
Text Editors and Processors
HP-UX Concepts and Tutorials

FliO'l HEWLETT
~I.:. PACKARD

Text Editors and Processors
HP-UX Concepts and Tutorials

HP Part Number 97089-90022

Copyright 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett­
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Copyright 1980,1984, AT&T, Inc.

Copyright 1979, 1980, 1983, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History
New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

August 1986 ... Edition 1

ii

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this materiaL

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Table of Contents

Edit: An Interactive Editor
Introduction .. 1
Session 1: Creating a Text File. .. 2

Asking for edit. .. 3
Creating Text. .. 4
Messages from edit. .. 4
Text Input Mode .. 4
Writing Text to Disc .. 5
Logging Off .. 6

Session 2 .. 6
Adding More Text to the File. .. 6
Interrupt .. 7
Making Corrections. .. 7
Listing Buffer Contents. .. 7
Finding Things in the Buffer. .. 8
The Current Line .. 9
Numbering Lines (nu). .. 9
Substitute Com and (5) .. 9
Another Way to List What's in the Buffer (z) 11
Saving the Modified Text. .. 11

Session 3 .. 12
Bringing Text Into the Buffer (e) .. 12
Moving Text in the Buffer (m) .. 12
Copying Lines (copy) . .. 13
Deleting Lines (d) .. 13
Be Careful .. 14
Oops! I goofed. Now What? (undo) ... 15
More About Dot (.) and Buffer End ($) .. 15
Moving Around in the Buffer (+ and -) 16
Changing Lines (c) ... 16

Session 4 .. 17
Making Commands Global (g) ... 17
More About Searching and Substituting .. 18
Special Characters. .. 19
Issuing HP-UX Commands from the Editor 20
Filenames and File Manipulation. .. 20
The File (f) Command .. 20
Reading Additional Files (r) .. 21
Writing Parts of the Buffer ... 21
Recovering Files ... 21
Other Recovery Techniques ... 21
Further Reading and Information .. 22
Using ex 22

ii

Edit
An Interactive Editor

Introduction
Text editors are special computer programs that enable you to easily create, preserve, modify, and
print text by use of a computer and terminal. Creating text is very much like typing on an electric
typewriter. Modifying text involves telling the text editor what to add, change, insert, or delete. Text
is printed by giving a command to print all or part of the text file contents. You can also provide
special instructions to control the output format if you desire.

This tutorial is divided into four lessons, and assumes no prior familiarity with computers or with text
editing. A series of text editing sessions lead you through the basic steps of creating and revising a
text file. After scanning each lesson but before beginning the next, try the examples at a terminal to
get a feeling for the actual process of text editing. Allow time for experimentation, and you can
qUickly learn to use a computer for writing and modifying text.

Other HP-UX features are useful besides the text editor. These features are discussed in the book
Introducing the UNIX System as well as in other tutorials that provide a general introduction to the
system. As soon as you are familiar with your terminal keyboard, its special keys, the system login
procedure, and know how to correct typing errors, you are ready to start. Let's first define some
terms:

Program

HP-UX

Edit

File

A group of computer instructions that defines the sequence of steps to be performed
by the computer in order to accomplish a specific task. For example, a series of steps
to balance your checkbook is a program.

A special type of program called an operating system that supervises the computer,
peripheral devices, and all programs that use the HP-UX operating system.

The name of the HP-UX text editor that you will be learning to use; a program that
aids you in writing or revising text. Edit was designed for beginning users, and is a
simplified version of a more extensive editor named ex.

Each HP-UX account is allotted disc storage space for permanent storage of in­
formation such as programs, data, or text. A file is a logical collection of data (such as
an essay, a program, or a chapter from a book) that is stored and maintained by a
computer system. Once you create a file it is kept until you tell the system to remove
it. You can create a file during one HP-UX session, log out, then return to use it at a
later time. Files contain anything you choose to write and store in them. File sizes
vary, depending on individual needs. One file might contain a single number, while
another could contain a very long document or program. The only way to save
information from one session to the next is to store it in a file where it is kept for later
use.

1

Filename

Disc

Buffer

Filenames are used to distinguish one file from another, serving the same purpose as
labels on manila folders in a file cabinet. To write or access information in a file, use
the name of that file in an HP-UX command. The system automatically determines
where the file is located.

Files are stored on a thin circular disc that is coated with magnetic particles similar to
magnetic recording tape. The disc may be permanently installed in a disc drive, or it
may be a removable flexible disc that resembes a small phonograph record in a thin,
square protective container or envelope. Information from the computer (such as
your text) is recorded on the disc surface by the disc drive.

A temporary work space that is available to the user during a text editing session.
The buffer is used to build and modify text files. Buffers are analagous to a piece of
scratch paper that is discarded at the end of a session after the information it
contained has been copied (written) to a permanent disc file.

Session 1:
Creating a Text File

Before you can use the editor, you must first log onto the computer so HP-UX can set up
communication between your terminal and the editor program. Here is a review of the standard
HP-UX login procedure:

If the terminal you are using is directly linked to the computer, turn it on and press (Return)). If your
terminal uses an acoustic coupler (or modem) and telephone line instead, turn on the terminal, dial
the system-access telephone number, then, when you hear a high-pitched tone, place the tele­
phone receiver in the acoustic coupler. If you are using a modem, consult the modem manual for
procedures. Press carriage return (or the (Return) key) once, and await the login message:

Type your login name (which identifies you to HP-UX) on the same line as the login message, then
press (Return). If the keyboard on your terminal supports both uppercase and lowercase, be sure you
enter your login name in lowercase. Otherwise, HP-UX assumes your terminal has only uppercase
and will not recognize any lowercase letters you may type. When HP -UX types : log in:, reply with
your login name, for example susan:

: log in: susan (Return)

(In this example, input typed by the user appears in bold face to distinguish it from information
displayed by HP-UX.)

HP-UX responds with a request for a password as an additional precaution to prevent unauthorized
people from using your account. The password will not appear when you type it (to prevent others
from seeing it). The message is:

Pas s I~ 0 r d: _ (type your password and press (Return))

2 Edit

If any of the information you gave during the login sequence was mistyped or incorrect, HP-UX
responds with:

L09in incorrect.
:109in:

If this happens, start over and repeat the process. When you successfully log in, HP-UX prints the
message of the day and eventually presents you with a /" at the beginning of a fresh line. The % is
the HP-UX prompt symbol that tells you HP-UX is ready to accept a command.

Asking for edit
You are ready to tell HP -UX that you want to use edit, the text editor program. Now is a convenient
time to choose a name for the text file you are about to create. To begin your editing session type
e d i t followed by a space, then the filename you have selected, such as text. When you have
completed the command, press (Return) and wait for edif s response:

/" edi t text
'text' no such file or directory

If you typed the command correctly, you will now be in communication with edit. Edit has set aside
a buffer for use as a temporary working space during your current editing session. It also checked to
see if the file you named, text, already exists. As we expected, it was unable to find such a file since
text is the name of the new file to be created. Edit confirms this with the line:

'text' No such file or directory

The colon on the next line is edif s prompt, announcing that edit expects a command from you.
You are now ready to create the new file.

The "Command not found" Message
Suppose you misspelled edit by typing editor. Your request would be handled as follows:

r" editor
editor: COMMand not found.
'7"

Your mistake in calling edit e d ito r was treated by HP -UX as a request for a program named editor.
Since there is no program named editor, HP-UX reported that the program or command could not
be found. A new % prompt indicates that HP-UX is ready for another command, so you can now
enter the correct command.

Summary
Your exchange with HP-UX as you logged in and made contact with edit should look something
like this:

:109in: susan
Password:

... A message of General Interest...
'7" edit text
'text' No such file or directory

Edit 3

Creating text
You can now begin to enter text into the buffer. This is done by appending text to whatever is
currently in the buffer. Since there is nothing in the buffer at the moment, you are appending text to
nothing which, in effect, creates text. Most edit commands have two forms: a word that describes
what the command does and a shorter abbreviation of that word. Either form can be used. Many
beginners find the full command names easier to remember, but once you are familiar with editing
you may prefer to type the shorter abbreviations. The command to input text is append which can
be abbreviated a. Type append, then press (Return).

X. edit text
:append

Messages from edit
If you make a mistake while entering a command and type something that edit does not recognize,
edit responds with a message intended to help you diagnose your error. For example, if you
misspell the command to input text by typing perhaps, add instead of append or a, you receive this
message:

:add
add:Not an editor command

When you receive a diagnostic message, examine what you typed to determine what part of your
command confused edit. The message above means that edit could not recognize your mistyped
command, so the command was ignored. After displaying a new colon prompt, edit is now ready to
receive a new command.

Text Input Mode
By giving the command append (or using the abbreviation a), you activated text input mode, also
known as append mode. When you enter text input mode, edit responds by doing nothing. No
prompts appear during text input mode, your signal to begin entering lines of text. You can type
almost anything you want while inputting text lines. Lines are transmitted one at a time to the buffer
and held there during the editing session. You can append as much text as you want. When you are
through entering new text lines, type a period by itself at the beginning of a new line, then press
(Return). This signals the editor to terminate text input mode and return to command mode. Edit
then prompts you for a new command by displaying a colon (:) prompt.

When you leave append mode and return to command mode (necessary in order to do any of the
other kinds of editing, such as changing, adding, or printing text), edit preserves the text you just
typed in the editor buffer, so nothing is lost. If you type any other character besides a period by itself
on the last line, edit treats the line as text instead of an exit command, and will not let you leave
append. To exit, type a period by itself on a single line terminated by (Return).

This is a good place to learn an important lesson about computers and text: as far as the computer
is concerned, a blank space is a character as distinct as any letter of the alphabet. If you so
much as type a blank after the period (that is, type a period then press the space bar on the
keyboard), you will remain in append mode with the last line of text being a period followed by a
single space.

4 Edit

Let's say that the lines of text you enter are (try to type exactly what you see, including "thiss"):

This is some sample test.
And thiss is some more text.
Text editin. is stran.e, but nice.

The last line is the period followed by @urn) that gets you out of append mode. If, while typing the
line, you hit an incorrect character, you can change the incorrect character by using the
(BACK SPACE) key to back up then retype the line beginning with the incorrect character. If you
back-space to the first character in the line then press (Return), a blank line is stored in the buffer.
Corrections to a line must be done before the line has been completed by a (Return) (changes in lines
already typed are discussed in Session 2).

Writing Text to Disc
Text input is now complete. Before you break for lunch, the text should be put in a disc file for
safekeeping until the next editing session. Storing the editor's buffer in a disc file is the only way to
save information from one session to the next, since the buffer is temporary and is destroyed after
the end of the editing session. Thus, learning how to write a file to disc is second in importance only
to entering the text. To write the contents of the buffer to a disc file, use the command, write (or its
abbreviation w):

Edit now copies the buffer to a disc file. If the file does not exist, a new file is created automatically
and the presence of a "New File" will be noted. The newly-created file is given the name specified
when you entered the editor, in this case, text. To confirm that the disc file has been successfully
written, edit repeats the filename, then gives the number of lines and the total number of characters
in the file. The buffer remains unchanged by the write command. All of the lines that were written to
the disc are still in the buffer, should you want to modify or add to them.

This ability to write a file to the disc and still continue editing is useful insurance against loss of data
during power failures. It is a good idea to periodically write the edit buffer to a permanent file to
minimize the risk of losing an hour's work should the power go off for some reason (the risk is
actually not as serious as this sounds, because HP-UX has recovery commands that recover all but
very little of the file in the event of a power failure).

Edit must have a filename to use before it can write a file. If you forgot to indicate the name of the
file when you began the editing session, edit prints:

No current filename

in response to your write command. If this happens, you can specify the filename in a new write
command:

:INrite text

After the write (or w) type a space followed by the name of the file.

Edit 5

Logging Off
We have done enough for this first lesson on using the HP-UX text editor, and are ready to
terminate (quit) the editing session. To do this, type quit (or q), then press (Return). The terminal
display looks like this:

: '. r it e
"text" [New file] 3 lines, 90 characters
Il qu it
/"

The (%) prompt is from HP-UX, telling you that your session with edit is over and you can now
interact with HP-UX. To end the entire session at the terminal, you must also exit from HP-UX. In
response to the HP-UX prompt of "%" press the (CTRL) and CD keys simultaneously to
terminate the session with HP-UX and make the terminal available to the next user. It is always
important to logout at the end of a session to make absolutely sure no one could accidentally
stumble into your abandoned session and thus gain access to your files, a condition that tempts
even the most honest of souls.

This is the end of the first session on HP-UX text editing,

Session 2
Login with HP-UX as in the first session:

: I 0 9' in: sus an (Return)
Passwo rd: (give password then press (Return))
'X,

This time when you type the edit command, you can specify the name of the file you worked on last
time. Thus, when edit starts, it will transfer the original file into its buffer so that you can resume
editing the same file. When edit has copied the file into the buffer, it shows the original file name,
and lists the number of lines and characters in the file as follows:

'X,edit text
"text" 3 lines, 90 characters

Your command to edit file text caused the editor to copy the 90 characters of text into the buffer.
Edit now awaits your next command. In this session you learn to append more text to the file, print
the contents of the buffer, and change the text in a line.

Adding More Text to the File
To add more to the end of your text, use the append command to enter text input mode. When
append is the first command of your editing session, the lines you enter are placed at the end of the
buffer. Why this happens is explained later in this session. This time, use the abbreviation for the
append command: a:

: a
This is text added in Session 2.
It doesn't (,lean (Tluch here, but
it does illustrate the editor.

6 Edit

Interrupt
Most terminals supported by HP-UX have a ~ (delete) key, sometimes labelled~. If you
press ~ while working with edit, any task the editor is performing is stopped, and the following
message is sent to you:

Interrupt

Any command that edit might be executing is terminated by DELETE or ~, causing edit to
prompt you for a new command. If you are appending text at the time the key is pressed, append
mode terminates and you are expected to give another command. The line of text that you were
typing when the append operation was interrupted is lost and is not entered into the buffer.

Making Corrections
If you have read a general introduction to HP-UX, such as HP-UX User's Guide, you will recall that
it is possible to erase individual letters that you have typed. This is done by typing the designated
erase character as many times as there are characters you want to erase. Accounts normally start
out using the number sign (#) as the erase character, but it's possible for a different erase character
to be selected. We'll show "#" as the erase character in our examples, but if you've changed your
erase character to backspace (control-H) or something else, be sure to use your own erase char­
acter.

If you make a bad start in a line and would like to begin again, erasing individual characters with a
"#" is cumbersome - what if you had 15 characters in your line and wanted to ge rid of them? To
do so either requires:

with no room for the great text you'd like to type, or,

This is yukky tex@This is great text.

When you type the at-sign (@), you erase the entire line typed so far. (An account can select a
different line erase character to use in place of @. If your line-erase character has been changed,
use it where the examples show "@",). You can immediately begin to retype the line. This,
unfortunately, does not help after you type the line and press (Return). To make corrections in
completed lines, it is necessary to use the editing commands covered in this and following sessions.

HP-UX and edit also support use of (BACK SPACE) for text corrections. How the backspace key
affects the terminal screen display depends on how your terminal or terminal emulator functions.
You can look it up in the manual, or just try it out.

Listing Buffer Contents
Having appended text to what you wrote in Session 1, you might be curious to see what is in the
buffer. To print the contents of the buffer, type the command:

: 1 ,$p

Edit 7

The "I" stands for line 1 of te buffer, the "$"is a special symbol designating the last line of the
buffer, and p (for print) is the command to print from line 1 to the end of the Thus, I ,$ p gives you:

This is some sample text.
And thiss is some more text.
Text editing is strange t but nice.
This is text added in Session 2. It doesn't Mean Much
It doesn't (nean (nuch he re t but
it does illustrate the editor.

You may occaSionally place a a character in the buffer that cannot be printed (ASCII control
characters are not printed on most output devices). These characters are usually obtained by
preSSing (CTRL) and some other key at the same time. When printing lines, edit uses a special
notation to show the existence of non-printing (control) characters.

Suppose you had introduced the non-printing character "control-A" into the word "illustrate" by
accidently holding down the (CTRL) key while typing a. If you asked to have the line printed, ~
would display:

it does illustr'Ate the editor.

The two-character sequence 'A indicates that the CTRL key was depressed simultaneously with the
"A" key, resulting in a corresponding control character (the apostrophe indicates that (CTRL) was
pressed). The error is easily corrected, as discussed later in this session.

In looking over the text we see that "this" is typed as "thiss" in the second line, as was previously
suggested, Let's correct the spelling.

Finding Things in the Buffer
You must find something in the buffer before you can change it. To find "thiss" in the text you
entered, look at a listing of the lines. Edit searches the buffer, looking for the text sequence "thiss",
and stops searching when it finds the specified character pattern. You can tell edit to search for a
pattern by typing the pattern between slash marks:

:/thiss/

By typing / t his s / and pressing (Return), edit is instructed to search for' 'thiss" (if edit cannot find the
pattern of characters in the buffer, it responds "Pattern not found"). When edit finds the characters
"thiss", it prints the line where the pattern was found for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line which it just printed, ready to make a change in the
line.

8 Edit

The Current Line
Edit always keeps track of its position in the buffer by identifying the "current line" at the end of
each operation. In general, the line that was most recently printed, entered, or changed is consi­
dered to be the current position or line in the buffer. The editor assumes the next command is to be
applied to the current line, unless you direct it to act in another location (or perform an operation
that is not related to the current line). When you bring a file into the editor, the editor is always
positioned at the last line in the file. If your initial editing command is "append", the lines you enter
are added to the end of the file, that is, they are placed after the current line. You can refer to your
current postion in the buffer by the symbol period (.), usually called "dot". If you type "." then
press (Return), you are telling edit to print the current line:

: .
And thiss is SOMe More text.

If you want to know the number of the current line, you can type number:

: + =
2

If you type the number of any line and a carriage return, edit will position you at that line and print
its contents:

: 2
And thiss is SOMe More text.

Experiment with these commands to ensure that you understand what they do.

Numbering Lines (nu)
The number (nu) command is similar to print, giving be>th the number and the text of each printed
line. To see the number and text of the current line, type

: n u
2 And thiss is SOMe More text.

Notice that the shortest abbreviation for the number command is nu (not n which is used for a
different command). You can specify a range of lines to be listed by the number command in the
same way that lines are specified for print. For example, 1. $ n u lists all lines in the buffer and their
corresponding line numbers.

Substitute Command (5)
Now that you have found the misspelled word, it is time to change "thiss" to "this". As far as edit is
concerned, changing text is a matter of substituting one pattern for another. Just as a stood for
append, so s stands for substitute. Use the abbreviation s to reduce the chance of mistyping the
substitute command. This command instructs edit to make the change:

2s/thiss/thisI

First, indicate the line to be changed (2), then type the command (s), followed by the characters to
be removed (typed between slashes). Finish the line with the characters to be put back in followed
by a closing slash mark, then press (Return). Here it is in plain English:

2s/what is to be chanled/what to chanle tal

Edit 9

If edit finds an exact match of the characters to be changed it makes the change only in the first
occurrence of the characters. If it does not find the characters to be changed it will respond:

Substitute pattern match failed

indicating that your instructions could not be carried out. If edit finds the characters you want to
change, it makes the sutstitution and automatically prints the changed line so you can verify that the
correct substitution was made. In the example,

:2s/thiss/thisl
And this is some more text.

line 2 (and line 2 only) is searched for the character pattern "thiss". When the first exact match is
found, "thiss" is changed to "this". In reality, since you set the current line number to 2 in an earlier
operation, it was unnecessary to specify the number of the line to be changed by this command. In
the command:

:s/thiss/thisl

edit assumes that the line where the editor is currently positioned (the current line) is to be used. A
period can also be used to specify the current line as in the command:

: .s/thiss/thisl

although the period is totally unnecessary. In either case, the command without a line number or
without a period would have produced the same result as when the line number was specified
because the editor was already positioned at the line to be changed. Here is another illustration of
substitution.

Text editing is strange. but nice.

To be a bit more positive, take out the characters "strange, but" so the line reads:

Text editing is nice.

A command that pOSitions edit at that line then makes the substitution is:

:/strange/s/strange. but II

This command combines the search with a substitution, a perfectly allowable combination. Thus,
you do not necessarily have to use line numbers to identify a line to edit. Instead, you can identify
the line to be changed by asking editto search for a specified pattern of characters that occurs in the
line of interest. The function of each part of the command is as follows:

1st ran gel tells edit to find the characters "strange" in the text
tells edit we want to make a substitution

1st ran g e • but I I substitutes nothing at all for the characters' 'strange,

but"

Note the space after "but" on "/strange, but I". If you do not indicate the space is to be taken out,
your line becomes:

Text editing is nice.

10 Edit

which looks odd because of the extra space between "is" and "nice". Again, you can see that a
blank space is a real character to a computer, and when editing text you need to be aware of spaces
within a line just as you would be aware of an "a" or a "4".

Another Way to List What's in the Buffer (z)
Although the print command is useful for looking at specific lines in the buffer, other commands can
be more conveniet for viewing large sections of text. You can ask to see a screen full of text at a time
by using the command z. If you type

: 1 z (Return)

edit starts with line 1 and continues printing lines, stopping either when the screen of your terminal
is full, or when the last line in the buffer has been printed. If you want to read the next segment of
text, type the command

: z (Return)

If no starting line number is given for the z command, printing starts at the "current" line; in this
case the last line printed. Viewing lines in the buffer one full screen at a time is known as paging.
Paging can also be used to print a section of text on a printing terminal.

Saving the Modified Text
Now is a good place to pause and end the second session. If you hastily type q (Return) to terminate
the session, your interaction with edit resembles:

: 9

No write since last chanle (ql quits)

This is edif s warning that you have not written the modified contents of the buffer to disc. You are
risking the loss of the work you have done during the editing session since the last previous write
command. Since no previous disc write was performed during this session, everything done during
the session would be lost. If you do not want to save the work done during this editing session, you
can type q! to confirm that you indeed want to end the session immediately, losing the contents of
the buffer. However, since you probably prefer to preserve the edited file, use the write command
as follows:

:1 ... 1

'text' Glines, 171 characters

then follow with

: q

i.,lolout

and hang up the phone or turn off the terminal when HP-UX asks for a login name.

This is the end of the second session on HP-UX text editing.

Edit 11

Session 3

Bringing Text Into the Buffer (e)
Login to UNIX and make contact with edit. Try to do it without using notes if you can.

Did you remember to give the name of the file you wanted to edit by typing:

X,edi t text

or did you type:

X,edi t

Both commands activate edit, but only the first version can bring a copy of the file named text into
the buffer. If you forgot to specify the filename, you can recover by typing:

: e text
"text" Glines, 171 characters

The edit command which can be abbreviated e when you're in the editor, tells edit that you want to
destroy anything already in the editor's buffer and copy the file text into the buffer for editing. You
can also use the edit (e) command to change files in the middle of an editing session or to give edit
the name of a new file that you want to create. Because the edit command clears the buffer, you will
receive a warning if you try to edit a new file without having saved a copy of the old file. This gives
you a chance to write the contents of the buffer to disc before editing the next file.

Moving Text in the Buffer (m)
Edit enables you to move lines of text from one location in the buffer to another by means of the
move (m) command:

: 2 ,41T1$

This example directs edit to move lines 2, 3, and 4 to the end of the buffer following the last line,
indicated by ($). When constructing the move command, specify the first line to be moved, the last
line to be moved, the move command m, then the line after which the moved text is to be placed.
Thus,

: 1 ,G1TI20

commands edit to move lines I through 6 (inclusive) to a position immediately following line 20 in
the buffer. To move only one line, say line 4, to a position in the buffer after line 6, the command
would be "4m6".

Let's move some text using the command:

: 5 ,$rr) 1
2 lines hloved
it does illustrate the editor.

12 Edit

After executing a command that changes more than one line of the buffer, edit tells how many lines
were affected by the change. The last moved line is printed for your inspection. If you want to see
more than just the last line, use the print (p), z, or number (nu) command to view more text. The
buffer should now contain:

This is some sample text.
It doesn't mean much here, but
it does illustrate the editor.
And this is some more text.
Text editing is nice.
This is text added in Session 2.

You can restore the original order by typing:

or you can combine context searching and the move command for the same result:

:/And this is some/,/This is text/m/This is some sample/

The danger in combining context searching with the move command lies in the higher probability
of making a typing error in such a long command. Typing line numbers is usually much safer.

Copying Lines (copy)
The copy command is used to make a second copy of specified lines. leaving the original lines
where they were. Copy has the same format as the move command. For example:

: 12 d5copy$

makes a copy of lines 12 through 15, placing the added lines after the last line in the buffer ($).
Experiment with the cop y command so that you can become familiar with how it works. Note that
the shortest abbreviation for copy is co (and not the letter c which has another meaning).

Deleting Lines (d)
Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number
followed by delete or d. This example deletes line 4:

:4d
It doesn't i.lean much he re, but

Here "4" is the number of the line to be deleted and "delete" or "d" is the command to delete the
line. After executing the delete command, edit prints the resulting new current line (.).

Edit 13

If you do not happen to know the line, number you can search for the line then delete it using this
sequence of commands:

:/added in Session 2./
This is text added in Session 2.
: d
It doesn't Mean Much here, but

The "I add e din S e s s ion 2. I" asks edit to locate and print the next line containing the indicated
text. Once you are sure that you have correctly specified the line you want to delete, you can enter
the delete (d) command. In this case it is not necessary to specify a line number before the "d". If
no line number is given, edit deletes the current line (.), that is, the line found by the search
operation. After the deletion, your buffer should contain:

This is SOMe saMPle text.
And this is SOMe More text.
Text editing is nice.
It doesn't Mean Much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

And this is some More text.
Text editing is nice.

type

: 2 t3d

to specify the range of lines (2 thru 3) and the operation on those lines (d for delete).

Again, this assumes that you know the line numbers for the lines to be deleted. If you do not, you
can combine the search and delete commands as follows:

:/And this is sOMel,IText editing is nice/d

This tells the editor to find the first line (following the current line) that contains the characters "And
this is some", then delete it and all subsequent lines until it has deleted the line containing "Text
editing is nice".

Be Careful
In using the search function to locate lines to be deleted, make absolutely sure that the characters
you give as the basis for the search will take edit to the line you want deleted. Edit searches for the
first occurrence of the characters starting from where you last edited; that is, from the line you see
printed if you type a period (.) then press (Return l.

A search based on too few characters may result in the wrong line being deleted (if an identical
pattern appears elsewhere in the text). For this reason, it is usually safer to specify the search, then
delete in a second separate step, at least until you become familiar enough with the editor that you
understand how best to specify searches. For beginners, be safe and double-check each command
before pressing (Return) to send the command on its way.

14 Edit

Oops! I goofed. Now what? (undo)
The undo (u) command has the ability to reverse the effects of the last (and only the last) com­
mand. To undo the previous command type u or undo. Undo can rescue the contents of the buffer
from many an unfortunate mistake. However, its powers are not unlimited, so it is still wise to be
reasonably careful about the commands you give. Undo affects only those commands that can
change the buffer, such as delete, append, move, copy, substitute, and even undo itself. The
commands write (w) and edit (e) which interact with disk files cannot be undone, nor can com­
mands such as print which do not change the buffer. Most important: the only command that can
be reversed by undo is the last "undo-able" command preceding the undo.

To illustrate, let's issue an undo command. Recall that the last buffer-changing command deleted
the lines that were formerly numbered 2 and 3. Executing undo at this time reverses the effects of
the deletion, causing those two lines to be restored to their original position in the buffer.

