Device 1/O:
User’s Guide

HP 9000 Computers

(ﬁp HEWLETT

PACKARD

HP Part No. B1864-90002
PrintedinEngland January 1991

First Edition
E0191

Notices

The information contained in this document is subject to change without
notice.

Heuwlett-Packard makes no warranty of any kind with regard to this manual,
wncluding, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
‘material.

Warranty. A copy of the specific warranty terms applicable to your
Hewlett-Packard product and replacement parts can be obtained from your
local Sales and Service Office.

Copyright (© Hewlett-Packard Company, 1991

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S.
Government Department of Defense is subject to restrictions as set forth in
paragraph (b)(3)(ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Printing History

New editions of this manual will incorporate all material updated since the
previous edition.

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.)
The manual part number changes when extensive technical changes are
incorporated.

January, 1991 ... Edition 1. This Edition documents material related to device
I/O relevant to the 8.X release of HP-UX.

m For DIL, it supersedes the “Device I/O Library” part of manual part number
97089-90057, Edition 1, dated September 1989. New information was added
regarding the Centronics-compatible Parallel interface.

m For HP-HIL, it supersedes the “Using HP-HIL Devices” part of manual
part number 97089-90081, Edition 3, dated September 1987. Information
regarding use of the Sound Generator (beeper) was added to the HP-HIL
part.

Contents

N I

1. Introduction to Device I/0O

What is Device I/O? 1-1
What is DIL? 1-1
What is HP-HIL? 1-1
Choosing DILor HP-HIL 1-2

Part I: DIL

2. Interfacing Concepts

Variation Between Computer Systems 2-1
Manual Organization 2-2
DIL Interfacing Subroutines 2-3
Linking DIL Routines e e e e e e e e 2-3
Calling DIL Routines from Pascal 2-3
Calling DIL Routines from FORTRAN 2-4
General Interface Concepts 2-5
Definition 2-5
Interface Functions 2-6
Handshake I/O 2-7
Handshake Output 2-7
Handshake Input 2-7
HP-IB Protocol 2-8
The HP-IB Interface 2-9
General Structure L. L. 2-9
Handshake Lines 2-10
Bus Management Control Lines 2-13
ATN: The Attention Line 2-14
IFC: The Interface Clear Line 2-14

Device 1/0 Contents-1

REN: The Remote Enable Line 2-14

EOI: The End or Identify Line 2-14
SRQ: The Service Request Line 2-15
The GPIO Interface 215
The Centronics-Compatible Parallel Interface 2-16
General-Purpose Routines
Background Basicso 0oL Lo 3-2
Interface Special Files 3-2
Entity Identifiers (eid) 3-2
Programming Model 3-2
General-Purpose Routines 3-3
Additional Series 300/400 Routines 3-4
Opening Interface Special Files 3-4
Closing Interface Special Files 3-6
Low-Level Read/Write Operations 3-7
Example o000 3-9
Designing Error Checking Routines 3-10
The errno Variable 3-10
Usingerrno 0o e e e 3-10
The errno.h Header File 3-10
Displayingerrnoo 3-10
Error Handlers 3-11
Resetting Interfaces 3-12
Locking an Interface 3-13
Controlling I/O Parameters 3-14
Setting I/O Timeout 3-15
Setting Data Path Width 3-16
Setting Minimum Data Transfer Rate 3-17
Setting the Read Termination Pattern 3-18
Termination on Byte Count 3-18
Termination on Hardware Condition 3-19
Termination on Data Pattern 3-19
Disabling a Read Termination Pattern 3-22
Determining Why a Read Terminated 3-23
Example 3-24
Interrupts e e e e e e e 3-26
HP-IB Interrupts 3-26

Contents-2 Device 1/O

GPIO Interrupts
Parallel Interrupts
The io_on_interrupt Subroutine
The io_interrupt_ctl Subroutine

4. Controlling the HP-IB Interface

Overview of HP-IB Commands
UNLISTEN
UNTALK o o ..
DEVICECLEAR
LOCALLOCKOUT v o ..
SERIAL POLLENABLE
SERIAL POLL DISABLE
TRIGGER (Group Execute Trigger)
SELECTED DEVICE CLEAR
GOTOLOCAL
PARALLEL POLL CONFIGURE
PARALLEL POLLENABLE
PARALLEL POLLDISABLE
Overview of HP-IB DIL Routines
HP-IB: The Computer’s Role
Ground Rules00
Available Subroutines versus Controller Role

Bus Citizenship: Surviving Multi-Device/Multi-Process HP-IB
io_lock and io_unlock
io_burst oL L oL
hpib_io oo
Opening the HP-IB Interface File
Sending HP-IB Commands
Errors While Sending Commands
Changing Parity on Commands
Active Controller Role
Determining Active Controller
Setting Up Talkers and Listeners
Auto-Addressing L Lo oL
Using hpib_send_cmond oL L.
Calculating Talk and Listen Addresses
An Example Configuration

Device 1/O Contents-3

Remote Control of Devices 4-24

Locking Out Local Control 4-24
Enabling Local Control 4-25
Triggering Devices 4-25
Transferring Data 4-26
DataOutput 4-26
DataInput 4-27
Clearing HP-IB Devices 4-28
Responding to Service Requests L. 429
Monitoring the SRQ Line 4-29
Processing the Service Request 4-31
Parallel Polling 4-32
Configuring Parallel Poll Responses 4-32
Disabling Parallel Poll Responses 4-36
Conducting a Parallel Poll 4-36
Errors During Parallel Polls 4-38
Waiting For a Parallel Poll Response 4-39
Calculating themask 4-39
Calculating thesense 4-40
Exampleo, 4-41
Serial Polling 4-43
Conducting a Serial Poll 4-43
Errors During Serial Poll 4-45
Passing Control 4-46
What If Control Is Not Accepted? 4-46
Errors While Passing Control 4-47
Controlling the ATN Line 4-48
Changing the Interface Bus Address 4-48
System Controller Role 4-49
Determining System Controller 4-49
System Controller’s Duties 4-50
hpib_abort 4-50
hpib_ren_ctl o0, 4-51
Errors During hpib_abort and hpib_ren_ctl 4-51
The Computer As a Non-Active Controller 4-53
Checking Controller Status 4-53
Requesting Service 4-54
Errors While Requesting Service 4-56

Contents-4 Device 1/O

Responding to Parallel Polls 4-57

Calculating the Response 4-58
Limitations of hpib_card_ppoll_resp 4-58
Error Conditions 4-59
hpib_ppoll_resp_ctl L. 4-59
Disabling Parallel-Poll Response 4-60
Accepting Active Control 4-61
Errors While Waitingon Status 4-63
Determining When You Are Addressed 4-64
Combining I/O Operations into a Single Subroutine Call 4-68
Iodetail: The I/O Operation Template 4-69
The Mode Component 4-70
The Terminator Component 4-71
The Count Component 4-71
The Buf Component 4-72
Allocating Spaceo, 4-72
Exampleo 4-73
Locating Errors in Buffered I/O Operations 4-75
5. Controlling the GPIO Interface

Interface Configuration 5-1
Creating the GPIO Interface File 5-1
Interface Control Limitations 5-2
Using DIL Subroutines 5-2
Resetting the Interface 5-3
Performing Data Transfers 5-4
Using Status and Control Lines 5-4
Driving CTLO and CTL1 5-5
Reading STIOand STI1 5-5
Controlling Data Path Width 5-6
Controlling Transfer Speed 5-7
GPIO Timeouts 5-7
Burst Transfers oL oL 5-8
Read Terminations 5-8
Determining Why a Read Operation Terminated 5-8
Specifying a Read Termination Pattern 5-8
Interrupts e e e e e e e e e e e 5-8

Device 1/0 A Contents-5

6. Controlling the Parallel Interface

Interface Control Limitations
Using DIL Subroutines
Resetting the Interface
Performing Data Transfers
Controlling Transfer Speed
Timeouts
Burst Transfers
Read Terminations

Determining Why a Read Operation Terminated

Specifying a Read Termination Pattern
Imterrupts

Index to Part I: DIL

Part II: HP-HIL

7. Using HP-HIL Devices with HP-UX

The Interface to HP-HIL Devices
Typical HP-HIL Devices
Using HP-HIL Devices

AFewTerms

Creating a Special Device File for HP-HIL Devices

For the Series 300
For the Series 700
For the Series 800
Using the Sound Generator
Sample Beeper Program
Frequency, Duration and Volume of Tones . . .
To Set Frequency

To Set Duration

To Set Volume
Additional Considerations
Communicating with HP-HIL Devices
Sample C Language Program

C Program Listing
Sample Pascal Program

Contents-6

..... 6-1
Ce e 6-2
..... 6-2
..... 6-3
..... 6-3
e 6-3
..... 6-4
..... 6-4
e 6-4
e 6-4
..... 6-5

Device 1/0

Pascal Listing for Series300 7-25

Sample FORTRAN Program 7-29
FORTRAN Program Listing 7-30
Description of the Data Returned by the Programs 7-32
HP-HIL Commands 7-39
Identify and Describe Command (HILID) 7-42
DeviceIDByte 7-42
Describe Record Header 7-46
I/O Descriptor Byte 7-47
Perform Self Test (HILPST) 7-52
Read Register (HILRR) 7-52
Write Register (HILWR) 7-53
Report Name (HILRN) 7-55
Report Status (HILRS) 7-56
Extended Describe (HILED) 7-56
Report Security Code (HILSC) 7-58
Sample of Report Security Format for a Product Module . . . 7-63
Sample of Report Security Format for an Exchange Module . 7-64
Sample Report Security Program 765
Disable Keyswitch Auto-repeat (HILDKR) 7-69
Enable Keyswitch Auto-repeat 1 and 2 (HILER1 and HILER2) 7-69
Prompt 1 through Prompt 7 (HILP1 through HILP7) 7-70
Prompt (HILP) 7-70
Acknowledge 1 through Acknowledge 7 (HILA1 through
HILA7) o 7-70
Acknowledge (HILA) 7-70
Keycode Set 1 7-71

Index to Part II: HP-HIL

Device 1/0 Contents-7

Appendixes

A. Series 300/400 Dependencies

Location of the DIL Subroutines A-1
Linking DIL Subroutines A-2
The GPIO Interface on Series 300/400 Computers A-2
DataLines A-2
Handshake Lines e A-2
Special-Purpose Lines A-3
Data Handshake Methods A-3
Data-In Clock Source A-3
Creating the Interface Special File A4
Creating the Special File e e e e e e A-4
pathnameo Lo A-4
major_number Lo A4
minor_number L. A-4
Creating an HP-IB Interface File A-5
Creating a GPIO Interface File A-6
Creating a Centronics-compatible Parallel Interface File . . A-6
Entity Identifiers oL A-7
Hardware Effects on DIL Subroutines A-7
hpib_send_cmnd L. L. A-7
hpib_statuso A-7
io_get_term_reason A-7
io_on_interrupto ... L. L. A-8
fo_reset Lo oL L Lo oL L A-8
io_speed_ctl oL Lo Lo A-8
io_timeout_ctl A-9
Performance Tips A-9
B. Series 600/800 Dependencies

Compiling Programs That Use DIL B-1
Accessing the Interface Special Files B-2
Major Numbers B-2
Minor Numbers and Logical Unit Numbers B-2
Listing Special Files B-3
Naming Conventions for Interface Special Files B-4
Creating Interface Special Files B-5

Contents-8 Device I/O

Hardware Effects on DIL Subroutines B-6
hpib_rgst_srvee 0.0 0oL L. B-6
hpib_io oo B-6
hpib_atn_ctl, hpib-address_ctl, hpib_parity_ctl B-6
jo_eol_ctl Lo B-6
fo_reset L .. L. L. oo B-7
io_speed_ctl oL B-7
io_timeout_ctlo B-7
io_width_ctlo oL B-7
Return Values for Special Error Conditions B-8

DIL Support of HP-IB Auto-Addressed Files B-8
hpib_card_ppoll_.resp B-10
hpib_io L0 B-10
hpib_ren_ctl oL B-10
hpib_send_cmdo L. B-10
hpib_spollo oL B-10
hpib_wait_on_ppoll B-11
io_on_interrupto B-11

Performance Tips B-12
Process Locking B-12
Setting Real-Time Priority B-12
Preallocating Disc Space B-13
Reducing System Call Overhead B-14
Setting Up Faster Data Transfers B-14

ASCII Character Codes

DIL Programming Example

Master Index
Contents-9

Device I/O

Figures

2-1. Interface Functional Diagram

2-2. HP-IB Handshake Sequence
7-1. Hewlett-Packard Human Interface Link
7-2. Keycode Set 2

Tables

...................

7-3. Frameo

3-1. General-Purpose Routines.

4-1. HP-IB Bus Commands
4-2. HP-IB DIL Routines
4-3. DIL Subroutine ‘Availability Based on Interface Role
4-4. PARALLEL POLL ENABLE Bits
4-5. Constants for Constructing mode

7-3. HP-HIL Macros and Their Decimal Equivalent

7-5. HP-HIL Keyboard Nationality Codes
7-6. Description of Extended Describe Record Header

7-8. Report Security Data Format Type 1

7-10. Sample Report Security Results for an Exchange Module
7-11. Keycode Set 1

C-1. Obtaining ASCII Control Characters

Contents-10

...............

................

..........

7-1. Keycodes for the HP-HIL “Cooked” Keyboard Driver
7-2. HP-HIL Macros«
7-4. HP-HIL Device Identification Codes
7-7. Product, Exchange and Serial Number Formats

7-9. Sample Report Security Results for a Product Module

B-1. DIL Auto-addressed Support

Device I/O

C-2. ASCII Character Codes

Device 1/O

Contents-11

Introduction to Device 1/O

What is Device 1/0?

For purposes of this User’s Guide, device I/O involves access to arbitrary
input/output devices from HP-UX. This access may be through one of the
following interfaces:

m Hewlett-Packard Interface Bus (HP-IB)
» General-Purpose Input/Output (GPIO)
m Hewlett-Packard Human Interface Link (HP-HIL)

What is DIL?

DIL is the Device I/O Library. This is a library of subroutines used for
interfacing with I/O devices. The DIL part of this User’s Guide not only
discusses interfacing strategies using the HP-IB and GPIO interfaces, but also
strategies for general purpose I/O programming using DIL routines.

What is HP-HIL?

HP-HIL is the Hewlett-Packard Human Interface Link. The HP-HIL part of
this User’s Guide discusses communication using the HP-HIL interface, other

functions provided by the HP-HIL peripheral processor, and describes a few of
the HP-UX supported HP-HIL devices.

introduction to Device /O 1-1

Choosing DIL or HP-HIL

If you want to interface with devices using GPIO, HP-IB or other protocols
that would need DIL routines, use the DIL part of this manual. You cannot,
however, access HP-HIL devices using DIL.

If you want to access HP-HIL devices, use the HP-HIL part of this User’s
Guide. You can access only HP-HIL devices with the HP-HIL interface.

1-2 Introduction to Device I/O

Part |
DIL

The Device /O Library

Interfacing Concepts
General-Purpose Routines
Controlling the HP-IB Interface
Controlling the GPIO Interface

Controlling the Parallel Interface

Interfacing Concepts

This tutorial explains how to access arbitrary I/O devices from HP-UX
through HP-IB (Hewlett-Packard Interface Bus), GPIO (General-Purpose I/0),
and Centronics-compatible Parallel interfaces by using subroutines contained

in the HP-UX Device 1/0 Library (DIL). Topics discussed include general 1/0
programming strategies, as well as strategies related specifically to HP-IB,
GPIO, and Parallel interfaces.

It is assumed that communication with I/O devices is handled through calls to
DIL subroutines from C, Pascal, or FORTRAN programs. Examples shown

in this tutorial are written in C, but the techniques illustrated are easily
converted for use with Pascal or FORTRAN by adding a little extra code.

Variation Between Computer Systems

In general, DIL subroutines function identically on all HP-UX computers,
regardless of series or model number within a series. However, because of
certain inherent differences between processors and other hardware, some
differences do exist. If such differences arise during an explanation, they are
clearly identified.

Additional major differences related to a specific model or series are identified
in a separate appendix for that series. Separate appendices are provided for
Series 300/400 and 600,/800.

PartI: DIL Interfacing Concepts 2-1

Manual Organization

Chapter 2: Interfacing Concepts presents basic I/O programming concepts and
a description of the HP-IB, GPIO, and Parallel interfaces.

Chapter 3: General-Purpose Routines discusses how to access interfaces from
HP-UX environment and how to implement I/O transfers.

Chapter 4: Controlling the HP-IB Interface describes I/O programming
techniques for the HP-IB interface.

Chapter 5: Controlling the GPIO Interface discusses I/O programming
techniques for the GPIO interface.

Chapter 6: Controlling the Parallel Interface describes I/O programming
techniques for the Centronics-compatible Parallel interface.

Appendiz A: Series 800/400 Dependencies discusses hardware- and
system-dependent characteristics of DIL subroutines when used with Series
300/400 computers. If you are using a Series 300/400 HP-UX system, check
this appendix to ensure correct use of DIL subroutines.

Appendiz B: Series 600/800 Dependencies is similar to other appendices, but
for Series 600/800 computers. Use this appendix to ensure the correct use of
DIL subroutines on Series 600/800 systems.

Appendiz C: Character Codes

Appendiz D: DIL Programming Example shows a non-trivial example of an
Amigo-protocol HP-IB device driver suitable for driving HP-IB line printers
that support Amigo protocol (commonly used on certain HP-IB disc drives
and line printers). This example program shows good HP-UX programming
practice, and illustrates a number of other techniques and features such as
parsing a command with arguments.

2-2 Interfacing Concepts Part I: DIL

DIL Interfacing Subroutines

As mentioned previously, Device I/O Library (DIL) subroutines provide a
means for directly accessing peripheral devices through HP-IB, GPIO, and/or
Parallel interfaces connected to your computer system. Some routines are
general-purpose and can be used with any interface supported by the library,
while others provide control of only certain specific HP-IB, GPIO, or Parallel
interfaces.

Linking DIL Routines

DIL routines can be called from C, Pascal, or FORTRAN programs. However,
the -1 flag must be given when invoking the C, Pascal, or FORTRAN compiler,
cc (1), pc (1), or fe (1). Otherwise, library subroutines are not automatically
linked with your program. To link DIL subroutines to a compiled C program,
invoke the C compiler as follows:

cc program.c -ldvio

Similarly, for a Pascal program, use:

pc program.p -ldvio
and for a FORTRAN program, use:

fc program.f -ldvio

In all three cases, the -1 option is passed to the HP-UX linker, causing it to
link any DIL routines called by the program being compiled. To determine
the exact location of DIL library on your HP-UX system, refer to the
corresponding hardware-specific appendix in this tutorial.

Calling DIL Routines from Pascal

You must provide an external declaration for each DIL subroutine called from
a Pascal program. An external declaration consists of the subroutine heading,
including a formal parameter list and result type, followed by the Pascal
EXTERNAL directive. For example, the C description of open(2) is:

int open(path, oflag)

char *path;
int oflag;

Partl: DIL Interfacing Concepts 2-3

The equivalent external declaration for the same subroutine in a Pascal
program is:

TYPE
PATHNAME = PACKED ARRAY [0..50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
oflag: INTEGER):
INTEGER;
EXTERNAL;

Note that the path parameter is a VAR parameter, indicating that the
parameter is passed by reference. This simulates the passing of a pointer,

which is what open(2) expects. In general, declaring a C routine from Pascal is

straightforward.

Calling DIL Routines from FORTRAN

C and FORTRAN subroutine calls are not compatible because C passes
parameters by value while FORTRAN passes them by reference. This
incompatibility can be easily circumvented by directing the compiler to
generate a call by value through the use of FORTRAN’s $ALIAS option. For
example:

$ALIAS close = ’close’ (%val)

If the FORTRAN compiler on your system does not support this form of
$ALIAS, the parameter-passing differences can be resolved by writing an
onionskin routine which is a C-language function written for the purpose of
resolving parameter-passing irregularities between C and other languages.

For example, to access close(2) through an onionskin routine, use:

$ALIAS close = ’_my_io_close’

then write the onionskin routine:

int my_io_close (eid)
/* the compiler will create the external symbol "_my_io_close"
based on the above declaration*/
int *eid;
{
return (close (*eid));

}

2-4 Interfacing Concepts Part I:

DIL

General Interface Concepts

The remainder of this chapter discusses interfaces in general and the HP-IB,
GPIO, and Centronics-compatible Parallel interfaces in particular. This
background information is helpful for understanding system operation, but is
not prerequisite to being able to successfully use DIL routines.

Definition

An interface is a built-in or plug-in electronic subassembly that manages the
transfer of information between the computer and one or more peripheral
devices. It converts electrical signals from the computer to a form that is
compatible with the requirements of the peripheral device and converts signals
from the peripheral device to a form that can be used by the computer. The
interface also controls information transfer paths and transfer timing such that
data flows in an orderly manner in correct sequence.

HP 9000 computers are equipped with both built-in as well as plug-in
interfaces that can be purchased as standard or optional items. Separate
interface cabling connects the peripheral device(s) to the interface unless the
peripheral device is built into the computer housing. The following functional
block diagram illustrates the functional architecture of a typical interface:

1/0 Electrical 1/0
Backplane Level Conversion Device
Connector . Circuitry Connector

(]

)

1]

)

)

)

]

()

)

]

1]

)

i Interface Logic A
Computer H and Peripheral

H Device

1]

]

1

1]

1

)

L}

]

1]

]

S

Control Circuitry

Figure 2-1. Interface Functional Diagram

Part I: DIL Interfacing Concepts 2-5

Interface Functions

A usable interface must fill the following system requirements:

Electrical Compatibility: The interface must convert electrical signal
voltages, currents, frequencies, and timing from the computer to a form

that is useful to the peripheral device, and vice-versa (unless no conversions
are necessary). It must also provide any special protection that might

be necessary to protect circuitry within the computer or peripheral from
damage due to external effects related to the interface cable or power source.

Mechanical Compatibility: The interface must be mechanically structured
so that it is readily connected to both the computer and the peripheral
device. This is usually accomplished by means of an interface cable that has
appropriate connectors on each end.

Data Compatibility. Just as two people must speak a common language
before they can communicate well, the computer and peripheral must use
compatible forms of communication. While in most cases, the computer
operating system and the programmer are responsible for general data
format, communication protocols such as those used in data communication
networks and HP-IB interconnections are usually managed by the interface
card, based upon various signals and commands from the computer and the
peripheral device.

Timing Compatibility. Peripheral devices within a given system rarely have
identical data transfer rates and data transfer timing requirements. They
also rarely match the timing and transfer rates in the computer or other
devices in the system. For this reason, one of the most important functions
of the interface is to manage and coordinate the interaction between the
computer and the interface as well as timing between the interface and
peripheral devices by using special timing signals that are inserted into the
data being transferred (most common in data communication interfaces)

or carried on separate control signal lines (typical for HP-IB, GPIO, and
Parallel interfaces). These timing signals are used to coordinate when a
transfer begins and at what rate the information is handled.

Processor Overhead Reduction: Another important function of the interface
card is to relieve the computer of low-level tasks, such as performing data

transfer handshakes. This distribution of tasks eases some of the computer’s
burden and decreases the otherwise stringent response-time requirements of

2-6 Interfacing Concepts Part I: DIL

external devices. The actual tasks performed by each type of interface card
vary widely. The remainder of this chapter concentrates on the functions of
three particular interfaces: HP-IB, GPIO, and Parallel.

Handshake 1/0

Most HP-IB, GPIO, and Parallel interfaces operate by means of handshake
transfers which operate generally as follows:

Handshake Output

s Computer sets input/output control to output and places first word or byte
on I/0 bus to interface.

m Computer asserts peripheral control line to interface to start transfer.

m Interface recognizes asserted control signal from computer and transfers data
to output drivers and interface cable.

m Interface asserts output timing signals to peripheral device and waits for
response. v

m Peripheral accepts output timing signals, inputs data from interface cable,
then returns flag signal indicating data has been accepted.

m Interface recognizes flag and sets flag to computer indicating the transaction
is complete. If the sender and receiver do not agree upon start time and
transfer rate, then the transfer is carried out via a handshake process:
the transfer proceeds one data item at a time with the receiving device
acknowledging that it received the data and that the sender can transfer the
next data item. Both types of transfers are utilized with different interfaces.

Handshake Input
m Computer sets input/output control to input.

m Computer asserts peripheral control line to interface to start transfer.

m Interface recognizes asserted control signal from computer, sends data input
command sequence to peripheral device, and waits for response.

m Peripheral accepts input command sequence, places data on interface cable,
then returns flag signal indicating data is available.

Partl: DIL Interfacing Concepts 2-7

m Interface recognizes flag, moves data to computer I/O bus, and sets flag to
computer indicating the transaction is complete.

Different interfaces support variations on this basic sequence. For example,
more sophisticated data communication and HP-IB cards may be equipped
with a microprocessor and shared memory that is directly accessible to the
computer and the interface processor. The computer moves data to and from
shared memory according to program needs, while the interface processor
performs similar operations to meet the demands of any data transfers in
progress. Shared pointers and other flags prevent collisions between conflicting
demands from the two processors, and the increased efficiency of a “smart”
interface greatly reduces the complexity and overhead related to more mundane
approaches to interrupt-driven handshake I/O.

For example, instead of handling each character or word as a single transaction,
the computer can load a block of data into the shared memory then signal the
interface that data is ready for transfer. The interface then uses the shared
pointers or other means to determine how much data to transfer, handles the
transfer, then signals the computer that the task is complete.

HP-IB Protocol

When a single interface is shared by multiple peripheral devices, additional
signaling must be used to control which devices respond to each transaction
as in HP-IB interfacing. A selection of protocol signals and device commands
are used to activate or deactivate various devices on the HP-IB bus according
to the needs of the bus controller (controlling interface). This signals, their
functions, and the sequences in which they are used are discussed in greater
detail throughout this tutorial.

2-8 Interfacing Concepts Part I: DIL

The HP-IB Interface

The Hewlett-Packard Interface Bus (HP-IB) was developed at HP as the
solution to an expanding need for a universal interfacing technique that
could be readily adapted to a wide variety of electronic instruments. It was
later expanded to include high-speed disc drives and other high-performance
computer peripherals. The HP-IB architecture was subsequently proposed
to and accepted by the Institute of Electrical and Electronic Engineers
(IEEE) and is now widely used throughout the electronic industry. HP-IB is
compatible with IEEE standard 488-1978. The number of devices that can
be connected to a given HP-IB interface depends on the loading factor of
each device, but in general up to 15 devices (including the interface) can be
connected together while still maintaining electrical, mechanical, and timing
compatibility requirements on the bus.

