
Developing CSUBs for HP BASICjUX 6.2

rli;- HEWLETT
a:~ PACKARD

HP Part No. E2040·90003
Printed in USA

Notice
The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP MAKES NO WARRANTIES OF ANY KIND WITH
REGARD TO THIS DOCUMENT, WHETHER EXPRESS OR IMPLIED.
HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
HP shall not be liable for any direct, indirect, special, incidental, or
consequential damages, whether based on contract, tort, or any other legal
theory, in connection with the furnishing of this document or the use of the
information in this document.

warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013.

Use of this manual and magnetic media supplied for this product are restricted.
Additional copies of the software can be made for security and backup purposes
only. Resale of the software in its present form or with alterations is expressly
prohibited.

Copyright © Hewlett-Packard Company 1987, 1988, 1989, 1990, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Copyright © AT&T Technologies, Inc. 1980, 1984, 1986

Copyright © The Regents of the University of California 1979, 1980, 1983,
1985-86

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California.

Printing History
First Edition - August 1991

iv

Contents

1. Introduction
Prerequisites
Notations Used in This Manual
When to Use CSUBs
The System Components.

2. Writing Pascal CSUBs
Steps for Creating a Pascal CSUB.

An Example: Finding the String
Step 1: Create a BASIC Program that Calls the CSUB
Steps 2 and 3: Write, Compile, and Debug the CSUB
Step 4: Generate a CSUB Object File
Step 5: Generate a BASIC PROG File (rmbbuildc)
Steps 6 and 7: LOAD and RUN the CSUB .

A Closer Look at Pascal CSUB Components
A Closer Look at Parameter Passing

Passing Parameters by Reference
Parameter Types

REAL
COMPLEX
INTEGER
Strings
I/O Paths
Arrays ..
Defining BASIC and Pascal Arrays
Dimensioning an Array
Redimensioning an Array
Declaring the Value Area of a String

Useful TYPE Declarations
Optional Parameters

1-1
1-2
1-3
1-4

2-1
2-3
2:.3
2-4
2-5
2-5
2-6
2-6
2-7
2-8
2-9

2-11
2-11
2-12
2-12
2-13
2-14
2-17
2-17
2-17
2-17
2-18
2-19

Contents .. 1

Accessing BASIC COM from a CSUB 2-20
Accessing Global Variables 2-22

A Closer Look at Linking CSUB Object Files. 2-22
U sing the Linker 2-22
Specifying the librmb.a Library . . . 2-23
Resolving External References 2-23

A Closer Look at Executing rmbbuildc 2-24
Procedure for Using rmbbuildc . . . 2-24

Step 1: Executing rmbbuildc . . . 2-24
Step 2: Entering a PROG File Name 2-25
Step 3: Naming CSUB Object Files 2-25
Step 4: Specifying CSUB Interfaces . 2-25

rmbbuildc Errors 2-28
A Closer Look at Managing CSUBs from BASIC 2-31

Loading CSUBs into a BASIC Program 2-31
Deleting CSUBs 2-32

Example of Deleting CSUBs . . 2-32
Handling CSUB Run-time Errors . 2-33

Trapping Errors 2-33
Reporting Errors to BASIC 2-34

Accessing System Resources 2-35
Allocating Dynamic Memory . . . 2-35
Simple Keyboard and Printer I/O 2-36
Device I/O 2-38
BASIC File I/O 2-38

3. Writing C and Assembly CSUBs
Steps for Creating a C and Assembly CSUB 3-1

An Example: Passing Parameters 3-2
Step 1: Create a BASIC Program that Calls the CSUB 3-3
Steps 2 and 3: Write, Compile, and Debug the C CSUB 3-3
Steps 2 and 3: Write, Compile, and Debug the Assembly

CSUB 3-4
Step 4: Generate a CSUB Object File 3-5
Step 5: Generate a BASIC PROG File (rmbbuildc) 3-5
Steps 6 and 7: LOAD and RUN the CSUB . 3-6

A Closer Look at C CSUB Components 3-6
A Closer Look at Parameter Passing 3-7

Contents-2

Passing Parameters by Reference
Parameter Types

REAL
COMPLEX
INTEGER.
Strings
I/O Paths
Arrays ..
Defining BASIC and C Arrays
Dimensioning an Array
Redimensioning an Array
Declaring the Value Area of a String

Useful type Declarations
Optional Parameters
Accessing BASIC COM from a CSUB

Defining a C Structure.
A Closer Look at Linking CSUB Object Files ..

U sing the Linker
Specifying the librmb.a Library . . .
Resol ving External References

A Closer Look at Executing rmbbuildc
Procedure for Using rmbbuildc

Step 1: Executing rmbbuildc . . .
Step 2: Entering a PROG File Name
Step 3: Naming CSUB Object Files
Step 4: Specifying CSUB Interfaces . .

rmbbuildc Errors
A Closer Look at M~naging CSUBs from BASIC

Loading CSUBs into a BASIC Program
Deleting CSUBs

Example of Deleting CSUBs .
Handling CSUB Run-time Errors

Trapping Errors
Reporting Errors to BASIC

Accessing System Resources
Allocating Dynamic Memory .
Simple Keyboard and Printer I/O
Device I/O

3-7
3-8

3-10
3-10
3-10
3-11
3-12
3-13
3-15
3-15
3-15
3-15
3-16
3-17
3-18
3-18
3-20
3-20
3-21
3-21
3-22
3-22
3-22
3-23
3-23
3-23
3-26
3-29
3-29
3-30
3-30
3-31
3-31
3-32
3-33
3-33
3-33
3-34

Contents-3

BASIC File I/O

4. Writing FORTRAN CSUBs
Steps for Creating a FORTRAN CSUB

An Example: Finding the String
Step 1: Create a BASIC Program that Calls the CSUB
Steps 2 and 3: Write, Compile, and Debug the CSUB
Step 4: Generate a CSUB Object File
Step 5: Generate a BASICPROG File (rmbbuildc)
Steps 6 and 7: LOAD and RUN the CSUB .

A Closer Look at FORTRAN CSUB Components
A Closer Look at Parameter Passing

Passing Parameters by Reference
Parameter Types

REAL ...
COMPLEX
INTEGER.
Strings
I/O Paths
Arrays ..
Defining BASIC and FORTRAN Arrays ..
Dimensioning an Array
Redimensioning an Array
Declaring the Value Area of a String

Optional Parameters
Accessing BASIC COM from a CSUB .

U sing the basic_com Routine
Defining a FORTRAN COM Block Structure

A Closer Look at Linking CSUB Object Files. .
U sing the Linker
Specifying the librmb.a Library
Resolving External References

A Closer Look at Executing rmbbuildc
Procedure for Using rmbbuildc

Contents-4

Step 1: Executing rmbbuildc
Step 2: Entering a PROG File Name
Step 3: Naming CSUB Object Files
Step 4: Specifying CSUB Interfaces

3-35

4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-8
4-8

4-10
4-10
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-17
4-18
4-18
4-19
4-19
4-20
4-20
4-20
4-20
4-21

rmbbuildc Errors
A Closer Look at Managing CSUBs from BASIC

Loading CSUBs into a BASIC program
Deleting CSUBs

Example of Deleting CSUBs .
Handling CSUB Run-time Errors

Trapping Errors
Reporting Errors to BASIC

Accessing System Resources
Simple Keyboard and Printer I/O
Device I/O ...
BASIC File 1/ a

5. CSUB Prototyper Utility
Why Use the CSUB Prototyper?

Creating CSUBs
Calling CSUBs Dynamically .

U sing the Prototyper to Create a CSUB
Writing CSUB Routines in C

4-23
4-26
4-26
4-27
4-27
4-28
4-28
4-29
4-29
4-30
4-31
4-31

Step 1: Using the CSUB Prototyper in a BASIC program .

5-1
5-1
5-3
5-3
5-3
5-4
5-5
5-6
5-7
5-7
5-8
5-8
5-8
5-9
5-9

Step 2: Exiting BASIC to HP-UX
Step 3: Writing C Subroutines
Step 4: Generating a Relocatable Object File. .
Step 5: Running the BASIC Program

Deciding Whether or Not to Create a Standard CSUB
Reasons for Choosing the First Option. .
Reasons for Choosing the Second Option .

Passing Parameters
Parameter Passing Conventions .
Mapping of Parameter Types .

Handling Prototyper Errors
5-11
5-14

Contents-5

6. Porting Pascal Workstation Assembly CSUBs
Prerequisites 6-1
Using atrans 6-2

Copying a Pascal Workstation CSUB 6-2
Executing the atrans Command. 6-3
Modifying the Translated CSUB 6-5

What Was Changed? 6-6
Completing Your Assembly CSUB 6-7

Copy the Calling BASIC Program to HP -UX 6-7
Execute Steps 4 through 7 of the Pascal CSUB Procedure 6-8

A. File Access Reference
FAL_CLOSE A-2
FAL_CREATE . . . A-4
FAL_CREATE_ASCII . A-5
FAL_CREATE_BDAT . A-6
FAL_EOF A-7
FAL_LOADSUB_ALL . A-9
FAL_LOADSUB_NAME. . . A-I0
FAL_OPEN . . A-II
FAL_POSITION A-13
FAL_PURGE A-15
FAL_READ . • . A-16
FAL_READ_BDAT_INT A-18
FAL_READ_STRING . . . A-20
FAL_WRITE. A-22
FAL_WRITE_BDAT_INT . . A-24
FAL_ WRITE_STRING . A-26

B. Keyboard and CRT 110 Reference
CLEAR_SCREEN B-2
CONTROLCRT B-3
CONTROLKBD . . . B-4
CRTREADCHAR . B-5
CRTSCROLL B-6
CURSOR . . . B-8
DISP _AT _XV B-I0
READ_KBD B-12

Contents-6

SCROLLDN ..
SCROLLUP .
STATUSCRT.
STATUSKBD
SYSTEMD ..

Index

B-13
B-14
B-15
B-16
B-17

Contents-7

Figures

2-1. REAL, INTEGER, or COMPLEX Array Dimension Record 2-15
2-2. String Array Dimension Record 2-16
3-1. REAL, INTEGER, or COMPLEX Array Dimension Structure 3-13
3-2. String Array Dimension Structure. 3-14
4-1. REAL, INTEGER, or COMPLEX Array Dimension Record 4-11
4-2. String Array Dimension Record 4-12

Contents-8

Tables

1-1. CSUB Utilities Provided 1-4
2-1. Equivalent Pascal and BASIC Parameter Types . 2-10
2-2. rmbbuildc Errors 2-29
2-3. Error Numbers 2-34
2-4. Keyboard and CRT I/O Routines 2-37
2-5. File Access Routines 2-39
3-1. Equivalent C and BASIC Parameter Types 3-9
3-2. rmbbuildc Errors 3-27
3-3. Keyboard and CRT I/O Routines 3-34
3-4. File Access Routines 3-36
4-1. Equivalent FORTRAN and BASIC Parameter Types 4-7
4-2. rmbbuildc Errors 4-24
4-3. Keyboard and CRT I/O Routines 4-30
4-4. File Access Routines 4-32
5-1. Comparison of CSUB Creation Procedures 5-2
5-2. Mapping Between Actual and Formal Parameters of a CSUB. 5-11
5-3. Mapping Between BASIC Return Value Types and Prot.otyper

execute CSUBs or Functions 5-12
5-4. Prototyper CSUB Errors. . . . 5-14
6-1. Comparison of Program Segments 6-6

Contents-g

1
Introduction

A compiled subprogram (CSUB) is a routine written in Pascal, C, FORTRAN,
or assembly language on HP- UX and transformed into a subprogram callable
from BASIC. Either a single CSUB or a library of CSUBs may be generated
using this technique. In BASIC, the CSUB is loaded into memory using the
LOAD or LOAD SUB command and called like any other BASIC subprogram.

Prerequisites
This manual assumes you are familiar with the BASIC language, editor, data
types, and subprograms.

To create CSUBs, you should also know how to use HP-UX to write and
compile programs. This includes:

• a good working knowledge of an editor such as vi.

• an understanding of the different compilers and assemblers of the CSUB
languages that you are going to be using (pc for Pascal, cc for C, fc for
FORTRAN, and as for assembly).

To link the necessary modules and libraries into a CSUB object file, you should
understand the linking procedures associated with the Id command.

Learn these things before proceeding with this manual.

Introduction 1-1

1

Notations Used in This Manual
The following are notations you should be familiar with:

literal

variable

This font is used for listing example programs, specifying
file names, CSUB programming language variables and
types, and output from commands. It is also used for
specifying computer input that you must type in character
for character. For exam pIe it you are told to type rmb
(Return), you would type the characters rmb and press the
(Return) key.

This font is used to specify variables for which you must
supply a value. For example,

MSI "dirll

is a command to change directories (explained later). The
variable "dir" is a directory whose name you have to supply
for the command to work.

KEYWORD This font indicates keywords that are used in BASIC
commands or statements. For example, LOAD SUB is
the BASIC command used to load compiled subprograms
(CSUBs) into memory.

When the term BASIC is used in this manual, it is referring to the
implementation of BASIC on HP-UX.

1·2 Introduction

When to Use CSUBs
CSUBs are used to fill a number of needs:

• The compiled or assembled routines are in 68000-family machine code
and have a speed advantage over BASIC interpreted code. Computational
rou tines are faster.

• CSUBs are in object code on the disk, and therefore, source code does not
have to be released with them. This provides a greater measure of security
for programs employing them.

• CSUBs are useful when libraries of routines are needed for both the CSUB
language and BASIC environments. By writing the routines in Pascal, for
example, you only need to write the routine once as a CSUB rather than
once in BASIC and once in Pascal.

For example, when a set of benchmark programs were run, performance
using CSUBs was far superior to BASIC. In these benchmarks, REAL and
INTEGER loops, transcendental (e.g., functions such as sin (x) , log(x), etc.)
and non-transcendental math, quick and shell sorts, and matrix multiplication
were compared. For the quick sort, the CSUB ran many times faster than a
similar BASIC routine. For transcendental math, the CSUB was found to be
marginally faster.

The price paid for this speed is the size of the routines. CSUB code will always
be larger than comparable BASIC code. The reason for this size increase is
that BASIC source code is represented internally in a tokenized RPN (Reverse
Polish Notation) form. This results in spa.ce savings, even compared against
the binary code of a CSUB.

Introduction 1-3

1

The System Components
The CSUB utility consists of several different system components, a library, an
include file, and a program.

The libr<;try, librmb. a, contains the necessary code to link CSUB code with
BASIC and any CSUB utilities provided.

Table 1·1. CSUB Utilities Provided

File Contents

csfa.o miscellaneous BASIC file I/O routines

kbdcrt.o miscellaneous BASIC keyboard and crt I/O routines

csubdecl.o useful parameter type declarations for Pascal CSUBs

The include file, csubdecl.h, contains useful parameter type declarations for C
language CSUBs.

The program, rmbbuildc, interactively prompts you for information about the
subprograms (CSUBs) being generated. It accepts a fully linked CSUB object
file and generates as output a BASIC PROG file.

1·4 Introduction

2
Writing Pascal CSUBs

This chapter covers the process of writing Pascal CSUBs. When it is
appropriate, information on porting existing CSUBs from Pascal Workstations
to HP- UX is also included.

When you are developing a system that involves the use of CSUBs, you should:

• write the BASIC program.

• determine what the CSUB should do, the parameters to be passed, and
which variables should be accessible (global) to both the BASIC program and
the CSUB.

• develop the CSUB; a listing of the BASIC program can be very helpful as
reference during this task.

Steps for Creating a Pascal CSUB
The following steps present an overview of the process needed to create a
CSUB and the results of those steps. Some porting information is also included
(for those who already have Pascal vVorkstation CSUBs written). The CSUB
related steps will be described in detail in later sections.

1. Enter BASIC, create and store the program that will call the CSUB. This
program will contain CALLs to the CSUB, but the latter need not be
implemented as it will be loaded later. You only need to decide what the
subprogram will do and design the interface (parameters, COM, etc.)
between BASIC and the CSUB.

2. Leave BASIC, enter HP- UX, and write the CSUB. You might, for example,
use the vi editor to create the CSUB. See the sections "A Closer Look at
Pascal CSUB Components" and "A Closer Look at Parameter Passing"

Writing Pascal CSUBs 2·1

2

2
for details on how to organize your Pascal modules and define your CSUB
parameters.

3. Compile and debug the CSUB as much as possible by writing a Pascal test
program. You may want to use the Pascal debugger, pdb, for this testing
task.

If you are porting an existing CSUB module, you will likely get compiler
errors because of invalid compiler directives or missing libraries. These
errors will necessitate some changes to the source code of the modules. For
a list of the compiler directives supported by the HP- UX Pascal compiler
and for the procedure on how to build libraries, refer to the "lIP Pascal
Language Reference" manual. You should also see the "Specifying the
librmb. a Library" section for additional information on CSUB libraries.

Before attempting to execute any ported CSUB modules, carefully read the
sections "A Closer Look at Parameter Passing" and "Accessing System
Resources" for differences in the CSUB parameter types and the system
calls supported. As examples of notable differences, a Pascal REAL type in
HP-UX is now a 32-bit quantity, and the Pascal Workstation I/O library is
no longer available from CSUBs (use HP-UX's Device I/O Library (DIL)
instead).

4. Use the Id command to generate a fully linked relocatable object file
containing all the CSUBs and any necessary HP- UX library support
routines. For example,

Id -rd -a archive csub.o -u _printf -lrmb -0 csub

would create a fully linked relocatable object file called csub using the
compiled file csub. 0 and the library librmb. a. See the section "A Closer
Look at Linking CSUB Object Files" for details.

5. Execute rmbbuildc and answer its prompts. This program generates the
final BASIC PROG file. See the section "A Closer Look at Executing
rmbbuildc" for details on how to answer the prompts.

6. Enter BASIC and load the BASIC PROG file from the keyboard or from the
BASIC program using LOADSUB. This statement generates the necessary
statements in your BASIC program to call CSUBs. See the section "A
Closer Look at Managing CSUBs from BASIC" for details.

2 .. 2 Writing Pascal CSUBs

7. RUN the BASIC program which calls the desired CSUBs using the BASIC
CALL or implied CALL statement.

An Example: Finding the String

This section goes through each step of creating an example Pascal CSUB and
how the CSUB is used in a BASIC program. All files used in the HP-UX
environment are read from and written to the current directory. In the BASIC
environment, the CSUB is loaded from the MASS STORAGE IS device
(directory) .

This simple program fills an array of string variables and then calls a Pascal
CSUB which determines if a particular string is found in the array. The BASIC
program keeps track of how many valid strings are contained in the array and
passes that information to the Pascal CSUB. If the INTEGER variable Yes
comes back with a value other than zero, it comes back pointing to the array
element containing the matching string.

Step 1: Create a BASIC Program that Calls the CSUB

Enter BASIC, edit and store this program in a file named FSTR. This file can
be found in the directory called /usr/lib/rmb/demo.

10 LOADSUB ALL FROM "FIND_STRING"
20 DIM File$(1:10) [20]
30 DIM Str$[20]
40 INTEGER Num_strs,Yes
50 File$(1)="HELLO - HOW ARE YOU?"
60 File$(2)="I AM GREAT"
70 File$(3)="WHAT IS YOUR NAME?"
80 File$(4)="WHERE ARE YOU GOING?"
90 File$(5)="FAVORITE COLOR?"
100 File$(6)="I LIKE YOU"
110 Num_strs=6
120 Str$="WHERE ARE YOU GOING?"
130 Find_string(File${*),Str$,Num_strs,Yes)
140 IF Yes<>O THEN PRINT "The string was found in number";Yes
150 IF Yes=O THEN PRINT "The string was not found"
160 DELSUB Find_string
170 END

Writing Pascal CSUBs 2-3

2

2
Steps 2 and 3: Write, Compile, and Debug the CSUB

Enter HP-UX, edit, compile, and debug the following module called test and
save it in the file named string. p. This file can be found in the directory
called /usr/lib/rmb/demo.

MODULE test;

$SEARCH '/usr/lib/librmb.a'$

IMPORT csubdecl;

EXPORT
TYPE

string_type = RECORD
len shortintj
c : PACKED ARRAY [1 .. 20] of CHARj

END;
str_array = ARRAY [1 .. 10] of string_typej

PROCEDURE find_string (file_dim
VAR filex
str_dim

IMPLEMENT
PROCEDURE find_stringj

VAR i, j : INTEGERj
BEGIN

yes := OJ
i := 1 j

VAR strx
VAR num_strs
VAR yes

dimentryptr;
str_arrayj
dimentryptrj
string_typej
bintvaltypej
bintvaltype)j

WHILE (i <= num_strs) AND (yes = 0) DO
BEGIN

IF filex[i].len = strx.len THEN
IF strx.len = 0 THEN yes := i
ELSE

BEGIN
j := 1 j
WHILE (j<filex[i].len) AND (filex[i].c[j]=strx.c[j])

DO j := j + lj
IF (filex[i].c[j] = strx.c[j]) THEN yes := ij

ENDj
IF yes = 0 THEN i := i + lj

ENDj

2·4 Writing Pascal CSUBs

END;
END.

Step 4: Generate a CSUB Object File

Link the code file of the Pascal module with the BASIC CSUB library
librmb. a to generate a fully linked relocatable CSUB object file. The HP-UX
Id command should be used for this purpose, as follows:

ld -rd -a archive string.o -u _printf -lrmb -0 string

Step 5: Generate a BASIC PROG File (rmbbuildc)

Execute the rmbbuildc program and answer the prompts as shown below.
Notice that a stream file is generated by the response to the first prompt; you
can use this file the next time you execute the program (Le. rmbbuildc <
stream) to remove the need to interactively answer the prompts again.

RMB-UX Compiled Subprogram File Generator (Version 1.1)

Stream file name: stream
Output BASIC PROG file: FIND_STRING
CSUB object file names(s): string
Module name: test

CSUB name: find_string
Parameter name: filex$

Parameter type is string
Is this an array? (y/n): y
Is this an optional parameter? (y/n): n

Parameter name: strx$
Parameter type is string

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: num_strs
Parameter type (I/R/C for Integer/Real/Complex): i

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: yes
Parameter type (I/R/C for Integer/Real/Complex): i

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: (Return)
Is there COM in this CSUB? (y/n): n

CSUB name: (Return)

Writing Pascal CSUBs 2-5

2

2
Are there any more modules? (y/n): n

Steps 6 and 7: LOAD and RUN the CSUB

In this example, FIND_STRING is automatically loaded from the BASIC
program. Therefore, you only need to re-enter the BASIC system, LOAD
"FSTR ", and RUN the program. The ou tpu t should be:

The string was found in number 4

A Closer Look at Pascal CSUB Components
Certain Pascal concepts and constructs should be understood so that you
can apply them in CSUBs. The CSUBs are contained in a module which
can be compiled independently. The EXPORT section of the module defines
the procedures that will be CSUBs. The IMPORT statement names all other
modules on which the present one depends. If one of the modules specified
is not found in the file of the module, the Pascal compiler will then search
library files to satisfy the IMPORT declarations; the library files to be searched
are specified by the $SEARCH$ directive. Code for the CSUBs is found in the
IMPLEMENT section of the module, as shown in the example below.

MODULE test;

$SEARCH '/usr/lib/librmb.a'$

IMPORT csubdecl;

EXPORT
PROCEDURE find_string (file_dim dimentryptr;VAR strx: bstringvaltype);

IMPLEMENT
PROCEDURE find_string;
BEGIN

END;
END.

The Pascal procedures that will become CSUBs should be included in a Pascal
EXPORT section. Other routines may be included in the IMPLEMENT section,

2-6 Writing Pascal CSUBs

but unless their names are included in the EXPORT section and specified to the
rmbbuildc program, the routines will not show up as sepa.rate CSUB entry
points. The following example shows how two Pascal procedures are exported
to make them available as CSUBs.

$SEARCH '/usr/lib/librmb.a'$

IMPORT csubdecl;

EXPORT
PROCEDURE sqrit(x: binteger_parm; y: breal_parm);
PROCEDURE readit(z: binteger_parm);

Importing the module csubdecl allows the use of the types binteger _parm
and breal_parm, as well as several others. These are used to simplify
parameter passing from BASIC.

Declarations of types and procedures from other modules may also be imported
into the CSUB module. The libraries containing those modules should then
also be listed in the $SEARCH$ directive.

A Closer Look at Parameter Passing
In order to be useful, a CSUB needs the ability to exchange data with
the calling BASIC program. This section describes the different means of
performing this data exchange. The primary method consists of defining the
CSUB parameters to match those pa.ssed by BASIC. This method requires
special attention to the different parameter types and formats of BASIC
variables. The second method for a CSUB to exchange data with a BASIC
program is via COM blocks. Again, this method necessitates the special
handling of the variables defined in the blocks, according to their type and
format.

Writing Pascal CSUBs 2-7

2

2 Passing Parameters by Reference

As far as Pascal is concerned, BASIC variables are always passed to a CSUB by
reference. That is, a pointer to the actual value is passed. When you think you
are passing a parameter by value, BASIC actually makes a copy of the value
and passes a pointer to it. When you return to the calling program, the copy is
destroyed. Pascal V AR parameters are passed by reference, so they can be used
to receive BASIC parameters passed by reference.

For example, the following program passes a parameter by reference to obtain a
pointer to a REAL variable real var.

PROGRAM obvious;
VAR realvar: REAL;

PROCEDURE p(VAR r: REAL);
BEGIN

r:=-31178.0 ;
END;

BEGIN
p(realvar); {Compiler will emit code to pass a pointer}

END.

The following program accomplishes the same thing with a parameter passed
by value. It passes the pointer to real var by value.

