HP PAK Performance Analysis Tools
User's Guide

HP 9000 Computers

[Frcinre

B3476-90017
Printed in USA May 1997

© Copyright 1997 Hewlett-Packard Company

Legal Notices

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or direct, indirect, special,
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright © 1997 Hewlett-Packard Company.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or translation without
prior written permission is prohibited, except as allowed under the
copyright laws.

Corporate Offices:

Hewlett-Packard Co.

3000 Hanover St.

Palo Alto, CA 94304

Use, duplication or disclosure by the U.S. Government Department of
Defense is subject to restrictions as set forth in paragraph (b)(3)(ii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Use of this manual and flexible disc(s), compact disc(s), or tape
cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs may be made for security and back-up
purposes only. Resale of the programs in their present form or with
alterations, is expressly prohibited.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

© Copyright 1980, 1984, 1986 AT&T Technologies, Inc. UNIX and
System V are registered trademarks of AT&T in the USA and other
countries.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company Limited.

© Copyright 1979, 1980, 1983, 1985-1990 Regents of the University of
California. This software is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University
of California.

© Copyright 1985-1986, 1988 Massachussetts Institute of Technology. X
Window System is a trademark of the Massachussetts Institute of
Technology.

OSF/Motif is a trademark of the Open Software Foundation, Inc. in the
U.S. and other countries.

1.

Contents

Overview of HP PAK Tools
Introduction to HP PAK 2
USIiNg PUMa 3
Invoking Puma's Graphical User Interface 3
For More Information 5
Invoking Puma’'s Command-Line Interface 6
For More Information 6
Using Puma's Shell Script Interface. 7
For More Information 7
ASample Program 7
USIiNg TV L e e e e e e e e 8
For More Information. 9
USiNg XPS .. 10
For More Information. 10
Puma Concepts
Procedure Relationships 14
How Puma GathersData 16
StACK TraCeS . o ot 16
Statistical Information. 17
DataFiles 17
Samplelnterval 18
How Puma Generates Statistics., 19
How Puma Generates Procedure Names 20
How Puma Analyzes Recursive Procedures. 21
Recursion Collapsing e 21
Puma Recursion Collapsing Options. 23
NO Collapseo 23

Contents

Direct Collapse. 23
Conservative Collapse 23
FullCollapse e e 24

3. Puma Command Quick Reference

Data Collection Commands.ttt e 28
Data AnalysisCommands 28
Miscellaneous Commands oottt 29

4. XPS Overview, Options, and Commands

XPS OVEIVIEW. . . . ot e 32
XPS OPLIiONS . . . oo 34
XPSWindow Commandsttt 35
Glossary

Vi

Comments

Audience

Manual Organization

Preface

HP PAK Performance Analysis Tools User's Guide introduces the tools in
the HP PAK Programmer’s Analysis Kit. These include Puma, which
analyzes program performance; TTV, which analyzes trace files produced
by an instrumented thread library; and XPS, which displays the relative
use of system resources by executing processes.

We welcome your comments on this manual. Please send electronic mail
to editor@ch.hp.com , or send regular mail to:

MLL Learning Products
Hewlett-Packard Company
Mailstop: CHR 02 DC

300 Apollo Drive
Chelmsford, MA 01824

If you have any problems with the software, please contact your local
Hewlett-Packard Sales Office or Customer Service Center.

This manual is written for programmers who use either C, C++,
FORTRAN, or Pascal.

Chapter 1 Provides an overview of the tools and instructions for
starting them up.

Chapter 2 Provides information on Puma's underlying concepts.

Chapter 3 Describes Puma's command-line interface.

Chapter 4 Describes XPS.

Vii

Technical Summary

HP PAK 7.10 is an upgrade of HP PAK 7.0. The following list
summarizes the differences HP PAK 7.10 and HP PAK 7.0.

XPS is unchanged in this release.

A new tool, TTV, has been added to HP PAK. TTV reads, synthesizes,
and analyzes the trace files produced by the instrumented thread
library (libpthread_tr.sl or libpthread_tr.a), and presents
the resulting information in graphical form.

Kernal thread support was added to Puma so that performance
metrics can be displayed on a per-thread basis. This support is visible
in the Pan/Zoom, Call Tree Analysis, and Playback windows.

In Puma's Pan/Zoom Resource Use window, user and system CPU
cycles are shown as actual counts rather than as percentages.
Exploded

View Activity buttons were moved to the bottom of the window.

Puma's Call Tree Analysis textual and graphical windows were joined
to a single display. You can toggle between textual (tabular) and
graphical formats from one window.

A tutorial was added to the Puma online help.
Online help is available in Japanese as well as English.

SJIS character support for pathnames was added.

viii

Documentation
Conventions

This manual uses the following symbolic conventions.

literal values

user-supplied values

[]

key

name(N)

Menu:ltem

Bold monospaced words or characters
in command formats and command
descriptions represent commands or
keywords that you must use literally.
Path names are also in bold.

Italic words or characters in
command formats and command
descriptions represent values that
you must supply.

Square brackets enclose optional
items in formats and command
descriptions.

A vertical bar separates items in a
list of choices.

Type the corresponding key on the
keyboard.

