
HP aC++ Version A.01.21 Release Notes

HP Series 9000

5969-0351

June 1999

© Copyright 1999 Hewlett-Packard Company

2

Legal Notices
Copyright © Hewlett-Packard Company 1999. All rights are reserved.
Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Hewlett-Packard makes no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein nor direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material. Information in this publication is
subject to change without notice.

Corporate Offices: Hewlett-Packard Co., 3000 Hanover St., Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Use of this document and flexible disc(s), compact disc(s), or tape
cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs may be made for security and back-up
purposes only. Resale of the programs in their present form or with
alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

© Copyright 1980, 1984, 1986 AT&T Technologies, Inc. UNIX and
System V are registered trademarks of AT&T in the USA and other
countries.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

PostScript is a trademark of Adobe Systems, Inc.

© Copyright 1985-1986, 1988 Massachussetts Institute of Technology. X
Window System is a trademark of the Massachussetts Institute of
Technology.

Contents

3

1. Features

Version A.01.21 Features .7

Version A.01.15 Features .9

Version A.01.07 Features .10

Version A.01.04 Features .11

Version A.01.00 Features .12

Migrating from HP C++ (cfront) to HP aC++. .14

2. Installation Information

Patch Installation Requirements .17

Current Linker Required .18

Current Run-time Support Library Required .18

Attention Softbench Users .18

3. Related Documentation

Online Documentation .19
HP aC++ Online Programmer’s Guide .19
Using Templates in HP aC++. .20
HP-UX Linker and Libraries Online User Guide20
HP DDE Debugger Online Help. .20
HP Wildebeest Debugger (HP WDB) .20
Rogue Wave Software Standard C++ Library 1.2.1 Class Reference . .21
Rogue Wave Software Tools.h++ 7.0.6 Class Reference.21
HP aC++ Release Notes .21
HP PA-RISC Compiler Optimization Technology White Paper 21
Online Manual Pages .21
Online C++ Example Source Files. .22

4

Contents

Printed Documentation . 22

Other Documentation. 22
HP aC++ World Wide Web Homepage . 23
Compatibility between HP aC++ Releases . 23
Floating-Point Exceptions Must be Raised Prior to Entering Library
Routines24
Content of .o Files may Change . 24
The Named Return Value (NRV) Optimization. 25
Linker Compatibility Warnings . 25

4. Problem Descriptions and Fixes and Known Limitations

Known Problems . 27
Incompatibilities Between the Standard C++ Library and the Draft
Standard28
Unsatisfied Symbols if Using Non-current Run-time Support Library .
28
Unsatisfied Symbols for Inline Template Functions. 29
Syntax Errors when Using /usr/include/sys/time.h. 29
Syntax Problems when Using /usr/include/math.h. 30
Warnings when using /usr/include/rpc/xdr.h . 31
Binary Compatibility . 31

Known Limitations. 32

5

Preface
This document provides the following information:

• features

• installation information

• related documentation

• problem descriptions and fixes and known limitations

Note: The software code printed in the release notes title indicates the
software product version at the time of release. Some product and
operating system changes do not require changes to documentation;
therefore, do not expect a one-to-one correspondence between these
changes and release notes updates.

Latest printing: June, 1999

This document resides online in the file
/opt/aCC/newconfig/RelNotes/ACXX.release.notes. You can print the
online copy by using an lp command like the following:

lp −dprinter_name /opt/aCC/newconfig/RelNotes/ACXX.release.notes

Problem Reporting If you have any problems with the software or documentation, please
contact your local Hewlett-Packard Sales Office or Customer Service
Center.

6

Chapter 1 7

Features
Version A.01.21 Features

1 Features

This chapter summarizes the features included in this version of the HP
aC++ compiler. Features introduced in prior release versions are also
listed and grouped by the compiler version number.

The compiler supports much of the ISO/IEC 14882 Standard for the C++
Programming Language (the international standard for C++).

Version A.01.21 Features
New and changed features in this HP aC++ version A.01.21 are listed
below. They apply to HP-UX 10.10 and 10.20 operating systems.

The HP aC++ Online Programmer's Guide contains full documentation.
(See Chapter 3 of these release notes for access instructions.).

• The latest linker patch (PHSS_17903) is needed to build shared
libraries and to use the new +objdebug option. See these release
notes, Chapter 2, Current Linker Required, for details.

• A new debugging option , +objdebug, enables faster links and smaller
executable file sizes for large applications.

• Header File Caching is an additional, simplified method of
precompiling header files.

• Additional Options for Standardizing Your Code:

• -Wc,-ansi_for_scope,[on] enables standard scoping rules for
init-declarations in “for” statements.

• -Aa sets all C++ standard options on (currently Koenig lookup and
“for” scoping rules).

• Additional Options for Standardizing Your Code:

• -Wc,-ansi_for_scope,[on] enables standard scoping rules for
init-declarations in “for” statements.

8 Chapter 1

Features
Version A.01.21 Features

• -Aa sets all C++ standard options on (currently Koenig lookup and
“for” scoping rules).

• Additional Options for Code Optimization:

• +Ooptlevel#=name1[,name2,...,nameN]

• +Oreusedir=DirectoryPath

• A new template option, +inst_directed, to suppress assigner output in
object files. Use it instead of the +inst_none option with code that
contains explicit instantiations only and does not require automatic
(assigner) instantiation.