PROGRAM not_so_obvious;
TYPE real_ptr = AREAL;
VAR realvar: REAL;

PROCEDURE p2(rp: real_ptr); {Pass by value}
BEGIN

rpA :=-31178.0;
END;

BEGIN
p2(ADDR(realvar»;

END.

{Must use the dereference symbol IIAII}

{Compiler passes the pointer by value}

The two key points to remember are:

• BASIC always passes a pointer to a variable.

2·8 Writing Pascal CSUBs

• BASIC has no idea if a user-written CSUB has been properly coded to use
that pointer.

Note that errors will occur if this distinction is overlooked.

Parameter Types

The BASIC parameter types are not necessarily the same as their Pascal
counterparts. It is important that the type of the parameters of a CSUB be
correct so that BASIC and the CSUB can interface properly. This section will
explain the types in detail. You should refer to the module csubdecl for the
definition of the types used below. The definitions may be used to declare
either reference or value parameters. The choice is dependent mainly on
personal programming style.

The following table provides you with a quick reference to equivalent Pascal
and BASIC parameter types.

Writing Pascal CSUBs 2·9

2

2
Table 2·1. Equivalent Pascal and BASIC Parameter Types

BASIC Parameter Type

REAL

INTEGER

COMPLEX

array_name[lower : upper, etc.]
of one of the above numeric parameter
types
or
string_array$(lower: upper,
etc.) [num_chars]

2·10 Writing Pascal CSUBs

Pascal Parameter Type

IMPORT csubdecl:
brealvaltype (by reference)
or
breal_parm (by value)

IMPORT csubdecl:
bintval type (by reference)
or
binteger_parm (by value)

IMPORT csubdecl:
bcmplxval type (by reference)
or
bcomplex_parm (by value)

IMPORT csubdecl:
Two parameter types
passed for strings:
• dimentryptr
• bstring_parm

IMPORT csubdecl:
Two parameter types
passed for arrays:
• dimentryptr
• ARRAY [lower .. upper, etc.] of
one of the above numeric or
string parameter types.

IMPORT csfa:
fcb_type (by reference)
or
fcb_ptr_type (by value)

REAL

A variable defined as a REAL in Pascal is not the same as a BASIC REAL.
The latter is a 64-bit quantity while a Pascal REAL variable is only a 32-bit
quantity. It is thus necessary to use the breal val type type for a BASIC
REAL parameter. For exam pIe,

PROCEDURE x (VAR y: brealvaltype);

is exactly the same as:

PROCEDURE x (y_ptr: breal_parm);

because breal_parm is defined as a pointer to breal val type.

If you are porting an existing Pascal Workstation CSUB module, you should
review all CSUBs with REAL parameters since those parameters are no longer
64-bit quantities, as they were on the Pascal Workstation.

COMPLEX

A variable defined in BASIC as COMPLEX is a floating point value with real
and imaginary parts. There is no built-in COMPLEX type in Pascal.

A Pascal declaration for a COMPLEX value would be:

TYPE
bcmplxvaltype = RECORD

re brealvaltype;
im : brealvaltype;

END;

Thus, you could use:

IMPORT csubdecl; {Exports the type bcmplxvaltype}

EXPORT PROCEDURE x (VAR y: bcmplxvaltype); {Pass by reference}

or use:

IMPORT csubdecl;

EXPORT PROCEDURE x (y_ptr: bcomplex_parm); {Pass pointer by value}

because bcomplex_parm is defined as a pointer to bcmplxvaltype. If the VAR
method is used, the values are accessed as y. re and y. im. If the latter method
is used, the values are accessed as y _ptr- . re and y:.ptr- . im.

Writing Pascal CSUBs 2-11

2

2
INTEGER

A variable defined as an INTEGER in Pascal is not the same as a BASIC
INTEGER. The latter is a 16-bit quantity while a Pascal INTEGER variable is
only a 32-bit quantity. Therefore, to receive a BASIC INTEGER, you should
either use:

IMPORT csubdecl; {Exports the type BINTVALTYPE}

EXPORT PROCEDURE x (VAR y: bintvaltype); {Pass by reference}

or use:

IMPORT csubdecl;

EXPORT PROCEDURE x (y_ptr: binteger_parm); {Pass pointer by value}

because binteger _parm is defined as a pointer to bintval type.

Strings

Strings are different in BASIC and Pascal, both in their structure and the
way they are passed. The structure of a variable of the Pascal type STRING is
a one-byte length field followed by the characters of the string. The BASIC
string has a two-byte length field followed by its characters.

BASIC passes its strings as two parameters:

• The first parameter is a pointer to a dimension record. This record contains
information about arrays, strings, their maximum lengths, and their lower
and upper bounds. It is expressed in Pascal as a variant record of type
dimentry while its pointer type is dimentryptr. For the case of a scalar
(non-array) string, the only field in this record is a short integer, a 16-bit
quantity, expressing the maximum length of the string.

• The second parameter is a pointer to the string value area. This area
contains the actual length of the string and its characters. The type of the
pointer is bstring_parm.

An example of how this would look in a Pascal module would be:

MODULE example;
IMPORT csubdecl;

EXPORT

2-12 Writing Pascal CSUBs

PROCEDURE getstring (dim_len: dimentryptr; b:bstring_parm);
IMPLEMENT

PROCEDURE getstring;
VAR

s:STRING[80];
i:shortint;

BEGIN
s:='a string';
IF STRLEN(s»dim_len-.maxlen THEN SETSTRLEN (s, dim_len-.maxlen);
b-.len:=STRLEN(s);
FOR i:=1 TO b-.len DO b-.c[i]:=s[i];

END;
END.

The above procedure copies a Pascal string into a BASIC string. From this
example, you should note how:

• the string parameter is declared,

• an explicit check has been made to insure that the length of the Pascal string
is not greater than the maximum length of the BASIC string,

• the Pascal string value is put into the BASIC string value area.

Although a CSUB will receive two parameters for a BASIC string, as far as
BASIC is concerned, there is only one actual parameter to be passed, as shown
below.

10 DIM Str$ [80]
20 CALL GETSTRING(Str$)
30 PRINT Str$
40 END

1/0 Paths

An I/O path is a block of storage used to keep track of the state of a file or
I/O device. The size of this block is 190 bytes. See the section "BASIC File
I/O" for details on how you would use an I/O path as a file control block with
the file access library (fal) routines.

The following example shows how to receive an I/O path parameter from
BASIC. The module csfa in the library librmb. a contains the necessary type

Writing Pascal CSUBs 2·13

2

2
declarations to pass I/O path parameters to Pascal. The same parameters can
then also be used with the fal routines.

$SEARCH '/usr/lib/librmb.a'$

IMPORT csfa; {Exports the type fcb_ptr_type}

EXPORT PROCEDURE x (y_ptr: fcb_ptr_type); {Pass pointer by value}

The typical use of the parameter y _ptr in a CSUB would then take the form:

fal_open ('MyFile', y_ptr);

It is also possible to use:

PROCEDURE x (VAR y : fcb_type);

but this requires the Pascal function ADDR:

fal_open (ItMyFile lt
, ADDR(y»;

when using the I/O path.

Arrays

Arrays are passed as two parameters:

• a pointer to the dimension record. The fields in the dimension record, in this
case, are more complicated. They are also defined by the dimentry record
declaration .

• a pointer to the value area.

2·14 Writing Pascal CSUBs

The actual dimension records for the REAL, INTEGER, COMPLEX, and
string arrays are represented by Figures 2-1 and 2-2.

dims

totalsize

low(n)

lengthen)

maxlen

is a byte containing the number of dimensions

is the number of bytes in the entire array

is the lower bound of the nth dimension

is the number of elements in the nth dimension

is the maximum length of any element in a string array.

o

2
dims I

totalsize
4

low(1)
6

8
length(1)

•
•

24 •
low(6)

26

28
length(6)

Figure 2·1.
REAL, INTEGER, or

COMPLEX Array Dimension
Record

Writing Pascal CSUBs 2·15

2

2 o
dims 1 2

totalsize
4

maxlen
6

low(1)
8

length(1)
10

•
•
•

26

28
low(6)

30
length(6)

Figure 2·2. String Array Dimension Record

An example of receiving an INTEGER array from BASIC might be:

EXPORT
TYPE

arrint = ARRAY [1 .. 10] OF bintvaltype; {actual values, not pointers}

PROCEDURE x (d: dimentryptr; VAR arr: arrint);

Again, this is a single parameter in BASIC. So, in this example, BASIC would
send an array defined as:

INTEGER Arr(1:10)
CALL X (Arr (*»

2·16 Writing Pascal CSUBs

Defining BASIC and Pascal Arrays

The BASIC and Pascal arrays should be defined the same way. This is not
mandatory, but helpful. You should remember that an array with bounds [1..5]
is the same as an array with bounds [6 .. 10]; both are five-element arrays. If
a BASIC array defined as INTEGER Arr(6: 10) is passed to a CSUB array
parameter defined as ARRAY [1 .. 5] OF BINTVALTYPE;, the sixth element in the
BASIC array will correspond to the first element in the Pa.scal CSUB array.
Array elements are stored in row-major order in both BASIC and Pascal.

Dimensioning an Array

The DIM statement should be used in conjunction with the a.ppropriate Pascal
array declaration to define the space for the BASIC array. The REDIM
statement does not affect the size of that space. It does however affect the
BASE and SIZE functions and the length and low values in the dimension
record. Note that a CSUB should therefore check the dimension record of an
array parameter to find its current dimensions.

Redimensioning an Array

If you use the REDIM statement on a multi-dimensional BASIC array, the
Pascal declaration of the array will be invalid the next time the array is
accessed in a CSUB. Therefore, if you accessed arr(2,3) in Pascal, you would
not get the same value as Arr(2 ,3) from BASIC. To be immune from the
effects of REDIM, you should declare a multi-dimensional BASIC array as a
one-dimensional array in Pascal and do explicit subscript calculations based on
the information in the dimension record of the array.

Declaring the Value Area of a String

You should also note that the type bstringval type should not be used in
specifying the value area for a string array since it defines a string with the
maximum allowable number of characters. Instead, you should declare a
different type, with the maximum allowable number of characters in the array
strings set equal to the dimension of the equivalent BASIC string array. Thus,
for the following BASIC definition of a string array,

DIM S$(1:10) [20]

you would define the type for a Pascal string in the array as:

Writing Pascal CSUBs 2·17

2

2
TYPE

string_type = RECORD
len shortint;
c : PACKED ARRAY [1 .. 20] of CHAR; {Same maximum length as BASIC}

END;

Useful TYPE Declarations

The module CSUBDECL defines useful types which may be used in the
declaration of Pascal CSUB parameters. These declarations are listed below.

module csubdecl;

export
const

stringlimit = 32767;
maxdim = 6;
maxarraysize = 16777215;

type
byte = O .. 255;
shortint = -32768 .. 32767;
bintvaltype = shortint;
brealvaltype = longreal;

bcmplxvaltype = record
re brealvaltype;
im : brealvaltype;

end;

bstringvaltype = record
len shortint;

{maximum length of a string}
{maximum dimensions in an array}
{maximum bytes in an array}

{two byte integer}
{BASIC integer}
{BASIC real}

{BASIC complex type}

{BASIC string type}

c : packed array[l .. stringlimit] of char;
end;

valuetype = (breal, binteger, bstring, bsubstring,
batname, bcomplex, spare2, spare3);

dimtype = O .. maxdim;

boundentry = record
low: shortint;
length: shortint;

end;

2·18 Writing Pascal CSUBs

{describes array bound}
{lower limit}
{number of elements}

boundtype = array[l .. maxdim] of boundentry; {array bounds}

dimentry = packed record
case dimtype of

0: (maxlen: shortint);
lt2t3t4t5t6:

(dims: byte;
totalsize : O .. maxarraysize;
case valuetype of

{dimension record structure}

{string scalar}
{array}
{number of dimensions}
{total size of an array}

breal t binteger t bcomplex: {numeric array}
(bound: boundtype); {dimension boundaries}

bstring: {string array}
(stringarray : packed record

maxlen : shortint; {max string length}
bound : boundtype; {dimension boundaries}

end))
end;

dimentryptr = Adimentry;
binteger_parm = Abintvaltype;
breal_parm = Abrealvaltype;
bcomplex_parm = Abcmplxvaltype;
bstring_parm = Abstringvaltype;

Optional Parameters

{pointer to dimension record}
{pointer to BASIC integer}
{pointer to BASIC real}
{pointer to complex number}
{pointer to BASIC string}

You can declare some or all parameters of a CSUB as optional through
responses to rmbbuildc. Optional parameters are those which are not required
in the parameter list of the calling code. In a Pascal CSUB, however, there
is no distinction between required and optional parameters as both types of
parameters have to be listed in the declaration of the CSUB. See the section
"Subprograms" in the "BASIC Programming Techniques" manual for more
information about optional parameters.

BASIC will pass a NIL pointer to the CSUB when one of its parameters that
has been declared as optional is omitted. The CSUB should therefore always
make an explicit NIL check before trying to use the value of an optional
parameter. Otherwise, a run-time error may occur if the CSUB was compiled
with the option $RANGE ON$.

This NIL check can be performed in two ways. For example, if the BASIC
declaration of a CSUB is:

Writing Pascal CSUBs 2·19

2

2
100 CSUB My_csub(REAL R, OPTIONAL REAL Opt)

the variable Opt will have an address of NIL if it is not passed. In Pascal, the
CSUB can either look like:

PROCEDURE my_csub(VAR required,optional: brealvaltype)j
BEGIN

IF ADDR(optional)<>NIL THEN {It was passed in}

or be defined as:

PROCEDURE my_csub(requiredtoptional: breal_parm);
BEGIN

IF optional<>NIL THEN {It was passed in}

Accessing BASIC COM from a CSUB

Another way for a BASIC program and a Pascal CSUB to interchange data
is via BASIC COM blocks. In order to access a BASIC COM block from a
Pascal CSUB, you should use the function find_com declared in the module
csubdecl. When passed the name of the COM block that is to be accessed,
this function will return a pointer to the beginning of the value area of that
block. Since upper and lower case letters are significant in a COM block name,
they should be specified the same way BASIC does. To access an unlabeled
COM block, you should specify a string with a single blank as the COM block
name. When find_com cannot find the COM block requested, it returns a NIL
pointer.

In order to read and store values in the variables of a COM block, you will
need to define a Pascal record to map the variables into members of the record.
This will require you to know the layout of the block in advance since there is
no way of determining this layout from the Pascal CSUB at run-time.

In defining the Pascal record for accessing a COM block, you should know that
the order of the members in the record should be the opposite from that of
the variables in the block. For example, the first variable in the COM block
should be mapped into the last member of the record. You should also know
that there is nothing to prevent you from inadvertently corrupting the COM
block by writing beyond its boundaries or by storing invalid values.

Also, you should note that only the value area of BASIC strings and arrays
are stored in a COM block. Therefore, you should omit the specification of
the dimension record for those variables in the Pascal record. Finally, you

2-20 Writing Pascal CSUBs

should follow the same restriction previously mentioned for CSUB string array
parameters in specifying the bounds of string arrays in COM blocks.

This is an example of accessing a BASIC COM block defined as:

COM /Numl/ INTEGER A,B(1:5),REAL C,D$[10]

To access this block from a CSUB, you could use:

$SEARCH '/usr/lib/librmb.a'$

IMPORT csubdeclj
EXPORT PROCEDURE x ...

IMPLEMENT
PROCEDURE x ...
TYPE

strtype = RECORD
len: shortintj
c : PACKED ARRAY[1 .. 10] of CHARj
ENDj

comtype = PACKED RECORD
d: strtypej {Do not use bstringvaltype!}

VAR

c: brealvaltypej
b: PACKED ARRAY [1 .. 5]
a: bintvaltypej
ENDj

comptr : ~comtypej

vala : bintvaltypej

BEGIN

OF bintvaltypej
{Note the reverse order of the members}

comptr:=find_com('Numl')j {Observe same case of letters as BASIC does}
vala:=comptr~.aj

A COM block is subject to being moved in memory at RUN, LOAD, and GET
time. Therefore, to guarantee that you always get the current location of a
block, you should not remember its address in a CSUB but always use the
function find_com instead. Similarly, you should not attempt to remember the
address of a variable defined in a COM block.

Writing Pascal CSUBs 2·21

2

2 Accessing Global Variables

All global variables declared in Pascal modules linked in CSUB object files
are allocated in one contiguous area of memory. Previous implementations of
BASIC provided the ability to access this area of memory from BASIC via a
COM block. This feature is not supported in this implementation of BASIC
because this area of memory is no longer allocated in a COM block.

A Closer Look at Linking
CSUB Object Files
After thoroughly testing your CSUBs in a Pascal program, you are now ready
to generate a CSUB object file. This object file brings together the CSUB
modules and the necessary libraries to satisfy the external references of those
modules.

Using the Linker

The HP-UX linker can be used to generate a fully linked, relocatable CSUB
object file suitable for input to the rmbbuildc program. The syntax for linking
is as follows:

Id -rd -a archive csub_modules -u _printf -lrmb [other_libraries] -0 csub_obi_file

where:

-rd

-a archive

-u _printf

are the options to retain relocation information in the
output file for subsequent re-linking and to force the
definition of common storage.

tells the loader to use archive libraries instead of shared
libraries.

are the. 0 files generated by the Pascal compiler. They
contain the code for CSUBs and should always be
followed in the above command line by the library
-lrmb.

links needed object files.

2-22 Writing Pascal CSUBs

other_libraries are libraries that are required to resolve all the references
not satisfied by librmb. a; they may be your own or
HP-UX libraries.

takes the output of the Id command and sends it to the
file csub_obj_file.

Specifying the librmb.a Library

In addition to providing useful system access routines for CSUBs, this library
also specifies all the external symbols from HP- UX libraries which were used
in the actual implementation of a specific version of BASIC. Specifying the
library immediately after your CSUB modules in the Id command will thus
ensure the sharing of those symbols between BASIC and your CSUBs. This
sharing first removes the need for duplicating the code already available in
BASIC in the CSUB object files. More importantly, it is also necessary for the
proper operation of libraries, the routines of which maintain global variables
which should not be duplicated in the CSUB object files. An example of such
routines are the HP-UX memory management routines (manoc 3C includes:
calloc, free, mallopt, mallinfo, and realloc).

Resolving External References

In general, specifying the library librmb. a alone in your link command will
be sufficient to resolve all external references from your CSUB modules;
this is because BASIC uses most of the common HP- UX libraries in its
implementation.

Nevertheless, to verify that your CSUB object file is indeed fully linked, you
should use the following command, which will notify you of any unresolved
external references (e.g., if a CSUB is calling a function in an HP-UX library
not specified in your link (ld) command).

nm -u CSUB_objecLfile

In the event that you do have undefined external references, you should resolve
them by first determining the libraries in which the symbols are defined and
then specifying those libraries in your link command. Again, it is extremely
important that you only list those libraries after the library librmb. a.

Writing Pascal CSUBs 2·23

2

2 A Closer Look at Executing rmbbuildc
After successfully generating one or more CSUB object files without unresolved
external references, you are now ready to use the rmbbuildc program to create
the associated BASIC PROG file for the CSUBs.

The purpose of rmbbuildc is to generate a BASIC subprogram interface for
each of the CSUBs. This interface consists of the:

• name of the subprogram

• name and type of its parameters

• optional specification of any COM block used.

The program will interactively prompt you for all the necessary information
about a CSUB to generate its BASIC subprogram interface.

Note On all the yes/no prompts in rmbbuildc, a response other than
(1) is treated as a negative response. A null response for a
prompt is specified by only pressing (Return).

Procedure for Using rmbbuildc

The following sections contain steps that explain how to use rmbbuildc.

Step 1: Executing rmbbuildc

In HP-UX, execute:

rmbbuildc [Return]

The rmbbuildc program begins by prompting you for the name of an optional
stream file.

RMB-UX Compiled Subprogram File Generator (Version 1.1)

Stream file name:

In this file, the program will record all your responses to its prompts so that
you can use the file as its standard input in subsequent executions (e.g.,
rmbbuildc < file_name). Note that you may give a null response if you do not
want a stream file.

2-24 Writing Pascal CSUBs

If you already have Pascal Workstation stream files for use with the BUILDC
utility, you may use them with rmbbuildc by removing the responses to the
prompts for the Header and Jump file names, and adding a response for the
output BASIC PROG file name prompt. The other prompts remain the same.

Step 2: Entering a PROG File Name

The next prompt is:

Output BASIC PROG file name:

This prompt asks for the BASIC PROG file name that you will specify in a
LOADSUB statement to load the desired CSUBs into a BASIC program.

Step 3: Naming CSUB Object Files

To the prompt:

CSUB object file name(s):

list the names of the CSUB object files generated by the linking procedure.
Note that each object file will correspond to a specific version of BASIC. The
file names specified should be separated by one or more spaces.

Step 4: Specifying CSUB Interfaces

The remaining prompts deal with the specification of each CSUB interface.
For each Pascal module that you specify, you will be asked for the name and
parameters of its CSUBs. The following steps explain the prompts that you
will encounter during this specification.

1. Enter the name of a module containing CSUBs when the following prompt is
given.

Module name:

2. Enter the name of a CSUB that is in the current module when the following
prompt is given.

CSUB name:

This prompt will be repeated until a null CSUB name is specified by
pressing the (Return) key.

Writing Pascal CSUBs 2-25

2

2
3. The following four prompts are repeated for each parameter of the current

CSUB until a null parameter name is entered. You should specify the name
of the parameter, its type, whether it is an array, and whether it is optional.

Parameter name:
Parameter type (I/R/C for Integer/Real/Complex):
Is this an array? (y/n):
Is this an optional parameter? (y/n):

Since you are declaring the interface of the BASIC subprogram for the
current CSUB, the names of the parameters that you specify need not
match that of the CSUB. However, the types of the parameters between the
Pascal CSUB and its BASIC subprogram declaration should match. For
example, the BASIC CSUB call may be similar to the following:

Read_result(INTEGER Value_ret)

and the actual parameter name in the CSUB may be as follows:

PROCEDURE read_result(VAR return_int: bintvaltype);

The legal BASIC types are INTEGER, REAL, COMPLEX, string, and
I/O path. If the parameter name ends in a dollar sign ($), then the type is
automatically assumed to be string, and if it begins with an <0, the type is
assumed to be an I/O path. Otherwise, you should answer with (D , @' or
(I). An array parameter is assumed to have dimension (*), which indicates
that it will be defined in the calling BASIC program.

Once a parameter is specified as optional, all the following parameters
default to being optional and the prompt will not reappear.

Since rmbbuildc cannot check the parameter list of a CSUB to verify that
it matches its BASIC declaration, it is your responsibility to make sure
that the matching is done correctly. Otherwise, the CSUB will behave
unpredictably when called from a BASIC program.

4. Indicate whether the current CSUB accesses a BASIC COM by responding
with either (1) or (ill to the following prompt.

Is there COM in this CSUB? (y/n):

It is not required that you declare a COM that is accessed in the CSUB. By
declaring it, however, the COM will remain in memory as long as the CSUB
is present, even after the BASIC subprogram that defines it is deleted. If
you answer 0 to the above prompt, the following prompts will appear.

2·26 Writing Pascal CSUBs

Respond to them with the information that they request. Note that the
number of COM blocks that you specify will depend on the number of
COMs that you want to access. With the exception of the first prompt
given below, all of the prompts are repeated for each COM block. For an
unlabeled COM, the label will be null.

Number of COM blocks:
COM label:

Item name:
Item type (I/R/C for Integer/Real/Complex):
Is this an array? (y/n):

The questions concerning name, type, and array are the same as for the
parameters, with the exception that the bounds of an array in a COM
block have to be explicitly specified. To specify these bounds, enter the
appropriate information to the prompts given below.

Number of dimensions or *:
Dimension n lower bound:
Dimension n upper bound:

If the number of dimensions is entered as "*" the other dimension prompts
are not displayed. This option may be used only if the array is defined
either in the calling BASIC routine or a previous CSUB. If there is an
explicit number of dimensions, the lower and upper bounds need to be
entered for each of the dimensions.

If the type of the item is string, the following prompt will appear. In
response to this prompt, enter the DIMensioned or maximum string length
allowed for this COM item.

String length:

The final question about the COM item is:

Will this be used as a BUFFER? (y/n):

You should answer @ unless you plan to use the variable as a buffer in a
TRANSFER statement. Read the "Advanced Transfer Techniques" chapter
of the "BASIC Interfacing Techniques" manual for details. This last prompt
completes the set of prompts related to specifying COM blocks.

The next prompt to appear will be a request for the name of another
CSUB in the current module. If you have another CSUB to specify, you
should enter its name at this time and repeat steps 3 and 4 of this section.

Writing Pascal CSUBs 2·27

2

2
Otherwise, simply press the (Return) key. This enters a null CSUB name and
the following prompt appears:

Are there any more modules? (yin):

If you respond with [) to this prompt, rmbbuildc will prompt you for
another module name and you will need to repeat steps 2 through 4 of this
section. Otherwise, press ® and rmbbuildc will proceed to construct the
output BASIC PROG file. To facilitate the BASIC coding process, it will
also print to a file the COM declarations required by all the CSUBs in
BASIC source form. This file will reside in the current directory and will
have the PROG file's name with _COM appended to it.

rmbbuildc Errors

The following table describes all the errors generated by rmbbuildc.

2-28 Writing Pascal CSUBs

Table 2·2. rmbbuildc Errors
2

Error Description

Opening of file_name failed. An attempt at creating, writing to, or
reading from the specified file caused an
error.

Maximum number of input files exceeded. Too many CSUB object files were
specified. The maximum number of files
currently allowed is 10.

