HP 9000 Networking

STREAMS/UX for the HP 9000
Reference Manual

HP Part No. J2237-90005
Printed in U.S.A.
E0195

Edition 2
© Copyright 1995, Hewlett-Packard Company.

(/;/” HEWLETT®

PACKARD

Legal Notices

Legal Notices

The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purposélewlett-Packard shall not be held liable for
errors contained herein or direct, indirect, special, incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett-
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Restricted Rights Legend.Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1) (i)
of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19
for other agencies.

HEWLETT-PACKARD COMPANY
3000 Hanover Street
Palo Alto, California 94304 U.S.A.

Use of this manual and flexible disk(s) or tape cartridge(s) supplied for this

pack is restricted to this product only. Additional copies of the programs may
be made for security and back-up purposes only. Resale of the programs in
their present form or with alterations, is expressly prohibited.

Copyright Notices. ©copyright 1983-95 Hewlett-Packard Company, all
rights reserved.

Reproduction, adaptation, or translation of this document without prior
written permission is prohibited, except as allowed under the copyright laws.

©copyright 1979, 1980, 1983, 1985-93 Regents of the University of
California

This software is based in part on the Fourth Berkeley Software Distribution

Legal Notices

under license from the Regents of the University of California.

©copyright 1980, 1984, 1986 Novell, Inc.

©copyright 1986-1992 Sun Microsystems, Inc.

©copyright 1985-86, 1988 Massachusetts Institute of Technology.
©copyright 1989-93 The Open Software Foundation, Inc.
©copyright 1986 Digital Equipment Corporation.

©copyright 1990 Motorola, Inc.

©copyright 1990, 1991, 1992 Cornell University

©copyright 1989-1991 The University of Maryland

©copyright 1988 Carnegie Mellon University

Trademark NoticesUNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited.

X Window System is a trademark of the Massachusetts Institute of
Technology.

MS-DOS and Microsoft are U.S. registered trademarks of Microsoft
Corporation.

OSF/Maotif is a trademark of the Open Software Foundation, Inc. in the U.S.
and other countries.

Printing History

Printing History

The manual printing date and part number indicate its current edition. The
printing date will change when a new edition is printed. Minor changes may
be made at reprint without changing the printing date. The manual part
number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or document
product changes. To ensure that you receive the updated or new editions, you
should subscribe to the appropriate product support service. See your HP
sales representative for details.

Edition 1: October 1992
Edition 2: January 1995

Preface

Preface

STREAMS/UX for the HP 9000 is Hewlett Packard's implementation of the
AT&T de facto standard environment for communications protocols.

STREAMS/UX consists of the STREAMS environment, Transport Layer
Interface (TLI), and XTI. TLI is an industry de facto standard application
program interface for implementing transport-level communications by
means of STREAMS-based network protocol stacks. HP also provides a
Data Link Provider Interface (DLPI) adapter with the core operating system.
DLPI is one industry standard definition for message communications to
STREAMS-based network interface drivers.

This manual includes information on how to install STREAMS/UX, how to
program with STREAMS/UX, and how to debug STREAMS/UX programs.
The programming information in this manual is intended to be used in
conjunction with the AT&T STREAMS manual calleiNIX System V
Release 4 Programmer's Guide: STREAMS

This manual contains the following chapters:

Chapter 1 Installation and Verification of STREAMS/UX
describes product installation using HP's installation and
update progranswinstall and describes how to verify
the installation.

Chapter 2 Detailed Product Information provides a more in-depth
explanation of the product installation, including instruc-
tions for manual kernel builds, information about
STREAMS drivers and modules, and descriptions of
STREAMS-related device files.

Chapter 3 Differences Between STREAMS/UX and System V
Release 4 STREAMSummarizes differences in areas
such as commands, system calls, utilities, drivers and data
structures, and is intended primarily for programmers.
Chapter 3 is written with the assumption that the
programmer has already read the AT&T maruidlX
System V Release 4 Programmer's Guide: STREAMS

Preface

Chapter 4

Chapter 5

Chapter 6

Chapter 7

STREAMS/UX Multiprocessor Support discusses UP
emulation, writing MP scalable modules and drivers, how
to port SVR4 MP modules and drivers to HP-UX, and
synchronization levels.

How to Compile and Link STREAMS/UX Drivers,
Modules, and Applicationsprovides step-by-step
instructions for each of these topics.

Debugging STREAMS/UX Modules and Drivers
provides a detailed look at how to use strebandadb
debugging tools to debug STREAMS modules and
drivers.

STREAMS/UX-NetTL Link describes how STREAMS
uses the Network Tracing and Logging facility.

Installation and Verification of STREAMS/UX 13
System Requirements 15

STREAMS/UX Filesets 16

Loading STREAMS/UX Software 17

Configuring STREAMS-based Pipes with SAM 18
Verification of Correct Installation 19

Detailed Product Information 21

Adding STREAMS Drivers and Modules 23
Manual Kernel Build Procedures 23

STREAMS Drivers and Modules 25

STREAMS Drivers 25

STREAMS Modules 25

Miscellaneous STREAMS Functionality 25

Kernel Tunable Parameters 26
STREAMS-Related Device Files (Framework-specific) 28
Differences Between STREAMS/UX and System V Release 4 STREAMS 29
Overview 31

HP-UX Changes to STREAMS/UX Commands 32
autopush 32

strace and strerr 33

HP-UX Changes to STREAMS/UX System Calls 34
fattach Modifications 35

ioctl Modifications 35

pipe Modifications 35

putmsg and putpmsg Modifications 36

Maximum and Minimum Data Buffer Size 36
Maximum and Minimum Control Buffer Size 36
Data Buffer Segmentation 36

Write Offset 37

select Modifications 37

signal Modifications 38

write and writev Modifications 38

Maximum and Minimum Data Buffer Size 38

Data Buffer Segmentation 38

Write Offset 39

HP-UX Modifications to STREAMS/UX Utilities 40

esballoc 41

cmn_err 42

freezestr and unfreezestr 42
get_sleep_lock 42

itimeout 43

kmem_alloc 43

LOCK 43

LOCK_ALLOC 44

putctl2 44

putnextctl2 45

gprocson and gprocsoff 45
streams_put utilities 46
SV_WAIT 46
SV_WAIT_SIG 47
TRYLOCK 48

UNLOCK 48

weldg and unweldq 48
unweldqg 49

weldqg 50

vtop 51

HP-UX Changes to STREAMS/UX Drivers and Modules 52
clone 53

strlog 53

sad 53

echo 54

sc 54

timod 55

tirdwr 55

Stream Head 55

pipemod 56

HP-UX Changes to STREAMS/UX Data Structures 57
Message Structures 58
msgb 58

iocblk 58

copyreq 58

copyresp 58

Queue Structure 59

STREAMS/UX Data Structure Restrictions 60

STREAMS/UX Uniprocessor Synchronization 61

STREAMS/UX Internal Synchronization 61

Driver and Module Synchronization 63

Multiple Processes Accessing the Same Stream 64

The STREAMS/UX Scheduler 64

HP-UX Changes to Cloning 65

STREAMS/UX Hardware Driver Writing 68

STREAMS/UX Multiprocessor Support 69

Running Modules and Drivers in Uniprocessor Emulation Mode 71
How STREAMS/UX Executes UP Emulation Modules and Drivers 71
Configuring Modules and Drivers for UP Emulation 72

Mixing MP Scalable and UP Emulation Modules and Drivers 74
Performance 76

Guidelines for UP Emulation Modules and Drivers 76

Writing MP Scalable Modules and Drivers 78

Overview of STREAMS/UX MP Support 78

Suggestions for Designing MP Scalable Modules and Drivers 81
Configuring MP Scalable Modules and Drivers 82

MP Scalable Module and Driver Configuration 82

Master File $DEVICE Table Configuration 83

Module and Driver Install Function Configuration 83

Configuring the NSTRSCHED Tunable 87

Guidelines for MP Scalable Modules and Drivers 87

Porting SVR4 MP Modules and Drivers to HP-UX 92

Differences between SVR4 and HP-UX MP STREAMS 92
Strategies for Porting SVR4 MP Modules and Drivers to HP-UX 93
MP Synchronization Levels on a Uniprocessor 94

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications 103
Compiling STREAMS/UX Drivers and Modules 105

Linking STREAMS/UX Drivers and Modules into the Kernel 107
Adding Driver Header and Driver Install Routine 107

Modifying Your Master File 112

Dynamically-Assigned Major Numbers and Isdev(1) 114
Compiling and Linking STREAMS/UX Applications 115

Compiling and Linking TLI/XTI Applications and Threads 116
Debugging STREAMS/UX Modules and Drivers 119
Introduction 120

System V Debugging Tools Supported by STREAMS/UX 121
STREAMS/UX Tracing and Logging 121

cmn_err() and printf() 121

Dump Module Example 121

strdb and adb 122

STREAMS/UX Debugging Tool 123

Running strdb 123

strdb Commands 123

STREAMS/UX Subsystem Commands 124

? and h Commands 125

g Command 126

v Command 126

s Command 126

la Command 127

Im Command 127

I Command 127

Ip Command 128

gc Command 128

gh Command 129

Primary Commands 129

Data Structure Navigation Commands 129

Commands to Change strdb Session Characteristics 140
Debugging with strdb 145

Example 1: Flow Control and Fragmentation 146
Example 2: Simple Driver Programming Error 153
Example 3: Simple Application Programming Error 162
HP-UX Kernel Debugging Tools 166

HP-UX Kernel Debugging Tools and strdb 168

What Is a System Panic? 168

Traps 169

Data Segmentation Faults 169

Instruction Page Faults 169

Protection Violations 170

10

Generating and Retrieving System Core Dumps 171

Setting Up Your System To Save a Core Dump 171

Manually Getting a Core File from the Swap Partition 172
Problems Encountered In Saving/Obtaining a Core Dump 172
Transfer of Control In Case of System Hang 172

Core File Size Requirements 173

Symbol Information 173

Using adb 174

Invoking adb 174

Context on Entry to adb 174

Debugging Hung Systems 175

Finding the Panic Message 176

Interpreting the Panic Stack Trace 177

Manual Stack Back-Tracing 177

PA-RISC Procedure Calling Conventions Overview 178

Basic Stack Back-Tracing 180

Exceptions to the Four Steps 182

Mapping Assembly Language Locations to Source Code Lines 184
Obtaining Procedure Argument Values 186

Obtaining the First Four Arguments 186

Obtaining Arguments 5 through N 189

Obtaining Register Contents from Trap save_state or panic_save_state Areas 190
Obtaining Important Kernel Global Variables 191

Obtaining Values from the Process Table Entry and User Area 192
Important User Area Fields 193

Important Process Table Fields 193

Debugging Examples 196

Example 1 196

Example 2 201

Example 3 208

STREAMS/UX-NetTL Link 217

Mapping from STREAMS/UX Messages to NetTL Messages 219
STREAMS/UX Subsystem ID and Subformatter 220

Subsystem ID 220

Subformatter 220

Quick Guide On How to Use NetTL for STREAMS/UX 221

11

12

Installation and Verification of
STREAMS/UX

13

Installation and Verification of STREAMS/UX

This chapter covers installation, configuration and verification of the
STREAMS/UX subsystem for HP-UX systems, and consists of the
following sections:

» System requirements

+ STREAMS/UX filesets

» Loading STREAMS/UX software

e Configuring STREAMS-based pipes with the SAM program

» Verification of correct installation usingdfckandstrvf

14

Installation and Verification of STREAMS/UX
System Requirements

System Requirements
STREAMS/UX is installed and configured automatically during an HP-UX
10.0 installation.

STREAMS/UX does not require any dedicated hardware. Its drivers are all
pseudo drivers.

STREAMS/UX is supported on all HP9000 Series 700 and 800 systems that
HP-UX 10.0 supports.

15

NOTE:

Installation and Verification of STREAMS/UX
STREAMS/UX Filesets

STREAMS/UX Filesets

The HP-UX STREAMS product is organized into filesets. The filesets are
organized by grouping together the files that make up the runtime
environment, the kernel build components, and the manpages.

« STREAMS-RUN—Contains Transport Level Interface (TLI) library, X/Open
Transport Interface (XTI) library, STREAMS/UX commands and
STREAMS/UX user-space header files.

e« STREAMS-MAN—Contains the STREAMS/UX man pages.

e STREAMS-KRN—Contains STREAMS/UX kernel library and kernel header
files.

The library/ust/lib/libstr.a provided as part of the HP-UX 9.0 STREAMS/UX
product is no longer supplied as of HP-UX 10.0. The STREAMS/UX system calls
for compiling STREAMS/UX applications are now part of the C libraries (for
examplelibc.sl andlibc.a) as of HP-UX 10.0.

A fileset is a logical grouping of software files. HP uses this structure for
organizing distribution of a product's software components. This fileset
organization is then used by HP's installation progsammnstall to load
product files onto a system. For more informatioswinstall refer to the
Installing and Updating HP-UXnanual.

16

Installation and Verification of STREAMS/UX
Loading STREAMS/UX Software

Loading STREAMS/UX Software

Follow the steps below to load STREAMS/UX software using the HP-UX
swinstallprogram.

1
2

9

Insert the software media (tape or disk) into the appropriate drive.
Run theswinstallprogram using the command:

Jusr/sbin/swinstall

Enter the mount point of the drive in the Source Depot Path field, and activate the
OK button to return to the Software Selection Window.

The Software Selection Window now contains a list of available software to
install.

Highlight the STREAMS/UX software. The “Selected” menu becomes active.

Choose Mark for Install from the “Selected” menu to choose the product to be
installed.

Choose Install from the “Install” menu to begin product installation and open the
Install Analysis Window.

Activate the OK button in the Install Analysis Window when the Status field
displays a Ready message.

Activate the Yes button at the Confirmation Window to confirm that you want to
install the software.

swinstallloads the fileset, runs the customized scripts for the fileset, and builds
the kernel.

Activate the OK button on the Note Window to return to the Install Window.

10 Activate the Show Lodfile button to check for installation error messages. Refer

to the message, cause and actions to correct any unresolved problems.

11 Activate the OK button in the Logfile Window to return to the Install Window.

12 Activate the OK button in the Install window to return to the Software Selection

Window.

13 Choose Exit from the “File” menu to leaswinstall

17

Installation and Verification of STREAMS/UX
Configuring STREAMS-based Pipes with SAM

NOTE:

Configuring STREAMS-based Pipes with SAM

System Administration Manager (SAM) allows you to configure various
tunable parameters. After installation is complete, all of the STREAMS/UX
parameters are set to a default value and do not require any modifications.
You may, however, want to change one tunable parameter. If you want to use
STREAMS-based pipes, you will need to change this default value.

By turning on STREAMS-based pipes, ALL of the pipes created by the pipe(2)
command on the system will be STREAMS-based.

You can use SAM to configure STREAMS-based pipes. Follow the steps
below:

1 In SAM, choose “Kernel Configuration,” followed by “Configurable
Parameters.”

2 Highlight the “streampipes” label, then select “Modify Configurable Parameters”
from the Actions menu.

3 Under the label “Choose One to Modify Parameters,” choose “Specify New
Formula Value.” Set the formula value to 1 (one), then press OK.

4 In the File menu, choose exit. Before SAM exits, it will ask you when you want
to have the new kernel created. Choose “Create a New Kernel Now.”

5 Press OK. The new kernel will be built and moved into place.

18

Installation and Verification of STREAMS/UX
Verification of Correct Installation

Verification of Correct Installation

Follow these steps to verify that the installation is correct:

1 Run thelusr/bin/pdfckcommand to verify that the STREAMS/UX software was
correctly installed on your system. Verification is done by checking a master
product description filepdf), which is delivered with the fileset, against the files
just installed on the system. Rpdfckon each of the filesets thawinstall

installed:

lusr/bin/pdfck /system/STREAMS-KRN/pdf o o
lusr/bin/pdfck /system/STREAMS-MAN/pdf (if fileset is installeyl
lusr/bin/pdfck /system/STREAMS-RUN/pdf

{usr/bin/pdfck /system/STREAMS-PRG/pdf (if fileset is installed)

If the installation is correct, you should only receive a prompt after running the
pdfckcommand. Ipdfckfinds a problem, it will report errors in the form of:

pathname: diff_field[(details)][,...]

wherediff_fieldis one of the field names specified in pdf(4). The fields are
pathnameowner, group, mode size links, version checksumandlinked_ta

Each field is separated by a colon (:). For more information, refer to the pdf(4),
pdfdiff(1M) and pdfck(1M) man pages.

Any differences found bpdfckusually indicate installation problems. Verify
that the STREAMS software was installed properly by reviewing steps 1
through 13 in the “Loading STREAMS/UX Software” section, and redo these
steps if necessary.

2 To verify that STREAMS/UX software was properly configured into your
HP-UX kernel, run the STREAMS verification tostyvf, by typing:

/usr/sbin/strvf

If the STREAMS software has been properly installed and configured into the
kernel, you should see the following messages:

-> Logging results to /var/adm/streams/strvf.log

-> Verify HP Streams installation. Verify open, putmsg, <-
-> getmsg, ioctl, and close can be performed on a stream.<-

-> HP Streams is installed and operational <-

19

Installation and Verification of STREAMS/UX
Verification of Correct Installation

If you wish, you can use theerbose(-v) option to receive information on what
strvfis doing. strvf checks the following items:

STREAMS kernel daemons are running.

The echo driver (a core STREAMS driver) can be opened.

aputmsd) can be performed on teehodriver.

agetms() receives the same message semiutgnsg()

A STREAMSioctl can be passed to the echo driver and acknowledged.

Theechodriver can be closed.

20

Detailed Product Information

This chapter provides a more in-depth explanation of the STREAMS/UX
product installation than Chapter 1. The information provided here is
primarily for reference.

21

Detailed Product Information

This chapter contains information about core STREAMS drivers and
modules, lists STREAMS-related tunables, and lists STREAMS-related
device files.

22

NOTE:

NOTE:

Detailed Product Information
Adding STREAMS Drivers and Modules

Adding STREAMS Drivers and Modules

The instructions below do not apply to clustered systems. If your system is
attached to a cluster, follow the instructions in System Administration Tasks for
Series 700 computers to configure the kernel. Alternatively, you can also create a
new kernel using the SAM utility.

Before attempting this procedure, familiarize yourself with the system
reconfiguration information in thenk_kernel(1IM)manual reference page and
HP-UX system literature.

Refer to the System Administration manual for your system for complete
instructions on how to create a kernel.

The software installation prograswinstall usually builds a kernel

correctly during product installation. In the unlikely event that the kernel is
not built correctly, follow the steps below for manually building a
STREAMS kernel.

The process involves modifying the kernel configuration input file to include
the STREAMS subsystem, driver and module keywords.

Manual Kernel Build Procedures

If you used some other file to create the kernel previously, copy that file to
/stand/systerbefore following the steps below.

1 Ensure that you have super-user capabilities.
2 Change to théstanddirectory.

3 Make a backup copy of your current configuration description file (which is
commonlysystenor build/system.SAM

4 Edit thesystenfile to add drivers and/or change system parameters.
hpstreams;
dipi;
clone;

strlog;

23

Detailed Product Information
Adding STREAMS Drivers and Modules

sad;
echo;
timod;
tirdwr;
ffs
pipemod
pipedev
SC;
Make a copy of the existing kernel (default name vmunix).

Regenerate the kernel withk_kernelusing the editedystenfile as input.
mk_kernekreates the new hp-ux kernel (the default is
/stand/build/vmunnix_testThere are two examples below. The first creates a
new kernel in the build directory calledhunix_testThe second example
automatically moves the kernel to tiséanddirectory and makes a backup if the
file, /stand/vmunixalready exists.

mk_kernel

mk_kernel -s /stand/system -o /stand/vmunix

If you did not use theo option with themk_kernecommand, copy the new
kernel to/stand/vmunix

Reboot the new kernel. If the new kernel fails to boot, boot the system from the
backup kernel and repeat the process of creating a new kernel. To do so, follow
the instructions in your System Administration manual.

24

Detailed Product Information
STREAMS Drivers and Modules

STREAMS Drivers and Modules

The configuration of STREAMS drivers and modules is statically defined at
system creation time. The STREAMS subsystem, core drivers and modules
are part of every 10.0 system.

The following sections contain a list of the core drivers and modules,
STREAMS kernel tunable parameters, and STREAMS configuration data
structure (streams_devs[]) information. See the master(4) manpage for more
details.

STREAMS Drivers

The core STREAMS drivers are:

» clone—provides the device cloning used by STREAMS.

» strlog—provides the STREAMS logging facility.

* sad—provides the STREAMS module autopush capability.

» echo—loopback test driver used by the verification progetwf Refer to the
strvf(1M) manpage.

* pipedev—required for STREAMS-based pipes.

STREAMS Modules
The core STREAMS modules are:

» sc—used by autopush and provides part of the STREAMS module autopush
capability. Refer to the autopush(1M) manpage.

» timod—provides an interface from TLI/XTI to the transport provider.

» tirdwr—another TLI module; provides a read/write interface to the transport
provider.

» pipemod—handles M_FLUSH messages for STREAMS-based pipes.

Miscellaneous STREAMS Functionality
» ffs—file system type required for fattach(3C).

25

Detailed Product Information
Kernel Tunable Parameters

Kernel Tunable Parameters

The following table describes STREAMS configurable parameters that are

in /usr/conf/master.d/streanfide. The master file should not be modified.
The values can be tuned using SAM.

Tunable Name

Default
Value

Use

NSTREVENT

50

N

Determines the maximum number of outstanding STREAM$

bufcalls allowed at any one instance. This needs to be modified

if the protocol modules to be incorporated into STREAMS nged
to have more than 50 bufcalls outstanding at the same time.

STRMSGSZ

8192

Defines the maximum number of bytes that can be sent in the
data part of a STREAMS message using the fungiidmsgand
write. Putmsgwill return ERANGE if a data buffer is sent with ja
size greater than this valuVrite will segment the data into
multiple messages. If STRMSGSZ is 0, the maximum data
message size is infinite.

STRCTLSZ

1024

Defines the maximum number of bytes that can be sent in the
control part of a STREAMS message using the fungiigmsg
Putmsgwill return ERANGE if a buffer is sent with a size greater
than this value. If STRCTLSZ is 0, the maximum control
message size is infinite.

NSTRPUSH

16

Defines the maximum number of STREAMS modules that can be

pushed onto a single stream.

26

Detailed Product Information

Kernel Tunable Parameters

Tunable Name

Default
Value

Use

NSTRSCHED

0

Determines the number of streams scheduler daemons
(smpsched) running on a MP system. The default value is 0
which indicates that Streams will determine the number of
daemons based on the number of processors in the system.
number of MP streams schedulers created is as follows:

of processors # of smpscheds created

2-4
5-8
8-16
16+

bwr\n—\

If a tunable value > 0 is specified, then that value is used to
determine the number of MP schedulers (smpsched) created
MP system. The minimum value for this tunable is 0 and the
maximum is 32.

No MP schedulers will be created on a UP system.
Also, regardless of whether a system is MP or UP, there will
always be one UP Streams scheduler (supsched).

NOTE: This tunable is for use by specific HP products only. |
will likely be removed in future HP-UX releases.

The

ona

NSTRBLKSCHED

Determines the number of blockable Streams scheduler dag
(sblksched) running on a MP system. The default value is 2
which means that two blockable Streams schedulers (sblksc
will be created on a MP system.

If the tunable is set to 0, then no blockable Streams schedulg
will be created on a MP system. Also, on a UP system, no
blockable Streams schedulers will be created.

mons

hed)

2Is

streamspipes

Determines if pipes are STREAMS-based. If set to zero, p
are not STREAMS-based. If non-zero, pipes are
STREAMS-based. The default is for pipes to not be
STREAMS-based.

NOTE: This tunable appears/msr/conf/master.d/core-hpux

ipes

27

Detailed Product Information
STREAMS-Related Device Files (Framework-specific)

STREAMS-Related Device Files
(Framework-specific)

This section lists thmknodcommands necessary for manually creating
device files. On a properly installed STREAMS system, these commands
are not necessary. This section is included for informational purposes. All
device files listed here are set-up to be STREAMS cloneable.

mknod /dev/strlog ¢ 72 0x49 #73 decimal

mknod /dev/sad c 72 Ox4a #74 decimal
mknod /dev/echo c 72 0x74 #116 decimal

28

Differences Between STREAMS/UX
and System V Release 4 STREAMS

29

NOTE:

Differences Between STREAMS/UX and System V Release 4 STREAMS

This chapter summarizes the differences between STREAMS/UX and
System V Release 4.2 STREAMS. Chapter 4 discusses STREAMS/UX
multiprocessor support and the differences between STREAMS/UX and
System V Release 4 Multiprocessor STREAMS. You need to use this
manual in conjunction with USLWYNIX System V Release 4.2 STREAMS
Modules and DriverandUNIX System V Release 4.2 Device Driver
Reference The USL manuals will be referred to as the SVR4.2 STREAMS
manual and the SVR4.2 Driver manual from now on. Unless otherwise
stated in this chapter and Chapter 4, STREAMS/UX information described
in the SVR4.2 STREAMS and SVR4.2 Driver manuals will be applicable to
STREAMS/UX.

This chapter is intended primarily for programmers, and is written with the
assumption that you have already read the SVR4.2 STREAMS Modules and
Drivers manuals.

30

Differences Between STREAMS/UX and System V Release 4 STREAMS
Overview

Overview

This chapter will be divided into the following categories for describing
differences between HP-UX and SVR4.2 STREAMS:

Commands

System calls

Utilities

Drivers and modules

Data structures

STREAMS/UX uniprocessor synchronization
Cloning

Hardware driver writing

31

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Commands

HP-UX Changes to STREAMS/UX Commands

STREAMS/UX supports the commands listed below:
* autopush

+ fdetach

» strace

e strchg

» strclean

» strconf

» strerr

o strvf

HP versions of supported STREAMS/UX commands operate somewhat
differently from the way the commands are described itthX SVR4.2
Command Refereneeranual. NLS catalogs exist for the commands. The
catalogs are callegutopush.cat, fdetach.cat, strace.cat, strchg.cat,
strclean.cat, strconf.cat, strerr.gandstrvf.catand are located in the
lusr/lib/nis/Cdirectory. Differences in the commands are described below.

autopush
The syntax for the autopush command on HP-UX is as follows:

autopush -f autopush_file_name)
autopush -r -M major_num|dev_name -m minor_num
autopush -g -M major_num|dev_name -m minor_num

autopush_file_name contents:

major_num|dev_name low_minor high_minor mod_name 1...mod_name N

The HP-UXautopushcommand has been enhanced to allow the user to
specify the device name in place of the major number, which is
recommended since HP-UX provides dynamic major numbers. The name
can be specified in the autopush file and on the command line. Device names
are located in the HP-UX master files. The major number can still be used if
needed.

32

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Commands

strace and strerr

Thestraceandstrerr commands use the STREAMS log driveev/strlog
SVR4.2 calls this driveldev/log but HP-UX already includes a non-streams
driver nameddev/log

33

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

NOTE:

HP-UX Changes to STREAMS/UX System Calls

By default HP-UX terminal I/O is not implemented using STREAMS/UX in
HP-UX 10.0. But a STREAMS-basqgty is available in the STREAMS-TIO
offering included in the HP-UX runtime product.

STREAMS/UX supports the following system calls:

* close

» fattach

» fentl

» fdetach

e getmsg

e getpmsg

* ioctl

* isastream

* open

* pipe

* poll

e putmsg

e putpmsg

* read

* readv

+ select

* signal

o write

* writev

For STREAMS-based termio, see the following manpages (which are part of
the STREAMS-TIO product): grantpt(3C), ptsname(3C), and unlockpt(3C).

34

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

There are HP-UX modifications to tFedtach ioctl, pipe poll, putmsg
putpmsgselect signal write, andwritev system calls. These modifications
are as follows.

fattach Modifications

STREAMS/UX supports thiattach(3)andfdetach(3)library calls and the
fdetach(Imrommand as described in tHé&lIX SVR4.2 Operating System
API Referencand the SVR4.2 Command Reference. In order téatiseh
andfdetach the kernel must have tlfiis file system configuredffs is added
to the/stand/systerfile when STREAMS/UX is installed usirsyvinstall If
ffs has been deleted after the install was done, re-include it as follows,
regenerate a kernel, and reboot the system.

ffs

ioctl Modifications

STREAMS/UX supportsoctl as described in the SVR4.2 STREAMS
manual.

Also, note that the multiplexor ID number returned by I_LINK and
|_PLINK is a memory address, not a small integer such as 0, 1, 2, 3.

pipe Modifications

STREAMS/UX supports STREAMS-based pipes as an optional feature.
STREAMS/UX's STREAMS-based pipes behave as described WiNbe
SVRA4.2 Operating System AP| Refereamoe theUNIX System V Release 4
Programmer's Guide: STREAMS

By default, pipes created by thae(2)system call are not

STREAMS-based. In order to get STREAMS-based pipes, the
/stand/systerfile must have the pipemod and pipedev module and driver
configured, and the tunable parameter streampipes must be set to 1 (one).

When STREAMS/UX is installed, thietand/systerfile is modified to
includepipemodandpipedey but streampipes is set to zero by default. The
kernel must be regenerated and the system rebooted if the setting of
streampipes to non-zero is to take effect. In other wanisingthe running
system to turn streampipes on will have no effect on the type of pipes
created byipe(2) Once the kernel is regenerated and rebootepipai(2)

35

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

pipes on the system will be STREAMS-based. However, fifos will not be
STREAMS-based. STREAMS/UX does not support STREAMS-based
fifos.

The STREAMS/UX device pipedev is only for internal STREAMS/UX use

in implementing STREAMS-based pipes. Opening a device file with
pipedets major number will not result in a STREAMS-based pipe, or even a
properly functioning stream. STREAMS-based pipes must be created using
the pipe(2)system call.

PIPE_BUF is a pathname variable value, and SVID, XPG4, POSIX, etc.
define it as the maximum number of bytes that is guaranteed to be written
atomically. To obtain the correct value of PIPE_BUF, use fpathconf() (see
pathconf()). For STREAMS-based pipes, the value of PIPE_BUF depends
on the configurable parameter STRMSGZ (by default, 8KB). For example,
PIPE_BUF is set to 4KB if STRMSGSZ is 4KB, 8KB if STRMSGSZ is
8KB, and 16KB if STRMSGSZ is 16KB. There is one exception. If
STRMSGSZ is set to O (i.e. infinite size), then PIPE_BUF for
STREAMS/UX pipes is set to 8KB.

putmsg and putpmsg Modifications

Maximum and Minimum Data Buffer Size

The size of the user's data buffer must be within the minimum and
maximum packet size range specified in the topmost STREAM module's
streamtab. It must also be less than or equal to STRMSGSZ. If the number
of bytes to transfer is not in this range, ERANGE will be returned.

Maximum and Minimum Control Buffer Size

The size of the user's control buffer must be less than or equal to both
STRCTLSZ and STRMSGSZ. If STRCTLSZ is less than or equal to zero,
the page size is used instead of STRCTLSZ for this check.

Data Buffer Segmentation

The user's data buffer may be sent in multiple data blocks chained together
to form a message. The maximum number of bytes, including the write
offset, that can be sent in one data block is equal to the page size.

36

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

Write Offset

A module or driver can send the stream head an M_SETOPTS message,
telling the STREAM head to put an offset in the beginning of the first data
block in a message sent bpatmsgcall. STREAMS/UX will not put the
offset into the data block if the amount of memory required is greater than
the page size. See Chapter 5 of the SVR4.2 STREAMS manual for more
information.

select Modifications

STREAMS/UX supports theelectsystem call for STREAMS/UX devices.
For information about theelectsystem call, see the select(2) man page
delivered with the HP-UX core system.

Theselectsystem call does not provide as much informatiopadls If
selectreturns an event for a STREAMS/UX device, the program can call
poll to get more information.

A select read event is returned if a poll event POLLRDNORM, POLLERR,
POLLNVAL or POLLHUP exists on the stream. In other words, a read
event is returned for the following conditions:

e anormal message is waiting to be read
» aread error exists at the stream head
* awrite error exists at the stream head
» the stream is linked under a multiplexor

* ahang-up has occurred

A select write event is returned if a poll event POLLOUT, POLLWRNORM,
POLLERR, POLLNVAL, or POLLHUP exists on the STREAM. This
means that a write event is returned for the following conditions:

« normal data can be written without blocking because of flow control
» aread error exists at the stream head

» awrite error exists at the stream head

e the stream is linked under a multiplexor

e ahang-up has occurred

37

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

A select exception event is returned if a poll event POLLPRI or
POLLRDBAND exists on the STREAM. More specifically, an exception
event is returned if a high-priority message or a banded message is waiting
to be read.

signal Modifications

STREAMS/UX supports signals and the HP-5ignal system call.
However, STREAMS/UX does not support extended signals @igivdo_t
structure described in the siginfo(5) manpage.

write and writev Modifications

Maximum and Minimum Data Buffer Size

The size of the user's data buffer must be within the minimum and maximum
packet size range specified in the topmost STREAM module's streamtab. If
the number of bytes to transfer is not in this range, ERANGE will be
returned. Two exceptions exist in which no error occurs. The first exception
is if the data buffer is too large and either the maximum packet size is
infinite or the minimum packet size is less than or equal to zero. (An infinite
packet size is specified using the define INFPSZ istleam.Hfile.) The
second exception occurs if the buffer is too small and the minimum packet
size is less than or equal to zero. With either exception, ERANGE is not
returned, and the data is transferred.

Data Buffer Segmentation

The user's data buffer may be sent in multiple messages. The maximum
amount of data that can be sent in one message is the lower value of the
topmost module's maximum packet size and STRMSGSZ. If the maximum
packet size is infinite, then the top module’s high water mark is taken into
consideration. If the high water mark is more than zero, half of the high
water mark is used; otherwise the page size is used.

38

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX System Calls

Write Offset

A module or driver can send the STREAM head an M_SETOPTS message
telling it to put an offset in the beginning of each data buffer segment (i.e.
message) sent by a write call. See Chapter 5 of the SVR4.2 STREAMS
manual for more information. STREAMS/UX will not put the offset into a
message if the resulting message size exceeds STRMSGZ.

39

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

HP-UX Modifications to STREAMS/UX Utilities

STREAMS/UX supports the following kernel utilities described in the
SVR4.2 Driver manual, although some of the utilities have been modified

for HP-UX.

adjmsg
allocb
backq
bcanput
bcanputnext
bcopy
bufcall
bzero
canput
canputnext
cmn_err
copyb
copymsg
datamsg
delay
drv_getparm
drv_priv
dupb
dupmsg
enableok
esballoc
esbbcall
flushband
flushq
freeb
freemsg
freezestr
getadmin
getmid
getmajor
getminor

getq

insq
itimeout
kmem_alloc
kmem_free
linkb

LOCK
LOCK_ALLOC
LOCK_DEALLOC
major
makedev
makedevice
max

min

minor
msgdsize
msgppullup
noenable
OTHERQ
pcmsg
pullupmsg
put

putbq

putctl
putctl1
putnext
putnextctl
putnextctll
putq
genable
gprocsoff

gprocon
greply

gsize

RD

rmvb

rmvq
SAMESTR
sleep

spln

splstr

strlog

strqget

strgset
SV_ALLOC
SV_BROADCAST
SV_DEALLOC
SV_WAIT
SV_WAIT_SIG
testb

timeout
TRYLOCK
unbufcall
unfreezestr
unlinkb
UNLOCK
untimeout

vtop

wakeup

WR

40

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

In addition, HP-UX provides the following new utilities.

get_sleep_lock
putctl2
putnextct|2
streams_put
unweldq

weldq

Thestrenv.hfile redefines some native HP-UX kernel utilities to conform to
System V Release 4.2. Thgenv.hfile redefineslelay, get_sleep_lock,
kmem_alloc, kmem_free, Ibolt, max, min, sleep, time, timaodit,

untimeout These defines might collide with declarations in STREAMS/UX
modules and drivers. You can customizedtienv.hfile to avoid collisions

or to use native HP-UX utilities. However, modules and drivers cannot call
the native HP-UXsleepor get_sleep_locHirectly. If your modules and
drivers callsleepor get_sleep_lockyou must includstrenv.hto redefine
sleepandget_sleep_locko streams_mpsleegndstreams_get_sleep_lack
For more information about the native HP-UX primitives, sedHRdJX
Driver Development Guidgart number 98577-90014.