An italicized word followed by a
number in parentheses indicates a
page and section number in the
HP-UX Reference.

A choice from the menu bar. For
example, since Exit is on the File
menu, the menu bar selection is
written as File:Exit

Printing History

B3476-90017 May 1997 Version 7.10
B3476-90016 July 1996 Version 7.0
B3476-90011 June 1995 Version 6.0

The printing date and part number at the top indicate the current
edition. The printing date changes when a new edition is printed. (Minor
corrections and updates which are incorporated at reprint do not cause
the date to change.) The part number changes when extensive technical
changes are incorporated.

We may issue a technical addendum or release notes to supplement this
manual.

The software version number printed alongside the date indicates the
version of HP PAK at the time this manual was printed.

HP Printing Division:
Hewlett-Packard Co.

19091 Pruneridge Ave.
Cupertino, CA 95014

Overview of HP PAK Tools

This chapter provides a brief overview of the HP PAK tools: Puma, TTV,
and XPS. It describes how to start up the tools, and explains where to
find more help.

Overview of HP PAK Tools
Introduction to HP PAK

NOTE

Introduction to HP PAK

HP PAK consists of three tools that help you analyze the performance of
your applications:

< Puma monitors the program counter, the call/return stack, and other
performance statistics of executing programs. It saves the results in a
data file. You can then view the data file in a variety of graphical
formats.

= TTV (thread trace visualizer) reads, synthesizes, and analyzes the
trace files produced by the instrumented thread library
(libpthread_tr.sl or libpthread_tr.a), and presents the
resulting information in graphical form.

= XPS (X Window System-based view of process statistics) displays the
relative use of resources by processes at the system level.

Before invoking HP PAK tools, make sure that /opt/langtools/bin is
in your search PATH To access the manual pages, you must have the
/opt/langtools/share/man directory in your MANPATH

2 Chapter1

Overview of HP PAK Tools
Using Puma

Using Puma

Puma is a tool that collects performance data from the system as a
program runs. It saves the collected data to a file. You can then use Puma
to analyze the information in the data file, or to play back the program's
stack traces and thread states for close review.

Puma has three user interfaces:

= The graphical user interface, based on the conventions of OSF/Motif,
is useful for interactive collection and analysis of program
performance data.

= The command-line user interface is useful for collecting or analyzing
data in a non-graphical, shell environment.

= The shell script interface is a special command-line interface that lets
you execute a single Puma command from a shell or a shell script.

Invoking Puma's Graphical User Interface

To invoke Puma's graphical user interface, enter the following command
at the shell prompt:

puma
Puma displays its main window, as shown in Figure 1-1.

To exit Puma at any time, click on Exit in the File menu.

Chapter 1 3

Figure 1-1

Overview of HP PAK Tools
Using Puma

The Main Puma Window

File Tools

éCoIIect Performance Data...

Collected Performance Data (Files) [

DataSet1 34 samples, Mar 06 at 09:55, for fnetfoldnode,"tmpé

PanfZoom Analyze Playback
Resource Use... iCall Tree... iThread States...
Messages Clear Messages |

The Puma main window is your starting point for all Puma activities.
For example:

O

The Collect Performance Data button brings up windows that
guide you through the process of collecting performance data.

The Collected Performance Data (Files) list box displays
Puma data files that exist in the current working directory.

The three buttons below the list box give you a choice of ways to
display performance data:

= Select Pan/Zoom Resource Use to display a program's use of
system resources over time in line-graph form. On systems that
support kernel-threaded applications, you can also view how
individual kernel threads use system resources.

Chapter1

Overview of HP PAK Tools
Using Puma

« Select Call Tree Analysis to display a given performance
metric relative to the libraries and routines that executed during
the sample set.

« Select Playback Thread States to step through the stack trace
of multi-threaded programs (on systems that support
kernel-threaded applications).

O The Messages box displays any run-time messages generated by

Puma.

For More Information

See Chapter 2, “Puma Concepts,” for more information on how Puma
collects data and generates statistics.

See the puma(l) man page.

Detailed online help on all of Puma's functions is available from Puma's
Help menus. The online help also includes a tutorial that guides you
through data collection and analysis.

Here are a few tips on using Puma'’s online help:

To browse the Puma Help volume, begin by selecting
Help:Introduction in the main Puma window and then follow
hyperlinks throughout the volume.

To find help on using a particular window or dialog box, click on the
Help menu or button in that display.

To find help on a particular screen item (button, list box, etc.), select
Help:On Item in the main Puma window and then click on the
desired item in any Puma window.

To find information on searching and printing helpfiles, select
Help:On Help in the main Puma window.

Chapter 1 5

Overview of HP PAK Tools
Using Puma

Invoking Puma's Command-Line Interface

To invoke Puma's command-line interface, enter the puma -text
command in a shell. The puma> prompt will be displayed. For example:

$ puma -text
puma>

To exit Puma, enter exit or quit .

For More Information

See Chapter 3, “Puma Command Quick Reference,” for more information
on Puma commands and on the Puma command-line interface.

See Chapter 2, “Puma Concepts,” for more information on how Puma
collects data and generates statistics.

See the puma(l) man page.

