asynchronous 1/0
i pcrecvcn () functions differently depending on whether the call socket referenced
is in synchronous or asynchronous mode. (When a socket is created, it is placed in
synchronous mode by default. You can place a socket in asynchronous mode by
calling i pccont ro 1 (). Refer to the discussion of i pccont ro 1 () earlier in this
chapter for more information.) The following paragraphs describe these differences:

• Synchronous I/O. i pcrecvcn () will block when invoked against a call socket
that has no queued connection requests if the socket is in synchronous mode.
The calling process will resume execution when a connection request arrives, or
after the synchronous time-out interval has expired. An i pcrecvcn () call will
not block forever unless the synchronous time-out interval has been set to zero
with an i pccont ro 1 () call.

3-64 NetlPC Calls

• Asynchronous I/O. i pcrecvcn () will never block against sockets in
asynchronous mode. When i pcrecvcn () is invoked against an asynchronous
call socket that has no queued connection requests, a NSR_WOULD_BLOCK (code
56) is returned to the calling process. When; pcrecvcn () is used in this way,
the calling process does not wait to receive a connection request. In order to
determine when connection requests are present, a process can perform an
exception select on the referenced call socket by calling i pcse 1 ect (). (Refer
to the discussion of i pcse 1 ect () for more information.)

For a detailed discussion of synchronous and asynchronous I/O, refer to "Synchronous
and Asynchronous Socket Modes" in the "NetIPC Concepts" chapter.

Note When a process calls i pcrecvcn (), TCP checksumming for the
connection that will be established is automatically enabled. TCP
checksum is performed in addition to data link checksum.

NetlPC Calls 3-65

Programming Considerations
The following is a list of the type definitions and passing modes for the i pcrecvcn ()
call parameters in C, Pascal, and FORTRAN.

Parameter C

calldesc ns_int_t calldesc

vcdesc ns_int_t vcdesc

flags

opt short int opt[]

result ns int t *result

PASCAL

integer
.byvalue

integer
by reference

boolean array
by reference

FORTRAN

integer*4
by value

integer*4
by reference

integer*4
by reference

packed array of array of integers
bytes by reference
by reference

integer integer*4
by reference by reference

Cross-System Considerations
Checksumming - When the ipcrecvcn{) call is executed on the HP 9000 node, then
checksumming is always enabled for the HP 9OOO-to-HP 1000 connection, HP
9OOO-to-3000 connection, or HP 9OOO-to-PC connection.

Send and Receive sizes - The HP 1000 send and receive size range is 1 to 8,000 bytes;
the HP 9000 send and receive size range is 1 to 32,767 bytes; the HP 3000 send and
receive size range is 1 to 30,000 bytes; and the PC range is 1 to 65,535 bytes.
Although the ranges are different, specify a buffer size within the correct range for
the respective system.

3-66 NetlPC Calls

ipcselectO
Determines the status of a call socket or VC socket.

Syntax

ipcselect(sdbound,readmap,writemap,exceptionmap,timeout,
result}

Parameters

sdbound
(input/output)

readmap
(input/output)

Specifies the upper ordinal bound on the range of
descriptors specified in the readmap, wri temap and
except i onmap parameters. An i pcse 1 ect () call will be
most efficient if this parameter is set to the maximum
ordinal value of the sockets specified in these parameters.
Because a NetIPC process may have concurrent access to a
maximum of 2048 descriptors (descriptors 0 through 2047),
sdbound may be given a maximum value of 2047. As an
output parameter, sdbound contains the upper ordinal
boundary of all of the descriptors that met the select criteria.

A bit map indexed with NetIPC socket descriptors. On
input, this parameter specifies the socket descriptors to be
examined for readability. If zero is passed, no sockets will
be examined. On output, readmap describes all readable
sockets.

NetlPC Calls 3-67

writemap
(input/output)

exceptionmap
(input/output)

timeout

result

Description

A bit map indexed with NetIPC socket descriptors. On
input, this parameter specifies the socket descriptors to be
examined for writeability. If zero is passed, no sockets will
be examined. On output, writemap describes all writeable
sockets.

A bit map indexed with NetIPC socket descriptors. On
input, this parameter specifies the socket descriptors to be
examined for exceptions. If zero is passed, no sockets will
be examined. On output, exceptionmap descn-res all of
the sockets that are exceptions.

The number of tenths of seconds the calling process will
wait for some event to occur which would cause
i pcse 1 ect () 's report to change. This timeout is put into
effect only when none of the sockets referenced can
immediately satisfy the select criteria (i.e., none are
readable, writeable or exceptional). Valid values are zero,
-1, or any positive integer. If timeout is set to zero, the call
will not return until some event occurs. N01E: Do not set
timeout to -1 if no bits are set in any of the bit maps as
ipse 1 ect () will block indefinitely.

The error code returned; zero or NSR_NO_ERROR if no error.

i pcse 1 ect () permits a process to detect, and/or wait for, the occurrence of any of
several events across any of several sockets. Compared to the telephone system,
invoking i pcse 1 ect () is analogous to performing powerful "switchboard-like"
operations because it enables a process to act as a "switchboard operator" by
monitoring the sockets, or "telephones," that it owns. A process should call
i pcse 1 ect () with map elements set for descriptors that it owns. If a process
attempts to perform a select on a closed or invalid descriptor, an error will be
returned. Performing a select on a destination descriptor is meaningless.

3-68 NetlPC Calls

i pcse 1 ect () reports three types of information:

• Whether any of the referenced VC sockets are readable. A VC socket is
considered readable if it can immediately satisfy an i pcrecv () request for a
number of bytes greater than or equal to its read threshold. Each VC socket has an
associated read threshold which, when the socket is first created, is set to one byte.
This value can be modified by calling i pccont ro 1 (). (For more information on
setting read thresholds, refer to "Synchronous and Asynchronous Socket Modes" in
the "NetIPC Concepts" chapter.) Read selecting on call sockets has no meaning.
Although doing so will not produce an error, this practice should be avoided.

• Whether any of the referenced call or VC sockets are writeable. A VC socket is
considered writeable if it can immediately accommodate an i pcsend () request
that involves a number of bytes greater than or equal to the socket's write
threshold. Each VC socket has an associated write threshold which, when the
socket is first created, is set to one byte. This value may be modified by calling
i pccont ro 1 (). (For more information on setting write thresholds, refer to
"Synchronous and Asynchronous Socket Modes" in the "NetIPC Concepts"
chapter.) ,

• Whether any of the referenced call or VC sockets are exceptional. A VC socket is
considered exceptional if it has a problem associated with it (for example, the
connection it references was aborted). A call socket is considered exceptional if it
has a connection request queued on it or if it can no longer be supported by
NetIPC.

When a socket is shared (i.e., more than one process has a descriptor for the same
socket), an ipcsend(} call may return an NSR_WOULD_BLOCK error (code 56) even if
a previous i pcse 1 ect () call indicated that the socket was write able. For example,
this would occur if another process (with a descriptor for the same socket) called
i pc send () after the original process called i pcse 1 ect () and before it called
i pcsend ().

The following are examples of read selecting, write selecting, and exception selecting
using i pcse 1 ect ().

NetlPC Calls 3-69

Examples

Detecting Connection Requests

By setting bits in the except i onmap parameter, a process can determine if incoming
connection requests are queued to certain call sockets. Consider the following
example: Process A must determine whether certain call sockets have received
connection requests. To do this, Process A calls i pcse 1 ect ()with the
exceptionmap map elements set to correspond to these sockets. Assuming that the
time-out interval is long enough (set by the timeout parameter), ipcselectO will
complete after at least one connection request has arrived and has been queued on
one of the sockets specified in except i onmap. When the call completes, only those
elements that correspond to sockets that have queued connection requests remain set;
the other elements will have been cleared.

Performing a Read Select

By setting elements in the readmap parameter, a process can determine whether
certain VC sockets are readable. Consider the following example: Process A must
determine which of its VC sockets have data queued to them. To do this Process A
performs a read select on those sockets by setting elements in the readmap parameter
to correspond with the desired VC sockets. Upon completion of the call, only the
elements that represent readable sockets will remain set; the other elements will have
been cleared. Process A can call ipcselect() with a zero-length time-out to
determine the status of a socket immediately, or with a non-zero timeout if it is willing
to wait for some data to arrive.

Performing a Write Select

By setting bits in the writemap parameter, a process can determine whether certain
VC sockets are writeable. Consider the following example: Process A must determine
which of its VC sockets can accommodate a new i pcsend () request, and which of its
call sockets can accommodate a new; pcconnect () ; ; pcse 1 ect () request. To do
this, it can perform a write select on these sockets by setting elements in the
writemap parameter to correspond with the desired VC and call sockets. Upon
completion of the call, only the elements that represent writeable sockets will remain
set; the other elements will have been cleared. Process A can call ; pcse 1 ect () with
a zero-length timeout to determine the status of a socket immediately, or with a
non-zero timeout if it is willing to wait before sending data on the connection.

3-70 NetlPC Calls

Exception Selecting

By setting bits in the exceptionmap parameter, a process can determine whether
certain connections have been aborted. VC sockets that reference aborted
connections will always exception select as "true" (their elements will be set when the
call completes). Exception selecting on VC sockets can also be useful when the
connection associated with the socket is not fully established. Consider the following
example: Process B has successfully created a VC socket descriptor via a call to
i pcconnect (), but will not know whether or not the connection was established
until it calls i pcrecv (). If Process B calls i pcrecv () before the connection is
established, or before it becomes known that a connection cannot be established, it
will block (if the VC socket is in synchronous mode), or return an NSR_WOULD_BLOCK
error (if the VC socket is in asynchronous mode). Process B can avoid blocking or
polling by performing an exception select on the new VC socket. The socket will
select as true if the connection has been established (a call to ; pcrecv () will be
successful) or if there is a problem associated with it (a call to ; pcrecv () will be
unsuccessful.)

Programming Considerations
The following paragraphs explain how the readmap, 'IIritemap, and exceptionmap
parameters are declared and manipulated in the C, Pascal, and FORmAN
programming languages.

C Programming Language

In the C programming language, the readmap, 'IIri temap, and except i onmap
parameters can be declared as integer arrays. For example:

; nt read map [64] ;
int write map [64];
i nt exception_map [64] ;

This statement defines 2048 bits which can be set to correspond to specific call or VC
socket descriptors. The following algorithm can be used to set bits in the array. (The
socket descriptor is represented by the variable vcdesc.)

read_map [vcdesc/32] 1= «unsigned int) Ox80000000 » (vcdesc %
32)};

NetlPC Calls 3-71

The next algorithm can be used after an i pcse 1 ect () call completes to check
whether or not a certain bit is set:

read_map [vcdesc/32] & «unsigned int) Ox80000000 » (vcdesc %
32»;

Pascal Programming Language

In Pascal, the readmap, wri t emap and except i onmap parameters can be declared
to be type map_type. This type is defined as follows:

TYPE
map_type = packed array [0 •• 2047] of boolean;

VAR
read_map: map_type;

To set a bit in any of these parameters to correspond to a specific call socket or VC
socket, use the appropriate ca7 7desc or vcdesc value as a subscript and assign the
value TRUE. For example:

:= TRUE; read_map [vcdesc]
write map [calldesc]
except i on map [vcdesc]

:= TRUE;
:= TRUE;

FORTRAN Programming Language

In FORmAN, the readmap, writemap andexceptionmap parameters may be
declared as arrays of 64 32-bit integers (INTEGER*4). For example:

INTEGER*4 read_map (64) , write_map(64) , exception_map(64)

The first element of the array, readmap (1), contains map bits 0 through 31; the
second element of the array, readmap (2), contains bits 32 through 63, etc.

When setting a bit in the array, you must first determine whether your vcdesc or
ca 71desc parameter is greater than, less than, or equal to 31. If it is less than or
equal to 31, you must set a bit in the first element of the array; if it is is greater than
31, you must set a bit in the second element of the array, and so on.

3-72 NetlPC Calls

The simplest way to set a bit in one of these parameters is to use the FORTRAN
library function ibset(a,b). The readmap, 'IIritemap or exceptionmap parameter
is passed in the first argument (a) and the bit position you want to set is passed in the
second argument (b).

The i bset function assumes that bits are numbered from right to left, with the most
significant bit considered to be bit 31 and least significant bit considered to be bit o.
NetIPC calls assume that bits are numbered in the opposite direction (i.e., the most
significant bit is 0, the least significant bit is 31). Therefore, to set the proper bit
using i bset, you must subtract the descriptor value from 31.

In the following example, the vcdesc parameter is greater than 31 so the
corresponding bit is set in the second element of the readmap parameter. Note that
the vcdesc value must be subtracted from 63 so that the proper bit is set. This maps
i bset's bit numbering convention (which is from right to left) into NetIPC's (which is
from left to right).

read_map = ibset (read_map (2) ,(63-vcdesc»

In the next example, vcdesc is equal to 31 so the corresponding bit is set in the first
element of the readmap parameter. Note that the vcdesc value must be subtracted
from 31 so that the proper bit is set. Again, this maps i bset's bit numbering
convention (which is from right to left) into NetIPC's (which is from left to right).

read_map = ibset (read_map(l), (31-vcdesc»

NetlPC Calls 3-73

The following is a list of the type definitions and passing modes for the i pcse 1 ect ()
call parameters in C, Pascal, and FORmAN.

Parameter C PASCAL FORTRAN

sdbound ns _ int_ t *sdbound integer integer*4
by reference by reference

readmap int readmap[64] packed array of array of
boolean integer*4
by reference by reference

writemap int writemap[64] packed array of array of
boolean integer*4
by reference by reference

exceptionmap int packed array of array of·
exceptionmap[64] boolean integer*4

by reference by reference

timeout ns _ int_ t timeout integer integer *4
by value by reference

result ns _ int _ t *result integer integer*4
by reference by reference

3-74 NetlPC Calls

ipcsendO
Sends data on a virtual circuit connection.

Syntax

ipcsend(vcdesc,data,d7en,f7ags,opt,resu7t)

Parameters

vcdesc

data

d7en

f7ags

VC socket descriptor. Refers to the VC socket endpoint of
the connection through which the data will be sent. A VC
socket descriptor can be obtained by calling i pcconnect ()
and i pcrecvcn ().

A buffer that will hold the data to be sent, or a data vector
describing where the data to be sent is located. Refer to
"Data Parameter" for more information on the structure
and use of this parameter.

If d at a is a data buffer, d7 en is the length in bytes of the
data in the buffer. If data is a data vector, d7 en is the
length in bytes of the data vector.

Refer to "Data Parameter" for more information on the
structure and use of this parameter. The following bits are
defined for this call:

• bit26 NSF _MORE_DATA (input). When this bit is set,
TCP may delay sending data. Refer to the
"Description" below for more information.

• bit31 NSF_VECTORED" (input). Indicates that the data
parameter refers to a data vector and not to a data
buffer.

NetlPC Calls 3-75

opt

resu7t

Description

An array of options and associated information. Refer to
"NetIPC Common Parameters" for more information on the
structure and use of this parameter. The following option is
defined for this call:

• optioncode = NSO_DATA_OFFSET (code 8),
data 7 ength = 2). A two-byte integer that indicates a
byte offset from the beginning of the data buffer where
the data to be sent actually begins. Only valid if the
data parameter is a data buffer.

The error code returned; zero or NSR_NO_ERROR if no error.

The i pcsend () call is used to send data on an established connection. The data may
be sent as a single contiguous buffer or as a scattered data vector. If the data is _
vectored, NetIPC will gather all the referenced data before sending it. For vectored
writes, an i ovec structure contains the data vector. An i ovec structure can be
defined in C as:

struct iovec {
char
unsigned

};

*iov base;
iov_len;

and the normal type for the data argument can be replaced by struct i ovec *data.
Each i ovec entry specifies the base address and length of an area in memory where
the data should be placed.

If the NSF _MORE_DATA bit (bit 26) of the f7 ags parameter is set, the Transmission
Control Protocol (TCP) may not immediately transmit the data indicated by the data
parameter. Instead, it may wait until it has received an amount of data that can be
transmitted with the greatest efficiency. Several transmissions of small amounts of
data consume more resources than one large transmission. If NSF _MORE_DATA is not
set, TCP will attempt to transmit the data immediately, regardless of efficiency
considerations. If your process will be sending large amounts of data, HP
recommends that you set NSF _MORE_DATA. If NSF _MORE_DATA is set and you submit
only a small amount of data (less than a few hundred bytes), then TCP may hold onto
the data for a considerable period of time before transmitting it.

3-76 NetlPC Calls

Synchronous vs. Asynchronous I/O
i pcsend () functions differently depending on whether the VC socket referenced is
in synchronous or asynchronous mode. The following paragraphs describe these
differences:

• Synchronous I/O. Send requests issued against VC sockets in synchronous mode
may block. i pc send () will block if it can not immediately obtain the buffer space
needed to accommodate the data. The call will resume after the required buffer
space becomes available, or if the synchronous timer expires. Timeouts usually
occur when the process on the receiving end of the connection stops receiving the
data sent to it. (The length of the synchronous time-out interval can be adjusted via
i pccontrol (). Refer to the discussion of this call for more information.)

• Asynchronous I/O. Send requests issued against sockets in asynchronous mode will
never block. If the buffer space needed to accommodate the data is not
immediately available, a NSR_WOUlD_BlOCK error (code 56) is returned. After
receiving this error, the process can try the call again later, or determine when the
socket is writeable by calling i pcse 1 ect (). (Refer to the discussion of
i pcse 1 ect () for more information on writeable sockets.)

For a detailed discussion of synchronous and asynchronous I/O, refer to "Synchronous
and Asynchronous Socket Modes" in the "NetIPC Concepts" chapter.

NetlPC Calls 3-77

Programming Considerations
The following is a list of the type definitions and passing modes for the i pes end ()
call parameters in C, Pascal, and FOR'IRAN.

Parameter c PASCAL FORTRAN

vcdesc integer integer*4
by value by value

data char *data packed array of array of
characters characters
by reference by reference

dlen ns _int_ t dlen integer integer *4
by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int opt[] array of bytes array of integers
by reference by reference

result ns _ int _ t *result integer integer*4
by reference by reference

3-78 NetlPC Calls

ipcsetnodename()
Sets the NetIPC node name of the host CPU.

Syntax

ipcsetnodename() (nodename,name7en,resu7t)

Parameters

nodename

name7en

resu7t

Description

The ASCn -coded name that is assigned to this host.
Default: You may omit the organization or the organization
and domain and this field will default to the organization
and/or domain previously set by setnodename.

The length in bytes of the nodename parameter.

The error code returned; zero or NSR _ NO_ERROR if no error.

The i pcsetnodename () call sets the NetIPC node name of the host processor to the
node name value.

Super-user capability is required to use this call.

NetlPC Calls 3-79

ipcshutdownO
Releases a descriptor.

Syntax

ipcshutdown(descriptor,flags,opt, result)

Parameters

descriptor

f7ags

opt

result

Description

The descriptor to be released. May be a call socket
descriptor, VC socket descriptor, or destination descriptor.

Must be 0 or NSF _GRACEFUL_RELEASE. If this flag is set,
the underlying network protocol will continue to transmit
data after the calling process exits. (Refer to "Flags
Parameter" for more information on the structure of this
parameter.)

Refer to "Opt Parameter" for more information on the
structure and use of this parameter. No options are
defined for this call. May be 0 or a pointer to an empty
NetIPC option buffer.

The error code returned; zero or NSR _NO_ERROR if no error.

The i pcshutdown () call is used to release a descriptor. The descriptor referenced
may be a call socket descriptor, VC socket descriptor, or destination descriptor. How
i pcshutdown () functions depends on which type of descriptor is being used. If the
descriptor is a:

3-80 NetlPC Calls

• Call socket descriptor, the descriptor is released along with any names associated
with it. The process that released the call socket descriptor may no longer use it,
and all connection requests queued to that descriptor are aborted. The call socket
referenced by the descriptor is destroyed along with the descriptor and names only
if the descriptor being released is the last descriptor for that socket. H another
process, or processes, have a descriptor for the same socket, these duplicate
descriptors are not affected. Since system resources are used when a call socket is
created, you may want to release your call socket descriptors when they are no
longer needed. A call socket descriptor is needed as long as a process is expecting
to receive a connection request on that socket. After the connection request is
received via i pcrecvcn (), and as long as no other connection requests are
expected for that call socket descriptor, the descriptor can be released. Similarly, a
process that requests a connection can release its call socket descriptors any time
after its call to i pcconnect (), as long as it is not expecting to receive a connection
request on that descriptor. Using i pcshutdown () to release a call socket
descriptor does not affect any VC sockets.

• Destination descriptor, the descriptor is released along with any names associated
with it in the local socket registry. The process that released the destination
descriptor may no longer use it. The addressing information stored in conjunction
with the descriptor is destroyed along with the descriptor only if the descriptor
being released is the sole descriptor for that information. If another process, or
processes, have a descriptor for the same information, these duplicate descriptors,
and any names associated with the descriptors, are not affected. Because
destination descriptors also require system resources, you may want to release them
when they are no longer needed.

• VC socket descriptor, the VC socket descriptor is released and the referenced
connection is aborted and is no longer available for sending or receiving data. The
VC socket descriptor is released along with the descriptor only if the descriptor
being released is the last descriptor for that socket. If another process, or
processes, have a descriptor for the same VC socket, these duplicate descriptors are
not affected. Because i pcshutdown () takes effect very quickly, all of the data that
is in transit on the connection, including any data that has already been queued on
the destination VC socket, may be destroyed when the connection is shut down.
Shutting down a VC socket does not affect any call sockets.

All of the data that is in transit on a VC socket, including any data that has already
been queued on the destination VC socket, may be destroyed when the connection is
shut down unless the NSF _GRACEFUL_RELEASE flag is set. If a process sends
important data to its peer process just prior to shutting that process down, it is
recommended that the calling process receive a confirmation from the peer process

NetlPC Calls 3-81

before calling ipcshutdown or exiting, or use the NSF _GRACEFUL_RELEASE flag to
ensure that the data was received.

For more information on ; pcshutdown (), refer to "Shutting Down a Connection" in
the "NetIPC Concepts" chapter.

Programming Considerations
The following is a list of the type definitions and passing modes for the
; pcshutdown () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

descriptor ns int t integer integer*4
descriptor by value by value

flags ns_int_t *flags boolean array integer*4
by reference by reference

opt short int opt[] array of bytes array of integers
by reference by reference

result ns_int_t *result integer integer*4
by reference by reference

Cross-System Considerations
Socket Shut Down - The shutdown procedure for the HP tOOO, HP 9000 and HP
3000 processes is ideJ.ltical except for shared sockets on HP 9000 and the "graceful
release" flag on the HP 3000 and 9000. Shared sockets are destroyed only when the
descriptor being released is the sole descriptor for that socket. Therefore, the HP
9000 process may take longer to close the connection than expected. If the graceful
release flag is set on the HP 3000, the HP 9000 will respond as though it were a
normal shutdown request.