File file- name has unresolved references. The specified CSUB object file still
contains undefined symbols, which should
be resolved by linking the necessary
additional libraries to the object file.

File file_name has no CSUB version The specified CSUB object file was not
stamp. properly linked with the library

librmb.a. You should verify that you
have a valid version of this library.

File file_name has an invalid a.out format. The specified CSUB object file does not
conform to the format specified for an
object file.

Bound must be between -32768 and The lower and upper bounds for a
32767. dimension of a COM block array item

must be within the specified range.

High bound value is less than low bound The high bound value of an array
value. dimension must be greater than or equal

to the low bound value of the same
dimension.

Maximum number of elements in a The maximum number of elements in the
dimension exceeded. dimension of an array has been exceeded.

No item was specified. A COM block without any items was
specified.

Writing Pascal CSUBs 2·29

2
Table 2-2. rmbbuildc Errors (continued)

Error Description

Type must be integer, real, or complex. The type of this parameter or COM item
should be integer, real, or complex.

Value must be 6 or less, or be an asterisk. The number of dimensions for an array
must be within the limits specified.

Value must be between 1 and 32767. The value for the requested parameter
must be within the specified range.

Procedure CSUB_name was not found. The definition for the specified CSUB was
not found in one of the CSUB object files.

No procedure name was specified. At least one CSUB should be specified
during each execution of rmbbuildc for
the output BASIC PROG file to be
meaningful.

Invalid specification of COM item The amount of memory that would be
z'iem_name. required to store the elements of the

specified COM item exceeds the system
limits.

Memory overflow. The program is unable to allocate the
necessary memory for processing
unusually large CSUB input object files.
Re-execute rmbbuildc with a single
command line parameter specifying the
estimated number of bytes needed to
handle the large object files; the default is
1000000 bytes.

2-30 Writing Pascal CSUBs

A Closer Look at Managing CSUBs from BASIC
This section shows how to manage CSUBs in BASIC. Topics covered are:

• Loading CSUBs into a BASIC Program

• Deleting CSUBs

• Handling CSUB Run-Time Errors

Loading CSUBs into a BASIC Program

Before you can call a CSUB from a BASIC program, you have to load it in
BASIC memory with a command similar to this:

LOADSUB ALL FROM "file_name"

where file_name is the name of a BASIC PROG file generated by rmbbuildc.
This command loads and lists all subprograms and CSUBs in the CSUB
libraries (a CSUB library is a set of CSUBs generated by a single execution of
rmbbuildc) found in the PROG file. Because the CSUBs are now listed in your
BASIC program, you have access to all of them.

If you just want to list a particular CSUB in your BASIC program, you would
use a command similar to this:

LOADSUB "suLname" FROM "file_name"

where sub_name is the CSUB that you want listed in your BASIC program,
and file_name is the BASIC PROG file where this CSUB is located. With
this command, you will only have access to the specified CSUB and to those
following it in its library. You should note, however, that just selecting one
CSUB from a library to be listed does not save you memory because the entire
library is always loaded into memory if one of its CSUBs is specified.

Once CSUBs are loaded into a BASIC program, they can be stored in a PROG
file with the STORE command. Therefore, it is possible to have a PROG file
consisting of several CSUBs generated at different times that were merged
together using several LOADSUB and STORE commands. For example,
consider a PROG file called file_name with the following CSUB libraries:

Writing Pascal CSUBs 2-31

2

2
(begin CSUB library A)
Csuba
Csubb
(end CSUB library A)
Subc
(begin CSUB library B)
Csubd
(end CSUB library B)
(begin CSUB library C)

Csube
Csubf
Csubg
(end CSUB library C)

Subh
Subi

If Csubd and Csubf are referenced in a program, executing LOAD SUB FROM
"file_name" will cause CSUB libraries Band C to be loaded in memory. Other
CSUB libraries and subprograms are not brought in unless they are also
referenced.

Deleting CSUBs

All CSUBs belonging to the same CSUB library are listed contiguously and
must remain in the order in which they were generated by rmbbuildc. You
cannot add BASIC program lines between CSUB declaration statements.
However, you can delete CSUBs from a BASIC program by using the DELSUB
command. Note that you can only delete the CSUB which comes first in a
CSUB . library. If you delete a CSUB not listed first in its library, BASIC will
generate an error when you attempt to call any of the remaining CSUBs in the
library.

Example of Deleting CSUBs

In the following example, you may delete the CSUBs Csube and Csubf, in
order, and you will still be able to call Csubg. However, you cannot delete
Csubb, leaving Csuba, because BASIC will generate an error when you
subsequently attempt to call Csuba.

2·32 Writing Pascal CSUBs

(begin CSUB library A)
Csuba
Csubb
(end OSUB library A)
Subc
(begin OSUB library B)
Csubd
(end as UB library B)
(begin CSUB library C)

Csube
Csubf
Csubg
(end as UB library C)
Subh
Subi

Handling CSUB Run-time Errors

Determining the cause of a CSUB run-time error is a difficult task because
there is no BASIC debugger similar to the Pascal debugger which will let you
step through your CSUB code. For this reason, you should thoroughly test
your CSUBs in a test program before attempting to call them from BASIC. In
situations when this approach is not practical, such as when using the BASIC
file I/O routines, you may need to insert print statements in your CSUBs to
monitor their execution in a BASIC program.

In Pascal, a CSUB run-time error may be generated by the Pascal system or
by application code with an ESCAPE statement. You may handle the error
condition by either trapping it within the CSUB or letting it propagate to the
BASIC code. With either choice, there are precautions you should take to
avoid corrupting the execution of BASIC.

Trapping Errors

The TRY/RECOVER statement provides the mechanism to trap an error condition
in Pascal. You may use it within a CSUB to process Pascal system errors or
errors explicitly generated by your code with the ESCAPE statement.

You should refer to the "HP Pascal Language Reference" manual for a listing
of the run-time errors that may be generated by the Pascal system.

Writing Pascal CSUBs 2·33

2

2
Reporting Errors to BASIC

After detecting a CSUB run-time error, you may decide to report the error
to the BASIC calling code by simply ESCAPing out of a CSUB and causing
a BASIC error condition. This condition may then be handled with an ON
ERROR CALL/RECOVER statement. In this case, you need to be aware of
the way BASIC will handle the error based on its ESCAPE code. The table
below summarizes this information and will help you map Pascal ESCAPE codes
to BASIC error numbers.

Table 2-3. Error Numbers

Pascal Errors BASIC Definition

-32768 ... -891 SYSTEM ERROR

-890 ... -881 Reserved by operating system

-880 ... -32 SYSTEM ERROR

-33 ... -1 Pascal system error, ERROR (escapecode + 400)

0 Pascal exit, no error

1 ... 32767 User error, ERROR (escapecode MOD 1000)

In order to provide a consistent error recovery mechanism for CSUBs, BASIC
has defined an error number for reporting all CSUB run-time errors. The basic
idea is for a CSUB to exclusively use this error number for reporting all errors
to BASIC; the parameterless routine csub_error in the module kbdcrt should
be used for this purpose.

The calling BASIC code can then recover from this error with an ON ERROR
CALL/RECOVER statement and get the actual errors by calling an error
CSUB or by reading some global error variables (e.g. COM block variables)
also accessible to the reporting CSUB. This approach removes the need to
map CSUB error numbers to BASIC error numbers, allows CSUB libraries
from different sources to be shared within a program, and simplifies the task of
recovering from a CSUB run-time error.

There may be situations when BASIC will not respond at all to user input
or behave unpredictably during and after the execution of a CSUB due to

2-34 Writing Pascal CSUBs

an unrecoverable error condition. In such situations, the current invocation
of BASIC is likely to be corrupted and should be terminated with the kill
command.

Accessing System Resources
One of the motivations for using CSUBs with BASIC is the ability to access a
rich set of HP-UX system libraries. This section covers the restrictions on the
use of these libraries. The restrictions are due to the fact that BASIC also uses
the libraries in its implementation.

• Allocating Dynamic Memory

• Simple Keyboard and Printer I/O

• Device I/O

• BASIC File I/O

Allocating Dynamic Memory

When allocating memory from the heap, the only supported Pascal memory
allocation statements allowed in CSUBs are NEW and DISPOSE. There are no
special initialization procedures required to use these statements, but you are
responsible for explicitly releasing any memory allocated within a CSUB. If you
fail to do so, you may encounter an out-of-memory condition after repeated
CSUB calls. In addition, you should use the compiler directive $HEAP _DISPOSE
ON$ to activate the DISPOSE statement. The amount of heap memory available
for CSUBs is determined by the:

• size of your BASIC process

• memory requirements of the calling BASIC program

• number of CSUBs loaded in memory.

You should note that the Pascal statements MARK and RELEASE are not
supported in Pascal CSUBs. If you are porting Pascal Workstation CSUBs
which make use of these statements, you should modify your code to:

• use the Pascal statements NEW and DISPOSE,

Writing Pascal CSUBs 2-35

2

2 • remove the heap initialization call (heap_ini t) from the appropriate module,

• start taking advantage of the fact that the heap memory is guaranteed to
remain at a fixed location during an execution of BASIC, since it is no longer
allocated in a COM block.

Simple Keyboard and Printer I/O

Operations on the standard I/O streams, writing to the screen and reading
from the keyboard, for example, are not supported. Therefore, Pascal routines
like READLN and WRITELN should only be used with an explicit file specifier.
To allow a CSUB to input characters from the keyboard and to write to the
PRINTER IS device, BASIC provides the module kbdcrt which implements
procedures and functions for keyboard and CRT register access, character input
and output, scrolling, and cursor manipulation. If you are porting Pascal
Workstation CSUBs which rely on the routines READ, READLN, WRITE, and
WRITELN, you should modify them to use this module.

2·36 Writing Pascal CSUBs

Table 2-4. Keyboard and CRT I/O Routines
2

Procedure Description
or Function

clear_screen clears the alpha CRT exactly as the (Clear display) key (or
CLEAR SCREEN statement)

control crt sends information to a CRT control register

controlkbd sends information to a keyboard control register

crtreadchar reads one character from the specified location on the
CRT

crt scroll scrolls the CRT area, from line first to line last, up or
down one line

cursor removes the previous cursor and writes a new cursor to
anyon-screen alpha location

disp_at_xy allows text to be written to any alpha location on the
CRT

read_kbd returns the buffer contents trapped and held by ON KBD

(same as KBD$)

scrolldn scrolls the PRINT area of the CRT down one line

scrollup scrolls the PRINT area of the CRT up one line

status crt returns the contents of a CRT status register

statuskbd returns the contents of a keyboard status register

systemd returns a string containing the results of calling the
function SYSTEM$ for a given argument

Writing Pascal CSUBs 2-37

2 Device I/O

Device I/O in CSUBs is provided through the HP-UX device I/O library for
HP-IB and GPIO interfaces, and through the standard HP-UX terndo routines
for the RS-232 interface. Pascal Workstation CSUBs which use the CSUB I/O
library should be converted to call these new libraries. For more information,
read the chapter "Device I/O Library (DIL)" in the HP- UX Concepts and
Tutorials: Device I/O and User Interfacing manual.

BASIC File I/O

BASIC provides the file access library module (fal) to allow operations on its
file types. These file operations include:

• creating

• purging

• opening

• closing

• reading

• writing

• positioning.

Since CSUBs that use this module cannot be tested outside of a BASIC
program, more time should be allocated for their implementation to minimize
the number of debugging iterations.

2·38 Writing Pascal CSUBs

Table 2·5. File Access Routines
2

Procedure Description
or Function

fal_create creates an HP-UX file

fal_create_bdat creates a BDAT file

fal_create_ascii creates an ASCII file

fal_close closes a file

fal_eof writes an EOF at the current file position

fal_loadsub_all loads all subprograms from the specified PROG file and
appends them to the program in memory

fal_loadsub_narne loads the subprogram from the specified PROG file and
appends it to the program in memory

fal_open opens a file for reading and writing.

fal_position positions the file pointer to a specified logical record
number

fal_purge purges a file

fal_read reads data item(s) from a file

fal_read_bdat_int reads a BASIC 16-bit integer from a BDAT file

fal_read_string reads a string from an ASCII, BDAT, or HP-UX file

fal_write writes data item(s) into a file

fal_write_bdat_int writes a BASIC 16-bit integer to a BDAT file

fal_write_string writes a string to an ASCII, BDAT, or HP-UX file

Writing Pascal CSUBs 2·39

3
Writing C and Assembly CSUBs

When you are developing a system that uses CSUBs, you should:

• write the BASIC program.

• determine what the CSUB should do, the parameters to be passed, and
which variables should be accessible (global) to both the BASIC program and
the CSUB.

• develop the CSUB; a listing of the BASIC program can be very helpful as
reference during this task.

Steps for Creating a C and Assembly CSUB
The following steps present an overview of the process needed to create a
CSUB and the results of those steps. The CSUB related steps will be described
in detail in later sections.

1. Enter BASIC, create and store the program that will call the CSUB. This
program will contain CALLs to the CSUB, but the latter need not be
implemented as it will be loaded later. You only need to decide what the
subprogram will do and design the interface (parameters, COM, etc.)
between BASIC and the CSUB.

2. Leave BASIC, enter HP-UX, and write the CSUB. You might, for example,
use the vi editor to create the CSUB. See the sections "A Closer Look at
C CSUB Components" and "A Closer Look at Parameter Passing" for
details on how to organize your C functions and how to define your CSUB
parameters.

Writing C and Assembly CSUBs 3·1

3

3. Compile and debug the CSUB as much as possible by writing a C or
Assembly test program. You may want to use the C debugger, cdb, or
assembly debugger, adb, for this testing task.

4. Use the ld command to generate a fully linked relocatable object file
containing all the CSUBs and any necessary HP-UX library support

3 routines. For example,

Id -rd -a archive csub.o -u _printf -lrmb -0 csub

would create a fully linked relocatable object file called csub using the
compiled file csub. 0 and the library librmb. a. See the section "A Closer
Look at Linking CSUB Object Files" for details.

5. Execute rmbbuildc and answer its prompts. This program generates the
final BASIC PROG file. See the section "A Closer Look at Executing
rmbbuildc" for details on how to answer the prompts.

6. Enter BASIC and load the BASIC PROG file from the keyboard or from the
BASIC program using LOADSUB. This statement generates the necessary
statements in your BASIC program to call CSUBs. See the section "A
Closer Look at Managing CSUBs from BASIC" for details.

7. RUN the BASIC program which calls the desired CSUBs using the BASIC
CALL or implied CALL statement.

An Example: Passing Parameters

This section goes through each step of creating an example CSUB and how the
CSUB is used in a BASIC program. All files used in the HP-UX environment
are read from and written to the current directory. In the BASIC environment,
the CSUB is loaded from the MASS STORAGE IS device (directory).

This simple program prompts you to enter your name (up to a maximum of 80
characters). It then passes your name in a string variable called String$ to the
CSUB called parameters. The CSUB changes the first character of you name
to an asterisk (*) and passes the name change back to the calling program
along with the string length parameter called int_ val. The CSUB also passes
the real variable called real_val back to the calling program.

3·2 Writing C and Assembly CSUBs

Step 1: Create a BASIC Program that Calls the CSUB

Enter BASIC, edit and store this program in a file named param_ val. This file
can be found in the directory called /usr/lib/rmb/demo.

100 LOADSUB ALL FROM "Parm_vals"
110 DIM String$[SO]
120 INTEGER Int_val
130 REAL Real_val
140 LINPUT "Enter your name and press [Return].",String$
150 Parameters (String$, Int_val ,Real_val)
160 PRINT "Your name has been changed to: """;String$;""""
170 PRINT
lS0 PRINT "Your name contains ";
190 PRINT Int_val;
200 PRINT "characters."
210 PRINT
220 PRINT "Real_val = ";Real_val
230 DELSUB Parameters
240 END

Steps 2 and 3: Write, Compile, and Debug the C CSUB

Enter HP- UX, edit, compile, and debug the following function called
parameters, and save it in the file named atest. c. The file atest. c can be
found in the directory called /usr/lib/rmb/demo. Note that, if you decide to
change this C CSUB into an assembly CSUB, follow the steps provided in the
next section.

#include <csubdecl.h>

typedef struct
{

shortint len;
char c [SO] ;
} str_type;

parameters (str_dim, str_val, int_val, real_val)
dimentryptr str_dim;
str_type *str_val;
binteger_parm int_val;
breal_parm real_val;

{

Writing C and Assembly CSUBs 3-3

3

str_val->c[O] = '*';
*int_val = str_val->len;
*real_val = 78.783;

}

3 Steps 2 and 3: Write, Compile, and Debug the Assembly CSUB

Enter HP-UX, edit, compile, and debug the function called parameters that is
provided in the previous section, and save it in a file named atest. c. The file
atest. c can be found in the directory called /usr/lib/rmb/demo. To change
the C source file to an assembly source file, type the following:

cc -s atest.c

The C compiler option -S creates an assembly code file called atest. s from
the source C CSUB file called atest. c. Your assembly code file should look
similar to the following:

global _parameters
_parameters:

link.l %a6,lLF1
movm.l tLS1, (%sp)
mov.l 12(%a6),%aO
movq t42,%dO
mov.b %dO,2(%aO)
mov.l 12(%a6),%aO
mov.l 16(%a6),%a1
mov.w (%aO) , (%a1)
mov.l 20(%a6),%aO
mov.l L12+0x4,4(%aO)
mov.l L12, (%aO)

L11:
unlk %a6
rts
set LF1,-0
set LS1,0
lalign 4

L12:
long Ox4053b21c,Oxac083127
data

Once the assembly source file has been created, you are ready to create an .0

file out of it by typing:

3·4 Writing C and Assembly CSUBs

as atest. s

When you execute the HP-UX command Is, you will notice the file called
atest .0 is in your current working directory.

Step 4: Generate a CSUB Object File

Link the code file atest. 0 with the BASIC CSUB library librmb. a to
generate a fully linked relocatable CSUB object file. The IIP-UX Id command
should be used for this purpose, as follows:

ld -rd -a archive atest.o -u _printf -lrmb -0 atest

Step 5: Generate a BASIC PROG File (rmbbuildc)

Execute the rmbbuildc program and answer the prompts as shown below.
Notice that a stream file is generated by the response to the first prompt; you
can use this file the next time you execute the program (Le. rmbbuildc <
stream) to remove the need to interactively answer the prompts again.

RMB-UX Compiled Subprogram File Generator (Version 1.1)

Stream file name: stream
Output BASIC PROG file: Parm_vals
CSUB object file names(s): atest
Module name: [Return)

CSUB name: parameters
Parameter name: string$

Parameter type is string
Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: int_val
Parameter type (I/R/C for Integer/Real/Complex): i

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: real_val
Parameter type (I/R/C for Integer/Real/Complex): r

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: (Return)
Is there COM in this CSUB? (y/n): n

CSUB name: (Return)
Are there any more modules? (y/n): n

Writing C and Assembly CSUBs 3-5

3

3

Steps 6 and 7: LOAD and RUN the CSUB

In this example, Parm_ vals is automatically loaded from the BASIC program.
Therefore, you only need to re-enter the BASIC system, GET "param_ val", and
RUN the program. The output should be:

Your name has been changed to: "*ohn J. Doe"

Your name contains 11 characters.

Real_val = 78.783

A Closer Look at C CSUB Components
Any C function you implement may easily be transformed into a CSUB if you
follow these guidelines:

• The C function must be defined as global; it therefore should not have the
static attribute.

• The C function should not have a return value since there is no mechanism
for getting this value from BASIC. Instead, it should use a reference
parameter to store this return value.

• The C function's parameters should match the actual parameters that
are passed when it is called from a BASIC program. For information on
parameter type matching, see the table called "Equivalent C and BASIC
Parameter Types."

The include file csubdecl. h was defined to facilitate this parameter matching
between a BASIC program and C CSUBs. It provides all the necessary
definitions to allow you to specify types for the formal parameters of C CSUBs.
These types are limited to those that are supported for CSUBs and are
described in detail in the next section.

3·6 Writing C and Assembly CSUBs

A Closer Look at Parameter Passing
In order to be useful, a CSUB needs the ability to exchange data with the
calling BASIC program. This section describes the different way of performing
this data exchange. The primary method consists of defining the CSUB
parameters to match those passed by BASIC. This method requires special
attention to the different parameter types and formats of BASIC variables.
The second method for a CSUB to exchange data with a BASIC program is
via COM blocks. Again, this method necessitates the special handling of the
variables defined in the blocks, according to their type and format.

Passing Parameters by Reference

As far as C is concerned, BASIC variables are always passed to a CSUB by
reference. That is, a pointer to the actual value is passed. When you think you
are passing a parameter by value, BASIC actually makes a copy of the value
and passes a pointer to it. When you return to the calling program, the copy is
destroyed. Therefore, in order to receive a referenced BASIC parameter, a C
CSUB needs to match it with a formal parameter declared as a pointer to the
BASIC parameter.

The following example shows how the variable real var is passed as a
parameter by reference to a function using the address of the variable.

per)
double *r;
{

r=-31178.0 ;
}

maine)
{

double realvar;

p(lrealvar); 1* Note the i symbol *1
}

The two key points to remember are:

• BASIC always passes a pointer to a variable .

• BASIC has no idea if a user-written CSUB has been properly coded to use
that pointer.

Writing C and Assembly CSUBs 3-7

3

Note that errors will occur if this distinction is overlooked.

Parameter Types

The BASIC parameter types are not necessarily the same as their C
counterparts. It is important that the parameter types of a CSUB be correct

3 so that BASIC and the CSUB can interface properly. This section will explain
the types in detail. You should refer to the include file csubdecl. h for the
defini tion of the types used below.

The following table provides you with a quick reference to equivalent C and
BASIC parameter types.

3·8 Writing C and Assembly CSUBs

Table 3·1. Equivalent C and BASIC Parameter Types

BASIC Parameter Type Assembly C Parameter Type
Parameter Size

REAL 8 bytes #include <csubdecl.h>
breal_parm

3

INTEGER 2 bytes #include < csubdecl. h>
binteger_parm

COMPLEX 16 bytes #include <csubdecl.h>
bcomplex_parm

string_name$ 4 bytes for both #include < csubdecl. h>
parameters Two parameter types

passed for strings:
• dimentryptr
• bstring_parm

ary_nm[lower : upper, etc.] 4 bytes for both #include <csubdecl.h>
of one of the above numeric parameters Two parameter types
parameter types passed for arrays:
or • dimentryptr
str_ary$(low : up, etc.)[n_chars] • one of the above numeric

or string array types.

@io_path_name 4 bytes #include <csubdecl.h>
fcb_ptr_type

Writing C and Assembly CSUBs 3·9

3

REAL

A variable defined as a double in C maps into a BASIC REAL. Therefore, a
BASIC REAL parameter can be defined in a CSUB as:

#include <csubdecl.h>
x(y)
breal_parm y;

since breal_parm is defined as a pointer to double.

COMPLEX

A variable defined in BASIC as COMPLEX is a floating point value with real
and imaginary parts. There is no built-in COMPLEX type in C.

A C declaration for a COMPLEX value would be:

struct bcmplxvaltype
{

double re;
double im;
}

Thus, you could use:

#include <csubdecl.h>
x(y)
bcomplex_parm y;

because bcomplex_parm is defined as a pointer to bcmplxval type.

INTEGER

A variable defined as an int in C is not the same as a BASIC INTEGER. The
latter is a 16-bit quantity while a C integer is a 32-bit quantity. Therefore, to
receive a BASIC INTEGER, you should use:

#include <csubdecl.h>
x(y)
binteger_parm y;

because binteger _parm is defined as a pointer to bintval type.

3-10 Writing C and Ass.embly CSUBs

Strings

Strings are different in BASIC and C, both in their structure and the way they
are passed. The structure of a C string is a set of characters terminated by a
NULL character while the BASIC string has a two-byte length field followed by
the characters of the string.

BASIC passes its strings as two parameters:

• The first parameter is a pointer to a dimension structure. This structure
contains information about arrays, strings, their maximum lengths, and their
lower and upper bounds. It is expressed in C as a union of type dimentry
while its pointer type is dimentryptr. For the case of a scalar (non-array)
string, the only field in the union is a short integer, a 16-bit quantity,
expressing the maximum length of the string.

• The second parameter is a pointer to the string value area. This area
contains the actual length of the string and its characters. The type of this
pointer is bstring_parm.

An example of how this would look in a C function is as follows:

#include <csubdecl.h>

static char *s="a string";

getstring(dim_len, b)
dimentryptr dim_len;
bstring_parm b;
{

short i;

if (strlen(s»dim_len->maxlen) s[dim_len->maxlen]=O;
b->len=strlen(s);
for (i=O; i<b->len; i++) b->c[i]=s[i];
}

The above function copies a C string into a BASIC string. From this example,
you should note how:

• the string parameter is declared,

• an explicit check has been made to insure that the length of the C string is
not greater than the maximum length of the BASIC string,

Writing C and Assembly CSUBs 3 .. 11

3

3

• the C string value is put into the BASIC string value area.

Although a CSUB receives two parameters for a BASIC string, as far as BASIC
is concerned, there is only one actual parameter to be passed, as shown below.

10 DIM Str$ [80]
20 CALL GETSTRING(Str$)
30 PRINT Str$
40 END

1/0 Paths

An I/O path is a block of storage used to keep track of the state of a file or
I/O device. The size of this block is 190 bytes. See the section "BASIC File
I/O" for details on how you would use an I/O path as a file control block with
the file access library (fal) routines.

The following example shows how a C CSUB receives an I/O path parameter
from BASIC. The include file csubdecl. h contains the necessary type
declarations to pass I/O path parameters to C. The same parameters can then
be used with the fal routines.