General Structure

IEEE Standard 488-1978 defines a set of communication rules called “bus
protocol” that governs data and control operations on the bus. The defined
protocol is necessary in order to ensure orderly information traffic over the bus.

Each device (peripheral or computer interface) that is connected to the HP-IB
can function in one or more of the following roles:

System Controller Master controller of the HP-IB. The computer interface
is usually the bus controller when all peripheral devices
on the bus are slaves to the system computer. However,
any other device can become the active controller if it is
equipped to act as a controller and control is passed to
it by the System Controller. The System Controller is
always the active bus controller at power-up.

Active Controller ~ Current controller of the HP-IB. At power-up or
whenever IFC (InterFace Clear) is asserted by the System
Controller, the System Controller is the active controller.
Under certain conditions, the System controller may pass
control to another device that is capable of managing the
bus in which case that device becomes the new active
controller. The active controller can then pass control to
another controller or back to the System Controller. If

Partl: DIL Interfacing Concepts 2-9

the System Controller asserts IFC, the active controller
immediately relinquishes control of the bus.

Talker A device that has been authorized by the current active
controller to place data on the bus. Only one talker can
be authorized at a time.

Listener Any device that has been programmed by the active
controller to accept data from the bus. Any number of
devices on the bus can be programmed by the active
controller to listen simultaneously at any given time.

In typical systems, an HP-IB interface in the computer can act as a controller,
talker, and listener. If more than one computer is connected to the same bus,
only one interface can be configured as System Controller to prevent conflicts
at power-up (this is usually accomplished by a switch or wire jumper on the
interface card). A device that can only accept data from the bus (such as a
line printer) usually operates as a listener, while a device that can only supply
data to the bus (such as a voltmeter) usually operates as a talker. However,
before any device can talk or listen (after power-up initialization), it must be
authorized to do so by the current active controller. Bus configuration varies,
depending on the type of activity that is prevalent at the time. However, in
any case, the bus can have only one Active Controller and only one talker at a
given time, though it can have any number of listeners.

HP-IB is composed of 16 lines (plus ground) that are divided into 3 groups:

m Eight data lines form a bi-directional data path to carry data, commands,
and device addresses.

m Three handshake lines control the transfer of data bytes.

m The five remaining lines control bus management.

Handshake Lines
The handshake lines used to synchronize data transfers are:
DAV DAta Valid: Valid data has been placed on bus by talker.

NRFD Not Ready For Data: One or more listeners not yet ready to
accept data from the bus.

2-10 Interfacing Concepts Part I: DIL

NDAC

Not Data ACcepted: One or more listeners has not yet accepted
the data currently on the bus.

Note

The HP-IB interface uses negative (ground-true) logic for
handshake, data, and bus management lines. This means that
when the voltage on a line is at a logic LOW level, the line is
asserted (true). When a logic HIGH voltage level is present on
the line, the line is not asserted (false).

In general, software documentation refers to handshake and
other lines by their name acronym such as DAV, NRFD,
NDAC, etc. When discussing these same signal lines in
hardware documents, it is customary to refer to ground-true
(low-true) logic lines by their name acronym with a bar across
the top such as DAV, NRFD, NDAGC, etc. In this document,
both versions are used. The overbar is usually present when
discussing hardware operation, but usually absent when
software is being treated. In this tutorial, only the name is
significant. Signal names are synonymous, with or without
the overbar unless specifically noted otherwise; the overbar is
used for the convenience of those readers whose experience is
oriented more toward hardware than software.

Part I:

DIL

Interfacing Concepts 2-11

The timing diagram in Figure 1-2 shows how handshake lines are used to
complete a data item transfer. The discussion which follows is based on the
contents of Figure 1-2.

i : | |
1 1 1 I
: : - : : FALSE
Data ~ | i |
: : \ \ . i | { TRUE
I | [} 1 I i 1 1
: : ' : : R — FALSE
DAV L : i
: } . : . : : | TRUE
1 1 I i] 1 1 I
| 1 I 1] 1 1 I
— ! ! ! ! ! FALSE
NRFD | | | : v |
- . | 1 ; : : : : TRUE
| | i 1 | 1] [}
— ! : ! : ' ' ' : FALSE
NDAC | ! | | /| | |
—— , 1 TRUE
| i I 1 |
1 1 1 [} 1
] }
[} [

®® 0O ® ®O® 06

Figure 2-2. HP-IB Handshake Sequence

All handshake lines are electrically connected in a “wired-OR” configuration
which means that any device can pull the line low (active or asserted) at any
time, and more than one device may pull the line low simultaneously or later in
a given handshake cycle. The line then remains low until every device that was
previously pulling the line low has released the line, allowing it to float to its
high state. At the start of the handshake cycle (point A), the handshake lines
are in the following states:

m DAV is false (high), meaning that the current talker has not yet placed valid
data on the bus.

s NRFD is true (low), meaning that one or more listeners is not yet ready to
accept data from the bus.

m NDAC is true (low), meaning that bus data has not yet been accepted by
every listener on the bus.

2-12 Interfacing Concepts Part I: DIL

When a listener is ready to accept data, it releases NRFD, allowing it to go
high provided no other listener is still holding the line low. However (due to
the “wired-OR” interconnection scheme used by HP-IB), NRFD remains LOW
(true) until every listener releases it. When every listener is ready to accept
data (indicated by NRFD being released by every listener), NRFD changes to
its logic HIGH (false) state as indicated by point B in Figure 1-2.

By monitoring NRFD, the talker can determine when to send data: NRFD
false means that every listener is ready to accept data. The talker then places
data on the data lines and asserts DAV (point C), indicating to the listeners
that valid data is available on the data lines for them to accept.

As soon as each listener detects that DAV has been asserted, it asserts NRFD
(point D), driving it low (true) unless NRFD has already been driven low by
another listener in the same cycle.

After driving NRFD low, each listener inputs and processes the data from the
data lines. When it has accepted the data, the listener releases NDAC. As
with the NRFD line at point B, NDAC remains low (true) until every listener
on the bus has released the line, allowing it to go high (false). When NDAC
goes high, the false logic state indicates to the talker that every listener has
accepted the data (point E).

When the talker determines that every listener has accepted the data, it
releases the DAV line which rises to its high (false) state. At the same time,
the talker disables its outputs to the data lines, allowing them to rise to their
high (false) state (point F).

When DAV goes false, the listeners assert NDAC (point G), driving it low.
This signifies the end of the handshake (point H), at which time all bus logic
lines are again at the same state as they were before the handshake started
(point A).

Bus Management Control Lines

There are five bus management control lines:

ATN ATtentioN: Treat data on data lines as commands, not data.
IFC InterFace Clear: Unconditionally terminate all current bus
activity.

PartI: DIL , Interfacing Concepts 2-13

REN Remote ENable: Place all current listeners in Remote operating

mode.

EOI End Or Identify: End of data message. If ATN is true (low),
Active Controller is conducting a parallel poll (Identify) of devices
on the bus.

SRQ Service ReQuest: Bus device is requesting service from current

Active Controller.

ATN: The Attention Line

Command messages are encoded on the data lines as 7-bit ASCII characters,
and are distinguished from the normal data characters by the attention (ATN)
line’s logic state. That is, when ATN is false, the states of the data lines are
interpreted as data. When ATN is true, the data lines are interpreted as
commands.

IFC: The Interface Clear Line

Only the System Controller sets the IFC line true. By asserting IFC, all bus
activity is unconditionally terminated, the System Controller becomes the
Active Controller, and any current talker and all listeners become unaddressed.
Normally, this line is used to terminate all current operations, or to allow the
System Controller to regain control of the bus. It overrides any other activity
currently taking place on the bus.

REN: The Remote Enable Line

This line allows instruments on the bus to be programmed remotely by the
Active Controller. Any device addressed to listen while REN is true is placed
in its remote mode of operation.

EOI: The End or Identify Line

If ATN is false, EOI is used by the current talker to indicate the end of a data
message. Normally, data messages sent over the HP-IB are sent using strings of
standard ASCII code terminated by the ASCII line-feed character. However,
certain devices must handle blocks of information containing data bytes within
the data message that are identical to the line-feed character bit pattern, thus

2-14 Interfacing Concepts Partl: DIL

making it inappropriate to use a line-feed as the terminating character. For
this reason, EOI is used to mark the end of the data message.

The Active Controller can use EOI with ATN true to conduct a parallel poll on
the bus.

SRQ: The Service Request Line

The Active Controller is always in charge of overall bus activity, performing
such tasks as determining which devices are talkers and listeners, and so forth.
If a device on the bus needs assistance from the Active Controller, it asserts
SRQ, driving the line low (true). SRQ is a request for service, not a demand,
so the Active Controller has the option of choosing when and how the request
is to be serviced. However, the device continues to assert SRQ until it has
been satisfied (or until an interface clear command disables the request). -
Exactly what satisfies a service request depends on the requesting device, and
is explained in the operating manual for the device.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel
interface that can be used to communicate with a variety of devices. The
GPIO interface utilizes data, handshake, and special-purpose lines to perform
data transfers by means of various user-selectable handshaking methods.

While the GPIO interfaces used on various HP-UX computers are electrically
very similar, they differ in certain important aspects. Refer to the appendices
for Series 300/400 and 600/800 for information pertaining to your specific
application.

Parti: DIL Interfacing Concepts 2-15

The Centronics-Compatible Parallel Interface

The Parallel interface is a very flexible Centronics-compatible bi-directional
interface that can be used to communicate with a variety of devices. The
Parallel interface utilizes data, handshake, and special-purpose lines to perform
data transfers by means of various user-selectable handshaking methods.

While the Parallel interfaces used on various HP-UX computers are electrically
very similar, they differ in certain important aspects. Refer to the appendices
for Series 300/400 and 600/800 for information pertaining to your specific
application.

2-16 Interfacing Concepts Parti: DIL

3

General-Purpose Routines

The DIL library contains several general-purpose subroutines that can be used
with any interface supported by the library (see Table 3-1 for a complete list).
This chapter explains how to use these subroutines in application programs.
Specifically, the following topics are presented:

m Basic introductory background concepts that are essential to understanding
correct use of DIL library routines.

m Opening interface special files.

m Closing interface special files.

m Read/write operations to interface special files.
m Designing error-checking routines.

m Resetting an interface.

s Controlling input/output parameters.

m Determining why a read terminated.

s Handling interrupts.

Partl: DIL General-Purpose Routines 3-1

Background Basics

Interface Special Files

HP-UX handles I/O to an interface or system peripheral device much like

it handles read/write operations to disc storage files: every I/O interface

or device is associated with an entity generally referred to as a device

file, special file, or device special file. All three terms are used
interchangeably and are usually synonymous. Any program that accesses
subroutines in the DIL library cannot be used unless an appropriate device
special file has been created for the corresponding interface. While the program
can be written before the file exists, it cannot be used. The method used to
create an interface special file depends on the model of computer being used.
Refer to the appropriate hardware-specific appendix for information about
creating interface special files on your system.

Entity Identifiers (eid)

Nearly all DIL routines require an entity identifier (eid) as a parameter. The
entity identifier is an integer returned by the open(2) system call when opening
the interface special file (eid is the file descriptor for the opened special file

on Series 300/400 and 600/800). The eid supplied as a parameter to a DIL
subroutine tells the subroutine which interface special file to use.

Programming Model

As a general rule, all programs that contain DIL subroutine calls for a specific
interface should conform to the following structure:

1. Use an open system call to obtain the interface entity identifier (eid) for the
special file being used. Opening an interface special file is discussed later in
this chapter.

2. Use the returned eid as a parameter in DIL subroutine calls to perform
desired tasks through the corresponding interface. Suitable techniques are
discussed throughout the remainder of this tutorial.

3-2 General-Purpose Routines Part I: DIL

3. When the necessary DIL subroutine calls have been completed, close the
interface special file that was opened in step 1 above as discussed later in

this chapter.

General-Purpose Routines

Table 3-1 provides a brief synopsis of the standard general-purpose routines
discussed in this chapter. Several system calls related to the use of DIL
subroutines, are also discussed: open(2), close(2), read(2), and write(2).

Table 3-1. General-Purpose Routines.

Routine

Description

io_reset

io_timeout_ctl

io_width_ctl
io_speed_ctl

io_eol_ctl

io_get_term_reason

io_on_interrupt

io_interrupt_ctl

Reset a specified interface.

Establish a timeout period for any operation performed on a
specified interface by a DIL routine.

Set the data path width for a specified interface.
Select a data transfer speed for a specified interface.

Set up a read termination character for data read from a
specified interface.

Determine how the last read terminated for the specified
interface.

Set up interrupt handling for a program.

Enable or disable interrupts for a specified interface.

io_lock Lock an interface for exclusive use by the calling process.
io_unlock Unlock an interface so it can be used by other processes.
Partl: DIL General-Purpose Routines 3-3

Additional Series 300/400 Routines
Series 300/400 systems also support the following DIL subroutines:

Subroutine Description

io_burst Control the data path between computer memory and an
HP-IB, GPIO, or Parallel interface. If flag = 0, all data is
handled through kernel calls with the normal associated
overhead. If flag is non-zero, burst mode locks the interface
and data is transferred directly between memory and the I/O
mapped interface until the transfer is completed. Burst mode
yields substantial improvement in efficiency when handling
small amounts of data or high-speed data acquisition.

This subroutine handles high-speed transfers on HP-IB,
GPIO, and Parallel I/0.

io_dma_ctl Control usage of DMA channels by DIL devices.

Refer to the so_burst(3I) and to_dma_ctl(3I) entries in the HP-UX Reference
for details on using these subroutines.

Opening Interface Special Files

With the exception of the default standard input, standard output, and
standard error files, all read/write operations to any file from inside C,
FORTRAN, or Pascal programs require that the file(s) be explicitly opened
before they can be used. The HP-UX open(2) system call is used to accomplish
this as follows:

#include <fcntl.h>
int eid;

eid = open(filename, oflag);

filename is either a character string containing the device file’s external HP-UX
name or a pointer to a buffer containing the external name.

3-4 General-Purpose Routines PartI: DIL

The integer variable oflag specifies the access mode for the opened file, and
can have one of six possible values, as defined in the /usr/include/fcntl.h
header file: 0_RDONLY (value = 0) requests read-only access, 0_WRONLY (value
= 1) requests write-only access, and 0_RDWR (value = 2) requests both read
and write access (three values with O_NDELAY not set, three values with
O_NDELAY set — see io_lock (3I) in the HP-UX Reference, for a total of
six values). To use these constants in a programs, the #include C-compiler
directive must be present as shown in the example above.

An open system call on an interface special file returns an integer representing
the entity identifier (eid) for the opened interface. As mentioned earlier, the
entity identifier is required as a parameter in all DIL subroutine calls. It is also
required as a parameter for all read/write operations to the opened file.

The following code defines an entity identifier called eid and opens an interface
file called /dev/raw_hpib with access enabled for both reading and writing:
#include <fcntl.h>

#include <errno.h>
int eid;

eid = open("/dev/raw_hpib", O_RDWR);

Special files can also be opened by placing the character string name of the file
being opened in a string variable, then executing the open system call with a
pointer to the variable as shown in the following code segment:

#include <fcntl.h>

int eid;
char *buffer;

buffer = "/dev/raw_hpib";

if ((eid = open(buffer, O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

If the call to open succeeds, a non-negative integer is returned as the entity
identifier. If an error occurs and the file is not opened, —1 is returned and
errno is set to indicate the error.

Partl: DIL General-Purpose Routines 3-5

Closing Interface Special Files

Good programming practice dictates that an open interface special file should
be closed when a program is through using it by executing a close(2) system
call. This guideline is valid even though any open files are automatically closed
by the HP-UX operating system when a process terminates (via ezit(2) or a
return from the main routine).

Note HP-UX limits the number of files a given process (program)
can have open at one time to NO_FILE as defined in the
/usr/include/param.h header file. Series 300/400 systems
limit the number of open DIL files in the entire system to the
value of the configurable parameter ndilbuffers (default
is 30). See the HP-UX System Administrator Manual for
information on changing this value. Series 600/800 systems
limit the number of open DIL files to 16 per interface.

The close system call requires the entity identifier corresponding to the open
interface special file that is being closed. The following code segment shows
how to open and close an HP-IB interface:

#include <fentl.h>
#include <errno.h>
main()
{

int eid;

if ((eid = open("/dev/raw_hpib", O0_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

/* Code to perform I/0 operations
(read/write in this case) on the open interface. */
close(eid);

3-6 General-Purpose Routines PartI: DIL

Upon completion of the close system call, the entity identifier is no longer
valid and is available for the system to assign to another file. If the file is again
opened later in the program, the system may or may not assign the same eid
value, so appropriate caution in using eid values is in order.

close(2) returns a value of zero if the file is successfully closed. Otherwise, it
returns a —1 and the external error variable errno(2) is set to indicate the
error (error handling is discussed later in this chapter). The most common
error returned by close (EINVAL) is related to an invalid value for eid
meaning that the wrong value was used or the file is already closed.

Low-Level Read/Write Operations

Most HP-UX I/O operations to system peripheral devices is handled at a
fairly high level where the system automatically provides buffering and other
services that are not under the direct control of the user or program being run.
However, some situations that are commonly encountered by DIL users require
a much more intimate control of individual I/O transactions. These low-level
operations provide no buffering or other services, and are a direct entry into
the operating system. The two HP-UX system calls, read(2) and write(2),
provide low-level I/O read/write capabilities. Both require three arguments:

m The entity identifier for an open file

m A buffer (string variable) in the program where data is to come from during
write or go to during read (write empties a buffer; read fills a buffer).

m The number of bytes to be transferred.

Partl: DIL General-Purpose Routines 3-7

Calls to read have the form:

#include <fcntl.h>
#include <errno.h>
main()
{
int eid; /*the entity identifierx/
char buffer[10]; /+#buffer in which the read data will be placed*/

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

/*establish communication with the raw HP-IB device file
(see the next chapter, "Controlling the HP-IB interface")*/

read(eid, buffer, 10); /*reads 10 bytes from a previously opened*/
} /*file with the entity identifier "eid". */

Calls to write are very similar:

#include <fcntl.h>
#include <errno.h>
main()
{
int eid; /*the entity identifier*/
char *buffer; /* the buffer containing data to be written to a file*/
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

/*establish communication with the HP-IB interface
(see the next chapter, "Controlling the HP-IB Interface")*/

buffer = "data message"; /*message to be sent*/
write(eid, buffer, 12); /*12 bytes are written to previously*/
} /*opened file with the entity identifier "eid"x/

Although read and write require the number of bytes to be transferred as
their third argument, other characteristics (discussed later) of the device

3-8 General-Purpose Routines Part I:

DIL

associated with the interface file eid can end the transfer before this number is
reached.

Example

Assume you have already created an auto-addressed special file, /dev/hpib_dev
for an HP-IB device. Your program must first open /dev/hpib_dev for reading
and writing:

int eid;
eid = open("/dev/hpib_dev", O_RDWR);

To place data on the bus, use write:

write(eid, "This is a test", 14);

In this example, 14 characters are sent through eid. The literal string
expression This is a test is placed in a data storage area by the compiler for
later handling by the call to write. On output, if the number of characters
requested does not match the length of the data storage space, the message is
truncated (if the byte count is smaller than the data block) or extended into
the next data block assigned by the compiler (if the byte count is larger than
the data block).

To receive 10 bytes of data from the bus and place them in buffer, use:

char buffer[10];
read(eid, buffer, 10);

In this code segment, the read routine will attempt to read up to 10 bytes of
data from the interface and place it in buffer.

Partl: DIL General-Purpose Routines 3-9

Designing Error Checking Routines

All Device I/O Library routines return —1 and set an external HP-UX variable
called errno if an error occurs during execution.

The errno Variable

errno is an integer variable whose value indicates what error caused the failure
of a system or library routine call. It is not reset after successful routine calls,
and should never be checked for value until after you have determined that an
error has occurred.

Well-designed programs always include adequate error checking. However,
most examples shown in this tutorial (other than in this section) do not verify
successful completion of subroutine calls.

Refer to the errno(2) entry in the HP-UX Reference for complete definitions of
the various errors returned when a system call fails.

Using errno
The following code segment must be present in the early part of any program
that accesses errno:

#include <errno.h>

The errno.h Header File

The header file /usr/include/errno.h uses error numbers defined in header
file /usr/include/sys/errno.h. For a complete list of errors and their
associated meanings, refer to errno(2) in the HP-UX Reference.

Displaying errno

Once errno has been declared in a program, there are two ways to check its
value if a routine fails. The simplest approach is to check the return value to
determine whether or not the routine failed, then print out the value of errno
and exit if it did. The following example illustrates this strategy:

#include <errno.h>

#include <fcntl.h>
main()

3-10 General-Purpose Routines | Partl: DIL

{
int eid;

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1)
{
printf ("Error occurred. Errno = Jd", errno);
exit(1);
}

}

When this method is used, the program user must refer to the errno(2) entry
in the HP-UX Reference to determine what the printed value of errno means.

Error Handlers

Another approach that is more complex for the programmer but much

more convenient for the user is to check for specific values of errno and
execute error routines related to the value. In most cases, only a limited
number of situations can cause a particular a subroutine to fail, so there is a
correspondingly small number of errno values that can be encountered upon
failure. Possible error values are usually listed in the HP-UX Reference on the
manual page entry for the failed subroutine.

For example, checking open(2) in the HP-UX Reference reveals that errno is
set to ENOENT (defined in the errno.h header file) if you attempt to open a file
that does not exist and you have not given the system call permission to create
a new file. Armed with this information, you can incorporate the following
code segment in your program:

#include <errno.h>
#include <fcntl.h>
main()
{

int eid;

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1)
{
if (errno == ENOENT)
printf ("Error: cannot open; file does not exist\n");
else
printf("Error: file exists but cannot open\n");
exit(1);

Partl: DIL General-Purpose Routines 3-11

Note that the print statements in the example above could be replaced with
calls to more sophisticated error-handling routines such as perror (see the
perror(3C) entry in the HP-UX Reference).

Resetting Interfaces

The DIL routine io_reset can be used to reset HP-IB, GPIO, and
Centronics-compatible Parallel interfaces.

The following example call to io_reset resets the interface whose entity
identifier is eid where eid is the value that was returned when the interface
special file was opened.

io_reset(eid);

Refer to the appropriate hardware-specific appendix for more information
about the exact effects of io_reset on HP-IB, GPIO, and Parallel interfaces
when used with various computer models.

For example, suppose that after opening an interface file you want to make sure
the interface has been properly initialized. This is done by calling io_reset
and looking at its return value:

#include <fcntl.h>

#include <errno.h>

main()

{

int eid;

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);

exit(2);

}

if (io_reset(eid) == -1)

{
printf("Possible problem with interface\n");
exit(1);

/* program continues if "io_reset" was successful */

3-12 General-Purpose Routines Partl: DIL

Locking an Interface

Using a single interface to control multiple peripheral devices provides many
advantages in convenience, cost and system operating characteristics. However,
when several programs and/or several users need simultaneous access to
peripherals sharing a single interface, conflicts arise. This problem is especially
annoying when one user needs exclusive control of the interface during a set of
critical I/O operations. Unless a mechanism is provided to lock out other users
during critical program steps, useful results may be unobtainable in some cases.

Two DIL subroutines, io_lock and io_unlock are provided for this purpose.
The first locks the interface so that only the process that locked it can use
the interface until it is unlocked. The second unlocks the interface so other
processes can again access it.

When another process attempts to access a locked interface, the process will
sleep until the interface is unlocked (or a timeout occurs) if the 0_NDELAY flag
was not set at the time the requesting process executed the open(2) system
call. If the O_NDELAY flag was set during the call to open(2) and the interface is
locked, any attempts to access the locked interface fail and the DIL subroutine
call from the process returns with an error.

Locks on an interface are owned by the process, and are not associated with
the eid. This means that the same process can access a given interface through
another eid if another open is performed on the device. If a process uses a
fork(2) system call to create a child process that uses the same interface, the
child does not inherit the current lock from the parent. Since it has a different
process ID than the parent, it also cannot access the locked interface file until
the parent unlocks it.

For good programming practice, any locks created by a process should be
unlocked through a call to io_unlock before terminating. However, any locks
held by a process are released when the process terminates, whether or not a
call to io_unlock was executed. Refer to io_lock(3I) in the HP-UX Reference
for more information about locking and unlocking interfaces.

Caution Do not place a lock on any interface that supports any system
disc or swap device. Interface locks are enforced by the system,
and such a condition may require rebooting in order to recover.

Partl: DIL General-Purpose Routines 3-13

Controlling 1/O Parameters

The Device I/O Library provides four subroutines that perform I/O control
operations pertaining to timeout, data path width (usually 8 or 16 bits),
transfer speed, and read termination (end-of-line) pattern. The subroutines
and their functions are as follows:

Subroutine

Controlled I/O Function

io_timeout_ctl Timeout: Assign a timeout value in microseconds for I/O

io_width_ctl

io_speed_ctl

operations (actual timeout resolution may be limited by system
hardware).

Data Path Width: Specify width of the interface’s data path or
switch between supported widths for various operations.

Transfer Speed: Request a minimum speed for data transfers
through the interface in kilobytes (Kbytes) per second.

‘io_eol_ctl Read Termination Pattern: Assign a pattern to be recognized as a
read termination pattern.
Note It is not uncommon for a single process to have multiple

eids open simultaneously (resulting from multiple calls to
open in a single program. The subroutines io_timeout_ctl,
io_width_ctl io_speed_ctl, and io_eol_ctl, can be used
to conveniently configure different values for timeout, width,
speed, and termination pattern on any given eid without
disturbing the previously configured (or default) values
associated with other eids.

Unless specifically altered by calls to one or more of these
subroutines, interface file operation uses system defaults for
each eid.

An easy way to handle multiple devices that use different data formats without
having to reconfigure each individual I/O operation is to open more than one
eid on a given interface file, then configure each eid independently.

