
Device I/O and User Interfacing
HP-UX Concepts and Tutorials

HP 9000 Series 300/800 Computers

HP Part Number 97089-90057

FliOW HEWLETT
a!e. PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Legal Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett­
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © Hewlett-Packard Company, 1989

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern­
ment Department of Defense is subject to restrictions as set forth in para­
graph (b) (3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History

This manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may be
made at reprint without changing the printing date. The manual part number
will change when extensive changes are made.

September 1989 ... Edition 1. This edition supersedes manual part number
97089-90054. The current edition contains all information previously contained
in the Device I/O and the Curses and Terminfo tutorials. In addition, the
manual reflects the following changes:

• Examples in the Device I/O tutorial have been updated to reflect
changes for the 7.0 release.

• The Curses and Terminfo tutorial now includes 16-bit character
support.

• The NLS t.utorial has been removed and placed in a separate manual,
HP-UX Native Language Support (97089-90058).

iii

Contents

1. Interfacing Concepts
Variation Between Computer Systems . 1-1
Manual Organization 1-2
DIL Interfacing Subroutines 1-3

Linking DIL Routines. 1-3
Calling DIL Routines from Pascal 1-3
Calling DIL Routines from FORTRAN 1-4

General Interface Concepts 1-5
Definition 1-5
Interface Functions 1-6
Handshake I/O . 1-7

Handshake Output 1-7
Handshake Input 1-7

HP-IB Protocol 1-8
The HP -IB Interface 1-9

General Structure 1-9
Handshake Lines 1-10
Bus Management Control Lines 1-13

ATN: The Attention Line 1-14
IFC: The Interface Clear Line 1-14
REN: The Remote Enable Line 1-14
EOI: The End or Identify Line. 1-14
SRQ: The Service Request Line 1-15

The GPIO Interface 1-15

2. General-Purpose Routines
Background Basics 2-2

Interface Special Files . 2-2
Entity Identifiers (eid) 2-2

Contents-1

Programming Model
General-Purpose Routines . . .

Additional Series 300 Routines
Opening Interface Special Files. .
Closing Interface Special Files . .
Low-Level Read/Write Operations

Example
Designing Error Checking Routines

The errno Variable . . .
Using errno

The errno.h Header File
Displaying err no
Error Handlers .

Resetting Interfaces .
Locking an Interface
Controlling I/O Parameters

Setting I/O Timeout . .
Setting Data Path Width
Setting Minimum Data Transfer Rate
Setting the Read Termination Pattern

Termination on Byte Count
Termination on Hardware Condition
Termination on Data Pattern

Disabling a Read Termination Pattern
Determining Why a Read Terminated.

Example
Interrupts

Series 300 and 800 Interrupt Support
HP-IB Interrupts
GPIO Interrupts
io_on_interru pt
io_interrupt_ctl

3. Controlling the HP-IB Interface
Overview of HP-IB Commands

UNLISTEN .. .
UNTALK
DEVICE CLEAR

Contents-2

2-2
2-3
2-4
2-4
2-6
2-7
2-9
2-10
2-10
2-10
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-19
2-19
2-20
2-20
2-20
2-23
2-24
2-25
2-27
2-27
2-27
2-28
2-28
2-31

3-2
3-4
3-4
3-5

LOCAL LOCKOUT ~5
SERIAL POLL ENABLE 3-5
SERIAL POLL DISABLE 3-5
TRIGGER (Group Execute Trigger) 3-5
SELECTED DEVICE CLEAR. . 3-6
GO TO LOCAL 3-6
PARALLEL POLL CONFIGURE 3-6
PARALLEL POLL ENABLE 3-6
PARALLEL POLL DISABLE . 3-6

Overview of HP-IB DIL Routines. 3-7
Standard DIL Routines . . . 3-7
HP-IB: The Computer's Role 3-9

Ground Rules 3-9
Available Subroutines versus Controller Role . 3-9

Bus Citizenship: Surviving Multi-Device/Multi-Process
HP-IB 3-11

io_lock and io_ unlock 3-12
io_ burst 3-12
hpib_io 3-12

Opening the HP-IB Interface File. 3-13
Sending HP-IB Commands 3-13

Errors While Sending Commands . 3-16
Changing Parity on Commands 3-17

Active Controller Role 3-17
Determining Active Controller . 3-18
Setting Up Talkers and Listeners 3-19

Auto-Addressing 3-19
Using hpib_send_cmnd . . . 3-22
Calculating Talk and Listen Addresses 3-23
An Example Configuration 3-24

Remote Control of Devices 3-25
Locking Out Local Control 3-25
Enabling Local Control 3-26
Triggering Devices 3-26
Transferring Data 3-27

Data Output. . 3-27
Data Input 3-29

Clearing HP -IB Devices 3-30

Contents-3

Responding to Service Requests
Monitoring the SRQ Line . .
Processing the Service Request

Parallel Polling.
Configuring Parallel Poll Responses
Disabling Parallel Poll Responses
Conducting a Parallel Poll
Errors During Parallel Polls . . .

Waiting For a Parallel Poll Response
Calculating the mask
Calculating the sense
Example

Serial Polling
Conducting a Serial Poll .
Errors During Serial Poll

Passing Control
What If Control Is Not Accepted?
Errors While Passing Control

Controlling the ATN Line
Changing the Interface Bus Address

System Controller Role
Determining System Controller .
System Controller's Duties

hpib_abort
hpib_ren_ctl
Errors During hpib_abort and hpib_ren_ctl

The Computer As a Non-Active Controller
Checking Controller Status
Requesting Service

Errors While Requesting Service
Responding to Parallel Polls . . .

Calculating the Response . . .
Limitations of hpib_card_ppolLresp
Error Conditions
hpib_ppolLresp_ctl.

Disabling Parallel-Poll Response
Accepting Active Control . . .

Errors While Waiting on Status

Contents-4

3-31
3-31
3-33
3-34
3-35
3-39
3-39
3-41
3-42
3-42
3-43
3-44
3-46
3-46
3-48
3-49
3-49
3-50
3-51
3-51
3-52
3-52
3-54
3-54
3-55
3-55
3-57
3-57
3-58
3-60
3-61
3-62
3-62
3-63
3-63
3-64
3-65
3-66

Determining When You Are Addressed
Combining I/O Operations into a Single Subroutine Call

Iodetail: The I/O Operation Template
The Mode Component
The Terminator Component
The Count Component
The Buf Component

Allocating Space
Example
Locating Errors in Buffered I/O Operations

4. Controlling the GPIO Interface
Interface Configuration . . .

Creating the GPIO Interface File
Interface Control Limitations
Using DIL Subroutines . . .

Resetting the Interface
Performing Data Transfers.
U sing Status and Control Lines

Driving CTLO and CTLI
Reading STIO and STll . .

Controlling Data Path Width
Controlling Transfer Speed

GPIO Timeouts
Burst Transfers
Read Terminations

Determining Why a Read Operation Terminated
Specifying a Read Termination Pattern

Interrupts

A. Series 300 Dependencies
Location of the DIL Subroutines
Linking DIL Subroutines
The GPIO Interface

Data Lines
Handshake Lines . . .
Special-Purpose Lines .
Data Handshake Methods

3-67
3-72
3-73
3-73
3-75
3-75
3-76
3-76
3-77
3-79

4-1
4-1
4-2
4-2
4-3
4-4
4-5
4-5
4-6
4-7
4-8
4-8
4-9
4-9
4-9
4-9
4-9

A-I
A-2
A-2
A-2
A-2
A-3
A-3

Contents-5

Data-In Clock Source
Creating the Interface Special File

Creating the Special File
pathname ..
major_number
minor_number
Creating an HP-IB Interface File
Creating a GPIO Interface File.

Effects of Resetting (via io_reset) . .
Entity Identifiers
Restrictions Using the DIL Subroutines

hpib_send_cmnd
hpib_status
io_reset . . .
io_speed_ctl .
io_timeout_ctl

Performance Tips

B. Series 800 Dependencies
Compiling Programs That Use DIL
Accessing the Interface Special Files

Major Numbers
Minor Numbers and Logical Unit Numbers
Listing Special Files
Naming Conventions for Interface Special Files

Creating Interface Special Files. .
Hardware Effects on DIL Routines

hpib_rqst_srvce
hpib_io
hpib_atn_ctl, hpib-address_ctl, hpih_parity _ctl .
io_eoLctl .
io_reset . . .
io_speed_ctl .
io_ timeou t_ctl
io_ width_ctl .
Return Values for Special Error Conditions

DIL Support of HP-IB Auto-Addressed Files.
hpib_card_ppolLresp

Contents-6

A-3
A-4
A-4
A-4
A-4
A-5
A-5
A-6
A-7
A-7
A-7
A-7
A-8
A-8
A-8
A-8
A-9

B-1
B-2
B-2
B-2
B-3
B-4
B-5
B-6
B-6
B-6
B-6
B-6
B-7
B-7
B-7
B-7
B-8
B-8
B-10

hpib_io
hpib_ren_ctl . .
hpi b_send_cmd
hpib_spoll . . .
hpib_wait_on_ppoll
io_on_interrupt

Performance Tips
Process Locking
Setting Real-Time Priority
Preallocating Disc Space
Reducing System Call Overhead
Setting Up Faster Data Transfers .

C. ASCII Character Codes

D. DIL Programming Example

B-10
B-10
B-10
B-10
B-11
B-11
B-12
B-12
B-12
B-13
B-14
B-14

Contents-7

1
Interfacing Concepts

This tutorial explains how to access arbitrary I/O devices from HP-UX
through HP-IB (Hewlett-Packard Interface Bus) and GPIO (General-Purpose
I/O) interfaces by using subroutines contained in the HP-UX Device I/O
Library (DIL). Topics discussed include general I/O programming strategies, as
well as strategies related specifically to HP-IB and GPIO interfaces.

It is assumed that communication with I/O devices is handled through calls to
DIL subroutines from C, Pascal, or FORTRAN programs. Examples shown
in this tutorial are written in C, but the techniques illustrated are easily
converted for use with Pascal or FORTRAN by adding a little extra code.

Variation Between Computer Systems
In general, DIL subroutines function identically on all HP-UX computers,
regardless of series or model number within a series. However, because of
certain inherent differences between processors and other hardware, some
differences do exist. If such differences arise during an explanation, they are
clearly identified.

Additional major differences related to a specific model or series are identified
in a separate appendix for that series. Separate appendices are provided for
Series 300 and 800.

Interfacing Concepts 1-1

Manual Organization

Chapter 1: Interfacing Concepts presents basic I/O programming concepts and
a description of the HP-IB and GPIO interfaces.

Chapter 2: General-Purpose Routines discusses how to access interfaces from
HP-UX environment and how to implement I/O transfers.

Chapter 3: Controlling the HP-IB Interface describes I/O programming
techniques for the HP-IB interface.

Chapter 4: Controlling the GPIO Interface discusses I/O programming
techniques for the GPIO interface.

Appendix A: Series 300 Dependencies discusses hardware- and system­
dependent characteristics of DIL subroutines when used with Series 300
computers. If you are using a Series 300 HP-UX system, check this appendix to
ensure correct use of DIL subroutines.

Appendix B: Series 800 Dependencies is similar to other appendices, but for
Series 800 computers. Use this appendix to ensure the correct use of DIL
subroutines on Series 800 systems.

Appendix C: Character Codes

Appendix D: DIL Programming Example shows a non-trivial example of an
Amigo-protocol HP-IB device driver suitable for driving HP-IB line printers
that support Amigo protocol (commonly used on certain HP-IB disc drives
and line printers). This example program shows good HP-UX programming
practice, and illustrates a number of other techniques and features such as
parsing a command with arguments.

1-2 Interfacing Concepts

OIL Interfacing Subroutines

As mentioned previously, Device I/O Library (DIL) subroutines provide
a means for directly accessing peripheral devices through HP-IB and/or
GPIO interfaces connected to your computer system. Some routines are
general-purpose and can be used with any interface supported by the library,
while others provide control of only certain specific HP-IB or GPIO interfaces.

Linking OIL Routines

DIL routines can be called from C, Pascal, or FORTRAN programs. However,
the -I f1.ag must be given when invoking the C, Pascal, or FORTRAN compiler,
cc (1), pc (1), or fc (1). Otherwise, library subroutines are not automatically
linked with your program. To link DIL subroutines to a compiled C program,
invoke the C compiler as follows:

cc program.c -ldvio

Similarly, for a Pascal program, use:

pc program.p -ldvio

and for a FORTRAN program, use:

fc program.f -ldvio

In all three cases, the -I option is passed to the HP-UX linker, causing it to
link any DIL routines called by the program being compiled. To determine
the exact location of DIL library on your HP-UX system, refer to the
corresponding hardware-specific appendix in this tutorial.

Calling OIL Routines from Pascal

You must provide an external declaration for each DIL subroutine called from
a Pascal program. An external declaration consists of the subroutine heading,
including a formal parameter list and result type, followed by the Pascal
EXTERNAL directive. For example, the C description of open(2) is:

int open(path. oflag)
char *path;
int of lag;

Interfacing Concepts 1-3

The equivalent external declaration for the same subroutine in a Pascal
program is:

TYPE
PATHNAME = PACKED ARRAY [0 .. 50] OF CHAR;

FUNCTION open
(VAR path: PATHNAME;
of lag: INTEGER):
INTEGER;
EXTERNAL;

Note that the path parameter is a VAR parameter, indicating that the
parameter is passed by reference. This simulates the passing of a pointer,
which is what open(2) expects. In general, declaring a C routine from Pascal is
straightforward.

Calling OIL Routines from FORTRAN

C and FORTRAN subroutine calls are not compatible because C passes
parameters by value while FORTRAN passes them by reference. This
incompatibility can be easily circumvented by directing the compiler to
generate a call by value through the use of FORTRAN's $ALIAS option. For
example:

$ALIAS close = 'close' (%val)

If the FORTRAN compiler on your system does not support this form of
$ALIAS, the parameter-passing differences can be resolved by writing an
onionskin routine which is a C-language function written for the purpose of
resolving parameter-passing irregularities between C and other languages.

For example, to access close(2) through an onionskin routine, use:

$ALIAS close = '_my_io_close'

then write the onionskin routine:

int my_io_close (eid)
1* the compiler will create the external symbol "_my_io_close"

based on the above declaration*/
int *eid;
{

return (close (*eid»;
}

1-4 Interfacing Concepts

General Interface Concepts
The remainder of this chapter discusses interfaces in general and the HP-IB
and GPIO interfaces in particular. This background information is helpful
for understanding system operation, but is not prerequisite to being able to
successfully use DIL routines.

Definition

An interface is a built-in or plug-in electronic subassembly that manages the
transfer of information between the computer and one or more peripheral
devices. It converts electrical signals from the computer to a form that is
compatible with the requirements of the peripheral device and converts signals
from the peripheral device to a form that can be used by the computer. The
interface also controls information transfer paths and transfer timing such that
data flows in an orderly manner in correct sequence.

HP 9000 computers are equipped with both built-in as well as plug-in
interfaces that can be purchased as standard or optional items. Separate
interface cabling connects the peripheral device(s) to the interface unless the
peripheral device is built into the computer housing. The following functional
block diagram illustrates the functional architecture of a typical interface:

Computer

I/O
Backplane
Connector

Electrical I/O
Level Conversion Device
Circuitry Connector

Interface Logic
and Peripheral

Control Circuitry Device

Figure 1-1. Interface Functional Diagram

Interfacing Concepts 1-5

Interface Functions

A usable interface must fill the following system requirements:

• Electrical Compatibility: The interface must convert electrical signal
voltages, currents, frequencies, and timing from the computer to a
form that is useful to the peripheral device, and vice-versa (unless no
conversions are necessary). It must also provide any special protection
that might be necessary to protect circuitry within the computer or
peripheral from damage due to external effects related to the interface
cable or power source.

• Mechanical Compatibility: The interface must be mechanically
structured so that it is readily connected to both the computer and the
peripheral device. This is usually accomplished by means of an interface
cable that has appropriate connectors on each end.

• Data Compatibility. Just as two people must speak a common language
before they can communicate well, the computer and peripheral must
use compatible forms of communication. While in most cases, the
computer operating system and the programmer are responsible for
general data format, communication protocols such as those used
in data communication networks and HP -IB interconnections are
usually managed by the interface card, based upon various signals and
commands from the computer and the peripheral device.

• Timing Compatibility. Peripheral devices within a given system rarely
have identical data transfer rates and data transfer timing requirements.
They also rarely match the timing and transfer rates in the computer or
other devices in the system. For this reason, one of the most important
functions of the interface is to manage and coordinate the interaction
between the computer and the interface as well as timing between the
interface and peripheral devices by using special timing signals that
are inserted into the data being transferred (most common in data
communication interfaces) or carried on separate control signal lines
(typical for HP-IB and GPIO interfaces). These timing signals are used
to coordinate when a transfer begins and at what rate the information
is handled.

• Processor Overhead Reduction: Another important function of the
interface card is to relieve the computer of low-level tasks, such as

1-6 Interfacing Concepts

performing data transfer handshakes. This distribution of tasks eases
some of the computer's burden and decreases the otherwise stringent
response-time requirements of external devices. The actual tasks
performed by each type of interface card vary widely. The remainder of
this chapter concentrates on the functions of two particular interfaces:
HP-IB and GPIO.

Handshake I/O

Most HP-IB and GPIO interfaces operate by means of handshake transfers
which operate generally as follows:

Handshake Output

• Computer sets input/output control to output and places first word or
byte on I/O bus to interface.

• Computer asserts peripheral control line to interface to start transfer.

• Interface recognizes asserted control signal from computer and transfers
data to output drivers and interface cable.

• Interface asserts output timing signals to peripheral device and waits
for response.

• Peripheral accepts output timing signals, inputs data from interface
cable, then returns flag signal indicating data has been accepted.

• Interface recognizes flag and sets flag to computer indicating the
transaction is complete. If the sender and receiver do not agree upon
start time and transfer rate, then the transfer is carried out via a
handshake process: the transfer proceeds one data item at a time with
the receiving device acknowledging that it received the data and that
the sender can transfer the next data item. Both types of transfers are
utilized with different interfaces.

Handshake Input

• Computer sets input/output control to input.

• Computer asserts peripheral control line to interface to start transfer.

Interfacing Concepts 1-7

• Interface recognizes asserted control signal from computer, sends data
input command sequence to peripheral device, and waits for response.

• Peripheral accepts input command sequence, places data on interface
cable, then returns flag signal indicating data is available.

• Interface recognizes flag, moves data to computer I/O bus, and sets flag
to computer indicating the transaction is complete.

Different interfaces support variations on this basic sequence. For example,
more sophisticated data communication and HP-IB cards may be equipped
with a microprocessor and shared memory that is directly accessible to the
computer and the interface processor. The computer moves data to and from
shared memory according to program needs, while the interface processor
performs similar operations to meet the demands of any data transfers in
progress. Shared pointers and other flags prevent collisions between conflicting
demands from the two processors, and the increased efficiency of a "smart"
interface greatly reduces the complexity and overhead related to more mundane
approaches to interrupt-driven handshake I/O.

For example, instead of handling each character or word as a single transaction,
the computer can load a block of data into the shared memory then signal the
interface that data is ready for transfer. The interface then uses the shared
pointers or other means to determine how much data to transfer, handles the
transfer, then signals the computer that the task is complete.

HP-IB Protocol

When a single interface is shared by multiple peripheral devices, additional
signalling must be used to control which devices respond to each transaction
as in HP-IB interfacing. A selection of protocol signals and device commands
are used to activate or deactivate various devices on the HP-IB bus according
to the needs of the bus controller (controlling interface). This signals, their
functions, and the sequences in which they are used are discussed in greater
detail throughout this tutorial.

1-8 Interfacing Concepts

The HP-IB Interface

The Hewlett-Packard Interface Bus (HP-IB) was developed at HP as the
solution to an expanding need for a universal interfacing technique that
could be readily adapted to a wide variety of electronic instruments. It was
later expanded to include high-speed disc drives and other high-performance
computer peripherals. The HP-IB architecture was subsequently proposed
to and accepted by the Institute of Electrical and Electronic Engineers
(IEEE) and is now widely used throughout the electronic industry. HP-IB is
compatible with IEEE standard 488-1978. The number of devices that can
be connected to a given HP-IB interface depends on the loading factor of
each device, but in general up to 15 devices (including the interface) can be
connected together while still maintaining electrical, mechanical, and timing
compatibility requirements on the bus.

General Structure

IEEE Standard 488-1978 defines a set of communication rules called "bus
protocol" that governs data and control operations on the bus. The defined
protocol is necessary in order to ensure orderly information traffic over the bus.

Each device (peripheral or computer interface) that is connected to the HP-IB
can function in one or more of the following roles:

System Controller Master controller of the HP-IB. The computer interface
is usually the bus controller when all peripheral devices
on the bus are slaves to the system computer. However,
any other device can become the active controller if it is
equipped to act as a controller and control is passed to
it by the System Controller. The System Controller is
always the active bus controller at power-up.

Active Controller Current controller of the HP-IB. At power-up or
whenever IFC (Inter Face Clear) is asserted by the System
Controller, the System Controller is the active controller.
Under certain conditions, the System controller may pass
control to another device that is capable of managing the
bus in which case that device becomes the new active
controller. The active controller can then pass control to

Interfacing Concepts 1-9

Talker

Listener

another controller or back to the System Controller. If
the System Controller asserts IFC, the active controller
immediately relinquishes control of the bus.

A device that has been authorized by the current active
controller to place data on the bus. Only one talker can be
authorized at a time.

Any device that has been programmed by the active
controller to accept data from the bus. Any number of
devices on the bus can be programmed by the active
controller to listen simultaneously at any given time.

In typical systems, an HP-IB interface in the computer can act as a controller,
talker, and listener. If more than one computer is connected to the same bus,
only one interface can be configured as System Controller to prevent conflicts
at power-up (this is usually accomplished by a switch or wire jumper on the
interface card). A device that can only accept data from the bus (such as a
line printer) usually operates as a listener, while a device that can only supply
data to the bus (such as a voltmeter) usually operates as a talker. However,
before any device can talk or listen (after power-up initialization), it must be
authorized to do so by the current active controller. Bus configuration varies,
depending on the type of activity that is prevalent at the time. However, in
any case, the bus can have only one Active Controller and only one talker at a
given time, though it can have any number of listeners.

HP-IB is composed of 16 lines (plus ground) that are divided into 3 groups:

• Eight data lines form a bi-directional data path to carry data,
commands, and device addresses.

• Three handshake lines control the transfer of data bytes.

• The five remaining lines control bus management.

Handshake Lines

The handshake lines used to synchronize data transfers are:

DAY DAta Valid: Valid data has been placed on bus by talker.

NRFD Not Ready For Data: One or more listeners not yet ready to
accept data from the bus.

1-10 Interfacing Concepts

NDAC

Note

Not Data ACcepted: One or more listeners has not yet accepted
the data currently on the bus.

The HP-IB interface uses negative (ground-true) logic for
handshake, data, and bus management lines. This means that
when the voltage on a line is at a logic LOW level, the line is
asserted (true). When a logic HIGH voltage level is present on
the line, the line is not asserted (false).

In general, software documentation refers to handshake and
other lines by their name acronym such as DAV, NRFD,
NDAC, etc. When discussing these same signal lines in
hardware documents, it is customary to refer to ground-true
(low-true) logic lines by their name acronym with a bar across
the top such as DAV, NRFD, NDAC, etc. In this document,
both versions are used. The overbar is usually present when
discussing hardware operation, but usually absent when
software is being treated. In this tutorial, only the name is
significant. Signal names are synonymous, with or without
the over bar unless specifically noted otherwise; the overbar is
used for the convenience of those readers whose experience is
oriented more toward hardware than software.

Interfacing Concepts 1-11

The timing diagram in Figure 1-2 shows how handshake lines are used to
complete a data item transfer. The discussion which follows is based on the
contents of Figure 1-2.

Figure 1-2. HP-IB Handshake Sequence

All handshake lines are electrically connected in a "wired-OR" configuration
which means that any device can pull the line low (active or asserted) at any
time, and more than one device may pull the line low simultaneously or later in
a given handshake cycle. The line then remains low until every device that was
previously pulling the line low has released the line, allowing it to float to its
high state. At the start of the handshake cycle (point A), the handshake lines
are in the following states:

• DAV is false (high), meaning that the current talker has not yet placed
valid data on the bus.

• NRFD is true (low), meaning that one or more listeners is not yet ready
to accept data from the bus.

• NDAC is true (low), meaning that bus data has not yet been accepted
by every listener on the bus.

1-12 Interfacing Concepts

When a listener is ready to accept data, it releases NRFD, allowing it to go
high provided no other listener is still holding the line low. However (due to
the "wired-OR" interconnection scheme used by HP-IB), NRFD remains LOW
(true) until every listener releases it. When every listener is ready to accept
data (indicated by NRFD being released by every listener), NRFD changes to
its logic HIGH (false) state as indicated by point B in Figure 1-2.

By monitoring NRFD, the talker can determine when to send data: NRFD
false means that every listener is ready to accept data. The talker then places
data on the data lines and asserts DAV (point C), indicating to the listeners
that valid data is available on the data lines for them to accept.

As soon as each listener detects that DA.V has been asserted, it asserts NRFD
(point D), driving it low (true) unless NRFD has already been driven low by
another listener in the same cycle. '

After driving NRFD low, each listener inputs and processes the data from the
data lines. When it has accepted the data, the listener releases NDAC. As
with the NRFD line at point B, NDAC remains low (true) until every listener
on the bus has released the line, allowing it to go high (false). When NDAC
goes high, the false logic state indicates to the talker that every listener has
accepted the data (point E).

When the talker determines that every listener has accepted the data, it
releases the DAV line which rises to its high (false) state. At the same time,
the talker disables its outputs to the data lines, allowing them to rise to their
high (false) state (point F).

When DAV goes false, the listeners assert NDAC (point G), driving it low.
This signifies the end of the handshake (point H), at which time all bus logic
lines are again at the same state as they were before the handshake started
(point A).

Bus Management Control Lines

There are five bus management control lines:

ATN ATtentioN: Treat data on data lines as commands, not data.

IFC InterFace Clear: Unconditionally terminate all current bus activity.

Interfacing Concepts 1-13

REN Remote ENable: Place all current listeners in Remote operating
mode.

EOI End Or Identify: End of data message. If ATN is true (low),
Active Controller is conducting a parallel poll (Identify) of devices
on the bus.

SRQ Service ReQuest: Bus device is requesting service from current
Active Controller.

ATN: The Attention Line

Command messages are encoded on the data lines as 7-bit ASCII characters,
and are distinguished from the normal data characters by the attention (ATN)
line's logic state. That is, when ATN is false, the states of the data lines are
interpreted as data. When ATN is true, the data lines are interpreted as
commands.

IFC: The Interface Clear Line

Only the System Controller sets the IFC line true. By asserting IFC, all bus
activity is unconditionally terminated, the System Controller becomes the
Active Controller, and any current talker and all listeners become unaddressed.
Normally, this line is used to terminate all current operations, or to allow the
System Controller to regain control of the bus. It overrides any other activity
currently taking place on the bus.

REN: The Remote Enable Line

This line allows instruments on the bus to be programmed remotely by the
Active Controller. Any device addressed to listen while REN is true is placed
in its remote mode of operation.

EOI: The End or Identify Line

If ATN is false, EOI is used by the current talker to indicate the end of a data
message. Normally, data messages sent over the HP-IB are sent using strings of
standard ASCII code terminated by the ASCII line-feed character. However,
certain devices must handle blocks of information containing data bytes within
the data message that are identical to the line-feed character bit pattern, thus

1-14 Interfacing Concepts

making it inappropriate to use a line-feed as the terminating character. For
this reason, EOI is used to mark the end of the data message.

The Active Controller can use EOI with ATN true to conduct a parallel poll on
the bus.

SRQ: The Service Request Line

The Active Controller is always in charge of overall bus activity, performing
such tasks as determining which devices are talkers and listeners, and so forth.
If a device on the bus needs assistance from the Active Controller, it asserts
SRQ, driving the line low (true). SRQ is a request for service, not a demand,
so the Active Controller has the option of choosing when and how the request
is to be serviced. However, the device continues to assert SRQ until it has
been satisfied (or until an interface clear command disables the request).
Exactly what satisfies a service request depends on the requesting device, and
is explained in the operating manual for the device.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel
interface that can be used to communicate with a variety of devices. The
GPIO interface utilizes data, handshake, and special-purpose lines to perform
data transfers by means of various user-selectable handshaking methods.

While the GPIO interfaces used on various HP-UX computers are electrically
very similar, they differ in certain important aspects. Refer to the appendices
for Series 300 and 800 for information pertaining to your specific application.

Interfacing Concepts 1-15

2
General-Purpose Routines

The DIL library contains several general-purpose subroutines that can be used
with any interface supported by the library (see Table 2-1 for a complete list).
This chapter explains how to use these subroutines in application programs.
Specifically, the following topics are presented:

• Basic introductory background concepts that are essential to
understanding correct use of DIL library routines.

• Opening interface special files.

• Closing interface special files.

• Read/write operations to interface special files.

• Designing error-checking routines.

• Resetting an interface.

• Controlling input/output parameters.

• Determining why a read terminated.

• Handling interrupts.

General-Purpose Routines 2-1

Background Basics

Interface Special Files

HP-UX handles I/O to an interface or system peripheral device much like
it handles read/write operations to disc storage files: every I/O interface
or device is associated with an entity generally referred to as a device
file, special file, or device special file. All three terms are used
interchangeably and are usually synonymous. Any program that accesses
subroutines in the DIL library cannot be used unless an appropriate device
special file has been created for the corresponding interface. While the program
can be written before the file exists, it cannot be used. The method used to
create an interface special file depends on the model of computer being used.
Refer to the appropriate hardware-specific appendix for information about
creating interface special files on your system.

Entity Identifiers (eid)

Nearly all DIL routines require an entity identifier (eid) as a parameter. The
entity identifier is an integer returned by the open(2) system call when opening
the interface special file (eid is the file descriptor for the opened special file on
Series 300 and 800). The eid supplied as a parameter to a DIL subroutine tells
the subroutine which interface special file to use.

Programming Model

As a general rule, all programs that contain DIL subroutine calls for a specific
interface should conform to the following structure:

1. Use an open system call to obtain the interface entity identifier (eid) for
the special file being used. Opening an interface special file is discussed
later in this chapter.

2. Use the returned eid as a parameter in DIL subroutine calls to perform
desired tasks through the corresponding interface. Suitable techniques
are discussed throughout the remainder of this tutorial.

2-2 General-Purpose Routines

3. When the necessary DIL subroutine calls have been completed, close
the interface special file that was opened in step 1 above as discussed
later in this chapter.

General-Purpose Routines

Table 2-1 provides a brief synopsis of the standard general-purpose routines
discussed in this chapter. Several system calls related to the use of DIL
subroutines, are also discussed: open(2), close(2), read(2), and write(2).

Table 2-1. General-Purpose Routines.

Routine Description

io_reset Reset a specified interface.

io_timeout_ctl Establish a timeout period for any operation performed on a
specified interface by a DIL routine.

io_width_ctl Set the data path width for a specified interface.

io_speed_ctl Select a data transfer speed for a specified interface.

io_eol_ctl Set up a read termination character for data read from a
specified interface.

io_get_term_reason Determine how the last read terminated for the specified
interface.

io_on_interrupt Set up interrupt handling for a program.

io_interrupt_ctl Enable or disable interrupts for a specified interface.

io_lock Lock an interface for exclusive use by the calling process.

i~_unlock Unlock an interface so it can be used by other processes.

General-Purpose Routines 2-3

Additional Series 300 Routines

Series 300 systems also support the following DIL subroutines:

Subroutine Description

io_burst Control the data path between computer memory and an
HP-IB or GPIO interface. If flag = 0, all data is handled
through kernel calls with the normal associated overhead. If
flag is non-zero, burst mode locks the interface and data is
transferred directly between memory and the I/O mapped
interface until the transfer is completed. Burst mode yields
substantial improvement in efficiency when handling small
amounts of data or high-speed data acquisition.

This subroutine handles high-speed transfers on both HP-IB
and GPIO I/O.

io _dma_ctl Control usage of DMA channels by DIL devices.

Refer to the io_burst(3I) and io_dma_ctl(3I) entries in the HP-UX Reference
for details on using these subroutines.

Opening Interface Special Files
With the exception of the default standard input, standard output, and
standard error files, all read/write operations to any file from inside C,
FORTRAN, or Pascal programs require that the file(s) be explicitly opened
before they can be used. The HP-UX open(2) system call is used to accomplish
this as follows:

#include <fcntl.h>
int eid;

eid = open(filename. ofiag);

filename is either a character string containing the device file's external HP-UX
name or a pointer to a buffer containing the external name.

2-4 General-Purpose Routines

The integer variable ofiag specifies the access mode for the opened file, and
can have one of six possible values, as defined in the /usr/include/fcntl. h
header file: O_RDONLY (value = 0) requests read-only access, O_WRONLY (value
= 1) requests write-only access, and O_RDWR (value = 2) requests both read
and write access (three values with O_NDELAY not set, three values with
O_NDELAY set - see io_lock (31) in the HP-UX Reference, for a total of
six values). To use these constants in a programs, the #include C-compiler
directive must be present as shown in the example above.

An open system call on an interface special file returns an integer representing
the entity identifier (eid) for the opened interface. As mentioned earlier, the
entity identifier is required as a parameter in all DIL subroutine calls. It is also
required as a parameter for all read/write operations to the opened file.

The following code defines an entity identifier called eid and opens an interface
file called /dev/raw_hpib with access enabled for both reading and writing:

#include <fcntl.h>
#include <errno.h>
int eid;

eid = open ("/dev/raw_hpib", O_RDWR);

Special files can also be opened by placing the character string name of the file
being opened in a string variable, then executing the open system call with a
pointer to the variable as shown in the following code segment:

#include <fcntl.h>
int eid;
char *buffer;

buffer = "/dev/raw_hpib";
if «eid = open (buffer , O_RDWR)) == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);

}

If the call to open succeeds, a non-negative integer is returned as the entity
identifier. If an error occurs and the file is not opened, -1 is returned and
errno is set to indicate the error.

General-Purpose Routines 2-5

Closing Interface Special Files
Good programming practice dictates that an open interface special file should
be closed when a program is through using it by executing a close(2) system
call. This guideline is valid even though any open files are automatically closed
by the HP-UX operating system when a process terminates (via exit(2) or a
return from the main routine).

Note HP-UX limits the number of files a given process (program)
can have open at one time to NO_FILE as defined in the
/usr/include/param.h header file. Series 300 systems limit
the number of open DIL files in the entire system to the value
of the configurable parameter ndilbuffers (default is 30). See
the HP- UX System Administrator Manual for information on
changing this value. Series 800 systems limit the number of
open DIL files to 16 per interface.

The close system call requires the entity identifier corresponding to the open
interface special file that is being closed. The following code segment shows
how to open and close an HP -IB interface:

#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid;

if ((eid = open ("/dev/raw_hpib", O_RDWR)) == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

/* Code to perform I/O operations
(read/write in this case) on the open interface. */

close(eid);

Upon completion of the close system call, the entity identifier is no longer valid
and is available for the system to assign to another file. If the file is again

2-6 General-Purpose Routines

opened later in the program, the system mayor may not assign the same eid
value, so appropriate caution in using eid values is in order.

close(2) returns a value of zero if the file is successfully closed. Otherwise, it
returns a -1 and the external error variable errno(2) is set to indicate the
error (error handling is discussed later in this chapter). The most common
error returned by close (EINVAL) is related to an invalid value for eid meaning
that the wrong value was used or the file is already closed.

Low-Level Read/Write Operations

Most HP-UX I/O operations to system peripheral devices is handled at a
fairly high level where the system automatically provides buffering and other
services that are not under the direct control of the user or program being run.
However, some situations that are commonly encountered by DIL users require
a much more intimate control of individual I/O transactions. These low-level
operations provide no buffering or other services, and are a direct entry into
the operating system. The two HP-UX system calls, read(2) and write(2),
provide low-level I/O read/write capabilities. Both require three arguments:

• The entity identifier for an open file

• A buffer (string variable) in the program where data is to come from
during write or go to during read (write empties a buffer; read fills a
buffer).

• The number of bytes to be transferred.

General-Purpose Routines 2-7

Calls to read have the form:

#include <fcntl.h>
#include <errno.h>
main()
{

int eid; I*the entity identifier*1
char buffer [10] ; I*buffer in which the read data will be placed*1

if «eid = open(1I Idev/raw_hpib" , O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

I*establish communication with the raw HP-IB device file
as described in Chapter 3, "Controlling the HP-IB interface"*1

read(eid, buffer, 10); I*reads 10 bytes from a previously opened*1
} I*file with the entity identifier "eid" . *1

Calls to write are very similar:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid; I*the entity identifier*1
char *buffer; 1* the buffer containing data to be written to a file*1
if «eid = open ("/dev/raw_hpib", O_RDWR» == -1) {

}

printf("open failed, errno = %d\n", errno);
exit(2);

io_reset(eid) ;
io_timeout_ctl(eid, 1000000);

I*establish communication with the HP-IB interface as described
in Chapter 3, "Controlling the HP-IB Interface"*1

buffer = "data message";
write(eid, buffer, 12);

I*message to be sent*1
1*12 bytes are written to previously*1
I*opened file with the entity identifier "eid"*1

2-8 General-Purpose Routines

Although read and write require the number of bytes to be transferred as their
third argument, other characteristics (discussed later) of the device associated
with the interface file eid can end the transfer before this number is reached.

Example

Assume you have already created an auto-addressed special file, /dev/hpib_dev
for an HP-IB device. Your program must first open /dev/hpib_dev for reading
and writing:

int eid;
eid = open (li/dev/hpib_dev lI

, O_RDWR);

To place data on the bus, use write:

write(eid, IIThis is a test", 14);

In this example, 14 characters are sent through eid. The literal string
expression This is a test is placed in a data storage area by the compiler
for later handling by the call to write. On output, if the number of characters
requested does not match the length of the data storage space, the message is
truncated (if the byte count is smaller than the data block) or extended into
the next data block assigned by the compiler (if the byte count is larger than
the data block).

To receive 10 bytes of data from the bus and place them in buffer, use:

char buffer [10] ;
read(eid, buffer, 10);

In this code segment, the read routine will attempt to read up to 10 bytes of
data from the interface and place it in buffer.

General-Purpose Routines 2-9

Designing Error Checking Routines

All Device I/O Library routines return -1 and set an external HP-UX variable
called errno if an error occurs during execution.

The errno Variable

errno is an integer variable whose value indicates what error caused the failure
of a system or library routine call. It is not reset after successful routine calls,
and should never be checked for value until after you have determined that an
error has occurred.

Well-designed programs always include adequate error checking. However,
most examples shown in this tutorial (other than in this section) do not verify
successful completion of subroutine calls.

Refer to the errno(2) entry in the HP- UX Reference for complete definitions of
the various errors returned when a system call fails.

Using errno

The following code segment must be present in the early part of any program
that accesses errno:

#include <errno.h>

The errno.h Header File

The header file /u8r /include/ errno. h uses error numbers defined in header
file /u8r / incl ude/ 8Y8/ errno . h. For a complete list of errors and their
associated meanings, refer to errno(2) in the HP- UX Reference.

2-10 General-Purpose Routines

Displaying errno

Once errno has been declared in a program, there are two ways to check its
value if a routine fails. The simplest approach is to check the return value to
determine whether or not the routine failed, then print out the value of errno
and exit if it did. The following example illustrates this strategy:

#include <errno.h>
#include <fcntl.h>
mainO
{

}

int eid;

if «eid = open(II/dev/raw_hpib ll
, O_RDWR» == -1)

{

}

printf("Error occurred. Errno = %d", errno);
exit(1);

When this method is used, the program user must refer to the errno(2) entry
in the HP- UX Reference to determine what the printed value of errno means.

General-Purpose Routines 2-11

Error Handlers

Another approach that is more complex for the programmer but much
more convenient for the user is to check for specific values of errno and
execute error routines related to the value. In most cases, only a limited
number of situations can cause a particular a subroutine to fail, so there is a
correspondingly small number of errno values that can be encountered upon
failure. Possible error values are usually listed in the HP- UX Reference on the
manual page entry for the failed subroutine.

For example, checking open(2) in the HP- UX Reference reveals that errno is
set to ENOENT (defined in the errno. h header file) if you attempt to open a file
that does not exist and you have not given the system call permission to create
a new file. Armed with this information, you can incorporate the following
code segment in your program:

#include <errno.h>
#include <fcntl.h>
maine)
{

}

int eid;

if «eid = open ("/dev/raw_hpib" . O_RDWR» == -1)
{

}

if (errno == ENOENT)
printf("Error: cannot open; file does not exist\n");

else
printf("Error: file exists but cannot open\n");

exit (1) ;

Note that the print statements in the example above could be replaced with
calls to more sophisticated error-handling routines such as perror (see the
perror(3C) entry in the HP- UX Reference).

2-12 General-Purpose Routines

Resetting Interfaces
The DIL routine io_reset can be used to reset both HP-IB and GPIO
interfaces.

The following example call to io_reset resets the interface whose entity
identifier is eid where eid is the value that was returned when the interface
special file was opened.

io_reset(eid);

Refer to the appropriate hardware-specific appendix for more information
about the exact effects of io_reset on HP-IB and GPIO interfaces when used
with various computer models.

For example, suppose that after opening an interface file you want to make sure
the interface has been properly initialized. This is done by calling io_reset
and looking at its return value:

#include <fcntl.h>
#include <errno.h>
main()
{

}

int eid;

if «eid = open("/dev/raw_hpib", D_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2) ;

}

if (io_reset(eid) == -1)
{

}

printf("Possible problem with interface\n");
exit (1) ;

/* program continues if "io_reset" was successful */

General-Purpose Routines 2-13

Locking an Interface
Using a single interface to control multiple peripheral devices provides many
advantages in convenience, cost and system operating characteristics. However,
when several programs and/or several users need simultaneous access to
peripherals sharing a single interface, conflicts arise. This problem is especially
annoying when one user needs exclusive control of the interface during a set of
critical I/O operations. Unless a mechanism is provided to lock out other users
during critical program steps, useful results may be unobtainable in some cases.

Two DIL subroutines, io_lock and io_unlock are provided for this purpose.
The first locks the interface so that only the process that locked it can use
the interface until it is unlocked. The second unlocks the interface so other
processes can again access it.

When another process attempts to access a locked interface, the process will
sleep until the interface is unlocked (or a timeout occurs) if the O_NDELAY
flag was not set at the time the requesting process executed the open(2)
system call. If the O_NDELAY flag was set during the call to open(2) and the
interface is locked, any attempts to access the locked interface fail and the DIL
subroutine call from the process returns with an error.

Locks on an interface are owned by the process, and are not associated with
the eid. This means that the same process can access a given interface through
another eid if another open is performed on the device. If a process uses a
fork (2) system call to create a child process that uses the same interface, the
child does not inherit the current lock from the parent. Since it has a different
process ID than the parent, it also cannot access the locked interface file until
the parent unlocks it.