3-82 NetlPC Calls

optoverheadO
Returns the number of bytes needed for the opt parameter in a subsequent NetIPC
call, not including the data portion of the parameter.

Syntax

opt7ength = optoverhead(eventua7entries,resu7t)

Parameters

opt7ength

eventua7entries

resu7t

Description

The number of bytes required for the opt parameter, not
including the data portion of the parameter.

The number of option entries that will be placed in the opt
parameter.

The error code returned; zero or NSR_NO_ERROR if no error.

The optoverhead () call returns the number of bytes needed for the opt parameter,
excluding the data area.

NetlPC Calls 3-83

Programming Considerations
The following is a list of the type definitions and passing modes for the
optoverhead () call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

optlength short int int16* integer
(returned value) (returned value) (returned value)

eventual entries short int int16* integer
(returned value) by value by value

error short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

3-84 NetlPC Calls

readoptQ
Obtains the option code and argument data associated with an opt parameter
argument.

Syntax

readopt(opt,argnum,optioncode,datalength,data,result}

Parameters

opt

argnum

optioncode

data length
(input/output)

data

result

The opt parameter to be read. Refer to "NetIPC Common
Parameters" for information on the structure and use of this
parameter.

The number of the argument to be obtained. The first
argument is number zero.

The option code or constant definition (C programs only)
associated with the argument. These codes are described in
each NetIPCcall opt parameter description.

The length of the array into which the argument should be
read If the array is not large enough to accommodate the
argument data, an error will be returned. On output, this
parameter contains the length of the data actually read.
(The length of the data associated with a particular option
code is provided in each NetIPC call opt parameter
description.)

An array which will contain the data read from the argument.

The error code returned; zero or NSR_ NO_ERROR if no error.

NetlPC Calls 3-85

Programming Considerations
The following is a list of the type definitions and passing modes for the readopt ()
call parameters in C, Pascal, and FORTRAN.

Parameter C PASCAL FORTRAN

opt short int opt[] array of bytes array of integers
by reference by reference

argnum short int argnum int16* integer
by value by value

optioncode short int int16* integer
*optioncode by reference by reference

datalength short int int16* integer
*datalength by reference by reference

data short int data[] array of int16* array of integers
by reference by reference

error short int *error int16* integer
by reference by reference

*int16 is a user-defined Pascal type for a 16-bit integer.

3-86 NetlPC Calls

Sample NetlPC Programs

The following are NetIPC program examples. This appendix is organized in two
sections: HP 9000 to HP 9000 examples and cross-system NetIPC examples.

Sample NetlPC Programs A-1

A

HP 9000 to HP 9000 Examples
The following program examples were developed for HP 9000 to HP 9000
communication:

• Example 1: Server Program in C.

• Example 2: Client Program in C.

• Example 3: Server Program in FORTRAN.

• Example 4: Client Program in FORTRAN.

These programs are included in /usr/netdemo/nsi pc.

A-2 Sample NetlPC Programs

Cross-System NetlPC Examples
The following programs were tested with equivalent client/server programs running on
the HP 1000 and HP 3000 (MPE-V and MPEftX). HP 1000 and HP 3000 NetlPC
program examples are contained in the NetIPC documentation provided for those
systems.

• Example 5: Cross-System Server in C.

• Example 6: Cross-System Client in C.

• Example 7: Cross-System Server in FORTRAN.

• Example 8: Cross-System Client in FORTRAN.

• Example 9: Cross-System Server in PASCAL.

• Example 10: Cross-System Client in PASCAL.

Sample NetlPC Programs A-3

Make File for Sample Programs
I!/bin/sh
I I
I I
I Make file for building the sample NetIPC tests. I
I I

I Compile NetIPC sample programs(2) in C.

all : req_c serv_c req_f serv_f

serv_c : serv.c
cc -0 serv_c serv.c - lnsipc

req_c : req.c
cc -0 req_c req.c - lnsipc

serv_f : serv.f
fc -0 serv_f serv.f - lnsipc

req_f : reg.f
fc -0 req_f req.f - lnsipc

A-4 Sample NetlPC Programs

Example 1: Server in C
/*
* This is a server program which executes in background on an
* 840 machine. It creates a call socket and names it ABCDEFGH.
* The server waits indefinitely for a connection request. After
* a request is received and connection established by the
* ipcrecvcn() call, the server forks a child to handle all data
* exchange with the requester. The server then loops back to wait
* for new connection requests.
*
* The child receives and logs all messages sent by the requester.
* When a shut down message is received, it sends the shut down
* message back to the requester. The next ipcrecv() call will
* return a 64 error, signifying that the requester has disconnected.
* The child process then calls ipcshutdown() and terminates.
*
* Although the program executes in background. you do not have to
* invoke it with a &. It automatically puts itself in the background.
* This server program is the peer program to the requester
* program written in C (Example 2) and FORTRAN (Example 4).
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ns_ipc.h>
#include <sys/time.h>
#include <sys/fcntl.h>
#include <signal.h>
#inc1ude <errno.h>
#include <sys/uio.h>
#include <string.h>

#define MSG_SIZE 20

ns int t result;
short -opt [100] ;
short opterr;
ns int t flags;
char 10gbuf[100];
char *sd msg = I want to shut down.
char *logfile = .7ipc. log;
int logf;

main (argc, argyl
int argc;
char **argv;
{
ns int t vc desc, call desc;
char - *socketname;­
short short_timeout;

Sample NetlPC Programs A-5

init_logging ();

/* forks in order to get into the background and detaches
* process from tty

*/

if (fork()
exit (0);

setpgrp ();

/* ignore signals */

signal(SIGCLD. SIG_IGN);

/* create call socket */

flags = 0;
initopt (opt. O. &opterr); /* initialize opt to zero opt */
ipccreate (NS_CALL, NSP_TCP, &flags, opt, &call_desc, &result);

sprintf (logbuf. ipccreate: %d\n • result);
log (logbuf);
if (result) goto fatal_error;

/* name the call socket */

socketname = ABCDEfGH ;
ipcname (call_desc, socketname, 8, &result);
sprintf (logbuf, ipcname %s: %d\n , socketname, result);
log (logbuf);
if (result) goto fatal_error;

/* set call socket timeout to infinite. then wait for
connection requests */

flags = 0;
short timeout = 0;
ipccontrol (call_desc. NSC_TIMEOUT_RESET, &short_timeout. 2, 0, 0,

&flags, &result);
sprintf (logbuf, ipccontrol NSC_TIMEOUT_RESET: %d\n , result);
log (logbuf);
if (result) goto fatal_error;

while (!result)
{
flags = 0;
ipcrecvcn (call_desc, &vc_desc, &flags. opt, &result);
sprintf (logbuf. ipcrecvcn: %d\n • result);
log (logbuf);
if (result) goto fatal_error;

A-6 Sample NetlPC Programs

}

/* fork a child and pass it the newly established
connection */

if (!fork()
{ /* child */

}

rec data (vc desc);
if (!resu1t TI result == NSR_REMOTE_ABORT)

exit (0);
else
exit (result);

/* parent */
flags = 0;
ipcshutdown (vc_desc, &f1ags, opt, &result);

fata 1 error: sprintf (logbuf, fatal_error: %d\n , result);
-log (logbuf);
exit (resu It) ;

}

rec_data (vc desc)
ns int t vc=desc;
{- -

char buf[MSG SIZE + 1];
ns int t msg-len;
int shut_down-= 0;

fore-e)
{ " -
flags = 0;
msg_1en = MSG_SIZE;
ipcrecv (vc_desc, buf, &msg_len, &flags, opt, &result);
sprintf (logbuf, ipcrecv: %d\n , result);
log (logbuf);
if (result) goto return_error;

if(!strncmp(buf, sd_msg, MSG_SIZE»
{

}

sprintf(logbuf, Shutdown msg received\n);
loge logbuf);
flags = 0;
msg_len = MSG_SIZE;
ipcsend (vc_desc, buf, msg_len, &flags, opt, &result);
sprintf (logbuf, ipcsend: %d\n , result);
log (logbuf);

else
{

buf[MSG SIZE] (char) 0;
sprintf(logbuf, Received: %s\n , buf);
log(logbuf);

Sample NetlPC Programs A-7

}
}

return_error: flags = 0;

}

ipcshutdown (vc_desc, &flags, opt, &result);
sprintf (logbuf, ipcshutdown: %d\n , result);
log (logbuf);
return (result);

in it_logging()
{

}

int flags;

flags = O_CREAT I O_WRONLY 10_APPEND;
logf = open (logfile, flags, 0777);
if (logf < 0) {

}

printf ("Couldn't open log file\n");
exit (-1);

log ("ipcserver starts\n");

log (buf)
char *buf;
{

int pid = getpid();
char *ctime(), *time_str;
struct timeval tv;
struct timezone tz;
char time[25];
char 10ca1_buffer[160];

gettimeofday (&tv, &tz);
time str = ctime (&(tv.tv sec»;
bcopy (time str, time, 24);
time[24] = 0;

sprintf (local_buffer, %s: {%d}: %s\n , time, pid, buf);
write (logf, local_buffer, strlen(local_buffer»;

}

bcopy (from str, to_str, len)
char *from str;
char *to str;
int len; -
{
while (len)

*to_str++ = *from_str++;
}

A-a Sample NetlPC Programs

Example 2: Client in C
/* This program initiates a connection to a remote socket ABCDEFGH,
* then sends some messages to the server. When this program is ready
* to quit, it will send a shut-down message to the server. After
* the server has acknowledged the shut-down message, the shut-down
* operation is performed.
*/

#include <stdio.h>
#include <sys/ns_ipc.h>
#include <string.h>

main (argc, argv)
int argc;
char **argv;
{
ns_int_t vc desc, dest desc;
ns_int_t protocol, sock kind;
ns_int_t result; -
short opt[lOO];

short opterr;
ns_int_t flags;
char *progname;
char *nodename;
char *socketname;
char buf[64];
stat i c char shut down [] = I want to shut down.
static char msg[-] = Message from request ;
ns int_t read len;
short timeout, datalen;

/* the first argument after the program name indicates the
node on which ABCDEFGH resides */

progname = *argv++;
nodename = *argv;

/* obtain destination descriptor to socket ABCDEFGH on
the remote node that is passed as an argument to the
program */

socketname = ABCDEFGH
flags = 0;
ipclookup (socketname, 8, nodename, strlen(nodename), &flags,

&dest_desc, &protocol, &sock_kind, &result);
printf ("{%s} ipclookup: %d\n", progname, result);
if (result) goto fatal_error;

/* initialize opt structure */

Sample NetiPC Programs A-9

initopt (opt, 0, &opterr); /* initialize opt to zero opt */
ipcconnect (-1, dest_desc, &flags, opt, &vc_desc, &result);
printf ("{%s} ipcconnect: %d\n", progname, result);
if (result) goto fatal_error;

/* release destination descriptor since it's not needed
any more */

ipcshutdown (dest_desc, &flags, opt, &result);
printf ("{%s} ipcshutdown: %d\n", progname, result);
if (result) goto fatal_error;

/* confirm connection */

flags = 0;
ipcrecv (vc_desc, buf, &readlen, &flags, opt, &result);
printf ("{%s} ipcrecv connection: %d\n", progname, result);
if (result) goto fatal_error;

flags = 0;
printf("{%s} Sending requester's message\n", progname);
ipcsend (vc_desc, msg, 20, &flags, opt, &result);
if (result) goto fatal_error;

flags = 0;
printf("{%s} Sending shutdown message\n", progname);
ipcsend (vc_desc, shut_down, 20, &flags, opt, &result);
if (result) goto fatal_error;

flags = NSF_DATA_WAIT;
readlen = 20;
printf("{%s} Waiting to receive shutdown acknowledgement\n", progname);
ipcrecv (vc_desc, buf, &readlen, &flags, opt, &result);
printf ("{%s} ipcrecv: %s\n", progname, buf);
if (result) goto fatal_error;

if (strncmp (buf, shut_down, 20»
{

}

printf ("strcmp fa iled %s, %s\n", buf, shut_down);
goto return_error;

flags = 0;
ipcshutdown (vc_desc, &flags, opt, &result);
printf ("{%s} ipcshutdown: %d\n", progname, result);

return_error: exit(O);

fatal_error: printf ("{%s} fatal error: %d\n", progname, result);
exit (result);

}

A-10 Sample NetlPC Programs

Example 3: Server in FORTRAN
PROGRAM serf

C
C NAME: serf
C SOURCE: 91790-18237
C RELOC: 91790-16237
C PGMR: ZL
C Modified by KC for the 840

C This program is the peer process to requester. It uses sockets in
C synchronous mode to establish a connection and receive a message
C from requester.

C Since FORTRAN values are passed by value by default, the ALIAS
C statements below are used to indicate which values of the IPC calls
C should be passed by reference instead.

$ALIAS ipcconect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$AlIAS ipcshutdown (%val,%ref,%ref,%ref)
$AlIAS addopt (%ref,%val,%val,%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)
$AlIAS signal (%val,%val)

PARAMETER (SIGCLD=1, SIG IGN=1. NSC TIMEOUT RESET=3)
CHARACTER*20 receive buffer. shut down message
CHARACTER*8 socket_name --

INTEGER*2 option(2), result. timeout

C INTEGER SIGCLD. SIG_IGN. request. NSC_TIMEOUT_RESET. fork
INTEGER request. fork

INTEGER socket_kind, protocol_kind. call_socket_descriptor,
>error_return. name_length. VC_socket_descriptor.
>message_buffer_length, flags_array

DATA shut_down_message/'I want to shut down.'/

C Fork Process to get into background and detach from controlling tty
C and ignore SIGClD (dealth of child process).

Sample NetlPC Programs A-11

if (fork() .NE. 0) STOP
ca 11 setpgrp ()
call signal(SIGClD, SIG_IGN}

C The INITOPT call initializes the option parameter used by the
C IPCCREATE, IPCRECVCN, IPCRECV and IPCSHUTDOWN calls. By setting
C the opt_num_arguments parameter to zero, the option parameter is
C initialized to contain zero entries. (An example of adding entrie
C to an option parameter is included in the discussion of ADDOPT in
C this section.
C

opt_num_arguments = 0
CAll INITOPT(option,opt_num_arguments,result)

here = 1
IF(result.NE.O} GO TO 99

C socket_kind is set to 3 and protocol_kind is set to 4 to
C specify a call socket and the TCP protocol for the following
C IPCCREATE call.

socket_kind = 3
protocol_kind = 4

C The flags parameter is not used in this program, so flags_array
C is made a double integer and assigned the value zero to ensure
C that all the bits are clear.

flags_array = 0

C A call socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be used in the following
C IPCNAME call.

CAll IPCCREATE(socket_kind,protocol_kind,flags_array,option,
>call_socket_descriptor,error_return)

here = 2
IF(error_return.NE.O} GO TO 99

flags_array = 0

C IPCNAME is called to assign a name to the newly-created call
C socket. This name is known to the requester.

socket_name = 'ABCDEFGH'
name_length = 8

CAll IPCNAME(call_socket_descriptor,socket_name,name_length,
>error_return}

here = 3
IF(error_return.NE.O) GO TO 99

C Set call VC socket to infinite.

A-12 Sample NetlPC Programs

flags_array = 0
timeout = 0
request = NSC_TIMEOUT_RESET

CALL IPCCONTROL(call_socket_descriptor, request, timeout,
>2, 0, 0, flags_array, error_return)

here = 4
IF (error_return .NE. 0) GO TO 99

flags_array = 0

C The following IPCRECVCN call will receive the connection request
C sent by requester and return a VC socket descriptor. Once this call
C has completed successfully, you may optionally release the call
C socket descriptor by calling IPCSHUTDOWN in order to return resources
C to the system. Doing so will not affect the newly-created
C VC socket descriptor.

CALL IPCRECVCN(call_socket_descriptor,VC_socket_descriptor,
>flags_array,option,error_return)

here = 5
IF(error_return.NE.O) GO TO 99

C IPCRECV is called to receive a message from requester.

10 flags_array = 0
message_buffer_length = 20

CALL IPCRECV(VC_socket_descriptor,receive_buffer,
>message_buffer_length,flags_array,option,error_return)

C If error code 64 is received, requester has shut down the connection
C at its node. The error processing code at statement 99
C will call IPCSHUTDOWN to shut down the server's VC socket descriptor.

here = 6
IF(error_return.NE.O) GO TO 99

C The receive buffer is compared to the shut down message.
C If the shut down message is received, server sends a shut
C down message back to requester so that requester will know that its
C data has been received.

IF(receive buffer .EQ. shut down message) THEN
flags a;ray = 0 --
CALL IPCSEND(VC_socket_descriptor,shut_down_message,

> message_buffer_length,flags_array,option,error_return)
here = 7
IF(error_return.NE.O) THEN

GO TO 99
ELSE

GO TO 10

Sample NetlPC Programs A-13

ENDIF
ELSE

C If the shut down message was not received, ipc1 will simply rece
C the data and print it. It then returns to the previous IPCRECV ca
C to receive subsequent data until either the shut down message
C is received or an error occurs.

C WRITE(6,'(5A4)')(receive buffer(index),index = 1,5)
WRITE(6,*) receive_buffe;
GO TO 10

ENDIF

99 IF(error return.EQ.64} THEN
flags=array = a
CALL IPCSHUTDOWN (VC_socket_descriptor,flags_array,option,

> error return)
IF(error_return.NE.O} GO TO 99

ELSE
WRITE(6, , ("error return error code: ", I4}') error return
WRITE(6, , ("result error code: ", I4}') result -
WRITE(6, , ("Program server at location: _",14)') here

ENDIF

100 STOP

END

A-14 Sample NetlPC Programs

Example 4: Client in FORTRAN
PROGRAM reqf (location)

C
C NAME: reqf
C SOURCE: 91790-18238
C RELOC: 91790-16238
C PGMR: ZL
C Modified by KC to run on a 840
C

C This program is the peer process to server. It uses sockets
C in synchronous mode and sends a message to server.

$ALIAS ipcconnect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$ALIAS ipcshutdown (%val,%ref,%ref,%ref)
$ALIAS addopt (%ref,%val,%val,%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)

PARAMETER (NSF_DATA_WAIT = 4000B)

CHARACTER*20 receive buffer, send_buffer, shut_down_message
CHARACTER*50 location
CHARACTER*8 socket name
CHARACTER*20 data_buffer

INTEGER*2 option(2), result, num_arg,
>opt_num_arguments, counter

INTEGER*4 socket_kind, protocol_kind, call_socket_descriptor,
>error_return, name_length, VC_socket_descriptor,
>message_buffer_length, location_length, data_length,
>path_report_descriptor, protocol_returned, flags_array

DATA send_buffer/'Here is the message.'/
DATA shut_downjmessage/'I want to shut down.'/

C INITOPT is called to initialize the option parameter used in the
C IPCCREATE, IPCLOOKUP, IPCCONNECT, IPCRECV, IPCSEND and
C IPCSHUTDOWN calls. By setting opt_num_arguments to zero, the

Sample NetiPC Programs A-15

C option parameter is initialized to contain zero entries.
C (An example of adding options to an option parameter is included
C in the discussion of ADDOPT in this section.

DO i = 1,50
IF (location(i:i).EQ.") THEN

location_length = i-I
GO TO 125

ENDIF
END DO

125 CONTINUE
IF (location length .EO. 0) THEN

WRITE(6, *) 'reqf : usage reqf nodename'
STOP

ENDIF

opt_num_arguments = 0
CALL INITOPT(option,opt_num_arguments,result)

here = 1
IF(result.NE.O) GO TO 99

C socket_kind is set to 3 and protocol_kind is set to 4 to specify
C a call socket and the TCP protocol for the following IPCCREATE
C ca 11.

socket kind = 3
protocol_kind = 4

C The flags_array parameter is not used in this program so flags_array
C is made a double integer and assigned the value zero to ensure tha
C all the bits are clear.

flags_array = 0

C A call socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be used in the following
C IPCCONNECT call.

CALL IPCCREATE (socket_kind,protocol_kind, flags_array, opt ion ,
>call_socket_descriptor,error_return)

here = 2
IF(error_return.NE.O) GO TO 99

C The location parameter indicates the node name of the node where
C ipc2 resides and location length indicates the length of this
C name in bytes. Note that-the organization and domain are defaulted.

socket name = 'ABCDEFGH'
name_l;ngth = 8

C IPCLOOKUP searches the socket registry at node1 for server's
C socket name. This call returns a path_report_descriptor that is
C used in the following IPCCONNECT call to request a connection

A-16 Sample NetlPC Programs

C with server. Because it is possible for IPCLOOKUP to search for
C the socket name before server places it in its node's socket
C registry, server will try to look up the name several times before
C aborting.

counter = 0
flags_array = 0

21 CALL IPCLOOKUP(socket name,name length, location, location length,
>flags_array, path_report_descriptor, protocol_returned, socket_kind,
>error_return)

counter = counter + 1
here = 4

IF (error return.EQ.O) GO TO 28
IF (error-return.NE.37) GO TO 99
IF (counter.LE.10) THEN

GO TO 21
ELSE

GO TO 99
ENDIF

flags_array = 0

C The call_socket_descriptor returned by IPCCREATE and the
C path_report_descriptor returned by IPCLOOKUP are used in
C IPCCONNECT to request a connection with server. The
C VC_socket_descriptor returned by IPCCONNECT is used in subsequent
C calls to reference the connection. Once this call has completed
C successfully, you may optionally release the call socket descriptor
C by calling IPCSHUTDOWN in order to return resources to the system.
C Doing so will not affect the newly-created VC socket descriptor.

28 CALL IPCCONNECT(call_socket_descriptor,path_report_descriptor,
>flags_array, option ,VC_socket_descriptor, error_return)

here = 5
IF(error_return.NE.O} GO TO 99

flags_array = 0
data_length = 20

C IPCRECV is called to determine if the connection has been
C established.

CALL IPCRECV(VC_socket_descriptor,data_buffer, data_'ength,
>f lags_array , opt ion, error_return)

here = 6
IF(error_return.NE.O) GO TO 99

flags_array = 0
message_buffer_length = 20

Sample NetlPC Programs A-17

C Data is sent to server on the newly established connection.

CALL I PCSEND(VC_socket_descr iptor , send_buffer,
>message_buffer_length ,flags_array, opt ion ,error_return)

here = 7
IF(error_return.NE.O) GO TO 99

flags_array = 0

C After the data is sent, requester initiates the shut down dialogue
C by sending a shut down message to server.