You can get online help from the command-line interface by entering one
of the following commands at the puma> prompt:

help Displays a list of help topics.
help topic Displays syntactical help for the specified topic.

mancommand Displays a full description of the specified command.

6 Chapter1

Overview of HP PAK Tools
Using Puma

Using Puma's Shell Script Interface

You can invoke Puma from a shell or shell script to execute a single
command. Enter the command puma and the name of the desired
command as an option, that is, precede the command name with a
hyphen. You can also supply arguments to the command option.

For example, to invoke and collect performance data on my_program
(with arguments) from a shell or shell script, use a command like the
following:

puma -monitor -invoke my_program argl arg2

As another example, suppose that my_program is already running,
First, you need to find the Process ID (PID) with a command like the
following:

ps | grep my_prog

1054

Then, you can invoke the following command line from a shell or shell
script:

puma -monitor -existing 1054 -executable my_program

Notice that you cannot specify arguments for an existing process.

For More Information

See Chapter 3, “Puma Command Quick Reference,” for more information
on Puma commands.

See Chapter 2, “Puma Concepts,” for more information on how Puma
collects data and generates statistics.

See the puma(l) man page.

A Sample Program

You can experiment with Puma by using the sample program,

vanderbilt , that is included with HP PAK. This program is used in the
online tutorial that illustrates most of Puma's features. Select
Help:Tutorial from the main window of Puma's graphical user
interface. vanderbilt should be installed in the following location:

/opt/langtools/hppak/examples/vanderbilt

Chapter 1 7

Figure 1-2

Overview of HP PAK Tools

Using TTV

Using TTV

The TTV (Thread Trace Visualizer) is a utility that reads the trace files
produced by the instrumented thread library (libpthread_tr.sl or

libpthread_tr.a). TTV provides a graphical format for the
presentation and analysis of the data (see Figure 1-2).

TTV Display

(Drag mouse on either graph to zoom in on range)

Thieads: " Total 7 Hlocked 7 Active

Create
Detach

To produce thread traces, you need to link your application to the
instrumented thread library. For details on using the instrumented
thread library and producing thread traces, refer to the file
/usr/include/sys/trace_thread.h

When you enter the ttv command, you can supply it with a list of trace
files. For example, if your trace files are stored in the directory
my_traces , and the threads of interest are for process 1542, you would
invoke TTV as follows:

ttv my_traces/tr.1542.*

8 Chapter1

Overview of HP PAK Tools
Using TTV

Alternatively, you can start ttv without a list of trace files. You can then
load trace files from the File menu in the grapical user interface.

You can also invoke TTV from the Tools menu in the main Puma window.

The data from your trace files are presented in the two graphs in the
TTV main window. You can change the scope and content of the graphs in
many ways.

For More Information

Online help is available from TTV's Help menu or from the ttv(1) man
page.

Chapter 1 9

NOTE

Overview of HP PAK Tools
Using XPS

Using XPS

XPS provides a graphical display of CPU and 1/0 usage by the processes
that are currently executing. The display is updated periodically.

To run XPS, enter
Xps
at the shell prompt. An XPS screen, like the one in Figure 1-3, appears.

Scroll up and down in the XPS display using standard OSF/Motif tools
(scroll bars or paging keys).

To end XPS's monitoring at any time, press q or Ctrl-c anywhere in the
XPS display.

For More Information

See Chapter 4, “XPS Overview, Options, and Commands,” for detailed
information on XPS.

You can also find information on XPS online in the xps(1) man page.
XPS is provided as an analysis tool for programmers. If you need to

monitor system performance on an ongoing and regular basis, we
recommend that you use the HP GlancePlus product.

10 Chapter1

Overview of HP PAK Tools
Using XPS

Figure 1-3 XPS Display

Statistics Display for zeus User smith

CPU Percentage
Process Name T I tag T

vuelogin

vuesession

vuehelp

vanderbilt

vuewm

ksh

hpterm
getmail

Xps

vi

Other Processes

OS Processes

1/O Type IIO per second :
Network '

Disk

Network I/O Type Network IO per second
T T T T

Paging Requests

Paging Service
Other Traffic

Chapter 1 11

Overview of HP PAK Tools
Using XPS

12 Chapter1

Puma Concepts

This chapter is a general description of how Puma gathers data and
generates statistics.

13

Puma Concepts
Procedure Relationships

NOTE

Procedure Relationships

The terms that describe the relationship of a given procedure to other
procedures in the same program are:

parent A procedure that directly calls the given procedure.

ancestor A procedure that calls the given procedure, either
directly or through another procedure or procedures;
all parents are also ancestors.

child A procedure called directly by the given procedure.

descendant A procedure that is called by the given procedure,
either directly or through other procedures; all children
are also descendants.

sibling A procedure with the same parent as the given
procedure.

Figure 2-1 illustrates these relationships in the program vanderbilt

for the procedure contractor

vanderbilt is a sample program included with HP PAK. It should be
installed in the following location:
/opt/langtools/hppak/examples/vanderbilt

14 Chapter2

Figure 2-1

Puma Concepts
Procedure Relationships

vanderbilt Procedure Relationships

main
ancestor

\

garage house
parent/ancestor parent/ancestor
decorator
contractor sibling
report_materials electrician plumber
child/descendant child/descendant child/descendant

plumbers_assistant
desCendant

To Puma, the relationships among procedures are dynamic, reflecting

the possibility that sometimes x may call y and later y may call x. Puma
analyzes your program as it is seen at run time; Puma does not base the
analysis on the lexical structure of the program as seen at compile time.