For good programming practice, any locks created by a process should be
unlocked through a call to i~_unlock before terminating. However, any locks
held by a process are released when the process terminates, whether or not a
call to io_unlock was executed. Refer to iO_lock(3I) in the HP- UX Reference
for more information about locking and unlocking interfaces.

Caution Do not place a lock on any interface that supports any system
disc or swap device. Interface locks are enforced by the system,
and such a condition may require rebooting in order to recover.

2-14 General-Purpose Routines

Controlling I/O Parameters

The Device I/O Library provides four subroutines that perform I/O control
operations pertaining to timeout, data path width (usually 8 or 16 bits),
transfer speed, and read termination (end-of-line) pattern. The subroutines
and their functions are as follows:

Subroutine Controlled I/O Function

io_ timeout_ctl Timeout: Assign a timeout value in microseconds for I/O
operations (actual timeout resolution may be limited by system
hardware).

io_width_ctl Data Path Width: Specify width of the interface's data path or
switch between supported widths for various operations.

io_speed_ctl Transfer Speed: Request a minimum speed for data transfers
through the interface in kilobytes (Kbytes) per second.

io_eol_ctl Read Termination Pattern: Assign a pattern to be recognized as a
read termination pattern.

Note It is not uncommon for a single process to have multiple
eids open simultaneously (resulting from multiple calls to
open in a single program. The subroutines io_timeout_ctl,
io_width_ctl io_speed_ctl, and io_eol_ctl, can be used
to conveniently configure different values for timeout, width,
speed, and termination pattern on any given eid without
disturbing the previously configured (or default) values
associated with other eids.

Unless specifically altered by calls to one or more of these
subroutines, interface file operation uses system defaults for
each eid.

Opening multiple eid s on a given interface file, then configuring each
independently is an easy way to handle multiple devices that use different data
formats without having to reconfigure each individual I/O operation.

General-Purpose Routines 2-15

Setting I/O Timeout

I/O timeout determines how long the system waits for a response from the
interface or peripheral device each time an I/O operation is initiated. If the
timeout limit is exceeded, the operation is aborted and a timeout error is
returned. The default timeout is set to 0 which disables timeout errors.

If timeout is disabled (zero) and an error condition occurs that prevents
successful completion of a data transfer or other I/O operation, the calling
program may hang. Therefore, use of a non-zero timeout value is strongly
recommended as good programming practice. To set or change the timeout use
io_ timeout_ctl as follows:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;
long time;

if «eid = open(II/dev/raw_hpib ll , O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid);

time = 1000000; /*set timeout of 1 second*/

/*data transfers using "eid" are controlled by the
timeout value "time"*/

eid is the entity identifier associated with the open interface file, and time is a
32-bit long integer specifying the length of the timeout in microseconds.

Each time an I/O operation is initiated, timeout is restarted. For example,
when setting up bus addressing, the system allows timeout microseconds for
completion. Each subsequent data transfer (in or out) is given the same time
limit. If a given operation is not completed within the time limit specified by
the timeout value, the operation is aborted and an error indication is returned
(return value of -1) and errno is set to EIO (not to be confused with EOI).

2-16 General-Purpose Routines

Note Be sure that the timeout limit is set to a value higher than
the longest expected time to complete a transfer. If a normal
transfer takes longer than the timeout limit, the operation is
aborted even though system operation is correct.

Timeout is specified in microseconds (/lsec) in the call to io_ timeout_ctl, but
the actual timeout used and its resolution is system-dependent. The timeout
value is always rounded up to the nearest normal time resolution interval
supported by the system executing the operation. For example, if the available
system resolution is 10 milliseconds and a timeout of 25000 microseconds (25
milliseconds) is requested, the actual timeout value used is 30 milliseconds.
To determine timeout resolution for your system, refer to the appropriate
hardware-specific appendix.

IMPORTANT A timeout value of 0 microseconds is meaningless because
no device can respond with data in less than zero time. For
this reason, the default or a specified timeout value of zero is
treated as a request to disable timeout and any condition that
would normally cause a timeout termination is ignored by the
system, usually causing the program to hang. Specifying a
timeout of zero is not recommended.

Any interface file eid obtained by using the dup(2) system call or inherited
by a fork(2) request shares the same timeout as the original interface file eid
obtained from open(2). If the child process resulting from a fork inherits an
eid then changes the timeout, the eid used by the parent process is likewise
affected.

Setting Data Path Width

When you create a DIL special file and open it for the first time, the data
path width defaults to 8 bits. Once the file is opened, io_width_ctl can be
used to select a new width. Allowable widths vary, depending on the computer
model and interface. Refer to the appropriate hardware-specific appendix to
determine what widths are supported by specific interfaces.

General-Purpose Routines 2-17

Assuming that the open device file has the entity identifier eid, io_width_ctl
is called using a code segment similar to the following:

int eid. width;

where width is the number of parallel bits in the new data path. The
io_width_ctl returns -1 to indicate an error if the specified width is not
supported on the interface identified by eid.

For example, to reconfigure a GPIO device to use all 16 data lines in the
interface cable instead of the default lower 8 bits, use a a code segment similar
to the following:

#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid. width;
width = 16; /*width of new data path */

if ((eid = open("/dev/raw_hpib". O_RDWR» == -1) {
printf(IIopen failed. errno = %d\n". errno);
exit(2) ;

}

io_width_ctl(eid. width); /*assign new width for GPIO bus*/

/*data transfers using "/dev/raw_gpio" will now
use a 16-bit bus*/

Use of io_width_ctl to change interface data path width affects only the
device associated with that particular eid. Use io_reset or io_width_ctl to
restore the default 8-bit path width. On a Series 800 system, io_width_ctl
affects all users of the interface referred to by eid.

2-18 General-Purpose Routines

Setting Minimum Data Transfer Rate

DIL provides a means for specifying a minimum acceptable data transfer rate
for a given interface special file within the limits of available hardware by use
of io_speed_ctl. The calling sequence is as follows:

io_speed_ctl(eid, speed);

where eid is the entity identifier for the open interface file, speed is an integer
indicating a minimum speed in Kbytes per second, and a kilobyte equals 1 024
bytes.

Io_speed_ctl returns a 0 if successful, or -1 if an error occurred. For
example:

requests a minimum speed of 1 024 bytes per second. While the system may
use a faster transfer rate if possible, you are at assured that the rate will not be
less than the specified speed.

The transfer method (such as DMA or interrupt) chosen by the system is
determined by the minimum speed requested. The system selects a transfer
method that is as fast or faster than the requested speed. If the requested
speed is beyond system limitations, the fastest available transfer method is
used. Refer to the appropriate hardware-specific appendix for details.

Setting the Read Termination Pattern

During read operations on an open device file, the system recognizes certain
conditions as the end of a data transfer from the sending device. DIL supports
three methods for identifying the end of an input operation:

• Input data byte count limit is reached.

• Hardware condition is used to identify end of data.

• Predetermined character or sequence of characters is used to identify
the end of a data record.

Input termination occurs when the first termination condition is recognized,
independent of the type of condition. If two or more conditions occur
simultaneously, the first condition detected terminates the operation. However,
this first condition along with any other simultaneous events that would also

General-Purpose Routines 2-19

have caused termination are recorded during clean-up at the end of the transfer
for possible later use by io_get_term_reason.

Termination on Byte Count

Any call to read must specify the maximum number of data bytes that are to
be accepted. When the specified number of bytes have been read, the data
transfer is unconditionally terminated, whether the data is complete or not.

Termination on Hardware Condition

In many cases, the number of bytes being transferred is controlled by the
peripheral device and cannot be predetermined. To make sure that no data is
lost, the byte limit is set to a value higher than the longest expected input data
record, and the interface is configured to recognize a condition, character, or
set of characters (one or two bytes only) as the end of the incoming data. For
instance, if an HP-IB interface detects that the EOI line has been asserted,
it knows that the last data byte has been transferred and halts the read
operation, whether or not the specified byte count has been reached.

Termination on Data Pattern

The DIL routine io_eol_ctl configures an interface to recognize a particular
character or pair of characters as a read termination pattern. Whether one or
two bytes are used for the pattern depends on whether the data path width
is set to 8 or 16 bits. The read termination pattern is in addition to any
other conditions that may already be in effect for the interface. The call to
io_eol_ctl has the form:

int eid. flag. match;

where eid is the entity identifier for the open interface file and flag, depending
on its value, enables or disables the interface's ability to recognize a read
termination pattern.

2-20 General-Purpose Routines

When flag is zero, termination pattern recognition is disabled and only EOI
or a satisfied byte count can terminate a normal transfer. If flag is non-zero,
match defines the new termination pattern. When using flag = a to disable eol
pattern recognition, the third parameter (match) in the subroutine call is not
used. However, it is recommended that a value (such as zero) be provided as
good programming practice.

When flag is non-zero to enable end-of-line recognition (for example, flag =
1) and the interface data path width is set to 8 bits, the least-significant byte
of the 4-byte integer value of match defines the termination pattern used to
identify an end-of-line condition.

On the other hand, if the interface data path width is set to 16 bits (such as
with a GPIO interface), then, for most systems, the termination pattern is also
16 bits, defined by the two lower (least-significant) bytes of the 4-byte integer
value defined by match.

Remember: If any other read termination conditions defined for the interface
are in effect (such as EOI for an HP-IB interface), any event that matches
a currently active termination condition can cause a read operation to halt;
independent of whether the defined eol condition has been met. Also note
that the read termination pattern defined by iO_901_ctl is accepted as part
of the valid incoming data, meaning that it is transferred to the data storage
area along with the rest of the transferred data. In other words, when the
interface encounters transferred data matching the match value, it treats the
data as part of the data message but does not attempt any further data input
after the matching data pattern is found. This means that if data within an
incoming data stream happens to match the pattern defined by match, the read
is terminated whether the data message is complete or not. For this reason,
care must be exercised when defining eol character sequences for data transfer.

To illustrate how to use iO_901_ctl, suppose an HP-IB interface is being
configured to recognize a backslash-n (\n) as a read termination pattern. First,
open the HP-IB interface file and obtain the entity identifier eid. Second, make
the call to iO_901_ctl using eid as the entity identifier, ENABLE as the flag,
and \n as the match (\n is a one-byte value, and the data path width for all
HP-IB devices is 8 bits):

General-Purpose Routines 2-21

#include <fcntl.h>
#include <errno.h>
#define ENABLE 1
main()
{

}

int eid;

if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);

/*data transfers using "eid" terminate with a '\n'*/

Interface file / dey / raw _hpi b is now configured to terminate read operations
when anyone of the following occurs:

• The byte count specified in the call to read is reached.

• The HP-IB EOI line is asserted. When the interface detects that the
EOI line has been asserted, the character currently on the bus becomes
the last byte in the data message.

• backslash-n (\n) (newline character) is detected in incoming data. The
newline character becomes the last byte in the stored data message.

An interface file entity identifier returned by a dup(2) system call or inherited
by a fork request shares the same read termination pattern as the entity
identifier returned by the original call to open. If the child process resulting
from a fork inherits an entity identifier then sets a read termination pattern for
that eid, the eid used by the parent process is also affected.

If a single program or process executes more than one open system call on
the same interface file, each entity identifier returned by open can have its
own associated read termination pattern. Using io_eol_ctl on a given eid
does not affect the others. Thus, multiple entity identifiers can be set up for a
single interface to facilitate recognition of various termination characters during
program execution.

2-22 General-Purpose Routines

Disabling a Read Termination Pattern

To disable the read termination pattern, call io_eol_ctl with the flag
parameter disabled (set to 0):

io_eol_ctl(eid, 0, xx);

where xx represents a "don't care" value for the match argument. If the flag
argument is 0, the match argument is ignored.

The following code segment defines the ASCII. character (decimal value 46)
as a termination pattern, performs a read operation, then disables termination
pattern recognition.

#include <fcntl.h>
#include <errno.h>

maine)
{

}

int eid;
char buffer[12] ;

if ((eid = open ("/dev/hpib_dev", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

io_eol_ctl(eid, 1, 46);
read(eid, buffer, 12); /*Read operation halts when a period character

"." is read or when the 12th byte is read*/
io_eol_ctl(eid, 0, 0); /*termination pattern recognition is disabled*/

General-Purpose Routines 2-23

Determining Why a Read Terminated
Various situations can cause termination of read operations through an
interface. Upon completion of a read, you may want to include code to verify
that the reason for termination is what you expected. This is done by using
the DIL routine io_get_term_reason.

io_get_term_reason uses a single argument: the interface file entity identifier
eid, and returns an integer. The returned value indicating how the last read
operation ended, is interpreted as follows:

Returned
Value Meaning

-1 An error during the subroutine call.

o Read terminated abnormally (for some reason other than the ones
listed here).

1 Byte count limit caused termination.

2 End-of-line character pattern caused termination

4 Device-imposed condition (such as EOI asserted on HP-IB interface)
caused termination.

If more than one termination condition occurred simultaneously, the bit
corresponding to the above values is set for each condition, and the aggregate
value of the lower three bits represents a sum equal to the combined values of
the individual conditions. The three least-significant bits of the lowest byte
have meanings as indicated by their associated decimal values in the table
above. For example, if io_get_term_reason returns a value of 7, all three
conditions: byte count limit, hardware termination, and termination pattern
recognition occurred simultaneously.

Note If no read is performed on an open interface file prior to a call
to io_get_ term_reason, a value of zero is returned.

2-24 General-Purpose Routines

All entity identifiers descending from a single open request (such as from dup
or fork) affect the status returned by this routine. For example, suppose that
an entity identifier is inherited by a child process through a fork. If the parent
process calls io_get_ term_reason, the last read operation of either the parent
or the child is looked at, depending on which is more recent.

Example

Suppose you want to read data through an open HP-IB interface file, but want
a printout indicating the reason for termination on every transfer, whether the
termination was normal or abnormal. The following code segment provides
that capability:

#include <fcntl.h>
#include <errno.h>

1*
** possible termination reasons
** returned by io_get_term_reason
*1
#define TR_ABNORMAL 0 1* abnormal *1
#define TR_COUNT 1 1* requested count was satisfied *1
#define TR_MATCH 2 1* specified eol character was matched
#define TR_CNT_MCH 3 1* TR_COUNT + TR_MATCH *1
#define TR_END 4 1* EO! was detected *1
#define TR_CNT_END 5 1* TR_COUNT + TR_END *1
#define TR_MCH_END 6 1* TR_MATCH + TR_END *1

*1

#define TR_CNT_MCH_END 7 1* TR_COUNT + TR_MATCH + TR_END *1

{
maine)

int eid, termination_reason, bytes_read;
char buffer [50] ;

if ((eid = open (1/dev/raw_hpib", O_RDWR» < 0) {
printf("0pen of Idev/raw_hpib failed - errno %d\n", errno);
exit (1) ;

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

bytes_read = read(eid, buffer, 50);
termination_reason = io_get_term_reason(eid);

General-Purpose Routines 2-25

switch (termination_reason) {
case TR_ABNORMAL: 1* abnormal *1

printf("Abnormal read termination, bytes_read %d,
errno %d\n", bytes_read, errno);

break;
case TR_COUNT: 1* requested count was satisfied *1

printf("Count satisfied.\n");
break;

case TR_MATCH: 1* specified eol character was matched

printf("EOL character satisfied.\n");
break;

case TR_CNT_MCH: 1* TR_COUNT + TR_MATCH *1
printf("Count and EOL character satisfied.\n");
break;

case TR_END: 1* EO! was detected *1
printf("EO! detected.\n");
break;

case TR_CNT_END: 1* TR_COUNT + TR_END *1
printf("Count satisfied and EO! detected.\n");
break;

case TR_MCH_END: 1* TR_MATCH + TR_END *1
printf("EOL character satisfied and EO! detected.\n");
break;

case TR_CNT_MCH_END:
printf("Count and EOL character satisfied and EO!

detected.\n");
break;

default: 1* io_get_term_reasoned failed *1
printf(lIio_get_term_reason failed, bytes_read = %d,

errno %d\n", bytes_read, errno);
break;

}

}

2-26 General-Purpose Routines

Interrupts

DIL provides an interrupt mechanism for HP-IB and GPIO interfaces that is
similar to HP-UX signal handling. Thus interrupt handlers can be included in
programs such that they are invoked when certain conditions occur.

Series 300 and 800 Interrupt Support

HP-IB Interrupts

Series 300 and 800 computers recognize the following HP-IB interrupt
conditions:

signal Condition

SRQ SRQ line has been asserted.

TLK Computer HP-IB interface has been addressed to talk.

LTN Computer HP-IB interface has been addressed to listen.

CIC Computer HP-IB interface has received control of the bus.

IFC IFC line has been asserted.

REN Remote enable line has been asserted.

DCL Computer HP -IB interface has received a device clear command.

GET Computer HP-IB interface has received a group execution trigger
command.

PPOLL A specific parallel poll response occurred.

General-Purpose Routines 2-27

GPIO Interrupts

Series 300 computers recognize the following GPIO interrupt condition:

EIR EIR line has been asserted.

The Series 800 HP 27112 GPIO interface recognizes the following interrupt
conditions:

SIEO Status line a has been set.

SIEI Status line 1 has been set.

The Series 800 HP 27114 GPIO interface recognizes the following interrupt
condition:

EIR EIR line has been asserted.

io_on_interrupt

DIL provides two subroutines for controlling interrupts: io_on_interrupt and
io_interrupt_ctl. The first, io_on_interrupt, sets up interrupt conditions
and has the form:

io_on_interrupt(eid, cause_vee, handler);

where eid is the interface entity identifier for a GPIO or raw HP-IB interface.
handler points to the function that is to be invoked when the interrupt
condition occurs, and cause_ vec is a pointer to a structure of the form:

struct interrupt_struct {
int cause;
int mask;

};

The interrupt_struct structure is defined in the include file dvio. h.

cause is a bit vector specifying which selectable interrupt or fault events will
cause the handler routine to be involked Available interrupt causes are usually
specific to the type of interface being considered. In addition, certain exception
(error) conditions can be handled by the io_on_interrupt subroutine. If the
cause vector has a zero value, it, in effect, disables interrupts for that eid.

mask is an integer value that is used to define which parallel-poll response lines
are to be recognized in an HP-IB parallel poll interrupt. The value for mask
is formed from an 8-bit binary number, each bit of which corresponds to one

2-28 General-Purpose Routines

of the eight parallel-poll response lines. For example, to invoke an interrupt
handler for a response on line 2 or 6, the correct binary number is 01000100
which converts to a decimal equivalent of 68, the correct value for mask.

When the enabled interrupt condition occurs on the specified eid, the process
that set up the interrupt executes the interrupt-handler routine pointed to
by handler. The entity identifier eid and the interrupt condition cause are
returned to handler as the first and second parameters respectively.

Whenever an interrupt condition occurs for a given eid, the interrupt is
recognized, interrupts are disabled for that eid, then the interrupt handler is
executed. After processing the interrupt, interrupts can be re-enabled for that
eid by calling io_interrupt_ctl.

Each call to io_on_interrupt returns a pointer to the previous handler if the
new handler is successfully installed, otherwise it returns -1 and errno is set.

General-Purpose Routines 2-29

The following example illustrates how an interrupt handler can be set up to
handle requests on the HP--IB service request lin.e (SRQ):

#include <dvio.h>
#include <fcntl.h>
#include <stdio.h>
extern int service_routine () ;

handler (eid,. cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

if (cause_ vec->cause == SRQ)
service_routine 0; /* application-specific service routine*/

}

maine)
{

}

iIit eid;
struct interrupt_struct cause_vec;

if «eid = open(ll/dev/raw_hpib ll
, O_RDWR» == -1) {

printf(lIopen failed, errno == %d\n ll
, errno);

exit(2);
}

io_reset(eid);

cause_vec.cause = SRQ;
io_on_intertupt(eid, &cause_vec, handler);

2-30 General-Purpose Routines

io_interrupt_ctl

Subroutine io_interrupt_ctl provides a convenient means for enabling
and disabling interrupts on a specific eid. Since interrupts are automatically
disabled when an interrupt occurs, io_interrupt_ctl is commonly used to
re-enable interrupts during a series of repetitive operations that are being
handled under interrupt control. The call to io_interrupt_ctl has the
following form:

where eid is the entity identifier for an open GPIO or raw HP-IB interface
(device) file. The value of enable_flag determines whether interrupts are to
be enabled or disabled: if enable_flag is non-zero, interrupts are enabled on
the eid; if enable-flag is zero, interrupts are disabled. Attempting to use
io_interrupt_ctl on an eid fails when no previous call has been lnade to
io_on_interrupt for the same eid.

The following code segment shows how the previous example can be modified
slightly so that interrupts are re-enabled at the end of the interrupt service
routine:

handler(eid, cause_vec);
int eid;
struct interrupt_struct *cause_vec;
{

if (cause_vec->cause == SRQ)

service_routine(); 1* application-specific service routine*1

}

General-Purpose Routines 2-31

Controlling the HP-IB Interface

The general-purpose subroutines discussed in Chapter 2 are used to set up
and handle data transfers at a high level. However, they do not control the
lower-level interface operations that are necessary to maintain proper bus
operation and control interaction between HP-IB devices.

3

This chapter explains the use of subroutines in the Device I/O Library that
are directly related to HP-IB interface control. Chapter 4 covers comparable
material for the GPIO interface. This chapter presents a brief overview of
HP-IB commands, followed by a detailed discussion of HP-IB DIL subroutines
including how they are used to control bus activity and manage bus traffic.

Controlling the HP-IB Interface 3-1

Overview of HP-IB Commands

HP-IB commands consist of various data sequences that are sent over the
eight HP-IB data lines while the ATN line is asserted (held LOW). The
DIL subroutine hpib_send_cmnd provides a convenient means for sending
bus commands by automatically handling the ATN line and the necessary
handshaking operations between devices. However, hpib_send_cmnd can be
used only when the computer interface to the bus is the active controller.
Techniques for using hpib_send_cmnd are discussed later in this chapter.

Any device that is the intended recipient of an HP-IB command must have its
remote enable line (REN) enabled by the System Controller (unless altered
by the System Controller, REN is enabled, by default). Only the System
Controller can alter the state of the REN line (see "System Controller's
Duties" section later in this chapter).

HP-IB Data Bus Commands fall into four categories:

• Universal commands cause every properly equipped device on the bus
to perform the specified interface operation, whether addressed to listen
or not.

• Addressed commands are similar to universal commands, but are
accepted only by bus devices that are currently addressed as listeners.

• Talk and listen addresses are commands that assign talkers and
listeners on the bus.

• Secondary commands are commands that must always be used in
conjunction with a command from one of the above groups.

3-2 Controlling the HP-IB Interface

The following table lists commands that can be sent with hpib_send_cmnd,
along with the decimal and ASCII character equivalents of each command.
This table is useful for reference when determining what values to use as
parameters in hpib_send_cmnd subroutine calls.

Table 3-1. HP-IB Bus Commands

Decimal
Command Value ASCII Character

Universal Commands:

UNLISTEN 63 ?

UN TALK 95 -

DEVICE CLEAR 20 DC4

LOCAL LOCKOUT 17 DC1

SERIAL POLL ENABLE 24 CAN

SERIAL POLL DISABLE 25 EM

PARALLEL POLL UNCONFIGURE 21 NAK

Addressed Commands:

TRIGGER 8 BS

SELECTED DEVICE CLEAR 4 EOT

GO TO LOCAL 1 SOH

PARALLEL POLL CONFIGURE 5 ENQ

TAKE CONTROL 9 HT

Controlling the HP-IB Interface 3-3

Table 3-1. HP-IB Bus Commands (cont'd)

Decimal
Command Value ASCII Character

Talk and Listen Addresses:

Talk Addresses 0-30 64-94 @ thru A

(uppercase ASCII)

Listen Addresses 0-30 32-62 space thru >

(numbers and special characters)

Secondary Commands: (If a
secondary command follows the
PARALLEL POLL CONFIGURE
command, it is interpreted as
follows; otherwise its meaning is
device-dependent)

PARALLEL POLL ENABLE 96-111 ' thru 0

(lowercase ASCII)

PARALLEL POLL DISABLE 112 p

UNLISTEN

UNLISTEN unaddresses all current listeners on the bus. No means is available
for un addressing a given listener without unaddressing all listeners on the bus.
This command ensures that the bus is cleared of all listeners before addressing
a new listener or group of listeners.

UNTALK

UNTALK unaddresses any active talkers on the bus. Since no means is
available for unaddressing a given talker, the UNTALK command is sent to
all devices on the bus. This ensures that no conflict with a current talker can
occur when addressing a new one.

3-4 Controlling the HP-IB Interface

DEVICE CLEAR

DEVICE CLEAR causes all devices that recognize this command to return
to a pre-defined, device-dependent state, independent of any previous
addressing. The reset state for any given device after accepting this command
is documented in the operating manual for the device in question.

LOCAL LOCKOUT

LOCAL LOCKOUT disables local (front panel) control on all devices that
recognize this command, whether the devices have been addressed or not.

SERIAL POLL ENABLE

SERIAL POLL ENABLE establishes serial poll mode for all devices that
are capable of being bus talkers, provided they recognize and support the
command. This command operates independent of whether the devices being
polled have been addressed to talk. When a device is addressed to talk, it
returns an 8-bit status byte message.

This command is handled through the DIL subroutine hpib_spoll, as
discussed later in this chapter.

SERIAL POLL DISABLE

SERIAL POLL DISABLE terminates serial poll mode for all devices that
support this command, whether or not the individual devices have been
addressed.

The DIL subroutine hpib_spoll that performs this function is discussed at
length later in this chapter.

TRIGGER (Group Execute Trigger)

TRIGGER causes devices currently addressed as listeners to initiate a
preprogrammed, device-dependent action if they are capable of doing so. Use
of this function and programming procedures are documented in operating
manuals for devices that support it.

Controlling the HP-IB Interface 3-5

SELECTED DEVICE CLEAR

SELECTED DEVICE CLEAR resets devices currently addressed as listeners
to a device-dependent state, provided they support the command. Refer to the
device operating manual for more information about programming and the
resulting state(s).

GO TO LOCAL

GO TO LOCAL causes devices currently addressed as listeners to return to the
local-control state (exit from the remote state). Devices return to remote state
next time they are addressed.

PARALLEL POLL CONFIGURE

PARALLEL POLL CONFIGURE tells devices currently addressed as listeners
that a secondary command follows. This secondary command must be either
PARALLEL POLL ENABLE or PARALLEL POLL DISABLE.

PARALLEL POLL ENABLE

PARALLEL POLL ENABLE configures devices addressed by PARALLEL
POLL CONFIGURE to respond to parallel polls with a predefined logic level
on a particular data line. On some devices, the response is implemented in a
local form (such as by using hardware jumper wires) that cannot be changed.

Use of this command must be preceded by a PARALLEL POLL CONFIGURE
command.

PARALLEL POLL DISABLE

The PARALLEL POLL DISABLE command prevents devices previously
addressed by a PARALLEL POLL CONFIGURE command from responding
to parallel polls. This command must be preceded by the PARALLEL POLL
CONFIGURE command.

3-6 Controlling the HP-IB Interface

Overview of HP-IB OIL Routines

Standard OIL Routines

These 17 subroutines, in addition to the general-purpose subroutines discussed
in Chapter 2, provide full capabilities for controlling and using the HP-IB
interface.

Controlling the HP-IB Interface 3-7

Subroutine Description

hpib_abort Stop activity on specified HP-IB select code.

hpib_io Perform a series of HP-IB read, write, and SEND_CMD
operations from a single subroutine call.

hpib_ppoll Conduct parallel poll on HP-IB.

hpib_spoll Conduct serial poll on HP-IB.

hpib_bus_status Return status on HP-IB interface.

hpib_eoi_ctl Control EOI mode for data transfers.

hpib_pass_ctl Pass bus control to another device on the bus.

hpib_card_ppoll_resp Define HP-IB card's response to a parallel poll.

hpib_ren_ctl Assert or release HP -IB remote-enable (REN) line on
HP-IB.

hpib_rqst_srvce Initiate a service request (SRQ) when interface is not
Active Controller.

hpib_send_cmnd Send command message on HP-IB data lines while
asserting the attention (ATN) line.

hpib_wait_on_ppoll Wait until a specified device responds on its assigned
parallel poll response line indicating that it needs service.

hpib_status_wait Wait until any device on the bus asserts SRQ.

hpib_ppoll_resp_ctl Configure and enable or disable the parallel poll response
circuit on the specified device (determines how the device
will respond to the next parallel poll from a remote active
controller) .

hpib_atn_ctl Control the HP-IB ATN line.

hpib_parity_ctl Set parity type to be used for hpib_send_cmnd calls.

hpib_address_ctl Set the bus address of an HP -IB interface card.

3-8 Controlling the HP-IB Interface

HP-IB: The Computer's Role

Most HP-IB applications consist of a single computer and several peripheral
devices connected to a given bus. However, some situations may require two or
more computers on the same bus along with various shared and/or dedicated
peripheral devices. This discussion applies to both configurations.

Ground Rules

The following rules are mandatory for proper HP-IB interaction:

• HP-IB allows only one System Controller per bus.

• Only one device on the bus can be active controller at any given time.

• All other devices capable of controlling the bus must be non-active
controllers unless control is passed from another active controller.

• The computer interface is configured as System Controller. If two
or more computers are interfaced to a single bus, only one can
be configured as System Controller. All other interfaces must be
configured as non-controllers (incapable of acting as System Controller).
This is usually accomplished by programming a switch or jumper on the
HP-IB interface card.

At power-up, the System Controller is the Active Controller. All other
controllers on the bus are non-active controllers. If the computer interface
passes control to another device, the device receiving control becomes the new
active controller and the computer interface becomes a non-active controller
although it remains System Controller at all times and can regain control of
the bus by asserting IFC (InterFace Clear). Once control has been passed to
another device, the computer remains non-active controller until control is
passed back or IFC is asserted.

Available Subroutines versus Controller Role

Which DIL subroutines can be used depends on the computer's role on the
HP-IB at the time. Given the three possible roles, Table 3-2 indicates which
subroutines can be used with each.

Controlling the HP-IB Interface 3-9

Table 3-2. OIL Subroutine Availability Based on Interface Role.

System Active Non-Active
Subroutine Controller Controller Controller

hpib_abort •
hpib_io •
hpib_ppoll •
hpib_spoll •
hpib_bus_status Note 1 • •
hpib_eoi_ctl •
hpib_pass_ctl •
hpib_card_ppoll_resp Note 2 •
hpib_ren_ctl •
hpib_rqst_srvce Note 2 •
hpib_send_cmnd •
hpib_wait_on_ppoll •
hpib_status_wait Note 1 • •
hpib_ppoll_resp_ctl Note 2 •
hpib_parity_ctl Note 1 • •
hpib_atn_ctl •
hpib_address_ctl Note 1 • •

Note 1 This command is available to the System controller, but the
availability is meaningless because this command is available to
any interface on the bus, independent of its role as an active or
non-active controller.

Note 2 This command is available to the interface while it is active
controller, but the command is meaningless except when the
interface is acting in the non-active controller role.

3-10 Controlling the HP-IB Interface

Bus Citizenship:
Surviving Multi-Device/Multi-Process HP-IB

HP-UX provides a powerful environment for creative programming. As a
result, one or more users can create a large number of processes that may be
running simultaneously. At the same time, HP-IB provides the capability
of combining multiple devices on a single I/O channel or interface. As long
as only auto-addressed HP-IB interface files are used, problems are few and
infrequent. However, when processes that use DIL subroutines start accessing
raw-mode HP-IB interface files, a splendid opportunity arises for competing
processes to create bus addressing and access conflicts. If certain precautions
are not carefully maintained, performance quickly decays to chaos.

The Device I/O Library contains several subroutines that are provided
specifically for maintaining orderly HP-IB traffic and good I/O efficiency.
Correct use of these subroutines is especially important when using raw
interface files. They include:

• io_lock and io_unlock to take exclusive control of the HP-IB channel
for the duration of a transfer,

• io_burst to efficiently handle short transfers without consuming large
amounts of HP-UX kernel overhead,

• hpib_io to structure a complete bus transfer including configuration
and control operations in a buffer then handle the transfer as a single
subroutine call through an interface file that is automatically locked at
the beginning and released at the end of the transfer.

These subroutines are discussed at length later in this chapter, but are treated
here from the point of view of overall bus applications efficiency as it pertains
to programming practice.

Controlling the HP-IB Interface 3-11

When handling raw-mode (as opposed to auto-addressed) HP-IB transfers,
devices must be set up to communicate (preamble) before the transfer
(read/write) can be initiated, then the necessary clean-up (postamble)
operations must be performed to leave the bus in an acceptable state for the
next process. If you do not notify other processes that you are using the bus,
they might initiate a different transfer while you are preparing for your next
DIL subroutine call. A command sequence from another process (through a
different eid but through the same interface) could completely scramble your
bus configuration so your transfer request results in no data, erroneous data, or
possibly even more serious results, depending on the nature of the transfer.

A simple call to io_lock prior to your first call to an HP-IB subroutine and
a matching call to io_unlock after your last HP-IB subroutine call keeps
competing processes from using the bus while you have control. As soon as the
interface file is unlocked, it can be accessed by the next process that needs it.

io_burst

Series 300 systems support burst I/O (also called fast handshake) which
bypasses the kernel by performing a high-speed non-interrupt transfer. This
method can produce considerable performance improvement when handling
short transfers to or from high-speed HP-IB devices. Refer to the io_burst(3I)
manual entry in Section 3 of the HP- UX Reference for more information.

hpib_io

The DIL subroutine hpib_io is used to perform bus configuration, data
transfer, and bus clean-up as a single operation through a locked interface file.
When using hpib_io, control commands (the preamble), data to be written
or a buffer for incoming data (the data message), and clean-up commands
(postamble) are placed in a data structure prior to calling hpib_io. hpib_io
then handles the transfer as defined in the data structure (which configures
the HP-IB and handles the transfer and clean-up) then returns with the result
(transfer complete or transfer failed).

3-12 Controlling the HP-IB Interface

Opening the HP-IB Interface File
Before DIL subroutines can be used on an HP-IB interface, the interface
special file must exist and the program must obtain a corresponding entity
identifier. The procedures for opening interface special files and obtaining
entity identifiers is discussed in Chapter 2, "General-Purpose Routines."

Sending HP-IB Commands
Once the HP-IB interface special file has been opened and the entity identifier
has been obtained, DIL subroutines can be used to send HP-IB commands to
control the interface. If the computer is Active Controller, hpib_send_cmnd
can be used to place HP-IB commands on the data bus.

One method of using this routine is to first set up a character array containing
the commands being sent. Assign the decimal value of each command to an
element in the array, then use a subroutine call having the form:

hpib_send_cmnd(eid, command, number);

where eid is the entity identifier for the open interface file, command is a
character pointer to the first element of the array containing the HP-IB
commands, and number is the number of elements (commands) in the array.
The subroutine hpib_send_cmnd places each of the commands stored in the
array on the bus with ATN asserted.

Notice that by changing the number argument and moving the command
pointer you can send subsets of command arrays. Suppose you create an array
that contains 10 HP-IB commands, command[O] through command[9]. You can
now specify that only the last 5 commands in the array be sent by using:

hpib_send_cmnd(eid, command + 5, 5);

Controlling the HP-IB Interface 3-13

This method of sending HP -IB commands by storing them in an array uses
their decimal values. Alternatively, ASCII command characters can be used by
specifying a character string and using a subroutine call of the form:

hpib_send_cmnd(eid, "command_string", number);

where eid and number are the same as before but the commands to be sent are
now specified by each character in the string command_string.

To illustrate the two methods, assume that you want to send the HP-IB
UNLISTEN and UNTALK commands. With the decimal array method, first
set up an array having two elements, place the decimal value for each command
in the appropriate location in the array, then call hpib_send_cmnd:

#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid;
char command [2] ; /*command array*/

if «eid = open ("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

command [0] = 63; /*decimal value for UNLISTEN*/
command[1] = 95; /*decimal value for UNTALK*/
hpib_send_cmnd(eid, command, 2);

3-14 Controlling the HP-IB Interface

U sing the ASCII character string method, the same effect is achieved using:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;

if ((eid = open(1I Idev/raw_hpib ll
, D_RDWR» == -1) {

printf(lIopen failed, errno = %d\n ll
, errno);

exit(2);
}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

hpib_send_cmnd(eid, II?_II, 2); I*? is ASCII for UNLISTEN and*1
1*_ is ASCII for UNTALK *1

The array method is usually preferred when sending a large number of
commands or sending the same set of commands several times in the program
because the entire set of commands can be stored once then used whenever
needed. When the string method is used, the entire set of commands must
be specified as a string in each call to hpib_send_cmnd. It is preferred when
sending only a few commands or sending a set of commands only once in a
program.

Controlling the HP-IB Interface 3-15

Errors While Sending Commands

Normally, hpib_send_cmnd returns a 0 if successful. It returns a -1 if anyone
of the following error conditions exist:

• Computer interface is not Active Controller.

• eid entity identifier does not refer to an HP-IB raw interface file.

• eid entity identifier does not refer to an open file.

• A timeout occurs.

• The interface associated with this eid is locked by another process and
D_NDELAY is set for this eid.

• The command length specified by number is invalid.

To determine which of these conditions caused the error, check the value of
errno, an external integer variable used by HP-UX system calls. Error-checking
routines are discussed at length in Chapter 2.

The following table lists errno values corresponding to the conditions above
when detected by hpib_send_cmnd:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid did not refer to an open file

eid did not refer to a raw interface file

The interface was not the Active Controller (EACCES on Series 800)

ETIMEDOUT A timeout occurred (EIO on Series 300)

EACCES

EINVAL

The interface associated with this eid was locked by another process
and D_NDELAY was set for this eid

number was invalid, either less than or equal to 0 or greater than
MAX_HPIB_CDMMANDS as defined in dvio.h

3-16 Controlling the HP-IB Interface

Changing Parity on Commands

By default, bus commands sent across the bus using hpib_send_cmnd are sent
using odd parity. On the Series 300, you can disable the use of parity on bus
commands using the hpib_parity_ctl routine.

The following sequence illustrates the use of hpib_parity_ctl to disable the
sending of parity and use eight bit command bytes:

#include <fcntl.h>
#include <errno.h>
main()
{

}

int eid;
char command [2] ; I*command array*1

if «eid = open(l/dev/raw_hpib", O_RDWR» == -1) {

printf("open failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

hpib_parity_ctl(eid, 0);
command[O] = 63;
command[l] = 95;

I*decimal value for UNLISTEN*I
I*decimal value for UNTALK*I

Active Controller Role

The Active Controller is responsible for originating all commands handled
on the bus and responding to requests for service from other devices.
hpib_send_cmnd is used to send HP-IB commands. Other DIL subroutines
are used for the remaining bus control tasks. Active Controller operations
discussed in this chapter include:

• Addressing individual devices to talk or listen .

• Switching devices to remote control operation.

Controlling the HP-IB Interface 3-17

• Locking out local front-panel control on devices.

• Switching devices to local front-panel control.

• Triggering devices to initiate device-dependent operations.

• Transferring data in or out.

• Clearing (resetting) devices

• Responding to service requests from devices.

• Conducting parallel and serial polls.

• Passing active control of the bus to another device.

Determining Active Controller

A computer interface must be the Active Controller before it can handle any
bus management activities. If any other device on the bus is capable of being
Active Controller, use the hpib_bus_status subroutine to determine whether
the interface is the current Active Controller. Use the following subroutine call
form:

hpib_bus_status(eid,ACT_CONT_STATUS);

where eid is the entity identifier for the opened HP-IB interface device file and
ACT_CONT_STATUS tells the subroutine to examine interface status and
determine whether or not the card is the Active Controller. The value returned
by the subroutine can be tested as indicated in the example source code which
follows.

hpib_bus_status returns 0 if the condition being tested is false; 1 if true, and
-1 if an error occurred. The code that follows shows a straightforward way of
interpreting the returned value:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main 0
{

int eid, status;
if «eid = open (II/dev/raw_hpib ll , O_RDWR)) == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

3-18 Controlling the HP-IB Interface

I*an error occurred; error-handling code*1

I*goes here.
else if (status == 0)

else

}

I*not Active Controller; code to request *1

I*Active Controller status goes here *1

I*Active Controller; bus-management code *1

I*goes here *1

Setting Up Talkers and Listeners

Before data can be transferred over HP-IB, one talker and one or more listeners
must be assigned to handle the transfer. In addition, some HP-IB commands
are recognized only by those devices that are currently addressed as listeners,
which means that the Active Controller must specify the listeners before
sending such commands. Only one talker at a time is allowed on the bus, but
the number of listeners is not restricted.

Series 300 and 800 computers provide two methods for addressing listeners and
talkers on HP-IB: auto-addressing and command addressing.

When an HP-IB interface device file is set up as an auto-addressed file
(determined by the value of the minor number used when creating the file), any
read/write operations to or from the file automatically set up the bus talk and
listen address commands prior to transferring data. The interface must be the
Active Controller when auto-addressing is used.

The alternate method uses hpib_send_cmnd to directly control the bus from
the user program itself. However, this method of control can only be used on
raw device special files.

Auto-Addressing

Much of the tedium of addressing devices to talk or listen can be avoided
by using auto-addressed device special files to take advantage of HP-UX

Controlling the HP-IB Interface 3-19

auto-addressing capabilities for many peripherals. Auto-addressing is
performed only on auto-addressed HP-IB device files. Some DIL subroutines
require a raw HP-IB device file, and will fail if you attempt to use them
on an auto-addressed device file. DIL subroutines that can be used
with auto addressed device files include hpib_eoi_ctl, hpib_eol_ctl,
io_burst, io_get_term_reason, io_lock, io_unlock, io_speed_ctl,
and io_timeout_ctl. Systems determine whether a device file is raw or
auto-addressed by the minor number used when the file is created. Address 31
(hexadecimal If) is reserved for raw files. Any address in the range 0 through
30 is auto-addressed. Refer to the appropriate appendix for procedures used to
create device and interface special files.