• The #pragma pack directive allows you to specify the maximum
alignment of class fields having non-class types. This pragma may be
useful when importing code from other architectures where data type
alignment may be different from default PA-RISC alignment.

• Three new pragmas for improving performance of shared libraries.

• By eliminating references to the standard header files and libraries
bundled with HP aC++, the +nostl option allows experienced users
full control over the header files and libraries used in the compilation
and linking of their applications.

• Additional information about HP aC++ diagnostic messages is
provided in the HP aC++ Online Programmer’s Guide and the HP
aC++ Transition Guide.

• To see which include files led to an error or warning, specify the
-Wc,-diagnose_includes,on option.

• With floating installation, more than one version of HP aC++ can be
installed on one system at the same time.

• The __HP_aCC predefined macro now contains the HP aC++ driver
version number. For version A.01.21: __HP_aCC = 012100

The __HP_aCC predefined macro was introduced in HP aC++ version
A.01.15. It’s value was 1 for HP aC++ A.01.15 and A.01.18.

• In prior releases, the standard C++ library (libstd) and RogueWave’s
tools.h++ library (librwtool) were not thread safe in all cases. The
-D__HPACC_THREAD_SAFE_RB_TREE preprocessor macro insures
thread safety.

Chapter 1 9

Features
Version A.01.15 Features

Version A.01.15 Features
Features introduced in the prior release, HP aC++ version A.01.15, are
listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The HP aC++ Online Programmer's Guide contains full documentation.
(See Chapter 3 of these release notes for access instructions.).

• The HP aC++ Online Programmer’s Guide has been updated from HP
CDE format to HTML format viewable with your HTML browser. For
details and access instructions, see Chapter 3 of these release notes
under Online Documentation.

• Standards based features include the following:

• covariant return types (except for covariant return types with
multiply inheriting types)

• Koenig lookup

Note: You must specify the -Wc,-koenig_lookup,on option.

• .The -I- header file option invokes view-pathing. This option
overrides the default -I<directory> option header file search path.

• Additional options for verbose compile and link information:

• +dryrun - Requests compiler subprocess information without
running the subprocesses.

• +time - Requests subprocess execution times.

• -V - Requests the current compiler and linker version numbers.

• +M[d] and +m[d] options to output the header files upon which your
source code depends in a format accepted by the make(1) command.

• +We option allows you to selectively interpret a warning or future
error as an error.

• The __HP_aCC predefined macro identifies the HP aC++ compiler.

• At this release, the +inline-level option defaults to 1. In the prior
versions, A.01.09, A.01.12, A.03.05, A.03.10, the default was 0, no
inlining was done (the same effect as the +d option).

This change was made based on customer feedback regarding object
file size and runtime performance.

10 Chapter 1

Features
Version A.01.07 Features

Version A.01.07 Features
Features introduced in the prior release, HP aC++ version A.01.07, are
listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The HP aC++ Online Programmer's Guide contains full documentation.
(See Chapter 3 of these release notes for access instructions.).

• The aC++ default template instantiation mechanism has changed to
compile-time instantiation (CTTI). For source code containing
templates, the new default may result in faster compile-time
processing.

The previous default behavior remains available by specifying the
+inst_auto command-line option when compiling and linking. If you
provide archive or shared libraries for distribution, you may want to
use +inst_auto to insure consistent behavior between each
distribution of your libraries.

Also, if you provide either archive or shared library products, and
your customers need to use the prior template instantiation default in
their builds, you must compile your libraries by using the +inst_auto
option.

Refer to the HP aC++ Online Programmer’s Guide and to the online
technical paper, Using Templates in HP aC++, for details about
template instantiation and migration. For access instructions, see
Chapter 3 of these release notes under Online Documentation..

• Member templates are supported, including those in pre-compiled
headers.

• Updated versions of the Rogue Wave Standard C++ Library (version
1.2.1) and the Tools.h++ Foundation Class Library (version 7.0.6) are
provided. HTML documentation for these libraries is also updated;
see Chapter 3 of these release notes under Online Documentation.

• The HP aC++ Online Programmer’s Guide has been updated,
including additional migration and template information. For access
instructions, see Chapter 3 of these release notes under Online
Documentation.

Chapter 1 11

Features
Version A.01.04 Features

• The technical paper, Using Templates in HP aC++, has been updated
to describe the new default, compile-time template mechanism and
additional information about template libraries. For access
instructions, see Chapter 3 of these release notes under Online
Documentation.

Version A.01.04 Features
Features introduced in the prior release, HP aC++ version A.01.04, are
listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The HP aC++ Online Programmer's Guide contains full documentation.
(See Chapter 3 of these release notes for access instructions.)

• +ESsfc — option to replace millicode calls with inline code when
performing simple function pointer comparisons.

• +inline_level — option to control how C++ inlining hints influence HP
aC++.

• +u — option to allow pointers to access non-natively aligned data.
This option alters the way that the compiler accesses dereferenced
data. Use of this option may reduce the efficiency of generated code.

• +W — option to selectively suppress warning messages.

• Support for new style casts as defined in the proposed C++ standard.
The keywords const_cast, reinterpret_cast, and static_cast are
supported.