: u
2 More lines in file after undo
And this is SOMe More text.

Again, as before, edit informs you when the command affects more than one line, and prints the
text of the resulting new current line.

More About Dot (.) and Buffer End ($)
The function assumed by the dot symbol (period) depends on its context. It can be used to:

• Exit from append mode by typing a period (by itself) followed immediately by (Return)
• Refer to the current line in the editor's buffer.

A period can also be combined with an equal sign to get the number of the line currently being
edited (current line):

: t =

Thus, type • = to ask for the number of the current line, or use a colon instead of the equal sign (• :)
to ask for the text in the current line.

In this editing session, as in the last, the dollar sign was used to to indicate the last line in the buffer
for commands such as print, copy, and move. As a command, the dollar sign asks edit to print the
last line in the buffer. If the dollar sign is combined with the equal sign ($ =), edit prints the line
number corresponding to the last line in the buffer.

(.) and ($) therefore represent line numbers. Whenever appropriate, these symbols can be used in
place of line numbers in commands. For example:

: • , $d

instructs editto delete all lines from the current line (.) through the last line in the buffer.

Edit 15

Moving Around in the Buffer (+ and -)
It is frequently convenient during an editing session to go back and re-read a previous line. You
could specify a context search for a line you want to read if you remember some of its text, but if
you simply want to see what was written a few (say, 3) lines ago, you can type:

-3p

This tells editto move back to a position 3 lines before the current line (.) and print that line. You
can move forward in the buffer similarly:

+2p

tells edit to print the line which is 2 ahead of our current position. You can use + and - in any
command where edit accepts line numbers. Line numbers specified with" +" or "-" can be
combined to print a range of lines. The command:

: -1 ,+2copy$

copies 4 lines: the line preceding the current line, the current line, and the two lines following the
current line, placing them after the last line in the buffer ($).

Try typing a single minus (-). You will move back one line just as if you had typed, : -1 P. Typing the
command" + " works similarly. You might also try typing a few plus or minus signs in a row (such
as "+ + +") to see edit's response. Typing a carriage retum alone on a line is the equivalent of
typing" + 1 p": it moves you one line ahead in the buffer and prints that line.

If you are at the last line in the buffer and try to move further ahead, perhaps by typing a "+" or a
carriage return alone on the line, edit reminds you that you are at the end of the buffer:

At end-of-file

Similarly, if you try to move to a position before the first line, edit will print one of these messages:

Nonzero address re9uired on this COMMand
Nelative address - first buffer line is 1

The number associated with a buffer line is the line's "address", in that it can be used to locate the
line.

Changing Lines (c)
There may be occasions when you want to delete certain lines and insert new text in their place.
This can be accomplished easily with the change (c) command. The change command instructs edit
to delete specified lines then switch to text input mode in order to accept the text that will replace
them. Let's assume that you want to change the first two lines in the buffer:

This is SOMe saMPle text.
And this is SOMe More text.

to read

This text was created with the HP-UX text editor.

16 Edit

To do so, you can type:

: . ,2c
2 lines changed
This text was created with the HP-UX text editor.

The command 1,2c, specifies that you want to change the range of lines beginning with 1 and
ending with 2 by giving line numbers as with the print command. These lines will be deleted. After a
u86 enters the change command, edit notifies you if more than one line is being changed, then
places you in text input mode. Any text typed on the following lines is inserted into the position
where lines were deleted by the change command. You remain in text input mode until you exit by
typing a period alone on a line. Note that the number of lines added to the buffer need not be the
same as the number of lines deleted.

This is the end of the third session on text editing with HP-UX.

Session 4
This lesson covers several topics, starting with commands that affect the entire buffer, characters
with special meanings, and how to issue HP-UX commands while using the editor. The next topics
deal with files, discussing more about reading and writing, and explaining how to recover files lost in
a crash. The final section provides leads to other sources of information and other editors that
expand beyond edit.

Making Commands Global (g)
One disadvantage of using the commands in the manner illustrated when searching or substituting
is that if you have a number of instances of a word to change, it would appear that you have to type
the command repeatedly, once for each time the change needs to be made. Edit, however,
provides a way to make commands apply to the entire contents of the buffer - the global (g)
command. To print all lines containing a certain sequence of characters (say, "text") the command
is:

:g/text/p

The g instructs edit to make a global search for all lines in the buffer containing the characters text.
The p prints the lines found.

To issue a global command, start by typing a "g" and then a search pattern identifying the lines to
be affected. Then, on the same line, type the command to be executed on the identified lines.
Global substitutions are frequently useful. For example, to change all instances of the word "text"
to the word "material" the command would be a combination of the global search and the
substitute command:

:g.text/s/text/~aterial/g

Edit 17

Note the "g" at the end of the global command which instructs edit to change each and every
instance of "text" to "material". If you do not type the "g" at the end of the command, only the
first instance of "text" in each line will be changed (the normal result of the substitute command).
The "g" at the end of the command is independent of the "g" at the beginning. You can give a
command such as:

:14x/text/material/l

to change every instance of "text" in line 14 alone. Note further that neither command will change
''Text'' to "material" because "Text" begins with a capital rather than a lower-case t. Edit does not
automatically print the lines modified by a global command. If you want the lines to be printed, type
a "p" at the end of the global command:

:l/text/s/text/material/lP

The usual qualification should be made about using the global command in combination with any
other. Be sure you know what you are telling edit to do to the entire buffer. For example:

: I I I d
72 less lines in file after Ilobal

deletes every line containing a blank anywhere in it. This could demolish your document, because
most lines contain spaces between words, and thus would be deleted. After executing the global
command, edit prints a warning if the command added or deleted more than one line. Fortunately,
the undo command can reverse the effects of a global command. Try experimenting with the global
command on a small buffer of text to see what it can do for you.

More about Searching and Substituting
Previous examples of using slashes to identify a character string that you want to search for or
change have always specified the exact characters. There is a less tedious way to repeat the same
string of characters. To change "noun" to "nouns" you can type either

:/noun/s/noun/nounsl

as before, or use a somewhat abbreviated command:

"/noun/sllnounsl

In this example, the characters to be changed are not specified (there are no characters, not even a
space, between the two slash marks that indicate what is to be changed). This lack of characters
between the slashes is taken by the editor to mean "use the characters we last searched for as the
characters to be changed".

Similarly, the last context search can be repeated by typing a pair of slashes with nothing between
them:

" Idoesl
It doesn't illean I!luch here, but
:/1
it does illustrate the editor

18 Edit

Because no characters are specified for the second search, the editor scans the buffer for the next
occurrence of the characters "does".

Edit normally searches forward through the buffer, wrapping around from the end of the buffer to
the beginning, until the specified character string is found. If you want to search in the reverse
direction, use question marks (?) instead of slashes to surround the character string.

It is also possible to repeat the last substitution without having to retype the entire command. An
ampersand (&) used as a command repeats the most recent substitute command, using the same
search and replacement patterns. After altering the current line by typing

:s/nolJn/nolJns/

you could use the command

: /nOlJns/&,

or simply

: / / &,

to make the same change on the next line in the buffer containing the characters "nouns".

Special Characters
Two characters have special meanings when used in specifying searches: the dollar sign ($), and
circumflex (A). ($) is taken by the editor to mean "end of the line" and is used to identify strings
which occur at the end of a line.

: g/ing&Js/ /ed/p

tells the editor to search for all lines ending in "ing" (and nothing else, not even a blank space) to
change each final "ing" to "ed" and print the changed lines.

The circumflex (A) indicates the beginning of a line. Thus,

:51"""11. /

instructs the editor to insert "1." and a space at the beginning of the current line.

These characters, ($) and (A), have special meanings only in the context of searching. At other
times, they are ordinary characters. If you ever need to search for a character that has a special
meaning, you must indicate that the character is to temporarily lose its special significance by typing
another special character, the backslash ("""), before it.

:s/\$/dollar/

looks for the character "$" in the current line and replaces it by the word "dollar". Were it not for
the backslash, the "$" would have represented "the end of the line" in your search, rather than the
character "$". The backslash retains its special significance unless it is preceded by another back­
slash.

Edit 19

Issuing HP-UX Commands from the Editor
After creating several files with the editor, you may want to delete files no longer useful to you or
ask for a list of your files. Removing and listing files are not editor functions, so they require use of
HP-UX system commands (also referred to as "shell" commands, because the HP-UX program
that processes HP-UX commands is called a "shell"). You do not need to quit the editor to execute
an HP-UX command as long as you indicate that it is to be sent to the shell for execution. To use
the HP-UX command rm to remove the file named junk, type:

: ! rill j un K
I

The exclamation point (!) indicates that the rest of the line is to be processed as an HP-UX
command. If the buffer contents have not been written since the last change, a warning is printed
before the command is executed. The editor replies with an exclamation point when the command
is completed. The Getting Started with HP-UX manual describes useful features of the system, and
is helpful background when you need to access HP-UX from edit.

Filenames and File Manipulation
Throughout each editing session, edit keeps track of the name of the file being edited as the current
filename (the current filename is the name given when you entered the editor). The current
filename changes whenever the edit (e) command is used to specify a new file. Once edit has
recorded a current filename, it inserts that name into any command where a filename has been
omitted. If a write command does not specify a file, edit, as you have seen, supplies the current
filename. You can have the editor write all or part of its buffer contents to a different file by
including the new file name in the write command:

:wchapter3
"chapter3" 283 lines. 8B98 characters

The current filename remembered by the editor does not change as a result of the write command
unless it is the first filename given in the editing session. Thus, using the previous example, the next
write command that does not specify a file name will write onto the current file, not onto the file
chapter3.

The File (I) Command
To ask for the current filename, type file (or f). In response, the editor provides updated information
about the buffer, including the filename, your current position, and the number of lines in the
buffer:

: f
"text" [Modified] line 3 of 0--75%--

If the contents of the buffer have changed since the last time the file was written, the editor will tell
you that the file has been "Modified". After you save the changes by writing to a disc file, the buffer
is no longer considered modified:

: w
"text"O lines. 88 characters
: f
"text"line 3 of 0--75%--

20 Edit

Reading Additional Files (r)
The read (r) command enables you to add the contents of a file to the buffer without destroying the
text already there. To use it, specify the line after which the new text is to be placed, the command
r, then the name of the file.

:$r biblioHaphr
"bibliography" 18 lines, 473 characters

This command reads in the file bibliography and adds it to the buffer after the last line. The current
filename is not changed by the read command unless it is the first filename given in the editing
session.

Writing Parts of the Buffer
The write (w) command can write all or part of the buffer to any file you specify. You are already
familiar with writing the entire contents of the buffer to a disc file. To write only part of the buffer
onto a file, indicate the beginning and ending lines before the write command. For example:

:45,$1,1 ending

Here all lines from 45 through the end of the buffer are written to the file named ending. The lines
remain in the buffer as part of the document you are editing, so you can continue to edit the entire
buffer.

Recovering Files
Under most circumstances, edif s crash recovery mechanism is able to save work to within a few
lines of changes after a crash or if your terminal is accidentally disconnected. If you lose the contents
of an editing buffer in a system crash, you will normally receive mail when you login, listing the
name of the recovered file. To recover the file, enter the editor and type the command recover
(rec), followed by the name of the lost file.

: reco')e r chapG

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of
the saved buffer carefully before writing it back onto the original file.

Other Recovery Techniques
If something goes wrong while you are using the editor, it may be possible to save your work by
using the command preserve (pre), which saves the buffer as if the system had crashed. If you are
writing a file and receive the message "Quota exceeded", you have tried to use more disc storage
than is allotted to your account. Proceed with caution because it is likely that only a part of the
editor's buffer is now present in the file you tried to write. In this case, you should use the shell
escape from the editor (!) to remove some files you don't need and try to write the file again. If this
is not possible and you cannot find someone to help you, enter the command

then seek help. Do not simply leave the editor. If you do, the buffer will be released (and possibly
destroyed), and you may not be able to save your file. After a preserve, you can use the recover
command once the problem has been corrected.

Edit 21

If you make an unwanted change to the buffer and issue a write command before discovering your
mistake, the modified version will replace any previous version of the file. Should you ever lose a
good version of a document in this way, do not panic and leave the editor. As long as you stay in
the editor, the contents of the buffer remain accessible. Depending on the nature of the problem, it
may be possible to restore the buffer to a more complete state with the undo command. After fixing
the damaged buffer, you can again write the file to disc.

Further Reading and Information
Edit is an editor designed for beginning and casual users. It is actually a version of a more powerful
editor called ex. These lessons are intended to introduce you to the editor and its most commonly
used commands. We have not covered all of the editor's commands, just a selection of commands
which should be sufficient to accomplish most of your editing tasks. You can find out more about
the editor in the ex tutorial, which is applicable to both ex and edit. One way to become familiar
with ex is to begin by reading the description of commands that you already know.

Using ex
As you become more experienced with using the editor, you may still find that edit continues to
meet your needs. However, should you become interested in using ex, it is easy to switch. To begin
an editing session with ex, use ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat different. You
should be aware of a few differences that exist between the two versions of the editor. In edit, only
the characters ... , $, and \ have special meanings in searching the buffer or indicating characters to
be changed by a substitute command. Several additional characters have special meanings in ex, as
described in the ex tutorial. Another feature of the edit environment prevents users from accidental­
ly entering two alternative modes of editing, open and visual, in which the editor behaves quite
differently than in normal command mode. If you are using ex and the editor behaves strangely,
you may have accidently entered open mode by typing o. Type the ESC key and then a "Q" to get
out of open or visual mode and back into the regular editor command mode. The Vi Editor
provides a full discussion of visual mode.

22 Edit

Table of Contents

Ex Extended Editor
Starting ex. .. 1
File Manipulation. .. 2

Current File .. 2
Alternate File .. 2
Filename Expansion .. , 2
Multiple Files and Named Buffers .. 2
Read-only Operation. .. 3

Exceptional Conditions. .. 3
Errors and Interrupts. .. 3
Recovering from Hangups and Crashes. .. 3

Editing Modes. .. 4
Command Structure .. 4

Command Parameters .. 4
Command Variants .. " 5
Flags After Commands. .. 5
Comments ... 5
Multiple Commands per Line .. 5
Reporting Large Changes ... " 5

Command Addressing ... " 6
Addressing Primitives .. 6
Combining Addressing Primitives .. 6

Command Descriptions .. 7
Regular Expressions and Substitute Replacement Patterns 16
Regular Expressions ... 16

Magic and Nomagic ... , 16
Summary of Basic Regular Expressions .. 16
Combining Regular Expression Primitives. .. 17
Substitute Replacement Patterns .. 17

Options Descriptions .. , 18
Limitations .. 22
Ex Changes - Version 3.1 to 3.5 ... 22

Update to Ex Reference Manual. .. 22
Command Line Options .. 22
Commands .. 22
Options , '" 22
Environment Enquiries. .. 23

Vi Tutorial Update .. 23
Deleted Features .. 23
Change in Default Option Settings. .. 23
Vi Commands. .. 24
Macros .. 24

ii

Ex
Extended Editor

The ex editor has many options that can be set to meet individual needs. It is much more
comprehensive and more versatile than the edit version that uses predefined defaults for some
options to better fit the needs of beginning and casual users. In this tutorial, default settings are
assumed for all command options unless stated otherwise.

Starting ex
When invoked, ex uses the environment variable TERM to determine the terminal type. If a TERMCAP
variable in the environment matches the terminal described by the TERM variable, that description
is used. Also if the TERMCAP variable contains a path name (beginning with I), the editor seeks the
description of the terminal in that file (rather than the default /etc/termcap). If there is a variable
E){INIT in the environment, the editor executes the commands contained in that variable. Other­
wise, if there is a file .exrc in your HOME directory, ex reads commands from that file, thus
simulating a source command. Option-setting commands placed in E){INIT or .exrc are executed
before each editor session.

The ex start-up command has the following prototype:

ex H [-tl] [-t <tag>] [-r][-l] [-I.<n>] [-x] [-R] [+ <command>] <name> ...

where brackets ([]) surround optional command parameters. The most common case edits a single
file with no options, i. e.:

ex name

Command-line options function as follows:

Suppresses all interactive-user feedback; useful when processing editor scripts in com­
mand files.

- \) Equivalent to using vi rather than ex.

- t Equivalent to an initial tag command. Edits the file containing the tag and positions the
editor at its definition.

- r Used in recovering after an editor or system crash. retrieves the last saved version of the
named file or, if no file is specified, types a list of saved files.

- 1 Sets up for editing LISP, by setting the showmatch and lisp options.

-I. Sets the default window size to n, and is useful on dial-ups to start in small windows.

- x Causes ex to prompt for a key that is then used to encrypt and decrypt the contents of

-R

name

the file. The file should have been previously encrypted using the same key, see CIypt{ 1).

Sets the read-only option at the start.

Indicates which file(s) to edit.
1

An argument of the form + <command> indicates that the editor should begin by executing the
specified command. If <command> is omitted, the argument defaults to "S", initially positioning
the editor at the last line of the first file. Other useful commands here are scanning patterns of the
form /pattem, or line numbers such as + 1 00 (which starts at line 100).

File Manipulation

Current File
In normal use, ex is used to edit the contents of a single file whose name is specified by the current
filename. In a typical editing sequence, the name of the file to be edited becomes the current
filename, and the original file contents are copied into a buffer which is actually a temporary buffer
file. Ex performs all editing actions on the buffer file. Changes made to the buffer have no effect on
the file being edited unless and until the original file is replaced by the edited buffer contents (by use
of a write command). The write operation destroys the original file and replaces it with the edited
version.

The current file is almost always treated as having been edited. This means that the buffer file
contents are logically connected with the current file name so that writing the current buffer
contents onto that file, even if it exists, is a reasonable action. If the original file has not been edited,
then ex will not normally write on it if it already exists (a "not edited" message is returned when the
write operation is attempted).

Alternate File
Each time the current filename is given a new value, the previous current file name is saved as the
alternate filename. Similarly, if a file is mentioned but does not become the current file, it is saved as
the alternate filename.

Filename Expansion
Filenames within the editor can be specified using normal shell-expansion conventions. In addition,
the character 'x, in filenames is replaced by the current file name; the character # is replaced by the
alternate file name (this makes it easy to deal alternately with two files and eliminates the need for
retyping the name supplied on an edit command after a No 1,1 r i t e sin eel as t c han g e diagnostic is
received).

Multiple Files and Named Buffers
If the command line specifies more than one file to be edited, the first file is edited as previously
explained. Command-line arguments and file names for the first and subsequent files to be edited
are placed in the argument list (the current argument list can be displayed by using the args
command). When you are ready to edit the next file in the list, use the next command. If you want
to destroy the original argument list and associated file names, replacing them with a new list,
append the desired new arguments and file names to the next command. HP-UX then expands the
next command with its new arguments. The resulting list of names becomes the new argument list;
the old list is destroyed, and ex edits the first file on the new list.

2 Ex

Ex has a group of named buffers that are particularly useful for saving blocks of text during normal
editing, especially when editing multiple files. These buffers are similar to the normal buffer file,
except that only a limited number of operations can be used with them. The buffers have names a
or A through z or Z. Uppercase and lowercase names refer to the same buffers, but commands
append to uppercase-named buffers and replace lowercase-named buffers.

Read-only Operation
You can use ex in read-only mode to look at files that you have no intention of modifying, thus
preventing the possibility of aCcidentally overwriting a file. Read-only mode is active when the
readonly option is set by:

• Using the -R command-line option,

• The view command line invocation, or

• By setting the rea d 0 1'1 1)' option.

Read-only can be cleared by setting noreadonly (type: : 1'10 rea d 0 1'1 b RETURN). It is possible
to write, even while in read-only mode, by indicating that you really know what you are doing.
You can write to a different file or use the I form of write, even while in read-only mode.

Exceptional Conditions

Errors and Interrupts
When errors occur, ex prints an error diagnostic and, optionally, rings the terminal bell. If the
primary input is from a file, editor processing terminates. If an interrrupt signal is received, ex prints
"Interrupt" and returns to its command level. If the primary input is a file, ex exits when an interrupt
occurs.

Recovering from Hangups and Crashes
If a hangup signal is received and the buffer has been modified since it was last written out, or if the
system crashes, either the editor (in the first case) or the system (after it reboots in the second case)
attempts to preserve the buffer. The next time you log in you should be able to recover the work
you were doing, losing, at most, a few lines of changes from the last point before the hangup or
editor crash. To recover a file, you can use the - r option. For example, if you were editing the file
resume, you should change to the directory you were using when the crash occurred, giving the
command

ex - r reSl.llrle

After checking that the retrieved file is indeed intact, you can write it back over the original unedited
file. The system normally sends you mail, telling you when a file has been saved after a crash. The
command

ex -r

prints a list of the files that have been saved for you. (In the case of a hangup, the file does not
appear in the list, although it can be recovered.)

Ex 3

Editing Modes
Ex has five distinct operating modes:

• Command mode where commands are entered when a colon (:) prompt is present and
executed each time a complete line is sent.

• Text-input mode where ex gathers incoming lines of text and places them in the file. Append,
insert, and change commands use text-input mode to alter existing text.

No prompt is printed when you are in text-input mode. To exit this mode, type a period (.)
immediately followed by an end-of-line key (RETURN). Command mode then resumes.

• Open and visual modes enable you to perform local editing operations on text in the file. The
modes are accessed by commands having the same name. The open command displays text,
one line at a time, on any terminal, while the visual command is designed for CRT terminals
that have direct screen-cursor addressing capability so ex can use the CRT as a window for
file-editing changes.

• Text insertion mode operates within open and visual modes.

These modes are discussed in greater detail in The Vi Editor.

Command Structure
Most command names are English words, and initial prefixes of the words are acceptable abbrevia­
tions. Ambiguous abbreviations are resolved in favor of the more commonly used commands (for
example, the command substitute can be abbreviated 5, while the shortest available abbreviation
for set is se.

Command Parameters
Most commands accept prefix addresses specifying which line(s) they are to affect. The forms these
addresses can take is discussed below. Some commands also accept or require a trailing count
specifying the number of lines to be affected by the command (if rounding is necessary, the number
is rounded down). Thus the command lOp prints the tenth line in the buffer while del e t e 5 deletes
five lines from the buffer, starting with the current line.

Some commands require other information or parameters that are always appended following the
command name; for example, option names in a set command, a file name in an edit command, a
regular expression in a substitute command, or a target address for a copy command as in
1.5 COpy 25.

4 Ex

Command Variants
A number of commands have two distinct variants. The variant form of the command is invoked by
placing an exclamation point (!) immediately after the command name. Some of the default
variants can be controlled by options; in this case, the I serves to toggle the default.

Flags After Commands
The characters II, P, and 1 can be placed after many commands (a p or I must be preceded by a
blank or tab except in the single special case dp). The commands abbreviated by these three
characters are executed after the command completes. Since ex normally prints the new current
line after each change, p is rarely necessary. Any number of + or - characters can also be given with
these flags. If they appear, the specified offset is applied to the current line value before the printing
command is executed.

Comments
Comment commands are ignored by the editor. This feature is useful when making complex editor
scripts where explanatory comments are needed. Any line beginning with a double quotation mark
(,,) is treated as a comment and no action results. Comments beginning with " can also be placed at
the ends of commands, except in cases where they could be confused as part of text (as in shell
escape sequences or in substitute or map commands).

Multiple Commands per Line
Multiple commands can be combined on a single line by separating adjacent commands with a
character. However, global commands, comments, and the shell escape ! must be the last com­
mand on a line because they are not terminated by a :.

Reporting Large Changes
Most commands that change the editor buffer contents give feedback whenever the scope of the
change exceeds a threshold set by the report option. This feedback helps detect undesirably large
changes so that they can be quickly and easily reversed with an undo. When using commands that
have a more global effect (such as global or visual) you will be informed if the net change in the
number of lines in the buffer during this command exceeds the threshold.

Ex 5

Command Addressing

Addressing Primitives
• (period)

n

$

%

+n -n

/<pattern>/
or
?<pattern> ?

" , <x>

The current line, usually the last line affected by the previous command. The
default address for most commands is the current line, thus (.) is rarely used alone
as an address.

The nth line in the buffer file, lines being numbered sequentially from 1.

The last line in the buffer.

An abbreviation for "I, $", which addresses the entire buffer.

An offset relative to the current buffer line. The forms +3, • +3, and +++ are all
equivalent. If the current line is 100, they all address line 103.

Search forward (I) or backward (?) respectively for a line containing <pattern>
where <pattern> is any regular expression, usually a string of text characters.
Searches normally wrap around the end of the buffer. If you only want to print the
next line containing <pattern>, the trailing / or ? can be omitted. If <pattern> is
omitted or explicitly empty, the last previous regular expression used in a pattern
search is substituted for <pattern>.

Used to locate previously-marked lines. Before each non-relative motion of the
current line (.), the previous current line is marked with a tag, subsequently
referred to as ("). This makes it easy to refer or return to this previous context.
Marks can also be established by the mark command, using single lowercase
letters <x>. Marked lines are then referred to by < 'x>.

Combining Addressing Primitives
Addresses to commands consist of a series of addressing primitives, separated by (.) or (;). Such
address lists are evaluated left-to-right. When addresses are separated by (;) the current line (.) is set
to the value of the previous addressing expression before the next address is interpreted. If more
addresses are given than the command requires, all but the last one or two are ignored. If the
command requires two addresses, the first addressed line must precede the second in the buffer.
Null address specifications are permitted in a list of addresses. The default in this case is the current
line, so .100 is equivalent to . tloo. Giving a prefix address to a command that expects none
produces an error diagnostic.

6 Ex

Command Descriptions
All ex commands have the following form:

<address> <command> ! <parameters> <count> <flags>

All parts are optional; the degenerate case is the empty command which prints the next line in the
file. To preserve user sanity when operating in visual mode, ex ignores a : preceding any com­
mand.

In the following command descriptions, the command, its standard abbreviation, and default value
(if any) are shown in the left column.

abbreviate <word> <text>
abbr: ab

append <text>
abbr: a <text>
Default: current line

a! <text>
Default: current line

args

change <count> <text>
abbr: c
Default: current line

c! <text>
Default: current line

copy <address> <flags>
abbr: co
Default: current line

delete <buffer> <count> <flags>
abbr: d
Default: current line

Add the specified abbreviation to the current list. <Word>
is the abbreviated form of <text> that is being defined by
the command. When using visual in input mode, if
<word> is typed as a complete word (blanks before and
after), ex expands the abbreviation, and displays <text>
(the expanded form is also used in the buffer).

Reads input <text> and places it after the specified line. If
preceded by period (.) it addresses the last line input or the
specified line if no lines were input. If address zero (0) is
given, <text> is placed at the beginning of the buffer.

The variant flag on append toggles the setting for the auto­
indent option during text input.

The members of the argument list are printed, with the
current argument delimited by left and right brackets ([1).
Replaces lines specified by <count> with the input
<text>. Upon completion, the current line becomes the
last line in <text>. If no text is provided, the command is
treated as a delete.

The variant flag on change toggles the setting for the auto­
indent option during text input.

A copy of the lines specified by <flags> is placed after
<address> which can be zero. Upon completion, the cur­
rent line (.) addresses the last line of the copy. The t com­
mand is a synonym for copy.

Removes the lines specified by <count> and <flags>
from the text buffer file, and the line following the last line
deleted becomes the new current line. If the deleted lines
were originally at the end of the text buffer file, the new last
line in the file becomes the current line. If a named
<buffer> is specified by a single letter, the deleted lines are
saved in that buffer. If the buffer name is lowercase, pre­
vious buffer contents are overwritten; if uppercase, the lines
are appended to any existing text in the buffer.