For example, suppose you are using a Series 300 computer with an HP 98624
HP-IB card on select code 08 to access a peripheral device located at bus
address 03. Use mknod to create a new device file named device for the
peripheral device and place the file in directory dev underneath the root
directory as explained in Appendix A:

mknod /dev/device c 21 Ox080300

3-20 Controlling the HP-IB Interface

Once the file exists, it can be listed by using the 11(1) command. In this case,
the device file named /dev/device ·is listed (along with other files in the /dev
directory) together with its permissions and attributes:

crw-rw-rw- 1 root other 21 Ox080300 Nov 22 1986 /dev/device

Since the bus address is less than decimal 31, the file is a non-raw device file
and is auto-addressable. The following code segment illustrates how to use
auto-addressing with such a device file:

#include <errno.h>
#include <fcntl.h>

mainO
{

}

int eid;

if «eid = open(l/dev/device",O_RDWR) < 0» {

}

/*

printf("Open of /dev/device failed, errno = %d\n", errno);
exit(1);

** Assuming "/dev/device" has the minor number (Ox080300), the
** system automatically addresses the interface card at select code 8
** as a talker and the device at bus address 3 as a listener before
** sending data
*/

if (write(eid, "test data", sizeof("test data"» < 0) {
printf("write failed, errno = %d\n", errno);
exit (2) ;

}

Controlling the HP-IB Interface 3-21

Using hpib_send_cmnd

Talkers and listeners can be configured under program control by forming
HP-IB command sequences from the talk and listen addresses of the devices
being used. However, before addressing talkers and listeners, clear the bus of
any talkers and listeners that might be left over from previous transactions
by issuing UNTALK and UNLISTEN commands (whenever a talk address
appears on the bus, well-mannered devices should recognize the address and
automatically untalk if the address is for a different device. However, not all
devices are necessarily well-mannered, so an UNTALK is considered good
programming practice). To configure a new talker and listeners:

1. Send an UNTALK command to remove any previous talkers.

2. Send an UNLISTEN command to remove any previous listeners.

3. Send the talk address of the device that will be sending data. There
can only be one talker.

4. Send the listen address of each device that is to receive the data.

After data transfer is complete, issue an UNTALK and UNLISTEN command
on the bus (repeat steps 1 and 2) to leave it in a clean state for subsequent
transactions.

DIL subroutine hpib_send_cmnd is used to perform these tasks.

3-22 Controlling the HP-IB Interface

Calculating Talk and Listen Addresses

Before devices can be addressed to talk or listen, their HP-IB bus addresses
must be known. The bus address of the computer interface is easily obtained
by using hpi b_bus_status as shown in this program code segment:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{

int eid. address;
if «eid = open("/dev/raw_hpib". O_RDWR» == -1) {

printf("open failed. errno = %d\n". errno);
exit(2);

}

}

where eid is the entity identifier for the interface file and
CURRENT_BUS_ADDRESS indicates a request for the interface
HP-IB bus address.

To determine the bus address of other devices on the bus, refer to installation
and operating manuals for each device being used (certain HP-IB addresses
may be reserved for specific devices on some systems).

Once device addresses are known for all devices of interest, setting up talk and
listen addresses is a fairly simple matter.

HP-IB commands are set up as a single ASCII character transmitted while
ATN is asserted. However, it is usually much easier to calculate addresses
based on bus address rather than looking up the corresponding ASCII
character for each address. Bus addresses range from 0 through 30, and talk
and listen addresses are derived through decimal addition as follows:

talk_address = 64 + bus~address

listen_address = 32 + bus_address

where talk_address is the decimal equivalent of the binary bit pattern that
represents the ASCII talk address command character. Likewise, listen_address
is the decimal representation of the ASCII listen address command character.

Controlling the Hp .. IB Interface 3 .. 23

bus_address is the decimal value of the HP-IB bus address for the device being
addressed.

The talk and listen addresses MTA ("my talk address") and MLA ("my listen
address") for the computer interface are derived similarly as follows:

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64;
MLA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 32;

An Example Configuration

Assuming that the computer's HP-IB interface is currently the Active
Controller, the following code segment establishes the interface as the bus
talker. Two devices at HP-IB addresses 4 and 8 are designated as bus listeners.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
rnainO
{

}

int eid, MTA;
char command[5];
if ((eid = open (1/dev/raw_hpib", D_RDWR)) == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit(2);

}

I*calculate My Talk Address*1
MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64;
command[O] = 95; 1* UNTALK command*1
command[1] = 63; 1* UNLISTEN command*1
command[2] = MTA; 1* interface talk address*1
command[3] = 32 + 4; 1* listen address for device at bus address 4*1
command[4] = 32 + 8; 1* listen address for device at bus address 8*1
hpib_send_cmnd(eid, command, 5);

3-24 Controlling the HP-IB Interface

Remote Control of Devices

Most HP-IB devices can be controlled from either their front panel or the bus.
If the device's front-panel controls are currently operational, the device is in
local state. If it is being controlled through the HP-IB, it is in remote state.
Pressing the device's front-panel LOCAL key returns the device to local control
unless it has been placed in local lockout state (described in the next section).

Whether the HP-IB remote enable (REN) line is asserted or not determines
whether or not a device can respond to remote program control. While REN
is asserted, any device that is addressed to listen is automatically placed in
remote state. Only the System Controller can assert or release the REN line.
REN, by default, is asserted at power-up and remains asserted unless changed
as discussed later in this chapter under the topic System Controller Operations.

Locking Out Local Control

The LOCAL LOCKOUT command inhibits the LOCAL key or switch present
on the front panel of most HP-IB devices, thus preventing anyone from
interfering with system operations by pressing front-panel control buttons. All
devices that support local lockout are locked, whether addressed or not, and
cannot be returned to local control from their front panels.

The following code segment shows one method for sending the LOCAL
LOCKOUT command:

command [0] = 17; /* Decimal value of LOCAL LOCKOUT*/
hpib_send_cmnd(eid. command. 1);

The GO TO LOCAL command can be used to place a device in local
(front-panel control) state.

Controlling the HP-IB Interface 3-25

Enabling Local Control

During system operation, it may be necessary to place certain devices in
local state for direct operator control such as when making special tests or
troubleshooting. The GO TO LOCAL command returns all devices currently
addressed as listeners to their local state.

For example, the following code segment places devices at bus addresses 3 and
5 in local state.

command[O] = 63;
command[1] = 32 + 3;
command[2] = 32 + 5;
command[3] = 1;
hpib_send_cmnd{eid.

Triggering Devices

1* the UNLISTEN command*1
1* listen address for device at address 3*1
1* listen address for device at address 5*1
1* the GO TO LOCAL command*1

command. 4);

The HP-IB TRIGGER command tells devices currently addressed as
listeners to initiate some device-d~p~iident action. A typical use is triggering
a measurement cycle on a digital voltmeter. Since device response to a
TRIGGER command is strictly device-dependent, HP-IB has no direct control
over the type of action being initiated.

The following code triggers the device at bus address 5:

command[O] = 63; 1* UNLISTEN command*1
command[1] = 32 + 5; 1* listen address for device at address 5*1
command[2] = 8; 1* TRIGGER command*1
hpib_send_cmnd{eid. command. 3);

3-26 Controlling the HP-IB Interface

Transferring Data

Data Output

To output data from an Active Controller the controller must:

1. Send a bus UNTALK command.

2. Send a bus UNLISTEN command.

3. Send its own talk address (MTA).

4. Send the listen address of the device that is to receive the data. One
listen address is sent for every device that is to receive the data.

5. Send the data.

6. Repeat steps 1 and 2 to clean up the bus.

The first 3 steps are accomplished using hpib_send_cmnd. The system
subroutine write takes care of the fourth.

Controlling the HP-IB Interface 3-27

The following code segment illustrates how character data can be sent to a
device at HP-IB address 5.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main 0
{

}

int eid, MTA;
char command [50] ;

if ((eid = open ("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid, 1000000);

MTA = hpib_bus_status(eid,
command [0] 95;

CURRENT_BUS_ADDRESS) + 64; /*compute MTA*/
/*UNTALK command*/

command [1] 63;
command [2] MTA;
command [3] 32 + 5;

hpib_send_cmnd(eid, command, 4);

/*UNLISTEN command*/
/*address interface to talk*/
/*listen address of device at*/
/*address 5 */

write(eid, "data message ll
, 12); /*send the data*/

hpib_send_cmnd(eid, command, 2); /*clear talkers and listeners*/

3-28 Controlling the HP-IB Interface

Data Input

Assume that you expect to receive 50 bytes of data from another device on the
bus. The following code segment programs the interface to receive character
data from a device at bus address 5. The integer variable MLA contains the
interface listen address.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{

}

int eid. MLA. len;
char buffer [51] ;
char command [4] ;

I*storage for data*1

if «eid = open(II Idev/raw_hpib ll
• O_RDWR» == -1) {

printf("open failed. errno = %d\n". errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid. 1000000);

MLA = hpib_bus_status(eid. CURRENT_BUS_ADDRESS) + 32; I*compute MLA*I
command[O] = 95; I*UNTALK command*1
command[l] = 63; I*UNLISTEN command*1
command[2] = 64 + 5;

command[3] = MLA;
hpib_send_cmnd(eid. command. 4);
len = read(eid. buffer. 50);
buffer[len] = '\0';
hpib_send_cmnd(eid. command. 2);
printf("Data read is: %S". buffer);

I*address device at address 5*1
I*to talk *1
I*address interface to listen*1

I*store the data in "buffer"*1
I*terminate with NULL for printf*1

Controlling the HP-IB Interface 3-29

Clearing HP-IB Devices

Two HP-IB commands are used to reset devices to pre-defined, device­
dependent states. The first, DEVICE CLEAR, causes all devices that recognize
the command to be reset, whether addressed or not. Care should be used
not to use this command on an HP-IB bus with a system (non-DIL) device
attached.

To reset all devices on an HP-IB accessed through an interface file having
entity identifier eid, use a code segment similar to:

command [0] = 20; /* DEVICE CLEAR command*/
hpib_send_cmnd(eid, command, 1);

The second command for resetting devices is SELECTED DEVICE CLEAR.
This command resets only those devices that are currently addressed as
listeners.

To reset a device at HP-IB address 7, use a code segment such as this (the
interface must already be addressed to talk):

command[O] = 63;
command [1] = 32 + 7;

/* the UNLISTEN command*/
/* the listen address for device at*/
/* address 7 */

command[2] = 4; /* the SELECTED DEVICE CLEAR command*/
hpib_send_cmnd(eid, command, 3);

3-30 Controlling the HP-IB Interface

Responding to Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum
analyzers, are capable of generating a service request when they require the
Active Controller to take some action. Service requests are generally made after
the device has completed a task (such as taking a measurement) or when an
error condition exists (such as a printer being out of paper). The operating
or programming manual for each device describes the device's capability to
request service and the conditions under which it requests service.

Monitoring the SRQ Line

To request service, a device asserts the bus Service Request (SRQ) line. To
determine if SRQ is being asserted, check the status of the line, wait for SRQ,
or set up an interrupt handler for SRQ. The hpib_status_wai t subroutine
provides a means for suspending program operation until the SRQ line is
asserted then continuing. To structure a program so that it waits until SRQ
line is asserted, invoke hpib_status_wai t as follows:

hpib_status_wait(eid, WAIT_FOR_SRQ);

where eid is the entity identifier for the open interface file and
WAIT_FOR_SRQ indicates that the event that you are waiting for is the
assertion of SRQ. The subroutine returns 0 when the condition requested
becomes true or -1 if a timeout or an error occurred.

Controlling the HP-IB Interface 3-31

The following code segment illustrates the use of hpib_status_wai t:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
extern int service_routine();
mainO
{

int eid;
if ((eid = open ("/dev/raw_hpib", O_RDWR» == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);

}

}

io_reset(eid);
io_timeout_ctl(eid,10000000); /*Set a 10-second timeout*/

if (hpib_status_wait(eid, WAIT_FOR_SRQ) == 0)
service_routine(); /*SRQ is asserted; service the request*/

else
printf("Either a timeout or an error occurred\n");

Another solution is to periodically check the value of the SRQ line by calling
hpi b_bus_status as follows:

hpib_bus_status(eid, SRQ_STATUS);

where, as before, eid is the entity identifier for the open interface file and
SRQ_STATUS indicates that you want the logical value of the SRQ line
returned. hpib_bus_status returns 1 if SRQ is asserted, 0 if not, and -1 if an
error occurred.

The most practical way to monitor SRQ is to set up an interrupt handler for
that condition (see "Interrupts" section of Chapter 2).

3-32 Controlling the HP-IB Interface

Processing the Service Request

Once a device has asserted the SRQ line, it continues to asser.t the line
until its request has been satisfied. How a service request is satisfied is
device-dependent. Serial polling the device can provide the information as to
what kind of service it requires.

Many devices are designed so that they automatically clear their SRQ output
whenever they are serially polled. These devices treat the serial poll as an
acknowledgement from the Active Controller that the request has been
recognized and is being processed by the Active Controller.

If there is more than one device on the bus when SRQ is asserted, the Active
Controller must first determine which device needs service before it can
properly undertake any service related activity. There are two strategies for
doing this:

• Serial poll each individual device in sequence until the one that is
requesting service is found. This approach is reasonable if there are
only a few devices on the bus .

• Conduct a parallel poll to locate the device requesting service.
Normally each device (when capable) is programmed to respond on a
given data line. However, up to 15 devices can reside on the bus which
has only 8 data lines. Therefore it is sometimes necessary for more than
one device to respond on a given line.

If two or more devices are programmed to respond on a given parallel
poll line and the parallel poll shows that line asserted, the Active
Controller must then serially poll each device that is programmed
to respond on that line until it determines which device is requesting
service.

Controlling the HP-IB Interface 3-33

Thus, the Active Controller responds to SRQ by:

• Conducting a serial poll of individual devices on the bus,

• Conducting a parallel poll of return data lines to determine which line
is being asserted, or

• Conducting a parallel poll to identify the asserted data line followed by
a serial poll of devices programmed to assert that line when SRQ is
being asserted by the same device.

HP-IB parallel and serial polls are conducted by the DIL subroutines
hpib_ppoll and hpib_spoll, respectively. The next section explains how to
use these subroutines.

Parallel Polling

The parallel poll is the fastest means of determining which device needs service
when several devices are connected to the bus. Each device on the bus that
is capable of responding to parallel polls can be programmed to respond to
parallel polls by asserting a given data line, thus making it possible to obtain
the status of several devices in a single operation. If a given device responds to
the poll with a data line response (I need service), more information about its
specific status can be obtained by conducting a subsequent serial poll of that
device.

3-34 Controlling the HP-IB Interface

Configuring Parallel Poll Responses

HP-IB devices fall into three general categories:

1. Those devices that can be remotely programmed by the Active
Controller to respond to a parallel poll in a certain way, The next
several pages explain how to program these devices.

2. Devices whose parallel poll response is configured by internal hardware,
whether by setting of configuration switches, or based on device bus
address. A significant number of Hewlett-Packard products fall into this
grouping. In general, they are HP-IB devices that support secondary
commands such as SS/80 and CS/80 mass storage devices, CYPER
printers, and Amigo protocol devices including several disc drives and
printers. Some important information about these devices follows in the
next few paragraphs.

3. Devices that are not capable of responding to parallel polls, so
discussing their configuration is meaningless.

A number of operating rules have been established for devices in Category 2:

• No two devices can respond on the same data line. This means that
only eight or fewer devices in this category can reside simultaneously
on a given bus. If fewer than eight are present, data lines not used by
these devices for parallel poll response can be shared among remaining
devices on the bus if any are present.

• Each device in this category responds to a parallel poll on an assigned
data line determined by the device's HP-IB address. Devices residing at
HP-IB addresses 0 through 7 respond on data lines DI7 through DIO,
respectively (note the reversed numbering sequencing).

• Devices in this category respond to parallel polls when they need
service by driving the specified data line LOW to its ground-true logic
state (the sense cannot be reversed to high-true).

Note also that some models of HP-IB devices can be switched between normal
HP-IB operating mode and "Amigo" or "Secondary" mode (terminology varies
as well as the implementation). Refer to the device installation and operating
manuals for more information about how to configure the device for your
application and to determine whether the device supports remote configuration

Controlling the HP-IB Interface 3-35

by the Active Controller, uses internal configuration, or does not support
parallel poll.

To configure the parallel poll response for a given device by remote control
from the Active Controller, use the HP-IB command sequences PARALLEL
POLL CONFIGURE followed by PARALLEL POLL ENABLE. This
combination of two commands tells all devices currently addressed as listeners
to respond to any future parallel polls by asserting a specific data line with
a specific logic level. Most devices that do not support remote configuration
programming have internal configuration switches or jumpers that perform
an equivalent function but which cannot be changed remotely by the Active
Controller.

Devices that can be remotely configured can be programmed to respond with
a logic 0 or logic 1 level on anyone of eight data lines. Thus there are 16
possible combinations of lines and logic levels since there are two possible levels
on each line and only one line can be asserted during a parallel poll. The
PARALLEL POLL ENABLE command consists of an 8-bit byte whose bits are
arranged as follows (the decimal equivalent value of the byte falls in the range
of 96 through 111):

D7 D6 D5 D4 D3 D2 Dl DO Decimal Range

0 1 1 0 L X X X 96-111

where:

• The upper four bits are a fixed pattern of logical 0 (bits D7 and D4)
and logical 1 (bits D6 and D5) .

• Bit D3 (response logic level) determines whether data line D3 is to be
asserted (driven to its ground-true state) or released (allowed to float to
its high-false state) by the device when responding to a parallel poll if
service is needed. If bit D3 is set (1), the device responding to the poll
drives the data line low if service is needed. If D3 is not set (0), the
device responding to the poll drives the data line low if service is not
needed (bit value = 0). This bit is most commonly set to a value of 1.

3-36 Controlling the HP-IB Interface

• Bits D2, D1, and DO are the 3-bit (value range 0 through 7) value
representing which data line (DO through D7 respectively) is to be used
when responding to a parallel poll.

For example, to program a given device to respond to a parallel poll by placing
a logic 1 on data line DO if it needs service, use a PARALLEL POLL ENABLE
command with a decimal value of 104 (binary 01101000).

The following code segment shows how to configure a device at bus address 5
to respond to a parallel poll by asserting data line D 1 with a logic 1 if it needs
service.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid, MTA;
char command [50] ;

if «eid = open ("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2);

}

MTA = hpib_bus_status(eid, CURRENT_BUS_ADDRESS) + 64; /*compute MTA*/
command[O] = MTA; /*talk address of interface*/
command[l] = 63; /* the UNLISTEN command*/
command[2] = 32 + 5; /* the listen address for device at*/

command [3] = 5;
command[4] = 105;

/* address 5 */
/* the PARALLEL POLL CONFIGURE command*/
/* the PARALLEL POLL ENABLE command*/

hpib_send_cmnd(eid, command, 5);

Controlling the HP-IB Interface 3-37

Notice that the bit pattern for the PARALLEL POLL ENABLE command 105
(binary 01101001) used above is constructed as follows:

Bit Position H G F E D C B A

Bit Value 0 1 1 0 1 0 0 1

Where:

• Bits H through E (0110) indicate that this is a PARALLEL POLL
ENABLE command.

• Bit D (1) indicates that the device respond with a 1 to request service.

• Bits C through A (001) indicate that the device should respond on Dl.

When the computer interface is the Active Controller, it can configure its
own parallel poll response by addressing itself as both talker and listener.
However, the configuration is meaningless until the interface is no longer Active
Controller because the Active Controller never responds to parallel polls.

3-38 Controlling the HP-IB Interface

Disabling Parallel Poll Responses

A device whose parallel poll response can be remotely configured by the Active
Controller can also be disabled from responding.

To disable a device from responding to subsequent parallel polls, the Active
Controller must first send a PARALLEL POLL CONFIGURE command
followed by PARALLEL POLL DISABLE. This sequence disables all devices
that are currently addressed to listen.

In the previous example a device at bus address 5 was configured to respond
to parallel polls on data line D 1. To disable parallel poll response on the same
device, use a code segment similar to the following:

commandED] = MTA;
command[1] = 63;
command[2] = 32 + 5;

I*talk address of interface*1
1* the UNLISTEN command*1
1* the listen address for device at*1
1* address 5 *1

command[3] = 5; 1* the PARALLEL POLL CONFIGURE command*1
command[4] = 112; 1* the PARALLEL POLL DISABLE command*1
hpib_send_crnnd(eid. command. 5);

Conducting a Parallel Poll

Once parallel poll responses have been (remotely or internally) configured for
all devices on the bus that are capable of responding to parallel polls, you can
use hpib_ppoll to conduct a parallel poll on the bus, provided the computer is
the current Active Controller.

The hpib_ppoll subroutine returns an integer whose least significant byte
contains the 8-bit response to the parallel poll. Each device that is enabled to
respond to a parallel poll places its status bit (service needed or not needed)
on the data line defined by its current parallel poll response configuration. The
subroutine returns -1 if an error occurs during the poll.

hpib_ppoll is invoked as follows:

hpib_ppoll(eid);

where eid is the entity identifier for the open interface file associated with the
bus.

Controlling the HP-IB Interface 3-39

The following code segment shows how to interpret the byte returned by
hpib_ppoll. Suppose a device at address 6 was previously configured to
respond to a parallel poll by setting DO to logic 1 (low) level if it needs service
and a device at address 7 was configured to respond similarly on D 1. Assuming
that these are the only two devices capable of responding to a parallel poll,
only the values of the 2 least significant bits of the integer returned by
hpib_ppoll are of interest. This example code segment handles the results
of the parallel poll, but does not include the code needed to handled the
requested service.

#include <fcntl.h>
#include <errno.h>
mainO
{

int eid, status, byte;
if ((eid = open(1I Idev/raw_hpib", O_RDWR» == -1) {

printf(lIopen failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if ((status = hpib_ppoll(eid» == -1) I*conduct the parallel poll*1
{

printf("error taking ppoll\n"); I*if -1 returned then error occurred*1
exit(!) ;

}

byte = status & 3;

switch (byte) {
case 0:

break;
case 1:

break;
case 2:

break;
case 3:

I*set all but the least significant*1
1*2 bits to zero *1

I*neither device is requesting service*1

I*device at address 6 wants service*1

I*device at address 7 wants service*1

I*both devices want service*1

3-40 Controlling the HP-IB Interface

break;
}

}

Errors During Parallel Polls

hpib_ppoll returns the value -1 if anyone of the following error conditions
are encountered:

• Timeout defined by io_ timeout_ctl occurred before all devices
responded.

• Computer's interface is not the Active Controller.

• Entity identifier eid does not refer to a raw HP-IB interface file.

• Entity identifier eid does not refer to an open file.

• A timeout occurs.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not Active Controller. (EACCES ~m Series 800)

ETIMEDOUT A timeout occurred. (EIO on Series 300)

Controlling the HP-IB Interface 3-41

Waiting For a Parallel Poll Response

Subroutine hpib_wai t_on_ppoll allows you to wait for a specific parallel
poll response from one or more devices. The effect of this is similar to
using hpib_status_wai t to wait for assertion of SRQ as discussed earlier.
hpib_wai t_on_ppoll provides a mechanism for waiting until a specific device
requests service while hpib_status_wai t only waits until any device requests
service.

To call hpib_wai t_on_ppoll, use the form:

hpib_wait_on_ppoll(eid. mask. sense);

where eid is the entity identifier for an open interface file, mask is an integer
whose binary value identifies which parallel poll lines are to be monitored for
a request, and sense is an integer whose binary value identifies which lines
respond with an inverted logic sense (device responds with 0 when it wants
service instead of the usuall). hpib_wait_on_ppoll returns the response byte
XORed with the sense value then ANDed with the mask value, unless an error
occurs, in which case it returns -1.

Calculating the mask

hpib_wai t_on_ppoll uses only the least significant byte of the mask integer,
which means that the integer's remaining bytes can contain anything. For
simplicity, the examples in this discussion set the upper bytes to zero.

The value for mask is determined as follows:

1. Decide which parallel poll lines (the 8 data lines labelled DO through
D7) are to be monitored for service requests.

2. Set up an 8-bit binary number where the bits associated with each
line being monitored are set to 1 and all remaining bits are O. (DO is
associated with the least significant bit of the binary number, and D7
with the most significant.)

3. Given the binary number from step 2, calculate its decimal value. The
result is the correct value for mask.

3-42 Controlling the HP-IB Interface

For example, suppose that you want to wait for device A or device B to request
service. You know that device A has been configured to respond on parallel
poll line DO and device B has been configured to respond on line D4. The
correct binary value for mask is:

D7 D6 D5 D4 D3 D2 Dl DO

o o o 1 o o o 1

The decimal equivalent of this binary number is 17; the correct value for mask.

Consider a mask value of 0 which indicates that you do not want to wait
for a request on any of the parallel poll lines. In such a case, a call to
hpib_wai t_on_ppoll using a mask of 0 is meaningless and has no effect.

Calculating the sense

The subroutine hpib_wai t_on_ppoll also only looks at the least significant
byte of the sense integer. For simplicity, the examples in this discussion set the
upper bytes to zero.

The value for sense is determined as follows:

1. Decide which parallel poll lines (the 8 data lines) are to be monitored
for service requests as discussed earlier.

2. Determine which of these lines will indicate a service request by a logic
o response. This means that you must know the sense with which the
associated devices are configured to respond to parallel polls.

3. Define an 8-bit binary number where the bits associated with the
lines that use a 0 to indicate a service request are set to 1 and all of
remaining bits are O. (DO is associated with the least significant bit of
the binary number, and D7 with the most significant.)

4. Given the binary number from step 3, calculate its decimal value.
The resulting value is the sense integer you should use with
hpib_wait_on_ppoll.

Controlling the HP-IB Interface 3-43

Using the previous example for calculating the mask value, device A is
configured to respond on line DO with a 1 when it wants service, but device B
requests service by placing a 0 on line D4. The binary value for sense is:

D7 D6 D5 D4 D3 D2 Dl

o o o 1 o o o

The decimal equivalent of this number is 16; the correct value for sense.

If all devices on the bus respond to parallel polls with a 1 to request service,
the value for sense can always be 0, regardless of which parallel poll lines are
being monitored. If, on the other hand, all of devices request service with a 0,
the sense value can always be 255 (11111111 in binary). You need calculate
a special value for sense only if various devices on the bus respond with
dissimilar logic senses.

Example

Assume that you want to use hpib_wait_on_ppoll to wait for one of the four
devices on a bus to request service where the bus is configured as follows:

Parallel Poll Requests Service
Device Bus Address Response Line with a:

A 5 DO 1
B 7 Dl 0
C 9 D2 0
D 11 D3 1

Begin by calculating the mask value for hpib_wai t_on_ppoll. Since responses
can be expected on lines DO, Dl, D2, and D3, the correct mask value is:

Binary: Decimal:

o 0 0 0 1 1 1 1 15

3-44 Controlling the HP-IB Interface

The four devices on the bus use mixed (both ground- and high-true logic), the
sense value must be determined. Devices responding on lines Dl and D2 use 0
to request service, so the sense value is:

Binary: Decimal:

00000 1 1 0 6

Now that the mask and sense values have been determined, the code segment
that makes the call to hpib_wai t_on_ppoll can be written:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;
if ((eid = open("/dev/raw_hpib", D_RDWR» == -1) {

printf("open failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid,10000000); /*Set a 10-second timeout*/

if (hpib_wait_on_ppoll(eid, 15, 6) == -1)
printf("either a timeout or error occurred\n");

else
service_routine();

In the code segment shown, service_routine is executed only if one of the
four devices requests service during the parallel poll. service_routine should
contain code segments to service all devices on the bus, either individually or
as a group. See the appropriate hardware-specific appendix for any restrictions
that may apply to your system.

Controlling the HP-IB Interface 3-45

Serial Polling

A sequential poll of individual devices on the bus is known as a serial poll. One
entire status byte is returned by the polled device in response to a serial poll.
This byte is called the status byte message and, depending on the device, may
indicate an overload, a request for service, printer out of paper, or some other
condition. The particular response of each device depends on the device.

Not all devices can respond to a serial poll. To find out whether a particular
device can be serially polled, consult operating manuals for the device.
Attempting to serially poll a device that cannot respond to the poll causes a
timeout or suspends your program indefinitely.

The Active Controller cannot poll itself.

Unlike parallel poll responses, serial poll responses cannot be configured
remotely by the Active Controller. Responses vary, depending on the type of
device being polled. Refer to device manual for more information.

Conducting a Serial Poll

Subroutine hpib_spoll performs a serial poll on a specified device. It is called
with the form:

hpib_spoll(eid, address);

where eid is the entity identifier for an open interface file and address is the
bus address of the device being polled. The subroutine returns an integer,
the lowest byte of which contains the status byte message (the serial poll
response) from the addressed device. Only one device can be polled per call to
hpib_spoll.

3-46 Controlling the HP-IB Interface

Although the status byte message supplied by the addressed device is
device-dependent, bit D6 (of bits DO through D7) always indicates whether or
not the device is currently asserting SRQ. If SRQ is currently being asserted
by the device, indicating that it needs service, be sure to handle the request
properly because the serial poll also clears SRQ so that a subsequent poll will
show no service request, whether or not the current request has been satisfied.

The following code segment shows how hpib_spoll can be used to determine
whether a device at bus address 5 is requesting service. The determination is
made by simply examining D6 which indicates whether SRQ is being asserted.

#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid, status;
if «eid = open ("/dev/raw_hpib" , O_ROWR» == -1) {

printf("open failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid);
io_timeout_ctl(eid,100000); I*Set a O.1-second timeout*1

if «status = hpib_spoll(eid. 5» == -1) I*conduct serial poll*1
{ printf("error during serial poll\n");

exit(1);
}

if (status & 64)

service_routine();

I*after setting every bit except 06*1
I*to zero; if 06 is set the device*1
I*is requesting service *1

Controlling the HP .. IB Interface 3-47

Errors During Serial Poll

If any of the following error conditions are encountered during a call to
hpib_spoll, the subroutine returns -1:

• Addressed device did not respond to serial poll before the timeout limit
defined by io_timeout_ctl was exceeded.

• Computer interface is not current Active Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Address is outside the range [0,30].

• The interface associated with this eid is locked by another process and
D_NDELAY is set for this eid.

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

The interface was not the Active Controller. (EACCES on Series 800)

ETIMEDOUT A timeout occurred. (EIO on Series 300)

EACCES

EINVAL

The interface associated with this eid was locked by another process
and O_NDELAY was set for this eid.

Invalid bus address.

3-48 Controlling the HP-IB Interface

Passing Control

The subroutine hpib_pass_ctl can be used to pass control of the bus from
the computer (which must be the current Active Controller) to a Non-Active
Controller. A Non-Active Controller is a device capable of becoming Active
Controller, which usually means it is another computer.

hpib_pass_ctl is called as follows:

hpib_pass_ctl(eid. address);

where eid is the entity identifier for an open interface file that is currently the
Active Controller and address is the bus address of a Non-Active Controller.
Upon completion, the Non-Active Controller becomes the new Active
Controller and the local interface is a Non-Active Controller.

While hpib_pass_ctl can pass active control capability, it cannot pass system
control capability.

What If Control Is Not Accepted?

Your program is not suspended if the Non-Active Controller that you address
does not accept active control of the bus, but the computer still loses active
control meaning that the bus no longer has an Active Controller. If this
happens, the computer must use its position as System Controller to assume
the role of Active Controller by executing hpib_abort (see System Controller·
Role section which follows) or io_reset.

No error is returned by hpib_pass_ctl if the device that you address does
not accept active control, and there is no direct way to determine in advance
whether a given device can accept active control. There is also no way for
the computer, after initiating hpib_pass_ctl, to determine whether active
control has been accepted. However, if the computer that has passed control
immediately requests service after passing control and detects a timeout before
the request is acknowledged, this indicates that active control may not have
been accepted.

Controlling the HP-IB Interface 3-49

Errors While Passing Control

If any of the following errors are encountered, hpib_pass_ctl returns -1:

• Computer interface is not Active Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• Address is outside the range [0,30].

• A timeout occurs.

• The interface associated with thie eid is locked by another process and
D_NDELAY is set for this eid.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

EINVAL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not Active Controller.

Invalid bus address.

ETIMEDOUT A timeout occurred (EIO on Series 300)

EACCES The interface associated with thie eid was locked by another process
and D_NDELAY was set for this eid

3-50 Controlling the HP-IB Interface

Controlling the ATN Line

On a Series 300, the subroutine hpib_atn_ctl can be used to control the ATN
line on the HP-IB bus. This routine is particularly useful when setting up two
non-active controllers for a data transfer.

hpib_atn_ctl is called as follows:

hpib_atn_ctl{eid. flag);

where eid is the entity identifier for an open interface file that is currently
active controller and flag is either a 0 or a 1. A flag value of 1 enables ATN; a
value of 0 disables it.

Changing the Interface Bus Address

On a Series 300, the subroutine hpib_address_ctl can be used to
programmatically change the bus address of an HP-IB interface card.

hpib_address_ctl is called as follows:

hpib_address_ctl{eid. ba);

where eid is the new bus address for the interface card. ba must be in the
range 0-30.

Controlling the HP-IB Interface 3-51

System Controller Role
When the HP-IBs System Controller is first powered on or is reset, it assumes
the role of Active Controller. Any given HP-IB bus can have only one System
Controller. The System Controller cannot pass system control to any other
controller (computer) on the bus. However, it can pass active control to
another controller.

Determining System Controller

To determine whether your computer's HP-IB interface is the System
Controller, use the hpib_bus_status subroutine which must be called as
follows:

where eid is the entity identifier for an open interface file and
SYS_CONT_STATUS indicates that you want to determine whether it is the
System Controller. The subroutine returns 1 if it is the System Controller, 0 if
not, and -1 if an error occurs.

3-52 Controlling the HP-IB Interface

The following code segment prints a message indicating whether the interface is
System Controller:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid. status;
if ((eid = open("/dev/raw_hpib". O_RDWR» == -1) {

printf("open failed. errno = %d\n". errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid. 1000000);

if ((status = hpib_bus_status(eid. SYS_CONT_STATUS» == -1)
printf("Error occurred during bus status subroutine\n");

else if (status == 1)
printf("Interface is the System Controller\n");

else
printf("Interface is not the System Controller\n");

Controlling the HP-IB Interface 3-53

System Controller's Duties

The HP-IB System Controller has three major functions:

• It assumes the role of Active Controller at power-up and reset.

• It can cancel talkers and listeners from the bus and assume the role of
Active Controller by executing hpib_abort.

• It can control the logic level of the remote enable line (REN) with
hpib_ren_ctl.

hpib_abort

A call to hpib_abort performs the following actions:

• Terminates activity on the bus by pulsing the Interface Clear (IFC)
line. This unaddresses all talkers and listeners on the bus.

• Sets the REN line so that devices on the bus will be placed in their
remote state when addressed as listeners.

• Clears the ATN line if it was left set by the previous Active Controller.

• System Controller then becomes Active Controller.

• Returns all devices on the bus to their local state.

hpib_abort leaves the SRQ line unchanged, meaning that any device
requesting service before hpib_abort is executed is still requesting service
when the subroutine is finished.

To use hpib_abort on a particular HP-IB, the computer must be the System
Controller of that bus. It does not have to be the Active Controller.

One situation where hpib_abort is useful is when the current Active
Controller passes active control to another device, but the device does not
accept active control (this can occur when the device addressed to receive
control is not another controller). Consequently, the bus is left without any
Active Controller, leaving the System Controller to assume that role by using
hpib_abort.

3-54 Controlling the HP-IB Interface

hpi b_abort is called as follows:

hpib_abort(eid);

where eid is the entity identifier for an open interface file.

hpib_ren_ctl

hpib_ren_ctl is used to enable or disable the REN line on the HP-IB. If the
REN line is enabled, all devices capable of remote operation (meaning that
they can interpret HP-IB commands) can be placed in their remote state
by the Active Controller addressing them as talkers or listeners. When REN
is disabled, all devices on the bus return to their local state and cannot be
accessed remotely.

The REN line is enabled by default by the System Controller at power-up or
reset. It is also enabled whenever the System Controller executes hpib_abort.

To use hpib_ren_ctl on a particular HP-IB, the computer must System
Controller on that bus. It does not have to be the Active Controller.

hpib_ren_ctl is called as follows:

hpib_ren_ctl(eid. flag);

where eid is the file descriptor for an open interface file and flag is an integer.
If flag is zero, the REN line is disabled. If it has any other value, REN is
enabled.

Errors During hpib_abort and hpib_ren_ctl

If any of the following errors is encountered, hpib_abort and hpib_ren_ctl
both return -1:

• Computer interface is not System Controller.

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

Controlling the HP-IB Interface 3-55

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EIO

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

Interface is not System Controller.

In addition, hpib_abort can return the following values for errno:

errno Value Error Condition

ETIMEDOUT A timeout occurred (EIO on Series 300)

EACCES The interface associated with this eid was locked by another process
and D_NDELAY was set for this eid

3-56 Controlling the HP-IB Interface

The Computer As a Non-Active Controller

Checking Controller Status

Subroutine hpib_bus_status is used to obtain information about the
current status of the HP-IB interface card and the HP-IB, and can be used
by any device on the bus, whether it is the current Active Controller or
System Controller or not. hpib_bus_status is mentioned briefly in previous
discussions about Active and System Controllers. The discussion that follows is
a broader treatment of how the routine is used.

The call to hpib_bus_status has the form:

where eid is the entity identifier for an open interface file and status_question
is an integer that indicates what question you want answered. The value of
status_question must be within the range of 0 through 7 where the relationship
between value and the nature of the status inquiry are as follows:

Value

REMOTE_STATUS

SRQ_STATUS

SYS_CONT _STATUS

ACT _CONT _STATUS

TALKER_STATUS

LISTENER_STATUS

CURRENT _BUS_ADDRESS

Status Question

Is the interface in its remote state?

Are any devices currently requesting service? (Is
SRQ asserted?)

Is there a listener that is not ready for data? (Is
NDAC asserted?)

Is the interface the current System Controller?

Is the interface the current Active Controller?

Is the interface currently addressed as a talker?

Is the interface currently addressed as a listener?

What is the interface's bus address?

Controlling the HP-IB Interface 3-57

For all values of status_question except CURRENT_BUS_ADDRESS,
hpib_bus_status returns 1 if the answer to the question is yes, or 0 if
the answer is no. If the value of status_question is CURRENT_BUS_ADDRESS,
hpib_bus_status returns the bus address of the computer's HP-IB interface.
If the value of status_question is outside the allowable set of values, -1 is
returned, indicating an error.

For example, to determine if your interface is a Non-Active Controller on the
bus, use a calling sequence similar to the following code segment:

if «status = hpib_bus_status(eid. ACT_CONT_STATUS)) == -1)
printf("Error occurred while checking status\n");

else if (status == 0)

printf("Computer is a Non-Active Controller\n");
else

printf("Computer is the Active Controller\n");

Requesting Service

When your computer is a Non-Active Controller it can request service from
the current Active Controller by asserting the SRQ line. This is done with the
hpib_rqst_srvce routine which is called as follows:

hpib_rqst_srvce(eid. response);

where eid is the entity identifier for an open interface file and the lowest
byte of response is the integer value of the 8-bit response that the computer
gives if it is serially polled. The upper bytes of response are ignored by the
hpib_rqst_srvce. Using the labels dO through D7 for the data bus byte,
bit D6 sets the SRQ line. The defined values for the remaining 7 bits varies,
depending on the application. This section only discusses how to use D6
(integer value of 64) to set and clear the SRQ line.

3·58 Controlling the HP-IB Interface

To request service, invoke hpib_rqst_srvce as follows:

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid;

if «eid = open("/dev/raw_hpib", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit(2) ;

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);
hpib_rqst_srvce(eid,64); /*Bit 6 of serial poll response is set*/

/*and SRQ is asserted */

Note that by setting response to 64, the only information that the Active
Controller receives when it serially polls your computer is that you are
asserting the SRQ line. Therefore, other data bits in response must be set or
cleared to indicate the type of service you are requesting, and the program
controlling the current Active Controller must be capable of interpreting the
data correctly before transfer of control between computers connected to the
same bus can be handled in an orderly manner.

hpib_rqst_srvce returns 0 if it executes correctly or -1 if an error occurred.

Once you have asserted SRQ, the line remains asserted until the Active
Controller serially polls you or you call hpib_rqst_srvce again and clear bit
6 using a sequence such as hpib_rqst_srvceCeid, 0) . Once the serial poll
response is configured, your computer's HP-IB interface responds automatically
to any serial polls from the Active Controller.

A couple of notes of caution are in order here:

If another device on the bus is also asserting SRQ when your service request
is detected by the current Active Controller, SRQ remains asserted, even
after your service request is processed by the Active Controller. Thus, if you
receive control of the bus before the requesting device is serviced, you must
handle that device's service request correctly in order to maintain correct bus
operation.

Controlling the HP-IB Interface 3-59

On the other hand, if you call hpib_rqst_srvce while you are Active
Controller, the interface receives the service request sequence from the
computer but does not place an SRQ on the bus as long as you are still Active
Controller. However, if active control is passed to another controller on the
bus, as soon as the interface changes to non-controller it immediately sets SRQ
and readies the specified response data byte for the first serial poll from the
new Active Controller.

When an Active Controller detects an asserted SRQ line, it usually conducts
a parallel poll of devices on the bus to determine which one is requesting
service. The next section discusses how to configure the HP-IB interface card
for correct response to parallel polls.

When an HP-IB device responds to a parallel poll with an I need service
message, the Active Controller then performs a serial poll to determine what
type of service is required. If two or more devices are configured to respond to
a parallel poll on a single data line and the Active Controller detects a service
request on that line, the controller must perform a serial poll of all devices that
respond on that line in order to determine which device is requesting service.

Errors While Requesting Service

If any of the following error conditions occurs, hpib_rqst_srvce returns -1:

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• A timeout occurs.

• The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

3-60 Controlling the HP-IB Interface

To determine which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

ETIMEDOUT A timeout occurred. (EIO on Series 300)

EACCES The interface associated with this eid was locked by another process
and O_NDELAY was set for this eid.

Responding to Parallel Polls

Before the HP-IB interface on your computer can respond correctly to a
parallel poll from another Active Controller, the response must be configured
on the interface. This can be programmed remotely by the Active Controller as
discussed previously in the Active Controller section of this chapter, or locally
using hpib_card_ppoll_resp.

To configure a parallel-poll response:

• Specify the logic sense of the response (i.e. whether a 1 means the
device does or doesn't need service) .

• Specify which data line the device responds on. Two or more devices
can be configured to respond on a single line.

To locally configure response to parallel polls, call hpib_card_ppoll_resp as
follows:

where eid is the entity identifier of an open interface file and response is an
integer whose binary value configures the response.

Controlling the HP-IB Interface 3-61

Calculating the Response

The value for response is found by first forming an 8-bit binary number, then
using the decimal equivalent of that number where the bits in the binary
number are defined as follows:

D7 D6 D5 D4 D3 D2 Dl DO

o o o o s p p p

where:

S sets the logic sense of the response. Thus, if S is 1, the device responds
with a logic 1 in response to a parallel poll if it requires service.
Likewise, if S is 0, the interface places a logic 0 on the assigned data line
in response to a parallel poll if it requires service.

P is a 3-bit binary number (value range from 0 through 7) that specifies
which of the eight available parallel poll response lines (DO-D7) is to be
used when responding to a parallel poll.

Of course, this configuration capability is possible only on those interfaces that
support it. Refer to the appropriate appendix for more information about
specific systems.

Limitations of hpib_card_ppoILresp

Hardware limitations on certain devices restrict the use of
hpib_card_ppoll_resp to configure parallel poll responses. Refer to
the appendix related to your system to determine whether any restrictions
apply. If there are restrictions on your system, you may find it easier to
configure the interface parallel poll response remotely from another Active
Controller. Don't forget that the Active Controller can configure its own
response, but the response remains dormant until control is passed to another
device.