3-14 General-Purpose Routines Part I: DIL

Setting 1/O Timeout

I/O timeout determines how long the system waits for a response from the
interface or peripheral device each time an I/O operation is initiated. If the
timeout limit is exceeded, the operation is aborted and a timeout error is
returned. The default timeout is set to 0 which disables timeout errors.

If timeout is disabled (zero) and an error condition occurs that prevents
successful completion of a data transfer or other I/O operation, the calling
program may hang. Therefore, use of a non-zero timeout value is strongly
recommended as good programming practice. To set or change the timeout use
io_timeout_ctl as follows:

#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
long time;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);

time = 1000000; /*set timeout of 1 second*/
io_timeout_ctl(eid, time);

/*data transfers using "eid" are controlled by the
timeout value "time"x/

}

eid is the entity identifier associated with the open interface file, and time is a
32-bit long integer specifying the length of the timeout in microseconds.

Each time an I/O operation is initiated, timeout is restarted. For example,
when setting up bus addressing, the system allows timeout microseconds for
completion. Each subsequent data transfer (in or out) is given the same time
limit. If a given operation is not completed within the time limit specified by
the timeout value, the operation is aborted and an error indication is returned
(return value of —1) and errno is set to EI0 (not to be confused with EOI).

Partl: DIL General-Purpose Routines 3-15

Note Be sure that the timeout limit is set to a value higher than
the longest expected time to complete a transfer. If a normal
transfer takes longer than the timeout limit, the operation is
aborted even though system operation is correct.

Timeout is specified in microseconds (usec) in the call to io_timeout_ctl, but
the actual timeout used and its resolution is system-dependent. The timeout
value is always rounded up to the nearest normal time resolution interval
supported by the system executing the operation. For example, if the available
system resolution is 10 milliseconds and a timeout of 25000 microseconds (25
milliseconds) is requested, the actual timeout value used is 30 milliseconds.

To determine timeout resolution for your system, refer to the appropriate
hardware-specific appendix.

IMPORTANT A timeout value of 0 microseconds is meaningless because
no device can respond with data in less than zero time. For
this reason, the default or a specified timeout value of zero is
treated as a request to disable timeout and any condition that
would normally cause a timeout termination is ignored by the
system, usually causing the program to hang. Specifying a
timeout of zero 1s not recommended.

Any interface file eid obtained by using the dup(2) system call or inherited
by a fork(2) request shares the same timeout as the original interface file eid
obtained from open(2). If the child process resulting from a fork inherits an
eid then changes the timeout, the eid used by the parent process is likewise
affected.

Setting Data Path Width

When you create a DIL special file and open it for the first time, the data
path width defaults to 8 bits. Once the file is opened, io_width_ctl can be
used to select a new width. Allowable widths vary, depending on the computer
model and interface. Refer to the appropriate hardware-specific appendix to
determine what widths are supported by specific interfaces.

3-16 General-Purpose Routines Partl: DIL

Assuming that the open device file has the entity identifier eid, io_width_ctl
is called using a code segment similar to the following:

int eid, width;
io_width_ctl(eid, width);

where width is the number of parallel bits in the new data path. The
io_width_ctl returns —1 to indicate an error if the specified width is not
supported on the interface identified by eid.

For example, to reconfigure a GPIO device to use all 16 data lines in the
interface cable instead of the default lower 8 bits, use a a code segment similar
to the following: -

#include <fcntl.h>
#include <errno.h>

main()
{
int eid, width;
width = 16; /*width of new data path */
it ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_width_ctl(eid, width); /*assign new width for GPID bus*/

/*data transfers using "/dev/raw_gpio" will now !
use a 16-bit bust/
}

Use of io_width_ctl to change interface data path width affects only the
device associated with that particular eid. Use io_reset or io_width_ctl
to restore the default 8-bit path width. On a Series 600/800 system,
io_width_ctl affects all users of the interface referred to by eid.

Setting Minimum Data Transfer Rate

DIL provides a means for specifying a minimum acceptable data transfer rate
for a given interface special file within the limits of available hardware by use
of io_speed_ctl. The calling sequence is as follows:

io_speed_ctl(eid, speed);

PartI: DIL General-Purpose Routines 3-17

where eid is the entity identifier for the open interface file, speed is an integer
indicating a minimum speed in Kbytes per second, and a kilobyte equals 1 024
bytes.

Io_speed_ctl returns a 0 if successful, or —1 if an error occurred. For
example:

io_speed_ctl(eid, 1);

requests a minimum speed of 1 024 bytes per second. While the system may
use a faster transfer rate if possible, you are at assured that the rate will not be
less than the specified speed.

The transfer method (such as DMA or interrupt) chosen by the system is
determined by the minimum speed requested. The system selects a transfer
method that is as fast or faster than the requested speed. If the requested
speed is beyond system limitations, the fastest available transfer method is
used. Refer to the appropriate hardware-specific appendix for details.

Setting the Read Termination Pattern

During read operations on an open device file, the system recognizes certain
conditions as the end of a data transfer from the sending device. DIL supports
three methods for identifying the end of an input operation:

» Input data byte count limit is reached.
m Hardware condition is used to identify end of data.

m Predetermined character or sequence of characters is used to identify the end
of a data record.

Input termination occurs when the first termination condition is recognized,
independent of the type of condition. If two or more conditions occur
simultaneously, the first condition detected terminates the operation. However,
this first condition along with any other simultaneous events that would also
have caused termination are recorded during clean-up at the end of the transfer
for possible later use by io_get_term_reason.

Termination on Byte Count

3-18 General-Purpose Routines Partl: DIL

Any call to read must specify the maximum number of data bytes that are to
be accepted. When the specified number of bytes have been read, the data
transfer is unconditionally terminated, whether the data is complete or not.

Termination on Hardware Condition

In many cases, the number of bytes being transferred is controlled by the
peripheral device and cannot be predetermined. To make sure that no data is
lost, the byte limit is set to a value higher than the longest expected input data
record, and the interface is configured to recognize a condition, character, or
set of characters (one or two bytes only) as the end of the incoming data. For
instance, if an HP-IB interface detects that the EOI line has been asserted,

it knows that the last data byte has been transferred and halts the read
operation, whether or not the specified byte count has been reached.

Termination on Data Pattern

The DIL routine io_eol_ctl configures an interface to recognize a particular
character or pair of characters as a read termination pattern. Whether one or
two bytes are used for the pattern depends on whether the data path width

is set to 8 or 16 bits. The read termination pattern is in addition to any
other conditions that may already be in effect for the interface. The call to
io_eol_ctl has the form:

int eid, flag, match;
io_eol_ctl(eid, flag, match);

where eid is the entity identifier for the open interface file and flag, depending
on its value, enables or disables the interface’s ability to recognize a read
termination pattern.

PartI: DIL General-Purpose Routines 3-19

When flag is zero, termination pattern recognition is disabled and only EOI
or a satisfied byte count can terminate a normal transfer. If flag is non-zero,
match defines the new termination pattern. When using flag = 0 to disable
eol pattern recognition, the third parameter (match) in the subroutine call is
not used. However, it is recommended that a value (such as zero) be provided
as good programming practice.

When flag is non-zero to enable end-of-line recognition (for example, flag =
1) and the interface data path width is set to 8 bits, the least-significant byte
of the 4-byte integer value of match defines the termination pattern used to
identify an end-of-line condition.

On the other hand, if the interface data path width is set to 16 bits (such as
with a GPIO interface), then, for most systems, the termination pattern is also
16 bits, defined by the two lower (least-significant) bytes of the 4-byte integer
value defined by match.

Remember: If any other read termination conditions defined for the interface
are in effect (such as EOI for an HP-IB interface), any event that matches

a currently active termination condition can cause a read operation to halt;
independent of whether the defined eol condition has been met. Also note
that the read termination pattern defined by io_eol_ctl is accepted as part
of the valid incoming data, meaning that it is transferred to the data storage
area along with the rest of the transferred data. In other words, when the
interface encounters transferred data matching the match value, it treats the
data as part of the data message but does not attempt any further data input
after the matching data pattern is found. This means that if data within an
incoming data stream happens to match the pattern defined by match, the read
is terminated whether the data message is complete or not. For this reason,
care must be exercised when defining eol character sequences for data transfer.

To illustrate how to use io_eol_ctl, suppose an HP-IB interface is being
configured to recognize a backslash-n (\n) as a read termination pattern. First,
open the HP-IB interface file and obtain the entity identifier eid. Second,
make the call to io_eol_ctl using eid as the entity identifier, ENABLE as the
flag, and \n as the match (\n is a one-byte value, and the data path width for
all HP-IB devices is 8 bits):

3-20 General-Purpose Routines PartI: DIL

#include <fcntl.h>
#include <errno.h>

#define ENABLE 1
main()
{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);

io_eol_ctl(eid, ENABLE, ’\n’);

/*data transfers using "eid" terminate with a ’\n’*/
}

Interface file /dev/raw_hpib is now configured to terminate read operations
when any one of the following occurs:

m The byte count specified in the call to read is reached.

m The HP-IB EOI line is asserted. When the interface detects that the EOI
line has been asserted, the character currently on the bus becomes the last
byte in the data message.

m backslash-n (\n) (newline character) is detected in incoming data. The
newline character becomes the last byte in the stored data message.

An interface file entity identifier returned by a dup(2) system call or inherited
by a fork request shares the same read termination pattern as the entity
identifier returned by the original call to open. If the child process resulting
from a fork inherits an entity identifier then sets a read termination pattern
for that eid, the eid used by the parent process is also affected.

If a single program or process executes more than one open system call on the
same interface file, each entity identifier returned by open can have its own
associated read termination pattern. Using io_eol_ctl on a given eid does
not affect the others. Thus, multiple entity identifiers can be set up for a single
interface to facilitate recognition of various termination characters during
program execution.

Partl: DIL General-Purpose Routines 3-21

Disabling a Read Termination Pattern

"To disable the read termination pattern, call io_eol_ctl with the flag
parameter disabled (set to 0):

io_eol_ctl(eid, 0, xx);

where xx represents a “don’t care” value for the match argument. If the flag
argument is 0, the match argument is ignored.

The following code segment defines the ASCII . character (decimal value 46)
as a termination pattern, performs a read operation, then disables termination
pattern recognition.

#include <fcntl.h>
#include <errno.h>
main()
{
int eid;
char buffer[12];

if ((eid = open("/dev/hpib_dev", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

io_eol_ctl(eid, 1, 46);

read(eid, buffer, 12); /*Read operation halts when a period character
"." ig read or when the 12th byte is read*/

io_eol_ctl(eid, O, 0); /*termination pattern recognition is disabled+*/

3-22 General-Purpose Routines Partl: DIL

Determining Why a Read Terminated

Various situations can cause termination of read operations through an
interface. Upon completion of a read, you may want to include code to verify
that the reason for termination is what you expected. This is done by using
the DIL routine io_get_term_reason.

io_get_term_reason uses a single argument: the interface file entity identifier
eid, and returns an integer. The returned value indicating how the last read
operation ended, is interpreted as follows:

Returned Meaning

Value
-1 An error during the subroutine call.
0 Read terminated abnormally (for some reason other than the ones
listed here).
1 Byte count limit caused termination.
End-of-line character pattern caused termination
4 Device-imposed condition (such as EOI asserted on HP-IB interface)

caused termination.

If more than one termination condition occurred simultaneously, the bit
corresponding to the above values is set for each condition, and the aggregate
value of the lower three bits represents a sum equal to the combined values of
the individual conditions. The three least-significant bits of the lowest byte
have meanings as indicated by their associated decimal values in the table
above. For example, if io_get_term_reason returns a value of 7, all three
conditions: byte count limit, hardware termination, and termination pattern
recognition occurred simultaneously.

Note If no read is performed on an open interface file prior to a call
to io_get_term_reason, a value of zero is returned.

Partl: DIL General-Purpose Routines 3-23

All entity identifiers descending from a single open request (such as from dup
or fork) affect the status returned by this routine. For example, suppose that
an entity identifier is inherited by a child process through a fork. If the parent
process calls io_get_term_reason, the last read operation of either the parent
or the child is looked at, depending on which is more recent.

Example

Suppose you want to read data through an open HP-IB interface file, but want
a printout indicating the reason for termination on every transfer, whether the

termination was normal or abnormal. The following code segment provides

that capability:

#include <fcntl.h>
#include <errno.h>

/%

** possible termination reasons
** returned by io_get_term_reason

*/

#define TR_ABNORMAL O
#define TR_COUNT 1
#define TR_MATCH 2
#define TR_CNT_MCH 3 /* TR_COUNT + TR_MATCH */
#define TR_END 4
#define TR_CNT_END 5§
#define TR_MCH_END 6

/* abnormal */
/* requested count was satisfied */
/* specified eol character was matched */

/% EOI was detected */
/* TR_COUNT + TR_END */
/* TR_MATCH + TR_END */

#define TR_CNT_MCH_END 7 /* TR_COUNT + TR_MATCH + TR_END */

main()

int eid, termination_reason, bytes_read;
char buffer[50];

if ((eid = open("/dev/raw_hpib", O_RDWR)) < 0) {
printf("Open of /dev/raw_hpib failed - errno = %d\n", errno);
exit(1);

}

io_reset(eid);

io_timeout_ctl(eid, 1000000);

bytes_read = read(eid, buffer, 50);
termination_reason = io_get_term_reason(eid);

3-24 General-Purpose Routines Part I:

DIL

switch (termination_reason) {
case TR_ABNORMAL: /* abnormal */
printf("Abnormal read termination, bytes_read = %d,
errno = %d\n", bytes_read, errno);

break;
case TR_COUNT: /* requested count was satisfied */
printf ("Count satisfied.\n");
break;
case TR_MATCH: /* specified eol character was matched
*/
printf("EOL character satisfied.\n");
break;
case TR_CNT_MCH: /* TR_COUNT + TR_MATCH */
printf("Count and EOL character satisfied.\n");
break; =
case TR_END: /* EOI was detected */
printf ("EOI detected.\n");
break;
case TR_CNT_END: /* TR_COUNT + TR_END */
printf("Count satisfied and EOI detected.\n");
break;
case TR_MCH_END: /* TR_MATCH + TR_END */
printf ("EOL character satisfied and EOI detected.\n");
break;

case TR_CNT_MCH_END: /* TR_COUNT + TR_MATCH + TR_END */
printf("Count and EOL character satisfied and EOI
detected.\n");
break;
default: /* io_get_term_reasoned failed */
printf("io_get_term_reason failed, bytes_read = %d,
errno = %d\n", bytes_read, errno);
break;
}

Partl: DIL General-Purpose Routines 3-25

Interrupts

DIL provides an interrupt mechanism for HP-IB, GPIO, and Parallel interfaces
that is similar to HP-UX signal handling. Thus interrupt handlers can be
included in programs such that they are invoked when certain conditions occur.

HP-IB Interrupts

Series 300/400 and 600/800 computers recognize the follbwing HP-IB interrupt
conditions:

Signal
SRQ
TLK
LTN
TCT
IFC
REN
DCL
GET

PPOLL

3-26 General-Purpose Routines Part I:

Condition

SRQ line has been asserted.

Computer HP-IB interface has been addressed to talk.
Computer HP-IB interface has been addressed to listen.
Computer HP-IB interface has received control of the bus.

IFC line has been asserted.

Remote enable line has been asserted.

Computer HP-IB interface has received a device clear command.

Computer HP-IB interface has received a group execution trigger
command.

A specific parallel poll response occurred.

DIL

GPIO Interrupts
m Series 300/400 computers recognize the following GPIO interrupt condition:

Signal Condition
EIR EIR line has been asserted.

m The Series 600/800 HP 27112 GPIO interface recognizes the following
interrupt conditions:
Signal Condition
SIEO Status line 0 has been set.
SIE1 Status line 1 has been set.

m The Series 600/800 HP 27114 GPIO interface recognizes the following
interrupt condition:

Signal Condition
EIR EIR line has been asserted.

Parallel Interrupts

Series 300/400 computers recognize the following Parallel interrupt conditions:
Signal Condition

NERROR NERROR line has changed from high to low or from low to high.

SELECT SELECT line has changed from high to low or from low to high.
PERROR PERROR line has changed from high to low or from low to high.

Partl: DIL General-Purpose Routines 3-27

The io_on_interrupt Subroutine

The io_on_interrupt subroutine sets up interrupt conditions. It has the form:

io_on_interrupt(eid, cause_vec, handler);

where eid is the interface entity identifier for a GPIO, HP-IB or Parallel
interface. handler points to the function that is to be invoked when the
interrupt condition occurs, and cause_vec is a pointer to a structure of the
form: '
struct interrupt_struct {
int cause;

int mask;

};
The interrupt._struct structure is defined in the include file dvio.h.

cause is a bit vector specifying which selectable interrupt or fault events will
cause the handler routine to be invoked Available interrupt causes are usually
specific to the type of interface being considered. In addition, certain exception
(error) conditions can be handled by the io_on_interrupt subroutine. If the
cause vector has a zero value, it, in effect, disables interrupts for that eid.

mask is an integer value that is used to define which parallel-poll response lines
are to be recognized in an HP-IB parallel poll interrupt. The value for mask

is formed from an 8-bit binary number, each bit of which corresponds to one
of the eight parallel-poll response lines. For example, to invoke an interrupt
handler for a response on line 2 or 6, the correct binary number is 01000100
which converts to a decimal equivalent of 68, the correct value for mask.

When the enabled interrupt condition occurs on the specified eid, the process
that set up the interrupt executes the interrupt-handler routine pointed to

by handler. The entity identifier eid and the interrupt condition cause are
returned to handler as the first and second parameters respectively.

Whenever an interrupt condition occurs for a given eid, the interrupt is
recognized, interrupts are disabled for that eid, then the interrupt handler is
executed. After processing the interrupt, interrupts can be re-enabled for that
eid by calling io_interrupt_ctl.

Each call to io_on_interrupt returns a pointer to the previous handler if the
new handler is successfully installed, otherwise it returns —1 and errno is set.

3-28 General-Purpose Routines PartI: DIL

The following example illustrates how an interrupt handler can be set up to
handle requests on the HP-IB service request line (SRQ):

#include <dvio.h>
#include <fcntl.h>
#include <stdio.h>
extern int service_routine();

handler (eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{
if (cause_vec->cause == SRQ)
service_routine(); /* application-specific service routine*/

}
main()
{
int eid;
struct interrupt_struct cause_vec;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
io_reset(eid);
cause_vec.cause = SRQ;
io_on_interrupt(eid, &cause_vec, handler);
}

The io_interrupt_ctl Subroutine

Subroutine io_interrupt_ctl provides a convenient means for enabling and
disabling interrupts on a specific eid. Since interrupts are automatically
disabled when an interrupt occurs, io_interrupt_ctl is commonly used to
re-enable interrupts during a series of repetitive operations that are being
handled under interrupt control. The call to io_interrupt_ctl has the
following form:

io_interrupt_ctl(eid, enable_flag);
where eid is the entity identifier for an open GPIO or raw HP-IB interface
(device) file. The value of enable_flag determines whether interrupts are to

be enabled or disabled: if enable_flag is non-zero, interrupts are enabled on
the eid; if enable_flag is zero, interrupts are disabled. Attempting to use

PartI: DIL General-Purpose Routines 3-29

io_interrupt_ctl on an eid fails when no previous call has been made to
io_on_interrupt for the same eid.

The following code segment shows how the previous example can be modified
slightly so that interrupts are re-enabled at the end of the interrupt service
routine:

handler(eid, cause_vec);

int eid;

struct interrupt_struct *cause_vec;

{

if (cause_vec->cause == SRQ)

service_routine(); /* application-specific service routine*/

io_interrupt_ctl(eid,1);

3-30 General-Purpose Routines Partl: DIL

Controlling the HP-IB Interface

The general-purpose subroutines discussed in Chapter 3 are used to set up
and handle data transfers at a high level. However, they do not control the
lower-level interface operations that are necessary to maintain proper bus
operation and control interaction between HP-IB devices.

This chapter explains the use of subroutines in the Device I/O Library that
are directly related to HP-IB interface control. Chapter 5 covers comparable
material for the GPIO interface. This chapter presents a brief overview of
HP-IB commands, followed by a detailed discussion of HP-IB DIL subroutines
including how they are used to control bus activity and manage bus traffic.

Partl: DIL Controlling the HP-IB Interface 4-1

Overview of HP-IB Commands

HP-IB commands consist of various data sequences that are sent over the
eight HP-IB data lines while the ATN line is asserted (held LOW). The
DIL subroutine hpib_send_cmnd provides a convenient means for sending
bus commands by automatically handling the ATN line and the necessary
handshaking operations between devices. However, hpib_send_cmnd can be
used only when the computer interface to the bus is the active controller.
Techniques for using hpib_send_cmnd are discussed later in this chapter.

Any device that is the intended recipient of an HP-IB command must have its
remote enable line (REN) enabled by the System Controller (unless altered
by the System Controller, REN is enabled, by default). Only the System
Controller can alter the state of the REN line (see “System Controller’s
Duties” section later in this chapter).

HP-IB Data Bus Commands fall into four categories:

m Universal commands cause every properly equipped device on the bus to
perform the specified interface operation, whether addressed to listen or not.

m Addressed commands are similar to universal commands, but are accepted
only by bus devices that are currently addressed as listeners.

m Talk and listen addresses are commands that assign talkers and listeners on
the bus.

m Secondary commands are commands that must always be used in
conjunction with a command from one of the above groups.

4-2 Controlling the HP-IB Interface Partl: DIL

Table 4-1 lists commands that can be sent with hpib_send_cmnd, along with
the decimal and ASCII character equivalents of each command. This table is
useful for reference when determining what values to use as parameters in
hpib_send_cmnd subroutine calls.

Table 4-1. HP-IB Bus Commands

Command Decimal ASCII Character
Value

Universal Commands:

UNLISTEN 63 ?

UNTALK 95 -

DEVICE CLEAR 20 DC4
LOCAL LOCKOUT 17 DC1
SERIAL POLL ENABLE 24 CAN
SERIAL POLL DISABLE 25 EM
PARALLEL POLL UNCONFIGURE 21 NAK

Addressed Commands:

TRIGGER 8 BS
SELECTED DEVICE CLEAR 4 EOT
GO TO LOCAL 1 SOH
PARALLEL POLL CONFIGURE 5 ENQ
TAKE CONTROL 9 HT

Partl: DIL Controlling the HP-IB Interface 4-3

Table 4-1. HP-IB Bus Commands (continued)

Command Decimal ASCII Character
Value

Talk and Listen Addresses:

Talk Addresses 0-30 64-94 @ thru ~
(uppercase ASCII)

Listen Addresses 0-30 32-62 space thru >

(numbers and special
characters)

Secondary Commands: (If a secondary

command follows the PARALLEL

POLL CONFIGURE command, it is

interpreted as follows; otherwise its

meaning is device-dependent)

PARALLEL POLL ENABLE 96-111 ‘ thru o
(lowercase ASCII)

PARALLEL POLL DISABLE 112 p

UNLISTEN

UNLISTEN unaddresses all current listeners on the bus. No means is available
for unaddressing a given listener without unaddressing all listeners on the bus.
This command ensures that the bus is cleared of all listeners before addressing
a new listener or group of listeners.

UNTALK

UNTALK unaddresses any active talkers on the bus. Since no means is
available for unaddressing a given talker, the UNTALK command is sent to
all devices on the bus. This ensures that no conflict with a current talker can
occur when addressing a new one.

4-4 Controlling the HP-IB Interface PartI: DIL

DEVICE CLEAR

DEVICE CLEAR causes all devices that recognize this command to return

to a pre-defined, device-dependent state, independent of any previous
addressing. The reset state for any given device after accepting this command
is documented in the operating manual for the device in question.

LOCAL LOCKOUT

LOCAL LOCKOUT disables local (front panel) control on all devices that
recognize this command, whether the devices have been addressed or not.

SERIAL POLL ENABLE

SERIAL POLL ENABLE establishes serial poll mode for all devices that

are capable of being bus talkers, provided they recognize and support the
command. This command operates independent of whether the devices being
polled have been addressed to talk. When a device is addressed to talk, it
returns an 8-bit status byte message.

This command is handled through the DIL subroutine hpib_spoll, as
discussed later in this chapter.

SERIAL POLL DISABLE

SERIAL POLL DISABLE terminates serial poll mode for all devices that
support this command, whether or not the individual devices have been
addressed.

The DIL subroutine hpib_spoll that performs this function is discussed at
length later in this chapter.

TRIGGER (Group Execute Trigger)

TRIGGER causes devices currently addressed as listeners to initiate a
preprogrammed, device-dependent action if they are capable of doing so. Use
of this function and programming procedures are documented in operating
manuals for devices that support it.

PartI: DIL Controlling the HP-IB Interface 4-5

SELECTED DEVICE CLEAR

SELECTED DEVICE CLEAR resets devices currently addressed as listeners
to a device-dependent state, provided they support the command. Refer to the
device operating manual for more information about programming and the
resulting state(s).

GO TO LOCAL

GO TO LOCAL causes devices currently addressed as listeners to return to the
local-control state (exit from the remote state). Devices return to remote state
next time they are addressed.

PARALLEL POLL CONFIGURE

PARALLEL POLL CONFIGURE tells devices currently addressed as listeners
that a secondary command follows. This secondary command must be either
PARALLEL POLL ENABLE or PARALLEL POLL DISABLE.

PARALLEL POLL ENABLE

PARALLEL POLL ENABLE configures devices addressed by PARALLEL

POLL CONFIGURE to respond to parallel polls with a predefined logic level
on a particular data line. On some devices, the response is implemented in a
local form (such as by using hardware jumper wires) that cannot be changed.

Use of this command must be preceded by a PARALLEL POLL CONFIGURE
command.

PARALLEL POLL DISABLE

The PARALLEL POLL DISABLE command prevents devices previously
addressed by a PARALLEL POLL CONFIGURE command from responding
to parallel polls. This command must be preceded by the PARALLEL POLL
CONFIGURE command.

4-6 Controlling the HP-IB Interface Part I: DIL

Overview of HP-IB DIL Routines

The 17 subroutines in Table 4-2, in addition to the general-purpose subroutines
discussed in Chapter 3, provide full capabilities for controlling and using the

HP-IB interface.