CALL IPCSEND(VC_socket_descriptor,shut_down_message,
>message_buffer_length ,f lags_array , option ,error_return)

here = 8
IF(error_return.NE.O) GO TO 99

C After it receives the shut down message, server will send its
C own shut down message to requester. IPCRECV is called to receive
C this data.

flags_array = 0

30 CALL IPCRECV(VC_socket_descriptor,receive_buffer,
>message_buffer_length, flags_array,option,error_return)

here = 9
IF(error_return.NE.O) GO TO 99

C If the receive_buffer contains the shut down message, requester will
C call IPCSHUTDOWN to shut down its VC socket descriptor and termina
C the connection.

IF(receive_buffer.EQ.shut_down_message) THEN

flags_array = 0

CALL IPCSHUTDOWN (VC_socket_descriptor , flags_array, opt ion ,
>error_return)

here = 10
IF(error_return.NE.O) GO TO 99

GO TO 100

C Since the only data requester receives from server is a shut down messag
C it should never branch to the following ELSE statement. If this
C process were the recipient of several IPCSEND calls, it should
C call IPCRECV again.

ELSE

C WRITE(6,'(10A2)')(receive buffer(index),index=l,lO)
WRITE(6, *) receiver_buffer

A-18 Sample NetlPC Programs

GO TO 30

END1F

99 WRITE (6, '("result error code: - ,14)') result
WRITE (6, '(error return error code: ",14)') error return
WRITE (6, , ("Program requester at location: _",14)')-here

100 STOP

END

Sample NetlPC Programs A-19

Example 5: Cross-System Server in C
/* NETIPC C-SERVER EXAMPLE
*
* This program similates a local database system which waits
* for remote information requests. It will looks for a reqular
* 80 column text file called 'datafile' for information. 'datafile'
* must conform with the following format: The first 20 chars
* store a person's name, and the rest of the line stores the
* information of that person.
*
* The program creates a call socket at TCP port 31767, then waits
* indefinitely for connection requests. It calls ipcselect() to
* test whether the call socket has a connection pending, and calls
* ipcrecvcn to ~ccept the connection. After a connection is
* established, the client will send in a person's name, with which
* the server will search the database file for information for that
* person. If found, the information will be returned. This process
* continues until the virtual socket becomes exceptional; in which
* case, ipcshutdown is called to shutdown that particular socket.
*/

#include <stdio.h>
#include <string.h>
#include <sys/ns_ipc.h>

#define BUFFERLEN20
#define INFOBUFLEN60
#define CALL SOCKET3
#define INFINITE SELECT 1
#define MAX SOCKETS60
#define MAX-BACKLOGS
#define TCP=PORT31767

int ca" sd;
int ca"-sd mask [2] ;
int rmap[2]~ xmap[2];
int curr_rmap[2], curr_wmap[2], curr_xmap[2];
short offset;
short control value;
ns int t result;
FILE -*datafile;
short opt [40] ;
short opt_data;
short opterr;
short timeout;
ns_int_t flags;
short opt_num_arguments;
ns_int_t sbound
int soc_count;

A-20 Sample NetlPC Programs

extern void addopt();
extern void initopt();
extern void ipccontrol();
extern void ipccreate();
extern void ipcrecvcn();
extern void ipcrecv();
extern void ipcselect();
extern void ipcsend();
extern void ipcshutdown();

void Error Routine();
void HandleNewRequest();
void Init ia lize_Opt ionO;
void ProcessRead();
int ReadDataO;
void SetUp();
void ShutdownVC();

/***/
mainO
{

int i;

SetUpO;

/* loop forever to serve clients. If any new client requests
* service, the exception map will be set on the call socket.
* If a client asks for information, the read map will be set
* on the vc socket for that client. When the server detects
* an exceptional condition on an existing vc socket, it means
* that the corresponding client has shutdown. In which case,
* both rmap and xmap are adjusted for the next ipcselect() call.
*
* If any other error situation occurs, both the name of the
* previous ipc call and the error code is printed and the
* process is terminated by an exit() call.
*/
curr_rmap[O] = curr_rmap[l] = 0;
curr_xmap[O] = curr_xmap[l] = 0;

fore;;)
{
for (i = 0; i < 2; i++)
{
curr_rmap[i] = rmap[i];
curr_xmap[i] = xmap[i];

}

timeout = -1;
sdbound = MAX_SOCKETS;

ipcselect(&sbound, curr_rmap, curr_wmap, curr_xmap,
timeout, &result);

if (result)
{

Sample NetlPC Programs A-21

Error_Routine("ipcselect", result, call_sd);
}

/* Check for read condition.
*/

if «curr_rmap[O]) II (curr_rmap[l])
{
for (offset = 0; offset < sbound; offset++)
{
if (curr_rmap[offset/32] &

«unsigned int)Ox80000000 »(offset %32»)
ProcessRead(offset);

}
}

/* Check for new connection request. The bit in curr_xmap
* for the call socket is clear, so that the call socket
* will not be interpreted as a vc shutdown.
*/

if (curr_xmap[call_sd/32] &
«unsigned int)Ox80000000 » (call_sd % 32»)

{
HandleNewRequest();

}

curr_xmap[O] &= call_sd_mask[O];
curr_xmap[l] &= call_sd_mask[l];

/* Check for vc shutdown.
*/

if ((curr_xmap[O]) II (curr_xmap[l])
{
for (offset = 0; offset < sbound; offset++)
{

}

if (curr_xmap[offset/32] &
«unsigned int)Ox80000000 »(offset %32»)

ShutdownVC(offset);

}
}

}

/**/
void Error Routine(where, what, sd)
char *where;
int what;
int sd;
{

}

printf("Server: Error occured in %s cal1.\n", where);
printf("Server: The error code is: %5d. The local descriptor is:\
%d \n", what, sd);
exit() ;

A-22 Sample NetlPC Programs

/***/

void HandleNewRequest()
{

}

/* Establish a connection for a new client. Adjust the xmap
* and the rmap parameters of the ipcselect() call to reflect
* the new connection.
*/

Initialize_Option(opt);
flags = 0;

ipcrecvcn(call_sd, &vc_sd, &flags, opt, &result);
if (result)
{
Error Routine(ipcrecvcn, result, call_sd);

} -

/* set rmap and xmap for the new socket for subsequent ipcselect()
* call.

*/

*/
rmap[vc_sd/32] 1= «(unsigned int) Ox80000000 » (vc_sd %32»;
xmap[vc_sd/32] 1= (unsigned int) Ox80000000» (vc_sd %32»;

/* Set the timeout to infinity with ipccontrol for later calls

flags = 0;
control value = 0;
ipccontrol(vc_sd, NSC_TIMEOUT_RESET, &control_value, 2, 0,0,

&flags, &result);
if (result)
{
Error Routine(ipccontrol, result, call_sd);

} -

{

/*
* Check if we have reached the maximum number of sockets.
* If so, disallow any new requests by clearing the exception
* map for the call socket.
*/

if (++soc_count >= MAX_SOCKETS

xmap[O] = call sd mask[O];
xmap[l] = call=sd=mask[l];

}

/***/

void Initialize_Option()
{

int opt_num_arguments;
short opt_err;

opt_num_arguments = 0;
initopt(opt, opt_num_arguments, &opt_err);

if (opt_err)
{
Error Routine(initopt, opt_err, 0);

} -
}

/**/

void ProcessRead(offset)
short offset;
{

int buffer len;
char client buf[BUFFERLEN + 1];
char data buf[INFOBUFLEN];
int vc_sd;

/* The client with socket discriptor 'offset' has sent in a name.
* The server will recieve that name and search for the information
* in the database file. If found, the information will be sent
* back to the client, otherwise, a 'not found' message will be
* sent.
*/

Initialize_Option(opt);
vc sd = offset;
buffer_len = BUFFERLEN;
flags = 0;
ipcrecv(vc_sd, client_buf, &buffer_len, &flags, opt, &result);

if (result)
{

Error_Routine(ipcrecv, result, vc_sd);
}

client buf[BUFFERLEN] = 0;
if (!ReadData(client_buf, data_buf »

{
printf("Server: %s not in file. \n", client_buf);

sprintf(data_buf, SERVER did not find the requested name \
in the datafile. \n);

}

}

buffer_len = INFOBUFLEN;
flags = 0;
ipcsend(vc_sd, data_buf, buffer_len, &flags, opt, &result);

if (result)
{
Error Routine ("ipcsend", result, vc_sd);

} -

/**/

A-24 Sample NetlPC Programs

int ReadData (client buf, output_buf)
char *client buf; -
char *output-buf;
{ -
chart_buf [80] ;

/* Sequentially read the database file until the name is found
* or EOF is reached. Return 1 if the name is located, 0
* otherwise.
*/

rewind(datafile);
fore;;)
{
if (fgets(t buf, 80, datafile))
{ -
if (!strncmp(client_buf, t_buf, BUFFERlEN))
{
strncpy(output_buf, &(t_buf[BUFFERlEN]),

INFOBUFlEN);
printf("Server: %s information found.\n",
client buf);

return (i) ;
}

}
else
{

}
}

}

return(O) ;

/**/

vo i d SetUp ()
{
/* Open the database file for reading.
*/

if «datafi le = fopen("datafi len, r)) == NUll)
{
Error_Routine(fopen, 0, 0);

}

/* Set up the opt array for the two parms we will use
*/

opt_num_arguments = 2;
initopt(opt, opt_num_arguments, &opterr);

if (opterr)
{
Error Routine(initopt, opterr, call_sd);

} -

/* Set Tep port address

Sample NetlPC Programs A-25

*/
opt_data = TCP_PORT;
addopt(opt, 0, NSO_PROTOCOL_ADDRESS, 2, &opt_data, &opterr);
if (opterr)
{
Error Routine(addopt, opterr, call_sd);

} -

/* Set maximum number of connection requested can be pend at
* one time.
*/

opt_data = MAX_BACKLOG;
addopt(opt, 1, NSO_MAX_CONN_REQ_BACK, 2, &opt_data, &opterr);
if (opterr)
{
Error Routine(addopt, opterr, call_sd);

} -

/* Create new call socket.
*/

flags = 0;
ipccreate(NS_CALL, NSP_TCP, &flags, opt, &call_sd, &result);
if (result)
{
Error Routine(ipccreate, result, call_sd);

} -

/* Set the time out value for subsequent ipcrecvcn() call to
* infinity. The program will suspend indefinitely on an
* ipcrecvcn() call.
*/

flags = 0;
control_value = 0;
timeout = 0;
ipccontrol(call_sd, NSC_TIMEOUT_RESET, &timeout, 2, 0, 0,

&flags, &result);
if (result)
{
Error Routine(ipccontrol, result, call_sd);

} -

/* Update soc_count to the number of socket descriptor used so
* far. Set the xmap bit for the newly created call socket for
* the next ipcselect() call. Save the one's compliment of xmap
* for clearing the xmap bit for this call socket later.
*/

soc count++;
xmap [call_sd/32] 1= (((unsigned int) Ox80000000) » (call_sd % 32»;
ca ll_sd_mask [0] = -xmap [0] ;

A-26 Sample NetlPC Programs

call_sd_mask[l] = -xmap[l];
}

/**/

void ShutdownVC(offset)
short offset;
{

flags = 0;
Initialize_Option(opt);
vc sd = offset;
ipcshutdown(vc_sd, &flags, opt, &result);

soc count ;
if-(offset < 32)
{

rmap[offset/32] &= -«unsigned int) OxBOOOOOOO » (offset % 32));
xmap[offset/32] &= -«unsigned int) OxBOOOOOOO » (offset % 32));

}
xmap[cal1_sd/32] 1= «unsigned int) OxBOOOOOOO » (call_sd % 32));

}

Sample NetlPC Programs A-27

Example 6: Cross-System Client in C
/* NETIPC C-REQUESTER EXAMPLE
*
* This program initiates a connection to a remote well known
* socket at TCP port 31767. After the connection is established,
* The program will prompt the user to input a person's name from
* the terminal. The name will be sent to the server process. In
* return, the server will send back the associate information about
* that person if it exists in the database file. This process
* repeats until the user inputs an 'EOT' message. In which case,
* the program calls ipcshutdown(} to terminate the process.
*
*/

#include <stdio.h>
#include <string.h>
#include <sys/ns_ipc.h>
#define OPT SIZE 40
#define NAMELEN 20
#define BUFLEN 80

main ()
{
ns_int_t vc desc, dest desc;
ns_int_t result; -
short opt[OPT_SIZE];

short opterr;
ns_int_t flags;
char nodename[NAMELEN];
char namebuf[BUFLEN];
char readbuf[BUFLEN];
ns_int_t readlen;
short timeout;
static char EOTbuf[] EOT
short TCP_port;
int i;
int shutdown = 0;

/* Obtain the nodename from the user in which the well know
* port 31767 is located.

*/

printf("Client: Enter the remote node name: };
gets(nodename};

initopt (opt, O,&opterr);
flags = NSF_DUP_DEST;

TCP_port = 31767;
ipcdest (NS_CALL, nodename, strlen(nodename), NSP_TCP,

A-28 Sample NetlPC Programs

&TCP_port. 2. &flags. opt. &dest_desc. &result);
if (result) goto fatal_error;

/* initialize connection request to server */

ipcconnect (-1. dest_desc. &flags. opt. &vc_desc. &result);
if (result) goto fatal_error;

/* release destination descriptor since it's not needed
any more */

ipcshutdown (dest_desc. &flags. opt. &result);
if (result) goto fatal_error;

/* set vc socket timeout to infinite. then confirm connection*/

timeout = 0;
ipccontrol (vc_desc. NSC_TIMEOUT_RESET. timeout. 2. readbuf.

& readlen. &flags. &r.esult);
if (result) goto fatal_error;

ipcrecv (vc_desc. readbuf. &readlen, &flags, opt. &result);
if (result) goto fatal_error;

whi lee !shutdown)
{
/* get name from standard input */

printf ("Client: Enter name for data retrieval:);
gets (namebuf);

for (i = strlen(namebuf); i < NAMELEN; i++)
{
namebuf [i] = ' ';

}

namebuf[NAMELEN] = (char). 0;
if (!strncmp{namebuf. EOTbuf, NAMELEN))
{

}

flags = 0;
ipcshutdown (vc_desc, &flags, opt, &result);
shutdown = 1;
exit(O);

flags = 0;
ipcsend (vc_desc, namebuf. 20. &flags, opt. &result);
if (result) goto return_error;

flags = 0;
read len = 60;
ipcrecv (vc_desc. readbuf, &readlen, &flags, opt, &result);

Sample NetlPC Programs A-29

}

readbuf[readlen] = (char) 0;
printf ("Client data is: %s\n", readbuf);
if (result) goto fatal_error;

return_error: exit(D);

fatal_error: printf ("Client: fatal error: %d\n", result);
exit (result);

}

A-30 Sample NetlPC Programs

Example 7: Cross-System Server in FORTRAN
Header File

$ALIAS ipcconnect (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccontrol (%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipccreate (%val,%val,%ref,%ref,%ref,%ref)
$ALIAS ipcdest (%val,%ref,%val,%val,%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref,%val,%ref,%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref,%val,%ref)
$ALIAS ipcrecv (%val,%ref,%ref,%ref,%ref,%ref)
$ALIAS ipcrecvcn (%val,%ref,%ref,%ref,%ref)
$ALIAS ipcselect (%ref,%ref,%ref,%ref,%val,%ref)
$ALIAS ipcsend (%val,%ref,%val,%ref,%ref,%ref)
$ALIAS ipcshutdown (%val,%ref,%ref,%ref)
$ALIAS addopt (%ref,%val,%val,%val,%ref,%ref)
$ALIAS initopt (%ref,%val,%ref)
$ALIAS readopt (%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS istrlen = 'strlen' (%ref)
$ALIAS OPEN = 'open' (%ref,%val)

COMMONS File

Integer*4 MAX_DESC

Integer*2 here, active_VC, option(14), result

Inter*4 cal'_socket_des, VC_socket_descriptor, flags_array,
> error return, VC DES
Integer*4 sdbound, current rmap(2), readmap(2), writemap(2),

> exceptionmap(2)-
LOGICAL bit_test

common MAX_DESC

common here, active_VC, option, result

common call_socket_des, VC_socket_descriptor, flags_array,
> error return, VC DES

common sdbound, current_~p, readmap, writemap,
> exceptionmap

program server

Include header

C This program is the peer process to requester. It uses sockets in
C synchronous mode to received a connection and message

Implicit none

Sample NetlPC Programs A-31

Integer*2 SIGCLD, SIG_IGN
Integer*2 Itime, readdata, backlog, address, opt_num_arguments
Integer*2 opt_num, opt_code, len, OPEN, of lag
Integer*2 TCP, MAX_BACKLOG, SYNCH_TIMEOUT, CALL_SOCKET, INFINITE

Integer*4 socket_kind, protocol_kind, timeout, request, rlen,
> wln, fork, filenum, oldnum

Character filename*16

Include comnons

PARAMETER (SIGCLD = 1, SIG IGN = 1)
PARAMETER (filename = 'datafile' II charCO»~
PARAMETER (of lag = 0) ! read only

DATA MAX BACKLOG/5/, SYNCH_TIMEOUT/3/, TCP/4/, CALL_SOCKET/3/,
> INFINITEIOI

MAX_DESC = 63

if(fork() .ne. 0) stop
call setpgrp
ca 11 signal (SIGCLD, 'SIG_IGN)

C Open database file 'datafile' needed to service clients.

filenum = OPEN (filename, of lag)
call FSET (5, filenum, oldnum)

C Initialize options to contain 2 parameters.

opt num arguments = 2
call initopt(option,opt_num_arguments,result)
here = 1
IF(result.NE.O) call CLEANUP

C The Addopt was added to the Server to assign a TCP address
C during the Ipccreate call. '128' is the option code equivalent
C to the predefined constant 'NSO_PROTOCOL_ADDRESS' in C

opt_num = a
opt code = 128 \
len-= 2
Address = 31767
call addopt(option, opt_num, opt_code, len, Address,result)
here = 2
If(result .ne. 0) call CLEANUP

C Set max backlog of pending connection request to 10

opt_num = 1
opt code = 6
len-= 2
backlog = MAX_BACKLOG

A-32 Sample NetlPC Programs

call addopt (opt ion , opt_num, opt_code, len, backlog,result)
here = 3
IF(result .NE. 0) call CLEANUP

C socket_kind is set to 3 and protocol_kind is set to 4 to
e specify a call Socket and the TCP protocol for the following
e IPCCREATE call.
e The flags parameter is not used in this program, so flags_array
e is made a double integer and assigned the value zero to ensure
e that all the bits are clear.

socket kind = CALL SOCKET
protocol_kind = TCP
flags_array = 0

C A call Socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be referenced by sub-
C sequent IPC calls.

call ipccreate(socket kind,protocol kind,flags array,option,
>call socket des,error-return) - -
here-= 4 - -
IF(error_return.NE.O) call CLEANUP

C IPCCONTROL is used to set synchronous timeout to infinity.

flags_array = 0
wln = 2
request = SYNCH_TIMEOUT
Itime = INFINITE
call ipccontrol(call_socket_des,request, Itime,wln,readdata,r len,

>flags_array,error_return)
Here = 5
IF (error_return .NE. 0) call CLEANUP

C check call Socket descriptors to check which ones are exceptional
C (connection request pending) and which ones are readable.

timeout = -1 ! infinity timeout
sdbound = MAX DESC
writemap(1) =-0
writemap(2) = 0
exceptionmap(l) = 0
exceptionmap(2) = 0
current_rmap(l) = 0
current_rmap(2) = 0
active_VC = 1

C First time through, set bit mask to recieve connection(s) on
C newly allocated call socket.

call bit_set (exceptionmap, call_socket_des)

DO WHILE (.TRUE.)
call ipcselect(sdbound, readmap, writemap. exceptionmap.

Sample NetlPC Programs A-33

> timeout, error_return)
here = 7
IF (error return .NE. 0) call CLEANUP
IF «readmap(l) .NE. 0) .OR. (readmap(2) .NE. 0» call get_data
IF «(exceptionmap(l) .NE. 0) .OR.

> (exceptionmap(2) .NE. 0» THEN
call process_xmap

ENDIF
sdbound = MAX DESC
writemap(l) =-0
writemap(2) = 0
readmap(l) = current_rmap(l)
readmap(2) = current_rmap(2)
exceptionmap(l) = current_rmap(l)
exceptionmap(2) = current_rmap(2)
IF (active VC .LT. MAX DESC)

> call bit_set (exceptionmap, call_socket_des)
END DO
END

subroutine process_xmap

CC
C
C Subroutine process_xmap receives new connections
C or shutsdown aborted VC connections.
C
CC

Include header

Imp 1 icit none

Include cOl1lOOns

C Reset the opt array to 0 so IPCRecvCn and IPCShutdown don't yell at us.

flags_array = 0
opt num arguments = 0
CALL INITOPT(oPtion,oPt_nu~_arguments,result)

C get a new VC_socket_descriptor for the new connection.
C Set appropriate bit of readmap used later by IPCSELECT.

IF (bit_test(exceptionmap, call_socket_des» THEN
call IPCRECVCN(call_socket_des,VC_socket_descriptor,

> flags_array, option ,error_return)
here = 8
IF (error return .NE. 0) call CLEANUP

call bit_set(c~rrent_rmap, VC_socket_descriptor)
END IF

A-34 Sample NetlPC Programs

C Check to see if VC sockets are exceptional conditions (aborted).
C If so, shutdown socket and clear update readmap mask for next
C IPCSELECT call.

VC DES = 0
call bit_clear(exceptionmap, call_socket_des)
DO WHILE «exceptionmap(l) .NE. 0) .OR. (exceptionmap(2) .NE. 0»
IF(bit_test(exceptionmap, VC_DES» THEN

flags_array = 0
call IPCSHUTDOWN(VC DES, flags array, option, error_return)
IF (result .NE. 0) call CLEANUP
active VC = active VC - 1

call bit_clear(exceptionmap, VC_DES)
call bit_clear(current_nmap, VC_DES)

END IF
VC_DES = VC_DES + 1

END DO

END

CCC
C
C Subroutine recv_data receives data from VC
C
CCC

subroutine get_data

Include header

Implicit none

Integer*2 index

Integer*4 message_buffer_length

Character name_requested*20, name*20, eof_message*60,
> send_buffer*60

Include commons

Data eof_message/'does not appear in datafile'/

C IPCRECV is called to receive a request from client (requester).
C First, received the name of item needed.