Differences between the STREAMS/UX kernel utilities and the descriptions
in the SVR4.2 Driver manual are discussed below, along with information
about new utilities. This section assumes that modules and drivers include
strenv.h

esballoc

The STREAMS/UXesballods the same as tlsballoccall described in the
SVRA4.2 Driver manual with a few differences. The HP-&s¥alloccopies
the contents of thig_rtn structure into an area of the data block not visible
to the STREAMS/UX programmer. Thesballocstores a pointer to this
area in thelb_freepfield. This allows modules and drivers to modify the
fr_rtn parameter after callingsballocwithout affecting subsequefreeb
calls. Also, modules and drivers can change a data bfockis

information by modifying the structure pointed todly freep The free
routine passed tesballoccan call STREAMS/UX utilities in the same way
as theput or serviceroutine that calleffeeh Also, a free routine can safely
access the same data structures as the put or service routine thétesdiled
However, unlike SVR4.2, HP-UX does not block interrupts from all
STREAMS/UX devices while the free routine runs. See “STREAMS/UX

41

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

Uniprocessor Synchronization” in this chapter and “Writing MP Scalable
Modules and Drivers” in Chapter 4 for more information atesbiallocfree
routines.

cmn_err

The STREAMS/UXcmn_erris the same as the cmn_err described in the
SVRA4.2 Driver manual with a few differences. The HP-tWh_erralways
sends messages to both the system console and the circular kernel buffer.
Inserting an exclamation point (“!") or a circumflex (“*") as the first
character in the format string has no effect. HP-UX simply removes these
control characters from the message, and sends the message to both the
console and the kernel buffer. There are a couple of other very minor
differences. HP-UX precedes CE_PANIC level messages with the string
panic: instead oPANIC: . Also, the HP-UX circular kernel buffer is called
msgbuf instead of putbuf. The HP-UXsgbufis a fixed size, and can be
viewed using theimesgcommand or thadb debugger tool.

freezestr and unfreezestr

The SVR4.2 Driver manual says tliezestandunfreezestmust be called

on multiprocessors to protect searching a STREAMS/UX queue and calling
insq, rmvq, strgsegndstrqget SVR4 MP providefreezestrand

unfreezestto prevent software on multiple processors from manipulating a
gueue's list of messages at the same time. STREAMS/UX uses
synchronization levels for this. See “Writing MP Scalable Modules and
Drivers” in Chapter 4 for more information about synchronization levels and
HP-UX limitations oninsq, rmvq, strgsegndstrqget Because

STREAMS/UX uses a different mechanism to protect STREAMS/UX
queues, the HP-UXeezestjust returns the current interrupt priority level,
andunfreezestis a no-op. HP-UX provides tlieezestandunfreezestr

stubs to make porting code from SVR4 MP easier.

get_sleep_lock

STREAMS/UX provides some extra support for modules and drivers which
use the native HP-UX¥et_sleep_lockrimitive. Alternatively, modules and
drivers can call the SVR4 MP SV_WAIT and SV_WAIT_SIG. Open and
close routines caliet_sleep_lockefore sleeping to prevent missing
wakeups. After callinget_sleep_locktheopenor closecan release

42

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

spinlocks before sleeping. Other processes cannot wakeopéaher close
between the time it caltpet_sleep_lockndsleep Modules and drivers
must includestrenv.hto useget_sleep_lock. strenwhdefines
get_sleep_locko streams_get_sleep_lackodules and drivers cannot call
the native HP-UXget_sleep_locHirectly, because STREAMS/UX needs to
do some additional synchronization before involgeg sleep_lock

lock_t*
get_sleep_lock(event);

caddr_t event;

Theopenor closeroutine passes the event it will pass to the sleep primitive
to get_sleep_lockget_sleep_lockbtains a sleep spinlock, and returns a
pointer to this lock.

itimeout

If the HP-UXitmeoutcannot allocate memory, it panics instead of returning
0 like the SVR4 MRtimeout The STREAMS/UXtimeoutonly returns O if

it is passed an interrupt priority level that is lower thimeout You can
increase the amount of memory available to both theitme&outand the
existing timeout primitives using the NCALLOUT tunable. Set
NCALLOUT to the maximum number @imeoutandtimeoutrequests that
can be outstanding at any one time.

kmem_alloc

The STREAMS/UXkmem_allodries to allocate 32 bytes if the size
parameter is set to 0. The SVR4&rBem_alloaeturns NULL instead.

LOCK

The STREAMS/UX LOCK calls the native HP-UX spinlock primitive.
LOCK has an interrupt priority level parameter, which is used to raise the
priority level and block interrupts which acquire the spinlock. The SVR4.2
Driver manual says that implementations which do not need to raise the
interrupt level can ignore this parameter. Since the HP-UX spinlock
primitive always raises the interrupt level to spl6é while a spinlock is held,
STREAMS/UX ignores the interrupt level parameter on multiprocessor
systems. For better performance on uniprocessor systems, the
STREAMS/UX LOCK raises the priority level to the parameter value

43

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

instead of acquiring a spinlock. Whether the caller will block or spin if the
lock cannot be obtained is implementation defined. The HP-UX
implementation spins.

LOCK_ALLOC

The STREAMS/UX LOCK_ALLOC calls the native HP-UAfloc_spinlock
primitive. There are some small differences between the STREAMS/UX
LOCK_ALLOC and the SVR4 MP utility. LOCK_ALLOC has a flag
parameter which indicates if the caller is willing to block while waiting for
memory to be allocated. HP-UX only allows this flag to be set to
KM_SLEEP, and returns zero if it is set to KM_NOSLEEP. The
STREAMS/UX LOCK_ALLOC accepts the following hierarchy parameter
values which are reserved for STREAMS/UX modules and drivers in
/usr/include/sys/semglobaldand/usr/conf/h/semglobal.h:
STREAMS_USR1_LOCK_ORDER, STREAMS_USR2_LOCK_ORDER,
and STREAMS _USR3_LOCK_ ORDER. The compiler options to turn on
deadlock checking for HP-UX are different than those documented in the
SVRA4.2 Driver manual. The entire HP-UX kernel and the module or driver
must be compiled with SEMAPHORE_DEBUG to enable deadlock
checking. According to the SVR4.2 Driver manual, the min_pl parameter
can be ignored by implementations which do not need to raise the priority
level. The HP-UX STREAMS LOCK_ALLOC ignores it.

putctl2

STREAMS/UX also provides the additional utility calledtctl2 This

utility can be used to send a control message with a two-byte parameter to a
gueue. For exampleutctl2 can send the new style of an M_ERROR
message, which is two bytes long, to a queue.

int putctl2(q, type, p1, p2);

queue_t* q;
int type;
int pl;
int p2;

The q parameter is the queue to which the message is sent. The type
parameter is the message type. phandp2 parameters are the two bytes
of data in the message. Timatctl2 utility ensures that the type is not a data
type. The utility also allocates a message block, fills in the data, and calls

44

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

the put routine of the specified quepatcti2returns 0 if the type is
M_DATA, M_PROTO or M_PCPROTO, or if a message block cannot be
allocated. putctl2returns 1 if it completes successfully.

putnextctl2

STREAMS/UX provides the additional utilifyutnextctl2 This utility can

be used to send a control message with a two-byte parameter to the next
gueue in a stream. For examgdatnextcti2can send the new style of an
M_ERROR message, which is two bytes long, to the next queue in a stream.

int putnextctl2(q, type, p1, p2);

queue_t*q;
int type;
int pl;
int p2;

Theq parameter is the queue from which the message is sent. The message
is sent tag->g_next The type parameter is the message type.pIlaad

p2 parameters are the two bytes of data in the messagepuirextct|2

utility ensures that the type is not a data type. The utility also allocates a
message block, fills in the data, and calls the put routine>of next.
putnextctizreturns 0 if the type is M_DATA, M_PROTO, or M_PCPROTO,

or if a message block cannot be allocatpdtnextcti2returns 1 if it

completes successfully.

gprocson and gprocsoff

SVR4 MP STREAMS/UX providegprocsonandgprocsoff which on a
multiprocessor system allows a modufaisandserviceroutines to run
concurrently withopenandclose STREAMS/UX does not allow this much
parallelism. A module's or drivepsitandserviceroutines cannot run at the
same time as thepenor close Although STREAMS/UX does not run the
put or serviceroutine in parallel with thepenor close it does queue any
requests to run thaut or serviceroutine. STREAMS/UX will process these
whenopenfinishes. Also, ibpenor closesleeps, STREAMS/UX can run
the put andserviceroutines whileopenor closeare sleeping. However, a
putor serviceroutine cannot do the wakeup on a sleepipgnor close
STREAMS/UX provides stubs which are no-opsdprocsomandgprocsoff
to make porting easier.

45

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

streams_put utilities

STREAMS/UX provides a new utilitgtreams_ pytwhich allows
non-STREAMS/UX software to safely call STREAMS/UX utilities. timeout
and bufcall user functions and other non-STREAMS/UX code cannot call
several of the STREAMS/UX utilities or share data with modules and
drivers. For a more detailed discussion about these restrictions, see
“STREAMS/UX Uniprocessor Synchronization” in this chapter and
“Writing MP Scalable Modules and Drivers” in Chapter 4.

Non-STREAMS/UX code can cadtreams_putpassing it a function and a
gueue. STREAMS/UX runs the function as if it were the queue's

routine. The function can safely manipulate the queue and access the same
data structures as the queue's put routine.

#ifdef _PROTOTYPES

typedef void (*streams_put_t)(void *, MBPKP);
telse

typedef void (*streams_put_t)();

#endif

void
streams_put(func, g, mp, private)
streams_put_t func;

queue_t *q;
mblk_t *mp;
void *private;

STREAMS/UX will runfuncas if it wereq's putroutine. STREAMS/UX
passegrivateandmpto func The non-STREAMS/UX code can pass any
value in the private parameter. The code must pass a valid message block
pointer in mpstreams_putises fields in the message block not visible to the
STREAMS/UX programmer.

SV_WAIT

STREAMS/UX implements a subset of the SVR4 MP synchronization
variable utilities using sleep and wakeup. The HP-UX SV_WAIT differs
from the SVR4 MP uitility in the following ways. When the SVR4 MP
SV_WAIT returns, the lkp spinlock is not held, and the priority level is set to
plbase (SPLNOPREEMPT on HP-UX). On a multiprocessor system, the
HP-UX SV_WAIT lowers the priority level to the value before the caller
acquired thékp spinlock which may not be SPLNOPREEMPT. If the caller
acquired the lock while holding other spinlocks, the priority level is lowered
to the value before the first of these nested spinlock calls. Also, the SVR4

46

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

MP SV_WAIT has a priority argument that specifies the priority the caller
would like to run at after waking. Since the HP-UX SV_WAIT is
implemented by callingleep the HP-UX priorities are different than the
SVR4 MP ones. On HP-UX, the priority passed into SV_WAIT is
subtracted from PZERO-ridisk, prinet, pritty, pritape, prihi, primednd

prilo are defined to be 0, and do not affect the caller's priority. If you need to
change the process's priority, study the prioritigasn/include/sys/param.h

or /usr/conf/h/param.hand pass the needed offset to PZERO-1 in the
priority parameter.

SV_WAIT_SIG

STREAMS/UX implements a subset of the SVR4 MP synchronization
variable utilities usingleepandwakeup The HP-UX SV_WAIT_SIG

differs from the SVR4 MP utility in the following ways. When the SVR4
MP SV_WAIT_SIG returns, thikp spinlockis not held, and the priority

level is set tplbase(SPLNOPREEMPT on HP-UX). On a multiprocessor
system, the HP-UX SV_WAIT_SIG lowers the priority level to the value
before the caller acquired the spinlock which may not be
SPLNOPREEMPT. If the caller acquired the lock while holding other
spinlocks, the priority level is lowered to the value before the first of these
nested spinlock calls. Also, the SVR4 MP SV_WAIT_SIG has a priority
argument that specifies the priority the caller would like to run at after
waking. Since the HP-UX SV_WAIT_SIG is implemented by caltitegp

the HP-UX priorities are different than the SVR4 MP ones. On HP-UX, the
priority passed into SV_WAIT_SIG is added to PZERO+1|PCATCH.
pridisk, prinet, pritty, pritape, prihi, primedindprilo are defined to be O,

and do not affect the caller's priority. If you need to change the process's
priority, study the priorities ivusr/include/sys/param.or
/usr/conf/h/param.hand pass the needed offset to PZERO+1|PCATCH in
the priority parameter. The last difference is that the SVR4 MP
SV_WAIT_SIG returns if the process is first stopped by a job control signal
and then continued. The HP-UX SV_WAIT_SIG continues to sleep until it
receives a signal which does not stop the process, or an SV_BROADCAST
wakes up the process.

47

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

TRYLOCK

The STREAMS/UX TRYLOCK calls the native HP-Wépinlock

primitive. TRYLOCK has an interrupt priority level parameter, which is
used to raise the priority level and block interrupts which acquire the
spinlock. The SVR4.2 Driver manual says that implementations which do
not require the interrupt level to be raised can ignore this parameter.
STREAMS/UX ignores the parameter on multiprocessor systems since the
HP-UX cspinlockprimitive always raises the interrupt levelsia6 while a
spinlock is held. For better performance on uniprocessor systems, the
STREAMS/UX TRYLOCK raises the priority level to the parameter value
instead of acquiring a spinlock.

UNLOCK

The STREAMS/UX UNLOCK calls the native HP-Uspinunlock

primitive. UNLOCK has an interrupt priority level parameter, which is used
to lower the priority level. HP-UX will ignore this parameter on
multiprocessor systems. If the caller is not holding any other spinlocks, the
STREAMS/UX UNLOCK lowers the priority level to the value before the
caller acquired the spinlock. On uniprocessor systems, the STREAMS/UX
UNLOCK lowers the priority level to the parameter value instead of
releasing a spinlock.

weldg and unweldq

STREAMS/UX provides the additional utilities weldqg and unweldq to allow
the user to build a pipe-like stream. These utilities are provided because the
programmer is not allowed to modify nextpointers directly. This

restriction and others are described in more detail in the section called
“HP-UX Changes to STREAMS/UX Data Structures.”

48

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

unweldq

The utility unweldgdisconnects two drivers' queues that were joined by
weldq

intunweldq (d1_wq, d2_rq, d2_wq, d1_rq, func, arg, protect_q);

queue_t* dl_wq;

queue_t* d2_rq;

queue_t* d2_waq;

queue_t* dl_rq;

weld_fcn_t func;

weld_arg_t arg;

queue_t* protect_q;
d1 wganddl _rgare one of the driver's write and read queuk®s.wqgand
d2_rgare the second driver's queuesweldgwill setdl_wg->q_nexand
d2_wg->g_nexto zero. Also, it updates queue fields used for flow control
that are not visible to the STREAMS/UX programmer, and therefore cannot

be changed by the STREAMS/UX programmer.

unweldgreturns to the caller before disconnecting the driversveldq
requests that the STREAMS/UMeld daemon update the queues.

Note that if one end of a pipe-like stream created/iélglis closed,
STREAMS/UX will automatically unweld the two driversnweldqdoes
not need to be called.

The weld daemon will cafuncwith arg as an argument after it finishes the
request.protect_gspecifies which queue the callback function can access
safely. See “STREAMS/UX Uniprocessor Synchronization” in this chapter
and “Writing MP Scalable Modules and Drivers” in Chapter 4 for a more
detailed discussion gifrotect_q

If your driver does not need to be notified when the daemon finishesglithe
request, passeldqgzero for thefunc, arg andprotect_gparameters.

On successful completioanweldgreturns 0. Otherwise, it returns @mno
indicating the type of error that occurred. One of the following three values
will be returned:

» ENXIO indicates that the weld daemon is not running.
» EINVAL indicates that invalid queue arguments are present.

* EAGAIN means that no memory is available.

49

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

weldq

Weldqg connects two drivers' queues to form a pipe by setting thext
pointer:

int weldq (d1_wq, d2_rq, d2_wq, d1_rq, func, arg, protect_q);

queue_t* dl_wg;

queue_t* d2_rq;

queue_t* d2_wg;

queue_t* dl_rq;

weld_fcn_t func;

weld_arg_t arg;

queue_t* protect_q;
d1l wganddl_rgare one of the drivers' write and read quewis.wgand
d2_rgare the second driver's queuggeldgwill setdl_wqg->q_nexto be
d2_rgandd2_wg->g_nektodl _rg Also,weldqupdates queue fields used
for flow control that are not visible to the STREAMS/UX programmer, and

therefore cannot be updated by the STREAMS/UX programmer.

weldgreturns to the caller before connecting the driveeddqrequests the
STREAMS/UX weld daemon to update the queues.

Thewelddaemon will calfuncwith arg as an argument after it finishes the
request.protect_gspecifies which queue the callback function can access
safely. See “STREAMS/UX Uniprocessor Synchronization” in this chapter
and “Writing MP Scalable Modules and Drivers” in Chapter 4 for a more
detailed discussion qirotect_q.

If your driver does not need to be notified when the daemon finishes the
weld request, passeldgzero for theunc, arg andprotect_gparameters.

On successful completiomeldgreturns 0. However, ikeldgfails, an
errno indicating the type of error that has occurred is returned.efrhe
will contain one of the following three values:

e ENXIO means that the weld daemon is not running.
« EINVAL means that invalid queue arguments exist.
« EAGAIN means that no memory is available.

Note that if one end of a pipe-like stream created/iélglgis closed,
STREAMS/UX will automatically unweld the two driversnweldgdoes
not need to be called.

50

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Modifications to STREAMS/UX Utilities

vtop

The STREAMS/UXvtoponly accepts a NULL process structure pointer. In
other words, it only converts kernel space addresses.

51

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

NOTE:

NOTE:

HP-UX Changes to STREAMS/UX Drivers and
Modules

The unsupported drivers and modules include:

« connld

* console

s ports

¢ sxt

e Xt
Some STREAMS-based terminal I/O functionality is contained in a separate
product called STREAMS-TIO. It is part of the HP-UX runtime product. See the
following manpages (which are part of the STREAMS-TIO product): pts(7),
ptm(7), Idterm(7), pterm(7), and pckt(7).

STREAMS/UX provides the following drivers and modules:

+ clone

» strlog

+ sad

* echo

s sC

+ timod

o tirdwr

e pipemod

Entries for these drivers and modules can be found in the STREAMS/UX
master file. General information about these drivers follows. Information
about the stream head is also included. Differences between the HP-UX and
SVR4.2log andsaddrivers are also described.

Any driver or module not explicitly listed as supported in this section is not
supported.

52

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

clone
Major Number: 72

cloneis used to provide cloning. The major number of the device file for a
cloneable driver must be the clone driver's major number, 72. The minor
number is set to the real major number of the device.

strlog

Major Number: 73
Module ID Number: 44
Maximum Packet Size: INFPSZ
Minimum Packet Size: 0

High Water Mark: 2048
Low Water Mark: 128

The STREAMS/UX log driver is namesdrlog instead ofog. The special
device file igdev/strlog strlog provides the same functionality for logging
as described in thdNIX SVR4.2 System Files and Devices Refeyavitie
the exceptions described below:

» The strlog kernel utility formats binary arguments before sending messages up
the stream.

« STREAMS/UX does not provide a separate console loggelesfconsole
device. strlog does not support the |_CONSLOG icsttllog prints a log
message on the console if the SL_CONSOLE flag is set.

e The HP-UXlog_ctl structure does not contairps field. Priority and facility
codes are not supported.

sad

Major Number: 74
Module ID Number: 45
Maximum Packet Size: INFPSZ
Minimum Packet Size: 0

53

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

High Water Mark:
Low Water Mark:

2048
128

The HP-UX sad driver device file idev/sad The system administrator and

users can opefdev/sad However, only the system administrator can

execute the SAD_SAiBctl system call. This differs from the System V sad

driver, which is accessed through tbev/sad/admimand/dev/sad/user

device files.

sadprovides autopush functionality as described inthgX SVR4.2
System Files and Devices Referemanual.

echo

Major Number:

Module ID Number:
Maximum Packet Size:
Minimum Packet Size:
High Water Mark:

Low Water Mark:

116

5000
INFPSZ
0

2048

128

echois a loopback driver used by thevf STREAMS/UX verification tool.
For more information abowstrvf, see Chapter 1.

sc
Module ID Number:
Maximum Packet Size:
Minimum Packet Size:
High Water Mark:

Low Water Mark:

5002
INFPSZ
0

2048

128

scprovides auxiliary functions for treaddriver.

54

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

timod

Module ID Number: 5006
Maximum Packet Size: INFPSZ
Minimum Packet Size: 0

High Water Mark: 2048
Low Water Mark: 128

timod provides TLI functionality as described in td&lIX SVR4.2 System
Files and Devices Referengenual.

tirdwr

Module ID Number: 0
Maximum Packet Size: INFPSZ
Minimum Packet Size: 0

High Water Mark: 16K

Low Water Mark: 128

tirdwr provides an alternative interface to the TLI library for accessing a
transport protocol providetirdwr is described in theINIX SVR4.2 System
Files and Devices Referenggnual.

Stream Head

Module ID Number: 0
Module Name: sth
Maximum Packet Size: INFPSZ
Minimum Packet Size: 0

High Water Mark: 10240
Low Water Mark: 1024

55

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Drivers and Modules

The Stream head provides the interface between HP-UX system calls and
STREAMS/UX utilities in the kernel. The Stream head is the first queue
pair of every Stream and is involved in flow control. Data being read from a
stream will be taken off the stream head.

pipemod

Module ID Number: 5303
Maximum Packet Size: 8192
Minimum Packet Size: 0
High Water Mark: 8192
Low Water Mark: 8191

pipemodhandles M_FLUSH messages in STREAMS/UX-based pipes.
pipemods described in thEINIX System V Release 4 Programmer's Guide:
STREAMSnanual.

56

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to STREAMS/UX Data Structures

HP-UX Changes to STREAMS/UX Data Structures

STREAMS/UX data structures are almost identical to those described in the
SVRA4.2 Driver manual. STREAMS/UX places additional restrictions on
how some of these structures can be accessed.

STREAMS/UX data structures that differ from the descriptions in the
SVR4.2 Driver manual are described below. Data structures identical to
those described in the SVR4.2 manual are not listed below.

STREAMS/UX data structures contain some declarations for fields used by
STREAMS/UX internally that are not visible to the STREAMS/UX
programmer. The programmer will not be affected by these fields except
that thesizeoffunction will return a larger value.

57

Differences Between STREAMS/UX and System V Release 4 STREAMS
Message Structures

Message Structures

These structures are slightly different from the ones in the SVR4.2 Driver
manual.

msgb
This structure is defined in the fdgream.h

Themsgbstructure contains MSG_KERNEL_FIELDS, which defines fields
used internally by STREAMS/UX.

iocblk

Theiocblk structure is defined istream.h

ioc_countis defined to be a member of a union.

copyreq
Thecopyregstructure is defined istream.h

cq_addris defined to be a member of a union.

copyresp

Thecopyrespstructure is defined istream.h

cp_rvalis defined to be a member of a union.

58

Differences Between STREAMS/UX and System V Release 4 STREAMS
Queue Structure

Queue Structure
The queue structure is slightly different from the one described in the
SVRA4.2 Driver manual. The structure is defined in thesfrieam.h

QUEUE_KERNEL_FIELDS defines fields used internally by
STREAMS/UX.

59

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Data Structure Restrictions

STREAMS/UX Data Structure Restrictions

STREAMS/UX has the same restrictions as those described in the Kernel
Data Structure chapter of the SVR4.2 Driver manual. Also, STREAMS/UX
limits which user written functions can access the queue structure directly.

A queue'pen, close, pubrserviceroutine can manipulate the queue
structure as specified by SVR4.2. On a uniprocessor system, a queue's entry
points can access the other queue in the queue pair in the same way that they
can access their own queue. On a multiprocessor system, a queue's entry
points can manipulate queues belonging to entities with which they can
share data. They can manipulate the queues in the same way that they can
manipulate their own queue. See “Writing MP Scalable Modules and
Drivers” in Chapter 4 for more information about sharing data on
multiprocessor systems.

It is difficult to program other functions (besides those described above) to
access the queue structure directly, especially on multiprocessor systems. If
a gueue's entry points access queues other than those described above, or if
non-STREAMS/UX software processes data in a STREAMS/UX queue, try
to use thestreams_ putitility to manipulate the queues safetreams_put

is described in the “HP-UX Modifications to STREAMS/UX Utilities”

section of this chapter. If you cannot seeams_putthe code that accesses

a STREAMS/UX queue must, at a minimum, follow these additional rules.
The software must ensure that it is accessing an allocated, opened queue.
Also, it cannot dereference thyefirst, g_lastorg_nex pointers. In other

words, it cannot read or write data pointed at by the pointers. For example,
the function can check @ _firstis 0, but it cannot read thg first-b_next

field. Lastly, you must implement any additional synchronization required
for your modules and drivers to work correctly. You may need to
synchronize the function accessing the STREAMS/UX queue with the
qgueue's entry points. This is because the function and the entry points may
access the queue in parallel on a multiprocessor system and may interrupt
each other while accessing the queue on a uniprocessor system.

60

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

STREAMS/UX Uniprocessor Synchronization

This section describes STREAMS/UX synchronization on a uniprocessor
system. Chapter 4 discusses multiprocessor synchronization. Also, Chapter
4 describes how modules and drivers running on a uniprocessor system can
use multiprocessor synchronization mechanisms to protect against
interrupts. STREAMS/UX programmers must follow the guidelines listed
below as well as those in the SVR4.2 STREAMS manual.

STREAMS/UX provides the following types of synchronization on a
uniprocessor system:

« STREAMS/UX protects its internal data structures from interrupts.

« STREAMS/UX helps protect module and driver private data structures against
interrupts.

« STREAMS/UX allows multiple processes to perform operations on the same
stream.

» The STREAMS/UX scheduler synchronizes the running of service routines with
application processing.

STREAMS/UX Internal Synchronization

STREAMS/UX protects its internal data structures, such as message queues,
against interrupts. STREAMS/UX programmers must use the following
guidelines.

1 A put, service open orcloseroutine can pass its own queue or the other queue
in its queue pair to a STREAMS/UX kernel utility. Many STREAMS/UX utilities
operate on a queue. For exampletgtakes a queue as an input parameter and
returns a message from the queue. A service routine can only pass its queue or
the other queue in its queue paigttg The restricted utilities afgackq,
bcanputnext, canputnext, flushband, flushq, freezestr, getq, insq, putbqg, putnext,
putnextctl, putnextctll, putnextctl2, putq, greply, gsize, rmvqg, SAMESTR, strqget,
strgsetandunfreezestr.Theputq utility is not restricted when it is passed a
driver's read queue or a lower mux's write queue. gArpr serviceroutine can
call putqif it passes it a driver's read queue or a lower mux's write queue.
However,putds caller must guarantee that the queue passed is still allocated.
Some STREAMS/UX utilities, such aanput are commonly passed a parameter
of the formg->g_next These routines are restricted in a slightly different way

61

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

than those listed above. A put or service routine can only pass its own queue's
g_nex field or theq_nextfield of the other queue in its queue pair. These
requirements apply tocanput, canput, put, putctl, putctll, putctdd
streams_putThese utilities are not restricted when they are passed a parameter
of the formq, except that the queue must still be allocated.

Some STREAMS/UX utilities cannot be called from user functions passed to
timeout and bufcall or from non-STREAMS/UX code in the kernel. Also, this
software cannot share data structures with STREAMS/UX modules and drivers,
unless it raises th&pl level to protect against interrupts. The utilities which
cannot be called al®ackq, bcanputnext, canputnext, flushband, flushq, freezestr,
getq, insq, putbg, putnext, putnextctl, putnextctll, putnextctl2, greply, gsize,
rmvg, SAMESTR, strqget, strqgsmtdunfreezestr The user functions and
non-STREAMS/UX code cannot cédtanput, canput, put, putctll, putctts,
streams_puif they pass the utility a parameter of the fayymg_next They can

call these utilities if they pass a parameter of the f@(opmust be a valid,
allocated queue). User functions and non-STREAMS/UX code can only call
putq if they pass it a driver's read queue or a lower mux's write queue. User
functions and non-STREAMS/UX code can use the ste@ams_putitility
documented in this chapter to get around these restrictions.

Some STREAMS/UX utilities cannot be called from free routines passed to
esballoc A free routine can call the same utilities as the module or driver entry
point that calledreeh

If a multiplexor can execute on the ICS, take care when psitiextto pass
messages across the multiplexor. If the upper mux passes messages downward
by passing the lower mux's write queugtnext the upper mux must ensure

that the driver stays linked under the mux until afteptinmextcompletes.

Likewise, if the lower mux passes messages upward by passing the upper mux's
read queue to putnext, the lower mux must guarantee that the driver stays linked
under the mux, the mux stays open, and modules are not pushed or popped until
after theputnextfinishes.

A protect_gparameter can be passed towretdqutility. Theprotect_q
parameter specifies which queue finec parameter can access safely. filne
function can use the same STREAMS/UX utilities agptteéect_q puand
serviceroutines.

Theputandserviceroutines cannot be called directly. They must be executed by
calling STREAMS/UX utilities such gautnext, put@r genable They cannot be
called using the function pointer stored in thejinfostructure.

62

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

7 Drivers and modules should not call STREAMS/UX utilities from software
running on the interrupt control stack processing@@or higher interrupt.
STREAMS/UX protects its internal data structures usiplg.

Driver and Module Synchronization

Drivers and modules must protect their private data structures against
interrupts. This can be done in four ways. One way would occur if software
that is running on the interrupt control stack (ICS) modifies driver and
module data structures. In this case, the driver and module service and put
routines must raise thepllevel before accessing their data structures.
Drivers and modules can call the STREAMS/UX utipistrto raise the
spllevel tospls Interrupts are masked while thgl level is raised.

The second way to protect data structures against interrupts is for software
running on the ICS to send a message to a stream. If this is done, drivers and
modules do not need to raise 8plevel to protect their data. The software
running on the ICS doespaitgon the driver's read queue. The STREAMS
scheduler will run the service routine off the ICS. When ICS software calls
putqfor a priority band, the driver open function must allocate the band by
callingstrqget This preventputgfrom dynamically allocating memory for

the band on the ICS.

ICS software can cafiutnextor putinstead oputqto send a message to a
stream. If one of these utilities is called, STREAMS/UX will attempt to run
the put routine on the ICS. Drivers and modules will need tepisalls to
protect data structures that they share with other drivers and modules, with
other instances of the same driver or module, or with non-STREAMS/UX
software.

The third way to protect data structures against interrupts is for interrupt
software to call thgenableutility to schedule a service routine. The
STREAMS/UX scheduler will run the service routine off the ICS.

The fourth method for protecting data structures against interrupts is to call
the newstreams_puutility. The code running on the ICS passes
streams_put a function and a queue. STREAMS/UX runs the function as if
it were the queue's put routine. The function can access the same data
structures as the queue's put routine. See “HP-UX Maodifications to
STREAMS/UX Utilities” in this chapter for more information about
streams_put

63

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Uniprocessor Synchronization

Multiple Processes Accessing the Same Stream

STREAMS/UX synchronizes multiple processes that are accessing the same
stream. Three scenarios will allow more than one process to operate on a
stream:

» Multiple processes opening a non-cloneable device with the same minor number
» A process calling fork
» Processes issuing |_SENDFD and |_RECVFD ioctls

For synchronization, STREAMS/UX will queue soppenandioctl system

calls issued by different processes, and will execute them one at a time.
STREAMS/UX queues re-opening an already open stream, and queues the
following ioctls: 1|_PUSH, |_POP, |_LINK, |_PLINK, |_UNLINK,

|_PUNLINK, |_FLUSH, |_FLUSHBAND, |_GETCLTIME,

| SETCLTIME, |_GETSIG, |_SETSIG, |_LIST, | LOOK, and |_STR.

STREAMS/UX does not processisecall until the last file descriptor for
a stream is closed. No other system calls will be executing when
STREAMS/UX begins to dismantle the stream.

For remaining system calls, STREAMS/UX ensures that consistent results
are returned, but the calls are not executed one at a time. For example, if
two processes are reading from the same stream, one process could read the
first and third messages on the stream to satisfy a read request while the
second process reads the second and fourth messages.

The STREAMS/UX Scheduler

The STREAMS/UX scheduler runs service routines that are scheduled by
STREAMS/UX utilities such aputg The scheduler will run all scheduled
service routines before returning to user level. The scheduler is a real time
daemon that runs at priority 100. (A low priority number denotes a high
priority. For example, a priority number of 50 would be of higher priority
than the number 100.) STREAMS/UX applications need to run at a lower
priority (higher priority number) than the STREAMS/UX scheduler;
otherwise service routines will not run before the scheduler returns to user
level from the kernel.

64

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning

HP-UX Changes to Cloning

STREAMS/UX supports two methods of cloning. See the SVR4.2
STREAMS manual for more information about cloning. Some differences
exist between HP-UX cloning and SVR4.2 cloning.

The first cloning method uses a special clone major number, 72, to provide
cloning. For each cloneable device, a device file must exist that has the
clone major number of 72 and also has a minor number equal to the major
number of the real device. When an application opens this type of device
file, STREAMS/UX passes the driver open routine CLONEOPEN in the
sflagparameter. The driver allocates a minor number and returns a new
device number containing the true major number and the chosen minor
number. The driver uses eithaakdewor to create the new device number.

The second cloning method is useful for drivers which need to be able to
encode information in their minor numbers. This is not possible in the first
method, as the clone device file for that method must have as its minor
number the major number of the driver being cloned.

In the second cloning method, the driver designates a particular minor
number as its “clone” minor number. The driver open routine checks the
minor number portion of the device number parameter passed to it, and if it
is the clone minor number, the driver open routine allocates a minor number
and returns a new device number to the caller, in the same way as the first
cloning method described above. The returned device number must contain
both a major number and the new minor number. A driver using this cloning
method may also change the major number in the device number it returns.
However, the new major number must correspond to a STREAMS/UX
driver with the same streamtab structure as the driver associated with the
original major number. Also, on a multiprocessor system, if the original
driver was MP scalable, the new one must be too. Likewise, if the original
was UP emulation, the new one must be also.

65

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning

Drivers using the second cloning method must indicate this in their install
functions or master file entries. See Chapter 5 for more information about
configuring STREAMS/UX drivers. Install functions must set the
C_CLONESMAJOR flag. For example:

INSTALL FUNCTION CONFIGURATION

static drv_info_t example_drv_info = { [*driver information*/
“example”, /* name */
“pseudo”, /* class */
DRV_CHAR | DRV_PSEUDO, [* flags */
-1, /* block major number */
-1, /* dynamically assigned
character major number */
NULL, NULL, NULL, /* cdio, gio_private,and
cdio_private structures */
}
static drv_ops_t example_drv_ops = { [* driver entry points */
NULL, /* open */
NULL, /* close */
NULL, [* strategy */
NULL, /* dump */
NULL, [* psize */
NULL, /* mount */
NULL, /* read */
NULL, /* write */
NULL, [* ioctl */
NULL, /* select */
NULL, /* optionl */
NULL, NULL, NULL, NULL, [* reserved entry points */
C_CLONESMAJOR, [* ***NOTE****C_CLONESMAJOR
flag set*/
}
static streams_info_t example_str_info = { /* streams information */
example, /* name */
-1, [* dynamically assigned major
number */
{ &examplerinit, &examplewinit,
NULL,NULL }, [* streamtab */
STR_IS_DEVICE, [* flags */
0, /* synchronization level */
[* elsewhere sync name */
}
int

example_install()

int retval;

66

Differences Between STREAMS/UX and System V Release 4 STREAMS
HP-UX Changes to Cloning

MASTER FILE ENTRY
$DRIVER_INSTALL

* Driver Block major Char major
example 1 -1

if ((retval = install_driver(&example_drv_info, &example_drv_ops))!= 0)
return(retval);

/* Configure streams specific parameters. */
if ((retval = str_install(&example_str_info)) I= 0) {

uninstall_driver(&example_drv_info);
return(retval);

/* Success */
return O;

For definition in the $DEVICE table in the driver’s master file entry, set the
0x8000 bit in the mask field to use the second cloning method. For example:

MASTER FILE $DEVICE TABLE CONFIGURATION
name handle type mask block char

example exampleinfo 21 80FC -1 75 /* 0x8000 set in mask */

67

Differences Between STREAMS/UX and System V Release 4 STREAMS
STREAMS/UX Hardware Driver Writing

STREAMS/UX Hardware Driver Writing

STREAMS/UX does not provide all the kernel utilities needed to write a
hardware driver. STREAMS/UX provides only the utilities described in this
manual. Customers who need to write hardware drivers should contact their
HP representative for additional support.

68

STREAMS/UX Multiprocessor
Support

69

STREAMS/UX Multiprocessor Support

This chapter describes how STREAMS/UX runs on a multiprocessor (MP)
system. The following topics are covered:

* How to run modules and drivers in uniprocessor (UP) emulation mode.
* How to write MP scalable modules and drivers.
» How to port SVR4 MP modules and drivers to HP-UX.

» How to use MP synchronization levels on a uniprocessor system to protect
against interrupts.

70

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

Running Modules and Drivers in Uniprocessor
Emulation Mode

STREAMS/UX supports uniprocessor emulation for modules and drivers.
Modules and drivers which run on uniprocessor systems can run on
multiprocessor systems under UP emulation without code changes. This
section presents an overview of UP emulation, describes how to configure
modules and drivers for UP emulation, describes what happens when a
stream contains both UP emulation and MP scalable modules, and describes
how UP emulation affects performance. Lastly, this section contains some
UP emulation programming guidelines.