• Partial support for the namespace and using keywords. User
namespaces are supported. Standard C++ Library components not in
namespace std:: are not supported. Koenig lookup is not supported.

• Support for class template partial specializations.

• Extensive online documentation is provided, including the first
edition of the technical document, Using Templates in HP aC++.
Refer to Chapter 3 of these release notes for details.

• HP aC++ now supports level 4 optimization. The +04 compile-line
option is supported.

12 Chapter 1

Features
Version A.01.00 Features

• HP aC++ now supports profile-based optimization. The compile-line
options +dfname, +I, +P and +pgmname are supported.

Version A.01.00 Features
Features introduced in the prior release, HP aC++ version A.01.00, are
listed below. They apply to HP-UX 10.10 and 10.20 operating systems.

The HP aC++ Online Programmer's Guide contains full documentation.
(See Chapter 3 of these release notes for access instructions.)

• Improved error messages allow you to quickly isolate problems in
your code.

• Pre-compiled header files help you speed development substantially.
Use them to reduce compilation time and object file size.

• An automatic template instantiation mechanism is provided. (Note,
as of HP aC++ version A.01.05, this mechanism is no longer the
default, although it is available by specifying the +inst_auto
command-line option.)

• Explicit template instantiation (defined by the draft standard) is
supported.

• Application thread-safe exception handling in shared libraries is
supported.

• Inline functions are aggressively inlined.

• Standards based features include the following:

• keywords: bool, dynamic_cast, explicit, mutable, typeid, typename,
volatile, wchar_t

• class: type_info

• explicit template instantiation

• overloading new and delete for arrays

• standard exception classes

• The following libraries are provided:

Chapter 1 13

Features
Version A.01.00 Features

• Rogue Wave Standard C++ Library Version 1.2.0, includes STL
(updated at HP aC++ Version A.01.07 to library version 1.2.1)

• Rogue Wave Tools.h++ Version 7.0.2 Foundation Class Library
(updated at HP aC++ Version A.01.07 to library version 7.0.6)

• cfront compatible Iostream Library

• Standard Components Library (obsolete)

• Extensive online documentation is provided. Refer to Chapter 3 of
these release notes.

• +DA designations for PA-RISC 2.0 model and processor numbers — to
generate code for the PA-RISC 2.0 systems. The +DAportable option
will generate code compatible across PA-RISC 1.1 and 2.0
workstations and servers.

Default architecture object code generation is now determined
automatically for all systems as that of the machine on which you
compile.

• +DS designations for PA-RISC 2.0 model and processor numbers -- to
perform instruction scheduling tuned for PA-RISC 2.0 systems.

 Default instruction scheduling is now determined automatically for
all systems as that of the machine on which you compile, or on the
setting of +DA, if it is specified.

• option -l:<library> — to support the ld feature.

• +ESfic option -- to replace millicode calls with inline code for fast
indirect calls.

• 64-bit integral data types (long long and unsigned long long) are
supported for HP aC++ applications needing large integers, such as
large file system databases. Use the -ext command line option to
specify.

• HP aC++ features are supported by the HP Distributed Debugging
Environment (DDE).

• The +help option invokes online help for the HP aC++ compiler and
linker and libraries.

14 Chapter 1

Features
Migrating from HP C++ (cfront) to HP aC++

Migrating from HP C++ (cfront) to HP
aC++
The compiler lists Errors, Future Errors and Warnings. Expect to see
more warnings, errors and future errors reported in your code, many
related to standards based syntax. For more complete information, refer
to:

1. HP aC++ Transition Guide at the following world wide web URL:

http://www.hp.com/go/c++/

The HP aC++ Online Programmer’s Guide section Migrating from HP
C++ (cfront) to HP aC++ contains a subset of the information found in
the transition guide.

2. For general background information and experience, subscribe to the
cxx-dev list server (like a notes group). Send a message to
majordomo@cxx.cup.hp.com with the following command in the
body of the message: subscribe list-name

Available list-names are as follows:

cxx-dev HP C++ Development Discussion List
cxx-dev-announce HP C++ Development Announcements
cxx-dev-digest HP C++ Development Discussion List Digest

cxx-dev-announce is also broadcast to cxx-dev, so there is only a need
to subscribe to one of the lists. The digest also includes both cxx-dev
and cxx-dev-announce.

For additional help or information about the list server, send a
message to majordomo@cxx.cup.hp.com with the following command
in the body of the message: help

3. For specific support questions, contact your HP support
representative.

4. For generic C++ questions, see documents and URL’s listed in the HP
aC++ Online Programmer’s Guide, Information Map.

Some migration issues are listed below:

• The overload resolution for operators has been updated to reflect the
latest version of the evolving draft standard. You may see some
additional "ambiguous" function error messages displayed.

Chapter 1 15

Features
Migrating from HP C++ (cfront) to HP aC++

• Most frequently reported migration issue: enum x { x1, }; The trailing
comma is an error.

• Changes to temporary creation for rvalues used to initialize return
values which are const references now causes:

Error 652: Exact position unknown; near file, line#.
Initialization of the result <some const &> requires creating a
temporary, yet the temporary's lifetime ends with the return
from the function.