VC DES = 0
DO-WHILE «readmap(l) .NE. 0) .OR. (readmap(2) .NE. 0»
IF(bit_test(readmap, VC_DES» THEN

flags array = 0
message buffer length = 20
VC_socket_descriptor = VC_DES
CALL IPCRECV(VC_socket_descriptor,name_requested,

> message_buffer_length,flags_array, option ,error_return)

C
C
C
C
C
C
C
C

here = 9
IF (result .NE. 0) call CLEANUP
call bit_clear(readmap, VC_DES)

END IF
VC_DES = VC_DES + 1

END DO

The data file (datafile) is read to locate the corresponding entry.
If found, return the information. Otherwise, notify the client.

* An EOF record must exists at the end of 'datafile' to *
* terminate the sequential search. Otherwise the program *
* will hang when the name is not found *

message_buffer_length = 60
REWIND (5)

DO WHILE (.TRUE.)
read(5, '(A20, A60)', end = 98) name, send_buffer
IF (name requested .EQ. name) THEN

flags=array = 0
CALL IPCSEND(VC_socket_descriptor , send_buffer,

> message_buffer_length,flags_array,option, error_return)
here = 10
IF(error_return.NE.O) call CLEANUP
RETURN

END IF
END DO
STOP

98 message_buffer_length = 60
CALL IPCSEND(VC_socket_descriptor ,eof_message ,

> message_buffer_length,flags_array,option,error_return)
here = 11
IF (error_return .NE. 0) call CLEANUP
RETURN
END

CCC
C
C Routine cleanup
C
CC

subroutine cleanup

Implicit none

Include comnons

A-36 Sample NetlPC Programs

WRITE (6, , ("error return error code: ",14) ') error return
WRITE(6, , ("result error code: ",14)') result -
WRITE(6,'("Program server at location: ",14)') here
STOP -
END

CCC
C
C routine bit_set
C
CCC

subroutine bit_set(map, bit)

Implicit none

integer*4 map(2), bit
integer*4 offset, MAX_DESC

cOlJlT1on MAX_DESC

offset = 31
IF (bit .LE. offset) THEN
map(1) = ibset(map(1), (offset - bit»

ELSE
map(2) = ibset(map(2), (MAX_DESC - bit»

END IF
RETURN
END

CCC
C
C routine bit_clear
C
CCC

subroutine bit_clear(map, bit)

Implicit none

integer*4 map(2), bit
integer*4 offset, MAX_DESC
comnon MAX_DESC

offset = 31
IF (bit .LE. offset) THEN
map(1) = ibclr(map(1), (offset - bit»

ELSE
map(2) = ibclr(map(2), (MAX_DESC - bit»

END IF
RETURN
END

Sample NetlPC Programs A-37

cc
C
C routine bit_test
C
CC

logical function bit_test (map. bit)

integer*4 map(2). bit
integer*4 offset. MAX_DESC

cOll111On MAX_DESC

offset = 31
IF (bit .LE. offset) THEN
IF (btest(map(l). (offset - bit))) THEN
bit test = .TRUE.

ELSE-
bit_test = .FALSE.

ENDIF
ELSE

IF (btest(map(2). (MAX_DESC - bit))) THEN
bit_test = .TRUE.

ELSE
bit_test = .FALSE.

ENDIF
ENDIF
END

A-38 Sample NetlPC Programs

Example 8: Cross-System Client in FORTRAN
PROGRAM client

C This program is the peer process to server. It uses sockets
C in synchronous mode and sends a message to server.

$ALIAS ipcconnect (%val.%val.%ref.%ref.%ref.%ref)
$ALIAS ipccontrol (%val.%val.%ref.%val.%ref.%ref.%ref.%ref)
$ALIAS ipccreate (%val,%val.%ref.%ref.%ref.%ref)
$ALIAS ipcdest (%val.%ref.%val,%val.%ref,%val,%ref,%ref,%ref,%ref)
$ALIAS ipclookup (%ref.%val,%ref,%val,%ref.%ref,%ref,%ref,%ref)
$ALIAS ipcname (%val,%ref,%val,%ref)
$ALIAS ipcnamerase (%ref.%val,%ref)
$ALIAS ipcrecv (%val.%ref,%ref.%ref.%ref,%ref)
$ALIAS ipcrecvcn (%val.%ref.%ref.%ref.%ref)
$ALIAS ipcselect (%ref.%ref,%ref,%ref.%val,%ref)
$ALIAS ipcsend (%val.%ref,%val.%ref.%ref.%ref)
$ALIAS ipcshutdown (%val,%ref.%ref.%ref)
$ALIAS addopt (%ref,%val.%val.%val,%ref,%ref)
$ALIAS initopt (%ref.%val.%ref)
$ALIAS readopt (%ref.%val.%ref,%ref.%ref.%ref)

implicit none

INTEGER*2 option(14), result, opt num arguments, counter.
> protocol_addr - -

INTEGER*4 socket kind. protocol kind. call socket descriptor,
>error _return. VC=socket_de'scriptor. protocol_length,
>message_buffer_length, location_length. data_length,
>path_report_descriptor, protocol_returned. flags_array.
>request. vlen, pI

INTEGER*2 here. I, J, p2. timeout

CHARACTER BLANK*I. EOT*3
CHARACTER receive buffer*60. send buffer*20
CHARACTER locatio;*50. socket_name*8

DATA EOT/'EOT'/. BLANK/' ./

C INITOPT is called to initialize the option parameter used in the
C IPCCREATE. IPCDEST. IPCCONNECT, IPCRECV, IPCSEND and
C IPCSHUTDOWN calls. By setting opt_num_arguments to zero, the
C option parameter is initialized to contain zero entries.

CALL INITOPT(option.opt_num_arguments.result)
here = 1
IF(result.NE.O) GO TO 99

Sample NetlPC Programs A-39

C socket_kind is set to 3 and protocol_kind ;s set to 4 to specify
C a call socket and the TCP protocol for the following IPCCREATE
C call.
C The flags_array parameter is not used in this program so flags_array
C is made a double integer and assigned the value zero to ensure that
C all the bits are clear.

socket kind = 3
protocol_kind = 4
flags_array = 0

C A call socket is created by calling IPCCREATE. The value returned
C in the call_socket_descriptor parameter will be used in the following
C IPCCONNECT call.

CALL IPCCREATE(socket_kind,protocol_kind,flags_arraY,opt;on,
>call_socket_descriptor,error_return)
here = 2
IF(error_return.NE.O)GO TO 99

write(6,*) 'Client: Enter the remote node name:'
read (5, '(A50)') location
DO i = 1,50

IF (location(i:i).EQ.") THEN
location length = i-I
GO TO 10-

ENDIF
END 00

10 CONTINUE

flags array = 0
protocol_addr = 31767
protocol_length = 2

20 call ipcdest(socket_kind, location, location~length,
> protocol_kind, protocol_addr, protocol_length,
> flags_array, option. path_report_descriptor,
> error_return)
here = 3
IF (error_return .NE. 0) GO TO 99

counter = counter + 1
here = 4

IF (error return.EQ.O) GO TO 30
IF (error-return.NE.37) GO TO 99
IF (counter.LE.10) THEN

GO TO 20
ELSE

GO TO 99
ENDIF

flags_array = 0

A-40 Sample NetlPC Programs

C The call_socket_descriptor returned by IPCCREATE and the
C path_report_descriptor returned by IPCDEST are used in
C IPCCONNECT to request a connection with server. The
C VC_socket_descriptor returned by IPCCONNECT is used in subsequent
C calls to reference the connection. Once this call has completed
C successfully, you may optionally release the call socket descriptor
C by calling IPCSHUTDOWN in order to return resources to the system.
C DOing so will not affect the newly-created VC socket descriptor.

30 CALL IPCCONNECT(call_socket_descriptor,path_report_descriptor,
>flags_array,option,VC_socket_descriptor,error_return}

here = 5
IF(error_return.NE.O) GO TO 99

flags_array = 0
request = 3 ! timeout
timeout = 0 ! infinite
vlen = 2

CALL IPCCONTROL (VC_socket_descriptor, request, timeout, vlen, pI,
> p2, flags_array, error_return)
here = 9
IF (error_return .NE. O) GO TO 99

C IPCRECV is called to determine if the connection has been
C established:

flags_array = 0
data_length = 60

CALL IPCRECV(VC socket descriptor, receive buffer.data length,
>flags_array, option, error_return) - -
here = 6
IF(error_return.NE.O} GO TO 99

C Loop forever till user types in 'EOT' in response.
C Client will then terminate itself and let the networking code
C clean up which will notify server via the exceptional condition
C on the appropriate VC socket.

DO WHILE (.TRUE.)
40 write{6,*) 'Client: Enter name for data retrieval:'

read {5, '(A20)') send buffer
IF (send buffer .EQ. EOT) STOP
IF (send-buffer .EQ. BLANK) THEN

write(6,*) 'Type EOT to terminate.'
go to 40

END IF

C Data is sent to server on the newly established connection.

Sample NetlPC Programs A-41

flags_array = 0
message_buffer_length = 20

CALL IPCSEND(VC_socket_descriptor,send_buffer,
> message_buffer_length,flags_array,option,error_return)

here = 7
IF(error_return.NE.O) GO TO 99

C receives data from server

message_buffer_length = 60

CALL IPCRECV(VC_socket_descriptor,receive_buffer,
> message buffer length, flags array, option ,error return)

here = 8 - . - - -
IF (error_return .NE. 0) go to 99
write(6, '(A20, $)') send buffer
write(6,'(A60)') receive=buffer

END DO

99 WRITE (6, '("result error code: - ,14)') result
WRITE (6, '(error return error code: ",14)') error return
WRITE (6, , ("Program requester at location: _",14)')-here

100 STOP

END

A-42 Sample NetlPC Programs

Example 9: Cross-System Server in PASCAL
PROGRAM server(input. output);

{
{

}

{ SERVER: IPCSelect Server Sample Program
}
}

Revision: <870610.1338> } {
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

}

}
COPYRIGHT (C) 1987 HEWLETT-PACKARD COMPANY.
All'rights reserved. No part of this program may be photocopied.
reproduced or translated into another programming language without
the prior written consent of the Hewlett-Packard Company.

Name : Server
Source : 91790-18###
Reloc : 91790-16###
Prgmr «lms»
Date: <870610.1338>

}

}

}

{ PURPOSE:
{ To show the operation of the IpcSelect() call.
{
{ REVISION HISTORY
{}
LABEL

99;

CONST

BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE_BACKLOG = 6;
CHANGE_TIMEOUT = 3;
FOREVER = TRUE;
INFINITE_SELECT = -1;
INFOBUFLEN = 60;
INTl6_LEN = 2;
LENGTH_OF_DATA = 20;
MAX_BACKLOG = 5;
MAX_BUFF_SIZE = 1000;
MAX_RCV_SIZE = 4;
MAX_SEND_SIZE = 3;
MAX_SOCKETS = 32;
PROTO_ADDR = 128;

Sample NetlPC Programs A ... 43

TCP = 4;
ZERO = 0;

TYPE

BitMapType = RECORD
CASE Integer OF
1: (bits PACKED ARRAY[0 .. 63] OF Boolean);
2: (longint : Packed Array[1 .. 2] OF Integer);
3:. (ints : ARRAY[1 .. 4] OF ShortInt);
END;

byte = O •• 255;
byte_array_type = packed array [1 .. 40] of byte;
buffer_type = packed array [l .. BUFFERLEN] of char;
InfoBufType = packed array [l .. INFOBUFLEN] of char;
name_of_call_array_type = packed array [1 .. 10] of char;
name_array_type = packed array [1 .. 7] of char;

VAR
call name
ca 1'-sd
control_value
curr_rmap
curr_wmap
curr_xmap
dumny_parm
dunmy_len
error_return
flags_array
map_offset
opt_data
opt_num_arguments
option
protocol_kind
rmap
sbound
short_error
socket_kind
timeout
timeout_len
vc_count
xmap

$TITLE 'IPCProcedures', PAGE $
PROCEDURE ADDOPT

(VAR opt
argnum
opt code
data len

VAR data-
VAR error
EXTERNAL;

byte_array_type;
ShortInt;
ShortInt;
ShortInt;
ShortInt;
ShortInt) ;

name_of_call_array_type;
integer;
ShortInt;
BitMapType;
BitMapType;
BitMapType;
Integer;
Integer;
Integer;
integer;
ShortInt;
ShortInt;
ShortInt;
byte_array_type;
Integer;
BitMapType;
Integer;
ShortInt;
Integer;
Integer;
Integer;
Integer;
BitMapType;

A-44 Sample NetlPC Programs

PROCEDURE INITOPT
(VAR opt

num_args
VAR error
EXTERNAL;

PROCEDURE READOPT
(VAR opt

argnum
VAR optcode
VAR data_len
VAR data
VAR error
EXTERNAL;

byte_array_type;
ShortInt;
ShortInt);

byte_array_type;
ShortInt;
ShortInt;
ShortInt;
Integer;
ShortInt) ;

PROCEDURE I PCContro 1
(socket integer;

request integer;
VAR wrtdata ShortInt;

wrtlen Integer;
VAR data Integer;
VAR datalen Integer;
VAR flags Integer;
VAR result Integer);
EXTERNAL;

PROCEDURE IPCCREATE
(socket

protocol
VAR flags
VAR opt
VAR csd
VAR result
EXTERNAL;

PROCEDURE IPCNAME
(descriptor

VAR name
nlen

VAR result
EXTERNAL;

PROCEDURE IPCRECVCN

integer;
integer;
integer;
byte_array_ty'pe;
integer;
integer);

integer;
name_array_type;
integer;
integer);

(csd integer;
VAR vcsd integer;
VAR flags integer;
VAR opt byte_array_type;
VAR result integer);

EXTERNAL;

PROCEDURE IPCRECV
(csd : integer;

VAR data buffer_type;
VAR dlen : integer;

Sample NetlPC Programs A-45

VAR flags : integer;
VAR opt byte_array_type;
VAR result: integer);
EXTERNAL; .

PROCEDURE IPCSelect
(VAR sbound Integer;

VAR rmap BitMapType;
VAR wmap BitMapType;
VAR xmap BitMapType;

timeout: Integer;
VAR result: Integer);
EXTERNAL;

PROCEDURE IPCSEND
(vcsd integer;

VAR data InfoBufType;
dlen integer;

VAR flags integer;
VAR opt byte array type;
VAR result integer);­
EXTERNAL;

PROCEDURE IPCSHUTDOWN
(vcsd integer;

VAR flags integer;
VAR opt byte_array_type;
VAR result integer);
EXTERNAL;

$ TITLE 'Internal Procedures', PAGE $

PROCEDURE Error Routine
(VAR where -name_of_call_array_type;

what integer;
sd : integer);

FORWARD;

PROCEDURE HandleNewRequest;
FORWARD;
{ A new client wants to talk to us, complete the vc establishment}

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

FORWARD;

PROCEDURE ProcessRead
(map_offset ShortInt);
FORWARD;
{ Process the read that is waiting on a particluar vc }

PROCEDURE ReadData
(VAR client buf

VAR output:buf
Buffer_Type;
InfoBufType);

A-48 Sample NetlPC Programs

FORWARD;
{ Read the data from the file, prepare for the IPCSend call. }

PROCEDURE SetUp;
FORWARD;
{ Create a call socket using a well-known address}

PROCEDURE ShutdownVC
(map_offset : ShortInt);
FORWARD;
{ Shut down a vc that the client no longer needs}

$ TITLE 'Error_Routine', PAGE $
PROCEDURE Error Routine

(VAR where -name_of_call_array_type;
what : integer;
sd : integer);

BEGIN { Error_Routine}

writeln('Server: Error occurred in " where,' call.');
writeln('Server: The error code is: " what:5,

, The local descriptor is: " sd:4);

GO TO 99;

END; { Error_Routine}

$ TITLE 'HandleNewRequest', PAGE $
PROCEDURE HandleNewRequest; .
{ A new client wants to talk to us, complete the vc establishment}
VAR

result : Integer;
vc_sd : Integer;

BEGIN {HandleNewRequest}

Initialize_Option(option);

{ Accept the connection for this new vc. }
IPCRecvCn(call_sd, vc_sd, flags_array, option, result);
IF result <> ZERO THEN

BEGIN { error on ipcrecvcn }
call name := 'IPCRECVCN ';
Error Routine(call name, result, vc sd);
END; - { error-on ipcrecvcn } -

{ Increment the total number of active vcs for the server}
vc_count := vc_count + 1;

{ Now set the read and exception maps for this new vc }
rmap.bits[vc_sd] := TRUE;
xmap.bits[vc_sd] := TRUE;

Sample NetlPC Programs A-47

{ Set the timeout to infinity with IPCControl for later calls}
flags array := 0;
control value := 0;
timeout:len := 2;

IPCControl(vc sd, CHANGE TIMEOUT, control value, timeout len,
dummy_parm,-dummy_len,-flags_array, error_return); -

IF error_return <> ZERO THEN
BEGIN

{}

call name := 'IPCCONTROL';
Error_Routine(cal l_name , error_return , vc_sd);
END;

{ Check if we have reached the maximum number of sockets.
{ If so, disallow any new requests by clearing the exception
{ map for the call socket.
{}
IF vc count = MAX SOCKETS -1 THEN

BEGIN {reached socket limit}

xmap.bits[call_sd] := FALSE;
END; { reached socket limit}

END; { HandleNewRequest }

$ TITLE 'Initiali~e_Option " PAGE $

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

VAR
opt_num_arguments ShortInt;
result ShortInt;

BEGIN

opt_num_arguments := 0;
INITOPT(opt_parameter,opt_num_arguments,result);
IF result <> ZERO THEN

BEGIN { error on initopt }
call name := 'INITOPT ';
Error Routine(call name, result, 0);
END; - { error on initopt }

END; {Initialize_Option}

$ TITLE 'ProcessRead', PAGE $
PROCEDURE ProcessRead

(map_offset : ShortInt);
{ Process the read that is waiting on a particluar vc }
VAR

buffer len
c lient:buf

Integer;
: Buffer_type;

A-48 Sample NetlPC Programs

data buf
result
vc_sd

InfoBufType;
Integer;
Integer;

BEGIN { ProcessRead }
{ There is a pending read on a vc. Do an IPCRecv on the vc }
flags array := 0;
Initialize_Option(option);

vc_sd := map_offset;

{ Get the name this client wants data for}
buffer_len := BUFFERLEN;

IPCRecv(vc sd, client buf, buffer len,
flags_array, option: result); -

IF result <> ZERO THEN
BEGIN { error on ipcrecv }
call name := 'IPCRECV ';
Error Routine(call name,result,vc sd);
END; - { error-on ipcrecv} -

{ Get the data we need from the file to send to the client}
ReadData(client buf, data buf);
buffer_len := INFOBUFLEN; -

IPCSend(vc sd, data buf, buffer len, flags_array,
option, result);- -

IF result <> ZERO THEN
BEGIN { error on ipcsend }
call name := 'IPCSEND ';
Error Routine(call name,result,vc sd);
END; - { error-on ipcsend} -

END; { ProcessRead }

$ TITLE 'ReadData', PAGE $
PROCEDURE ReadData
(VAR client buf : Buffer_Type;

VAR output=buf : InfoBufType);
{ Read the data from the file, prepare for the IPCSend call. }

CaNST

VAR

LAST_REC = 4;

current_rec
datafile
info buf
infofile
found
name_buf

ShortInt;
TEXT;
InfoBufType;
Buffer_Type;
Boolean;
Buffer_Type;

BEGIN { ReadData }

Sample NetlPC Programs A-49

{}
{ Open the file named datafile. Search until the last record
{ is found, or we match the user name the client wants.
{ If there is a match, retreive the remaining data from the
{ file, and prepare to send it back.
{
{ If there is no match, return name not found to the client.
{}

found := FALSE;
current rec := 1;
infofile := 'datafile';

RESET(datafile, infofile);

WHILE (NOT found) AND (current rec <= LAST REC) DO
BEGIN {search the file} - -

{}

READLN(datafile, name_buf, info_buf);

IF client buf = name buf THEN
. BEGIN - {found a match }
{}
{ We found the name the client requested in the file.
{ Set the flag to fallout of the while loop, and
{ get the buffer to be sent to the client.
{}
writeln('Server: " client_buf, , information found.');

found := TRUE;
output_buf := info_buf;

END; { found a match }

{ increment to test the next record in the file}
current_rec := current_rec +1;

END; { search the file}

{ We've fallen out of the WHILE loop because there is a match,
{ or we reached the end of the file. Find out which one it is.
{}

IF NOT found THEN
BEGIN {didn't find the requested name}

{}
{ We didn't find the data in the file. Put an error
{ message in the data buffer.
{}
writeln ('Server: " client_buf, ' not in file.');

A-50 Sample NetlPC Programs

output_buf :=
'SERVER did not find the requested name in the datafile.