Ex 7

edit <file>
abbr: e or
ex <file>
(no abbr)

e! <file>

e + <n> <file>

file

file <file>

globall<pattern>l<commands>
abbr: g
Default: all lines

8 Ex

Used to begin an editing session on new file{s). The editor
first checks to see if the buffer has been modified since the
last write command was issued. If so, a warning is issued
and the command is aborted. Otherwise, the command
clears the entire editor buffer, makes the named file the
current file, and prints the new filename.

After ensuring that this file looks reasonable, the editor
reads the source file into its buffer. If the transfer is com­
pleted without error, the number of lines and characters in
the file is typed. If there were any non-ASCII characters in
the file, their non-ASCII high bits are stripped, and any null
characters are discarded.

If none of these errors occurred, the file is still considered
edited. If the last line of the input file is missing the trailing
newline character, it will be supplied and a complaint will
be issued. This command leaves the current line (.) at the
last line read.

The variant flag on edit forces the specified new <file> to
be transferred to the editor buffer for editing whether or not
the current file has been preserved with a write command,
and suppresses all complaint messages caused by the
forced command.

Causes the editor to begin at line <n> rather than at the
last line; <n> can also be an editor command containing
no spaces such as I<pattern>.

Prints the current file name and provides the following in­
formation: whether the file has been modified since the last
write command; whether it is read-only; current line
number; number of lines in the buffer; and the relative
location of the current line in the buffer (expressed as a
percentage) .

The current filename is changed to <file> which is consi­
dered not edited.

First marks each line among those specified that matches
the regular expression in <pattern>. Given <commands>
are then executed with the current line initially set to each
marked line.

g/l<pattern>l<commands>
abbr: v

insert <text>
abbr: i
Default: current line

if <text>
Default: current line

join <count> <flags>
abbr: j

Default: current and next line

The command list consists of the remaining commands on
the current input line and can continue to multiple lines by
ending all but the last such line with a slash (I). If
<commands> (and possibly the trailing (I) delimiter) is
omitted, each line matching <pattern> is printed. Append,
insert, and change commands and their associated input
are permitted. The (.) terminator normally required for in­
sert, append, and change can be omitted if the end of the
<text> associated with the command coincides with the
end of the global command. Open and visual commands
are permitted in the command list and take input from the
terminal.

The global command itself must not appear in
<commands>. The undo command is also not permitted
there, because undo could be used to reverse the entire
global command. The options autoprint and autoindent are
inhibited during a global (and possibly the trailing / delimi­
ter). The value of the report option is temporarily infinite, in
deference to a report for the entire global. Finally, the con­
text mark (,,) is set to the value of (.) before the global
command begins, and is not changed during a global com­
mand except, perhaps, by an open or visual within the
global.

The variant form of global runs <commands> at each line
not matching <pattern>.

Places <text> before the specified line. Upon completion,
the new current line becomes the last line in <text>. If no
<text> is given, it is set to the line before the addressed
line. This command differs from append only in the place­
ment of text. <Text> must be terminated by a period
alone on a single line (except for certain cases in global).

The variant form of insert toggles autoindent during the
insert.

Places the text from a specified range of lines together on
one line. White space is adjusted at each junction to pro­
vide at least one blank character, two if there was a comma
at the end of the line, or none if the first following character
is a righ-hand parenthesis. If there is already white space at
the end of the line, the white space at the start of the next
line is discarded.

Ex 9

· , J.

k<x>

list <count> <flags>

map <key> <replacement>

mark <x>
Default: current line

move <address>
abbr: m
Default: current line only

next
abbr: n

n!

n <fiIelist>
or
n + <command> <fiIelist>

number <count> <flags>
abbr: #or nu
Default: current line

open <flags>
or
openl<pattern> 1< flags >
Default: current line

10 Ex

The variant of join causes a simpler join with no white­
space processing. Characters in the lines are simply con­
catenated, and no spaces are eliminated.

The k command is a synonym for mark. It does not require
a blank or tab before the following letter <x>.

Prints the specified lines in a more unambiguous way: tabs
are printed as "I" and the end of each line is marked with a
trailing "$". The current line is left at the last line printed.

The map command is used to define macros for use in
visual mode. <Key> should be a single character, or the
sequence "#n" where <n> is a digit referring to function
key <n>. When the character or key specified by <key>
is typed in visual mode, the corresponding <replacement>
expression is substituted (and displayed). On terminals
without function keys, you can type "#n". See The Vi
Editor for more details.

Places the specified mark <x> on the current line. <x> is
a single lowercase letter that must be preceded by a blank
or a tab. The marking character <x> can then be used in
subsequent commands to address this line. The current line
does not change.

The move command repositions the speCified lines to be
after <address>. The first of the moved lines becomes the
current line.

Starts editing next <file> in argument list.

The variant suppresses warnings about the modifications to
the editor buffer not having been written out, and irretriev­
ably discards any changes that may have been made.

The specified filelist is expanded and the resulting list re­
places the current argument list. The first file in the new list
is then edited. If <command> is given (it must contain no
spaces), it is executed after editing the first file in the new
list.

Prints each specified line preceded by its buffer line num­
ber. The current line is left at the last line printed.

Enters intraline editing open mode at each addressed line.
If a pattern is given, then the cursor will be placed initially at
the beginning of the string matched by the pattern. To exit
this mode use Q. See The Vi Editor for more details.

preserve

print <count>
abbr: p or P
Default: current line only

put <buffer>
abbr: pu
Default: current line

quit
abbr: q

q!

read <file>
abbr: r
Default: current line

read !<command>
Default: current line

recover <file>

The current editor buffer is saved just as it would be in a
system crash. This command is for emergency use when a
write command has resulted in an error and you don't
know how to save your work. After a preserve you should
seek help.

Prints the specified lines with non-printing characters
printed as control characters "'x'; delete (octal 177 is repre­
sented as "'7'. The current line is left at the last line printed.

Puts back previously deleted or yanked lines. Normally
used with delete to move lines, or with yank to duplicate
lines. If no buffer is specified, the last deleted or yanked text
is restored. By using a named buffer, text can be restored
that was saved there at any previous time.

Causes ex to terminate. No automatic write of the editor
buffer to a file is performed, but ex issues a warning mes­
sage if the file has changed since the last write command
was issued, and aborts the quit. If you want to save your
changes before leaving, give a write command. To discard
the changes, use the q! command variant to force termina­
tion.

Forced quit from the editor. Discards changes to the buffer
without complaint.

Copies text from <file> into the editing buffer beginning
after the specified line. If no <file> is given, the current file
name is used. If <file> is specified, it does not change the
current file name unless no current file name exists (in
which case <file> becomes the current filename). Sensibil­
ity restrictions for the edit command also apply here. If the
file buffer is empty and there is no current filename, ex
treats read as an edit command.

Address zero is legal for this command, and causes the file
to be read at the beginning of the buffer. Statistics are given
as for the edit command when the read successfully termin­
ates. After a read, the last line read becomes the current
line.

Places the output of <command> in the editor buffer after
the specified line. This is not a variant form of read, but
rather a read specifying a <command> rather than a
<filename>. A blank or tab before the (!) is mandatory.

Recovers <file> from the system save area. Used after an
accidental hangup of the phone, a system crash, or after a
preserve command. You will be notified by mail when a file
is saved (except after a preserve).

Ex 11

rewind
abbr: rew

rew!

set <parameter>

shell
abbr: 5h

source <file>
abbr: 50

The argument list is rewound, and the first file in the list is
edited.

Rewinds the argument list, discarding any changes made to
the current buffer.

If <parameter> is not given, only those options whose
values have been changed from their defaults are printed. If
<parameter> is given, all option values are printed.

Giving an option name followed by a '7' causes the current
value of that option to be printed. The '?' is unnecesary
unless the option is Boolean-valued. Boolean options are
given values either by the form 'set option' to turn them on
or 'set nooption' to turn them off; string and numeric op­
tions are assigned via the form 'set option = value'. More
than one parameter may be set in a single invocation of set,
they are interpreted left-to-right.

A new shell is created. When it terminates, editing resumes.

Reads and executes commands from the specified file.
Source commands can be nested.

subsfftutel<pattern>l<repl>l<options> <count> <flags>
abbr: 5 On each specified line, the first instance of <pattern> is
Default: current line replaced by the replacement pattern <repl>. If the global

indicator option character g appears, all instances are sub­
stituted. If the confirm indication character c appears, you
are asked to confirm each substitution beforehand. The line
to be substituted is typed (with the string to be substituted
marked with' , characters). To accept the substitution, type
}'. Any other input causes no change to take place. After a
substitute the current line is the last line substituted.

stop

Lines can be split by substituting new-line characters into
the line. The newline in <repl> must be escaped by pre­
ceding it with a backslash (",). Other metacharacters avail­
able in <pattern> and <repl> are described below.

Suspends the editor, returning control to the top level shell.
If autowrite is set and there are unsaved changes, a write is
done first unless the form stop! is used. This command is
only available when supported by the terminal driver and
operating system.

(.,.J substitute <options> <count> <flags>
abbr: a If pat and rep] are omitted, then the 1st substitution is repe­

ated. This is a synonym for the & command.

t <address> <flags>
Default: current line

12 Ex

The t command is a synonym for cpy.

ta <tag>

unabbreviate <word>
abbr: una

undo
abbr: u

unmap <lhs>

vl<pattern> I<commands>
Default: entire text

version
abbr: ve

visual <type> <count> <flags>
abbr: vi
Default: current line

The focus of editing switches to the location of <tag>,
changing to a different line in the current file where <tag>
is defined or, if necessary, to another file.

The <tags> file is normally created by a program such as
ctags, and consists of a number of lines with three fields
separated by blanks or tabs. The first field gives the name
of the tag, the second the name of the file where the tag
reSides, and the third gives an addressing form that can be
used by the editor to find the tag; this field is usually a
contextual scan using /<pattern>/ to maintain immunity
from minor changes in the file. Such scans are always per­
formed as if nomagic were set.

The <tag> names in the tags file must be sorted alphabeti­
cally.

Delete <word> from the list of abbreviations.

Reverses the changes made in the buffer by the last buffer
editing command. Note that global commands are consi­
dered a single command for the purpose of undo (as are
open and visual). Also, the commands write and edit
(which interact with the file system) cannot be undone.
Undo is its own inverse.

Undo always marks the previous value of the current line
(.) as ("). After an undo the current line is the first line
restored or the line before the first line deleted if no lines
were restored. For commands with more global effect such
as global and visual, the current line regains its pre­
command value after an undo.

The macro expansion associated by map for <lhs> is re­
moved.

A synonym for the global command variant gJ, running the
specified <commands> on each line which does not
match <pattern>.

Prints the current version number of the editor as well as
the date the editor was last changed.

Enters visual mode at the specified line. Type is optional
and may be "-", " ", or "." as in the z command to
specify the placement of the specified line on the screen. By
default, if type is omitted, the specified line is placed as the
first on the screen. A count specifies an initial window size;
the default is the value of the option window. See the
document The Vi Editor for more details. To exit this mode,
type Q.

Ex 13

visuaJ <file>
or
visuaJ + n <file>

write <file>
abbr w
Default: entire file

write> ><fiIe>
abbr: w»
Default: entire file

wI <name>

w I<command>
Default: entire file

wq <name>

wqI <name>

xit<name>

yank <buffer> <count>
abbr ya
Default: current line only

z <count>
Default: next line

z <type> <count>
Default: current line

14 Ex

From visual mode, this command is the same as edit.

Writes changes made back to file, printing the number of
lines and characters written. Normally file is omitted and
the text goes back where it came from. If a file is specified,
then text will be written to that file. If the file does not exist,
it is created. The current file name is changed only if there is
no current file name; the current line is never changed. If an
error occurs while writing the current and edited file, the
editor considers that there has been "no write since last
change" even if the buffer had not previously been mod­
ified.

Writes the buffer contents at the end of an existing file.

Overrides the checking of the normal write cmmand, and
will write to any file which the system permits.

Writes the specified lines into command. Note the differ­
ence between wI which overrides checks and w I which
writes to a command.

Like a write and then a quit command.

The variant overrides checking on the sensibility of the
write command, as wI does.

If any changes have been made and not written, writes the
buffer out. Then, in any case, quits.

Places the specified lines in the names buffer, for later re­
trieval via put. If no buffer name is specified, the lines go to
a more volatile place; see the put command description.

Print the next count lines, default window.

Prints a window of text with the specified line at the top. If
type is '-' the line is placed at the bottom; a '.' causes line to
be placed in the center. A count gives the number of lines
to be displayed rather than double the number specified by
the scroll option. On a CRT the screen is cleared before
display begins unless a count which is less than the screen
size is given. The current line is left at the last line printed.

!<command>

(<address>, <address»! <command>

($) =

(.,.» <count> <flags>
(.,.)< <count> <flags>

"'D

(. +1,. +1)
(. +1,. +1)/

(.,.) & <options> <count> <flags>

(.,.) ~ <options> <count> <flags>

The remainder of the line after the 'I' character is sent to a
shell to be executed. Within the text of command the char­
acters '%' and '#' are expanded as in filenames and the
character 'I' is replaced with the text of the previous com­
mand. Thus, in particular, 'II' repeats the last such shell
escape. If any such expansion is performed, the expanded
line will be echoed. The current line is unchanged by this
command.

If there has been "no write" of the buffer contents since the
last change to the editing buffer, then a diagnostic will be
printed before the command is executed as a warning. A
single 'I' is printed when the command completes.

Takes the specified address range and supplies it as stan­
dard input to the command; the resulting output then re­
places the input lines.

Prints the line number of the addressed line. The current
line is changed.

Perform intelligent shifting on the specified lines; < shifts
left and> shifts right. The quantity of shift is determined by
the shiftwidth option and the repetition of the specification
character. Only white space (blanks and tabs) is shifted; no
non-white characters are discarded in a left-shift. The cur­
rent line becomes the last line which changed due to the
shifting.

An end-of-file from a terminal input scrolls through the file.
The scroll option specifies the size of the scroll, normally a
half screen of text.

An address alone causes the addressed lines to be printed.
A blank line prints the next line in the file.

Repeats the previous substitute command.

Replaces the previous regular expression with the previous
replacement pattern from a substitution.

Ex 15

Regular Expressions and
Substitute Replacement Patterns

Regular Expressions
A regular expression specifies a set of strings of characters. A member of this set of strings is said to
be matched by the regular expression. Ex remembers two previous regular expressions; the pre­
vious regular expression used in a substitute command the the previous regular expression used
elsewhere (referred to as a previous scanning regular expression). The previous regular expression
can always be referred to by a null re, e.g. '//' or '??'.

Magic and Nomagic
The regular expressions allowed by ex are constructed in one of two ways dependng on the setting
of the magic option. The ex and vi default setting of magic gives quick access to a powerful set of
regular expression metacharacters. The disadvatage of magic is that the user must remember that
these metacharacters are "magic" and precede them with the character ',,",,' to use them as
"ordinary" characters. With nomagic, the default for edit, regular expressions are much simpler,
there being only two metacharacters. The power of the other metacharacters is still available by
preceding the (now) ordinary character with a',,",,'. Note that ',,",,' is thus always a metacharacter.

The remainder of this discussion of regular expressions assumes that the setting of this option is
magic.

Summary of Basic Regular Expressions
The following basic constructs are used to construct magic-mode regular expressions.

<character>

$

. (period)

'\<

16 Ex

An ordinary character matches itself. The characters (") at the beginning of a
line, ($) at the end of line, (") as any character other than the first, (.), ("""),
([) and (-) are not ordinary characters and must be escaped (preceded) by
',,",,' to be treated as such.

At the beginning of a pattern forces the match to succeed only at the beginning
of a line.

At the end of a regular expression forces the match to succeed only at the end
of the line .

Matches a single character except the new-line character.

Forces the match to occur only at the beginning of a "variable" or "word";
that is, either at the beginning of a line, or just before a letter, digit, or underline
and after a character not one of these.

\,>

<string>

Similar to ""'- <" but matching the end of a "variable" or "word", i.e. either
the end of the line or before character which is neither a letter, nor a digit, nor
the underline character.

Matches any (single) character in the class defined by <string>. Most charac­
ters in string define themselves. A pair of characters separated by " - " in string
defines the set of characters collating between the specified lower and upper
bounds; thus '[a-z]' as a regular expression matches any (single) lower-case
letter. If the first character of string is an "" then the construct matches those
characters which it otherwise would not; thus '["a-z]' matches anything but a
lower-case letter (and of course a newline). To place any of the characters '''',
'[', or '-' in string you must escape them with a preceding ''''-'.

Combining Regular Expression Primitives
The concatenation of two regular expressions matches the leftmost and then longest string which
can be divided with the first piece matching the first regular expression and the second piece
matching the second. Any of the (single-character-matching) regular expressions mentioned above
may be followed by the character ,*, to form a regular expression which matches any number of
adjacent occurrences (including O) of characters matched by the regular expression it follows.

The character '-' may be used in a regular expression, and matches the text which defined the
replacement part of the last substitute command. A regular expression may be enclosed between
the sequences ''''-(, and ''''-}' with side effects in the substitute replacement patterns.

Substitute Replacement Patterns
The basic metacharacters for the replacement pattern are '&' and '-'; these are given as ''''-&' and
''''--' when nomagic is set. Each instance of '&' is replaced by the characters which the regular
expression matched. The metacharacter '-' stands, in the replacement pattern, for the defining text
of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escaping
character ''''-'. The sequence ''''-n' is replaced by the text matched by the nth regular sub expression
enclosed between ''''-C and ''''-}'. The sequences ''''-u' and ''''-I' cause the immediately following
character in the replacement to be converted to upper- or lower-case respectively if this character is
a letter. The sequences ''''-U' and '",-L' turn such conversion on, either until '",-E' or ''''-e' is
encountered, or until the end of the replacement pattern.

Ex 17

autoindent
abbr: ai
Default: noai

autoprint
abbr: ap
Default: ap

autowrite
abbr: aw
Default: noaw

18 Ex

Options Descriptions
Can be used to ease the preparation of structured program
text. At the beginning of each append, change, or insert
command or when a new line is opened or created by an
append, change, insert, or substitute operation within open
or visual mode, ex looks at the line being appended after,
the first line changed or the line inserted before and calcu­
lates the amount of white space at the start of the line. It
then aligns the cursor at the level of indentation so deter­
mined.

If the user then types lines of text in, they will continue to be
justified at the displayed indenting level. If more white
space is typed at the beginning of a line, the following line
will start aligned with the first non-white character of the
previous line. To back the cursor up to the preceding tab
stop one can hit "0 (CNTL-C[]). The tab stops going
backwards are defined at multiples of the shiftwidth option.
You cannot backspace over the indent, except by sending
an end-of-file with a "D.

Specially-processed in this mode is a line with no characters
added to it, which turns into a completely blank line (the
white space provided for the autoindent is discarded). Also
specially processed in this mode are lines beginning with an
'''' and immediately followed by a "D. This causes the
input to be repositioned at the beginning of the line, but
retaining the previous indent for the next line. Similarly, a
'0' followed by a "0 repOSitions at the beginning but with­
out retaining the previous indent.

Autoindent doesn't happen in global commands or when
the input is not a terminal.

Causes the current line to be printed after each delete,
copy, join, move, substitute, l, undo, or shift command.
This has the same effect as supplying a trailing 'p' to each
such command. Autoprint is suppressed in globals, and
only applies to the last of many commands on a line.

Causes the contents of the buffer to be written to the cur­
rent file if you have modified it and give a next, rewind,
stop, tag, or 1 command, or a "i (switch files) or "I (tag
goto) command in visual. Note that the edit and ex com­
mands do not autowrite. In each case, there is a eqUivalent
way of switching when autowrite is set to avoid the auto­
write (edit for next, rewind! for . I rewind, stop!, tag! for tag,
shell for 1, and :e# and a :ta! command from within visual).

beautify
abbr: bf
Default: nobeautify

directory
abbr: dir
Default:dir = Itmp

edcompatible
(no abbr)
Default: noedcompatible

errorbells
abbr: eb
Default: noeb

hardtabs
abbr: ht
Default: ht = 8

ignorecase
abbr: ic
Default: noic

lisp
(no abbr)
Default: nolisp

list
(no abbr)
Default: nolist

magic
(no abbr)
Default: magic for ex and vi

mesg
(no abbr)
Default: mesg

number
abbr: nu
Default: non umber

Causes all control characters except tab, newline and form­
feed to be discarded from the input. A complaint is reg­
istered the first time a backspace is discarded. Beautify does
not apply to command input.

Specifies the directory in which ex places its buffer file. If
this directory is not writable, then the editor will exit abrupt­
ly when it fails to be able to create its buffer there.

Causes the presence or absence of g and c suffixes on
substitute commands to be remembered, and to be toggled
by repeating the suffixes. The suffix r makes the substitu­
tion be as in the - command, instead of like &.

Error messages are preceded by a bell. If possible, the
editor always places the error message in a standout mode
of the terminal (such as inverse video) instead of ringing the
bell.

Gives the boundaries on which terminal hardward tabs are
set (or on which the system expands tabs).

All upper case characters in the text are mapped to lower
case in regular expression matching. In addition, all upper
case characters in regular expressions are mapped to lower
case except in character class specifications.

Autoindent indents appropriately for lisp code, and the ()
{ } [[and 1 1 commands in open and visual are modfied to
have meaning for lisp.

All printed lines will be displayed (more) unambiguously,
showing tabs and end-of-lines as in the list command.

If nomagic is set, the number of regular expression
metacharacters is greatly reduced, with only 'I' and '$' hav­
ing special effects. In addition the metacharacters '-' and
'&' of the replacement pattern are treated as normal char­
acters. All the normal metacharacters may be made magic
when nomagic is set by preceding them with a'''''.

Causes write permission to be turned off to the terminal
while you are in visual mode, if nomesg is set.

Causes all output lines to be printed with their line num­
bers. In addition, each input line will be prompted for by
supplying the line number it will have.

Ex 19

open
(no abbr)
Default: open

optimize
abbr: opt
Default: optimize

paragraph
abbr: para
Default: para = IPLPPPQPP Ubp

prompt
(no abbr)
Default: prompt

redraw
(no abbr)
Default: noredraw

remap
(no abbr)
Default: remap

report
(no abbr)
Default: report = 5 (2 for edit)

scroll
(no abbr)
Default: scroll = 112 window

sections
(no abbr)
Default: sections = SHNHH HU

shell
abbr: sh
Default: sh = Ibin/sh

shiftwidth
abbr: sw
Default: sw = 8

20 Ex

If noopen, the commands open and visual are not permit­
ted. This is set for edit to prevent confusion resulting from
accidental entry to open or visual mode.

Throughput of text is expedited by setting the terminal to
not do automatic carriage returns when printing more than
one (logical) line of output, greatly speeding output on
terminals without addressable cursors when text with lead­
ing white space is printed.

Specifies the paragraphs for the {and} operations in open
and visual. The pairs of characters in the option's value are
the names of the macros which start paragraphs.

Command mode input is prompted for with a':'.

The editor simulates (using great amounts of output) an
intelligent terminal on a dumb terminal (e.g. during inser­
tions in visual the characters to the right of the cursor posi­
tion are refreshed as each input character is typed). Useful
only at very high speed.

If on, macros are repeatedly tried until they are unchanged.
For example, if 0 is mapped to 0, and ° is mapped to I,
then if remap is set, 0 will map to I, but if noremap is set, it
will map to O.

Specifies a threshold for feedback from commands. Any
command which modifies more than the specified number
of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual
which have potentially more far reaching scope, the net
change in the number of lines in the buffer is presented at
the end of the command, subject to this same threshold.
Thus notification is suppressed during a global command
on the individual commands performed.

Determines the number of logical lines scrolled when an
end-of-file is received from a terminal input in command
mode, and the number of lines printed by a command­
mode command (double the value of scroll).

Specifies the section macros for the [[and II operations in
open and visual. The pairs of characters in the option's
value are the names of the macros which start paragraphs.

Gives the path name of the shell forked for the shell escape
command '!', and by the shell command. The default is
taken from SHELL in the environment, if present.

Gives the width a software tab stop, used in reverse tabbing
with AD when using autoindentto append text, and by the
shift commands.

showmatch
abbr: sm
Default: nosm

slowopen
abbr: slow
Terminal dependent

tabstop
abbr: ts
Default: ts = 8

taglength
abbr: tl
Default: tl = 0

tags
(no abbr)
Default: tags = tags/usr/lib/tags

term
(no abbr)
From environment TERM

terse
(no abbr)
Default: not invoked

warn
(no abbr)
Default: warn

window
(no abbr)
Default: window = speed dependent

w30Q w120Q w9600
(no abbr)
Default: not invoked

wrapscan
abbr: ws
Default: ws

wrapmargin
abbr: wm
Default: wm = 0

writeany
abbr: wa
Default: nowa

In open and visual mode, when a) or } is typed, move the
cursor to the matching (or { for one second if this matching
character is on the screen. Extremely useful with lisp.

Affects the display algorithm used in visual mode, holding
off display updating during input or new text to improve
throughput when the terminal in use is both slow and unin­
telligent. See The Vi Editor for more details.

The editor expands tabs in the output file to be on tabstop
boundaries for the purposes of display.

Tags are not significant beyond this many characters. A
value of zero (the default) means that all the characters are
significant.

A path of files to be used as tag files for the tag command. A
requested tag is searched for in the specified files, sequen­
tially. By default (even in version 2) files called tags are
searched for in the current directory and in lusr/lib (a mas­
ter file for the entire system).

The terminal type of the output device.

Shorter error diagnostics are produced for the experienced
user.

Warn if there has been 'no write since last change' before a
'I' command escape.

The number of lines in a text window in the visual com­
mand. The default is 8 at slow speeds (600 baud or less),
16 at medium speed (1200 baud), and the full screen
(minus one line) at higher speeds.

These are not true options but set window only if the speed
is slow (300), medium (1200), or high (9600), respectively.
They are suitable for an EXINIT and make it easy to change
the 8/16lfull screen rule.

Searches using the regular expressions in addressing will
wrap around past the end of the file.

Defines a margin for automatic wrapover of text during
input in open and visual modes. See The Vi Editor in this
volume of HP-UX Concepts and Tutorials for more details.

Inhibit the checks normally made before write commands,
allowing a write to any file which the system protection
mechanism will allow.

Ex 21

Limitations
Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256
characters per global command list, 128 characters per file name, 128 characters in the previous
inserted and deleted text in open or visual, 100 characters in a shell escape command, 63 charac­
ters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines in the file
is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the total
number of characters in macros to less than 512.

Ex Changes - Version 3.1 to 3.5
This update describes the new features and changes which have been made in converting from
version 31 to 3.5 of ex. Each change is marked with the first version where it appeared.

Update to Ex Reference Manual

Command Line Options
A new command called view has been created. View is just like vi but it sets readonly. The ecryption
code from the v7 editor is now part of ex. You can invoke ex with the -x option ad it will ask for a
key, as ed. The ed x command (to enter encrytion mode from within the editor) is not available.
The feature may not be available in all instances of ex due to memory limitations.

Commands
Provisions to handle the new process stopping features of the Berkeley TTY driver have been
added. A new command, stop, takes you out of the editor cleanly ad efficiently, returning you to the
shell. Resuming the editor puts you back in command or visual mode, as appropriate. If autowrite is
set and there are outstanding changes, a write is done first unless you say "stop!".

A

:vi <file>

command from visual mode is now treated the same as a

:edit<file> or :ex<file>

command. The meaning of the vi command from ex command mode is not affected.