For example, if a procedure calls an error-handling routine, Puma would
report the error-handling routine as a child of the procedure only if,
during the execution of the procedure, control actually branched to the
error-handling routine and a sample was taken during the execution of
the error-handling routine.

Chapter 2 15

Puma Concepts
How Puma Gathers Data

How Puma Gathers Data

To collect performance data, Puma performs the following steps at each
sampling interval:

1. Stop the program.

2. Take a sample from the program's image.

3. Store the sample in a memory buffer.

4. Release the program, allowing it to resume execution.

A sample is a unit of data gathered by Puma. A sample contains stack
trace information and statistical information about the current state of
the program.

Stack Traces

A stack trace is a snapshot of the program's call/return stack. It is an
ordered sequence of the procedures that are active when the sample is
taken.

Puma considers a procedure to be active (on the stack) if control is within
the procedure itself or in any of its descendants. When a procedure is
active, Puma's later analysis will show that time is being spent
in-or-under that procedure. When the program counter is in a procedure,
Puma's analysis will show that time is being spent in-only that
procedure.

Figure 2-2 highlights the procedures that are active when contractor
is executing, and garage has called contractor

If Puma takes a sample when contractor is executing, the stack trace
returned looks this way:

\main\garage\contractor

The last procedure in a stack trace is the currently executing procedure.
The other procedures in the list are the executing procedure's ancestors.

16 Chapter2

Puma Concepts
How Puma Gathers Data

Figure 2-2 Active Procedures

/N /

decorator | contractor | <—FExecuting

Statistical Information

Puma records statistical information concerning the program's resource
use, including:

= time spent in user space ("user cycles")

= time spent in system space ("system cycles")
= major page faults

= minor page faults

= socket messages sent

= socket messages received

= signals received

- files open

= page swaps

= characters (bytes) of 1/0

Data Files

Puma stores the samples it collects in a data file. You can have any
number of data files, and any legal UNIX filename is acceptable.

By default, Puma names its data files DataSet number.puma and places
them in the directory where Puma is executing. In graphical mode, Puma
increments number each time data collection begins. In shell or

Chapter 2 17

Puma Concepts
How Puma Gathers Data

command-line mode, Puma either creates or overwrites
DataSetl.puma . Use the -dat option to create a data file with a
different name.

When invoked in graphical mode, Puma displays icons for the data files
that reside in the directory where it is executing, and that have the
filename extension .puma . You can load data files with other filename
extensions manually from within Puma.

To reduce the overhead cost of collecting data, Puma does not write data
immediately upon collecting it. Instead, Puma stores data in memory
and only writes to a data file when:

= you exit Puma
= you restart data collection

= you select some older data file for analysis

Sample Interval
The sample interval is the rate at which Puma takes data samples.

The sample interval refers to the amount of time that Puma allows the
target program to run before suspending it to record information.

The phrase samples per second refers to the number of samples gathered
for each second that the target program has been allowed to run. The
number of samples gathered by Puma per elapsed (real) second depends
upon the amount of overhead Puma incurs between each sample.
Overhead includes the time it takes to stop the target, record
information, update the graphical display, and restart the target.

By default, the sample interval is 100, which means that Puma gathers a
sample every 100 milliseconds of the target process execution time (at a
rate of 10 samples per second). This interval is under user control.

18 Chapter2

Puma Concepts
How Puma Generates Statistics

How Puma Generates Statistics

The information that Puma produces from a data file consists of
statistical summaries for the run of the program. For example, Puma can
report the percentage of samples in which each procedure was active
(that is, how often control was in the procedure itself or in any of its
descendants).

Puma can present statistical information in a variety of ways. For
example, you can:

= Restrict Puma's analysis to a contiguous subset of the samples taken.

= View the statistics in a way that reflects the program's dynamic call
structure.

The online documentation describes the various ways you can control the
analysis.

Chapter 2 19

Puma Concepts
How Puma Generates Procedure Names

How Puma Generates Procedure Names

In the Call Tree Analysis windows, you can direct Puma to display
performance metrics by procedure (routine). This section describes the
naming conventions that Puma uses when displaying procedure names.

When Puma can determine a procedure's name, it displays the name in
case-correct format. For example:

XOpenDisplay

For procedures in dynamically loaded libraries, Puma cannot identify the
procedure names unless you identify the library before data collection
begins (using the Options menu on the Data Collection window). The
default entry in the Libraries option is *.c . This entry causes Puma to
collect data from all dynamically loaded libraries, but, without the actual
library names, it does not load their symbol tables. Puma cannot,
therefore, determine the names of the procedures defined in the libraries.
In this situation, Puma displays the full pathname of the dynamically
loaded library rather than the procedure name. For example:

/usr/shlib/libc.sl

There are two conditions under which Puma is unable to determine the
name of the procedure associated with a call frame:

= The procedure's name was omitted from the binary, as dictated by the
options used in compilation and linking.