#include <csubdecl.h>

x (y_ptr)
fcb_ptr_type y_ptr;

The typical use of the parameter y _ptr in a CSUB would then take the form:

3·12 Writing C and Assembly CSUBs

Arrays

Arrays are passed as two parameters:

• a pointer to the dimension structure. The fields in the dimension structure,
in this case, are more complicated. They are also defined by the dimentry
type.

• a pointer to the value area.

The actual dimension structures for the REAL, INTEGER, COMPLEX, and
string arrays are represented by Figures 3-1 and 3-2.

dims

totalsize

low(n)

lengthen)

maxlen

is a byte containing the number of dimensions

is the number of bytes in the entire array

is the lower bound of the nth dimension

is the number of elements in the nth dimension

is the maximum length of any element in a string array.

o
dims I pad

2

totalsize
4

low(1)
6

length(1)
8

•
•

24 •
low(6)

26

length(6)
28

Figure 3-1.
REAL, INTEGER, or COMPLEX Array Dimension Structure

Writing C and Assembly CSUBs 3-13

3

3

o
dims I pad

2

totalsize
4

maxlen
6

low(l)
8

10
length(1)

•
•
•

26

low(6)
28

30
length(6)

Figure 3·2. String Array Dimension Structure

An example of receiving an INTEGER array from BASIC is as follows:

xed, arr)
dimentryptr d;
bintvaltype arr[];

Again, this is a single parameter in BASIC. So, in this example, BASIC would
send an array defined as:

INTEGER Arr(1:10)
CALL X(Arr(*))

3·14 Writing C and Assembly CSUBs

Defining BASIC and C Arrays

The BASIC and C arrays should be defined the same way. This is not
mandatory, but helpful. You should remember that an array with bounds [1..5]
is the same as an array with bounds [6 .. 10]; both are five-element arrays. If
a BASIC array defined as INTEGER Arr(6: 10) is passed to a CSUB array
parameter defined as bintval type arr [], the sixth element in the BASIC 3
array will correspond to the first element in the C CSUB array. Array elements
are stored in row-major order in both BASIC and C.

Dimensioning an Array

The DIM statement should be used in conjunction with the appropriate C
array declaration to define the space for the BASIC array. The REDIM
statement does not affect the size of that space. It does however affect the
BASE and SIZE functions and the length and low values in the dimension
structure. Note that a CSUB should therefore check the dimension structure of
an array parameter to find its current dimensions.

Redimensioning an Array

If you use the REDIM statement on a multi-dimensional BASIC array, the C
declaration of the array will be invalid the next time the array is accessed in a
CSUB. Therefore, if you accessed arr[2] [3] in C, you would not get the same
value as Arr(2 ,3) from BASIC. To be immune from the effects of REDIM, you
should declare a multi-dimensional BASIC array as a one-dimensional array
in C and do explicit subscript calculations based on the information in the
dimension structure of the array.

Declaring the Value Area of a String

You should also note that the type bstringval type should not be used in
specifying the value area for a string array since it defines a string with the
maximum allowable number of characters. Instead, you should declare a
different type, with the maximum allowable number of characters in the array
strings set equal to the dimension of the equivalent BASIC string array. Thus,
for the following BASIC definition of a string array,

DIM S$(1: 10) [20]

you would define the type for a C string in the array as:

Writing C and Assembly CSUBs 3·15

typedef struct
{

shortint len;
char c[20]; 1* Same maximum length as BASIC *1
} str_type;

3 Useful type Declarations

The include file csubdecl. h defines useful types which may be used in the
declaration of C CSUB parameters. These declarations are listed below.

#define STRINGLIMIT 32767
#define MAXDIM 6
#define MAXARRAYSIZE 16777215

typedef unsigned char byte;
typedef short shortint;
typedef short bintvaltype;
typedef double brealvaltypej

struct bcmplxvaltype
{

brealvaltype re;
brealvaltype im;
};

struct bstringvaltype
{

shortint len;
char c[STRINGLIMIT];
};

struct boundentry
{

shortint low;
shortint length;
};

union dim entry
{

shortint maxlen;
struct

{

byte dims;

1* maximum length of a string *1
1* maximum dimensions in an array *1
1* maximum bytes in an array *1

1* two byte integer *1
1* BASIC integer *1
1* BASIC real *1

1* BASIC complex type *1

1* BASIC string type *1

1* describes array bound *1

1* lower limit *1
1* number of elements *1

1* dimension record union *1

1* string scalar *1
1* array *1

1* number of dimensions *1

3·16 Writing C and Assembly CSUBs

};

byte pad;
short totalsizej 1* total size of an array *1
union

{ 1* numeric array *1
struct boundentry bound[MAXDIM]: 1* dimension boundaries *1
struct 1* string array *1

{

shortint maxlen: 1* maximum string length *1
struct boundentry bound[MAXDIM]: 1* dimension boundaries *1
} strval:

} arrval;
} arrdim;

typedef union dimentry *dimentryptr; 1* pointer to dimension union

typedef bintvaltype *binteger_parm; 1* pointer to BASIC integer *1
typedef brealvaltype *breal_parm; 1* pointer to BASIC real *1
typedef struct bcmplxvaltype *bcomplex_parm; 1* pointer to BASIC complex *1
typedef struct bstringvaltype *bstring_parm; 1* pointer to BASIC string *1

Optional Parameters

You can declare some or all parameters of a CSUB as optional through
responses to rmbbuildc. Optional parameters are those which are not
required in the parameter list of the calling code. In a C CSUB, however,
there is no distinction between required and optional parameters as both
types of parameters have to be listed in the declaration of the CSUB. See
"Subprograms" in the "BASIC Programming Techniques" manual for more
information about optional parameters.

BASIC will pass a NIL pointer to the CSUB when one of its parameters that
has been declared as optional is omitted. The CSUB should therefore always
make an explicit NIL check before trying to use the value of an optional
parameter. Otherwise, a run-time error may occur when attempting to
dereference the pointer.

For example, if the BASIC declaration of a CSUB is:

100 CSUB My_csub(REAL R, OPTIONAL REAL Opt)

Writing C and Assembly CSUBs 3-17

3

3

the variable Opt will have an address of NIL if it is not passed. In C, the
CSUB should perform the following test:

my_csub(required, optional)
breal_parm required, optional;
{

if (optional) ... 1* It was passed in *1

Accessing BASIC COM from a CSUB

Another way for a BASIC program and a C CSUB to interchange data is
via BASIC COM blocks. In order to access a BASIC COM block from a C
CSUB, you should use the function find_com. When passed the name of the
COM block that is to be accessed, this function will return a pointer to the
beginning of the value area of that block. Since upper and lower case letters
are significant in a COM block name, they should be specified the same way
BASIC does. To access an unlabeled COM block, you should specify a string
with a single blank as the COM block name. When find_com cannot find the
COM block requested, it returns a NIL pointer.

Defining a C Structure

In order to read and store values in the variables of a COM block, you
will need to define a C structure to map the variables into members of the
structure. This will require you to know the layout of the block in advance
since there is no way of determining this layout from the C CSUB at run-time.

In defining the C structure for accessing a COM block, you should know that:

• The order of the members in the structure should be opposite from that of
the variables in the block. For example, the first variable in the COM block
should be mapped into the last member of the structure.

• There is nothing to prevent you from inadvertently corrupting the COM
block by writing beyond its boundaries or by storing invalid values.

• The value areas of BASIC strings and arrays are stored in a COM block.
Therefore, you should omit the specification of the dimension structure for
those variables in the C structure.

• You should follow the same restriction previously mentioned for CSUB string
array parameters in specifying the bounds of string arrays in COM blocks.

3·18 Writing C and Assembly CSUBs

This is an example of accessing a BASIC COM block defined as:

COM INuml1 INTEGER A,B(1:5),REAL C,D$[10]

To access this block from a CSUB, you could use:

#include <csubdecl.h>

typedef struct
{

shortint len;
char c[10];
} strtype;

typedef struct
{

strtype d; 1* Do not use bstringvaltype! *1
brealvaltype c;
bintvaltype b[5];
bintvaltype a; 1* Note the reverse order of the members *1
} *comtype;

extern comtype find_com();

xO
{

comtype comptr;
bintvaltype vala;

comptr=find_com(IINuml"); 1* Observe same case of letters as BASIC does *1
vala=comptr->a;

A COM block is subject to being moved in memory at RUN, LOAD, and GET
time. Therefore, to guarantee that you always get the current location of a
block, you should not remember its address in a CSUB but always use the
function find_com instead. Similarly, you should not attempt to remember the
address of a variable defined in a COM block.

Writing C and Assembly CSUBs 3·19

3

A Closer Look at Linking
CSUB Object Files
After thoroughly testing your CSUBs in a C program, you are now ready to
generate a CSUB object file. This object file brings together the CSUB binaries

3 and the necessary libraries to satisfy the external references of those binaries.

Using the Linker

The HP-UX linker can be used to generate a fully linked, relocatable CSUB
object file suitable for input to the rmbbuildc program. The syntax for linking
js as follows:

Id -rd -a archive csub_binaries -u _printf -lrmb [other_libraries] -0 csub_obj_file

where:

-rd

-a archive

csub_binaries

-u _printf

other_libraries

are the options to retain relocation information in the
output file for subsequent re-linking and to force the
definition of "common" storage.

tells the loader to use archive libraries instead of shared
libraries.

are the. 0 files generated by the C compiler. They contain
the code for CSUBs and should always be followed in the
above command line by the library -lrmb.

links needed object files.

are libraries that are required to resolve all the references
not satisfied by 1 i brmb . a; they may be your own or
HP-UX libraries.

takes the output of the Id command and sends it to the
file. csub_obj_file.

3·20 Writing C and Assembly CSUBs

Specifying the librmb.a Library

In addition to providing useful system access routines for CSUBs, this library
also specifies all the external symbols from HP-UX libraries which were used
in the actual implementation of a specific version of BASIC. Specifying the
library immediately after your CSUB binaries in the Id command will thus
ensure the sharing of those symbols between BASIC and your CSUBs. This
sharing first removes the need for duplicating the code already available in
BASIC in the CSUB object files. More importantly, it is also necessary for the
proper operation of libraries, the routines of which maintain global variables
which should not be duplicated in the CSUB object files. An example of such
routines are the HP-UX memory management routines (malloc 3C includes:
calloc, free, ma.llopt, mallinfo, and realloc).

Resolving External References

In general, specifying the library librmb. a alone in your link command
will be sufficient to resolve all external references from your CSUB binaries;
this is because BASIC uses most of the common HP-UX libraries in its
implementation.

Nevertheless, to verify that your CSUB object file is indeed fully linked, you
should use the following command, which will notify you of any unresolved
external references (e.g., if a CSUB is calling a function in an HP- UX library
not specified in your link (ld) command).

run -u CSUB_objecLJile

In the event that you do have undefined external references, you should resolve
them by first determining the libraries in which the symbols are defined and
then specifying those libraries in your link command. Again, it is extremely
important that you only list those libraries after the library librmb. a.

Writing C and Assembly CSUBs 3-21

3

A Closer Look at Executing rmbbuildc
After successfully generating one or more CSUB object files without unresolved
external references, you are now ready to use the rmbbuildc program to create
the associated BASIC PROG file for the CSUBs.

3 The purpose of rmbbuildc is to generate a BASIC subprogram interface for
each of the CSUBs. This interface consists of the:

• name of the subprogram

• name and type of its parameters

• optional specification of any COM block used.

The program will interactively prompt you for all the necessary information
about a CSUB to generate its BASIC subprogram interface.

Note On all the yes/no prompts in rmbbuildc, a response other than o is treated as a negative response. A null response for a
prompt is specified by only pressing (Return).

Procedure for Using rmbbuildc

The following sections contain steps that explain how to use rmbbuildc.

Step 1: Executing rmbbuildc

In HP-UX, execute:

rmbbuildc [Return)

The rmbbuildc program begins by prompting you for the name of an optional
stream file.

RMB-UX Compiled Subprogram File Generator (Version 1.1)

Stream file name:

In this file, the program will record all your responses to its prompts so that
you can use the file as its standard input in subsequent executions (e.g.,
rmbbuildc < file_name). Note that you may give a null response if you do not
want a stream file.

3-22 Writing C and Assembly CSUBs

Step 2: Entering a PROG File Name

The next prompt is:

Output BASIC PROG file name:

This prompt asks for the BASIC PROG file name that you will specify in a
LOADSUB statement to load the desired CSUBs into a BASIC program.

Step 3: Naming CSUB Object Files

To the prompt:

CSUB object file name(s):

list the names of the CSUB object files generated by the linking procedure.
Note that each object file will correspond to a specific version of BASIC. The
file names specified should be separated by one or more spaces.

Step 4: Specifying CSUB Interfaces

The remaining prompts deal with the specification of each CSUB interface.
The following steps explain the prompts that you will encounter during this
specification.

1. Press the (Return) key in response to the prompt below. This prompt is
only relevant for Pascal language CSUBs and should always be handled as
specified.

Module name:

2. Enter the name of a CSUB when the following prompt is given.

CSUB name:

This prompt will be repeated until a null CSUB name is specified by
pressing the (Return) key.

3. The following four prompts are repeated for each parameter of the current
CSUB until a null parameter name is entered. You should specify the name
of the parameter, its type, whether it is an array, and whether it is optional.

P aramet er name:
Parameter type (I/R/C for Integer/Real/Complex):
Is this an array? (y/n):
Is this an optional parameter? (y/n):

Writing C and Assembly CSUBs 3-23

3

3

Since you are declaring the interface of the BASIC subprogram for the
current CSUB, the names of the parameters that you specify need not
match that of the CSUB. However, the types of the parameters between
the C CSUB and its BASIC subprogram declaration should match. For
example, the BASIC CSUB call may be similar to the following:

Read_resul t (INTEGER Value_ret)

and the actual parameter name in the CSUB may be as follows:

read_result (return_int)
binteger_parm return_int;

The legal BASIC types are INTEGER, REAL, COMPLEX, string, and
I/O path. If the parameter name ends in a dollar sign ($), then the type is
automatically assumed to be string, and if it begins with an (Q, the type is
assumed to be an I/O path. Otherwise, you should answer with (D , @, or
(I). An array parameter is assumed to have dimension (*), which indicates
that it will be defined in the calling BASIC program.

Once a parameter is specified as optional, all the following parameters
default to being optional and the prompt will not reappear.

Since rmbbuildc cannot check the parameter list of a CSUB to verify that
it matches its BASIC declaration, it is your responsibility to make sure
that the matching is done correctly. Otherwise, the CSUB will behave
unpredictably when called from a BASIC program.

4. Indicate whether the current CSUB accesses a BASIC COM by responding
with either (1) or ® to the following prompt.

Is there COM in this CSUB? (yin):

It is not required that you declare a COM that is accessed in the CSUB. By
declaring it, however, the COM will remain in memory as long as the CSUB
is present, even after the BASIC subprogram that defines it is deleted. If
you answer (1) to the above prompt, the following prompts will appear.
Respond to them with the information that they request. Note that the
number of COM blocks that you specify will depend on the number of
COMs that you want to access. With the exception of the first prompt
given below, all of the prompts are repeated for each COM block. For an
unlabeled COM, the label will be null.

3·24 Writing C and Assembly CSUBs

Number of COM blocks:
COM label:

Item name:
Item type (I/R/C for Integer/Real/Complex):
Is this an array? (y/n):

The questions concerning name, type, and array are the same as for the
parameters, with the exception that the bounds of an array in a COM
block have to be explicitly specified. To specify these bounds, enter the
appropriate information to the prompts given below.

Number of dimensions or *:
Dimension n lower bound:
Dimension n upper bound:

If the number of dimensions is entered as "*" the other dimension prompts
are not displayed. This option may be used only if the array is defined
either in the calling BASIC routine or a previous CSUB. If there is an
explicit number of dimensions, the lower and upper bounds need to be
entered for each of the dimensions.

If the type of the item is string, the following prompt will appear. In
response to this prompt, enter the DIMensioned or maximum string length
allowed for this COM item.

String length:

The final question about the COM item is:

Will this be used as a BUFFER? (y/n):

You should answer ® unless you plan to use the variable as a buffer in a
TRANSFER statement. Read the "Advanced Transfer Techniques" chapter
of the "BASIC Interfacing Techniques" manual for details. This last prompt
completes the set of prompts related to specifying COM blocks.

The next prompt to appear will be a request for the name of another CSUB.
If you wish to specify another CSUB, you should enter its name at this time
and repeat steps 3 and 4 of this section. Otherwise, simply press the ('Retij'ffi)
key. This enters a null CSUB name and the following prompt appears:

Are there any more modules? (yin):

If you respond with [) to this prompt, rmbbuildc will prompt you for
another module name and you will need to repeat steps 2 through 4 of this

Writing C and Assembly CSUBs 3·25

3

3

section. Otherwise, press @ and rmbbuildc will proceed to construct the
output BASIC PROG file. To facilitate the BASIC coding process, it will
also print to a file the COM declarations required by all the CSUBs in
BASIC source form. This file will reside in the current directory and will
have the PROG file's name with _COM appended to it.

rmbbuildc Errors

The following table describes all the errors generated by rmbbuildc.

3-26 Writing C and Assembly CSUBs

Table 3·2. rmbbuildc Errors

Error Description

Opening of jile_name failed. An attempt at creating, writing to, or
reading from the specified file caused an
error.

3
Maximum number of input files exceeded. Too many CSUB object files were

specified. The maximum number of files
currently allowed is 10.

File jile_name has unresolved references. The specified CSUB object file still
contains undefined symbols, which should
be resolved by linking the necessary
additional libraries to the object file.

File jile_name has no CSUB version The specified CSUB object file was not
stamp. properly linked with the library

librmb. a. You should verify that you
have a valid version of this library.

File jile_name has an invalid a.out format. The specified CSUB object file does not
conform to the format specified for an
object file.

Bound must be between -32768 and The lower and upper bounds for a
32767. dimension of a COM block array item

must be within the specified range.

High bound value is less than low bound The high bound value of an array
value. dimension must be greater than or equal

to the low bound value of the same
dimension.

Maximum number of elements in a The maximum number of elements in the
dimension exceeded. dimension of an array has been exceeded.

No item was specified. A COM block without any items was
specified.

Writing C and Assembly CSUBs 3·27

Table 3-2. rmbbuildc Errors (continued)

Error Description

Type must be integer, real, or complex. The type of this parameter or COM item
should be integer, real, or complex.

3 Value must be 6 or less, or be an asterisk. The number of dimensions for an array
must be within the limits specified.

Value must be between 1 and 32767. The value for the requested parameter
must be within the specified range.

Procedure CSUB_name was not found. The definition for the specified CSUB was
not found in one of the CSUB object files.

No procedure name was specified. At least one CSUB should be specified
during each execution of rmbbuildc for
the output BASIC PROG file to be
meaningful.

Invalid specification of COM item The amount of memory that would be
item_name. required to store the elements of the

specified COM item exceeds the system
limits.

Memory overflow. The program is unable to allocate the
necessary memory for processing
unusually large CSUB input object files.
Re-execute rmbbuildc with a single
command line parameter specifying the
estimated number of bytes needed to
handle the large object files; the default is
1000000 bytes.

3-28 Writing C and Assembly CSUBs

A Closer Look at Managing CSUBs from BASIC
This section shows to manage CSUBs in BASIC. Topics covered are:

• Loading CSUBs into a BASIC Program

• Deleting CSUBs

• Handling CSUB Run-Time Errors

Loading CSUBs into a BASIC Program

Before you can call a CSUB from a BASIC program, you have to load it in
BASIC memory with a command similar to this:

LOADSUB ALL FROM "jilL name"

where file_name is the name of a BASIC PROG file generated by rmbbuildc.
This command loads and lists all subprograms and CSUBs in the CSUB
libraries (a CSUB library is a set of CSUBs generated by a single execution of
rmbbuildc) found in the PROG file. Because the CSUBs are now listed in your
BASIC program, you have access to all of them.

If you just want to list a particular CSUB in your BASIC program, you would
use a command similar to this:

LOADSUB "sub_name" FROM "jile_name"

where sub_name is the CSUB that you want listed in your BASIC program,
and file_name is the BASIC PROG file where this CSUB is located. With
this command, you will only have access to the specified CSUB and to those
following it in its library. You should note, however, that just selecting one
CSUB from a library does not save you memory because the entire library is
always loaded into memory if one of its CSUBS is specified.

Once CSUBs are loaded into a BASIC program, they can be stored in a PROG
file with the STORE command. Therefore, it is possible to have a PROG file
consisting of several CSUBs generated at different times that were merged
together using several LOADSUB and STORE commands. For example,
consider a PROG file called file_name with the following CSUB libraries:

Writing C and Assembly CSUBs 3-29

3

3

(begin CSUB library A)
Csuba
Csubb
(end CSUB library A)
Subc
(begin CSUB library B)
Csubd.
(end CSUB library B)
(begin CSUB library C)

Csube
Csubf
Csubg
(end CSUB library C)
Subh
Subi

If Csubd and Csubf are referenced in a program, executing LOADSUB FROM
"file_name" will cause CSUB libraries Band C to be loaded in memory. Other
CSUB libraries and subprograms are not brought in unless they are also
referenced.

Deleting CSUBs

All CSUBs belonging to the same CSUB library are listed contiguously and
must remain in the order in which they were generated by rmbbuildc. You
cannot add BASIC program lines between CSUB declaration statements.
However, you can delete CSUBs from a BASIC program by using the DELSUB
command. Note that you can only delete the CSUB which comes first in a
CSUB library. If you delete a CSUB not listed first in its library, BASIC will
generate an error when you attempt to call any of the remaining CSUBs in the
library.

Example of Deleting CSUBs

In the following example, you may delete the CSUBs Csube and Csubf in order
and you will still be able to call Csubg. However, you cannot delete Csubb,
leaving Csuba, because BASIC will generate an error when you subsequently
attempt to call Csuba.

3·30 Writing C and Assembly CSUBs

(begin CSUB library A)
Csuba
Csubb
(end CSUB library A)
Subc
(begin CSUB library B)
Csubd
(end CSUB library B)
(begin CS UB library C)

Csube
Csubf
Csubg
(end CSUB library C)
Subh
Subi

Handling CSUB Run-time Errors

Determining the cause of a CSUB run-time error is a difficult task because
there is no BASIC debugger similar to the C debugger which will let you step
through your CSUB code. For this reason, you should thoroughly test your
CSUBs in a test program before attempting to call them from BASIC. In
situations where this approach is not practical, such as when using the BASIC
file I/O routines, you may need to insert print statements in your CSUBs to
monitor their execution in a BASIC program.

In C, a CSUB run-time error is generated with a signal condition. You may
either trap this condition with your own signal handler or let the signal
propagate to the BASIC code. With either choice, there are precautions you
should take to avoid corrupting the execution of BASIC.

Trapping Errors

In order to trap a signal condition within a CSUB, you will need to install
your own signal handler for the selected signal in the code of a CSUB. You
should then make sure that the same code will restore the original handler
for that signal when the CSUB terminates; otherwise, BASIC may behave
unpredictably following the call to the CSUB. In order to assign a handler for a
specific signal, you should use the system routine sigvector(2) exclusively.

Writing C and Assembly CSUBs 3·31

3

Reporting Errors to BASIC

If you decide to let a signal propagate to the BASIC code, you should verify
that it is a valid signal, as defined by the ON EXT SIGNAL statement. You
should always trap all other signals with a signal handler and handle them
within your CSUB; BASIC may not handle invalid signals in a consistent

3 fashion and may behave unpredictably when it receives them. On the other
hand, the disposition of valid signals by BASIC is determined by whether a
system signal event-initiated branch is in effect at the time the CSUB is called
and is exactly specified by the ON EXT SIGNAL statement.

In order to provide a consistent error recovery mechanism for CSUBs, BASIC
has defined an error number for reporting all CSUB run-time errors. The basic
idea is for a CSUB to exclusively use this error number for reporting all signal
and error conditions to BASIC; the parameterless routine csub_error should
be used for this purpose.

The calling BASIC code can then recover from this error with an ON ERROR
CALL /RECOVER statement and get the actual signals or errors by calling an
error CSUB or by reading some global variables (e.g. COM block variables)
alos accessible to the reporting CSUB. This approach removes the need to
map CSUB error numbers to BASIC error numbers, allows CSUB libraries
from different sources to be shared within a program, and simplifies the task of
recovering from a CSUB run-time error.

In situations where BASIC will not respond at all to user input or behaves
unpredictably during and after the execution of a CSUB due to an
unrecoverable error condition, the current invocation of BASIC is likely to be
corrupted and should be terminated with the kill command.

3-32 Writing C and Assembly CSUBs

Accessing System Resources
One of the motivations for using CSUBs with BASIC is the ability to access a
rich set of HP-UX system libraries. This section covers the restrictions on the
use of these libraries. The restrictions are due to the fact that BASIC also uses
the libraries in its implementation.

• Allocating Dynamic Memory

• Simple Keyboard and Printer I/O

• Device I/O

• BASIC File I/O

Allocating Dynamic Memory

When allocating memory from the heap, you may use the standard memory
allocation package malloc (3C or 3X). Although there is no initialization
procedure required, you are still responsible for explicitly releasing any
memory allocated within a CSUB. If you fail to do so, you may encounter
an out-of-memory condition after repeated CSUB calls. The amount of heap
memory available for CSUBs is determined by the:

• size of your BASIC process

• memory requirements of the calling BASIC program

• number of CSUBs loaded in memory.