A new command mode command xit (abbreviated x) has been added. This is the same as wq but
will not bother to write if there have been no changes to the file.

Options
A read only mode now lets you guarantee you won't clobber your file by accident. You can set the
onloff option readonly (ra), and writes fail unless you use an! after the write. Commands such as x,
ZZ, the autowrite option, and in general anything that writes is affected. This option is turned on if
you invoke ex with the -R flag.

22 Ex

The wrapmargin option is now usable. The way it works has been completely revamped. Now if
you go past the margin (even in the middle of a word) the entire word is erased and rewritten on the
next line. This changes the semantics of the number given to wrapmargin. 0 still means off. Any
other number is still a distance from the right edge of the screen, but this location is now the right
edge of the area where wraps can take place, instead of the left edge. Wrapmargin now behaves
much like fill/nojustify mode in nroff

The options w300, w 1200, or w9600 can be set. They are synonyms for window, but only apply at
300, 1200, or 9600 baud, respectively. Thus you can specify that you want a 12 line window at
300 baud and a 23 line window at 1200 baud in your EXlNlT with

:set w300=IZwlZ00=Z3

The new option timeout (default on) causes macros to time out after one second. Turn it off and
they will wait forever. This is useful if you want multi-character macros, but if your terminal sends
escape sequences for arrow keys, it will be necessary to hit escape twice to get a beep. The new
option remap (default on) causes the editor to attempt to map the result of a macro mapping again
until the mapping fails. This makes it possible, say, to map q to # and #1 to something else and get
ql mapped to something else. Turning it off makes it possible to map "L to I and map "R to "L
without having "R map to 1.

The new (string) valued option tags allows you to specify a list of tag files, similar to the "path"
variable of csh. The files are separated by spaces (which are entered preceded by a backslash) and
are searched left to right. The default value is "tags/userllib/tags", which has the same effect as
before. It is recommended that "tags" always be the first entry. On Ernie CoVax, /usrllib/tags
contains entries for the system defined library procedures from section 3 of the manual.

Environment Enquiries
The editor now adopts the convention that a null string in the environment is the same as not being
set. This applies to TERM, TERM CAP, ad EXlNlT.

Vi Tutorial Update
Deleted features
The "q" command from visual no longer works at all. You must use "Q" to get to ex command
mode. The "q" command was deleted because of user complaints about hitting it by accident too
often.

The provisions for changing the window size with a numeric prefix argument to certain visual
commands have been deleted. The correct way to change the window size is to use the z com­
mand, for example z5<cr>, to change the window to 5 lines.

The option "mapinput" is dead. It has been replaced by a much more powerful mechanism:
":map!" .

Change in Default Option Settings
The default window sizes have been changed. At 300 baud the window is now 8 lines (it was 112
the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the screen size, which was
usually also 16 for a typical 24-line CRT). At 9600 baud the window is still the full screen size. Any
baud rate less than 1200 behaves like 300, any over 1200 like 9600. This change makes vi more
usable on a large screen at slow speeds.

Ex 23

Vi Commands
The command "ZZ" from vi is the same as ":x<cr>". This is the recommended way to leave the
editor. Z must be typed twice to avoid hitting it accidentally.

The command "z" is the sae as ":stop<cr>". Note that if you have an arrow key that sends "Z the
stop function will take priority over the arrow function. If you have your "susp" character set to
something besides AZ, that key will be honored as well.

It is now possible from visual to string several search expressions together separated by semicolons
the same as command mode. For example, you can say

Ifao/i/bar

from visual and it will move to the first "bar" after the next "foo". This also works within one line.

AR is now the same as AL on terminals where the right arrow key sends AL (this includes the
Televideo 912/920 and the ADM 31 terminals).

The visual page motion commands AF and A8 now treat any preceding counts as number of pages
to move, insteadof chages to the window size. That is, 2AF moves forward 2 pages.

Macros
The "mapinput" mechanism of version 3.1 has been replaced by a more powerful mechanism. An
"!" can follow the word "map" in the map command. Map! ed macros only apply during input
mode, while map' ed macros only apply during command mode. Using "map" or "map!" by itself
produces a listing of macros in the corresponding mode.

A word abbreviation mode is now available. You can define abbreviations with the abbreviate
command:

:abbr faD find auter otter

which maps "foo" to "find outer otter". Abbreviations can be turned off with the unabbreviate
command. The syntax of these commands is identical to the map and unmap commands, except
that the! forms do not exist. Abbreviations are considered when in visual input mode only, and
only affect whole words typed in, using the conservative definition. (Thus "foobar" will not be
mapped as it would useing "map!") Abbreviate and unabbreviate can be abbreviated to "ab" and
"una", respectively.

24 Ex

Table of Contents

The Vi Editor
Preliminary Notes ... 1
Creating an Ordinary File. .. 2
Invoking Vi .. 3
Moving around in the File. .. 4

Cursor-Positioning Keys .. 6
Scrolling and Paging. .. 6
Moving From Line to Line. .. 7
Skipping Over Sentences, Paragraphs, and Sections .. 8
Searching for a Pattern. .. 8
Moving Within a Line. .. 11
Returning to Your Previous Position ... 12

Adding, Deleting, and Correcting Text .. 13
Inserting and Appending Text .. 14
Character Corrections ... 15
Line Corrections ... 16
Copying and Moving Text ... 18
Shifting Lines. .. 19
Continuous Text Input. .. 19
Undoing a Command. .. 19

Special Vi Commands .. 20
Setting Vi Options. .. 20
Defining Macros. .. 24
Defining Abbreviations. .. 25
Reading Data Into Your Current File .. 26
Writing Edited Text Onto a File. .. 27
Editing Other Files. .. 28
Editing the Next File in the Argument List. .. 29
Filtering Buffer Text Through HP-UX Commands 30

Vi and Ex .. 31
The Shell Interface ... 31

Getting Into Vi. .. 31
Getting Back to the Shell. .. 32

Miscellaneous Topics. .. 33
Vi Initialization. .. 33
Recovering Lost Lines .. 34
Entering Control Characters in Your Text. .. 34
Adjusting the Screen. .. 35
Printing Your File Status ... 35

Appendix A: Character Functions. .. 36
Appendix B: Example .exrc File .. 42

ii

The Vi Editor

Vi is a display-oriented, interactive text editor. The contents of your file are displayed on your
screen, so you can see the result of each vi command as soon as the command is executed. There
is rarely any doubt about the current state of your file.

Preliminary Notes

Vi has two peculiar traits that might prove somewhat confUSing to the beginning user. The first is
that many of your commands do not print on your terminal when you type them in. Be assured that
vi is still listening to you, however. If you watch the screen when you type in a command, vi usually
gives some indication that your command has been received and interpreted. More specifically, the
only commands that will print on your terminal are those that begin with I, :, 7, and !. If these
characters are embedded in a long string of commands, only those characters after and including
one of those above will be printed.

The second trait is that vi always uses the bottom line of the screen for command output, error
messages, and echoed command lines. This is where you should look for information and
command verification.

1

Creating an Ordinary File

The remainder of this article discusses the various commands and features of the vi editor.
Because many vi commands do not print on the screen when they are executed, it is difficult to
represent the results that appear on your screen before and after a command has executed. Thus,
this article is designed to be read while you have access to a computer so you can try each
command as it is discussed.

To be able to try each command, you need a file with some text in it. To create a file, type

$ vi filename

where filename is the name of the file you are creating. This file name is completely up to you.
Vi responds by printing

"filename" [new filel

at the bottom of your screen, and prints a tilde n at the beginning of each line on the screen. The
tilde is a special character that vi uses to mark the end of the text in a file that already exists, or, in
the case of a new file, to show that there is currently no text in the file. The tildes are simply
markers that are used for your convenience; they do not become part of the text in your file.

You are now ready to put text in your file. To do this, type a (for append). Even though the
command does not print on your screen, vi is now waiting for your text. As you type in your text,
note that everything you type appears on your screen, and that the tilde on each line disappears as
you begin typing on that line.

It does not really matter what you type in for your text, but you need at least two paragraphs of
material (paragraphs must be separated by at least one blank line). That amount of text ensures that
most of the commands can be illustrated on your file. When you are done entering text, press
[ESC], and exit the editor by typing ZZ. You should now have a shell prompt on your screen.

2 Vi

Material Covered:

vi file ...
[ESC], [ALT], ctrl-[
[DEL], [RUB], ctrJ-?

Invoking Vi

command; invokes vi with one or more file arguments;
commands; end text insertion or modification;
commands; generate an interrupt.

You invoke vi the same way you invoke any shell command. Vi accepts several options and a list
of file names, which are the names of the files you want to create or edit. For a list of the available
options, refer to the HP-UX Reference manual. For example,

$ vi file 1 file2 file3

invokes vi with filel, file2, and file3 as arguments. File1 is created or edited first. Vi remembers
file2 and file3 so that you can create or edit them after you are finished with file 1. Begin editing the
file you created previously by typing

$ vi filename

where filename is the name of the file you created. Note that vi prints out either a screenful of text
from filename, or the entire contents of filename followed by a tilde on each remaining empty
line. Vi does the latter if filename does not contain enough text to fill the screen. Your cursor is
positioned at the beginning of the first line of the file. Vi is now waiting for your commands.

Vi always copies the contents of the file you are editing into a special buffer. All additions,
deletions, and corrections are performed on the copy in the buffer. This way, the original file
remains unchanged until you are sure you want to change it. Then, when you are finished editing
the file, you can tell vi to overwrite the previous contents of the file with the revised text in the
buffer. Even if you are creating a file, the text you put in your file is actually put in the buffer.
The text remains there until you tell vi to transfer it to the file you are creating.

Once you have invoked vi, it enters a do-nothing state in which it waits for a command. This is
called a quiescent state. You can determine what state vi is in by pressing [ESC] or [DEL]. [ESC] is
used to end text insertion and to cancel partially formed commands. If you press [ESC] and vi
responds by ringing the bell, then vi is in a quiescent state. If vi does not ring the bell, then it is
busy executing a command. Ctrl-[generates the same sequence as the [ESC] or [AL T] key on
your keyboard. [DEL] generates an interrupt, which forces vi to stop whatever it is doing and
return to a quiescent state.

Once vi is in a quiescent state, there are several things you can do. They are shown in the following
diagram.

Vi 3

Line-Oriented
Mode (ex) -

Quiescent State

The Shell

Adding. Deleting.
and

Correcting Text

Moving Around in the File
Material Covered:

[r], k commands; move the cursor up one line in the same column;
[~], I, [SPACE] commands; move the cursor one character to the right;
[t], j, ctrl-J, ctrl-N commands; move the cursor down one line in the same column;
[~], h, [BACKSPACE], ctrl-H

ctrl-D
ctrl-U
ctrl-E
ctrl-Y
ctrl-F
ctrl-B
+ , [RETURN], ctrl-M

nG

H

M

L

m
%

4 Vi

commands; move the cursor one character to the left;
command; scroll down;
command; scroll up;
command; scroll up one line;
command; scroll down one line;
command; move forward one page in the file;
command; move backward one page in the file;
commands; move the cursor to the first printable character on the
next line;
command; move cursor to the first printable character on the
previous line;
command; move cursor to first printable character on line number
n; default n = last line of the file;
command; move cursor to the first printable character of the first
line on the screen;
command; move cursor to the first printable character of the middle
line on the screen;
command; move cursor to the first printable character of the last
line on the screen;
command; mark a particular line with a label;
command; show matching left or right parenthesis or brace;
command; move cursor to the beginning of the most previous
sentence;
command; move cursor to the beginning of the next sentence;

}
[(

JJ
/
?
n

N

$

[... J

*
w

w

b

B

e

E

fc

Fe

tc

command; move cursor to the beginning of the most previous
paragraph;
command; move cursor to the beginning of the next paragraph;
command; move cursor to the beginning of the most previous
section;
command; move cursor to the beginning of the next section;
command; initiates a forward pattern search;
command; initiates a backward pattern search;
command; repeats the most previous pattern search;
command; repeats the most previous pattern search in the opposite
direction;
meta character; used in pattern searches to match a pattern at the
beginning of a line;
metacharacter; used in pattern searches to match a pattern at the
end of a line;
metacharacter; used in pattern searches to strip away the special
meaning of a metacharacter;
metacharacter; used in pattern searches to match any single
character;
metacharacter; used in pattern searches to match a pattern at the
beginning of a word;
metacharacter; used in pattern searches to match a pattern at the
end of a word;
metacharacters; used in pattern searches to match anyone of the
enclosed characters;
metacharacter; used in pattern searches to match zero or more
instances of the preceding character;
command; move cursor forward to the beginning of the next word,
or to the next punctuation mark, whichever comes first;
command; move cursor forward to the beginning of the next word,
ignoring punctuation;
command; move cursor backwards to the beginning of the
previous word, or to the most previous punctuation mark,
whichever comes first;
command; move cursor backwards to the beginning of the
previous word, ignoring punctuation;
command; move cursor forward to the end of the next word, or to
the next punctuation mark, whichever comes first;
command; move cursor forward to the end of the next word,
ignoring punctuation;
command; move cursor forward to the next instance of the
specified character, c;
command; move cursor backwards to the next instance of the
specified character, c;
command; move cursor forward to the first character to the left of
the next instance of the specified character, c;

Vi 5

Te

-,0 (zero)

$

or

command; move cursor backwards to the first character to the right
of the next instance of the specified character, c;
command; repeats the most previous f, F, t, or T command;
command; repeats the most previous f, F, t, or T command, in the
opposite direction;
commands; move cursor to the first printable character on the
current line;
command; move cursor to the end of the current line;
command; move cursor to specified column number in current line;
commands; returns cursor to its most previous position.

This section describes several commands that enable you to move around in your file. You
should try each of these commands as they are discussed to familiarize yourself with them.

Cursor-Positioning Keys

If your terminal has cursor-positioning keys, these keys can be used in vi to position the cursor in
the file you are editing. The h, j, k, and I commands perform the same functions as the cursor­
positioning keys. The h command moves the cursor one space to the left ([BACKSPACE) and ctrl-H
also moves the cursor one space to the left}. The j command moves the cursor down one line in
the same column (as do ctrl-J and ctrl-N), the k command moves the cursor up one line in the
same column (as does ctrl-P), and the I command moves the cursor one space to the right ([SPACE)
also moves the cursor one space to the right}. These commands are summarized below:

[1'l=k
[~) = I = [SPACE)

[~) = j = ctrl-J = ctrl-N
[~) = h = [BACKSPACE) = ctrl-H

Scrolling and Paging

The ctrl-D command scrolls down in the file, leaving several lines of continuity between the
previous screenful of text and the new screenful of text (note that [CTRL) must be held down while
the next key is pressed}. The ctrl-U command scrolls up in the file, also leaving several lines of
continuity on the screen. If either ctrl-D or ctrl-U is preceded by a number argument, then the
number of lines scrolled is equal to that specified number, and remains so until changed again.

If you want more control over the scrolling process, the ctrl-E command exposes one more line
at the bottom of the screen, and the ctrl-Y command exposes one more line at the top. Preceding
ctrl-E or ctrl-Y with a number causes the command to be executed that many times.

There are two paging commands, ctrl-F and ctrl-B, which move forward and backward one
page in the file, respectively. Both commands leave a few lines of continuity between screenfuls of
text. Giving a number argument to either of these paging commands executes the command that
many times.

6 Vi

Note that paging moves you more abruptly than scrolling does, and leaves you fewer lines of
continuity between screenfuls of text.

Moving From Line to Line

The + and - commands move the cursor to the first printable character on the next line or the
previous line, respectively. [RETURN] or ctrl-M have the same effect dS +. A preceding number
argument executes these commands that many times.

The G command, when preceded by a line number, positions the cursor at the beginning of that
line in the file. For example, 3G positions the cursor at the beginning of the third line. If you do not
specify a number, the cursor is positioned at the beginning of the last line of the file.

The H command positions the cursor at the beginning of the first line on the screen. If you
precede H with a number, as in 4H, the cursor is positioned at the beginning of the fourth line on
the screen.

The M command positions the cursor at the beginning of the middle line on the screen. The M
command ignores any line number argument.

The L command positions the cursor at the beginning of the last line on the screen. You can
precede the L command by a number, as in 4L, which positions the cursor at the beginning of the
fourth line above the bottom of the screen.

Note that the H, M, and L commands reference the first, middle, and last lines of the current
screenful of text. They do not reference the first, middle, and last lines of the entire file.

The m command enables you to mark specific lines with a label so that you can return to them.
The label must be a single, lower -case letter in the range "a" through "z" . To mark a line, first
move the cursor to the particular line (using any of the commands described in Moving Around in
the File), and type m?, where? is the label you have selected. For example, + + +me moves
the cursor ahead three lines and marks that line with the label" e" .

To reference a line you have marked, precede your label with a grave accent n. For example, -e
moves the cursor to the line you marked with the label "e". Note also that the cursor is placed
in exactly the same spot within the line that it was when you marked the line. If you are not
particularly interested in a specific position within a marked line, use an apostrophe n instead of
a grave accent. Thus, -e moves the cursor to the beginning of the line marked by the label "e",
regardless of where the cursor was in the line when you marked it. Try marking a few lines, using
both the apostrophe and grave accent, until you are familiar with their differences.

Marks are defined until you begin editing another file, or until you leave the editor. Marks cannot
be erased.

The % command shows you the matching left or right parenthesis or brace for the parenthesis or
brace currently marked by the cursor.

Vi 7

Skipping Over Sentences, Paragraphs, and Sections

The (and) (left and right parentheses) commands move the cursor to the beginning of the
previous and next sentences, respectively. A sentence is defined to end at a period, an
exclamation point, or a question mark, followed either by two spaces or the end of a line. Any
number of closing parentheses, brackets, double quotes, or single quotes may follow the period,
exclamation point, or question mark, as long as they occur before the two spaces or the end of the
line. The (and) commands can be preceded by a number to move the cursor over several
sentences at once.

The {and} (left and right braces) commands move the cursor to the beginning of the previous
and next paragraphs, respectively. A paragraph is defined as a block of text beginning and ending
with a blank line, or a block of text delimited by macro invocations. The default list of macros
(from the -ms and -mm macros packages) includes .IP, .LP, .PP, .QP, .P, .U, and .bp. These
macros are used so that files containing nroff/troff text can be easily edited with vi. You may add
your own macro names to those already recognized by appropriately setting the paragraphs option
(see Setting Vi Options later in this article). The { and} commands can be preceded by a number to
move the cursor over several paragraphs at once.

The [[and II (double left and right brackets) commands move the cursor to the beginning of the
previous and next sections, respectively. A section is defined as beginning and ending with a line
containing a ctrl-L (formfeed character) in the first column, or as a block of text delimited by macro
invocations. The default list of macros defining a section is .NH, .SH, .H, and .HU. You may add
your own macro names to those already understood by appropriately setting the sections option
(see Setting Vi Options later in this article). if [[or Jl is preceded by a number argument, it is
interpreted to be the new window size (number of lines per screenful of text).

Searching for a Pattern

You can tell vi to search for a particular pattern (string of characters) in your file. To do this, type a
slash (I), followed by the pattern you want to search for, followed by [RETURN]. Note that the
entire command is printed at the bottom of your screen. If vi finds the pattern, vi positions the
cursor at the beginning of the pattern. If the pattern cannot be found, vi prints an error message
and returns the cursor to its location prior to the search.

The slash initiates a forward search, with wraparound, starting from the current position of the
cursor. Replacing the slash with a question mark (?) initiates a backward search, with wraparound,
starting from the current position of the cursor. If a number argument is specified before / or ?, it is
interpreted to be the new window size (number of lines per screenful of text).

If you want your pattern to match only at the beginning of a line, begin your pattern with a caret
n. If you want your pattern to match only at the end of a line, end your pattern with a dollar sign
($).

8 Vi

Here are some examples:

Itest[RETURN]

This is a forward search for the string II test". Note that this pattern matches" re-test", "testing",
"detestable", or "test". To find only the word "test" standing alone (but not at the end of a
sentence, or just before a comma), type

I test [RETURN]

The spaces require that" test" not be part of another word.

?"Today[RETURN]

This is a backward search for the string" Today" appearing only at the beginning of a line.

Iregret$ [RETURN]

This is a forward search for the string" regret" appearing only at the end of a line.

The n command enables you to repeat the most recently executed search. Each time n is
typed, the previous search is re-executed. The N command also repeats the most recently executed
search, but in the opposite direction. These commands are handy for finding a particular
occurrence of a pattern without having to re-type the search each time.

There are times when you want to position the cursor at the beginning of the line containing the
pattern. This can be done by typing your search command in a slightly different way. For
example,

Ikeyl + o [RETURN]

searches forward and positions the cursor at the beginning of the line containing the string
"key". You can also position the cursor at the beginning of a line relative to the line containing
the pattern. For example,

IFIFOI-3[RETURN]

searches forward and positions the cursor at the beginning of the third line before the line
containing the string" FIFO". Also,

?CRT? + 2[RETURN]

searches backward and positions the cursor at the beginning of the second line after the line
containing the string" CRT" .

Vi 9

There are two options, magic and no magic, which affect the way you can specify patterns (see
the section entitled Setting Vi Options). If the no magic option is set, then only the characters' and
$ have special meaning in patterns. If you want to include either of these characters in the actual
pattern you search for, they must be preceded by a backslash (",). The backslash quotes the
character immediately following it, and strips away any special meaning that character might
have. For example,

I", 'L[RETURN)

searches for the string "'L". The backslash was necessary to keep the caret from being
interpreted to mean "match this pattern at the beginning of a line" .

If the magic option is set, then you have several other special characters that you can use in
patterns, including' and $. The. (dot) matches any character, as in

Ichap. [RETURN)

which matches any five-character string that begins with "chap". The character combinations
'" < and", > match the beginning of a word and the end of a word, respectively. For example,

?'" <how[RETURN)

matches any word beginning with "how", including "how" itself. Also,

led',,> [RETURN)

matches any word ending with "ed", including" ed" itself.

Brackets are also special, and match anyone of the characters enclosed in them. For example,

Ifile[l23)[RETURN)

matches "file 1", "file2", and "file3". If the characters inside the brackets are preceded by a "
then the brackets match any single character not enclosed in them, as in

Ichap['I234)[RETURN)

which matches any five-character string beginning with "chap", except "chapI", "chap2",
"chap3 ", and "chap4". If you want to specify large spans of letters or numbers, as in a through z,
or 0 through 9, they can be abbreviated inside the brackets, as in [a-z) or [0-9).

The asterisk (*) matches zero or more instances of the character immediately preceding it. For
example,

Ib*[RETURN)

10 Vi

matches zero or more b's. Note that this is a useless search, since zero b's can be found much
qUicker than one or more b's. To find one or more b's, you must type

Ibb*[RETURN]

Also,

1[123][123]*[a-z][RETURN]

matches a one, two, or three, followed by any number of one's, two's, and three's, followed by
a single lower-case letter. Experiment with the asterisk until you understand the implications of
matching zero or more occurrences of a pattern.

If the magic option is set, then the characters', $,., '" <, ",>, [, 1, and * have special meaning
and must be quoted with a backslash if you want them to be literally matched in a pattern (note
that the characters "'<and "'> must each be preceded by a backslash, as in '" '" '" < and '" '" "'». If the nomagic option is set, then only' and $ require a backslash to be literally
matched. Note that, to match a backslash literally, it also must be preceded with a backslash.

The characters " $, " '" <, ",>, [, 1, *, and", are commonly called metacharacters whenever
their special meanings are utilized. This helps to distinguish between their normal, literal use, and
their use as special characters.

Moving Within a Line

The wand W commands advance the cursor to the beginning of the next word in the sentence,
wrapping around to the next line if necessary. The difference between the two commands is that
the w command also stops at each punctuation mark it encounters; the W command does not stop
at punctuation.

The band B commands move the cursor backwards to the beginning of the previous word,
wrapping around to the previous line if necessary. The b command stops at punctuation, while the
B command does not.

The e and E commands advance the cursor to the end of the next word in the sentence,
wrapping around to the next line if necessary. The e command stops at punctuation, while the
E command does not.

Note that the w, W, b, B, e, and E commands all wrap around to lines other than the current
line. These commands can be preceded by a number to move the cursor over several words at
once.

Vi 11

The f and F commands move the cursor forward or backward, respectively, to the next
occurrence of the specified character. The cursor is placed on the specified character. For example,
fc moves the cursor forward to the first occurrence of the character "c", and F: moves the cursor
backwards to the first occurrence of a colon. The f and F commands can be preceded by a
number, as in 3fr, which moves the cursor forward to the third occurrence of the character "r".
Both f and F work only on the current line, and do not wrap around to other lines.

The t and T commands are identical to the f and F commands, except that the cursor is placed
one character to the left or right of the specified character, respectively. For example, 2Tm moves
the cursor backwards to the second occurrence of the character "m", and places the cursor one
character to the right. 3t. moves the cursor forward to the third occurrence of a period, and places
the cursor one character to the left.

The; command repeats the most previously executed f, F, t, or T command. Thus, fi;;; is identical
to 4fi, and Tj; is identical to 2Tj. The, command also repeats the most previously executed f, F, t,
or T command, but in the opposite direction. Thus, if you execute Tk, a subsequent, searches
forward in the current line for the letter k.

The' (caret) command moves the cursor to the first printable character on the current line. The 0
(zero) command is a synonym for '. Any number argument is ignored.

The $ command moves the cursor to the end of the current line. If a number argument n is
specified, $ moves the cursor to the nth end of line it finds. Thus, $ can wrap around to other lines,
but only if preceded by a number argument (note that several explicitly typed $'s will not do this).

The I (vertical bar) command moves the cursor to the character in the column specified by a
preceding number argument. If no number is given, I is a synonym for' and 0, in that it moves the
cursor to the first printable character in the line.

Note that the f, F, t, T, " 0, and I commands work only on the current line. If you want to use
these commands on a line other than the current line, you must first move the cursor to the line of
interest.

Returning to Your Previous Position

The" (two grave accents) command and the -- (two apostrophes) command both return you to
your previous position. These commands can be used after you have executed a search command
or one of the commands listed under Moving Around in the File, and you want to get back to where
you were. Vi remembers only your last previous position.

12 Vi

Adding, Deleting, and Correcting Text

Material Covered:

a
A
o
o
x
X
r

s
d

D
c

C

y
Y,yy

a-z

p
p
«
»
<

>

J
u
U

command; insert text before cursor;
command; insert text at the beginning of a line (same as 'i);
command; append text after cursor;
command; append text at the end of a line (same as Sa);
command; create new line below line containing cursor;
command; create new line above line containing cursor;
command; delete character marked by cursor;
command; delete character immediately before character marked by cursor;
command replace character marked by cursor with another character;
command; replace one or more characters with one or more characters;
command; delete; can be combined with several other commands specifying what is
to be deleted;
command; delete from current location through end of line (same as d$);
command; change; can be combined with several other commands specifying what is
to be changed;
command; change from current location through end of line (same as c$);
command; re-execute last operation which changed text in buffer;
command; copy specified amount of text into a specified buffer;
commands; copy the specified number of complete lines into a specified buffer;
operator; introduces buffer name in which text is saved by previous y or Y
commands;
buffers; the buffer names in which text can be saved with y or Y commands; there is,
in addition, an unnamed buffer;
command; puts saved text back into the file, after or below the cursor;
command; puts saved text back into the file, before or above the cursor;
command; shifts the specified number of lines one shift-width to the left;
command; shifts the specified number of lines one shift-width to the right;
command; shifts the specified lines one shift-width to the left; can be combined with
other commands;
command; shifts the specified lines one shift-width to the right; can be combined with
other commands;
command; joins the specified number of lines together:
command; reverses the last change made to the file:
command; restores the current line back to its state before editing began;

Vi 13

Inserting and Appending Text

The i and a commands are used for inserting and appending text, respectively. The i command
places text to the left of the cursor, and the a command places text to the right of the cursor. Both
commands are cancelled by [ESC].