END; { didn't find the requested name }

END; { ReadData }

$ TITLE 'SetUp', PAGE $
PROCEDURE SetUp;
{ Create a call socket using a well-known address}

BEGIN {SetUp }

{ Set up the opt array for the two parms we will use}
opt_num_arguments := 2;
InitOpt(option, opt_num_arguments, short_error);
IF short error <> ZERO THEN

BEGIN- {error on initopt }
call_name := 'InitOpt';
error return := short error;
Error-Routine(call name,error return,call sd);
END; - {error on-initopt } - -

'. ,

{ Now add the option for the well-known address for the IPCCreate Call}
opt_data := 31767;
AddOpt(option, 0, PROTO_ADDR, INTI6_LEN, opt_data, short_error);
IF short error <> ZERO THEN

BEGIN- {error on AddOpt }
call_name := 'AddOpt';
error return := short error;
Error-Routine(call name,error return,call sd);
END; - {error on-AddOpt} - -

{ Change the backlog queue to the maximum}
opt_data := MAX_BACKLOG;
AddOpt(option, I, CHANGE_BACKLOG, INTI6_LEN, opt_data, short_error);
IF short error <> ZERO THEN

BEGIN- {error on AddOpt }
call name := 'AddOpt';
erro~ return := short error;
Error-Routine(call name,error return,call sd);
END; - {error on-AddOpt} - -

{ Prepare to create a call socket}
socket kind := CALL SOCKET;
protocol_kind := TCP;

{ clear the flags array}
flags_array := 0;

{}
{A call socket is created by calling IPCCREATE. The value returned

Sample NetlPC Programs A-51

{in the call_sd parameter will be used in the following calls.
{}

IPCCREATE(socket_kind, protocol_kind, flags_array, option,
call_sd, error_return);

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCCREATE ';
Error Routine(call name,error return,call sd);
END; - - - -

{ Set the call sd timeout to infinity with IPCControl for later calls}
flags_array :=-0;
control value := 0;
timeout:len := 2;

IPCControl(call sd, CHANGE TIMEOUT, control value, timeout len,
dummy_parm, dummy_len, flags_array, error:return); -

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCCONTROL';
Error_Routine(call_name,error_return,call_sd);
END;

{ Now set IPCSelect's bit map for the call socket}
xmap.bits[call_sd] := TRUE;

END; { SetUp }

$ TITLE 'ShutdownVC', PAGE $
PROCEDURE ShutdownVC

(map_offset : ShortInt);
{ Shut down a vc that the client no longer needs}

VAR

BEGIN {ShutdownVC}
{}

Integer;
Integer;

{ The client shut down the vc, or it has gone down due to a
{ Networking problem. Either way, merely accept the shutdown.
{}
flags_array := 0;
Initialize_Option(option);

vc_sd := map_offset;

IPCShutdown(vc sd, flags array, option, result);
{ Don't worry about errors here, since there isn't much we can do. }

{ Decrement the number of active vcs }
vc_count := vc_count -1;

A-52 Sample NetlPC Programs

{ Clear the read map and exception map bits for this vc }
rmap.bits[map_offset] := FALSE;
xmap.bits[map_offset] := FALSE;

{}
{ Always set the exception map for the call socket. That way
{ we'll be sure to re-enable new requests if we were at the
{ limit before this vc was shut down.
{}
xmap.bits[call_sd] := TRUE;

END; { ShutdownVC }

$TITLE 'Server MAIN', PAGE $
BEGIN { Server }

{ Create a call socket with a well known address for the clients to use. }
SetUp;

{}
{ Loop forever waiting to serve clients. If any new clients request
{ service, the exception map will be set on the call socket. If
{ a client asks for information, the read map will be set on the
{ vc socket for that client. When the client has received the data,
{ it will shut down the vc, and the vc socket will have the exception
{ map set. Handle each one of these cases in this loop.
{
{ If any other situations occur, exit out of the loop, and let the
{ NS clean up routines de-allocate the sockets for this server.
{}

WHILE FOREVER = TRUE DO
BEGIN {Forever Do }

{}
{ Set the bit masks to check for all the vcs that we own.
{ The rmap & xmap variables are maintained by ProcessNewRequest
{ and ShutdownVC.
{}
curr_rmap := rmap;
curr_xmap := xmap;

sbound := MAX_SOCKETS;
timeout := INFINITE_SELECT;

{}
{ Do an exceptional select on the call socket, and on all vcs
{ we own. Do a read select on all the vc sockets.
{}

IPCSelect(sbound, curr_rmap, curr_wmap, curr_xmap,
timeout, error return);

IF error_return <; ZERO THEN

BEGIN { Select Error}
call name := 'IPCSELECT ';
Error Routine(call name,error return,call sd);
END; - { Select Error} - -

{ See if there are any clients requesting information}
IF (rmap.longint[l] <> 0) OR (rmap.longint[2] <> 0) THEN

BEGIN {Process read on VC sockets }

{ We have someone to service. Find out who it is. }
FOR map_offset := 1 TO MAX_SOCKETS DO

BEGIN { check all vcs }

IF curr_rmap.bits[map_offset] = TRUE THEN
BEGIN {have read on a vc }

{}
{ We know the client who needs service,
{ Do an IPCRecv, get the necessary data,
{ and do an IPCSend to send it back.
{}
ProcessRead(map_offset);

{ have read on a vc }
{ check all vcs }

END;
END;

END; { Process read on VC sockets }

{ See if any clients have sent a message to the call socket}
IF curr_xmap.bits[call_sd] = TRUE THEN

{}

BEGIN { new request on the call socket}

{}
{ We have a new client, go do an IPCRecvCn, and set the
{ bit masks to accept reads and exceptions on the new vc.
{}
HandleNewRequest;

{ Clear the call socket xmap bit to simplify the test for the vcs }
curr_xmap.bits[call_sd] := FALSE;

END; { new request on the call socket}

{ If we get an exception on a vc socket, shut it down. The client
{ knows to shut down a socket once it has received the data it needs.
{}
IF (curr_xmap.longint[l] <> 0) OR (curr_xmap.longint[2] <> 0) THEN

BEGIN {check for errors on vc sockets }

{ One vc had an exception, find out which one}
FOR map_offset := 1 TO MAX_SOCKETS DO

BEGIN { check all vcs }

A-54 Sample NetlPC Programs

99:

{}

IF curr_xmap.bits[map_offsetJ = TRUE THEN
BEGIN {shut down the vc }

{}
{ Do an IPCShutdown on the vc, and clear
{ its bit in both the read and exception maps.
{}

ShutdownVC(map_offset);

{ shut down the vc }
{ check all vcs }

END;
END;

END; { check for errors on vc sockets }

END; { Forever Do }

{ We have some problem, the NS cleanup routine will shut down
{ All the sockets we own once the program has terminated.
{}

END. {Server}

Sample NetlPC Programs A-55

Example 10: Cross-System Client in PASCAL
PROGRAM Client(input, output);

{
{

}

{ Client: IPCSelect Client Sample Program
}
}

{
{
{
{
{
{
{
{
{
{
{
{

Revision: <870610.1327> }
}

}
COPYRIGHT (C) 1987 HEWLETT-PACKARD COMPANY.
All rights reserved. No part of this program may be photocopied,
reproduced or translated into another programming language without
the prior written consent of the Hewlett-Packard Company.

}

}
{ Reloc: 91790-16'"
{ Prgmr: «lms»
{ Date: <870610.1327>
{
{
{
{ PURPOSE:

}

{ To show the operation of the IpcSelect() call.
{
{ REVISION HISTORY
{}
LABEL

89,
99;

CONST

BUFFERLEN = 20;
CALL_SOCKET = 3;
CHANGE TIMEOUT = 3;
FOREVER = TRUE;
INFINITE SELECT = -1;
INFOBUFLEN = 60;
INT16_LEN = 2;
LENGTH OF DATA = 20;
MAX BUFF SIZE = 1000;
MAX-RCV SIZE = 4;
MAX-SEND SIZE = 3;
MAX:SOCKETS = 32;
INTEGER LEN = 2;
TCP = 4;
ZERO = 0;

A-56 Sample NetlPC Programs

TYPE

BitMapType = RECORD
CASE Integer OF
1: (bits PACKED ARRAY[I .. 32] OF Boolean);
2: (longint Integer);
3: (ints : ARRAY [1. .2] OF Shortlnt);
END;

byte = O .. 255;
byte_array_type = packed array [1 .. 8] of byte;
buffer_type = packed array [1 .. BUFFERLEN] of char;
InfoBufType = packed array [l .. INFOBUFLEN] of char;
name_of_call_array_type = packed array [1 .. 10] of char;
name_Array_type = packed array [1 .. 7] of char;

VAR
buffer len
call name
cal(sd
control value
data bUf
dunmy_len
dunmy_parm
error return
flags-array
node name
nOde=name_len
opt_data
opt_num_arguments
option
proto_addr
protoco l_k ind
req_name_len
requested_name
short_error
socket_kind
temp_position
timeout
timeout_len
vc_sd

$TITLE 'IPC Procedures', PAGE $
PROCEDURE ADDOPT

(VAR opt
argnum
optcode
data_len

VAR data
VAR error
EXTERNAL;

PROCEDURE INITOPT

byte array type;
ShortInt; -
ShortInt;
Shortlnt;
Shortlnt;
ShortInt);

(VAR opt byte_array_type;

Integer;
name_of_call_array_type;
integer;
ShortInt;
InfoBufType;
Integer;
Integer;
Integer;
integer;
Buffer Type;
Integer;
ShortInt;
ShortInt;
byte_array_type;
S~ortInt;
Integer;
Integer;
Buffer_Type;
ShortInt;
Integer;
ShortInt;
Integer;
Integer;
Integer;

Sample NetlPC Programs A-57

num_args
VAR error
EXTERNAL;

ShortInt;
ShortInt) ;

PROCEDURE IPCConnect
(ca 11 sd

pathdesc
VAR flags
VAR opt
VAR vc_sd
VAR error
EXTERNAL;

Integer;
Integer;
Integer;
Byte_array_type;
Integer;
Integer) ;

PROCEDURE IPCControl
(socket integer;

request integer;
VAR wrtdata ShortInt;

wrtlen Integer;
VAR data Integer;
VAR datalen Integer;
VAR flags Integer;
VAR result Integer);
EXTERNAL;

PROCEDURE IPCCREATE
(socket

protocol
VAR flags
VAR opt
VAR csd
VAR result
EXTERNAL;

PROCEDURE IPCNAME
(descriptor

VAR name
nlen

VAR result
EXTERNAL;

PROCEDURE IPCDEST
(sock_kind

VAR node name
name-len
protocol

VAR protoaddr
,proto_len

VAR flags
VAR opt
VAR pathdesc
VAR result

EXTERNAL;

integer;
integer;
integer;
byte_array_type;
integer;
integer);

integer;
name_array_type;
integer;
integer) ;

Integer;
Buffer_Type;
Integer;
Integer;
ShortInt;
Integer;
integer;
byte_array_type;
Integer;
Integer) ;

A-58 Sample' NetlPC Programs

PROCEDURE IPCRECVCN
(csd integer;

VAR vcsd integer;
VAR flags integer;
VAR opt byte_array_type;
VAR result integer);

EXTERNAL;

PROCEDURE IPCRECV
(csd : integer;

VAR data InfoBufType;
VAR dlen : integer;
VAR flags : integer;
VAR opt byte_array_type;
VAR result: integer);
EXTERNAL;

PROCEDURE IPCSelect
(VAR sbound Integer;

VAR rmap BitHapType;
VAR wmap BitHapType;
VAR xmap BitHapType;

timeout: Integer;
VAR result: Integer);
EXTERNAL;

PROCEDURE IPCSEND
(vcsd integer;

VAR data buffer_type;
dlen integer;

VAR flags integer;
VAR opt byte_array_type;
VAR result integer);
EXTERNAL;

PROCEDURE IPCSHUTDOWN
(vcsd integer;

VAR flags integer;
VAR opt byte_array_type;
VAR result integer);
EXTERNAL;

$ TITLE 'Internal Procedures', PAGE $

PROCEDURE GetLen
(VAR buffer

VAR current_pos
VAR length

FORWARO;

Buffer_Type;
ShortInt;
Integer);

{ Get the length of a string. Return the next post ion }

PROCEDURE Error Routine
(VAR where -name of call array type;

what : integer; - -

Sample NetlPC Programs A-59

sd : integer);
FORWARD;

PROCEDURE Initialize_Option
(VAR opt-parameter : byte_array_type);

FORWARD;

PROCEDURE SetUp;
FORWARD;
{ Create a call socket, connect to server using IPCDest }

PROCEDURE ShutdownSockets;
FORWARD;
{ Shut down the call and vc sockets}

$ TITLE 'Error_Routine', PAGE $
PROCEDURE Error Routine

(VAR where -name_of_call_array_type;
what : integer;
sd : integer);

BEGIN {Error_Routine}

writeln('Client: Error occurred in " where,' call.');
writeln('Client: The error code is: " what:5,

'. The local descriptor is: " sd:4);

GOTO 89;

END; { Error_Routine}

$ TITLE 'GetLen', PAGE $
PROCEDURE Get Len
(VAR buffer Buffer_Type;

VAR current_pos: ShortInt;
VAR length Integer);

{ Get the length of a string. Return the next post ion }

VAR
ShortInt;

BEGIN {GetLen}
{}
{ Find the first blank in the string. Return the difference
{ between the blank position, and the initial value of current_pos
{}

WHILE buffer[current_pos] <> ' , DO
current_pos := current_pos + 1;

A-60 Sample NetlPC Programs

{ set the length value for the caller}
length := current-pos - orig_pos;

{ increment beyond the space, for the next time }
current_pos := current_pos + 1;

END; { GetLen }
$ TITLE 'Initialize_Option', PAGE $

PROCEDURE Initialize_Option
(VAR opt_parameter: byte_array_type);

VAR
opt_num_arguments : ShortInt;
result : ShortInt;

BEGIN {Initialize_Option}

opt_num_arguments := 0;
INITOPT(opt_parameter,opt_num_arguments,result);
IF result <> ZERO THEN

BEGIN { error on initopt }
call name := 'INITOPT ';
Error Routine(call name, result, 0);
END; - { error on initopt }

END; {Initialize_Option}

$ TITLE 'SetUp', PAGE $
PROCEDURE SetUp;
{ Create a call socket using a well-known address}

VAR
pathdesc : Integer;

BEGIN {SetUp }

{ Prepare to create a call socket}
socket kind := CALL SOCKET;
protocol_kind := TCP;

{ clear the flags and option arrays}
flags array := 0;
Initialize_Option(option);

{}
{A call socket is created by calling IPCCREATE. The value returned
{in the call_sd parameter will be used in the following calls.
{}

IPCCREATE(socket_kind, protocol_kind, flags_array, option,
call_sd, error_return);

Sample NetlPC Programs A-61

IF error return <> ZERO THEN
BEGIN-

{}

call name := 'IPCCREATE ';
Error_Routine(call_name, error_return , call_sd);
END;

{ The server is waiting on a well-known address. Get the path
{ descriptor for the socket from the remote node~
{}
proto_addr := 31767;
flags_array := 0;

IPCDest(socket_kind, node_name, node_name_len, protocol_kind,
proto_addr, INTEGER_LEN, flags_array, option,
pathdesc, error_return);

IF error return <> ZERO THEN
BEGIN-
call name := 'IPCDEST ';
Error Routine(cal l_name, error_return , pathdesc);
END; -

flags_array := 0;

{ Now connect to the server }
IPCConnect(call_sd, pathdesc, flags_array, option,

vc sd, error_return);
IF error retu~n <> ZERO THEN

BEGIN-
call name := 'IPCCONNECT';
Error_Routine(cal l_name , error_return, pathdesc);
END;

{ Set the timeout to infinity with IPCControl for later calls}
flags_array := 0;
control value := 0;
timeout=len := 2;

IPCControl(vc sd, CHANGE TIMEOUT, control value, timeout len,
dummy_parm,-dummy_len,-flags_array, error_return); -

IF error_return <> ZERO THEN
BEGIN
call name := 'IPCCONTROL';
Error_Routine(cal l_name , error_return , vc_sd);
END;

flags_array := 0;
Initialize_Option(option);

{}
{ Verify the server received the connect req. Wait for the
{ server to do an IPCRecvCn.
{}

A-62 Sample NetlPC Programs

IPCRecv(vc_sd, data_buf, buffer_len, flags_array,
option, error_return);

IF error return <> ZERO THEN
BEGIN-
call name := 'IPCRECV ';
Error_Routine(call_name,error_return, vc_sd);
END;

END; { SetUp }

$ TITLE 'ShutdownSockets', PAGE $
PROCEDURE ShutdownSockets;

VAR
result Integer;

BEGIN { ShutdownSockets }
{}
{ We are terminating this program. Clean up the allocated
{ sockets.
{}
flags array := 0;
Initialize_Option(option);

IPCShutdown(vc_sd, flags_array, option, result);
{ Don't worry about errors here, since there isn't much we can do. }

IPCShutdown(call sd, flags array, option, result);
{ Don't worry about errors here, since there isn't much we can do. }

END; { ShutdownSockets }

$TITLE 'Client MAIN', PAGE $
BEGIN { Cl ient }

node name len := 0;
requested=name := ";

{ Ask the user for the NS node name of the remote node }
Prompt ('Client: Enter the remote node name: ');
Readln(node_name);

temp_position := 1;
GetLen(node_name, temp_position, node_name_len);

{ Create a call socket and connect to the server}
SetUp;

WHILE requested_name <> 'EOT' DO
BEGIN {loop for name }

{ Ask the user for a name to be retrieved }
Prompt ('Client: Enter name for data retrieval: ');
Readln(requested_name);

Sample NetlPC Programs A-63

re~name_len := BUFFERLEN;
flags_array := 0;

IF requested_name <> 'EOT' THEN
BEGIN {continue processing}

{ Ask for the name the user requested }
IPCSend(vc_sd, requested_name, req_name_len, flags_array, option,

error_return);

{ Block waiting for the response back from the server. }
buffer_len := INFOBUFLEN;
flags_array := 0;

IPCRecv(vc sd; data buf, buffer_len, flags_array, option,
error=return);

IF error return <> ZERO THEN
BEGIN - { error on initopt }
call name := 'IPCRECV ';
Error Routine(call name, error return, vc_sd);
END; - { error on initopt }-

{ Print out the data received }
Writeln('Client data is: rr data_buf);

END;
END;

89:

{ continue processing}
{ loop for name }

{ Clean up the call and vc sockets}
ShutDownSockets;

99:

END. {Cl ient }

A-64 Sample NetlPC Programs

B

Error Messages

This appendix lists and describes the messages that can be returned to the result
and error parameters of NetIPC calls. The ASCII message associated with each code
can be used in C programs. These constants are listed in the NS include file
/usr/include/sys/ns_ipc.h.

0 MESSAGE NSR NO ERROR

CAUSE The call was successful.

ACTION No action is necessary.

3 MESSAGE NSR BOUNDS VIO - -

CAUSE Parameter bounds violation.

ACTION An address references memory to which the user does not
have access rights.

4 MESSAGE NSR NETWORK DOWN - -

CAUSE The network is down. The system is not initialized for
networked operation.

ACTION Use i fconfi 9 1 anO to see if the "down" flag is displayed.
If not, this may be an internal error. Consult your
Network Manager.

Error Messages B-1

5

6

7

MESSAGE NSR SOCK KIND

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

MESSAGE

CAUSE

ACTION

B-2 Error Messages

- -

lliegal socket kind. The calling process attempted to
create a kind of socket that the system does not support.

Check the socketkind parameter to make sure it matches
one of the socket kind supported by the system.

NSR PROTOCOL

lllegal protocol. The protocol referenced is not supported
by the system.

One or more of the following actions may be taken: (1)
Check the protoco7 parameter to make sure it matches
one of the protocol types supported by the system; (2)
make sure the system supports the referenced protocol; (3)
consider defaulting the protocol argument to zero, thus
letting the system decide which protocols are best.

NSR FLAGS

lllegal flags. A fl ags bit was set that is not supported.

Check the f7 ags parameter to make sure that the correct
bits are set. Some calls may return information through
the f7 ags parameter and the bits returned may not be
valid input on subsequent calls.

8 MESSAGE NSR OPT OPTION

CAUSE

ACTION

- -
lliegaloption. An illegal option was specified in the opt
parameter.

Check the opt parameter to make sure that it was
correctly initialized with in i topt () and that all options
added with addopt () are defined for the system and
system call.

10 MESSAGE NSR KIND AND PROTOCOL

CAUSE

ACTION

- - -

Protocol type mismatch. A protocol and a socket kind type
were specified that are not supported together.

One or more of the following actions may be taken: (1)
Check the socketkind and protoco7 parameters for the
correct values; (2) default the protocol value to zero, thuS
letting the system decide which protocols best support the
referenced socket kind.

Error Messages B-3

11 MESSAGE NSR NO MEMORY

CAUSE No memory. The system does not have enough memory
available to support the request. This error can occur
when you attempt to issue an ipccreate{),
ipcconnect{), ipcrecvcn{), ipclookup{),or
i pcdest () call.

ACTION One or more of the following actions may be taken: (1)
release some of the sockets or destination descriptors that
are not currently being used; (2) if applicable, reduce the
service requirements for the socket being created (eg., by
requesting smaller message sizes); (3) determine if some of
the other programs running on the system can release
some of their networking resources.

14 MESSAGE NSR ADDR OPT - -

CAUSE This error is returned to i pcdest () if an invalid value is
specified in the protolen parameter. The protolen
parameter indicates the length of a protocol address.

ACTION Check the length specified in the prot olen parameter.
For TCP protocol addresses, the protocol parameter must
be 2.

15 MESSAGE NSR NO FILE AVAIL - - -
CAUSE No file table entries are available. Close unnecessary open

files and retry.

ACTION H the error persists, reconfigure a larger File Table.

B-4 Error Messages

18 MESSAGE NSR OPT SYNTAX

CAUSE An error was detected in the option array syntax.

ACTION Check the option array for valid fields.

21 MESSAGE NSR DUP OPTION

CAUSE Duplicate option. At least one of the options in the opt
parameter was specified twice.

ACTION Check arguments input to addopt () when initializing the
opt parameter.

24 MESSAGE NSR_MAX_CONNECTQ

CAUSE Connection queued option error. An error was detected in
the arguments regarding the maximum number of
connections queued option in the opt parameter.

ACTION Check the addopt () call that was used to put the
NSO_MAX_CONN_REQ option argument in the opt
parameter. Must be less than or equal to 20.

28 MESSAGE NSR NLEN

CAUSE Illegal name length. The name length was either too large
or too small.

ACTION Compare the name length to the acceptable range for this
parameter.

Error Messages 8-5

29 MESSAGE

CAUSE

ACTION

30 MESSAGE

CAUSE

ACTION

31 MESSAGE

CAUSE

ACTION

8-6 Error Messages

NSR DESC

Dlegal descriptor. The referenced descriptor is outside of
the acceptable range for socket descriptors. The descriptor
might have been a disc file descriptor or a closed socket
descriptor.

Determine why the value was not within the acceptable
range. One possible reason is that the call to allocate the
descriptor failed. Also check for socket descriptors that
had been already closed.

NSR CANT NAME VC - - -

Cannot name VC socket. The calling process tried to
name a VC socket using i pen ame ().

i pcname () cannot be invoked against VC sockets.

NSR DUP NAME

Duplicate name. The name that i pcname () tried to assign
to a socket was already in use.

One of the following actions may be taken: (1) Pick
another name; (2) wait and try again; (3) if several copies
of the same process are running, make sure that each
process has some way of generating a unique name.
i pcname () has a random name generation facility that
could be used, or the calling process could wait and try
again later.

36 MESSAGE NSR NAME TABLE FULL

CAUSE

ACTION

- - -

Name table full. A process attempted to bind a name to a
socket via i pcname () when the system had no free name
records. A name record must be allocated for each name
that is bound to a socket. When the system runs out of
name records, all succeeding i pcname () requests are
rejected.

Release some of the names that are bound to sockets.
This may be done using i pcnamerase (). Because name
records are system-wide resources shared by all NetiPC
programs, the name records released by one program may
be allocated for use by another.

37 MESSAGE NSR NAME NOT FOUND

CAUSE

ACTION

- - -

Name not found. A process attempted to obtain a
destination descriptor using i pc 1 00 kup (), but the name
specified in the call was not registered in the referenced
socket registry.

One or more of the following actions may be taken: (1)
Make sure that the name specified in the i pc lookup ()
call was the one that was intended; (2) consider that the
failure could have been due to a race condition (the
i pc lookup () caller could have executed its call before the
i pcname () caller executed its call).