• You can bracket your HP aC++ changes with the macro defined by the
draft standard. For example:

#if __cplusplus >= 199707L
// HP aC++ Code
#endif // __cplusplus >= 199707L

• If you are using directed mode instantiation with the cfront based
compiler, an awk script can be used to convert your file to an
instantiation file that uses the explicit instantiation syntax. Note
that explicit instantiation syntax can be used to instantiate a
template and all of its member functions, an individual template
function, or a template class's member function. The HP aC++ Online
Programmer's Guide contains an example script.

• In a template, a name with a parameter-dependent qualifier is not
taken to be a type unless it is explicitly declared as one with the
typename keyword.

You need to explicitly declare a type or a member function type using
the typename keyword when all of the following are true:

• The code is inside a template.

• The name is qualified (i.e., it has a “::” token in it).

• The qualifier (to the left of the “::” token) depends on a template
parameter.

For example, the following code includes the typename keyword to
declare iterator as a type:

#include <list>
template <class Element>
class Foo {
public:

list<Element> e;
typedef typename list<Element>::iterator MyIterator;

};

16 Chapter 1

Features
Migrating from HP C++ (cfront) to HP aC++

For more information, refer to the HP aC++ Transition Guide at the
following World Wide Web URL:

http://www.hp.com/esy/lang/cpp/tguide

Chapter 2 17

Installation Information
Patch Installation Requirements

2 Installation Information

Read this entire document and any other release notes or readme files
you may have before you begin an installation.

To install your software, run the SD-UX swinstall command. It will
invoke a user interface that will lead you through the installation. For
more information about installation procedures and related issues, refer
to Managing HP-UX Software with SD-UX and other README,
installation, and upgrade documentation provided or described in your
HP-UX 10.x operating system package.

Depending on your environment, you may also need documentation for
other parts of your system, such as networking, system security, and
windowing.

HP aC++ requires approximately 94 MB of disk space: 36 MB for the files
in /opt/aCC and 58 MB for DDE, Blink Link, HP/PAK, and WDB.

Patch Installation Requirements
Patch id When to install
---------- --
PHSS_17872 - HP aC++ run-time libraries, for improved run-time

 performance
PHSS_17225 - dld.sl(5) cumulative patch
PHSS_17903 - ld(1) and som tools cumulative patch, needed to use

 the +objdebug option and to build shared libraries
 using the -b option.

PHSS_15389 - millicode library (milli.a) cumulative patch.

PHKL_8693 - If the sys/time.h header file is used (series 700).
PHKL_8694 - If the sys/time.h header file is used (series 800).
PHSS_17545 - If any of the debug (-g) options are used.
PHCO_14645 - If libc header files are used.

In addition, it is recommended that you install the core patches
distributed on the extension software media.

18 Chapter 2

Installation Information
Current Linker Required

Current Linker Required
HP aC++ A.01.21 requires the linker patch, PHSS_17903, (or its
successor).

The patch is needed for creation of shared libraries with the -b option.
(The +nosmartbind option is passed to the linker.)

The patch is also required in order to use the +objdebug option. If the
patch is not present, the +objdebug option is ignored and you will not see
related link-time performance improvements.

Current Run-time Support Library
Required
To work correctly, an application must be linked to or run with an HP
aC++ run-time support library (libCsup.a or libCsup.sl) that comes with
this version of HP aC++ or a subsequent version. Linking with an older
version of libCsup.a or running your application with an older version of
libCsup.sl (the default) may cause spurious failures.

The following run-time library patch (or its successor) must be installed
prior to running HP aC++: PHSS_17872

Attention Softbench Users
You should install Softbench (DDE and PAK) before installing HP aC++.
This is because HP aC++ is packaged with DDE and a DDE specific
patch. Not installing in this order results in an unsupported
configuration.

Chapter 3 19

Related Documentation
Online Documentation

3 Related Documentation

Documentation for HP aC++ is described in the following sections.

Online Documentation
The following online documentation is included with the HP aC++
product.

HP aC++ Online Programmer’s Guide
Access the guide in any of the following ways:

• Use the +help command-line option.

/opt/aCC/bin/aCC +help

• From your web browser, enter the appropriate URL:

file:/opt/aCC/html/C/guide/index.htm (English)

file:/opt/aCC/html/ja_JP.SJIS/guide/index.htm (Japanese)

To see Japanese characters when using the Netscape browser, choose:

1. Options

2. Document Encoding

3. Japanese (Auto-Detect)

NOTE All of the files composing the English version of the guide are installed in
the /opt/aCC/html/C directory. If you choose to move the entire guide to a
different location without having to edit any links, you will need to move
all of the subdirectories in /opt/aCC/html/C. All of the files composing the
Japanese guide are installed in /opt/aCC/html/ja_JP.SJIS/.

• The English guide (excluding Rogue Wave documentation) is also
available on the World Wide Web at the following URL:

http://docs.hp.com/hpux/development/

20 Chapter 3

Related Documentation
Online Documentation

Using Templates in HP aC++
This technical document summarizes template features defined in the
proposed C++ standard and describes template instantiation as
implemented in HP aC++. It is provided with HP aC++ in both postscript
and HTML format in the following locations:

/opt/aCC/newconfig/TecDocs/templates.ps

/opt/aCC/newconfig/TecDocs/templates.htm

NOTE You can select the HTML version from the initial window of the HP aC++
Online Programmer’s Guide.