= The procedure has a nonstandard call frame format (for example, for
some assembly language procedures).

In this situation, Puma displays the virtual address of the procedure
rather than its name. For example:

va(Xxxx)

where xxxx is the va (virtual address) of the procedure.

20 Chapter2

Puma Concepts
How Puma Analyzes Recursive Procedures

How Puma Analyzes Recursive
Procedures

When procedures in a program are recursive, the call structure at run
time (the dynamic call structure) can be more complex than the order of
procedure calls that is apparent before run time (the static call
structure). The Recursion Collapsing area of the Call Tree Analysis
window allows you to specify how you want Puma to collapse its
reporting of recursive routines.

Recursion Collapsing

A program with recursion can have a deceptively large call tree. Showing
the many paths to a given routine might give you more information than
you need while obscuring important patterns of recursion.

Suppose, for example, you have a routine named main that calls routine
r; routine r calls itself recursively to Level 3, and r also calls routine s.
If you got one sample from each of the possible stack traces, you would
have the following:

main
main
main
main
main

r
r
r
r
r
main r

===

S
r
rs

A hierarchical analysis (in text-mode) might look like this:

Samples Samples

In or Under In Only

Raw Count Raw Count Level

6 0 1 main
6 1 2 r

1 1 3 S
4 1 3 r

1 1 4 S
2 1 4 r
1 1 5 s

Chapter 2 21

Puma Concepts
How Puma Analyzes Recursive Procedures

(This analysis uses the raw count for clarity; the percentage or parent
percentage would not reflect a strictly accurate picture, as the
percentages are approximations. The in-only raw counts of the nested
procedures add up to the in-or-under raw count of 6 for main .)

This analysis, although correct, does not properly summarize the
program's behavior. It does not show that three of the six stack traces are
of the form main [r...] r and three are of the form main [r...] s
Recursion collapsing remedies this. When you request recursion
collapsing, Puma does not make a new node in a tree of call chains if it
encounters a recursive call. Instead Puma creates a recursive stub that
represents the recursion and refers to the place higher up the call chain
where the same routine occurs. Puma then jumps up in the tree to that
point and continues playing out the stack trace. In effect, call chains are
truncated. The following sample analysis presents a collapse of the
recursion in the earlier example.

Samples Samples

In or Under In Only

Raw Count Raw Count Level

6 0 1 main
6 3 2 r

1 (2 3 3 S

3 r...

The first line of this analysis is the same as the earlier one. The second
line, for r, shows all three main [r...]r calls attributed in the in-only
column to r, since levels have been collapsed. The third line shows three
samples attributed to s. The notation 1 (2) indicates one sample at this
level and two at lower levels. In other words, there were three stack
traces that passed through this point in the tree; one got there directly
through the ancestors as shown, while two got there after some skipping
through the recursive stubs. Note that only in-or-under data is split up
according to whether recursive stubs were traversed; the in-only data is
not. The fourth line, r..., represents the recursive stub. It indicates that
the parent routine (r at Level 2) called the child (r at Level 3), and a stub
was built pointing up to the parent.

22 Chapter2

Puma Concepts
How Puma Analyzes Recursive Procedures

Puma Recursion Collapsing Options

There are four degrees of recursion collapsing to choose from in a Puma
analysis. They are, in order of increasing presence of recursion
collapsing:

No collapse Performs no recursion collapsing.

Direct collapse Performs recursion collapsing for
direct recursion (that is, if a routine
calls itself directly).

Conservative collapse Performs recursion collapsing unless
doing so would omit any routine
names out of the call chain.

Full collapse Performs recursion collapsing
whenever it encounters a routine for
which there is a higher instance in
the call tree.

No Collapse

As its name implies, the No collapse option causes Puma to perform
no recursion collapsing at all. In the example above, No collapse would
produce the first of the two analyses.

Direct Collapse

The Direct collapse option indicates that a recursive stub should be
used only for direct recursion, that is, only if the prior instance of a
routine in the call tree is the immediate parent of the current instance.
For instance, the call chain mainaaab would have a stub built from
the second a and would effectively be collapsed to mainab . However,
the call chainmainabab would not have recursive stubs built,
because neither the recursive call to a nor the recursive call to b is direct.

Conservative Collapse

The Conservative collapse option builds recursive stubs in more
circumstances than the Direct collapse . It builds a recursive stub if
doing so would not lose any routine names out of the call chain; that is, if
the routines being cut out are duplicated higher up in the stack trace.
For instance, the call chainmainabab would not have a recursive

Chapter 2 23

Puma Concepts
How Puma Analyzes Recursive Procedures

stub built at the recursive call to a, since the transformation from main
aba tomaina loses the only instance of b. However, it would have a
recursive stub at the recursive call to b, since the collapsing of mainab
ab tomainab loses an instance of a, but leaves another one. As
another example, the call chainmainabcbadc would not have
any recursive stubs using Conservative collapse . Building a stub at
the recursive second call to b would lose c; building one at the recursive
second call to a would lose b and c; and building one at the recursive
second call to ¢ would lose d.