Error Messages 8-7

38 MESSAGE

CAUSE

ACTION

39 MESSAGE

CAUSE

ACTION

40 MESSAGE

CAUSE

ACTION

B-8 Error Messages

NSR NO OWNERSHIP

No ownership. The caller invoked ipcnamerase()
specifying a valid name but one bound to a socket that the
it does not own. Only the owner of a call socket may
purge its name.

Check that the name specified is the one the caller
intended to use.

NSR NODE NAME SYNTAX - - -
Illegal node name. The caller invoked i pc lookup (),
ipcdest(), or ipcsetnodename() passing it a node
name baving an illegal syntax (for example, too many levels
of hierarchy or too many characters in one of the name
parts).

Verify that the name passed was the intended one or verify
that the length specified for the passed name was correct.

NSR NO NODE

Unknown node. The caller invoked i pc lookup () or
i pcdest () with the name of a node that was unknown to
the local node. A local node resolves a node name by
using the PROBE protocol.

One or more of the following actions can be taken: (1)
Verify that the name specified was the intended one; (2)
check to see if the node is down; (3) verify that the
nodename command was executed to assign the node name
or (4) if the node exists on a remote network, verify that a
proxy server exists on the local network and that it has an
entry configured for the remote node. If the remote node
is non-HP-ux, check that IEEE 802.3 is turned on locally
(use the lanconfig command).

43 MESSAGE NSR CANT CONTACT SERVER - - -
CAUSE Could not send an i pc lookup () request. Problem may be

due to lack of kernal memory or the system may be heavily
loaded.

ACTION Try again.

44 MESSAGE NSR NO REG RESPONSE

CAUSE No socket registry response. A name look up query was
sent to the remote socket registry referenced in an
i pc lookup () call, but the registry never responded. The
node upon which the socket registry resides might be
down, unreachable, or the system may be heavily loaded
and not responding.

ACTION If the node crashed, is temporarily unreachable or heavily
loaded, the caller may wait and try again later. If the
remote node is non-HP-ux, use lanconfig to verify that
IEEE 802.3 is turned on locally.

45 MESSAGE NSR SIGNAL INDICATION - -

CAUSE System call aborted due to signal.

ACTION Retry if appropriate.

Error Messages 8-9

46 MESSAGE NSR PATH REPORT

CAUSE

ACTION

47 MESSAGE

CAUSE

ACTION

50 MESSAGE

CAUSE

ACTION

B-10 Error Messages

- -

Could not interpret path. The address information·
referenced by the specified destination descriptor
contained uninterpretable information. When this error
occurs, it may be indicative of a system software error. It
may also indicate that the destination descriptor was
somehow corrupted between the time it was generated and
the time it was interpreted.

Assuming the problem is due to corruption of the
destination descriptor and not a system software error, try
shutting down the referenced destination descriptor and
then performing another ipclookup{). If the same error
is returned when the new destination descriptor is used,
this error requires HP notification.

NSR BAD REG MSG - - -
Received corrupted message from socket registry.

Retry. If the problem persists, this error requires HP
notification.

NSR DLEN

Bad length. The data length specified was either too long
or too short.

One or more of the following actions may be taken: (1)
Verify that the data length specified was the data length
intended; (2) Verify that the size specified was not larger
or smaller than maximum or minimum permissible receive
size of the socket

51 MESSAGE NSR DEST

CAUSE Not a destination descriptor. The descriptor specified in
the parameter reserved for destination descriptors did not
describe a destination descriptor.

ACTION (1) Verify that the descriptor was the one intended; (2)
Verify that you meant to execute an i pcdest () or
i pc lookup () call.

52 MESSAGE NSR PROTOCOL MISMATCH - -

CAUSE Protocol mismatch. The call socket referenced in an
i pccreate () or i pcdest () call is not bound to any of
the protocols that the destination descriptor references
(i.e., there is no way to use the protocol referenced by the
call socket to access the socket referenced by the
destination descriptor).

ACTION One of the following actions may be taken: (1) Do not
specify a particular protocol when creating the call socket.
Instead, use the default protocol value of zero in
ipccreate()'s protoco7 parameter; (2) create a new call
socket and bind it to a different protocol and try again.

53 MESSAGE NSR SOCKET MISMATCH - -

CAUSE Socket type mismatch. The destination descriptor specified
in an i pcconnect () call does not reference a remote call
socket. This error occurs when the remote socket is
supported by a system that supports socket kinds other
than those supported on the local system.

ACTION None, unless the remote application that the calling
process wants to connect to can be modified to use call
sockets.

Error Messages 8-11

54 MESSAGE

CAUSE

ACTION

56 MESSAGE

CAUSE

ACTION

59 MESSAGE

CAUSE

ACTION

B-12 Error Messages

NSR NOT CALL SOCKET - - -

Not a call socket descriptor.

(1) Verify it is the one intended; (2) Verify the original
i peereate () call.

NSR WOULD BLOCK - -
Would block error. The calling process issued a request
that could not be immediately satisfied against a socket
that was in asynchronous mode.

This is an informational message so no action is necessary.
For more information on asynchronous I/O, refer to the
"NetIPC Concepts" chapter.

NSR SOCKET TIMEOUT - -
Timed out. The calling process's request timed out. The
request was an i pese 1 ect () call or a NetIPC call issued
against a socket that was in synchronous mode (the default
mode for NetIPC sockets). Time out errors that occur on
calls issued against VC sockets do not concern the protocol
or connection they reference; protocols use their own
timers to determine if a connection is not functioning
reasonably. Possible scenarios in which this error could
occur include: (1) An i pes end () call could not obtain the
buffer space needed to accommodate its data within the
synchronous time-out interval; (2) an i pereev () call's
request for data could not be satisfied within the
synchronous time-out interval; (3) a connection request
was not received by an i pereevcn () call within the
synchronous time-out interval; (4) a process attempted to
send or receive data before a virtual circuit connection was
established.

Check your programs to make sure that the event the
socket is expecting will indeed occur. In scenarios 1
through 3 above, you should also consider modifying the

socket's associated time out interval. Refer to the
discussion of i pccontro 1 () in the "NetIPC Calls"
chapter for information on adjusting the synchronous
time-out. If scenario 4 has occurred, make sure your
programs are synchronized as shown in the "NetIPC
Concepts" chapter.

60 MESSAGE NSR NO DESC AVAIL

CAUSE

ACTION

- - -
The file descriptor limit was exceeded. The calling process
attempted to gain access to a new socket descriptor or
destination descriptor even though it already owned the
maximum permissible number of descriptors (60).

The process must release one of the socket descriptors or
destination descriptors that it owns and then retry the
request.

Error Messages 8-13

62 MESSAGE NSR CNCT PENDING

CAUSE

ACTION

- -
i pcrecv () expected. An attempt was made to manipulate
a VC socket whose corresponding connection had been
initiated with i pcconnect () but whose successful
establishment had not been completed via i pcrecy (). A
user cannot send or receive on a VC socket that was
created with i pcconnect () without first having called
i pcrecv () to complete the establishment sequence.

Call i pcrecv () to verify that the connection referenced
by the VC socket came up before trying to send or receive
again.

64 MESSAGE NSR REMOTE ABORT

CAUSE

ACTION

8-14 Error Messages

- -
Connection aborted. The connection underlying a VC
socket has been aborted either by the protocol handler
running on the local node because it was unable to contact
its peer protocol handler at the remote end of the
connection, or by the protocol handler on the node at the
other end of the connection. This error may be returned
when (1) the remote node is down, (2) some network links
are malfunctioning, (3) the network is extremely congested,
(4) the user of the connection told the remote protocol
handler to abort the connection, or (5) the remote process
aborted. This error can be used to detect that the remote
peer has completed transmission and has shut down the
connection.

Consult your Network Manager for assistance in
diagnosing the problem.

65 MESSAGE

CAUSE

ACTION

66 MESSAGE

CAUSE

ACTION

NSR LOCAL ABORT - -

Connection aborted. The connection underlying a VC
socket has been aborted by the protocol handler running
on the local node because it was unable to contact its peer
protocol handler at the remote end of the connection.
This error may be returned when (1) the remote node goes
down, (2) some network links are malfunctioning, (3) the
network is extremely congested, (4) or the connection
could not be established because there is not a common
encapsulation method.

Consult your Network Manager for assistance in
diagnosing the problem. Use the lanconfig command to
verify that the local and remote nodes have a common
encapsulation method (IEEE or Ethernet).

NSR NOT CONNECTION

Not a VC socket. The descriptor specified in the
parameter reserved for VC socket descriptors did not
describe a VC socket.

One or more of the following actions may be taken: (1)
Verify that the descriptor specified was the one that the
calling process intended to specify; (2) verify that the
original call to create the VC socket succeeded; (3) do not
use Berkeley sockets with NetlPC calls.

Error Messages 8-15

74 MESSAGE NSR_REQUEST

CAUSE lllegal request. The request code passed in an
i pccontro 1 () request was not valid. Or, the request is
not valid for the kind of socket.

ACTION One or more of the following actions may be taken: (1)
Verify that the request code specified was the intended
one; (2) verify that the request code is supported on the
local system (consult the "NetIPC Concepts" chapter); (3)
Verify that the request is meaningful for the kind of socket.

76 MESSAGE NSR TIMEOUT VALUE - -
CAUSE Illegal time out value. The i pccontro 1 () or

i pcse 1 ect () request invoked by the calling process
specified a time out value that was invalid.

ACTION One or more of the following actions may be taken: (1)
Verify that the time out value specified was the intended
value; (2) consult the "NetIPC Concepts" chapter to make
sure the value is acceptable.

99 MESSAGE NSR VECT COUNT - -

CAUSE Bad vector data length. The calling process specified a
data vector argument that contained a negative length field.

ACTION Recheck the initialization of the data vector.

8-16 Error Messages

100 MESSAGE NSR TOO MANY VEeTS - - -

CAUSE Too many vectored data descriptors.

ACTION Recode your program so that the number of vectored data
descriptors is within acceptable limits. Refer to the
"NetIPC Concepts" chapter for information on data
vectors.

106 MESSAGE NSR DUP ADDRESS

CAUSE Address in use. The caller process requested that its call
socket descriptor be bound to a particular protocol
address, but the address was already bound to another call
socket descriptor.

ACTION One or more of the following actions may be taken: (1)
Verify that the address specified was the intended one; or
(2) check to make sure there are not duplicate copies of
the program running.

109 MESSAGE NSR REMOTE RELEASED - -

CAUSE The remote endpoint of the connection has been released.
You can continue to send on the local endpoint, but data
will not be received.

ACTION This is an informational message only. No action is
required.

Error Messages 8-17

116 MESSAGE NSR DEST UNREACHABLE - -

CAUSE No usable paths. The local node's protocol software
cannot connect to the remote node descnbed by the
destination referenced by a passed destination descriptor.
This could occur because the local node does not know
where the remote node's network is, or because the
remote node does not support the same protocols as the
local node.

ACTION Obtain a new destination descriptor using i pc lookup ().
If this is not successful, ask the System Manager to verify
that the correct routing information is configured locally so
that the remote network can be reached. Also, determine
which protocols are supported by the remote node.

118 MESSAGE NSR VERSION

CAUSE Version number mismatch.

ACTION Make sure that all processes are running on nodes with the
same version of the LAN software.

124 MESSAGE NSR OPT ENTRY NUM - - -

CAUSE Bad entry number specified.

ACTION Check syntax of opt structure.

125 MESSAGE NSR OPT DATA LEN - - -
CAUSE Bad option data length. The data length specified in the

addopt () or readopt () call was invalid.

ACTION Verify that the value passed was the intended value.

B-18 Error Messages

126 MESSAGE NSR OPT TOTAL

CAUSE

ACTION

Bad option total. i ni topt () was invoked specifying that
the number of eventual entries to be placed into the opt
parameter would be either fewer than zero or greater than
the maximum possible number of opt entries.

One or more of the following actions may be taken: (1)
Verify that the value passed for the eventual number of
entries argument was the intended value; (2) recalculate
the number of entries that will actually be needed.

127 MESSAGE NSR OPT CANTREAD

CAUSE

ACTION

Cannot read option. The opt entry specified in the
readopt () call was not initialized.

One or more of the following actions may be taken: (1)
Verify that the opt parameter was properly initialized with
in i topt (); (2) verify that the referenced entry was set up
properly with addopt ().

Error Messages 8-19

1002 MESSAGE NSR THRESH VALUE

CAUSE

ACTION

- -

Bad threshold value. This error is returned for one of the
following reasons: (1) an illegal read threshold was
specified, or (2) an illegal write threshold was specified.

Verify that the value passed was the intended value and
that it was not negative or zero or greater than the socket's
maximum receive size specified when the socket was
created.

2003 MESSAGE NSR NOT ALLOWED

CAUSE

ACTION

User not a super user. The caller attempted to use
functionality restricted to super users.

This is an informational message only. No action is
required.

2004 MESSAGE NSR MSGSIZE

CAUSE

ACTION

8-20 Error Messages

The message size being used is too large for the protocol.
This error if a process requests a maximum send or receive
size larger than the maximum allowed or if a process
attempts to send or receive more than the number of bytes
set in the i pcconnect () or i pcrecv () call.

Make sure your i pcconnect () or i pcrecv () call does
not attempt to set the maximum send and receive sizes to
larger than 32,767 bytes. Also, make sure your process
does not attempt to send or receive more bytes than
specified by the i pcconnect () call or i pcrecv () call for
that connection.

CAUSE

ACTION

Tries to connect to an unavailable protocol address.

(1) Verify the destination descriptor was the one intended
to use, or, (2) Verify the protocol address is correct and
available for connection.

Error Messages 8-21

System Calls and NetlPC Sockets

NetIPC processes make use of sockets via the NetIPC calls to establish connections
and exchange data. The Transport Layer's Transmission Control Protocol (TCP)
regulates the transmission of data to and from sockets. NetIPC processes reference
sockets with socket descriptors. Socket descriptors are returned to processes when
certain NetlPC calIs are invoked. Socket descriptors are allocated from the same
space as file descriptors. Therefore, sockets are accessible through the standard
HP-UX file system calls.

Table C-l describes HP-UX system calls that operate on NetIPC sockets. The
NetIPC calls are described in the "NetIPC Calls" chapter. HP-UX system calls are
described in the HP-UX Reference Manual.

System Calls and NetlPC Sockets C-1

C

Table C-1. System Calls and NetlPC Sockets

HP-UX Call Description

acct{) The ac _ i 0 field in accounting file records will be updated.

close{) When close () is used on a NetIPC socket, it does not
guarantee that any data buffered will actually be sent.

dupe) Supported as described in the HP-UX Reference Manual.

exec{) Sockets remain open over exec () and/or execve ().
execve()

fchown() Not supported for NetIPC sockets.

fork() Socket descriptors are inherited by the child process.
Refer to the "NetIPC Concepts" chapter for more
information on shared socket descriptors.

fstat() The stat structure is undefined.

read() Supported as described in the HP-UX Reference Manual
for VC sockets only.

select() Read and write thresholds for sockets are supported.
Read, write and exception conditions for sockets are
defined in the "NetIPC Calls" chapter.

ul imit() No limits are currently supported for NetIPC usage.

wri te{) Supported for VC sockets only.

C-2 System Calls and NetlPC Sockets

D

LAN/9000 Series 600/800 Migration

This appendix provides an introduction to LAN/9000 Series 600/800 for users who are
current DS/1000-N, NS/l000 or NS/9000 Series 200 or 500 customers. Because it
addresses three different audiences, this appendix is organized into three different
sections:

• LAN/9000 Series 600/800 for DS/IOOO-IV Users. This section compares
DS/1000-N and LAN/9000 Series 600/800.

• NS/IOOO to LAN/9000 Series 600/800 Migration. This section compares NS/1000
and LAN/9000 Series 600/800. For information on porting NS/1000 applications to
LAN/9000 Series 600/800, see the "Porting NetIPC Programs" appendix.

• NS/9000 to LAN/9000 Series 600/800 Migration. This section compares the
NS/9000 product provided on the HP 9000 Series 200 and 500 to LAN/9000 Series
600/800.

Note For information on migrating from DS/l000-N, NS/l000 or NS/9000 to
NS/9000 Series 600/800, refer to the Using Network Services (NS)/9000
Series 600/800 manual.

LAN/9000 Series 600/800 Migration 0-1

LAN/9000 Series 600/800 for OS/1000-IV Users
LAN/9000 Series 600/800 and DS/1000-IV do not share any common user services.
As a result, programs written using DS/1000-IV calls are not transportable to
LAN/9000 Series 600/800 systems.

Migration Analysis Utility
In order to help customers migrate from DS/1000-N to LAN/9000 Series 600/800,
Hewlett-Packard has developed a utility that reads RTE program source files and
flags DS/1000-IV calls. This program can be used as an aid in determining the
difficulty of converting a program to use LAN/9000 Series 600/800 calls and in
locating calls that must be modified.

For more information about this utility, refer to the PORT/HP-UX Migration Analysis
Utility Manual (92561-90002).

Feature Comparison
Table D-1 maps' the DS/1000-IV services to LAN/9000 Series 600/800 and NS/9000
Series 600/800 services with similar functionality. There is no one-to-one
correspondence between DS/IOOO-IV and LAN/9000 Series 600/800 or NS/9000 Series
600/800 services.

Table 0-1. OS/1000-IV vs. LAN & NS/9000 Series 800

Similar LAN & NS/9000
OS/1000-IV Service Series 800 Service

Program-to-Program Network Interprocess
Communication (PTOP) Communication (NetIPC)

REMAT Network File Transfer (NFT)

RMOTE Network File Transfer (NFT)

0-2 LAN/9000 Series 600/800 Migration

Note Network File Transfer are services provided by NS/9000 Series 600/800.
Refer to the Using Network Services (NS)/9000 Series 600/800 manual for a
detailed comparison of DS/l000-IV and NS/9000 Series 600/800 product
features.

DSIlOOO-IV and LAN/9000 Series 600/800 share two similar services: PTOP and
NetIPC. The following paragraphs compare these services.

Interprocess Communication
The DS/l000-IV service Program-to-Program Communication (PTOP) allows a
master program to exchange information with and control the execution of a slave
program. PTOP calls are divided into two categories, master calls and slave calls. The
master and the slave programs may be located at the local node, or one may be at the
local node and the other may be at a remote node. DS/1000-IV PTOP programs can
communicate with other PTOP programs on remote DSIlOOO-IV or DS/3000 nodes.

LAN/9000 Series 600/800 provides a service similar to PTOP called Network
Interprocess Communication (NetIPC) which is documented in this manual. NetIPC
allows two or more peer processes to exchange information; one program does not
control the execution of another. Because NetIPC operates in a peer-to-peer rather
than master-to-slave fashion, any NetIPC process can use any of the NetIPC calls. As
a result, the form of interprocess communication offered by NetIPC is more flexible
than that provided by PTOP. NetIPC peer processes may be located on the same or
different nodes.

N etIPC processes establish connections with other processes via sockets. A N etIPC
process can engage in a dialogue that references certain sockets in order to create a
connection with another NetIPC process. Several NetIPC calls are provided to allow
processes to engage in this dialogue. Once a connection, called a virtual circuit, is
established, the processes may exchange data. A LAN/9000 Series 600/800 NetIPC
process can communicate with other NetIPC processes on remote LAN/9000 Series
600/800 and NS/1 ()()() nodes only.

Unlike PTOP, NetIPC does not provide a call to schedule a remote process. Remote
processes must be manually started or can be daemons that are started at system start
up.

LAN/9000 Series 600/800 Migration D-3

Table D-2 maps the DS/l000-IV PTOP calls to similar LAN/9000 Series 600/800
NetIPC calls. Most of the NetIPC calls have no PTOP equivalents; therefore, they
are not listed in the table. These calls are not similar to any PTOP calls because they
are primarily used to create and establish virtual circuit connections. The NetIPC
calls that have no PTOP equivalents include i peeonneet (), i peerea te (),
ipedest(), ipelookup(), ipename(), ipenamerase(), ipereeven(),
i pesel eet (), addopt(), i ni topt (), and readopt ().

Table D-2. PTOP Calls vs. NetlPC Calls

PTOP NetlPC
Call Call Comparison

POPEN No similar Series 600/800 NetIPC does not provide a
NetlPC call. call to schedule a peer process.

PREAD ipereev() PREAD allows a PTOP master program to
receive data contained in the buffer
parameter of a slave program's ACEPT call.
The master program must call PREAD
before the slave program can transmit data
via an ACEPT call. i pereev () allows a
NetIPC process to receive data queued on
a virtual circuit connection. The data
becomes queued on this connection when
another NetlPC process calls i pesend ().

PWRIT ipesend() PWRIT allows a PTOP master program to
transfer data contained in its buffer
parameter to the buffer parameter of a
slave program's GET call. ; pesend ()
allows a NetIPC process to send data on a
virtual circuit connection. The data
becomes queued on this connection and
may be dequeued by another NetIPC
process when that process calls i pereev ().

D-4 LAN/9000 Series 600/800 Migration

Table D-2. PTOP Calls vs. NetlPC Calls-con't

PTOP NetlPC
Call Call Comparison

PCONT ipcsend{) PCONT allows a PTOP master program to
transfer data contained in its tag
parameter to the tag parameter of a slave
program's GET call.

PCLOS ipcshutdown() PCLOS allows a PTOP master program to
terminate a slave program. If the slave
program resides on an HP 1000 node,
PCLOS also terminates logical
communication with that node.
i pcshutdown () may be used to abort a
virtual circuit connection. This terminates
logical communication with a peer process
over that connection. i pcshutdown () can
not be used to terminate a peer process;
NetIPC does not provide a call with this
functionality.

PNRPY ipccontrol{) PNRPY allows a PTOP master program to
issue PWRIT, PCONT and PCLOS requests
asynchronously. Master programs that use
this call will not be suspended when they
issue requests to send data to, or to
terminate, slave programs. The NetIPC
call ipccontrol () maybe used to enable
asynchronous I/O between NetlPC
processes. Unlike PNRPY, i pccontro 1 ()
allows processes to both send and receive
data asynchronously by placing the sockets
shared by the processes in asynchronous
mode.

LAN/9000 Series 600/800 Migration 0-5

Table D-2. PTOP Calls vs. NetlPC Calls-can't

PlOP NetlPC
Call Call Comparison

GET ipcrecv() The main function of the PTOP slave call
GET is to receive master program requests
(PWRIT, PREAD, etc.) However, the tag and
buffer parameters of the GET call can be
used to receive data sent by the master
program. The NetIPC call i pcrecv () is
similar to GET only in that it allows a
process to receive data. (Refer to the
discussion of PREAD above for more
information on ipcrecv().)