How STREAMS/UX Executes UP Emulation Modules and Drivers

This section describes how STREAMS/UX supports UP emulation. HP-UX
provides UP emulation for non-STREAMS device drivers which were
developed for uniprocessor systems.

HP-UX uses a semaphore called the I/O semaphore and a spinlock known as
thespllock to implement UP emulation. HP-UX uses the I/O semaphore to
serialize driver system calls. HP-UX acquires the I/O semaphore before
calling the driver to process a system call. HP-UX usesgHeck to

prevent a driver interrupt on one processor from running in parallel with a
driver system call on another processor. When a driversgtiso raise the
spllevel, HP-UX acquires thepllock. When an interrupt occurs for a UP
emulation driver, HP-UX acquires tpllock before calling the driver's
interrupt handler.

STREAMS/UX extends UP emulation for STREAMS/UX modules and
drivers. A stream can be entered in two ways. One way is through a system
call. Either the 1/0O system or STREAMS/UX acquires the 1/0O semaphore
before executing a system call for a UP emulation stream. Also, a stream
can be entered from non-STREAMS software in the kernel. For example, an
interrupt handler can cahutq, putnext,pur streams_puto enter a stream.

If code on the interrupt control stack (ICS) callggfor a UP emulation
stream, the STREAMS/UX UP emulation scheduler runs the service routine.
This scheduler acquires the 1/0 semaphore. If an interrupt occurs for a UP

71

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

emulation driver, the I/O system acquires spdock. Then if the interrupt
handler callgut, putnext or streams_pytSTREAMS/UX usually executes
the put routine on the ICS with the spl lock. Note that the STREAMS/UX
utilities do not acquire thepllock. An MP scalable interrupt handler may
not be able to safely calut, putnext or streams_puto enter a UP

emulation stream.

STREAMS/UX protects the various callback functions in different ways.
STREAMS/UX does not have to acquire the I/O semaphospldock to

run esballocfree routines in UP emulation mode. The free routine will
automatically run in the same mode as the module whichfrzgls Also,

the HP-UX 1/O system protects timeout callback routines by obtaining the
spllock before running the routine.

Bufcall andweld callback functions are always run under UP emulation.
The STREAMS/UX memory and weld daemons always obtain the I/O
semaphore before running UP emulation or MP scalable callback routines.
This should not hurt the performance of MP scalable modules begalase
andbufcall are not called very often.

Configuring Modules and Drivers for UP Emulation

Modules and drivers run in UP emulation mode by default. To configure a
module or driver to run in UP emulation mode, do not specify any MP flags.
The examples below show how to configure UP emulation modules and
drivers by creating a master file $DEVICE table entry or a module or driver
install function. See Chapter 5 for more information about configuring
modules and drivers.

72

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

MASTER FILE $DEVICE TABLE CONFIGURATION

name handle type mask block char
lo loinfo 21 FC -1 75 /* 0x10000 not set in mask */
Imodb Imbinfo 40 0 -1 -1 /* 0x10000 not set in mask */

INSTALL FUNCTION CONFIGURATION

LO DRIVER
static drv_info_t lo_drv_info = { [* driver information */
“lo”, /* name */
“pseudo”, /* class */
DRV_CHAR | DRV_PSEUDO, [x wesNOTE** DRV_MP_SAFE flag not specified */
-1, /* block major number */
75, /* character major number */
NULL, NULL, NULL, /* cdio, gio_private, and cdio_private structures*/
static drv_ops_t lo_drv_ops ={ [* driver entry points */
NULL, /* open */
NULL, /* close */
NULL, [* strategy */
NULL, [* dump */
NULL, * psize */
NULL, /* mount */
NULL, [* read */
NULL, [* write */
NULL, /* ioctl */
NULL, [* select */
NULL, /* option1 */
NULL, NULL, NULL, NULL, /* reserved entry points */
0, /* device flags */
}
static streams_info_t lo_str_info={ /* streams information */
“lo”, /* name */
75, /* major number */
{&lorinit, &lowinit, NULL, NULL},/* streamtab */
STR_IS_DEVICE, [*eNOTE*** MGR_IS_MP flag not specified */
0, /* synchronization level */

/* elsewhere sync name */

73

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

int
lo_install()
int retval;

if ((retval = install_driver(&lo_drv_info, &lo_drv_ops)) != 0)
return(retval);

if ((retval = str_install(&lo_str_info)) I= 0) {

uninstall_driver(&lo_drv_info);
return(retval);

[* success */
return O;

}
LMODB MODULE

static streams_info_t Imodb_str_info = { /* streams information */

“Imodb”, /* name */
-1, /* major number */
{ &modbrinit, &modbwinit }, [* streamtab */
STR_IS_MODULE, [* w3 NOTE***** MGR_IS_MP flag not
specified */
0, [* synchronization level */

* elsewhere sync name */
}
int
Imodb_install()
int retval;

return(str_install(&modb_str_info));

}

Mixing MP Scalable and UP Emulation Modules and Drivers

Because UP emulation and MP scalability are configured separately for each
module or driver, it is possible for a stream to contain both UP emulation
and MP scalable modules and drivers. If any module or driver in a stream
needs to run in UP emulation mode, STREAMS/UX runs the entire stream
under UP emulation.

74

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

When a module is pushed onto a stream, STREAMS/UX checks if either the
module is configured for UP emulation or if the stream is running under UP
emulation. If either condition is true, the module and the entire stream run
under UP emulation. Also, when the module is popped, the stream does not
change back to its original mode.

When a driver is linked under a multiplexor, STREAMS/UX checks if both
streams run in the same mode. If they do not, STREAMS/UX changes the
MP scalable stream to run in UP emulation mode. When the driver is
unlinked, STREAMS/UX does not change a stream back to its original
mode.

STREAMS/UX does not support mixing MP scalable and UP emulation
modules in an upper mux because an upper mux is a clonable device.
STREAMS/UX does not detect that upper mux streams are related. In
particular, STREAMS/UX does not support pushing a UP emulation module
onto only one MP scalable upper mux stream. STREAMS/UX changes only
this one stream to run under UP emulation. It does not change the control
stream or the other upper mux streams. You should design your modules and
drivers so that only MP scalable modules are pushed onto MP scalable upper
muxes. Also, STREAMS/UX does not support linking a UP emulation

driver under an MP scalable upper mux. STREAMS/UX only changes the
control stream to run under UP emulation. It does not change the other
upper mux streams. You should link only MP scalable drivers under an MP
scalable upper mux.

Some examples of supported streams configurations which contain both MP
scalable and UP emulation modules and drivers are listed below.

e If an MP scalable driver is linked under a UP emulation mux, STREAMS/UX
changes the MP scalable driver to run in UP emulation mode. For example, DLPI
is MP scalable in 10.0. When it is linked under UP emulation SNA,
STREAMS/UX changes the drivers to run in UP emulation mode.

* When an MP scalable module is pushed onto a UP emulation stream,
STREAMS/UX runs the module under UP emulation. For example, timod is MP
scalable. When it is pushed onto a UP emulation OSI stream, it runs under UP
emulation.

e When a UP emulation module is pushed onto an MP scalable stream,
STREAMS/UX changes the entire stream to run under UP emulation. For
example, DLPI is MP scalable in Release 10.0. When UP emulation Portable
Netware modules are pushed onto DLPI, the entire stream runs in UP emulation

75

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

mode. Another example is STREAMS/UX pipes, which are MP scalable. If UP
emulation modules are pushed onto a pipe, the pipe runs under UP emulation.

e As described earlier in this section, all ukefcall callback functions are
executed in UP emulation mode. If an MP scalable moduletn#tsll, the
callback routine runs under UP emulation. If the callback routine invokes a put
procedure, the put procedure also runs in UP emulation mode. For example, the
DLPI driver is MP scalable in 10.0 and cdiisfcall. Thebufcall callback
function runs under UP emulation.

Performance

Performance of UP emulation modules and drivers will likely worsen as
more processors are added to a system. If a large number of users will be
running your modules and drivers on MP systems, you should probably
modify the code to be MP scalable.

MP scalable modules that run over non-STREAMS/UX UP emulation
drivers will be forced to run in UP emulation mode. You can achieve better
performance by changing drivers to be MP scalable.

Guidelines for UP Emulation Modules and Drivers

» ltis easier to develop STREAMS/UX based software which runs completely
under UP emulation or is completely MP scalable. Try to avoid mixing UP
emulation and MP scalable modules and drivers in the same stream or
multiplexor.

» It may be safe for UP emulation modules and drivers to call MP scalable
non-STREAMS software. The MP scalable software must be able to run while
the 1/0 semaphore is held. Note that if a put or service routine calls
non-STREAMS functions, these functions cannot acquire semaphores because
this might cause thgut or serviceroutine to block.

» Be careful with MP scalable non-STREAMS kernel code when calling UP
emulation STREAMS/UX modules. It is better if the non-STREAMS code
schedules a service routine instead of invoking a put procedure. Scheduling the
service routine will wake up the UP emulation scheduler daemon to run the
routine. The daemon acquires the 1/0O semaphore. If non-STREAMS code calls
put, putnextor streams_puytSTREAMS/UX will not acquire either the 1/0O
semaphore or thepl lock.

* Modules and drivers which can run MP scalable and run under UP emulation
must use queue or queue pair synchronization. An example of an MP scalable

76

STREAMS/UX Multiprocessor Support
Running Modules and Drivers in Uniprocessor Emulation Mode

module which can run in UP emulation mode is timod. Although timod will be
configured to be MP scalable, it is pushed onto many streams, some of which run
in UP emulation mode.

Do not push a UP emulation module onto an MP scalable upper mux. Do not link
a UP emulation driver under an MP scalable upper mux. It is better for the mux
to contain either all MP scalable modules and drivers or all UP emulation
modules and drivers.

The UP emulation scheduler runs differently from the uniprocessor scheduler.
This may affect STREAMS application programs. On multiprocessor systems,
the scheduler may not run a service routine before the process which scheduled
the routine returns to user level.

UP emulation modules and drivers need to follow the guidelines in the
“STREAMS/UX Uniprocessor Synchronization” section of Chapter 3.

77

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

Writing MP Scalable Modules and Drivers

Overview of STREAMS/UX MP Support

HP-UX STREAMS supports MP scalable drivers and modules. You can
configure the amount of parallelism for modules and drivers. Pick a level
which is consistent with a module's or driver's use of shared data structures.
STREAMS/UX provides five levels of parallelism which are catladue,

gueue pair, module, elsewheamdglobal. They are described below. Also,
STREAMS provides extra synchronization for module and dopenand
closefunctions. This synchronization is also described below. The term
module is used in this discussion to mean both modules and drivers, unless
otherwise stated.

Figure 1 is useful for understanding STREAMS/UX MP support. The
diagram shows four streams, ECHO-A, ECHO-B, DLPI-A and SAD-A.
ECHO-A and ECHO-B both contain tleehodriver. DLPI-A containglpi,
and SAD-A hasad Each driver contains a read and a write queue.
echo_rputandecho_rsrvwoperate on an echo driver's read quexgho_wput
andecho_wsnaccess the write queue. Tdipi andsaddriver functions are
similar to the echo driver functions. STREAMS/UX execet®so, dIpj
andsaddriver functions differently depending on the MP synchronization
level configured for the drivers.

78

Figure 1

Stream Head Stream Heag

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

Read Queue Write Queue Read Queue Write Queue

A y A y

echo_rput | echo_wput echo_rput | echo_wput

Echol echo rsrv | echo wsrv Echo| echo rsrv | echo wsrv
ECHO-A ECHO-B
Read Queue Write Queue Read Queue Write Queue
Stream Heagl Stream Head

.| dlpi_rput dipi_wput sad_rput sad_wput
Dlpi dipi_rsrv | dipi_wsrv Sad| sad rsrv | sad wsrv
DLPI-A SAD-A

Understanding STREAMS/UX MP Support

The queue synchronization level provides the most concurrency. It
serializes access to a queue so that only one function at a time can
manipulate the queue. Applications can take advantage of multiple
processors because functions that operate on different queues run in parallel.
For example, assume that the echo driver in Figure 1 uses queue
synchronization. STREAMS/UX does not run ECHO-é¢ho_rpuiand
echo_rsrv in parallel. Also, STREAMS/UX does not execute ECHO-A's
echo_wpuandecho_wsnconcurrently. However, STREAMS/UX can run
ECHO-A'secho_rputat the same time as ECHO-&sho_wput

STREAMS/UX allows ECHO-A's read queue functions to run in parallel

with ECHO-A's write queue routines. Also, any of ECHO-A's procedures
can run at the same time as ECHO-B, DLPI-A or SAD-A routines. If a
module uses queue synchronization, a queue's put and service routines can
easily share data with each other because STREAMS/UX does not execute
the routines concurrently.

Thequeue pairsynchronization level serializes access to a read and write
gueue pair so that only one of the queue pair's functions can run at a time.
Queue pair synchronization still allows concurrency because functions for

79

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

different queue pairs run in parallel. (A queue pair is also known as a
module instance.) For example, assume that the echo driver in Figure 1 is
configured for queue pair synchronization. STREAMS/UX runs ECHO-A's
echo_rputecho_rsrv, echo_wpuandecho_wsnone at a time. In other
words, STREAMS/UX does not execute any of ECHO-A's echo driver
functions concurrently, nor will STREAMS/UX run any of ECHO-B's echo
driver functions in parallel. However, STREAMS/UX can run an ECHO-A
function at the same time as an ECHO-B function. Also, any of ECHO-A's
functions can run in parallel with DLPI-A or SAD-A routines. If a module
uses queue pair synchronization, a queue pair's functions run one at a time
and can share data.

Themodulesynchronization level serializes access to all of a module's
gueue pairs or instances. STREAMS/UX runs only one function at a time for
all of a module's queue pairs. However, STREAMS/UX runs functions for
different modules in parallel. Modules are different if they have different
master file entries. For example, timod and tirdwr are different modules.
Assume that the echo driver in Figure 1 is configured for module
synchronization. STREAMS/UX does not rechodriver functions in

ECHO-A and ECHO-B in parallel.

However, STREAMS/UX can run an echo driver function at the same time
as dlpi or a sad driver function. Because STREAMS/UX allows only one
function for all of a module's queue pairs to run at a time, the module's queue
pairs can share data.

Theelsewheresynchronization level serializes a group of different modules.
STREAMS/UX runs only one function at a time for the group of modules.
STREAMS/UX runs functions in different groups concurrently. Suppose the
echo and dlpi drivers in Figure 1 are configured to be members of an
elsewheresynchronization group. Also, assume the sad driver is configured
to be in a differenélsewheragroup. Only one driver function in ECHO-A,
ECHO-B and DLPI-A can run at a time. However, a function in ECHO-A,
ECHO-B or DLPI-A can run in parallel with a function in SAD-A. Also, a
function in ECHO-A, ECHO-B or DLPI-A can run at the same time as a
function in a module which uses a different synchronization level than
elsewhere The modules in a group can share data.

Theglobal synchronization level does not provide parallelism within
STREAMS/UX. Only one module out of those configured for global
synchronization can run at a time. Suppose that in Figure 1, the echo, dIpi

80

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

and sad drivers use global synchronization. Only one driver function in
ECHO-A, ECHO-B, DLPI-A and SAD-A can run at a time. However, one
of these drivers could run in parallel with a module configured for a
synchronization level other thafobal. All modules configured witglobal
synchronization can share data.

The STREAMS/UX synchronization levels also apply to open and close.
For example, if a module is configured for queue pair synchronization, none
of theput or serviceroutines for the queue pair can run at the same time as
the queue pair'spenor close Also, open cannot run at the same time as
close. The least amount of protection that STREAMS/UX provides for
opens and closes is queue pair. Even if a module is configured with queue
synchronization, it will run as if it were configured with queue pair
synchronization during opens and closes.

STREAMS/UX provides additional protection fopensandcloses
STREAMS/UX executes only oragenor closeacross all streams at a time.
For example in Figure 1, if STREAMS/UX is executing the ECHO-A echo
driver'sopenroutine, the DLPI-A dlpbpencannot run nor can any other
module's or driver'spenor close An exception to this occurs if aqpenor
closesleeps. When this happens, othigensandclosescan occur. Ampen

or closefunction that sleeps may need to use a spinlock together with the
get_sleep_locksSV_WAIT or SV_WAIT_SIG utilities to prevent missing
wakeups. These utilities are described in the “HP-UX Modifications to
STREAMS/UX Utilities” section in Chapter 3. Also, SV_WAIT and
SV_WAIT_SIG are discussed in the SVR4.2 Driver manual.

STREAMS does not synchronize the running of timeout and bufcall
callback functions with modules and drivers. This chapter lists some
restrictions on what these callback functions can do.

Suggestions for Designing MP Scalable Modules and Drivers

This section contains recommendations for designing MP scalable modules
and drivers:

* Modules and drivers that run over UP emulation hardware drivers must run under
UP emulation. Before changing STREAMS/UX modules and drivers to be MP
scalable, modify hardware drivers to be MP scalable.

* You can improve the performance of modules and drivers by using the elsewhere
synchronization level. Configure all modules and drivers in a subsystem to be in

81

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

the same group. They can all share data. However, STREAMS/UX will not
synchronizebufcall andtimeoutcallback functions or any non-STREAMS/UX
code with the modules or drivers. You may be able to ussrdreams_ putitility
described in Chapter 3. In general, UP emulation provides more protection for
bufcall, timeout and non-STREAMS functions.

* To change modules and drivers to be MP scalable, analyze how the code shares
data structures. Determine which structures are shared and which module and
driver entry points read and write to the structures. Using this information, choose
synchronization levels for modules and drivers that correctly serialize access to
shared data.

» If all modules and drivers of a product share the same structure, consider
changing the module and driver data structures and algorithms to allow for more
parallelism. Alternatively, consider using spinlocks to protect shared structures
that are accessed infrequently or for short amounts of time. Using spinlocks is a
good way to protect structures which are not accessed on the main read and write
paths. You can either use the native HP-UX spinlock primitives or the SVR4 MP
LOCK, TRYLOCKUNLOCK, LOCK_ALLOCandLOCK_DEALLOCutilities.

The SVR4 MP utilities are discussed under “HP-UX Modifications to
STREAMS/UX Utilities” in Chapter 3 and in the SVR4.2 Driver manual.

» Use service routines only for flow control, recovering from resource shortages or
executing interrupt completions in a process context. Service routines degrade
performance.

» Be careful when writindimeoutandbufcall callback functions, as well as
non-STREAMS code that calls STREAMS/UX utilities or shares data with
modules and drivers. See the “Guidelines for MP Scalable Modules and Drivers”
section.

Configuring MP Scalable Modules and Drivers

This section describes how to configure MP scalable modules and drivers.

MP Scalable Module and Driver Configuration

If you want a module or driver to be MP scalable, you must specify
additional configuration parameters. You need to:

» Add a flag indicating that the module or driver is MP scalable

» Add a keyword which specifies the synchronization level the module or driver
uses

» Add asyncname if the module or driver requirglsewheresynchronization

82

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

The sync name indicates which modules and drivers belong to a group. Choose a
sync name with eight characters or less, and configure the name for each
member of the group. See Chapter 5 for more information about configuring
STREAMS/UX modules and drivers.

Master File $DEVICE Table Configuration

To configure an MP scalable module or driver using a master file $DEVICE
table entry, add the 0x10000 (MGR_IS_MP) flag to the mask value. Also
add an entry to the master file $STREAMS_DVR_SYNC table. This entry
contains the module or driver's name, a keyword specifying the
synchronization level, andsyncname if the module or driver requires
elsewhere synchronization. There are five synchronization level keywords:
sync_global, sync_elsewhere, sync_module, sync_gpdsync_queue

The STREAMS/UX master file contains a list of the valid keywords in the
$STREAMS_SYNC_LEVEL table. The examples below show $DEVICE
and $STREAMS_DVR_SYNC table entries.

* name handle type mask block char

*

$DEVICE

strlog loginfo 21 120FC -1 73 /*Added 0x10000 to mask*/

dlpi dipiinfo 21 120FC -1 119/*Added 0x10000 to mask*/

tirdwr tirdwrinfo 40 12000 -1 -1 /*Added0x10000to mask*/

A Ainfo 40 12000 -1 -1 /*Added 0x10000 to mask*/

B Binfo 40 12000 -1 -1 /*Added0x10000to mask*/

C Cinfo 40 12000 -1 -1 /*Added0x10000 to mask*/

D Dinfo 21 120FC -1 116/*Added0x10000 to mask*/

$$$

* name sync level sync name

*

$STREAMS_DVR_SYNC

strlog sync_module /* Added sync level */

dipi sync_qpair /* Added sync level */

tirdwr sync_queue /* Added sync level */

A sync_elsewhere ABsync /* Added sync level & name
*

/

B sync_elsewhere ABsync /* Added sync level & name */
C sync_elsewhere netsync /* Added sync level & name */
D sync_elsewhere netsync /* Added sync level & name */
$$$

Module and Driver Install Function Configuration

If a module or driver is configured using an install function, add the
MGR_IS_MP flag to thénst_flagdfield in thestreams_info_structure.
Also, if you are configuring a driver, set the DRV_MP_SAFE flag in the

83

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

drv_info_tstructure. Specify a synchronization level inithet_sync_level

field. The possible values é8®QLVL GLOBALSQLVL ELSEWHERE
SQLVL_MODULESQLVL_QUEUEPAIRNASQLVL_QUEUEIf the

module or driver is using the elsewhere synchronization level, add a sync
name to thénst_sync_infdield. Note that a module or driver which uses an
install function for configuration needs an entry in the master file
$DRIVER_INSTALL table. (Do not put an entry in the $DEVICE table if an
install function is used.) The examples below show MP scalable module and
driver install functions.

STRLOG DRIVER

static drv_info_t strlog_drv_info = { /* driver information */

“strlog”,
“pseudo”,

DRV_CHAR | DRV_PSEUDO |

DRV_MP_SAFE,
-1,

73,
NULL, NULL, Null,

}

static drv_ops_t strlog_drv_ops = {

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL,

NULL, NULL, NULL, NULL,
0,

}

/* name */
* class */
[x wNOTE**** DRV_MP_SAFE flag specified */

/* block major number */
[* character major number */
/* cdio, gio_private, and cdio_private
structures

[* driver entry points */
/* open */
/* close */
[* strategy */
/* dump */
I* psize */
/* mount */
/* read */
[* write */
[* ioctl */
/* select */
/* optionl */
[* reserved entry points */
* device flags */

static streams_info_t strlog_str_info = { /* streams information */

“strlog”,
73,

{&logrinit, &logwinit, NULL, NULL},
STR_IS_DEVICE | STR_SYSV4_OPEN |

MGR_IS_MP,
SQLVL_MODULE,

e
1

/* name */
/* major number */
[* streamtab */
[* #xesNOTE*** MGR_IS_MP flag specified */

[R NOTE***** synch level specified */
/* elsewhere sync name */

84

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

int
strlog_install()
int retval;

if ((retval = install_driver(&strlog_drv_info, &strlog_drv_ops)) != 0)
return(retval);

if ((retval = str_install(&strlog_str_info)) !=0) {

uninstall_driver(&strlog_drv_info);
return(retval);

/* success */
return O;
TIRDWR MODULE

static streams_info_t tirdwr_str_info = { /* streams information */

“tirdwr”, /* name */
-1, /* major number */
{ &rinit, &winit, NULL, NULL }, [* streamtab */
STR_IS_MODULE | STR_SYSV4_OPEN | [x FEENOTE** MGR_IS_MP flag specified */
MGR_IS_MP
SQLVL_QUEUE, [* ¥xNOTE***** synch level specified */
/* elsewhere sync name */
}
int

tirdwr_install()
int retval;

return(str_install(&tirdwr_str_info));

C MODULE
static streams_info_t c_str_info = { [* streams information */
“C”, /* name */
-1, /* major number */
{ &crinit, &cwinit, NULL, NULL }, [* streamtab */
STR_IS_MODULE | STR_SYSV4_OPEN | [* FrkNOQTE**+* MGR_IS_MP flag specified
MGR_IS_MP
SQLVL_ELSEWHERE, [* ¥ NOTE**** synch level specified */
“netsync”, [x ¥+ NOTE***** sync name specified */

85

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

int
C_install()

int retval;

return(str_install(&c_str_info));

}
D DRIVER
static drv_info_t d_drv_info = { [* driver information */
‘D", /* name */
“pseudo”, /* class */
DRV_CHAR | DRV_PSEUDO | [* *xNOTE*** DRV_MP_SAFE flag specified */
DRV_MP_SAFE,
-1, /* block major number */
-1, /* dynamically assigned character major number */
NULL, NULL, NULL, /* cdio, gio_private, and cdio_private
structures */
}
static drv_ops_t d_drv_ops ={ [* driver entry points */
\ /* open */
NULL, /* close */
NULL, [* strategy */
NULL, /* dump */
NULL, [* psize */
NULL, /* mount */
NULL, * read */
NULL, [* write */
NULL, * ioctl */
NULL, * select */
NULL, /* optionl */
NULL, NULL, NULL, NULL, [* reserved entry points */
0, /* device flags */
}
static streams_info_t d_str_info = { /* streams information */
‘D", /* name */

-1, [* dynamically assigned major number */
{ &drinit, &dwinit, NULL, NULL}, /* streamtab */
STR_IS_DEVICE | STR_SYSV4_OPEN | /* *****NOTE**** MGR_IS_MP flag specified */

MGR_IS_MP,
SQLVL_ELSEWHERE, [x ¥+ NOTE***** synch level specified */
“netsync”, [* ¥+ NOTE***** sync name specified */

86

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

int
D_install()

int retval;

/* Configure driver and obtain dynamically assigned major number. */
if ((retval = install_driver(&d_drv_info, &d_drv_ops)) != 0)
return(retval);

[* Configure streams specific parameters. */

if ((retval = str_install(&d_str_info)) = 0) {
uninstall_driver(&d_drv_info);
return(retval);

[* Success */
return O;

Configuring the NSTRSCHED Tunable

STREAMS/UX provides a new tunable, NSTRSCHED, which allows you to
set the number of STREAMS/UX scheduler daemons running on a
multiprocessor system. The default value is O, which indicates that
STREAMS/UX will determine the number of daemons based on the number
of processors in the system. The minimum value is 0 and the maximum is
32.

You should leave NSTRSCHED set to the default value. STREAMS/UX

will set the number of daemons based on the number of processors in the
system. STREAMS/UX will create fewer daemons than there are
processors. There is no benefit to creating more daemons than processors.
You might want to increase the value of NSTRSCHED if the system does a
lot of STREAMS/UX processing or decrease it if the system does very little
STREAMS/UX work. You can determine the number of scheduler daemons
running on the system by executing fge-efcommand, and counting the
number ofsmpschegrocesses.

Guidelines for MP Scalable Modules and Drivers

» ltis easier to develop STREAMS/UX-based software that runs completely MP
scalable or completely under UP emulation. Try to avoid mixing MP scalable and
UP emulation modules and drivers in the same stream or multiplexor.

e MP scalable STREAMS/UX modules and drivers cannot call UP emulation
software. A put or service routine cannot acquire the I1/0O semaphore bpatuse

87

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

andserviceroutines cannot block. This means, for example, that modules and
drivers which run over a UP emulation hardware driver must run under UP
emulation.

Modules and drivers which can run both MP scalable and under UP emulation
must use queue or queue pair synchronization. An example of an MP scalable
module which can run in UP emulation modénsod Althoughtimodis

configured to be MP scalable, it is pushed onto many streams, some of which run
in UP emulation mode.

The MP scheduler runs differently from the uniprocessor scheduler. This may
affect STREAMS/UX application programs. On multiprocessor systems, the
scheduler may not run a service routine before the process which scheduled the
routine returns to user level.

A module or driver's synchronization level determines the entities with which it
can share data. It also determines the entities with which it can share its
STREAMS/UX queues. For example, if a module uses queue pair
synchronization, the writput routine can calinsqto insert a message onto the
module's read queue. But, if the module uses queue synchronization, the write
put routine can only calhsqto insert messages onto the write queue. The
synchronization level determines which queues a module or driver can pass to
STREAMS/UX utilities.

In general, gutor serviceroutine can only pass its own queue or queues
belonging to entities with which it can share data. The restricted utilities are
backq, bcanputnext, canputnext, flushband, flushq, freezestr, getq, insq, putbq,
putnext, putnextctl, putnextctll, putnextctl2, putq, greply, gsize, rmvq,
SAMESTR, strqget, strgsmtdunfreezestr Theputq utility is not restricted

when it is passed a driver's read queue or a lower mux's write queugutamy
serviceroutine can calputqif it passes a driver's read queue or a lower mux's
write queue. Howeveputds caller must guarantee that the queue passed in is
still allocated.

Some STREAMS/UX utilities, such as canput, are commonly passed a
parameter of the form->q_next. These routines are restricted in a different
way from those listed above. A put or service routine can only pass its own
queue's|_nex field or theg_nex field of queues belonging to entities with
which it can share data. These requirements apfilgaopuf canput put,

putctl, putctll, putctl2, andstreams_putThese utilities are not restricted when
they are passed a parameter of the forexcept that the queue must still be
allocated.

Some restrictions exist for timeout and bufcall callback routines as well as
non-STREAMS/UX code in the kernel. This software cannot share data

88

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

structures with STREAMS/UX modules and drivers, unless spinlocks are used to
protect critical sections. Also, the code cannot call the following utillieskq,
bcanputnext, canputnext, flushband, flushq, freezestr, getq, insq, putbqg, putnext,
putnextctl, putnextctll, putnextctl2, greply, gsize, rmvq, SAMESTR, strgget,
strqset andunfreezestr

Callback routines and non-STREAMS code cannottzahput, canput, put,

putctl, putctll, putctldr streams_puif they pass the utility a parameter of the
form g->q_next They can call these utilities if they pass a parameter of the
form q (g must be a valid, allocated queue). Callback and non-STREAMS code
can callputgonly if they pass it a driver's read queue or a lower mux's write
gueue. Callback and non-STREAMS code can use thestnieams_putitility
documented in the section “HP-UX Modifications to STREAMS/UX Utilities”

in Chapter 3.

Some restrictions exist on free routines passesdtalloc A free routine can call
STREAMS/UX utilities in the same way as the put or service routine that calls
freeh A free routine can access the same data structures as the put or service
routine that calls freeb.

A protect_gparameter can be passed towvleddqutility. The protect_q

parameter specifies which queue filnec parameter can access safely. filne
function can use the same STREAMS/UX utilities aspiteéect g puand
serviceroutines. Also, the function can access the same data structures as the
protect g putandserviceroutines.

Put andserviceroutines cannot be called directly. They must be executed by
calling STREAMS/UX utilities such gsutnext, put, putcpr genable They
cannot be called using the function pointer stored imtlgnfostructure.

STREAMS/UX applications in which multiple processes access the same stream
need to know how STREAMS/UX will synchronize operations on the stream.
See “Multiple Processes Accessing the Same Stream” in Chapter 3.

Modules and drivers can allocate their own spinlocks to protect data structures.
If they do, they should use the lock orders reserved for them in
lusr/include/sys/semglobaldr /usr/conf/h/semglobal:h
STREAMS_USR1_LOCK_ORDERREAMS_USR2_LOCK_ORDERd
STREAMS_USR3_LOCK_ORDER

The lock order is passed in the order parameter of the native HP-UX
alloc_spinlockprimitive and the hierarchy parameter of the SVR4 MP
LOCK_ALLOCutility. The HP-UX kernel uses this information to check for
deadlocks when the kernel is compiled vt BMAPHORE_DEBUGNhen a

module acquires a spinlock, the spinlock's order must be higher than the order of
any spinlocks the module already holds. Modules and drivers cannot hold

89

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

spinlocks when calling some STREAMS/UX utilities. See Table 1 at the end of
this chapter for more information. See the SVR4.2 Driver manual for more
information about SVR4 MP hierarchies.

To reduce contention and improve performance, you should minimize the
amount of time that modules and drivers hold spinlocks.

To improve performance, modules and drivers should verify that they are actually
running on a multiprocessor system before calling the HP-UX native spinlock
primitives. The SVR4 MP LOCK and UNLOCK routines described in Chapter
3 do this for the caller. If a spinlock is being used only to protect against software
running on other processors, but not interrupts, modules or drivers can call the
MP_SPINLOCKandMP_SPINUNLOCKmacros inustr/include/sys/spinlock.h

(or /usr/conf/h/spinlock h These macros obtain only the requested spinlock if
they are executing on a multiprocessor system. If a spinlock is being used to
protect against both software running on other processors and interrupts, modules
and drivers should check the uniprocessor flag and raisplthevel if they are
running on a uniprocessor system. Example code is shown below.

if (uniprocessor)

X = splstr();
else

spinlock(mylock);
Be careful when choosing a multiplexor's synchronization level. When a driver
is linked under a mux, STREAMS/UX changes the driver's Stream head to be the
lower mux. STREAMS/UX uses the upper mux's synchronization level for the
lower mux. So if the upper mux uses global, elsewhere, or module
synchronization, the lower and upper muxes can share data. If the upper mux
uses queue or queue pair synchronization, the lower and upper muxes cannot
share data.

The synchronization level also influences how messages can be passed across
the mux. If the upper mux uses global, elsewhere, or module synchronization, it
can pass messages downward by passing the lower mux's write gpateg to

put, or putnext Likewise, the lower mux can pass messages upward by passing
the upper mux's read queueptatq, put or putnext If the upper mux uses queue

or queue pair synchronization, it can only psgjand put to pass messages to
the lower mux. To usputnext the upper mux must ensure that the driver stays
linked under the mux until after the putnext completes. Also, the lower mux can
only use putq and put to pass messages to the upper mux. Jatnese the

lower mux must guarantee that the driver stays linked under the mux, that the
mux stays open, and that modules are not pushed or popped until after the
putnextcompletes.

90

STREAMS/UX Multiprocessor Support
Writing MP Scalable Modules and Drivers

No matter which utility is used to pass messages across the mux, you must make
sure that the queues passed to the utilities are still allocated. You may also want
to check that the driver is still linked under the mux.

Follow the design guidelines in the SVR4.2 STREAMS manual. The guidelines
are located at the end of these chapters: Overview of STREAMS Modules and
Drivers, STREAMS Modules, STREAMS Drivers, and STREAMS

Multiplexing. For STREAMS/UX, you do not need to follow some of these
guidelines. However, if you ignore them, your software will not be portable to
SVR4 STREAMS. For HP-UX STREAMS, you do not need to gatbcsonor
gprocsoffas you do for SVR4 MP STREAMS. Also, you can use synchronization
levels to protect module and driver private structures instead of SVR4 MP locks
and synchronization primitives. Lastly, you do not need to use SVR4 MP
canputnexandbcanputnexinstead otanputandbcanputon STREAMS/UX.

91

STREAMS/UX Multiprocessor Support
Porting SVR4 MP Modules and Drivers to HP-UX

Porting SVR4 MP Modules and Drivers to HP-UX

Please read the previous section, “Writing MP Scalable Modules and
Drivers,” before this one. If you compare the previous section to the
SVR4.2 STREAMS manual, you will notice that there are some differences
between SVR4 MP STREAMS and HP-UX MP STREAMS. This section
discusses these differences and describes strategies for porting SVR4 MP
modules and drivers to HP-UX.

Differences between SVR4 and HP-UX MP STREAMS

HP-UX STREAMS provides MP scalability differently from SVR4 MP
STREAMS. There are two main differences. The first pertains to which
STREAMS/UX entities run in parallel. SVR4 MP STREAMS executes put
and service routines for the same queue concurrently although only one
instance of a service routine can run at a time. HP-UX, unlike SVR4 MP,
allows the developer to configure which STREAMS/UX entities run in
parallel. The most parallelism that a STREAMS/UX developer can
configure is to run entry points for different queues concurrently. Unlike
SVR4 MP, HP-UX only allows one entry point for a queue to run at a time.
The put and service routines for the same queue cannot run in parallel. Also,
multiple instances of a queue's put or service routine cannot execute
concurrently.

The second difference has to do with synchronizing access to module and
driver private data structures. SVR4 MP STREAMS does not provide
protection for private structures. The module or driver code uses spinlocks
to synchronize access. STREAMS/UX provides protection for private
structures. The developer configures the amount of concurrency for a
module or driver based on the entities with which it shares data structures.
For example, if all instances of a module access the same table, the
programmer can configure the module so that only one instance runs at a
time.

92

STREAMS/UX Multiprocessor Support
Porting SVR4 MP Modules and Drivers to HP-UX

Strategies for Porting SVR4 MP Modules and Drivers to HP-UX

The best way to port SVR4 MP scalable modules and drivers to HP-UX is to
change the SVR4 MP code to use the STREAMS/UX synchronization
levels. First, analyze how the SVR4 MP code shares data structures, and
then configure the modules and drivers to use synchronization levels which
correctly serialize access to shared data. You can use defines to change
module and driver spinlock calls to no-ops. This approach is likely to get the
best performance, but may require much effort. Also, the STREAMS/UX
synchronization levels may not be suitable for all designs.