HP-UX Linker and Libraries Online User
Guide
This Guide may not be installed on pre-HP-UX 10.20 systems. In this
case, refer to the later section in this chapter, Linker Compatibility
Warnings, for valuable information.

To access, use the command:

/usr/ccs/bin/ld +help

HP DDE Debugger Online Help
Select help from the DDE Menu Bar.:

HP Wildebeest Debugger (HP WDB)
All of the HP WDB documentation is available online in the following
directory:

/opt/langtools/wdb/doc

The most current HP WDB and its related documentation is also
available online at the following World Wide Web directory:

http://www.hp.com/go/wdb

Chapter 3 21

Related Documentation
Online Documentation

Rogue Wave Software Standard C++ Library
1.2.1 Class Reference
This reference provides an alphabetical listing of all of the classes,
algorithms, and function objects in the Rogue Wave implementation of
the Standard C++ Library. It is provided as HTML formatted files. You
can view these files if you have access to an HTML viewer such as
Netscape. To do so, open the file /opt/aCC/html/libstd/ref.htm

Rogue Wave Software Tools.h++ 7.0.6 Class
Reference
This reference describes all of the classes and functions in the Tools.h++
Library. It is provided as HTML formatted files. You can view these files
if you have access to an HTML viewer such as Netscape. To do so, open
the file /opt/aCC/html/librwtool/ref.htm

NOTE Refer to the Information Map in the HP aC++ Online Programmer's
Guide for how to obtain additional Rogue Wave documentation and
information.

HP aC++ Release Notes
This is the document you are reading. The online ASCII file can be found
in /opt/aCC/newconfig/RelNotes/ACXX.release.notes

HP PA-RISC Compiler Optimization
Technology White Paper
 This paper describes the benefits of using optimization. It is available in
the postscript file /opt/langtools/newconfig/white_papers/optimize.ps

Online Manual Pages
Online manual pages for aCC and c++filt are at
/opt/aCC/share/man/man1.Z.

Manual pages for the Standard C++ Library and the cfront compatibility
libraries (IOStream and Standard Components) are provided under
/opt/aCC/share/man/man3.Z. (Note for Standard Components only,

22 Chapter 3

Related Documentation
Printed Documentation

invoke a man page by entering 3s after the man command and before the
man page name. For example, to invoke the man page for Args: man 3s
Args)

Japanese man pages are located at:

/opt/aCC/share/man/ja_JP.eucJP/man1.z and
/opt/aCC/share/man/ja_JP.eucJP/man3.z (euc character set)

/opt/aCC/share/man/ja_JP.SJIS/man1.z and
/opt/aCC/share/man/ja_JP.SJIS/man3.z (SJIS character set)

Online C++ Example Source Files
Online C++ example source files are located in the directory,
/opt/aCC/contrib/Examples/RogueWave. These include examples for the
Standard C++ Library and for the Tools.h++ Library.

Printed Documentation
• HP aC++ Release Notes is this document. A printed copy of the

release notes is provided with the HP aC++ product.

Release notes are also provided online, as noted above.

Other Documentation
Refer to the HP aC++ Online Programmer's Guide Information Map for
documentation listings, URL's, and course information related to the
C++ language. Also, see below.

The following documentation is available for use with HP aC++. To order
printed versions of Hewlett-Packard documents, refer to manuals(5).

• HP/DDE Debugger User's Guide contains information on debugging
C++ programs with the HP Distributed Debugging Environment on
the HP 9000.

Chapter 3 23

Related Documentation
Other Documentation

HP aC++ World Wide Web Homepage
Access the HP aC++ World Wide Web Homepage at the following URL:

http://www.hp.com/go/c++

Refer to the Homepage for the latest information regarding:

• Frequently Asked Questions

• Release Version and Patch Table

• Purchase and Support Information

• Documentation Links

• Compatibility between Releases

Compatibility between HP aC++ Releases
Maintaining binary compatibility is a key release requirement for new
versions of HP aC++. The compiler has maintained the same object
model and calling convention and remains compatible with the HP-UX
runtime in the code that it generates as well as its intrinsic runtime
library (libCsup) across the various releases of HP aC++ and its run-time
patch stream.

For the Standard Template Library (libstd) and a generic component/tool
library (librwtool), HP aC++ (as well as some other C++ compilers) relies
on Rogue Wave’s Standard Library and Tools.h++ libraries. From the
initial release of HP aC++ through the patch release of version A.01.06,
Rogue Wave’s Standard Library version 1.2 and Tools.h++ version 7.0.3
compatible libraries were bundled with the compiler.

At the release of HP aC++ A.01.07, the runtime libraries were updated to
Rogue Wave’s Standard Library version 1.2.1 and Tools.h++ version
7.0.6. These new libraries introduced additional data members in some
base classes resulting in incompatibility with the previous versions. For
more details, refer to the HP aC++ World Wide Web Homepage at the
following URL and choose Compatibility between Releases:

http://www.hp.com/go/c++

24 Chapter 3

Related Documentation
Other Documentation

Floating-Point Exceptions Must be Raised
Prior to Entering Library Routines
Programmers who use floating-point arithmetic are reminded to insure
that floating-point exceptions are raised before entering a library
routine. For example a floating-point divide should be followed by a
floating-point store. If you fail to do so, code within the library may raise
the floating-point exception, interrupting the library code rather than
the user code.