You may insert or append many lines of text, or just a few characters, with the i and a
commands. To type in more than one line of text, press [RETURN] at the place in your text where
you want the new line to appear. When you are inserting or appending text, [RETURN] causes vi to
create a new line, and to copy the remainder of the current line onto the new line.

If a number n is specified before the i or a command, then the text you add is duplicated n-1 times
when [ESC] is pressed. This works only if there is room on the current line for the duplications. For
example, if you type Sa at some particular point in a line, and your appended text is "hi", then,
when [ESC] is pressed, the text actually appended will be expanded to "hihihihihi".

If you want to start adding text on a new line that does not currently exist, you can create a new line
in your text with the 0 and 0 commands. The 0 command creates a new line after the line
containing the cursor, and the 0 command creates a new line before the line containing the cursor.
The 0 and 0 commands can create only one new line, but pressing [RETURN] while using the 0

and 0 commands causes vi to create an additional new line for you. The 0 and 0 commands are
cancelled by [ESC], and ignore any preceding number argument. Thus, the only difference
between the i, a, 0, and 0 commands is that the 0 and 0 commands automatically create a new
line on which text can be added, while the i and a commands do not. New lines can be created with
all four commands simply by pressing [RETURN].

During an insert or append operation, if a ctrl-@ is typed as the first character of the text to be
inserted/appended, the ctrl-@ is replaced by the most previous text that was inserted or appended.
A maximum of 128 characters are saved from the previous text addition. If more than 128
characters were inserted or appended in the last text addition, the ctrI-@ function is not available
during the current text addition.

If you are in insert or append mode, the autoindent option is set, and you are at the beginning of a
line, ctrl-T causes shiftwidth white space to be inserted at that point. White space inserted in this
manner can be back-tabbed over with ctrl-D in insert or append mode. CtrI-D is necessary because
shiftwidth white space cannot be backspaced over.

The ctrl-W sequence enables you to back up over words (similar to b in command mode) while in
insert or append mode. All words backed over are deleted from the text addition, even though the
characters still appear on your screen.

The keys you use at the shell level to erase characters or entire lines can also be used in vi.
When you are inserting or appending text, single characters can be erased with [BACKSPACE], and
entire lines can be erased with ctrl-o. (Note that [BACKSPACE] and ctrI-U are the default keys
assigned to erase single characters and entire lines. Your keys may have been re-defined. Check
with your system administrator.) Note that you cannot erase characters which you did not insert
or append, and that you cannot backspace into a previous line.

14 Vi

Experiment with the i, a, 0, and 0 commands until you are familiar with what each command
does. Be sure to note the effects of pressing [RETURN] with each of these commands.

Character Corrections

The x command deletes the character marked by the cursor. You can delete more than one
character by preceding x with a number. 3x, for example, deletes the next three characters,
including the one marked by the cursor.

The X command deletes the character immediately before the one marked by the cursor.
Preceding X with a number deletes that many characters before the current location of the cursor.

Both x and X work only on the current line; they cannot delete characters on any line other than the
current line.

The r command replaces one character with another. For example, rT replaces the character
marked by the cursor with the character "T". If a number n precedes the r command, then n
characters are replaced by the single character you type next. For example, 4rt replaces the next
four characters with the letter t.

The s command replaces one or more characters with the specified string of characters. When
not preceded by a number, the s command replaces a single character with the specified string.
For example,

sTTY[ESC]

replaces the character marked by the cursor with the string" TTY". When preceded by a number,
the s command replaces the specified number of characters, beginning with the character marked
by the cursor, with the specified string of characters. For example,

4sinteresting[ESC]

replaces the next four characters with the string "interesting". Note that the s command prints a
dollar sign at the end of the text to be replaced so you can see the extent of the change. The
dollar sign is removed when you press [ESC].

The d command can be combined with several of the commands previously discussed to delete
characters and words. For example, dw deletes the next word, and db deletes the previous
word. d[SPACE] deletes the character marked by the cursor (this is equivalent to the the x
command). The d command can be preceded by a number to delete several words or
characters, as in 3db, which deletes the last three words. The d command can also be used with
the f, F, t, and T commands. For example, dtr deletes everything from the current position of the
cursor up to (but not including) the next" r" that appears in the current line. Experiment with these
combinations until you are familiar with their effects.

Vi 15

The c command can also be combined with several other commands to change characters
and words. The c command can be preceded by a number. Here are some examples:

c5wyesterday[ESC]

This changes the next five words to the string "yesterday". Note that the "c" and the "5"
could be interchanged with the same result.

4cbvariable name[ESC]

This changes the previous four words to the string "variable name" .

c[SPACEjin a buffer[ESC]

This changes the character marked by the cursor to the string "in a buffer" .

cfqHP-UX operating system[ESC]

This changes everything from the current position of the cursor up to (and including) the first
occurrence of a "q" to the string "HP-UX operating system". The c command can be used
similarly with the F, t, and T commands.

Note that the c command marks the end of the text to be changed with a dollar sign so you
can see the extent of the change. The dollar sign is removed after you press [ESC].

Line Corrections

The d and c commands can also delete or change lines or groups of lines. The d command
can be appended to itself to delete one complete line. For example, dd deletes the current line,
and 5dd deletes the current line and the next four lines.

The d command can be combined with several other commands. For example, dL deletes
everything from the current position of the cursor through the last line on the screen. d3L deletes
everything from the current position of the cursor through the third line from the bottom of the
screen. The d command can also be used with a search, so that

d/market$ [RETURN]

deletes everything from the current position of the cursor up to the beginning of the string
"market", which must occur at the end of a line. Try the d command with the (,), {, }, [L and II
commands to delete one or more sentences, paragraphs, or sections.

Note that any of the commands discussed under Moving Around in the File can be combined with
the d command to delete specific portions of text. Also note that, if you delete five or more lines, vi
informs you of the number of lines deleted with a message at the bottom of your screen.

16 Vi

The D command is shorthand for d$, causing all characters from the cursor to the end of the line to
be deleted. Any preceding number argument is ignored.

The c command can also be appended to itself (thus creating the cc command) to change one
complete line. S is a synonym for cc. For example,

ccEnter the value for variable A. [ESC]

changes the current line to the sentence "Enter the value for variable A. " .

4SPIace illustration here. [ESC]

This changes the current line and the three lines following it to the sentence "Place illustration
here. ". Note that the S command was used, and that the results are the same as if cc had been
used.

cMPlace output on TTY4. [RETURN]Call exit routine. [ESC]

This changes everything from the current position of the cursor to the middle line on the screen to
the two sentences "Place output on TTY 4." and "Call exit routine. ". Note that each sentence is
on a separate line.

)c([RETURN]lnsert new paragraph here. [RETURNj[ESe]

Here, the initial ")" moves the cursor to the beginning of the next paragraph, and then the entire
previous paragraph is changed to a blank line, followed by the sentence "Insert new paragraph
here. " , followed by another blank line.

+ clwhile/-l [RETURN]continue; [ESC]

The initial "+" advances the cursor to the first printable character on the next line. Then,
everything from the beginning of that line up to and including the line before the next "while"
statement is changed to the single statement" continue; " .

Like the d command, the c command can be combined with any of the commands discussed
under Moving Around in the File, and vi informs you when five or more lines are being changed.
Also, as in previous c examples, the end of the text to be changed is marked with a $. Try some of
the other combinations not covered above until you are familiar with how c works.

The C is equivalent to c$, causing all the characters from the cursor to the end of the line to be
changed to the text that follows. Any preceding number argument is ignored.

The. (dot) command repeats the last command which made a change in the text. Thus, dw
is the same as 6dw, in that both commands delete the next six words. The dot command can be
used to re-execute any command which modified the buffer text, but is limited to that command
which was executed most recently.

Vi 17

Copying and Moving Text

The y command copies a specified portion of text into a buffer. There are 26 named buffers,
named "a" through "z", and one unnamed buffer. If you do not specify a buffer name, the
copied text is automatically placed in the unnamed buffer. For example, yw copies the next word
into the unnamed buffer, and y2B copies the previous two words into the unnamed buffer.

When specifying a buffer name, the name must be preceded by a double quote ("). This tells vi
that the character to follow is a buffer name. For example,)" ay2(copies the previous two
sentences into buffer" a" (the initial) ensures that complete sentences are copied). Also,

" tyrtwo[RETURNj

copies everything from the current position of the cursor up to the line beginning with the string
" two " , and puts the text in buffer "t".

Note that the y command starts copying at the current position of the cursor. Thus, partial
words or sentences may be copied if the cursor is in the middle of a word or sentence when you
give the y command. Note also that, when copying forward in the file, the character marked by the
cursor is included in the copied text. When copying backwards, however, the copied text begins
with the character preceding the character marked by the cursor.

The Y command is used to copy complete lines of text, regardless of the position of the cursor
within the line. For example, 3Y copies three lines, including the current line, into the unnamed
buffer. "f6Y copies six lines, including the current line, into buffer" f". A synonym for Y is yy.

The p and P commands put the copied text back into the file relative to the location marked by the
cursor. The p command puts the text after or below the cursor, and the P command puts the text
before or above the cursor. Exactly where the text is placed in relation to the cursor is determined
by the amount of text being placed. If there is room on the current line for the text, then the text
is placed after (p) or before (P) the cursor. If there is too much text to fit on one line, then vi
creates one or more new lines below (p) or above (P) the cursor, and puts the text there. For
example, "rp puts the text contained in buffer "r" into the file after or below the cursor. If no
buffer name is specified, the text in the unnamed buffer is put back into the file.

Up to now, the copied text has been left in its original location and duplicated elsewhere in the
file. If you do not want the text left in its original location, you can use the d command. For
example, 5dd deletes the next five lines, and saves them in the unnamed buffer (that's right - every
deletion you perform is saved in the unnamed buffer until it is overwritten by the next deletion).
"wd2} deletes the next two complete paragraphs (if the cursor is at the beginning of a
paragraph) and saves them in buffer "w". The p or P command can then be used to put the
deleted text elsewhere in the file.

18 Vi

You can copy text from one file into another. First, save the text in any of the named buffers.
Once the text is saved, stop editing the current file and begin editing the file in which the text is to
be inserted (the commands used to edit other files are described in the section entitled Editing Other
Files). Now use the p or P command to put the saved text into the file. Do not use the unnamed
buffer to transfer text from one file to another, because the contents of the unnamed buffer are
lost when you change files.

Shifting Lines

The < < and> > commands move the specified number of lines one shift-width to the left or right,
respectively. One shift-width is equal to the number of columns specified by the shiftwidth
option (see the section entitled Setting Vi Options). For example, 4> > moves four lines one
shift-width to the right. The < < and> > commands are limited to numerical arguments only.

The < and> commands can be used with numbers and other commands to shift large groups
of lines. For example, >3L moves every line from the current line to the third line from the bottom
of the screen one shift -width to the right. Also,

</RAM[RETURN]

moves every line from the current line to the first line containing the string" RAM" one shift­
width to the left. The < and > commands may be combined with any of the commands
discussed under Moving Around in the File.

Continuous Text Input

When you are typing in large amounts of text, it is convenient to have your lines automatically
broken and continued on the next line so that you do not have to press [RETURN]. The
wrapmargin option enables you to do this (see the section entitled Setting Vi Options). For
example, if the wrapmargin option is set equal to 10, vi breaks each line at least 10 columns from
the right-hand edge of the screen.

If you want to join broken lines together, use the J command. For example, 3J joins three lines
together, beginning with the current line. Vi supplies white space at the place or places where the
lines were joined, and moves the cursor to the first occurrence of the supplied white space.

Undoing a Command

The u command reverses the last change you made to your text. The u command is able to undo
only the last change you have made. Note that a u command also undoes itself. If you have
made several changes to a line, and you want to reverse all of the changes, use the U command.
The U command restores the current line back to the state it was in when you began editing it.

Vi 19

Material Covered:

:set
autoindent
autowrite

ignorecase
list
magic
number
shiftwidth
showmatch
slowopen
wrapmargin
timeout
readonly
paragraphs
sections
:map
:unmap
ctrl-V
:ab
:una
:r

:w
:e
:n
!

Special Vi Commands

command; enables, disables, sets, or lists options;
option; enables/disables automatic indentation;
option; enables/disables automatic writing to the vi buffer after an editing
session;
option; disables/enables upper- and lower-case distinction;
option; enables/disables tab and end-of-line markers;
option; enables/disables extended set of metacharacters;
option; enables/disables line numbering;
option; defines number of columns per shift-width;
option; enables/disables parenthesis-, brace-, and bracket-matching;
option; enables/disables screen refresh only when [ESC] is pressed;
option; defines number of columns in right margin;
option; enables/disables one second time limit for macro entry;
option; enables/disables write protection for file;
option; defines the macro names recognized by the { and} commands;
option; defines the macro names recognized by the [[and II commands;
command; defines macros;
command; deletes macros;
command; used to alter the meaning of special keys or characters;
command; defines abbreviations;
command; deletes abbreviations;
command; read contents of file or output of shell command into current
file;
command; write part or all of vi buffer to current file or to another file;
command; edit same file over again, or begin editing another file;
command; edit next file in vi argument list;
command; enables portions of the vi buffer to be filtered through an HP­
UXcommand.

Setting Vi Options

Vi has several options that you can set for the duration of your editing session.

The autoindent option, when set, automatically indents each line of text so that it begins in the
same column as the previous line. While inserting text, you cannot backspace over this
indentation, but you can backtab over it with ctrl-O. This option is helpful when typing in
program text. To enable this option, type

:set ai[RETURN]

20 Vi

Disable this option by typing

:set noai[RETURN]

The default is noai.

The autowrite option, when set, automatically writes the contents of the vi buffer to the current
file you are editing when you quit editing the current file. This is helpful when you change files or
leave the editor using commands that do not normally save the contents of the vi buffer. To
enable this option, type

:set aw[RETURN]

Disable this option by typing

:set noaw[RETURN]

The default is noaw.

The ignorecase option, when set, causes vi to ignore case in searches. To enable this option, type

:set ic[RETURN]

Disable this option by typing

:set noic[RETURN]

The default is noic.

The list option, when set, causes a tab to be printed as "'I", and marks the end of each line with a
dollar sign. To enable this option, type

:set list[RETURN]

Disable this option by typing

:set nolist[RETURN]

The default is nolist.

The magic option, when set, causes the period, left and right brackets, the asterisk, and the
character combinations ""-< and ""-> to be treated in a special way when used in search patterns
(see the section entitled Searching for a Pattern). To enable this option, type

:set magic[RETURN]

Vi 21

Disable this option by typing

:set nomagic[RETURN]

The default is nomagic.

The number option, when set, causes line numbers to be prefixed to each text line on your
screen. To enable this option, type

:set nu[RETURN]

Disable this option by typing

:set nonu[RETURN]

The default is nonu.

The shiftwidth option enables you to specify the number of columns to skip when using <, < <,
>, », ctrl-D, and ctrl-T (see the section entitled Shifting Lines). Ctrl-D backtabs over inserted
shift-widths (using <, < <, >, or > » or any indentation provided by the autoindent option.
Ctrl-T inserts one shift-width at the beginning of the current line during text insertion. To set this
option, type

:set sw = val[RETURN]

where val is the number of columns to skip. The default is sw = 8.

The showmatch option, when set, causes vi to show you the opening parenthesis, brace, or
bracket when you type the corresponding closing parenthesis, brace, or bracket. This is helpful
in complex mathematical expressions. To enable this option, type

:set sm[RETURN]

Disable this option by typing

:set nosm[RETURN]

The default is nosm.

The slowopen option, when set, causes vi to wait until you press [ESC] to update the screen
after inserting or appending text. This is used on slow terminals to decrease the amount of time
spent waiting for the screen to be updated. To enable this option, type

:set slow[RETURN]

22 Vi

Disable this option by typing

:set noslow[RETURN]

The default is slow.

The. wrapmargin option enables you to specify the number of columns you want in your right
margin. This is used when you are using continuous text input (see section entitled Continuous Text
Input). To set this option, type

:set wm = val[RETURN]

where val is the number of columns in your right margin. The default is wm = O.

The timeout option, when set, places a one second time limit on the amount of time it takes you
to type in a macro name (see the section entitled Defining Macros). To enable this option, type

:set to[RETURN]

Disable this option by typing

:set noto[RETURN]

The default is to.

The readonly option, when set, places write protection on the file you are editing. This is used
when you want simply to look at a file, and you want to ensure that you do not inadvertently
change or destroy the contents of the file. To enable this option, type

:set readonly[RETURN]

Disable this option by typing

:set noreadonly[RETURN]

The default is noreadonly.

The paragraphs option contains the list of macro names recognized by the { and } commands as
marking the beginning and end of a paragraph. Suppose you have three macros, .PG, .P, and .EP,
that you want vi to recognize as paragraph delimiters. All you have to do is type

:set para = PGP EP[RETURN]

Vi 23

Note that, if a macro name is only one character long, you must type the single character macro
name, followed by a space. The default paragraph string is

para = IPLPPPQPbpP LI

You may add your macros to this string, or completely redefine it using different macro names.

The sections option contains the list of macro names recognized by the [[and]] commands as
marking the beginning and end of a section. Sections is defined in exactly the same way as
paragraphs above. The default list of macro names is

sect = NHSHH HU

There are several other options available, but they are less commonly used than these. You can
get a list of all possible options and their settings by typing

:set all[RETURN]

A list of all the options which you have changed is generated by typing

:set[RETURN]

If you want to know the value of a particular option, type

:set opt?[RETURN]

where opt is the name of the option. Note that multiple options can be set on one line, as in

:set ai aw nu[RETURN]

If a number argument is specified before the :set command, it is interpreted to be the new window
size (number of lines per screenful of text).

Defining Macros

Vi has a macro facility which enables you to substitute a single keystroke for a longer sequence of
keystrokes. If you are repeatedly typing the same sequence of commands, then you can
probably save time and typing by defining a macro to perform the sequence of commands for you.

You use the :map command to define a macro. After the :map command, you type the key or
keys that invoke the macro, and then the sequence of keystrokes that you want to put in the macro.
For example,

:map d d4w[RETURN]

24 Vi

causes d to delete the next four words every time it is pressed. Also,

:map c II ctrl-V[RETURN]dwiYou ctrl-V[ESC][RETURN]

causes c to find an occurrence of "I ", delete it, and replace it with "You ". The ctrl-V command
tells vi to simply enter the next keystroke into the text of the macro and to ignore any special
meaning that keystroke might have. The ctrl-V command is used above to flag [RETURN] and
[ESC], both of which would have terminated the :map command before it was completed.
Instead, [RETURN] and [ESC] are entered as keystrokes in the macro string. The final [RETURN]
terminates the :map command.

If the macro name specified consists of a pound sign (#) followed by a number in the range 0 - 9,
then a special function key on your terminal is mapped. For example,

:map #3 cclLLUSTRATION GOES HEREctrl-V[ESC][RETURN]

maps special function key number 3 such that, when pressed, it changes the current line to the line
" ILLUSTRATION GOES HERE". Of course, this feature is valid only on terminals which have
special function keys.

Vi normally allows only one second to enter a macro name, so you should use only one keystroke
to invoke the macro. However, if the notimeout option is set, vi imposes no time limit. If this is the
case, you can use up to 10 keystrokes to invoke a macro. The sequence of keystrokes that define
the macro can contain up to 100 keystrokes.

The u (undo) command, when invoked after a macro has been executed, reverses the effects of the
entire macro.

Previously defined macros can be deleted with the :unmap command. For example, to delete
the c macro defined above, type

:unmap c

If a number argument is specified before the :map or :unmap command, it is interpreted to be the
new window size (number of lines per screenful of text).

Defining Abbreviations

You can define an abbreviation with the :ab command. For example,

:ab CRT cathode ray tube[RETURN]

Vi 25

defines "CRT" as an abbreviation that is expanded to "cathode ray tube" everywhere you type
" CRT" in the text. Also,

:ab cs Department of Computer Sciences[RETURN]

defines "cs" as an abbreviation that is expanded to "Department of Computer Sciences"
everywhere you type "cs" in the text.

The abbreviation name must contain only letters, digits, or underscores. Vi only expands
abbreviations when they are delimited by white space on both sides, or by white space on the
left and punctuation on the right. Abbreviations are not expanded if they appear as part of another
word.

Abbreviations can be deleted with the :una command. For example,

:una cs

deletes the abbreviation associated with" cs" .

If a number argument is specified before the :ab or :una command, it is interpreted to be the new
window size (number of lines per screenful of text).

Reading Data Into Your Current File

The :r command enables you to read the contents of a file or the standard output from a shell
command into the file you are currently editing. For example,

:r tesLdata[RETURN]

reads the contents of the file tesLdata into the current file after the cursor. Also.

:7r std_dev[RETURN]

reads the contents of the file std_dev into the current file after line seven.

You can also read the output from a shell command into your file by typing

:r !cmd[RETURN]

where cmd is the name of the shell command. For example,

:r !ls[RETURN]

reads a list of the files in your working directory into the file you are editing, beginning at the current
cursor position.

26 Vi

If a number argument is specified before the :r command, it is interpreted to be the new window size
(number of lines per screenful of text).

Writing Edited Text Onto a File

The :w command is used to write the current contents of the vi buffer onto a file. The contents
of the vi buffer remain unchanged. It is a good idea to write the contents of the vi buffer onto a
file periodically, especially if you have been editing the file for a long time, and have made
significant changes. That way, should a system crash or a power failure occur, some or all of
your changes are saved.

If you specified a file name when you invoked vi, then you need not specify a file name if you
want to write to the current file. Vi remembers the name of the file you are editing or creating,
and writes to that file by default. For example, if you invoked vi as

$ vi tesLdata

then you need only type

:w[RETURN]

to write the contents of the vi buffer onto tesLdata. However, if you did not specify a file name
when you invoked vi, then you must supply a file name with the :w command. For example, if you
invoked vi as

$vi

then you must type

:w filename[RETURN]

where filename is the name of the file on which you want the contents of the vi buffer to be
written.

You can write your changes to an existing file other than the one you are editing. For example,

:w! format[RETURN]

writes your changes to the file format. Note that the exclamation point tells vi to overwrite the
previous contents of format with the contents of the vi buffer.

You can also write your changes to a file that does not yet exist. For example,

:w thesis[RETURN]

causes vi to create a file called thesis, and writes all your changes on thesis.

Vi 27

You can specify that a portion of your text be written to another file that does not yet exist. For
example,

:2,35w prog[RETURN]

creates a file called prog and writes line 2 through line 35 of the current file on prog. The same
thing can be done with a file that already exists, as in

:3, lOw! list[RETURN]

writes line 3 through line 10 of the current file on the file called list. The exclamation point
causes the previous contents of list to be destroyed and replaced by the specified portion of the vi
buffer.

If a number argument is specified before the :w command, it is interpreted to be the new window
size (number of lines per screenful of text).

Note that, while you may append other files to the file you are currently editing, vi provides no
facilities that enable you to append the current file to another file.

Editing Other Files

The :e command enables you to edit other files without leaving vi. For example,

:e report[RETURN]

tells vi to stop editing the current file and to start editing report. If report does not exist, vi creates
it for you. Note that vi requires a :w command to precede a :e command, so that the previous
contents of the vi buffer are saved (unless the autowrite option is set, in which case vi is silent).

You can also tell vi to start editing a file beginning with a particular line. For example,

:e + test[RETURN]

tells vi to start editing test, beginning with the last line of the file. Also,

:e + M letter[RETURN]

tells vi to start editing letter at the middle line of the screen. Any vi command discussed in the
section entitled Moving Around in the File and not containing any spaces can be inserted after the
" + " in the previous examples. For example,

:e + ICAEI + Octrl-V[RETURN] cov_let[RETURN]

28 Vi

tells vi to start editing cov_let, with the cursor positioned at the beginning of the first line containing
the string" CAE". Note that ctrl-V had to be used to flag [RETURN] so that the :e command is
not terminated before it is completed.

If you decide that you do not like the changes you have made to a file, you can discard the changes
and begin editing the same file over again by typing

:e![RETURN]

The exclamation point tells vi that you know what you are doing, and that you do not want to
save the current contents of the vi buffer. To discard the changes and begin editing a different
file, type

:e! name[RETURN]

where name is the name of the file you want to edit. Again, the exclamation point tells vi that a :w
command is not necessary.

If a number argument is specified before the :e command, it is interpreted to be the new window
size (number of lines per screenful of text).

Editing the Next File in the Argument List

The :n command tells vi to stop editing the current file and begin editing the next file in the
argument list. For example,

:n[RETURN]

tells vi to start editing the next file in the argument list. Vi insists that you use a :w command
before you begin editing the next file, unless you type

:n![RETURN]

which tells vi to discard any changes you have made to the current file, and begin editing the next
file.

If a number argument is specified before the :n command, it is interpreted to be the new window
size (number of lines per screenful of text).

Vi 29

Filtering Buffer Text Through HP-UX Commands

Portions of the vi buffer text can be given as input to an HP-UX command, the output of which is
then re-inserted into the previous location of that text. The! command is used to invoke filtering.

For example, suppose you have a list of items, one per line, that you want to sort alphabetically.
This is easily done in several ways. If a single ! is used, then you must supply modifiers which
specify the extent of the text to be sorted. Let's assume that your file looks like this:

.PP
crackers
peas
roast
apples
oranges
tomatoes
grapes
.PP

.PP is an nroff/troff paragraph macro, which is recognized by { and} as beginning and ending a
paragraph. Thus, if your cursor is positioned at the beginning of the first .PP macro, and you type

! }sort[RETURN]

then the list of grocery items is replaced by the output from the sort command. The} command is
Used to select the next paragraph as input for sort.

A second way to sort the same text is by typing

711sort[RETURN]

If two!' s are typed. then whole lines are assumed. and the number argument specifies how many
whole lines to sort. For this example to work, your cursor must be somewhere on the "crackers"
line.

Note that, in both of the above examples. a single! and the command name is all that is printed at
the bottom of your screen. No number arguments or modifiers are echoed.

Any HP-UX command with useful output can be used in place of sort, depending on what you want
to do. Since vi has no right margin justification function. another useful command might be nroff,
which could be used to justify right margins or perform other formatting.

Note that filtering affects only the buffer contents, not the actual contents of your current file.

30 Vi

Vi and Ex

Material Covered:

Q command; escape from vi into ex;
vi command; escape from ex back to vi.

Vi is actually one mode of editing within the editor ex. In fact, all of the commands beginning with:
are also available in ex. You can escape to the ex line-oriented editor by giving the command Q.
When the Q command is given, vi responds with a line of information, and then ex takes over and
prints the ex prompt (:). To get from ex to vi, type vi after the ex prompt. Vi clears the screen and
prints a screenful of text, with your current line at the time you typed vi at the top of the screen.

There are several things which can be done more easily in ex, the most notable of which are global
searches and substitutions. Thus, you may find yourself, after a while, switching between the two
editing modes to access functions which are better handled by one or the other. For information
concerning the ex editor, refer to the Ex Reference Manual included in HP-UX Selected Articles.