Simple Keyboard and Printer I/O

Operations on the standard I/O streams, writing to the screen and reading
from the keyboard are not supported. Therefore, C routines like printf and
scanf should not be used. To allow a CSUB to input characters from the
keyboard and to write to the PRINTER IS device, BASIC provides a set
of routines in the library librmb. a for keyboard and CRT register access,
character input and output, scrolling, and cursor manipulation.

Writing C and Assembly CSUBs 3·33

3

3

Table 3·3. Keyboard and CRT I/O Routines

Routine Description

kbdcrt_clear_screen clears the alpha CRT exactly as the (Clear display) key (or
CLEAR SCREEN statement)

kbdcrt_controlcrt sends information to a CRT control register

kbdcrt_controlkbd sends information to a keyboard control register

kbdcrt_crtreadchar reads one character from the specified location on the CRT

kbdcrt_crtscroll scrolls the CRT area, from line first to line last, up or down
one line

kbdcrt_cursor removes the previous cursor and writes a new cursor to any
on-screen alpha location

kbdcrt_disp_at_xy allows text to be written to any alpha location on the CRT

kbdcrt_read_kbd returns the buffer contents trapped and held by ON KBD

(same as KBD$)

kdbcrt_scrolldn scrolls the PRINT area of the CRT down one line

kbdcrt_scrollup scrolls the PRINT area of the CRT up one line

kbdcrt_statuscrt returns the contents of a CRT status register

kbdcrt_statuskbd returns the contents of a keyboard status register

kbdcrt_systemd returns a string containing the results of calling the
function SYSTEM$ for a given argument

Device I/O

Device I/O in CSUBs is provided through the HP-UX device I/O library for
HP-IB and GPIO interfaces and through the standard HP-UX termio routines
for the RS-232 interface. For more information, read the chapter "Device I/O
Library (DIL)" in the HP- UX Concepts and Tutorials: Device I/O and User
Interfacing manual.

3·34 Writing C and Assembly CSUBs

BASIC File I/O

BASIC provides a set of routines found in the library? ibrmb.a/ to allow
operations on its file types. These file operations include:

• creating

• purging

• opening

• closing

• reading

• writing

• positioning.

Since CSUBs that use these routines cannot be tested outside of a BASIC
program, more time should be allocated for their implementation to minimize
the number of debugging iterations.

Writing C and Assembly CSUBs 3·35

3

Table 3-4. File Access Routines

Routine Description

csfa_fal_create creates an HP-UX file

csfa_fal_create_bdat creates a BDAT file
3

csfa_fal_create_ascii creates an ASCII file

csfa_fal_close closes a file

csfa_fal_eof writes an EOF at the current file position

csfa_fal_loadsub_all loads all subprograms from the specified PROG file and
appends them to the program in memory

csfa_fal_loadsub_name loads the subprogram from the specified PROG file and
appends it to the program in memory

csfa_fal_open opens a file for reading and writing.

csfa_fal_position positions the file pointer to a specified logical record
number

csfa_fal_purge purges a file

csfa_fal_read reads data item(s) from a file

csfa_fal_read_bdat_int reads a BASIC 16-bit integer from a BDAT file

csfa_fal_read_string reads a string from an ASCII, BDAT, or IIP-UX file

csfa_fal_write writes data item(s) into a file

csfa_fal_write_bdat_int writes a BASIC 16-bit integer to a BDAT file

csfa_fal_write_string writes a string to an ASCII, BDAT, or HP-UX file

3-36 Writing Cand Assembly CSUBs

4
Writing FORTRAN CSUBs

When you are developing a system that involves the use of CSUBs, you should:

• write the BASIC program.

• determine what the CSUB should do, the parameters to be passed, and
which variables should be accessible (global) to both the BASIC program and
the CSUB.

• develop the CSUB; a listing of the BASIC program can be very helpful as
reference during this task.

Steps for Creating a FORTRAN CSUB
The following steps present an overview of the process needed to create a
CSUB and the results of those steps. The CSUB related steps will be described
in detail in later sections.

1. Enter BASIC, create and store the program that will call the CSUB. This
program will contain CALLs to the CSUB, but the latter need not be
implemented as it will be loaded later. You only need to decide what the
subprogram will do and design the interface (parameters, COM, etc.)
between BASIC and the CSUB.

2. Leave BASIC, enter HP-UX, and write the CSUB. You might, for example,
use the vi editor to create the CSUB. See the sections "A Closer Look at
FORTRAN CSUB Components" and "A Closer Look at Parameter Passing"
for details on how to organize your FORTRAN subprograms and how to
define your CSUB parameters.

Writing FORTRAN CSUBs 4·1

4

3. Compile and debug the CSUB as much as possible by writing a FORTRAN
test program. You may want to use the FORTRAN debugger, fdb, for this
testing task.

4. Use the Id command to generate a fully linked relocatable object file
containing all the CSUBs and any necessary HP-UX library support
routines. For example,

Id -rd -a archive csub.o -u _printf -lrmb -0 csub

would create a fully linked relocatable object file called csub using the
compiled file csub. 0 and the library librmb. a. See the section "A Closer

4 Look at Linking CSUB Object Files" for details.

5. Execute rmbbuildc and answer its prompts. This program generates the
final BASIC PROG file. See the section "A Closer Look at Executing
rmbbuildc" for details on how to answer the prompts.

6. Enter BASIC and load the BASIC PROG file from the keyboard or from the
BASIC program using LOADSUB. This statement generates the necessary
statements in your BASIC program to call CSUBs. See the section "A
Closer Look at Managing CSUBs from BASIC" for details.

7. RUN the BASIC program which calls the desired CSUBs using the BASIC
CALL or implied CALL statement.

An Example: Finding the String

This section goes through each step of creating an example FORTRAN CSUB
and how the CSUB is used in a BASIC program. All files used in the HP-UX
environment are read from and written to the current directory. In the BASIC
environment, the CSUB is loaded from the MASS STORAGE IS device
(directory).

This simple program fills an array of string variables and then calls a
FORTRAN CSUB which determines if a particular string is found in the array.
The BASIC program keeps track of how many valid strings are contained
in the array and passes that information to the FORTRAN CSUB. If the
INTEGER variable Yes comes back with a value other than zero, it comes back
pointing to the array element containing the matching string.

4-2 Writing FORTRAN CSUBs

Step 1: Create a BASIC Program that Calls the CSUB

Enter BASIC, edit and store this program in a file named FSTR. This file can
be found in the directory called /usr/lib/rmb/demo.

10 LOADSUB ALL FROM "FIND_STRING"
20 DIM File$(1:10) [20]
30 DIM Str$[20]
40 INTEGER Num_strs,Yes
50 File$(1)="HELLO - HOW ARE YOU?"
60 File$(2)="I AM GREAT"
70 File$(3)="WHAT IS YOUR NAME?"
80 File$(4)="WHERE ARE YOU GOING?"
90 File$(5)="FAVORITE COLOR?"
100 File$(6)="I LIKE YOU"
110 Num_strs=6
120 Str$="WHERE ARE YOU GOING?"
130 Find_string(File$(*) ,Str$,Num_strs ,Yes)
140 IF Yes<>O THEN PRINT "The string was found in number"jYes
150 IF Yes=O THEN PRINT "The string was not found"
160 DELSUB Find_string
170 END

Steps 2 and 3: Write, Compile, and Debug the CSUB

Enter HP-UX, edit, compile, and debug the following subprogram called
find_string, and save it in the file named string. f. This file can be found in
the directory called /usr/lib/rmb/demo.

subroutine find_string(file_dim,filex,str_dim,strx,num_strs,yes)
character*30 file_dim
character*22 filex(*)
character*30 str_dim
character*22 strx
integer*2 num_strs
integer*2 yes

integer*2 i, j, sizel, size2

yes=O
i=l

read(strx(1:2), '(A2)') size2
do while «i.le.num_strs).and.(yes.eq.O»

read(filex(i) , '(A2)') sizel

Writing FORTRAN CSUBs 4·3

4

4

if (size1.eq.size2) then
if (size2.eq.O) then

yes=i+1
else

j=3
do while «j.1t.(size1+2».and.(fi1ex(i)(j:j).eq.strx(j:j»)

j=j+1
end do
if (fi1ex(i)(j:j).eq.strx(j:j» yes=i

endif
endif
if (yes.eq.O) i=i+1

end do
end

Step 4: Generate a CSUB Object File

Link the code file string. 0 with the BASIC CSUB library librmb. a and the
necessary HP-UX'libraries to generate a fully linked relocatable CSUB object
file. The HP-UX Id command should be used for this purpose, as follows:

1d -rd -a archive string.o -u _printf -lrmb -11077 -lF77 -lc -0 string

Step 5: Generate a BASIC PROG File (rmbbuildc)

Execute the rmbbuildc program and answer the prompts as shown below.
Notice that a stream file is generated by the response to the first prompt; you
can use this file the next time you execute the program (Le. rmbbuildc <
stream) to remove the need to interactively answer the prompts again.

RMB-UX Compiled Subprogram File Generator (Version 1.1)

Stream file name: stream
Output BASIC PROG file: FIND_STRING
CSUB object file names(s): string
Module name: [Return)

CSUB name: find_string
Parameter name: fi1ex$

Parameter type is string
Is this an array? (yin): y
Is this an optional parameter? (yin): n

Parameter name: strx$
Parameter type is string

Is this an array? (yin): n
Is this an optional parameter? (yin): n

4·4 Writing FORTRAN CSUBs

P aramet er name: num_s trs
Parameter type (I/R/C for Integer/Real/Complex): i

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: yes
Parameter type (I/R/C for Integer/Real/Complex): i

Is this an array? (y/n): n
Is this an optional parameter? (y/n): n

Parameter name: (Return)
Is there COM in this CSUB? (y/n): n

CSUB name: (Return)
Are there any more modules? (y/n): n

Steps 6 and 7: LOAD and RUN the CSUB

In this example, FIND_STRING is automatically loaded from the BASIC
program. Therefore, you only need to re-enter the BASIC system, LOAD
II FSTR" , and RUN the program. The output should be:

The string vas found in number 4

A Closer Look at FORTRAN CSUB Components
Procedures in FORTRAN can be grouped into two main categories:

• subroutine subprograms

• functions.

In order to implement a FORTRAN CSUB, you will need to use the structure
of a subroutine subprogram. FORTRAN functions may not be used since they
return a value to the calling program.

Writing FORTRAN CSUBs 4·5

4

4

A Closer Look at Parameter Passing
In order to be useful, a CSUB needs the ability to exchange data with the
calling BASIC program. This section describes the different ways of performing
this data exchange. The primary method consists of defining the CSUB
parameters to match those passed by BASIC. This method requires special
attention to the different parameter types and formats of BASIC variables.
The second method for a CSUB to exchange data with a BASIC program is
via COM blocks. Again, this method necessitates the special handling of the
variables defined in the blocks, according to their type and format.

Passing Parameters by Reference

As far as FORTRAN is concerned, BASIC variables are always passed to a
CSUB by reference. That is, a pointer to the actual value is passed. When you
think you are passing a parameter by value, BASIC actually makes a copy of
the value and passes a pointer to it. When you return to the calling program,
the copy is destroyed. Since all FORTRAN subprogram parameters are passed
by reference, you need to make sure that the formal parameters of a CSUB
match those passed by BASIC in number and in type.

The two key points to remember are:

• BASIC always passes a pointer to a variable .

• BASIC has no idea if a user-written CSUB has been properly coded to use
that pointer.

Note that errors will occur if this distinction is overlooked.

Parameter Types

The BASIC parameter types are not necessarily the same as their FORTRAN
counterparts. It is important that the type of the parameters of a CSUB be
correct so that BASIC and the CSUB can interface properly. This section will
explain the type differences in detail.

The following table provides you with a quick reference to equivalent
FORTRAN and BASIC parameter types.

4·6 Writing FORTRAN CSUBs

Table 4-1. Equivalent FORTRAN and BASIC Parameter Types

BASIC Parameter Type FORTRAN Parameter Type

REAL real*8

INTEGER integer*2

COMPLEX complex*16

string_ name$ Two parameter types
passed for strings:
• character*30
• character*n
where n is the DIM
length of the string plus 2.

array_name[lower: upper, etc.] Two parameter types
of one of the above numeric parameter passed for arrays:
types • character*30
or • one of the above numeric or
string_array$(lower: upper, string array types.
etc.)[num_chars]

@io_path_name character*190

REAL

A variable defined as a real*8 in FORTRAN maps into a BASIC REAL.
Therefore, a BASIC REAL parameter can be defined in a CSUB as:

subroutine x(y)
real*8 y

COMPLEX

A variable defined in BASIC as COMPLEX is a floating point value with
real and imaginary parts. It maps directly into a FORTRAN variable of type
complex*16.

Writing FORTRAN CSUBs 4· 7

4

INTEGER

A variable defined in BASIC as INTEGER is a 16-bit quantity. It is therefore
equivalent to a FORTRAN variable of type integer*2.

Strings

Strings are different in BASIC and FORTRAN, both in their structure and the
way they are passed. The structure of a FORTRAN string is simply an array
of characters while the BASIC string has a two-byte length field followed by its
characters.

4 BASIC passes its strings as two parameters:

• The first parameter is a pointer to a record containing information about
arrays, strings, their maximum lengths, and their lower and upper bounds.
Since there is no aggregate type in FORTRAN, this record must be declared
as an array of characters. For the case of a scalar (non-array) string,
this array will simply contain the maximum length of the string, a 16-bit
quantity. To access this parameter, you should use the FORTRAN statement
READ to extract its value from the array into a variable. Similarly, you should
use the statement WRITE to change its value .

• The second parameter is a pointer to another record specifying the string
value area. This area contains the actual length of the string, a 16-bit
quantity, and its characters. Again, this record is mapped into an array of
characters and manipulated as described above. To determine the length of
this array, simply add 2 to the dimensioned length of the string. Thus, for a
BASIC string whose dimensioned length is 20, the length of the equivalent
FORTRAN character array would be 22.

4-8 Writing FORTRAN CSUBs

An example of how this would look in a FORTRAN CSUB is as follows:

subroutine getstring(dim_len. b)
character*30 dim_len
character*82 b

integer*2 i
character*20 s
integer*2 s_len. b_maxlen. b_len

s='a string'
s_len=8
read(dim_len(1:2). '(A2)') b_maxlen

if (s_len.gt.b_maxlen) s_len=b_maxlen
b_len=s_len
do i=l. b_len

b(2+i)=s(i)
end do

write(b(1:2). '(A2)') b_len
end

The above subprogram copies a FORTRAN string into a BASIC string. From
this example, you should note how:

• the string parameter is declared, paying attention to the length of the arrays,

• the maximum length of the string is retrieved from its dimension record
using the read statement,

• an explicit check has been made to insure that the length of the FORTRAN
string is not greater than the maximum length of the BASIC string,

• the FORTRAN string value is put into the BASIC string value area,

• the new length of the BASIC string is stored in its value area using the
write statement.

Writing FORTRAN CSUBs 4-9

4

4

Although a CSUB receives two parameters for a BASIC string, as far as BASIC
is concerned, there is only one actual parameter to be passed, as shown below.

10 DIM Str$ [80]
20 CALL GETSTRING(Str$)
30 PRINT Str$
40 END

I/O Paths

An I/O path is a block of storage used to keep track of the state of a file or
I/O device. In FORTRAN, this block is mapped into a 190-character array.
See the section "BASIC File I/O" for details on how you would use an I/O
path as a file control block with the file access library (fal) routines.

The following example shows how a FORTRAN CSUB receives an I/O path
parameter from BASIC.

subroutine x(y_ptr)
character*190 y_ptr

The typical use of the parameter y _ptr in a CSUB would then take the form:

call csfa_fal_open(filename, y_ptr)

Arrays

Arrays are passed as two parameters:

• a pointer to the dimension record. The fields in the dimension record, in this
case, are more complicated. As with string arrays, this dimension record is
mapped into an array of characters and is manipulated using the FORTRAN
statements read and write .

• a pointer to the value area.

4-10 Writing FORTRAN CSUBs

The actual dimension records for the REAL, INTEGER, COMPLEX, and
string arrays are represented by Figures 4-1 and 4-2.

dims

totalsize

low(n)

length(n)

maxlen

is a byte containing the number of dimensions

is the number of bytes in the entire array

is the lower bound of the nth dimension

is the number of elements in the nth dimension

is the maximum length of any element in a string array.

2

3
dims I

totalsize
5

low(1)
7

length(1)
9

•
•

25 •
loW(6)

27 ?R

length(6)

Figure 4·1.
REAL, INTEGER, or COMPLEX Array Dimension Record

Writing FORTRAN CSUBs 4·11

4

4

2

3
dims I

totalsize
5

maxlen
7

9
low(1)

length(1)
11

•
•

27 •
low(6)

29 <;()

length(6)

Figure 4·2. String Array Dimension Record

The above figures will help you determine the character array bound values to
specify to the read and write statements when accessing or modifying a given
field in the records. For example, to access the maximum length field (maxlen)
of a string array parameter, you can refer to Figure 4-2 and use the following
code:

subroutine x(s_dim, s)
character*30 s_dim
character*22 s(*)

4·12 Writing FORTRAN CSUBs

An example of receiving an INTEGER array from BASIC might be:

subroutine x(d. arr)
character*30 d
integer*2 arr(*)

Again, this is a single parameter in BASIC. So, in this example, BASIC would
send an array defined as:

INTEGER Arr(1:10)
CALL X (Arr (*»

Defining BASIC and FORTRAN Arrays

The BASIC and FORTRAN arrays should be defined the same way. This is
not mandatory, but helpful. You should remember that an array with bounds
[1..5] is the same as an array with bounds [6 .. 10]; both are five-element arrays.
If a BASIC array defined as INTEGER Arr(6: 10) is passed to a CSUB array
parameter defined as integer*2 arr (*), the sixth element in the BASIC array
will correspond to the first element in the FORTRAN CSUB array.

Dimensioning an Array

You should note that array elements are stored in row-major order in BASIC
and in column-major order in FORTRAN. It is therefore best to declare a
multi-dimensional BASIC array as a one-dimensional array in FORTRAN and
do explicit subscript calculations based on the information in the dimension
record of the array.

Redimensioning an Array

The DIM statement should be used in conjunction with the appropriate
FORTRAN array declaration to define the space for the BASIC array. The
REDIM statement does not affect the size of that space. It does however affect
the BASE and SIZE functions and the length and low values in the dimension
record. Note that a CSUB should therefore check the dimension structure of an
array parameter to find its current dimensions.

If you use the REDIM statement on a multi-dimensional BASIC array, the
declaration of the array will be invalid the next time the array is accessed in a
CSUB. To be immune from the effects of REDIM, it is again best to declare a
multi-dimensional BASIC array as a one-dimensional FORTRAN array.

Writing FORTRAN CSUBs 4-13

4

4

Declaring the Value Area of a String

You should pay special attention to the definition of a BASIC string array
to make sure that the value area of the array is properly dimensioned in
FORTRAN. Each element of the array should have the same structure and size
as a single string CSUB parameter with the same dimensions. For example,
with the following BASIC definition,

DIM S$(1:10)[20]

you would define the equivalent FORTRAN string array as:

subroutine xes_dim, s)
character*30 s_dim
character*22 s(10)

Optional Parameters

You can declare some or all parameters of a CSUB as optional through
responses to rmbbuildc. Optional parameters are those which are not required
in the parameter list of the calling code. In a FORTRAN CSUB, however,
there is no distinction between required and optional parameters as both
types of parameters have to be listed in the declaration of the CSUB. See
"Subprograms" in the "BASIC Programming Techniques" manual for more
information about optional parameters.

BASIC will pass a NIL pointer to the CSUB when one of its parameters that
has been declared as optional is omitted. The CSUB should therefore always
make an explicit NIL check before trying to use the value of an optional
parameter. Otherwise, a run-time error may occur when attempting to access
the parameter.

4·14 Writing FORTRAN CSUBs

For example, if the BASIC declaration of a CSUB is:

100 CSUB My_csub(REAL R, OPTIONAL REAL Opt)

the variable Opt will have an address of NIL if it is not passed. In FORTRAN,
the CSUB should perform the following test:

subroutine my_csub (required , optional)
real*S required, optional

integer*4 i

i=Y.loc(optional)
if (i.ne.O) then

Accessing BASIC COM from a CSUB

Another way for a BASIC program and a FORTRAN CSUB to interchange
data is via COM blocks. This method allows you to map a BASIC COM
block into a FORTRAN COM block in order to access BASIC variables from a
CSUB. On entry of the CSUB, you would first copy the contents of a BASIC
COM block into a FORTRAN COM block. After accessing or modifying the
desired variables in the FORTRAN COM block, you would copy the contents
of this block back into the BASIC C011 block to update the values of the
variables modified by the CSUB.

Using the basic_com Routine

The routine provided for copying the contents of BASIC and FORTRAN COM
blocks is named basic_com. It takes the four following parameters:

character*80 com_name is the name of the BASIC COM block for which
the copy operation is to be performed. Since upper
and lower case letters are significant in a COM
block name, they should be specified the same way
BASIC does. To access an unlabeled COM block,
you should specify a string wi th a single blank
as the COM block name. This string parameter
should always be terminated with a null character.

Writing FORTRAN CSUBs 4·15

4

4
integer*4 copy-flag

is the starting address of the FORTRAN COM
block. It can be retrieved by using the %loc
function with the first variable of the block as the
argument to the function.

is the last address of the FORTRAN COM block.
It can be retrieved by using the %loc function with
the last variable of the block as the argument to
the function. A dummy variable should be declared
in the COM block for this purpose.

specifies the direction of the copy operation. A
value of 0 will copy the contents of the specified
BASIC COM block into the FORTRAN COM
block while a value of 1 will copy the contents of
the FORTRAN COM block into the BASIC COM
block. The routine will also set this parameter
to 0 for a successful copy operation and set the
parameter to -1 if it was unable to perform the
operation because of an invalid parameter value,
such as an invalid BASIC COM name.

Defining a FORTRAN COM Block Structure

In defining the FORTRAN COM block structure for accessing a BASIC
COM block, you will need to know the layout of the BASIC block in advance
since there is no way of determining this layout from the FORTRAN CSUB
at run-time. You should also know that the order of the variables in the
FORTRAN block should be the opposite from that of the variables in the
BASIC block. For example, the first variable in the FORTRAN block should
be mapped into the last variable in the BASIC block. You should also know
that basic_com will not prevent you from inadvertently corrupting the COM
blocks by writing beyond their boundaries or by storing invalid values.

Also, you should note that only the value area of BASIC strings and arrays are
stored in a COM block. Therefore, you should omit the specification of the
dimension record for those variables in the FORTRAN COM block.

4·16 Writing FORTRAN CSUBs

Finally, you should always use the +A FORTRAN compiler option when
compiling FORTRAN CSUBs with COM declarations. This option is necessary
to guarantee the alignment of the variables in FORTRAN COM blocks and
their BASIC counterparts.

This is an example of accessing a BASIC COM block defined as:

COM /Numl/ INTEGER A,B(1:5),REAL C,D$[10]

To access this block from a CSUB, you could use:

subrout ine one

character*12 d
real*8 c
integer*2 b(5)
integer*2 a
common /some_com/ d,c,b,a,dummy

integer*4 flag

flag=O
call basic_com('Numl'//char(O), Yoloc(d), Yoloc(dummy), flag)

a=26
c=1214.61

flag=l
call basic_com('Numl'//char(O), %loc(d), Yoloc(dummy), flag)
end

A Closer Look at Linking CSUB Object Files
After thoroughly testing your CSUBs in a FORTRAN program, you are now
ready to generate a CSUB object file. This object file brings together the
CSUB binaries and the necessary libraries to satisfy the external references of
those binaries.

Writing FORTRAN CSUBs 4-17

4

4

Using the Linker

The HP-UX linker can be used to generate a fully linked, relocatable CSUB
object file suitable for input to the rmbbuildc program. The syntax for linking
is as follows:

Id -rd -a archive csub_binaries -u _printf -lrmb [other_libraries] -0 csub_obj_file

where:

-rd

-a archive

csub_binaries

-u _printf

other _libraries

are the options to retain relocation information in the
output file for subsequent re-linking and to force the
definition of "common" storage.

tells the loader to use archive libraries instead of shared
libraries.

are the .0 files generated by the FORTRAN compiler.
They contain the code for CSUBs and should always
be followed in the above command line by the library
-lrmb.

links needed object files.

are libraries that are required to resolve all the references
not satisfied by 1 i brmb . a; they may be your own or
HP-UX libraries.

takes the output of the Id command and sends it to the
file. csub_obj_file.

Specifying the librmb.a Library

In addition to providing useful system access routines for CSUBs, this library
also specifies all the external symbols from HP-UX libraries which were used
in the actual implementation of a specific version of BASIC. Specifying the
library immediately after your CSUB binaries in the Id command will thus
ensure the sharing of those symbols between BASIC and your CSUBs. This
sharing first removes the need for duplicating the code already available in
BASIC in the CSUB object files. More importantly, it is also necessary for the
proper operation of libraries, the routines of which maintain global variables
which should not be duplicated in the CSUB object files. An example of such

4·18 Writing FORTRAN CSUBs

routines are the HP-UX memory management routines (malloc 3C includes:
calloc, free, mallopt, mallinfo, and realloc).

Resolving External References

In general, specifying the library librmb. a alone in your link command
will be sufficient to resolve all external references from your CSUB binaries;
this is because BASIC uses most of the common HP-UX libraries in its
implementation.

Nevertheless, to verify that your CSUB object file is indeed fully linked, you
should use the following command, which will notify you of any unresolved 4
external references (e.g., if a CSUB is calling a function in an HP-UX library
not specified in your link (ld) command).

run -u CSUB_objecLjile

In the event that you do have undefined external references, you should resolve
them by first determining the libraries in which the symbols are defined and
then specifying those libraries in your link command. Again, it is extremely
important that you only list those libraries after the library librmb. a.