Table 4-2. HP-IB DIL Routines

hpib_bus_status
hpib_eoi_ctl
hpib_pass_ctl
hpib_card_ppoll_resp
hpib_ren_ctl

hpib_rqst_srvce
hpib_send_cmnd
hpib_wait_on_ppoll

hpib_status_wait
hpib_ppoll_resp_ctl

hpib_atn_ctl
hpib_parity_ctl

hpib_address_ctl

Subroutine Description
hpib_abort Stop activity on specified HP-IB select code.
hpib_io Perform a series of HP-IB read, write, and SEND_CMD
operations from a single subroutine call.
hpib_ppoll Conduct parallel poll on HP-IB.
hpib_spoll Conduct serial poll on HP-IB.

Return status on HP-IB interface.

Control EOI mode for data transfers.

Pass bus control to another device on the bus.
Define HP-IB card’s response to a parallel poll.

Assert or release HP-IB remote-enable (REN) line on
HP-IB.

Initiate a service request (SRQ) when interface is not
Active Controller.

Send command message on HP-IB data lines while
asserting the attention (ATN) line.

Wait until a specified device responds on its assigned
parallel poll response line indicating that it needs service.
Wait until any device on the bus asserts SRQ.

Configure and enable or disable the parallel poll response
circuit on the specified device (determines how the device

will respond to the next parallel poll from a remote active
controller).

Control the HP-IB ATN line.
Set parity type to be used for hpib_send_cmnd calls.
Set the bus address of an HP-IB interface card.

Part I: DIL

Controlling the HP-IB Interface 4-7

HP-IB: The Computer’s Role

Most HP-IB applications consist of a single computer and several peripheral
devices connected to a given bus. However, some situations may require two or
more computers on the same bus along with various shared and/or dedicated
peripheral devices. This discussion applies to both configurations.

Ground Rules

The following rules are mandatory for proper HP-IB interaction:

m HP-IB allows only one System Controller per bus.

m Only one device on the bus can be active controller at any given time.

m All other devices capable of controlling the bus must be non-active
controllers unless control is passed from another active controller.

m The computer interface is configured as System Controller. If two or more
computers are interfaced to a single bus, only one can be configured as
System Controller. All other interfaces must be configured as non-controllers
(incapable of acting as System Controller). This is usually accomplished by
programming a switch or jumper on the HP-IB interface card.

At power-up, the System Controller is the Active Controller. All other
controllers on the bus are non-active controllers. If the computer interface
passes control to another device, the device receiving control becomes the new
active controller and the computer interface becomes a non-active controller
although it remains System Controller at all times and can regain control of
the bus by asserting IFC (InterFace Clear). Once control has been passed to
another device, the computer remains non-active controller until control is
passed back or IFC is asserted.

Available Subroutines versus Controller Role

Which DIL subroutines can be used depends on the computer’s role on the
HP-IB at the time. Given the three possible roles, Table 4-3 indicates which
subroutines can be used with each.

4-8 Controlling the HP-IB Interface PartI: DIL

Table 4-3. DIL Subroutine Availability Based on Interface Role

Subroutine

System
Controller

Active
Controller

Non-Active
Controller

hpib_abort

hpib_io

hpib_ppoll
hpib_spoll
hpib_bus_status
hpib_eoi_ctl
hpib_pass_ctl
hpib_card_ppoll_resp
hpib_ren_ctl
hpib_rqgst_srvce
hpib_send_cmnd
hpib_wait_on_ppoll
hpib_status_wait
hpib_ppoll_resp_ctl
hpib_parity_ctl
hpib_atn_ctl
hpib_address_ctl

Note 1

Note 1

Note 1

Note 1

Note 1

Note 2

non-active controller.

This command is available to the System controller, but the
availability is meaningless because this command is available to
any interface on the bus, independent of its role as an active or

This command is available to the interface while it is active
controller, but the command is meaningless except when the

interface is acting in the non-active controller role.

PartI: DIL

Controlling the HP-IB Interface 4-9

Bus Citizenship:
Surviving Multi-Device/Multi-Process HP-IB

HP-UX provides a powerful environment for creative programming. As a
result, one or more users can create a large number of processes that may be
running simultaneously. At the same time, HP-IB provides the capability

of combining multiple devices on a single I/O channel or interface. As long
as only auto-addressed HP-IB interface files are used, problems are few and
infrequent. However, when processes that use DIL subroutines start accessing
raw-mode HP-IB interface files, a splendid opportunity arises for competing
processes to create bus addressing and access conflicts. If certain precautions
are not carefully maintained, performance quickly decays to chaos.

The Device I/O Library contains several subroutines that are provided
specifically for maintaining orderly HP-IB traffic and good I/O efficiency.
Correct use of these subroutines is especially important when using raw
interface files. They include:

m io_lock and io_unlock to take exclusive control of the HP-IB channel for
the duration of a transfer,

m io_burst to efficiently handle short transfers without consuming large
amounts of HP-UX kernel overhead,

m hpib_io to structure a complete bus transfer including configuration and
control operations in a buffer then handle the transfer as a single subroutine
call through an interface file that is automatically locked at the beginning
and released at the end of the transfer.

These subroutines are discussed at length later in this chapter, but are treated
here from the point of view of overall bus applications efficiency as it pertains
to programming practice.

4-10 Controlling the HP-IB Interface Partl: DIL

io_lock and io_unlock

When handling raw-mode (as opposed to auto-addressed) HP-IB transfers,
devices must be set up to communicate (preamble) before the transfer
(read/write) can be initiated, then the necessary clean-up (postamble)
operations must be performed to leave the bus in an acceptable state for the
next process. If you do not notify other processes that you are using the bus,
they might initiate a different transfer while you are preparing for your next
DIL subroutine call. A command sequence from another process (through a
different eid but through the same interface) could completely scramble your
bus configuration so your transfer request results in no data, erroneous data, or
possibly even more serious results, depending on the nature of the transfer.

A simple call to io_lock prior to your first call to an HP-IB subroutine and

a matching call to io_unlock after your last HP-IB subroutine call keeps
competing processes from using the bus while you have control. As soon as the
interface file is unlocked, it can be accessed by the next process that needs it.

io_burst

Series 300/400 systems support burst I/O (also called fast handshake) which
bypasses the kernel by performing a high-speed non-interrupt transfer. This
method can produce considerable performance improvement when handling
short transfers to or from high-speed HP-IB devices. Refer to the io_burst(3I)
manual entry in Section 3 of the HP-UX Reference for more information.

hpib_io

The DIL subroutine hpib_io is used to perform bus configuration, data
transfer, and bus clean-up as a single operation through a locked interface file.
When using hpib_io, control commands (the preamble), data to be written
or a buffer for incoming data (the data message), and clean-up commands
(postamble) are placed in a data structure prior to calling hpib_io. hpib_io
then handles the transfer as defined in the data structure (which configures
the HP-IB and handles the transfer and clean-up) then returns with the result
(transfer complete or transfer failed).

PartI: DIL Controlling the HP-IB Interface 4-11

Opening the HP-IB Interface File

Before DIL subroutines can be used on an HP-IB interface, the interface
special file must exist and the program must obtain a corresponding entity
identifier. The procedures for opening interface special files and obtaining
entity identifiers is discussed in Chapter 3, “General-Purpose Routines.”

Sending HP-IB Commands

Once the HP-IB interface special file has been opened and the entity identifier
has been obtained, DIL subroutines can be used to send HP-IB commands to
control the interface. If the computer is Active Controller, hpib_send_cmnd
can be used to place HP-IB commands on the data bus.

One method of using this routine is to first set up a character array containing
the commands being sent. Assign the decimal value of each command to an
element in the array, then use a subroutine call having the form:

hpib_send_cmnd(eid, command, number);

where eid is the entity identifier for the open interface file, command is a
character pointer to the first element of the array containing the HP-IB
commands, and number is the number of elements (commands) in the array.
The subroutine hpib_send_cmnd places each of the commands stored in the
array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command pointer
you can send subsets of command arrays. Suppose you create an array that
contains 10 HP-IB commands, command[0] through command[9]. You can now
specify that only the last 5 commands in the array be sent by using:

hpib_send_cmnd(eid, command + 5, 5);

4-12 Controlling the HP-IB Interface Partl: DIL

This method of sending HP-IB commands by storing them in an array uses
their decimal values. Alternatively, ASCII command characters can be used by
specifying a character string and using a subroutine call of the form:

hpib_send_cmnd(eid, "command_string", number);

where eid and number are the same as before but the commands to be sent are
now specified by each character in the string command_string.

To illustrate the two methods, assume that you want to send the HP-IB
UNLISTEN and UNTALK commands. With the decimal array method, first
set up an array having two elements, place the decimal value for each command
in the appropriate location in the array, then call hpib_send_cmnd:

#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
char command[2]; /*command array*/
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

command [0] = 63; /*decimal value for UNLISTEN#*/
command[1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd(eid, command, 2);

Partl: DIL Controlling the HP-IB Interface 4-13

Using the ASCII character string method, the same effect is achieved using:

#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

hpib_send_cmnd(eid, "?_", 2); /*? is ASCII for UNLISTEN and*/
) /%_ is ASCII for UNTALK */
}

The array method is usually preferred when sending a large number of
commands or sending the same set of commands several times in the program
because the entire set of commands can be stored once then used whenever
needed. When the string method is used, the entire set of commands must

be specified as a string in each call to hpib_send_cmnd. It is preferred when
sending only a few commands or sending a set of commands only once in a
program.

4-14 Controlling the HP-IB Interface Partl: DIL

Errors While Sending Commands

Normally, hpib_send_cmnd returns a 0 if successful. It returns a —1 if any one
of the following error conditions exist:

s Computer interface is not Active Controller.

eid entity identifier does not refer to an HP-IB raw interface file.

eid entity identifier does not refer to an open file.
m A timeout occurs.

m The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

m The command length specified by number is invalid.

To determine which of these conditions caused the error, check the value
of errno, an external integer variable used by HP-UX system calls.
Error-checking routines are discussed at length in Chapter 3.

The following table lists errno values corresponding to the conditions above
when detected by hpib_send_cmnd:

errno Value Error Condition

EBADF eid did not refer to an open file

ENOTTY eid did not refer to a raw interface file

EIO The interface was not the Active Controller (EACCES on Series
600/800)

ETIMEDOUT A timeout occurred (EIO on Series 300/400)

EACCES The interface associated with this eid was locked by another

process and O_NDELAY was set for this eid

EINVAL number was invalid, either less than or equal to 0 or greater than
MAX_HPIB_COMMANDS as defined in dvio.h

Partl: DIL Controlling the HP-IB Interface 4-15

Changing Parity on Commands

By default, bus commands sent across the bus using hpib_send_cmnd are sent
using odd parity. On the Series 300/400, you can disable the use of parity on
bus commands using the hpib_parity_ctl routine.

The following sequence illustrates the use of hpib_parity_ctl to disable the
sending of parity and use eight bit command bytes:

#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
char command[2]; /*command array*/
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

hpib_parity_ctl(eid, 0);

command [0] = 63; /*decimal value for UNLISTEN*/
command[1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd(eid, command, 2);

4-16 Controlling the HP-IB Interface Partl: DIL

Active Controller Role

The Active Controller is responsible for originating all commands handled
on the bus and responding to requests for service from other devices.
hpib_send_cmnd is used to send HP-IB commands. Other DIL subroutines
are used for the remaining bus control tasks. Active Controller operations
discussed in this chapter include:

s Addressing individual devices to talk or listen.
m Switching devices to remote control operation.

m Locking out local front-panel control on devices.

Switching devices to local front-panel control.

Triggering devices to initiate device-dependent operations.

m Transferring data in or out.

Clearing (resetting) devices

Responding to service requests from devices.

Conducting parallel and serial polls.

m Passing active control of the bus to another device.

Partl: DIL Controlling the HP-IB Interface 4-17

Determining Active Controller

A computer interface must be the Active Controller before it can handle any
bus management activities. If any other device on the bus is capable of being
Active Controller, use the hpib_bus_status subroutine to determine whether
the interface is the current Active Controller. Use the following subroutine call
form:

hpib_bus_status(eid, ACT_CONT_STATUS) ;

where eid is the entity identifier for the opened HP-IB interface device file

and ACT_CONT_STATUS tells the subroutine to examine interface status and
determine whether or not the card is the Active Controller. The value returned
by the subroutine can be tested as indicated in the example source code which
follows.

hpib_bus_status returns O if the condition being tested is false; 1 if true, and
—1 if an error occurred. The code that follows shows a straightforward way of
interpreting the returned value:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{
int eid, status;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

if ((status = hpib_bus_status(eid,ACT_CONT_STATUS)) == -1)

. /*an error occurred; error-handling code*/

. /*goes here. */

else if (status == 0)

: /*not Active Controller; code to request */

: /*Active Controller status goes here */

else
: /*Active Controller; bus-management code */

/*goes here */

4-18 Controlling the HP-IB Interface Partl: DIL

Setting Up Talkers and Listeners

Before data can be transferred over HP-IB, one talker and one or more listeners
must be assigned to handle the transfer. In addition, some HP-IB commands
are recognized only by those devices that are currently addressed as listeners,
which means that the Active Controller must specify the listeners before
sending such commands. Only one talker at a time is allowed on the bus, but
the number of listeners is not restricted.

Series 300/400 and 600/800 computers provide two methods for addressing
listeners and talkers on HP-IB: auto-addressing and command addressing.

When an HP-IB interface device file is set up as an auto-addressed file
(determined by the value of the minor number used when creating the file), any
read/write operations to or from the file automatically set up the bus talk and
listen address commands prior to transferring data. The interface must be the
Active Controller when auto-addressing is used.

The alternate method uses hpib_send_cmnd to directly control the bus from
the user program itself. However, this method of control can only be used on
raw device special files.

Auto-Addressing

Much of the tedium of addressing devices to talk or listen can be avoided

by using auto-addressed device special files to take advantage of HP-UX
auto-addressing capabilities for many peripherals. Auto-addressing is
performed only on auto-addressed HP-IB device files. Some DIL subroutines
require a raw HP-IB device file, and will fail if you attempt to use them

on an auto-addressed device file. DIL subroutines that can be used

with auto addressed device files include hpib_eoi_ctl, hpib_eol_ctl,
io_burst, io_get_term_reason, io_lock, io_unlock, io_speed_ctl,

and io_timeout_ctl. Systems determine whether a device file is raw or
auto-addressed by the minor number used when the file is created. Address 31
(hexadecimal 1f) is reserved for raw files. Any address in the range 0 through
30 is auto-addressed. Refer to the appropriate appendix for procedures used to
create device and interface special files.

Partl: DIL Controlling the HP-IB Interface 4-19

For example, suppose you are using a Series 300/400 computer with an

HP 98624 HP-IB card on select code 08 to access a peripheral device located
at bus address 03. Use mknod to create a new device file named device for
the peripheral device and place the file in directory dev underneath the root
directory as explained in Appendix A:

mknod /dev/device c 21 0x080300

Once the file exists, it can be listed by using the 11(1) command. In this case,
the device file named /dev/device is listed (along with other files in the /dev
directory) together with its permissions and attributes:

CTW-TW-TW- 1.root other 21 0x080300 Nov 22 1986 /dev/device

Since the bus address is less than decimal 31, the file is a non-raw device file
and is auto-addressable. The following code segment illustrates how to use
auto-addressing with such a device file:

#include <errno.h>
#include <fcntl.h>

main()
{
int eid;

if ((eid = open("/dev/device",0_RDWR) < 0)) {
printf("Open of /dev/device failed, errno = %d\n", errno);
exit(1);

/*

** Assuming "/dev/device" has the minor number (0x080300), the

** gystem automatically addresses the interface card at select code 8
** ag a talker and the device at bus address 3 as a listener before
** gending data

*/
if (write(eid, "test data", sizeof("test data")) < 0) {

printf("write failed, errno = jd\n", errno);
exit(2);

4-20 Controlling the HP-IB Interface Partl: DIL

Using hpib_send_cmnd

Talkers and listeners can be configured under program control by forming
HP-IB command sequences from the talk and listen addresses of the devices
being used. However, before addressing talkers and listeners, clear the bus of
any talkers and listeners that might be left over from previous transactions
by issuing UNTALK and UNLISTEN commands (whenever a talk address
appears on the bus, well-mannered devices should recognize the address and
automatically untalk if the address is for a different device. However, not all
devices are necessarily well-mannered, so an UNTALK is considered good
programming practice). To configure a new talker and listeners:

1. Send an UNTALK command to remove any previous talkers.
2. Send an UNLISTEN command to remove any previous listeners.

3. Send the talk address of the device that will be sending data. There can
only be one talker.

4. Send the listen address of each device that is to receive the data.

After data transfer is complete, issue an UNTALK and UNLISTEN command
on the bus (repeat steps 1 and 2) to leave it in a clean state for subsequent
transactions.

DIL subroutine hpib_send_cmnd is used to perform these tasks.

Partl: DIL . Controlling the HP-IB Interface 4-21

Calculating Talk and Listen Addresses

Before devices can be addressed to talk or listen, their HP-IB bus addresses
must be known. The bus address of the computer interface is easily obtained
by using hpib_bus_status as shown in this program code segment;:

#include <dvio.h>

#include <fcntl.h>
#include <errno.h>

main()
{
int eid, address;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

address = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) ;
}

where eid is the entity identifier for the interface file and
CURRENT_BUS_ADDRESS indicates a request for the interface HP-IB
bus address.

To determine the bus address of other devices on the bus, refer to installation
and operating manuals for each device being used (certain HP-IB addresses
may be reserved for specific devices on some systems).

Once device addresses are known for all devices of interest, setting up talk and
listen addresses is a fairly simple matter.

HP-IB commands are set up as a single ASCII character transmitted while
ATN is asserted. However, it is usually much easier to calculate addresses
based on bus address rather than looking up the corresponding ASCII
character for each address. Bus addresses range from 0 through 30, and talk
and listen addresses are derived through decimal addition as follows:

talk_address = 64 + bus_address
listen_address = 32 + bus_address

where talk_address is the decimal equivalent of the binary bit pattern
that represents the ASCII talk address command character. Likewise,
listen_address is the decimal representation of the ASCII listen address
command character. bus_address is the decimal value of the HP-IB bus
address for the device being addressed.

4-22 Controlling the HP-IB Interface Partl: DIL

The talk and listen addresses MTA (“my talk address”) and MLA (“my listen
address”) for the computer interface are derived similarly as follows:

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64;
MLA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 32;

An Example Configuration

Assuming that the computer’s HP-IB interface is currently the Active
Controller, the following code segment establishes the interface as the bus
talker. Two devices at HP-IB addresses 4 and 8 are designated as bus listeners.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{
int eid, MTA;
char command([5];

it ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

/*calculate My Talk Address*/
MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64;

command [0] = 95; /* UNTALK command*/

command[1] = 63; /* UNLISTEN command*/

command [2] = MTA; /* interface talk address*/

command[3] = 32 + 4; /* listen address for device at bus address 4%/
command[4] = 32 + 8; /* listen address for device at bus address 8%/

hpib_send_cmnd(eid, command, 5);

Partl: DIL Controlling the HP-IB Interface 4-23

Remote Control of Devices

Most HP-IB devices can be controlled from either their front panel or the bus.
If the device’s front-panel controls are currently operational, the device is in
local state. If it is being controlled through the HP-IB, it is in remote state.
Pressing the device’s front-panel LOCAL key returns the device to local control
unless it has been placed in local lockout state (described in the next section).

Whether the HP-IB remote enable (REN) line is asserted or not determines
whether or not a device can respond to remote program control. While REN

is asserted, any device that is addressed to listen is automatically placed in
remote state. Only the System Controller can assert or release the REN line.
REN, by default, is asserted at power-up and remains asserted unless changed
as discussed later in this chapter under the topic System Controller Operations.

Locking Out Local Control

The LOCAL LOCKOUT command inhibits the LOCAL key or switch present
on the front panel of most HP-IB devices, thus preventing anyone from
interfering with system operations by pressing front-panel control buttons. All
devices that support local lockout are locked, whether addressed or not, and
cannot be returned to local control from their front panels.

The following code segment shows one method for sending the LOCAL
LOCKOUT command:

command [0] = 17; /* Decimal value of LOCAL LOCKOUT*/
hpib_send_cmnd(eid, command, 1);

The GO TO LOCAL command can be used to place a device in local
(front-panel control) state.

4-24 Controlling the HP-IB Interface PartI: DIL

Enabling Local Control

During system operation, it may be necessary to place certain devices in
local state for direct operator control such as when making special tests or
troubleshooting. The GO TO LOCAL command returns all devices currently
addressed as listeners to their local state.

For example, the following code segment places devices at bus addresses 3 and
5 in local state.

command [0] = 63; /* the UNLISTEN command*/

command[1] = 32 + 3; /* listen address for device at address 3%/
command[2] = 32 + 5; /* listen address for device at address 5%/
command[3] = 1; /* the GO TO LOCAL command*/

hpib_send_cmnd(eid, command, 4);

Triggering Devices

The HP-IB TRIGGER command tells devices currently addressed as

listeners to initiate some device-dependent action. A typical use is triggering
a measurement cycle on a digital voltmeter. Since device response to a
TRIGGER command is strictly device-dependent, HP-IB has no direct control
over the type of action being initiated.

The following code triggers the device at bus address 5:

command [0] = 63; /* UNLISTEN command*/

command[1] = 32 + 5; /* listen address for device at address 5%/
command[2] = 8; /* TRIGGER command*/

hpib_send_cmnd(eid, command, 3);

Partl: DIL Controlling the HP-IB Interface 4-25

Transferring Data

Data Output

To output data from an Active Controller the controller must:

5.
6.

1. Send a bus UNTALK command.
2. Send a bus UNLISTEN command.
3.

4. Send the listen address of the device that is to receive the data. One listen

Send its own talk address (MTA).

address is sent for every device that is to receive the data.
Send the data.
Repeat steps 1 and 2 to clean up the bus.

The first 3 steps are accomplished using hpib_send_cmnd. The system
subroutine write takes care of the fourth.

The following code segment illustrates how character data can be sent to a

device at HP-IB address 5.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{
int eid, MTA;
char command [50] ;

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000) ;

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64; /*compute MTA%*/

command [0] = 95; /*UNTALK command*/

command[1] = 63; /*UNLISTEN command*/

command [2] = MTA; /*address interface to talk*/

command[3] = 32 + 5; /*listen address of device at*/
/*address 5 */

hpib_send_cmnd(eid, command, 4);
write(eid, "data message", 12); /*send the datax/
hpib_send_cmnd(eid, command, 2); /*clear talkers and listeners*/

4-26 Controlling the HP-IB Interface

Part I:

DIL

Data Input

Assume that you expect to receive 50 bytes of data from another device on the
bus. The following code segment programs the interface to receive character
data from a device at bus address 5. The integer variable MLA contains the
interface listen address.

#include <dvio.h>

#include <fcntl.h>

#include <errno.h>

main()

{
int eid, MLA, len;
char buffer([51]; /*storage for data*/
char command[4];

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000) ;

MLA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 32; /*compute MLA%*/

command[0] = 95; /*¥UNTALK command*/

command[1] = 63; /*UNLISTEN command*/

command[2] = 64 + 5; /*address device at address 5%/
/*to talk */

command[3] = MLA; /*address interface to listen*/

hpib_send_cmnd(eid, command, 4);

len = read(eid, buffer, 50); /*store the data in "buffer"*/

buffer[len] = ’\0’; /*terminate with NULL for printf*/

hpib_send_cmnd(eid, command, 2);
printf("Data read is: %s", buffer); /*print message*/

Partl: DIL Controlling the HP-IB Interface 4-27

Clearing HP-IB Devices

Two HP-IB commands are used to reset devices to pre-defined, device-
dependent states. The first, DEVICE CLEAR, causes all devices that recognize
the command to be reset, whether addressed or not. Care should be used

not to use this command on an HP-IB bus with a system (non-DIL) device
attached.

To reset all devices on an HP-IB accessed through an interface file having

entity identifier eid, use a code segment similar to:

command [0] = 20; /* DEVICE CLEAR command*/
hpib_send_cmnd(eid, command, 1);

The second command for resetting devices is SELECTED DEVICE CLEAR.
This command resets only those devices that are currently addressed as
listeners.

To reset a device at HP-IB address 7, use a code segment such as this (the
interface must already be addressed to talk):

command[0] = 63; /* the UNLISTEN commandx/

command[1] = 32 + 7; /* the listen address for device at*/
/* address 7 */
command[2] = 4; /* the SELECTED DEVICE CLEAR command#/

hpib_send_cmnd(eid, command, 3);

4-28 Controlling the HP-IB Interface Partl: DIL

Responding to Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum
analyzers, are capable of generating a service request when they require the
Active Controller to take some action. Service requests are generally made after
the device has completed a task (such as taking a measurement) or when an
error condition exists (such as a printer being out of paper). The operating

or programming manual for each device describes the device’s capability to
request service and the conditions under which it requests service.

Monitoring the SRQ Line

To request service, a device asserts the bus Service Request (SRQ) line. To
determine if SRQ is being asserted, check the status of the line, wait for SRQ,
or set up an interrupt handler for SRQ. The hpib_status_wait subroutine
provides a means for suspending program operation until the SRQ line is
asserted then continuing. To structure a program so that it waits until SRQ
line is asserted, invoke hpib_status_wait as follows:

hpib_status_wait(eid, WAIT_FOR_SRQ);
where eid is the entity identifier for the open interface file and WAIT_FOR_SRQ
indicates that the event that you are waiting for is the assertion of SRQ. The

subroutine returns 0 when the condition requested becomes true or —1 if a
timeout or an error occurred.

Partl: DIL Controlling the HP-IB Interface 4-29

The following code segment illustrates the use of hpib_status_wait:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
extern int service_routine();

main()
{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
io_reset(eid);
io_timeout_ctl(eid, 10000000) ; /*Set a 10-second timeout*/

if (hpib_status_wait(eid, WAIT_FOR_SRQ) == 0)

service_routine(); /*SRQ is asserted; service the request*/
else

printf("Either a timeout or an error occurred\n");

}
Another solution is to periodically check the value of the SRQ line by calling
hpib_bus_status as follows:

hpib_bus_status(eid, SRQ_STATUS);
where, as before, eid is the entity identifier for the open interface file and
SRQ_STATUS indicates that you want the logical value of the SRQ line returned.

hpib_bus_status returns 1 if SRQ is asserted, 0 if not, and —=1 if an error
occurred.