3-62 Controlling the HP-IB Interface

Error Conditions

If any of the following error conditions is encountered by
hpib_card_ppoll_resp, it returns -1:

• Entity identifier eid does not refer to an HP-IB raw interface file.

• Entity identifier eid does not refer to an open file.

• A timeout occurs.

• The interface associated with this eid is locked by another process and
D_NDELAY is set for this eid.

• The device cannot respond on the line number specified by response.

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

Error Condition

eid does not refer to an open file.

eid does not refer to a raw interface file.

ETIMEDOUT A timeout occurred. (EIO on Series 300)

EACCES

EINVAL

The interface associated with this eid was locked by another process
and D_NDELA Y was set for this eid.

The device cannot respond on the line number stecified by response.

hpib_ppoILresp_ctl

The subroutine hpib_ppoll_resp_ctl is used to control how the HP-IB
interface will respond to the next parallel poll:

• Assert the assigned data line with the previously configured logic sense
if service is required, or

• Place the opposite logic level on the same data line if the interface does
not need to interact with the Active Controller.

Controlling the HP-IB Interface 3-63

Parallel poll response is set as follows:

where eid is the entity identifier of an open interface file and response_value is
an integer that indicates how the interface is to respond to the next parallel
poll. If response_ value is non-zero, the computer will respond to the next
parallel poll with a request for service. If response_ value is zero, the next
response will be set to indicate that no service is needed.

Disabling Parallel-Poll Response

You can also disable responses to parallel polls from another Active Controller
by using hpib_card_ppoll_resp by setting bit D4 in the routine's response
value. When D4 is 0 the interface is set to respond to parallel polls with a
service-needed logic level. When D4 is 1, the interface responds to parallel polls
with the opposite (service not needed) level. Thus, a flag value of 16 disables
the need-service response.

For example, the subroutine call:

hpib_card_ppoll_resp(eid. 16); /*disable parallel poll response*/

disables the HP-IB interface associated with entity identifier eid from
responding to any parallel polls with a service request.

3-64 Controlling the HP-IB Interface

Accepting Active Control

Any Active Controller can pass control to any other device on the bus,
but only a Non-Active Controller can accept control. When an Active
Controller interface passes control to a Non-Active Controller interface, the
Non-Active interface automatically accepts control and the former Active
Controller becomes a Non-Active Controller. However, when this transfer
of control occurs, the interface receiving control does not automatically
notify the computer that control has been received unless the necessary
interrupts have been set up by the application program by use of subroutines
hpib_bus_status, hpib_status_wait, and io_on_interrupt.

hpib_status_wai t has been mentioned in previous discussions about the
Active Controller and System Controller. The following discussion provides a
look at its uses.

Call hpib_status_wai t as follows:

hpib_status_wait(eid. status);

where eid is the entity identifier for an open interface file and status is an
integer indicating what condition you want to wait for. The following values for
status are defined:

Value
WAIT_FOR_SRQ

WAIT _FOR_CONTROL

WAIT _FOR_TALKER

WAIT _FOR_LISTENER

Condition

Wait until the SRQ line is asserted

Wait until this computer is the Active Controller

Wait until this computer is addressed as a talker

Wait until this computer is addressed as a listener

Controlling the HP-IB Interface 3-65

Suppose you are designing a program to handle a situation where the current
Active Controller is programmed such that when your computer requests
service, it passes active control to you. The following code segment shows how
you can program your computer to request service then wait until it becomes
the new Active Controller before it continues.

include <dvio.h>
include <fcntl.h>
include <errno.h>
ain()

int eid;

if «eid = open ("/dev/raw_hpib", O_RDWR» == -1) {
printf(" open failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid) ;
io_timeout_ctl(eid, 10000000);

if (hpib_rqst_srvce(eid, 64) == -1) /*set SRQ line to request service*/
{

}

printf("Error while requesting service\n");
exit(l);

if (hpib_status_wait(eid, WAIT_FOR_CONTROL) == -1) /*wait until Active Controller*/
{

}

printf("Error while waiting for status\n");
exit (1);

/*Computer is now the Active Controller*/

Note that for hpib_status_wai t to have returned -1 (caused by an
unexpected timeout), a timeout value would have to have been set using
io_timeout_ctl after the interface file was opened. Since this example does
not contain a call to io_timeout_ctl, no timeout occurs.

Errors While Waiting on Status

hpib_status_wai t returns -1 indicating an error if any of the following error
conditions are encountered:

3-66 Controlling the HP-IB Interface

• A timeout occurred before the condition the routine was waiting for
became true.

• The value specified by status is undefined.

• Entity identifier eid does not refer to a raw HP-IB interface file.

• Entity identifier eid does not refer to an open file.

• The interface associated with this eid is locked by another process and
O_NDELAY is set for this eid.

• The device is active controller and status specifies
WAIT_FOR_TALKER or WAIT_FOR_LISTENER. (Series
300 only)

To find out which of these conditions caused the error, your program should
check for the following values of errno:

errno Value

EBADF

ENOTTY

EINVAL

Error Condition

eid does not refer to an open file.

eid does not refer to a raw HP-IB interface file.

status contains an invalid value.

ETIMEDOUT The specified condition did not become true before a timeout
occurred. (EIO on Series 300)

EACCES

EIO

The interface associated with this eid was locked by another process
and D_NDELAY was set for this eid

The device is active controller and status specifies
WAIT_FOR_TALKER or WAIT_FOR_LISTENER (Series 300 only).

Determining When You Are Addressed

As a Non-Active Controller you may be addressed at any time by the current
Active Controller to become a bus talker or listener for data transfer. The DIL
routines hpib_bus_status, hpib_status_wai t, and io_ on_interrupt are
used to determine that the interface is currently being addressed and provide
proper notification to the controlling program.

Controlling the HP-IB Interface 3-67

The following code segment determines whether the interface is currently
addressed as a bus talker:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
main()
{

}

int eid;

if «eid = open ("/dev/raw_hpib" . O_RDWR» == -1) {
printf("open failed. errno = %d\n". errno);
exit(2);

}

if (hpib_bus_status(eid. TALKER_STATUS) == 1)
{

printf("the interface is addressed as a talker\n") ;
write(eid. "data message". 12); /*do the expected data transfer*/

}

else
printf("the interface is not addressed as a talker\n") ;

In the above call to hpi b_bus_status, eid is the entity identifier for the
interface device file and TALKER_STATUS indicates that you want to know if
it is addressed to talk. The routine returns the value 1 if the answer is yes; 0 if
not.

To determine whether the interface is currently addressed as a bus listener use
the following:

if (hpib_bus_status(eid. LISTENER_STATUS) == 1)
{

printf("the interface is addressed as a listener\n");
read(eid. buffer. 12); /*do the data transfer*/

}

else
printf("the interface is not addressed as a listener\n");

3-68 Controlling the HP-IB Interface

If you need to wait until the interface is addressed as either a talker or
listener, then handle an appropriate data transfer, use the DIL subroutine
hpib_status_wai t, specifying both the entity identifier of the interface device
file and the bus condition that is being used to terminate the wait.

hpib_status_wait(eid, condition);

Controlling the HP-IB Interface 3-69

As with hpib_bus_status, a condition value of WAIT _FOR_ TALKER
causes the program to wait until the interface is addressed as a talker. With
a condition value of WAIT _FOR_LISTENER the routine waits until it is
addressed to listen. The maximum time that the routine can wait for the
specified condition is controlled by the timeout value that was previously set
for the entity identifier using subroutine io_ timeout_ctl (discussed in Chapter
2). hpib_status_wai t returns a if the wait condition terminated the wait or
-1 if a timeout or other error occurred before the wait condition was fulfilled.

In the following example code segment, the program waits for the interface to
become a bus listener, then reads a 50-byte message.

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
maine)
{

}

int eid. len;
char buffer [51] ; /*storage for message*/
if ((eid = open("/dev/raw_hpib". D_RDWR» == -1) {

printf(IIopen failed. errno = %d\n". errno);
exit(2);

}

io_reset(eid);
io_timeout_ctl(eid. 5000000); /*5-second timeout*/

if (hpib_status_wait(eid. WAIT_FDR_LISTENER) == -1)
{

printf("Either a timeout or an error occurred\n");
exit (1) ;

}

len = read(eid. buffer. 50);
buffer[len] = '\0';
printf("Message is: %S". buffer);

/*read data into buffer*/

/*print data message*/

Note that in this example a timeout value is set for the interface file's entity
identifier so that the program cannot hang indefinitely while waiting for the
interface to be addressed as a bus listener should the condition not occur as
expected.

3-70 Controlling the HP-IB Interface

The following example illustrates how to use io_on_interrupt to set up an
interrupt handler to handle a data transfer:

#include <dvio.h>
#include <fcntl.h>
#include <errno.h>
char buffer[50];
main()
{

int handler 0 ;
int eid;
struct interrupt_struct cause_vec;

if «eid = open(II Idev/raw_hpib", O_RDWR» == -1) {
printf(IIopen failed, errno = %d\n", errno);
exit(2);

}

io_reset(eid);

cause_vec.cause = LTN;
io_on_interrupt(eid, &cause_vec, handler);

}

handler(eid, cause_vec)
int eid;
struct interrupt_struct *cause_vec;
{

}

if (cause_vec->cause == LTN)
read(eid, buffer, 50);

Controlling the HP-IB Interface 3-71

Combining 1/0 Operations
into a Single Subroutine Call

hpib_io is a high-level DIL subroutine that provides a mechanism for
conveniently collecting a series of HP-IB I/O operations in a data structure
then using a simple subroutine call to hpib_io to handle interface and bus
management operations. This feature eliminates the need for using several long
tedious series of subroutine calls to io_lock, hpib_send_cmnd, read, write, and
i~_unlock and makes these operations atomic on the Seris 300.

A call to hpib_io has the form:

#include <dvio.h>
rnain()
{

}

int eid;
struct iodetail *iovec;
int iolen;

hpib_io(eid. iovec. iolen);

where eid is the entity identifier of an open interface file, iovec is a pointer to
an array of I/O operation structures, and iolen is the number of structures
in the array. The name of the template for the I/O operation structures is
iodetail and it is defined in the include file dvio.h.

3-72 Controlling the HP-IB Interface

lodetail: The 1/0 Operation Template

The form of the iodetail structure that holds I/O operations is:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;

};

Where the components in structure iodetail have the following meanings:

mode

terminator

count

buf

Describes what kind of I/O operation the structure contains.

Specifies whether or not there is a read termination character
for the I/O operation, and if so it specifies the value.

How many bytes are to be transferred during the I/O
operation.

A pointer to an array containing the bytes of data to be
transferred.

Components of a particular iodetail structure are referenced with:

iovec->component

where iovec is a pointer to an array of iodetail structures and component is
either mode, terminator, count, or buf.

The Mode Component

The mode describes what type of I/O operation is to be performed on the data
pointed to by the buf component. To determine its value, OR appropriate
constants from a set defined in the include file dvio.h. You can choose from the
following constants:

Controlling the HP-IB Interface 3-73

Name

HPIBREAD

HPIBWRITE

HPIBATN

HPIBEOI

HPIBCHAR

Note

Table 3-3.

Description

Perform a read operation and place the data into the accompanying
buffer pointed to by buf. Can be by itself or OR-ed with
HPIBCHAR.

Perform a write operation using the data in the accompanying
buffer pointed to by buf. Can be by itself or OR-ed with either
HPIBATN or HPIBEOI but not both.

If you are performing a write operation, the data is placed on the
bus with ATN asserted (you are sending a bus command). It only
has effect if you also specify HPIBWRITE.

If you are performing a write operation, the EOI line is asserted
when the last byte of data is sent. It only has effect if you also
specify HPIBWRITE.

If you are performing a read operation, the transfer is halted when
the terminator component value of the iodetail structure is read.
The terminator component only has effect if you OR HPIBCHAR
and HPIBREAD. The HPIBCHAR constant only has effect if also
specify HPIBREAD.

When you construct mode, you must use either HPIBREAD
or HPIBWRITE, but not both. Optionally, you can OR
one of the other three constants with either HPIBREAD or
HPIBWRITE, but they are not required. HPIBCHAR has
effect only when it is ORed with HPIBREAD, while HPIBATN
and HPIBEOI have effect only when they are ORed with
HPIBWRITE (but not both at the same time).

3-74 Controlling the HP-IB Interface

The mode component allows you to specify conditions under which an I/O
operation terminates. All I/O operations terminate when the maximum
number of bytes specified by the count component of the iodetail structure is
reached. However, additional termination conditions are possible:

• If you specify HPIBREAD and HPIBCHAR: detection of the
termination character defined by the terminator component also causes
termination .

• If you specify HPIBWRITE and HPIBEOI: when the count value is
reached EOI is asserted at the time that the last byte of data is sent
(unless you also specify HPIBATN).

To illustrate, assume that iovec points to an iodetail structure that you are
building and you want the structure to send several HP-IB commands. The
mode component of the structure is assigned the necessary value as follows:

iovec->mode = HPIBWRITE I HPIBATN;

The Terminator Component

The terminator component of the iodetail structure specifies a character that
causes the termination of a read operation when it is detected. The terminator
only has effect if HPIBREAD I HPIBCHAR is specified as the structure's
associated mode component.

Assign a value to the terminator component in the structure pointed to by
iovec with:

iovec->terminator = value;

For example, to define the ASCII period character (.) the termination
character, use the statement:

iovec->terminator =

The Count Component

count is an integer that defines the maximum number of bytes to be
transferred during the structure's I/O operation. Reading or writing always
terminates when this value is reached, but additional termination conditions
can be set up using the structure's associated mode component.

Controlling the HP-IB Interface 3-75

To set a maximum number of bytes for a structure's data transfer:

iovec->count = max_value;

where iovec is a pointer to the structure and max_value is an integer.

The Buf Component

The buf component points to a character array where data is to be stored from
a read operation (HPIBREAD) or a character array containing data to be
written to during a write operation (HPIBWRITE).

Note The value of a structure's count component should never
exceed the size of the array. If this restriction is violated,
unpredictable results and/or data loss are likely.

One way to store a message in the buf array is:

iovec->buf = IIdata message ll
;

Allocating Space

Before building iodetail structures for I/O operations, storage space in
memory must be allocated. The easiest way to do this (if you are programming
in C) is to write a routine that allocates space for n iodetail structures and
returns a pointer to the first one.

Here is a sample code segment for such a routine, io_alloc:

#include <dvio.h>
struct iodetail *io_alloc(n)
int n;
{

char *malloc 0 ;
return«struct iodetail *) malloc(sizeof(struct iodetail) * n));

}

Refer to the HP- UX Reference for a description of malloc(3C).

For example, to use io_alloc to allocate memory space for 10 iodetail
structures your program should contain the statements:

struct iodetail *iovec;
iovec = io_alloc(10);

/*define an iodetail pointer*/
/*allocate space for 10 iodetail structures*/

3-76 Controlling the HP-IB Interface

Example

Assume the HP-IB interface is Active Controller and located at HP-IB
address 30. A data message is to be sent to a device at HP-IB address 7 then
a subsequent message is to be received from the same device by use of the
hpib_io subroutine. Such a sequence requires four iodetail structures:

1. The first structure configures the bus so that the interface is the talker
and the device at address 7 is the listener.

2. The second structure sends the data message from the interface to the
device.

3. The third structure configures the bus so that the device at address 7 is
the talker and the interface is the listener.

4. The fourth structure receives the data message from the device.

The following code segment illustrates how the four structures can be built and
implemented.

#include <fcntl.h>
#include <errno.h>
#include <dvio.h> /*contains definitions for iodetail*/
struct iodetail *io_alloc(n)
int n;
{

char *malloc 0 ;
return «struct iodetail *) malloc(sizeof (struct iodetail) *n»;

}

MainO
{

extern int errno;
int eid;
char buffer [4] [12];
struct iodetail *iovec. *temp; /*2 pOinters to iodetail structures*/

/*Allocate space for 4 iodetail structures*/
iovec = io_alloc(4); /* use the routine described earlier */
temp = iovec;

Controlling the HP-IB Interface 3-77

I*Build structure 1 -- Configuring the bus*1
temp->mode = HPIBWRITE I HPIBATN; I*you want to send commands*1
strcpy(buffer[O] ,"1-'"); I*address computer to talk; bus address to listen*1
temp->buf = buffer [0] ;
temp->count = strlen(buffer[O]);

I*Build structure 2 -- Sending the data message*1
temp++; I*use temp pointer so iovec keeps pointing to*1

I*first structure but temp now points to next one*1

temp->mode = HPIBWRITE I HPIBEOI; I*assert EOI when the transfer is
complete*1

strcpy(buffer[l] ,"data message ll);
temp->buf = buffer [1] ;
temp->count = strlen(buffer[l]);

I*Build structure 3 -- Configuring the bus*1
temp++;

pointer*1
temp->mode = HPIBWRITE I HPIBATN;
strcpy (buffer [2] ,"1G>II);
temp->buf = buffer [2] ;
temp->count = strlen(buffer[2]);

I*increment structure

I*to send commands*1

I*Build structure 4 -- Receiving data message*1
temp++; I*increment structure pointer*1
temp->mode = HPIBREAD; I*read data until count limit is reached*1
temp->count = 10; I*accept message up to 10-bytes in length*1
temp->buf = buffer [3] ;

I*Implement the 1/0 operations stored in the iodetail structures*1
if «(eid = open(lI/dev/raw_hpib ll , O_RDWR» == -1) {

printf(lI open failed, errno = %d\n ll , errno);
exit (2) ;

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_io(eid, iovec, 4) == -1)
{

}

printf (lIhpib_io failed\nll);
printf (lIerrno %d\nll,errno);
exit(l);

3-78 Controlling the HP-IB Interface

I*Print data message received from the device. Note that temp still*1
I*points to the last iodetail structure, the one that did the read *1

printf("%s", temp->buf);
}

One comment about the C language: Subroutine parameters are passed by
value; not by reference. This means that after hpib_io is executed, the iovec
parameter still points to the first iodetail structure, just as it did before the
subroutine was executed. Thus, another way to print out the data message
that was read into the buf component of the fourth iodetail structure in the
example above is:

printf("%s", (iovec + 3)->buf);

Locating Errors in Buffered I/O Operations

If all I/O operations specified in the array of iodetail structures complete
successfully, hpib_io returns 0 and updates the count component of each
structure to reflect the actual number of bytes read or written.

If an error occurs during one of the I/O operations, hpib_io immediately
returns a -1 indicating the error. To determine which iodetail structure
operation was associated with the error, examine the structures' count
components. When hpib_io encounters an error, it updates the count
component of the structure that caused the error to -1. Thus, once you have
located a structure with a count of -1, you know that all previous structures
were completed successfully and all of the structures after it were not executed
at all.

Controlling the HP-IB Interface 3-79

For example, suppose an array of ten iodetail structures has been built to
execute a sequence of I/O operations. The following code segment executes
the operations then checks for errors. If an error occurs, the number of the
structure that caused it (the first structure in the array is number 1) is printed.

#include <fcntl.h>
#include <errno.h>
#include <dvio.h>
mainO
{

int FOUND, number, eid;
struct iodetail *iovec, *temp;

I*space is allocated for the 10 structures then they are*/
I*built. "Iovec" is left pointing to the first structure*/

if «eid = open(II /dev/raw_hpib", O_RDWR))
printf(" open failed, errno = %d\n", errno);
exit(2);

-1) {

}

io_reset(eid);
io_timeout_ctl(eid, 10000000);

if (hpib_io(eid, iovec, 10) == -1) /*execute the operations. If a -1*/
/*is returned, an error occurred*/

{

}

number = 1; /*initialize counter*/
FOUND = 0; /*initialize Boolean flag*/
temp = iovec; /*set temporary pointer to first structure*/
while (number <= 10 && FOUND != 1)

if (temp->count == -1) /*found structure that caused error*/
FOUND = 1;

else
{

temp++;
number++;
}

if (FOUND == 1)

/*move pointer to next structure*/
/*increment counter*/

printf("Structure number %d caused error II , number);
else

printf("Error but couldn't find structure that caused it\n");

else
printf("No error occurred during execution of hpib_io\n");

3-80 Controlling the HP-IB Interface

}

Controlling the HP-IB Interface 3-81

4
Controlling the GPIO Interface

This chapter briefly describes how to configure the GPIO interface before
accessing it from a program by use of DIL subroutines. It then discusses the
capabilities and limitations of DIL subroutines when controlling the GPIO
interface.

Interface Configuration
The Series 300 GPIO interface is configured by setting several switches on the
interface card. The interface installation manual explains how each switch is
used and how it should be configured. Configurable functions associated with
these switches include:

• Data logic sense,

• Data handshake mode,

• Input data clock source.

Set the configuration switches according to the directions found in the GPIO
interface installation manual.

Creating the GPIO Interface File

After setting the necessary switches on your GPIO interface, install the card in
the computer then create an interface file for it as explained in Chapter 2. An
appropriate interface file must be created before the interface can be accessed
from HP-UX.

Controlling the GPIO Interface 4-1

Interface Control Limitations

Device I/O Library (DIL) subroutines provide a means for using a GPIO
interface to communicate with devices that are not supported on your HP-UX
system. However, they do not provide full control of the interface, so you are
faced with the following limitations:

• There is no direct access to interface handshake lines: Peripheral
Control (PCTL) line, Peripheral Flag (PFLG) line, and Input/Output
(I/O) line.

• You cannot read the value of the Peripheral Status line (PSTS) directly.

Using OIL Subroutines

Several DIL subroutines can be used to control the GPIO interface. They are
divided into two groups:

• General-purpose routines usable with both HP-IB and GPIO interfaces,

• GPIO routines: routines specifically designed for use with a GPIO
interface.

General-purpose routines are listed and described in detail in Chapter 2.
They are used in this chapter to illustrate various aspects of controlling GPIO
interfaces from an HP-UX process.

Two DIL routines used exclusively with GPIO interfaces:

• gpio_get_status

• gpio_set_ctl.

The GPIO interface has four special-purpose lines that are used in various
ways, depending on the needs of the device connected to the interface. Two
incoming lines, STIO and STIl, are driven by the peripheral device and are
usually used to provide device status information. Two outgoing lines, CTLO
and CTLl are driven by the computer, usually to control the device.

4-2 Controlling the GPIO Interface

The subroutines gpio_get_status and gpio_set_ctl are used to access
these four special-purpose lines. gpio_get_status reads STIO and STll, and
gpio_set_ctl sets the values of CTLO and CTLl. Both routines are described
later in this chapter in the section Using Status and Control Lines.

By using the DIL general-purpose routines and these two GPIO-specific
routines you can:

• Reset the interface,

• Perform data transfers,

• Use the interface's 4 special purpose lines,

• Control the data path width and data transfer speed,

• Set a timeout for data transfers,

• Set a read termination character,

• Get the termination reason,

• Set up the interrupts,

• Enable or disable interrupts.

Resetting the Interface

The interface should always be reset before it is used, to ensure that it is in
a known state. All interfaces are automatically reset when the computer is
powered up, but you can also reset them from your I/O process by using the
io_reset subroutine. For example, the following code segment resets a GPIO
interface:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio". O_RDWR); /*open GPIO interface file*/
io_reset(eid); /*reset the interface*/

Controlling the GPIO Interface 4-3

This has the following effect:

• Peripheral Reset line (PRESET) is pulsed low,

• PCTL line is placed in the clear state,

• If the DOUT CLEAR jumper is installed, the Data Out lines are all
cleared (set to logical 0),

• Interrupts from the controlled interface are disabled on Series 300
systems.

Lines that are left unchanged are:

• CTLO and CTL1 output lines,

• I/O line,

• Data Out lines if the DOUT CLEAR jumper is not installed.

Performing Data Transfers

The read and write system calls are used to transfer ASCII data to and from
the GPIO interface. The following code segment illustrates how to use these
routines to write 16 bytes to the interface, then read 16 bytes back in.

#include <fcntl.h>
#include <errno.h>
mainO
{

}

int eid; /*entity identifier*/
char read_buffer [16] , write_buffer [16] ; /*buffers to hold data*/

if «eid = open(" /dev/raw_gpio", O_RDWR» == -1) {
printf("open failed, errno = %d\n", errno);
exit (2) ;

}

io_reset(eid);

write_buffer = "message to write";
write(eid,write_buffer, 16);
read(eid, read_buffer, 16);
printf("%s", read_buffer);

/*data message to send*/
/*send message*/
/*receive message*/
/*print received message*/

4-4 Controlling the GPIO Interface

Using Status and Control Lines

Four special-purpose (status and control) signal lines are available for a variety
of uses. Two of the lines are for output (CTLO and CTL1), and two are for
input (STIO and STl1). The routine gpio_set_ctl allows you to control the
values of CTLO and CTL1, while the routine gpio_get_status allows you to
read the values of STIO and STH.

Driving CTLO and CTL 1

The call to gpio_set_ctl has the following form:

gpio_set_ctl(eid. value);

where eid is the entity identifier for an open GPIO interface file and value is an
integer whose least significant two bits are mapped to CTLO (bit 0) and CTL1
(bit 1). Both CTLO and CTL1 are ground-true logic meaning that they are at
a logic LOW level when asserted. This logic polarity cannot be changed. Logic
sense of the two lines is related to value as follows:

• If value =0: CTLO and CTL1 both false (HIGH logic level)

• If value =1: CTLO true (LOW logic level) and CTL1 false (HIGH logic
level)

• If value =2: CTLO false (HIGH logic level) and CTLI true (LOW logic
level)

• If value =3: CTLO and CTL1 both true (LOW logic level)

This example code segment asserts both lines, setting them at a logic LOW
level:

int eid; /*entity identifier*/
eid = open("/dev/raw_gpio". O_RDWR); /*open interface file*/
gpio_set_ctl(eid. 3); /*assert CTLO and CTL1*/

To set both lines to a logic HIGH level, call gpio_set_ctl as follows:

gpio_set_ctl(eid. 0);

Controlling the GPIO Interface 4-5

Reading STIO and STI1

The call to gpio_get_status has the following form:

int eid, value;
value = gpio_get_status(eid);

where eid is the entity identifier for an open GPIO interface file.
gpio_get_status returns an integer whose least significant two bits are the
values of STIO and STIl.

Like CTLO and CTL1, STIO and STI1 are ground-true logic meaning
they are at a logic LOW level when asserted. Thus the value returned by
gpio_get_status is as follows (be sure to AND value with 3 to clear upper
bits before testing):

• If value =0: STIO and STI1 both false (HIGH logic level)

• If value =1: STIO true (LOW logic level) and STI1 false (HIGH logic
level)

• If value =2: STIO false (HIGH logic level) and STI1 true (LOW logic
level)

• If value =3: STIO and STI1 both true (LOW logic level)

4-6 Controlling the GPIO Interface

To illustrate:

int eid; /*entity identifier*/
int value, bits;
eid = open (II/dev/raw_gpioll, O_RDWR); /*open interface file*/
value = gpio_get_status(eid); /*look at STIO and STI1*/
bits = value & 03 /*clear all but the 2 least significant bits*/
if (bits == 3) /*and see if they are both set*/

/*insert code that handles case when both STIO and STI1 are asserted*/
else if (bits == 1) /*only STIO is asserted*/

/*insert code that handles case when STIO is asserted*/

else if (bits 2) /*only STI1 is asserted*/

/*insert code that handles case when STI1 is asserted*/

else /*neither are asserted*/

/*insert code that handles case when neither STIO nor STI1 is asserted*/

Controlling Data Path Width

DIL subroutine io_width_ctl is used to specify 8-bit or 16-bit data path
widths for the GPIO interface. The call has the following form:

where eid is the entity identifier for an open GPIO interface file and width is
either 8 or 16. If any other width value is specified, io_width_ctl returns -1
and sets errno to EINVAL. The GPIO interface is set to a default 8-bit path
width when the interface file is opened.

Controlling the GPIO Interface 4-7

The following code segment illustrates data transfers using a 16-bit data path
width.

int eid;

eid = openC"/dev/raw_gpio". O_RDWR);
io_width_ctlC eid. 16);
write C eid. "data message". 12);

/*open the interface file*/
/*set path width to 16 bits*/
/*perform data transfer*/

Since the interface data path width is 16 bits, 2 ASCII characters are
transferred during each handshake cycle. In the first 16-bit transfer, d is
sent in the upper byte and a is sent in the lower. The actual logic sense
(ground-true or high-true) of the GPIO data output lines depends on how the
lines were configured during interface card installation.

Controlling Transfer Speed

You can request a minimum speed for the data transfer across a GPIO
interface by issuing a call to io_speed_ctl. Your system rounds the specified
speed up to the nearest defined speed. If you specify a speed that is faster
than your system allows, the highest available speed is used instead. Refer to
Chapter 2 for more information about io_speed_ctl.

GPIO Timeouts

If a non-zero timeout limit has been established for a given eid and that limit
is exceeded during a data transfer request, an error condition results. When
the subroutine handling the transfer detects the timeout error, it returns -1
and sets errno to ETIMEDOUT (EIO on Series 300). When a timeout error
occurs, use io_reset to reset the GPIO interface before attempting another
transfer.

4-8 Controlling the GPIO Interface

Burst Transfers

Series 300 systems support high-speed burst I/O on HP-IB and GPIO
interfaces. The call to io_burst is structured as follows:

io_burst (eid, flag)

io_burst controls the data path between computer memory and the HP-IB or
GPIO interface. If flag = 0, all data is handled through kernel calls with the
normal associated overhead. If flag is non-zero, burst mode locks the interface
and data is transferred directly between memory and the I/O mapped interface
until the transfer is completed. Burst mode yields substantial improvement in
efficiency when handling small amounts of data or high-speed data acquisition.

Read Terminations

Determining Why a Read Operation Terminated

Subroutine io_get_term_reason, described in Chapter 2, is used to determine
why the last read performed on a particular eid terminated. Possible reasons
include:

• The requested number of bytes were read

• A specified read termination character was seen

• A assertion of the PSTS line was seen

• Some abnormal condition occurred, such as an I/O timeout.

Specifying a Read Termination Pattern

Chapter 2 describes subroutine io_eol_ctl which is used to specify a
character or string of characters (called a read termination pattern) that, when
encountered during a read, terminates the read operation currently underway
on a particular GPIO interface file eid.

Interrupts

Subroutines io_on_interrupt and io_interrupt_ctl are described in
Chapter 2. They are used to set up and control interrupt handlers for the
GPIO status line or for a particular GPIO interface file eid.

Controlling the GPIO Interface 4-9

A
Series 300 Dependencies

The following information, specific to Series 300 computers, is discussed in this
appendix:

• Location of the DIL subroutines,

• Information about creating interface special files used by DIL
subroutines,

• Relationship between entity identifiers and file descriptors,

• Restrictions imposed by the hardware on using the DIL subroutines,

• Techniques for improving data transfer performance when using DIL
subroutines.

Location of the OIL Subroutines

The DIL subroutines that provide direct control of your computer's interfaces
are contained in the library /usr/lib/libdvio. a. Some of these subroutines
are general-purpose and can be used with any interfa(te supported by the
library, while others provide control of specific interfaces. The Device I/O
Library (DIL) currently supports the HP-IB and GPIO interfaces.

Series 300 Dependencies A-1

Linking OIL Subroutines
The Iibdvio. a library redefines the read, write, fentl, dup, and ioetl entry
points. For DIL to work properly, the DIL library must be linked before Ii be.

The GPIO Interface

The GPIO (General Purpose Input/Output) interface is a very flexible parallel
interface that allows communication with a variety of devices. On Series 300
computers, the interface sends and receives up to 16 bits of data with a choice
of several handshake methods. External interrupt and user-definable signal
lines provide additional flexibility.

The GPIO interface is comprised of the following lines:

• 16 parallel data input lines

• 16 parallel data output lines

• 4 handshake lines

• 4 special-purpose lines.

Data Lines

There are 32 data lines: 16 for input and 16 for output. These lines normally
use negative logic (0 indicates true, 1 indicates false). The logic can be changed
so that a 1 indicates true with the interface's Option Switches. Refer to your
GPIO interface manual to see how to do this.

Handshake Lines

Although four lines fall into this group, only three are used for controlling the
transfer of data:

• PCTL-Peripheral ConTroL

• PFLG-Peripheral FLaG

• I/O-Input/Output.

A-2 Series 300 Dependencies

The Peripheral Control (PCTL) line is controlled by the interface and used to
initiate data transfers. The Peripheral Flag (PFLG) line is controlled by the
peripheral device and used to signal the peripheral's readiness to continue the
transfer process. The Input/Output (I/O) line is used to indicate direction of
data flow.

Special-Purpose Lines

Four lines are available for any purpose you desire; two are controlled by the
peripheral device and sensed by the computer, and two are controlled by the
computer and sensed by the peripheral.

Data Handshake Methods

There are two handshake methods using PCTL and PFLG to synchronize data
transfers: pulse-mode handshakes and full-mode. If the peripheral uses pulses
to handshake data transfers and meets certain hardware timing requirements,
the pulse-mode handshake is used. The full-mode handshake should be used if
the peripheral does not meet the pulse-mode timing requirements. Refer to the
GPIO interface's documentation for a description of these handshake methods.

Data-In Clock Source

Ensuring that data is valid when read by the receiving device differs slightly
depending on what direction the data is flowing. When writing data out from
the computer the interface generally holds data valid while PCTL is in the
asserted state, the peripheral must read the data during this period.

When reading data from the peripheral, the peripheral must hold the data
valid until it can signal that the data is valid or until the data is read by the
computer. The peripheral signals that the data is valid using the PFLG line.
This clocks the data into the interface's Data-In registers.

You can specify the logic level of the PFLG line that indicates valid data
by setting the FLAG switches on the interface card. Refer to the card's
installation manual to find out how to do this.

Series 300 Dependencies A-3

Creating the Interface Special File

HP-UX treats I/O to an interface the same way it treats I/O to any
input/output device: the interface must have a special file. The general process
of creating special files is described in the HP- UX System Administrator
Manual for your system. The following discussion points out specific
requirements needed for a special file associated with a given HP-IB or GPIO
interface.

Creating the Special File

Special files are created using the mknod(1M) command; you must be super-user
to execute this command. When used to create an interface special file, mknod
has the following syntax:

mknod pathname c major_number minor_number

The c parameter to mknod tells the system to create the file as a character
special file. Descriptions of the remaining parameters to the mknod command
follow.

pathname

The pathname parameter specifies the name to be given to the newly created
interface special file. The pathname identifies the interface itself, not a
peripheral on the interface. Special files are usually kept in the directory / dev.
This is basically an HP-UX convention; some commands expect to find special
files in the / dev directory and fail if they are not there.

major _number

The major number specifies which device driver to use with the interface. The
following table shows the major number used for each supported interface:

Major
Number

21

22

Interface

HP -IB Interface

GPIO Interface

A-4 Series 300 Dependencies

minor _number

The minor number parameter tells mknod the location of the interface. The
minor number has the following syntax:

OxScAdUV

where:

Ox specifies that the characters which follow represent hexadecimal values.
These two characters (zero and x) are entered as shown.

Sc a two-digit hexadecimal value specifying the select code of the interface
card. The select code is determined by switch settings on the HP-IB
interface card.

Ad a two-digit hexadecimal value specifying a bus address. To use DIL
routines with the interface, the special file should be created as a raw
special file: the Ad component of the minor number should be 31 (1f in
hexadecimal). If Ad is less than 31, then the file is not created as a raw
file; it is created as an auto-addressable file. (In this case, Ad specifies
the bus address of the device for which the special file is created.) If
only one device can be connected to the interface (e.g., the GPIO
interface), the component of the minor number is ignored.

U a single-digit hexadecimal value specifying a secondary address. This
component of the minor number is ignored when the special file you are
creating is for an interface; you should set it to o.

V a single-digit hexadecimal value specifying a secondary address, such
as the volume number in a multi-volume drive. This component of the
minor number is ignored also; you should set it to o.

Creating an HP-IB Interface File

Suppose you want to create an HP-IB interface special file with the following
characteristics:

• the pathname is Idev/raw_hpib

• because the interface is HP-IB, the major number is 21

• the card's select code switches are set to select code 2-i.e., the Sc
component of the minor number is 02

Series 300 Dependencies A-5

• the special file must be a raw special file in order to use DIL
subroutines with it; therefore, the Ad portion of the minor number must
be 31 (If in hexadecimal).

Based on this information, you would use mknod as follows to create the special
file for the interface:

mknod /dev/raw_hpib c 21 Ox021fOO

To further illustrate the use of mknod, suppose you have two HP-IB interfaces
(major number = 21) whose switches are set to select codes 2 and 3. The
following mknod commands set up a special file for the interface at select code
02 (/dev/raw_hpib1) and select code 03 (/dev/raw_hpib2):

mknod /dev/raw_hpib1 c 21 Ox021fOO

mknod /dev/raw_hpib2 c 21 Ox031fOO

Creating a GPIO Interface File

Now suppose you have a GPIO interface that you want to access with the DIL
subroutines on the same computer.

Because the GPIO interface does not use a bus architecture, the usual bus
address (Ad) and secondary address (UV) components of mknod's minor number
are ignored, and you need only determine the select code value.

Assuming that you have set the interface select code switches to 04 on
the Series 300 GPIO card, the following mknod command will create the
appropriate special file, named /dev/raw_gpio:

mknod /dev/raw_gpio c 22 Ox040000

A-6 Series 300 Dependencies

Effects of Resetting (via io_reset)
For an HP-IB interface on Series 300 computers, resetting involves clearing
REN, pulsing its Interface Clear line (IFC), and resetting REN; for a GPIO
interface the Peripheral Reset line (PRESET) is pulsed. If io_reset fails, the
routine returns a -1; otherwise the routine returns a O.

Entity Identifiers
On Series 300 computers, an entity identifier for a file used by a DIL routine is
equivalent to an HP-UX file descriptor. This means that you can obtain entity
identifiers for your interface files with the system subroutines dup, fcntl, and
creat, in addition to open.

Restrictions Using the OIL Subroutines
This section presents some restrictions on using the DIL subroutines on Series
300 computers. These restrictions are organized under the routine to which
they apply. The subroutines are presented in alphabetical order.

hpib_send_cmnd

By default, the Series 300 HP-IB interface card uses odd parity when you send
commands via hpib_send_cmnd. To do this, it overwrites the most-significant
bit of each command byte with a parity bit. This should not cause a problem
since all HP-IB commands use only 7 bits, and the eighth is free for use as a
parity bit. The behavior of hpib_send_cmnd can be modified to use all eight
bits for commands using the hpib_pari ty _ctl subroutine.

Series 300 Dependencies A-7

hpib_status

The hpi b_status routine cannot sense lines being driven (output) by the
interface. In other words, listeners cannot senses NDAC and non-controllers
cannot sense SRQ.

When an HP-IB interface is reset via io_reset, the interrupt mask is set to 0,
the parallel poll response is set to 0, the serial poll response is set to 0, the
HP-IB address is assigned, the IFC line is pulsed (if system controller), the
card is put on line, and REN is set (if system controller).

When a GPIO interface is reset, the peripheral request line is pulled low, the
PTCL line is placed in the clear state, and if the DOUT CLEAR jumper is
installed, the data out lines are all cleared. The interrupt enable bit is also
cleared.

io_speed_ctl

If the I/O transfer speed is set less than 7Kb/sec (i.e., the speed parameter is
less than 7), then the interface will use interrupt transfer mode. If the transfer
speed is set greater than 140Kb / sec (speed > 140), then the system chooses
the fastest mode possible. If the speed is between 7Kb and 140Kb/sec (7Kb ~
speed ~ 140), then DMA transfer mode is used.

IMPORTANT If you are using pattern termination, via io_eol_ctl, then
you'll always get interrupt mode, regardless of speed.

This routine allows you to set a time limit for I/O operations on an entity
identifier associated with an interface file. The timeout value that you
specify is a 32-bit long integer that indicates the length of the timeout
in microseconds. However, the resolution of the effective timeout is
system-dependent. On the Series 300 computers the timeout is rounded up to
the nearest 20-millisecond boundary. For example, if you specify a timeout of

A-8 Series 300 Dependencies

150000 microseconds (150 milliseconds), the effective timeout is rounded up to
160 milliseconds.

Performance Tips

Device I/O performance on Series 300 computers using DIL subroutines can be
im proved by following these guidelines:

• Use io_burst for many small data transfers (less than 4 Kbytes).

• For processes running with an effective user ID of super-user, lock the
process in memory by using plock(2) (see HP- UX Reference) which
informs the system that the process code, data, or both are not to be
swapped out of memory. Here is an example illustrating the use of
plock:

#include <sys/lock.h>
mainO
{

int plockO;
plock(PROCLOCK); /* lock text and data segments into memory*/

plock(UNLOCK); /* unlock my process*/
}

• Use auto-addressing for all read and write operations (refer to Chapter
3 under the topic "Setting up Talkers and Listeners").

• Use rtprio(2) to increase the system priority of an I/O process.
rtprio requires that the process be running with an effective user
ID of super-user. The real-time priorities available with rtprio are
non-degrading priorities. Be careful when using real-time priorities.
Increasing I/O process priorities above system processes may cause
undesirable behavior. For example, requesting a real-time priority in
the range of 0-63 places your process at a higher priority than the DIL
interrupt handler system process. This means that interrupts could be
lost if available CPU resources are insufficient. The following example
places the calling process at the lowest (least important) real-time
priority:

Series 300 Dependencies A-9

#include <sys/rtprio.h>
main 0
{

}

int rtprio(). my_proc;

my_proc = 0; /* specifying process number zero tells rtprio */
/* to refer to the calling process. */

rtprio(my_proc. 127); /* priority 127 = lowest real-time priority*/

rtprio(my_proc, RTPRIO_RTOFF); /* turn off real-time priority*/

A-10 Series 300 Dependencies

B
Series 800 Dependencies

The following information, specific to the Device I/O Library (DIL) on Series
800 computers, is discussed in this appendix:

• compiling programs that use DIL routines

• accessing the special files for the interfaces that you plan to use with
DIL

• creating special files for the interfaces that you plan to use with DIL

• DIL routines affected by the Series 800 hardware

• DIL support of HP-IB auto-addressed files

• improving performance of D IL programs

Compiling Programs That Use OIL

The DIL routines are located in the library /usr/lib/libdvio. a. Thus,
programs can be linked as:

cc test.c -ldvio

Series 800 Dependencies B-1

Accessing the Interface Special Files

The Series 800 kernel is shipped with a default I/O configuration. This means
a default set of special files is made for you. For example, the /dev/hpib
directory contains special files created for use with HP-IB instruments
connected to the HP 27110B HP-IB interface. The special file /dev/gpioO is
created for use with instruments or peripherals connected to the HP27114A
Asynchronous FIFO interface (AFI). The in sf command is used to install
these special files all at one time. Mknod could also be used to create them
one at a time. For more information on in sf and mknod refer to the HP- UX
Reference.