A Closer Look at Executing rmbbuildc

After successfully generating one or more CSUB object files without unresolved
external references, you are now ready to use the rmbbuildc program to create
the associated BASIC PROG file for the CSUBs.

The purpose of rmbbuildc is to generate a BASIC subprogram interface for
each of the CSUBs. This interface consists of the:

• name of the subprogram

• name and type of its parameters

• optional specification of any COM block used.

The program will interactively prompt you for all the necessary information
about a CSUB to generate its BASIC subprogram interface.

Writing FORTRAN CSUBs 4·19

Note On all the yes/no prompts in rmbbuildc, a response other than
(1) is treated as a negative response. A null response for a
prom pt is specified by only pressing (Return).

Procedure for Using rmbbuildc

The following sections contain steps that explain how to use rmbbuildc.

Step 1: Executing rmbbuildc

4 In HP-UX, execute:

rmbbuildc [Return]

The rmbbuildc program begins by prompting you for the name of an optional
stream file.

RMB-UX Compiled Subprogram File Generator (Version 1.1)

Stream file name:

In this file, the program will record all your responses to its prompts so that
you can use the file as its standard input in subsequent executions (e.g.,
rmbbuildc < file_name). Note that you may give a null response if you do not
want a stream file.

Step 2: Entering a PROG File Name

The next prompt is:

Output BASIC PROG file name:

This prompt asks for the BASIC PROG file name that you will specify in a
LOADSUB statement to load the desired CSUBs into a BASIC program.

Step 3: Naming CSUB Object Files

To the prompt:

CSUB object file name(s):

4-20 Writing FORTRAN CSUBs

list the names of the CSUB object files generated by the linking procedure.
Note that each object file will correspond to a specific version of BASIC. The
file names specified should be separated by one or more spaces.

Step 4: Specifying CSUB Interfaces

The remaining prompts deal with the specification of each CSUB interface.
The following steps explain the prompts that you will encounter during this
specification.

1. Press the (Return) key in response to the prompt below. This prompt is
only relevant for Pascal language CSUBs and should always be handled as
specified.

Module name:

2. Enter the name of a CSUB when the following prompt is given.

CSUB name:

This prompt will be repeated until a null CSUB name is specified by
pressing the (Return) key.

3. The following four prompts are repeated for each parameter of the current
CSUB until a null parameter name is entered. You should specify the name
of the parameter, its type, whether it is an array, and whether it is optional.

Parameter name:
Parameter type (I/R/C for Integer/Real/Complex):
Is this an array? (y/n):
Is this an optional parameter? (y/n):

Since you are declaring the interface of the BASIC subprogram for the
current CSUB, the names of the parameters that you specify need not
match that of the CSUB. However, the types of the parameters between the
FORTRAN CSUB and its BASIC subprogram declaration should match.
For example, the BASIC CSUB call may be similar to the following:

Read_result(INTEGER Value_ret)

and the actual parameter name in the CSUB may be as follows:

subroutine read_result(return_int)
integer*2 return_int

Writing FORTRAN CSUBs 4-21

4

4

The legal BASIC types are INTEGER, REAL, COMPLEX, string, and
I/O path. If the parameter name ends in a dollar sign ($), then the type is
automatically assumed to be string, and if it begins with an CO, the type is
assumed to be an I/O path. Otherwise, you should answer with CD , @, or
©. An array parameter is assumed to have dimension (*), which indicates
that it will be defined in the calling BASIC program.

Once a parameter is specified as optional, all the following parameters
default to being optional and the prompt will not reappear.

Since rmbbuildc cannot check the parameter list of a CSUB to verify that
it matches its BASIC declaration, it is your responsibility to make sure
that the matching is done correctly. Otherwise, the CSUB will behave
unpredictably when called from a BASIC program.

4. Indicate whether the current CSUB accesses a BASIC COM by responding
with either (1) or ® to the following prompt.

Is there COM in this CSUB? (y/n):

It is not required that you declare a COM that is accessed in the CSUB. By
declaring it, however, the COM will remain in memory as long as the CSUB
is present, even after the BASIC subprogram that defines it is deleted. If
you answer (1) to the above prompt, the following prompts will appear.
Respond to them with the information that they request. Note that the
number of COM blocks that you specify will depend on the number of
COMs that you want to access. With the exception of the first prompt
given below, all of the prompts are repeated for each COM block. For an
unlabeled COM, the label will be null.

Number of COM blocks:
COM label:

Item name:
Item type (I/R/C for Integer/Real/Complex):
Is this an array? (y/n):

The questions concerning name, type, and array are the same as for the
parameters, with the exception that the bounds of an array in a COM
block have to be explicitly specified. To specify these bounds, enter the
appropriate information to the prompts given below.

Number of dimensions or *:
Dimension n lower bound:
Dimension n upper bound:

4·22 Writing FORTRAN CSUBs

If the number of dimensions is entered as "*" the other dimension prompts
are not displayed. This option may be used only if the array is defined
either in the calling BASIC routine or a previous CSUB. If there is an
explicit number of dimensions, the lower and upper bounds need to be
entered for each of the dimensions.

If the type of the item is string, the following prompt will appear. In
response to this prompt, enter the DIMensioned or maximum string length
allowed for this COM item.

String length:

The final question about the COM item is:

Will this be used as a BUFFER? (yin):

You should answer @ unless you plan to use the variable as a buffer in a
TRANSFER statement. Read the "Transfers and Buffered I/O" chapter
of the HP BASIC 6.2 Programming Guide for details. This last prompt
completes the set of prompts related to specifying COM blocks.

The next prompt to appear will be a request for the name of another CSUB.
If you wish to specify another CSUB, you should enter its name at this time
and repeat steps 3 and 4 of this section. Otherwise, simply press the (RetUffi)
key. This enters a null CSUB name and the following prompt appears:

Are there any more modules? (yin):

If you respond with (1) to this prompt, rmbbuildc will prompt you for
another module name and you will need to repeat steps 2 through 4 of this
section. Otherwise, press @ and rmbbuildc will proceed to construct the
output BASIC PROG file. To facilitate the BASIC coding process, it will
also print to a file the COM declarations required by all the CSUBs in
BASIC source form. This file will reside in the current directory and will
have the PROG file's name with _COM appended to it.

rmbbuildc Errors

The following table describes all the errors generated by rmbbuildc.

Writing FORTRAN CSUBs 4·23

4

Table 4-2. rmbbuildc Errors

Error Description

Opening of file_name failed. An attempt at creating, writing to, or
reading from the specified file caused an
error.

Maximum number of input files exceeded. Too many CSUB object files were
specified. The maximum number of files
currently allowed is 10.

File file_name has unresolved references. The specified CSUB object file still
4 contains undefined symbols, which should

be resolved by linking the necessary
additional libraries to the object file.

File file_name has no CSUB version The specified CSUB object file was not
stamp. properly linked with the library

librmb. a. You should verify that you
have a valid version of this library.

File file_name has an invalid a.out format. The specified CSUB object file does not
conform to the format specified for an
object file.

Bound must be between -32768 and The lower and upper bounds for a
32767. dimension of a COM block array item

must be within the specified range.

High bound value is less than low bound The high bound value of an array
value. dimension must be greater than or equal

to the low bound value of the same
dimension.

Maximum number of elements in a The maximum number of elements in the
dimension exceeded. dimension of an array has been exceeded.

No item was specified. A COM block without any items was
specified.

4-24 . Writing FORTRAN CSUBs

Table 4-2. rmbbuildc Errors (continued)

Error Description

Type must be integer, real, or complex. The type of this parameter or COM item
should be integer, real, or complex.

Value must be 6 or less, or be an asterisk. The number of dimensions for an array
must be within the limits specified.

Value must be between 1 and 32767. The value for the requested parameter
must be within the specified range.

Procedure CSUB_name was not found. The definition for the specified CSUB was 4
not found in one of the CSUB object files.

No procedure name was specified. At least one CSUB should be specified
during each execution of rmbbuildc for
the output BASIC PROG file to be
meaningful.

Invalid specification of COM item The amount of memory that would be
item_name. required to store the elements of the

specified COM item exceeds the system
limits.

Memory overflow. The program is unable to allocate the
necessary memory for processing
unusually large CSUB input object files.
Re-execute rmbbuildc with a single
command line parameter specifying the
estimated number of bytes needed to
handle the large object files; the default is
1000000 bytes.

Writing FORTRAN CSUBs 4-25

A Closer Look at Managing CSUBs from BASIC
This section shows how to manage CSUBs in BASIC. Topics covered are:

• Loading CSUBs into a BASIC Program

• Deleting CSUBs

• Handling CSUB Run-Time Errors

Loading CSUBs into a BASIC program

4 Before you can call a CSUB from a BASIC program, you have to load it in
BASIC memory with a command similar to this:

LOADSUB ALL FROM "file_name"

where file_name is the name of a BASIC PROG file generated by rmbbuildc.
This command loads and lists all subprograms and CSUBs in the CSUB
libraries (a CSUB library is a set of CSUBs generated by a single execution of
rmbbuildc) found in the PROG file. Because the CSUBs are now listed in your
BASIC program, you have access to all of them.

If you just want to list a particular CSUB in your BASIC program, you would
use a command similar to this:

LOADSUB "sub_name" FROM "file_name"

where sub_name is the CSUB that you want listed in your BASIC program,
and file_name is the BASIC PROG file where this CSUB is located. With
this command, you will only have access to the specified CSUB and to those
following it in its library. You should note, however, that just selecting one
CSUB from a library does not save you memory because the entire library is
always loaded into memory if one of its CSUBS is specified.

Once CSUBs are loaded into a BASIC program, they can be stored in a PROG
file with the STORE command. Therefore, it is possible to have a PROG file
consisting of several CSUBs generated at different times that were merged
together using several LOADSUB and STORE commands. For example,
consider a PROG file called file_name with the following CSUB libraries:

4·26 Writing FORTRAN CSUBs

(begin CSUB library A)
Csuba
Csubb
(end CSUB library A)
Subc
(begin CSUB library B)
Csubd
(end CSUB library B)
(begin CSUB library C)

Csube
Csubf
Csubg
(end CSUB library C)
Subh
Subi

If Csubd and Csubf are referenced in a program, executing LOADSUB FROM
"file_name" will cause CSUB libraries Band C to be loaded in memory. Other
CSUB libraries and subprograms are not brought in unless they are also
referenced.

Deleting CSUBs

All CSUBs belonging to the same CSUB library are listed contiguously and
must remain in the order in which they were generated by rmbbuildc. You
cannot add BASIC program lines between CSUB declaration statements.
However, you can delete CSUBs from a BASIC program by using the DELSUB
command. Note that you can only delete the CSUB which comes first in a
CSUB library. If you delete a CSUB not listed first in its library, BASIC will
generate an error when you attempt to call any of the remaining CSUBs in the
library.

Example of Deleting CSUBs

In the following example, you may delete the CSUBs Csube and Csubf in order
and you will still be able to call Csubg. However, you cannot delete Csubb,
leaving Csuba, because BASIC will generate an error when you subsequently
attempt to call Csuba.

Writing FORTRAN CSUBs 4·27

4

4

(begin CSUB library A)
Csuba
Csubb
(end CSUB library A)
Subc
(begin CSUB library B)
Csubd
(end CSUB library B)
(begin CSUB library C)

Csube
Csubf
Csubg
(end CSUB library C)

Subh
Subi

Handling CSUB Run-time Errors

Determining the cause of a CSUB run-time error is a difficult task because
there is no BASIC debugger similar to the FORTRAN debugger which will let
you step through your CSUB code. For this reason, you should thoroughly test
your CSUBs in a test program before attempting to call them from BASIC. In
situations when this approach is not practical, such as when using the BASIC
file I/O routines, you may need to insert print statements in your CSUBs to
monitor their execution in a BASIC program.

In FORTRAN, a run-time error not explicitly handled will cause a program
to terminate. You should not allow this condition to happen in a FORTRAN
CSUB since it will also cause the invocation of BASIC to abnormally
terminate. Instead, you should anticipate all possible causes of CSUB run-time
errors and provide code to handle those errors. The error handling code can
then report the same errors to BASIC.

Trapping Errors

In order to trap a FORTRAN run-time error, a CSUB will need to use the
IOSTAT=ios, ERR=label, and the END=label specifiers. These specifiers will
determine the disposition of an error arising from using one of the language
statements. You should note that there exist run-time errors that can not
be handled with the above specifiers and that will always cause a program

4·28 Writing FORTRAN CSUBs

termination. You should make sure that those errors cannot occur in the final
version of your CSUBs.

Reporting Errors to BASIC

In order to provide a consistent error recovery mechanism for CSUBs, BASIC
has defined an error number for reporting all CSUB run-time errors. The basic
idea is for a CSUB to exclusively use this error number for reporting all signal
and error conditions to BASIC; the parameterless routine csub_error should
be used for this purpose.

The calling BASIC code can then recover from this error with an ON ERROR
CALL/RECOVER statement and get the actual signals or errors by reading
some global variables (e.g. COM block variables) accessible to the reporting
CSUB or by calling another CSUB. This approach removes the need to map
CSUB error numbers to BASIC error numbers, allows CSUB libraries from
different sources to be shared within a program, and simplifies the task of
recovering from a CSUB run-time error.

In situations when BASIC will not respond at all to user input or behave
unpredictably during and after the execution of a CSUB due to an
unrecoverable error condition, the current invocation of BASIC is likely to be
corrupted and should be terminated with the kill command.

Accessing System Resources
One of the motivations for using CSUBs with BASIC is the ability to access a
rich set of HP-UX system libraries. This section covers the restrictions on the
use of these libraries. The restrictions are due to the fact that BASIC also uses
the libraries in its implementation.

• Simple Keyboard and Printer I/O

• Device I/O

• BASIC File I/O

Writing FORTRAN CSUBs 4·29

4

4

Simple Keyboard and Printer I/O

Operations on the standard I/O streams, writing to the screen and reading
from the keyboard are not supported. Therefore, FORTRAN statements
like READ and WRITE should not be used with the preconnected logical unit
numbers. To allow a CSUB to input characters from the keyboard and to write
to the PRINTER IS device, BASIC provides a set of routines in found in the
library librmb. a for keyboard and CRT register access, character input and
output, scrolling, and cursor manipulation.

Table 4·3. Keyboard and CRT I/O Routines

Routine Description

kbdcrt_clear_screen clears the alpha CRT exactly as the (Clear display) key (or
CLEAR SCREEN statement)

kbdcrt_controlcrt sends information to a CRT control register

kbdcrt_controlkbd sends information to a keyboard control register

kbdcrt_crtreadchar reads one character from the specified location on the CRT

kbdcrt_crtscroll scrolls the CRT area, from line first to line last, up or down
one line

kbdcrt_cursor removes the previous cursor and writes a new cursor to any
on-screen alpha location

kbdcrt_disp_at_xy allows text to be written to any alpha location on the CRT

kbdcrt_read_kbd returns the buffer contents trapped and held by ON KBD
(same as KBD$)

kbdcrt_scrolldn scrolls the PRINT area of the CRT down one line

kbdcrt_scrollup scrolls the PRINT area of the CRT up one line

kbdcrt_statuscrt returns the contents of a CRT status register

kbdcrt_statuskbd returns the contents of a keyboard status register

kbdcrt_systemd returns a string containing the results of calling the
function SYSTEM$ for a given argument

4·30 Writing FORTRAN CSUBs

Device I/O

Device I/O in CSUBs is provided through the HP-UX device I/O library for
HP-IB and GPIO interfaces and through the standard HP-UX termio routines
for the RS-232 interface. For more information, read the chapter "Device I/O
Library (DIL)" in the HP- UX Concepts and Tutorials: Device I/O and User
Interfacing manual.

BASIC File I/O

BASIC provides the a set of routines in the library librmb. a to allow
operations on its file types. These file operations include:

• creating

• purging

• opening

• closing

• reading

• writing

• positioning.

Since CSUBs that use this module cannot be tested outside of a BASIC
program, more time should be allocated for their implementation to minimize
the number of debugging iterations.

Writing FORTRAN CSUBs 4·31

4

Table 4·4. File Access Routines

Routine Description

csfa_fal_create creates an HP-UX file

csfa_fal_create_bdat creates a BDAT file

csfa_fal_create_ascii creates an ASCII file

csfa_fal_close closes a file

csfa_fal_eof writes an EOF at the current file position

4 csfa_fal_loadsub_all loads all subprograms from the specified PROG
file and appends them to the program in memory

csfa_fal_loadsub_name loads the subprogram from the specified PROG file
and appends it to the program in memory

csfa_fal_open opens a file for reading and writing.

csfa_fal_position positions the file pointer to a specified logical
record number

csfa_fal_purge purges a file

csfa_fal_read reads data item(s) from a file

csfa_fal_read_bdat_int reads a BASIC 16-bit integer from a BDAT file

csfa_fal_read_string reads a string from an ASCII, BDAT, or HP-UX
file

csfa_fal_write writes data item(s) into a file

csfa_fal_write_bdat_int writes a BASIC 16-bit integer to a BDAT file

cSfa_fal_write_string writes a string to an ASCII, BDAT, or HP-UX file

4·32 Writing FORTRAN CSUBs

5
CSUB Prototyper Utility

The CSUB prototyper saves time in the creation of CSUBs. It consists of
CSUBs and BASIC functions that let you call CSUB routines from BASIC in
their "native" language (FORTRAN, Pascal, C, or assembly). In order to call
CSUB routines in this manner, prototyper functions convert actual parameter
types of the BASIC calling routine to the formal parameter types of the CSUB
routine being called.

Before continuing, you should review the chapter in this manual that pertains
to your particular CSUB language. 5

Why Use the CSUB Prototyper?
The CSUB prototyper has two functions:

• To simplify the creation of CSUBs .

• To provide a means for dynamically calling CSUBs at run-time.

Creating CSUBs

The following table gives a comparison between the procedural steps for
creating a CSUB using the standard method and using the prototyper.

CSUB Prototyper Utility 5·1

5

Table 5·1. Comparison of CSUB Creation Procedures

Step Standard CSUB Procedure Prototyper CSUB Procedure

1 Create the BASIC program that Same.
is to call the CSUB(s).

2 Exit BASIC and enter the Same.
HP-UX environment.

3 Select an editor (vi for example) Same.
and write a program that
contains your CSUBs. This
program can be written in
FORTRAN, Pascal, C, or
assembly language. Run the
program and debug it until it
works.

4 Provide the proper interface for This step is not required.
the CSUB(s) by defining the
formal parameters of the
CSUB(s).

5 Link the necessary libraries to Same.
your compiled CSUB to generate
a CSUB object file.

6 Execute rmbbuildc This step is not required.

7 Load the CSUB(s) by executing Load the CSUB(s) by specifying
the LOADSUB command from the CSUB object file to the
the key board or the BASIC appropriate prototyper CSUB.
program that is calling the
CSUB(s).

The table shows that the CSUB prototyper shortens the steps required to
create a CSUB. This will save time, but you will need to have enough memory
to hold the object code for an entire program that contains the CSUB(s).

5·2 CSUB Prototyper Utility

Calling CSUBs Dynamically

The CSUB prototyper also opens up new possibilities for a BASIC application
whose requirements for compiled language routines can only be determined at
run-time. In this situation, you need not anticipate the usage requirement of
the application by defining a CSUB interface for all of the possible routines
that may be invoked. Instead, the selected routines may be called by name
with the CSUB prototyper. By carefully restricting this method of accessing
CSUBs to those routines that are not time critical, you can use this feature
to give an application greater flexibility in the area of dynamic code loading
without impairing its performance.

Using the Prototyper to Create a CSUB
This section develops a complete example that illustrates all the major steps 5
involved in using the CSUB prototyper. You may find it useful to refer to
the section "Steps for Creating a CSUB" in chapter 2, 3, or 4 of this manual,
depending on the language you are using to create your CSUB. In our example,
we will use the C language.

Writing CSUB Routines in C

The procedure for writing CSUB routines consists of five steps.

1. Using the CSUB prototyper in a BASIC program.

2. Exiting BASIC to HP-UX.

3. Writing C subroutines.

4. Generating a relocatable object file.

5. Running the BASIC program.

CSUB Prototyper Utility 5·3

5

Step 1: Using the CSUB Prototyper in a BASIC program

This BASIC program shows a typical session with the CSUB prototyper.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280

REAL A
REAL J
REAL R
DIM S$[30]

! Real variable file descriptor.

! Load the CSUB prototyper library.
LOADSUB ALL FROM "CPR"
! Load the object file containing the CSUB routines.
Cprload(A, "example")
! Call procedure "subl"
Cpr(FNlnit(A,"_subl"),FNI(50),FNL(J,1),FNS(S$,1»
PRINT "J is",J
PRINT "S$ is",S$
! Call function "sub2" which returns a 64-bit floating
! point value.
R=FNCpr64(FNlnit(A,"_sub2"),FND(45»
PRINT "R is'',R
! Unload the object file.
Cprunload(A)
END

The output of this program is as follows:

J is 50
S$ is sub 1
R is 90

This program illustrates the major operations provided by the CSUB
prototyper:

• Line 100 declares a REAL variable file descriptor called A.

• Line 150 loads the CSUB prototyper library called CPR.

• Line 170 loads the objectfile containing the desired compiled language
routines (_sub1 and _sub2) into memory. The prototyper command called
Cprload is used to load the object files. Note that the REAL variable A
is assigned as the file descriptor for the object file called example. File
descriptor A will be used when you reference the compiled routines _sub1 and
_sub2.

• Line 190 selects the prototyper execute CSUB called Cpr. Note that this
execute CSUB is type void, which is the same type as the compiled routine

5-4 CSUB Prototyper Utility

called _sub1. A list of execute CSUBs and functions can be found in the
table entitled "Mapping Between BASIC Return Value Type and Prototyper
execute CSUBs or Functions." The parameters for this execute CSUB are as
follows:

o FNlni t (A," _sub1")-selects the compiled routine that is to be called.

o FNI (50)-passes the value 50 as a 16-bit INTEGER to _sub1.

o FNL(J, 1)-returns the 32-bit REAL value J to the calling routine.

o FNS(S$, 1)-returns the string S$ to the calling routine .

• Line 240 selects the prototyper function called FNCpr64. Note that this
function is type REAL (64-bit floating-point compiled routine return value),
which is the same type as the compiled routine called _sub2. A list of
execute CSUBs and functions can be found in the table entitled "Mapping
Between BASIC Return Value Type and Prototyper execute CSUBs or
Functions." The function parameters for this function are as follows:

o FNlni t (A, "_sub2")-selects the compiled routine to be called.

o FND(45)-passes the value 45 as a 64-bit floating point REAL number to
_sub2 .

• Line 270 uses the unload command called Cprunload to remove the object
files from memory.

Step 2: Exiting BASIC to HP-UX

To exit the BASIC environment, execute the following statement:

QUIT (Return)

The BASIC default window should disappear. The window that the rmb
command was executed in will appear with your HP-UX shell prompt.

CSUB Prototyper Utility 5-5

5

Step 3: Writing C Subroutines

This step shows an example C program called example. c that contains two
CSUB routines. There are two important things to remember during this step:

• You should heed the CSUB limitations pertaining to library usage since the
routines may eventually be converted to actual BASIC CSUBs .

• You should verify that the routines only use formal parameters with types
supported by the prototyper. The section "Parameter Passing" defines those
types.

Here is a listing of the program example. c, which defines two simple C
routines:

void subl(i, j, str)
short i;
int *j;
char *str;

5 {
char *s="subl";
*j=i;
strncpy(str, s, strlen(s)+l);
}

double sub2(r)
double r;
{

return r*2;
}

The first routine called subl simply assigns the value of its first numeric
parameter to its second numeric parameter, a variable parameter, and copies
characters into its string parameter. The second routine called sub2 is a
function which doubles the value of its input parameter and returns the result.
You should note that, unlike CSUBs, these routines can have both value and
variable formal parameters.

After compiling and testing the routines in C, you are now ready to generate a
relocatable object file so that you can call the two routines from BASIC, using
the prototyper.

5·6 CSUB Prototyper Utility

Step 4: Generating a Relocatable Object File

The process of generating a relocatable object file as input to the prototyper is
the same as that used for creating a CSUB object file. In other words, you use
the HP-UX ld command to link your object files with the required libraries.
The syntax for this command is as follows:

ld -rd -a archive example.o -u _printf -lrmb -0 example

The above command generates the fully linked relocatable object file example,
which will be used as input to the prototyper.

Step 5: Running the BASIC Program

Before running the BASIC program called test_csubs, enter the BASIC
environment by typing:

rmb (Return)

Now load the program called test_csubs (found in /usr/lib/rmb/demo) by
executing the following command:

GET "test_csubs" (Return)

Note that you may have to use the statement MASS STORAGE IS to move to
the directory that contains test_csubs.

To run the program test_csubs, type:

RUN (Return)

or press~.H!.i (@).

CSUB Prototyper Utility 5· 7

5

5

Deciding Whether or Not to Create a Standard CSUB
After verifying the execution of compiled routines using the CSUB prototyper,
you have two options to finalize the implementation of your program:

1. You can invoke the compiled routines using the prototyper.

2. You can convert the prototyper calls into direct CSUB calls.

Reasons for Choosing the First Option

It makes sense to invoke the compiled routines using the prototyper if:

• You are satisfied with the performance of the prototyper calls to the
compiled routines.

• You are satisfied with the memory utilization of the prototyper for storing
the object files.

• You need the ability to invoke compiled routines sporadically or in non
time-critical situations.

• You have no prior knowledge of the names of the compiled routines.