The most practical way to monitor SRQ is to set up an interrupt handler for
that condition (see “Interrupts” section of Chapter 3).

4-30 Controlling the HP-IB Interface Partl: DIL

Processing the Service Request

Once a device has asserted the SRQ line, it continues to assert the line

until its request has been satisfied. How a service request is satisfied is
device-dependent. Serial polling the device can provide the information as to
what kind of service it requires.

Many devices are designed so that they automatically clear their SRQ output
whenever they are serially polled. These devices treat the serial poll as an
acknowledgement from the Active Controller that the request has been
recognized and is being processed by the Active Controller.

If there is more than one device on the bus when SRQ is asserted, the Active
Controller must first determine which device needs service before it can
properly undertake any service related activity. There are two strategies for
doing this:

m Serial poll each individual device in sequence until the one that is requesting
service is found. This approach is reasonable if there are only a few devices
on the bus.

m Conduct a parallel poll to locate the device requesting service. Normally
each device (when capable) is programmed to respond on a given data line.
However, up to 15 devices can reside on the bus which has only 8 data lines.
Therefore it is sometimes necessary for more than one device to respond on a
given line.

If two or more devices are programmed to respond on a given parallel poll
line and the parallel poll shows that line asserted, the Active Controller must
then serially poll each device that is programmed to respond on that line
until it determines which device is requesting service.

Partl: DIL Controlling the HP-IB Interface 4-31

Thus, the Active Controller responds to SRQ by:
a Conducting a serial poll of individual devices on the bus,

m Conducting a parallel poll of return data lines to determine which line is
being asserted, or

m Conducting a parallel poll to identify the asserted data line followed by a
serial poll of devices programmed to assert that line when SRQ is being
asserted by the same device.

HP-IB parallel and serial polls are conducted by the DIL subroutines
hpib_ppoll and hpib_spoll, respectively. The next section explains how to
use these subroutines.

Parallel Polling

The parallel poll is the fastest means of determining which device needs service
when several devices are connected to the bus. Each device on the bus that

is capable of responding to parallel polls can be programmed to respond to
parallel polls by asserting a given data line, thus making it possible to obtain
the status of several devices in a single operation. If a given device responds to
the poll with a data line response (I need service), more information about its
specific status can be obtained by conducting a subsequent serial poll of that
device.

Configuring Parallel Poll Responses
HP-IB devices fall into three general categories:

1. Those devices that can be remotely programmed by the Active Controller to
respond to a parallel poll in a certain way, The next several pages explain
how to program these devices.

2. Devices whose parallel poll response is configured by internal hardware,
whether by setting of configuration switches, or based on device bus address.
A significant number of Hewlett-Packard products fall into this grouping. In
general, they are HP-IB devices that support secondary commands such
as SS/80 and CS/80 mass storage devices, CYPER printers, and Amigo
protocol devices including several disc drives and printers. Some important
information about these devices follows in the next few paragraphs.

4-32 Controlling the HP-IB Interface Partl: DIL

3. Devices that are not capable of responding to parallel polls, so discussing
their configuration is meaningless.

A number of operating rules have been established for devices in Category 2:

m No two devices can respond on the same data line. This means that only
eight or fewer devices in this category can reside simultaneously on a given
bus. If fewer than eight are present, data lines not used by these devices for
parallel poll response can be shared among remaining devices on the bus if
any are present.

m Each device in this category responds to a parallel poll on an assigned data
line determined by the device’s HP-IB address. Devices residing at HP-IB
addresses 0 through 7 respond on data lines DI7 through DIO, respectively
(note the reversed numbering sequencing).

m Devices in this category respond to parallel polls when they need service by
driving the specified data line LOW to its ground-true logic state (the sense
cannot be reversed to high-true).

Note also that some models of HP-IB devices can be switched between normal
HP-IB operating mode and “Amigo” or “Secondary” mode (terminology varies
as well as the implementation). Refer to the device installation and operating
manuals for more information about how to configure the device for your
application and to determine whether the device supports remote configuration
by the Active Controller, uses internal configuration, or does not support
parallel poll.

To configure the parallel poll response for a given device by remote control
from the Active Controller, use the HP-IB command sequences PARALLEL
POLL CONFIGURE followed by PARALLEL POLL ENABLE. This
combination of two commands tells all devices currently addressed as listeners
to respond to any future parallel polls by asserting a specific data line with

a specific logic level. Most devices that do not support remote configuration
programming have internal configuration switches or jumpers that perform
an equivalent function but which cannot be changed remotely by the Active
Controller.

Part I: DIL Controlling the HP-IB Interface 4-33

Devices that can be remotely configured can be programmed to respond with

a logic 0 or logic 1 level on any one of eight data lines. Thus there are 16
possible combinations of lines and logic levels since there are two possible levels
on each line and only one line can be asserted during a parallel poll. The
PARALLEL POLL ENABLE command consists of an 8-bit byte whose bits are
arranged as in Table 4-4 (the decimal equivalent value of the byte falls in the
range of 96 through 111).

Table 4-4. PARALLEL POLL ENABLE Bits

D7|D6 (D5 |D4|D3|D2|D1|DO0| Decimal Range

01|10]L|X|X][|X 96-111

where:

m The upper four bits are a fixed pattern of logical 0 (bits D7 and D4) and
logical 1 (bits D6 and D5).

m Bit D3 (response logic level) determines whether data line D3 is to be
asserted (driven to its ground-true state) or released (allowed to float to its
high-false state) by the device when responding to a parallel poll if service is
needed. If bit D3 is set (1), the device responding to the poll drives the data
line low if service is needed. If D3 is not set (0), the device responding to the
poll drives the data line low if service is not needed (bit value = 0). This bit
is most commonly set to a value of 1.

m Bits D2, D1, and DO are the 3-bit (value range 0 through 7) value
representing which data line (DO through D7 respectively) is to be used when
responding to a parallel poll.

For example, to program a given device to respond to a parallel poll by placing
a logic 1 on data line DO if it needs service, use a PARALLEL POLL ENABLE
command with a decimal value of 104 (binary 01101000).

The following code segment shows how to configure a device at bus address 5
to respond to a parallel poll by asserting data line D1 with a logic 1 if it needs
service.

4-34 Controlling the HP-IB Interface Partl: DIL

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{
int eid, MTA;
char command [50] ;

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);

exit(2);
}
MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64; /*compute MTA*/
command [0] = MTA; /*talk address of interfacex/
command[1] = 63; /* the UNLISTEN command*/
command[2] = 32 + 5; /* the listen address for device at*/

/* address 5 */
command[3] = 5; /* the PARALLEL POLL CONFIGURE command*/
command [4] = 105; /* the PARALLEL POLL ENABLE command*/
hpib_send_cmnd(eid, command, 5);

}

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105
(binary 01101001) used above is constructed as follows:

Bit Position(H G F E|{D|C B A
Bit Value 0110}1]00 1

Where:

m Bits H through E (0110) indicate that this is a PARALLEL POLL ENABLE
command.

m Bit D (1) indicates that the device respond with a 1 to request service.
m Bits C through A (001) indicate that the device should respond on D1.

When the computer interface is the Active Controller, it can configure its
own parallel poll response by addressing itself as both talker and listener.
However, the configuration is meaningless until the interface is no longer Active
Controller because the Active Controller never responds to parallel polls.

Partl: DIL Controlling the HP-IB Interface 4-35

Disabling Parallel Poll Responses

A device whose parallel poll response can be remotely configured by the Active
Controller can also be disabled from responding.

To disable a device from responding to subsequent parallel polls, the Active
Controller must first send a PARALLEL POLL CONFIGURE command
followed by PARALLEL POLL DISABLE. This sequence disables all devices
that are currently addressed to listen.

In the previous example a device at bus address 5 was configured to respond
to parallel polls on data line D1. To disable parallel poll response on the same
device, use a code segment similar to the following:

command [0] = MTA; /*talk address of interfacex/

command [1] = 63; /* the UNLISTEN command#*/
command[2] = 32 + 5; /* the listen address for device at*/

/* address 5 x/
command[3] = 5; /* the PARALLEL POLL CONFIGURE command*/
command [4] = 112; /* the PARALLEL POLL DISABLE command*/

hpib_send_cmnd(eid, command, 5);

Conducting a Parallel Poll

Once parallel poll responses have been (remotely or internally) configured for
all devices on the bus that are capable of responding to parallel polls, you can
use hpib_ppoll to conduct a parallel poll on the bus, provided the computer is
the current Active Controller.

The hpib_ppoll subroutine returns an integer whose least significant byte
contains the 8-bit response to the parallel poll. Each device that is enabled to
respond to a parallel poll places its status bit (service needed or not needed)
on the data line defined by its current parallel poll response configuration. The
subroutine returns —1 if an error occurs during the poll.

hpib_ppoll is invoked as follows:
hpib_ppoll(eid);

where eid is the entity identifier for the open interface file associated with the
bus.

4-36 Controlling the HP-IB Interface ‘ PartI: DIL

The following code segment shows how to interpret the byte returned by
hpib_ppoll. Suppose a device at address 6 was previously configured to
respond to a parallel poll by setting DO to logic 1 (low) level if it needs service
and a device at address 7 was configured to respond similarly on D1. Assuming
that these are the only two devices capable of responding to a parallel poll,
only the values of the 2 least significant bits of the integer returned by
hpib_ppoll are of interest. This example code segment handles the results

of the parallel poll, but does not include the code needed to handled the
requested service.

#include <fcntl.h>
#include <errno.h>
main()

{

Part I:

int eid, status, byte;

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);

}

i

io_timeout_ctl(eid, 10000000);

exit(2);

o_reset (eid);

if ((status = hpib_ppoll(eid)) == -1) /*conduct the parallel pollx/

{

printf("error taking ppoll\n"); /*if -1 returned then error occurred*/

exit(1);
}

byte = status & 3;

switch (byte)

DIL

{

case O:

break;

case 1:

break;

case 2:

break;

case 3:

break;

/*set all but the least significant*/
/*2 bits to zero */
/*neither device is requesting service*/
/*device at address 6 wants servicex/

/*device at address 7 wants service*/

/*both devices want service*/

Controlling the HP-IB Interface 4-37

Errors During Parallel Polls

hpib_ppoll returns the value —1 if any one of the following error conditions
are encountered:

m Timeout defined by io_timeout_ctl occurred before all devices responded.
m Computer’s interface is not the Active Controller.

m Entity identifier eid does not refer to a raw HP-IB interface file.

m Entity identifier eid does not refer to an open file.

m A timeout occurs.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.

ENOTTY eid does not refer to a raw interface file.

EIO Interface is not Active Controller. (EACCES on Series 600/800)

ETIMEDOUT A timeout occurred. (EIO on Series 300/400)

4-38 Controlling the HP-IB Interface Parti: DIL

Waiting For a Parallel Poll Response

Subroutine hpib_wait_on_ppoll allows you to wait for a specific parallel
poll response from one or more devices. The effect of this is similar to

using hpib_status_wait to wait for assertion of SRQ as discussed earlier.
hpib_wait_on_ppoll provides a mechanism for waiting until a specific device
requests service while hpib_status_wait only waits until any device requests
service.

To call hpib_wait_on_ppoll, use the form:

hpib_wait_on_ppoll(eid, mask, sense);

where eid is the entity identifier for an open interface file, mask is an integer
whose binary value identifies which parallel poll lines are to be monitored for

a request, and sense is an integer whose binary value identifies which lines
respond with an inverted logic sense (device responds with 0 when it wants
service instead of the usual 1). hpib_wait_on_ppoll returns the response byte
XORed with the sense value then ANDed with the mask value, unless an error
occurs, in which case it returns —1.

Calculating the mask

hpib_wait_on_ppoll uses only the least significant byte of the mask integer,
which means that the integer’s remaining bytes can contain anything. For
simplicity, the examples in this discussion set the upper bytes to zero.

The value for mask is determined as follows:

1. Decide which parallel poll lines (the 8 data lines labeled DO through D7) are
to be monitored for service requests.

2. Set up an 8-bit binary number where the bits associated with each line
being monitored are set to 1 and all remaining bits are 0. (DO is associated
with the least significant bit of the binary number, and D7 with the most
significant.)

3. Given the binary number from step 2, calculate its decimal value. The result
is the correct value for mask.

Partl: DIL Controlling the HP-IB Interface 4-39

For example, suppose that you want to wait for device A or device B to request
service. You know that device A has been configured to respond on parallel
poll line DO and device B has been configured to respond on line D4. The
correct binary value for mask is:

D7 Dé D5 D4 D3 D2 D1 Do
0 0 0 1 0 0 0 1

The decimal equivalent of this binary number is 17; the correct value for mask.

Consider a mask value of 0 which indicates that you do not want to wait
for a request on any of the parallel poll lines. In such a case, a call to
hpib_wait_on_ppoll using a mask of 0 is meaningless and has no effect.

Calculating the sense

The subroutine hpib_wait_on_ppoll also only looks at the least significant
byte of the sense integer. For simplicity, the examples in this discussion set
the upper bytes to zero.

The value for sense is determined as follows:

1.

Decide which parallel poll lines (the 8 data lines) are to be monitored for
service requests as discussed earlier.

Determine which of these lines will indicate a service request by a logic
0 response. This means that you must know the sense with which the
associated devices are configured to respond to parallel polls.

Define an 8-bit binary number where the bits associated with the lines that
use a 0 to indicate a service request are set to 1 and all of remaining bits are
0. (DO is associated with the least significant bit of the binary number, and
D7 with the most significant.)

. Given the binary number from step 3, calculate its decimal value. The

resulting value is the sense integer you should use with hpib_wait_on_ppoll.

4-40 Controlling the HP-IB Interface Partl: DIL

Using the previous example for calculating the mask value, device A is
configured to respond on line DO with a 1 when it wants service, but device B
requests service by placing a 0 on line D4. The binary value for sense is:

D7 Dé D5 D4 D3 D2 D1 Do
0 0 0 1 0 0 0 0

The decimal equivalent of this number is 16; the correct value for sense.

If all devices on the bus respond to parallel polls with a 1 to request service,
the value for sense can always be 0, regardless of which parallel poll lines are
being monitored. If, on the other hand, all of devices request service with a 0,
the sense value can always be 255 (11111111 in binary). You need calculate
a special value for sense only if various devices on the bus respond with
dissimilar logic senses.

Example

Assume that you want to use hpib_wait_on_ppoll to wait for one of the four
devices on a bus to request service where the bus is configured as follows:

Device | Bus Address Parallel Poll Requests Service
Response Line with a:
A 5 DO 1
B 7 D1 0
C 9 D2 0
D 11 D3 1

Begin by calculating the mask value for hpib_wait_on_ppoll. Since responses
can be expected on lines DO, D1, D2, and D3, the correct mask value is:

Binary: Decimal:

00001111 15

Partl: DIL Controlling the HP-IB Interface 4-41

The four devices on the bus use mixed (both ground- and high-true logic), the
sense value must be determined. Devices responding on lines D1 and D2 use 0
to request service, so the sense value is:

Binary: Decimal:

00000110 6
Now that the mask and sense values have been determined, the code segment
that makes the call to hpib_wait_on_ppoll can be written:

#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid,10000000); /*Set a 10-second timeout*/

if (hpib_wait_on_ppoll(eid, 15, 6) == -1)
printf("either a timeout or error occurred\n");
else

service_routine();

3}

In the code segment shown, service_routine is executed only if one of the
four devices requests service during the parallel poll. service_routine should
contain code segments to service all devices on the bus, either individually or
as a group. See the appropriate hardware-specific appendix for any restrictions
that may apply to your system.

4-42 Controlling the HP-IB Interface Partl: DIL

Serial Polling

A sequential poll of individual devices on the bus is known as a serial poll. One
entire status byte is returned by the polled device in response to a serial poll.
This byte is called the status byte message and, depending on the device,
may indicate an overload, a request for service, printer out of paper, or some
other condition. The particular response of each device depends on the device.

Not all devices can respond to a serial poll. To find out whether a particular
device can be serially polled, consult operating manuals for the device.
Attempting to serially poll a device that cannot respond to the poll causes a
timeout or suspends your program indefinitely.

The Active Controller cannot poll itself.

Unlike parallel poll responses, serial poll responses cannot be configured
remotely by the Active Controller. Responses vary, depending on the type of
device being polled. Refer to device manual for more information.

Conducting a Serial Poll

Subroutine hpib_spoll performs a serial poll on a specified device. It is called
with the form:

hpib_spoll(eid, address);

where eid is the entity identifier for an open interface file and address is the
bus address of the device being polled. The subroutine returns an integer,

the lowest byte of which contains the status byte message (the serial poll
response) from the addressed device. Only one device can be polled per call to
hpib_spoll.

PartI: DIL Controlling the HP-IB Interface 4-43

Although the status byte message supplied by the addressed device is
device-dependent, bit D6 (of bits DO through D7) always indicates whether or
not the device is currently asserting SRQ. If SRQ is currently being asserted
by the device, indicating that it needs service, be sure to handle the request
properly because the serial poll also clears SRQ so that a subsequent poll will
show no service request, whether or not the current request has been satisfied.

The following code segment shows how hpib_spoll can be used to determine
whether a device at bus address 5 is requesting service. The determination is
made by simply examining D6 which indicates whether SRQ is being asserted.

#include <fcntl.h>
#include <errno.h>

main()
{
int eid, status;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid,100000); /*Set a 0.1-second timeout*/

if ((status = hpib_spoll(eid, 5)) == -1) /*conduct serial poll*/
{ printf("error during serial poll\n");
exit(1);
}
if (status & 64) /*after setting every bit except D6*/
/*to zero; if D6 is set the device*/
service_routine(); /*is requesting service */

4-44 Controlling the HP-IB Interface Partl: DIL

Errors During Serial Poll

If any of the following error conditions are encountered during a call to
hpib_spoll, the subroutine returns —1:

m Addressed device did not respond to serial poll before the timeout limit
defined by io_timeout_ctl was exceeded.

Computer interface is not current Active Controller.

Entity identifier eid does not refer to an HP-IB raw interface file.

Entity identifier eid does not refer to an open file.
m Address is outside the range [0,30].

m The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.

ENOTTY eid does not refer to a raw interface file.

EIO The interface was not the Active Controller. (EACCES on Series
600/800)

ETIMEDOUT A timeout occurred. (EIO on Series 300/400)

EACCES The interface associated with this eid was locked by another
process and O_NDELAY was set for this eid.

EINVAL Invalid bus address.

PartI: DIL Controlling the HP-IB Interface 4-45

Passing Control

The subroutine hpib_pass_ctl can be used to pass control of the bus from

the computer (which must be the current Active Controller) to a Non-Active
Controller. A Non-Active Controller is a device capable of becoming Active
Controller, which usually means it is another computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctl(eid, address);

where eid is the entity identifier for an open interface file that is currently the
Active Controller and address is the bus address of a Non-Active Controller.
Upon completion, the Non-Active Controller becomes the new Active
Controller and the local interface is a Non-Active Controller.

While hpib_pass_ctl can pass active control capability, it cannot pass system
control capability.

What If Control Is Not Accepted?

Your program is not suspended if the Non-Active Controller that you address
does not accept active control of the bus, but the computer still loses active
control meaning that the bus no longer has an Active Controller. If this
happens, the computer must use its position as System Controller to assume
the role of Active Controller by executing hpib_abort (see System Controller
Role section which follows) or io_reset.

No error is returned by hpib_pass_ctl if the device that you address does
not accept active control, and there is no direct way to determine in advance
whether a given device can accept active control. There is also no way for

the computer, after initiating hpib_pass_ctl, to determine whether active
control has been accepted. However, if the computer that has passed control
immediately requests service after passing control and detects a timeout before
the request is acknowledged, this indicates that active control may not have
been accepted. ’

4-46 Controlling the HP-IB Interface Partl: DIL

Errors While Passing Control

If any of the following errors are encountered, hpib_pass_ctl returns —1:
m Computer interface is not Active Controller.

m Entity identifier eid does not refer to an HP-IB raw interface file.

m Entity identifier eid ‘does not refer to an open file.

m Address is outside the range [0,30].

m A timeout occurs.

m The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.

ENOTTY eid does not refer to a raw interface file.

EIO Interface is not Active Controller.

EINVAL Invalid bus address.

ETIMEDOUT A timeout occurred (EIO on Series 300/400)

EACCES The interface associated with this eid was locked by another

process and O_NDELAY was set for this eid

Partl: DIL Controlling the HP-IB Interface 4-47

Controlling the ATN Line

On a Series 300/400, the subroutine hpib_atn_ctl can be used to control the
ATN line on the HP-IB bus. This routine is particularly useful when setting up
two non-active controllers for a data transfer.

hpib_atn_ctl is called as follows:
hpib_atn_ctl(eid, flag);

where eid is the entity identifier for an open interface file that is currently
active controller and flag is either a 0 or a 1. A flag value of 1 enables ATN;
a value of 0 disables it.

Changing the Interface Bus Address

On a Series 300/400, the subroutine hpib_address_ctl can be used to
programmatically change the bus address of an HP-IB interface card.

hpib_address_ctl is called as follows:

hpib_address_ctl(eid, ba);

where eid is the new bus address for the interface card. ba must be in the
range 0-30.

4-48 Controlling the HP-IB Interface Partl: DIL

System Controller Role

When the HP-IBs System Controller is first powered on or is reset, it assumes
the role of Active Controller. Any given HP-IB bus can have only one System
Controller. The System Controller cannot pass system control to any other
controller (computer) on the bus. However, it can pass active control to
another controller.

Determining System Controller

To determine whether your computer’s HP-IB interface is the System
Controller, use the hpib_bus_status subroutine which must be called as
follows:

hpib_bus_status(eid, SYS_CONT_STATUS);

where eid is the entity identifier for an open interface file and
SYS_CONT_STATUS indicates that you want to determine whether it is the
System Controller. The subroutine returns 1 if it is the System Controller, 0 if
not, and —1 if an error occurs.

The following code segment prints a message indicating whether the interface is
System Controller:
#include <dvio.h>

#include <fcntl.h>
#include <errno.h>

main()
{
int eid, status;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

if ((status = hpib_bus_status(eid, SYS_CONT_STATUS)) == -1)
printf ("Error occurred during bus status subroutine\n");
else if (status == 1)
printf("Interface is the System Controller\n");
else
printf("Interface is not the System Controller\n");

Partil: DIL Controlling the HP-IB Interface 4-49

System Controller’s Duties
The HP-IB System Controller has three major functions:
m It assumes the role of Active Controller at power-up and reset.

m It can cancel talkers and listeners from the bus and assume the role of Active
Controller by executing hpib_abort.

m It can control the logic level of the remote enable line (REN) with
hpib_ren_ctl.

hpib_abort

A call to hpib_abort performs the following actions:

m Terminates activity on the bus by pulsing the Interface Clear (IFC) line.
This unaddresses all talkers and listeners on the bus.

m Sets the REN line so that devices on the bus will be placed in their remote
state when addressed as listeners.

m Clears the ATN line if it was left set by the previous Active Controller.
m System Controller then becomes Active Controller.
m Returns all devices on the bus to their local state.

hpib_abort leaves the SRQ line unchanged, meaning that any device
requesting service before hpib_abort is executed is still requesting service
when the subroutine is finished.

To use hpib_abort on a particular HP-IB, the computer must be the System
Controller of that bus. It does not have to be the Active Controller.

One situation where hpib_abort is useful is when the current Active
Controller passes active control to another device, but the device does not
accept active control (this can occur when the device addressed to receive
control is not another controller). Consequently, the bus is left without any
Active Controller, leaving the System Controller to assume that role by using
hpib_abort.

4-50 Controlling the HP-IB Interface Partl: DIL

hpib_abort is called as follows:
hpib_abort (eid);

where eid is the entity identifier for an open interface file.

hpib_ren_ctl

hpib_ren_ctl is used to enable or disable the REN line on the HP-IB. If the
REN line is enabled, all devices capable of remote operation (meaning that
they can interpret HP-IB commands) can be placed in their remote state

by the Active Controller addressing them as talkers or listeners. When REN
is disabled, all devices on the bus return to their local state and cannot be
accessed remotely.

The REN line is enabled by default by the System Controller at power-up or
reset. It is also enabled whenever the System Controller executes hpib_abort.

To use hpib_ren_ctl on a particular HP-IB, the computer must System
Controller on that bus. It does not have to be the Active Controller.

hpib_ren_ctl is called as follows:

hpib_ren_ctl(eid, flag);

where eid is the file descriptor for an open interface file and flag is an integer.
If fl1ag is zero, the REN line is disabled. If it has any other value, REN is
enabled.

Errors During hpib_abort and hpib_ren_cti

If any of the following errors is encountered, hpib_abort and hpib_ren_ctl
both return —1:

m Computer interface is not System Controller.
m Entity identifier eid does not refer to an HP-IB raw interface file.

m Entity identifier eid does not refer to .an open file.

Partl: DIL Controlling the HP-IB Interface 4-51

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.
ENOTTY eid does not refer to a raw interface file.
EIO Interface is not System Controller.

In addition, hpib_abort can return the following values for errno:

errno Value Error Condition
ETIMEDOUT A timeout occurred (EIO on Series 300/400)
EACCES The interface associated with this eid was locked by another

process and O_NDELAY was set for this eid

4-52 Controlling the HP-IB Interface Partl: DIL

The Computer As a Non-Active Controller

Checking Controller Status

Subroutine hpib_bus_status is used to obtain information about the

current status of the HP-IB interface card and the HP-IB, and can be used

by any device on the bus, whether it is the current Active Controller or

System Controller or not. hpib_bus_status is mentioned briefly in previous
discussions about Active and System Controllers. The discussion that follows is
a broader treatment of how the routine is used.

The call to hpib_bus_status has the form:

hpib_bus_status(eid, status_question);

where eid is the entity identifier for an open interface file and
status_question is an integer that indicates what question you want
answered. The value of status_question must be within the range of 0
through 7 where the relationship between value and the nature of the status
inquiry are as follows:

Value Status Question

REMOTE_STATUS Is the interface in its remote state?

SRQ_STATUS Are any devices currently requesting service? (Is
SRQ asserted?)

NDAC_STATUS Is there a listener that is not ready for data? (Is
NDAC asserted?)

SYS_CONT_STATUS Is the interface the current System Controller?