This reminder is included since the unwind component of libcl.a and
libcl.sl uses floating-point operations in more places than earlier versions
of the library. HP aC++ uses unwind functionality to support
throw/catch exception handling. Programs which don’t raise
floating-point exceptions before entering unwind library routines may
have the exception raised from within the unwind routine.

Content of .o Files may Change
The following applies when you use an aCC command-line option that
invokes the assigner.

The content of a given .o file can potentially change when it is used in a
closure (with the +inst_close option) or link operation. The change may
occur in either of the following cases:

• You change the order of .o file's on the link line. For example, if you
compile and link A.c and B.c multiple times as follows, the contents of
A.o and B.o may not be the same following the second link as they
were following the first link:

aCC -c A.c B.c
aCC A.o B.o

aCC -c A.c B.c
aCC B.o A.o

• You link a .o file with different objects. In the following example, the
content of A.o may not be the same following the second link as it was
following the first link:

aCC A.o B.o

aCC A.o C.o

Chapter 3 25

Related Documentation
Other Documentation

The Named Return Value (NRV) Optimization
Syntax: -Wc,-nrv_optimization,[off|on]

The above syntax disables (default) or enables the named return value
(NRV) optimization. For this optimization to work correctly in
conjunction with exception handling, the application must be linked to
an aC++ run-time support library that comes with HP aC++ A.01.04 or a
subsequent version. Linking with a prior library may cause spurious
failures. If the shared version of this library is selected (default), the
platform on which the application is run must also have that release of
the HP aC++ run-time support library (libCsup.sl).

The NRV optimization eliminates a copy-constructor call by allocating a
local object of a function directly in the caller’s context if that object is
always returned by the function. For example:

struct A {
A(A const&); // copy-constructor

};

A f(A const& x) {
 A a(x);
 return a; // Will not call the copy constructor if the

} // optimization is enabled.

This optimization will not be performed if the copy-constructor was not
declared by the programmer. Note that although this optimization is
allowed by the ISO/ANSI C++ working paper, it may have noticeable
side-effects.

Example: aCC -Wc,-nrv_optimization,on app.C

Linker Compatibility Warnings
Beginning with the HP-UX 10.20 release, the linker generates
compatibility warnings. These warnings include HP 9000 architecture
issues, as well as linker features that may change over time.
Compatibility warnings can be turned off with the
+v[no]compatwarnings linker option. Also, detailed warnings can be
turned on with the +vallcompatwarnings linker option.

Link time compatibility warnings include the following:

• Linking PA-RISC 2.0 object files on any system — PA-RISC 1.0
programs will run on 1.1 and 2.0 systems. PA-RISC 2.0 programs will
not run on 1.1 or 1.0 systems.

26 Chapter 3

Related Documentation
Other Documentation

• Dynamic linking with -A — If you do dynamic linking with -A, you
should migrate to using the Shared Library Management Routines.
These routines are also described in the sh_load(3X) man page.

• Procedure call parameter and return type checking (which can be
specified with -C) — The current linker checks the number of
symbols, parameters, and procedure calls across object files. In a
future release, you should expect HP compilers to perform
cross-module type checking, instead of the linker. This impacts HP
Pascal and HP Fortran programs.

• Duplicate names found for code and data symbols — The current
linker can create a program that has a code and data symbol with the
same name. In a future HP-UX release, the linker will adopt a single
name space for all symbols. This means that code and data symbols
cannot share the same name. Renaming the conflicting symbols
solves this problem.

• Unsatisfied symbols found when linking to archive libraries — If you
specify the -v option with the +vallcompatwarnings option and link to
archive libraries, you may see new warnings.

• Versioning within a shared library — If you do versioning within a
shared library with the HP_SHLIB_VERSION (C and C++) or the
SHLIB_VERSION (Fortran and Pascal) compiler directive, you
should migrate to the industry standard and faster performing
library-level versioning.

Chapter 4 27

Problem Descriptions and Fixes and Known Limitations
Known Problems

4 Problem Descriptions and Fixes
and Known Limitations

This chapter summarizes the known problems and limitations of the
current version of HP aC++ except as otherwise noted.

NOTE HP-UX 10.10 is the last supported OS for PA-RISC 1.0 architecture
machines. HP-UX 10.20 no longer supports execution of PA-RISC 1.0
code, and 10.20 compilers no longer support the compilation of PA-RISC
1.0 code.

See the latest HP-UX Software Status Bulletin support document for
other known problems.

Known Problems
Customers on support can use the product number to assist them in
finding SSB and SRB reports for HP aC++. The product number you can
search for is B3910BA.

To verify the product number and version for your HP aC++ compiler,
execute the following HP-UX commands:

what /opt/aCC/lbin/ctcom

what /opt/aCC/bin/aCC

To verify the product number and version for the linker:

what /usr/ccs/bin/ld

To verify the product number and version for the shared library loader:

what /usr/lib/dld.sl

NOTE Your system, if correctly installed, should have a symbolic link from
/usr/lib/aCC/dld.sl to /usr/lib/dld.sl

Following are known problems and workarounds.

28 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Problems

Incompatibilities Between the Standard C++
Library and the Draft Standard
As the ISO/ANSI C++ standard has evolved over time, the Standard C++
Library has not always kept up. Such is the case for the “times” function
object in the functional header file. In the standard, “times” has been
renamed to “multiplies.”