Reasons for Choosing the Second Option

By converting the prototyper calls into direct CSUB calls, you can optimize
the access time required to load the compiled routines with a CSUB interface.
This option is also useful if you want to STORE a BASIC program with all of
its CSUBs to make it self contained. The task of providing a CSUB interface
is most easily done by defining a procedural interface for each of the selected
compiled routines, as shown below for the current example:

void csub1(i, j, dim, str)
short *i;
double *j;
dimentryptr dim;
bstring_parm str;

{

int jj;

jj=(*j) ;
sub1(*i, ijj, str->c);

5-8 CSUB Prototyper Utility

}

str->len=strlen(str->c)+1;
*j=jj;

double csub2(result. r)
double *result;
double *r;

{

*result=(*r)*2;
}

The main concern during this conversion process is to provide a CSUB
interface with BASIC parameters that are compatible with those of the formal
parameters of the compiled routines. This requirement may necessitate some
parameter processing, as shown above, before and after the call to the compiled
routines.

Passing Parameters
This section explains the parameter passing conventions of the prototyper and
lists its parameter type mappings.

In order to correctly use the CSUB prototyper, it is necessary that you know
its parameter passing conventions and the mappings that it allows between the
types of BASIC parameters used to call compiled routines and the types of
formal parameters and return values defined by the compiled routines.

Parameter Passing Conventions

The prototyper execute CSUB and functions can accept up to 16 parameters
which correspond to the formal parameters of a given compiled routine. The
BASIC variables or constants which are specified as parameters to these
execute CSUBs may necessitate some type conversions before being passed to a
compiled routine. Thus, you need to follow these conventions:

• Always nest BASIC variables or constants in a call to one of the prototyper
parameter functions that can be found in the table "Mapping Between
Actual and Formal Parameters of a CSUB."

CSUB Prototyper Utility 5·9

5

• Specify whether you are passing by reference or by value when you call
a parameter function. This is done by setting the value of the optional
parameter of each parameter function to 1 if you want to pass by reference,
or 0 if you want to pass by value (the default). Some exam pIes are:

FNI(J,1)

FNI(J,O)

passes an integer by reference

passes an integer by value

Again, this specification allows the prototyper to perform any necessary type
conversions on parameters after the call to the compiled routine .

• Choose the appropriate prototyper execute CSUB and functions to invoke
a particular routine based on the return value type of this routine. For
example, this C CSUB routine accepts an integer and does not have a return
value:

void sub1 (i)
5 short i;

Requires that you use the following execute CSUB:

Cpr(FNlnit(A,II_sub1 11
), FNI(I,1))

This C CSUB routine returns an integer and does not have a parameter:

short sub2 ()

Requires that you use the following execute CSUB:

I=FNCpr16(FNlnit(A,II_sub2 11
))

5·10 CSUB Prototyper Utility

Mapping of Parameter Types

This section presents the mapping between the actual and formal parameters of
compiled routines and mapping between BASIC return types and prototyper
execute CSUBs. The following tables present this information.

Table 5-2.
Mapping Between Actual and Formal Parameters of a CSUB

CSUB Formal Parameter Variable Parameter BASIC Actual Languages
Parameter Type Function Supported Parameter Type Supported

8-bit character FNC Yes INTEGER all

16-bit integer FNI Yes INTEGER all

32-bit integer FNI No INTEGER all

32-bit integer FNL Yes REAL all

32-bit floating-point FNR Yes REAL all

64-bit floating-point FND Yes REAL all

32-bit pointer FNP Yes REAL Pascal, C

string FNS Yes string all

aggregate FNA Yes REAL Pascal, C

You should note that the language of the routine can affect these specifications,
and that some parameter types have restrictions on the use of variable
parameters.

CSUB Prototyper Utility 5-11

5

5

Table 5·3.
Mapping Between BASIC Return Value Types and

Prototyper execute CSUBs or Functions

Compiled Routine Execute CSUB BASIC Return
Return Value Type or Function Value Type

void Cpr

8-bit character FNCpr8 INTEGER

16-bit integer FNCpr16 INTEGER

32-bit integer FNCpr321 REAL

32-bit floating-point FNCpr32r REAL

64-bit floating-point FNCpr64 REAL

32-bit pointer FNCpr32p REAL

In addition to the information in these tables, each formal parameter and
return value of a compiled routine may have some considerations that need to
be discussed. These considerations are as follows:

8-bi t character

32-bit integer

32-bit
floating-point

The value of the INTEGER actual parameter should be
within the range of a byte. The prototyper takes care of
making the proper format conversions before and after the
call to the compiled routine.

The INTEG ER actual parameter may not be a variable
parameter since INTEGER variables are only 16 bits
wide. In order to have a variable parameter, you should
use a REAL variable with a value in the range of a 32-bit
integer. The prototyper takes care of making the proper
format conversions before and after the call to the compiled
routine.

The value of the REAL actual parameter should be
within the range of a 32-bit floating-point return value.
The prototyper takes care of making the proper format

5·12 CSUB Prototyper Utility

32-bit pointer

String

Aggregate

conversions before and after the call to the compiled
routine.

Because BASIC does not define 32-bit scalar variables, the
prototyper stores pointer values in REAL variables. You
should not attempt to print or use such variables in BASIC
since their values are only meaningful when passed to
compiled routines. The prototyper takes care of making the
proper format conversions before and after the call to the
compiled routine.

The maximum length of a string actual parameter should
always be greater than the current length of the string
by one because the prototyper converts the storage for
the string to a format suitable for the language of the
compiled routine. This means that a string literal may not
be used as a parameter to the string parameter function.
Furthermore, variable string parameters should have a
maximum length large enough to accommodate any new
string value set by the compiled routine.

An aggregate, a Pascal record or a C struct/union, is
specified by passing the pointer to it and its storage
size. The prototyper takes care of passing the correct
information to the compiled routine. There are two ways
you can create an aggregate in BASIC: use a dynamic
memory allocation routine in on of the compiled languages,
or get a pointer to a named BASIC COM whose definition
mirrors that of the aggregate.

CSUB Prototyper Utility 5·13

5

5

Handling Prototyper Errors
Prototyper CSUBs signal a run-time error with a BASIC CSUB run-time error
message. In order to retrieve the actual error number, you should call the
error CSUB (Cprerr) provided with the CSUB prototyper library (CPR). This
CSUB returns a positive error number for each error generated by one of the
prototyper CSUBs. The error numbers for the prototyper CSUBs are listed in
the following table.

Table 5-4. Prototyper CSUB Errors

CSUB or Error Nmnber Description
Function

Cprload 1 Out of memory

Cprload 2 Object file access error

Cprload 3 Relocation error

FNlnit 1 Compiled routine not found in object file

FNS 1 Maximum string length too small

5-14 CSUB Prototyper Utility

Porting Pascal Workstation
Assembly CSUBs

6

Assembly language CSUBs written on the Pascal Workstation can be
ported to theHP- UX operating system for use as BASICjUX CSUBs. This
is accomplished by translating the Pascal Workstation assembly language
source file using the HP -UX command called atrans and then making any
necessary changes to the program. This chapter provides you with a process
for doing this, however, it requires a good background in assembly language
programming with the 68000 microprocessor.

Prerequisites
As previously mentioned, you will need a good understanding of assembly
language programming on a 68000 microprocessor in order to translate a Pascal
Workstation assembly language program into one for use on HP- UX. Note that
the MC68010 is not supported on BASIC/UX. The following are prerequisites
for porting your Pascal Workstation assembly language program:

• You should have a known working assembly language CSUB (one created on
the Pascal Workstation) that you can copy over to the HP-UX system .

• You should have a knowledge of how data is pushed onto and pulled off of
the stack on both the Pascal Workstation and the HP- UX operating system.
For information on this read:

o The section "How Pascal Programs Use the Stack" in the chapter "The
Pascal Compiler" found in the Pascal Workstation Systems Manual, Vol.
1.

o The appendix "Interfacing Assembly Routines to Other Languages" found
in the HP- UX Assembler Reference Manual and ADB Tutorial.

Porting Pascal Workstation 6·1
Assembly CSUBs

6

6

Using atrans
This section explains how to translate your Pascal Workstation assembly
language CSUB for use on the HP-UX system. Topics covered are as follows:

• Copying a Pascal Workstation CSUB

• Executing the atrans Command

• Modifying the Translated CSUB.

Copying a Pascal Workstation CSUB

If you have an assembly language CSUB file called paw_file located on a
Pascal Workstation disk, it can be copied over to your HP-UX system using
the COpy command. For information on how to do this, refer to the HP
BASIC 6.2 Porting and Globalization manual. However, to simplify things, the
assembly language file named paw_file can be found in the HP-UX examples
directory called /usr/lib/rmb/derno. You will be using this file to learn how
atrans works. The following listing shows the contents of this file:

* Define some handy mnemonics

front
back
result
return

temp

equ
equ
equ
equ

equ

aO
a1
a2
a3

dO

* Define the entry point

def palindrome

Pointer to the front half of the string
Pointer to the back half of the string
Pointer to a 16 bit INTEGER
The return address

Used for calculations and comparisons

* Go for it. First unload the stack

palindrome equ *
movea.l (sp)+,return
movea.l (sp)+,result
movea.l (sp)+,front
addq.l #4,sp The dimentryptr is not used

* Get the current string length and use this to set up
* the front and back pointers. Remember, a BASIC string is

6·2 Porting Pascal Workstation
Assembly CSUBs

* a 16-bit integer followed by a packed array of characters.

clr.l temp
move.w (front),temp
addq.l #2,front
lea O(front,temp),back

Get string length
The first character is always here
Back points to last character+1

* Use the pre-increment and post-decrement of the address
* registers to compare characters and update pointers.

loop

true

false

move.b
cmp.b
bne.s

cmpa
bIt

move.w
jmp

clr.w
jmp

end

-(back),temp
(front)+,temp
false

front,back
loop

#1, (result)
(return)

(result)
(return)

Executing the atrans Command.

Get next "back" character;
compare it to the "front't;
quit if there is a mismatch

If "back" is st ill less than ...
... keep trying

Set it true

The HP -UX command atrans is used to partially translate a Pascal
Workstation assembly language program for use on the HP-UX system. The
reason the translator partially translates the assembly program is there are
symbol definition pseudo-ops and registers that cannot be used in your HP-UX
assembly CSUB.

To test the atrans command on a Pascal Workstation assembly language
CSUB, copy the file called paw_file to your current working directory and
execute the following command:

atrans paw_file> paw_file. s

Porting Pascal Workstation 6-3
Assembly CSUBs

6

6

This command redirects the output of atrans to the file called paw_file. s.
The contents of your file should look like this:

6-4

Define some handy mnemonics

set front,%aO #Pointer to the front half of the string
set back,%a1 #Pointer to the back half of the string
set result,%a2 #Pointer to a 16 bit INTEGER
set return,%a3 #The return address

set temp,%dO #Used for calculations and comparisons

Define the entry point

global palindrome

Go for it. First unload the stack

set palindrome,.
movea.l (%sp)+,return
movea.l (%sp)+,result
movea.l (%sp)+,front
addq.l t4,%sp #The dimentryptr is not used

Get the current string length and use this to set up
the front and back pointers. Remember, a BASIC string is
a 16-bit integer followed by a packed array of characters.

clr.l temp
move.w (front),temp
addq.l t2,front
lea O(front,temp),back

#Get string length
#The first character is always here
#Back points to last character+1

Use the pre-increment and post-decrement of the address
registers to compare characters and update pointers.

loop: move.b -(back),temp
cmp.b temp, (front) +
bne.b false

cmpa back, front
bIt loop

true: move.w t1, (result)
jmp (return)

Porting Pascal Workstation
Assembly CSUBs

#Get next "back" character;
#compare it to the "front";
#quit if there is a mismatch

#If "back" is still less than ...
... keep trying

#Set it true

false: clr.w (result)
jmp (return)

end

Modifying the Translated CSUB

Since atrans does not fully translate a Pascal Workstation assembly program
to code usable on the HP- UX system, you will have to manually complete the
translation of the assembly language program called paw_file. s. This section
covers the changes you need to make to the paw_file. s file so you can create
an object code file out of it. When your file is completely translated, it should
look like this:

Define some handy mnemonics

Define the entry point

global
_palindrome:

_palindrome

Go for it. First unload the stack

movea.l (Yesp)+,Yea3
addq.l t4.Yesp
movea.l (Yesp)+,Y.aO
movea.l (Yesp)+,Y.a2

#The dimentryptr is not used

Get the current string length and use this to set up
the front (Y.aO) and back (Yeal) pointers. Remember, a BASIC string is
a l6-bit integer followed by a packed array of characters.

clr.l
move.w
addq.l
lea

Y.dO
(YeaO),Y.dO
t2,Y.aO
O(YeaO,YedO),Yeal

#Get string length
#The first character is always here
#Yeal points to last character+l

Use the pre-increment and post-decrement of the address registers
to compare characters and update pointers.

loop: move.b -(Yeal),YedO
cmp.b YedO,(YeaO)+

#Get next "back" (Y.al) character;
#compare it to the IIfront" (YeaO);

Porting Pascal Workstation 6·5
Assembly CSUBs

6

6

bne.b false

cmpa Xa1,XaO
bIt loop

true: move.w 11, (Xa2)
jmp (Xa3)

false: clr.w (Xa2)
jmp (Xa3)

end

What Was Changed?

#quit if there is a mismatch

#If "back" is still less than ...
... keep trying

#Set it true

Here are the changes that were made to the file called paw_file. s:

• The symbol definition pseudo-op set cannot be used in an HP-UX assembly
CSUB, therefore, all set pseudo-ops that were used to equate registers with
identifier names need to be removed. All occurrences of the identifier names
should be replaced as follows:

front replaced with YeaO

back replaced with Yea1

result replaced with Yea2

return replaced with Yea3

temp replaced with YedO

• Change the order in which the stack is unloaded. This can be done by
exchanging lines 18 and 20 of the assembly language program that was
translated using atrans. The table given below shows the lines before and
after the exchange of lines.

Table 6-1. Comparison of Program Segments

Lines 18 and 20 Before Exchange.

movea.1 (Y.sp) J Y.a2
movea.1 (Y.sp) J Y.aO
addq. 1 14 J Y.sp

6-6 Porting Pascal Workstation
Assembly CSUBs

Exchanged Lines.

addq.1 14 J Y.sp
movea.1 (Y.sp) J Y.aO
movea.1 (Y.sp) J Y.a2

• Prefix an underscore (" _") to the global pseudo-op's identifier name. It
should look like this:

global _palindrome

• Add a label called _palindrome just under the global pseudo-op. Your label
should look like this:

global _palindrome
_pal indrome :

Note that all of the above changes are the types of changes that you will need
to make to your Pascal Workstation assembly language programs and CSUBs
when you translate them using the HP-UX command atrans.

Completing Your Assembly CSUB
To complete the creation of your assembly language CSUB and to test it, you
need to complete these steps:

• Copy the Calling BASIC Program to HP-UX.

• Execute Steps 4 through 7 of the Pascal CSUB Procedure.

Copy the Calling BASIC Program to HP-UX

You will want to use the original BASIC program that you created on the
BASIC Workstation to test you assembly CSUB. To do this, use the COpy
command. For information on how to use the COpy command to transfer
files to the HP-UX operating system, refer to the HP BASIC 6.2 Porting and
Globalization manual. To save you time, there is a file named PAL_PROG located
in the HP-UX examples directory called (/usr/lib/rmb/demo). The contents
of the file are as follows:

Porting Pascal Workstation 6· 7
Assembly CSUBs

6

6

100 LOADSUB ALL FROM "PAL_ORO"
110 DIM Test$[80]
120 INTEGER Result
130 DISP "This is a test for palindromes."
140 WAIT 2
150 LINPUT "Enter a word and press [Return].",Test$
160 Palindrome (Test$,Result)
170 IF Result=l THEN
180 PRINT "The word you entered is a palindrome."
190 ELSE
200 PRINT "The word you entered is not a palindrome."
210 END IF
220 DELSUB Palindrome
230 END

The above program when executed loads the PROG file called PAL_DRO which
contains the CSUB called Palindrome. It then asks you to enter a word that
can be either a palindrome or a non-palindrome. A palindrome is a word or
phrase that reads the same backward or forward. The word you type in is
passed as a string to the palindrome CSUB. The CSUB then returns a 1 in
the variable Result if the word you entered is a palindrome; otherwise, a 0 is
returned. A message stating that the word you entered is either a palindrome
or not a palindrome is then displayed.

Execute Steps 4 through 7
of the Pascal CSUB Procedure

The remaining steps for completing your CSUB are the same as steps 4
through 7 for creating a Pascal CSUB. These steps can be found in the section
"Steps for Creating a Pascal CSUB" found in the chapter "Writing Pascal
CSUBs." Note that the stream file that you created on the Pascal Workstation,
for the original CSUB, can be copied over to the HP-UX system. This file,
with minor modifications, can then be used with the HP-UX rmbbuildc
command to create the PROG file that your BASIC lUX program will call. To
use this stream file, you would type a command similar to the following:

rmbbuildc < paw_stream_file

where paw_stream_file is the modified Pascal Workstation stream file.

6-8 Porting Pascal Workstation
Assembly CSUBs

A
File Access Reference

This appendix is a reference that describes each routine in the file access
library. There is a one-to-one functionality between fal routines and
corresponding BASIC statements. For example, FAL_CREATE_EDAT creates a
BDAT file from the CSUB the same way the BASIC CREATE EDAT statement
creates a BDAT file.

The routines described in this appendix are implemented in lIP Pascal for
the Pascal Workstation and lIP-UX. If you wish to call them from another
language, you will need to determine the parameter types in that language
which match the types of the formal parameters of the routines. Note that
in HP Pascal an idtable is a packed array of 190 .bytes. Therefore, in this
appendix where it mentions an idtable is 148 bytes, it is refering to an
idtable for a Pascal Workstation.

File Access Reference A·1

A

FAL_CLOSE
IMPORT: CSFA

This procedure closes a file. Files must be explicitly closed since the system
does not know about fal files and cannot close them automatically at
subroutine exit and stop.

Syntax

Item

file pointer

Description

pointer of TYPE fcb_ptr_type
(pointer to idtable)

Example Procedure Calls
FAL_CLOSE(idptr)

FAL_CLOSE(Ptr)

A Semantics

Range

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each

A-2 File Access Reference

must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

File Access Reference A-3

A

A

FAL_CLOSE

FAL_CREATE
IMPORT: CSFA

This procedure creates an HP-UX file.

Syntax

FALCREATE

Item Description Range

file specifier string expression of TYPE STR.ING [160] any valid file specifier
(file_name_ type)

number of bytes numeric expression of TYPE INTEGER. 1 thru 2 31 - 1

Example Procedure Calls

FAL_CREATE("NewFile:, 700",128)

Semantics

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage unit specifier (msus).

The "number of bytes" (N_bytes) parameter specifies how many bytes are to
be allocated to the file.

A·4 File Access Reference

IMPORT: CSFA

This procedure creates an ASCII file.

Syntax

FALCREATE-ASCII

Item Description Range

file specifier string expression of TYPE STRING [160] any valid file specifier
(file_name_type)

number of
records (256
bytes)

numeric expression of TYPE INTEGER

Example Procedure Calls

FAL_CREATE_ASCII("NewFile: t700"t 128)

Semantics

1 thru 2 31 - 1

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage unit specifier (msus).

The "number of records" (N_recs) parameter specifies how many records are to
be allocated to the file. For ASCII files, one record is 256 bytes.

File Access Reference A·5

A

A

IMPORT: CSFA

This procedure creates a BDAT file.

Syntax

FALCREATE_8DAT

Item Description Range

file specifier string expression of TYPE STRING [160] any valid file specifier
(f ile_name_ type)

record size

number of
records

numeric expression of TYPE INTEGER

numeric expression of TYPE INTEGER

Example Procedure Calls

FAL_CREATE_BDAT("NewFile:,700",20,128)

Semantics

1 thru 2 31 - 1

1 thru 2 31 - 1

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage uni t specifier (msus).

The "record size" (Rec_size) parameter specifies the size of logical records
to be used with the file. If the BDAT file is not to be used with random access
operations, then use a record size of 256 (default value in BASIC).

The "number of logical records" (N_recs) parameter specifies how many logical
records are to be allocated to the file.

A·6 File Access Reference

IMPORT: CSFA

This procedure writes an end of file at the current file position. The file must
be open.

Syntax

Item

file pointer

Description

pointer of TYPE fcb_ptr_type
(pointer to idtable)

Example Procedure Calls
FAL_EOF(idptr)

Semantics

Range

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

An idtable uniquely identifies a file. The same idtable must be us€d to
access the file once it it open. Several files can be open at the same time; each
must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

File Access Reference A-7

A

A

In a BDAT file, this updates the end of data pointer. In an ASCII file, it
writes a -1 at the current location. If the user has been using FAL_READ and
FAL_WRITE, he takes responsibility for actually being at the end of a record
when he writes the -1 (else it will not be seen as an end-of-data).

A-8 File Access Reference

IMPORT: CSFA

This procedure loads all subprograms from a specified PROG file and appends
them to the program in memory.

Syntax

Item

file specifier

Description Range

string expression of TYPE STRING [160] a.ny va.lid file specifier
(f ile_name_ type)

Example Procedure Calls

Semantics

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage unit specifier (msus).

File Access Reference A·9

A

A

FAL_LOADSUB_NAME
IMPORT: CSFA

This procedure loads the specified subprogram from the specified PROG file
and appends it to the program in memory.

Syntax

FALLOAQSUB_NAME

Item

file specifier

subprogram
name

Description Range

string expression of TYPE STRING [160] any valid file specifier
(f ile_name_ type)

string expression of TYPE STRING [160] any valid subprogram
name

Example Procedure Calls

FAL_LOADSUB_NAME("NewFile: t700"t"Testl")

Semantics

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage unit specifier (msus).

The "subprogram name" (Sub_name) is the name of the subprogram to be
loaded. It must appear exactly as it would in the program.

A-10 File Access Reference

IMPORT: CSFA

This procedure opens a file for reading and writing. It can be an AS ell, BDAT
or HP -UX file.

Syntax

Item

file specifier

file pointer

Description Range

string expression of TYPE STRING [160] any valid file specifier
(file_name_type)

pointer of TYPE fcb_ptr_type
(pointer to idtable)

Example Procedure Calls

FAL_OPEN("NewFile:,700",ptr)

Semantics

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage unit specifier (msus).

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc.

File Access Referel1ce A-11

A

A

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each
must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

Note As part of opening a file, the system will close any 110 path
which is open using the same idtable. Since Pascal variables
are not cleared when they are allocated, your idtable may
initially contain data which will appear to the system to be an
open 110 path. Errors and incorrect behavior may occur if the
system tries to close an 110 path based on this random data.
To prevent this, you must zero the idtable before you use it
the first time in FAL_OPEN. Once you are using the idtable,
never change any data in it except by using FAL procedures.

Files must be explicitly closed using FAL_CLOSE. They will not be closed at
su brou tine exit or stop.

BDAT and HP-UX files are opened in FORMAT OFF.

A·12 File Access Reference

FAL_POSITION

FAL_POSITION
IMPORT: CSFA

This procedure positions the file to a specified logical record number. The file
must be open and must be a BDAT or HP-UX file.

Syntax

Item

file pointer

FALPOSITION

Description

pointer of TYPE fcb_ptr_type
(pointer to idtable)

Range

logical record numeric expression of TYPE INTEGER 1 thru 2 31 - 1

Example Procedure Calls
FAL_POSITION(idptr,logrecno)

FAL_POSITION(Ptr, 1)

Semantics

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each

File Access Reference A·13

A

A

FAL_POSITION

must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The logrecno (logical record) is the logical record for BDAT files or byte
number for HP-UX files at which the file pointer is to be positioned. The
beginning of a file is at logical record number 1.

A·14 File Access Reference

IMPORT: CSFA

This procedure purges a file. The file must be closed.

Syntax

Item

file specifier

Description Range

string expression of TYPE STRING [160J any valid file specifier
(file_name_type)

Example Procedure Calls

FAL_PURGE(IINewFile: ,700")

Semantics

The "file specifier" (File_spec) parameter may include a directory specifier (if
the file is to be created on a volume that supports hierarchical directories), and
a mass storage unit specifier (msus).

FAL_PURGE will detect attempts to purge files which are opened in BASIC
(Le., by assigning an I/O path name (@name) to the file). It will not detect
attempts to purge files which are opened in the CSUB (Le., by assigning a file
control block (equivalent to the value area for an I/O path) to the file). This is
also true for the BASIC PURGE statement. A method for avoiding this problem
is given in the "Advanced Topics" chapter.

File Access Reference A·15

A

A

IMPORT: CSFA

This procedure reads a file. The file must be open. It can be an ASCII, BDAT
or HP -UX file.

Syntax

fALREAO

Item

file pointer

Description

pointer of TYPE f cb_ptr _ typ~
(pointer to idtable)

Range

bytes numeric expression, of TYPE INTEGER 0 to 2 31 - 1

buffer pointer pointer to a buffer (anyptr)

Example Procedure Calls
FAL_READ(idptr,nbytes,bufptr)

FAL_READ(Ptr,70,Tobuf)

Semantics

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

A·16 File Access Reference

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each
must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The "bytes" (nbytes) parameter defines the number of bytes to read.

The "buffer pointer" (bufptr) is a pointer to the buffer.

This procedure provides direct access to the data bytes in the file. Therefore,
the user must keep track of the record structure in a ASCII file. (Each item
(logical record) in an ASCII file is proceeded by a two-byte length header and
contains an even number of bytes. If necessary a null byte, CHR$ (0), is added
to the item to make an even number of bytes in each record.)