Major Numbers

Major numbers map the hardware I/O cards to the software I/O driver for
the type of I/O application the card will be doing. The driver used to talk to
the HP-IB card for instrument I/O is called instrO, and corresponds to major
number 21. The HP-IB card talks to different drivers (which use different
major numbers) to do I/O to other kinds of devices, such as disc drives or
printers. All default special files in the /dev/hpib directory use major number
21. The driver that talks to the AFI card is called gpioO, and corresponds to
major number 22. The /dev/gpioO special file uses major number 22.

Minor Numbers and Logical Unit Numbers

Drivers use minor numbers to map the hardware I/O cards to their locations
in the Series 800 I/O backplane. The default I/O configuration shipped with
your Series 800 creates special files accessing a subset of the available backplane
slots. For the HP-IB card, two slots are available for instrument I/O, and one
slot is available for the AFI card. Slot information is accessed through the
device's logical unit number. The logical unit number is mapped into the
special file's minor number. For HP-IB special files, the HP-IB bus address is
also mapped into the minor number.

The minor number syntax for an HP-IB special file is:

OxOOLuBa

B-2 Series 800 Dependencies

where Lu is the device's logical unit number, and Ba is the bus address of the
HP-IB device. Both numbers are in hexadecimal.

The minor number syntax for an AFI special file is:

OxOOLu 00

where Lu is the device's logical unit number in hexadecimal.

For example, a long listing of the special file /dev/hpib/Oa16 shows

$ 11 /dev/hpib/Oa16
crw-rw-rw- 1 root root 21 Ox000010 Mar 11 15:19 Oa16

The logical unit number is 0, and bus address 16 is 10 in hexadecimal.

Listing Special Files

The Series 800 I/O architecture is based on a hierarchical design. The use of
logical numbers in conjunction with the major and minor number allows the
system to keep track of all the information about the I/O structure. The lssf
command, list special file, is a tool that makes it easy to read information
about a special file without decoding it by hand.

The syntax of lssf is:

1ssf [-f dev_fi1eJ path

where path is the pathname of the special file. Lssf uses the major number
from the special file to find the name of the device driver in a file called
/etc/devices. If you use the -f option, lssf looks in dev_file instead of
/etc/devices. It then decodes the minor number, outputs the logical unit
number, the device bus address (if there is one), and the corresponding CIO
slot address for the actual card in the I/O backplane.

Using the default special file /dev/hpib/Oa16 as an example, the following
output is produced:

$ 1ssf /dev/hpib/Oa16
instrO 1u 0 bus address 16 address 8.2.16 /dev/hpib/Oa16

where instrO is the name of the instrument HP-IB driver, the logical unit
number is 0, the HP-IB bus address is 16, and the backplane address of the
HP-IB card is 8.2.16. This says that the CIO channel card is in mid-bus
address 8, and the HP-IB card should be in slot 2 of that CIO channel. There

Series 800 Dependencies 8-3

are 12 CIO slots available, numbered 0-11. The last digit, in this case 16, is the
HP-IB bus address of the device Oa16.

The default HP-IB special files are set up for cards in slot 2 or slot 7 of the
CIa channel at mid-bus address 8. A special file for each possible bus address
(0-31) is made for each card. The special files for the card at slot 2 all have a
logical unit number of 0, and the special files for the card in slot 7 all have a
logical unit number of 1.

The default GPIO special file is set up for an AFI card in slot 5 of the CIO
channel at mid-bus address 8, and uses a logical unit number of o.
For more information on Issf refer to the HP- UX Reference.

Naming Conventions for Interface Special Files

If your Series 800 computer was configured correctly, the special files discussed
above will already have been created.

By convention, HP-IB special files reside in the /dev/hpib directory. Also by
convention, the default special files for the HP-IB raw bus (a HP-IB card itself)
are named /dev/hpib/X, where X is the bus's logical unit. Auto-addressed
files are named /dev/hpib/Xa Y, where X is the logical unit, a stands for an
auto-addressed file, and Y is the file's associated HP-IB bus address (see the
"DIL Support of HP-IB Auto-Addressed Files" section of this appendix).

The naming convention for the GPIO default special files is /dev/gpioX, where
X is the device's logical unit.

If you cannot locate the default special files on your system, refer to the next
section for how to create them.

8-4 Series 800 Dependencies

Creating Interface Special Files
If the special files you need for HP-IB or GPIO are not available on your
system, you can use the mksf command to create them. Mksf is a high-level
command implemented for the Series 800, that can be used instead of mlmod.
Like Issf, mksf frees you from having to know the major number and minor
number format. Mksf makes the special file creation process consistent for all
classes of devices. The syntax of mksf is:

mksf -d driver -1 1 u var lather _f lags I ... sfname

where driver is the name of the driver associated with the special file, Iu is
the file's logical unit, and sfname is the name of the special file you wish to
create.

Each class of device can have additional class-dependent attributes (such as the
bus address for an HP-IB auto-addressed file).

For HP-IB devices, the driver is instrO. Thus, to create a special file named
/dev/bus for HP-IB lu 1, you use the command:

mksf -d instrO -1 1 /dev/bus

When creating auto-addressed HP-IB special files, you add another option
-a to associate the address with the device. For example, to create an
auto-addressed special file called /dev/plotter, at bus address 7 on HP-IB lu 2,
you could type:

mksf -d instrO -1 2 -a 7 /dev/p1otter

For the AFI card, the driver is gpioO. Thus, to create a special file named
/dev/afi for GPIO lu 0, you could use the command:

mksf -d gpioO -1 0 /dev/afi

For more information on mksf or mknod, refer to the HP- UX Reference.

Series 800 Dependencies 8-5

Hardware Effects on OIL Routines
The HP-IB card supported on the Series 800 is the HP 27110B HP-IB
interface; the GPIO card is the HP 27114A Asynchronous FIFO Interface
(AFI).

This section presents some restrictions on using the DIL routines on Series
800 computers. These restrictions are organized under the DIL routine to
which they apply. The routines are presented in alphabetical order. A list of
errno error names can be found in section two of the HP-UX Reference. Errno
numeric values are defined in the file /usr/include/sys/errno.h.

hpib_rqst_srvce

The hpib_rqst_srvce routine only permits bit 6 of the serial poll response
to be set. If hpib_rqst_srvce is called with a response having bit 6 set, the
interface sends <01000000> (64 decimal) in response to serial poll; if bit 6 is
not set in response, the interface sends <10000000> (128 decimal). See "The
Computer as a Non-Active Controller" in Chapter 3.

hpib_io

The atomicity of hpib_io calls is not guaranteed.

These routines are not currently supported on the Series 800.

The AFI driver does not support pattern matching on reads; all io_eol_ctl
calls return -1 and set errno to EINVAL.

8-6 Series 800 Dependencies

When an HP-IB interface is reset via io_reset, the card's parallel poll
response is set to 0; its serial poll response is set to 128; its HP-IB address
is read off the hardware switches; and the card is put on-line. Any enabled
interru pts are preserved. If the card is configured as system controller, then
Interface Clear (IFC) is pulsed and Remote Enable (REN) is asserted.

When an AFI interface is reset via io_reset, each of the three control output
lines is reset to zero, the incoming Attention Request (ARQ) is disabled, the
ARQ flip flop is cleared, the ARQ enable flip flop and the handshake to the
peripheral are disabled, and the FIFO buffer is flushed out.

The io_speed_ctl routine is not supported on Series 800 computers; transfer
is always done via DMA.

On Series 800 computers, the timeout you specify via io_timeout_ctl is
rounded up to the nearest 10-millisecond boundary. For example, if you specify
a timeout of 125000 microseconds (125 milliseconds), the effective timeout is
rounded up to 130 milliseconds.

DIL functions, read, or write requests that time out, return a value of -1 and
set errno to either ETIMEDOUT or EINTR. If the request can be aborted
normally, then errno is set to ETIMEDOUT . Otherwise, the HP-IB card is
reset and EINTR is returned.

The only allowable data path width for HP-IB devices is 8. AFI devices
support 8-bit and 16-bit data paths. If you specify any other width,
io_width_ctl returns an error indication.

Series 800 Dependencies 8-7

Return Values for Special Error Conditions

On specific error conditions, the Series 800 sets errno values which are different
from what is expected from the DIL as documented in the HP-UX Standard.
For example, when any request times out, errno is set to ETIMEDOUT
("connection timed out") or instead of setting it to EOI. Also, upon HP-IB
requests that require the interface to be the active controller or the system
controller, set errno to EACCES ("permission denied"). Requests that are
aborted due to system power failure set errno to EINTR ("interrupted system
call"); in addition, your process receives the signal SIGPWR, which indicates
recovery of system power.

OIL Support of HP-IB Auto-Addressed Files
As noted in Chapter 3 in the section called "Setting Up Talkers and Listeners,"
one class of HP-IB special files, known as auto-addressed files, are associated
with a given address on the bus. For read and write requests to these files,
addressing is done automatically; that is, the sequence of talk and listen bus
commands is generated for you.

In general, the DIL functions are not defined for auto-addressed files. On
the Series 800, however, many of them are implemented, but with more
device-oriented actions.

Important The DIL Standard does not currently specify a functional
definition for the support of auto-addressed files. When
support for auto-addressed files becomes part of the DIL
Standard, the specific functionality implemented may differ
from the implementation described here for the Series 800.
Please keep this in mind when developing programs which take
advantage of this new functionality.

The following table shows which DIL functions are supported on
auto-addressed files. Entries in the first column work the same on both
auto-addressed and non-au to-addressed (also called raw bus) files. Entries in
the second column are somewhat different for auto-addressed files; entries in

8-8 Series 800 Dependencies

the third column are not supported on HP-IB auto-addressed files and will
return an error indication if used.

Table B-1.

Routine Same Effect Different Effect Not Allowed
hpib_abort •
hpib_bus_status •
hpib_card_ ppolLresp •
hpib_eoLctl •
hpib_io •
hpib_ pass_ctl •
hpib_ppoll •
hpib_ppoILresp_ctl •
hpib_ren_ctl •
hpib_rqst_srvce •
hpib_send_cmd •
hpib_spoll •
hpib_status_ wait •
hpib_ wait_on_ppoll •
io_eoLctl •
io_get_term_reason •
io_interrupt_ctl •
io_on_interrupt •
io_reset •
io_speed_ctl •
io_ timeout_ctl •
io_ width_ctl •

Those functions in the second column, which operate differently on raw bus
and auto-addressed special files, are discussed below.

Series 800 Dependencies 8-9

hpib_card_ppolI_resp

Calling hpib_card_ppoll_resp on an auto-addressed file does not configure
the HP-IB interface card; rather, it configures the device associated with the
file with the appropriate addressing and Parallel Poll configuration commands.

hpib_io

For those iodetail structures that send commands (by setting the mode flag
to HPIBWRITE or HPIBATN), hpib_io prefixes the command buffer buf
with the appropriate device addressing (see hpib_send_cmd, below). For data
transfers (with mode set to HPIBREAD or HPIBWRITE) using auto-addressed
files, the addressing is also done for you.

hpib_ren_ctl

Setting REN (by setting the flag parameter to a non-zero value) on an
auto-addressed file addresses the associated device before asserting REN.
Clearing REN (by setting flag to a zero) addresses the device and sends it a Go
To Local command, in lieu of clearing REN.

hpib_send_cmd

Sending HP-IB commands to an auto-addressed file via hpib_send_cmd does
the appropriate device addressing for you. The command buffer you pass down
to the device is preceded by the commands necessary to remove any previous
listeners on the bus, address the Active Controller to talk, and configure the
file's associated device to listen.

Performing a serial poll on an auto-addressed file polls the associated device;
any bus address passed via the ba argument is ignored.

8-10 Series 800 Dependencies

hpib_ wait_on_ppoll

For auto-addressed files, the mask argument is ignored; only the address
associated with the device is polled. In addition, the sense argument only
specifies the sense of the particular device's assertion. Successful completion of
the hpib_wai t_on_ppoll request implies that the device responded to parallel
poll.

io_on_interrupt

The only allowable interrupt for auto-addressed files is SRQ.

Series 800 Dependencies 8-11

Performance Tips

DIL performance improvements for the Series 800 fall into two categories:
those that keep your process from waiting for resources, and those that actually
improve your I/O performance. The first three of the tips described below fall
into the first category; the last two are in the second category.

Process Locking

Normally, the operating system swaps processes in and out of memory; you can
circumvent this swapping by using the plock system call.

If you are running as the super-user (or have the PRIV _MLOCK capability),
you can use plock to lock your process in memory; plock prevents the system
from swapping out the process's code, data, or both.

The following example illustrates its use:

#include <sys/lock.h>
int plockO;

mainO {

plock(PROCLOCK); /* lock text and data segments into memory */

plock(UNLOCK); /* unlock the process */
}

Refer to plock(2) and getpri vgrp (2) in the HP- UX Reference for more
information.

Setting Real-Time Priority

The operating system schedules processes based on their priority. Under
normal circumstances, the priority of a process drops over time, allowing newer
processes a greater share of CPU time. You can assign a higher priority to
your process and keep its priority from dropping by using the rtprio system
call.

If you are running as the super-user (or have the PRIV _RTPRIO capability),
you can use rtprio to give your process a real-time priority. Real-time

8-12 Series 800 Dependencies

processes run at a higher priority than normal user processes; they get
preempted only by voluntarily giving up the CPU or by being interrupted by a
higher priority process or interrupt.

You must be careful when using real-time priorities because you can increase
your priority above those of important system processes. The following
example places the calling process at the lowest (least important) real-time
priority:

#include <sys/rtprio.h>
#define ME 0 /* a zero process ID means this process */
int rtprio 0 ;

mainO {
rtprio(ME. 127); /* Turn on real-time priority for ME */

rtprio(ME. RTPRIO_RTOFF); /* Turn off real-time priority for ME */
}

Refer to rtprio (2) and getpri vgrp (2) in the HP- UX Reference for more
information.

Preallocating Disc Space

if your process is reading large amounts of data and writing it to a file, you
can block while the operating system allocates disc space. However, you
can allocate disc space in advance by using the prealloc system call. The
following example opens a file and preallocates 65536 bytes of space for that
file:

#include <fcntl.h>
#define MAX_SIZE 65536
int prealloc 0 ;

mainO {
int eid;

eid = open("data_file". O_WRONLY);
prealloc(eid. MAX_SIZE); /* preallocate space to write into */

}

Refer to prealloc (2) in the HP- UX Reference for more information.

Series 800 Dependencies 8-13

Reducing System Call Overhead

Most DIL function calls you make on the Series 800 map into system calls.
Therefore, you can cut down on operating system overhead by using fewer
library calls. In particular, use auto-addressed files for all read and write
operations, rather than using an extra call to hpib_send_cmd to do addressing.

Setting Up Faster Data Transfers

Because of the I/O architecture of the Series 800, data transfers run more
efficiently if your data buffers are aligned on a page boundary. The number
of bytes per page is defined as NBPG and can be referenced by including
<sys/param. h>. The following example shows how to allocate and page-align a
data buffer:

#include <sys/param.h> /* defines NBPG and roundup (x. y) */
#define REAL_SIZE 1024 /* amount of memory we want to page-align */
char *malloc 0 ;

mainO {

}

char *malloc_ptr. *align_ptr;

malloc_ptr = malloc(NBPG + REAL_SIZE); /* allocate memory */
align_ptr = roundup (malloc_ptr. NBPG); /* and round up the ptr */

/* in future data transfers. use align_ptr */

free(malloc_ptr); /* when we're done with the data */

In addition, even count transfers run more quickly than odd count transfers.

8-14 Series 800 Dependencies

c
ASCII Character Codes

This appendix contains two tables:

• The first table lists ASCII control characters and how to obtain them
by pressing the specified key while holding the I Ctrl I key or I Ctrl I and
I Shift I keys down .

• The second table fills two pages and lists all ASCII characters with
their decimal, binary, octal, and hexadecimal equivalent values as well
as their corresponding HP -IB name.

Table C-1. Obtaining ASCII Control Characters

Keys ASCII Dec Oct Hex Keys ASCII Dec Oct Hex

[@-I Shift ~OO NUL 00 000 00 [@-[I] DLE 16 020 10
[@-[K] SOH 01 001 01 [@-[QJ DC1 17 021 11
[@-[]] STX 02 002 02 [@-[[) DC2 18 022 12
[@-@] ETX 03 003 03 [@-W DC3 19 023 13
[@-@] EaT 04 004 04 [@-[I] DC4 20 024 14
[@-[I] ENQ 05 005 05 [@-[[] NAK 21 025 15
[@-[£J ACK 06 006 06 [@-[YJ SYNC 22 026 16
[@-@] BEL 07 007 07 @ill[R] ETB 23 027 17
[@-[8J BS 08 010 08 @ill!]] CAN 24 030 18
[@-[O HT 09 011 09 @ill[I] EM 25 031 19
[@-Q] LF 10 012 OA [@-[I] SUB 26 032 1A
[@-[K] VT 11 013 OB [@-[) ESC 27 033 1B
[@-IT] FF 12 014 OC [@-[SJ FS 28 034 1C
[@-[0 CR 13 015 OD [@-[] GS 29 035 1D
[@-[]] SO 14 016 OE [@-I Shift H~ RS 30 036 IE
[@-[]] S1 15 017 OF [@-I Shift ~c::J US 31 037 IF

ASCII Character Codes C-1

Table C-2. ASCII Character Codes

ASCII Dec Binary Oct Hex HP-IB ASCII Dec Binary Oct Hex HP-IB
NUL 00 00000000 000 00 space 32 00100000 040 20 LAO
SOH 01 00000001 001 01 GTL ! 33 00100001 041 21 LA1
STX 02 00000010 002 02 " 34 00100010 042 22 LA2
ETX 03 00000011 003 03 # 35 00100011 043 23 LA3
EaT 04 00000100 004 04 SDC $ 36 00100100 044 24 LA4
ENQ 05 00000101 005 05 PPC & 37 00100101 045 25 LA5
ACK 06 00000110 006 06 % 38 00100110 046 26 LA6
BEL 07 00000111 007 07 , 39 00100111 047 27 LA7
BS 08 00001000 010 08 GET (40 00101000 050 28 LA8
HT 09 00001001 011 09 TCT) 41 00101001 051 29 LA9
LF 10 00001010 012 OA * 42 00101010 052 2A LA10
VT 11 00001011 013 OB + 43 00101011 053 2B LA11
FF 12 00001100 014 OC . 44 00101100 054 2C LA12
CR 13 00001101 015 OD - 45 00101101 055 2D LA13
SO 14 00001110 016 OE 46 00101110 056 2E LA14
SI 15 00001111 017 OF / 47 00101111 057 2F LA15

DLE 16 00010000 020 10 0 48 00110000 060 30 LA16
DC1 17 00010001 021 11 LLO 1 49 00110001 061 31 LA17
DC2 18 00010010 022 12 2 50 00110010 062 32 LA18
DC3 19 00010011 023 13 3 51 00110011 063 33 LA19
DC4 20 00010100 024 14 DCL 4 52 00110100 064 34 LA20
NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21
SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22
ETB 23 00010111 027 17 7 55 00110111 067 37 LA23
CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24
EM 25 00011001 031 19 SPD 9 57 00111001 071 39 LA25
SUB 26 00011010 032 1A 58 00111010 072 3A LA26
ESC 27 00011011 033 1B . 59 00111011 073 3B LA27
FS 28 00011100 034 1C < 60 00111100 074 3C LA28
GS 29 00011101 035 1D = 61 00111101 075 3D LA29
RS 30 00011110 036 IE > 62 00111110 076 3E LA30
US 31 00011111 037 IF ? 63 00111111 077 3F UNL

C-2 ASCII Character Codes

ASCII Dec Binary
@ 64 01000000
A 65 01000001
B 66 01000010
C 67 01000011
D 68 01000100
E 69 01000101
F 70 01000110
G 71 01000111
H 72 01001000
I 73 01001001
J 74 01001010
K 75 01001011
L 76 01001100
M 77 01001101
N 78 01001110
a 79 01001111
p 80 01000000
Q 81 01000001
R 82 01000010
S 83 01000011
T 84 01010100
U 85 01010101
V 86 01010110
w 87 01010111
x 88 01011000
y 89 01011001
z 90 01011010
[91 01011011
\ 92 01011100
] 93 01011101
- 94 01011110

- 95 01011111

Table C-2. ASCII Character Codes
Continued

Oct Hex HP-IB ASCII Dec Binary
100 40 TAO ,

96 01100000
101 41 TAl a 97 01100001
102 42 TA2 b 98 01100010
103 43 TA3 c 99 01100011
104 44 TA4 d 100 01100100
105 45 TA5 e 101 01100101
106 46 TA6 f 102 01100110
107 47 TA7 g 103 01100111
110 48 TA8 h 104 01101000
111 49 TA9 i 105 01101001
112 4A TA10 j 106 01101010
113 4B TAll k 107 01101011
114 4C TA12 1 108 01101100
115 4D TA13 m 109 01101101
116 4E TA14 n 110 01101110
117 4F TA15 0 111 01101111
120 50 TA16 p 112 01110000
121 51 TA17 q 113 01110001
122 52 TA18 r 114 01110010
123 53 TA19 s 115 01110011
124 54 TA20 t 116 01110100
125 55 TA21 u 117 01110101
126 56 TA22 v 118 01110110
127 57 TA23 w 119 01110111
130 58 TA24 x 120 01111000
131 59 TA25 y 121 01111001
132 5A TA26 z 122 01111010
133 5B TA27 { 123 01111011
134 5C TA28 I 124 01111100
135 5D TA29 } 125 01111101
136 5E TA30 - 126 01111110
137 5F UNT DEL 127 01111111

Oct Hex HP-IB

140 60 SCO
141 61 SCI
142 62 SC2
143 63 SC3
144 64 SC4
145 65 SC5
146 66 SC6
147 67 SC7
150 68 SC8
151 69 SC9
152 6A SC10
153 6B SC11
154 6C SC12
155 6D SC13
156 6E SC14
157 6F SC15
160 70 SC16
161 71 SC17
162 72 SC18
163 73 SC19
164 74 SC20
165 75 SC21
166 76 SC22
167 77 SC23
170 78 SC24
171 79 SC25
172 7A SC26
173 7B SC27
174 7C SC28
175 7D SC29
176 7E SC30
177 7F SC31

ASCII Character Codes C-3

D
OIL Programming Example

This appendix contains a program listing for an HP-IB driver that uses Device
I/O Library subroutines to drive various models of Hewlett-Packard Amigo
protocol HP-IB printers. It is provided solely for illustrative use, and is not
to be construed as optimum programming technique nor necessarily totally
bug-free although the program has been extensively tested.

It contains not only examples of DIL subroutine usage, but also other useful
programming techniques and structures that can make the task of writing
specialized I/O programs much easier.

1 /***/
2 /* This example Amigo printer driver uses a byte stream as standard */
3 /* input and Amigo protocol as output to HP-IB driver (21). Any special */
4 /* character handling should be done by a filter that feeds this driver. */
5 /* */
6 /* This example program is provided for solely illustrative purposes to */
7 /* demonstrate typical use of Device I/O Library (OIL) subroutines. No */
8 /* representations are made as to its suitability for any given */
9 /* application. */

10 /* */
11 /* While the program is intended to show good programming practice, it */
12 /* does not necessarily represent optimum programming efficiency. */
13 /***/
14
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <stdio.h>
18 #include <fcntl.h>
19 #include <errno.h>
20 #include <sys/sysmacros.h>
21

OIL Programming Example 0-1

22 /* HP-IB addressing group bases */
23 #define LAG_BASE Ox20 /* listener address base */
24 #define TAG_BASE Ox40 /* talker address base */
25 #define SCG_BASE Ox60 /* secondary address base */
26

/* HP-IB command equates in odd parity */ 27
28
29
30
31
32
33

#define GTL OxOl /* go to local */
#define SDC Ox04 /* selective device
#define DCL Ox94 /* device clear
#define UNL Oxbf /* unlisten */
#define UNT Oxdf /* untalk */

34 /* HP-IB secondary commands */
35 #define PR_SEC_DSJ SCG_BASE+16
36 #define PR_SEC_DATA SCG_BASE+O
37 #define PR_SEC_RSTA SCG_BASE+14
38 #define PR_SEC_MASK SCG_BASE+Ol

*/

39 #define PR_SEC_STRD SCG_BASE+l0 /* 2608A */
40
41 /* output of DSJ operation 2608A */
42 #define PR_ATTEN OxOOOl
43 #define PR_RIBBDN Ox0002
44 #define PR_ATT_PAR Ox0003
45 #define PR_PAPERF Ox0010
46 #define PR_SELF Ox0020
47 #define PR_PRINT Ox0040
48

clear */

49 /*output of DSJ operation the rest of the printers */
50 #define PR_RFDATA OxOOOO
51 #define PR_SDS OxOOOl
52 #define PR_RIDSTAT Ox0002
53
54 /* ppoll mask bits */
55 #define PR_M_RFD Ox0010
56 #define PR_M_STATUS Ox0020
57 #define PR_M_PDWER Ox0040
58 #define PR_M_PAPER Ox0080
59
60 /* default parallel poll mask */
61 unsigned char pmask[l] = {PR_M_PAPER+PR_M_PDWER+PR_M_STATUS+PR_M_RFD};
62

0-2 OIL Programming Example

63
64
65
66
67
68
69
70
71
72
73
74

/* masks for io status byte in case of 2608A */
#define PR_CPOW OxOO01
#define PR_I_OPSTAT Ox0040
#define PR_CLINE Ox0080

/* masks for io status byte the rest of the printers */
#define PR_I_POWER OxOO01
#define PR_I_PAPER OxOO02
#define PR_I_PARITY OxOO08
#define PR_I_RFD Ox0040
#define PR_I_ONLINE Ox0080

75 /* define printer types */
76 #define T2608A 1
77 #define T2631A 2
78 #define T2631B 3
79 #define T2673A 4
80 #define QjetPlus 5
81 #define T2632A 6
82 #define T2634A 7
83
84 int ptr_type; /* type of printer */
85
86 /* setup defines for fatal returns */
87 #define F_RTRN 1
88 #define F_EXIT 0
89
90 /* setup defines for HP-IB_msg */
91 #define H_READ 1
92 #define H_WRITE 2
93 #define H_CMND 4
94
95 /* default timeout value (in seconds) to infinity *1
96 int timeout = 0;
97
98 1* default size of output buffer to printer *1
99 int bufsz = 32;

100

OIL Programming Example 0-3

101 /* device file suffix for raw hpib dev */
102 char ptr_raw[] = "_00";
103
104 /* default output dev to printer */
105 char ptr_dev[100] = "/dev/lp";
106
107 extern char *optarg;
108 extern int optind;
109 extern int errno;
110
111 /* file id for raw HP-IB dev */
112 int eid;
113
114 /* configured listen and talk commands */
115 int MTA; /* my talk address */
116 int MLA; /* my listen address */
117 int DTA; /* device (printer) talk address */
118 int DLA; /* device (printer) listen address */
119
120 /* device bus address & my bus address */
121 int devba, myba;
122
123 /* my name */
124 char *procnam;
125
126 int Debug = 0;
127
128 main(argc, argv)
129 int argc;
130 char *argv[];
131 {
132
133 register i, c;
134 register unsigned char *outbuf; /* output buffer pointer */
135 int status;
136 int selcode; /* select code of printer */
137 struct stat statbuf;
138 int errflg = 0;
139
140 procnam = argv[O]; /* save pOinter to my name */
141

0-4 OIL Programming Example

142 /* GET USER SUPPLIED OPTIONS AND PRINTER FILE NAME */
143 while «i = getopt(argc, argv, Ib:t:p:D")) != EOF) {
144 switch (i) {
145 /* set the buffer size to output to printer */
146 case 'b': if «bufsz = atoi(optarg)) <= 0) errflg++;
147 break;
148
149 /* get the new timeout value in seconds */
150 case 't': if «timeout = atoi(optarg)) < 0) errflg++;
151 break;
152
153 /* Set the parallel poll pmask (mostly for debugging) */
154 case 'p': if «pmask[O] = atoi(optarg)) < 0) errflg++;
155 break;
156
157 case 'D': Debug++; break;
158
159 case '1': errflg++;break;
160 }
161 }
162 /* get printer dev if supplied */
163 if (optind < argc)
164 strcpy(ptr_dev, argv[optind]);
165
166 if (errflg) {
167 fprintf(stderr, "usage: %s [-bbufsz -ttmout] [printer_dev]\n", procnam);
168 fprintf(stderr, "-b bufsz > Output buf size to printer (%d)\n", bufsz);
169 fprintf(stderr, lI_t tmout > Max seconds to output buffer (%d)\n",
timeout) ;
170 fprintf(stderr, "printer_dev> Printer device file (%s)\n", ptr_dev);
171 fprintf(stderr, "_p ppoll_mask > Parallel poll mask
(Ox%02x)\n",pmask[0]);
172 exit(2);
173 }
174 /* get memory for the output buffer */
175 outbuf = (unsigned char *)malloc (bufsz + 4);
176 /*
177 NOTE: Printer device file (/dev/lp) is used only to get printer select
178 code and HP-IB bus address. This is because attention-true (ATN)
179 requests can only be sent to an "HP-IB raw bus device file". Therefore
180 after getting the SC and BA we will use a "HP-IB raw bus device file" to
181 do all the work, but it must exist with a name similar to the printer
182 device; i.e. "/dev/lp" is changed to l/dev/lp_07", where the "07" is the
183 select code.
184 */

OIL Programming Example 0-5

185 /* check if printer device exists */
186 if (stat (ptr_dev, &statbuf) < 0)
187 fatal_err("stat" , ptr_dev, F_EXIT);
188
189 /* check if it is a character device file */
190 if «statbuf.st_mode & S_IFMT) != S_IFCHR)
191 fatal_err("Must be a char_special file", ptr_dev, F_EXIT);
192
193 /* extract select code from the printer device */
194 selcode = m_selcode(statbuf.st_rdev);
195
196 /* make the HP-IB raw bus device file name from selectcode */
197 ptr_raw[l] += selcode / 16;
198 ptr_raw[2] += selcode % 16;
199 if «selcode % 16) >= 10) ptr_raw[2] += ('a' - '0' -10);
200 strcat(ptr_dev, ptr_raw);
201
202 /* get device BA from the printer device and config control bytes */
203 devba = m_busaddr(statbuf.st_rdev);
204 DLA = LAG_BASE + devba; /* device listen address */
205 DTA = TAG_BASE + devba; /* device talk address */
206
207 /* open the HP-IB raw bus device */
208 if «eid = open (ptr_dev, D_RDWR» <0) {
209 fatal_err("Raw HP-IB open", ptr_dev, F_RTRN);
210 fprintf(stderr,
211 II The following commands executed as a super user may be necessary\n\n");
212 fprintf(stderr," # mknod %s c 21 Ox%slfOO\n" , ptr_dev, &ptr_raw[l]);
213 fprintf(stderr, " # chmod 555 %s\n" , ptr_dev);
214 fprintf(stderr, " # chown lp %s\n" , ptr_dev);
215 exit(2);
216 }
217 /* get (my) BA of the controller and configure control bytes */
218 if «myba = hpib_bus_status(eid, 7» < 0)
219 fatal_err("Must be raw hpib driver (21)", ptr_dev,F_EXIT);
220 MLA = LAG_BASE + myba; /* controller (my) listen address */
221 MTA = TAG_BASE + myba; /* controller (my) talk address */
222
223 /* go do the Amigo identify */
224 ptr_type = amigo_identify();
225

0-6 OIL Programming Example

226 if (Debug) {
221 printf("%s Identified" ptr_dev);
228 switch(ptr_type) {
229 case T2608A: printf("2608A"); break;
230 case T2631A: printf("2631A"); break;
231 case T2631B: printf("2631B"); break;
232 case T2613A: printf("2613A"); break;
233 case QjetPlus: printf("QuietJet Plus");break;
234 case T2632A: printf("2632A"); break;
235 case T2634A: printf("2634A"); break;
236 default: printf("You forgot one dummy"); break;
231 }
238 printf(" printer\n");
239 }
240 /* set the timeout to user requested value */
241 if (io_timeout_ctl(eid. timeout * 1000000) < 0)
242 fatal_err("io_timeout_ctl". ptr_dev. F_EXIT);
243
244 /* always tag last output data byte with EOI */
245 if (hpib_eoi_ctl(eid. 1) < 0)
246 fatal_err("hpib_eoi_ctl". ptr_dev. F_EXIT);
247
248 /* clear out the status bits */
249 amigo_clear();
250
251 /* check the status bits */
252 status = amigo_status();
253 if (Debug) printf("%s Printer status = Ox%x\n". ptr_dev. status);
254
255 /* set the ppoll mask required by some printers */
256 amigo_set_pmask();
251

OIL Programming Example 0-7

258 /* MAIN OUTPUT LOOP */
259 i = 0;
260 while ((c = getchar(» != EOF) {
261 if (i == bufsz) {
262 amigo_write(outbuf. i);
263 i = 0;
264 }
265 outbuf[i++] = c;
266 }
267 /* post remaining buffer */
268 if (i) amigo_write(outbuf. i);
269 exit(O);
270 }
271
272 /* ROUTINE TO DO THE MAIN I/O TO THE BUSS */
273 /* lock bus. do preamble. read/write. do postamble and unlock bus */
274 /* preamble must be 3 or 4 bytes. postamble must be 1 or 2 bytes */
275 int
276 HPIB_msg(rw_flag. pcm1. pcm2. pcm3. buffer. length. ocmO. ocm1)
277 int rw_flag;
278 int pcm1;
279 int pcm2;
280 int pcm3;
281 char *buffer;
282 int length;
283 int ocmO;
284 int ocm1 ;
285 {
286
287
288
289

unsigned char pre_cmd[4] ;
unsigned char post_cmd[2] ;
int tlog = -1;

290 pre_cmd[O] = UNL; /* always issue unlisten command first */
291 pre_cmd[1] = pcm1;
292 pre_cmd[2] = pcm2;
293 pre_cmd[3] = pcm3;
294
295 post_cmd[O]
296 post_cmd[1]
297

ocmO;
ocm1;

298 /* first get exclusive use of the bus */
299 if (io_lock(eid) < 0)
300 fatal_err("io_lock". ptr_dev. F_EXIT);
301

0-8 OIL Programming Example

302 1* send the preamble 3 or 4 bytes with attention true *1
303 if (hpib_send_cmnd(eid, pre_cmd, (pcm3 ? 4 : 3» < 0)
304 fatal_err(lIhpib_send_cmnd preamble II , ptr_dev, F_EXIT);
305
306 switch (rw_flag) {
307 case H_READ:
308 if ((tlog = read(eid, buffer, length» < 0)
309 fatal_err ("read", ptr_dev, F_EXIT);
310 break;
311
312 case H_WRITE:
313 if ((tlog = write(eid, buffer, length» < 0)
314 fatal_err ("write", ptr_dev, F_EXIT);
315 break;
316
317 case H_CMND:
318 return(O);
319 default:
320 return(-l);
321 }
322 1* send the postamble 1 or 2 bytes with attention true *1
323 if (hpib_send_cmnd(eid, post_cmd, (ocm1 ? 2 : 1» < 0)
324 fatal_err(lIhpib_send_cmnd postamble", ptr_dev, F_EXIT);
325
326 1* at last unlock the bus so other bus users can access it *1
327 if (io_unlock(eid) < 0)
328 fatal_err ("io_unlock", ptr_dev, F_EXIT);
329
330 return(tlog);
331 }
332
333 int
334 amigo_identify()
335 {
336 unsigned char identify[2];
337

OIL Programming Example 0-9

338 /* TLK31 (UNT) is special for amigo identify */
339 /* finish with a MTA (UNT is not save for non-amigo devices) */
340 HPIB_msg(H_REAO, MLA, UNT, SCG_BASE + devba, identify, 2, MTA, 0);
341
342 switch(identify[O]) {
343 case 32:
344 /* Amigo identify */
345 switch(identify[1]) {
346 case 1: return(T2608A);
347 case 2: return(T2631A);
348 case 9: return(T2631B);
349 case 11: return(T2673A);
350 case 13: return(QjetPlus);
351 case 16: return (T2632A) ;
352 case 17: return(T2634A);
353 default:
354 printf(IIUnrecognized Amigo printer, 102 %d\n",
355 identify[1]); break;
356 }
357 break;
358 case 33:
359 if (identify[1] == 1)
360 printf("Ciper printer not supported yet!\n");
361 break;
362 default:
363 printf("Unrecognized Amigo Printer identify, 101 %d, 102 %d\n",
364 identify [0] , identify[1]);
365 break;
366 }
367 exit(2);
368 }
369
370 /* set the parallel poll mask value */
371 amigo_set_pmask()
372 {
373 HPIB_msg(H_WRITE, MTA, OLA, PR_SEC_MASK, pmask, 1, UNL, 0);
374 }
375

0-10 OIL Programming Example

376 /* do the amigo clear followed by selective device clear */
377 amigo_clear()
378 {
379 HPIB_msg(H_WRITE, MTA, DLA, SCG_BASE + 16, "\0", 1, SOC, UNL);
380 }
381
382 /* get the dsj byte */
383 int
384 amigo_dsj 0
385 {
386 unsigned char dsj_byte[1];
387
388 HPIB_msg(H_READ, MLA, DTA, PR_SEC_DSJ, dsj_byte, 1, UNT, 0);
389 return(dsj_byte[O]);
390 }
391
392 /* return the amigo status byte */
393 int
394 amigo_status()
395 {
396 unsigned char status_byte [1] ;
397
398 HPIB_msg(H_READ, MLA, DTA, PR_SEC_RSTA, status_byte, 1, UNT, 0);
399 return(status_byte[O]);
400 }
401
402 /* output a buffer to printer */
403 amigo_write (buffer, length)
404 char *buffer;
405 int length;
406 {
407 int status, dsj = 0;
408
409 /* write the buffer */
410 HPIB_msg(H_WRITE, MTA, DLA, PR_SEC_DATA, buffer, length, UNL, 0);
411 again:
412 /* now wait for parallel poll response */
413 if (Debug) printf("%s Ppoll wait\n", ptr_dev);
414 if (hpib_wait_on_ppoll(eid, Ox80»devba, 0) < 0)
415 fatal_err ("hpib_wait_on_ppoll", ptr_dev, F_EXIT);
416

OIL Programming Example 0-11

417 /* a DSJ is required to remove the ppoll response from device */
418 if (dsj = amigo_dsj()) {
419 if (Debug) printf("%s DSJ = Ox%x\n". ptr_dev. dsj);
420
421 status = amigo_status();
422 if (Debug) printf("%s STATUS Ox%x\n". ptr_dev. status);
423 goto again;
424 }
425 }
426
427 /* output error message and conditionally abort */
428 fatal_err(message. fname. flag)
429 char *message;
430 char *fname;
431 {
432 fprintf(stderr. "%s: Error - %s of %s II procnam. message. fname);
433 if (errno) perror(IIII);
434 else fprintf(stderr. "\n");
435
436 if (flag == F_RTRN) return;
437 if (flag == F_EXIT) exit(2);
438 exit(3);
439 }

0-12 OIL Programming Example

Index

A
Active Controller 3-17

auto-addressing 3-19
calculating talk and listen addresses 3-22
clearing HP -IB devices 3-30
conducting a parallel poll 3-39
conducting a serial poll 3-46
configuring parallel poll response 3-35
determining 3-17
disabling parallel poll response 3-39
enabling local control 3-26
errors during parallel poll 3-41
errors during serial poll 3-48
example configuration 3-24
locking out local control 3-25
monitoring the SRQ line 3-31
parallel poll for device status 3-34
passing control to non-active controller 3-49
remote control of devices 3-25
serial polling 3-46
servicing requests 3-31
setting up talkers and listeners 3-19
SRQ serial/parallel poll service routine 3-33
transferring data 3-27
triggering devices 3-26
using hpib_send_cmd 3-22
waiting for parallel poll response 3-42

ASCII character codes C-1

B

buffered HP-IB I/O 3-72
buffered HP-IB I/O example 3-77

Index-1

buffered HP-IB I/O, locating errors in 3-79
burst transfers 4-9

C
character code, ASCII C-1
closing an interface special file 2-6
combining HP-IB I/O operations 3-72
controller, HP-IB, active or non-active 3-9

D
data path width, setting 2-15
DEVICE CLEAR 3-5
device file (see special file or interface special file) 2-2
differences between computers 1-1
DIL programming example D-1
DIL routines

E

calling from Fortran 1-3
calling from Pascal 1-3
calling program structure 2-2
general-purpose routines 2-3
HP-IB DIL routines 3-2
linking 1-3

entity identifier 2-2
errno, using 2-10
errno variable 2-10
error-checking routines 2-10
errors while sending HP-IB commands 3-16
example, DIL programming D-1

F
Fortran calls to DIL routines 1-3

G
GO TO LOCAL 3-6
GPIO interface 1-15

burst transfers 4-9
configuration and set-up 4-1
controlling data path width 4-7
controlling the transfer speed 4-8

Index-2

H

creating special file for 4-1
interrupt transfers 4-9
limitations in controlling 4-2
performing data transfers 4-4
read terminations 4-9
resetting the interface 4-3
timeouts 4-8
using DIL routines 4-2
using the status and control lines 4-5

handshake 1/0/ interface functions 1-7
HP -IB commands 3-2

errors while sending 3-16
sending 3-13

HP-IB DIL routines 3-7
HP-IB interface 1-9

bus management control lines 1-13
general structure 1-9
handshake lines 1-10

HP -IB I/O, buffered 3-72
HP-IB I/O, buffered, example 3-77
HP-IB I/O, buffered, locating errors in 3-79
HP-IB I/O operations, combining 3-72
hpib_io 3-11-12,3-72
hpib_send_cmd 3-2

interface device file (see interface special file) 2-2
interface locking 2-14
interface special file 2-2, 2-4, 2-6
interfaces 1-5
interrupt, hardware availability 2-27
io_burst 3-11
iodetail storage space allocation 3-76
iodetail, the I/O operation template 3-73
io_get_term_reason 2-24
io_interrupt_ctl 2-31
io_lock 3-11
io_on_interrupt 2-28
io_unlock 3-11

Index-3

L
linking DIL routines 1-3
LOCAL LOOKOUT 3-5
locking an interface 2-14

N
Non-Active Controller

o

accepting active control 3-65
determining controller status 3-57
determining when addressed 3-67
disabling parallel poll response by remote 3-64
errors while requesting service 3-60
requesting service 3-58
responding to parallel polls 3-61

opening an interface special file 2-4
opening HP-IB interface special file 3-13

P
PARALLEL POLL CONFIGURE 3-6
PARALLEL POLL DISABLE 3-6
PARALLEL POLL ENABLE 3-6
Pascal calls to DIL routines 1-3
programming example, DIL D-l

R
read termination, cause 2-20, 2-24
read termination pattern, removing 2-23
read termination pattern, setting 2-15
read/write to an interface 2-7
removing read termination pattern 2-23
resetting interfaces 2-13

S
SELECTED DEVICE CLEAR 3-6
sending HP-IB commands 3-13
SERIAL POLL DISABLE 3-5
SERIAL POLL ENABLE 3-5
Series 300 operating dependencies and characteristics A-I
Series 800 operating dependencies and characteristics B-1

Index-4

setting data path width 2-15
setting read termination pattern 2-15
setting timeout 2-15
setting transfer speed 2-15
special file 2-2, 2-4, 2-6
System Controller

T

determining if system controller 3-52
hpib_abort 3-54
hpib_ren_ctl 3-55
system controller duties 3-54

timeout, setting 2-15
transfer speed, setting 2-15
TRIGGER 3-5

U

UNLISTEN 3-4
UNTALK 3-4
using errno 2-10

w
write/read to an interface 2-7

Index-5

1
Using Curses and Terminfo

Introduction
This tutorial describes the operation of the curses library (see curses(3x)
entry in HP- UX Reference) and the terminfo routines and corresponding
database (see terminfo(5) entry). It is intended for use by programmers who
are interested in writing screen-oriented software using the curses library
package. curses uses the terminfo routines and database when interacting
with a given terminal in the system and when formatting display data for
subsequent output to the terminal display.

curses is a versatile cursor and screen control package that has many
capabilities. It is designed to efficiently utilize terminal screen control and
display capabilities, thus limiting its demand for computer CPU resources.
It can create and move windows and subwindows, use display highlighting
features, and support other terminal capabilities that enhance visual
interaction with display terminal users. All interaction with a given terminal is
tailored to the terminal type which is obtained from the environment variable
TERM).

curses also interacts with the terminal keyboard, and can handle user inputs.
Its ability to handle keys that produce multi-character sequences (such as
arrow keys) as ordinary keys can be used to add versatility to application
programs.