The Shell Interface
Material Covered:

vi command; invokes the vi editor;
view command; invokes the vi editor in read-only mode;
:! command; escape to the shell for the duration of one command;
:sh command; escape to the shell indefinitely;
ZZ command; writes the contents of vi buffer to current file and leaves editor;
:q! command; discards contents of vi buffer and leaves editor.

Getting Into Vi

There are two ways to invoke vi from the shell, one of which is to type

$ vi

optionally followed by the names of the files you want to edit. You can also invoke vi by typing

$ view

optionally followed by the names of the files you want to edit. View is the same editor as vi,
except that the readonly option is automatically set. This protects the contents of a file from being
aCcidentally overwritten or destroyed. View is used whenever you want to look at an important file,
but you do not want to change its contents.

Vi 31

Note that the readonly option can be disabled or overridden while you are in view. Nothing
prevents you from typing

:set noreadonly[RETURN]

which simply changes view into vi. Also, you can still overwrite the contents of a file when the
read only option is set by using a :w! command.

Getting Back to the Shell

You can get back to the shell temporarily in either of two ways. You can execute a shell
command while editing a file by typing

: !cmd[RETURN]

where cmd is the name oUhe shell command you want to execute. For example,

: !ls[RETURN]

prints a list of all the files in your working directory. Once the command has been executed,
you can either enter another command with :!, or you can continue editing where you left off by
pressing [RETURN]. If you press [RETURN], vi responds by clearing the screen and displaying the
text you were working on before the shell command was executed.

You can escape to a shell temporarily by typing

:sh[RETURN]

This puts you in a shell, where you can execute as many commands as you want. When you
want to continue editing, press ctrl-D. Vi clears the screen and displays the text you were working
on.

If a number argument is specified before the :! or :sh command, it is interpreted to be the new
window size (number of lines per screenful of text).

There are two ways to return to the shell permanently. If you want to save all your changes to the
current file and return to the shell. use the ZZ command. ZZ writes the contents of the vi buffer
onto the current file (if any changes have been made), and leaves the editor.

If you do not want to save the changes you have made to the current file, then use :q!. :q!
simply leaves the editor and discards the contents of the vi buffer. The file you were editing is left
unchanged. You should be very sure that this is what you want to do, since the contents of the vi
buffer are permanently lost.

If a number argument is specified before the :q! command, it is interpreted to be the new window
size (number of lines per screenful of text).

32 Vi

Material Covered:

.profile

EXINIT

.exrc

buffers 1-9

ctrl-V
z
ctrl-L
ctrl-G, :f

Vi Initialization

Miscellaneous Topics

file; automatically executed by the shell at login; can contain macros,
abbreviations, and option settings; must reside in your home directory;
variable; placed in .profile file; contains macro, abbreviation, and option
information;
file; contains ex and vi initialization constructs; this file is automatically
scanned by ex if EXINIT is not defined;
buffers; contain the last nine text deletions performed during the current edit
session;
operator; enable control characters to be inserted in file;
command; adjust and redefine window size;
command; refreshe the screen;
command; provide information about your current edit session.

Option settings, macros, and abbreviations last only the length of your editing session, after
which they either return to default settings or become undefined. If you do not want to bother
with resetting these things each time you invoke vi, you can put your option settings, macros, and
abbreviations in a file called . profile. This file is automatically executed by the shell when you log
in. The .profile file must reside in your home directory.

If you include vi information in your . profile , they must be placed in a string and set equal to the
variable EXINIT. EXINIT is a variable that is assumed by the system to contain information
pertinent to the vi editor. For example, to set the autoindent, autowrite, and number options and
define two macros, put the following two statements in your .profile file in your home directory:

EXINIT= 'set ai aw nulmap @ ddlmap # x'
export EXINIT

This EXINIT string sets the autoindent, autowrite, and number options and defines the two
macros @ and #, which delete one line and one character, respectively. Note that each set and
map is separated from the next by a vertical bar (I), and that the entire string is enclosed in single
quotes and set equal to EXINIT. The export command makes the information in EXINIT available to
all processes you create.

If EXINIT is not defined when vi is invoked, then vi looks for the file .exrc in your home directory. If
it is found, vi scans its contents, assuming that the information contained therein consists of various
commands for setting up mapping, abbreviations, options, etc.

Vi 33

If the amount of initialization for vi is extensive, it is usually more convenient to forget about EXINIT,
and use the .exrc file instead, since, to use EXINIT, the information must be specified in a string
enclosed in single quotes. This could prove to be a very long string if there is a lot of initialization to
do. Strings this size are normally hard to read and hard to input.

Appendix B at the end of this article contains a listing of the default .exrc file shipped with your
system. You are free to use this file as your own .exrc file if you wish. To do so, simply copy the file
letcld.exrc into your home directory, and rename it .exrc. Your system administrator may have
already done this for you. To find out, list the files in your home directory using Is -a.

Recovering Lost Lines

Vi has nine buffers, numbered 1 through 9, in which the last nine text deletions are automatically
stored. Thus, you can specify one of these buffers with the p or P command to recover a deletion.
For example, "3p puts the deleted text stored in buffer 3 into the vi buffer after or below the cursor.

The. command, which repeats the last command that made a change in your text, automatically
increments the buffer number if the last command referenced a numbered buffer. Thus, "lp
prints out all the text deleted in the last nine deletions. If you want to put a particular block of
deleted text back into your file, but you do not know which buffer to look in, you can perform a
sequence of commands like "lpu.u.u. (and so on), which prints the contents of each buffer until
you find the text you want. The u command gets rid of the unwanted text you encounter as you
search.

Note that text stored in buffers 1 through 9 is preserved between files (as long as you do not exit the
editor itself), so you may insert deleted text from one file into another by using buffers 1-9 and the p
or P command.

Entering Control Characters in Y our Text

If you need to put a control character in your text, you must precede the control character with a
ctrl-V. The ctrl-V causes a caret n to be printed on your screen, shOWing that the next character
is to be interpreted as a control character. For example, to enter a ctrl-L in your text, type

ctrl-V ctrl-L

This causes two characters, "'L", to be printed on your screen. If you try to backspace over them,
however, you can see that they are actually one character.

You may enter any control character into your file except one: the null character (ctrl-@). There is
also a restriction that applies to the line-feed character (ctrl-J). A \inefeed is not allowed to occur
anywhere except the beginning of a line, because vi uses the linefeed to separate lines in your file.

34 Vi

Adjusting the Screen

If a transmission error or the output from a program causes your screen to become cluttered, you
can refresh the screen by pressing ctrl-L. Vi clears the screen and reprints the text you were
working on.

The zcommand is used to position specific lines on the screen. z[RETURN] places the current
line at the top of the window, z. places the current line in the middle of the window, and z­
places the current line at the bottom of the window. If a number argument n is specified after z but
before the modifier, then the window size is changed to be n lines long after z has executed. If n is
specified before z, then z places line number n (instead of the current line) at the top, middle, or
bottom of the new screen. For example, zlO- places the current line at the bottom of a lO-line
window. Also, 6z. places line number 6 at the middle of the screen, leaving the window size
unchanged.

Printing Your File Status

If you are editing a file and lose track of where you are in the file, or if you forget the name of the
file you are editing, the ctrl-G command can help you. In response to the ctrl-G command, vi
prints the name of the file you are editing, the number of the current line, the number of lines in
the buffer, and how much of the buffer you have already edited (expressed as a percentage). The
:f command is a synonym for ctrl-G.

Vi 35

Appendix A: Character Functions

This appendix gives the vi meanings associated with each character in the ASCII character set. The
characters are presented in the following order: control characters, special characters, digits,
upper-case characters, and lower-case characters. For each character, its meaning is given as a
command and during an insert, as appropriate. (Note that the control key (CTRL) is represented by
A in the following list):

A@

AH (BS)

AI (TAB)

AJ (LF)
AK
AL (FF)
AM (CR)

36 Vi

Not a command character. If it is typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 characters are
saved from the last insert; if more characters were inserted, the mechanism is not
available. A A@ cannot be part of the file text due to the editor's implementation.
Unused.
Moves backward one page. A preceding integer specifies the number of pages to move
over. Two lines of continuity are kept if possible.
Unused.
As a command, scrolls forward one half of a page. A preceding integer specifies the
number of logical lines to scroll for each command. This integer is remembered for all
future AD and AU commands. During an insert, AD backtabs over autoindent white
space inserted at the beginning of a line. This white space cannot be backspaced over.
Exposes one more line at the bottom of the screen, leaving the cursor at its present
position, if possible.
Moves forward one page. A preceding integer specifies the number of pages to move
over. Two lines of continuity are kept if possible.
Prints the name of the current file, whether it has been modified, the current iine
number, the number of lines in the file, and how much of the buffer you have already
edited (expressed as a percentage).
Same as left arrow (see h). During an insert, eliminates the last input character,
backing over it but not erasing it. The character remains so you can see what you typed
if you wish to type something only slightly different.
Not a command character. When inserted, it prints as some number of spaces. When
the cursor is at a tab character, it rests at the last of the spaces which represent the tab.
The spacing of tabstops is controlled by the tabstop option.
Same as down arrow (see j).
Unused.
Causes the screen to be cleared and redrawn.
Advances to the next line, at the first printable character on the line. If preceded by an
integer, vi advances that many lines. During an insert, AM causes the insert to continue
onto another line.
Same as down arrow (see j).
Unused.
Same as up arrow (see k).
Not a command character. In input mode, AQ quote the next character, the same as AV,
except that some teletype drivers do not allow AQ to be seen by vi. Use AV instead.
Redraws the current screen, eliminating logical lines not corresponding to physical lines
(lines with only a single @ character on them). On hardcopy terminals in open mode,
AR retypes the current line.

AZ
A[(ESC)

SPACE

Unused.
Not a command character. During an insert, with autoindent set and at the beginning
of the line, inserts shiftwidth white space.
Scrolls up one page. A preceding integer specifies the number of lines to scroll. This
integer is remembered for all future AD and AU commands. On a dumb terminal, AU will
clear the screen and redraw it further back in the file.
Not a command character. In input mode, AV quotes the next character so that it is
possible to insert non-printing and special characters into the file, and include special
characters in macros, abbreviations, etc.
Not a command character. During an insert, AW mimics a b command, thus deleting all
inserted characters from the current cursor location to the beginning of the previous
word. The deleted characters remain on display. (See AH).
Unused.
Exposes one more line at the top of the screen, leaving the cursor in its present position,
if possible.
Unused.
Cancels a partially formed command, such as a z command when no following
character has yet been given. lt also terminates inputs on the last line (read by
commands such as :, I, and ?), and ends insertions of new text into the buffer. If an
ESC is given when quiescent in command state, the editor rings the bell or flashes the
screen. You can thus press ESC if you don't know what is happening until the editor
rings the bell.
Unused.
Searches for the word which immediately follows the cursor. lt is eqUivalent to typing
the ex command :ta, followed by that word, followed by RETURN.

(Control-A), equivalent to the ex command :e #, which returns you to the previous
position in the last edited file, or edits a file you specified if you got a "No write since
last change" diagnostic, and you don't want to type the file name again. (In the latter
case, you will have to do a :w before AA will work. If you don't want to write the file,
then do a :e! # instead).
Unused.
Same as right arrow (see I).
An operator which processes lines from the buffer with reformatting commands.
Follow! with the object to be processed, and then the command name terminated by
RETURN. Doubling! and preceding it by a count causes count lines to be filtered;
otherwise the count is passed on to the object after the!. Thus, 2!}sort, followed by
RETURN, sorts the next two paragraphs by running them through the sort command.
To read a file or the output of a command into the buffer use :r. To simply execute a
command use:!.
Precedes a named buffer specification. There are named buffers 1 - 9 used for saving
deleted text, and named buffers a - z into which text can be placed.
The macro character which, when followed by a number, will substitute for a function
key on terminals without function keys. In input mode, if this is your erase character, it
will delete the last character you typed in input mode, and must be preceded with a "'"
to insert it, since it normally backs over the last input character you gave.

Vi 37

$

%

&

*
+

o

1-9

<

38 Vi

Moves to the end of the current line. If you execute :set list, then the end of each line
will be shown by printing a $ after the end of the displayed text in the line. Given a
count, $ advances to the end of the line that many lines from the current line (Le. 3$
advances to the end of the line two lines after the current line).
Moves to the parenthesis or brace which balances the parenthesis or brace at the
current cursor position.
A synonym for the ex command, :&.
When followed by another I, returns to the previous context at the beginning of a line.
The previous context is set whenever the current line is moved in a non-relative way.
When followed by a letter a - z, returns to the line which was marked with this letter
with the m command, at the first non-space character in the line. When used with an
operator, such as d, the operation takes place over complete lines.
Moves to the beginning of a sentence, or to the beginning of a LISP s-expression if the
lisp option is set. A sentence ends at a" !, or? which is followed by either the end of a
line or by two spaces. Any number of closing),], ", and I characters may appear after
the " !, or ?, and before the spaces or end of line. Sentences also begin at paragraph
and section boundaries. A count advances that many sentences.
Advances to the beginning of a sentence. A count repeats the effect. See the
description of (above for a description of a sentence.
Unused.
Same as carriage-return when used as a command.
Reverses the last f, F, t, or T command, looking the other way in the current line. A
count repeats the search.
Moves to the previous line at the first non-white-space character. This is the inverse of
+ and RETURN. If the iine moved to is not on the screen, the screen is scrolled, or
cleared and redrawn if this is not possible. If a large amount of scrolling would be
required, the screen is also cleared and redrawn, with the current line at the center.
Repeats the last command which changed the vi buffer. Especially useful when
deleting words or lines; you can delete some words/lines and then hit, to delete more
words/lines. Given a count, it passes it on to the command being repeated.
Used to initiate a forward search for a pattern. If you press / accidentally, you can use
BACKSPACE to return to your previous position.
Moves to the first character on the current line. Also used to form numbers after an
initial 1 - 9.
Used to form numeric arguments to commands.
A prefix to a set of commands for file and option manipulation and escapes to the
system. Input is given on the bottom line and terminated with RETURN, and the
command is then executed. You can return to your previous position by pressing DEL
or RUB if you press: accidentally.
Repeats the last single character search using f, F, t, or T. A count iterates the basic
scan.
An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, < affects lines when repeated, as in «. Counts cause < to act on more
than one line.
Re-indents a line for LISP, as though the line was typed in with the lisp and autoindent
options set.

> An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects lines
when repeated, as in > >. A count causes> to act on more than one line.

7 Initiates a backwards search for a pattern. If you press / accidentally, you can use
BACKSPACE to return to your previous position.

@! A macro character. If this is your kill character, you must escape it with a '" to type it in
during input mode, as it normally backs over the input you have given on the current
line.

A Appends at the end of a line, a synonym for $a.
B Backs up one word, where words are composed of non-blank sequences, placing the

cursor at the beginning of the word. A count repeats the command.
C Changes the rest of the text on the current line; a synonym for c$.
D Deletes the rest of the text on the current line; a synonym for d$.
E Moves forward to the end of a word. A count repeats the command.
F Finds a single following character, backwards in the current line. A count repeats the

search.
G Moves to the line number 8iven as a previous argument, or the end of the file if no

preceding argument is given. The screen is redrawn with the new current line in the
center if necessary.

H Homes the cursor to the top line of the screen. If a count is given, the cursor is moved
to the count-th line on the screen. In all cases, the cursor is moved to the first non­
white-space character on the line.

I Inserts at the beginning of a line; a synonym for 'i.
J Joins lines together, supplying appropriate white space: one space between words, two

spaces after a ., and no spaces at all if the first character of the line to be appended is).
A count causes that many lines to be joined rather than the default two.

K Unused.
L Moves the cursor to the first non-white-space character of the last line on the screen. If

a count is given, the cursor is moved to the first non-white-space character of the
count-th line from the bottom.

M Moves the cursor to the middle line on the screen, at the first non-space character.
N Scans for the next match of the last pattern given to / or 7, but in the opposite direction.
o Opens a new line above the current line and inputs text there, up to an ESC.
P Puts the last deleted text back before or above the cursor. The text goes back as whole

lines above the cursor if it was deleted as whole lines. Otherwise, the text is inserted
before the current location of the cursor. May be preceded by a buffer name to retrieve
the contents of that buffer.

Q QUits from vi and goes to ex mode. In this mode, whole lines form commands, ending
with RETURN. All: commands can be given; the editor supplies the: prompt.

R Replaces characters on the screen with characters you type (overlay fashion).
Terminates with ESC.

S Changes whole lines; a synonym for cc. A count substitutes for that many lines. The
line~ are saved in numeric buffers, and erased on the screen before the substitution
begins.

T Tak~s a single following letter, locates the character before the cursor in the current line,
and places the cursor just after that character. A count repeats the command that many
times.

Vi 39

U Restores the current line to its state before you started changing it.
V Unused.
W Moves forward to the beginning of a word in the current line, where words are defined

as sequences of non-space characters. A count repeats the command.
X Deletes the character before the cursor. A count repeats the command, but only

characters on the current line are deleted.
Y Yanks a copy of the current line into the unnamed buffer, to be put back by a later p or

P. A count yanks that many lines. Can be preceded by a buffer name to put text into
that buffer.

ZZ Exits the editor (same as :x). If any changes have been made, the buffer is written out
to the current file, and the editor terminates.

[[Backs up to the previous section boundary, which is marked by a particular macro
invocation (the names of which are specified in the sections option), or by "L
(formfeed). Lines beginning with { also stop [[, making it useful for looking backwards
through C programs. If the lisp option is set, [[also stops at each (it finds at the
beginning of a line.

"" Unused.
II Moves forward to a section boundary (see description of [[).

Moves to the first non-space character on the current line.
(Underscore) Unused.
When followed by a " returns to the previous context. The previous context is set
whenever the current line is moved in a non-relative way. When followed by a lower­
case letter, returns to the position which was marked with this letter with an m
command. When used with an operator such as d, the operation takes place from the
exact marked place to the current position within the iine; if you use;, the operation
takes place over complete lines.

a Appends arbitrary text after the current cursor position. The insert can continue onto
multiple lines by using RETURN within the insert. A count causes the inserted text to be
replicated, but only if the inserted text is all on one line. The insertion terminates with
ESC.

b Backs up to the beginning of a word in the current line. A word is a sequence of
alphanumerics, or a sequence of special characters. A count repeats the command.

c An operator which changes the following object, replacing it with the following input
text up to an ESC. If more than part of a single line is affected, the text which is being
changed is saved in the numeric named buffers. If only part of the current line is
affected, then the last character to be changed away is marked with a $. A count
causes that many objects to be changed.

d An operator which deletes the folloWing object. If more than part of a line is affected,
the text is saved in the numeric buffers. A count causes that many objects to be
affected.

e Advances to the end of the next word. A count repeats the command.
Finds the first instance of the next character following the cursor on the current line. A
count repeats the command.

g Unused.
h Left arrow. Moves the cursor one character to the left. Like the other arrow keys,

either h, the left arrow key, or one of the synonyms ("H) has the same effect. A count
repeats the command.

40 Vi

k
I
m

n
o
p
q
r

s

u

v
w
x

y

z

'? (DEL)

Inserts text before the cursor. Otherwise, i is like a.
Down arrow. Moves the cursor down one line in the same column. If the position does
not exist, vi comes as close as possible to the same column. Synonyms include 'J
(linefeed) and 'N.
Up arrow. Moves the cursor up one line in the same column. Synonym is 'P.
Right arrow. Moves the cursor one character to the right. SPACE is a synonym.
Marks the current position of the cursor in the mark register which is speCified by the
next character (a - z). Return to this position or use with an operator by preceding the
mark letter with' or '.
Repeats the last search specified with / or ?
Opens a new line below the current line. Otherwise, 0 is like O.
Puts text after/below the cursor. Otherwise, p is like P.
Unused.
Replaces the single character marked by the cursor with a single character you type.
The new character may be a RETURN (this is the easiest way to split lines). A count n
replaces the next n characters with the character you type.
Changes the single character marked by the cursor to thetext which follows, up to an
ESC. Given a count, that many characters are replaced by the text. The last character
to be changed is marked with a $.
Advances the cursor up to the character before the next character typed on the current
line. A count repeats the command.
Undoes the last change made to the current buffer. If repeated, will alternate between
these two states. It is thus its own inverse. When used after an insert which inserted
text on more than one line, the lines are saved in the numeric buffers.
Unused.
Advances to the beginning of the next word. A count repeats the command.
Deletes the single character marked by the cursor. A count causes that many
characters to be deleted. Works only on the current line.
An operator which yanks the following object into the unnamed temporary buffer. If
preceded by a buffer name, the text is placed in that buffer also. Text can be recovered
with a later p or P.
Redraws the screen with the current line placed as specified by the follOWing character:
RETURN specifies the top of the screen, . specifies the center of the screen, and -
specifies the bottom of the screen. A count may be given after z and before the
following character to specify the new window size for the redraw. A count before z
gives the number of the line to place in the center of the screen instead of the current
line.
Moves to the beginning of the preceding paragraph. A paragraph begins at a macro
invocation defined in the paragraphs option, and at the beginning of a section. A
paragraph also starts at a blank line.
Places the cursor on the character in the column specified by the count.
Advances to the beginning of the next paragraph. See { for the definition of a
paragraph.
Unused.
Interrupts the editor, returning it to command mode.

Vi 41

Appendix B: Example .exrc File

The following is a reproduction of the default .exrc file shipped with your system. It is useful as an
example of how it can be used to set up certain vi and ex parameters prior to your editing session.
These contents can be changed at any time should the need arise to customize the editors for a
particular application. Also, note that the line numbers in the following listing do not appear in the
file, but are included to clarify the explanatory material that follows.

1 set autoindent autowrite showmatch wrapmargin = 0 report = 1
2 map 'W :set wrapmargin =8'M
3 map '2 '!}sort _bAM
4 map 'x {!}sort _bAM
5 map '[h IG
6 map '[H IG
7 map '[F G
8 map '[V '8
9 map '[U 'F

10 map '[T 'Yk
11 map '[S 'Ej

12 map '[Q
13 map '[P x
14 map '[l 0
15 map '[M dd
16 map '[K D
17 map '[J DjdG$
18 map! '[A 'V
19 map! '[D 'H
20 map! '[C 'V
21 map! '[8 'M
22 map! '[l 'M
23 map! '[Q '[

24 map! '[R '[

In the above, the' character indicates that the CTRL (control) key is held down while the next
following key is pressed. The '[sequence is the escape sequence, and is eqUivalent to the ESC key
(if any) on your terminal. Here is a line-by-line description of the contents of the default .exrc file:

42 Vi

LINE ACTION

1 enables the autoindent, autowrite, and showmatch options, sets the wrapmargin option
to 0, and sets the report option to one line.

2 maps the control-W sequence to the ex command:

:set wrapmargin = 8

The control-M at the end of the sequence is a carriage-return. This is entered into the .exrc

file by pressing control-V followed by a carriage-return.
3 maps the control-Z sequence to a shell escape sequence. This sequence pipes the data from

the beginning of the current line to the end of the current paragraph into the sart(1)
command.

4 maps the control-X sequence to a shell escape sequence. This sequence pipes the data
from the beginning of the current paragraph to the end of the current paragraph into the
sart(1) command.

5 maps escape-h, a sequence often transmitted by the HOME key, to the editor command IG
(go to line one of the file). This enables you to use the HOME key while editing in vi.

6 performs the same function as line 5.
7 maps escape-F, the sequence transmitted by the HOME DOWN key, to the editor command

G (go to the last line of the file). This enables you to use the HOME DOWN key while editing
in Vl.

8 maps escape-V, the sequence transmitted by the PREV PAGE key, to the editor command
"B (go back one page). This enables you to use the PREV PAGE key while editing.

9 maps escape-U, the sequence transmitted by the NEXT PAGE key, to the editor command
"F (go forward one page).

10 maps escape-T, the sequence transmitted by the ROLL DOWN key, to the editor commands
"Yk (scroll up one line; move cursor down one line).

11 maps escape-S, the sequence transmitted by the ROLL UP key, to the editor commands "Ej
(scroll up one line; move cursor down one line).

12 maps escape-Q, the sequence transmitted by the INSERT CHAR key, to the editor command
i (start insert mode).

13 maps escape-P, the sequence transmitted by the DELETE CHAR key, to the editor command
x (delete current character).

14 maps escape-L, the sequence transmitted by the INSERT LINE key, to the editor command
o (create a new line above the current line, and start insert mode).

15 maps escape-M, the sequence transmitted by the DELETE LINE key, to the editor command
dd (delete current line).

16 maps escape-K, the sequence transmitted by the CLR LINE key, to the editor command 0
(delete to the end of the current line).

Vi 43

17 maps escape-J, the sequence transmitted by the CLR DISPLAY key, to the editor commands
DjdG$ (delete to end of line, go down one line, delete to end of file).

18 maps escape-A, the sequence transmitted by the UP ARROW key, to the sequence 'v
(causes cursor to move one space to the right) when it is used in insert mode (map! causes a
key to be defined in insert mode only).

19 maps escape-D, the sequence transmitted by the LEFT ARROW key, to the sequence 'H
(causes cursor to move one space to the left) when it is used in insert mode.

20 maps escape-C, the sequence transmitted by the RIGHT ARROW key, to the sequence 'V
(causes cursor to move one space to the right) when it is used in insert mode.

21 maps escape-B, the sequence transmitted by the DOWN ARROW key, to the sequence 'M
(carriage-return) when it is used in insert mode.

22 maps escape-L, the sequence transmitted by the INS LINE key, to the sequence 'M
(carriage-return) when it is used in insert mode. This makes the INS LINE key have the same
definition in vi as it has in REMOTE mode.

23 maps escape-Q, the sequence often transmitted by the INS CHAR key, to the escape key
during insert mode.

24 maps escape-R, the sequence often transmitted by the INS CHAR key, to the escape key
during insert mode.

44 Vi

Table of Contents

The Ed Editor
Creating an Ordinary File .. l
Getting Acquainted with Ed ... 2

Invoking Ed ... 2
Prompting ... 3
Error Messages .. 3

Moving Around in the File ... 3
Line Pointers .. .4

Pointer to the Current Line .. .4
Pointer to the Last Line ... 6
Setting Pointers to Lines ... 7

Searching for Strings .. 8
Forward Searches .. 8
Backward Searches .. 9
Repeating a Search .. 9
Line Number Arithmetic with Searches ... 9
Using Metacharacters With Searches ... 10

Adding, Deleting, and Correcting Text ... 12
Printing Lines .. 13
Appending Text. .. 14
Inserting Text. .. 15
Deleting Text , .. 15
Undoing Commands ... 16
Changing Lines ... 16
Moving Lines ... 17
Copying Lines ... 18
Modifying Text Within a Line ... 19
Making Commands Effective Globally .. 22
Joining Lines Together .. 25
Splitting Lines Apart .. 25

Special Ed Commands .. 26
Finding the Currently Remembered File Name ... 26
Writing Buffer Text Onto a File ... 27
Reading Files Into the Buffer .. 28
Editing Other Files ... 29
Silencing the Character Counts .. 30
Encrypting and Decrypting Text ... 31

The Shell Interface .. 33
Escaping to the Shell Temporarily .. 33
Exiting the Editor ... 34

Miscellaneous Topics .. 35
Interrupting the Editor .. 35
Editing Scripts .. 35

ii

The Ed Editor

Ed is an interactive, line-oriented text editor. Its purpose is to enable you to create ordinary files,
and to add to, delete, or modify the text in those files.