ACEPT i pcrecv () and The PTOP slave call ACEPT allows PTOP
ipcsend() slave programs to receive data from, and

send data back, to PTOP master programs.
When a master program sends data via a
call to PWRIT, the buffer parameter of the
ACEPT call can be used to receive the data.
When a master program requests data via a
call to PREAD, the ACEPT's buffer
parameter contains the data that will be
transmitted to the master program. The
AC E PT call also contains a tag parameter
that can be used to send data to the master
program. The ACEPT call's data
acceptance and transmission functions are
similar to ipcrecv() and ipcsend(),
respectively. (Refer to the discussion of
PWRIT and PREAD above for more
information on these NetIPC calls.)

0-6 LAN/9000 Series 600/800 Migration

Table D·2. PTOP Calls va. NetlPC Calls-con't

PTOP NetlPC
Call Can Comparison

REJCT ipcsend(} The main function of the PTOP slave call
REJCTis to reject a master request. REJCT
a~o contains a tag field that can be used to
transmit data back to the master program.
This secondary feature of REJCT is similar
to the NetIPC call ipcrecv{}. (Refer to
the discussion of PREAD above for more
information on ipcrecv{}.)

FINIS ipcshutdown(} The PTOP slave call FIN I S is similar to
the PTOP master call PC LOS in that it
terminates communication between two
programs. The NetIPC call
i pcshutdown () terminates logical
communication over a certain connection.

LAN/9000 Series 600/800 Migration 0-7

NS/1000 to LAN/9000 Series 600/800 Migration
NS/1000 and LAN/9000 Series 600/800 share the same HP AdvanceNet NS user
service NetIPC. NS/1000 and NS/9000 Series 600/800 also share the same HP
AdvanceN et NS user service Network File Transfer (NFl}

Refer to Appendix E, "Porting NetIPC Programs," in this manual for information
regarding transporting NS/1000 NetIPC programs to the LAN/9000 Series 600/800
programming environment. Refer to the Using Network Services (NS)/9000 Series
600/800 manual for a detailed comparison of the NS/1000 and NS/9000 Series 600/800
Nfl implementations.

As shown in the previous section, "LAN/9000 Series 600/800 for DS/1000-N Users,"
NS/lOOO's DS/1000-N Compatible Services (Remote File Access, Distributed
Executive, Program-to-Program Communication, REMAT, RMOTE and Remote File
Access) are not supported on LAN/9000 Series 600/800 nodes.

In order to help customers migrate from DS/1000-N to LAN/9000 Series 600/800,
Hewlett-Packard has developed a utility that reads RTE program source files and
flags DS/1 000-N calls. This program can be used as an aid in determining the
difficulty of converting a program to use LAN/9000 Series 600/800 calls and in
locating calls that must be modified. For more information about this utility, refer to
the PORT/HP-UX Migration Analysis Utility ManuaL

Table D-3 maps the NS/1000 services to the same or similar LAN/9000 Series 600/800
and NS/9000 Series 600/800 services.

0-8 LAN/9000 Series 600/800 Migration

Table D-3. NS/1000 VS. LAN " NS/9000 Series 800

NS/1000 Service
LAN or NS/9000 Series 800

Service

Network File Transfer (NFI)* Network File Transfer (NFI)*

Network Interprocess Network Interprocess
Communication (NetIPC)* Communication (NetIPC)*

Program-to-Program Network Interprocess
Communication (PTOP) Communication (NetlPC)

REMAT Network File Transfer (NFl)

RMOTE Network File Transfer (NFl)

*Indicates compatible HP AdvanceNet NS user services.

Note Network File Transfer is a service provided by the NS/9000 Series
600/800 product. Refer to the Using Network Services (NS)/9000
Series 600/800 manual for a detailed comparison of the NS/! 000
and NS/9000 Series 600/800 user services.

LAN/9000 Series 600/800 Migration 0-9

NS/9000 to LAN/9000 Series 600/800 Migration
LAN/9OOO Series 600/800 and the NS/9000 product for the HP 9000 Series 200 and
500 do not share any common services. NS/9000 Series 500 Interprocess
Communication ("IPC") and NS/9000 Series 600/800 Network Interprocess
Communication (NetIPC) are not compatible services.

NS/9OOO Series 600/800 and NS/9000 Series 200 and 500, however, do share the
Network File Transfer (NFl). Refer to the Using Network Services manual for a
detailed comparison of the Series 600/800 and NS/9OOO user services.

Table 0-4 maps the NS/9000 Series 200 and 500 services to the same or similar
NS/9OOO Series 600/800 and LAN/9000 Series 600/800 services.

Table 0-4. NS/9000 vs. NS & LAN/9000 Series 800

NS/9000 Series 200 & NS & LAN/9000
500 Service Series 800 Service

Network File Transfer (NFT)* Network File Transfer (NFl)*

Interprocess Communication Network Interprocess
(IPC) (Series 500 only) Communication (NetIPC)

*Indicates implementation of compatible user service.

The following paragraphs provide a comparison of the NS/9000 Series 600/800
NetIPC service and the NS/9000 Series 500 IPC service.

0-10 LAN/9000 Series 600/800 Migration

Interprocess Communication
NS/9000 Series 500 Interprocess Communication ("IPC") and LAN/9000 Series
600/800 Network Interprocess Communication (NetlPC) are not compatible services.
However, because the services are somewhat similar, it may be useful to convert an
NS/9000 IPC program to use LAN/9000 Series 600/800 NetIPC calls.

Features common to both NS/9000 Series 500 IPC and LAN/9000 Series 600/800
NetIPC include the following:

• Processes communicate with each other by means of sockets. Before a connection
ca~ be established between two processes, each process must create a socket. On
the Series 500, this socket is called a source socket; on the Series 600/800, it is
called a call socket.

• Source (or call) sockets may be named. A process can gain access to another
process's socket by referencing the socket's name. When the name of a socket that
belongs to another process is referenced in a "look up" call (u i pc lookup () for the
Series 500, i pc 1 00 ku P () for the Series 600/8(0), the calling process receives a
destination descriptor.

• Processes use destination descriptors in "connection request" calls
(u i pcconnect () for the Series 500, i pcconnect () for the Series 600/8(0). The
connection request call returns a VC socket which is the endpoint of a virtual
circuit connection.

• Communication between processes takes place over a virtual circuit connection.

• Connections can be set to synchronous or asynchronous communications mode.
The default mode is synchronous, which is blocking mode. The communications
mode can be reset to asynchronous using a "control" call (u i pccontro 1 () for the
Series 500, i pccont ro 1 () for the Series 600/800).

LAN/9000 Series 600/800 Migration 0-11

Porting NetlPC Programs

This appendix summarizes differences and provides information to help you
successfully port NetIPC programs between HP 1000 A-Series and HP 9000 Series
600/800 systems. Refer to the NS/lOOO User/Programmer Reference Manual for
NetIPC programming information for HP 1000 A-Series systems.

This appendix does not compare the programming language implementations at the
different systems. For this information, you should refer to the following language
reference manuals:

SYSTEM LANGUAGE REFERENCE MANUALS

HP 9000 HP FORTRAN 77/HP-UX Reference Manual
Series 600/800

HP 1000
A-Series

HP C Reference Manual

HP C/HP-UX Reference Manual Supplement

HP Pascal Reference Manual

FORTRAN 77 Reference Manual

Pascal/lOOO Reference Manual

E

In addition, the following manuals contain information that is useful to programmers
porting FORTRAN 77 and Pascal programs from the HP 1000 to the HP 9000 Series
600/800:

• HP FORTRAN 77/HP-UX Migration Guide.

• HP Pascal/HP-UX Migration Guide.

Porting NetlPC Programs E-1

When you are porting NetIPC programs, the following strategy may help:

1. Make sure that the NetIPC programs are executing correctly between
homogeneous systems. That is, the programs should work between HP tOOO
A-Series systems first.

2. Port the programs using the language reference manuals. Check carefully for
compiler differences such as data types and lengths.

3. Check the differences between NetIPC calls documented in this appendix. Check
all the parameters; some are not implemented or have different values.

4. If your ported programs still do not work, consider both programming language
and NetIPC differences.

E-2 Porting NetlPC Programs

LAN/9000 Series 600/800 and NS/1000
This section describes the differences between the LAN/9000 Series 600/800 and
NS/lOOO NetIPC implementations.

Path Report and Destination Descriptors
In NS/lOOO NetIPC, the descriptor returned by the socket registry software is called a
path report descriptor; in LAN/9000 Series 600/800, this descriptor is called a
destination descriptor. Although path report descriptors and destination descriptors
have slightly different meanings, their function is the same: both contain addressing
information that is used by a NetIPC process to direct requests to a certain call socket
at a certain node.

Socket Ownership
An LAN/9000 Series 600/800 NetIPC process may own a maximum of 1024
descriptors. This limit includes call socket, VC socket, and destination descriptors as
well as HP-UX file descriptors and NetIPC and/or file descriptors inherited or
otherwise opened by the process.

An NS/lOOO NetIPC process may own a maximum of 32 socket descriptors. This limit
includes call socket, VC socket, and path report descriptors.

NS/1000 and LAN/9000 Series 600/800 NetIPC process creates a call socket by calling
I PCCreate; they create a VC socket by calling I PCConnect or I PCRecvCn. An
NS/1000 NetIPC process may also gain access to a socket by calling I PCG i vee Sockets
are given away with the IPCGi ve call.

The I PCGi ve and I PCGet calls are not part of the LAN/9000 Series 600/800 NetIPC
implementation. Instead, LAN/9000 Series 600/800 processes can also acquire access
to sockets owned by other NetIPC processes by utilizing socket "sharing." On HP
9000 Series 600/800 systems, NetIPC socket descriptors (call socket, VC socket, and
destination), like HP-UX file descriptors, are copied to the "child" process when a
process forks. As a result, more than one process can own a descriptor for the same
socket. Programmers are responsible for regulating the use of shared sockets on
LAN/9000 Series 600/800 systems. An NS/1000 NetIPC process creates a call socket
by calling I PCCreate or I PCGet; it creates a VC socket by calling I PCConnect or
IPCRecvCn. An NS/1000 NetIPC process may also gain access to a socket by calling
I PCG i ve. Sockets are given away with the I PCG i ve call.

Porting NetlPC Programs E-3

Socket Shut Down
The I PCShutDown call is used in both NS/l000 and LAN/9000 Series 600/800 NetIPC
to release a descriptor and any resources associated with it. The shut down procedure
for both NS/l000 and LAN/9000 Series 600/800 processes is identical with the
following exception: the operation of the LAN/9000 Series 600/800 implementation of
I PCShutDown is affected by socket sharing. The LAN/9000 Series 600/800 supports
NSF GRACEFUL RELEASE. - -

When a LAN/9000 Series 600/800 NetlPC process "shuts down" a VC socket
descriptor that is shared by other processes, the descriptors owned by the other
processes are not affected. The IPCShutDown call does not operate on the VC
socket referred to by a VC socket descriptor unless the descriptor is the last
descriptor for that socket. A VC socket is destroyed along with its VC socket
descriptor only when the descriptor being released is the sole descriptor for that socket.

When shutting down a shared call socket descriptor, the call socket referred to by the
descriptor is destroyed along with the descriptor and names associated with the
descriptor only if the descriptor being released is the last descriptor for that socket. If
another process, or processes, have descriptors for the same socket, these duplicate
descriptors, and any names associated with the descriptors, are not affected.

When shutting down a shared destination descriptor, the addressing information
stored in conjunction with the descriptor is destroyed along with the descriptor only if
the descriptor being released is the sole descriptor for that information. If another
process, or processes, have descriptors for the same information, these duplicate
descriptors, and any names associated with the descriptors, are not affected.

Signals
Unlike NS/l000 NetIPC calls, LAN/9000 Series 600/800 NetIPC calls that would
normally block may be interrupted by HP-UX signals. NetIPC calls that are
interrupted by signals are optionally restartable. When a call is restarted after a
signal, any time-outs (including the synchronous time-out) will be reset. As a result,
signals that continuously interrupt/restart a NetIPC call at an interval shorter than the
socket time-out will effectively void the time-out. Signals are explained in detail in
the HP-UX Reference Manual.

E-4 Porting NetlPC Programs

TCP Checksum
The NS/lOOO I PCConnect and I PCRecvCn calls include a "checksumming" bit in
their f7 ags parameters. When set, this bit causes TCP to enable checksumming.

Unlike NS/lOOO NetIPC, the LAN/9000 Series 600/800 I PCConnect and I PCRecvCn
calis do not include "checksumming" bits. When an NS/9000 Series 600/800 NetIPC
process calls I PCConnect or I PCRecvCn, TCP checksumming is automatically enabled.

TCP checksumming will always be performed if one or both NetIPC processes are
LAN/9000 Series 600/800 processes. If both processes are NS/lOOO NetIPC processes,
TCP checksumming will be performed only if one or both processes call IPCConnect
or I PCRecvCn with the "checksumming" bit set.

Remote Process Scheduling
NetIPC itself does not include a call to schedule a remote process. The method used
to schedule a remote NetIPC process depends on the types of systems involved. For
example, an NS/lOOO NetIPC process written to schedule an NS/lOOO peer process
must be modified to utilize another scheduling method when it is ported to a
LAN/9000 Series 600/800 system.

Remote NS/1000 Process
In order to schedule a remote NS/lOOO NetIPC process from an NS/lOOO node, you
can use one of the following methods: the Remote Process Management (RPM) call
RPMCreate, the Program-to-Program communication (PTOP) POPEN call, one of the
DEXEC scheduling calls, the REMA T QU command, or the TELNET virtual terminal
service.

You cannot use any of these services to schedule a remote NS/lOOO process from a
LAN/9000 Series 600/800 node because these services are only NS/lOOO services. The
"Process Scheduling" section in the "Cross-System NetIPC" chapter describes ways to
schedule an NS/lOOO NetIPC process from a LAN/9000 Series 600/800 node.

Remote LAN/9000 Series 600/800 Process
Remote LAN/9000 Series 600/800 processes can be manually started or can be
scheduled by user-written daemons that are started at system start up. The "Process

Porting NetlPC Programs E-S

Scheduling" section in "Cross-System NetIPC" chapter describes ways to schedule a
LAN/9000 Series 600/800 NetIPC process from an NS/1OOO node.

Case Sensitivity
Because the HP-UX operating system is case-sensitive, LAN/9000 Series 600/800
NetIPC call names must be typed using lower case characters. For example, the
NetIPC call I PCConnect must be typed as i pcconnect on LAN/9000 Series 600/800
systems.

NS/1OOO NetIPC call names are not case sensitive and may be typed using lower case
or upper case characters, or a combination of both upper and lower case characters.

NetlPC Calls
For the purposes of the following discussion, the NS/1OOO and LAN/9000 Series
600/800 NetIPC calls are divided into four categories:

• Calls that are unique to NS/IOOO NetIPC.

• Calls that are unique to LAN/9000 NetIPC.

• Calls that are common to both NS/1000 and LAN/9000 Series 600/800 NetIPC and
are implemented identically on each system.

• Calls that are common to both NS/1000 and LAN/9000 Series 600/800 NetIPC but
are implemented differently on each system.

E-6 Porting NetlPC Programs

Unique NetlPC Calls
The following calls are provided as part of the NS/1000 NetIPC implementation only:

• AdrOf. This call obtains the byte address of any byte within a data object.

• I PCGet. This call allows a process to obtain ownership of a call socket, path report
or VC socket descriptor that was given away by another process with an I PCG i ve
call.

• I PCG; vee This call allows a process to "give up" a call socket, VC socket or path
report descriptor so that another process may obtain it.

The LAN/9000 Series 600/800 NetIPC implementation includes one call that is not
provided by NS/1 000 NetIPC:

• Opt OverHead. This call is used to determine the number of bytes needed for the
opt parameter.

Common NetlPC Calls
The following NetIPC calls are common to both the NS/l000 and LAN!9000 Series
600/800 NetIPC and are implemented identically.

Table E-1. Identical NetlPC Calls

AddOpt

IPCDest

IPCSend

Call Comparison

InitOpt

IPCLookUp

ReadOpt

Table E-2lists the differences between the NetIPC calls that are common to
both the NS/1OOO and LAN/9000 Series 600/800 NetIPC implementations but
that are implemented differently.

Porting NetlPC Programs E-7

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison

NetlPC Call Differences Between Implementation

IPCConnect The NS/1000 implementation of I PCConnect defines a
f1 ags parameter bit that is not defined by the LAN/9000
Series 600/800 implementation of the call:
"checksumming" (bit 21). All LAN/9000 Series 600/800
IPCConnect f1 ags parameter bits must be clear (not
set). NS/1000 NetIPC processes can enable TCP
checksumming by setting the "checksumming" bit. If this
bit is not set, TCP checksum will not be performed for
the connection unless the process's peer process calls
I PCRecvCn with that call's "checksumming" bit set, or the
peer process is a LAN/9000 Series 600/800 NetlPC
process. TCP checksumming is always enabled when the
LAN/9000 Series 600/800 implementation of I PCConnect
is called.

Refer to "TCP Checksum" earlier in this appendix for
more information.

The LAN/9000 Series 600/800 implementation of
I PCConnect allows a value of -1 to be assigned to the
call's calldesc parameter. This value causes a call socket
to be created and then destroyed after the call completes
successfully. The NS/1000 implementation of
I PCConnect does not allow this value.

The NSnOOO and LAN/9000 Series 600/800
implementations of I PCConnect implement different
maximum send and receive sizes. The NS/1000 maximum
send and receive sizes are 8,000 bytes; the NS/9000 Series
600/800 maximum send and receive sizes are 32,000 bytes.
The default size on both implementations is 100 bytes.

E-8 Porting NetlPC Programs

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison-con't

NetlPC Call Diifferences Between Implementation

IPCControl I PCCont ro 1 includes four request codes that are not
provided by the NS/1 000 implementation of the call: 4,
1002, 1003 and 9008. When request code 9008 is
specified, the LAN/9000 Series 600/800 implementation
of IPCControl allows a value of -1 in the call's
deseri ptor parameter; this is also not part of the
NS/1000 implementation of the call. Refer to the
"NetIPC Calls" chapter in this manual for a description
of these request codes.

Unlike the NS/1000 implementation of IPCControl, the
operation of the LAN/9000 Series 600/800 I PCCont ro 1
call is affected by socket sharing. Refer to "Socket
Ownership" earlier in this appendix for more information
about socket sharing. Refer to the "N etIPC Calls"
chapter in this manual for a complete description of how
socket sharing affects the IPCControl call.

IPCCreate The NS/1000 and LAN/9000 Series 600/800
implementations of I PCCreate support different ranges
of permitted TCP protocol addresses that can be specified
in the opt parameter. However, both implementations
recommend that users specify TCP addresses in the range
30767 to 32767 decimal.

The NS/1000 and LAN/9000 Series 600/800
implementations of IPCCreate also support different
maximum connection request backlog defaults and ranges.
The NS/1000 implementation has a default of three
connection requests and an allowable range of zero to
five; the LAN/9000 Series 600/800 implementation has a
connection request default of one and an allowable range
of 1 to 20.

IPCName The LAN/9000 Series 600/800 implementation of
I PCName allows for the naming of destination (also
known as path) descriptors. The NS/1000 implementation
of the call does not.

Porting NetlPC Programs E-9

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison-con't

NetlPC Call Diifferences Between Implementation

IPCNamErase Unlike the NS/1000 implementation of I PCNamErase, the
operation of the LAN/9000 Series 600/800
implementation of I PCNamErase is affected by socket
sharing. Refer to "Socket Ownership" earlier in this
appendix for more information about socket sharing.

Unlike the LAN/9000 Series 600/800 implementation of
I PCNamErase, the operation of the NS/1000
implementation of the call does not allow for erasing
names assigned to path report (also known as destination)
descriptors.

IPCRecv The LAN/9000 Series 600/800 implementation of
I PCRecv defines bit 26 of the call's f7 ags parameter as
"more data." This bit is not implemented on NS/1000.
When this bit is set on a LAN/9000 Series 600/800, it
indicates that non-delimited data was received.

IPCRecvCn The NS/1000 implementation of I PCRecv includes a
f7 ags parameter bit that is not defined by the LAN/9000
Series 600/800 implementation of the call:
"checksumming" (bit 21). All LAN/9000 Series 600/800
IPCRecvCn f7 ags parameter bits must be clear (not set).
NS/1000 NetIPC processes can enable TCP
checksumming by setting the "checksumming" bit. If this
bit is not set, TCP checksum will not be performed for
the connection unless the process's peer process called
I PCConnect with that call's "checksumming" bit set, or
the peer process is a LAN/9000 Series 600/800 NetIPC
process. TCP checksumming is always enabled when the
LAN/9000 Series 600/800 implementation of I PCRecvCn
is called.

Refer to "TCP Checksum" earlier in this appendix for
more information.

E-10 Porting NetlPC Programs

Table E-2. NS/1000 and LAN/9000 Series 800 Call Comparison-con't

NetlPC Call Diifferences Between Implementation

IPCSelect The LAN/9000 Series 600/800 implementation of
IPCSel ect allows the sdbound parameter to have a
maximum value of 60. The NS/l000 implementation has
an upper limit of 32.

IPCShutDown Unlike the NSI1000 of IPCShutDown, the operation of
the LAN/9000 Series 600/800 implementation of
IPCShutDown is affected by socket sharing. Refer to
"Socket Ownership" earlier in this appendix for more
information. The HP 9000 supports
NSF GRACEFUL RELEASE. - -

Porting NetlPC Programs E-11

Index

! .