To make porting easier, STREAMS/UX will provide support for the SVR4

MP spinlock primitives. SVR4 MP modules and drivers could be ported to
HP-UX by configuring them to run with queue synchronization and leaving

in the calls to SVR4 MP spinlock routines. A disadvantage of this porting
strategy is that it may not achieve as much performance as the first. Some of
the synchronization provided by STREAMS/UX will be redundant with the
synchronization implemented by module and driver spinlocks. In some
cases, a combination of these two strategies may make sense. For example,
suppose several modules and drivers share the same structure, but do not
access it on the main read and write paths. You can use SVR4 MP spinlocks
to protect this data, but use the STREAMS/UX synchronization levels to
protect other structures.

93

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

MP Synchronization Levels on a Uniprocessor

This section describes how modules and drivers can use MP synchronization
levels on a uniprocessor system to protect their private data structures
against interrupts. Please read “Writing MP Scalable Modules and Drivers”
in this chapter and “STREAMS/UX Uniprocessor Synchronization” in
Chapter 3 before reading this section.

In addition to the techniques described under “Driver and Module
Synchronization” in Chapter 3, modules and drivers can use MP
synchronization levels to protect their private structures against interrupts.
By default STREAMS/UX configures modules and drivers to use queue pair
synchronization. This is why modules and drivers do not need to raise the
spllevel to protect their data if software running on the ICS sends a message
to a stream. Suppose an interrupt occurs while one of a queue pair's entry
points is running. STREAMS/UX will re-schedule sending the message to
the stream to after the entry point finishes executing. You can configure
uniprocessor modules and drivers to use synchronization levels other than
gueue pair synchronization if they need more protection.

For example, you could configure a module to use module synchronization
if multiple instances of the module share the same data structure, and if the
module updates the structure when it is running on the ICS. If you configure
the module to use module synchronization, STREAMS/UX will wait until

no instances of the module are running before sending it a message.
Alternatively, you could change the module to raise the spl level while
accessing the shared structure.

You configure synchronization levels for modules and drivers that run on a
uniprocessor system in the same way as for MP scalable modules and
drivers. You must specify the synchronization level the module or driver
uses, and if the module or driver requires elsewhere synchronization, you
must specify ayncname. Thesyncname indicates which modules and
drivers belong to a group. Picksgncname with 8 or fewer characters, and
configure the name for each member of the group. You configure the
synchronization level and the sync name in either the master file
$STREAMS_DVR_SYNC table or in an install functistneams_info_t
structure.

94

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

You can configure modules and drivers to use a particular synchronization
level whether or not they are MP scalable, run under UP emulation, or only
run on a uniprocessor system. The section “Configuring MP Scalable
Modules and Drivers” in this chapter shows examples of configuring MP
scalable modules and drivers to use synchronization levels. There is no
difference between configuring modules and drivers which run only on a
uniprocessor system and modules and drivers which run under UP
emulation. Examples of configuring uniprocesor/UP emulation modules
and drivers are shown below. Examples are given for both master file
entries and module and driver install functions. See Chapter 5 for more
information about configuring modules and drivers.

MASTER FILE $DEVICE TABLE CONFIGURATION

* name handle type mask block char
*

$DEVICE

A Ainfo 40 2000 -1 -1 /* UP module, since 0x10000 not in mask */
B Binfo 40 2000 -1 -1 /* UP module, since 0x10000 not in mask */
C Cinfo 40 2000 -1 -1 /* UP module, since 0x10000 not in mask */
D Dinfo 21 20FC -1 116 /* UP driver, since 0x10000 not in mask */
$$$

* name sync level sync name

*

$STREAMS_DVR_SYNC

A sync_module /* Module uses synch level */

B sync_module /* Module uses synch level */

C sync_elsewhere netsync /* Module uses synch level & name */

D sync_elsewhere netsync /* Driver uses synch level & name */

$$$

95

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

INSTALL FUNCTION CONFIGURATION

B MODULE
static streams_info_t b_str_info ={ /* streams information */
“B", * name */
-1, /* major number */

{ &brinit, &bwinit, NULL, NULL }, /* streamtab */
STR_IS_MODULE | STR_SYSV4_OPEN, [x FRENOTE**** MGR_IS_MP not specified */

SQLVL_MODULE, [* #**NOTE***** synch level specified */
/* sync name */

}

int
B_install()

int retval,

return(str_install(&b_str_info));

}
D DRIVER
static drv_info_td_drv_info={ /* driver information */
‘D", /* name */
“pseudo”, * class */
DRV_CHAR | DRV_PSEUDO, [* *xNOTE*** DRV_MP_SAFE flag not specified */
-1, /* block major number */
-1 /* dynamically assigned character major number */
NULL, NULL, NULL, [* cdio, gio_private,and cdio_private structures
*/
structures */
}
static drv_ops_t d_drv_ops ={ /* driver entry points */
LL, /* open */
NULL, [* close */
NULL, [* strategy */
NULL, /* dump */
NULL, [* psize */
NULL, /* mount */
NULL, /* read */
NULL, [* write */
NULL, /*ioctl */
NULL, /* select */
NULL, /* option1 */
NULL, NULL, NULL, NULL, [* reserved entry points */
0, [* device flags */
}

96

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

static streams_info_t d_str_info= { /* streams information */
“D", /* name */
-1, /* dynamically assigned major number */
{ &drinit, &dwinit, NULL, NULL}, /* streamtab */
STR_IS_DEVICE | STR_SYSV4_OPEN, /* *****NOTE***** MGR_IS_MP flag not specified */

SQLVL_ELSEWHERE, [* #***NOTE***** synch level specified*/
“netsync”, [* RN QTE***** sync name specified */
int
D_install()
{
int retval;

/* Configure driver and obtain dynamically assigned major number. */
if ((retval = install_driver(&d_drv_info, &d_drv_ops)) != 0)
return(retval);

/* Configure streams specific parameters. */

if ((retval = str_install(&d_str_info)) != 0) {
uninstall_driver(&d_drv_info);
return(retval);

/* Success */
return O;

97

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

The following table indicates if spinlocks can be held across calls to

different STREAMS/UX utilities. Also, it specifies if the SVR4 MP
STREAMS/UX utilities have the same restrictions.

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities
Utility Spinlocks Can Be Held Across Call? Dsif\f/eer ';/Tgr:

adjmsg Yes No
alloch Yes, if use STREAMS/UX user lock orders. No
backqg Yes No
bcanput Yes, if use STREAMS/UX user lock orders. No
bcanputnext Yes, if use STREAMS/UX user lock orders. No
bcopy Yes No
bufcall Yes, if use STREAMS/UX user lock orders.
bzero Yes No
canput Yes, if use STREAMS/UX user lock orders. No
canputnext Yes, if use STREAMS/UX user lock orders. No
cmn_err No Yes
copyb Yes, if use STREAMS/UX user lock orders. No
copymsg Yes, if use STREAMS/UX user lock orders. No
datamsg Yes No
delay No No
drv_getparm Yes No
drv_priv Yes No
dupb Yes, if use STREAMS/UX user lock orders. No
dupmsg Yes, if use STREAMS/UX user lock orders. No
enableok Yes, if use STREAMS/UX user lock orders. No

98

Table 1

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

Holding Module or Driver Defined Spinlocks While Calling Utilities

- . Differs From
2
Utility Spinlocks Can Be Held Across Call” SVRA MP?
esballoc Yes, if use STREAMS/UX user lock orders. No
esbbcall Yes, if use STREAMS/UX user lock orders. No
flushband Yes, if use STREAMS/UX user lock orders No
(flushband may call usesballocfree
routines).
flushq Yes, if use STREAMS/UX user lock orders No
(flushg may call usessballocfree routines).
freeb Yes, if use STREAMS/UX user lock orders No
(freeb may call usezsballocfree routines).
freemsg Yes, if use STREAMS/UX user lock orders No
(freemsgmay call useesballocfree
routines).
freezestr Yes No
getadmin Yes, if use STREAMS/UX user lock orders. No
getmid Yes, if use STREAMS/UX user lock orders. No
getmajor Yes No
getminor Yes No
getq Yes, if use STREAMS/UX user lock orders. No
insq Yes, if use STREAMS/UX user lock orders. No
itimeout Yes, if use STREAMS/UX user lock orders. No
kmem_alloc Yes, if use STREAMS/UX user lock orders No
and KM_NOSLEEP.
kmem_free Yes, if use STREAMS/UX user lock orders. No
linkb Yes No
LOCK Yes, if use lock orders correctly. No

99

Table 1

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call? Dsi‘:f/eF:Z ';/T‘F’,T
LOCK_ALLOC No Yes
LOCK_DEALLOC Yes, if use STREAMS/UX user lock orders. No
major Yes No
makedev Yes No
makedevice Yes No
max Yes No
min Yes No
minor Yes No
msgdsize Yes No
msgpullup Yes, if use STREAMS/UX user lock orders. No
noenable Yes, if use STREAMS/UX user lock orders. No
OTHERQ Yes No
pcmsg Yes No
pullupmsg Yes, if use STREAMS/UX user lock orders. No
put No No
putbq Yes, if use STREAMS/UX user lock orders. No
putctl No No
putctll No No
putctl2 No No
putnext No No
putnextctl No No
putnextctll No No

100

Table 1

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

Holding Module or Driver Defined Spinlocks While Calling Utilities

Utility Spinlocks Can Be Held Across Call? Dsi‘:f/eF:Z o
putnextctl2 No No
putq Yes, if use STREAMS/UX user lock orders, Yes

and does not pass driver’s read queue or
lower mux’s write queue.

genable Yes, if use STREAMS/UX user lock orders. No
gprocsoff Yes Yes
gprocson Yes Yes
greply No No
gsize Yes No
RD Yes, if use STREAMS/UX user lock orders. No
rmvb Yes No
rmvq Yes, if use STREAMS/UX user lock orders. No
SAMESTR Yes, if use STREAMS/UX user lock orders. No
sleep No No
spln No Yes
splstr No Yes
streams_put No No
streams_get_sleep_lock Yes, if use STREAMS/UX user lock orders. No
strlog No Yes
strqget Yes, if use STREAMS/UX user lock orders. No
strgset Yes, if use STREAMS/UX user lock orders. No
SV_ALLOC Yes, if use STREAMS/UX user lock orders No

and KM_NOSLEEP.

101

STREAMS/UX Multiprocessor Support
MP Synchronization Levels on a Uniprocessor

Table 1 Holding Module or Driver Defined Spinlocks While Calling Utilities
Utility Spinlocks Can Be Held Across Call? Dsi‘:f/eF:Z o
SV_BROADCAST Yes, if use STREAMS/UX user lock orders. No
SV_DEALLOC Yes, if use STREAMS/UX user lock orders. No
SV_WAIT No, except fotkp parameter lock. No
SV_WAIT_SIG No, except fotkp parameter lock. No
testb Yes, if use STREAMS/UX user lock orders. No
timeout Yes, if use STREAMS/UX user lock orders. No
TRYLOCK Yes No
unbufcall No No
unfreezestr Yes No
unlinkb Yes No
UNLOCK Yes No
untimeout Yes, if locks can be held across call to No
timeout callback function.
unweldq Yes, if use STREAMS/UX user lock orders. No
vtop Yes No
wakeup Yes, if use STREAMS/UX user lock orders. No
weldq Yes, if use STREAMS/UX user lock orders. No
WR Yes, if use STREAMS/UX user lock orders. No

102

How to Compile and Link
STREAMS/UX Drivers, Modules, and
Applications

103

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications

This chapter describes how STREAMS/UX drivers and modules can be
added to the HP-UX kernel, and how STREAMS/UX TLI and XTI
applications can be compiled and linked.

104

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling STREAMS/UX Drivers and Modules

Compiling STREAMS/UX Drivers and Modules

The steps for compiling STREAMS/UX drivers and modules follow.

1 Include the appropriate STREAMS/UX include files in the driver and module
sources. Table 2 describes the files. Drivers and modules are compiled in the
lusr/confdirectory. They contain include statements with relative path names.
The table shows the path names.

Table 2 STREAMS/UX and TPI Include Files
Include File Use
“..Ih/stream.h” Needed by all drivers and modules.
“../h/stropts.h” Needed by all drivers and modules.

‘..Ih/strlog.h” Needed by drivers and modules that stalbg. Note that
log.handsyslog.hare not needed. STREAMS/UX does not

support priority and facility codes.

“../h/strstat.h” Needed by drivers and modules that usethmstatfield of
theqinit structure to maintain statistics.

“../h/strenv.h” Needed by drivers and modules that use DKI functions,

“./h/cmn_err.h” | Needed by drivers and modules that use cmn_err().

“../hftihdr.h” Needed by drivers and modules that use TPI.

2 If you are only adding modules, you will need to archive those modules into a
library.
3 Compile the sources isr/confwith the appropriate options. Create a directory

under/etc/confand place your source files in this directory. Use the following
command line with appropriate substitutions to compile your source code.

@${CC} -I. -c ${CFLAGS} ${NOGLOOPTS} $(your_file).c

105

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling STREAMS/UX Drivers and Modules

Compile each of your modules and archive the object files into a library using
thear command. It is best to place all of your driver and module code into the
same library. In the example beldisexamplel.as the name of the library and
obj*.o are the object files:

rm -f libexamplel.a
ar -r libexamplel.a ojbl.0 obj2.0 ... objn.o

106

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

Linking STREAMS/UX Drivers and Modules into
the Kernel

Linking STREAMS/UX drivers and modules into the kernel is a multi-step
process. A summary of the steps is:

1
2

N o o1 b~

8

Create or modify your master file to reflect changes.

Add a driver header with the information previously located iretoémastefile
into theetc/master.dlirectory.

Add a driver install routine for both STREAMS drivers and STREAMS modules
(“driver” in the case of the STREAMS subsystem refers to both STREAMS
drivers and STREAMS modules).

Adjust any STREAMS/UX tunables if necessary.
Create your library and copy it tasr/conf/lib
Re-generate your kernel using mk_kernel(1).

Once the system is re-booted, isgkev(1M)to determine the value of any
dynamically-assigned major numbers, if applicable.

Create device files witmknod(1M)

Details about the Driver Header, Driver Install Routine, and Isdev(1) follow.

Adding Driver Header and Driver Install Routine

The STREAMS driver writer must add a driver header and a driver install
routine for their STREAMS drivers and modules. The driver header consists
of three data structure declarations (for a STREAMS driver and actually
only one for a STREAMS module). The driver install function will get

called by the I/O system to “install” your pseudo driver into the I/O
subsystem tables. The driver header essentially contains the information
previously contained in the master file.

The main job of your driver install routine is to call one or both of the
functions, install_driver (CDIO3) and/osstr_install()

107

NOTE:

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

For a STREAMS driver, your driver install routine will need to call both the
functioninstall_driver (CDIO3) andstr_install() And fora STREAMS
module, your driver install routine will only need to call #te install()
routine.

The call toinstall_driver()initializes thecdevswentry points and d_flags for
your STREAMS driver. The call to thetr_install() function fills out either
thedmodsw(for a STREAMS driver) or thBnodsw(for a STREAMS
module) switch tables used by the STREAMS subsystem.

Thestr_install()function will replace thepen, close, read, write, ioctl, seleahd
option1 cdevsventry points with the STREAMS/UX-specific entry points. So it
is best to use NULLs in thdrv_ops_tstructure as illustrated in the example later
in this section.

Keep in mind that you can call yodriver_link routine from the driver

install to perform any necessary driver initialization tasks. You should not
perform any operations which require returning error conditions or data.
Plus, it is best to keep driver install routines small and clean to avoid bootup
problems.

If you are writing MP STREAMS drivers and STREAMS modules, refer to
Chapter 4 for specific MP requirements. Chapter 4 provides examples of
driver headers and driver install routines relating to MP drivers and
modules.

The driver header can be declared in eithéra in the.c file that contains
the driver install entry point. The driver install entry point MUST be.m a
file.

For both STREAMS drivers and STREAMS modules, the following include
files contain the needed structures and defines:

#include “../h/conf.h”
#include “../h/stream.h”

Streams Driver

For STREAMS drivers, the following data structures will need to be
declared in theh or .cfile: drv_info_t, drv_ops_andstreams_info ..t

108

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

An example of these declarations using the STREAMS test driver, “tlo” is as
follows: (The STREAMSIo test driver is used only as an example
throughout this section. Please tailor this example to your specific driver

configuration).
drv_info_t
static drv_info_t tlo_drv_info = {
“tlo”, /* driver name */
“pseudo”, [* driver class */
DRV_CHAR | DRV_PSEUDO | DRV_MP_SAFE, /* flages */
-1, /* block major number */
-1, /* char major number */
NULL, NULL, NULL, /* cdio, gio_private and
cdio
private always NULL
*/};
drv_ops_t
static drv_ops_t tlo_drv_ops ={
LL, /* d_open */
NULL, /*d_close */
NULL, [* d_strategy */
NULL, /* d_dump */
NULL, [* d_psize */
NULL, /*d_mount */
NULL, /*d_read */
NULL, [* d_write */
NULL, *d_ioctl */
NULL, /*d_select */
NULL, [*d_option1 */
NULL, NULL, NULL, NULL, /*reserved entry points */
NULL, I* d_flags */

streams_info_t

static streams_info_t tlo_str_info = {

“tlo”, /* name */
-1, /* dynamic major number */
{ &tlorinit, &tlowinit, NULL

NULL }, [* streamtab */

STR_IS_DEVICE | MGR_IS_MP | [* streams flags */
STR_SYSV4_OPEN,

SQLVL_QUEUE, [* sync level */

/* elsewhere sync name */

109

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

The definitions of thetreams_flagsised in thestreams_info_structure are
(see stream.h and conf.h):

STR_IS_DEVICE /* Indicates a driver is being installed */

STR_IS_MODULE /* Indicates a module is being installed */
STR_SYSV4_OPEN /* Indicates SVR4 openisbeingused, SVR3open

is default */
MGR_IS_MP [* Module/driver is MP-scalable */

Thesync levelised in thestreams_info_structure is one of the following
defined in stream.h:

SQLVL_DEFAULT
SQLVL_GLOBAL
SQLVL_ELSEWHERE
SQLVL_MODULE
SQLVL_QUEUEPAIR
SQLVL_QUEUE

For STREAMS drivers, a driver install routine needs to be added to the .c
file for your driver. This function MUST be calleaxx_install wherexxxx

is the driver handle used for your driver. Exactness is needed so that your
driver install routine is correctly called by the I/O subsystem during bootup.

lllustrated below is an example of the driver install routine for the example
tlo driver.

int
tlo_install()
int retval;

if ((retval =install_driver (&tlo_drv_info, &tlo_drv_ops)) !=0)
return (retval);

if ((retval = str_install (&tlo_str_info)) !=0) {
uninstall_driver (&tlo_drv_info);
return (retval);

return (0); /* return success */

In this tlo example, a major number of -1 was defined in bottidhdrv
_infoandtlo_str_infostructure declarations. This invokes the dynamic
major facility. When using this facility, you will need to obtain the system

110

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

assigned “dynamic” major number by running lbdev(1l)command after
the system has rebooted with the kernel that includes your driver. There are
details later in this section dsdev(1)

STREAMS Module

For STREAMS modules, steps identical to those executed for a STREAMS
driver are needed, but with the following exceptions:

For the driver header, you only need to declasemms_info_structure.
This is because STREAMS modules do not have any cdevsw-related
information. They only have STREAMS-specific information and this is
configured by callingtr_install() with a definedstreams_info .t

For the driver install routine, you need only to calldtreinstall() function.
There is no need to catistall_drive(CDIO3).

An example of these declarations using the STREAMS test module,
“Imodb,” is as follows: (The STREAM®nodbtest module is used only as
an example. Please tailor this example to your specific module
configuration).

streams_info_t

static streams_info_t Imodb_str_info = {

“Imodb”, [* name */

-1, /* major number */
{ &modbrinit, &modbwinit, NULL, NULL},/* streamtab */
STR_IS_MODULE, [* streams flags */

SQLVL QUEUEPAIR, * sync level ¥/
[* elsewhere sync name */
b

Thestreams_flagand thesync leveto be used in thstreams_info_t
structure are the same as illustrated above in the “STREAMS Driver”
section, except we are using “STR_IS_MODULE,” instead of
“STR_IS_DEVICE.”

111

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

lllustrated below is an example of the driver install routine required for a
STREAMS module, using the exampheodbmodule.

int
Imodb_install()
int retval;
if ((retval = str_install (&lmodb_str_info)) != 0)
return (retval);

return O; /* return success */

h

Modifying Your Master File

In 10.0, theletc/mastefile is replaced by a collection of files located in
/usr/conf/master.dlirectory. It is recommended that you create your own
individual master file, calling it something appropriate. See
/usr/conf/master.d/streantsr the master file used by the STREAMS/UX
framework. You may use the STREAMS master file as a template for
creating your specific master file.

You will need to add entries for each of your STREAMS drivers to the
$DRIVER_INSTALL section of your master file. See the master(4)
manpage for a description of the master file section layouts and dynamic
major numbers.

112

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

An example $DRIVER_INSTALL section from the STREAMS/UX master
file is as follows:

$DRIVER_INSTALL

* Fkk * Fkk *

* Driver install table

*

* This table contains the name of drivers which have converged I/O header
* structures and install entry points. Drivers in this table should not

* be defined in the driver table above.

* * * * * *

* Driver Block major Char major
clone -1 72
strlog -1 73
sad -1 74
echo -1 116

* Example driver entry which must use dynamic major numbers indicated by -1
tlo -1 -1

In addition, you will also need to add additional entries for any STREAMS
modules to the $DRIVER_INSTALL section as well. Using the example
Imodbmodule:

$DRIVER_INSTALL

* Driver install table

*

* This table contains the name of drivers which have converged I/O header
* structures and install entry points. Drivers in this table should not

* be defined in the driver table above.

* Driver Block major Char major
Imodb -1 -1

When adding an entry to the $DRIVER_INSTALL section of your master
file, do NOT add an entry to the $DEVICE section of your master file. This
will result in a possible conflict (such as duplicate major numbers) and/or a
lack of a call to your driver install routine at bootup. The only way to use the
dynamic major number facility is to configure your STREAMS driver as
documented in this section.

113

NOTE:

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Linking STREAMS/UX Drivers and Modules into the Kernel

For more details on driver headers and driver install routines, please read the
HP-UX Driver Development Guid@/N 98577-90000-E1).

Dynamically-Assigned Major Numbers and Isdev(1)

When using the dynamic major number facility, you will need to determine
which major number was assigned to your driver during bootup, by
consultinglsdev(1) Once the system is booted with your new kernel, run the
Isdev(1l)command. See the Isdev(1) manpage for all the option details, but in
brief you can usésdev(1)as shown below.

For STREAMS-clonable devices, use 72 for the major and your driver’s assigned
major number for the minor number.

Isdev -h -d < your_driver_name_here >

(the -h means thdgdevdoes not print a header)

and use the result for your mknod(1M):

mknod /dev/<device_file_name>c 72 0x<dyn_major result>

mknod /dev/<device_file_name> c <dyn_major result> 0x0

The firstmknodcommand is for a clonable device. The second is for a
non-clonable device.

114

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking STREAMS/UX Applications

Compiling and Linking STREAMS/UX Applications

Follow these steps for compiling and linking STREAMS/UX applications:

1

Table 3

Include the appropriate header files. The following header files may be found in
lusr/includeor /usr/include/sys Those found irusr/includeare pointers to the

files found in/usr/include/sysPOSIX compliance required the files to be moved
to the sys directory so pointer files were established for source backward
compatibility.

STREAMS/UX Include Files

Include File Use

<stropts.h> or <sys/stropts.h> Needed by all STREAMS/UX applications.

<poll.h> or <sys/poll.h> Needed by programs that ysell.

<sad.h> or <sys/sad.h> Needed by programs that open saeldriver.

<strlog.h> or <sys/strlog.h> Needed by programs that open #tidog driver. Note

thatlog.handsyslog.hare not needed. STREAMS/U
does not support priority and facility codes.

2 Compile the source files. There are no required compiler or linker options for

NOTE:

STREAMS/UX. See the appropriate compiler man page for which options to
choose.

The STREAMS/UX system calls have been made thread-safe and arelipart of

If you link the application with the threads libralipcma, then you may make use

of the threads utilities. No special considerations are needed for STREAMS-based
applications, though it is recommended that the developer have a thorough
understanding of threads principles before coding such an application using the
STREAMS/UX system calls. Please read the following section for additional
caveats for coding threaded applications.

115

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking TLI/XTI Applications and Threads

Compiling and Linking TLI/XTI Applications and
Threads

As with the STREAMS/UX system calls, compiling and linking a TLI or
XTI application requires no special compile or linking options. Choose the
appropriate include files from the table below and compile. Link your
application with either the TLI libraryibnsl_s.aor libnsl_s.s| or the XTI
library, libxti.a or libxti.sl. Both libraries are itust/lib.

Table 4 TLI/XTI Include Files
Include File Use

<xti.h> or <sys/xti.h> Needed by all XTI applications.

<tiuser.h> or <sys/tiuser.h> Needed by all TLI applications.

<poll.h> or <sys/poll.h> Needed by programs that use poll.

<stropts.h> or <sys/stropts.h> Needed by programs that use the STREAMS/UX
interface to perform operations such as pushing
modules onto a stream.

These libraries have been made thread-safe, that is, these libraries may be
used with both non-threaded and multi-threaded applications. Please see
OSF/DCE documentation for the POSIX threads library calls that may be
used.

The following caveats apply to this release of these libraries:

» When a thread is executing within a TLI/XTI library call, the thread may not be
canceled. The library will turn both general and asynchronous cancellation off
during execution. This is necessary to avoid corruption of internal mutex
structures.

» The global variablé_errnoand the function_strerror() will return values on a
per-thread basis. These values are stored in thread-specific pointers via the
pthread_setspecificndpthread_getspecificfunctions.

» ltis possible to deadlock a process should the application attempt to execute in
loopback using two threads within the same process’ address space. It is

116

NOTE:

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking TLI/XTI Applications and Threads

recommended that for loopback applications, the sending and receiving threads
be in separate processes which will avoid any deadlock situation.

The libraries use two levels of internal locks and it is only during the small time
frame between obtaining and releasing the locks that a deadlock can occur.

Thelibcma.aorlibcma.sllibrary must be linked into the application before either
thelibnsl_s.aor thelibxti.a libraries are linked.

The include file pthread.hmust be the first include file defined within an
application to have all entry points properly mapped.

Independent of the TLI/XTI libraries, if you cancel a thread and it was either
waiting on a mutex or a condition variable, it is best to consider either the mutex
or the condition variable as corrupted and either re-initialize or destroy and
recreate them.

Here are some basic tips on coding TLI/XTI multi-threaded applications.

Thepthreadsdlibrary is a user space library. Threads execute using either the
default round-robin scheduling mechanism or a scheduling mechanism that the
application controls. The default order of execution is not predictable nor should
it be relied upon. For instance, if a thread spawns multiple threads, the new
threads will not be allowed to execute until either the initiating thread executes a
blocking call, executesathread_yield), or its time slice expires. It is
recommended that a thread executipgreead_creat§ issue gthread_yield)

and possibly @thread_joirf) to allow the other threads a chance to execute and
finish their tasks before continuing its processing.

For TLI/XTI, this technique is useful for a responder application which listens
for incoming connections and creates a new thread to complete the connection.
In this case, the responder could either yield to the new thread or could continue
to listen for incoming connect indications until there are no pending indications.
At this time it yields or executes a poll call that will block, which allows the

other threads to be scheduled for execution. This avoids the potential TLOOK
error condition should another indication arrive before the previous one is
processed and cleared.

Another example is if the responder detects a POLLHUP condition exists and
creates a thread to handle the disconnect, and then continues to execute. The
result could be poll() detecting this condition occurring multiple times when it
really only exists once. It is recommended that the thread be coded such that
either apthread_yield) is immediately executed following tipthread_creat@

or if the responder thread is handling multiple connections, it executes a
pthread_joirf) and waits for the disconnect thread’s completion.

117

How to Compile and Link STREAMS/UX Drivers, Modules, and Applications
Compiling and Linking TLI/XTI Applications and Threads

» If using condition variables, gthread_cond_sign§l must be sent for each
thread waiting on that condition. Condition variables are useful for synchronizing
activity on a single endpoint where multiple threads may be attempting to
manipulate that endpoint. Another use is coordinating multiple endpoints that
need to arrive at a particular state before proceeding. This contrasts with mutex
usage which is better suited for critical data or code section protection.

An example would be if an application were replicating data at multiple sites,
each thread would drive its appropriate endpoint to the state before the final
commit is ready. When the controlling thread has detected that all endpoints are
currently waiting at the same condition variable,gtteead_cond_sign@l

could be sent to each thread with the controlling thread waiting until the threads
are complete before releasing the shared memory buffer.

» If the application is utilizing thpoll() system call, the application will need to
have error handling code in each thread to avoid unnecessary processing. For
example, if multiple threads are sending data to a single endpoint and that
endpoint becomes flow-controlled, when the flow-control condition is relieved,
thepoll() system call will return that the endpoint is writable. At this point one or
more threads could be scheduled to execute which may result in one thread
succeeding with the rest returning TFLOW errors.

» If athread is exiting, it is recommended that the threactiabad_detac]) is
used to release any memory that has been allocated for that thread’s usage. If the
detach is not performed, that memory can be lost and the application could
experience memory shortage problems. Once the process is terminated, all
memory should be returned to the system.

118

Debugging STREAMS/UX Modules
and Drivers

119

Debugging STREAMS/UX Modules and Drivers
Introduction

Introduction

This chapter describes tools for debugging STREAMS/UX modules and
drivers. STREAMS/UX supports many System V tools, and provides new
ones. This chapter contains the following:

* An overview of the System V tools supported by HP-UX.

e A description of a new toostrdb, that displays STREAMS/UX data structures
in running systems and HP-UX core dumps. Examples are included to show the
use ofstrdbin debugging driver and application problems.

e Anin depth discussion of an HP-UX toallh, that helps programmers analyze
core dumps. Examples show how to adbandstrdbto debug STREAMS/UX
drivers and modules.

Other sections of this manual also contain debugging information. You
should run thestrvf verification tool to check that STREAMS/UX is

properly installed before trying to debug modules and drivers. The
STREAMS/UX Synchronization section of Chapter 3 contains module and
driver programming guidelines. Read through these guidelines and the
design guidelines in Chapter 7 of tH&lIX System V Release 4
Programmer’s Guide: STREAM#fore testing modules and drivers.

120

Debugging STREAMS/UX Modules and Drivers
System V Debugging Tools Supported by STREAMS/UX

System V Debugging Tools Supported by
STREAMS/UX

STREAMS/UX supports many of the System V STREAMS debugging
tools. Refer to Appendix D in the SVR4PG manual for a description of the
System V tools.

STREAMS/UX Tracing and Logging

STREAMS/UX supports tracing and logging. See Appendix D and the
strace(1M), strclean(1M), strerr(1M), and log(7) man pages in the SVR4PG
manual for more information about these tools. Some differences exist in
the user interfaces of these tools on HP-UX. These differences are described
in Chapter 3 of this manual and the corresponding HP-UX man pages.

cmn_err() and printf()

HP-UX supports the DKI functioomn_err() See Appendix D of the
SVR4PG manual and thénix System V Release 4 Device Driver
Interface/Driver-Kernel Interface (DDI/DKI) Reference Manta more
information aboutmn_err()

Also, HP-UX supportgrintf for STREAMS/UX modules and drivers. If a
STREAMS/UX module or driver caligrintf, HP-UX prints the requested
message on the system console, and stores the messagenesigpuffer.

Dump Module Example

The SVR4PG manual presents a STREAMS dump module in Appendix D.
The dump module traces messages flowing into and out of another
STREAMS module. Appendix D contains the module source code.
Programmers can copy and tailor the code to develop their own debugging
tool for HP-UX. The sample master file entry and dump module include
statements must be changed for HP-UX. See Chapter 2 and Chapter 5 of
this manual for more information about the HP-UX master file and
STREAMS/UX include statements.

121

Debugging STREAMS/UX Modules and Drivers
System V Debugging Tools Supported by STREAMS/UX

strdb and adb

STREAMS/UX providesstrdb for debuggingstrdb can be used with the
HP-UX crashandadbtools for debugging.

122

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

STREAMS/UX Debugging Tool

HP-UX provides thetrdbtool for examining STREAMS/UX data
structures in the kernektrdbis an interactive tool. You run ttstrdb
program, and then enter commands to see data structures. This section
describestrdb commands and shows examples of usindip to find
STREAMS/UX driver problems. Thetrdb man page summarizegdb
commands.

Running strdb
The syntax for thetrdb command is:

strdb [vmunix_executable_file_name][vmunix_core_file_name]]

STREAMS/UX programmers can rstrdbto look at snapshots of
STREAMS/UX data structures in the kernel while HP-UX is running. Also,
programmers can rutrdbto look at STREAMS/UX data structures in a
vmunix core file. To see STREAMS/UX data structures while the system is
running, enter:

strdb

Sometimes the system is booted using a different kernelgteard/vmunix
for examplelvmunix.prev In this case, rustrdb by entering:

strdb /vmunix.prev

To look at STREAMS/UX data structures in a core file, pass the name of the
hp-ux program and core filesstrdb. For example, if the program and core
files have the pathsar/adm/vmunix.@nd/var/adm/vmcore.Oenter:;

strdb /var/fadm/vmunix.0 /var/adm/vmcore.0

strdb Commands

After invoking strdb, you can enter commands to look at STREAMS/UX
data structurestrdbruns in two modes, primary and STREAMS/UX
subsystem. Each mode provides different commands.

123

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Primary mode commands change the characteristics sfrttiesession. For
example, one command turns on logging to a file. Primary mode commands
also allow you to navigate through STREAMS/UX data structures. When
strdb starts up, you are in primary mode. You switch to STREAMS/UX
subsystem mode by entering tlsecommand.

STREAMS/UX subsystem mode commands report what STREAMS/UX are
configured and active on the system. Also,gheommand allows you to

begin examining a particular stream's queues. This command displays a
selected stream head read queue. In addition, it puts you into primary mode
so that you can use the primary mode navigation commands to traverse the
rest of that stream's queues. All the commands for both modes are listed
later in this chapter.

In a typicalstrdb session, you might do the following:

1 Startstrdb (you are in primary mode).
2 Execute theS command to enter STREAMS/UX subsystem mode.

3 Use STREAMS/UX subsystem mode commands to find the active stream you
want to examine.

4 Execute theth command to display the selected stream head read queue. This
puts you in primary mode.

5 Enter primary mode navigation keys to display fields in the stream head read
queue, and traverse the rest of that stream's queues.

STREAMS/UX Subsystem Commands

When you first entestrdh, strdb prints a message saying that you have not
yet specified a stream to display. You can enterSltcemmand to get into
the STREAMS/UX subsystem modstrdbwill display the following help
menu.

STREAMS subsystem help commands
? - show this help menu
h - show this help menu
la 'name' - list all active STREAMS on device 'name’
Il 'name' 'minor' - list all drivers linked under the STREAMS
driver 'name' and minor number 'minor’
Im 'name’ 'minor' - list all modules pushed on STREAMS device
'name'and whose minor number is 'minor'
Ip 'name’ 'minor' -listalldrivers persistently linked under
the STREAMS device 'name' and minor number
'minor’

124

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

q - quit the STREAMS subsystem commands
gc 'driver' 'file' - print'driver' read / write side gcount to
file'

gh 'name’ 'minor' - display STREAM head queue structure

for device 'name' and minor number ‘'minor’
s [m]d] - Option d lists all the STREAMS drivers

configured in the system. Option m lists

all the modules configured in the system
Y - print version of STREAMS structures
displayed

The?,h,q,v, s la, Im, Il Ip, gc, andgh commands are available in

subsystem mode. To execute these commands, enter the command at the ™"
prompt. The commands help you find the stream that you want to examine.
The commands are described below.

? and h Commands

Enter the? orh command to see the help menu for STREAMS/UX
subsystem modestrdb prints the text shown below.

?

STREAMS subsystem help commands
? - show this help menu
h - show this help menu
la 'name’ - list all active STREAMS on device 'name’
Il 'name’ 'minor'- list all drivers linked under the STREAMS
driver 'name' and minor number 'minor’
Im 'name' 'minor' - list all modules pushed on STREAMS device
‘name’
and whose minor number is 'minor’
Ip 'name’ 'minor'- list all drivers persistently linked under
the STREAMS device 'name' and minor number
‘minor'
q - quit the STREAMS subsystem commands
gc ‘driver' file’- print ‘driver' read / write side gcount to
file
gh 'name’ 'minor'- display STREAM head queue structure for
device 'name' and minor number 'minor’
s [m]d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system
Y - print version of STREAMS structures
displayed

125

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g Command

Enter theg command to exit STREAMS/UX subsystem mode and enter
primary mode. This is shown below.

q

No current structure S:0

v Command

Enter thev command to display the version of STREAMS/UX data
structures. This version should always be Release V 4.0. An example is
shown below.