Full Collapse

The Full collapse option causes a recursive stub to be built whenever
there is any higher instance of a routine in the call tree. For example, for
mainabcbadc , the call chain that is discussed above, a stub

would be created from the recursive call to b, and another at the
recursive call to a. There would not be one at the recursive call to c,
because after the other recursive jumps the other instance of ¢ is no
longer higher in the tree. In particular, the analysis just from this one
stack trace would look like the following example.

Samples Samples

In or Under In Only

Raw Count Raw Count Level

1 0 1 main

1 0 2 a

1 0 3 b

1 0 4 c
5 b...
4 a...

0 (1) 0 3 d

0 (1) 1 4 c

When Puma encounters the second b in the call chain mainab c

badc ,itbuilds a recursive stub (at Level 5 in the analysis) up to the
higher b (at Level 3). It then jumps up to that b. When it comes to the
second a, Puma builds a recursive stub (the a at Level 4) as a child of the
instance of b at Level 3, and pointing up to the instance of a at Level 2.
For d, Puma builds an ordinary node (not a recursive stub). For the final
¢ (the last line of the analysis), it does not build a recursive stub, because
the first c is not an ancestor of the current node. The ancestors of the
current node are d , a (at Level 2), and main (at Level 1). The last two

24 Chapter2

Puma Concepts
How Puma Analyzes Recursive Procedures

lines have 0 as their direct value and 1 as their indirect value, because
those nodes were reached only after traversing recursive stubs. When a
node, such as a at Level 2, is reached directly and then again in the same
stack trace through a recursive stub, the direct arrival counts; that is
why these lines have a direct value of 1.

Chapter 2 25

Puma Concepts
How Puma Analyzes Recursive Procedures

26 Chapter2

Puma Command Quick
Reference

This chapter provides a quick summary of the commands available in the
Puma command-line and shell script interfaces. .

27

Puma Command Quick Reference
Data Collection Commands

Data Collection Commands

mdhnitor] [monitor_options] Perform data collection, using the
given options.

sh[ow] mdnitor] Show the current default
data-collection options.

se[t] mdnitor] monitor_options Modify the default data-collection
options.

pr [ocesses] List the processes currently
executing on the machine.

Data Analysis Commands

anfalyze] [analyze_options] Generate an analysis, using the given
options.

sh[ow] an[alyze] Show the current default analysis
options.

se[t] an[alyze]analyze options Modify the default analysis options.

th [reads] List the threads for which data has
been collected in the currently
selected data file.

28 Chapter3

Puma Command Quick Reference
Miscellaneous Commands

Miscellaneous Commands

e[xit]

he[lp] [command]

mgn] command

qluit]
show] al [l] [>filename]

ve[rsions]

Exit from Puma command interface.

Provide general help information
(when no argument) or help
information on a Puma command
(when command is supplied).

Provide a full description of the
specified Puma command.

Exit from Puma command interface.

Show defaults for data-collection and
analysis commands; optionally write
them to filename.

Display the version number of Puma
and whatever managers are loaded.

Chapter 3

29

Puma Command Quick Reference
Miscellaneous Commands

30 Chapter3

XPS Overview, Options, and
Commands

This chapter contains a brief description of XPS, including information

on its options and commands.

31

XPS Overview, Options, and Commands
XPS Overview

XPS Overview

Figure 4-1 XPS Display

Statistics Display for zeus User smith

CPU Percentage
Process Name g

vuelogin

vuesession

vuehelp

vanderbilt

vuewm

ksh

hpterm

S

getmail

S

Xps

S

vi

Other Processes

OS Processes

1/O Type I:) per second :
Network '

Disk

Network 1/O Type Network IO per second
T T T T

Paging Requests

Paging Service
Other Traffic

XPS displays process and 1/0 usage dynamically, using a bar chart
interface based on OSF/Motif.

For each process that you own, XPS displays a separate bar showing the
relative percentage of CPU time being consumed by that process.

You can display other user processes and OS server processes
individually, with a separate bar for each process. Or, you can collapse
these processes into groups, with a single bar for each group. The options
that control these and other features are listed in “XPS Options” on page
34 and online on the xps(1) man page.

32 Chapter4

NOTE

XPS Overview, Options, and Commands
XPS Overview

When you invoke the xps command, you will see a display like that
shown in Figure 4-1.

The Process Name section provides the names of your processes. By
default, XPS groups all other user processes under Other Processes
and all operating system processes under OS Processes . To expand
Other Processes and display the processes individually, use the -p
option. To expand OS Processes and display the processes individually,
use the -I1 option.

The I/O Type section provides the following information:

Network The number of network messages sent or received per
second within the sample interval.

Disk The number of disk reads or writes per second within
the sample interval.

The Network 1/0 Type section provides the following information:

Paging Requests The number of requests to read or
write per second from the monitoring
machine within the sample interval.

Paging Services The number of requests received to
read or write per second from other
machines within the sample interval.

Other Traffic The number of network messages
sent or received per second that are
unrelated to paging requests and
paging services within the sample
interval.

XPS is provided as an analysis tool for programmers. If you are
interested in monitoring system performance on an ongoing and regular
basis, we recommend that you use the HP GlancePlus product.

Chapter 4 33

XPS Overview, Options, and Commands
XPS Options

XPS Options

Specify options as a single option or as a list of options separated by
spaces. The available options are:

-rn Update the display every n seconds. By default, the
display is updated every 4 seconds.