ACT_CONT_STATUS Is the interface the current Active Controller?

TALKER_STATUS Is the interface currently addressed as a talker?

LISTENER_STATUS Is the interface currently addressed as a listener?

CURRENT_BUS_ADDRESS What is the interface’s bus address?

Partl: DIL Controlling the HP-IB Interface 4-53

For all values of status_question except CURRENT_BUS_ADDRESS,
hpib_bus_status returns 1 if the answer to the question is yes, or 0 if the
answer is no. If the value of status_question is CURRENT_BUS_ADDRESS,
hpib_bus_status returns the bus address of the computer’s HP-IB interface.
If the value of status_question is outside the allowable set of values, —1 is
returned, indicating an error.

For example, to determine if your interface is a Non-Active Controller on the
bus, use a calling sequence similar to the following code segment:

if ((status = hpib_bus_status(eid, 'ACT_CONT_STATUS)) == -1)
printf ("Error occurred while checking status\n");

else if (status == 0)
printf ("Computer is a Non-Active Controller\n");

else
printf ("Computer is the Active Controller\n");

Requesting Service

When your computer is a Non-Active Controller it can request service from
the current Active Controller by asserting the SRQ line. This is done with the
hpib_rqst_srvce routine which is called as follows:

hpib_rqst_srvce(eid, response);

where eid is the entity identifier for an open interface file and the lowest
byte of response is the integer value of the 8-bit response that the computer
gives if it is serially polled. The upper bytes of response are ignored by the
hpib_rqgst_srvce. Using the labels dO through D7 for the data bus byte,
bit D6 sets the SRQ line. The defined values for the remaining 7 bits varies,
depending on the application. This section only discusses how to use D6
(integer value of 64) to set and clear the SRQ line.

4-54 Controlling the HP-IB Interface PartI: DIL

To request service, invoke hpib_rqgst_srvce as follows:

#include <fcntl.h>
#include <errno.h>
main()
{

int eid;

it ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
io_reset(eid);
io_timeout_ctl(eid, 10000000);
hpib_rqst_srvce(eid, 64); /*Bit 6 of serial poll response is set*/
/*and SRQ is asserted */
}

Note that by setting response to 64, the only information that the Active
Controller receives when it serially polls your computer is that you are
asserting the SRQ line. Therefore, other data bits in response must be set
or cleared to indicate the type of service you are requesting, and the program
controlling the current Active Controller must be capable of interpreting the
data correctly before transfer of control between computers connected to the
same bus can be handled in an orderly manner.

hpib_rqst_srvce returns 0 if it executes correctly or -1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active
Controller serially polls you or you call hpib_rqst_srvce again and clear bit

6 using a sequence such as hpib_rqst_srvce(eid, 0) . Once the serial poll
response is configured, your computer’s HP-IB interface responds automatically
to any serial polls from the Active Controller.

A couple of notes of caution are in order here:

If another device on the bus is also asserting SRQ when your service request
is detected by the current Active Controller, SRQ remains asserted, even
after your service request is processed by the Active Controller. Thus, if you
receive control of the bus before the requesting device is serviced, you must
handle that device’s service request correctly in order to maintain correct bus
operation. '

On the other hand, if you call hpib_rqst_srvce while you are Active
Controller, the interface receives the service request sequence from the

Part I: DIL Controlling the HP-IB Interface 4-55

computer but does not place an SRQ on the bus as long as you are still Active
Controller. However, if active control is passed to another controller on the
bus, as soon as the interface changes to non-controller it immediately sets SRQ
and readies the specified response data byte for the first serial poll from the
new Active Controller.

When an Active Controller detects an asserted SRQ line, it usually conducts
a parallel poll of devices on the bus to determine which one is requesting
service. The next section discusses how to configure the HP-IB interface card
for correct response to parallel polls.

When an HP-IB device responds to a parallel poll with an I need service
message, the Active Controller then performs a serial poll to determine what
type of service is required. If two or more devices are configured to respond to
a parallel poll on a single data line and the Active Controller detects a service
request on that line, the controller must perform a serial poll of all devices that
respond on that line in order to determine which device is requesting service.
Errors While Requesting Service

If any of the following error conditions occurs, hpib_rqst_srvce returns —1:

m Entity identifier eid does not refer to an HP-IB raw interface file.

m Entity identifier eid does not refer to an open file.

m A timeout occurs.

m The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

4-56 Controlling the HP-IB Interface Partl: DIL

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.

ENOTTY eid does not refer to a raw interface file.

ETIMEDOUT A timeout occurred. (EIO on Series 300/400)

EACCES The interface associated with this eid was locked by another

process and O_NDELAY was set for this eid.

Responding to Parallel Polls

Before the HP-IB interface on your computer can respond correctly to a
parallel poll from another Active Controller, the response must be configured
on the interface. This can be programmed remotely by the Active Controller as
discussed previously in the Active Controller section of this chapter, or locally
using hpib_card_ppoll_resp.

To configure a parallel-poll response:

m Specify the logic sense of the response (i.e. whether a 1 means the device
does or doesn’t need service).

m Specify which data line the device responds on. Two or more devices can be
configured to respond on a single line.

To locally configure response to parallel polls, call hpib_card_ppoll_resp as
follows:

hpib_card_ppoll_resp(eid, response);

where eid is the entity identifier of an open interface file and response is an
integer whose binary value configures the response.

Partl: DIL Controlling the HP-IB Interface 4-57

Calculating the Response

The value for response is found by first forming an 8-bit binary number,
then using the decimal equivalent of that number where the bits in the binary
number are defined as follows:

D7 Dé D5 D4 D3 D2 D1 Do
0 0 0 0 S P P P

where:

S sets the logic sense of the response. Thus, if S is 1, the device responds
with a logic 1 in response to a parallel poll if it requires service.
Likewise, if S is 0, the interface places a logic 0 on the assigned data line
in response to a parallel poll if it requires service.

P is a 3-bit binary number (value range from 0 through 7) that specifies
which of the eight available parallel poll response lines (D0-D7) is to be
used when responding to a parallel poll.

Of course, this configuration capability is possible only on those interfaces that
support it. Refer to the appropriate appendix for more information about
specific systems.

Limitations of hpib_card_ppoll_resp

Hardware limitations on certain devices restrict the use of
hpib_card_ppoll_resp to configure parallel poll responses. Refer to

the appendix related to your system to determine whether any restrictions
apply. If there are restrictions on your system, you may find it easier to
configure the interface parallel poll response remotely from another Active
Controller. Don’t forget that the Active Controller can configure its own
response, but the response remains dormant until control is passed to another
device.

4-58 Controlling the HP-IB Interface Part I: DIL

Error Conditions

If any of the following error conditions is encountered by
hpib_card_ppoll_resp, it returns —1:

m Entity identifier eid does not refer to an HP-IB raw interface file.
m Entity identifier eid does not refer to an open file.
m A timeout occurs.

m The interface associated with this eid is locked by another process and
O0_NDELAY is set for this eid.

m The device cannot respond on the line number specified by response.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value Error Condition

EBADF eid does not refer to an open file.

ENOTTY eid does not refer to a raw interface file.

ETIMEDOUT A timeout occurred. (EIO on Series 300/400)

EACCES - The interface associated with this eid was locked by another
process and O_NDELAY was set for this eid.

EINVAL The device cannot respond on the line number specified by
response.

hpib_ppoll_resp_ctl

The subroutine hpib_ppoll_resp_ctl is used to control how the HP-IB
interface will respond to the next parallel poll:

m Assert the assigned data line with the previously configured logic sense if
service is required, or

m Place the opposite logic level on the same data line if the interface does not
need to interact with the Active Controller.

Partl: DIL Controlling the HP-IB Interface 4-59

Parallel poll response is set as follows:

hpib_ppoll_resp_ctl(eid, response_value);

where eid is the entity identifier of an open interface file and response_value
is an integer that indicates how the interface is to respond to the next parallel
poll. If response_value is non-zero, the computer will respond to the next
parallel poll with a request for service. If response_value is zero, the next
response will be set to indicate that no service is needed.

Disabling Parallel-Poll Response

You can also disable responses to parallel polls from another Active Controller
by using hpib_card_ppoll_resp by setting bit D4 in the routine’s response
value. When D4 is 0 the interface is set to respond to parallel polls with a
service-needed logic level. When D4 is 1, the interface responds to parallel polls
with the opposite (service not needed) level. Thus, a flag value of 16 disables
the need-service response.

For example, the subroutine call:

hpib_card_ppoll_resp(eid, 168); /*disable parallel poll response*/

disables the HP-IB interface associated with entity identifier eid from
responding to any parallel polls with a service request.

4-60 Controlling the HP-IB Interface Partl: DIL

Accepting Active Control

Any Active Controller can pass control to any other device on the bus,

but only a Non-Active Controller can accept control. When an Active
Controller interface passes control to a Non-Active Controller interface, the
Non-Active interface automatically accepts control and the former Active
Controller becomes a Non-Active Controller. However, when this transfer

of control occurs, the interface receiving control does not automatically
notify the computer that control has been received unless the necessary
interrupts have been set up by the application program by use of subroutines
hpib_bus_status, hpib_status_wait, and io_on_interrupt.

hpib_status_wait has been mentioned in previous discussions about the
Active Controller and System Controller. The following discussion provides a
look at its uses.

Call hpib_status_wait as follows:

hpib_status_wait(eid, status);

where eid is the entity identifier for an open interface file and status is an
integer indicating what condition you want to wait for. The following values for
status are defined:
Value Condition
WAIT_FOR_SRQ Wait until the SRQ line is asserted
WAIT_FOR_CONTROL Wait until this computer is the Active Controller
WAIT_FOR_TALKER Wait until this computer is addressed as a talker
WAIT_FOR_LISTENER Wait until this computer is addressed as a listener

PartI: DIL Controlling the HP-IB Interface 4-61

Suppose you are designing a program to handle a situation where the current
Active Controller is programmed such that when your computer requests
service, it passes active control to you. The following code segment shows how
you can program your computer to request service then wait until it becomes
the new Active Controller before it continues.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_rqst_srvce(eid, 64) == -1) /*set SRQ line to request servicex/
{ .
printf ("Error while requesting service\n");
exit(1);
}

if (hpib_status_wait(eid, WAIT_FOR_CONTROL) == -1) /#wait until Active Controllers/
{
printf ("Error while waiting for status\n");
exit(1);
}
: /*Computer is now the Active Controllerx/
}
Note that for hpib_status_wait to have returned —1 (caused by an
unexpected timeout), a timeout value would have to have been set using
io_timeout_ctl after the interface file was opened. Since this example does
not contain a call to io_timeout_ctl, no timeout occurs.

4-62 Controlling the HP-IB Interface Partl: DIL

Errors While Waiting on Status

hpib_status_wait returns —1 indicating an error if any of the following error
~conditions are encountered:

m A timeout occurred before the condition the routine was waiting for became

true.

m The value specified by status is undefined.

m Entity identifier eid does not refer to a raw HP-IB interface file.

m Entity identifier eid does not refer to an open file.

m The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

m The device is active controller and status specifies WAIT_FOR_TALKER
or WAIT_FOR_LISTENER. (Series 300/400 only)

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value
EBADF
ENOTTY
EINVAL
ETIMEDOUT

EACCES

EIO

Partl: DIL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw HP-IB interface file.
status contains an invalid value.

The specified condition did not become true before a timeout
occurred. (EIO on Series 300/400)

The interface associated with this eid was locked by another
process and O_NDELAY was set for this eid.

The device is active controller and status specifies
WAIT_FOR_TALKER or WAIT_FOR_LISTENER (Series 300/400
only).

Controlling the HP-IB Interface 4-63

Determining When You Are Addressed

As a Non-Active Controller you may be addressed at any time by the current
Active Controller to become a bus talker or listener for data transfer. The DIL
routines hpib_bus_status, hpib_status_wait, and io_ on_interrupt are
used to determine that the interface is currently being addressed and provide
proper notification to the controlling program.

The following code segment determines whether the interface is currently
addressed as a bus talker:
#include <dvio.h>

#include <fcntl.h>
#include <errno.h>

main()
{
int eid;
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
if (hpib_bus_status(eid, TALKER_STATUS) == 1)
{

printf("the interface is addressed as a talker\n");
write(eid, "data message", 12); /*do the expected data transfer*/
}
else
printf("the interface is not addressed as a talker\n");
}

In the above call to hpib_bus_status, eid is the entity identifier for the
interface device file and TALKER_STATUS indicates that you want to know if
it is addressed to talk. The routine returns the value 1 if the answer is yes; 0 if
not.

4-64 Controlling the HP-IB Interface Partl: DIL

To determine whether the interface is currently addressed as a bus listener use
the following:

it (hpib_bus_status(eid, LISTENER_STATUS) == 1)

{
printf("the interface is addressed as a listener\n");
read(eid, buffer, 12); /*do the data transfer*/
}
else

printf("the interface is not addressed as a listener\n");

If you need to wait until the interface is addressed as either a talker or
listener, then handle an appropriate data transfer, use the DIL subroutine
hpib_status_wait, specifying both the entity identifier of the interface device
file and the bus condition that is being used to terminate the wait.

hpib_status_wait(eid, condition);

As with hpib_bus_status, a condition value of WAIT_FOR_TALKER
causes the program to wait until the interface is addressed as a talker. With
a condition value of WAIT_FOR_LISTENER the routine waits until it is
addressed to listen. The maximum time that the routine can wait for the
specified condition is controlled by the timeout value that was previously

set for the entity identifier using subroutine io_timeout_ctl (discussed in
Chapter 3). hpib_status_wait returns 0 if the wait condition terminated the
wait or -1 if a timeout or other error occurred before the wait condition was
fulfilled.

Partl: DIL Controlling the HP-IB Interface 4-65

In the following example code segment, the program waits for the interface to
become a bus listener, then reads a 50-byte message.
#include <dvio.h>

#include <fcntl.h>
#include <errno.h>

main()
{
int eid, len;
char buffer([51]; /*storage for message*/
if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
io_reset(eid);
io_timeout_ctl(eid, 5000000) ; /*b-second timeout*/
if (hpib_status_wait(eid, WAIT_FOR_LISTENER) == -1)
{
printf("Either a timeout or an error occurred\n");
exit(1);
}
len = read(eid, buffer, 50); /*read data into buffer*/
buffer[len] = ’°\0’;
printf("Message is: %s", buffer); /*print data message*/

}

Note that in this example a timeout value is set for the interface file’s entity
identifier so that the program cannot hang indefinitely while waiting for the
interface to be addressed as a bus listener should the condition not occur as
expected.

4-66 Controlling the HP-IB Interface Partl: DIL

The following example illustrates how to use io_on_interrupt to set up an
interrupt handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
#include <errmo.h>
char buffer[50];
main()
{
int handler();
int eid;
struct interrupt_struct cause_vec;

it ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);

cause_vec.cause = LTN;
io_on_interrupt(eid, &cause_vec, handler);

}
handler(eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{
if (cause_vec->cause == LTN)
read(eid, buffer, 50);
}

Partl: DIL Controlling the HP-IB Interface 4-67

Combining I/O Operations
into a Single Subroutine Call

hpib_io is a high-level DIL subroutine that provides a mechanism for
conveniently collecting a series of HP-IB I/O operations in a data structure
then using a simple subroutine call to hpib_io to handle interface and bus
management operations. This feature eliminates the need for using several long
tedious series of subroutine calls to io_lock, hpib_send_cmnd, read, write,
and io_unlock and makes these operations atomic on the Series 300/400.

A call to hpib_io has the form:

#include <dvio.h>

main()

{
int eid;
struct iodetail *iovec;
int iolen;

hpib_io(eid, iovec, iolen);
}

where eid is the entity identifier of an open interface file, iovec is a pointer to
an array of I/O operation structures, and iolen is the number of structures

in the array. The name of the template for the I/O operation structures is
iodetail and it is defined in the include file dvio.h.

4-68 Controlling the HP-IB Interface Partl: DIL

lodetail: The I/O Operation Template

The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;

};

Where the components in structure iodetail have the following meanings:

mode Describes what kind of I/O operation the structure contains.

terminator Specifies whether or not there is a read termination character
for the I/O operation, and if so it specifies the value.

count How many bytes are to be transferred during the I/0O
operation.

buf A pointer to an array containing the bytes of data to be
transferred.

Components of a particular iodetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of iodetail structures and component is
either mode, terminator, count, or buf.

Partl: DIL Controlling the HP-IB Interface 4-69

The Mode Component

The mode describes what type of I/O operation is to be performed on the data
pointed to by the buf component. To determine its value, OR appropriate
constants from a set defined in the include file dvio.h. You can choose from
the constants in Table 4-5:

Table 4-5. Constants for Constructing mode

Name

Description

HPIBREAD

HPIBWRITE

HPIBATN

HPIBEOI

HPIBCHAR

Perform a read operation and place the data into the accompanying
buffer pointed to by buf. Can be by itself or OR-ed with
HPIBCHAR.

Perform a write operation using the data in the accompanying
buffer pointed to by buf. Can be by itself or OR-ed with either
HPIBATN or HPIBEOI but not both.

If you are performing a write operation, the data is placed on the
bus with ATN asserted (you are sending a bus command). It only
has effect if you also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted
when the last byte of data is sent. It only has effect if you also
specify HPIBWRITE.

If you are performing a read operation, the transfer is halted when
the terminator component value of the iodetail structure is read.
The terminator component only has effect if you OR HPIBCHAR
and HPIBREAD. The HPIBCHAR constant only has effect if also
specify HPIBREAD.

Note

When you construct mode, you must use either HPIBREAD

or HPIBWRITE, but not both. Optionally, you can OR

one of the other three constants with either HPIBREAD or
HPIBWRITE, but they are not required. HPIBCHAR has
effect only when it is ORed with HPIBREAD, while HPIBATN
and HPIBEOI have effect only when they are ORed with
HPIBWRITE (but not both at the same time).

4-70 Controlling the HP-IB Interface PartI: DIL

The mode component allows you to specify conditions under which an I/O
operation terminates. All I/O operations terminate when the maximum
number of bytes specified by the count component of the iodetail structure is
reached. However, additional termination conditions are possible:

m If you specify HPIBREAD and HPIBCHAR: detection of the termination
character defined by the terminator component also causes termination.

m If you specify HPIBWRITE and HPIBEOI: when the count value is reached
EOI is asserted at the time that the last byte of data is sent (unless you also
specify HPIBATN).

To illustrate, assume that iovec points to an iodetail structure that you are
building and you want the structure to send several HP-IB commands. The
mode component of the structure is assigned the necessary value as follows:

iovec->mode = HPIBWRITE | HPIBATN;

The Terminator Component

The terminator component of the iodetail structure specifies a character
that causes the termination of a read operation when it is detected. The
terminator only has effect if HPIBREAD | HPIBCHAR is specified as the

structure’s associated mode component.

Assign a value to the terminator component in the structure pointed to by
iovec with:

iovec->terminator = value;

For example, to define the ASCII period character (.) the termination
character, use the statement:

iovec->terminator = ’.°’;

The Count Component

count is an integer that defines the maximum number of bytes to be
transferred during the structure’s I/O operation. Reading or writing always
terminates when this value is reached, but additional termination conditions
can be set up using the structure’s associated mode component.

Partl: DIL Controlling the HP-IB Interface 4-71

To set a maximum number of bytes for a structure’s data transfer:

iovec->count = max_value;

where iovec is a pointer to the structure and max_value is an integer.

The Buf Component

The buf component points to a character array where data is to be stored from
a read operation (HPIBREAD) or a character array containing data to be
written to during a write operation (HPIBWRITE).

Note The value of a structure’s count component should never
exceed the size of the array. If this restriction is violated,
unpredictable results and/or data loss are likely.

One way to store a message in the buf array is:

iovec->buf = "data message";

Allocating Space

Before building iodetail structures for I/O operations, storage space in
memory must be allocated. The easiest way to do this (if you are programming
in C) is to write a routine that allocates space for n iodetail structures and
returns a pointer to the first one.

Here is a sample code segment for such a routine, io_alloc:

#include <dvio.h>
struct iodetail *io_alloc(n)
int n;
{
char *malloc();
return((struct iodetail *) malloc(sizeof(struct iodetail) * n));

}
Refer to the HP-UX Reference for a description of malloc(3C).

For example, to use io_alloc to allocate memory space for 10 iodetail
structures your program should contain the statements:

struct iodetail *iovec; /*define an iodetail pointer*/
iovec = io_alloc(10); /*allocate space for 10 iodetail structures*/

4-72 Controlling the HP-IB Interface Part I: DIL

Example

Assume the HP-IB interface is Active Controller and located at HP-IB
address 30. A data message is to be sent to a device at HP-IB address 7 then
a subsequent message is to be received from the same device by use of the
hpib_io subroutine. Such a sequence requires four iodetail structures:

1.

4.

The first structure configures the bus so that the interface is the talker and
the device at address 7 is the listener.

The second structure sends the data message from the interface to the
device.

. The third structure configures the bus so that the device at address 7 is the

talker and the interface is the listener.

The fourth structure receives the data message from the device.

The following code segment illustrates how the four structures can be built and
implemented.

#include <fcntl.h>
#include <errno.h>
#include <dvio.h> /*contains definitions for iodetailx/
struct iodetail *io_alloc(n)
int n;
{
char *malloc();
return ((struct iodetail *) malloc(sizeof (struct iodetail) *n));

}

main()
{
extern int errno;
int eid;
char buffer([4][12];
struct iodetail *iovec, *temp; /%2 pointers to iodetail structures*/

/*Allocate space for 4 iodetail structures*/
iovec = io_alloc(4); /* use the routine described earlier */
temp = iovec; :

Partl: DIL Controlling the HP-IB Interface 4-73

/*Build structure 1 -- Configuring the bus*/
temp->mode = HPIBWRITE | HPIBATN; /*you want to send commands*/
strcpy(buffer[0],"?~’"); /+*address computer to talk; bus address to listen*/
temp->buf = buffer[0];
temp->count = strlen(buffer[0]);

/*Build structure 2 -- Sending the data message*/
temp++; /*use temp pointer so iovec keeps pointing to*/
/*first structure but temp now points to next one*/

temp->mode = HPIBWRITE | HPIBEOI; /*assert EOI when the transfer is
completex/

strcpy(buffer[1],"data message");

temp->buf = buffer[i];

temp->count = strlen(buffer([1]);

/*Build structure 3 -- Configuring the bus*/

temp++; /*increment structure
pointer*/
temp->mode = HPIBWRITE | HPIBATN; /*to send commands*/

strcpy (buffer[2],"?G>");
temp->buf = buffer[2];
temp->count = strlen(buffer[2]);

/*Build structure 4 -- Receiving data messagex/
temp++; /*increment structure pointerx/
temp->mode = HPIBREAD; /*read data until count limit is reached*/
temp->count = 10; /*accept message up to 10-bytes in length*/

temp->buf = buffer[3];

/*Implement the I/0 operations stored in the iodetail structures*/

if ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_io(eid, iovec, 4) == -1)
{
printf ("hpib_io failed\n");
printf ("errno = %d\n",errno);
exit(1);

4-74 Controlling the HP-IB Interface Part I:

DIL

/*Print data message received from the device. Note that temp stills/
/*points to the last iodetail structure, the one that did the read */

printf(*%s", temp->buf);
}

One comment about the C language: Subroutine parameters are passed by
value; not by reference. This means that after hpib_io is executed, the iovec
parameter still points to the first iodetail structure, just as it did before the
subroutine was executed. Thus, another way to print out the data message
that was read into the buf component of the fourth iodetail structure in the
example above is:

printf("%s”, (iovec + 3)->buf);

Locating Errors in Buffered 1/O Operations

If all I/O operations specified in the array of iodetail structures complete
successfully, hpib_io returns 0 and updates the count component of each
structure to reflect the actual number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately
returns a —1 indicating the error. To determine which iodetail structure
operation was associated with the error, examine the structures’ count
components. When hpib_io encounters an error, it updates the count
component of the structure that caused the error to —1. Thus, once you have
located a structure with a count of —1, you know that all previous structures
were completed successfully and all of the structures after it were not executed
at all.

Partl: DIL Controlling the HP-IB Interface 4-75

For example, suppose an array of ten iodetail structures has been built to
execute a sequence of I/O operations. The following code segment executes
the operations then checks for errors. If an error occurs, the number of the

structure that caused it (the first structure in the array is number 1) is printed.

#include <fcntl.h>
#include <errno.h>
#include <dvio.h>
main()
{
int FOUND, number, eid;
struct iodetail *iovec, *temp;

/*space is allocated for the 10 structures then they arex/
/*built. "Iovec" is left pointing to the first structurex/

it ((eid = open("/dev/raw_hpib", O_RDWR)) == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);
}

io_reset (eid);
io_timeout_ctl(eid, 10000000);

if (hpib_io(eid, iovec, 10) == -1) /*execute the operations. If a -1%/
/*is returned, an error occurred*/
{
number = 1; /*initialize counterx/
FOUND = O; /*initialize Boolean flag*/
temp = iovec; /*set temporary pointer to first structure*/
while (number <= 10 && FOUND != 1)
if (temp->count == -1) /*found structure that caused errorx/
FOUND = 1;
else
{
temp++; /*move pointer to next structurex/
number++; /*increment counterx/
}
if (FOUND == 1)
printf ("Structure number %d caused error", number);
else
printf ("Error but couldn’t find structure that caused it\n");
}
else

printf("No error occurred during execution of hpib_io\n");

4-76 Controlling the HP-IB Interface Part I:

DIL

Controlling the GPIO Interface

This chapter briefly describes how to configure the GPIO interface before
accessing it from a program by use of DIL subroutines. It then discusses the
capabilities and limitations of DIL subroutines when controlling the GPIO
interface.

Interface Configuration

The Series 300/400 GPIO interface is configured by setting several switches on
the interface card. The interface installation manual explains how each switch
is used and how it should be configured. Configurable functions associated with
these switches include:

m Data logic sense.
m Data handshake mode.
m Input data clock source.

Set the configuration switches according to the directions found in the GPIO
interface installation manual.

Creating the GPIO Interface File

After setting the necessary switches on your GPIO interface, install the card in
the computer then create an interface file for it as explained in Chapter 3. An
appropriate interface file must be created before the interface can be accessed
from HP-UX.