Vv

STREAMS Version based on Release V 4.0

s Command

Enter thes [m|d] command to see the STREAMS/UX modules and drivers
configured into the system. These are the modules and drivers included in
the multiuseiS800file or the workstatiowfile. Specify eithemto see the
modules od to see the drivers. Examples are shown below.

sm
List of MODULES

timod
tirdwr
Imodb
Imode
Imodt
Imodr
Imodc
sc
bufcall

sd
List of DRIVERS

clone MAJOR = 72
strlog MAJOR = 73
sad MAJOR = 74
lo MAJOR = 75
tmx MAJOR = 77
tidg MAJOR = 78
tivc MAJOR = 79

126

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

loop MAJOR =114
sp MAJOR =115
test wel MAJOR =130

la Command

Enter thda command to see a list of opened streams for a driver. Also, enter
the name of the driver. This name can be obtained froommand output.
An example is shown below.

la tive

tive MAJOR =79

ACTIVE Minor 0x00002f Stream head RQ = 0x676a00
ACTIVE Minor 0x00000f Stream head RQ = 0x663300
ACTIVE Minor 0x00000e Stream head RQ = 0x6a5900
ACTIVE Minor 0x00002e Stream head RQ = 0x71f800
ACTIVE Minor 0x00004e Stream head RQ = 0x6ccf00
ACTIVE Minor 0x00000d Stream head RQ = 0x67b300
ACTIVE Minor 0x00004d Stream head RQ = 0x73c700
ACTIVE Minor 0x00002d Stream head RQ = 0x728800
ACTIVE Minor 0x00004c Stream head RQ = 0x74f600
ACTIVE Minor 0x00000c Stream head RQ = 0x68d100
ACTIVE Minor 0x00002b Stream head RQ = 0x730a00

Im Command

Enter thdm command to see a list of the modules pushed onto a driver. You
must specify the driver name and the minor number. The minor number can
be obtained from thia command output. An example is shown below.

Im tive 47

STREAM Head
timod
Driver tivc

I Command

Enter thel command to see a list of drivers linked under a multiplexor. You
must enter the multiplexor name and the minor number. The multiplexor
name can be obtained from theutput. The minor number is from the
output. An example is shown below.

Il tmx O
lo MAJOR = 75 minor = 2

lo MAJOR = 75 minor=1
lo MAJOR = 75 minor =0

127

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Ip Command

Enter thdp command to see a list of drivers persistently linked under a
multiplexor. You must enter the multiplexor name and the minor number. An
example is shown below.

Iptmx 1

lo MAJOR = 75 minor =2
lo MAJOR = 75 minor =1
lo MAJOR = 75 minor =0

gc Command

Enter thegc command to display thgg_countfield of a driver's read and

write queues. Thg_countfield contains the number of bytes of data in the
messages on the queue. The command will shog tbeuntvalues for all

the opened streams of the requested driver. You must enter the driver name
and the name of a file to contain tpecountvalues.strdbwill create the
specified file and write th@ countvalues into it. An example is shown

below.

gc tmx stat

<< exit from strdb >>

%more stat

MINOR =5

WQ = 0x40026760, WQ_count =0, RQ = 0x40026760, RQ_count =4214
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count =0
MINOR =4

WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 842
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count =0
MINOR =1

WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count = 930
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count=0
MINOR =0

WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count =0
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count =0
MINOR =3

WQ = 0x40026760, WQ_count =0, RQ = 0x40026760, RQ_count = 3970
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count =0
MINOR =2

WQ = 0x40026760, WQ_count =0, RQ = 0x40026760, RQ_count = 1300
WQ = 0x40026760, WQ_count = 0, RQ = 0x40026760, RQ_count =0

128

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

gh Command

Enter thegh command to see a stream head read queue. Enter the driver
name and minor number to specify the stream head read queue to display.
An example is shown below. Whetrdb prints the stream head read queue,
you are put in primary mode. This lets you enter navigation commands to
look at data structures pointed to by fields in the queue. These navigation
commands are described below under “Primary Commands.”

ghtmx 0
struct queue 0x584300 S:1

g_ginfo = 0x2944f0 q_padl[2] =00
g_first = 0x0 g_other = 0x584374

g_last = 0OxO
g_next = 0x0
g_link = 0x0
g_ptr = 0x5f8500

g_count =0
g_flag = 0x1029
QREADR
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1

g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0x0
g_nband =0
g_pad1[0] = 00
g_padl[1] =00

Primary Commands

strdb provides two types of primary mode commands. One kind is used to
navigate through data structures. The other kind changes the characteristics
of thestrdb session.

Data Structure Navigation Commands

When you enter theh commandstrdb prints the stream head read queue

and puts you in primary mode. You can enter navigation commands to look
at data structures pointed to by fields in the queue. Note that primary mode
does not prompt you for commands; you just enter the command keys. You
do not need to enter a carriage return with navigation commands. In the
example below, a ? is entered to see which figtidh can format.strdb

129

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

prints the commands for formatting these fields. A carriage return will clear
the help screen and redisplay the stream head read queue. In the example
below, themkey is entered to see the message block pointeddofirgt

Next, a ? is entered to see which message block figtitscan format.

ghtmx 1
structqueue 0x21f7600 S:1
g_qginfo = 0x1f7924 q_padl[2] =00

g_first = 0x2156780 g_other = 0x21f7600
g_last = 0x2185800

g_next = 0xO0

g_link = 0x0

g_ptr = 0x267be8

g_count = 22518
g_flag = 0x1120

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0x0
g_nband =0
g_padi[0] =00
g_padi[1l] =00

?

navigation for structure queue
i = q_ginfo (qinit)

'm' =(q_first (msgb)

'z' =q_last (msgb)

'n' =(q_next (queue)

" =q_link (Queue)

‘b =q_bandp (gband)

‘o' = q_other (queue)

-- Hit any key to continue --

<carriage return>
structqueue 0x21f7600 S:1

g_ginfo = 0x1f7924 ¢_padl[2] =00

g_first = 0x2156780 g_other = 0x21f7600
g_last = 0x2185800

g_next = 0xO

g_link = Ox0

g_ptr = 0x267be8

g_count = 22518

130

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_flag = 0x1120

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0xO
g_nband =0
g_padi[0] =00
g_padi[1l] =00

m
structmsgb 0x2156780 S:2
b_next = 0x204ac00
b_prev = 0x0

b_cont = 0x21fb700

b_rptr = 0x2242bf2
b_wptr = 0x2242bf2

b_datap = 0x0
b _band = 0
b_padl =00
b_flag = 0x0
b pad2 = 0

?

navigation for structure msgb
'n" =b_next (msgb)

‘" =b_prev (msgb)

'm'" =b_rptr (b_rptr)

‘¢’ =Db_cont (msgb)

'd" =b_datap (datab)

-- Hit any key to continue --

strdb provides different navigation commands for each data structure it
formats. The navigation commands for all the data structures are shown
below.

Queue Navigation

' =qg_ginfo (qinit)

= g_first (msgb)

= ¢_last (msgb)

= g_next (queue)
= g_link (queue)

= g_bandp (gband)
= _other (queue)

3

oo =35 N

131

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Qinit Navigation

i = gi_minfo (module_info)
's' = qgi_mstat (module_stat)

Message Block Navigation

n next (msgb)

b
b_prev (msgb)
b

9 _

'm' = b_rptr (b_rptr)
‘¢’ =Db_cont (msgb)
'd" =b_datap (datab)

Data Block Navigation
'd" =db_f (a__datab)

Queue Band Navigation

n = gb_next (gband)
'f = qgb_first (msgb)
" =qb_last (msgb)

The following information includes more navigation command examples.
TheCTRL-P CTRL-T, :m,CTRL-U :b, and:x commands, which are used in
conjunction with the navigation commands, are shown with examples.

You can enteP to see what navigation keys are available.

gh tmx 0
struct queue 0x21f7b00 S:1
g_qginfo = 0x1f7al8 q_padl[2] =00

g_first = Ox0 g_other = 0x21f7b74
g_last = 0Ox0
g_next = 0x0
g_link = 0x0
g_ptr = 0x21f7a00
g_count =0
g_flag = 0x1029
QREADR
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat 0x200

g_lowat = 0x100
g_bandp = 0xO
g_nband =0
g_padi[0] =00

132

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_padi[1l] =00

?

navigation for structure queue
= g_gqinfo (qinit)
= g_first (msgb)
= ¢_last (msgb)
= ¢_next (queue)
= ¢_link (queue)
= ¢_bandp (gband)
= g_other (queue)

SE=SNg

-- Hit any key to continue --

After typing a key to continue, you can enter any of the keys shown in the
help text. For example, if you enw@rthe stream head write queue will be
displayed. This is shown below.

0
structqueue 0x21f7b74 S:2

g_ginfo = Ox1f7a34 q_padl[2] =00
g_first = 0x0 g_other = 0x21f7b00

g_last = Ox0
g_next = 0x21f7674
g_link = Ox0
g_ptr = 0x21f7a00

g_count =0
g_flag = 0x102a
QNOENB
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x2800
g_lowat = 0x400
g_bandp = 0Ox0
g_nband =0
g_padi[0] =00
g_padi[1l] =00

At this point you can enterto see the next write queue on the stream. Note
thatstrdb provides the same navigation keys for each queue structure.
Therefore, you can enter the same keys for the stream head write queue as
for the stream head read queue. An example of enterimgkiineis shown
below.

n

structqueue 0x21f7674 S:3

133

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_ginfo = 0x1f7924 q_padl[2] =00
g_first = 0x2156780 q_other = 0x21f7600
g_last = 0x2185800
g_next = 0xO0
g_link = 0x0
g_ptr = 0x0029cc48
g_count = 22518
g_flag = 0x1120
QUSE
QOLD
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x8000
g_lowat = 0x4000
g_bandp = 0xO

g_nband =0
g_padi[0] =00
g_padi[1l] =00

This queue contains a non-zeydirstpointer. Them navigation key can be
used to look at the messages on the queue. This is shown below.

m
structmsgb 0x2156780 S:4

b_next = 0x204ac00
b_prev = 0x0
b_cont = 0x21fb700
b_rptr = 0x2242bf2
b_wptr = 0x2242bf2

b_datap= 0x0
b_band = 0
b_padl = 00
b flag = 0x0
b pad2 = 0

Them key displays the first message on the queue.?Toenmand shows
the navigation queues available for the message block data structure.

?

navigation for structure msgb
‘n" =b_next (msgb)

p =b_prev (msgb)

m' = b_rptr (b_rptr)

' =b_cont (msgb)

'd" =b_datap (datab)

-- Hit any key to continue --

Then key shows the next message on the queue.

134

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

n
struct msgb 0x204ac00 S:5

b_next = 0x21f4b00
b_prev = 0x218ee00
b_cont = 0x2198080
b_rptr = 0x223dc00

b_wptr = 0x223ddc3

b_datap= 0x204ac40
b_band = 0
b_padl = 00

b_flag = 0x0

b pad2 = 0

Themkey shows the data associated with this message block.

m

struct msgh 0x204ac00

0x0223dc00

Message data at 0x0223dc00 S:6

01491800 76777879 72616263

.I..vwxyzabcdefg

0x0223dc10:
0x0223dc20:
0x0223dc30:
0x0223dc40:
0x0223dc50:
0x0223dc60:
0x0223dc70:
0x0223dc80:
0x0223dc90:
0x0223dca0:
0x0223dch0:
0x0223dccO0:
0x0223dcdO0:
0x0223dce0:

68696a6b 6c6d6e6f 70717273 74757677 | hijkimnopgrstuvw
78797a61 62636465 66676869 6a6b6c6d | xyzabcdefghijkim
6e6f7071 72737475 76777879 7a616263 | nopqrstuvwxyzabc
64656667 68696a6b 6c6d6e6f 70717273 | defghijkimnopqrs
74757677 78797a61 62636465 66676869 | tuvwxyzabcdefghi
6a6b6c6d 6e6f7071 72737475 76777879 | jkimnopgrstuvwxy
72616263 64656667 68696a6b 6c6d6e6f | zabcdefghijkimno
70717273 74757677 78797a61 62636465 | parstuvwxyzabcde
66676869 6a6b6c6d 6e6f7071 72737475 | fghijkimnopgrstu
76777879 7a616263 64656667 68696a6b | vwxyzabcdefghijk
6c6d6e6f 70717273 74757677 78797a61 | Imnopgrstuvwxyza
62636465 66676869 6a6b6c6d 6e6f7071 | bedefghijkimnopqg
72737475 76777879 72616263 64656667 | rstuvwxyzabcdefg
68696a6b 6¢6d6e6f 70717273 74757677 | hijkimnopgrstuvw

64656667

0x0223dcf0: 78797a61 62636465 66676869 6a6b6c6d | xyzabcdefghijkim

0x0223dd00: 6e6f7071 72737475 76777879 7a616263 | nopqgrstuvwxyzabc

0x0223dd10: 64656667 68696a6b 6¢6d6e6f 70717273 | defghijkimnopgrs

0x0223dd20: 74757677 78797a61 62636465 66676869 | tuvwxyzabcdefghi

0x0223dd30: 6a6b6c6d 6e6f7071 72737475 76777879 | jkimnopgrstuvwxy

Type c for more data

Any other key will quit this display

You can continue to type tleekey to see the rest of the data. Enter a key

other tharc to stop examining data.

Note that each timstrdbdisplays a data structure, it pushes it onto a stack.
strdb saves structures on a stack so you can re-examine thenstader.
increments and displays the stack depth. The depth appears in the upper
right hand corner of the screen as “S:depth.” In the current example, the
message data is on the top of the stack, and the depth is 6.

135

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

At this point, you may want to see the next message in the queue. To do this,
enter a key other thanto stop examining data. Then you can enter the
primary mode comman@TRL-Pto pop the message data and get back to

the message block for the data. This is shown below.

<< press a key besides ¢ >>

P

struct msgb 0x204ac00 S:5
b_next = 0x21f4b00

b_prev = 0x218ee00

b_cont = 0x2198080

b_rptr = 0x223dc00
b_wptr = 0x223ddc3
b_datap = 0x204ac40

b _band = 0
b_padl =00
b_flag = 0x0
b _pad2 = 0

In this example, you could have returned to the message block by entering
CTRL-Tto transpose the top two stack entries instead of popping. This has
the advantage that the message data is still on the stack in case you want to
look at it later. The last example is redone below uSINBL-T. Notice that

the stack depth for the message block is 6 after transposing instead of 5 after

popping.

AT

struct msgb 0x204ac00 S:6
b_next = 0x21f4b00

b_prev = 0x218ee00

b_cont = 0x2198080

b_rptr = 0x223dc00
b_wptr = 0x223ddc3
b_datap = 0x204ac40

b_band = 0
b_padl =00
b_flag = 0x0
b_pad2 = 0

Besides popping the top of the stack or transposing stack entries, you can
pop back to a mark. Enter ttra command to set a mark on the data
structure stack. Later, ent€TRL-Uto pop back to the structure with the
mark. For example, suppose that in the previous exampless entered

136

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

afterstrdb displayed the write queue below the stream head write queue.
Then in the current exampleTRL-Ucould be entered to pop back to this
queue. This is shown below.

U
struct queue 0x21f7674 S:3

g_ginfo = 0x1f7924 q_padl[2] =00
g_first = 0x2156780 g_other = 0x21f7600
g_last = 0x2185800

g_next = O0x0

g_link = Ox0

g_ptr = 0x0029cc48

g_count = 22518

g_flag = 0x1120

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x8000
g_lowat = 0x4000
g_bandp = 0xO
g_nband =0
g_padi[0] =00
g_padl[1l] =00

When you enter th€TRL-Ucommandstrdb prints the data it saved in the
marked entry. If you are runnirsgrdbon a running system instead of a core
file, the data may not be current. In the above example, the queue may
contain different data wheDTRL-Uis entered than it did when the contents

of the queue were pushed on the stack. To see the current values, enter the
CTRL-RcommandCTRL-Rupdates the displayed data structure with new
values from'dev/kmem This is shown below. Notice that there are no

longer any messages in the queue.

"R
structqueue 0x21f7674 S:3
g_qginfo = 0x1f7924 q_padl[2] =00
g_first = 0x0 g_other = 0x21f7600
g_last = 0OxO0
g_next = 0x0
g_link = 0x0
g_ptr = 0x0029cc48
g_count =0
g_flag = 0x1120
QUSE
QOLD
QSYNCH

137

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_minpsz = 0

g_maxpsz = -1
g_hiwat = 0x8000
g_lowat = 0x4000
g_bandp = 0xO
g_nband =0
g_padi[0] =00

g_padi[1l] =00

You may want to us€E TRL-Rwhen you are entering navigation commands,
not just when you pop the data structure stack. This is bestidbeloes

not automatically update the display when the contents of data structures
change. You need to enter iERL-Rcommand to update the display with
new values frontddev/kmem

In the previous example, suppose you want to print a field in the queue that
strdbdoes not format. This can be done usimgThe:b command prints

the contents of memory starting at a specified address. Optionally, you can
specify the number of bytes thatshould print. If you want to see theptr
structure, enter the following.

:b 0x29cc48
0x0029cc48 : 00000001 005d9a00 00000000 00000000 |

0x0029cc58:00000001 005d8b00 00000000 00000000
0x0029cc68: 00000001 00605100 00000000 00000000
0x0029cc78:00000000 00000000 00000000 00000000 |
0x0029cc88 : 00000000 00000000 00000000 00000000 |
0x0029cc98 : 00000000 00000000 00000000 00000000 |
0x0029cca8 : 00000000 00000000 00000000 00000000 |
0x0029cch8 : 00000000 00000000 00000000 00000000 |
0x0029ccc8: 00000000 00000000 00000000 00000000
0x0029ccd8 : 00000000 00000000 00000000 00000000 |
0x0029cce8 : 00000000 00000000 00000000 00000000 |
0x0029ccf8 : 00000000 00000000 00000000 00000000 |
0x0029cd08 : 00000000 00000000 00000000 00000000
0x0029cd18:00000000 00000000 00000000 00000000 |
0x0029cd28: 00000000 00000000 00000000 00000000 |
0x0029cd38: 00000000 00000000 00000000 00000000 |

-- Hit any key to continue --

The:x command is often used with. If theq_ptr buffer contains a pointer
to a STREAMS/UX data structure, you can format the structure using
You know that word 0x0029cc4c in tige ptr buffer contains a queue
address, 0x005d9a00. Thecommand takes two arguments, a structure
address and its type. You can enke? to see which types are accepted by
the:x command. This is shown below.

138

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

X ?

known data structure descriptions...
streamtab
msgb
a__datab
datab
free_rtn
queue
gband
ginit
module_info
module_stat
strapush
ioc_pad
iocblk
copyreq
copyresp
stroptions

-- Hit any key to continue --

The type for a STREAMS/UX queuedsieue You can double check which
type to use by looking in the include fisys/stream.h> An example of
entering thex command to format the queue is shown below.

X queue 0x5d9a00
struct queue 0x5d9a00 S:4
g_ginfo = 0x294418 q_padl[1] =00

g_first = 0x0 g_padi[2] = 00
g_last = OxO g_other = 0x5d9a74
g_next = 0x5ceb00

g_link = 0x0

g_ptr = 0x29cc48

g_count =0
g_flag = 0x1129

QREADR

QWANTR

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = 256
g_hiwat = 0x8000
g_lowat = 0x4000
g_bandp = 0x5393c0
g_nband =1
g_pad1[0] = 00

139

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Commands to Change strdb Session Characteristics

After enteringstrdb, you can enter th® command to get information about
primary commands. Note that primary mode does not prompt for
commands; you just enter the command keys.

?

key - havigate from current structure

"D|:q - exit

AL - refresh

K - log screen contents if logging enabled
? - show navigation keys for current structure

? - show known commands

X ? - show known structure descriptions

X 'name’ 'addr' - show structure 'name’' at address ‘addr’
b 'addr' 'len" - show screenful of binary data at address

‘addr’
(len' defaults to 256 if not specified)
P - pop stack
U - pop stack to previous mark
T - transpose top stack entries
"R - re-read current structure from memory
'S - enable structure Stacking
I'name' 'o|c’ - start[o] / stop[c] logging to ‘name’
‘m - mark current stack location
u - Unenable structure stacking
'S - STREAMS subsystem commands

There are two types of primary commands, data structure navigation and
commands to changtrdbsession characteristics. This section describes the
commands that changérdb session characteristics:

e 7

» CTRL-D
. q

* CTRL-L
o

e

« S

140

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Enter the? command to see the help menu for primary madeslb prints
the text shown below.

?

key - navigate from current structure

"D | :q - exit

AL - refresh

K - log screen contents if logging enabled
? - show navigation keys for current structure

? - show known commands

X ? - show known structure descriptions

X 'name’ 'addr' - show structure 'name' at address 'addr'
:b 'addr' 'len' - show screenful of binary data at address

‘addr’
(len' defaults to 256 if not specified)
P - pop stack
U - pop stack to previous mark
T - transpose top stack entries
"R - re-read current structure from memory
'S - enable structure Stacking
I 'name' 'o|c' - start[o] / stop[c] logging to 'name’
‘m - mark current stack location
u - Unenable structure stacking
'S - STREAMS subsystem commands

Enter theCTRL-Dor the:q command to exit frorstrdhb.
Enter theCTRL-Lcommand to refresh the screen.

Enter thel command to start and stop logging to a fé&adbwill log

commands and their output to a file. Enter:tredmmand specifying a file
name and the o option to open the log file and start logging. Then you can
enterstrdbcommands and see the output on the termistadlb saves a

record of the commands and output in the logging file. Once logging is
enabled, us€TRL-Kto dump the current screen contents to the log file.

This allows the user to selectively log debug data and actions taken. You can
close the log file and stop logging by entering:tlammand, the file name,

and thec option. An example is shown below.

I strdb.log o
No current structure S:.0
S

STREAMS subsystem help commands..
? - show this help menu

h - show this help menu

la 'name’ - list all active STREAMS on device 'name’
Il 'name’ 'minor’ - list all drivers linked under the STREAMS
driver

141

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

‘name' and minor number 'minor'
Im 'name’'minor’ - list all modules pushed on STREAMS device
'name' and whose minor number is 'minor'
Ip 'name''minor' - listall drivers persistently linked under
the STREAMS device 'name' and minor number
'minor'
q - quit the STREAMS subsystem commands
gc 'driver' file' - print'driver' read / write side qcountto
file
gh 'name’' 'minor' - display STREAM head queue structure
for device 'name' and minor number
'minor'
s [m]d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system

\Y - print version of STREAMS structures
displayed

gh tmx 1

struct queue 0x20a2300 S:1

g_ginfo = 0x1f7al8 q_padl[2] =00

g_first = Ox0 g_other = 0x20a2374
g_last = 0xO
g_next = 0x0
g_link = 0x0
g_ptr = 0x206d900
g_count =0
g_flag = 0x1029
QREADR
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat x200

=0
g_lowat = 0x100
g_bandp = 0xO
g_nband =0
g_padi[0] =00
g_padi[1l] =00

. "k (screen data is dumped to strdb.log)

:I'strdb.log ¢
:uand:s

When you entestrdb, data structure stacking is enabled. Each strb
displays a data structure, it pushes it onto a staitkbincrements and
displays the stack depth. Data structure stacking is useful for going back
and reviewing data structures tisttdb has already displayed. This is
described in the previous section, “Data Structure Navigation Commands.”

142

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

You can disable data structure stacking by enteringitctemmand. When
data structure stacking is disabled, strdb does not display the stack depth.
Data structure stacking is re-enabled by enteringsthbemmand. An

example is shown below. Note how the stack depth displayed in the upper
right hand corner of the screen changes.

gh tmx 0
struct queue 0x21f7b00 S:1
g_ginfo = 0x1f7al8 q_padl[2] =00
g_first = Ox0 g_other = 0x21f7b74
g_last = 0OxO
g_next = 0x0
g_link = 0x0
g_ptr = 0x21f7a00
g_count =0
g_flag = 0x1029
QREADR
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1

g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0xO

g_nband =0
g_padi[0] =00
g_padi[1l] =00

u
struct queue 0x21f7b00

g_qginfo = 0x1f7al8 q_padl[2] =00
g_first = Ox0 g_other = 0x21f7b74
g_last = 0xO
= 0x0

= 0x0
g_ptr = 0x21f7a00
g_count =0

g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x200
g_lowat = 0x100
g_bandp 0x0
g_nband 0

143

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_padi[0] =00

g_padi[1l] =00

0

struct queue 0x21f7b74

g_ginfo = 0x1f7a34 q_padl[2] =00

g_first = Ox0 g_other = 0x21f7b00
g_last = 0OxO0
g_next = 0x21f7674
g_link = 0x0
g_ptr = 0x21f7a00
g_count =0
g_flag = 0x102a
QNOENB
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x2800
g_lowat = 0x400
g_bandp = 0xO
g nband =0
g_padi[0] =00
g_padi[1l] =00
'S
structqueue 0x21f7b74 S:1

g_ginfo = 0x1f7a34 q_padl[2] =00
g_first = Ox0 g_other = 0x21f7b00
g_last = 0OxO0
g_next = 0x21f7674
g_link = 0x0
g_ptr = 0x21f7a00
g_count =0
g_flag = 0x102a

QNOENB

QWANTR

QUSE

QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x2800
g_lowat = 0x400
g_bandp = 0xO

0

g_nband =
g_padi[0] =00
g_padi[1l] =00

S

144

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Enter theS command to switch from primary mode to STREAMS/UX
subsystem mode. After invokirggrdh you are in primary mode. Ent&

to switch to STREAMS/UX subsystem mode. In STREAMS/UX subsystem
mode, you can see which STREAMS/UX are configured and active on the
system. An example is shown below.

strdb

No current structure S:.0

STREAMS subsystem help commands..
? - show this help menu
h - show this help menu
la 'name’ - list all active STREAMS on device 'name’
Il 'name’ 'minor' - list all drivers linked under the STREAMS
driver 'name' and minor number 'minor’
Im ‘'name’ 'minor' - list all modules pushed on STREAMS device
'name' and whose minor number is 'minor'
Ip 'name''minor' -listalldrivers persistently linked under
the
STREAMS device 'name' and minor number
'minor’
q - quit the STREAMS subsystem commands
gc 'driver' 'file' - print 'driver' read / write side qcount
to file
gh 'name’ 'minor' - display STREAM head queue structure
for device 'name' and minor number 'minor'
s [m]d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system
Y - print version of STREAMS structures
displayed

Debugging with strdb

This section shows examples of usatigibto debug STREAMS/UX drivers
and modules. The examples show how tosasHh on a running system.
Theadbdebugging section of this chapter shows an example of sisiiy
in conjunction withadbto analyze an HP-UX core file.

145

Figure 2

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Example 1: Flow Control and Fragmentation

In this example, the user has written a loopback driver which usqeetlg
STREAMS/UX utility to send all incoming messages up to the stream head
read queue.

Stream Head —p»! Read Queue | Write Queue

! ¢

lo driver Read Queue Write Queue
greply moves
message to
stream head
lo_write_put(q,m) ; lo_write_srv(q) ;
if m not hipri if stream head not flow controlled
putq areply
else else
greply putbqg

Stream Created By Opening Loopback (lo) Driver

The user writes a simple test for the driver. The test dpemsites data to
it, reads the data, and then closes the driver. The program is shown below.
#include <stdio.h>

#include <fcntl.h>
#include <errno.h>

main()
char wbuf[1024];
char rbuf[1024];
int fd, i, n, cnt;

printf(“*Open the loopback driver.\n");
fd = open(“/dev/lo0”, O_RDWR);

146

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

if (fd < 0)
printf(“Open returned %d and errno = %d.\n",
n, errno);

[* Fill buffer with data to write */
for (n = 0; n <1024; n++)
wbuf[n] = (char) n;

printf(“Call write with nbytes set to 1024.\n");
n = write(fd, wbuf, 1024);
if (n 1= 1024)
printf(“Write returned %d and errno = %d.\n",
n, errno);

printf(“Call read to read in the message sent down
stream.\n");
n = read(fd, rbuf, 1024);
if (n 1= 1024)
printf(‘Read returned %d and errno =
%d.\n",n,errno);

printf(“Close the loopback driver.\n");
close(fd);

}
When the user runs the program, it prints the following results:

Open the loopback driver.

Call write with nbytes set to 1024.

Call read to read in the message sent down stream.

Read returned 512 and errno = 0.

Close the loopback driver.

The user runstrdbto find out why the test program read only 512 bytes of
data instead of 1024. First, the user changes the test program to sleep
between thevrite() andread() calls. When the program sleeps, the user runs

strdbto see what happened to the data. This is shown below.
strdb

No current structure S:.0

The user typesSto enter STREAMS/UX subsystem mode.

S

STREAMS subsystem help commands..

? - show this help menu

d - print status of STREAMS daemon

h - show this help menu

la 'name’ - list all active STREAMS on device 'name'

Il 'name’ 'minor’ - list all drivers linked under the STREAMS
driver

147

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

‘name' and minor number 'minor’
Im 'name' 'minor’ - list all modules pushed on STREAMS device
'name’ and whose minor number is 'minor’
Ip 'name’ 'minor’ - list all drivers persistently linked under
the STREAMS device 'name' and minor number
'minor'
q - quit the STREAMS subsystem commands
gc 'driver' 'file' - print 'driver' read / write side qcount
to file
gh 'name’' 'minor' - display STREAM head queue structure
for device 'name' and minor number
'minor’
s [m]d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system
\Y - print version of STREAMS structures
displayed

Then the user enters tllecommand fofo to see what minor number the
driver assigned to the stream.

la lo
stack empty S:0
lo MAJOR =75
ACTIVE Minor 0x000000 Stream head RQ = 0x00515500
-- Hit any key to continue --

Next, the user entegh for lo and minor number 0 to start examining the
stream. strdb formats the stream head read queue.

ghlo0

struct queue 0x515500 S:1
g_qginfo = 0x2954f0 q_padl[2] =00

g_first = 0x50da00 g_other = 0x515574
g_last = 0x513780

g_next = 0x0

g_link = 0x0

g_ptr = 0x530600
g_count = 512
g_flag = 0x103d
QREADR
QFULL
QWANTR
QWANTW
QUSE
QSYNCH
g_minpsz
g_maxpsz

0
-1

148

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0xO
g nband = 0
g_padi[0] =00
g_padi[1l] =00

The user notes thgt count the number of bytes of data on the queue, is

512. This is the amount of data the test program was able to read. The user
realizes that the test program could only read 512 bytes, because that is all
that was in the queue. The user continues examining the stream in order to
find out what happened to the other 512 bytes of data. The user enters the
navigation key to see the other queue, the stream head write queue.

o
structqueue 0x515574 S:2

g_ginfo = 0x29550c q_padi[2] =00
g_first = 0x0 g_other = 0x515500

g_last = Ox0
g_next = 0x4bc974
g_link = Ox0
g_ptr = 0x530600

g_count =0

g_minpsz 0
g_maxpsz = -1
g_hiwat = 0x2800
g_lowat = 0x400

g_bandp = 0x0
g_nband =0
g_padi[0] =00
g_padi[1l] =00

The user sees that there is no data in this queue. The user ememythe
see the next queul®s write queue.

n
struct queue 0x4bc974 S:3
g_ginfo = 0x2951cc q_padl[2] =00

g_first = 0x537800 q_other = 0x4bc900
g_last = 0x50d100

g_next = 0x0

g_link = 0x0

g_ptr = Ox2blfa8

g_count = 512
g_flag = 0x1124

149

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

QFULL

QUSE

QOLD

QSYNCH

g_minpsz = 0

g_maxpsz = 256

g_hiwat = 0x200

g_lowat = 0x100

g_bandp = 0xO
0

g_nband =
g_padi[0] =00
g_padi[1l] =00

The user sees that the rest of the data is on this queue. The user wonders
why thelo driver did not put this data on the stream head write queue. The
user enters th€TRL-Pcommand to go back to the stream head read queue.

P

structqueue 0x515574 S:2

g_ginfo = 0x29550c q_padi[2] =00
g_first = 0x0 g_other =0x515500

g_last = Ox0
g_next = 0x4bc974
g_link = Ox0
g_ptr = 0x530600

g_count =0
g_flag = 0x102a

QNOENB
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x2800
g_lowat = 0x400
g_bandp = 0xO0
g_nband =0
g_padi[0] =00

g_padi[1l] =00

P
struct queue 0x515500 S:1

g_ginfo = 0x2954f0 q_padl[2] =00
g_first = 0x50da00 q_other = 0x515574
g_last = 0x513780

g_next = 0xO

g_link 0x0

g_ptr 0x530600

g_count = 512

150

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

g_flag = 0x103d
QREADR
QFULL
QWANTR
QWANTW
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0x0
g_nband 0
g_padi[0] =00
g_padi[1l] =00

The user notices that the QFULL flag is set. This indicates that the queue is
flow controlled. g_hiwatis set to 0x200 (512 decimal). Therefdoegan

write only 512 bytes of data to the stream head before a user program does a
read, relieving the flow control condition.

The user realizes that this problem occurs because STREAMS/UX
fragmented the 1024 bytes into smaller messages. If STREAMS/UX put all
the data in one messad@would put the entire message on the stream head
read queuelo would be able to do this because the driver tests once for flow
control before sending the data upstream. Then, Vehtests for flow

control, the stream head read queue is eniptgannot send all the data

when it is fragmented becausemust check for flow control before sending
each fragment. After 512 bytes are in the stream head write queue, the flow
control check fails.

The user wonders why STREAMS/UX fragmented the data. The user enters
mto look at the fragments.

m
struct msgb 0x50da00 S:2
b_next = 0x513780

b_prev = 0x0

b_cont = 0x0

b_rptr = 0x47a700
b_wptr = 0x47a800
b_datap = 0x50da40

b_band = 0
b_padl =00
b_flag = 0x0
b _pad2 = 0

151

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user notes that there are 256 bytes in this medsagpt(- b_rptr=
256). The user looks at the next message by enterimgkine

n

structmsgb 0x513780 S:3
b_next = 0x0

b_prev = 0x50da00

b_cont = 0x0

b_rptr = Ox4efc00
b_wptr = 0x4efd00
b_datap = 0x5137c0

b_band = 0
b_padl =00
b_flag = 0x0
b _pad2 = 0

This message also contains 256 bytes. The user enters navigation
commands to viewo's write queue. The user examines the sizes of the
messages on this queue. They are also 256 bytes. The user reads
documentation describing how STREAMS/UX executesathite() system

call. According to the stream(2) man page, STREAMS/UX fragments when
the data size is larger than the topmost stream moduwdegsz lo is the
topmost stream module; itsaxpszs 256.

The user can fix this problem in two ways. One way is to change the test
program to perform multiple reads to receive all the data. Another way is to
change the driverimiaxpszo be 1024.

152

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

Example 2: Simple Driver Programming Error

In this example, the user has written a loopback drégexryhich uses
timeout to simulate interruptsgs put routine callimeoutfor each
message it receives. When the timeout expires, HP-UXgpdl§imeout
function. This function callputq()to put the message sps read queue.

Stream Head Read Queue | Write Queue
Sp_putsets
— timeout
Sp driver Read Queue Write Queue . Iater

T timer pops &
timeout calls
sp_timeout
which calls putq

Figure 3 Stream Created By Opening Loopback (sp) Driver

Thesp_put(routine puts the incoming message on a quespgsrprivate
data structure before callitigneout() sps timeout function takes the first
message off the queue, and cplisqto put the message sgs read queue.
sps open routine saves a pointespis private data structure in the write and
read queues_ptrfield. sgs private data structure and g _put()and
sp_timeout(youtines are shown below.

153

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

struct sp {
unsigned sp_state; /* Set to SPOPEN when driver opened. */
/* Cleared when driver is closed. */
queue_t *sp_rdqg; /* Contains sp's read q pointer. */
mblk_t *first_mp; /* Pointer to head of message list. */
/* Messages are saved here until */
/* timeout expires. */
mblk_t *last_mp; /* Pointer to tail of message list. */

I3

/* Driver state values. */
#define SPOPEN 01

static sp_put(q, mp)
queue_t *q;
mblk_t *mp;

struct sp *private;
unsigned int s;

/*
* Check the message type.
*/

switch (mp->b_datap->db_type) {
case M_DATA:
case M_PROTO:
case M_PCPROTO:
/* Raise the spl level to protect private structure,
* since timeout functions such as sp_timeout can
* interrupt sp_put.
*
/

s = splstr();
/* Put the message at the tail of the
* private data structure queue.
*/

private = g->q_ptr;
if (private->last_mp)
private->first_mp = mp;
else
private->last_mp->b_next = mp;
private->last_mp = mp;
spIx(s);
* Set the timeout */
timeout(sp_timeout,private,1);
break;
default:
printf(“Routine sp_put: lllegal message %x received.\n”,
mp->b_datap->db_type);
break;
}
}

154

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

static sp_timeout(private)
struct sp *private;

mblk_t *temp;
unsigned int s;

/* Make sure driver isn't being closed. */
if ((private->sp_state & SPOPEN) && (private->first_mp)) {
[* Take message off head of queue in private data
structure. */
temp = private->first_mp;
private->first_mp = private->first_mp->b_next;
temp->b_next = NULL;
/* Call putq to put message on sp's read queue and send
it upstream. */
putq(private->sp_rdq, temp);
}

}

The user writes a test for the driver. The test opprand goes into a loop

calling putmsg()to send data and calliggtmsg(Xo receive the data back.