Creating an Ordinary File
The remainder of this chapter contains several examples illustrating ed commands. These ex­
amples are more instructive if you try each of them on some text of your own. Thus, create an or­
dinary file by typing in the commands and text shown below in bold (portions of the example text
shown below are taken from A User Guide to the UNIX System, by Rebecca Thomas and Jean
Yates).

$ ed testfile
?testfile
a
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

w
461
q

$

Be sure to type in the text exactly as it is shown above. The mistakes are corrected later in the ex­
amples.

1

Getting Acquainted with Ed
Material Covered:

ed
edfile
p

h
H

command; invokes ed without a file name argument;
command; invokes ed with a file name argument;
command; enables/disables ed prompt (*);
command; explains the last question mark given by ed;
command; enables/disables verbose error messages; explains the last question
mark given by ed, and all future question marks.

Invoking Ed
Ed can be invoked in one of two ways. The first is to simply type ed, followed by [RETURN]. For
example,

$ed

invokes ed without a file name argument. When invoking ed this way, you must specify the file
you want to edit with a separate command. It is more common to invoke ed by typing

$ edfilename

where filename is the name of the file you want to edit. This combines the two separate com­
mands mentioned above into a single command.

Ed responds differently depending on whether or not the file already exists. Try creating a new file
called newfile:

$ ed newfile
?newfile

Ed responds with "?newfile", which means that ed cannot find that file in your working directory.
This is to be expected, since the file does not yet exist. Ed is now waiting for your commands to
create and edit newfile.

2 Ed

If the file already exists, ed reads its contents into a buffer named /tmp/e#, where # is the number
of the process running ed. Ed then displays a count of the characters contained in that file. You
have a file called testfile in your working directory. You are probably still in ed from the previous
example, so type q[RETURNj to exit ed, then edit testfile by typing

$ ed testfile
461

Ed tells you that testfile currently contains 461 characters. Do not exit ed this time, but leave it in
its current state. The examples that follow pick up where you left off above.

Prompting
One of the most noticeable features of ed is its lack of prompts. When you type in a command,
ed attempts to execute it, and, if successful, ed returns silently to you for another command. If
an error is encountered, or a command cannot be executed for some reason, ed prints a question
mark, and then silently waits for you to figure out the problem.

Many people find this silence desirable, but for those who do not, there are commands that make ed
more friendly. The P command causes ed to prompt you with an asterisk (*). Executing the P
command again turns off the prompt. By default, elf s prompt is disabled.

Error Messages
As mentioned above, ed's default error message is a single question mark (7). As you gain ex­
perience with ed, these question marks become easier to interpret, but for the beginning user, it can
be somewhat difficult to discover the problem. Fortunately, ed provides commands to eliminate this
vagueness. The h command explains the last question mark printed by ed. The H command also
explains the last question mark, but also causes a more deSCriptive explanation of the problem to
replace all future question marks. Executing the H command again disables the descriptive ex­
planation.

Ed 3

Material Covered:

p
+n
-n
$

k
/ '" /

? ... ?

"'-n
$

[...]

Moving Around in the File

(dot) pointer to the current line;
operator; yields line number;
command; prints specific lines;
operator; increments dot by n; default n = 1;
operator; decrements dot by n; default n = 1;
pointer to the last line of the file;
shorthand notation for the range" 1,$";
shorthand notation for the range "., $ " ;
command; creates a pointer to a specific line;
command; initiates a forward search for the string of characters enclosed
between the slashes;
command; initiates a backward search for the string of characters enclosed
between the question marks;
metacharacter; matches any single character when used in a search string;
metacharacter; strips away the special meaning (if any) of the character n
when used in a search string;
metacharacter; when specified as the last character in a search string,
matches the string at the end of a line;
metacharacter; when specified as the first character in a search string,
matches the string at the beginning of a line;
metacharacter; matches zero or more adjacent occurrences of the character
n when used in a search string;
metacharacters; match anyone of the characters enclosed between them
when used in a search string;
metacharacter; stands for "any character except" when specified as the first
character inside [...], causing the braces to match anyone character not en­
closed between them;
metacharacters; match a specified number of occurrences of the single
character enclosed between them when used in a search string.

Your position in a file is always relative to a specific line. Ed does not provide commands that
move you from character to character. There are five commands that enable you to reference
specific lines in a file.

Line Pointers
Of the five commands mentioned above, three are pointers to specific lines in the file.

4 Ed

Pointer to the Current Line

Ed maintains a line pointer called dot (.), which always points to the current line in the file.
The current line is defined to be the last line affected by an ed command. The following table
lists some of the more common ed operations, and the value of dot after these operations have been
performed:

After this operation ... Dot points to ...

Invoking ed Last line of file.

Search for pattern Closest line containing pattern, relative to
your previous position.

Delete last line of file New last line of file.

Delete line(s) other than last line Line following last deleted.

Appending, inserting, or changing text Last line entered.

Read from a file Last line read in.

Write to a file Your previous position; dot is not changed.

Substitute new text for old text Last line affected by subsitution.

Execute a shell command Your previous position; dot is not changed.

Set a line pointer Your previous position; dot is not changed.

Any unsuccessful or erroneous command Your previous position; dot is not changed.

Dot can be used as a line number argument for ed commands. Assuming you are still editing test­
file, type

.p
to the file.

The p command prints specific lines from the ed buffer, thus .p prints the current line. Note that
dot is automatically set to the last line of the file when you first begin editing. You can also specify a
range of line numbers with dot. For example,

.-3,.p
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

Ed 5

prints the last four lines of the file. Has the value of dot changed? No, because the last line affec­
ted by the p command was still the last line of the file. Now try

.-5,.-3p
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is'" '" *.
important to note that ed always makes changes to the

which prints the fifth line before dot to the third line before dot. What is dot's value now? Find out
by typing

.p
important to note that ed always makes changes to the

Dot is now set to the last line affected by the previous p command.

Note that dot need not be typed when specifying ranges. Whenever ed sees the + and­
operators, ed assumes that they refer to the current value of dot. For example,

-2,+2p
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
originai file are not changed until you write the changes

prints the range of lines from two lines before dot to two lines after dot. Dot is set to the last line
printed.

The + and - operators can be used independently to increment or decrement dot by one,
respectively. For example, the command

--,+p
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the range of lines from dot decremented by two to dot incremented by one. Also, you can
step forward through your text, one line at a time, with a series of plus signs, or step backward with
a series of minus signs. Note that [RETURN] is equivalent to +. [RETURN] increments dot by one
and prints the resulting current line.

6 Ed

The p command provides one other shortcut. Whenever a line number, or one or more operators
pointing to a line, appear on a line by themselves, the p command is assumed. Some examples are:

8
original file are not changed until you write the changes

ed keeps a copy of the file you are editing. It is'" '" *.
++
copy of yourrr file in the buffer. The contents of the

If a range appears on a line by itself, only the last line of the range is printed. For example,

-,+
original file are not changed until you write the changes

You can find out the current value of dot by typing

8

which tells you that dot is currently pointing to the eighth line of the file.

Note that you cannot manually set the value of dot. A command like

.=6
?

produces an error. Ed reserves to itself the right to change the value of dot, although you may
indirectly change dot's value through ed commands.

Pointer to the Last Line

Ed also maintains a pointer, called $, which always points to the last line of the file. For example,

$
to the file.

prints the last line of the file. $ can also be used in ranges, as in

1,$-6p
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds

Ed 7

which prints the first three lines of testfile. Also,

+4,$p
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

prints the last three lines of the file. Note that the + and - operators can apply to $ only when $ is
explicitly typed. By themselves, + and - always apply to dot.

You can find out the value of $ by typing

$=
9

which tells you that the ninth line is the last line in the file. Note that = does not change the value of
dot.

The value of $ changes only when a command creates a new last line. $ is not user-settable.

Because the "1,$" and" .,$" ranges are so commonly used when editing with ed, ed provides a
shorthand notation for each range. The comma can be used in place of "1,$", so that ,p prints all
the lines in the file. Also, the semicolon means the same thing as ".,$", so ;p prints all the lines
from the current line to the end of the file,

Setting Pointers to Lines

The k command creates a pointer to a specific line, so you can reference that line without
knowing its line number. The pointer name must be a lower-case letter. Creating a pOinter does
not change the value of dot. For example,

to the file.
-4ka
-2kb

to the file.

creates two pointers, a and b, which point to the fourth line before dot, and the second line be­
fore dot, respectively. Note that dot does not change.

8 Ed

To reference a line with a line pointer you have created, precede its letter name with a single
quote n, as in

-a:bp
ed keeps a copy of the file you are editing. It is'" '" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the

which prints all lines from the line pOinted to by a to the line pointed to by b.

A pointer set by the k command always points to the same line, ewm if that line's line number
changes. Thus, the k command does not create pointers to specific line numbers, but to specific
lines.

Once a pointer has been created, the only way to delete it is to delete the line it points to. Oth­
erwise, that pointer continues to exist until your editing session is over. You can, however, re­
assign a pointer to another line, as in

-ap

ed keeps a copy of the file you are editing. It is'" '" *.
2ka
-ap
texct entry mode. In command mode, the edytor interprets

which re-assigns a to the second line of the file.

You can find out the current line number of a pointer by typing

-a=
2
-b=
7

which tells you that a is currently pointing to line number 2, and b is currently pointing to line num­
ber 7.

Ed 9

Searching for Strings
Ed provides a facility which enables you to search for a particular string of characters in your file.
A string of characters searched for in this manner is called a pattern.

Forward Searches

To initiate a forward search, enclose the pattern between two slashes, and press [RETURN]. For
example,

/unput/
your unput as a command. In text entry mode, ed adds

searches for the pattern "un put". If the pattern is found, dot is set to the line containing the pattern,
and the line is printed on your screen. An unsuccessful search looks like this:

/bob/
?

The value of dot is unchanged.

Ed searches forward in your file, starting with the line following the current line. If your pattern
has not been found by the time ed gets to the end of the file, ed wraps around to the beginning of
your file and continues looking. Ed searches until the pattern is found, or until ed reaches the line
prior to the starting line of the search.

Backward Searches

You can search backwards in your file by enclosing the pattern between two question marks.
For example,

?file?
to the file.

searches backwards from the current line, looking for a line containing the string "file". Ed
found the pattern after wrapping around to the end of the file.

Repeating a Search

Ed remembers the last pattern that was matched. Thus, if you want to repeat a search, you simply
type two slashes or question marks. The pattern itself need not be re-typed. For example,

10 Ed

?file?
original file are not changed until you write the changes
??
copy of yourrr file in the buffer. The contents of the
??
ed keeps a copy of the file you are editing. It is'" '" *.

initiates a backward search for the pattern II file II , then finds the next two instances of II file ". Note
that a repeated search need not be in the same direction as the initial search. For example,

/buffer/
copy of yourrr file in the buffer. The contents of the
??
your input to the text located in a special buffer where

initiates a forward search for II buffer ", then repeats the search backwards.

Line Number Arithmetic with Searches

The + and - operators can be used with searches to position yourself at specific lines. For ex­
ample,

/note/ +
copy of yourrr file in the buffer. The contents of the

searches forward for a line containing II note II , and positions you on the following line. Also,

?text?
your input to the text located in a special buffer where
??--
The ed editor operates in two modes: command mode and

searches backwards for the second line containing II text ", and positions you two lines before it.

Note that, although searches have wrap-around capabilities, the + and - operators do not. Thus,
an error results if a + or - operator attempts to increment or decrement dot to values greater than
$, or less than one.

The = operator can be used with forward and backward searches to find the line number refer­
red to by the search, as in

/unput/=
3

Note that dot is not set to the line containing II unput II in the last example, because = does not
change the value of dot.

Using Metacharacters With Searches

There are several characters that have special meaning within the context of a search. These
characters, consisting of., *, [,], " $, ,""" '""'{, and '""'}, are called metacharacters.

Ed 11

The. metacharacter matches any single character except a new-line. Thus, the search

I.nputl
your unput as a command. In text entry mode, ed adds
II
your input to the text located in a special buffer where

first matches "unput" in line 3, and then, when repeated, matches "input" in line 4.

The * metacharacter matches zero or more occurrences of the character immediately preceding it.
For example,

lyour*1
ed keeps a copy of the file you are editing. It is", '" *.

matches" you" in the line displayed. Ed stops searching when it finds the first string of charac­
ters that matches the given pattern. Thus, "your" or "yourrr" can also be matched with the
above search, depending on the current line when the search is initiated.

The last example shows that, even though an "r" is explicitly typed in lyour*l, there need not
be an "r" in the string of characters that are actually matched. This is because zero occurrences
of the preceding character is considered a legal match when the asterisk is used. Keeping this in
mind, consider the search Ir*l. Is it useful? No, because zero or more r's can be found on every
line in the file. If you want to search for one or more r's, type Irr*l.

The "'{ and "'} metacharacters enable you to control how many occurrences of a particular
character are matched. For example, the search Ig"'{4"'}1 finds a string of four g's. The integer
between the two metacharacters specifies how many instances of the preceding character are to be
matched. Note that this construct matches exactly four g's, not four or more. Thus, "yourrr" can
be matched by

Ir '" {3 ",}I
copy of yourrr file in the buffer. The contents of the

If you put a comma after the integer, the", { ... "'} construct matches at least the speCified num­
ber of occurrences. For example, 133.3",{4,,,,}1 matches "33.", followed by at least four 3's.
Finally, two integers separated by a comma can be placed in the", { '" "'} construct to define an in­
clusive range which specifies the number of occurrences to match. An example is
1-13'" {2,5"'} I-I, which matches -1331-, -13331-, -133331-, or -1333331-.

The [and 1 metacharacters match anyone of the characters enclosed between them. For ex­
ample, Ih[iaultl matches "hit", "hat", or "hut". A range of characters can be specified by typing
the beginning and ending character of the range, separated by a minus sign. An example is
l[a-zA-Z][O-9][O-91*1, which searches for a single upper- or lower-case letter, followed by one or
more digits (the * applies only to the [... 1 construct immediately preceding it). The minus sign
loses its special meaning within the [... 1 construct if it occurs at the beginning (after an initial ., if
any), or at the end of the character list.

12 Ed

If the first character after the left bracket is a circumflex n, then the ['"] construct matches any
single character not included between the brackets. For example, WO-9]['0-9]*1 matches one or
more occurrences of any character except a digit. The A has special meaning in the [...] construct
only when it is the first character after the left bracket.

Note that the metacharacters ., *, [, ",-, $, "'-{, and "'-} have no special meaning when listed within
the [...] construct. Also, the right bracket does not terminate the construct if it is the first character
listed after the left bracket (after an initial A, if any). For example, 1[]a-r]1 searches for a single
right bracket, or a lower-case letter in the range a through r.

The A is also special when typed at the beginning of a string within a search, and requires that the
string be matched at the beginning of a line. For example,

redl
ed keeps a copy of the file you are editing. It is "'-"'- *.

searches for a line beginning with "ed". The A is special only when typed at the beginning of a
search string. If A is embedded in a pattern, or if it is the only character in the pattern, it is matched
literally.

The various ways to use A can be illustrated with rTa-z]/. The first A means" match the following
pattern at the beginning of a line". The second A is literal; it has no special meaning. The third A, as
the first character inside the brackets, means "match any single character except". Thus, this
search looks for a A, followed by any single character except a lower-case letter, occurring at the
beginning of a line.

The $ metacharacter is special when typed at the end of a string within a search, and requires that
the string be matched at the end of a line. For example,

land$1
The ed editor operates in two modes: command mode and

searches for a line ending with "and". Also, rTEST$1 searches for a line consisting of the single
word "TEST".

The $ is special only when typed at the end of a search string. When embedded in the string,
the $ is matched literally.

The "'- (backslash) metacharacter is used to strip away the special meaning associated with a
metacharacter. This is useful when you need to match a metacharacter literally in a string. To strip
away the speCial meaning of a metacharacter, simply precede it with ",-. For example,

1 "'- "'- "'- "'- "'- * ",-. $ 1
ed keeps a copy of the file you are editing. It is"'- "'-*.

Ed 13

matches the string "" "*. " at the end of a line. Note that "itself must also be preceded with
" to be matched literally. If you attempt to match the string without using the " (as in
I" "* .$/), ed interprets the search to mean "search for zero or more occurrences of a backslash
followed by any single character at the end of a line", which is obviously not what you want.
Also,

lfile ".$1
to the file.

matches" file. " at the end of a line. If you are ever in doubt about whether or not a character has
special meaning, it is safe to precede it with " just to be sure. If the character has no special
meaning, then the" is ignored.

Adding, Deleting, and Correcting Text
Material Covered:

command; list specific lines;
n command; print lines with line numbers;
a command; append lines of text after current line;

command; insert lines of text before current line;
d command; delete lines of text;
c command; change lines of text;
m command; move lines of text;

command; copy lines of text;
command; join lines together;

s command; substitute new text for old text;
9 command; global; perform command list on selected lines of entire file;
G command; interactive global; on each line selected in the entire file, perform a

user-specified command;
v command; global; perform command list on all lines not selected in the entire

file;
V command; interactive global; on each line not selected in the entire file, perform

one user-specified command;
u command; reverse the most recent modification to the buffer;
,,(." ,,) metacharacters; used in left-hand side of s command to break up pattern into

pieces that can be referenced individually;
% metacharacter; used in right-hand side of s command to duplicate right-hand

side of most recent s command;
& metacharacter; used in right-hand side of s command to duplicate left-hand side

of same s command.

14 Ed

Printing Lines
Besides p, there are two other commands that enable you to print specific lines in the ed buffer.
The I (list) command is similar to p, but gives you slightly more information. The I command
enables you to see characters that are normally invisible. Backspace and tab are represented by
overstrikes, and other invisible characters, such as bell, vertical tab, and formfeed, are
represented by "'-nnn, where nnn is the octal equivalent of the character in the ASCII character set.

The I command also breaks long lines into smaller lines of 72 characters each. Thus, if you have
lines of text in a file that are longer than 72 characters, I breaks them down into 72-character
lines so they can fit on your screen. A "'- is printed at the end of each line that is broken.

Print out the contents of testfile with the I command, and look for any invisible characters:

,I
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is"'- "'- *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
to the file.

If you did not make any typing errors that could produce invisible characters, the output looks as
shown above. Note that a carriage return and a line feed are not considered invisible, since the
placement of text on your screen indicates their presence.

Since some invisible characters can cause strange terminal behavior, you almost always want to
eliminate them from your text. This is where the I command can save you time and effort by mak­
ing these characters visible.

The n (number) command also enables you to print specific lines, but differs from p and I in that
each line is preceded by its line number and a tab character. Try printing out the contents of
testfile with n:

,n
1 The ed editor operates in two modes: command mode and
2 texct entry mode. In command mode, the edytor interprets
3 your unput as a command. In text entry mode, ed adds
4 your input to the text located in a special buffer where
5 ed keeps a copy of the file you are editing. It is"'- "'- *.
6 important to note that ed always makes changes to the
7 copy of yourrr file in the buffer. The contents of the
8 original file are not changed until you write the changes
9 to the file.

Ed 15

Note that the line numbers and tab characters are display enhancements only, and do not
become part of the text in the ed buffer.

The p command is the most common command used to print lines in the ed buffer. Keep in
mind, however, that wherever it is legal to use the p command, the I and n commands may also be
used. The I and n commands leave dot pointing to the last line printed.

Appending Text
The a (append) command appends one or more lines of text after the specified line. By default,
the lines of text are added after line dot. Dot is left pointing to the last line appended. After the a
command is typed, everything you enter is appended to the specified line. To stop appending text,
type a period at the beginning of a line, all by itself. This terminates the a command, and re­
turns you to command mode. For example,

Oa
The ed editor is a simple, easy-to-use text editor.

1,3p
The ed editor is a simple, easy-to-use text editor.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

The a command is one of the few ed commands that accepts 0 as a line number, enabling you to
ddd text to the beginning of the fiie, as above. Note that the period at the beginning of an empty
line terminates the appended text. The following example can easily occur by forgetting to type
the terminating period (do not try this example!):

$a
It is always comforting to know that your original
file remains intact until you are sure you want to
change it.
l,$p
$-4,$p
;1

$-7,$p
original file are not changed until you write the changes
to the file.

16 Ed

lt is always comforting to know that your original
file remains intact until you are sure you want to
change it.
1,$p
$-4,$p
;1

This poor user typed in the three lines of text that he wanted to append to the end of his file, and
then attempted to print out the results. Ed, however, was still appending text, and calmly added
the user's commands to the file. The user finally realized his mistake, typed the solitary period,
and printed out the last eight lines of his file, three of which were the three commands he attemp­
ted to execute. The moral of the story is: REMEMBER THE PERIOD!

If you type the a command and then change your mind, simply type a solitary period on the next
line. This terminates the a command and adds no lines to the file. Dot is left pointing to the line
you specified when you typed the a command.

Inserting Text
The i (insert) command is similar to the a command, except that the added text is inserted be­
fore the specified line. By default, the added text is inserted before line dot. Dot is left pointing to
the last line inserted. Like the a command, the inserted text is terminated by a solitary period at
the beginning of a line. For example,

2i
Also, it takes very little time to learn.

1,3p
The ed editor is a simple, easy-to-use text editor.
Also, it takes very little time to learn.
The ed editor operates in two modes: command mode and

If you type the i command and then change your mind, simply type a solitary period on the next
line. This terminates the i command and adds no lines to the file. Dot is left pointing to the line
you specified when you typed the i command.

Deleting Text
The d (delete) command deletes one or more lines of text from the file. If no lines are specified, line
dot is deleted. After a deletion, dot is left pointing to the line following the last line deleted. If the
last line of the file is deleted, dot points to the new last line. For example,

$d
a
on top of the original contents of your file.

$-I,$p
original file are not changed until you write the changes
on top of the original contents of your file.

The current last line is deleted, and a new one is typed in its place using the a command. The a
command is used because dot is left pointing at the new last line after the deletion. Thus, it is con­
venient to append after dot to create the desired last line.

Ed 17

The d command can delete several lines at once by specifying a range of lines, as follows:

3,6d
,p
The ed editor is a simple, easy-to-use text editor.
Also, it takes very little time to learn.
ed keeps a copy of the file you are editing. It is"" "" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

This shows that testfile currently contains 7 lines of text, since lines 3 through 6 have been deleted.

Undoing Commands
The u (undo) command reverses the effect of the most recent command that made a change to
any of the text in the buffer. Use it now to restore the four lines you just deleted:

u
,p
The ed editor is a simple, easy-to-use text editor.
Also, it takes very little time to learn.
The ed editor operates in two modes: command mode and
texct entry mode. in command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is"" "" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

Note that the u command reverses only the most recent command that modified text. Commands
that have been succeeded with one or more other commands cannot be reversed with u. Besides
d, u also reverses the a, i, c, g, G, v, V, j, m, r, s, and t commands. Dot is left pointing to the last line
affected by the reversal.

18 Ed

Changing Lines
The c (change) command replaces one or more lines with the text you specify. The c command
is a combination of the d and i commands, in that the specified lines are deleted, and the text you
type in is inserted in their place. Like the a and i commands, the replacement text is termina­
ted with a solitary period at the beginning of a line. Dot is left pointing to the last line of repla­
cement text typed in. For example,

1,2c
The ed editor is easy to learn and easy to use.

1,3p
The ed editor is easy to learn and easy to use.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

In this example, the first two lines are deleted and replaced with a single line. Of course, you can
also replace a single line with several lines, as in

2c
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor operates in two modes: command mode and

1,/texct/p
The ed editor is easy to learn and easy to use.
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets

which replaces the second line of the file with five lines.

If you type the c command and then change your mind, simply type a solitary period at the be­
ginning of the next line. This terminates the c command with no changes made, and leaves dot
pointing to the first line you specified when you typed the c command.

Ed 19

Moving Lines
The m (move) command moves one or more lines to a new position in the file. By default, m
moves line dot. Dot is left pointing to the last line moved. For example,

2,5m$
,p
The ed editor is easy to learn and easy to use.
The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is", '" *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

which moves lines two through five to the end of the file. Note that m appends the moved lines
after the specified line. Thus, line number zero is legal as a destination line number, enabling you
to move lines to the beginning of the file. The destination line cannot be one of the lines being
moved.

Note that the m command, as well as any command that accepts line number arguments, accepts
pattern searches and line pointers (set by the k command) to reference specific lines. For example,
2,1userl + + + m$ has the same effect as 2,5m$ in the previous example. Using pattern
searches and line pointers becomes more valuable when you edit large files.

Copying Lines
The t command copies one or more lines and places the copy at a specified location in the file. By
default, t copies line dot. Dot is left pointing to the last line copied, in its new location. For example,

H$
.-4,$-ltl
,p
The ed editor is easy to learn and easy to use.
It was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.

20 Ed

The ed editor operates in two modes: command mode and
texct entry mode. In command mode, the edytor interprets
your unput as a command. In text entry mode, ed adds

your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. lt is ~ ~ *.
important to note that ed always makes changes to the
copy of yourrr file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
lt was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed editor is easy to learn and easy to use.

This example copied the first line and moved it to the end of the file. Then, the four lines before
the new last line were copied and moved after the first line of the file, producing the text shown
above.

The only difference between the m and t commands is that t copies the indicated lines and
moves them to a new pOSition, leaving the original lines intact. The m command moves the
specified lines from their original position to a new position. No new text is created.

Modifying Text Within a Line
The s (substitute) command is the only ed command that enables you to change one or more
characters within a line, without having to type the line over again. By default, s modifies text
on line dot. Dot is left pointing to the last line in which a modification has occurred.

The s command enables you to correct the mistakes in your file. Of course, you could use the d
and i commands and re-type each line containing an error, but that is more work than is neces­
sary. For example,

Itexctl
texct entry mode. In command mode, the edytor interprets
s/texct/text/p
text entry mode. In command mode, the edytor interprets

All s command lines are of the form

slreplace thislwith thisl

Thus, the above example first searches for the line containing the string "texct", and then replaces
"texct" with "text" on that line. Note that the p command is appended to the s command to
verify that the intended substitution took place.

Ed 21

Note that the pattern search in the previous example can be included on the s command line.
The s command accepts one line number, to perform a specific replacement on a single line, or two
line numbers separated by a comma, to perform a replacement on a range of lines. For example,

lunputl sl linput/p
your input as a command. In text entry mode, ed adds

which searches for the pattern "un put " and replaces it with "input". Another feature is illus­
trated in the above example. Note that the replace this portion of the s command is empty. This is
because the replace this portion of the s command is a pattern search, just like those discussed un­
der Searching for Patterns. You recall from that discussion that ed remembers the last pattern you
searched for. Thus, since" unput" is the last pattern you searched for, it need not be re-typed
in the s command. Ed remembers the pattern and supplies it for you.

Metacharacters can be used in the s command. The replace this portion recognizes all the meta­
characters discussed under Searching for Patterns, plus two additional metacharacters, ,,(and ,,).
These two metacharacters are used to break up the replace this portion into pieces that can be
referenced individually. For example, in line 1 of the file, suppose you want to interchange the
phrases" easy to learn" and "easy to use". The obvious way to do that is to re-type the entire
line, but there is an easier way:

ls/"(ea. *rn ,,) and ,,(ea. *se ,,)/,,2 and" lip
The ed editor is easy to use and easy to learn.

Although it is hard to read, it is handy to be able to define pieces of patterns and rearrange them
in the with this portion. In the above example, the entire replar;e this portion matches "easy to
learn and easy to use". The first ,,(... ,,) matches" easy to learn", and the second ,,(... ,,)
matches "easy to use". These pieces are referred to in the with this portion with "n, where n re­
fers to the n-th occurrence of a ,,(... ,,) pair in the replace this portion, counting from the left.
Thus, the with this portion interchanges the two pieces defined in the replace this portion.