PartI: DIL Controlling the GPIO Interface 5-1

Interface Control Limitations

Device I/O Library (DIL) subroutines provide a means for using a GPIO
interface to communicate with devices that are not supported on your HP-UX
system. However, they do not provide full control of the interface, so you are
faced with the following limitations:

m There is no direct access to interface handshake lines: Peripheral Control
(PCTL) line, Peripheral Flag (PFLG) line, and Input/Output (I/O) line.

m You cannot read the value of the Peripheral Status line (PSTS) directly.

Using DIL Subroutines

Several DIL subroutines can be used to control the GPIO interface. They are
divided into two groups:

m General-purpose routines usable with both HP-IB and GPIO interfaces,
m GPIO routines: routines specifically designed for use with a GPIO interface.

General-purpose routines are listed and described in detail in Chapter 3.
They are used in this chapter to illustrate various aspects of controlling GPIO
interfaces from an HP-UX process.

Two DIL routines used exclusively with GPIO interfaces:
m gpio_get_status
m gpio_set_ctl.

The GPIO interface has four special-purpose lines that are used in various
ways, depending on the needs of the device connected to the interface. Two
incoming lines, STIO and STI1, are driven by the peripheral device and are
usually used to provide device status information. Two outgoing lines, CTLO
and CTLI are driven by the computer, usually to control the device.

The subroutines gpio_get_status and gpio_set_ctl are used to access

these four special-purpose lines. gpio_get_status reads STIO and STI1, and
gpio_set_ctl sets the values of CTLO and CTL1. Both routines are described
later in this chapter in the section Using Status and Control Lines.

5-2 Controlling the GPIO Interface PartI: DIL

By using the DIL general-purpose routines and these two GPIO-specific
routines you can:

m Reset the interface,

m Perform data transfers,

m Use the interface’s 4 special purpose lines,

m Control the data path width and data transfer speed,
m Set a timeout for data transfers,

m Set a read termination character,

m Get the termination reason,

m Set up the interrupts,

m Enable or disable interrupts.

Resetting the Interface

The interface should always be reset before it is used, to ensure that it is in

a known state. All interfaces are automatically reset when the computer is
powered up, but you can also reset them from your I/O process by using the
io_reset subroutine. For example, the following code segment resets a GPIO
interface:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio", O_RDWR); /*open GPIO interface file*/
io_reset(eid); /*reset the interface*/

This has the following effect:
m Peripheral Reset line (PRESET) is pulsed low,
m PCTL line is placed in the clear state,

m If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared
(set to logical 0),

m Interrupts from the controlled interface are disabled on Series 300/400
systems.

PartI: DIL Controlling the GPIO Interface 5-3

Lines that are left unchanged are:

m CTLO and CTL1 output lines,

m I/0 line,

m Data Out lines if the DOUT CLEAR jumper is not installed.

Performing Data Transfers

The read and write system calls are used to transfer ASCII data to and from
the GPIO interface. The following code segment illustrates how to use these
routines to write 16 bytes to the interface, then read 16 bytes back in.

#include <fcntl.h>

#include <errno.h>

main()

{
int eid; /*entity identifier*/
char read_buffer[16], write_buffer[16]; /*buffers to hold data*/

if ((eid = open("/dev/raw_gpio", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
io_reset(eid);
write_buffer = "message to write"; /*data message to send*/
write(eid,write_buffer, 16); /*send message*/
read(eid, read_buffer, 16); /*receive message*/
printf("%s", read_buffer); /*print received message*/

Using Status and Control Lines

Four special-purpose (status and control) signal lines are available for a variety
of uses. Two of the lines are for output (CTLO and CTL1), and two are for
input (STIO and STI1). The routine gpio_set_ctl allows you to control the
values of CTLO and CTL1, while the routine gpio_get_status allows you to
read the values of STIO and STI1.

5-4 Controlling the GPIO Interface Part I: DIL

Driving CTLO and CTL1
The call to gpio_set_ctl has the following form:

gpio_set_ctl(eid, value);

where eid is the entity identifier for an open GPIO interface file and value is an
integer whose least significant two bits are mapped to CTLO (bit 0) and CTL1
(bit 1). Both CTLO and CTL1 are ground-true logic meaning that they are at
a logic LOW level when asserted. This logic polarity cannot be changed. Logic
sense of the two lines is related to value as follows:

m If value =0: CTLO and CTL1 both false (HIGH logic level)
m If value =1: CTLO true (LOW logic level) and CTLI false (HIGH logic level)
m If value =2: CTLO false (HIGH logic level) and CTLI true (LOW logic level)
m If value =3: CTLO and CTL1 both true (LOW logic level)

This example code segment asserts both lines, setting them at a logic LOW
level:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio", O_RDWR); /*open interface file*/
gpio_set_ctl(eid, 3); /*assert CTLO and CTL1ix/

To set both lines to a logic HIGH level, call gpio_set_ctl as follows:

gpio_set_ctl(eid, 0);

Reading STIO and ST
The call to gpio_get_status has the following form:

int eid, value;
value = gpio_get_status(eid);

where eud is the entity identifier for an open GPIO interface file.

gpio_get_status returns an integer whose least significant two bits are the
values of STIO and STII.

Like CTLO and CTL1, STIO and STI1 are ground-true logic meaning

they are at a logic LOW level when asserted. Thus the value returned by
gpio_get_status is as follows (be sure to AND wvalue with 3 to clear upper
bits before testing):

m If value =0: STIO and STI1 both false (HIGH logic level)

Partl: DIL Controlling the GPIO Interface 5-5

m If value =1: STIO true (LOW logic level) and STI1 false (HIGH logic level)
m If value =2: STIO false (HIGH logic level) and STII true (LOW logic level)
m If value =3: STIO and STI1 both true (LOW logic level)

To illustrate:

int eid; /*entity identifier*/

int value, bits;

eid = open("/dev/raw_gpio", O_RDWR); /*open interface filex/
value = gpio_get_status(eid); /*look at STIO and STI1x/
bits = value & 03 /*clear all but the 2 least significant bits*/
if (bits == 3) /*and see if they are both set*/

/*insert code that handles case when both STIO and STI1 are asserted*/
else if (bits == 1) /*only STIO is asserted*/

/*énsert code that handles case when STIO is asserted*/
elsé if (bits == 2) /*only STI1 is asserted*/
/*énsert code that handles case when STI1 is asserted*/
elsé /*neither are asserted+/

/*insert code that handles case when neither STIO nor STI1 is asserted*/

Controlling Data Path Width

DIL subroutine io_width_ctl is used to specify 8-bit or 16-bit data path
widths for the GPIO interface. The call has the following form:

io_width_ctl(eid, width);
where eid is the entity identifier for an open GPIO interface file and width is
either 8 or 16. If any other width value is specified, io_width_ctl returns —1

and sets errno to EINVAL. The GPIO interface is set to a default 8-bit path
width when the interface file is opened.

5-6 Controlling the GPIO Interface PartI: DIL

The following code segment illustrates data transfers using a 16-bit data path
width.

int eid;

eid = open("/dev/raw_gpio", O_RDWR); /*open the interface file*/
io_width_ctl(eid, 16); /*set path width to 16 bits*/
write(eid, "data message", 12); /*perform data transfer*/

Since the interface data path width is 16 bits, 2 ASCII characters are
transferred during each handshake cycle. In the first 16-bit transfer, d is

sent in the upper byte and a is sent in the lower. The actual logic sense
(ground-true or high-true) of the GPIO data output lines depends on how the
lines were configured during interface card installation.

Controlling Transfer Speed

You can request a minimum speed for the data transfer across a GPIO
interface by issuing a call to io_speed_ctl. Your system rounds the specified
speed up to the nearest defined speed. If you specify a speed that is faster
than your system allows, the highest available speed is used instead. Refer to
Chapter 3 for more information about io_speed_ctl.

GPIO Timeouts

If a non-zero timeout limit has been established for a given eid and that limit
is exceeded during a data transfer request, an error condition results. When
the subroutine handling the transfer detects the timeout error, it returns —1
and sets errno to ETIMEDOUT (EIO on Series 300/400). When a timeout
error occurs, use io_reset to reset the GPIO interface before attempting
another transfer.

Partl: DIL Controlling the GPIO Interface 5-7

Burst Transfers

Series 300/400 systems support high-speed burst I/O on HP-IB and GPIO
interfaces. The call to io_burst is structured as follows:

io_burst(eid, flag)

io_burst controls the data path between computer memory and the HP-IB or
GPIO interface. If flag = 0, all data is handled through kernel calls with the
normal associated overhead. If flag is non-zero, burst mode locks the interface
and data is transferred directly between memory and the I/O mapped interface
until the transfer is completed. Burst mode yields substantial improvement in
efficiency when handling small amounts of data or high-speed data acquisition.

Read Terminations

Determining Why a Read Operation Terminated

Subroutine io_get_term_reason, described in Chapter 3, is used to determine
why the last read performed on a particular eid terminated. Possible reasons
include:

m The requested number of bytes were read
m A specified read termination character was seen
m A assertion of the PSTS line was seen

s Some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern

Chapter 3 describes subroutine io_eol_ctl which is used to specify a
character or string of characters (called a read termination pattern) that, when
encountered during a read, terminates the read operation currently underway
on a particular GPIO interface file eud.

Interrupts

Subroutines io_on_interrupt and io_interrupt_ctl are described in
Chapter 3. They are used to set up and control interrupt handlers for the
GPIO status line or for a particular GPIO interface file eid.

5-8 Controlling the GPIO Interface Partl: DIL

6

Controlling the Parallel Interface

This chapter discusses the capabilities and limitations of DIL subroutines when
controlling the Parallel interface.

Interface Control Limitations

Device 1/0O Library (DIL) subroutines provide a means for using a
Centronics-compatible Parallel interface to communicate with devices that

are not supported on your HP-UX system. However, they do not provide full
control of the interface, so you are faced with the limitation that there is no
direct access to interface handshake lines: STROBE line, BUSY line, and ACK
line. These handshake lines are controlled by the interface Input/Output FIFO
hardware.

Partl: DIL Controlling the Paraliel Interface 6-1

Using DIL Subroutines

Several DIL subroutines can be used to control the Parallel interface. They are
the general-purpose routines usable with HP-IB, GPIO, and Parallel interfaces,

which are listed and described in detail in Chapter 3. They are used in this
chapter to illustrate various aspects of controlling Parallel interfaces from an

HP-UX process.

By using the DIL general-purpose routines you can:
m Reset the interface.

m Perform data transfers.

m Control the data handshake mode.

m Set a timeout for data transfers.

m Set a read termination character.

Get the termination reason.

Set up the interrupts.

s Enable or disable interrupts.

Resetting the Interface

The interface should always be reset before it is used, to ensure that it is in
a known state. All interfaces are automatically reset when the computer is
powered up, but you can also reset them from your I/O process by using the

io_reset subroutine. For example, the following code segment resets a Parallel

interface:
int eid; /*entity identifier*/
eid = open("/dev/parallel", O_RDWR); /*open Parallel interface filex/
io_reset(eid); /*reset the interface*/

This has the following effect:
m The NINIT signal is held low for 50 microseconds.
m The interface is reset to its power-on state.

m User interrupts enabled via io_on_interrupt are enabled (unmasked).

6-2 Controlling the Parallel Interface Part I:

DIL

Performing Data Transfers

The read and write system calls are used to transfer ASCII data to and from
the Parallel interface. The following code segment illustrates how to use these
routines to write 16 bytes to the interface, then read 16 bytes back in.

#include <fcntl.h>

#include <errno.h>

main()

{
int eid; /*entity identifier*/
char read_buffer[16], write_buffer[16]; /*buffers to hold datax/

if ((eid = open("/dev/parallel”, O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);
}
io_reset(eid);
write_buffer = "message to write"; /*data message to send*/
write(eid,write_buffer, 186); /*send message*/
read(eid, read_buffer, 16); /*receive message*/
printf("%s", read_buffer); /*print received message*/

Controlling Transfer Speed

You can request a minimum speed for the data transfer across a Parallel
interface by issuing a call to io_speed_ctl. Your system rounds the specified
speed up to the nearest defined speed. If you specify a speed that is faster
than your system allows, the highest available speed is used instead. Refer to
Chapter 3 for more information about io_speed_ctl.

Timeouts

If a non-zero timeout limit has been established for a given eid and that limit
is exceeded during a data transfer request, an error condition results. When
the subroutine handling the transfer detects the timeout error, it returns —1
and sets errno to ETIMEDOUT (EIO on Series 300/400). When a timeout
error occurs, use io_reset to reset the Parallel interface before attempting
another transfer.

PartI: DIL Controlling the Parallel Interface 6-3

Burst Transfers

Series 300/400 systems support high-speed burst I/O on HP-IB, GPIO, and
Parallel interfaces. The call to io_burst is structured as follows:

io_burst(eid, flag)

io_burst controls the data path between computer memory and the HP-IB,
GPIO or Parallel interface. If flag = 0, all data is handled through kernel calls
with the normal associated overhead. If flag is non-zero, burst mode locks

the interface and data is transferred directly between memory and the I/O
mapped interface until the transfer is completed. Burst mode yields substantial
improvement in efficiency when handling small amounts of data or high-speed
data acquisition.

Read Terminations

Determining Why a Read Operation Terminated

Subroutine io_get_term_reason, described in Chapter 3, is used to determine
why the last read performed on a particular eid terminated. Possible reasons
include:

m The requested number of bytes were read.
m A specified read termination character was seen.
m An assertion of the NACK line was seen.

m Some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern

Chapter 3 describes subroutine io_eol_ctl which is used to specify a
character or string of characters (called a read termination pattern) that, when
encountered during a read, terminates the read operation currently underway
on a particular Parallel interface file eid.

6-4 Controlling the Parallel Interface Partl: DIL

Interrupts

Subroutines io_on_interrupt and io_interrupt_ctl are described in
Chapter 3. They are used to set up and control interrupt handlers for a
particular Parallel interface file ezd.

Partl: DIL Controlling the Parallel Interface 6-5

Index

index

A

Active Controller, 4-17

auto-addressing, 4-19

calculating talk and listen addresses,
4-21

clearing HP-IB devices, 4-28

conducting a parallel poll, 4-36

conducting a serial poll, 4-43

configuring parallel poll response,
4-32

determining, 4-17

disabling parallel poll response, 4-36

enabling local control, 4-25

errors during parallel poll, 4-38

errors during serial poll, 4-45

example configuration, 4-23

locking out local control, 4-24

monitoring the SRQ line, 4-29

parallel poll for device status, 4-32

passing control to non-active controller,
4-46

remote control of devices, 4-24

serial polling, 4-43

servicing requests, 4-29

setting up talkers and listeners, 4-19

SRQ serial /parallel poll service routine,
4-31

transferring data, 4-26

triggering devices, 4-25

using hpib_send_cmd, 4-21

waiting for parallel poll response,
4-39

Partl: DIL

ASCII character codes, C-1

buffered HP-IB 1/0, 4-68

buffered HP-IB I/O example, 4-73

buffered HP-IB 1/0, locating errors in,
4-75

burst transfers, 5-8, 6-4

o

Centronics-compatible Parallel interface.
See Parallel interface

character code, ASCII, C-1

closing an interface special file, 3-6

combining HP-IB I/O operations, 4-68

controller, HP-IB, active or non-active,
4-8

D

data path width, setting, 3-14
DEVICE CLEAR, 4-5
device file (see special file or interface
special file), 3-2
differences between computers, 2-1
DIL programming example, D-1
DIL routines
calling from Fortran, 2-3
calling from Pascal, 2-3
calling program structure, 3-2
general-purpose routines, 3-3
HP-IB DIL routines, 4-2
linking, 2-3

Index-1

Index

E

entity identifier, 3-2

errno, using, 3-10

errno variable, 3-10

error-checking routines, 3-10

errors while sending HP-IB commands,
4-15

example, DIL programming, D-1

F
Fortran calls to DIL routines, 2-3

G

GO TO LOCAL, 4-6

GPIO interface, 2-15
burst transfers, 5-8
configuration and set-up, 5-1
controlling data path width, 5-6
controlling the transfer speed, 5-7
creating special file for, 5-1
interrupt transfers, 5-8
limitations in controlling, 5-2
performing data transfers, 5-4
read terminations, 5-8
resetting the interface, 5-3
timeouts, 5-7
using DIL routines, 5-2
using the status and control lines, 5-4

H

handshake 1/0O interface functions, 2-7
HP-IB commands, 4-2
errors while sending, 4-15
sending, 4-12
HP-IB DIL routines, 4-7
HP-IB interface, 2-9
bus management control lines, 2-13
general structure, 2-9
handshake lines, 2-10
hpib_io, 4-10, 4-11, 4-68
HP-IB I/0, buffered, 4-68

Index-2

HP-IB I/0, buffered, example, 4-73

HP-IB I/0O, buffered, locating errors in,
4-75

HP-IB I/0O operations, combining, 4-68

hpib_send_cmd, 4-2

interface device file (see interface special
file), 3-2
interface locking, 3-13
interfaces
general concepts, 2-5
GPIO, 2-15
HP-IB, 2-9
Parallel, 2-16, 6-1
interface special file, 3-2, 3-4, 3-6
interrupt, hardware availability, 3-26
io_burst, 4-10, 4-11, 5-8, 6-4
iodetail storage space allocation, 4-72
iodetail, the I/O operation template,
4-69
io_get_term_reason, 3-23
io_interrupt_ctl, 3-29
io_lock, 4-10, 4-11
io_on_interrupt, 3-28
io_unlock, 4-10, 4-11

L

linking DIL routines, 2-3
LOCAL LOOKOUT, 4-5
locking an interface, 3-13

Non-Active Controller
accepting active control, 4-61
determining controller status, 4-53
determining when addressed, 4-64
disabling parallel poll response by

remote, 4-60

errors while requesting service, 4-56
requesting service, 4-54

Partl: DIL

responding to parallel polls, 4-57
(o)

opening an interface special file, 3-4
opening HP-IB interface special file,
4-12

P

Parallel interface, 2-16, 6-1

burst transfers, 6-4

controlling the transfer speed, 6-3

interrupt transfers, 6-5

limitations in controlling, 6-1

performing data transfers, 6-3

read terminations, 6-4

resetting the interface, 6-2

timeouts, 6-3

using DIL routines, 6-2
PARALLEL POLL CONFIGURE, 4-6
PARALLEL POLL DISABLE, 4-6
PARALLEL POLL ENABLE, 4-6
Pascal calls to DIL routines, 2-3
programming example, DIL, D-1

R

read termination, cause, 3-18, 3-23

read termination pattern, removing,
3-22

read termination pattern, setting, 3-14

read/write to an interface, 3-7

removing read termination pattern,
3-22

resetting interfaces, 3-12

Partl: DIL

S

SELECTED DEVICE CLEAR, 4-6
sending HP-IB commands, 4-12
SERIAL POLL DISABLE, 4-5
SERIAL POLL ENABLE, 4-5
Series 300/400 operating dependencies
and characteristics, A-1
Series 600/800 operating dependencies
and characteristics, B-1
setting data path width, 3-14
setting read termination pattern, 3-14
setting timeout, 3-14
setting transfer speed, 3-14
special file, 3-2, 3-4, 3-6
System Controller
determining if system controller, 4-49
hpib_abort, 4-50
hpib_ren_ctl, 4-51
system controller duties, 4-50

T

timeout, setting, 3-14
transfer speed, setting, 3-14
TRIGGER, 4-5

U

UNLISTEN, 4-4
UNTALK, 4-4
using errno, 3-10

w

write/read to an interface, 3-7

Index-3

Index

Part I
HP-HIL

The Hewlett-Packard Human Interface Link

The Interface to HP-HIL Devices
Typical HP-HIL Devices

Using HP-HIL Devices

HP-HIL Commands

Keycode Set 1

Using HP-HIL Devices with HP-UX

The Interface to HP-HIL Devices

This part of the User’s Guide describes communication via the Hewlett-
Packard Human Interface Link (HP-HIL), and other functions provided by

the HP-HIL System Device Controller (8042). It is primarily a description of
the enhancements added to handle the HP-HIL interface. This interface is
capable of supporting up to seven peripherals, such as graphics input, system
ID Modules, and other devices generally related to human input, as well as the
system keyboard.

Before launching into a discussion of the workings of the HP-HIL interface,
a general overview should be presented. Figure 1-1 illustrates the basic
components.

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-1

Device C
evice Address=3

Device B Address=2

Device A Address=1

Link Interface
8042

Computer

Figure 7-1.
Hewlett-Packard Human Interface Link

HP-HIL initialization takes place in the following manner. The peripheral
devices in the HP-HIL link are powered up when the computer is turned

on. Next, because of the “loop-back mode” each device is recognized by the
computer as the “last” device in the link. The “loop-back mode” is where the
computer sends out a signal and the HP-HIL device sends that same signal
back to the computer through the return side of the device. Each device in the
link is checked in this manner until there are no additional devices to check in
the link. Note that the computer does not know the type of each device in the
link; it merely knows that there is a device at that location in the link.

To further explain the HP-HIL initialization process, the following example

is given. Assume the 8042 has sent out a signal looking for the first device

on the link. (The 8042 is the HP-HIL system device controller, not the
MC68000/10/20 microprocessor.) In our previously shown diagram, it would
find Device A. Being the first device on the link, it’s address is considered to be

7-2 Using HP-HIL Devices with HP-UX Part Il: HP-HIL

1. The 8042 then instructs Device A to exit loop-back mode; that is, send the
signals through to a possible next device. The 8042 then attempts to contact
the second device on the link. Device B responds and is assigned address 2.
The 8042 now knows that there are at least two devices on the link. The 8042
commands Device B to exit loop-back mode, and attempts to contact the
next device. Successful, the 8042 now knows about Device C. As our diagram
illustrates, Device C is the last device on the link, so the process proceeds
differently at this point.

The 8042 instructs Device C to exit loop-back mode, and attempts to contact
(nonexistent) Device D. Since it is not there, a timeout occurs, and the 8042
deduces that Device C is the last device on the link. Therefore, it instructs
Device C to once again enter loop-back mode, and the link is configured.

The link can deal with a maximum of seven devices at any one time (see the
NOTE in the section, “Typical HP-HIL Devices”). If there are eight or more
devices physically connected, the devices after number seven are not found.

As the above discussion indicates, the address of a particular device is merely
its sequential order of placement along the link. In the above diagram, Device
A has address 1, B has address 2, and C has address 3. This is only a result of
their physical order of connection. If Device C had been connected between
Devices A and B, Device A would still have been address 1, but Device C
would be address 2, and B would be address 3. The type of device is irrelevant
to the address assigned to it.

After the link is operational, and during subsequent link operations, each
device looks at the data being sent down the link. If a device notices that the
destination address associated with the link data is the same as that device’s
address, that device receives and acts on the data. Otherwise, the data is
merely shuttled along to the next device.

Part {l: HP-HIL Using HP-HIL Devices with HP-UX 7-3

Typical HP-HIL Devices

This section provides a brief description of a few of the HP-UX supported
HP-HIL devices. You can make use of these devices by writing special
programs in C Language, FORTRAN, or Pascal to control them.

Before you can use an HP-HIL device, your terminal or computer must meet
the following requirements:

m It should have a built-in HP-HIL interface or HP-HIL interface card present.
This is the case for the HP Models 217, 237, 310, 318, 320, 330, and 350,
Integral Personal Computer, and Model 550 with an HP 98700H Graphics
Display Station. The HP 2393 and HP 2397 terminals also have built-in
HP-HIL interfaces.

m If you are using a Model 220, it should have an HP 9920 Option 535 (HP
09920-66535, HP-HIL Keyboard/HP-IB Interface) card inserted in its
backplane.

The following is a list of HP-HIL devices supported by the HP-UX system. It
also provides the maximum current which each device uses.

Note The total current your HP-HIL link can use before it stops
working is 750 milliamps. This current limit is true for all
HP-UX computers except the Integral PC and HP 98700A /H
which have a total current limit of 520 milliamps.

When determining the total current used by your HP-HIL link,
you should note that the current limits listed in this section

are maximum current limits. The typical current used by each
HP-HIL device is approximately two-thirds of this value, so
when calculating the total current used by your HP-HIL link
you need to take two-thirds of the sum of the maximum current
values. '

To determine the total current which your HP-HIL link draws when connected
to the HP-HIL interface, add up the maximum current used by each device in
the link and multiply the result by two-thirds. Again use the following list to
determine the maximum current each device uses.

7-4 Using HP-HIL Devices with HP-UX Part Il: HP-HIL

m HP-HIL/Touchscreen model HP 35723A—This is a screen bezel which is
placed over the bezel of the HP 35731 (medium resolution black and white
monitor) and HP 35741 (medium resolution color monitor) 12-inch video
monitors. It can be programmed to select various functions by simply
touching the screen. The maximum current this device uses is 200 milliamps.

m HP-HIL Keyboard model HP 46021 A—This keyboard has alphabetic and
numeric keys similar to those on a typewriter. Note that this keyboard
replaces the HP 46020A keyboard and that all of the keys in each key group
of the HP 46021A function the same as those of the HP 46020A. The key
groups you will find on this keyboard are as follows:

o Character Entry Group—allows alphabetic and numeric characters, as well
as mathematical and commercial signs to be entered. It also contains data
control keys such as (Back space) and (Return).

Numeric Group—provides for rapid entry of numeric data.
Display Control Group—controls the location of the cursor on the display.

Edit Group—allows data to be inserted in and deleted from the display.

O o o o

Function Key Group—provides you with system defined function key
labels, as well as with user defined function key labels.

o System Control Group—controls system functions related to display
operations, such as using the key to suspend the display.

The maximum current this device uses is 70 milliamps.

m HP Mouse model HP 46060A or HP 46060B—The mouse is a relative
graphics input device for some graphics programs. It is commonly used to
move the cursor to any position on the CRT (display) without using arrow
keys or a Rotary Control Knob model HP 46083A. The HP 46060A is a
two-button mouse, the HP 46060B is a three-button mouse. The maximum
current use for the HP 46060A is 200 milliamps; 120 milliamps for the HP
46060B.

Note The HP 46060A Two-Button Mouse or the HP 46060B
Three-Button Mouse must be the last device on the HP-HIL
link.