The test prints a message each time it receives 100 messages. The user runs
the program, but it does not print any messages. While the program is
running, the user rurstrdbto see what is happening on the stream. This is
shown below.

strdb

No current structure S:.0
The user typesSto enter STREAMS/UX subsystem mode.
S

STREAMS subsystem help commands..
? - show this help menu

d - print status of STREAMS daemon
h - show this help menu
la 'name’ - list all active STREAMS on device 'name’

Il 'name' 'minor' - list all drivers linked under the STREAMS
driver 'name' and minor number 'minor’
Im 'name' 'minor’ - list all modules pushed on STREAMS device
‘name’ and whose minor number is 'minor’
Ip 'name’ 'minor’ - list all drivers persistently linked under
the STREAMS device 'name' and minor number
'minor’
q - quit the STREAMS subsystem commands
qgc 'driver' file' - print 'driver' read / write side gcount to
file
gh 'name' 'minor'- display STREAM head queue structure
for device 'name' and minor number 'minor
s [m]d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists

155

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

all the modules configured in the system
Y - print version of STREAMS structures
displayed

Then the user enters tliecommand fospto see what minor number the
driver assigned to the stream.

la sp
stack empty S:0
sp MAJOR =115
ACTIVE Minor 0x000000 Stream head RQ = 0x005c¢1500
-- Hit any key to continue --

Next, the user enters tiga command fospand minor number O to start
examining the streanstrdb formats the stream head read queue.

ghspO
struct queue 0x5¢1500 S

g_ginfo = 0x2964f0 q_padl[2] =00
g_first = 0x0 g_other = 0x5c1574

g_last = 0Ox0
g_next = 0xO
g_link = Ox0
g_ptr = 0x5f0100

g_count =0
g_flag = 0x1029
QREADR
QWANTR
QUSE
QSYNCH
g_minpsz = 0
g_maxpsz = -1
g_hiwat = 0x200
g_lowat = 0x100

g_bandp = 0xO0
g_nband =0
g_padi[0] =00
g_padi[1l] =00

The user sees that there are no messages on the stream head read queue. The
user decides to look for messages on other queues in the stream. The user
enters the key to see the other queue in this pair, the stream head write

queue.

156

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

0
structqueue 0x5¢1574 S:2
g_ginfo = 0x29650c q_padi[2] =00

g_first = Ox0 g_other = 0x5c¢1500
g_last = 0Ox0
g_next = 0x605e74
g_link = 0x0
g_ptr = 0x5f0100
g_count =0
g_flag = 0x102a
QNOENB
QWANTR
QUSE
QSYNCH
g_minpsz =0
g_maxpsz = -1

g_hiwat = 0x2800
g_lowat = 0x400
g_bandp = 0xO

g_nband =0
g_padi[0] =00
g_padi[1l] =00

The user looks at the next quesgs write queue, by entering thekey.
structqueue 0x605e74 S:3

g_ginfo = 0x296434 ¢_padl[2] =00
g_first = O0x0 g_other = 0x605e00

g_last = 0x0
g_next = 0xO0
g_link = 0x0
g_ptr = 0x29ec48

g_count =0
g_flag = 0x1128
QWANTR

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = 256
g_hiwat = 0x8000

g_lowat 0x4000
g_bandp = 0x53b400
g_nband =1
g_padi[0] =00
g_padi[1l] =00

Next the user enters tlkey to look at the other queue in this psjis read
queue.

157

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

0
struct queue 0x605e00 S5
g_ginfo = 0x296418 q_padl[2] =00
g_first = Ox0 g_other = 0x605e74
g_last = 0OxO
g_next = 0x5c1500
g_link = 0x0
g_ptr = 0x29ec48
g_count =0
g_flag = 0x1129
QREADR
QWANTR
QUSE
QOLD
QSYNCH
g_minpsz = 0
g_maxpsz = 256
g_hiwat = 0x8000
g_lowat = 0x4000
g_bandp = 0x53b3c0
g_nband =1
g_padi[0] =00

g_padi[1l] =00

The user sees that there are no messages on the stream. Next, the user
examinesps private data structure. The user entersiiit®emmand,
specifying theg_ptrfield value, 0x29ec48.

:b 0x29ec48

0x0029ec48:
0x0029ec58:
0x0029ec68:
0x0029ec78:
0x0029ec88:
0x0029ec98:
0x0029eca8:
0x0029ech8:
0x0029ecc8:
0x0029ecd8:
0x0029ece8:

00000001 00605e00 00000000 005fb600 |
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

0x0029ecf8 : 00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |
00000000 00000000 00000000 00000000 |

0x0029ed08 :
0x0029ed18:
0x0029ed28:
0x0029ed38:

00000000 00000000 00000000 00000000 | .

A

00000000 00000000 00000000 00000000 |

-- Hit any key to continue --

The user sees that the first worgp$ private data structure is 0x00000001.
Looking at thespstructure declaration shown above, this worsdis state.
The driver is SPOPEN. The next wordsgh private structure is
0x00605e00. According to tlep struct declaration, this sgs read queue

158

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

address. As shown abowtrdbalso reports thaps read queue address is
0x00605e00. The next two words are pointers to messages being saved until
timeouts expire. The first word is the head of the message queue. Its value
is 0x00000000. The second word is the tail. Its value is 0x005fb600. The
user does not understand how the head of the list can be 0 and the tail
non-zero. The user decides to askibto format the message on the tail of

the queue using th& command. First, the user enters th@ command to

see the names of the structures gtiatb formats.

X ?

known data structure descriptions...
streamtab
msgb
a__datab
datab
free_rtn
queue
gband
ginit
module_info
module_stat
strapush
ioc_pad
iocblk
copyreq
copyresp
stroptions

-- Hit any key to continue --

The user sees thstrdb formats msgh, a message block. The user can
double check that this is the correct structure name by looking in the

sys/stream.lnclude file. Then, the user enters theommand to see the
message block.

:X msgb 0x005fb600

struct msgb 0x5fb600 S:6
b_next = 0x5fb700

b_prev = 0x0

b_cont = 0x5fb680

b_rptr = 0x599400
b_wptr = 0x5996ac
b_datap = 0x5fb640

b _band = 0
b_padl =00
b_flag = 0x0
b pad2 = 0

159

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user wonders if this is a valid message block. The fields seem to contain
correct values. The user checks the data by entering kieg.

m
struct msgb 0x5fb600 Message data at 0x00599400 S:7

0x00599400 : 00000000 00000000 00000005 00000000 |
0x00599410: 00000294 0000070c 6d6e6f70 71727374 | mnopqrst
0x00599420: 75767778 797a6162 63646566 6768696a | uvwxyzabcdefghij
0x00599430: 6b6c6d6e 6f707172 73747576 7778797a | kimnopgrstuvwxyz
0x00599440: 61626364 65666768 696a6b6c 6d6€6f70 | abcdefghijklmnop
0x00599450: 71727374 75767778 79726162 63646566 | qrstuvwxyzabcdef
0x00599460 : 6768696a 6b6c6d6e 6707172 73747576 | ghijkimnopgrstuv
0x00599470: 7778797a 61626364 65666768 696a6b6c | wxyzabcdefghijkl
0x00599480 : 6d6e6f70 71727374 75767778 79726162 | mnopqgrstuvwxyzab
0x00599490 : 63646566 6768696a 6b6c6d6e 6707172 | cdefghijkimnopgr
0x005994a0: 73747576 7778797a 61626364 65666768 | stuvwxyzabcdefgh
0x005994b0 : 696a6b6c 6d6e6f70 71727374 75767778 |ijkimnopgrstuvwx
0x005994¢0: 79726162 63646566 6768696a 6b6c6d6e |yzabcdefghijkimn
0x005994d0: 6707172 73747576 7778797a 61626364 | opgrstuvwxyzabcd
0x005994e0: 65666768 696a6h6c 6d6e6f70 71727374 | efghijkimnopqgrst
Type c for more data

Any other key will quit this display

The user knows that this is the data the test program sends. The user
wonders what is in the next message. To see the next message, the user

enters a key other tharto stop viewing data. Then, the user pops back to
the data's message block.

P

struct msgb 0x5fb600 S:6
b_next = 0x5fb700

b_prev = 0x0

b_cont = 0x5fb680

b_rptr = 0x599400
b_wptr = 0x5996ac
b_datap = 0x5fb640

b _band = 0
b_padl =00
b_flag = 0x0
b pad2 = 0

Next the user enters tinekey to see the next message block.

n

struct msgb 0x5fb700 S:7
b_next = 0x5fb800

b_prev = 0x0

b_cont = 0x5fb780
b_rptr = 0x599800

160

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

b_wptr = 0x599b36
b_datap = 0x5fb740

b_band 0
b_padl =00
b_flag = 0x0
b pad2 = 0

Again, the values in this message block appear valid. The user double
checks the data by entering tineey.

m
struct msgb 0x5fb700 Message data at 0x00599800 S:8

0x00599800: 00000000 00000000 00000006 00000000 |
0x00599810: 0000031e 0000081e 7778797a 61626364 | wxyzabcd
0x00599820: 65666768 696a6b6c 6d6e6f70 71727374 | efghijkimnopqgrst
0x00599830: 75767778 79726162 63646566 6768696a | uvwxyzabcdefghij
0x00599840 : 6b6c6d6e 6f707172 73747576 7778797a | kimnopgrstuvwxyz
0x00599850: 61626364 65666768 696a6b6¢c 6d6e6f70 | abcdefghijkimnop
0x00599860 : 71727374 75767778 79726162 63646566 | qrstuvwxyzabcdef
0x00599870: 6768696a 6b6c6d6e 6f707172 73747576 | ghijklmnopgrstuv
0x00599880: 7778797a 61626364 65666768 696a6b6c | wxyzabcdefghijkl
0x00599890 : 6d6e6f70 71727374 75767778 797a6162 | mnopgrstuvwxyzab
0x005998a0 : 63646566 6768696a 6b6c6d6e 6707172 | cdefghijklmnopqr
0x005998b0: 73747576 7778797a 61626364 65666768 | stuvwxyzabcdefgh
0x005998¢0: 696a6b6c 6d6e6f70 71727374 75767778 |ijkimnopgrstuvwx
0x005998d0: 797a6162 63646566 6768696a 6b6c6d6e |yzabcdefghijkimn
0x005998e0: 6f707172 73747576 7778797a 61626364 | opgrstuvwxyzabcd
Type c for more data

Any other key will quit this display

The user continues to look at the message blocks in the list. The list seems
to go on indefinitely. It seems agifivate->last_mpis being updated

correctly, but thaprivate->first_mpis not. Looking asp_put the user sees
thatfirst_mpis not updated unlesast_mpis 0 when the list is empty. It

seems as fhrivate->last_mpwas not set to 0 correctly. The user looks at
sp_timeout(Wwhere messages are removed from the list. Indeed,
sp_timeout(updates onlyirst_ mp last_mpis not set to zero when the list

is empty.

161

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user changesp_timeout(to check if the list is empty, and sets
private->last_mpto O if it is. The corrected function is shown below.

static sp_timeout(private)
struct sp *private;

mblk_t *temp;
unsigned int s;

/* Make sure driver isn't being closed. */

if ((private->sp_state & SPOPEN) && (private->first_mp)) {
/* Take message off head of queue in private data structure. */
temp = private->first_mp;
private->first_mp = private->first._ mp->b_next;
/* The following statement fixes the bug. */
if (private->first_mp == NULL) private->last_mp = NULL;
temp->b_next = NULL,;

/* Call putq to putmessage on sp's read queue and send it upstream.

*

putg(private->sp_rdq, temp);
}

Example 3: Simple Application Programming Error

In this example, the user writes a test program for the stream described in
Example 1. The test program opens several of these STREAMS/UX and
execgwo processes, one that loops dgingmsgs(and another that loops
doinggetmsgs() The test prints a message to the terminal each time it
successfully receives 100 STREAMS/UX messages. Some code fragments
are shown below.

Put Process

/* Initialize the stream and poll structures */

for (i=0; i<stream_count; i++) {
upper_fd[i].fd =i + OPEN_FILES;
upper_fd[i].events = POLLOUT;

/* Loop polling to see which STREAMS are writable and writing to them */
while (1) {

if (poll(upper_fd, stream_count, -1) <= 0) {
err_handler(“Poll returned error %d.\n",errno);

for (i=0; i < stream_count; i++) {
if (upper_fd[i].revents
) /do_e/t_put(&(str_ctl[i]), &(upper_fd[i]));
% If *

162

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

} * while */
Get Process

[* Initialize the stream and poll structures */

for (i=0; i<stream_count; i++) {
upper_fd[i].fd = i + OPEN_FILES;
upper_fd[i].revents = POLLIN|POLLRDBAND;

}
/* Loop polling to see which STREAMS are readable and reading from them
*/
while (1) {

if (poll(upper_fd, stream_count, -1) <= 0) {

err_handler(“Poll returned error %d.\n",errno);

for (i=0; i < stream_count; i++) {
if (upper_fd[i].revents) {
/dqf_a/l_get(&(str_ctl[i]), &(upper_fd[i]));
*I *
}/}:* for */
} /* while */
The user runs the test, but it does not print any messages. The user runs
strdbto find the problem.

strdb

No currentstructure S:0
The user typesSto enter STREAMS/UX subsystem mode.
'S

STREAMS subsystem help commands..
? - show this help menu

d - print status of STREAMS daemon
h - show this help menu
la 'name’ - list all active STREAMS on device 'name’

Il 'name’ 'minor' - list all drivers linked under the STREAMS
driver 'name' and minor number 'minor’
Im ‘name’ 'minor’ - list all modules pushed on STREAMS device
'name’ and whose minor number is 'minor’
Ip 'name’ 'minor’ - list all drivers persistently linked under
the STREAMS device 'name' and minor number
‘minor’
q - quit the STREAMS subsystem commands
gc 'driver' file' - print 'driver’ read / write side gcount to
file
gh 'name' 'minor' - display STREAM head queue structure
for device 'name' and minor number 'minor'

163

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

s [m]d] - Option d lists all the STREAMS drivers
configured in the system. Option m lists
all the modules configured in the system
\Y - print version of STREAMS structures
displayed

Then the user enters tliecommand fofo to see what minor number the
driver assigned to the stream.

la lo
stack empty S:0
lo MAJOR =75
ACTIVE Minor 0x000000 Stream head RQ = 0x005c¢1500
-- Hit any key to continue --

Next the user entecgh for lo and minor number 0O to start examining the
stream. strdb formats the stream head read queue.

ghlo0

structqueue 0x5¢1500 S:1
g_qginfo = 0x2944f0 q_padl[2] =00

g_first = 0x5e1480 q_other = Ox5eed74
g_last = 0x5e1480

g_next = 0xO0

g_link = 0x0

g_ptr = 0x76bf00

g_count = 769
g_flag = 0x103d

QREADR
QFULL
QWANTR
QWANTW
QUSE
QSYNCH
g_minpsz =0
g_maxpsz = -1
g_hiwat = 0x200
g_lowat = 0x100
g_bandp = 0xO0
g_nband =0
g_pad1[0] =00
g_padi[1l] =00

The user notices that the stream head read queue contains several messages
that the test program should be able to read. In fact, the queue is full since
g_countis greater thag_hiwat and the QFULL flag is set.

164

Debugging STREAMS/UX Modules and Drivers
STREAMS/UX Debugging Tool

The user goes back to the code for the get process tops#k)ifs being
called incorrectly. The user checks the parameters pagseli(}o The user
sees that the initialization code setentsinstead okeventsefore calling
poll(). poll() returns 0 in theeventsiield because neventsvere requested.
The corrected code fragment is shown below.

Get Process

[* Initialize the stream and poll structures */
for (i=0; i<stream_count; i++) {

upper_fd[i].fd =i + OPEN_FILES;

upper_fd[i].events = POLLIN|POLLRDBAND; /* Changed revents to events
*/

165

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools

HP-UX Kernel Debugging Tools

This section describes the HP-UX kernel debugging tools and techniques
available for HP-UX release 10.0. These tools and techniques may change
from release to release. This manual will focus primarily on the Series 700
and 800 debugging tools and techniques. Sources of additional information
for the Series 700 are cited below.

Kernel level debugging is associated with the hardware that a kernel is
running on. The kernel level debugging tools are different for the different
hardware platforms.

For the Series 700, kernel level debugging may be performedddiing
ddbcan be used to set breakpoints, single-step through code, examine the
contents of data structures at key points, change the contents of structures
and variables, and use most other normal debugging techniddies
documented itHP-UX Driver Development Guideart number
98577-90013ddbis not part of the standard Series 700 HP-UX product. To
obtain a copy ofidb software, contact your HP representative.

For Series 700 and 800, kernel level debugging may be performed using
adb, which is a general purpose assembly language debugging program.
adballows you to look at HP-UX files and system core files that result from
system panics, to examine system registers and memory locations as they
were at the time of the panic, and to print data from these files in a variety of
formats. adbcan also be used to examine a running HP-UX systathis

part of the standard HP-UX product and is locatedsn/binon every

HP-UX system. Itis important to use the revisioadbwhich corresponds

with the release of the kernel being debugged -- for example, a 9.0 version of
adbwill not work well on a 10.0 kernel. This chapter describes in detall
how to useadbto debug kernel problems on Series 700 and 800 systems.
For additional information oadh refer to the following items:

» adb(1) man page
» ADB Tutorial part number 92432-90005
* Assembly Language Reference Manpalt number 92432-90001

* PA-RISC 1.1 Architecture and Instruction Set Reference Mapadlnumber
09740-90039

166

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools

* PA-RISC Procedure Calling Conventions Reference Mampaal number
09740-90015

167

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools and strdb

HP-UX Kernel Debugging Tools and strdb

Thestrdbtool can be used in conjunction with other standard HP-UX kernel
debugging tools to provide STREAMS/UX-specific information and data
formatting. Generally, if your system is running normally except for
STREAMS/UX, it is recommended that you sselbto debug the problem.

If your system panics or hangdrdb can be used on the resulting system
core dump, along withdbto diagnose the problenstrdbis documented
earlier in this chapter, and examples of usidg andstrdbtogether are

given at the end of this chapter.

What Is a System Panic?

Unlike user code, programming errors in kernel code can cause system
panics. A system panic will result in a panic message to the console. Also,
a system core dump will be generated. This is a copy of physical memory at
the time of the panic. The panic message and core dump can be examined
usingadbandstrdbto determine the cause of the panic.

There are three main categories of panics. The first category is when a
kernel routine callpanic() because of a system inconsistency from which it
cannot recover. In this case, the panic message contains a string from the
routine that calleganic(), explaining why panic was called. In the example
below, the panic string is “ifree: freeing free inode.” A hexadecimal stack
trace will also be printed. Interpreting the stack trace will be described later.
System Panic:

@(#)9245XA HP-UX (A.10.00) #1: Wed Sep 28 15:47:13 PDT 1994
panic: (display==0xb000, flags==0x0) ifree: freeing free inode

PC-Offset Stack Trace (read across, most recent is 1st):

0x0014766¢c 0x001480b0 0x000b3a38 0x000b41llc 0x000b3b78 0x000b76
5c

0x000b10d8 0x000aefd0 0x0001c500
End Of Stack

The second category is the occurrence of a kernel level trap or exception
condition. These usually involve virtual memory and are described below.
A hexadecimal stack trace is also printed.

168

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools and strdb

The third is the occurrence of a High Priority Machine Check (HPMC),
which usually indicates a hardware problem. An HPMC is characterized by
a total, sudden system halt and an HPMC “tombstone” printed on the
console, which records the contents of the system's registers. If you
encounter an HPMC, contact your HP service representative. Note that an
HPMC tombstone is also printed out after a TOC (Transfer of Control -- see
“Transfer of Control In Case of System Hang" for details). There is no need
to contact an HP representative for an HPMC tombstone that is the result of
aTOC.

Traps

Some very common panics occur from either the trap routing or interrupt
routing routines. Whenever this low level code detects a trap occurring in
the system and it believes that it cannot be corrected, it will panic the
machine. The most common faults are described below.

Data Segmentation Faults

Usually, a data segmentation fault occurs when a process (in kernel mode)
attempts to dereference a null pointer. If you receive a data segmentation
fault, information similar to the following will be printed on the system
console:

trap type 15, pcsq.pcoq = 0.85b7c, isr.ior = 0.4

@(#)9245XA HP-UX (A.10.00) #0: Sat Aug 13 23:17:54 PDT 1994

panic: (display==0xbf00, flags==0x0) Data segmentation fault

pcsqg.pcogs the current instruction address, @rdor is the current data
address. This trap message means that the instruction at location 0x85b7c¢
tried to reference address 4 in space 0. You could loadtito see what the
instruction was trying to do. The instruction may have been attempting to
get a value 4 bytes off of some pointer. Because of a possible logic problem,
the pointer might not have been initialized.

Instruction Page Faults

An instruction page fault occurs when a process in kernel mode jumps to an
address which is not mapped, and tries to execute it. Because the page is not
mapped, and the kernel is not paged, a fault is generated. This would appear
as the following:

169

Debugging STREAMS/UX Modules and Drivers
HP-UX Kernel Debugging Tools and strdb

trap type 6 pcsq.pcoq = 0.0 isr.ior = 4.78

@(#)9245XA HP-UX (A.10.00) #0: Sat Aug 13 23:17:54 PDT 1994

panic: (display==0xbf00, flags==0x0) Instruction page fault

Thepcsg.pcogair is important; the user attempted to jump to page zero and
start executing. In this case, because the fault was an instruction page fault,
theisr.ior pair is meaningless. The page fault may have occurred because of
an indirect procedure call, where the address of the routine to be called was
not initialized.

Protection Violations

A third common panic is the protection violation. This type of panic occurs
when the kernel tries to reference a data structure that does not belong to the
current process. This panic also occurs if the kernel attempts to reference an
object in a way which is not permitted by the access rights assigned to the
page where the object resides, for example, an attempt to write on a
read-only page. Another frequently overlooked area of protection faults are
unaligned access violations. These appear to be protection faults, but are
caused by performing an operation on an unaligned address, for example,
load word on a non-word aligned address. In each of these cases, trap type
18 or 7 would be generated. Tiesq.pcogpair would give the offending
instruction, and thesr.ior would give the offending data address referenced.

170

Debugging STREAMS/UX Modules and Drivers
Generating and Retrieving System Core Dumps

Generating and Retrieving System Core Dumps

HP-UX will attempt to create a snapshot of physical memory and register
contents before it stops running. This snapshot can assist engineers in
determining the cause of the problem because it holds a record of what the
system was doing at the time it crashed. The correct name for this snapshot
is acore dump The default location for this snapshot is the primary swap
area, but it is possible to configure systems to put the snapshot on another
disk device. See tHgystem Administration Taskenuals for the Series 700

and the Series 800 for information on configuring dump devices.

A core dump is composed of two files, a core file and an object file. The
core file is an image of the system's physical memory and register contents at
the time of a crash. The object file is the kernel M@nd/vmunix

To retrieve a core dump, the programr/sbin/savecorenust be executed.
savecorewill retrieve the core file from the swap device, along with a copy
of the system's kernel file, and save both in a specified directory. The core
file and the kernel file make up the core dump pair (for examplegre.N
andvmunix.NwhereN is a number that associates a core dump pair).

adbandstrdbrequire that both members of a core dump pair be present. In
addition, it is very important that these members matchdbandstrdbto

be effective. They must match because the kevneligix.N file contains
information which is used bgdbandstrdbas a road map into the core
(vmcore.N file.

Setting Up Your System To Save a Core Dump

In order to have system core dumps saved automatically during boot-up, the
savecordunction must be enabled in the systefats/rc.configfile. Search

this file for the string SAVECORE and follow the instructions in the
comments.

171

Debugging STREAMS/UX Modules and Drivers
Generating and Retrieving System Core Dumps

Manually Getting a Core File from the Swap Partition

If savecore(Wwas not run at boot-up, or did not succeed, you can still run
savecore(1m) manually by taking the following steps:

{usr/bin/bdf # find enough space for the dump
mkdir /tmp/syscore # assuming /tmp has enough space
lusr/sbin/savecore /tmp/syscore # savecore to the chosen directory

savecoreébegins by reporting the date and time of the crash. Next, it looks in
the specified directory for a file namiedunds Theboundsfile contains the
next sequence number (N), whiglivecorewill use to create a unique core
file and kernel file.savecorewill copy the core image from the primary

swap device to a file namedcore.N Lastly,savecorecopies

/stand/vmunixo a file namedmunix.Nto complete the core dump pair.

Problems Encountered In Saving/Obtaining a Core Dump

If /stand/vmunixvas not the kernel that was running when the crash
occurred, savecore will exit quickly without printing any message and will
not save the core file. Use the -d option tosallecorevhat kernel was
running at the time of the system crash:

/usr/sbin/savecore -d /stand/vmunix.bad /var/adm/crash

If a core dump pair is incomplete or not saved after a panic, you can look to
the savecore(1m) man page for help.

Transfer of Control In Case of System Hang

A system hang is a situation in which the system seems to be up but does not
respond to external user control. Should this happen to your system, you
will want to obtain a core dump so that the cause for the hang can be
analyzed. The method for obtaining a core dump of a kernel in this state is
to use the Transfer of Control (TOC) mechanism. The TOC mechanism
causes the machine to vector through a special address which will cause the
machine to do a core dump. Most Series 700 and 800 machines have the
capability to perform TOC but the methods for performing this task are
machine-dependent:

e Series 800 Models 850, 855, 86x, F, G, H, |, and 81Dyou have an access port
connected to your machine, you must enable it through your front panel. Next,

172

Debugging STREAMS/UX Modules and Drivers
Generating and Retrieving System Core Dumps

type a “Control b” on the console. This will put your console under the
supervision of the access port. You will get a “CM>" prompt, at which you may
type “TC.”

» Series 800 Models 834/5, 845, and 8kave a key-operated TOC mechanism.
To execute a TOC, turn the key all the way to the right (clockwise).

» Series 800 Models 808 and 81&ve a button-operated TOC mechanism. From
the rear of the machine, look for this button on the lower right-hand side (it will
be marked TOC). You will need an object, like a pen, to push the TOC button.

» Series 700$have a button-operated TOC mechanism. The button is on the right
side front of the computer. Pull open the door covering the system activity
LED's, and the TOC button is the small white button on the far left.

Core File Size Requirements

It is best if the size of themcore.Nfile is equal to that of the machine's
physical memory. Because the core file is an image of memory at the time
of a crash, if its size is not equal to the machine's physical memory size,
some information will be lost. However, it is still possible to get some
information from a partial core dump.

Symbol Information

Make sure that themunix.Nfile has not been strippeddb andstrdb will
not work without symbol information. Use tfie command to confirm that
the symbols have not been stripped:

file vmunix.0
vmunix.0 s800 executable -not stripped

173

Debugging STREAMS/UX Modules and Drivers
Using adb

Using adb

This section describes how to wmtbon core dumps obtained following a
system crash. See “Generating and Retrieving System Core Dumps” for
information on how these dumps are obtainadb can also be used to
examine a system that is currently running.

See the adb(1) man pageAiB Tutorialfor more information.

Invoking adb

When usingadbon a system core dump, you must use the “-k” option. This
option will tell adb to treat the core dump as a system core dump instead of a
user process core dump, which is organized differently. For example, to call
adbon the dump pawvmcore.landvmunix.1 perform the following:

adb -k vmunix.1 vmcore.1l

When usingadbon a running HP-UX system, you also use the “-k” option,
and usédstand/vmunixas the object file andev/menas the core file:

adb -k /stand/vmunix /dev/imem

You will probably need to be superuser to acégsg/mem Because you

are examining a running (and continuously changing) systeéyill not

be able to set you up in any specific process context, but you will be able to
examine kernel global variables.

Context on Entry to adb

adbmaintains a set of registers corresponding to the registers of the
machine. Thadbcommandbr will print out the values of these registers.
Whenadbis invoked on a system core with tkeoption, it sets these

registers to the values of the machine registers at the time the system core
dump was taken. These register values are not the values the registers
contained at the point the panic or trap occurred. Instead, they are the values
the registers contained at the time the kernel started dumping a copy of
physical memory to the swap area. How to use these “dump time” register
values to determine the state of the registers at the time the trap or panic

174

Debugging STREAMS/UX Modules and Drivers
Using adb

occurred will be described later. These “panic time” register values enable
the user to examine the context of the process that was running at the time of
the system crash.

Debugging Hung Systems

If the system core dump is from a transfer of control (TOC) of a hung
system, adb will be unable to determine the “dump time” or “panic time”
register values. In these casadh can still be used to determine the
contents of the kernel message buffer (see “Finding the Panic Message”),
and to examine kernel global variables (see “Obtaining Important Kernel
Global Variables™), but it will not be able to give you a stack trace or context
for the process that was running at the time of the system crash.

It is especially important, when looking at a dump from a system which
appeared to be hung, to check the kernel gldegsnemfreemem_cntand
avenrun These variables may indicate that your system was out of memory
or was overloaded. (See “Obtaining Important Kernel Global Variables” for
more information.)

It can also be helpful, before doing a TOC on a system which appears hung,
to determine how complete the system paralysis is. The following table
describes hang symptoms, from the least severe to the most severe. This
table may help you determine where your system fits on this continuum.

Symptom

Explanation

Some processes, like your shell or
your tests, do not run, but other
processes are running.

Your system is not hung, but there is some other problem

holding back your processes. If you have a terminal session

that is working, usstrdbandadbto look at the kernel and th

STREAMS/UX subsystem state.

11

You cannot login, either locally or
remotely.

Your system may not be hung, its networking software state,

terminal 1/O orgettyprocesses may be deadlocked in somge
way. If you have a terminal session that is working strsto

andadbto look at the kernel and the STREAMS/UX
subsystem state.

175

Debugging STREAMS/UX Modules and Drivers

Using adb

Symptom

Explanation

You cannot ping your system.

Your system may not be hung, its networking software
may be deadlocked in some way. If you have a terminal
session that is working, usedbandadbto look at the kernel
and the STREAMS/UX subsystem state.

Carriage returns do not echo on th
console or on other login sessions,

e Your system is hung, but is probably TOC-able. TOC the
system and examine the kernel globals in the dump.

Your system has an LED activity
display which is not being updated
it is showing no system activity at
all.

Your system is hung, but is probably TOC-able. TOC the
system and examine the kernel globals in the dump.

Your system has an access port
enabled, and typinGTRL-bon the
console gives no response, or you
attempt to TOC a system without &
access port with no success.

Your system is ignoring very high-level interrupts, and it is
thoroughly hung that you will probably be unable to TOC
Hangs as severe as this are extremely rare. Hit the syste

nreset button, and try to debug the problem using other
methods such as code revieywanics, orprintfs.

Finding the Pan

ic Message

State

SO

—

The kernel maintains a circular message buffer into which text can be
printed using the kerngkintf, msg_printf andcmn_errroutines. At the
time of a panic, a panic message is printed to this buffer. A stack trace
consisting of instruction addresses in hexadecimal is also printed out, as well
as the current instruction and data addresses being accessed at the time of the
crash. Other interesting information may also be located in the buffer, such
as system boot-up messages and kernel error messages that may help pin

down the cause

of the panic. To print out this buffer, inaak®on the

system dump and type the following:

msgbuf+10/s

Examples omsgbufcontents are included in the examples at the end of this

chapter.

176

Debugging STREAMS/UX Modules and Drivers
Using adb

Interpreting the Panic Stack Trace

adb can be used to translate the hexadecimal stack trace printed after the
panic message into procedure addresses. For each hexadecimal number in
the stack trace, use thdb icommand to determine where in the kernel the
address occurs. For example, the hex stack trace below can be deciphered as
follows:

PC-Offset Stack Trace (read across, most recent is 1st):

0x0016da70 0x000e5a68 0x000d34cc 0x0009eald 0x00099714 0x0009
2fdc

0x0006e0c8 0x0006dbb8 0x0006d2a8 0x001954e8 0x00194fa4 0x000b
7e24

0x001846d4 0x00181730 0x00156538 0x00156af8 0x001567b8 0x000e
6d80

0x000d3aac

End Of Stack

In adb (text preceded by “#" are comments):

0x0016da70/i # use of adb i command
panic+30: addil -1000,dp # adb's response
0x000e5a68/i

trap+OXADC: b trap+1004

0x000d34ccli

$call_trap+20: rsm 1,r0

0x0009eal4/i

flushg+60: Idbs 0xD(r21),r22

0x00099714/i

g_free+1C: Idw -OxA4(sp),r3l

Manual Stack Back-Tracing

You may need to usadbto manually back-trace your stack. This is
necessary when the hexadecimal stack trace printpdrbgis incomplete.
For examplepanicmay print a few hex addresses and then the message:

stktrc: cannot find descriptor
or
stktrc: cannot find rp

You may also need to do a manual stack back-tracing if you wish to find out
how the arguments the routines in your stack trace were called. You will
need the value of the stack pointer for each routine in the stack and manual
stack back-tracing will tell you these values.

177

Table 5

Debugging STREAMS/UX Modules and Drivers
Using adb

PA-RISC Procedure Calling Conventions Overview

The following is a very brief overview of the PA-RISC procedure calling
convention. More information can be obtained fromRAeRISC Procedure
Calling Conventions Reference Manual

PA-RISC machines have 32 general use registers. These registers are
identical physically, but are assigned different roles by the PA-RISC
operating systems and compilers in order to enable procedure calls to take
place efficiently and consistently. The following table lists these special

roles:

General Use Register Roles

he

0
call

ro Value is always zero.

rl Scratch register.

r2 Return pointer, also known gs. This is the instruction address the
called procedure will return to when it is finished executing.

r3-rl8 Callee saves. If the called procedure wishes to modify any of these
registers, it must save the original contents on its stack and restore
contents before returning to the caller.

rl9 - r22 Caller saves. The called procedure is free to modify these registers
without saving the original contents. If the calling procedure wants t
retain the contents, it must save them before making the procedure
and restore them after the call returns.

r23 - r26 First four procedure arguments, also knowarg$, argl, arg2, andarg3.
The calling procedure loads the first four procedure arguments into these
registers before making the procedure call.

r27 Global data pointer, also known &gz

r28 - r29 Procedure return values, also knowned® andretl. The called
procedure loads the return values into these registers before returni

r30 Stack pointer, also known ag

r3l Millicode return pointer, or scratch register.

178

Debugging STREAMS/UX Modules and Drivers
Using adb

The only registers you need to be concerned with for manual stack
back-tracing are r2f) and r30 ¢p), although the other registers become
important when trying to determine what arguments a procedure in the trace
was called with.

In order to implement these register roles, at the start of each procedure a
stack frame is allocated andllee saveegisters which the called procedure
is planning to modify are stored in the stack frame. The stack frame is
allocated simply by incrementing tep by the size of the stack frame
needed, using either tlséwmor Ido instruction. For example, below are the
instructions which create the stack frameiéatl. Numbers in brackets ([])
refer to the notes below.

ioctl: stw rp,-14(sp) [1]

ioctl+4: stwm r3,100(sp) [2]

ioct|+8: stw r4,-OxFC(sp) [3]

ioctl+0xC: stw r5,-0xF8(sp) [4]

ioct|+10: stw r6,-OxF4(sp) [5]

[1] Store return instruction address at 0x14 above the caller's stack pointer.
Note that the return address is stored in the caller's stack frame, not the
callee's stack frame.

[2] Store the contents of r3 at the currgmtthen allocate the stack frame by
adding 0x100 to sp. Thewminstruction stands for store word and modify.

[3] Store the contents of r4 g - OXFC, just below where you stored r3.
[4] Store the contents of r5 - 0xF8, just below where you stored r4.
[5] Store the contents of r6 b - OXF4, just below where you stored r5.

The instructiorido (load offset) can be used insteadtimfor allocating
the stack. For example:

doadump: stw rp,-14(sp) [1]
doadump+4: Ido 30(sp),sp [2]

[1] Store return instruction address in caller's stack frame.

[2] Add 0x30 to the current value in regissgrand store the result 8p,
allocating stack frame.