Using Curses and Terminfo 1-1

Display Data Handling

Output Data Structure

curses uses data structures called windows to collect display text, then
transfers the data structures to the terminal display screen during execution
of refresh routines. Each window contains a two-dimensional data array
for storing text and character highlighting attributes. Other data structures
associated with the window contain the current cursor position and various
pointers, and fill other curses needs.

Two windows are always present when curses is active. Current screen is
named curser for programming purposes, and represents the current screen. It
is used as a reference when optimizing output operations to the CRT screen.
The standard screen window, named stdscr, is the default destination for
all text output operations that are not directed to a window specified in the
function. Both curser and stdscr have the same row and column dimensions
as the physical display screen.

Additional program-definable windows can be created and dimensioned as
programming needs dictate. Such windows can be any size, provided they do
not exceed the row and/or column capacity of the physical display screen.

When a program requires a window that is larger than the available display
screen, pads are used. Pads have the same structure and characteristics as
a window, but they can be any size within the limits of reasonable memory
usage (each pad requires two bytes per character position plus data structure
overhead).

Text and Highlighting Data Format

Every window data structure contains, among other things, a two-dimensional
array of 32-bit data words, each word corresponding to a displayable character
in the window. The lower eight bits in each 32-bit word contain 8-bit character
code of the character associated with the corresponding screen display position.
The middle eight bits contain NLS attributes. The remaining sixteen bits
specify which highlighting attributes, if any, are to be used when the character
is displayed. The window data structure also contains a set of current
attributes that are used to form the attribute bits as each word is placed in

1-2 Using Curses and Terminfo

the array by addch or its equivalent. If text highlighting is to be changed for
a given character or set of characters, an update to the current attribute set
must be performed by attrset (or its equivalent) before addch is performed.
The beginning default attribute set disables all highlighting.

16-bit Data Handling

curses uses an NLS environment when displaying 16-bit characters. This
means curses uses the HP-15 code scheme for interfacing (Input/Output), and
users must set up their own NLS environment. Also, curses treats a 16-bit
character code as an upper 8-bit code and a lower 8-bit code. In short, curses
can pass only 8-bit characters at one time.

curses displays and handles 16-bit characters as follows:

• Overwrite on a 16-bit character.
If the write of a character starts from either the right half or the left
half of a 16-bit character, the remaining half is changed to a space
character.

• Insert character on a 16-bit character.
If the insert of a character starts from the right half of a 16-bit
character, the left half and the right half are changed to a space
character.

• Write a 16-bit character on the right boundary.
When a 16-bit character is added to the right margin, a space character
is added to the right margin and a 16-bit character is added to the left
margin of the next line.

• Delete a 16-bit character.
If the cursor is at either the right half or left half of a 16-bit character,
the remaining half is changed to a space character.

• Clear a 16-bit character.
If the cursor is at the right half of a 16-bit character, the left half is
changed to a space character.

• Move a cursor on a 16-bit character.
When the specified row (y) and column (x) is on the right half of a
16-bit character, the cursor position (the left half or the right half of
a 16-bit character) depends on the terminal's facility. But when the

Using Curses and Terminfo 1-3

cursor position is on the left half or the right half of a 16-bit character,
an internal cursor position of the curses library is the specified
position.

• Display half of a 16-bit character.
A space character code is used to display a 16-bit character that is
hiding half of a 16-bit character in the other window.

• Illegal 16-bit character.
If the second byte is illegal and the first byte is legal, the two bytes are

(1treated as two 8-bit codes, not one 16-bit code.

• Display enhancement of a 16-bit character.
The change of the display enhancement is not done on the 16-bit
character: the change is done in character units, not byte units. When
the change of display enhancement is done on a 16-bit character, the
change takes effect from the next character onward.

Applications Program Structure

Consider the following example of an application program structure that uses
curses:

#include <curses.h>

initscr(); /* Initialization */

cbreak() ;/* Various optional mode settings */
nonlO;
noechoO;

while (!done) {/* Main body of program */

}

/* Sample calls to draw on screen */
move(row,col);
addch(ch);
printw("Formatted print with value %d\n", value);

/* Flush output */
refreshO;

endwin() ;/* Clean up */

1-4 Using Curses and Terminfo

exit (0) ;

One of curses' major advantages is its ability to optimize the process of
updating terminal screen contents, thus reducing the demand for CPU and
I/O resources by reducing the amount of data handling required for requested
changes in displayed text. This is accomplished by comparing the current
screen contents with the window being transferred, then transmitting only
those text and control characters that are needed to most efficiently update the
screen. Other screen contents remain undisturbed.

Note Most terminals are equipped with hardware scrolling whose
operating characteristics make it impossible to write characters
in the extreme lower right-hand character position.

In order to optimize screen updates, curses must have access to a data base
that reflects current screen contents. When an application program starts
execution, the current screen is unknown. To provide a starting current screen
reference, a screen clearing operation must be set up early in the program by a
call to ini tscr 0 which identifies the terminal, initializes data structures, and
enables the clearok option in curses so that the screen is cleared during the
first refresh operation in the program. Upon completion of the first refresh
operation, the terminal screen is an exact replica of the text stored in the
current screen data base. Use of ini tscr 0 in a typical program is shown in
the preceding sample program structure example.

When initialization is complete, other operating modes and options can be
selected as dictated by program needs. Available operating modes include
cbreakO and idlok(stdscr. TRUE) which are explained in detail later.
During program execution, screen output is handled through routines such
as addch(ch) and printw(fmt,args). They are equivalent to putchar and
printf, respectively, but use curses in addition to the usual other system
facilities. Cursor and character positioning are performed by move and other
similar calls.

All of the routines mentioned send their output to program-specified window
data structures; not directly to the display screen. The window data structure
represents all or part of a CRT display screen, and contains the following items:

• An array of characters to be displayed on the screen area defined by the
window boundaries,

Using Curses and Terminfo 1-5

• Present cursor location,

• Current set of video attributes, and

• Various operating modes and options.

There is little need to be concerned with windows (unless you use several
windows during program operation), except to recognize that the data
structure corresponding to a given window acts as a buffer/data accumulator
for display output requests.

Accumulated contents of a window data structure are sent to the display
screen by use of refresh 0 or an equivalent function for windows and pads
(functionally similar to a flush). curses considers many different ways of
handling the output operation, taking into account the various available
terminal characteristics, similarities between the current screen display and
the desired pattern, and other factors. Refresh operations are usually handled
using as few characters as possible, but not always.

When the application program is finished, certain clean-up operations should
be performed before termination. While the amount of clean-up needed varies,
depending on program structure and capabilities, termination should always
include a call to endwin O. endwin 0 restores all terminal settings to their
original state prior to program execution, places the cursor at the bottom left
corner of the screen, and dismantles data structures that are no longer needed.

Among the example programs at the end of this tutorial is a program named
scatter that reads a file and displays the file contents in random order on the
CRT display screen. While some application programs assume that terminals
have twenty-four 80-character lines of available display space, many terminals
do not. To accommodate display terminals having various screen sizes, the
variables LINES and COLS are defined by ini tscr to specify the current screen
size. Application programs should always use screen-size variables rather than
assuming a 24x80 display screen.

1-6 USing Curses and Terminfo

Applications Program Operation

During program operation, no data is output to the display terminal until
refresh is called. Instead, program routines such as move and addch place
data in a window data structure called stdscr (standard screen) that is
maintained by curses. curses also maintains a replica of what is on the
current physical screen in curser for updating purposes.

When refresh or an equivalent function is called, curses compares the
curser window with what is presently contained in stdscr (or other specified
window or pad). The results of the comparison are combined with terminal
hardware capabilities to construct character streams that most efficiently
update the physical display to the desired contents. Available terminal
capabilities are considered while comparing stdscr and curser so that the
most efficient means of updating the screen can be determined. This sequence
is referred to as cursor optimization, and is the basis for naming the curses
package. During the update operation, curser is also changed to reflect the
contents of the updated screen.

Keyboard Input
curses capabilities include more than screen writing functions. Several
keyboard input functions are also supported, including special handling of
certain keys that normally generate a sequence of two or more characters
(usually an escape code followed by a single character, but not always). Such
keys can then be treated as ordinary single-character keys for improved
programming versatility.

The most commonly used keyboard input function is getch() which waits for
the terminal user to type a character on the terminal keyboard, then returns
the character to the calling program. getch is similar to getchar, except that
it uses curses instead of other HP-UX facilities. getch is particularly useful
in programs that use cbreakO or noechoO options because getch supports
several terminal- and system-dependent options that are not accessible through
getchar. Available getch options include:

Using Curses and Terminfo 1-7

• keypad enables programmers to use non-typing keys such as arrow keys,
function keys, and other special keys that transmit escape sequences
or other multi-character sequences as ordinary single-character keys.
Keypad character code length requires 16-bit integer variables for
storage.

• nodelay enabled option causes getch to return immediately with the
value -1 if no input character is waiting. This avoids program delays
that would otherwise result when no response from the terminal is
available.

• getstr can be used to input an entire string of characters up to a
newline instead of a single character. It also handles echo, erase, and
kill character functions associated with the input operation.

Example programs at the end of this tutorial show how these options are used.

1-8 Using Curses and Terminfo

Keypad Character Handling

When keypad is enabled, keypad character sequence conversion tables in
the t erminf 0 data base are used to map keypad character sequences into
corresponding single, 16-bit character form. Each supported keypad key must
produce a unique character or character sequence when pressed. All convertible
sequences must be included in the terminfo data base. If any sequence is
absent from the table, it cannot be converted, so it is handled in unaltered
form. The following special keys are assigned the values and names indicated.
Some of the keys listed may not be supported on given terminals, depending on
the terminal model and its internal operating characteristics, and whether the
conversion sequence is in t erminf o.

Note Keypad character codes do not fit in a normal 8-bit data
element. Therefore a char variable cannot be used. Use
a larger (16-bit) variable for storing and handling keypad
character codes.

Using Curses and Terminfo 1-9

Keypad Character Code Values

Character Name Octal Value Key name
KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 Down Arrow key
KEY_UP 0403 Up Arrow key
KEY_LEFT 0404 Left Arrow key
KEY_RIGHT 0405 Right Arrow key
KEY_HOME 0406 Home Up (to upper left corner) key
KEY_BACKSPACE 0407 Backspace key (unreliable)
KEY_FO 0410 Function Key 0

KEY_Fen) Function Key (n)
0410+(n)

KEY_DL 0510 Delete Line key
KEY_IL 0511 Insert Line key
KEY_DC 0512 Delete Character key
KEY_IC 0513 Insert Character or Enter Insert Mode key
KEY_EIC 0514 Exit Insert-character Mode Key
KEY_CLEAR 0515 Clear Screen key
KEY_EOS 0516 Clear to End-of-Screen key
KEY_EOL 0517 Clear to End-of-line key
KEY_SF 0520 Scroll Forward 1 Line
KEY_SR 0521 Scroll Reverse (backwards) 1 line
KEY_NPAGE 0522 N ext Page key
KEY_PPAGE 0523 Previous Page key
KEY_STAB 0524 Set Tab key
KEY_CTAB 0525 Clear Tab key
KEY_CATAB 0526 Clear All Tabs key
KEY_ENTER 0527 Enter or Send key (unreliable)
KEY_SRESET 0530 Soft (partial) Reset key (unreliable)
KEY_RESET 0531 Reset or Hard Reset key (unreliable)
KEY_PRINT 0532 Print or Copy key
KEY_LL 0533 Home Down (to lower left) key

1-10 Using Curses and Terminfo

Keyboard Input Program Example

The example program show at the end of this tutorial contains an example
use of getch. Show displays a file, one screen at a time; advancing to the next
page each time the space bar is pressed. Nearly any exercise for curses can be
created by constructing an input file that contains a series of 24-line pages,
each page varying slightly from the previous page.

In the show program:

• cbreak is used so that only the space bar need be pressed (use of
I Return I is unnecessary).

• noecho is used to prevent the character transmitted by the space bar
from being echoed during refresh calls so that refresh operations are
not adversely affected.

• nonl is called to enable additional screen optimization.

• idlok allows insert and delete line. This capability helps streamline
updates in some instances, but produces undesirable effects in other
cases. Therefore an option to allow or disallow the capability has been
provided.

• clrtoeol clears from cursor to end of current line.

• clrtobot clears from cursor to end of current line, then clears all
subsequent lines to the bottom of the screen.

Using Curses and Terminfo 1-11

Display Highlighting

curses supports nine highlighting attributes, each of which has a
corresponding 32-bit integer constant named in the include file <curses. h>.
The value of each constant is selected such that one bit (corresponding to the
attribute) in the 32-bit integer is set while all other bits are cleared. Below
is a list of the nine attributes with their corresponding enable-bit positions.
The name and octal value of each constant is also shown (note that only eleven
digits are needed to represent the 32-bit value; the leading zero identifies the
constant as an octal value).

• Standout (bit 23):
A_STANDOUT = 000040000000

• Underlining (bit 24):
A_UNDERLINE = 000100000000

• Inverse Video (bit 25):
A_REVERSE = 000200000000

• Blinking (bit 26):
A_BLINK = 000400000000

• Dim (bit 27):
A_DIM = 001000000000

• Bold (bit 28):
A_BOLD = 002000000000

• Invisible (bit 29):
A_REVERSE = 004000000000

• No print or display (bit 30):
A_PROTECT = 010000000000

• Alternate Character Set (bit 31):
A_ALTCHARSET = 020000000000

addch and waddchr store window characters as 32-bit data words where the
lower eight bits (0-7) of each word contain the character code and the upper
sixteen bits (16-31), when set, enable the corresponding display highlighting
attributes when that character is displayed on a terminal. Each attribute bit
corresponds to one of the highlighting functions listed above. Obviously, any
selected highlighting feature that is not available on a given terminal cannot be
used even though the capability is standard fare for curses. However, when
a requested attribute is not available on a given terminal, curses attempts
to identify and use a suitable substitute. If none is possible, the attribute is
ignored.

1-12 Using Curses and Terminfo

Three other constants in <curses. h> are also useful:

• A_NORMAL (value = 000000000000) can be used as an argument for
attrset to disable all attributes. attrset (A_NORMAL) is equivalent to
attrset(O), but more descriptive.

• A_ATTRIBUTES has an octal value of 037740000000. It can be used in
a bit-level logical AND to remove character bits and NLS attributes,
isolating the attributes attached to a given character.

• A_CHARTEXT has an octal value of 000000000377. It is useful in a
bit-level logical AND to discard all except the lower eight bits of the
data word; in effect, separating the character from its highlighting
attributes.

curses maintains a set of current attributes for each window. Whenever text
is being placed in a given window by the program, the current attribute bits for
the selected window are added to each character of text data, forming a 32-bit
word for each character handled. To select a specific combination of attributes,
a program call to attrset (or attron) with new attribute values must precede
text output to the window. This can be used to enable one or more attributes
when all were previously disabled, disable all currently enabled attributes
(attrset(O)), or change the current set to any other new current set.

To enable one or more attributes in the current set without altering other
active or inactive attributes, call attron. A call to attroff performs the
opposite function, disabling the selected attributes without disturbing any
other attributes in the current set.

curses always uses current attribute values, so a call to attrset, attron, or
attroff (or their related window functions) must be used whenever you begin,
end, or change any selected highlighting option. Here is an example program
segment that illustrates how to set a word in boldface then restore normal
display attributes for remaining text:

printw(IIA word in II);
attrset(A_BOLD);
printw(lIboldface ll);
attrset(O);
printw(1I really stands out.\nll);

refreshO;

Using Curses and Terminfo 1-13

In this example, the space characters before and after the word boldface are
included in text blocks outside (before and after) the attrset calls. This
technique prevents curses from applying display highlights to the spaces, thus
avoiding possible undesirable effects; especially in situations where curses
attempts to substitute an alternative for unavailable highlighting features.

The attribute A_STANDOUT offers unique program flexibility. In many
interactive programs, displayed text needs to be enhanced to attract attention.
However, it is not critical that the text be displayed with specific attributes.
Many multi-terminal systems contain various terminal models that do not
support identical highlighting features. For versatility, A_STANDOUT uses
the terminal characteristics stored in the terminfo data base to determine
the most pleasing highlighting feature available on the terminal being
addressed (usually bold or inverse video), then uses that feature when sending
corresponding text to the selected window on the terminal display screen. Two
functions, standout 0 and standend 0 are provided so you can conveniently
enable and disable A_STANDOUT highlighting.

attrset can be used to select only one (such as A_BOLD, shown in the earlier
example in this section) or multiple attributes (such as A_REVERSE and
A_BLINK for blinking inverse video). To change only one attribute or a certain
combination of attributes while leaving the others undisturbed, use attron 0
and attroff 0 .

The example program highlight at the end of this tutorial demonstrates
typical use of attributes. The program uses a text file as input, and embedded
escape sequences in the file to control attributes. In the example program,
\U enables underlining, \B selects bold, and \N restores normal text. An
initial call to scrollok allows the terminal to scroll if the text file exceeds
the capacity of a single display screen. When scrollok is active, if any text
extends beyond the lower screen boundary, curses automatically scrolls
the internally stored window up one line, then calls refresh to update the
terminal display screen each time a line of input text exceeds the lower screen
boundary. The scrolling process continues until end-of-file is reached on the
input file.

The highlight program comes about as close to being a filter as is possible
with curses. It is not a true filter because curses interacts directly with
the terminal screen. curses' ability to optimize interaction between HP-UX
programs and terminals is inherently linked to its direct monitoring of the

1-14 Using Curses and Terminfo

current CRT screen and the windows where display text is being held for
output through refresh operations. This capability requires that curses
clear the screen as part of the first refresh operation so that it has a known
beginning reference condition, then maintain a continually up-to-date data
structure that reflects current screen contents and cursor location.

NLS Attributes
curses supports two NLS attributes, each of which has a corresponding 32-bit
integer constant named in the include file <curses.h>. Below is a list of the
two attributes with their corresponding enable-bit positions. The name and
octal value of each constant is also shown (note that only eleven digits are
needed to represent the 32-bit value; the leading zero identifies the constant as
a octal value) .

• First byte of a 16-bit character code (bit 14):
A_FIRSTOF2 = 000000040000

• Second byte of a 16-bit character code (bit 15):
A_SECOF2 = 000000100000

These NLS attributes can be found in a 16-bit character (not character code).
These attributes might be returned by the function inch. And they cannot be
passed to the curses functions.

Another constant in <curses.h> is also useful:

• A_NLSATTR has an octal value of 000000177400. It can be used in
a bit-level logical AND to remove character bits and highlighting
attributes, isolating the NLS attributes attached to a given character.

Using Curses and Terminfo 1-15

Multiple Windows

A window is a data structure that represents all or part of the CRT display
screen. It contains a two-dimensional array of 32-bit character data words, a
cursor, a set of current attributes, and several flags. Each 32-bit character data
word contains:

• An 8-bit character code in the lower eight bits, and

• An 8-bit NLS attributes code in the middle eight bits, and

• A 16-bit video highlighting code in the upper sixteen bits. Each bit
enables one of sixteen attributes when set, each attribute represented by
one of the respective bits.

curses provides a full-screen window called stdscr and a set of functions
that use stdscr. Another window called curscr that represents the current
physical display screen is also provided.

It is important that you clearly understand that a window is only a data
structure. Use of more than one window does not imply the presence of
more than one terminal, nor does it involve more than one process. A
window is nothing more than a data object that can be copied to all or part
of the terminal screen. curses, as presently implemented, cannot handle
windows that are larger than the available display screen (use pads for such
applications) .

Pads

Pads are data structures that are essentially identical to windows, except
that they can be larger than the available terminal screen size, and, as a
result, must be handled differently. For example, a special refresh function is
required that knows how to transfer only a specified part of the total pad area
to the current screen instead of the entire pad. Other window operations do
not depend on the size of the structure, so they can treat windows and pads
identically. In such instances, a single function supports pads and windows
(such as addch, delwin, and similar functions).

1-16 Using Curses and Terminfo

Creating Windows

Additional windows can be created so that the applications program can
maintain several different screen images. Images can then be alternated under
program control as needs dictate. Windows can be useful in editors, games,
and other applications such as when handling interactive processes involving
multiple users on multiple terminals.

Overlapping windows can also be constructed so that changes to one window
are easily copied onto the overlapping area of the second. Several curses
routines have been provided specifically to handle such cases. overlay and
overwri te copy one window onto the second, each handling the copy operation
differently. wrefresh can be used to refresh the terminal screen, but in some
cases it is more efficient and pleasing to perform a series of internal window
operations that are equivalent to refresh, but which do not update the screen.
This is done by using a series of calls to wnoutrefresh (or its equivalent for
pads), followed by a single doupdat e that copies the series of refreshes onto the
physical screen in a single operation. This is readily provided because refresh
is really a call to wnoutrefresh followed by a call to doupdate.

To create a new window, use the function:

newwin (lines, cols, begin_ row, begin_ col)

The newwin function call returns a pointer to the newly created window whose
dimensions are lines by cols, and whose upper left-hand corner is positioned at
screen location begin_ row and begin_ col.

Using Multiple Windows

All operations that affect stdscr have a corresponding function for use with
other named windows. These functions' names are formed by adding the letter
w in front of the stdscr function name. For example, the window function that
corresponds to addch is named:

waddch(mywin, c)

Using Curses and Terminfo 1-17

To update the contents of the currently displayed screen to match the contents
of a window, use:

wrefresh (my win)

Whenever the boundaries of two or more windows overlap and thus conflict,
the most recently refreshed window becomes the currently displayed screen in
that area of the display area that is defined by the window size and location.

Any call to the non-w version of any window function (stdscr function calls) is
converted to its w-prefixed counterpart. Thus, a call to addch(c) produces a
call to waddch (stdscr. c), automatically adding the stdscr argument in the
process.

The example program window at the end of this tutorial shows how windowing
can be handled. The main display is kept in stdscr. When the user wants to
put something else on the screen, a new window is created that covers part
of the screen. A call to wrefresh on that window causes the window to be
written over stdscr on the display screen. A subsequent call to refresh
on stdscr causes the original window to be fully restored to the screen,
eliminating the temporarily displayed window.

Examine the touchwin calls in window that precede refresh calls on overlapping
windows. touchwin calls prevent optimization by curses, thus forcing
wrefresh to completely overwrite the entire window area on the physical
screen (previously displayed data is thus erased in the window area only). In
some situations, if the touchwin call is omitted, only part of the window is
written and existing information from a previous window may remain in the
newly written window area.

For improved screen addressability, a set of move functions are available in
conjunction with most common window functions. They produce a call to move
before the other function is called, so that the cursor can be relocated before
the window function is executed. Here are some examples:

• mvaddch(row,col,ch) is equivalent to move(row,col); addch(ch)

• mvwaddch (row, col, win, ch) is equivalent to wmove (win, row, col) ;
waddch (win, ch) .

Refer to the curses routines section of this tutorial for more detailed
descriptions of the window routines and their related move functions.

1-18 Using Curses and Terminfo

Subwindows

Subwindows can be created within any existing window or pad. Subwindows
are identical to normal windows except that the subwindow's character data
structure occupies the same memory locations as the corresponding character
positions in the main window. This means that whenever a character is placed
in a subwindow, the main window automatically contains the same character
in the same location with the same highlighting attributes. In fact, as a
result of shared character storage, any character stored in the character array
automatically receives the current attributes for the window or subwindow
through which it was stored, regardless of how many subwindows overlap the
storage location. This feature greatly simplifies combining windows in a single
display for some types of applications.

Each subwindow has its own cursor location, can be configured with a soft
scrolling region, and generally has the same capabilities as any normal window,
but, except for shared character storage, is completely independent of the
original window it is associated with. Because of shared character data
structures, curses does not allow deletion of any window (delwin (win) or pad
that has one or more undeleted subwindows.

If subwindows are created within a pad, care must be exercised in the choice
of correct refresh functions and other program characteristics to ensure correct
data handling.

Multiple Terminals

curses can produce simultaneous output on multiple terminals. This
capability is useful in single-process programs that access a common data
base such as multi-player games. Output to multiple terminals is a complex
issue, and curses does not solve all of the related programming problems.
For example, it is the program's responsibility to determine the special file
name for each terminal line and what type of terminal is connected to that
line. The normal method, checking the environment variable $TERM, does not
work because each process can only examine its own environment. Another
issue that must be addressed is the case of multiple programs reading data
from a single terminal line, a situation that produces race conditions which

Using Curses and Terminfo 1-19

must be avoided because a program that wants to take over a terminal cannot
arbitrarily stop whatever program is currently running on that terminal
(particularly where security considerations make this action inappropriate,
though it is appropriate for some applications such as inter-terminal
communication programs).

Race conditions mayor may not be a problem, depending on the overall
relationships of running programs and processes. For example, if a curses
program is looking for input from a terminal, there must be no other program
looking for input from the same terminal (such as a shell). On the other hand,
if two programs are sending output to the same terminal at the same time, the
result is usually no worse than an unusable screen display. In any event, for
interaction with the terminal to flow smoothly, conflicts in terminal access must
be prevented.

A typical solution requires the user logged onto each terminal line to run a
program that notifies the master program that the user is interested in joining
the master program. The master program is given the notification program's
process id, the name of the tty link, and the type of terminal being used. The
notification program then goes to sleep until the master program finishes.
During termination, the master program wakes up the notification program and
all programs exit.

curses handles multiple terminals by always having a current terminal. All
function calls always pertain to the current terminal. The master program
should set up each terminal, saving a reference (pointer) to the terminal in its
own variables. When it is ready to interact with a given terminal, the master
program should set the current terminal (use set_term) according to program
needs, then use ordinary curses routines.

Terminal references have type struct screen *. To initialize a new terminal,
call newtermCtype,jd). newterm returns a screen reference to the terminal
being set up. type is a character string that names the kind of terminal being
used. fd is a stdio file descriptor to be used for input and output to the
terminal (if only output is needed, the file can be opened for output only). The
newterm call replaces the normal call to ini tscr.

To select a new current terminal, call set_termCsp) where sp is the screen
reference returned by newterm for the terminal being selected. set_term
returns a screen reference to the previous terminal.

1-20 Using Curses and Terminfo

A full set of windows and options must be maintained for each terminal
according to program needs. Each terminal must be initialized separately with
its own newterm call. Options such as cbreak and noecho, and functions such
as endwin and refresh must be set (or called) separately for each terminal.
Here is a typical scenario for sending a message to each terminal:

for (i=O; i <nterm; i++) {
set_term(terms[i]);
mvaddstr(O.O."Important message");
refreshO;

}

The sample program two at the end of this tutorial contains a full example of
how this technique is implemented. The program pages through a file, showing
one page to the first terminal; the next page to the second. It then waits for
a space character to be typed on either terminal, then sends the next page
to the terminal that sent the space character. Each terminal has to be put
into nodelay mode separately. No standard multiplexer is available in current
HP-UX versions, so it is necessary to busy wait or call sleep(l); between each
check for keyboard input. two waits one second between checks for available
terminal keyboard characters.

two is only a simple example of two-terminal curses. It does not handle
notification as described above; instead, it requires the name and type of the
second terminal on the program procedure line. As written, two requires that
the command sleep 100000 be typed on the second terminal to put it to sleep
while the program runs, and the the first-terminal user must have read and
write permission on the second terminal.

Low-Level Terminfo Usage
Some programs need access to lower-level primitives than those offered by
curses. For such programs, the terminfo-Ievel interface is provided. This
interface does not manage the CRT screen, but gives programs access to strings
and capabilities that can be used to manipulate the terminal.

Use of terminfo-Ievel routines is discouraged. Whenever possible, higher-level
curses routines should be used instead, in order to maintain portability to

USing Curses and Terminfo 1-21

other systems and handle a wider variety of terminal types. curses takes care
of all of the anomolies, glitches, and personality defects present in physical
terminals, but at the t erminf 0 level they must be dealt with in the program.
Also, there is no guarantee that the terminfo interface will not change with
new releases of HP-UX or be upward compatible with previous releases.

There are two circumstances where use of terminfo routines is appropriate.
On instance is where a special-purpose program sends a special string to the
terminal (such as programming a function key, setting tab stops, sending
output to a printer port, or dealing with the status line). The second is
when writing a filter. A typical filter performs one transformation on the
input stream without clearing the screen or addressing the cursor. If this
transformation is terminal-dependent and clearing the screen is inappropriate,
terminfo routines are preferred.

A program written at the t erminf 0 level uses the framework shown here:

#include <curses.h>
#include <term.h>

Setupterm(0.1.0) ;

putp(clear_screen);

reset_shell_mode();
exit (0) ;

The call to setupterm handles initialization (setupterm(O,l,O) invokes
reasonable defaults). If setupterm cannot determine the terminal type,
it prints an error message and exits. The calling program should call
reset_sheIl_mode before exiting.

Global variables with such names as clear _screen and cursor _address are
defined during the call to setupterm. When outputting these variables, use
calls to putp or tputs for better programmer control during output. Global
variable strings should not be output to the terminal through printf because
they contain padding information that must be processed. A program (such as
printj) that transmits unprocessed strings will fail on terminals that require
padding or use Xon/Xoff flow-control protocol.

Higher-level routines described previously are not available at the terminfo
level. The programmer must determine output needs and structure programs

1-22 Using Curses and Terminfo

accordingly. For a list of terminfo capabilities and their descriptions, see
terminfo(5) in the HP-UX Reference.

The example program termhl at the end of this tutorial shows simple use of
terminfo. It is similar to highlight, but uses terminfo instead of curses.
This version can be used as a filter. The strings used to enter bold and
underline mode, and to disable all highlighting attributes are demonstrated.

The program was made more complex than necessary in order to illustrate
several terminfo properties. For example, vidattr could have been used
instead of directly outputting enter _bold_mode, enter _underline_mode, and
exi t_attribute_mode. In fact, the program could easily be made more robust
by using vidattr because there are several ways to change video attributes.
However, this program was structured only to illustrate typical use of terminfo
routines.

The function tputs(cap,affcnt,outc) adds padding information to the
capability cap. Some capabilities contain strings such as $<20>, which means
to pad for 20 milliseconds. tputs adds enough pad characters to produce the
desired delay. cap is the string capability to be output; affcnt is the number
of lines affected by the output (for example, insert_line may have to copy all
lines below the current line, and may require time proportional to the number
of lines being copied). By convention, affcnt is 1 if no lines are affected rather
than 0 because affcnt is multiplied by the amount of time required per item,
and a zero time may be undesirable. outc is the name of a routine that is to
be called with each character being sent.

In many simple programs, affcnt is set to 1, and outc just calls putchar. For
such programs, the terminfo routine putp(cap) is a convenient abbreviation.
The example program t ermhl could be simplified by using putp.

Note the special check for the underline_char capability. Some terminals,
rather than having a code to start underlining and a code to stop underlining,
use a code to underline the current character. t ermhl keeps track of the
current mode, and outputs underline_char, if necessary, whenever the current
character is to be underlined. Low-level details such as this are a major reason
why curses routines are preferred over terminfo routines. curses takes care
of all the different terminal key board and display functions and highlighting
sequences instead of forcing such details onto the application program.

Using Curses and Terminfo 1-23

A Larger Example
The example program editor is a very simple screen editor that has been
patterned after the vi editor and illustrates how curses can be used for such
applications. editor uses stdscr as a buffer for simplicity, whereas a more
useful editor would maintain a separate data structure for editing operations,
then display the pertinent contents of that separate structure on the screen.
Edi tor, as written, requires a file size equal to screen size. It also cannot
handle lines longer than the screen, and has no provision for control characters
in the file.

Several program characteristics are of interest. The routine that writes the file
back to the file system shows how mvinch is used to retrieve characters from
given window positions. The data structure used does not provide for keeping
track of the number of characters in a line nor the number of lines in the file,
so trailing blanks are eliminated when the file is written out.

edi tor uses built-in curses functions insch, delch, insertln, and deleteln.
These functions behave much like equivalent functions on intelligent terminals
when inserting and deleting characters and lines.

The command interpreter accepts not only ASCII characters, but also special
(non-typing) keys. This is important-a good program accepts both. Defining
the keyboard so that every special key has its function defined on a normal
typing key as well provides a desirable increase in flexibility. The benefit for
new users, for example, is that they can use arrow keys without having to
remember that the same functions are available on h, j, k, and 1 keys in the
normal typing area. On the other hand, an experienced user may prefer to
keep his fingers on the home typing row where he can work faster, so the
typing key equivalent of special keys is appreciated. Handling both classes of
keys also widens the variety of terminals the program can interact with because
some terminals may not be equipped with arrow or other special keys on the
keyboard. Providing an ASCII character synonym for each special keypad key
provides better overall program and system flexibility, and makes the program
more salable and easier to learn.

Note the call to mvaddstr in the input routine. addstr is roughly equivalent to
the fputs function in C. Like fputs, addstr does not add a trailing newline.
It is equivalent to a series of calls to addch, using the characters in the string.

1-24 Using Curses and Terminfo

mvaddstr moves the current cursor position to the specified location in the
window before writing the string into the data structure.

The control-L command demonstrates a feature that most programs using
curses should include. Frequently, an independent program operating beyond
the control of curses may write something to the terminal screen, or some
other event such as line noise causes the physical screen to be altered without
curses being notified. In such a case, I CTRL H:Il can be used to clear and
redraw the current screen at the user's request. This is accomplished by a
call to clearok(curscr) which sets a flag that causes the next refresh to
clear the screen. A call to refresh follows immediately so that the screen
is immediately redrawn using the data in curser so that there is no wait for
other program activities or completion of a pending keyboard input. There is
also no loss of current screen data.

Note also the call to flashO which flashes the screen (unless the terminal has
no flashing capability, in which case it rings the bell instead). Replacing the
bell with the flashing capability is useful in environments where the sound of
the bell is objectionable or distracting. Still, there may be instances where an
audible signal is still needed for certain purposes, even in quiet environments.
In such cases, the beep 0 routine can still be called instead whenever a real
beep is preferred. If beep is called and the terminal is not equipped to process
the call, curses substitutes the flash in its place if possible, and vice versa.
Thus, a terminal with no beep capability receives a flash sequence when beep
is called; a terminal that cannot flash receives a beep sequence when flash is
called. If the terminal has neither capability, - well, some situations do present
certain limitations - do without or get a different terminal because both are
ignored in such a case.

Use of Escape in Program Control

Another important programming practice is terminating the input command
with. Ctrl-D; not escape. It is very tempting to use escape as a command
because the escape key is one of the few special keys that is available on nearly
every terminal keyboard (return and break are the only others). However,
using escape as a separate key introduces an ambiguity which is handled by
curses as follows:

Most terminals use sequences of characters beginning with an escape character
(called escape sequences) to control the terminal. They also use similar escape

Using Curses and Terminfo 1-25

sequences to transmit special keys to the computer. If the computer sees an
escape character from the terminal, it cannot immediately determine whether
the user pressed the escape key, or whether a special key was pressed instead.
curses handles the ambiguity by waiting for up to one second. If another
character is received within the one-second time limit, the escape and second
character are compared with possible escape sequences. If the character pair
represents a valid possibility, the wait is extended for up to one more second,
or until the next character is received. The cycle continues until a valid special
key sequence is completed or a character is received that could not be part of
a valid sequence (or the time limit expires). While this technique works well
most of the time, it is not foolproof. For example, a user could press the escape
key then press one or more other keys that represent a valid sequence before
the time limits expired (less than one second between successive key strokes).
curses would then think that a special key had been pressed. Another
disadvantage is the inevitable delay from the time a key is pressed until it can
be processed by the program when an escape key is pressed, possibly even
accidentally.

Many existing programs use escape as a fundamental command which often
cannot be changed without incurring the wrath of a large group of users.
Such programs cannot make use of special keys without dealing with the
aforementioned ambiguity, and must, at best, resort to a timeout solution. The
pathway is clear. When designing new programs and updating older ones,
avoid using the escape key for program control whenever possible.

Program Routines
This and the following sections describe curses routines that are available to
programmers. In this section, the routines are discussed in groups by function
in the context of program operation. The next sections list curses, terminfo,
and termcap compatibility routines alphabetically for easy reference, and
each is discussed in greater detail. Both are helpful as tutorial and reference
information, expanding on the information contained in the curses(3X) and
terminfo(5) entries in the HP- UX Reference.

The curses routines discussed in this section operate on pads, windows, and
subwindows. In general, windows and subwindows are treated identically by

1-26 Using Curses and Terminfo

most routines. Subwindows share character data structures with the original
window, but have their own cursor location and other non-character data
structures. Unless indicated otherwise, all references to windows during
discussion of window routines apply equally to windows and subwindows.

Program Structure Considerations

All programs using curses should include the file <curses. h> which defines
several curses functions as macros and establishes needed global variables as
well as the datatype WINDOW (window references are always of type WINDOW*).
curses also defines the WINDOW * constants stds~r (the standard screen that
is used as a default for all routines that interact with windows) and curser
(the current screen, used as a reference for low-level operations when updating
the current display or clearing and redrawing a scrambled display. The integer
constants LINES and COLS are defined, and contain values equal to the number
of available lines and columns in the physical display. The constants TRUE and
FALSE are also defined with the values 1 and 0, respectively. Two additional
constants are defined; the values returned by most curses routines. OK is
returned when the routine was able to successfully complete its assigned task.
ERR indicates that an error occurred (such as an attempt to place the cursor
outside a defined window boundary or create a window larger than the physical
screen); thus, the task was not successfully completed.

The include file <curses. h> that must be specified at the beginning of
the program automatically includes <stdio. h> and an appropriate tty
driver interface file, presently <termio. h>. Including <stdio. h> again in a
subsequent program statement is harmless though wasteful, but including a tty
driver interface file could cause a fatal error if the file is not the same as the
one selected by curses.

Any program that uses curses should include the loader option

-lcurses

in its makefile, whether the program operates at the curses or terminfo level.
If the program only needs curses' screen output and optimization capabilities,
and no non-default windows are involved, you can improve output speed and
processing efficiency by restricting the program to the mini-curses package.
Mini-curses is selected by using the compilation flag

-DMINlCURSES

Using Curses and Terminfo 1-27

Routines supported by mini-curses are marked by asterisks in the complete
list of curses routines at the beginning of the curses Routines section of this
tutorial. They are also similarly marked in the curses(3X) entry in the HP-UX
Reference.

Terminal Initialization Routines

Program entry and exit states must be handled correctly to maintain system
integrity and proper terminal operation. If the program interacts with only one
user/terminal, initscr should be the first function call in the program. It sets
up the necessary data structures and makes sure that terminal handling and
screen clearing are properly initialized. The program should call endwin before
terminating, ensuring that the terminal is restored to its original operating
state and the cursor is placed in the lower left corner of the screen. endwin also
dismantles data structures and other program entities that were created by
curses and are no longer needed.

If the program must interact with multiple terminals during operation,
newterm should be used for each terminal instead of the single call to ini tscr.
newterm returns a variable of type SCREEN * which should be saved and used
each time that terminal is referenced. Two file descriptors must be present,
one for input, and one for output. Use endwin for each terminal prior to
program termination to restore previous terminal states and dismantle data
structures that were created by curses and are no longer needed. During
program operation with multiple terminals, set_term is used to switch between
terminals.

Another initialization function is longname which returns a pointer to a static
area containing a verbose description of the current terminal upon completion
of a call to ini tscr, newterm, or setupterm.

Option Setting Routines

These routines set up options within curses. Arguments specify the window to
which the option applies, and the boolean flag which must be TRUE or FALSE
(not 1 or 0) specifies whether the option is enabled or disabled. Default for all
functions in this group is FALSE (disabled) .

• cl earok (win, boolean_flag), when set, clears and redraws the entire
screen on the next call to refresh or wrefresh.

1-28 Using Curses and Terminfo

• idlok(win,boolean_flag) , when set, allows curses to use the
insert / delete line features of the terminal if they are available. This
feature tends to be visually annoying if used in applications where it
is not really needed. Insert/delete character capabilities are always
considered by curses, and are not related to insert/delete line
considerations.

• keypad (win, boolean_flag), when set, enables handling of special keys
from the terminal key board as single values instead of character
sequences.

• leaveok(win, boolean_flag) , when set, allows curses to ignore cursor
position and relocation at the end of an operation. This feature helps
simplify program operation when the cursor is not used or cursor
position is not important.

• meta (win, boolean_flag) , when set, handles characters from the (getch)
function as 8-bit entities instead of the usual seven. However, this
feature has no value if other programs and networks interacting with
the data can only pass 7-bit characters.

This feature is useful for applications where an extended non-text
character set is needed and the terminal has a meta shift key available.
Curses takes whatever measures are needed to handle the 8-bit input,
including the use of raw mode, if necessary. In most cases, the character
size is set to 8, parity checking disabled, and 8th-bit stripping is
disabled. For the data to continue unaltered, all programs using it must
also be capable of handling 8-bit character codes.

• nodelay (win, boolean_flag) , when set, makes getch a non-blocking call.
When enabled, getch returns immediately with the value -1 if no
input is ready. If not enabled, the program hangs until a terminal key is
pressed.

• intrflush(win, boolean_flag) , when set, flushes all output in the
tty driver queue if an interrupt key (interrupt, quit, or suspend, if
available on the system) is pressed on the terminal key board. While
this capability provides faster interrupt response, the flush destroys the
representative relationship between curser and the current physical
display contents.

Using Curses and Terminfo 1-29

• typeahead (file_descriptor), when set, enables typeahead for the
specified file where file_descriptor is the terminal input file. A file
descriptor value of zero selects stdin; -1 disables typeahead checking.