-p Expand the Other Processes group to show a bar for
each process. Other processes are all user processes
other than the processes that you own. By default, XPS
groups all these processes and displays them with a

single bar.

-0S Group all OS server processes and display them with a
single bar. This is the default.

-11 Expand the OS Processes group to show a bar for each
process.

-m Show a bar for idle (that is, unused) CPU time. XPS

calculates this value as 100% minus the sum of all the
current process times. By default, this bar is not

displayed.
-a Show all information (same as -p -1 -m).
-large Use large font for display. This is the default.
-small Use small font for display.

34 Chapter4

Table 4-1

XPS Overview, Options, and Commands
XPS Window Commands

XPS Window Commands

While XPS is running, you can use various keys to move within the
window, to get help, and to exit.

Table 4-1 shows the definitions for various keys while XPS is running.
XPS Key Definitions

Task Predefined Key
Scroll backward 1/2 window Prev Page Up
Scroll forward 1/2 window Next Page Down
Scroll backward 1 line Shift -Up Arrow
Scroll forward 1 line Shift -Down Arrow
Move to top Ctrl-T
Move to bottom Ctrl-B
Help Ctrl-H Shift -H
Exit Ctrl-C Ctrl-N Q q

Chapter 4 35

XPS Overview, Options, and Commands
XPS Window Commands

36 Chapter4

Glossary

Active A state of a procedure.
Puma considers a procedure to be
active if control is in the procedure
itself or in any of its descendants.

Ancestor A procedure that calls
the given procedure, either directly
or through another procedure or
procedures. Contrast with parent.

Child A procedure called directly
by the given procedure. Contrast
with descendant.

Conservative collapse An
analysis specification that
instructs Puma to perform
recursion collapsing unless doing
so would omit any routine names
out of the call chain.

Context The collective name for
Puma's target program, the
directory where the target
program executes, and the
pathname of the file to which
Puma writes the collected data.
Puma context also includes any
search directories you have
provided for target source files.

Count A Puma analysis
mechanism that produces a raw
count (as opposed to a percentage)

for a given statistic in the analysis.

Data file A file in which Puma
stores the data that it collects from
a process. Data files are used
during analysis and playback.

Descendant A procedure that is
called by the given procedure,
either directly or through other
procedures. Contrast with child.

Direct collapse An analysis
specification that instructs Puma
to perform recursion collapsing
only for direct recursion (that is,
when a routine calls itself
directly).

Flat report A Puma analysis
that indicates the overall
percentage of time spent in-only
and/or in-or-under each procedure,
regardless of the procedure's
ancestors. A flat report does not
reflect the dynamic calling
structure of a program. Contrast
with Hierarchical report.

Flow See Program flow.

Full collapse An analysis
specification that instructs Puma
to perform recursion collapsing
whenever it encounters a routine
for which there is a higher
instance in the call tree.

Glossary

37

Glossary

Granularity The degree of detail
in which Puma displays analysis
data. Data may be shown
separately for each routine or
library of a program; or data may
be aggregated and associated with
the top-level caller. The former
granularity is called "in-only"; the
latter is called "in-or-under.”

Hierarchical report A Puma
analysis that reflects the dynamic
calling structure of a program,
giving a structured breakdown of
where the program spends its
time. Contrast with Flat report.

In-only A term used to refer to
execution time spent within a
procedure but not within its
descendants. Contrast with in-or-
under.

In-or-under A term used to refer
to execution time spent within a
procedure and/or its descendants.
Contrast with in-only.

Interval See sample interval.

Level cutoff A specification that
limits the nesting depth of a Puma
hierarchical analysis to a certain
number of levels. The default is a
level cutoff of 64.

Library As a Puma data-
collection option, the term library
refers to a dynamically loaded
library; that is, a collection of
executable routines bound
together. Library routines are
loaded into the target program
when one of the routines is called
by the target program.

Limit The lowest percentage of
execution time included in a Puma
display. The default limit is 1.

Monitor To collect performance
data from an executing program.

No collapse An analysis
specification that instructs Puma
to collapse none of the recursion of
a program, but instead to show the
full dynamic tree.

Overhead The time spent by
Puma recording and displaying a
sample during data collection.

Parent A procedure that directly
calls the given procedure. Contrast
with ancestor.

Percentage A Puma analysis
mechanism that produces a
statistical value as a percentage of
the value for the whole set of
samples being analyzed.

38

Glossary

Glossary

Percent cutoff A specification
that restricts entries in a Puma
analysis to procedures consuming
more than a certain amount of
execution time. By default, the
percent cutoff is 0, which, in effect,
instructs Puma to include
information about every procedure
that consumes 0% or more of the
execution time (that is, every
procedure that occurred in any
stacktrace that Puma recorded).

Performance statistics A set of
metrics that Puma collects from a
program run to aid in analyzing
performance. These include time
spent in user space ("user cycles"),
time spent in system space
("system cycles™), major page
faults, minor page faults, socket
messages sent, socket messages
received, signals received, files
open, page swaps, and characters
(bytes) of 1/0.

Play back To use data
accumulated while monitoring a
program to examine the sequence
of the execution of the program.