/etc/netlinkrc, 1-8, 2-18
/usr/include/sys/ns _ipc.h, 3-3,

3-6
constant definitions, 3-17,

B-1
with flags parameter, 3-6
with opt parameter, 3-9
with result parameter, 3-15

/usr/include/sys/syscall.h, 1-22
/usr/include/sys/uio.h, 3-14

A

ac io field, C-2
acetO, C-2
ACEPT, 0-4, 0-6
addoptO, 3-19, 3-22

problem resolution, B-5,
B-18

PTOP equivalents, 0-4
with initoptO, 3-23
with opt parameter, 3-8-3-9,

3-12
argnum parameter

addoptO, 3-19
adoptO,3-22
readoptO,3-85-3-86

Asynchronous I/O, 2-6
ipcrecvcnO,3-64
ipcsendO, 3-77

NSF_OATA_ WAIT bit setting,
3-61

socket modes, 1-19,3-77
Asynchronous mode, 1-19

B

Berkeley IPC, 1-2
bitwise inclusive operator, 3-6
buffer parameter, 3-42

c
C programming language, 3-71
Call comparison, E-7
Call socket, 0-11, E-3

creating, 1-8, 3-36
descriptor, 1-7, 3-81
naming, 1-8
read selecting, 3-69
writemap parameter, 3-70

calldesc parameter, 1-7, 3-66
ipcconnectO, 3-27
ipccreateO, 3-37
ipcrecvcnO,3-63
ipcselect, 3-72

Case sensitivity, E-6
Checking the status of a

connection, 1-8, 3-58
Checksumming, E-5

ipcconnect, 2-8

Index-1

ipcconnectO, 2-11, 3-30, E-8
ipcrecvcnO, 2-9, 2-12, 3-66,

E-I0
closeO, C-2
Common NetIPC calls

addoptO, E-7
initoptO, E-7
ipcdestO, E-7
ipclookuPO, E-7
ipcsendO, E-7
readopt, E-7

Communication between
processes, 1-1

Connection
detecting request, 3-70
establishment, 1-3, 1-15
requesting, 3-36
status, 3-56

Core dump, 3-15
Cross-system NetIPC, 1-1,

2-1

D

DATA, 3-9, 3-11, 3-56
Data buffer, 3-13

ipccontrolO, 3-33
ipcdestO, 3-39
ipcrecvO, 3-56

Data link checksum, 3-29,
3-65

data parameter, 3-13
addoptO, 3-5, 3-19
ipcrecvO, 3-57
ipcsendO, 3-75
readoptO, 3-85

Data vector, 3-13
ipccontrolO, 3-33
ipccrecvO, 3-56

DATALENGTH, 3-12
datalength parameter

addoptO, 3-19

Index-2

readoptO, 3-85
descriptor parameter, 3-31,

E-9
ipccontrolO, 3-32
ipcnameO, 3-51
ipcshutdownO, 3-80

destdesc parameter, 1-7
ipcconnectO,3-27
ipcdestO, 3-40
ipclookuPO, 3-48

Destination descriptor, 1-7,2-6,
3-81

interprocess communication, D-ll
LAN/9000 Series 600/800, E-3
manipulation of, 2-6

dlen parameter, 3-14, 3-62
ipcrecvO, 1-18, 3-56
ipcsendO, 3-75

domain, 3-16
dupO, 1-6, C-2

E

EINTR,1-22
ermo variable, 1-22
Error code, 3-3, 3-33
error parameter, B-1

addoptO,3-19
initoptO,3-23
ipcerrmsgO, 3-42
ipcerrstrO, 3-44
readoptO, 3-85

Establishing a VC connection,
1-3-1-4

eventualentries parameter, 3-83
Exception selecting, 3-71
exceptionmap parameter, 3-68,

3-70-3-74
Exchange data, 1-4
execO, C-2
execveO, C-2

F

fchownO, C-2
fcntlO,1-6
FINIS, D-7
flags parameter, 3-3,

3-5-3-6, 3-66, B-2
FORTRAN program, 3-7
ipcconnect(), 3-27, E-8
ipccontrolO, 3-31
ipccreateO, 3-36
ipcdestO, 3-40
ipclookuPO, 3-48
ipcrecvO, 3-57, E-10
ipcrecvcnO, 3-63, E-10
ipcsendO, 3-75
ipcshutdownO, 3-80
NSF DATA WAIT, 1-17
Pascal program, 3-7
TCP checksum, E-5

forkO, C-2
FORTRAN library function

ibset, 3-73
FORTRAN programming

language, 3-72
fstatO, C-2
Fully-qualified node name,

3-16

G
Gathered write, 3-13
GET, D-4, D-6

H

HP 1000 to Series 600/800
Migration, 3-1, 3-4

HP 9000 NetlPC
compatibility with
Berkeley IPC, 1-2

HP 9000 to HP 1000

NetIPC, 2-8
HP 9000 to HP 3000

NetIPC, 2-11
HP 9000 to PC NetlPC, 2-15

ibset function, 3-7, 3-73
Inbound transmission buffer, 1-19
Include files and libraries, 3-1,3-3
initoptO, 3-11, 3-23, D-4

addoptO,3-19
opt parameter, 3-8

Integer arrays, 3-71
INTEGER type, 3-15
Interpreting data received, 1-18
Interprocess communication, 1-2,

D-3, D-10
ioctlO,1-6
IODONTW AIT, 2-6
iovec structure, 3-59, 3-76
lOW AIT intrinsic, 2-6
ipcconnectO, 1-24, 3-23

addoptO, 3-19
asynchronous call, 1-19
call comparison, E-8
checksumming, E-5
creating a call socket, 1-7
cross system considerations,

2-8,2-11
flags parameter, 3-5
interprocess communication,

D-4, E-3, E-6
ipcdestO, 3-40
ipclookuPO, 3-48
ipcrecvO, 3-58
ipcselectO, 3-70
ipcsendO, 3-75
ipcshutdownO, 3-81
problem resolution, B-4, B-11,

B-14, B-20
VC socket descriptor, 1-7

Index-3

ipccontrolO, 3-31, 3-64
cross system considerations,

D-5, E-9
data parameter, 3-6, 3-13
flags parameter, 3-5
I/O mode, 1-19
ipcrecvcnO, 3-64
ipcselectO, 3-69
ipcsendO, 3-77
problem resolution, B-13,

B-16
request codes, 2-6, 3-3

ipccreateO, 1-7, 1-24,3-36
call comparisons, E-9
cross system considerations,

2-8,2-12
flags parameter, 3-5
interprocess communication,

D-4, E-3
ipcdestO, 3-39
problem resolution, B-4,

B-l1
ipcdestO, 1-24, 3-39

cross system, 2-8, 2-12
flags parameter, 3-5
interprocess communication,

D-4
ipcconnectO, 3-27
ipccreateO, 3-37
problem resolution, B-4,

B-8, B-l1
socket name parameter, 3-16

ipcerrmsgO, 3-42
ipcerrstrO, 3-44-3-45
ipcgetO, E-3
ipcgetnodenameO, 3-46
ipcgiveO, E-3
ipclookupO, 1-24, 3-47

cross system, 2-8, 2-12
flags parameter, 3-5
interprocess communication,

D-4, D-ll
ipcconnectO,3-27

Index-4

ipcdestO, 3-40
ipcnameO, 3-51
problem resolution, B-4,

B-7, B-9, B-ll, B-18
socket name parameter, 3-16

ipcnameO, 1-24, 3-51
call comparison, E-9
interprocess communication, D-4
ipclookupO, 3-48
ipcnameraseO, 3-54
local calls, 2-6
problem resolution, B-6--B-7
socket name parameter, 3-16

ipcnameraseO, 1-24, 3-54-3-55
call comparison, E-I0
cross-system usage, 2-6
interprocess communication, D-4
problem resolution, B-7-B-8
socket name parameter, 3-16

ipcrecvO, 1-20, 1-24, 3-56
addoptO, 3-20
call comparison, E-I0
cross system, 2-12
data parameter, 3-13
flags parameter, 3-5
functions, 3-58
interprocess communication, D-4,

D-6
ipcconnectO, 3-28
ipcrecvcnO,3-64
ipcselectO, 3-69, 3-71
problem resolution, B-12, B-14,

B-20
socket modes, 1-19
stream mode, 1-17

ipcrecvcnO, 1-25, 3-63, 3-65
call comparison, E-I0
cross system considerations, 2-9,

2-12
. flags parameter, 3-5
interprocess communication, D-4
ipcconnectO, 3-28
ipcsendO, 3-75

ipcshutdownO, 3-81
problem resolution, B-4,

B-12
socket mode I/O, 1-19
socket ownership, E-3
TCP checksum, E-5, E-8
VC socket, 1-7

ipcselectO, 1-25,3-67,3-70
asynchronous I/O, 2-6, 3-65,

3-77
call comparison, E-11
interprocess communication,

D-4
ipcrecvO, 3-61
problem resolution, B-12,

B-16
socket status, 1-20

ipcsendO, 1-25, 3-75
addoptO,3-20
cross system considerations,

2-9,2-13
data parameter, 3-13
flags parameter, 3-5
interprocess communication,

D-4, D-6-D-7
ipcconnectO,3-27
ipcrecvcn(),3-63
ipcselectO, 3-69
problem resolution, B-12
socket modes, 1-19
stream mode, 1-17
TCP default, 3-63

ipcsetnodenameO, 3-79
ipcshutdownO, 1-23, 1-25,

3-80
cross system considerations,

2-10,2-13, E-4, E-11
flags parameter, 3-5
interprocess communication,

D-5, D-7
ipcnameraseO, 3-54
ipcrecvO, 3-59
result parameter, 3-15

L
LAN/9000 Series 600/800/800

Migration, D-1
LAN/9000 Series 600/800, E-3

OS/1 000-IV Users, 0-2
len parameter, 3-42
Local NetIPC calls, 2-2, 2-4
Looking up a call socket name,

1-8
Lower-level protocol, 1-4

M

mallocO, 3-8, 3-10
map_type, 3-72
Master calls, 0-3

N

namelen parameter, 3-79
NetlPC

calls, 1-4, 1-22, 1-24, 3-1, E-6
common parameters, 3-1, 3-5
communication between

processes, 1-1
error codes, 2-10, 2-14, 2-17
network protocols, 1-1
reference pages, 3-1, 3-18
sockets, C-l

Network file transfer, 0-2,
0-8-0-10

Network Interprocess
Communication, 0-2-0-3,
D-9-0-10

see NetIPC
NFS DATA WAIT, 1-17
NFS-VEcrOREO, 3-59
nlen parameter

ipclookupO,3-47
ipcnameO,3-51
ipcnameraseO, 3-54

Index-5

node, 3-16
nodelen parameter

ipcdest(), 3-39, 3-41
ipc1ookup(), 3-47

nodename parameter, 3-16
flags parameter, 3-5
getnodenameO, 3-46
ipcdestO, 3-39
ipclookupO, 3-47
setnodenameO, 3-79

Normal reading, 3-59
NSfl000, E-3
NS/1 000 to LAN/9000

Series 600/800 migration,
D-8

NS/9000 to LAN/9000
Series 6OOf8oo Migration,

D-I0
NS CALL, 3-36, 3-39
NS-DATA OFFSET, 3-58
ns Tnt t,3-3

- flags parameter, 3-6
ipcconnectO, 3-30
ipccontrolO, 3-35
ipcdestO, 3-41
ipc1ookup(), 3-50
ipcnameO, 3-53
result parameter, 3-15

ns int wlen, 3-35
NS NULL DESC, 3-31
NSC GET-NODE NAME,

3-31,3-34 -
NSC NBIO DISABLE, 3-31
NSC-NBIO -ENABLE,

1-19,3-31-
NSC RECV THRESH

GET, 3-33=3-34 -
NSC RECV THRESH

RESET, 3-32, 3-34-3-35
NSC SEND THRESH

GET, 3-3~3-34 -
NSC SEND THRESH

REsET, 3:§2, 3-34 -

Index-6

NSC TIMEOUT GET, 3-32,
3-34 -

NSC TIMEOUT RESET, 3-31,
3-34-3-35 -

NSF DATA WAIT, 1-18,3-6,
3-5"7, 3-60-3-61

NSF MORE DATA, 3-57,
3-75-3-76 -

NSF PREVIEW, 3-6, 3-57, 3-59
NSF-VECfORED, 3-58, 3-61,

3-75
NSO DATA OFFSET, 3-76
NSO-MAX CONN REQ, B-5
NSO-MAX-CONN-REQ

BACK, 3-36 - -
NSO MAX RECV SIZE, 3-28,

3-64 - -
NSO MAX SEND SIZE,3-27,

3-63 - -
NSO NULL, 3-8
NSO-PROTOCOL ADDRESS,

3-37 -
NSP TCP, 3-36, 3-39
NSR-ADDR NOT AVAIL,

B-2l - -
NSR ADDR OPT, B-4
NSR-BAD REG MSG, B-I0
NSR-BOUNDS VIO,B-l
NSR-CANT CONTACf

SERVER,B-9 -
NSR CANT NAME VC, B-6
NSR-CNCf-PENDING, B-14
NSR-DESC~B-6
NSR-DEST, B-ll
NSR-DEST UNREACHABLE,

B-f8 -
NSR DLEN, B-I0
NSR-DUP ADDRESS, B-17
NSR-DUP-NAME, B-6
NSR-DUP-OPTION, B-5
NSR-FLAGS, B-2
NSR -KIND AND PROTOCOL,

B-3 - -

NSR LOCAL ABORT,
B-i'S -

NSR MAX CONNECfQ
B-5 -

NSR MSGSIZE, B-20
NSR -NAME NOT

FOUND, 348-3-49, B-7
NSR NAME TABLE

FULL, B-7- -
NSR NETWORK

DOWN,B-1 -
NSR NLEN, B-5
NSR-NO DESC AVAIL,

B-i3 - -
NSR NO ERROR

addoptO,3-19
ipcconnectO, 3-28
ipccontrolO, 3-33
ipcdestO, 3-40
ipclookuPO, 3-48
ipcnameraseO, 3-54
ipcrecvO, 3-58
ipcrecvcnO, 3-64
ipcselectO, 3-68
ipcsendO, 3-76
optoverheadO, 3-83
problem resolution, B-1
readoptO, 3-85

NSR NO FILE AVAIL,
B-4 - -

NSR NO MEMORY, B-4
NSR-NO-NODE, B-8
NSR -NO-OWNERSHIP,

3-54, B-8
NSR NO REG

RESPONSE, B-9
NSR NODE NAME
S~PU(,B-8 -

NSR NOT ALLOWED,
B-20 -

NSR NOT· CALL
SOCKET-:- B-12 -

NSR NOT CONNECflON, B-15
NSR-OPT-CANTREAD, B-19
NSR-OPT-DATA LEN, B-18
NSR-OPT-ENTRY NUM, B-18
NSR-OPT-OPTION, B-3
NSR-OPT-SYNTpu(, B-5
NSR-OPT-TOTAL, B-19
NSR-PATH REPORT, B-10
NSR-PROTOCOL, B-2
NSR-PROTOCOL MISMATCH,

B-l1 -
NSR REMOTE ABORT, 3-15,

B-14 -
NSR REMOTE RELEASED,

B-17 -
NSR REQUEST, B-16
NSR -SIGNAL INDICATION,

1-22,3-59, B-9
NSR SOCK KIND, B-2
NSR-SOCKET MISMATCH, B-11
NSR-SOCKET-TIMEOUT, 3-58,

3-61, B-12 -
NSR THRESH VALUE, B-20
NSR-TIMEOuT VALUE, B-16
NSR-TOO MANY VECI'S, B-17
NSR-VEcT couNT, B-16
NSR-VERSfoN, B-18
NSR-WOULD BLOCK

o

ipcrecvO, 3.:59, 3-61
ipcrecvcn(),3-65
ipcselectO, 3-69
ipcsendO, 3-77
problem resolution, B-12
socket modes, 1-19

opt parameter, 3-5, 3-8,3-20, 3-23
addoptO, 3-19
C program, 3-9
call comparison, E-9

Index-7

cross system considerations,
2-8,2-13

FORTRAN program, 3-11
initoptO,3-23
ipcconnectO,3-27
ipccreateO, 3-36
ipcdestO, 3-40
ipcrecvO, 3-58
ipcrecvcnO, 3-63
ipcsendO, 3-76
ipcshutdownO, 3-80
option codes, 3-3
optoverhead call, E-7
Pascal program, 3-10
problem resolution, B-3,

B-5, B-18
readoptO, 3-85
structure, 3-11

OPTARGUMENTS, 3-11
OPTION CODE, 3-12, 3-22,

3-28,3-36
optioncode parameter, 3-19,

3-85-3-86
OPTLENGTH, 3-11
optlength parameter, 3-10,

3-83-3-84
OPTNUMARGUMENTS,

3-9, 3-11
optnumarguments

parameter, 3-23, 3-26
optoverheadO, 3-8-3-10,

3-83
organization, 3-16
Outbound transmission

buffer, 1-19

p

Packed array of bytes, 3-10
Pascal programming

language, 3-72

Index-8

Path report descriptor, 2-6,
E-3

PCLOS, 0-5, 0-7
PCONT, 0-5
Peer process, 0-3
PNRPY, 0-5
POPEN, 0-4, E-5
Porting NetIPC programs, E-l
PREAD, 0-4, 0-6
Preview reading, 3-59
Process scheduling, 2-2, 2-18
Program-to-Program

communication, 0-2-0-3, 0-9,
E-5

Programming languages, 3-1-3-2
flags parameter usage, 3-5
FORTRAN, 3-3
Pascal, 3-3

protoaddr parameter, 3-37, 3-39,
3-41

protocol parameter
ipccreateO, 3-36
ipcdestO, 3-39
ipc1ookupO, 3-48
problem resolution, B-2-B-3, B-ll

Protocol ~es,3-3
protolen parameter, 3-40-3-41
PWRIT, 0-4--D-5

R
Read and write thresholds, 1-20
Read select, 3-70
Read threshold, 1-20-1-21,3-69
readO, 1-6, C-2
Readable VC socket, 1-20
readdata parameter, 3-31-3-34
readmap parameter, 3-67,

3-70-3-74
readoptO, 3-9, 3-85

interprocess communication, 0-4
problem resolution, B-18

readvO,1-6
Receive size, 3-30, 3-66
Receiving a connection
request,

1-8
Receiving data, 1-17,3-59
RETCf, 0-7
REMAT, 0-2, D-9, E-5
Remote HP 1000 process,

2-18
Remote HP 3000 process,

2-19
Remote HP 9000 process,

2-18
Remote LAN/9000

Series 600/800 process, E-5
Remote NetIPC calls, 2-2,

2-4,2-7
Remote NS/1 000 process,

E-5
Remote Process
Management, E-5
Remote process scheduling,

E-5
Request codes, 3-3
request parameter, 1-19, 3-34
Requesting a connection,

1-8,3-28, 3-31
result parameter, 3-5, 3-15

C program, 3-15
destO,3-40
FORTRAN program, 3-15
initoptO, 3~46
interrupt signal, 1-22
ipcconnectO,3-28
ipccontrolO, 3-33-3-34
ipccreateO, 3-37
ipcerrmsgO, 3-42
ipclookuPO, 3-48
ipcnameO, 3-51
ipcnamerase(), 3-54
ipcrecvO, 3-58
ipcrecvcnO, 3-64

ipcselectO, 3-68
ipcsendO, 3-76
ipcshutdownO, 3-80
optoverheadO, 3-83
Pascal program, 3-15
problem resolution, B-1
setnodenameO, 3-79

rlen parameter, 3-31, 3-33-3-35
RMOTE, 0-2, 0-9
rpmcreateO, E-5
RTE

s

flags, D-2, 0-8
source files, D-2, 0-8

sc _ syscall, 1-22
sc_syscall_action, 1-22
Scattered read, 3-13, 3-59
sdbound parameter, 3-67, 3-74,

E-11
selectO, 1-6, C-2
Send size, 3-30, 3-66
Sending and receiving data, 1-3,

1-17
setnodenameO, 3-46
SHORT INTEGER, 3-11
Shutting down a connection, 1-3,

1-23
SIG RETURN, 1-22
Signals, 1-22, E-4
size parameter, 3-46
Slave calls, D-3
sleepO,3-49
Socket, 1-3-1-4

descriptor, 3-37
maximum number, 2-5
multiple descriptors, 3-34
ownership, 1-7, E-3
registry, 3-81
sharing, E-3, E-10
shutdown, 2-10, 2-13, 3-82, E-4

Index-9

status information, 1-20
types, 3-3

socketkind parameter, 3-50,
B-3

ipccreateO, 3-36
ipcdestO, 3-39
ipclookupO, 3-48
problem resolution, B-2

socketname parameter, 3-5,
3-16

ipclookuPO, 3-47
ipcnameO,3-51
ipcnameraseO, 3-54

Software revision codes,
2-2-2-3

Source socket, 0-11
statO, 1-6
Stream mode, 1-17
Summary of NetlPC calls,

1-3
Synchronous

I/O, 3-61, 3-64, 3-77
mode, 1-18-1-19
time-out, 1-20
timer, 3-58
w. Asynchronous I/O, 3-77

Syntax conventions, 3-1, 3-17
System calls, C-1

T

tag parameter, 0-5
TCP, 3-57, C-1

checksum, 3-29, 3-65, E-5,
E-8, E-10

NSF MORE DATA,
3-75-3-76 -

protocol address, 2-12,
3-37-3-38

TELNET Virtual terminal
service, E-5

timeout parameter, 3-68,

Index-10

3-70,3-74
Timer, 1-19
Timing problems, 3-48
Transmission buffer, 1-19
Transmission control protocol,

1-4, 3-36, 3-39

U

uipc1ookupO, D-11
ulimitO, C-2
Unique NetIPC calls, E-7

AdrOf, E-7
IPCGet, E-7
IPCGive, E-7
OptOverHead, E-7

Upper ordinal bound, 3-67
Urgent data option, 2-13
User-written daemons, 1-8
Using flags in a C program, 3-6

v
VC connection

interprocess communication, D-4
ipcrecvO, 3-56, 3-59
ipcrecvcn(),3-63-3-64

VC socket, 3-70, E-3
exceptional, 3-69
interprocess communication, 0-11
ipcnameO, 3-52
ipcrecvcnO, 3-59, 3-63
ipcselectO, 3-70
ipcsendO, 3-77
NSC RECV THRESH RESET,

3-32 - -
NSR WOULD BLOCK, 3-59
readable,3-69 -
writeable, 3-69

VC socket descriptor, 1-7
ipcrecvcnO, 3-64
ipcselectO, 3-71

ipcshutdownO, 3-81
vcdesc parameter, 1-7

ipcconnectO,3-27-3-28
ipcrecvO, 3-56
ipcrecvcn(),3-63
ipcse1ectO, 3-71-3-72
ipcsendO, 3-73, 3-75

Vectored reading, 3-59
Virtual circuit connection,

D-11

w
wlen, 3-31, 3-34
Writable VC socket, 1-20
Write select, 3-70
Write threshold, 1-21, 3-32,

3-69
writeO, 1-6, C-2
writemap parameter, 3-68,

3-70-3-74
wrtdata parameter,

3-31-3-32, 3-34-3-35

Index-11

Printing History

New editions are complete revisions of the manual. The dates on the title page change
only when a new edition or a new update is published.

Note that many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product changes.
Therefore, do not expect a one-to-one correspondence between product updates and
manual updates.

Edition 1

Edition 2

. February 1991

.... July 1992

Who'" nc.VVL .. c.1 I -

.:~ PACKARD ,

Copyright © 1992
HewleU-Packard Company
Printed in USA 07/92 English

Customer Order No. Manufacturing No.
98194 .. 60532 98194-90032

Mfg. number is for HP internal use 01

11I ""I "1111

98194-90032