If you want to use “multiplies” in your code, to be compatible with the
ISO/ANSI C++ standard, use a conditional compilation flag on the aCC
command line.

For example, for the following program, compile with the command line:

aCC -D__HPACC_USING_MULTIPLIES_IN_FUNCTIONAL test.c

// test.c
int times; //user defined variable
#include <functional>
// multiplies can be used in

int main() {}
// end of test.c

Depending on the existence of the conditional compilation flag,
functional defines either “times”, or “multiplies”, not both.

So, if you have old source that uses “times” in header functional and also
new source that uses “multiplies”, the sources cannot be mixed. Mixing
the two sources would constitute a non-conforming program, and the old
and new sources may or may not link.

If your code uses the old name “times,” and you want to continue to use
the now non-standard “times” function object, you do not need to do
anything to compile the old source.

Unsatisfied Symbols if Using Non-current
Run-time Support Library
If you see a message like the following, you may be using a non-current
version of the HP aC++ run-time support library.

/opt/aCC/lbin/ld: Unsatisfied symbols:
 Class tables [Vtable] dependent on key function:
 “__versioned_type_info::~__versioned_type_info()” (data)

Chapter 4 29

Problem Descriptions and Fixes and Known Limitations
Known Problems

For example, if you are a library distributor, you must ensure that your
customers use the same or a newer version of the libCsup run-time
library as you. If necessary, you should install the most current HP
aC++ library support patch and distribute this patch to your customers.

As of the date of these release notes, the most current library support
patch number is: PHSS_17872

Unsatisfied Symbols for Inline Template
Functions
If you use explicit instantiation instead of closing a library, and you
compile with the +inst_auto option, then unsatisfied symbols will be
generated for inline template functions that are too large to inline.

Syntax Errors when Using
/usr/include/sys/time.h
• If you see the following error message, it means that

CLOCKS_PER_SEC is not defined:

Error 171: “7198.C”, line 2 # Undeclared variable
‘CLOCKS_PER_SEC’. int i = CLOCKS_PER_SEC;
 ^^^^^^^^^^^^^^^^

To correct the problem, you can install the appropriate patch listed
below (or any successor patch) or implement the workaround
described below:

PHKL_8691 series 700 HP-UX 10.10
PHKL_8692 series 800

PHKL_8693 series 700 HP-UX 10.20
PHKL_8694 series 800

The workaround is to modify the /usr/include/sys/time.h file as
follows:

1. Find the first occurence of:

#endif /* _INCLUDE__STDC__ */

2. Immediately before the first occurence of the above line, add the
following code, replacing SomeValue with the value you need
(1000000 would be the system default):

30 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Problems

#else
#ifdef __cplusplus
#define CLOCKS.PER_SEC SomeValue
#endif

• The /usr/include/sys/time.h file contains a K & R style function
declaration for which HP aC++ generates an error like the following:

Error 43: “/usr/include/sys/time.h”, line 487 # C++ does not
allow
Old-style (non-prototype) function definitions.

To workaround, whenever time.h is included by a source program,
you can define the __STDC__ macro on your command-line, as in the
following example:

aCC -D__STDC__

• HP aC++ generatres an error like the following stating that structs or
any types cannot be declared extern.

Error 608: “/usr/include/sys/time.h”, line ??? # Types may not
be
declared static, auto, register, extern or mutable.
 extern struct sigevent;
 ^^^^^^^^^^^^^^^^^^^^^^

The error is caused by a problem in the /usr/include/sys/time.h file.
To workaround, you can change the line extern struct sigevent; in
the time.h file to:

struct sigevent;

Or you can install the appropriate patch listed below:

PHKL_8693 series 700 HP-UX 10.20
PHKL_8694 series 800

Syntax Problems when Using
/usr/include/math.h
To resolve a conflict between the exception struct in
/usr/include/sys/math.h and the aC++ exception struct, you can install
the appropriate patch, currently PHCO_14645 (or any successor patch).
Alternatively, you can implement the workaround described below.

The workaround is to modify the /usr/include/math.h file as follows:

1. Find the line:

#define _MATH_INCLUDED

Chapter 4 31

Problem Descriptions and Fixes and Known Limitations
Known Problems

2. Immediately following the above line, add the next line:

#define exception math_exception

3. Find the line:

#endif /* _MATH_INCLUDED */

4. Immediately before the above line, add this line:

#undef exception

Warnings when using /usr/include/rpc/xdr.h
Compile-time warnings like the following should be ignored. They are
caused by an incorrect prototype in the /usr/include/rpc/xdr.h file.

Warning 301: “/YourFileName/usr/include/rpc/xdr.h”, line 276 # The
(...) parameter list is a non-portable feature.
extern bool_t xdrrec_eof(__o); /* true iff no more input */

NOTE Warning 302 is now a suggestion and only occurs with the +w option.

Binary Compatibility
An application that ran on previous HP-UX 10.x releases (10.01, 10.10,
or 10.20) will generally continue to run with the same behavior with this
10.20-based HP aC++ release provided that any dependent shared
libraries are also present. An executable is a binary file that has been
processed by the HP linker with ld or indirectly with the compiler, and
can be run by the HP-UX loader(exec).