179

Debugging STREAMS/UX Modules and Drivers
Using adb

Basic Stack Back-Tracing

Given the stack pointesp, and the current instruction addrgssoqgh it is
possible to get the previous stack pointer and instruction address. The
starting values fospandpcoghare obtained from thedb $rcommand. As
mentioned above, whadbis invoked on a system core with tieoption,

it sets these registers to the values of the machine registers at the time the
system core dump was taken. Breommand prints out these registers.
Below are the first few lines of tige display.

pcsgh O pcogh 24B34 doadump+0xEC

pcsqt 0 pcogt 0 _fp_status

rp OxDBF48 panic_boot+354

arg0 1 argl OxC57B arg2 2000 arg3
9BD70152

sp 20F380 ret0 303847 retl 797 dp 1F6000

There are four steps to back-tracing a stack:

1 Determine the size of the current stack frame.

The size of the current stack frame is simply the amourggizeincremented at
the entry to the current procedure. To find that numberdisto print out the
first few instructions of the current procedure. To determine the initial current
procedure, look at the value of the regigtengh which appears at the end of
the first line of the $r output. In most cases, this initial procedure will be
doadump.

doadump/3i
doadump+3: stw rp,-14(sp)
ldo 30(sp),sp
mfctl iva,r22
doadump's second instruction islda which increments the stack pointer by

0x30, so doadump's stack frame size is 0x30.
2 Determine the previous stack pointer.

The previous stack pointer is the current stack pointer, minus the current stack
frame size.adbcan be used to keep track of 8pregister by calculating the
previous stack pointer using the following adb commands:
<sp-0x30>sp [1]
=X 2]

20F350 [3]
[1] Take the current value of tlspregister, decrement it by 0x30, and store the
result back into thepregister. Seadbdocumentation for more information on
adb registers and the “<* and “>" operators.

180

Debugging STREAMS/UX Modules and Drivers
Using adb

[2] Print out the new value & This information should be saved in case you
need to find out the contents of registers which have been pushed onto the stack
frame. Seadbdocumentation for more information about the concept of “.”,

the current location in the core file.

[3] adboutput in response to the previous commanX,
3 Find the current return pointer.

Your current procedure is doadump, and you have juspset that it is the
same value it was when doadump was first entered, befddotimstruction
was executed. Recall that doadump's first instruction is:

stw rp,-14(sp)

Because you have just sgito the same value it had when doadump's first
instruction was executed, you can find thédvy looking at what is isp-0x14:

<sp-0x14/X [1]
crash_monarch_stack+1EC: 0xDBF48 [2]

[1] Print out the value of the locati@p-0x14 in hexadecimal.

[2] adbs responsecrash_monarch_stack+1E€an safely be ignored.
0xDBF48 is the instruction address which wagoin

4 Find out which procedure the return pointer points to.
Theadb icommand will tell you this:

OxDBF48l/i [1]
panic_boot+354: comibt,=,n 0,ret0,panic_boot+368 [2]

[1] use of the command
[2] adBbs response

Notice that thesr command has already indicated thgatorresponds to
panic_boot+354

To continue back-tracing the stack, iterate the four steps shown above. Here
is theadb sequence of commands and responses to trace the next two levels
back in this stack. Text preceded by “#” are comments.

panic_boot/3i # look at beginning of
panic_boot: # panic_boot for stack frame
panic_boot: stw rp,-14(sp) # size

stwm r3,80(sp) # stack frame size is 0x80

stw r4,-7C(sp)
<sp-0x80>sp # calculate new sp
=X # print out new sp

20F2D0
<sp-0x14/X # find rp in caller's

181

Debugging STREAMS/UX Modules and Drivers
Using adb

crash_monarch_stack+16C: 0xDB938 # stack frame

0xDB938/i # what instruction address
boot+24: addil 0,dp # does rp correspond to?
boot/3i # look at beginning of boot
boot: # for stack frame size
boot: stw rp,-14(sp)
stwm r3,80(sp) # stack frame size is 0x80
stw r4,-7C(sp)
<sp-0x80>sp # calculate new sp
=X # print out new sp
20F250
<sp-0x14/X # find rp in caller's
crash_monarch_stack+OxEC: 1518A4 # stack frame
1518A4/i # what instruction address
panic+0xFO: Ildw -94(sp),rp # does rp correspond to?
panic/3i # look at beginning of panic
panic: # for stack frame size
panic: stw rp,-14(sp)
stwm r3,80(sp) # stack frame size is 0x80

stw r4,-7C(sp)

If you are doing a manual stack back-trace in order to find out values of
registers which have been pushed onto the stack, it is useful to save the
results of the four steps at each iteration for future reference. A table such as
the following can be helpful:

sp pcogh Procedure Address Frame Size
20F380 24B34 doadump+0xEC 0x30
20F350 OxDBF48 panic_boot+354 0x80
20F2D0 0xDB938 boot+24 0x80
20F250 1518A4 panic+0xFO0 0x80

Exceptions to the Four Steps
The four basic steps of stack back-tracing have some exceptions:

» panic: If your procedure address is in panic, you need to take special steps to find
out the true value of your current stack pointer. Instead of being the pregious
minus the previous frame size, pangpsan be found at location
panic_save_stateDo the following to find the value using adb and reset adb's
copy of sp:

panic_save_state/X [1]
panic_save_state: 2
panic_save_state: 7FFE6F48
TFFE6F48>sp [3]

[1] Askadbto print out locatiompanic_save_stati hex.

182

Debugging STREAMS/UX Modules and Drivers
Using adb

[2] These two lines aradbs response. panic's actsplis 7FFE6F48.
[3] Reseftspto the correct address.

Now that you have panic's real stack pointer, the other steps in the back-tracing
process can be executed normally. Text preceded by “#” are comments.

<sp-0x80>sp # calculate new sp

= # print out new sp
7FFEGECS

<sp-0x14/X # find rp in caller's

7FFEGEBA4: 0xDF108 # stack frame

O0xDF108/i # what instruction address

trap+0xA28: b trap+0xF18 # does rp correspond to?

trap/3i # Look at beginning of trap

trap: # for stack frame size

trap: stw rp,-14(sp)

stwm r3,100(sp) # stack frame size is 0x100
stw r4,-0xFC(sp)

<sp-0x100>sp # calculate new sp

= # print out new sp

7FFE6DCS8
<sp-0x14/X # find rp in caller's
7TFFE6DB4: 0xDOBD4 # stack frame
0xDOBD4/i # what instruction address
$call_trap+20: rsm 1,0 # does rp correspond to?

» S$call_trap, $call_int, $ihndir_rtn, $thndir_rtn, $RDB_trap_patch,
$RDB_int_patch: These procedures do not follow the ordinary procedure
calling conventions. They are written in assembly language, and are used to
create asave statetructure which saves the values of all registers at the time of
a trap or an interrupt. Theave statés then passed toap() or the appropriate
interrupt routine. Theave statestarts asp- 0x230, and you can retrieve the
previous stack pointer and currgmoghfrom thesave stateas shown below.

The offsets into theave statare for the 10.0 release, and may change from
release to release.

<sp-0x230>sp [1]
<sp+0x84/X 2
7FFE6CI1C: 96B70 [3]
<sp+0x78/X [4]
7FFE6C10: 7FFE6B98 [5]
7FFE6B98>sp [6]
96B70/i [7]
genable+10: Idws 0(r20),r21
genable/3i
genable:
genable: stw rp,-14(sp)

Ido 80(sp),sp

stw arg0,-0xA4(sp)

[1] Resetspto point to the top of the save state structure.

183

Debugging STREAMS/UX Modules and Drivers
Using adb

[2] Save state structure + 0x84 is the location ofpttegh

[3] adbs response -- 96B70 is the return instruction address.
[4] Save state structure + 0x78 is the location okthe

[5] adbs response -- 7TFFE6B98 is the current stack pointer.
[6] Resetspto the correct value.

[7] Continue to iterate the four basic stack back-tracing steps.

The table of results from the back-tracing so far should look like this:

sp pcogh Procedure Address Frame Size

20F380 24B34 doadump+0xEC 0x30

20F350 OxDBF48 panic_boot+354 0x80

20F2D0 0xDB938 boot+24 0x80

TFFEGF48 1518A4 panic+0xFO0 0x80

7FFEGECS 0xDF108 trap+0xA28 0x100
7TFFE6GDCS8 0xD0OBD4 $call_trap+20

7FFE6B98 96B70 genable+10 0x80

Mapping Assembly Language Locations to Source Code Lines

Once you know the instruction address location where the system panic or
trap occurred, the troubleshooting step is to find where in the source code the
panic or trap occurred. For panics, search the source code for the panic
which uses the same string that was printed out when the kernel panicked.
This will tell you exactly where the panic occurred in the source code. The
method for traps is to usalbto print out the procedure in which the trap
occurred in assembly language. Then, work backwards from the instruction
address, looking for clues in the assembly instructions which will help
pinpoint the corresponding location in the source. The most useful clue is a
branch to another procedure. In PA-RISC, branches are done with the
branch and link instruction, bl, and in assembly a branch will look like this:

184

Debugging STREAMS/UX Modules and Drivers
Using adb

bl copen,rp [1]

[1] a procedure call toopen()

or:

bl creat+34,rp (save_pn_info) [1]

[1] a procedure call teave pn_info()

By comparing the branches in the assembly code before and after the
instruction where the trap occurred with the procedure calls in the source

code, the corresponding source code line can often be determined. See the
examples at the end of this chapter for more details.

Other useful assembly code landmarks are the use ektheextrs zdep
andldwsinstructions in checking and setting flag bits, and the use of the
compare and branch instructionemb combf combt comily comibf and
comibt to implement if statements. For example,itati() source code:

if (fp->f_flag & (FREAD|FWRITE)) == 0)

is implemented by the assembly code:

ioctl+60: ldws 0(r8),r13 [1]

ioctl+64: extru rl3,1F,2,r14 [2]

joctl+68: comibf,=,n 0,r14,ioctl+80 [3]

[1] Load from memory address pointed to by r8, into r13.
[2] Extract 2 bits from r13, starting at bit 1F, place bits in r14.
[3] If rl4 is not zero, branch tioctl+0x80.

In the example abové is in r8. Iffp were null, a trap type 15 would occur
atioctl+60, when attempting to load off of a null pointer.

For more information about PA-RISC assembly language, seestambly
Language Reference Manuyglart number 92432-90001), tRA-RISC 1.1
Architecture and Instruction Set Reference Marfpatt number
09740-90039), or theA-RISC Procedure Calling Conventions Reference
Manual (part number 09740-90015).

185

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Procedure Argument Values

It is often useful in debugging a problem to know what parameter values a
procedure in the stack trace was called with. For example, in the following
stack trace it would be useful to know the arguméuashg()was called

with.

panic+30: addil -1000,dp

trap+OxADC: b trap+1004

$call_trap+20: rsm 1,10

flushg+60: Idbs 0xD(r21),r22
g_free+1C: Idw -0xA4(sp),r31

Obtaining the First Four Arguments

Arguments 0 through 3 are passed from the calling procedure to the called
procedure by loading the values into registers 23 - 26. These registers are
also known agargQ, argl, arg2, andarg3. For example, here Bmap()
preparing to caltealloccg()by movingrealloccg()s arguments from the
registers they are in to the argument registers by doig an the source
registers with r0, which is always zero:

bmap+16C: or rl0,r0,argl

bmap+170: or retO,r0,arg2

bmap+174: or r8,r0,arg3

bmap+178: or r4,r0,arg0

bmap+17C:

Next, here iglushq()preparing to caiimvq() by loadingarg0 andargl from

its stack frame. Note thatgl gets loaded in the delay slot of the branch
instructionbl. See théAssembly Language Reference Mararahe

PA-RISC 1.1 Architecture and Instruction Set Reference Mdouaiore
information on branch delay slots.

flushg+OxEOQ: Idw -64(sp),arg0

flushg+OxE4: bl rmvq,rp

flushg+OxE8: Ildw -34(sp),argl

After allocating its stack frame and saving any callee save registers, the
called procedure will usually load the argument registers into some of the
callee save registers that it just saved the values of. For example, here is
realloccg()saving the contents of tltallee saveegisters r3 - r10 and
loadingargO - arg3 into somecallee saveegisters.

186

Debugging STREAMS/UX Modules and Drivers
Using adb

realloccg: stw rp,-14(sp)
realloccg+4: stwm r3,80(sp)
realloccg+8: stw r4,-7C(sp)
realloccg+0xC: stw r5,-78(sp)
realloccg+10: stw r6,-74(sp)
realloccg+14: stw r7,-70(sp)
realloccg+18: stw r8,-6C(sp)
realloccg+1C: stw r9,-68(sp)
realloccg+20: stw r10,-64(sp)
realloccg+24: or arg0,r0,r3
realloccg+28: or argl,r0,ré
realloccg+2C: or arg2,r0,r7
realloccg+30: or arg3,r0,r4

Here isrmvq() storing its arguments away in its stack frame:

rmvq: stw rp,-14(sp)
rmvg+4: Ido 80(sp),sp
rmvq+8: stw arg0,-0xA4(sp)

rmvq+0xC: stw argl,-OxA8(sp)

If the arguments were put intallee saveegisters, the next procedure up in

the stack trace will save these registers in its stack frame. You can retrieve
these values from the stack. If the arguments are stored on the stack frame,
you can also retrieve them from the stack. But first you must make sure that
the contents of theallee saveegisters or the stack frame locations you are
interested in were not modified between the time the arguments were loaded
at the beginning of the procedure and the time the next procedure call on the
stack trace took place. The easiest way to determine this is tadiapent

out the assembly code for the procedure into a file and use an editor such as
vi to find all references to the register between the beginning of the
procedure and the branch to the next procedure in the stack trace. If none of
these references modify the register, the value which the next procedure has
saved in its stack frame is valid.

To print the assembly of a procedure to a file usitg

$>filename [1]
procedure,100/ia [2]
$> (3]

[1] Tell adbto directstdoutto the filefilename There should be no space
between $> and the filename.

[2] Print the first 0x400 instructions of procedure.

[3] Setstdoutback to the terminal.

187

Debugging STREAMS/UX Modules and Drivers
Using adb

Now, editfilename and search for all instances of the register or stack frame
location of interest. Any instruction which would modify the contents of the
register could potentially overwrite the information you are trying to get.
Below are some examples of modifying instructions. Note that in all cases
the register being modified, also known as the target register, is the last
register in the instruction.

ldw 10(r3),r4 will overwrite r4

Idhs 4(r3),rp will overwrite rp

Ido -1(r20),r22 will overwrite r22

ldwx r31(arg3),r21 will overwrite r21

or r3,r0,arg0 will overwrite arg0

extrs retl,1F,10,r21 will overwrite r21

zdep r20,1A,1B,r31 will overwrite r31

sub r3l,argl,r31 will overwrite r31

sh3add argl,r0,r31 will overwrite r31

stw r19,-38(sp) will overwrite memory location sp - 0x38

Sometimes an instruction which modifies the register of interest can appear
to occur between the beginning of the procedure and the call to the next
procedure in the stack because of how the assembly code is laid out.
However, the modifying instruction actually would not have been executed
because it was part of a conditional code path that was not taken. For
example, this C code froimctl():

if (fp->f_flag & (FREAD|FWRITE)) == 0) {

u.u_error = EBADF;
return;

compiles into this assembly:

ioctl+60: ldws 0(r8),r13

ioct|+64: extru rl3,1F,2,r14
joctl+68: comibf,=,n 0,r14,ioctl+80
ioctl+6C: ldw 68(r3),r19

ioctl+70: Ido 9(r0),r21

ioctl+74: sth r21,312(r19)

ioctl+78: b ioctl+7F0

ioctl+7C: ldw -1D4(sp),rp

ioctl+80: ldws 4(r5),r7

If the if statement is false, the branchiatl+68 is taken, and instruction
ioctl+6C is never executed because,thim ioctl+68 causes the instruction

in the branch delay slot to be nullified, or not executed. ioctl+70 through
ioctl+7c are never executed because the branch at ioctl+68 branches past
these instructions to ioctl+80. If ioctl+6¢ through ioctl+7C had been
executed, r19, r21, and rp would have been modified.

188

Debugging STREAMS/UX Modules and Drivers
Using adb

Suppose you have determined that the procedure whose arguments you are
interested in does not modify the registers it loaded the arguments into
before the next procedure call in your stack. You can look at the appropriate
location in the stack frame of the next procedure call in the stack to get the
value. For example, if a routine whose registers you are interested in has
called panic, you look at the beginning of panic's assembly to see which
callee saveegisters it saves in its stack.

panic: stw rp,-14(sp)

panic+4: stwm r3,40(sp)

panic+8: stw r4,-3C(sp)

panic+0xC: stw r5,-38(sp)

panic+10: stw 16,-34(sp)

Obtain panic'sp by manual stack back-tracing, and then r3 spat0Ox40,

r4 at sp - 0x3C, and so on.

Obtaining Arguments 5 through N

Only the first four arguments to a procedure are passed via registers. Any
remaining arguments are pushed onto the calling procedure's stack frame,
where the called procedure will retrieve them. If you have the calling
procedure'spyou can usadbto get the values of the arguments. For
example symlink()callslookuppn() which has six arguments. Here is the
assembly code which sets up the six arguments:

symlink+40: stw r4,-34(sp)

symlink+44: stw r3,-38(sp)

symlink+48: Ido -3C(sp),arg2

symlink+4C: Ido -9C(sp),arg0

symlink+50: or r0,r0,argl

symlink+54: bl rename+34,rp (lookuppn)

symlink+58: or r0,r0,arg3

If you want to get the fifth argument, you see #gamlink()places it in its

stack frame at sp - 0x34. Argument 5 is at -0x34 because the procedure
calling convention specifies that arguments get placed in the stack frame in
reverse order, so arg6 is at sp - 0x38, just above arg5, oéuppn()had
seven arguments, arg7 would be placed at sp - 0x3C. If you know
symlink()s sp from doing a manual stack back-trace, you can use it to get the
value of argument 5:

7FFE6B98-0x34/X
7FFE6B64: 2D7298 # adb's response

189

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Register Contents from Trap save_state or panic_save_state Areas

If the system core dump was produced by a panic or a trap, copies of all the
registers at the time of the trap or panic were saved in memory and are
available in the core dump. For a trap, the registers are saved on the stack, in
the order specified in the strigave_statewhich is defined in
/usr/include/machine/save_state.Ror a panic, the registers are saved in a
statically allocated memory location callednic_save_staten the order
specified in the struepb, which is defined irusr/include/machine/rpb.h

See the examples at the end of this chapter for details of how to access
registers in the trapave_statarea. The mechanics of accessing
panic_save_statields are similar, though the offsets into the save area are
different. For example, if you want to get r3 out of plamic_save_state

area, look atusr/include/machine/rpb.and note that the fielgh_gr3is the

sixth word in structpb. Therefore, it can be foundganic_save_state 5

words ==panic_save_state 0x14.

Not all registers in these save areas are guaranteed to be the same as at the
time of the panic or trap, because some registers must be used by the system
to execute the panic or trap path and save away the other registers. Registers
which may not be preserved are r1, r19 - r22, r31, arg0, argl, arg2, and arg3.
Use your judgment with the contents of these registers in the save areas. If
they look odd, they may have been overwritten.

If your stack trace includes a callttap(), it will also have a call tpanic()

higher up (later in time) than the trap. In this case, it is safer to look in the
trapsave_statstructure on the stack than th&nic_save_statarea for

registers you are curious about, because the trap saved the registers closer in
time to when the problem which caused the system crash occurred.

190

Debugging STREAMS/UX Modules and Drivers

Using adb

Obtaining Important Kernel Global Variables

To print out the value of a kernel global variable, simply use the symbol
name with the appropriate formatting option (see adb(1) antidize
Tutorial for more information). The following table lists some of the more
interesting kernel globals, with the appropriad format for printing them,
and brief descriptions of what they mean.

adb Command

Description

msgbuf+0xc/sD Kernel’s circularprintf buffer.

freemem/D Amount of free memory, in pages. If zero or a small number,
system is out of memory.

physmem/D Size of physical memory, in pages.

maxfree/D Number of free pages soon after system boot.

desfree/D Number of free pages the system tries to keep available.

minfree/D Minimum free pages before system starts swapping processes out.

avefree/D Average number of free pages over past 5 seconds.

avefree30/D Average number of free pages over past 30 seconds.

freemem_cnt/D Number of processes currently waiting for memory. If large
number, many processes are stopped waiting for memory.

avenrun/3F System load average, for the last one minute, five minutes, apd 10
minutes, in floating point notation. If large numbers, system miay
be too heavily loaded.

Ibolt/X Seconds since boot.

time/Y Current time, printed out ictime(3C)format.

_release_version/s

HP-UX version string.

utsname+0x9/s System hostname
utsname+0x12/s HP-UX release number.
utsname+0x24/s System hardware model number.

191

Debugging STREAMS/UX Modules and Drivers
Using adb

Obtaining Values from the Process Table Entry and User Area

It is possible to usadbto print out fields of interest from the process table
entry and user area of the process that was running when the system crashed.
The following subsection describes how to print certain important fields and
gives a very brief description of each field. For more information on the
meaning of these fields, s€he Design of the UNIX Operating Systeyn

Maurice Bach, pub. Prentice-Hall, ®he Design and Implementation of the

4.3 BSD UNIX Operating Systdm Leffler, McKusick, Karels and

Quarterman, pub. Addison-Wesley.

adh when called with the -k option, should print out the address of the user
area and process table entry of the process that was running when the system
crashed.adbwill print this out when it is first entered, so the first output you
should see fromdbis:

u 7FFE6000 u.u_procp 4D2F20

u is the location of the user area, and should always be at virtual address
7FFE6000. When the kernel switches to a new process, it always maps the
physical address of the process' user area to virtual address 7FFE6000.
u.u_procpis the location of this process' process table entry. This address
will vary from process to process. dfibdoes not print tha andu.u_procp
values on entry, it was unable to determine the currently running process at
crash timeadbwas unable to print these values probably because your core
dump was the result of a Transfer of Control (TOC).

If the process that caused the panic was running on the Interrupt Control
Stack (ICS), ther andu.u_procppointers will not contain valid information

for the process. When an interrupt occurs the kernel executes the appropriate
kernel code to process the interrupt without switching to a new user context.
Theu andu_procpaddress whichdbwill print will be the process that was
running when the interrupt occurred. The interrupt interrupted the running

of that process in order to process the interrupt. Look at the panic message
in msgbufto tell if the panic occurred while on the ICS. If you see a

message like the following after the hex stack trace, the process was on the
ICS.

NOT sync'ing disks (on the ICS) (0 buffers to flush):

192

Debugging STREAMS/UX Modules and Drivers
Using adb

Important User Area Fields

The table below describes thdb command to use to print important user
area fields.u means the value markedrinted onadb entry (see example

above). When executing thelb commands in the table below, substitute
theu value printed omadb entry for the letteu.

Field Name Address Description

u_procp u+0x258/X Pointer to process table entry.

u_comm u+0x260/s [Series 700] Name of command used to start this process. |For
u+0x264/s [Series 800] STREAMS/UX, this is usuallgtrsched

u_arg u+0x270/10X [Series 700]| Arguments to current system call. For

u+0x274/10X [Series 800]] STREAMS/UX service routines being run by
strschedthese should all be zero.

For example, to prini_commgiven theadb entry printout u 7FFE6000
u.u_procp 4D2F20, type:

0x7FFE6000+0x260/s

Seel/usr/include/sys/userfor more information on fields in the user area.
These offset values are for HP-UX release 10.0, and may change from
release to release.

Important Process Table Fields

The table below describes thdb command to use to print important
process table fieldgp means the value markecdu_procpprinted onadb
entry (see example above). When executingtiecommands in the table
below, substitute the.u_procpvalue printed out oadbentry for the letter
p. For example, to print oyt flag given theadbentry printout at the
beginning of this section, type:

0x4D2F20+0x20/X

Seelusr/include/sys/proc.for more information on fields in the proc
structure. These offset values are for HP-UX release 10.0, and may change
from release to release.

193

Debugging STREAMS/UX Modules and Drivers

Using adb
Field Name Address Description

p_flag p+0x20/X [Series 700] per-process flags, speoc.h
p+0xc/X [Series 800]

p_flag2 p+0x24/X [Series 700] per-process flags, speoc.h
p+0x48/X [Series 800]

p_mpflag p+0x10/X [Series 800 only] | per-process flags, speoc.h

p_stat p+0xc/b [Series 700] current process state, sgec.h
p+0x32/b [Series 800]

p_uid p+0x2c/D [Series 700] real user id, used to direct tty signals
p+0x0x50/D [Series 800]

p_suid p+0x30/D [Series 700] set effective uid
p+0x54/D [Series 800]

p_pid p+0x38/D [Series 700] process id
p+0x5c¢/D [Series 800]

p_ppid p+0x3c/D [Series 700] process id of parent
p+0x60/D [Series 800]

p_pgrp p+0x34/D [Series 700] process id of process group leader
p+0x58/D [Series 800]

p_wchan p+0x40/X [Series 700] event process is sleeping on
p+0x1c/X [Series 800] should be zero if currently running

p_sleeptime p+0x24/X [Series 800 only] time of last sleep or wakeup (in secqg

nds)

p_cptickstotal

p+0x4c/X [Series 700]
p+0x14/X [Series 800]

cpu ticks (total for life of process)

Yy

p_cursig p+0xe/b [Series 700] number of current pending signal, if an
p+0x34/b [Series 800]

p_sig p+0x10/X [Series 700] signals pending to this process
p+0x38/X [Series 800]

p_sigmask p+0x14/X [Series 700] current signal mask

p+0x3c/X [Series 800]

194

Debugging STREAMS/UX Modules and Drivers

Using adb

Field Name Address Description
p_sigignore p+0x18/X [Series 700] signals being ignored
p+0x40/X [Series 800]
p_sigcatch p+0x1c/X [Series 700] signals being caught by user

p+0x44/X [Series 800]

195

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

Debugging Examples

Example 1

The following core dump was obtained while using a modified version of the
spdriver, which is described in example #2 in steelb section of this
chapter.

On entry toadh we first look at thensgbutto look for the panic message
and hex stack trace. The interesting portiomsf§bufor this dump is:

msgbuf+10/s

interrﬁpt type 15, pcsq.pcoq = 0.3b2cc, isr.ior = 0.0
Data page fault on interrupt stack
B2352A HP-UX () #1: Fri Aug 14 00:49:59 PDT 1992
panic: (display==0xbf00, flags==0x0) Interrupt
PC-Offset Stack Trace (read across, most recent is 1st):
0x0013e81c 0x000cddb8 0x000bc93c 0x0003b2cc 0x0012e2bc
0x0016b350
End Of Stack
First we translate the hex stack trace in the panic message into procedure
names and addresses. Usingatle icommand for each of the hex
addresses in the panic message stack trace, we get the following symbolic
stack trace:
panic+40: addil 800,dp
interrupt+7E8: rsm 1,r0
$ihndIr_rtn: rsm 1,10
sp_timeout+2C: Idws 0(arg3),arg2
softclock+94: b,n softclock+30
external_interrupt+350: Idil 261000,r22
The address where the illegal data access occursgd tisneout2C. The
isr.ior in the panic message indicates that the data address that caused the
panic is 0.0, and the instructionsgt_timeout2C isldws0(arg3),arg2, so
arg3 must have been 0 at the time of the panic. So we are probably
dereferencing a null pointer. Our first task is to find out which pointer this is.
To do this we need to know which source codedimetimeout2C

corresponds to. Here is the source codsiotimeout()

196

Debugging STREAMS/UX Modules and Drivers

struct sp {

unsigned sp_state;
queue_t *sp_rdq;
mblk_t *mp;
mblk_t *last_mp;

I

static sp_timeout(Ip)
struct sp *Ip;

mblk_t *temp;
unsigned int s;

if (Ip->sp_state & SPOPEN) {
/* Put message on driver's read queue */

s = splstr();
temp = Ip->mp;
Ip->mp = Ip->mp->b_next;
if (Ip->mp == NULL) Ip->last_mp = NULL;
temp->b_next = NULL;
putq(lp->sp_rdq,temp);
spIx(s);

}

}

Here is the relevant portion of the assembly code
caused the panic is marked with an “*.”

sp_timeout,20?ia # adb command

sp_timeout: # adb's response
sp_timeout: stw rp,-14(sp)

sp_timeout+4: stwm r3,40(sp)
sp_timeout+8: stw r4,-3C(sp)
sp_timeout+0xC: or arg0,r0,r3

sp_timeout+10:
sp_timeout+14:
sp_timeout+18:
sp_timeout+1C:
sp_timeout+20:
sp_timeout+24:
sp_timeout+28:
*sp_timeout+2C:
sp_timeout+30:

Idws 0(r3),argl
bb,>=,n argl,31,sp_timeout+58
bl tmxlwsrv+6C,rp (splstr)
or r0,r0,r0
or ret0,r0,r4
ldws 8(r3),argl
ldws 8(r3),arg3
Idws O(arg3),arg2
stws arg2,8(r3)

Debugging Examples

. The instruction which

At sp_timeoutOxC, arg0, which corresponds to the source code varlpble

is moved to r3. We know argOljs becausdp is the

first argument to

sp_timeout() sp_timeoutOx14 looks like the if statement in the source
code, becaudab is a branch instructionsp_timeout0Ox18 is the call to
splstr(). sp_timeout0x28 loads arg3 with the memory contents at location
r3 + 0x8. arg3 is the source code varidptemp. We can guess this
because mp is 8 bytes from the staitpofaccording to the declaration for

the strucsp. So our problem is thg->mp is NULL.

We want to confirm

197

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

this, and want to look at the rest &b* To do so, we need to find the value
of r3 at the time of the panic. We may be able to extract this information
from the stack if we know the value gjfat the time of the panic. To get this
information, we do a manual stack back-trace. See “Manual Stack
Back-Tracing” for details on how this is done. The resulting table is shown
below:

sp pcogh Procedure Address Frame Size
0x1fdb80 0x24b34 doadump+0xec 0x30
0x1fdb50 0xc8f48 panic_boot+0x354 0x80
Ox1fdadO 0xc8938 boot+0x24 0x100
0x16860 0x13e8cc panic+0xf0 0x80
0x167e0 Oxcddb8 interrupt+0x7e8 0x280
0x16560 0xbc93c $ihndIr_rtn 0x230
0x16330 0x3b2cc sp_timeout+0x2c 0x40
0x162f0 0x12e2bc softclock+0x94 0x80

Now that we have the valuessg, we want to look into the stack of the
procedure abovsp_timeout(Jn the stack trace to find what value that
procedure saved in its stack for r3. In this case, the procedure above
sp_timeout()s $ihndlir_rtn. $ihndlr_rtnis one of the low-level kernel utility
procedures which is hand-coded in assembly and does not create a normal
stack frame. Instead it creates a “save state” area, which contains the values
of all the registers at the time the trap or interrupt took place. The structure
save_statés defined inusr/include/machine/save_statelhe general

registers are stored first, and are located at “top of save state area” +
“register number” * 4. For example, r3 will be 3*4 = 12 off of the beginning

of the save state area. To find the top of the save state area, subtract the size
of thesave_statatructure from the value spfor $ihndlr_rtn:

0x16560-0x230>sp # set sp to top of trap save state
<sp/X
16330: 0xFO00009 # first word of save state area
<sp+0xC/X #find contents of r3 (Ip) at sp + 3*4
icsBase+33C: 24C258
24C258+0x8/X # find 8 off of r3 (Ip->mp)
sp_sp+18: 0 # Ip->mp is NULL
0x24c¢258/4X # look at all of Ip:

state *sp_rdq *mp *last_mp
sp_sp+10: 1 1040C00 0 10F7C00

We can also usstrdbto look atlp. (See thetrdb section of this chapter for
details.) There may be several instances ofprariver, each with a
different minor number, so we must look at each one until we find the

198

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

instance whosg_ptris the same as the address we havipfdp is a
pointer to thespdriver's private data, which is also pointed tajbptr. The
strdb STREAMS/UX subsystela command will tell us what minor
numbers are in use for tspdriver:

la sp

sp MAJOR =115

ACTIVE Minor 2 Stream head RQ = 0x0810eb000

ACTIVE Minor 1 Stream head RQ = 0x081107a00

ACTIVE Minor 0 Stream head RQ = 0x0810ebe00

The strdb STREAMS/UX subsystem commamdwill show us what

modules may have been pushed into the stream abosp dneer:
dImspO

STREAM Head

Imodc

Driver sp

In this case, the panicking stream happens to corresponddpiiliih

minor number 1. From tretrdb STREAMS/UX subsystem, we use “:gh sp
1" to get to the read queue of the stream head contaspidgver with

minor number 1. Then thecommand to get to the write queue of the stream
head. Next the command twice to get from the stream head through the
module Imodc to the drivesp. Here is the display of tteginformation for
driver sp, minor number 1. Note thgt ptris 0x24c258, which is the
address olp.

:ghspl
struct queue 0x1040c74

g_ginfo = Ox1e545c q_padl[2] =00
g_first = 0x0q_other = 0x1040c00

g_last = 0x0
g_next = 0x0
g_link = 0x0
g_ptr = 0x24c258

g_count = 0
g_flag = 0x1128

QWANTR

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = 256
g_hiwat 0x8000
g_lowat 0x4000
g_bandp = 0x105fd40

199

Debugging STREAMS/UX Modules and Drivers

Debugging Examples

g_nband =1
g_pad1[0] = 00
g_padi[1] = 00

Now that we have reached the queue structure for the panigkdriyer
instance, we can ustrdb or adbto examine its contents. Using ttedb
commandb, we can look at|_ptr, and see that itmpfield (the third word)

is NULL:

:b 0x24c258

0x0024¢258 00 00 00 01 01 04 Oc 00 00 00 00 00 01 Of 7c 00 |
0x0024¢268 00 00 00 01 01 0f 8e 00 00 00 00 00 00 00 00 0O |
0x0024c¢278 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024¢288 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024¢298 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024c2a8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0x0024c2b8 00 00 00 00 00 00 00 00 00 00 00 00 00000000 | ..
0x0024c2c8 00 00 00 00 00 00 00 00 00 00 00 00 00000000 | ...

0x0024c2d8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024c2e8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024c2f8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |
0x0024¢308 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024¢318 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024¢328 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0024¢338 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

At this point, we have probably learned all that we can from the dump and
must turn to the source code to discover the cause of this problem. We next
examine the code carefully everywhere thatmp is updated or should be
updated. Becauspdriver's put routinespput() should be updating

Ip->mp, we look at it first.

static spput(q, mp)
queue_t *q;
mblk_t *mp;

struct sp *Ip;
unsigned int s;

switch (mp->b_datap->db_type) {
case M_DATA:
case M_PROTO:
case M_PCPROTO:
s = splstr();
Ip = g->q_ptr;
if (llp->last_mp)
Ip->last_mp = mp;
else
Ip->last_mp->b_next = mp;
spIx(s);

200

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

timeout(sp_timeout,Ip,1);
break;
default:
printf(“Routine spput: Should not be here\n”);
break;

}
}

Note thatspput()never updatelp->mp. It just adds the new message to the
tail of the list usindp->last_ mp But oncesp_timeout(has processed the
last message on the list andIlpetmp to NULL, spput()will never update
Ip->mp to point at the next message it receives. This caysdsneout(}o
be called witHp->mp == NULL. If we changespput()if statement to
properly updatép->mp as shown below, this panic will be fixed.

if (llp->mp)
/*

*head of listis NULL so listis empty -- put new message
* at head of list
*/
Ip->mp = mp;
else
/*
* list is not empty -- put new message at tail of list
*/
Ip->last_mp->b_next = mp;
/*
* update list tail pointer to point to new message
*/

Ip->last_mp = mp;

Example 2

The following core dump was obtained while using a modified version of the
spdriver, which is described in example #2 in steelb section of this
chapter.