• scrollok (win, boolean_flag), when set, enables scrolling on the specified
window whenever the cursor position exceeds the lower boundary of
the window (or scrolling region, if set). Boundary crossing results
when a newline occurs on the bottom line or a character is placed in
the last character position of the bottom line. If scrollok is enabled,
the window or scrolling region is scrolled up one line, and a refresh
operation is performed to update the terminal screen. idlok must be
enabled on the terminal to get a physical scrolling effect on the visible
display. If scrollok is disabled, the cursor is left on the bottom line,
and no advances are allowed beyond the last character position.

• setscrreg(top,bottom) and wsetscrreg(win,top,bottom) are used to
set software scrolling regions within a given window. If this option and
scrollok are both active, the scrolling region is scrolled up one line
and refresh is called to update the screen whenever the cursor position
is moved beyond the lower limit of the scrolling region in the window.
To get a scrolling effect on the terminal screen, idlok must also be
enabled.

Terminal Configuration Routines

These routines are used to set or disable various operating modes that are
supported by the terminal being used.

• cbreakO and nocbreakO enable and disable single-character mode.
When cbreak is enabled, characters are received and processed from
the terminal keyboard as they are typed. When nobreak is active,
characters are held by the tty driver until a newline key is received
before making the line available to the program. Interrupt and flow
control characters are not affected by either option. cbreak enabled is
the preferred operating mode for most interactive programs. Default is
nobreak active.

• echo 0 and noecho 0 select direct echoing of characters back to the
terminal display as they are received by the tty driver, or transfer the
characters to the program without returning them to the terminal

1-30 Using Curses and Terminfo

display. no echo can be used to process incoming text under program
control then echo selected characters to a controlled area of the screen
or not echo at all.

• nlO and nonlO select or disable conversion of newline characters
into a carriage-return line-feed sequence on output and conversion
of incoming return character(s) into newlines. By disabling newline
conversions, curses can use line-feed capability more effectively,
resulting in better cursor motion.

• raw 0 and noraw 0 select or disable raw mode. Raw mode is similar to
cbreak in that characters are passed to the program as they are typed,
but interrupt, quit, and suspend characters are not interpreted, so they
do not generate a signal. Raw mode also handles characters as 8-bit
entities. BREAK handling is not affected.

• resetty 0 and savetty 0 restore and save tty modes. savetty saves
the current state in a buffer. resetty restores the terminal to the state
that was obtained by the last previous call to savetty.

Window Manipulation Routines

Window manipulation routines are used to create, move, and delete windows,
subwindows, and pads, and perform certain other operations. newwin,
newpad, and subwin create new structures. delwin deletes window, pad, and
subwindow structures, and mvwin relocates a window to a different area within
the physical screen boundary. touchwin, overlay, and overwrite affect
optimization and character replacement during refresh and window copying
operations as follows:

• touchwin forces the entire window to be rewritten to the screen during
refresh.

• overlay copies non-blank characters from one window onto the
overlapping area of another.

• overwrite overwrites all characters from one window onto the
overlapping area of another.

Pad functions are related to window functions, with some differences. Pads are
essentially the same as windows but usually larger than the available screen
size so that only part of the pad can be displayed at any given time. Pads

Using Curses and Terminfo 1-31

cannot be directly transferred to the terminal screen by use of window refresh
functions. Pad refresh functions must be used instead, so that the appropriate
area of the pad can be specified for display.

When a new window, subwindow, or pad is created, the function returns
a pointer that should be stored in a variable for later use when accessing
the window or pad. The returned variable then becomes the win argument
for writing to the window (or pad), deleting the window (or pad), and for
other text and cursor operations that include win as an argument. Except for
prefresh, pnoutrefresh, and newpad, all pad operations use the appropriate
window function for all text and cursor manipulations and other pad/window
activities.

Terminal Data Output Routines

All data transfers from a pad or window to the terminal display are handled by
pad and window refresh/update functions:

• refresh 0 and wrefresh (win) transfer the contents of the default or
specified window to the current screen window and to the terminal
display.

• doupdate 0 and wnoutrefresh (win) are used to accumulate several
window copy operations to the standard screen window by using
multiple calls to wnoutrefresh (win), then transferring the current
screen window to the terminal screen by calling doupdateO.

• prefresh (...) and pnoutrefresh (...) are equivalent to wrefresh
and wnoutrefresh, except that the pad and area within the pad are
specified. pnoutrefresh is followed by the doupdate function that is
normally used with window updates.

Window Writing Routines

Placing Text in the Window

These routines are used to write data in windows, subwindows, and pads. Only
the root function is listed here. Other related functions are listed with the root
function in the alphabetical curses Routines section later in this tutorial.

1-32 Using Curses and Terminfo

Routines that use the win argument operate on the stdscr window if win is
not specified. The cursor can be relocated before a function is executed by
adding mv onto the beginning of the function name. This produces a move (y,x)
or wmove (win, y, x) call on the default or specified window associated with the
function, followed by a call to the remaining window writing routine. Row (y)
and column (x) coordinates begin with (0,0) in the upper left-hand corner of
the window or screen, not (1,1). Use of the mv prefix was also discussed earlier.
See the section, Using Multiple Windows.

• move (y,x) and wmove (win,y,x) move the cursor in the given window or
pad. move (y,x) is equivalent to wmove (stdscr J y,x).

• addch(ch) and related functions (see curses routines section for
related functions) write a single character in the given window
or pad. mv prefixed to the base function name causes the current
cursor / character position to be changed to the specified Y J X location
before the character is placed. Cursor position after the placement is
determined by the type of character written.

• addstr (str) and related functions place the specified string in the
selected window. mv prefixed to the base function name causes the
current cursor/character position to be changed to the specified Y J X

location before the string is placed. Cursor position after the placement
is determined by the characters contained in the written string.

• erase 0 and werase (win) place blanks in the entire window or pad,
destroying all previous window contents.

• clear 0 and wclear (win) are similar to erase O. They erase the
window by filling it with blanks, but they also call clearok 0 which
clears the terminal screen on the next refresh 0 for that window.

• clrtoeolO and clrtobot 0 and their related window/pad functions
erase the specified window/pad from the present cursor position to the
end of the cursor line or to the end of the window or pad, respectively.

Insertin,g and Deleting Text in the Window

The follpwing routines are used to insert and delete lines and characters in the
window. These operations are performed on the window only, and have no
effect on the terminal at the time of execution.

Using Curses and Terrninfo 1-33

• delch and related window and move routines delete a single character
from the current or specified new cursor position.

• deletelnO and wdeleteln(win) remove the current cursor line from
the default or specified window.

• insch (c) and related routines insert the specified character in front of
the current cursor position and move succeeding text appropriately to
accommodate the new character.

• insertln 0 and winsertln (win) insert a blank line at the present
cursor line position and move the existing cursor line (and subsequent
lines) down one position. The bottom line in the window is lost. The
inserted line becomes the new cursor line.

Formatted Output to the Window

printw is functionally similar to printf except the output is handled by addch
which places the formatted data in the window.

Miscellaneous Window Operations

scrollw (win) is used to scroll a given window up one line each time the
function is called. box (win, vert, hor) uses the specified characters to draw
a box around the specified window. When the window is boxed, the top and
bottom rows and left and right columns in the window are no longer available
for normal text use.

Window Data Input Routines

Two functions are available that are used to obtain data from a given window.
getyx(y,x) is used to obtain the present cursor position for use by the
program. inch () and related functions can be used to retrieve any character in
a given window. The returned character includes video highlighting attribute
bits, each of which is set or cleared according to the original highlighting
attributes that were stored with the character when it was written to the
window.

1-34 Using Curses and Terminfo

Terminal Data Input Routines

getch and its related window and move routines are the basic building block
for all program input from the terminal. getch handles individual characters,
one at a time, returning a character as a 16-bit integer value each time it
returns from a call.

If echo is enabled, getch also places each character at the current cursor
position in the window associated with the function and updates the terminal
screen with a refresh on the window as the character is received and
processed (the cursor is advanced as each character is written to the window).
If noecho is active instead, input character(s) are not placed in the window.

getstr and its related functions generate a series of calls to getch to read an
entire line, one character at a time, up to the terminating newline character.
The line is stored in the specified string before get str returns to the calling
program.

scanw and its related functions perform formatted processing on the input line
after it has been placed in a special buffer used by getstr. (If echo is enabled,
the string is also placed in the associated window, but only the characters
stored in the buffer are used by scanw. When scanning is complete, the
processed results string results are placed in the specified args variables.

Video Highlighting Attribute Routines

Each character written into a window is stored as a 32-bit word. The lower
eight bits contain the character code; the middle eight bits contain the NLS
attributes; the remaining nine bits control video highlighting. As each word is
stored, the 8-bit character code is combined (through a bit-level logical OR
operation) with the current set of nine video highlighting attributes to obtain
the 32-bit result. Video attribute routines are used to construct the current
attribute set that is used during character storage.

Highlighting attributes can be specified as a complete set by using attrset
or wattrset. Using 0 (or A_NORMAL) as an argument for attrset disables all
highlighting.

Highlighting can be altered from the present state by turning individual
attributes on or off without altering the state of other attributes in the set.
This is done with attron, attroff, wattron, and wattroff.

Using Curses and Terminfo 1-35

As characters are stored in a given window, the current attributes are attached
to each character. To change highlighting, attributes must be changed before
the next character is written to the window. When deciding where to change
highlighting attributes, remember that highlighting applies to non-printing
space and tab characters as well as visible characters.

standout and standend provide easy access to the A_STANDOUT attribute.
standout is equivalent to a call to attron(A_STANDOUT) , and adds A_STANDOUT
to the currently active set of attributes (if any are active). However,
standend is not the opposite. standend is equivalent to attrset(O), not
attroff (A_STANDOUT). Thus, a call to standout with underlining on would
maintain underlining until another highlighting call. standend, on the other
hand, would not only terminate the previous standout call, but would
terminate underlining as well.

Attribute functions and arguments must be logically conceived. For example,
attron (A_NORMAL) and attroff (A_NORMAL), though executable, do nothing
because all bits in A_NORMAL are cleared (value is zero). The bit-level logical
OR of attron has no effect (all bits zero), and attroff is ineffectual because
A_NORMAL is inverted (all bits set to 1) before a bit-level logical AND is used to
clear the selected highlighting attribute.

Miscellaneous Functions

beep/flash

beep 0 and flash 0 are used to signal the terminal operator. If the terminal
does not support the called function, the other is substituted where possible.
Thus a call to beep flashes the screen if the terminal has no beep capability; a
call to flash produces a beep if no flashing video capability is available.

Portability Functions

Several functions have been included to aid portability of curses between
various systems:

• baudrate 0 returns the terminal datacomm line speed as an integer
baud rate value. The returned value can then be used for program and
system configuration purposes.

1-36 Using Curses and Terminfo

• erasechar () returns the terminal erase character that has been chosen
by the user. This character is used to cancel the last previous character.
Interactive programs should include cancellation capabilities so users
can correct typographical errors during keyboard inputs.

• killchar () is similar to the erase character, but cancels the entire line
where the character appears.

• flushinp 0 discards any typeahead characters when an interrupt
character is detected. This enables users to interrupt a series of
commands or other activities that have accumulated in the typeahead
buffer and terminate the current process without waiting for the
typeahead queue to empty. Normally used for aborts, this function
and the related program structure must be handled carefully to ensure
proper termination of program processes before the program exits.

Delay Functions

Delay functions are not highly portable, but are frequently needed by programs
that use curses, especially real-time interactive response programs. Use of
these functions should be avoided where possible:

• draino (ms) is used to reduce the amount of data being held in
the output queue. The main purpose of this function is to keep the
program (and keyboard) from getting ahead of the screen. With careful
program design, use of this function should be unnecessary in most
cases.

• napms (ms) suspends program operation for a specified time. It
is similar to sleep, but offers higher resolution (resolution varies,
depending on system resources). napms uses a call to select for its
time base reference.

Using Curses and Terminfo 1-37

2
Curses Routines

curses supports the following functions. Those marked with an asterisk are
also supported by mini -curses (some unmarked routines might work, but are
not officially supported by mini -curses. Proceed at your own risk if you try
them).

Curses Routines 2-1

addch(ch)*
addstr(str)*
attroff (attrs) *
attron(attrs) *
attrset(attrs) *
baudrateO*
beepO*
box (win, vert, hor)
cbreakO*
clearO
c I earok (win, boolean_flag)

clrtobotO
clrtoeolO
delay_output (ms) *
delchO
deletelnO
del_term(oterm)
delwin(win)
doupdateO
draino(ms)
echoO*
endwinO*
eraseO
erasecharO
fixtermO
flashO
flushinpO*
mvprintw (y,x,/mt, args)
mvscanw (y,x,/mt, args)

mvwaddch (win, y, x, ch)
mvwaddstr (win,y,x,str)

2-2 Curses Routines

getchO*
getstr(str)
gettmode()
getyx(win,y,x)

has_icO
has_ilO
idlok (win, boolean_flag)
inch()
initscrO*
insch(e)
insertlnO
intrflush(win,boolean_flag)
keypad (win, boolean_flag)

killcharO
lea veok (win, boolean_flag)

longnameO
meta (win, boolean_flag) *
move (y,x) *
mvaddch (y,x,ch)
mvaddstr (y, x, str)

mvcur (oldrow, oldeol, newrow, neweol)
mvdelch (y,x)
mvgetch (y,x)

mvgetstr (y, x, str)
mvinch(y,x)
mvinsch(y,x,c)
setscrreg (t, b)

set_curterm (nterm)
set_term(new)
setterm(type)

setupterm (term,jilenum, errret)

mvwdelch (win,y,x)

mvwgetch (win,y,x)

mvwgetstr (win,y,x,str)

mvwin (win, beg_y, beg_x)

mvwinch (win, y, x)

mvwinsch (win, y, x, c)

mvwprin tw (win, y, x,jmt, args)

mvwscanw (win, y, x,fmt, args)
napms(ms)
newpad (num_lines, num_ col)

newterm (type,jdout,jdin)
newwin (num_lines, num_ eols, beg_x, beg_ y)

nlO*
nocbreakO*
nodelay (win, boolean_flag)

noechoO*
nonlO*
norawO*
over lay (winl, win2)

overwri te (winl,win2)

pnoutrefresh (pad,pminrow,pmz'ncol,
sm~'nrow, smincol, smaxrow,smaxcol)
printw (fmt, args)

raw 0 *
refreshO*
resetterm 0 *
resettyO*
savetermO*
savettyO*
scanw (jmt, args)

scroll (win)

scrollok (win, boolean_flag)

standend()*
standoutO*
subwin (orig_ win, n_lines, n_ eols,
beg_y, beg_x)
touchwin (win)

traceoffO
traceonO
typeahead (jd)

unctrl(eh)*

waddch (w£n, ch)

waddstr (win, str)

wattroff (win, attrs)

wattron (win,attrs)

wattrset (w£n, attrs)

wclear(w£n)

wclrtobot (win)

wclrtoeol (w£n)

wdelch (wz'n,c)

wdeleteln (win)

werase (win)

wgetch (win)

wgetstr (win,str)

winch (win)

winsch(win,e)

winsertln (win)

wmove (win,y,x)

wnoutrefresh (win)

wprintw (win,jmt, args)

wrefresh (win)

wscanw (win,fmt, args)

wsetscrreg< win,t, b)

wstandend (win)

wstandout (~'n)

Curses Routines 2 .. 3

Description of Routines
The curses package includes the following functions. Function names that are
associated with operations on user-specified windows contain a w or mvw prefix,
and the window must be included as a parameter in the function call. If no w
or mvw prefix is present, or if the window is not specified in the parameter set,
the operation is performed on the default window stdscr. Programs that use
the curses package are subject to the normal rules of C compiler statement
syntax.

Routines are listed alphabetically by function keyword which is printed in
slanted bold type. When two or more functions are related to a common
keyword, the root keyword is listed in bold, followed by a list of related
function names in normal italics. The individual related functions are also
included elsewhere in the list with references back to the root keyword where a
detailed explanation of all keywords related to the root keyword is located.

2-4 Curses Routines

addch(ch)
waddch (win, ch)
mvaddch(y,x,ch)
mvwaddch (win, y, x, ch)

Description of Curses Routines

Places character ch in window at current cursor position
for that window then advances cursor to next position.
If ch is a tab, newline, backspace, the cursor is moved
appropriately, but no text is altered. If ch is a control
character other than tab, newline, or backspace, the
character is drawn using AX notation (where x is a
printable character preceded by A to indicate a
control character - see unctr 1 (ch)). If the character
is placed at the right margin, an automatic newline is
performed. At the bottom of the scrolling region, the
region is scrolled up one line if scrollok is enabled.

ch parameter is an integer; not a character. addch
performs a bit-level logical OR between the 16-bit
character and the current attributes if any are active.
Highlighting of individual characters can also be handled
by the program if the current attributes are all zero
(disabled) by performing an equivalent bit-level logical
OR operation between the 7-bit character code in bit
positions 0 through 6 and selected video attribute bits
in bit positions 7 through 15 to create a single 16-bit
integer representing the character and its associated
highlighting attributes. If no highlighting attributes for
the window are currently active, any attributes added to
the character by the program or already present from the
source are preserved. If any are active, they are added to
the character and any attached attributes without altering
other attributes. Thus, you can copy text (including
attributes) from one place to another with inch and addch.

addch is used with stdscr window; waddch with window
win; mvaddch moves the cursor to row y, column x, then
places the character at that location; mvwaddch is identical
to mvaddch, but operates on a specified window win. If win
is not specified, default is to stdscr. All row and column
references are relative to the upper left corner whose comer
character position is represented by row 0, column O.

Curses Routines 2-5

Description of Curses Routines (Continued)

addstr (str)
waddstr (win, str)
mvaddstr (y,x,str)
mvwaddstr (win, y,x, str)

attroff (attrs)
wattroff (win, attrs)

attron (attrs)
wattron (win, attrs)

attrset (attrs)
wattrset (win,attrs)

2-6 Curses Routines

Places the character string specified by str at the current
cursor position (addstr and waddstr) or at the specified
location in the window (mvaddstr and mvwaddstr). String
placement consists of a series of character placements using
the addchx routine. str must be terminated by a null
character.

Disables the specified video highlighting attributes without
affecting other attributes. Any or all of the following
attributes can be specified (multiple attributes must be
separated by the C logical OR operator, I which performs
a bit-level logical OR on all attributes specified in the
function call): A_STANDOUT, A_UNDERLINE, A_REVERSE,
A_BLINK, A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT,
and A_ALTCHARSET.

Enables the specified video highlighting attributes without
affecting other attributes. Any or all of the following
attributes can be specified (multiple attributes must be
separated by the C logical OR operator, I which performs
a bit-level logical OR on all attributes specified in the
function call): A_STANDOUT, A_UNDERLINE, A_REVERSE,
A_BLINK, A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT,
and A_ALTCHARSET.

Enables specified video highlighting attributes, and
disables all others. Any or all of the following attributes
can be specified (multiple attributes must be separated
by the C logical OR operator, I which performs a
bit-level logical OR on all attributes specified in the
function call): A_STANDOUT, A_UNDERLINE, A_REVERSE,
A_BLINK, A_DIM, A_BOLD, A_INVIS (invisible), A_PROTECT,
andA_ALTCHARSET. attrset(O), attrset (A_NORMAL) ,
and standendO (or standend(win») are equivalent
functions that disable all attributes (normal display). See
standendO.

baudrateO

beepO

box (win, vert, hor)

cbreakO
nocbreakO

clearO
wclear (win)

Description of Curses Routines (Continued)

Returns the terminal serial I/O datacomm speed. The
value returned is the integer baud rate (such as 9600)
rather than a table index value (such as B9600). If the
baud rate is External A or External B, the value -1 is
returned instead.

Used to signal the terminal user with an audible signal. If
no audible signal is available on the terminal, the screen
is flashed instead (see flashO). If neither capability is
available, no output is sent to the terminal.

Draws a box around the specified window. vert specifies
the character to be used for left and right columns; hor
specifies the character for top and bottom rows. Usable
window space is reduced by two lines and columns when a
box is present.

These functions place the terminal in and out of CBREAK
mode, respectively. When cbreak (character-mode
operation) is active, each typed character is immediately
available to the program. If disabled (nocbreak), the
tty driver holds characters until a newline character is
received, then releases the entire line to the program
(line-mode operation). Interrupt and flow control
characters are not affected by cbreak; default is nocbreak,
but most interactive programs that use curses run with
c break enabled.

Similar to erase and werase, but clearok is also called
so that the terminal screen is cleared by the next call to
refresh for that window. clearok sets a flag to clear the
screen, blanks are placed in the window, and the next call
to refresh outputs a screen clearing operation or blanks or
both to the terminal, depending on terminal capabilities.

Curses Routines 2-7

Description of Curses Routines (Continued)

clearok(win,
boolean_flag)

clrtobotO
wclrtobot (win)

clrtoeolO
wclrtoeol (win)

delay_output (ms)

delchO
wdelch (win)
mvdelch (y,x)
mvwdelch(win,y,x)

deletelnO
wdeleteln (win)

de 1_ term (oterm)

delwin (win)

2-8 Curses Routines

If set, the next wrefresh call for the specified window
clears and redraws the entire screen (instead of just the
area represented by the specified window). If win specifies
curscr, the next call to wrefresh for any window clears
and redraws the entire screen. This is useful when current
screen contents are uncertain, or in some cases for a more
pleasing visual effect.

Clears all character positions from the current cursor
position to the right margin, and all lines below the current
cursor line to the end of the window.

Clears all character positions from the current cursor
position to the right margin. The rest of the window
remains undisturbed.

See terminfo routines in the next section of this chapter.

The character at the present cursor position is deleted. All
remaining characters on the line to the right of the deleted
character are moved left one position. Other lines are not
disturbed. The operation is performed only on the window,
and does not use the terminal hardware delete-character
feature because no terminal operation has been performed.

The present cursor line is deleted. All remaining lines
in the window below the cursor line are moved up one
position, leaving a blank line at the bottom of the window.
This window operation does not interact directly with
the terminal when performed, so no terminal hardware
delete-line feature is used.

oterm is of type TERMINAL*. del_termO frees the space
pointed to by oterm and makes it available for further
use. If oterm is the same as cur_term, then references to
any of terminfo{4} boolean, numeric and string variables
thereafter may refer to invalid memory locations until
another setupterm 0 has been called.

Deletes the specified window and releases all memory
associated with it. If the window contains subwindows, all
subwindows must be deleted first.

Description of Curses Routines (Continued)

doupdateO
wnoutrefresh(win)
pnoutrefresh (pad, ...)

draino(ms)

echoO
noechoO

wnoutrefresh (or pnoutrefresh) and doupdate essentially
divide wrefresh into two independent functions that can
be called separately for more efficient handling of multiple
output operations to windows and pads. In normal
operation, wrefresh (win) calls wnoutrefresh (win)
to copy the named window to the virtual screen, then
uses doupdate to update the physical screen to match
the virtual screen. When outputting multiple windows,
wnoutrefresh (win) can be used successively, once for each
window; followed by a single doupdate 0 to transfer the
new screen to the terminal, probably with fewer characters
transmitted. pnoutrefresh is used similarly when writing
to pads.

Suspends program operation until the output queue has
been reduced sufficiently ("drained") so that the remaining
characters can be transmitted in not more than ms
milliseconds. For example, draino(50) at 1200 baud would
suspend program execution until no more than 6 characters
remain to be sent (6 characters @ 1200 baud require about
50 ms transmit time). This routine is used to keep the
program (and thus the keyboard) from getting ahead of the
screen. If the operating system does not support the I/O
controls (ioctls) that are needed to implement draino,
the value ERR is returned; otherwise OK is returned.

Enables or disables echoing of characters by getch through
the specified window and back to the terminal as each
character is typed on the keyboard and subsequently
processed by getch. Default is echo (enabled). In some
interactive programs, it is preferable to suppress echoing
by getch (noecho), then let the program place incoming
characters in a controlled area of the screen or not return
them at all, as needs dictate.

Curses Routines 2-9

Description of Curses Routines (Continued)

endwin()

eraseO
werase (win)

erasecharO

fixtermO

flashO

flushinpO

2-10 Curses Routines

endwin should always be called before exiting from a
curses-based program. Restores tty modes, places the
cursor in the lower left corner of the terminal screen, resets
the terminal into the proper non-visual mode, and removes
data structures that are no longer needed by the exiting
program.

Copies blanks to every character position in the specified or
default window. As each blank is stored in the window, the
highlighting attribute bits are set to zero (disabled).

Returns the user's chosen erase character from the terminfo
data base. The returned character should be interpreted
by the program as an "erase previous character" command
whenever it is received from the terminal.

Restores the current terminal to the state it was in
prior to the most recent call to resettermO. State
information stored by the most recent previous call to
saveterm 0 provides the needed restoration information.
See resettermO.

U sed to signal the terminal user by flashing the screen. If
the terminal has no screen flashing feature, the audible
signal is sounded instead (see beep 0). If neither capability
is available, no output is sent to the terminal.

Discards any typeahead characters in the typeahead buffer
(characters that have been typed on the terminal but are
still waiting to be handled by the program.

getchO
wgetch(win)
mvgetchO
mvwgetch (win)

Description of Curses Routines (Continued)

Takes a character from the terminal keyboard input buffer
as a 16-bit integer, processes it, and returns it to the
program as a 16-bit integer. Character processing and
return conditions vary as follows:

If mv is placed in front of getch or wgetch, the cursor
position for the selected window is moved to the specified
location which becomes the new current cursor position.
This operation is completed before any character
processing begins.

If echo is active and the character is a normal typing
character (keypad and meta characters are discussed later),
the character is placed in the current cursor position by a
call to waddch from getch. During character placement
in the window, a bit-level logical OR in waddch attaches
current highlighting attributes to the character. waddch is
followed immediately by a call to wrefresh which updates
the terminal screen with the echo character.

If an escape character is received, special timeouts are
set up to determine whether the character is part of a
multiple-character keypad sequence. See Use of Escape in
Program Control topic earlier in this tutorial for a detailed
discussion of how escape is handled.

If meta is enabled and the character is not a keypad
sequence, the 16-bit input character is logical ORed with
octal 0377 to mask the upper bits to zero and return an
8-bit text character value. The eighth bit interferes with
the A_STANDOUT highlighting attribute bit in the same
position, so noecho is usually chosen for programs that
operate with meta active.

If meta is not enabled, text characters are logical ORed
with octal 0177 to mask the upper bits to zero and return
a 7-bit character value. Echoing is handled in the normal
manner if enabled.

If keypad is not enabled, function key sequences are treated
as individual characters and handled as normal text.

Curses Routines 2-11

Description of Curses Routines (Continued)

getstr(str)
wgetstr (win,str)
mvget str (y, x, str)
mvwgetstr (win,y,x,str)

2-12 Curses Routines

If keypad is enabled, each function key sequence (usually
an escape sequence) is handled as a single-character
keycode which is assigned a 16-bit integer value in a range
beginning at 0401 (octal) and a name that starts with
KEY_ (a complete list of keypad character value and name
definitions is included in the keypad discussion near the
beginning of this tutorial). The character value is not
placed in the window for echoing, even if echo is enabled.

If node lay is active: if no input is available in the
keyboard input buffer when getch is called, getch returns
with the value -1 and no other action is taken. If nodelay
is not active, the program hangs until text is available in
the buffer. Depending on the current cbreak setting,
text is made available to the program as each character is
received (c break), or incoming characters are held by the
tty driver until a newline is received then they are made
available to the program (nocbreak).

This routine is used to input an entire line from the
terminal. It is equivalent to getch, except that it handles
an entire string instead of single characters. Handling of
each character is identical to getch except that text and
meta characters are packed into the string variable str
instead of being returned to the program as individual
16-bit integers. Keypad characters (except for kill, erase,
key _left (left arrow), and backspace) are not recognized
and cannot be handled through getstr.

During execution, getstr generates a series of calls
to getch until a newline is received, at which time it
returns. The 16-bit integers returned by successive calls
to getch are stripped of their unneeded upper bits
(except recognized keypad keys) before packing into a
string variable beginning at the location identified by the
character pointer str.

If echo is enabled, incoming string characters are also
placed in the associated window (by getch) as they are
received and processed, and echoed to the terminal (by
refresh). If noecho is active, characters are not placed in
the window; they are only placed in str.

Description of Curses Routines (Continued)

gettmode()

getyx(win,y,x)

idlok (win, boolean_flag)

inch()
winch (win)
mvinch(y,x)
mvwinch (win,y,x)

initscrO

(Get tty mode). Dummy entry point. Performs no useful
function.

Places the current cursor position of the specified window
in the specified two integer variables y and x. This is a
macro, so no & is necessary.

Returns a value indicating whether or not the terminal has
insert/delete character capability. Zero value indicates the
capability is not present; non-zero: capability present.

Returns a value indicating whether or not the terminal
has insert/delete line capability. Zero value indicates the
capability is not present; non-zero: capability present.

Insert and Delete Line OK. If enabled, curses can use
hardware insert/delete line capabilities when the terminal
is so equipped. If disabled, curses does not use the
capability. Use only when the program requires it (such as
a screen editor). idlok is disabled by default because it
tends to be annoying when used in applications where it
is not really needed. If insert/delete line cannot be used,
curses redraws changed portions of all lines that do not
match the desired result.

Returns the character located at the current or specified
position in the specified window as a 16-bit integer. If
any attributes are set for that position, their values are
included in the value returned. To extract only the
character or the attributes, perform a bit-level logical
AND on the returned value, using the predefined constant
A_CHARTEXT (octal 0177) or A_ATTRIBUTES (octal 0177600).

The first function called in curses-based programs.
Determines terminal type, and initializes curses data
structures as appropriate. Also sets indicators so that the
first call to refresh clears the terminal screen and updates
curser to reflect the cleared screen.

Curses Routines 2-13

Description of Curses Routines (Continued)

insch(c)
winsch (win, c)
mvinsch(y,x,c)
mvwinsch(win,y,x,c)

insertlnO
winsertln (win)

intrflush (wz"n,
boolean_flag)

keypad (win,
boolean_flag)

2 .. 14 Curses Routines

Inserts the character (byte, usually a 7-bit code) specified
by c at the current cursor position position or at the
specified location in the standard or specified window
(current attributes are attached during the placement
operation). All characters beginning at the insertion
location are moved right one position for the remainder
of the line. If the line is full, the rightmost character is
discarded. This does not interact with the terminal so no
hardware insert-character feature is used.

Inserts a blank line between the current cursor line and the
line above it. The current line and subsequent lines of text
in the window are moved down one position, and the blank
line becomes the new current cursor line. The bottom line
of text is discarded if it cannot fit inside the window. This
is a window operation that does not interact with the
terminal, so no hardware insert-line feature is used.

Causes tty driver queue to be flushed on interrupt. When
enabled, an interrupt, quit, or suspend keypress from the
terminal flushes all output from the tty driver queue,
providing a faster response to the interrupt. However,
curses loses its record of what is currently displayed on
the screen when the interrupt occurs. Disabling the option
prevents the flush. Default is flush enabled. Requires
proper support from the underlying driver.

Enables keypad character handling for the user terminal
associated with win. When true, the terminal operator can
press any key that generates multiple-character sequences
(such as a function key), and getch returns a single 16-bit
integer value representing the function key (the returned
character must be handled as a 16-bit value). If keypad
is disabled (default), curses handles keypad sequenees
as normal text. keypad also enables and disables keypad
keys on the terminal if the terminal hardware is equipped
to support such command sequences from the external
computer.

killcharO

leaveok(win,
boolean_flag)

longnameO

Description of Curses Routines (Continued)

Returns the line-kill character chosen by the terminal user.
This character, when typed by the user, is a command to
the program to cancel the entire line being typed.

Upon completion of normal refresh operations (leaveok
disabled) the terminal hardware cursor is placed at the
current cursor location for the window being refreshed. A
call to leaveok (win, TRUE) prior to refresh allows refresh
operations to leave the terminal hardware cursor in any
convenient position instead of updating it to the current
window cursor position when refresh is finished. This is
useful for applications where the cursor is not used because
it reduces the need for cursor movements. When possible,
the cursor is made invisible when leaveok is specified for
the window. Once leaveok is set TRUE for a given window,
it remains active for the duration of the program or until
another call sets it FALSE.

Returns a pointer to a static area containing a verbose
description of the current terminal. This static area
is defined only after a call to ini tscr, newterm, or
setupterm.

meta (win, boolean_flag) When enabled, text characters are returned by getch as
8-bit character codes (masked by octal 0377) instead of
7-bit (masked by octal 0177) characters. Returns the value
OK if the request succeeds; ERR if the terminal or system
cannot handle 8-bit character codes.

meta is useful for extending the non-text command set
in applications where the terminal has a meta shift key.
curses takes whatever measures are necessary to arrange
for 8-bit input. When meta is true, HP-UX sets datacomm
configuration to 8-bit character length, no parity checking,
and disables 8th-bit stripping. Remember that if any
program or facility handling the data can only pass 7 -bit
codes or strips the 8th bit, 8-bit handling is not possible.

Curses Routines 2-15

Description of Curses Routines (Continued)

move(y,x)
wmove (win, y,x)

mvaddch(y,x,eh)

mvaddstr (y, x, str)

mvcur (oldrow, oldeol,
newrow, neweol)

mvdelch(y,x)

mvgetch(y,x)

mvgetstr(y,x,str)

mvinch(y,x)

mvinsch(y,x,e)

mvprintw (y,x,/mt, args)

mvscanw (y,x,/mt, args)

mvwaddch (win, y,x, eh)

mvwaddstr (win, y, x, str)

mvwdelch(win,y,x)

2-16 Curses Routines

Places the cursor associated with the specified or default
window at the specified row (y) and column (x) where the
upper left corner of the window is row 0, column o. The
cursor is not moved on the display screen until a refresh
or equivalent function is executed.

Same as move(y,x); addch(eh). See addch(eh).

Same as move(y,x); addstr(str). See addstr(str).

Optimally moves the cursor from (oldrow, oldeol) to
(newrow, neweol). The user program is expected to keep
track of the current cursor position. Unless a full-screen
image is kept, curses must make pessimistic assumptions
that sometimes result in less than optimal cursor motion.
For example, if the cursor needs to be moved a few
spaces to the right, the task could be accomplished by
retransmitting the characters between the present and the
desired position; but if curses cannot access the screen
image, it cannot determine what those characters are.

Same as move(y,x); delchO. See delchO.

Same as move(y,x); getchO. See getchO.

Same as move(y,x); getstr(str). See getstr(str).

Same as move (y,x); inch O. See inch 0 .

Same as move (y,x); insch(e) . See insch(e).

Same as move (y,x); printw (fmt, args). See
printw (fmt, args) .

Same as move (y,x); scanw (fmt, args). See
scanw(fmt,args) .

Same as wmove(win,y,x); waddch(win,eh). See addch(eh).

Same as wmove(win,y,x); waddstr(win,str). See
addstr (str) .

Same as wmove(win,y,x); addch(eh). See delchO.

Description of Curses Routines (Continued)

mvwgetch (win, y,x) Same as wmove(win,y,x); wgetch(win). See getchO.

mvwgetstr(win,y,x,str) Same as wmove(win,y,x); wgetstr(win,str). See
getstr (str).

mvwin(win,beg_y,beg_x) Moves the specified window so that the upper left-hand
corner is located at character position (beg_y, beg_x). If the
move causes any part of the relocated window to lie outside
the physical screen boundary, the command is considered
to be in error, and the window remains in its original
location.

mvwinch (win, y, x)

mvwins ch (win, y, x, c)

mvwprintw(win,y,x,
/mt,args)

mvwscanw(win,y,x,
/mt,args)

napms(ms)

newpad (num_lines,
num_cols)

Same as wmove(win,y,x); winch(win). See inchO.

Same as wmove(win,y,x); winsch(win,c). See insch(c).

Same as wmove (win, y,x); wprintw (win,/mt, args) .
See printw (/mt, args) .

Same as wmove (win,y,x); wscanw(win,/mt,args).
See scanw (fmt,args).

Suspends program operation for ms milliseconds. napms is
similar to sleep, but has higher resolution. The resolution
actually provided depends on the resolution of available
operating system facilities. If a resolution of at least 0.100
sec is not available, the routine rounds to the next higher
second, calls sleep, and returns ERR. Otherwise the value
OK is returned.

Creates a new pad data structure. A pad is similar to a
window, but it is not restricted by physical screen size nor
is it associated with a particular part of the screen. Pads
are useful when a large window is needed and only part of
the window will be displayed at any given time. Automatic
refreshes from pads (such as scrolling or input echo) do not
occur. Refresh cannot be used with a pad as an argument.
Instead, the routines prefresh and pnoutrefresh are
used. Pad refresh routines require additional parameters
to specify what part of the pad to display, and where to
display it on the screen.

Curses Routines 2-17

Description of Curses Routines (Continued)

newterm(type,jpout,jpin) Used instead of initscr in programs that output to more
than one terminal. newterm should be called once for each
terminal. It returns a variable of type struct screen*
which should be saved for use as a reference to that
terminal. Arguments are: a string defining the terminal
type, a file pointer for the output file, and another for the
input file if needed (interactive terminal).

newwin (num_lines,
num_cols,beg_y,beg_x)

nlO
nonl()

nocbreakO

nodelay (win,
boolean_flag)

noechoO

nonl()

noraw()

2-18 Curses Routines

Create a new window with the specified number of lines
and columns whose upper left-hand corner is located at
the specified row and column of the physical screen, and
return a window pointer (the upper left-hand corner of the
physical screen is row 0, column 0). If the number of lines
and/ or columns is specified as zero, the default value LINES
minus beg_y and COLS minus beg_x is used instead. A
screen buffer for the window is also created. To create a
new full-screen window, use newwin (0 . 0 • 0 . 0) .

Defines handling of newline characters. When enabled
(nl), newline is translated into a carriage-return and
line-feed on output, and carriage-return is translated into
a newline character on input. curses initially enables
newline, but if it is disabled by nonl, curses can make
better use of line feed capability, resulting in faster cursor
motion.

See cbreakO.

Makes getch a non-blocking call. When enabled, if no
input is ready, a call to getch returns -1. If disabled,
getch hangs until a key is pressed.

See echoO.

See nlO.

See rawO.

Description of Curses Routines (Continued)

overlay (winl,win2)
overwrite (winl,win2)

overwrite (winl,win2)

pnoutrefresh (pad,
pminrow,pmincol,
sminrow, smincol,
smaxrow, smaxcol)

prefresh (pad,
pminrow,pmincol,
sminrow, smincol,
smaxrow, smaxcol)
pnoutrefresh(same
parameters)

printw (fm'l, args)
wprintw (win,jmt, args)
mvprintw (y,x,jmt, args)
mvwprintw(win,y,x,
fmt,args)

rawO
norawO

Copies winl onto win2 for all screen area where the two
windows overlap. overlay copies only visible (non-blank)
text, and does not disturb those win2 character positions
where winl is blank. overwrite copies all of overlapping
winl onto win 2, including blanks, thus destroying all
original data in the overlapping area of win2.

See overlay.

See prefresh.

Analogous to wrefresh and wnoutrefresh, except
that pads are involved instead of windows. Additional
parameters specify what part of the pad and screen are
to be used. pminrow and pmincol identify the upper left
corner of the pad area to be displayed. sminrow, smincol,
smaxrow, and smaxcol define the display boundaries on the
physical screen. The lower right-hand corner of the pad
area being displayed is calculated from the screen boundary
parameters because both rectangles must be the same size.
Both rectangles must lie completely within their respective
structures.

These commands are functionally equivalent to printf.
Characters that would normally be output by printf are
instead output by waddch on the associated window.

Places the terminal in or out of raw mode. Raw mode is
similar to c break mode in that characters are immediately
passed to the user program as they are typed on the
terminal keyboard, except that interrupt and quit
characters are passed as normal text instead of generating
a special interrupt signal. Raw mode handles all terminal
I/O as 8-bit characters instead of 7. I Break I key behavior
may vary, depending on the terminal.

Curses Routines 2-19

Description of Curses Routines (Continued)

refreshO
wrefresh (win)

resettermO
savetermO
fixtermO

resettyO
savettyO

savetermO

savettyO

scanw(fmt,args)
wscanw (win,/mt, args)
mvscanw(y,x,/mt,args)
mvwscanw(win,y,x,
fmt,args)

2-20 Curses Routines

These functions output window data to the terminal (other
routines only manipulate data structures). wrefresh copies
the named window to the physical screen on the terminal
by using wnoutrefresh (win) followed by doupdate 0,
taking into account what is already on the screen in order
to optimize the transfer. refreshO is similar, except
it uses stdscr as the default screen. Unless leaveok is
enabled, the cursor is placed at the location of the window
cursor when the operation is complete.

resetterm restores the current terminal to the operating
condition it was in when curses was started. The "current
curses state" is saved by savetermO for possible future
use by fixtermO. resetterm and fixterm should be used
in all shell escapes. Equivalent routines are also available
at the t erminf 0 level.

Restores (resets) the tty modes to those stored in the
buffer by the last previous savettyO command. This
means that only one set of states can be stored at any
given time. See savetty 0 .

Preserves the current terminal curses state for possible
future use by fixterm. See resettermO and fixtermO.

Saves the current state of the tty modes in a buffer for
possible later use by resetty O. See resetty 0 .

Corresponds to scanf (see scanf(3S) entry in the HP-UX
Reference). Calls wgetstr which inputs characters from
the terminal and places them in a buffer until new line is
received. When newline is received, the string in the buffer
serves as input for the scan which processes the buffered
string and places the result in the appropriate args. Uses
getch for character input and echo handling.

Description of Curses Routines (Continued)

scroll (win)

scrollok (win,
boolean_flag)

setscrreg(t,b)
wsetscrreg(win,t,b)

setterm(type)

setupterm(term,
filenum, errret)

Scrolls the window up one line by moving the lines in the
window data structure. As an optimization, if the window
being scrolled is stdscr, and the scrolling region is the
entire window, the physical screen is scrolled at the same
time.

Controls window handling when the cursor advances
beyond the bottom boundary of the window or scrolling
region due to a newline in the bottom line or a character
placed in the last character position of the bottom line.
If scrolling is disabled, the cursor is left on the bottom
line (characters are accepted until the bottom line is
full, but newlines are ignored). If the cursor crosses the
bottom boundary while scrollok is enabled, a wrefresh is
performed on the window, then the window and terminal
are scrolled up one line. idlok must also be called before a
physical scrolling effect can be produced on the terminal
screen.

Sets up a software scrolling area in window win or stdscr.
t and b are the top and bottom lines of the scrolling region
(line 0 is the top line of the window). If this option and
scrollok are both enabled, an attempt to move off the
bottom margin causes all lines in the scrolling region to
scroll up one line. Note that this process has nothing to do
with the physical scrolling region capability that exists in
some terminals (only the text in the window is scrolled).
If the terminal has scrolling region or insert/delete line
capabilities, they will probably be used by the output
routines during refresh. idlok must be enabled before a
scrolling effect can be produced on the terminal screen (see
scrollok).