The following items describe exceptions to binary compatibility between
the previous 10.20 and current releases. These conditions can occur
during your development process, but rarely affect deployed applications.

Binary Incompatibilities without Changes
Under the following conditions, when you compile your source code
without any changes (to source code, options, or makefiles), you can
create relocatable object files or executables that cannot be moved back
to a previous 10.x system.

• Instrumented code with PBO or +O4 optimization

32 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Limitations

If you use PBO (+I compiler or linker option) or the +O4 option during
development and recompile with your current compiler, you may
create instrumented objects (ISOM) that a previous system does not
recognize.

NOTE This code may not be backward-compatible with previous 10.x releases.
In general, you cannot move instrumented object files backward.

If you move an ISOM across operating system versions, for example,
from an 11.x system to a 10.x system, you may receive the following
error:

Error at line 0: Backend Assert ** Ucode versions earlier then
v.4 no longer supported. (5172)

Binary Incompatibilities with Changes
When you make changes to your source code, options, or makefiles to use
new features of the current release, you can introduce the following area
of binary incompatibility.

• Open Graphics Library (OGL) Support

This release provides OGL support to improve performance. If you
make changes to your source code to recompile using the OGL
headers, you receive the message “invalid fixup” when you link your
relocatable object file or run your executable on a previous 10.x
system. .

Known Limitations
Some of these limitations will be removed in future releases of HP aC++.
Please be aware that some of these limitations are platform-specific.

• HP aC++ does not support the xdb debugger. Instead, use the HP
WDB Debugger or the HP/DDE Debugger supplied with the product.

• HP aC++ does not and will not in the future support installation
and/or execution on HP-UX 9.x, 10.00, or 10.01 systems.

• HP aC++ does not support large files (i.e., greater than 2 GB) with
<iostream.h>.

Chapter 4 33

Problem Descriptions and Fixes and Known Limitations
Known Limitations

• Note that although the compiler will run on the PA RISC 1.0
architecture, an HP aC++ executable will run only on the PA RISC
1.1 or later architecture.

• Known limitations of exception handling features:

• Interoperability with setjmp/longjmp (undefined by the C++ draft
proposed international standard) is unimplemented. Executing
longjmp does not cause any destructors to be run.

• If an unhandled exception is thrown during program initialization
phase (that is, before the main program begins execution)
destructors for some constructed objects may not be run.

• Symbolic debugging information is not always emitted for objects
which are not directly referenced. For instance, if a pointer to an
object is used but no fields are ever referenced, then HP aC++ only
emits symbolic debug information for the pointer type and not for
the type of object that the pointer points to. For instance, use of
Widget * only emits debug information for the pointer type
Widget * and not for Widget. If you wish such information, you can
create an extra source file which defines a dummy function that
has a parameter of that type (Widget) and link it into the
executable program.

• Known limitations of signal handling features:

• Throwing an exception in a signal handler is not supported, since
a signal can occur anyplace, including optimized regions of code
in which the values of destructable objects are temporarily held in
registers. Exception handling depends on destructable objects
being up-to-date in memory, but this condition is only guaranteed
at call sites.

• Issuing a longjmp in a signal handler is not recommended for
the same reason that throwing an exception is not supported.
The signal handler interrupts processing of the code resulting
in undefined data structures with unpredictable results.

• Source-level debugging of C++ shared libraries is supported.
However, there are limitations related to debugging C++ shared
libraries, generally associated with classes whose member functions
are declared in a shared library, and that have objects declared
outside the shared library where the class is defined. Refer to the
appropriate release notes and manuals for the operating system and
debugger you are using.

34 Chapter 4

Problem Descriptions and Fixes and Known Limitations
Known Limitations

Refer also to the Software Status Bulletin for additional details.

• Instantiation of shared objects in shared memory is not supported.

• When you call the <shl_load>(3) routines in libdld.sl either directly or
indirectly (as when your application calls use the +A option) you will
see an "unresolved externals" error.

If you want to link archive libraries and libdld.sl, use the -Wl,-a,
archive option. The following example directs the linker to use the
archive version of standard libraries and (by default) libdld.sl.

aCC prog.o -Wl,-a,archive

• Using shl_load(3X) with Library-Level Versioning

Once library-level versioning is used, calls to shl_load() (see
shl_load(3X)) should specify the actual version of the library that is to
be loaded. For example, if libA.sl is now a symbolic link to libA.1, then
calls to dynamically load this library should specify the latest version
available when the application is compiled, such as:

shl_load("libA.1", BIND_DEFERRED, 0);

This will insure that, when the application is migrated to a system
that has a later version of libA available, the actual version desired is
the one that is dynamically loaded.

• Memory Allocation Routine alloca()

The compiler supports the built in function, alloca, defined in the
/usr/include/alloca.h header file. The implementation of the alloca()
routine is system dependent, and its use is not encouraged.

alloca() is a memory allocation routine similar to malloc() (see
malloc(3C)). The syntax is:

void *alloca(size_t <size>);

alloca() allocates space from the stack of the caller for a block of at
least <size> bytes, but does not initialize the space. The space is
automatically freed when the calling routine exits.

NOTE Memory returned by alloca() is not related to memory allocated by other
memory allocation functions. Behavior of addresses returned by alloca()
as parameters to other memory functions is undefined.

To use this function, you can use the <alloca.h> header file.