File Access Reference A·17

A

IMPORT: CSFA

This procedure reads a BASIC 16-bit integer from a BDAT file. This file must
be open and must be a BDAT file.

Syntax

Item Description

file pointer pointer of TYPE f cb_ptr _ type
(pointer to idtable)

buffer pointer pointer to a 16-bit INTEGER (anyptr)

Example Procedure Calls

A Semantics

Range

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each

A-18 File Access Reference

must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The intbufptr (buffer pointer) is a pointer to a 16-bit integer.

File Access Reference A·19

A

IMPORT: CSFA

This procedure reads a string from an ASCII, BDAT or HP-UX file. This file
must be open.

Syntax

FALREAD_STRING

Item

file pointer

bytes

Description

pointer of TYPE :fcb_ptr_type
(pointer to idtable)

numeric expression, rounded to an
integer

buffer pointer pointer to a buffer (anyptr)

Example Procedure Calls

FAL_READ_STRING(idptr,nbytes,bufptr)

A FAL_READ_STRING(Ptr,70,Tobuf)

Semantics

Range

o to 2 31 - 1

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

A-20 File Access Reference

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each
must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The "bytes" (nbytes) parameter defines the maximum number of bytes to
read.

The "buffer pointer" (bufptr) is a pointer to the string buffer. The length of
the string in the file is determined from the file itself; the next 4-bytes for a
BDAT file and the next 2-bytes for an ASCII file. If the length is odd, then
it is increased by 1. If the result of that increase is greater than the nbytes
specified, an escape is generated. Otherwise, the next length bytes are read
into the buffer. Note that, if you specify nbytes greater than the buffer size
you may write over system information.

In an HP- UX file, a string is terminated by a null character. There is no length
field at the beginning of the string.

File Access Reference A·21

A

FAL_WRITE
IMPORT: CSFA

This procedure writes a file. The file must be open. It can be an ASCII, BDAT
or HP -UX file.

Syntax

fALWRITE

Item

file pointer

bytes

buffer pointer

Description

pointer of TYPE tcb_ptr_type
(pointer to idtable)

numeric expression, rounded to an
integer

pointer to a buffer (anyptr)

Example Procedure Calls

FAL_WRITE(idptr,nbytes,bufptr)

A FAL_WRITE(Ptr,70,Tobuf)

Semantics

Range

o to 2 31 - 1

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

A·22 File Access Reference

FAL_WRITE

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each
must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The "bytes" (nbytes) parameter defines the number of bytes to write.

The "buffer pointer" (bufptr) is a pointer to the buffer.

This procedure provides direct access to the data bytes in the file. Therefore,
the user must keep track of the record structure in a ASCII file. (Each item
(logical record) in an ASCII file is proceeded by a two-byte length header and
contains an even number of bytes. If necessary a null byte, CHR$ (0), is added
to the item to make an even number of bytes in each record.)

File Access Reference A·23

A

FAL_WRITE

IMPORT: CSFA

This procedure writes a BASIC 16-bit integer to a BDAT file. This file must be
open and must be a BDAT file.

Syntax

FALWRITE-BDATE_INT

Item Description

file pointer pointer of TYPE fcb_ptr_type
(pointer to idtable)

buffer pointer pointer to a 16-bit INTEGER (anyptr)

Example Procedure Calls

A Semantics

Range

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each

A·24 File Access Reference

must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The intbufptr (buffer pointer) is a pointer to a 16-bit integer.

File Access Reference A-25

A

IMPORT: CSFA

This procedure writes a string to an ASCII, BDAT or HP-UX file. This file
must be open.

Syntax

FALWRITE..STRING

Item

file pointer

bytes

Description

pointer of TYPE fcb_ptr_type
(pointer to idtable)

numeric expression, rounded to an
integer

buffer pointer pointer to a buffer (anyptr)

Example Procedure Calls

FAL_WRITE_STRING(idptr,nbytes,bufptr)

A FAL_WRITE_STRING(Ptr,70,Tobuf)

Semantics

Range

o to 2 31 - 1

The "file pointer" (idptr) parameter is a pointer to an idtable.

You must allocate an idtable for use by all routines that have an idptr as a
parameter. An idtable is a file control block. From the user's point of view,
an idtable can be a packed array of 190 bytes. When a file is opened, file
control information is written into the idtable. When a file is accessed, the
idtable is consulted for information regarding file location, type, etc. You
should never change any data in the idtable except by FAL procedures.

A·26 File Access Reference

An idtable uniquely identifies a file. The same idtable must be used to
access the file once it it open. Several files can be open at the same time; each
must have it's own idtable. Access to one file with two different idtables at
the same time is not supported.

The "bytes" (nbytes) parameter defines the number of bytes to write. When
you write to a BDAT file a 4-byte binary length is written followed by the
string, padded to the next even byte if necessary. When you write to an ASCII
file a 2-byte binary length is written followed by the string, padded to the next
even byte if necessary.

The "buffer pointer" (bufptr) is a pointer to the string buffer.

In an HP- UX file, a string is terminated by a null character. There is no length
field at the beginning of the string.

File Access Reference A-27

A

B
Keyboard and CRT I/O Reference

This appendix is a reference that describes in detail the routines which provide
access to the BASIC keyboard and CRT.

The CRT I/O routines access the CRT drivers at a fairly low-level. For
example, the scrolling routines and disp_at_xy are below the high-level PRINT
driver. Therefore, system variables defining the top and bottom of current text,
and current print position are not updated by these routines. This leads to
what appears to be abnormal behavior in arrow key scrolling and current print
position. Consequently, it is recommended these routines not be used when
mixing CSUB displays with normal BASIC displays.

The routines described in this appendix are implemented in HP Pascal for
the Pascal Workstation and HP-UX. If you wish to call them from another
language, you will need to determine the parameter types in that language
which match the types of the formal pa.rameters of the routines.

Keyboard and CRT I/O Reference 8-1

8

B

IMPORT: KBDCRT

This procedure clears the alpha CRT, which is exactly the same as the
(Clear display) key on the keyboard, or the BASIC CLEAR SCREEN statement.

Syntax

-{ CLEAR_SCREEN r
Example Procedure Calls

IF finished THEN CLEAR_SCREEN

B·2 Keyboard and CRT I/O Reference

CONTROLCRT

CONTROLCRT
IMPORT: KBDCRT

This procedure sends information to a CRT control register

Syntax

CONTROLCRT

Item Description

register number numeric expression of TYPE cbyte

control numeric expression of TYPE cword

Example Procedure Calls

CONTROLCRT(reg, cont)

CONTROLCRT(1,10)

Semantics

Range

o to 21 except for 3,6,7,9,
and 19.

depends on the register

The "register number" (reg) parameter designates the register to be written.

The "control" (cont) contains the value to be written into the CRT control
register. Refer to the "CRT Status and Control Registers" section in the HP
BASIC Language Reference for more information.

This procedure will escape with a BASIC errorcode if an illegal argument is
given. The value will be such that errorcode MOD 1000 = 401 is true.

Keyboard and CRT I/O Reference 8-3

B

8

CONTROLCRT

CONTROLKBD
IMPORT: KBDCRT

This procedure sends information to a keyboard control register

Syntax

CONTROLKBD

Item Description

register number numeric expression of TYPE cbyte

control numeric expression of TYPE cword

Example Procedure Calls

CONTROLKBD(reg. cont)

CONTROLKBD(2.0)

Semantics

Range

o to 17 except for 5,6,8,9
and 10

depends on register

The "register number" (reg) parameter designates the register to be written.

The "control" (cont) contains the value to be written into the keyboard control
register. Refer to the "Keyboard Status and Control Registers" section in the
HP BASIC Language Reference for more information.

This procedure will escape with a BASIC errorcode if an illegal argument is
given. The value will be such that errorcode MOD 1000 = 401 is true.

8·4 Keyboard and CRT 1/0 Reference

CRTREADCHAR

CRTREADCHAR
IMPORT: KBDCRT

This function reads one character from the specified location on the CRT.

Syntax

CRTREADCHAR x_coordinate

Item Description

x_coordinate

y _coordinate
word

numeric expression of TYPE cbyte

numeric expression of TYPE cbyte

Function Heading

FUNCTION CRTREADCHAR (X,Y:CBYTE): CHAR;

Example Function Calls

One_chr := CRTREADCHAR(xcrd,ycrd)

IF CRTREADCHAR(24,22) = 'A' THEN foundit := TRUE

Semantics

y_coordinate

Range

1 to screen width

1 to screen height

The "x_coordinate" (xcrd) and "y _coordinate" (ycrd) specify the on-screen
alpha location from the upper left corner of the alpha CRT area (affected by
ALPHA HEIGHT). Invalid values of x,y result in an escape with escapecode set to
1019.

Keyboard and CRT I/O Reference 8·5

B

B

CRTREADCHAR

CRTSCROLL
IMPORT: KBDCRT

This procedure scrolls the CRT area from line first to line last up or down one
line.

Syntax

CRTSCROLL

Item Description

first line

last line

boolean

numeric expression of TYPE cbyte

numeric expression of TYPE cbyte

expression of TYPE boolean

Example Procedure Calls
CRTSCROLL(first,last,dn)

CRTSCROLL(12,22,tf)

Semantics

Range

1 thru screen height

1 thru screen height

true or false

The "first line" (f irst) parameter signifies the first line.

The "last line" (last) parameter signifies the last line. Lines first and last are
relative to the current alpha screen (Le., modified by ALPHA HEIGHT). Tests are
made for O<first line<last line<=screen height, if they fail, an escape(1019)
occurs.

These routines do not scroll text to/from the offscreen alpha buffer (if any)
which the system uses. Instead, they clear the first or last line of the scrolling
region.

B·6 Keyboard and CRT 1/0 Reference

CRTSCROLL

The "down" (dn) parameter signifies whether to scroll up or down one line.
That is, if down (dn) is false, it scrolls this area up one line.

Keyboard and CRT I/O Reference B·7

B

8

CRTSCROLL

CURSOR
IMPORT: KBDCRT

This procedure removes the previous cursor and writes a new cursor to any
on-screen alpha location.

Syntax

Item

x_coordinate

y _coordinate

cursorstate

y_coordinate

Description

numeric expression of TYPE cbyte

numeric expression of TYPE cbyte

expression of TYPE cursortype

Example Procedure Calls
CURSOR(xcrd,ycrd,ctype)

Semantics

Range

1 thru screen width

1 thru screen height

normal_cursor,
ins ert _ cursor, or
off_cursor

The "x_coordinate" (xcrd) and "y _coordinate" (ycrd) specify the on-screen
alpha location of the cursor from the upper left corner of the alpha CRT area
(affected by ALPHA HEIGHT).

Any system action which moves the cursor will overwrite the action of
this procedure. This includes any key press if not trapped by ON KBD. The
programmer must take this into account in using this feature.

8-8 Keyboard and CRT I/O Reference

The possible values of "cursorstate" (ctype) are normal_cursor,
insert_cursor, and off_cursor.

CURSOR

Keyboard and CRT I/O Reference 8-9

8

8

CURSOR

IMPORT: KBDCRT

This procedure writes text to anyon-screen alpha location.

Syntax

x-coordinate y_coordinate

Item

x_coordinate

y _coordinate

bufstring

parseflag

enhance

Description

numeric expression of TYPE cbyte

numeric expression of TYPE cbyte

expression of TYPE
kbd_string = packed record

len: word;
c: packed array [1 .. 256] of char;

end;

numeric expression of TYPE boolean

expression of TYPE
enh_ type = packed record

color : cbyte;
hilite : cbyte;

end;

8-10 Keyboard and CRT I/O Reference

Range

1 thru screen width

1 thru screen height

within range of
kbd_string

true or false

within range of enhtype

Example Procedure Calls

DISP_AT_XY(22 , 34, strrecord, tf, enhcrecord)

Semantics

disp_at_xy can be used to put characters anywhere on the screen including
the areas which are normally the keyboard lines, key labels, etc. This does not
put those characters into the keyboard buffer, or any other internal buffer
related to those areas. Specifically, it does not do an OUTPUT KBD. They will,
however, be re-displayed by a GCLEAR on a bit-mapped display.

The "x_coordinate" (xcrd) and "y _coordinate" (ycrd) specify the on-screen
alpha location of the cursor from the upper left corner of the alpha CRT area
(affected by ALPHA HEIGHT). Characters will be wrapped at the alpha CRT
width (not necessarily the PRINTER IS; WIDTH). A check is made for strings
which would run off the end of the display. Out of range values of x and yare
mapped to 1,1 and strings that are too long are truncated.

The "parseflag" (parse) parameter indicates whether characters in the range
128 .. 143 are to be interpreted as highlights or displayed as characters. It also
affects the display of characters 144 .. 159; characters 0 .. 31 are always displayed.

The "bufstring" (var _str) parameter contains the text to be written to the
screen.

The "enhance" (var _ enhc) parameter specifies the color and highlights for the
text. It should be initialized to an appropriate value. However, internal color
values for ALPHA PEN 1 .. 7 may be different from the user specified value. For
ALPHA PENs above 7 the value of color is the pen number. The highlight values
are also encoded. The simplest way to initialize enhc for highlights and for
colors less than 8 is to set parseflag to true and print a string with characters
in the range 128 .. 143. Then the correct values will be returned in the var
parameter var _enhc.

For monochrome displays, the color byte is ignored.

Keyboard and CRT I/O Reference B-11

B

B

IMPORT: KBDCRT

This function returns the buffer contents trapped and held by ON KBD (same as
KBD$).

Syntax

Example Function Calls

Semantics

You must execute an ON KBD statement before calling the CSUB. Then any
calls to the function read_kbd will return the same data as a call to the BASIC
function KBD$ would. Calling this function also clears the KBD$ buffer. Use of
this function allows you to poll the keyboard for input while in the CSUB. For
the best results, include the ,ALL option in the ON KBD statement. Otherwise,
a closure key, such as a typing-aid, causes the keyboard to block until an
end-of-line occurs. This will not happen in the CSUB.

Note Closure keys are system-function keys (as opposed to
ASCII-character keys) which are logged and subsequently
processed by the BASIC system and therefore, normally "close"
subsequent keyboard inputs to the system until fully processed.
For further information, see the "Keyboard" chapter of the HP
BASIC 6.2 Interface Reference manual.

8-12 Keyboard and CRT I/O Reference

SCROLLDN

SCROLLDN
IMPORT: KBDCRT

This procedure scrolls the PRINT area of the CRT down one line.

Syntax

Example Procedure Calls

SCROLLDN

-{ SCROLLDN r

Keyboard and CRT I/O Reference 8-13

8

B

SCROLLDN

SCROLLUP
IMPORT: KBDCRT

This procedure scrolls the PRINT area of the CRT up one line.

Syntax

Example Procedure Calls
SCROLLUP

--{ SCROLLUP r

B-14 Keyboard and CRT 1/0 Reference

STATUSCRT

STATUSCRT
IMPORT: KBDCRT

This function returns the contents of a CRT status register.

Syntax

-c STATUSCRT r<D1 ~~~S~!~ ~
Item Description Range

register number numeric expression of TYPE cbyte o thru 21

Function Heading

FUNCTION STATUS CRT (reg:cbyte) cword;

Example Function Calls

IF STATUSCRT(13) = 9 THEN CONTROLCRT (13,18);

Semantics

The "register number" (reg_no) parameter designates the register to be read.
Refer to the "CRT Status and Control Registers" section in the HP BASIC
Language Reference for more information.

This function will escape with a BASIC errorcode if an illegal argument is
given. The value will be such that errorcode MOD 1000 = 401 is true.

Keyboard and CRT I/O Reference 8·15

B

STATUSCRT

STATUSKBD
IMPORT: KBDCRT

This function returns the contents of a keyboard status register.

Syntax

-c STATUSKBD r<D-1 ~~~s~:~ HI>-
Item Description

register number numeric expression of TYPE cbyte

Function Heading

FUNCTION STATUSKBD (reg:cbyte) cword;

Example Function Calls

Fn_key := STATUSKBD(2);

Semantics

Range

o thru 17 except for 3
and 4

The "register number" (reg_no) parameter designates the register to be read.
Refer to the "Keyboard Status and Control Registers" section in the HP

B BASIC Language Reference for more information.

This function will escape with a BASIC errorcode if an illegal argument is
given. The value will be such that errorcode MOD 1000 = 401 is true.

B-16 Keyboard and CRT I/O Reference

SYSTEMD

SVSTEMD

IMPORT: KBDCRT

This function returns a string containing the same results (system status and
configuration information) as executing SYSTEM$ with the given argument.

Syntax

-+C SYSTEMD)-.(D-..j argument f-.<I>-

Iteln Description Range

argument string expression of TYPE STRING [1sJ any valid SYSTEM$
(string_1S) argument

Function Heading

FUNCTION SYSTEMD (Request: string_18): string_160;

Example Function Calls

Some_thing := SYSTEMD (arg)

Or_other := SYSTEMD ("AVAILABLE MEMORY")

Semantics

The "argument" (arg) is the string containing the argument for the BASIC
SYSTEM$ function. If the argument is invalid, the result returned is the string 8
"ERROR 401" (Le., the function does not escape). The value returned is of
TYPE STRING [160J .

This provides Security Module and ID PROM access plus many other
capabilities. Refer to SYSTEM$ in the HP BASIC Language Reference for
further information.

Keyboard and CRT 1/0 Reference 8·17

Index

A

Array Dimension Record
COMPLEX, 2-15, 4-11
INTEGER, 2-15, 4-11
REAL, 2-15, 4-11
String, 2-16,4-12

Array Dimension Structure
COMPLEX, 3-13
INTEGER, 3-13
REAL, 3-13
String, 3-14

Array parameter type, 2-14, 3-13, 4-10
Assembly CSUB, steps for creating an,

3-1
atest. c, 3-3
atrans, 6-2

B

basic_com routine, 4-15
BASIC file I/O, 2-38, 3-35, 4-31
bcmplxvaltype (by reference), 2-9
bcomplex_parm, 3-8
bcomplex_parm (by value), 2-9
binteger_parm, 3-8
binteger_parm (by value), 2-9
bintvaltype (by reference), 2-9
breal_parm, 3-8
breal_parm (by value), 2-9
breal val type (by reference), 2-9
bstring_parm, 2-9, 3-8

c
C CSUB

components, 3-6
executing rmbbuildc, 3-22
linking CSUB object files, 3-20
managing CSUBs from BASIC, 3-29
parameter passing, 3-7
steps for creating CSUBs, 3-1

character*190, 4-6
character*30, 4-6
charact er* n, 4-6
clear_screen, 2-36, B-2, B-3
COM blocks, accessing them from a CSUB,

2-20, 3-18, 4-15
Compiled subprogram (CSUB), 1-1
complex*16, 4-6
COMPLEX parameter type, 2-11, 3-10,

4-7
control crt , 2-36
controlkbd, 2-36, B-4
CRT and keyboard I/O routines, 2-36
crtreadchar, 2-36, B-5
crtscroll, 2-36, B-6
csfa_fal_close, 3-35, 4-31
csfa_fal_create, 3-35, 4-31
cSfa_fal_create_ascii, 3-35, 4-31
csfa_fal_create_bdat, 3-35,4-31
csfa_fal_eof, 3-35, 4-31
csfa_fal_loadsub_all, 3-35,4-31
csfa_fal_loadsub_name, 3-35, 4-31
csfa_fal_open, 3-35, 4-31
csfa_fal_position, 3-35, 4-31

Index-1

maex

IIIUCA

csfa_fal_purge, 3-35,4-31
csfa_fal_read, 3-35, 4-31
csfa_fal_read_bdat_int, 3-35, 4-31
csfa_fal_read_string, 3-35, 4-31
csfa_fal_write, 3-35, 4-31
csfa_fal_write_bdat_int, 3-35, 4-31
csfa_fal_write_string, 3-35, 4-31
csubdecl.h, 1-4, 3-16
csubdecl module, 2-18
CSUB interface, 2-25
CSUB Run-time Errors, Handling, 2-33
CSUBs, deleting, 4-27
CSUBs, Deleting, 2-32, 3-30
CSUBs, loading, 2-31, 3-29, 4-26
CSUB, steps for creating an assembly,

3-1
CSUBs, When to Use, 1-3
CSUB utilities

csfa.o, 1-4
csubdecl.o, 1-4
kbdcrt.o, 1-4

cursor, 2-36, B-8

D
Device I/O, 2-38, 3-34, 4-31
dimentryptr, 2-9, 3-8
disp_at_xy, 2-36, B-I0
Dynamic memory allocation, 2-35, 3-33

E

Errors, reporting, 2-34, 3-32, 4-29
Errors, rmbbuildc, 2-28, 3-26, 4-23
Errors, trapping, 2-33, 3-31, 4-28
Example

finding the string, 2-3, 4-2
passing parameters, 3-2

EXPORT, 2-6
External references, resolving, 2-23,

3-21, 4-19

Index-2

F

fal, 2-38, A-I
fal_close, 2-38, A-2
fal_create, 2-38, A-4
fal_create_ascii, 2-38, A-5
fal_create_bdat, 2-38, A-6
f al_ eof, 2-38
FAL_EOF, A-7
fal_Ioadsub_all, 2-38, A-9
fal_Ioadsub_name, 2-38, A-I0
fal_open, 2-38, A-II
fal_position, 2-38, A-13
f aI_purge , 2-38, A-15
fal_read, 2-38, A-16
fal_read_bdat_int, 2-38, A-18
fal_read_string, 2-38, A-20
fal_write, 2-38, A-22
fal_write_bdat_int, 2-38, A-24
fal_write_string, 2-38, A-26
fcb_ptr_type, 3-8
fcb_ptr_type (by value), 2-9
fcb_type (by reference), 2-9
File access reference, A-I
File access routines, 2-38, 3-35, 4-31
FORTRAN COM block structure, 4-16
FORTRAN CSUB

components, 4-5 .
executing rmbbuildc, 4-19
linking CSUB object files, 4-17
managing CSUBs from BASIC, 4-26
parameter passing, 4-6
steps for creating CSUBs, 4-1

FSTR, 2-3, 4-3

G

Global variables, 2-22

IMPLEMENT, 2-6
IMPORT, 2-6
IMPORT csfa

fcb_ptr_type (by value), 2-9
fcb_type (by reference), 2-9

integer*2, 4-6
INTEGER parameter type, 2-12, 3-10,

4-8
I/O, BASIC file, 2-38
I/O, device, 2-38, 3-34, 4-31
I/O paths, 3-12
I/O Paths, 2-13, 4-10

K

kbdcrt_clear_screen, 3-33, 4-30
kbdcrt_controlcrt, 3-33, 4-30
kbdcrt_controlkbd, 3-33, 4-30
kbdcrt_crtreadchar, 3-33, 4-30
kbdcrt_crtscroll, 3-33, 4-30
kbdcrt_cursor, 3-33, 4-30
kbdcrt_disp_at_xy, 3-33,4-30
kbdcrt_read_kbd, 3-33, 4-30
kbdcrt_scrollup, 3-33, 4-30
kbdcrt_statuscrt, 3-33, 4-30
kbdcrt_statuskbd, 3-33, 4-30
kbdcrt_systemd, 3-33, 4-30
kdbcrt_scrolldn, 3-33, 4-30
Keyboard and CRT I/O reference, B-1
Keyboard and CRT I/O routines, 2-36,

3-33,4-30
Keyboard and printer I/O, 2-36, 3-33,

4-30

L

ld, 2-2, 2-22, 3-20, 4-18
librmb.a, 1-4,2-5,2-23,3-21,4-18
Linker (HP-UX), 2-22, 3-20, 4-18

N

nm, 2-23, 4-19

o
Optional parameters, 2-19, 3-17, 4-14

p

Palindrome, 6-8
PAL_PROG, 6-7
Parameters passed by reference, 2-8,

3-7
Parameter types, 4-6

comparison between C and BASIC,
3-8

comparison between FORTRAN and
BASIC, 4-6

comparison between Pascal and
BASIC, 2-9

param_val, 3-3
Pascal and BASIC parameter types,

2-9
Pascal CSUB

components, 2-6
executing rmbbuildc, 2-24
linking CSUB object files, 2-22
managing CSUBs from BASIC, 2-31
parameter passing, 2-7
steps for creating CSUBs, 2-1

Passing parameters by reference, 2-8,
4-6

paw_file, 6-2
Porting Pascal Workstation Assembly

CSUBs, 6-1
Program

R

atest. c, 3-3
FSTR, 2-3, 4-3
PAL_PROG, 6-7
param_val, 3-3
paw_file, 6-2
string. f, 4-3
string. p, 2-4

read_kbd, 2-36, B-12
real*8, 4-6
REAL parameter type, 2-11, 3-10,4-7

Index-3

Index

Inaex

Reference, passing parameters by, 2-8,
4-6

rmbbuildc, 1-4, 2-2, 2-5, 2-24, 3-22,
4-19

rmbbuildc errors
when creating C CSUBs, 3-26
when creating FORTRAN CSUBs,

4-23
when creating Pascal CSUBs, 2-28

Run-time errors, handling CSUB, 2-33,
3-31, 4-28

S
scrolldn, 2-36, B-13
scrollup, 2-36, B-14

Index-4

SEARCH directive, 2-6
statuscrt, 2-36, B-15
statuskbd, 2-36, B-16
string.f, 4-3
string.p, 2-4
String parameter type, 2-12, 3-11, 4-8
System components, 1-4
systemd, 2-36, B-17

T

Trapping errors, 2-33, 4-28
TYPE declarations, useful, 2-18

HP Part Number
E2040-90003

Printed in U.S.A. E0891

Flio- HEWLETT
a:~ PACKARD

111 .

E2040-90603 Manufacturing Number