Low-level interface used by old curses and included here
for compatibility with earlier software.

terminfo routine. See terminfo routines in the next
section of this tutorial for description.

Curses Routines 2-21

Description of Curses Routines (Continued)

set_curterm (nterm)

standendO
wstandend (win)

standout()
wstandout (win)

subwin (orig_ win,
num_lines, num_ cols,
beg_ y, beg_x)

2-22 Curses Routines

nterm is of type TERMINAL*. set_curtermO sets the
variable cur_term to nterm and makes all the terminfo(4)
boolean numeric and string variables use the values from
nterm.

Switches to a different terminal. The screen reference new
becomes the new current terminal, and the function returns
the previous terminal. All other calls affect only the
current terminal. This function is used to handle multiple
terminals interacting with a single program.

Equivalent to attrset (0) and attrset (A_NORMAL).

Turns off all video highlighting attributes for the default
(standend) or specified (wstandend) window.

Equivalent to attron (A_STANDOUT). Turns on the video
highlighting attributes used for standout highlighting for
the terminal being used. Does not alter other attributes in
effect at the time. standout applies to the default window
stdscr. wstandout affects the specified window.

Creates a new window containing the specified number
of lines and columns within existing window orig_win.
beg_y and beg_x specify the starting row and column
position of the window on the physical screen (not relative
to window orig_win). The subwindow uses that part of
the main window character data storage structure that
corresponds to its own area (each window maintains its
own pointers, cursor location, and other items pertaining
to window operation; only character storage is shared).
Thus, the subwindow always contains character data
(including highlighting attributes) that is identical to the
data contained in the corresponding area of the original
window, regardless of which window is the target of a
write operation (highlighting bits are determined by the
current attributes in effect for the window through which
each character was stored). When using subwindows, it is
often necessary to call touchwin before refresh in order to
maintain correct display contents.

Description of Curses Routines (Continued)

touchwin(win)

traceoffO

traceonO

typeahead (fd)

unctrl(ch)

waddch(win,ch)

waddstr (win,str)

wattroff (win,attrs)

wattron (win,attrs)

wattrset (win,attrs)

wclear (win)

wclrtobot (win)

wclrtoeol (win)

Discards optimization information on the specified window
so that the entire window must be completely rewritten
during refresh. This is sometimes necessary when using
overlapping windows because changes to one window do
not update the overlapping window structure in such a
manner that a subsequent refresh operation can be handled
correctly.

Dummy entry point. Performs no useful function.

Dummy entry point. Performs no useful function.

Sets the file descriptor for typeahead check. fd is an
integer obtained from open or fileno. Setting typeahead
to -1 disables typeahead check. Default file descriptor is
o (standard input). Typeahead is checked independently
for each screen; for multiple interactive terminals, it should
be set to the appropriate input for each screen. A call to
typeahead always affects only the current screen.

Converts the character code represented by ch into a
printable form if it is an unprintable control character.
The converted character is printed as an alpha-numeric
character preceded by A where A represents the control
key, and the alpha-numeric character corresponds to a key
that can be pressed in conjunction with the control key to
produce the control character.

See addch (ch) .

See addstr (str) .

See attroff (attrs).

See attron(attrs).

See attrset (attrs).

See clearO.

See clrtobot 0 .

See clrtoeol O.

Curses Routines 2-23

wdelch (win)

wdeleteln (win)

werase (win)

wgetch(win)

wget s tr (win, str)

winch (win)

winsch (win, c)

winsertln (win)

Description of Curses Routines (Continued)

See delchO.

wmove (win,y,x)

wnoutrefresh(win)

wprintw (win,/mt, args)

wrefresh(win)

wscanw (win,/mt, args)

wsetscrreg(win,t,b)

wstandend (win)

wstandout (win)

2-24 Curses Routines

See deleteln 0 .

See eraseO.

See getchO

See getstr (str)

See inch()

See insch(c).

See insertlnO.

See move (y,x).

See doupdate 0 .

See printw (jmt, args) .

See refresh o. See also doupdate 0 .

See scanw(jmt,args).

See setscrreg (t, b) .

See standendO.

See standout 0 .

Terminfo Routines

Description of Terminfo Routines

delay_output (ms)

putp(str)

setupterm (term,
filen um, errret)

Inserts a delay into the output stream for the specified
number of milliseconds by inserting sufficient pad
characters to effect the delay. This should not be used
in place of a high-resolution sleep, but rather to slow
down or hold off the output. Due to system buffering, it
is unlikely that a delay can result in a process actually
sleeping. ms should not exceed about 500 because of the
large number of pad characters used to produce such
delays.

Outputs a string capability without use of an affcnt (see
tputs). The string is sent to putchar with an affcnt of
1. It is used in simple applications that do not require the
output processing capability of tputs.

Initializes the specified terminal. term is the character
string representing the name or model of the terminal;
filenum is the HP-UX file descriptor of the terminal
being used for output; errret is a pointer to the integer in
which a success/failure indication is returned. The values
returned can be: 1 (initialize complete); -1 (terminf °
database not found); or 0 (no such terminal).

If 0 is given as the value of term, the default value of TERM
is obtained from the enviroment. errret can be specified
as 0 if no error code is wanted. If errret is default (0), and
something goes wrong, setupterm prints an appropriate
error message and exits rather than returning. Thus, a
simple program can call setupterm(O,l,O) and not provide
for initialization errors.

If the environment variable TERMINFO is set to a path
name, setupterm checks for a compiled terminfo
description of the terminal under that path before checking
jete/term. Otherwise, only jete/term is checked.

Curses Routines 2-25

Description of Terminfo Routines (Continued)

tparm (instring,pl,p2,p3,
p4,p5,p6,p7,p8,p9)

2-26 Curses Routines

setupterm uses filenum to check the tty driver mode bits,
and changes any that might prevent correct operation of
low-level curses routines. Tabs are not expanded into
spaces because various terminals exhibit inconsistent uses
of the tab character. If the HP -UX system is expanding
tabs, setupterm removes the definition of the I tab I and
I backtab I functions because they may not be set correctly
in the terminal. Other system-dependent changes such as
disabling a virtual terminal driver may also be made here,
if deemed appropriate by setupterm.

setupterm also initializes the global variable ttytype (an
array of characters) to the value of the list of names for the
terminal in question. The list is obtained from the begining
of the terminfo description.

Upon completion of setupterm, the global variable
cur _ term points to the current structure of terminal
capabilities. A program can use two or more terminals at
once by calling setupterm for each terminal, and saving
and restoring cur _term.

nlO is enabled, so newlines are converted to carriage
return-line feed sequences on output. Programs that use
cursoT-down or scrolLforward should avoid these two
capabilities or disable the mode with nonlO. setupterm
calls reset_prog_mode after any changes are made.

Instantiates a parameterized string. Up to nine parameters
can passed (in addition to the input string) that define
what operations are to be performed on instring
by tparm. The resultant string is suitable for output
processing by tput.

Description of Terminfo Routines (Continued)

tputs (cp, affcnt, outc)

vidattr (attrs)

vidputs (attrs,putc)

Processes terminfo capability strings for terminal devices
(see terminfo(5) entry in HP-UX Reference). The padding
specification, if present, is replaced by enough padding
characters to produce the specified time delay. The
resulting string is passed, one character at a time, to the
routine oute which expects a single character parameter
each time it is called. Often, oute simply calls putehar to
complete its task. ep is the capability string, and affcnt is
the number of units affected (such as lines or characters).
For example, the affcnt for inserLline is the number of
lines on the screen below the inserted line; that is, the
number of lines that will have to be moved on the terminal.
In certain cases, affcnt is used to determine the number of
padding characters that must be created in the output
string to produce the required delay(s), based on known
terminal characteristics (obtained from the terminal
identification data base).

Transmits the appropriate string to stdout to activate
the specified video attributes which can include any or all
of the following: A_STANDOUT, A_UNDERLINE, A_REVERSE,
A_BLINK, A_DIM, A_BOLD, A_BLANK (invisible), A_PROTECT,
and A_ALTCHARSET (multiple attributes must be separated
by the C logical OR operator I).

Transmits the appropriate string to the terminal,
activating the specified video highlighting attributes.
attrs can include any or all of the following (multiple
attributes must be separated by the C logical OR operator
I): A_STANDOUT, A_UNDERLINE, A_REVERSE, A_BLINK,
A_DIM, A_BOLD, A_BLANK (invisible), A_PROTECT, and
A_ALTCHARSET. pute is a putehar-like function. Previous
highlighting attributes are preserved by this routine and
restored upon return.

Curses Routines 2-27

Termcap Compatibility Routines

Several routines have been included in curses that support programs written
with calls to termcap routines. Calling parameters are the same as for
equivalent termcap calls, but the routines are emulated using the terminfo
data base. These routines may be removed in future releases of HP-UX.

Description of Termcap Compatibility Routines

tgetent(bp,name)

tgetflag(id)

tgetnum(id)

tgetstr(id,area)

tgoto (cap, col, row)

tputs (cap,affcnt,/n)

2-28 Curses Routines

Obtains and returns with termcap entry for name.

Returns the boolean entry for id.

Returns the numeric entry for id.

Returns the string entry for id and places the result in
area.

Attaches col and row parameters to the capability cap.

Equivalent to the terminfo routine tputs. Parameters are
identical for both cases.

3
Program Operation

This section describes how curses routines behave and how they are used in a
typical programming environment.

Insert/Delete Line
The output optimization routines associated with curses use terminal
hardware insert/delete line capabilities provided the routine

idlok(stdscr,TRUE);

has been called to enable the capability. By default, insert/delete line
during refresh is disabled (FALSE); not for performance reasons (there is no
speed penalty involved), but because experience has shown that not only is
insert / delete line frequently not needed (especially in simple programs); it can
sometimes be visually annoying when used by curses. Insert/delete character
is always available to curses if it is supported by the terminal.

Program Operation 3-1

Additional Terminals

Curses can be used, even when absolute cursor addressing is not provided on
the terminal, as long as the cursor can be moved from any location to any
other location. curses considers available cursor control options such as local
motions, parameterized motions, home, and carriage return.

curses is intended for use with full-duplex, alphamumeric, video display
terminals. No attempt is made to handle half-duplex, synchronous, hard copy,
or bitmapped terminals. Bitmapped terminals can be handled by programming
the bitmapped terminal to emulate an ordinary alphanumeric terminal. This
prevents curses from using the bitmap capabilities, but curses was not
designed for bitmapping.

curses can also deal with terminals that have the "magic cookie" glitch in
their display highlighting behavior. The term "magic cookie" means that
changes in highlighting are controlled by storing a "magic cookie" character
in a location on the screen. While this "cookie" takes up a space, preventing
an exact implementation of what the programmer wanted, curses takes the
extra character space into account, and moves part of the line to the right
when necessary. In some cases, this unavoidably results in losing text along
the right-hand edge of the screen, but curses compensates where possible by
omitting extra spaces.

Multiple Terminals

Some applications require that text be displayed on more than one terminal at
the same time from the same process. This is easily accomplished, even when
the terminals are different types.

curses maintains all information about the current terminal in a global
variable called

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler accepts
declarations of variables that are pointers. The user program should declare

3-2 Program Operation

one screen pointer variable for each terminal that is to be handled. The
routine:

struct screen *
newterm(type,fdout,fdin)

sets up a new terminal of the specified type and output is handled through file
descriptor fdout. This is comparable to the usual program call to ini tscr
which is essentially equivalent to

newterm(getenv("TERM"),stdout)

A program that uses multiple terminals should call newterm for each terminal,
and save the value returned as a reference to that terminal for other calls.

To change to a different terminal, call

which returns the old value of variable SP. Do not assign to SP because certain
other global variables must also be changed.

All curses routines always interact with the current terminal. set_term is
used to change from one terminal to the next in a multi-terminal environment.
When the program is ready to terminate, each terminal should be selected in
turn by a call to set_term, then cleaned up with screen clearing and cursor
locating routines, followed by a call to endwin () for that terminal. Repeat
the sequence for each additional terminal used by the program. The example
program TWO demonstrates the technique.

Video Highlighting

Video highlighting attributes can be displayed in any combination on terminals
that support the various attribute capabilities. Each character position in
screen data structures is allotted 32 bits: eight for the character code; eight
for the NLS attributes; the remaining sixteen for highlighting attributes, one
bit per attribute. Each respective bit is associated with one of the following
attributes: standout, underline, inverse video, blink, dim, bold, invisble,
protect, and alternate character set. Standout selects the visually most
pleasing highlighting method, and should be used by all programs that do

Program Operation 3-3

not need a specific highlighting combination. Underlining, inverse video,
blinking, dim, and bold are standard features on most popular terminals,
though they are not usually all present on a single terminal (for example,
no current terminal implements both bold and dim). Invisible means that
visible characters are displayed as blanks for security reasons (such as when
echoing passwords). Protected and Alternate Character Set are subject to the
characteristics of the terminal being used. Invisible, protected, and alternate
character set attributes are subject to change or substitution by curses, and
should be avoided unless necessary.

When characters are stored, each character is combined with the current
attributes variable associated with the window. The variable is formed by
using one of the following routines:

attrset (attrs)

attron(attrs)

attroff (attrs)

standout 0
standendO

wattrset (win,attrs)

wa ttron (win, attrs)

wattroff (win,attrs)

wstandout (win)

wstandend (win)

The following attributes can be specified in the attrs argument for
corresponding attribute set/on/off routines.

A_STANDOUT
A_UNDERLINE
A_REVERSE

A_BLINK
A_DIM
A_BOLD

A_INVIS
A_PROTECT
A_ALTCHARSET

When specifying multiple attributes, they should be separated by the C logical
OR operator (I). Thus, to specify blinking underline and disable all other
attributes on the stdscr window, use attrset (A_BLINK I A_UNDERLINE).

curses forms the current attributes word as follows:

• Each attribute (such as A_UNDERLINE) is stored as a 32-bit
word where all bits are zero except the bit that represents the
corresponding attribute in a stored character word (for example,
00000100000000000000000000000000 controls blinking).

3-4 Program Operation

• All attributes forming the attrs argument are combined using the
logical OR operator to create a single 32-bit word containing all
attributes in the argument. For example, the three attribute words

00000100000000000000000000000000,
00010000000000000000000000000000, and
00000010000000000000000000000000 are combined to form
00010110000000000000000000000000 which identifies the new
attributes.

• Three things can be done with the new attributes word. It can be
used as the new current attributes attrset or wattrset); or the new
attributes can be added to any currently active attributes (attron or
wattron), or deleted from the currently active attributes (attroff or
wattroff).

• If attrset (or wattrset) was called, the routine stores the new
attributes in the current attributes variable and returns. The previous
set of current attributes is destroyed.

• If attron (or wattron) was called, the routine performs a logical OR
of the current attributes with the new attributes, then places the result
in the current attributes variable and returns. The revised current
attributes variable contains all previously active attributes plus the new
attributes.

• If attroff (or wattroff) was called, the routine inverts the new
attributes, performs a logical AND on the inverted new attributes and
the current attributes, then places the result in the current attributes
variable and returns. The altered current attributes variable contains
all previously active attributes except those specified in the call, which
are now disabled.

• standout and wstandout obtain their highlighting attributes from the
terminfo data base, then perform the same operation as attron prior
to returning.

• standend and wstandend disable all attributes then return. They are
equivalent to attrset(O) and attrset (A_NORMAL).

Program Operation 3-5

• attrset(O) and wattrset (win,O) set the 32-bit current attributes
variable value to zero which disables all attributes. A_NORMAL can be
substituted for zero as an argument.

The preceding scenarios assume that the specified attributes are available
on the current terminal. In every case, the t erminf 0 data base is used to
determine whether the selected attribute is present. If it is not, curses
attempts to find a suitable substitute before forming the new attribute set. If
the terminal has no highlighting capabilities, all highlighting commands are
ignored.

Three other constants (defined in <curses. h», in addition to the previously
listed attributes are also available for program use if needed:

• A_NORMAL has the octal value 000000000000, and can be used as
an attribute argument for attrset to restore normal text display.
attrset(O) is easier to type, but less descriptive. Both are equivalent.

• A_ATTRIBUTES has the octal value 037740000000. It can be logically
ANDed with a character data word to isolate the attribute bits and
discard the character.

• A_CHARTEXT has the octal value 000000000377. It can be logically
ANDed with a character data word to isolate the character code and
discard the attributes.

Special Keys

Most terminals have special keys, such as arrow keys, screen/line clearing
keys, insert and delete line or character keys, and keys for user functions. The
character sequences that such keys generate and send to the host computer
vary from terminal to terminal. curses provides a convenient means for
handling such keys through the use of keypad routines. Keypad capabilities are
enabled by the call:

keypad (stdscr ,TRUE)

during program initialization, or

keypad (win ,TRUE)

3-6 Program Operation

when setting up and initializing other windows, as appropriate. When keypad
is enabled, keypad character sequences are passed to the program by getch,
but they are converted to special character values starting at 0401 octal
(keypad character codes are listed in the keypad discussion early in this
tutorial). Keypad codes are 16-bit values, and must not be stored in a char
type variable because the upper bits must be preserved.

When keypad keys are used in a program, avoid using the escape key for
program control because most keypad sequences begin with escape. If escape
is used for program control, an ambiguity results that is not easily dealt with,
and, at best, results in sluggish program response to all escape sequences as
well as significant potential for incorrect program operation.

Scrolling Regions
Each window has a programmer-accessible scrolling region that is normally set
to include the entire window. curses contains a routine that can be used to
change the scrolling region to any location in the window by specifying the top
and bottom margin lines. The routines are called by

setscrreg(top,bottom)

for the stdscr window, or

wsetscrreg(win ,top ,bottom)

for other windows. When the cursor advances beyond the bottom line in
the region, all lines in the region are moved up one line (destroying the top
line in the process) and a new line at the bottom of the region becomes the
new cursor line. If scrolling has been enabled by a call to scrollok for that
window, scrolling takes place, but only within the window boundary (if
scrollok is not enabled, the cursor stays on the bottom line and no scrolling
can occur). The scrolling region is a software feature only, and only causes a
given window data structure to scroll. It mayor may not translate to use of
the hardware scrolling region that is featured on some terminals or hardware
insert/delete line capabilities on the terminal.

Program Operation 3-7

Mini-Curses
All calls to refresh copy the current window to an internal screen image
(stdscr). For simpler applications where window capabilities are not
important and all operations can be handled by the standard screen, the
screen output optimization capabilities of curses can be obtained through the
low-level curses interface routines supported by mini -curses. Mini-curses is
a subset of full curses, so any program that runs on the subset can also run on
full curses without modification.

A complete list of commands is shown at the beginning of the curses
commands section in this tutorial. Commands that are supported by
mini -curses are marked with an asterisk (some that are not marked may
also be accessible - if a program calls routines that are not, an error message
showing undefined calls is produced by the compiler at compile time).

mini -curses routines are limited to commands that deal with the stdscr
window. Certain other high-level functions that are convenient but not
essential (such as scanw, printw, and getch) are not available, as well as all
commands that begin with w. Low-level routines such as hardware insert/delete
line and video attributes are supported, as are mode-setting routines such as
noecho.

To access mini -curses, add -DMINICURSES to the CFLAGS in the makefile.
If any routines are requested that are not available in mini -curses, an error
diagnostic such as

Undefined:
m_getch
m_waddch

is listed to indicate that the program contains calls (in this case to getch and
waddch) that cannot be linked because they are not available.

Remember that the preprocessor is involved in the implementation of
mini -curses, so any programs that are compiled for use with mini -curses
must be recompiled if they are to be used with full curses.

3-8 Program Operation

TTY Mode Functions

In addition to the save/restore functions savettyO and resettyO, other
standard routines are provided by curses for entering and exiting normal tty
mode.

• resettermO restores the terminal to its state prior to curses'
start-up.

• fixterm performs the equivalent of an undo on the previous fixterm on
that terminal; it restores the "current curses mode" using the results of
the most recent call to savetermO.

• endwin automatically calls resetterm.

• Routines that handle control-Z (on systems that have process control)
also use resettermO and fixtermO.

Programs that use curses should use these routines before and after shell
escapes, and also if the program has its own routines for dealing with control-Z.
These routines are also available at the terminfo level.

Typeahead Check

When a user types something during a screen update, the update stops,
pending a future update. This is useful when several keys are pressed in
sequence, each of which produces a large amount of output. For example in
a screen editor, the "forward screen" (or "next page") key draws the next
screenful of text. If the key is pressed several times in rapid succession, rather
than drawing several screens of text, curses cuts the updates short and only
displays the last requested full screen. This feature is automatic, and cannot
be disabled. It requires support by certain routines in the HP-UX operating
system.

get str Routine

No matter whether echo is enabled or disabled, strings typed and input by
get str are echoed at the current cursor location. Erase and kill characters
assigned by the user for his (or her) terminal are considered when handling
input strings. Thus it is unnecessary for interactive programs to deal directly

Program Operation 3-9

with erase, echo, and kill when processing a line of text from the terminal
keyboard.

longname

The longname function does not require any arguments. It returns a pointer to
a static storage area that contains the actual long (verbose) terminal name.

Nodelay Mode

The program call

nodelay(stdscr.TRUE)

puts the terminal in "no delay" mode. When nodelay is active, any call to
getch returns the value -1 if there is nothing available for immediate input.
This feature is helpful for real-time situations where a user is watching terminal
screen outputs and presses a key when he wants to respond. For example, a
program can be producing a text pattern on the screen while maintaining an
open opportunity for the user to press certain keys to alter the output pattern,
change cursor direction, or produce some other effect.

3-10 Program Operation

Example Programs: SCATTER

This program takes the first 23 lines from the standard input, then displays
them in random order on the display terminal screen.

#include <curses.h>
#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS] ; /* Screen Array */

maine)
{

register int row = 0,
col = 0;

register char c;
int
long
char

initscrO;

char_count = 0; /* count non-blank characters */
t;

buf[BUFSIZ] ;

for (row = 0; row < MAXLINES; row++)
screen array */

/* initialize

for (col = 0; col < MAXCOLS; col++)

row = 0;
col = 0;

s [row] [col] " .

/* Read screen in */
while ((c = getchar(» != EOF && row < LINES) {

if (c != '\n' && col < COLS) {
/* Place char in screen array */
s[row] [col++] = c;

} else {

}

}

if (c ! = ' ,)

col = 0;
row++;

char_count++;

time(&t); /* Seed the random number generator */
srand«int) (t&0177777L»;

while (char_count) {

Program Operation 3-11

}

}

row = rand() % LINES;
col = (rand() » 2) % caLS;
if (s[row] [col] != ' , && s[row] [col] != EaF) {

move(row,col);
addch(s[row] [col]);
s[row] [col] = EaF;
char_count--;
refreshO;

}

endwin();
exit (0) ;

3-12 Program Operation

Example Program: SHOW
This example program displays a file taken from the standard input, one screen
at a time. Press the terminal space bar to advance to the next screen.

#include <curses.h>
#include <signal.h>
main(argc,argv)

{

int argc;
char *argv [] ;

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done() ,perror() ,exit();

if (argc != 2) {
fprintf(stderr, "usage: Is file\n", argv[O]);
exit (1) ;

}

if (fd = fopen(argv[l] , "r"» == NULL) {
perror(argv[l]);
exit(2);

}

signal (SIGINT, done);
initscrO;
noechoO;
cbreakO;
nonlO; /* enable more screen optimization

idlok(stdscr , TRUE) ; /* allow insert/delete line */

while (1) {
move(O,O);
for (line = 0; line < LINES; line++) {

}

if (fgets(linebuf, sizeof linebuf, ·fd) == NULL) {
clrtobotO;
done 0 ;

}

move(line,O);
printw("%s", linebuf);

Program Operation 3-13

}

doneO
{

}

refreshO;
if (getch() == 'q')

done 0 ;
}

void

move (LINES-l, 0);

clrtoeolO;
refreshO;
endwinO;
exit(O);

3-14 Program Operation

Example Program: HIGHLIGHT
This example program displays text taken from the standard input.
Highlighting is determined by embedded character sequences in the file. \ U
starts underlining, \B starts bold highlighting, and \N restores normal display
characteristics.

#include <curses.h>

main(argc,argv)

{
char **argv;

FILE *fd;
int c,c2;

if (argc != 2) {
fprintf(stderr, "Usage: highlight file\n");
exit (1) ;

}

fd = fopen(argv[1] ,"r");
if (fd == NULL) {

perror(argv[l]);
exit(2);

}

initscrO;
scrollok(stdscr,TRUE);

for (;;) {
c = getc(fd);
if (c == EOF)

break;

if (c == '\\') {
c2 = getc(fd);
switch(c2) {
case 'B':

attrset(A_BOLD};
continue;

case 'U':
attrset(A_UNDERLINE};
continue;

case 'N':

Program Operation 3-15

}

} else

}

fclose(fd);
refreshO;
endwinO;
exit(O);

3-16 Program Operation

}

attrset(O);
continue;

addch(c);
addch(c2);

addch(c);

Example Program: WINDOW
This program demonstrates the use of multiple windows.

#include <curses.h>

WINDOW

main()
{

*cmdwin;

int i,c;
char buf[120];

initscrO;
nonlO;
noecho();
cbreakO;

cmdwin = newwin(3,COLS,O,O);
for (i=O; i < LINES; i++)

/* top 3 lines */

mvprintw(i,O, "This is line Y.d of stdscr" ,i);

for (;;) {
refreshO;
c = getchO;
switch(c) {
case 'c': /* Enter command from keyboard */

werase(cmdwin); /* clear window */
wprintw(cmdwin,"Enter command:");
wmove(cmdwin,2,O);
for (i=O; i < COLS; i++)

waddch(cmdwin,'-');

wmove(cmdwin,1,O);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin,buf);
touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.
*/

erase 0 ;

Program Operation 3-17

for (i=O; i < LINES; i++)
mvprintw(i,O,II%sll,buf) ;

refreshO;
break;

case 'q':
endwin();
exit(O);

}

}

}

3-18 Program Operation

Example Program: TWO
This program shows how to handle two terminals from a single program.

#include <curses.h>
#include <signal.h>

struct screen *me, *you;
struct screen *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc,argv)

{
char **argv;

int done 0 ;
int c;

if (argc != 4) {
fprintf(stderr,"Usage: two othertty otherttytype inputfile\n");
exit(1) ;

}

fd = fopen(argv[3] ,"r");
fdyou = fopen(argv[1] ,"W+");

signal(SIGINT, done); /* die gracefully */

me = newterm(getenv(ITERM"),stdout,stdin); /* initialize my tty */
you = newterm(argv[2] ,fdyou,fdyou) ; /* Initialize his/her terminal*/

set_term(me);
noechoO;
cbreakO;
nonlO;
nodelay(stdscr,TRUE);

set_term(you) ;
noechoO;
cbreakO;
nonlO;
nodelay(stdscr,TRUE);

/* Set modes for my terminal */
/* turn off tty echo */
/* enter cbreak mode */
/* Allow linefeed */
/* No hang on input */

/* Dump first screen full on my terminal */

Program Operation 3-19

}

dump_page(me);

/* Dump second screen full on his/her terminal */
dump_page(you);

for (;;) { /* for each screen full */

}

set_term(me);
c = getchO;
if (c == 'q') /* wait for user to read it */

done 0 ;
if (c == ' ')

dump_page(me);

set_term(you);
c = getchO;
if (c == 'q') /* wait for user to read it */

done 0 ;
if (c == ' ,)

dump_page(you);
sleep(l);

dump_page (term)

{

}

struct screen *term;

int line;

set_term(term);
move(O,O);
for (line=O; line < LINES-l; line++) {

}

if (fgets(linebuf,sizeof linebuf,fd) == NULL) {
clrtobotO;
done 0 ;

}

mvprintw(line,O,"%s",linebuf);

standout 0 ;
mvprintw(LINES-l,O,"--More--");
standend();
refresh(); /* sync screen */

3-20 Program Operation

* Clean up and exit.
*1

donee)
{

1* Clean up first
set_term(you);
move(LINES-i,O);
clrtoeolO;
refreshO;
endwin() ;

terminal

1*
1*
1*
1*

*1

to lower left corner *1
clear bottom line *1
flush out everything *1
curses clean up *1

1* Clean up second terminal *1

}

set_term(me);
move (LINES-i ,0) ;
clrtoeolO;
refresh();
endwin();

exit(O);

1* to lower left corner *1
1* clear bottom line *1
1* flush out everything *1
1* curses clean up *1

Program Operation 3-21

Example Program: TERMHL
This program is equivalent to the earlier example program HIGHLIGHT, but uses
terminfo routines instead.

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining */

main (argc, argv)

{
char **argv;

FILE *fd;
int c,c2;
int outchO;

if (argc > 2) {
fprintf(stderr, "Usage: termhl [file]\n");
exit(1);

}

if (argc == 2) {
fd = fopen(argv[1] ,"r");
if (fd == NULL) {

perror(argv[1]) ;
exit(2);

}

} else {
fd = stdin;

}

setupterm(O, 1,0) ;
for (;;) {

c = getc(fd);
if (c == EOF)

break;

if (c == '\\,) {
c2 = getc(fd);
switch(c2) {
case 'B':

tputs(enter_bold_mode,1,outch);
continue;

3-22 Program Operation

}

} else

}

fclose(fd);
fflush(stdout);
resettermO;
exit(O);

case 'U':
tputs(enter_underline_mode,l,outch) ;
ulmode = 1;
continue;

case 'N':
tputs(exit_attribute_mode,l,outch);
ulmode = 0;
continue;

}

putch(c);
putch(c2);

putch(c);

1*
* This function is like putchar. but it checks for underlining.
*1

putch(c)

{

}

}

int c;

outch(c);
if (ulmode && underline_char) {

}

outch ('\b') ;
tputs(underline_char,l,outch);

/*
* Out char is a function version of put char that can be passed to
* tputs as a routine to call.
*1

outcb(c)
int c;

{

put char (c) ;

Program Operation 3-23

Example Program: EDITOR
This program is a very simple screen-oriented editor that is similar to a small
subset of vi. For simplicity, the stdscr window is also used as the editing
buffer.

#include <curses.h>
#define CTRL(c) ('c'&037)
main(argc,argv)

{
char **argv;

int i,n,l;
int c;
FILE *fd;

if (argc != 2) {

}

fprintf(stderr,"Usage: edit file\n");
exit(l);

fd = fopen(argv[l] ,"r");
if (fd == NULL) {

perror(argv[l]);
exit(2);

}

initscrO;
cbreakO;
nonlO;
noechoO;
idlok(stdscr, TRUE);
keypad (stdscr, TRUE);

/* Read in the file */
while «c = getc(fd» != EOF)

addch(c);
fclose(fd);

move(O,O);
refreshO;
editO;

/* Write out the file */
fd = fopen(argv[l] ,"W");

3-24 Program Operation

}

for (1=0; 1 < LINES; 1++) {
n = len(l);
for (i=O; i<n; i++)

putc(mvinch(l,i),fd);
putc('\n' ,fd);

}

fclose(fd);
endwinO;
exit(O);

len (lineno)
int lineno;

{

int linelen = COLS-1;

while (linelen >= 0 && mvinch(lineno,linelen) ")
linelen--;

return linelen + 1;
}

/* Global value of current cursor position */
int row,col;

, edit 0
{

int c;
for (;;) {

move(row,col) ;
refreshO;
c = getchO;
switch(c) { /* Editor commands */

/* hjkl and arrow keys: move cursor */
/* in direction indicated */
case 'h':
case KEY_LEFT:

if (col > 0)
col--;

break;

case 'j' :
case KEY_DOWN:

if (row < LINES-1)
row++;

break;

Program Operation 3-25

case 'k' :
case KEY_UP:

if (row > 0)
row--;

break;

case '1':
case KEY_RIGHT:

if (col < COLS-l)
col++;

break;

1* i: enter input mode *1
case KEY_IC:
case 'i' :

input 0 :
break;

1* x: delete current character *1
case KEY_DC:
case 'x':

delchO;
break:

1* 0: open up a new line and enter input mode *1
case KEY_IL:
case '0':

move(++row,col=O) :
insertlnO;
input 0 ;
break;

1* d: delete current line *1
case KEY_DL:
case 'd':

deletelnO;
break:

1* -L: redraw screen *1
case KEY_CLEAR:
case CTRL(L):

3-26 Program Operation

clearok(curscr);
refreshO;
break;

}

/*

}

/* w: write and quit */
case 'w' :

return;

/* q: quit without writing */
case 'q':

endwin();
exit (1) ;

default:
flashO;
break;

}

* Insert mode: accept characters and insert them.
* End with -D or EIC.
*/

input 0
{

}

int c;
standout 0 ;
mvaddstr(LINES-1, COLS-20, "INPUT MODE");
standend();
move(row,col);
refreshO;

for (;;) {

}

c = getchO;
if (c == CTRL(D) I I c

break;
insch(c);
move(row, ++col);
refreshO;

move (LINES-1, COLS-20);
clrtoeolO;
move(row,col);
refresh();

Program Operation 3-27

Index

1
16-bit data handling 1-3

A
addch 1-2, 1-5, 1-12, 1-32, 2-5
addstr 1-32, 2-6
alternate character set 1-12
application program operation 1-7
application program structure 1-4
arrow keys 1-1, 3-6
attributes 1-12
attroff 1-13, 1-35, 2-6, 3-6
attron 1-13, 1-35, 2-6, 3-6
attrset 1-2, 1-12-13, 2-6, 3-6

B
baudrate 1-36, 2-7
beep 1-25, 1-36, 2-7
blinking highlight 1-12
bold highlight 1-12
box 1-34, 2-7

C
cbreak 1-5, 1-11, 1-30, 2-7
clear 1-32, 2-7
clearok 1-5, 1-28, 2-8
clrtobot 1-7, 1-11, 1-32, 2-8
clrtoeol 1-11, 1-32, 2-8
COLS 1-6
configuration routines 1-30
creating windows 1-17
current attributes 1-13

Index-1

current screen 1-2
current terminal 1-20
curser 1-2
curses 1-1
curses routines, introduction 1-26
curses routines, list of 2-1
curses.h 1-12

o
data input routines

terminal data 1-35
window 1-35

data output routines 1-32
delay 2-8
delay functions 1-37
delay _output 2-25
delch 1-33, 2-8
deleteln 1-33, 2-8
deleting text 1-33
deleting text from windows 1-33
deLterm 2-8
delwin 2-8
dim highlight 1-12
display highlighting 1-12
doupdate 1-32, 2-9
draino 1-37, 2-9

E
echo 1-30, 2-9
endwin 1-6, 1-28, 2-10, 3-9
environment variable

TERM 1-1
erase 1-32, 2-10
erase char 1-36, 2-10
escape sequences 1-25
escape used in program control 1-25
example programs

editor 1-24, 3-24
highlight 1-14, 3-15
scatter 3-11
show 3-13

Index-2

F

termhl 1-23, 3-22
two 1-21, 3-19
window 1-18, 3-17

fixterm 2-10, 3-9
flash 1-25, 2-10
flush 1-6
flushinp 1-36, 2-10
formatted output to windows 1-34

G
getch 1-7, 1-35, 2-11
getstr 1-35, 2-12, 3-9
gettmode 2-13
getyx 1-34

H
half-bright highlight 1-12
has_ic 2-13
has_il 2-13
highlight escape sequences 1-14
highlighting attribute routines 1-35
highlighting data structure 1-2
highlighting displays 1-12
highlighting program operation 3-3

idlok 1-5, 1-11, 1-28, 2-13
inch 1-34, 2-13
include files 1-27
initialization routines 1-28
initscr 1-5, 1-28, 2-13
input routines 1-34
insch 1-33, 2-14
insert/delete line, program operation 3-1
inserting text 1-33
inserting text in windows 1-33
insertln 1-33, 2-14
intrflush 1-28, 2-14
introduction to curses routines 1-26

Index-3

inverse video 1-12
invisible highlight 1-12

K
keyboard input 1-11
keyboard input program example 1-11
keypad 1-7, 1-9, 1-28, 2-14, 3-6
keypad character handling 1-9
keypad codes 1-10
killchar 1-36, 2-15

L
leaveok 1-28, 2-15
LINES 1-6
load option 1-27
longname 1-28, 2-15, 3-10
low-level terminfo usage 1-21

M
magic cookie 3-2
manipulation routines 1-31
meta 1-28, 2-15
mini-curses 1-27, 3-8
mini-curses routines, list of 2-1
miscellaneous curses functions 1-36
miscellaneous window operations 1-34
move 1 .. 32, 2-16
multipe types of termianls, dealing with 3-2
multiple terminals 1-19, 3-2
multiple terminals, program operation 3-2
multiple windows 1-16
mvaddch 2-16
mvaddstr 2-16
mvcur 2-16
mvdelch 2-16
mvgetch 2-16
mvgetstr 2-16
mvinsch 2-16
mvprintw 2-16
mvscanw 2-16
mvwaddch 2-16

Index-4

mvwaddstr 2-16
mvwdelch 2-16
mvwgetch 2-17
mvwgetstr 2-17
mvwin 2-17
mvwinch 2-17
mvwinsch 2-17
mvwprintw 2-17
mvwscanw 2-17

N
napms 1-37, 2-17
newpad 2-17
newterm 1-20, 2-18, 3-2
newwin 1-17, 2-18
nl 1-30, 2-18
NLS attributes 1-15
NLS environment 1-3
nocbreak 2-18
nodelay 1-28, 2-18
nodelay mode 3-10
noecho 1-11, 1-30, 2-18
nonl 1-11, 1-30, 2-18
no-print highlight 1-12
noraw 1-31, 2-18

o
OK 1-27
option setting routines 1-28
options 1-28
output data structure 1-2
overlay 1-17, 1-31, 2-19
overwrite 1-17, 1-31, 2-19

p

padding 1-2
pads 1-16
placing text in windows 1-32
pnoutrefresh 1-32, 2-19
portability functions 1-36
prefresh 1-32

Index-5

printw 1-5, 1-34, 2-19
program structure considerations 1-27
putp 2-25

R
race conditions 1-20
raw 1-31, 2-19
refresh 1-6, 1-14, 1-24, 1-32, 2-20
resetterm 2-20, 3-9
resetty 1-31, 2-20
routines, curses, list of 2-1

s
saveterm 2-20
savetty 1-31, 2-20
scanw 1-35, 2-20
screen size 1-6, 2-22
scroll 2-21
scrolling regions in window or pad 3-7
scrollok 1-30, 2-21
scrollw 1-34
set_curterm 2-22
setscrreg 1-30, 2-21, 3-7
set_term 1-20, 2-22
setterm 2-21
setupterm 1-22, 1-28, 2-21, 2-25
special keys on terminals, keypad program handling 3-6
standard screen 1-2
standend 1-36, 2-22, 3-6
standout 1-36, 2-22, 3-6
standout highlight 1-12
stdscr 1-2
struct screen 3-2
structure considerations for programs 1-27
sttron 1-35
sttrset 1-35
subwin 2-22
subwindows 1-19

T
TERM environment variable 1-1
termcap compatibility routines 2-28
terminal configuration routines 1-30
terminal data 1-35
terminal data input routines 1-35
terminal data output routines 1-32
terminal initialization routines 1-28
terminals, multiple 1-19
terminfo 1-1
terminfo level accesss 1-21
terminfo routines, listed description of 2-25
text data structure 1-2
touchwin 1-18, 1-31, 2-23
tparm 2-25
tputs 1-23, 2-27
traceoff 2-23
traceon 2-23
tty mode function 3-9
typeahead check 1-28, 2-23, 3-9

U
unctrl 2-23
underlining highlight 1-12
using multiple windows 1-17

V
vidattr 1-23, 2-27
video highlighting attribute routines 1-35
video highlighting, program operation 3-3
vidputs 2-27

W
waddch 1-12, 1-17, 2-23
wattroff 1-35, 2-23, 3-6
wattron 1-35, 2-23, 3-6
wattrset 2-23, 3-6
wclear 1-33, 2-23
wclrtobot 2-23
wclrtoeol 2-23
wdelch 2-24

Index-7

wdeleteln 1-33, 2-24
werase 2-24
wgetch 2-24
wgetstr 2-24
winch 2-24
window 1-2, 1-35
windows 1-16

creating 1-17
data input routines 1-34
formatted output to 1-34
inserting and deleting text 1-33
miscellaneous operations 1-34
multiple 1-16
placing text in windows 1-32
subwindows 1-19
window manipulation routines 1-31
window writing routines 1-32

winsertln 2-24
wmove 1-32, 2-24
wnoutrefresh 1-32, 2-24
wprintw 2-24
wrefresh 1-17, 1-32, 2-24
wscanw 2-24
wsetscrreg 2-24, 3-7
wstandend 2-24
wstandout 2-24, 3-6

Index-8

Contents

1. U sing Curses and Terminfo
Introduction
Display Data Handling

Output Data Structure
Text and Highlighting Data Format

16-bit Data Handling
Applications Program Structure
Applications Program Operation

Key board In pu t
Keypad Character Handling . .
Keyboard Input Program Example

Display Highlighting
NLS Attributes
Multiple Windows

Pads
Creating Windows
Using Multiple Windows
Subwindows

Multiple Terminals
Low-Level Terminfo Usage .
A Larger Example

Use of Escape in Program Control
Program Routines

Program Structure Considerations
Terminal Initialization Routines
Option Setting Routines. . . .
Terminal Configuration Routines
Window Manipulation Routines
Terminal Data Output Routines

1-1
1-2
1-2
1-2
1-3
1-4
1-7
1-7
1-9
1-11
1-12
1-15
1-16
1-16
1-17
1-17
1-19
1-19
1-21
1-24
1-25
1-26
1-27
1-28
1-28
1-30
1-31
1-32

Contents-1

Window Writing Routines
Placing Text in the Window
Inserting and Deleting Text in the Window
Formatted Output to the Window
Miscellaneous Window Operations

Window Data Input Routines . . .
Terminal Data Input Routines . . .
Video Highlighting Attribute Routines
Miscellaneous Functions

beep / flash
Portability Functions
Delay Functions

2. Curses Routines
Description of Routines
Terminfo Routines
Termcap Compatibility Routines

3. Program Operation
Insert /Delete Line
Additional Terminals
Multiple Terminals
Video Highlighting
Special Keys . .
Scrolling Regions .
Mini-Curses . . .
TTY Mode Functions

Typeahead Check
getstr Routine
longname ...
N odelay Mode .

Example Programs: SCATTER
Example Program: SHOW
Example Program: HIGHLIGHT
Example Program: WINDOW
Example Program: TWO . .
Example Program: TERMHL
Example Program: EDITOR

Contents-2

1-32
1-32
1-33
1-34
1-34
1-34
1-35
1-35
1-36
1-36
1-36
1-37

2-4
2-25
2-28

3-1
3-2
3-2
3-3
3-6
3-7
3-8
3-9
3-9
3-9
3-10
3-10
3-11
3-13
3-15
3-17
3-19
3-22
3-24

HP Part Number
97089-90057
Microfiche No. 97089-99057
Printed in U.S.A. E0989

Flin- HEWLETT
~~ PACKARD

97089-90660
For Internal Use Only