On entry toadh, we first look at thensgbutto look for the panic message
and hex stack trace. The interesting portiomsgbuffor this dump is:

msgbuf+0xc/s

trap type 15, pcsq.pcoq = 0.3b584, isr.ior = 0.0
B2352A HP-UX () #1: Fri Aug 14 00:49:59 PDT 1992

panic: (display==0xbf00, flags==0x0) Data segmentation fault

PC-Offset Stack Trace (read across, most recent is 1st):

0x0013e81c 0x000cc108 0x000bd3f4 0x0003b584 0x00049a48 0x0004bdOc
0x0002f7d4 0x00046178 0x00049a48 0x000460d0 0x00046594 0x0012ccl0
0x000bedd0 0x00024cfo

End Of Stack

201

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

First we translate the hex stack trace in the panic message into procedure
names and addresses. Usingatle icommand for each of the hex
addresses in the panic message stack trace, we get the following symbolic
stack trace:

panic+40: addil 800,dp
trap+0xA28: b trap+0xF18
$call_trap+20: rsm 1,0
spput+4C: stws r31,0(r1)
csq_lateral+80: b,n csq_lateral+8C
puthere+4C: ldw -54(sp),rp
Imodcsrv+5C: bl getq,rp
sq_wrapper+50: ldw -54(sp),rp
csq_lateral+80: b,n csq_lateral+8C
rung_run+58: b,n rung_run+74

str_sched_daemon+264: b str_sched_daemon+160

The address where the illegal data access occurspgug+4C Theisr.ior

in the panic message indicates that the data address that caused the panic is
0.0, and the instruction apput+4Cis stws r31,0(r1), so r1 must have been 0

at the time of the panic. We are probably dereferencing a null pointer. Our
first task is to find out which pointer this is. To do this we need to know to
which source code lingpput+4Ccorresponds to. Here is the source code

for spput()

struct sp {

unsigned sp_state;
queue_t *sp_rda;
mblk_t *mp;
mblk_t *last_mp;

%

static spput(q, mp)
gqueue_t *q;
mblk_t *mp;

struct sp *Ip;
unsigned int s;

switch (mp->b_datap->db_type) {
case M_DATA:
case M_PROTO:
case M_PCPROTO:
Ip = g->q_ptr;
if (!Ip->mp)
Ip->mp = mp;
else
Ip->last_mp->b_next = mp;
Ip->last_mp = mp;
timeout(sp_timeout,Ip,1);
break;
default:

202

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

printf(“Routine spput: Should not be here\n”);
break;
}
}

Here is the relevant portion of the assembly code. The instruction where the
panic occurred is marked with an “*”.

spput,40?ia
spput:
spput: stw rp,-14(sp)
spput+4: Ido 40(sp),sp
spput+8: or argl,r0,r31
spput+OxC: ldw 14(r31),r22
spput+10: Idbs 0xD(r22),argl
spput+14: ldo -41(r0),arg2
spput+18: Ido -41(argl),arg3
spput+1C: combt,=,n arg2,arg3,spput+30
spput+20: Ido -40(r0),retl
spput+24: combt,=,n retl,arg3,spput+30
spput+28: ldo 42(r0),r19
spput+2C: combf,=,n r19,arg3,spput+78
spput+30: ldw 14(arg0),argl
spput+34: ldws 8(argl),retO
spput+38: comibf,=,n 0,ret0,spput+48
spput+3C: stws r31,8(argl)
spput+40: b spput+54
spput+44: stws r31,0xC(argl)
spput+48: Idws OxC(argl),ri
* spput+4C: stws r31,0(r1)
spput+50: stws r31,0xC(argl)
spput+54: Idil 3B000,rp
spput+58: ldo 298(rp),r20
spput+5C: extru,=r20,1F,1,r21
spput+60: ldw -4(dp),r21
spput+64: Ido 1(r0),arg2
Spput+68: bl spclose+0xB4,rp (timeout)

First, we try to get a general idea whepput+0x4Cfalls in the source code.

It occurs before the call timeout()atspput0x68. The pattern afombt
andcombfinstructions fronmspput-0x1C tospput-0x2C correspond to the
switch statement in the source code. We guess this by noticing that we have
loaded a value into arg3 which we compare against three different values,
which resembles the first three case statements in the switch statement. It is
unlikely that the default case of the switch statement, which just does a
printf(), would cause the system to pamigput-Ox4C is probably in the

source code in the case statement for M_DATA, M_PROTO, and
M_PCPROTO. Theomibfinstruction aspput-0x38 must correspond to

the if (!Ip->mp) source statement, because it is a conditional branch
statement, and it is comparing a register to 0 (zero).

203

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

We may be able to determine whether we executed the “if” clause or the
“else” clause of the if statement, based on the fact that we know we executed
spput+0x4C (because a trap occurred while executing it).cdinéf
instruction branches to its target address if the condition it is checking is
false. Thiscomibfinstruction compares ret0 to zero. If retO equals zero,
comibfwill not branch, and execution will continuegpput-0x3C and
spput-0x40. spput-0x40 is an unconditional branchdpput-0x54, which

is pastspput-Ox4C. Therefore, if retO had been zero, we never would have
executedspput-0x4C. So retO was not zero. Since we know thatoinebf
instruction corresponds to “if (!lp->mp),” we know that Ip->mp was not
NULL, and thecomibfinstruction branches &pput0x48 if Ip->mp is not
NULL, we can be confident thapput-0x48 andspput-0x4C are part of the
elseclause of théf statement, which consists of one statement,
“Ip->last._mp->b_next = mp;.”

Now we know which source code line we panicked on. We need to
determine which source code pointer the register rl corresponds to, because
dereferencing rl is what caused the panic. To do this, we work backwards
from spput-0x4C to see where rl's contents came from sfipuit-0x48, rl

gets loaded from argl + OxC. Now we look backward to see where argl
came from. It is tempting to assume that argl is the second argument to
spput which ismp. But atspput-0x10, argl is the target of a load, so at
spputr0x48 argl does not contain mp. It is also tempting to look at
spput-0x44 for the origins of argl's contents, because that instruction has
argl as its target. But because we toolkctimaibfat spput-0x38, we must

have branched aroursppput-0x44, so we can ignore this instruction.

Looking further backward tepput-0x30, argl gets loaded from arg0 +

0x14. arg0 has not been the target of a load instruction since the beginning
of spput so it must still contain the first argumenspput g. Looking at the
source code, the only time thepis referenced is to skt in the statement

before thef. So argl must correspondpo Looking at the source code line
where the panic occurred, “Ip->last_mp->b_next = mp,” and the assembly
code linespput-0x48 andspputr0x4C, it appears thapput-0x48 is setting

rl to Ip->last_mp, andpput-Ox4C is attempting to put the contents of r31
into memory location rl + 0, which must be “Ip->last_mp->b_next”.

So our problem is that Ip->last_mp is NULL. It may help us to look at the
rest of*lp, and to do so we need to find the value of argl at the time of the
panic. We may be able to extract this information from the stack if we know

204

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

the value of sp at the time of the panic. To get this information, we do a
manual stack back-trace. See “Manual Stack Back-Tracing” for details on
how this is done. The resulting table is shown below:

sp pcogh Procedure Address Frame Size
0x1fdb80 0x24b34 doadump+0xEC 0x30
0x1fdb50 0xc8f48 panic_boot+354 0x80
Ox1fdadO 0xc8938 boot+0x24 0x80
0x7ffe6f88 0x13e8cc panic+0xf0 0x80
0x7ffe6f08 Oxccl108 trap+0xf18 0x100
0x7ffe6e08 Oxbd3f4 $call_trap 0x230
0x7ffe6bd8 0x3b584 spput+0x4c 0x40
0x7ffe6b98 0x49a48 csq_lateral+0x80 0x80

Now that we have the values sy, we want to look into the stack frame of

the procedure abowspput()in the stack trace, to find what value that
procedure saved in its stack for argl. In this case, the procedure above
spput()is $call_trap. $call_trapis one of the low-level kernel utility
procedures which is hand-coded in assembly and does not create a normal
stack frame. Instead it creates a “save state” area, which contains the values
of all the registers at the time the trap or interrupt took place. The structure
save_statés defined infusr/include/machine/save_stateTine general

registers are stored first, and are located at “top of save state area” +
“register number” * 4. So, for example, arg1, which is also known as r25,
will be 25*4 = 100 off of the beginning of the save state area. To find the top
of the save state area, subtract the size dfdlie_statstructure (0x230 in
release 9.0) from the value gif for $call_trap

0x7ffe6e08-0x230>sp # set sp to top of trap save state

<sp/X
7FFE6BDS: 0xF000009 # first word of save state area
Ox7ffe6bd8+0x4/X
7FFE6BDC: 0 # find contents of rl (Ip->last_mp)

at sp + 1*4. NULL, as we thought
0x7ffe6bd8+0x64/X # find contents of argl (Ip) at

sp + 25%4.
7FFE6C38: OxFFFFFFBF

OxFFFFFFBF is a very unlikely value figr. It is more likely that the

contents of argl were changed in the process of taking a trap. The four arg
registers are considered scratch registers, and the trap path is very likely to
have overwritten these registers before it created the save state area.

205

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

However, there is an alternative way to find out the valu. off we can
determine what the procedure that calipdut()set arg0 to before the call,
we will know the value of}, andlp is g->q_ptr.

The procedure which callesphput()is csq_lateral() The point where the

call was made is marked with an asterisk. Note that the procedure call here
is made using the instructidnte instead of the usual instructibh This is
because&sq_lateraldoes not know the name of the procedure it is going to
call. csqg_lateral()is passed a structure which contains the address of a
procedure to call and the arguments with which to call it. Because the
compiler cannot tell at compile time how far away in the executable image
the procedure address is, it must use a branch and link extdenal

instruction in order to be sure it will be able to reach the procedure address
being branched to.

csq_lateral+40,15%ia
csq_lateral+40: Idws 8(r3),arg2
csq_lateral+44: depi -1,1E,1,arg2
csq_lateral+48: stws arg2,8(r3)
csq_lateral+4C: bl csq_turnover+108,rp (UNCRIT)
csq_lateral+50: or r6,r0,arg0
csq_lateral+54: Idw 10(r5),retl
csq_lateral+58: comibt,=,n 0,retl,csq_lateral+68
csq_lateral+5C: Idw 10(r5),arg0
csq_lateral+60: ldw 1C(arg0),r19
csq_lateral+64: bb,<,n r19,18,csq_lateral+84
csq_lateral+68: Ildw 1C(r5),argl
csq_lateral+6C: stw r0,1C(r5)
csq_lateral+70: ldw 14(r5),r6
csq_lateral+74: Idw 18(r5),arg0
* csq_lateral+78: ble 0(sr4,r6)
csq_lateral+7C: or r31,r0,rp
csq_lateral+80: b,n csq_lateral+8C

At csq_laterak0x74, arg0 is loaded from r5 + 0x18. So if we can find out
what value r5 had at that point, we can determine the valgemdfis a
callee save register, so there is a chancespipattsaved r5 in its stack
frame. We look at the first few instructionsspiput

spput/6i

spput:

spput: stw rp,-14(sp)
Ido 40(sp),sp
or argl,r0,r31
ldw 14(r31),r22
Idbs 0xD(r22),argl
Ido -41(r0),arg2

206

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

We see thaspputdid not save r5. Callee registers are only saved if the

callee plans to overwrite the register. So we cannot get r5sippois stack
frame, but ifspputdid not save r5 that means it did not overwrite it;

therefore, the value for r5 in the save state area will be the same value that r5
had atcsq_laterat0x74. Look at 4*5 into the save state area:

<sp+0x14/X #sp+4*5==r5
7TFFE6BEC: 11002A0

11002A0+0x18/X #qisr5 + 0x18
11002B8: 10EE674

10EE674+0x14/X #lpis q+ 0x14
10EE688: 24C278

24C278+0xC/X # Ip->last_mp = Ip + OxC
sp_sp+3C: 0 # Ip->last_mp is NULL
0x24c278/4X # look at all of Ip:

state sp_rdq mp last_mp
sp_sp+30: 1 10EE600 O 0

Note that at the point the panic occurrgd>mp was NULL, even though

we can be sure that at the time we chedgeemp at instruction

spput-0x38, Ip->mp was not NULL. How can this be true? As we saw in
the previous examplep_timeout(modifies thdp structure, and it runs out

of timeout. In other wordspput()callstimeout()to schedulesp_timeout()

to run after a specified amount of time. At each system clock tick, the kernel
examines the list of procedures createditmgout()and schedules those
procedures whose time has expired to run. Because a clock tick is a high
level interrupt, it can occur at any time, and may suspppdt()if it is

running. A clock tick may have occurred betwspput-0x38 and

spputrOx4C, allowingsp_timeout(¥o run and sdp->mpto NULL. In

order to prevent this, we need to protect access tp #teucture by using
splistr()around all critical sections of code in #@driver which manipulate

Ip. Sospput()source code should be changed as shown below:

case M_DATA:
case M_PROTO:
case M_PCPROTO:
/*
* Use splstr() to protect access to g->q_ptr area from
* interrupts which may schedule sp_timeout().
*

s = splstr();
Ip = g->q_ptr;
if (llp->mp)
Ip->mp = mp;
else
Ip->last_mp->b_next = mp;
/*

* Return to previous interrupt level

207

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

*/

splx(s);
In order to protect access to g->qd_pfr, timeout(must also calsplstr()
before it accesses g->q_ptr. The source codggfaimeout(jn the first
example in this section shows the correct ussptsitr().

See the STREAMS/UX synchronization section of Chapter 3 for guidelines
on protecting module and driver critical sections.

Example 3

The following core dump was obtained while using a modified version of the
spdriver, which is described in example #2 in $itrelb section of this
chapter.

On entry toadh we first look at thensgbutto look for the panic message
and hex stack trace. The interesting portiomegbuffor this dump is:

msgbuf+0xc/s

trap type 15, pcsq.pcoqg = 0.9eal4, isr.ior =0.d
@(#)9245XA HP-UX (A.09.00) #0: Thu Aug 13 23:17:54 PDT 1992
panic: (display==0xbf00, flags==0x0) Data segmentation fault

PC-Offset Stack Trace (read across, most recent is 1st):

0x0016da70 0x000e5a68 0x000d34cc 0x0009eald 0x00099714 0x0009
2fdc

0x0006e0c8 0x0006dbb8 0x0006d2a8 0x001954e8 0x00194fa4 0x000b
7e24

0x001846d4 0x00181730 0x00156538 0x00156af8 0x001567b8 0x000e
6d80

0x000d3aac

End Of Stack

First we translate the hex stack trace in the panic message into procedure
names and addresses. Usingdtlb icommand for each of the hex
addresses in the panic message stack trace, we get the following symbolic
stack trace:

panic+30: addil -1000,dp
trap+0xADC: b trap+1004
$call_trap+20: rsm 1,0

flushg+60: ldbs 0xD(r21),r22
g_free+1C: ldw -OxA4(sp),r31

osr_pop_subr+0xB44: b osr_pop_subr+0xB4C
osr_close_subr+4D8: stw ret0,-40(sp)
pse_close+8A0: stw ret0,-3C(sp)

208

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

hpstreams_close+58: stw ret0,-40(sp)
call_open_close+448: or ret0,r0,r3

closed+138: or ret0,r0,r5
ufs_close+11C: movb,tr r0,ret0,ufs_close+15C
vn_close+24: ldw -54(sp),rp
vno_close+50: addil -59800,dp
closef+0xE8: ldw 18(r3),arg0

exit+2B4: bl uffree,rp

rexit+20: ldw -54(sp),rp

syscall+2A4: Idhs 0(r9),r19

The address where the illegal data access occurfiedlisr0x60. The

isr.ior in the panic message indicates that the data address that caused the
panic is 0.d, and the instructionfltshgrOx60 is Idbs 0xD(r21),r22, so r21

must have been 0 at the time of the panic. So we are probably dereferencing
a null pointer. Our first task is to find out which pointer this is. To do this we
need to know which variable r21 was supposed to contain. We do not have
source code fditushq() because it is a STREAMS/UX internal procedure,

but we do know from its man page what arguments it takes, and we do have
the assembly version of the code. Here is the relevant portion of the
assembly. The instruction where the panic occurred is marked with an “*”.

flushq,20?ia
flushq:
flushq: stw rp,-14(sp)
flushqg+4: Ido 40(sp),sp
flushq+8: stw arg0,-64(sp)
flushg+OxC: stw argl,-68(sp)
flushgq+10: Idw -68(sp),r20
flushq+14: zdepi 1,10,1,r21
flushg+18: and r20,r21,r22
flushg+1C: stw r22,-3C(sp)
flushq+20: Idw -68(sp),r31
flushg+24: addil -8000,r0
flushq+28: Ido -1(r1),r19
flushg+2C: and r31,r19,r20
flushq+30: stw r20,-68(sp)
flushgq+34: Ildw -64(sp),r21
flushq+38: Idws 4(r21),r22
flushg+3C: stw r22,-34(sp)
flushq+40: Idw -34(sp),ri
flushgq+44: comibt,=,n 0,rl,flushgq+120
flushq+48: or r0,r0,r0
flushg+4C: Idw -34(sp),r3l1
flushg+50: Idws 0(r31),r19
flushg+54: stw r19,-38(sp)
flushg+58: Idw -34(sp),r20
flushg+5C: Idw 14(r20),r21
*flushq+60: Idbs 0xD(r21),r22
flushgq+64: stw r22,-40(sp)
flushq+68: Idw -68(sp),ri

209

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

We can findlushq()s calling sequence in its man page in SVR4PG:
void flushg(queue_t *q, int flag)

It is more likely thatg or one of its members is NULL than the parameter
flag being the cause of our problem. We will trace the use of the first
argument, originally in arg0, throudilushq to see how it might be related to
the contents of r21.

At flushgr0x8, argO0 is pushed onto the stack at offset sp - 0x64. Neither
arg0 nor -64gp) is referenced again unfitshgrOx34. AtflushgrOx34, r21

is loaded with -64{p), so at this point r21 contaifig. At flushg-0x38, r22

is loaded from memory location 4 + r21. Looking at the structure definition
for queue_t, found ifusr/include/sys/stream.lve see that the second word

in a queue_t structure, which would be found at memory location r21 + 4, is
theq_firstpointer.

struct queue {

*

*/

*/

struct qinit * g_qinfo; /* procedures and limits for queue */
struct msgb * g_first; /* head of message queue */
struct msgb * g_last; /* tail of message queue */
struct queue * g_next; /* next QUEUE in Stream */
struct queue * ¢_link; /* link to scheduling queue */

caddr_t q_ptr; /* to private data structure */

ulong g_count; /*weighted count of characters on q
ulong g_flag; /* QUEUE state */

long g_minpsz; /* min packet size accepted */

long g_maxpsz; /* max packet size accepted */
ulong g_hiwat; /* high water mark, for flow control
ulong g_lowat; /* low water mark */

struct gband * q_bandp; /* band information */

unsigned char g_nband; /* number of bands */
unsigned char q_pad1[3]; /* reserved */

struct queue * ¢_other; [* pointer to other Q in queue pair

QUEUE_KERNEL_FIELDS

So r22 now containg->g_first At flushg-Ox3C, r22 is stored back in the
stack, asp- 0x34.

At this point, it may be useful to try and work backwards fflushgrOx5C,
where r21 gets loaded from 0x14 + r20, because at the next instruction,
flushgrOx60, we know that r21 is NULL. We notice thaflashgrOx58, r20
is loaded fronsp- 0x34. AtflushgrOx3C, we know thagp- 0x34 was

210

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

g->g_first Checking the instructions betweftushg-Ox3C and
flushg-0x58 shows thatp- 0x34 has not been stored to by any of these
instructions, only loaded from. Sofatshg-0x58, r20 is loaded with
g->q_first At flushgrOx5C, r21 is loaded with some field@Hq_first
Looking at the structure definition fetruct msgbalso found in
lusr/include/sys/stream.lve find that the sixth word of tmesgbstructure,
which would be found at memory location r20 + 5 words == r20 + 0x14, is
b _datap
struct msgb {

struct msgb * b_next; /* next message on queue */

struct msgb * b_prev; /* previous message on queue */

structmsgb * b_cont; /*nextmessage block of message*/

unsigned char * b_rptr; /*firstunread data byte in buffer
*/

unsigned char * b_wptr; /* first unwritten data byte */

struct datab * b_datap; /* data block */

unsigned char b_band; /* message priority */

unsigned char b_padl;

unsigned short b _flag; [* message flags */

long b_pad?2;

MSG_KERNEL_FIELDS
I3
So our problem is thaf->q_first->b_datapis NULL. We want to confirm
this, and to look at the rest of thestructure. To do that we need to find the
value ofsp- 0x64 at the time of the panic. We may be able to extract this
information from the stack if we know the valuespfat time of the panic.
To get this information, we do a manual stack back-trace. See “Manual
Stack Back-Tracing” for details on how this is done. The resulting table is

shown below:

sp pcogh Procedure Address Frame Size
0x2418c0 0x1c374 doadump+0xec 0x30
0x241890 Oxdfcd0 panic_boot+0x354 0xcO
0x2417d0 0xdf3a8 boot+0x34 0x80
0x7ffe7750 0x16db14 panic+0xd4 0x40
0x7ffe7710 Oxe5a68 trap+0xadc 0xc0
0x7ffe7650 0xd34cc $call_trap 0x230
0x7ffe7420 0x9eal4d flushg+0x60 0x40

211

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

Now that we have the valuessygfor flushq we know they address we are
interested in is at Ox7ffe7420 - 0x64:

0x7ffe7420-0x64/X

7FFE73BC: 5E9C00

Looking at the first few words of thestructure, we can determine the value
of g_first which is the second word:

5E9C00/4X
5E9CO00: 294160 5D8C00 6C1880 0

Looking atq_first we can see that the sixth wobd,datap is NULL.:

5D8CO00/8X
5D8CO0: 646480 0 646400 644000

6440D1 0 0 0
We can also us&trdbto look atg andq_first See thetrdb section of this
chapter for more information. Because there may be several instances of the
spdriver, each with a different minor number, we must look at each one until
we find the stream which contains a queue whose address is the same as the
address we have fgr The strdb STREAMS/UX subsystdencommand
will tell us what minor numbers are in use for gpadriver:

la sp

sp MAJOR = 115

ACTIVE Minor 0x000013 Stream head RQ = 0x00607b00

ACTIVE Minor 0x000012 Stream head RQ = 0x00605c00

These instances spare far fewer than we had expectém.on minor
number 0x12 shows thihodchas already been popped off the stream:

:Im sp 0x12

STREAM Head

Driver sp

and using :gh sp 0x12, and o0 and n as needed to traverse all the queues in
this stream shows that none of these queues have address 0x3e9000.

sp 0x13 shows that Imodc is still pushed abgwen this stream, but
traversing all the queues in this stream shows that none of them are the
gueue we are looking for. We can usedtrdb primary modex command

to formatq_firstas a struct msgb to confirm our finding fradbthat
g->q_first->b_datapis NULL. (We find the structure type fqr firstfrom
lusr/include/sys/stream).h

212

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

:X msgb 0x5d8c00

struct msgb 0x5d8c00 S:1
b_next = 0x646480

b_prev = 0x0

b_cont = 0x646400

b_rptr = 0x644000
b_wptr = 0x6440d1

b_datap = 0x0
b_band = 0
b_padl =00
b_flag = 0x0
b pad2 = 0

b_datapcould be NULL because its resources have been freed, or it could
be NULL because the data structure was corrupted in some way. To try to
narrow this down, we want to look at the message buffer b_cont. If its
b_datapis also NULL, the possibility of corruption becomes less likely. We
can use :x msgh 0x646400 to format heontfield of g->q_first It is

easier, however, to see if there is a navigation key available fbr toat

field. “?” lists the available navigation keys:

navigation for structure msgb
‘n" =b_next (msgb)
=b_prev (msgb)
=b_rptr (b_rptr)
=b_cont (msgb)
=b_datap (datab)

=

aa3To

Using thec navigation key, we see thiat datapfor b_contis also NULL.
This makes it very likely that this message has already been freed.

struct msgb 0x646400 S:2
b_next = 0x5d8c00

b_prev = 0x0

b_cont = 0x0

b_rptr = 0x651400
b_wptr = 0x6517el

b_datap = Ox0
b_band = 0
b_padl = 00
b_flag = 0x0
b_pad2 = 0

Now we try to get information about the queue which was pointing to this
message at the time of the panic. We:xde format 0x5e9c00 as a queue
structure to see what information it may still contain.

X queue 0x5e9c00

213

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

struct queue 0x5e9c00 S:3

g_ginfo = 0x294160 q_padl[0] =00
g_first = 0x5d8c00 q_padil[1l] =00
g_last = 0x6c1880 q_padl[2] =00

g_next 0x0 g_other = 0x5e9c74
g_link = 0x0
g_ptr = Ox0

g_count = 24896
g_flag = 0x1135

QREADR

QFULL

QWANTW

QUSE

QOLD

QSYNCH
g_minpsz = 0
g_maxpsz = 256
g_hiwat = 0x8000
g_lowat = 0x4000
g_bandp = 0x539d00
g_nband =1

Note that this is a read queue whags@extpointer is NULL. This implies

that this queue is not a connected part of a stream, and is in the process of
being closed. To find out what driver or module this queue is being used by,
we want to look at|_ginfa We could use :x ginit 0x294160, or look for an
appropriate navigation key:

?

navigation for structure queue
' =q_gqinfo (qinit)

'm' = q_first (msgb)

'zZ" =q_last (msgb)

‘n' =(q_next (queue)

" =q_link (queue)

'b" =q_bandp (gband)

'0'" = q_other (queue)

We use the navigation key to print the following:
struct ginit 0x294160 S:4

gi_putp = Ox785ac
gi_srvp = 0x78794
gi_qopen = 0x7841c
gi_gclose = 0x78490
gi_gadmin = 0x0
gi_minfo = 0x294148
gi_mstat = 0x0

214

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

Using theadb icommand, we can find out the name ofdhgutproutine:

0x785ac/i

Imodcput:

Imodcput: stw rp,-14(sp)

This means the modulmodcwas using the queue on which the panic
occurred. We can double check this by looking agthminfostructure in

strdb. Again, we can either use :x module_info 0x294148, or we could see if
there is a navigation key available tpr minfa

?

navigation for structure ginit
i =qi_minfo (module_info)
's' = qgi_mstat (module_stat)

Using theginit i navigation key to print thenodule_infostructure:
struct module_info 0x294148 S5

mi_idnum = 0x3ec
mi_idname = 0x23a0a8
mi_minpsz = 0
mi_maxpsz = 256
mi_hiwat = 0x8000
mi_lowat = 0x4000

and using thadb scommand to printi_idnameas a string:

0x23a0a8/s

Imcinfo+10: Imodc

So we had the panic occur onlarodcread queue which was in the process

of being closed. Our stack trace confirms this. We are making the exit
system call, close all open file descriptors and as part of process clean-up.
The last close of a stream causes each module and driver to be popped and
its resources freed, including its message buffers. Whenever a panic occurs
which involvesh_datapbeing NULL, the cause is usually that the buffer has
already been freed but a pointer to it was not zeroed out, and a module or
driver continues to access the buffer through this non-zeroed pointer. The
best way to find the cause of this problem is to look through the source code
for all calls tofreemsg()or freeb() and check that all pointers to the buffer
being freed are zeroed out.

215

Debugging STREAMS/UX Modules and Drivers
Debugging Examples

For thespdriver, we found thagpclose()callsfreemsg()

static spclose(q)
queue_t *q;

struct sp *Ip;
unsigned int s;
mblk_t *mp, *t_mp;

Ip = (struct sp *) (g->q_ptr);
[* Free messages queued by spput() on interim mesg queue. */
s = splstr();
mp = Ip->mp;
while (mp = NULL) {
t_mp = mp;
mp = mp->b_next;
freemsg(t_mp);

spIx(s);
flushg(WR(q), 1);
g->q_ptr = NULL;

freemsg()is called to free all messages held in the interim message queue in
our private data area, but we do not zero out the poilptensip or

Ip->last_mp which point to the head and tail of the private interim queue. A
call tosp_timeout()may still be pending in the timeout queue. When
sp_timeout()s executed, becauke>mp is non-NULL, it will call putg()to
pasdp->mp up tosgs read queue, whesgs service routine will call

putnext()to put it inlmodcs read queue. Wheiushq()is called orimodcs

read queue, it tries to free this already freed message, causing a trap type 15
panic on the NULLb_datap Adding the following code tspclose(will fix

this problem:

freémsg(t_mp);

spIx(s);
/*

* NULL out list pointers to insure the messages they point to
* will not be freed twice.
*/
Ip->mp = NULL;
Ip->last_mp = NULL;
flushq(WR(q), 1);
g->q_ptr = NULL,;
}

216

STREAMS/UX-NetTL Link

217

STREAMS/UX-NetTL Link

NetTL (Network Tracing and Logging facility) is the facility used by
network drivers and modules to capture network error events or trace data.
In HP-UX 10.0, a mechanism will enable STREAMS/UX to deliver
log/trace messages to NetTL. Previously, STREAMS/UX had its own error
logging and tracing facility.

This chapter describes the STREAMS/UX-NetTL link, which integrates the
STREAMS/UX logging and tracing facility with NetTL. STREAMS/UX
error and trace messages generatestiyg() or by putmsg()to a
STREAMS/UX log driver can also be delivered to NetTL with the
STREAMS/UX-NetTL link.

With the STREAMS/UX-NetTL link, a single common interface for
network tracing and logging will exist. Also, STREAMS/UX logging can
benefit from NetTL's powerful features like message filtering.

Implementation of the STREAMS/UX-NetTL link is transparent to strerr
and strace users. These commands work just as before even when NetTL is
running.

218

STREAMS/UX-NetTL Link
Mapping from STREAMS/UX Messages to NetTL Messages

Mapping from STREAMS/UX Messages to NetTL
Messages

Both STREAMS/UX error logging and event tracing messages are mapped
to NetTL logging messages.

NetTL log class is determined by STREAMS/UX log messages' flags
according to the following rule:

If (flags & SL_ERROR) NetTL log class
then
if (flags & SL_FATAL) ---> DISASTER
if (flags & SL_WARN) ---> WARNING
if (flags & SL_NOTE) ---> INFORMATIVE
otherwise ---> ERROR
else all messages ---> INFORMATIVE

As a default, only DISASTER and ERROR messages are logged. You can
change this setting by using thetticonfcommand (see nettlconf(1M)).

219

STREAMS/UX-NetTL Link
STREAMS/UX Subsystem ID and Subformatter

STREAMS/UX Subsystem ID and Subformatter

Subsystem ID
STREAMS/UX subsystem ID used by NetTL is:

ID Name: STREAMS
ID Number: 129

Subformatter

The messages logged by the NetTL facility can be formatted to a readable
form by thenetfmtcommand (see netfmt(1M)). The STREAMS/UX
subformatter can be used to filter messages on STREAMS/UX module ID
and sub-ID.

The filter configuration file syntax for STREAMS/UX is the following:
STREAMS module_id sub_id

module_id and sub_id can be a decimal number or * as a wild card.
For example:

STREAMS 1 100
STREAMS 2 *
STREAMS * 101

220

STREAMS/UX-NetTL Link
Quick Guide On How to Use NetTL for STREAMS/UX

Quick Guide On How to Use NetTL for
STREAMS/UX

* Check if NetTL is running.
nettl -status

NetTL will start running by default after the system boot (see nettl(1M) for more
detail).

If NetTL is running, you can check the log file name, STREAMS/UX subsystem
ID, STREAMS/UX log classes, etc.

« Ifitis not running, a superuser needs to start NetTL.
nettl -start
» NetTL can be stopped by a superuser.
nettl -stop
* You can change the set of NetTL log classes you are interested in.

By default, only DISASTER and ERROR messages are logged. A superuser can
modify this default by using the netticonf command (see nettlconf(1M)). Bit
masks for turning on log classes are the following:

INFORMATIVE 1
WARNING 2
ERROR 4
DISASTER 8
For example:

e Tolog only DISASTER messages,
nettlconf -id 129 -class 8

e Tolog DISASTER, ERROR, and WARNING messages,
nettlconf -id 129 -class 14

« To verify your changes,
nettlconf -status

« To activate your changes, you need to restart NetTL.

221

STREAMS/UX-NetTL Link
Quick Guide On How to Use NetTL for STREAMS/UX

You can format and read the logged messages.

netfmt -f /var/adm/nettl. LOGOO

The default error log file is /var/adm/nettl. LOGOO.

You can format and filter the logged messages.

netfmt -f /var/adm/nettl.LOGOO -c filter_file

The filter_file would look like:

Example I To format only STREAMS DISASTER messages:

formatter filter subsystem STREAMS
formatter filter class DISASTER

Example 2 To filter on time:

formatter filter time_from 12:34:56 1/1/94
formatter filter time_through 21:43:56 1/2/94

Example 3 To filter on STREAMS module ID and sub-ID:

STREAMS 1 100
STREAMS 2 *
STREAMS * 101

Example 4 More complex example:

formatter filter subsystem STREAMS
formatter filter class DISASTER
formatter filter class ERROR

formatter filter class WARNING
formatter filter time_from 12:34:56 1/1/94
formatter filter time_through 21:43:56 1/2/94
STREAMS 1 100

STREAMS 2 *

STREAMS * 101

222

Index

Symbols
letc/dmesg, 24
letc/update, 16
? command, 125

A
adb, 120, 122, 174

invoking, 174

registers, 174
applications, compiling and linking, 115
assembly language mapping, 184
autopush command, 32

B
basic stack back-tracing, 180

c

core dumps, 171
generating, 171
retrieving, 171
core file, size requirements, 173

D
data segmentation faults, 169

installation

verification of, 19
instruction page faults, 169
internal synchronization, 61

interrupt control stack (ICS), 63

interrupts, 63
iocblk message structure, 58

data structure navigation commands, 129ioctl, 35

data structure restrictions, 60

driver and module synchronization, 63

drivers
clone, 25, 53
compiling, 105
echo, 25, 54
pipedev, 25
pipemod, 56
sad, 25, 53

changing strdb session characteristics, 140 strlog, 25, 53

clone driver, 25, 53
cloning, HP-UX modifications, 65
close call, 64
cmn_err utility, 42
commands
?,125
autopush, 32
h, 125
la, 127
I, 127
Im, 127
Ip, 128
mknod, 28
pdfck, 19
g, 126
qc, 128
gh, 129
s, 126
strace, 33
strclean, 33
strerr, 33
v, 126
compiling and linking
applications, 115
compiling and linking TLI applications,
116
compiling STREAMS
modules, 105
copyreq message structure, 58
copyresp message structure, 58

STREAMS

drivers and

drivers and modules

linking into kernel, Series 300/700, 107

drivers, unsupported, 52

E
echo driver, 25, 54
esballoc utility, 41

F
fattach, 35
files
stream.h, 58
filesets
STREAMS, 16, 23
STREAMS-DLPI, 23
STREAMS-MAN, 16
flow control, 146
fragmentation, 146
freezestr and unfreezestr utility, 42

G
get_sleep_lock utility, 42

H

h command, 125

hardware requirements, 15
hung systems, debugging, 175

|
include files, 115

itimeout utility, 43

K
kernel

manual build for Series 800, 23

tunable parameters, 26
kmem_alloc utility, 43

L
la command, 127

linking drivers and modules into kernel,

Series 300/700, 107
I command, 127
Im command, 127
LOCK utility, 43
LOCK_ALLOC utility, 44
logging, 121
Ip command, 128

M
manual stack back-tracing, 177

message structures, HP-UX modifications

copyreq, 58

copyresp, 58

iocblk, 58

msgb, 58
mknod commands, 28
modules

compiling, 105

pipemod, 25

sc, 25,54

timod, 25, 55

tirdwr, 25, 55
modules, unsupported, 52
msgb message structure, 58

N
NSTRPUSH, 26

Index

P
panic
data segmentation faults, 169
instruction page faults, 169
protection violations, 170
stack trace, 177
panic message, 176
panic_save_state, 190
pdfck, 19
pipe, 35
pipedev driver, 25
pipemod driver, 56
pipemod module, 25
primary commands, 129
priority number, 64
procedure argument values, 186
process table entry, 192
protection violations, 170
putctl2 utility, 44
putmsg system call, 26, 36
putnextctl2 utility, 45
putpmsg system call, 36
putq, 63, 64

g command, 126

qc command, 128

gh command, 129

gprocson and gprocsoff utility, 45
queue structure, 59

R
requirements
hardware, 15

S

s command, 126

sad driver, 25, 53

sc module, 25, 54

scheduler, 64

select system call, 37

signal system call, 38

sizeof function, 57

spl level, 63

strace, 33

strclean, 33

strdb, 120, 122
commands, 123

running, 123
stream head, 55
streams_put

modifications

streams_put utilities, 46
streams_put utility, 46
streamtab, 107
strerr command, 33
strlog driver, 25, 53
STRMSGSZ, 26
strvf, 19, 120

verbose (-v) option, 19
subsystem commands, 124
SV_WAIT utility, 46
SV_WAIT_SIG utility, 47
swap partition, 172
synchronization

driver and module, 63

internal, 61

uniprocessors, 61
system calls, HP-UX modifications

fattach, 35

ioctl, 35

pipe, 35

putmsg, putpmsg, 36

select, 37

signal, 38

write, writev, 38
system calls, supported, 34
system panic, 168

utilities, HP-UX

T

timod module, 25, 55

tirdwr module, 25, 55

TLI applications, compiling and linking,
116

TOC, 172

tracing, 121

Transfer of Control, 172

trap save_state, 190

TRYLOCK utility, 48

tunable parameters, 26

U

uniprocessor synchronization, 61
UNLOCK utility, 48

unweldq utility, 48, 49

utilities, HP-UX

putctl2, 44
unweldq, 48
weldq, 48

utilities, HP-UX modifications
cmn_err, 42
esballoc, 41
freezestr and unfreezestr, 42
get_sleep_lock, 42
itimeout, 43
kmem_alloc, 43
LOCK, 43
LOCK_ALLOC, 44
putnextctl2, 45
gprocson and gprocsoff, 45
SV_WAIT, 46
SV_WAIT_SIG, 47
TRYLOCK, 48
UNLOCK, 48
unweldq, 49
vtop, 51
weldq, 50

\%
v command, 126
verification of installation, 19
verification tool
strvf, 19
vtop utility, 51

w

weldq utility, 48, 50
write system call, 38
writev system call, 38

224