Part Il: HP-HIL Using HP-HIL Devices with HP-UX 7-5

Extension Module model HP 46080A—The Extension Module allows you to
increase the distance between HP-HIL devices by eight feet. Note that the
HP-HIL link is capable of handling seven addresses and that the Extension
Module does not occupy one of these addresses. The maximum current this
device uses is 25 milliamps.

HP-HIL/Audio Extension model HP 46081A—The Audio Extension allows

a separation of 2.4 meters (8 feet) between the host computer and another
HP-HIL device. This device also contains a speaker.. Note that the HP-HIL
link is capable of handling seven addresses and that the Audio Extension
does not occupy one of these address. The maximum current that this device
“uses is 25 milliamps.

HP-HIL/Audio Remote Extension model HP 46082A/B—The HP 46082A
allows a separation of 15 meters (49.2 feet) between the host computer and
the graphics display -station, and the HP 46082B allows a separation of 30
meters (98.4 feet). The Audio Remote Extension also contains a speaker.
Note that the HP-HIL link is capable of handling seven addresses and that
the Audio Remote Extension module does not occupy one of these address.
The maximum current that each of these devices use is 50 milliamps.

Rotary Control Knob model HP 46083A—This device provides the
additional feature of a rotary control knob to your system. Note that a
switch is provided which toggles the knob from X-axis data to Y-axis data.
The maximum current this device uses is 110 milliamps.

HP-HIL ID Module model HP 46084A—The HP 46084A Module is an
HP-HIL device that returns an identification number for identifying you as
the computer user. The identification number is unique to your particular ID
Module. This allows application programs to use the ID Module to control
access to program functions, data bases, and networks.

Note The identification number is the product/exchange and serial
numbers returned in a packed format as explained in the
section entitled, “Report Security Code.”

The maximum current this device uses is 60 milliamps.

m Control Dials model HP 46085A—This module provides nine user-definable
knobs. These knobs can be software defined to provide zooming, panning,

7-6 Using HP-HIL Devices with HP-UX Part ll: HP-HIL

rotation, horizontal and vertical motion, color translation, and menu control
when using graphics. Each knob on the HP 46085A can be defined in
software to do functions other than those mentioned.

Note The HP 46085A Module occupies 3 addresses on the link. Each
horizontal row corresponds to one address (bottom to top).

The maximum current this device uses is 320 milliamps.

m Function Box model HP 46086 A—This module provides 32 function keys
to select software-defined functions. A status LED, which is controlled by
software, provides an indication of when the device is sending or receiving
data. This device uses a non-standard keycode set (Keycode Set 2) which is
shown in Figure 7-2. The maximum current this device uses is 80 milliamps.

0/1 2/3 4/5 6/7
8/9 10/11 12/13 14/15 16/17 18/19
20/21 22/23 24/25 26/27 28/29 30/31
32/33 34/35 36/37 38/39 40/41 42/43
44/45 46/47 48/49 50/51 52/563 54/55

56/57 58/59 60/61 62/63

Figure 7-2. Keycode Set 2

m A-size Digitizer model HP 46087A—The A-size Digitizer allows data entry
from an ISO A4 or ANSI A-size drawing, or free-hand graphics input. It uses
either a pen-like stylus or an optional Four-Button Cursor model HP 46089A
. The maximum current this device uses is 200 milliamps.

m B-size Digitizer model HP 46088 A—The B-size Digitizer allows data entry
from an ISO A3 or ANSI B-size drawing, or free-hand graphics input. It uses

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-7

either a pen-like stylus or an the optional HP 46089A Four-Button Cursor.
The maximum current this device uses is 200 milliamps.

m Four-Button Cursor model HP 46089A—This device is a four switch puck
that may be used on the A or B-size Digitizer in place of the stylus. This
device does not take an address space, and it does not use any additional
current.

m HP-HIL/Quadrature Port model HP 46094A—This device allows interfacing
an off-the-shelf 3 Button Mouse, Trackball (or any other device which
provides an output in quadrature) to the HP-HIL link. The maximum
current this device uses is 200 milliamps.

m Keyboard model HP 98203C—This keyboard functions the same as the
HP 98203B keyboard. For information on the HP 98203B keyboard read
the section entitled, “The Series 200/300 ITE as System Console” in this
manual. The maximum current this device uses is 90 milliamps.

m Bar-Code Reader model HP 92916A—This device reads all standard
bar-codes using a wand as the input mechanism. It provides an effective
and reliable alternative to the keyboard for data entry. Note that HP-UX
supports this device in the keyboard mode, in which the input from
the device looks like keycodes. The keycodes, which can be read by the
Bar-Code Reader, are: 3 of 9, Interleaved 2 out of 5, UPC/EAN, and
Codabars USD-4 and ABC. The maximum current this device uses is 200
milliamps.

For more information on these devices, call your local HP Sales or Service
Representatives.

7-8 Using HP-HIL Devices with HP-UX Part lI: HP-HIL

Using HP-HIL Devices

This section gives a procedure for creating special (device) files for your
HP-HIL devices, provides programs for identifying HP-HIL devices, and
includes tables for interpreting data for the sample programs. This section also
includes a discussion of the commands (opcodes) used in the macros located in
the file /usr/include/sys/hilioctl.h.

Note HP-HIL devices can be added to or removed from the HP-HIL
link without affecting the HP-UX operating system while it
is running. However, if you are running an application which
requires the use of that particular device and you:

m remove the device from the link, or
m open the link to the device, or
m open the link to add a new device

your application might not recognize the change and as a
result it will not work as expected. An HP-HIL device can
be added anywhere in the HP-HIL link provided it is not a
non-extendible device (e.g. HP 46060A, HP Mouse), in this
case the device can only be added to the end of the link.

A Few Terms
The following terms will be used throughout this part of the User’s Guide:

m A special (device) file is a file associated with an I/O device. Special (device)
files are read and written just like “ordinary files” (a type of HP-UX file
containing either a program, text or data), but requests to read or write
result in activation of a driver of the associated device. Entries for each file
normally reside in the /dev directory. In this documentation, you will find
that a special (device) file is referred to as a device file or a special file.

m A macro is a command which contains a set of instructions to be performed.
The term macro was derived from the word macroinstruction.

Part Il: HP-HIL Using HP-HIL Devices with HP-UX 7-9

m A frame is the way information travels through the HP-HIL link. It consists
of 15 bits of information which include: start (1 bit), stop (1 bit), command
(1 bit), parity (1 bit), address (3 bits), and data (8 bits). The frame is
transmitted around the link at the rate of 10 micro-seconds per bit, or 150
micro-seconds per frame.

Idle Start Command/ Data Parity Idle
State Bit Bit Bit State
Logic 1 5 " > - . "
(1bit) | Address(3 bits) |(1bit) Opcode/Data Byte(8 bits) (1bit) J(1bit)
1 3 2 1 1 8 7 6 5 4 3 2 1 1 1
Logic O | 1 1 | | 1 | 1]
—> F€— 10 usec. per Bit /
+ Stop
T0.5% L
Bit
1 Frame (150 ISec.) L]

Figure 7-3. Frame

m A command(opcode) in this documentation is an operational code used in
a lower level programming language (assembly) to perform an operation,
such as incrementation, inversion or multiplication, on one or more operands.
This is the definition for the term opcode; however, in this manual it will be
used as the definition for the term command.

m A path name is a sequence of directories and “ordinary files” (HP-UX files
containing either programs, text or data) separated by /’s which map out a
path leading to a destination file.

m A select code is part of an address used for devices; a number determined
by a setting on an interface card to which a peripheral device is connected.
Multiple peripherals connected to the same interface card share the same
select code.

7-10 Using HP-HIL Devices with HP-UX Part ll: HP-HIL

Creating a Special Device File for HP-HIL Devices

Each device on the HP-HIL link has a unique address based on its position
in the link (e.g. the first addressable HP-HIL device is address 1 and so on).
There may be up to seven devices connected to a single HP-HIL driver board
allowing device file names in the form hil1l, hil2, ... , hil7. To access a
device, you must first create a special (device) file using the mknod command.

For the Series 300

The Series 300 mknod parameters should create a character device with a major
(driver) number of 24 and a minor (select code) number of 0x0000a0 where a
is the device’s one digit address i.e. its position on the HP-HIL loop from the
computer interface card.

The format for using this command is:

/etc/mknod /dev/hila c 24 0x0000a0

where:

hil_ is the name you give to identify the HP-HIL address for which
you are creating a device file.

c specifies the character mode rather than the block mode.

24 is the major (driver) number used with the device you are
creating. Series 300, 700 and 800 computers use major (driver)
number 24 for communicating with HP-HIL devices.

0x0000 is the Series 300 select code of the device.

a is the HP-HIL address of the device to which you wish to talk.

The address ranges from one to seven. An addressable device
is not an extension device, such as the HP 46080A (Extension
Module) and the HP 46081A (HP-HIL/Audio Extension).

For the Series 700

The Series 700 mknod parameters should create a character device that is
similar to that of the Series 300. The difference is the minor (select code)
number of 0x2030a0 where a is the device’s one digit address; again, its
position on the HP-HIL loop from the computer interface card.

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-11

The format for the Series 700 command is:

/etc/mknod /dev/hila ¢ 24 0x2030a0

For the Series 800

The Series 800 mknod parameters should create a character device that is
similar to that of the Series 300 and 700. The difference is the minor (select
code) number of 0x00/ua0 where lu is the two-digit hardware logical unit and a
is the device’s one digit address.

The format for the Series 800 command is:
/etc/mknod /dev/hila c 24 0x00lua0
or
/etc/mknod /dev/hillu.a ¢ 24 0x00/ua0

You may need to create a special (device) file for the 8042 driver so you can
talk to the timer, talk to the beeper, or change the keyboard repeat rate. To
do this, change the device address (24) to 23 and use the appropriate form of
the mknod command:

For Series 300
/etc/mknod /dev/hila ¢ 23 0x000a0

7-12 Using HP-HIL Devices with HP-UX Part ll: HP-HIL

Using the Sound Generator

This section describes how to implement and control the Sound Generator
associated with the HP-HIL System Device Controller (8042). The Sound
Generator (“beeper”) can produce tone outputs in varying frequencies,
duration and loudness. A sample program is included in this section to help
you create various sounds that can be used as user prompts, warnings or other
audio signals.

Sample Beeper Program

The following sample program, written in C Language, provides the structure
for controlling the Sound Generator. You may alter this program to fit your
needs. Remember to type in the program exactly as it appears (omit line
numbers as they are not part of the program) and compile it.

[y

#include <fcntl.h>

#include <sys/beeper.h>

main(argc, argv)

int argc;

char *argv[];

{
int fd; /*freq dura volx*/
static struct beep_info ring = {440, 500, 100};
fd=open("/dev/rhil",0_RDWR) ;
ioctl(fd, DOBEEP, &ring);

© 00 ~NO0 o b wN

[N
o

11 3}

Lines 1 and 2 identify the include files for the macros that execute specific
functions required by this program. The macro fcntl.h provides the
O_RDWR File Access Mode and beeper.h sends data to the beeper.

Lines 3, 4 and 5 declare the variables (argc, argv and fd) to be used in the
program.

Line 8 is where you may insert the three variables that control frequency
duration and volume of your tone. Values entered here will produce a tone
equal to A above middle C for 500 milliseconds at maximum volume.

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-13

Frequency, Duration and Volume of Tones
The three parameters asked for in the above C program line:
static struct beep_info ring = {aaa, bbb, ccc};

control the tone frequency or pitch (aaa), duration (bbb) and volume (ccc). By
altering these values in your program you can control the Sound Generator.

To Set Frequency. Enter the frequency value, in Hertz, of the tone desired
into the above program. The typical range is from 40 to 5 208 Hz depending
on your computer hardware. For a baseline, 440Hz translates to A above
Middle C on the musical scale (see sample program).

To Set Duration. Enter the tone’s duration value, in milliseconds, into the

above program. Tone durations can range from 2 550 (2.55 seconds) down to 1
(0.001 second) and 0 (Off).

To Set Volume. Enter the volume value, from 0 to 100, into the above
program. Values can range from 1 (softest) through 100 (loudest) and 0 (Off).

Note Frequency, duration and volume of tone are subject to the
resolution of the Sound Generator. The frequency specified is
rounded to the nearest frequency achievable by the hardware.
Some versions of hardware are limited as to frequency, duration
and volume ranges.

7-14 Using HP-HIL Devices with HP-UX Part ll: HP-HIL

Additional Considerations

When you execute a long listing of the /dev file, you will find the device files
for HP-HIL devices on Series 300 computers are as follows:

crw-rw-rw- 1 root root 24 0x000010 Oct 29 09:02 hilil
crw-rw-rw- 2 root root 24 0x000020 May 22 1985 hil2
crw-rw-rw- 1 root root 24 0x000030 May 22 1985 hil3
crw-rw-rw- 1 root root 24 0x000040 May 22 1985 hil4
crw-rw-rw- 1 root root 24 0x000060 May 22 1985 hilb
crw-rw-rw- 1 root root 24 0x000080 May 22 1985 hilé
crw-rw-rw- 1 root root 24 0x000070 May 22 1985 hil7
crw-rw-rw- 1 root root 25 0x000080 May 22 1985 hilkbd

Note that the last device file (hilkbd) listed has a different major (driver)
number. This is the device file for the HP-HIL “cooked” keyboard driver. The
HP-HIL “cooked” keyboard driver does not require a new keyboard; it simply
provides a protocol conversion for using your present HP-HIL keyboard. This
protocol only recognizes the down stroke of a key when it is pressed (not both
up and down keystrokes). Using this protocol conversion with programs that
trap individual keystrokes (by reading from the HP-HIL interface) makes the
application programs more compact, because they are keeping track of fewer
keystrokes.

Note that the keyboard sends a set of data which consist of a four byte time
stamp, one byte that contains status information as follows:

1000xxxx—both and have been pressed,
m 1001xxxx—only has been pressed,
m 1010xxxx—only has been pressed,

m 1011xxxx—neither nor have been pressed,

and a final byte that contains a keycode taken from the table below. The
following is a table of the keycodes for the HP-HIL “cooked” keyboard driver.

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-15

Table 7-1. Keycodes for the HP-HIL “Cooked” Keyboard Driver

Continued on next page ...

Keycodes in Key Label
hex |decimal Unshifted Shift
00 0 Unused
01 1 @) Q
02 2 (D] AN}
03 3
04 4 Unused
05 5
06 6
07 7 Select
08 8
09 9 Tab
0A 10 | (Blank 1)
0B 11 (Blank 2)
0C 12 | (Blank 3)
0D 13 | (Blank 4)
0E 14
oF 15
10 16
11 17
12 18 (left)
13 19 (right)
14 20
15 21
16 22
17 23
18 24

Note that decimal keycodes 8 - 13 are
numeric keypad keys

7-16 Using HP-HIL Devices with HP-UX

Part II:

HP-HIL

Part II:

Keycodes for the HP-HIL “Cooked” Keyboard Driver (continued)

HP-HIL

Table 7-1.

Keycodes in Key Label
hex |decimal Unshifted Shift
19 25 Tab
1A 26 | Unused
1B 27
1C 28
1D 29 ((®)
1E 30 (%)
1F 31
20 32
21 33
22 ZE (D]
23 35 |(&)
24 36
25 37 | Unused
26 3B @
27 39 10
28 40
29 | a1
2A 42 | Unused
9B | 43
2C 44
2D 45 | Unused
2E 46
2F 47 | Unused
30 48 | Unused
31 49 | Unused
32 50 | Unused

Continued on next page ...

Using HP-HIL Devices with HP-UX 7-17

Table 7-1.

Keycodes for the HP-HIL “Cooked” Keyboard Driver (continued)

Keycodes in Key Label
hex |decimal Unshifted Shift
33 51 Unused
34 52 | Unused
35 53 | Unused
36 54 | Unused
37 55 Unused
38 56 | Unused
39 57
3A 58 | Unused
3B 59 | Unused
3C 60 |(©
3D 61 |10
3E 62 |10
3F 63
40 64 |
41 65
42 66
43 67 |
44 68 (@)

45 69 |8
46 70 |6
47 1 10)
48 72
49 73
4A 4 |9
4B 10

Continued on next page ...

Note that decimal keycodes 60 - 75 are
numeric keypad keys

7-18 Using HP-HIL Devices with HP-UX

Part Ii:

HP-HIL

Table 7-1.
Keycodes for the HP-HIL “Cooked” Keyboard Driver (continued)

Keycodes in Key Label
hex |decimal Unshifted Shift
4C 76 | Unused
4D 77 | Unused
4E 78 | Unused
4F 7 Unused
50 80 | Q
51 81 |2
52 82
53 | 83 |@ ®
54 84
55 | 85 |@® 0
56 | 86 ®
57 87 ®
58 88 |19 O
59 89 | Q
5A 2 |0 @)
5B 91 (&)
5C 92 10 D
5D 93 (D D
5E 9 (O Q
5F 9% |0 @)
60 9% (O
61 97 (O
62 28 10
63 99 | (Space)
64 100 |(9)

Continued on next page ...

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-19

Table 7-1.
Keycodes for the HP-HIL “Cooked” Keyboard Driver (continued)

Keycodes in Key Label
hex |decimal Unshifted Shift
65 101 {(®)

66 102 (&)

67 103

68 104 (@

69 105 [(w)

6A 106 (&)

6B 107 |(rR)

6C 108

6D 109

6E 110 [

6F 1 |

70 12 (@

71 113 |9

72 114 |(0)

73 115 |())

74 116

75 117 |11

76 118

77 119 {(m)

78 120

79 121

TA 122

7B 123

7C 124

7D 125 |(0)

7E 126 | Unused
iy 127 | Unused

7-20 Using HP-HIL Devices with HP-UX

Part II:

HP-HIL

If, for some reason, you need to connect more than one Keyboard to an
HP-HIL link, you must keep the following facts in mind:

a When you have multiple Keyboards in the HP-HIL link all operating in the
“cooked” mode, key presses from these keyboards are sequentially merged
together.

s When you have multiple Keyboards in the HP-HIL link all operating in the
“raw” mode, key presses from each keyboard is specific to that device.

If a process accesses an keyboard in the “raw” mode and another process
accesses a separate keyboard in the “cooked” mode, these processes will

not interfere with each other. However, if there are two separate processes
accessing the same Keyboard and one process accesses it in the “raw” mode
and the other accesses it in the “cooked” mode, all of the data will go to the
“raw” mode process.

Communicating with HP-HIL Devices

This section provides sample programs which can be used to identify and
describe all of the HP-HIL devices supported by HP-UX and it explains the
data read by the programs.

To use the programs in this section, you must type them in using either the

vi editor or HP-UX editor of your choice (the line numbers are not part of the
program). Next, compile the programs using either the C Language compiler
command cc, the FORTRAN compiler command fc, or the Pascal compiler
command pc. The programs will return the device status and 5 hexadecimal
values of the Describe Record. Next, they wait for you to move the HP Mouse
around on your desk or type in something from the HP 46021A Keyboard
before returning any data. Note that this same process and programs may be
used to test all the HP-HIL devices supported on the HP-UX operating system.

Sample C Language Program

The sample program presented in this section is used to open a link to the
device located at link address 1, it requests that an Identify and Describe be
performed on the device, reads some data, and then closes the link to the
device. To communicate with an HP-HIL device from the C Language, these
intrinsics are used: open, close, read, and ioctl.

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-21

C Program Listing.

#include <sys/hilioctl.h>
main()

{

}

int fd, status, index, bytes_read, done;
unsigned char describe[11], buffer[10]

/+0pen the device file for the first device on the loop.*/
fd = open("/dev/hili", 0);

for (index = O; index < 12; index++)
{
describe[index] = * ’;

}

/*This ioctl system call requests a describe record from
the device. The describe record contains information
describing the amount and types of data that can be
returned by the device.*/

status = ioctl(fd, HILID, &describe[0]);
printf("status J%d \n",status);
printf ("describe record\n");

for (index=0; index<12; index++)
{
printf (" %x\n", describe[index]);
}
printf("\n", ’ ’);

/*Read at least 21 bytes of data from the device.*/

done = 0; .
while (done < 21)
{

bytes_read = read(fd, buffer, 1);
done += bytes_read;

for (index = 0; index < bytes_read; index++)
{
printf (" %x\n", buffer[index]);
}
}
close(fd);

The following is an explanation of the program:

7-22 Using HP-HIL Devices with HP-UX Part li:

HP-HIL

Line 1 provides the include file (sys/hilioctl.h) which contains a list

of macros that execute specific functions when used within a C program.

The HILID macro (line 21) which is called in the above program executes

the identify and describe function. Note that the macro HILID can be

found in the file hilioctl.h. The path name for the hilioctl.h file is
/usr/include/sys/hilioctl.h. If you execute the cat or more command on
this path name, you will receive a screen listing of this file’s contents.

Lines 4 and 5 declare the variables to be used in the program.
Line 9 opens the file /dev/hil1 for reading.
Lines 11 through 14 initialize the describe array.

Line 21 uses the system call ioctl to call the macro HILID which when
executed returns a describe array in the argument describe[0]. A function
return value is assigned to the variable status.

Line 22 prints the value for status and Line 23 prints the column header for
the describe record listing.

Lines 25 through 28 are a for loop which list the contents of the describe
array. The contents listed are the device ID, the describe record header, and
the I/O descriptor byte.

Line 29 prints a blank and executes a carriage return.
Line 33 initializes the variable done.

Lines 34 through 48 are a while loop which reads 21 bytes of data from

the device one byte at a time and then list this data on the standard output
(CRT). The data returned is the number of bytes in each packet, a time stamp,
and a poll record header and it’s parameters.

Line 44 closes the file /dev/hil1l.

Part il: HP-HIL ' Using HP-HIL Devices with HP-UX 7-23

The results of using this program to read data from an HP Mouse are similar
to:

status O
describe record
68
12
c2
iE
2

OO0 00000

An explanation for these results can be found in the section entitled,
“Description of the Data Returned by the Programs.”

7-24 Using HP-HIL Devices with HP-UX Part Il: HP-HIL

Sample Pascal Program

The sample program presented in this section is used to open a link to the
device located at link address 1. It requests that an Identify and Describe be
performed on the device, read some data, and then close the link to the device.
To communicate with an HP-HIL device from Pascal, the HP-HIL device

file is opened by executing a Pascal reset. There is also the need to use the
Pascal alias directive to make function and procedure calls to the C Language
commands: ioctl and sprintf. The other Pascal directive used is sysprog
on.

Pascal Listing for Series 300.
1 $sysprog on$

2

3 program hildev (input, output);

4

5 const

6 maxstr = 255;

7 maxdes = 12;

8 loopcount = 21;

9 hil_id = 1074554883;

10 format = °* %X’ #0;

11

12 type

13 anystr = packed array [1..maxstr] of char;

14 des_array = packed array[1..maxdes] of char;

15

16 var

17 device_f : file of char;

18 buf : char;

19 describe : des_array;
20 index, status : integer;
21 format_str : packed array[1..8] of char;
22 line : anystr;
23
24 function ioctl $alias ’_ioctl’$ (fd, hilid : integer;
25 var des : des_array): integer; external;
26
27 procedure sprintf $alias ’_sprintf’$ (anyvar str, format : anystr;
28 num : integer); external;
29
30 begin
31 (*Open the device file for the first device on the loop.*)

32

33 reset (device_f, ’/dev/hill’);
34 for index := 1 to maxdes do describe[index] := chr(0);
35 format_str := format;

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-25

36
37 (*This ioctl system call requests a describe record from

38 the device. The describe record contains information
39 describing the amount and types of data that can be
40 returned by the device.*)

41

42 status := ioctl(3, hil_id, describe);
43 writeln (’status = ’, status:2);
44 writeln (’describe record’);

45 for index := 1 to maxdes do

46 begin

47 sprintf (line, format_str, ord(describe[index]));
48 writeln (line);

49 end;

60 writeln;

51

52 (*Read at least 21 bytes of data from the device.*)
53

64 index := O;
65 while index < loopcount do

56 begin

57 read (device_f, buf);

58 sprintf (line, format_str, ord(buf));
59 writeln (line);

60 index := index + 1;

61 end;

62 close(device_f);

63 end.

The following is an explanation of the program:

Line 1 $sysprog on$ is the Series 200/300 Pascal directive which allows you to
use ANYVAR. The ANYVAR parameter specifier in a function or procedure
relaxes type compatibility checking when the routine is called.

Lines 5 through 10 are the constants defined as follows:
m maxstr is the maximum string length for a packed array of characters.

m maxdes is the maximum string length for a packed array of characters
containing the describe record.

m loopcount is the number of times the while loop of lines 55 through 61 is to
be executed.

® hil_id is the decimal value of the HILID command. The decimal values for
the other HP-HIL commands can be found in a table in the section, “Identify
and Describe Command (HILID).” Note that it is only necessary to use these

7-26 Using HP-HIL Devices with HP-UX Part ll: HP-HIL

decimal values of the HP-HIL commands when using the FORTRAN and
Pascal programming languages.

m format is the character string used to format the output of the sprintf
command.

Lines 18 through 14 are the type declarations for the program. They are
defined as follows:

m anystr is a packed array of characters. This packed array of characters is
used to declare the variables 1ine, str, and format.

m des_array is the packed array of characters used to declare the variable
describe.

Lines 17 through 22 are a list of the variables declared for this program. They
are defined as follows:

m device_f is the file name assigned to the device file /dev/hill.
m buf is the character variable returned from reading the device_f file.

m describe is the packed array of characters which is assigned the describe
record. The describe record is explained in the section, “Identify and
Describe Command (HILID).”

m index is a loop control variable.

m status is the variable which is assigned the status of the opened file
device_f (/dev/hill) after executing the HILID command.

m format_str is the packed array of characters assigned the value of the
constant called format (> %X’#0).

m line is the packed array of characters that is assigned the value of the
character string that is returned when the sprintf command is executed.

Line 24 is a function which references the external HP-UX command ioctl. -
Note that the string parameter in the ALIAS directive has an under score
preappended to it. This is only true for Series 300 computers.

Line 27 is a procedure which references the external HP-UX command
sprintf. Note that the string parameter in the ALIAS directive has an under
score preappended to it. This is only true for Series 300 computers.

Line 83 opens the device file /dev/hill and assigns it the name device_f.

Part ll: HP-HIL Using HP-HIL Devices with HP-UX 7-27

Line 84 initializes the packed array describe.

Line 85 assig