Procedure cutoff A cutoff that
excludes calls beneath a given
procedure from the analysis.

Program call tree A graphical
image of the currently active stack
trace and the siblings of each
procedure in that stack trace.

Program counter A register in
the CPU that contains the address
of the next instruction to be
executed.

Program flow The procedure
path through which the execution
of a program has gone to bring the
program counter to its current
location.

Process A binary executed by the
CPU. Each process is executed
independently.

Recursion Any situation in which
procedure calls are circular; for
example, when a procedure calls
itself, when a procedure calls the
procedure that called it, or when a
procedure calls farther back up the
call chain.

Glossary

39

Glossary

Recursion collapsing A Puma
analysis mechanism for reporting
on the recursion of a program.
When you request recursion
collapsing, Puma may not make a
new node in a tree of call chains if
it encounters a recursive call
(depending on the type of recursion
collapsing you specify). Instead
Puma creates a recursive stub that
represents the recursion and refers
to the place higher up the call
chain where the same routine
occurs. Puma then jumps up in the
tree to that point and continues
playing out the stack trace.

Resources See Performance
statistics.

Sample The data obtained from
one interruption of an executing
program. The sample includes
statistical information and a stack
trace.

Sample interval The period of
time between samples taken
during data collection.

Samples per second The number
of samples Puma gathers per
second that a target program has
been allowed to run during data
collection.

Sibling A procedure with the
same parent as the given
procedure.

Stack Trace The sequence of
procedure calls leading to the
program counter at any given time.

Step To reconstruct the execution
of a program one sample at a time.

Target program A program from
which Puma collects performance
data.

Thread An independent stream
of program execution. A program
may be made up of one or more
threads; multiple threads in a
program cooperate in solving a
common problem.

Virtual CPU time The time the
processing unit spends in the
user's program, excluding time
spent waiting for 1/O or executing
other programs.

Wall-clock time The total time
taken for program execution,
including disk and memory
accesses, 1/0, and operating system
overhead.

40

Glossary

Index

A

analysis commands
Puma, 28
ancestor of a procedure, 14

C

Call Tree Analysis window
Puma, 5

child procedure, 14

collecting performance data
Puma, 5

command syntax
Puma, 28

command-line interface
Puma, 6

Conservative collapse
Puma, 23

D

data collection commands
Puma, 28
data files
Puma, 5, 17
descendant of a procedure, 14
Direct collapse
Puma, 23

E

example program, 7
exiting Puma, 3

F

Full collapse
Puma, 24

H

help
Puma, 5, 6
TTV, 9
XPS, 10

|
in-only, 16
in-or-under, 16
instrumented thread library, 8
invoking
Puma, 3
TTV, 8
XPS, 10

K

key definitions
XPS, 35

L

libraries
Puma and, 20
libthread_tr, 8

M

MANPATH variable, 2

miscellaneous commands
Puma, 29

monitor commands (Puma), 28

N

No collapse
Puma, 23

O

online help

Puma, 5, 6

TTV, 9

XPS, 10
options

XPS, 34
/opt/langtools/bin, 2
/opt/langtools/share/man, 2
overhead

Puma, 18

Index

41

Index

P

Pan/Zoom window
Puma, 5
parent procedure, 14
PATH variable, 2
Playback Thread States window
Puma, 5
procedure names
Puma, 20
procedure relationships, 14
procedures
active, 16
procedure names (Puma), 20
unknown, 20
process display
XPS, 32
Puma
analysis commands, 28
Call Tree Analysis window, 5
collecting performance data, 5
command syntax, 28
command-line interface, 6
Conservative collapse, 23
data collection commands, 28
data files, 5, 17
Direct collapse, 23
exiting, 3
Full collapse, 24
invoking, 3
miscellaneous commands, 29
monitor commands, 28
No collapse, 23
online help, 5, 6
overhead, 18
Pan/Zoom window, 5

Playback Thread States window,

5
procedure names, 20
recursion, 21
recursion collapsing options, 23
resource use, 17
running, 3
sample gathering, 16

sample interval, 18
shell script interface, 7
stack traces, 16
statiscal information, 17
statistical base, 19
tutorial, 5
user interfaces, 3
using, 3
puma command, 3
Puma commands
quick reference, 28
puma -text command, 6

Q

quick reference
Puma commands, 28

R

recursion
Puma, 21

recursion collapsing options
Puma, 23

resource use
Puma, 17

running Puma, 3

S

sample gathering
Puma, 16

sample interval
Puma, 18

sample program, 7

shell script interface
Puma, 7

sibling procedure, 14

stack traces, 16

statiscal information
Puma, 17

statistical base
Puma, 19

42

Index

Index

T

trace_thread.h, 8

TTV (Thread Trace Visualizer)
online help, 9
using, 8

tutorial, 5

U

unknown procedures, 20
user interfaces

Puma, 3
using
Puma, 3
TTV, 8
XPS, 10
\Y
va, 20
vanderbilt

example program, 7

procedure relationships, 14
virtual address

procedure, 20

W

window commands
XPS, 35

X

XPS
key definitions, 35
online help, 10
options, 34
overview, 32
process display, 32
using, 10
window commands, 35

Index 43