Here is another example. Suppose you have a file containing information like

Alderson, Mike
Anderson, David
Belford, John
Donally, Kyle

and you want to rearrange each name so that the first name is first, followed by the last name.
Re-typing each line could take forever, but the task is easy using the ,,(and ,,) metacharacters.
The command

22 Ed

does the job. The first ,,(... ,,) pair matches any number of characters except a comma -
the last name. The comma-space between each last and first name is explicitly matched. Finally,
the second ,,(... ,,) pair matches any number of any characters - the first name. These pieces
are rearranged in the with this portion.

Note that the two portions of an s command do not have to be delimited by slashes. You can use
any character except a space or a new-line, as long as you use the same character throughout the
command line. For example, the previous example can be made a bit more clear by using a capital
o as the delimiter:

You must be careful to choose a delimiter that is not already used in the s command line.

The with this portion of the s command recognizes only the" metacharacter, plus two new meta­
characters, & and %. All other metacharacters previously discussed are interpreted literally in this
portion.

The & metacharacter is recognized only in the with this portion, and stands for whatever is
matched by the pattern in the replace this portion. For example,

2s/done/& quickiy/p
It was designed to enable the user to get his work done qUickly

The & stands for whatever pattern is matched in the replace this portion, so it stands for "done"
in this example. Thus, this example replaces "done" with "done quickly". As another example,
first add the line "ed is great" to the end of the file:

$a
ed is great

Now use & to create two sentences out of one:

$s/.*/&? &!/p
ed is great? ed is great!

The & must be preceded by " to be interprete'd literally.

The % is also recognized only in the with this portion, and stands for whatever was specified in the
with this portion of the last s command that was executed. For example,

ls/ed editor/ed text editor/p
The ed text editor is easy to use and easy to learn.
led editor/s//%/p
The ed text editor operates in two modes: command mode and
//s//%/p
The ed text editor is easy to learn and easy to use.

Ed 23

In the first 5 command, the with this portion has to be explicitly typed out. Thereafter, a % is
the only character appearing in the with this portion, and stands for "ed text editor". Since the
replacement text is the same for the remaining 5 commands, it does not need to be re-typed. Note
also how ed's pattern memory is utilized, especially in the last 5 command above.

The % is special only when it is the only character in the with this portion. If % is included in a
string of one or more characters, it is no longer special. You can also precede the % with a " to
cause literal interpretation.

Now that you know all about the 5 command, you can go through and fix the remaining errors in
your file. Here are some suggestions:

ledy/511edi/p
text entry mode. In command mode, the editor interprets

+ 35/" " " " "* ".lIp ed keeps a copy of the file you are editing. It is
lyourrr/511your/p
copy of your file in the buffer. The contents of the

Note that, in the second 5 command above, the with this portion is empty. This is legal, and is
often used when you want to replace erroneous text with nothing at all.

Finally, note that the s command operates only on the first occurrence of a pattern on a specified
line. Thus, if there are two or more patterns on a line that are identical to the pattern specified in
the replace this portion, only the first occurrence is actually replaced. The 5 command must be re­
executed once for each additional pattern that is to be replaced on the same line.

The 5 command must replace text on at least one of the addressed lines, or ed prints a question
mark.

Making Commands Effective Globally
The g (global) command is used to execute one or more commands on several lines. The lines
on which the commands are to be executed are usually specified by pattern searches. The form of
a g command is

x,yglpattern!command list

where x and yare optional line number arguments, pattern is the pattern to be searched for, and
command list is the list of one or more commands to be executed on each line containing pattern. If x
andy are missing, "1,$" is assumed.

24 Ed

The g command first marks every line containing the specified pattern. Then, dot is successively
set to each marked line, and the list of commands is executed. If only one command is speci­
fied, it is placed on the same line as the g command. If several commands are specified, the first
command is placed on the same line as the g command, and all other commands are placed on the
following lines. Every line of a multi-line command list is terminated by " except the last.
Ending a line with" in this way quotes the following new-line, and hides it from the g command,
thus preventing the new-line from terminating the g command prematurely. If no commands are
specified, the p command is assumed. Any command except g, G, v, and V can be used in the
command list.

The g command can be used as a modifier for the s command, enabling the s command to re­
place all the occurrences of a particular pattern on a line, instead of just the first. For example,

$s/ed/The & editor/gp
The ed editor is great? The ed editor is great!

which replaces both instances of "ed" on the last line with "The ed editor". The g command is
often used with the s command in this way to avoid having to repeat the s command once for
every additional pattern you want to change on a line. Note that, if the p command is omitted, the
line is not printed after the substitution is done.

The g command becomes more powerful when you specify more than one command to be ex­
ecuted. For example, suppose that you want to change every instance of the string "ed" to "ED",
and then mark every line on which the substitution occurs by preceding the line with a series of as­
terisks. This can be done by typing

g/ed/sllED/g"

i" ***
,p

The ED text EDitor is easy to use and easy to leam.

It was designED to enable the user to get his work done qUickly
with the least possible amount of interference from the

EDitor. This is evident in the lack of prompts and the
curt error messages.

The ED text EDitor operates in two modes: command mode and

text entry mode. In command mode, the EDitor interprets

your input as a command. In text entry mode, ED adds

your input to the text locatED in a special buffer where

Ed 25

ED keeps a copy of the file you are EDiting. It is

important to note that ED always makes changes .to the
copy of your file in the buffer. The contents of the

original file are not changED until you write the changes
on top of the original contents of your file.

It was designED to enable the user to get his work done
with the least possible amount of interference from the

EDitor. This is evident in the lack of prompts and the
curt error messages.

The ED text EDitor is easy to learn and easy to use.

The ED EDitor is great? The ED EDitor is great!

This example, though not very useful, illustrates how the g command can be used to perform a
script of ed commands on specific lines. Note that the g command accepts as input all lines up to
and including the first line that does not end in ",-. Thus, the first line that is not part of the g com­
mand above is the line containing ,po Note also that the period that usually must be typed to
end the i command is not necessary if the line containing the period is also the last line of the g
command. Thus, the period, along with the line on which it is typed, can be omitted.

A g command can be included in a g command list only when it is part of another command, as il­
lustrated in the last example. It is illegal to try to nest command lists by specifying g command lists
within other command lists.

The v command is identical to the g command, except that the command list is executed on all
lines that do not contain the specified pattern.

If the results of a g command are not exactly what you had in mind, you can use the u command
to restore your text to its previous state.

u
,p
The ed text editor is easy to use and easy to learn.
It was designed to enable the user to get his work done quickly
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor operates in two modes: command mode and
text entry mode. In command mode, the editor interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is

26 Ed

important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
lt was designed to enable the user to get his work done
with the least possible amount of interference from the
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor is easy to learn and easy to use.
The ed editor is great? The ed editor is great!

Note that the u command also reverses itself, so you can follow one u command with another to
get back text that you have already reversed.

The G (interactive global) command is used when you have one command to execute on each line
containing a specific pattern, but this command varies depending on the line. The g or v command
is not appropriate in this case, since the command list for these commands is constant.

The G command is invoked in the form

x,yGlpatternl

where x andy are line number arguments (if not specified, "1,$" is assumed), and pattern is the
particular pattern you want to match in a line. G first marks every line containing a string that
matches pattern. Then, dot is successively set to each marked line, and the resulting current line is
printed on your screen. After the current line is printed, G waits for you to enter any single com­
mand, and the command you enter is executed. You may specify any command except the a, i,
c, g, G, v, or V commands. Note that your command can address and affect lines other than the
current line. A new-line is interpreted to be a null command. The G command can be terminated
prematurely by pressing [DEL] or [BREAK]; otherwise it terminates normally when all lines in the
file have been scanned for a string matching pattern.

Here is an example:

G/editorl
The ed text editor is easy to use and easy to learn.
s/easy/simplel
editor. This is evident in the lack of prompts and the

The ed text editor operates in two modes: command mode and
s/The ed text editor/edl
text entry mode. In command mode, the editor interprets
s/the editor/edl
editor. This is evident in the lack of prompts and the

The ed text editor is easy to learn and easy to use.
s/easy to use/simple to usel
The ed editor is great? The ed editor is great!
sl["?] * ? II

Ed 27

In this example, G looks for all the lines containing "editor", and executes the commands you
specify. Note that a new-line was typed on each of the two blank lines above, causing no command
to be executed.

The & character can be typed in place of a command. This causes the most recent command
executed within the current invocation of G to be re-executed.

The V command is identical to the G command, except that the lines that are marked and printed
are those that do not contain a string that matches pattern.

The u command can be used to reverse all the effects of a G command.

Joining Lines Together
The j (join) command joins two or more lines together. By default, j appends line dot + 1 to line
dot, but you can specify a range of lines to be joined. Note that j does not add any white space
between the joined lines. Dot is left pointing to the line created after the specified lines have been
joined.

As an example, try joining the last two lines of the file together. First, however, you need to
shorten line $-1 so the joined line fits on one line of the screen. Do this by typing

$-ls/easyto learn and lip
The ed text editor is simple to use.

Now join the last two lines together with

jp
The ed text editor is simple to use. The ed editor is great!
s/"-..T/. Tip
The ed text editor is simple to use. The ed editor is great!

The last s command in this example is used to insert two spaces between the two joined lines.
Note that the p command can be appended to the j command to verify that the two lines have
been joined.

Splitting Lines Apart
The s command can be used to split a single line into two separate lines. This is done by inserting
a new-line between the characters where the split is desired. To do this, the new-line must be pre­
ceded by "-. to avoid terminating the s command prematurely. Thus, you can split the two lines
that were joined in the previous example into two separate lines with the s command (you cannot
use the u command to split the last line into two lines now - why?). Do this by typing the fol­
lowing:

28 Ed

s/~. T/.T/p
The ed text editor is simple to use. The ed editor is great!
s/~.T/.~
TI
$-l,$p
The ed text editor is simple to use.
The ed editor is great!

The first s command gets rid of the extra white space in the sentence (note that the u command
could have been used here). The second s command inserts a new-line between the period and
the capital T, thus creating two separate lines. Note that, although the second s command takes up
two lines, it is actually one command.

Special Ed Commands
Material Covered:

f command; setlprint currently remembered file name;
delimiter; set dot's value;

w command; writer characters in buffer to file, or read standard output from a shell
command;

r command; read contents of file into buffer, or read standard output from shell com­
mand;

e, E commands; begin editing another file, or read standard output from shell com­
mand;
option; silences character counts generated by w, r, e, E, or an invocation of ed;

X command; initiates text encryption mode;
-x option; initiates text encryption mode.

Finding the Currently Remembered File Name
If you invoke ed with a file name argument, ed remembers that file name until your editing session
is over, or until the file name is changed as a result of commands that are discussed later in this sec­
tion. The f (file name) command enables you to find out at any time what file name ed is remem­
bering. For example,

f
testfile

which tells you that ed is remembering testfile as the current file name.

The f command also enables you to change the current file name. For example, to change the
current file name to file2, type

f file2
file2

Ed 29

Ed echoes" file2" so you can verify that the current file is set correctly. Now change the file name
back to the current file, or errors could result in later operations:

f testfile
testfile

If no file name is specified when ed is invoked, then ed initially remembers no current file name.
Thus, this file name must be supplied when using the w, r, e, or E commands (discussed later), or it
can be set with the f command.

Writing Buffer Text Onto a File
The w (write) command writes the text contained in the ed buffer onto the specified file, or onto
the currently remembered file if no file name is specified. If the write is successful, a count of the
number of characters written is printed. Dot is left unchanged.

The w command accepts zero, one, or two line number arguments specifying the line or lines to
be written. If no line number arguments are given, "1,$" is assumed.

Try the w command by typing

w
986

The previous contents of testfile have now been overwritten by the contents of the ed buffer.
The number 986 tells you that the write was successful, and that 986 characters were written.

Note that the ed buffer is not affected by the w command. Its contents are still the same. In
fact, all of the line pOinters (dot, $, and any that you have set) are still pointing to the same lines as
they were prior to the w command. Thus, you may write out the contents of the ed buffer several
times during an edit session without disturbing the current state of the editor. It is a good idea to
write often, especially if you have been editing a long time and have made many changes.
Depending on how often you write, you can be sure that a current version of your file resides in
the relative safety of the file system, should a system crash or a power failure eat up whatever data is
in the ed buffer.

You can tell ed to write to a file other than the currently remembered file by typing

red/;ron/w file I
561

This command writes the range of lines from the line beginning with "ed" to the line beginning
with "on" onto the file filel. If filel exists, its previous contents are completely overwritten by the
specified lines of text. If filel does not exist, it is created with a file mode of 666 (modified by the
current value of the file creation mask, umask) and the specified text is written on it. Again, the
number returned indicates that ed was successful in writing 561 characters on the file.

30 Ed

The semicolon that appears in the last example is new. If a comma had been used to separate the
two searches, ed would have started the search for a line beginning with "ed" from the current line.
After finding that line, however, ed would return to the current line to search for the line beginning
with "on". The value of dot would be reset only after finding the line beginning with "on", with
the result that a single line address is passed to the w command, causing a single line to be written.
The semicolon causes the value of dot to be set to the line beginning with "ed", so that the
second search is carried out with respect to this line, instead of the previous current line. Thus, two
addresses are processed, and the correct lines are written. The semicolon can always be used in
place of a comma to force dot to be set at that point in the construct.

You can also run shell commands with the w command. The shell command is introduced with!.
For example,

w!ls
file 1
testfile
986

runs Is and also writes the current contents of the buffer to the currently remembered file. Note
that the output from Is appears on your screen, but is not added to the actual contents of the buf­
fer (the listing that appears on your screen may be longer than that shown above). After the listing is
produced, ed writes the contents of your buffer to the currently remembered file, and reports the
number of characters written. Note that there is no way to run a shell command and write to a
file other than the currently remembered file with the w command. Note also that! is illegal if the
editor was invoked from a restricted shell (see rsh(1) in the HP-UX Reference manual).

The currently remembered file name is set to the file name you specify with the w command, if the
specified file name is the first file name mentioned since ed was invoked. Otherwise, the currently
remembered file name is not affected. A shell command introduced with ! is never remembered
as the current file name.

Reading Files Into the Buffer
The r (read) command reads the contents of a specified file, or the currently remembered file, if
no file is specified, into the ed buffer after the specified line. If no line is specified, the contents are
read in after line $. Dot is set to the last line read in.

To illustrate the r command, first create a new file called readfile:

w
986
e readfile
?readfile
a
Here is some text that is to be read in.
It is used to illustrate the r command.

w

81
Ed 31

You now have a file in your working directory called readfile, containing the text shown above.
Now begin editing testfile again, and read in the contents of readfile:

e testfile
986
Or readfile
81
1,5p
Here is some text that is to be read in.
It is used to illustrate the r command.
The ed text editor is simple to use and easy to learn.
It was designed to enable the user to get his work done qUickly
with the least possible amount of interference from the

This example reads the contents of readfile into testfile after line 0, or at the beginning of the file.
Ed responds by printing the number of characters that were read in. The first five lines of the buf­
fer are printed to verify that the text is placed correctly.

You can also run shell commands with the r command. The shell command is introduced with !.
For example,

Icurt/r !date
29
6,9p
editor. This is evident in the lack of prompts and the
curt error messages.
Thu Jul22 10:59: 13 MDT 1982
ed operates in two modes: command mode and

which reads the output from date into testfile after the line containing the pattern "curt". The
lines surrounding the insertion are printed to verify that the read executed correctly. Note that,
unlike the w command, the output from the command becomes part of the text in the buffer.
Also, the number of characters read from the command is printed on your screen, but the actual
output appears only in the buffer. Note that the! is illegal if the editor was invoked from a res­
tricted shell.

The currently remembered file name is reset to the file name you specify with the r command, if
the specified file name is the first file name mentioned since ed was invoked. Otherwise, the
currently remembered file name is not affected. A shell command introduced by ! is never
remembered as the current file name.

An r command can be reversed with the u command. Try this now:

u
6,8p
editor. This is evident in the lack of prompts and the
curt error messages.
ed operates in two modes: command mode and

32 Ed

Note that the date and time are no longer present in the buffer.

Editing Other Files
The e (edit) command discards the entire contents of the ed buffer and reads in the specified file. If
no file is specified, then the currently remembered file is read. Dot is set to the last line of the buf­
fer.

If you have made any changes to the buffer since the last w command, ed requires that you pre­
cede the e command with a w command to save the contents of the buffer. If you are sure that you
want to discard the contents of the buffer, you can invoke the e command a second time. This
forces ed to discard the buffer contents and read in the new file. For example,

e filel
?

e filel
561

The question mark after the first invocation of e is to warn you that you have made changes to the
current contents of the buffer, and that these changes will be lost if you do not write them on test­
file. The second invocation of e tells ed "I don't care! Do it anyway!". Ed complies by discarding
the current buffer and reading in the contents of filel. Ed reports to you the number of characters
read.

If you are sure that you want to discard the current contents of the buffer without saving them,
you can use the E (Edit) command. E is similar to e, except that ed does not check to see if any
changes have been made to the current buffer. Thus, you do not have to type the e command
twice.

If you have made several changes to the buffer, and then decide that you do not like what you
have done, you can start editing the same file all over again by typing e or E with no specified file
name. This causes the contents of the currently remembered file to be read into the buffer, des­
troying the previous contents. Of course, if you have written some of the changes you have
made to the current file already, there is no quick and easy way to reverse them.

If you specify a file name with the e or E command, that file name becomes the new current file,
and is remembered for future use with w, r, e, or E.

You can also execute shell commands with the e or E command. The shell command is introduced
with!. For example,

E !Is
23
,P
file 1
readfile
testfile

Ed 33

This example runs the shell command is, and places its output in the ed buffer, destroying
whatever was in the buffer previously. The number of characters placed in the buffer is printed for
you. The actual list of files and the number of characters read into the buffer may be different than
those shown above. Note that ! is illegal if the editor was invoked from a restricted shell A shell
command is never remembered as the current file name.

Silencing the Character Counts
If the character counts that ed produces (when ed is invoked, or with the w, r, e, or E commands)
are annoying or are not helpful, they can be silenced with the - option. It is specified when ed is in­
voked, as in

$ ed - filename

The - option also suppresses the question mark generated by the e and q commands whenever
they are not preceded by a W command (the q command is discussed in the next section).

Encrypting and Decrypting Text
Ed provides a feature that enables you to encrypt and decrypt the text in a file so that other users
are not able to read your files. The text is encrypted and decrypted by means of the DES encryp­
tion algorithm (see crypt(1) in the HP-UX Reference manual). To encrypt your text, you must sup­
ply a key, which is simply a string of one or more characters. The key determines the manner in
which the DES algorithm encrypts your text. You must remember this key.

The X (encrypt) command enables you to encrypt the text in the ed buffer. The X command ac­
cepts no arguments, but prompts you to enter a key. The echoing on your screen is disabled while
you enter the key, so there is no visible record of it. For example,

34 Ed

E filel
561
,p
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor operates in two modes: command mode and
text entry mode. In command mode, ed interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.
X
Enter file encryption key:
W

561
q
$

This example edits filel, and prints out its contents. After the X command is invoked, you are
prompted to enter a key. This key can be any string of characters, but whatever it is, do not forget
your key! When the w command is invoked, the text in the buffer is encrypted according to the key
you entered and written on filel. The q command, which is discussed later, exits the editor and
leaves you at the shell level. Now execute the cat command to try to print out the contents of file I:

$ cat filel
(garbage)

$

You probably got a screenful of garbage. If your bell beeped a couple of times, this is because
the text is encrypted into invisible characters as well as visible characters. There is no practical
way for another user to tell what is actually contained in your file.

To edit a file containing encrypted text, use the -x option when ed is invoked:

$ ed -x filel
Enter file encryption key:
561
,p
editor. This is evident in the lack of prompts and the
curt error messages.
The ed text editor operates in two modes: command mode and
text entry mode. In command mode, ed interprets
your input as a command. In text entry mode, ed adds
your input to the text located in a special buffer where
ed keeps a copy of the file you are editing. It is
important to note that ed always makes changes to the
copy of your file in the buffer. The contents of the
original file are not changed until you write the changes
on top of the original contents of your file.

The -x option is the same as the X command, except that it is used when you invoke ed. When
prompted for the key, you must enter the same key that you entered when the text was encrypted.
Otherwise, the text in that file is inaccessible. This is why it is so important that you remember
your key. After the key is entered, the text in filel is decrypted and read into the ed buffer. You
may now edit the text normally.

Ed 35

When you are done editing, if you invoke the w command to write your changes to the file, the
text is encrypted according to your key. If you want to change your key or disable encryption alto­
gether, you must use the X command. When you are prompted for your key, either type in your
new key to change the encryption key, or simply type a new-line. If you type a new-line, a null
key is entered, and encryption is disabled. Disable encryption now by typing

X
Enter file encryption key: (new-line)
w

561

The contents of file1 are now in a readable form.

Note that, when encryption is enabled, all subsequent e, r, and w commands encrypt the text in the
ed buffer.

As a general rule, text encryption is seldom needed by the typical user except when extreme secu­
rity is required. The HP-UX file system has its own security system which is sufficient for most
security needs. Using text encryption often and/or on several files at once is a dangerous prac­
tice, since you must remember your key to successfully edit these files. You should therefore ex­
ercise caution when using the text encryption feature.

36 Ed

The Shell Interface
Material Covered:

command; execute shell command;
q command; exit editor after checking for changes to the buffer;
Q command; exit editor without checking buffer for changes.

Escaping to the Shell Temporarily
The! command enables you to execute a shell command from within the ed editor. To do this,
type a !, followed by the shell command. For example,

!(date;who) >whofile

executes the date and who commands, and redirects their output into the file whofile. Note that ed
returns a ! to tell you when the command has completed execution.

If the character % appears anywhere in the shell command, it is replaced with the currently remem­
bered file name. Thus,

!sort % >sortedfile
sort filel >sortedfile

sorts (in reverse alphabetical order) the current contents of filel. Note that the current con­
tents of filel, not the ed buffer, are sorted. The sorted version of filel is redirected to the file sor­
tedfile. The I/O redirection in the last two examples is used so that the output from these shell
commands does not clutter up your screen while you are editing. Note that, if the output from a
shell command is printed on your screen, the output does not become part of the ed buffer unless!
is used with the r, e, or E commands.

A final feature of the ! command is the ability to re-execute the last shell command you exe­
cuted with !, without having to re-type the entire command. This is done by typing two exclama­
tion points, as in

!!

which re-executes the last shell command executed within the ed editor. Thus, sort % >sorted­
file is re-executed.

Ed 37

If a shell command contains any metacharacters, ed echoes the command line back to you with all
metacharacters expanded (this is what ed did in the first sort example above). For example,

!cat * >bigfile
cat filel readfile sortedfile testfile whofile >bigfile
!

which echoes the expanded command line, then executes the command.

Exiting the Editor
The q (quit) command exits the editor. The contents of the buffer are not automatically written on
the current file. If you have made any changes to the buffer since the last time you invoked the
w command, ed requires that you issue the w command before exiting with q. Invoking the q
command a second time forces ed to let you exit without writing the contents of the buffer on
the current file. To illustrate this command, first add some text to the buffer, then try to exit without
writing:

$a
Here is some extra text.

q

?
q
$

A change is made to the buffer by adding a single line of text to the end of the buffer. When the first
q command is typed, ed sees that there have been changes to the buffer since the last write, so ed
issues a question mark. This warns you that there are changes to the text in the buffer that will not
be saved if you exit without writing. The second q command forces ed to discard the contents of
the buffer and exit. Be very sure that this is what you want to do, since you cannot recover the
buffer contents once you have exited. The $ is the default shell prompt, indicating that you
are once more at the shell level (your shell prompt may be different).

If you know that you want to discard the contents of the buffer and exit, but you do not want to
type the q command twice, use the Q command. The Q command is similar to q, but ed does not
check to see if changes have been made to the contents of the buffer.

The - option previously discussed disables the question mark that ed issues when you do not write
before executing an e or q command. You are living dangerously when it is disabled, however.
That question mark has kept many users from accidentally throwing away hours of work. Besides,
the E and Q commands are implemented for those special cases when you want to discard the
contents of the buffer.

38 Ed

Miscellaneous Topics
Material Covered:

[DEL], [RUB], [BREAK] keys; any of these keys generates an interrupt signal to ed;

Editing Scripts

Interrupting the Editor
[DEL], [RUB], or [BREAK] causes ed to stop whatever command it is executing and return to
you for a command. Ed tries to restore the state of your file to whatever it was before the com­
mand was issued. This is easily done if ed is interrupted while printing, since dot is not set until
printing is done. If ed is reading or writing files, or performing substitutions or deletions, however,
the state of the buffer (and the current file) is unpredictable; dot mayor may not be changed.
Thus, it is usually safer to let ed finish whatever it is doing, rather than risk finding the buffer or the
current file in some garbled state.

Editing Scripts
An editing script is simply a file containing a list of ed commands. If you have several files on
which a specific list of commands must be executed, it is easier to use an editing script than it is to
invoke ed once for every file, and perform the tasks in each.

Suppose you have several files named file1, file2, ... , and you want to perform some specific
substitutions, additions, and deletions on each. First, create a file (called script, for example),
and put all the ed commands that you want to execute, in the order that they must be executed, in
the file:

$ ed script
?script
a
Or !date
1s/.*$I& DATE OF LAST UPDATEI
$-3,$d
g/Kari Harrison/sllGeorgia Mitchelll
w
q

w
87
q
$

Ed 39

The file script now contains ed commands to put the current date and time at the beginning of
each file, append "DATE OF LAST UPDATE" to the date and time, delete the last four lines of
each file, and replace every instance of "Karl Harrison" in each file with "Georgia Mitchell".
Note that the wand q commands are included so that the script writes the buffer on each file
and exits the editor automatically.

To use script, invoke ed as follows:

$ ed - filel <script
$ ed - file2 <script

etc.

The I/O redirection character < causes ed, when invoked, to take its input from script. Thus, as
ed is invoked with each file name, that file is edited according to the commands contained in script.

40 Ed

Table of Contents

SED: A Non-Interactive Text Editor
Introduction .. 1
Overview of Operation .. 2

Command-line Flags. .. 2
Order of Application of Editing Commands. .. 2
Pattern-space. .. 2
Examples .. 3

Addresses: Selecting lines for editing. .. 4
Line-number Addresses. .. 4
Context Addresses. .. 4
Number of Addresses. .. 5
Examples .. 5

Functions .. 6
Whole-line Oriented Functions .. 6
Example ... 7
Substitute Function. .. 7

Replacement Special Characters .. 8
Substitute Function Flags. .. 8

Examples .. 8
Input-output Functions ... 9
Examples. .. 10
Multiple-input-line Functions ... 10
Hold and Get Functions. .. 11
Example .. 11
Flow-of-Control Functions. .. 12
Miscellaneous Functions. .. 12

ii

Sed
A Non-Interactive Text Editor

Introduction
Sed is a non-interactive context editor that runs on the HP-UX operating system. It is designed to be
especially useful in three cases:

• To edit files too large for comfortable interactive editing;

• To edit any size file when the sequence of editing commands is too complicated to be comfort­
ably typed in interactive mode.

• To perform multiple "global" editing functions efficiently in one pass through the input.

The remainder of this article explains sed operation and use.

Since only a few lines of the input reside in main memory at one time, and no temporary files are
used, the effective size of file that can be edited is limited only by the requirement that the input and
output fit Simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and the attendant risk of errors. Sed running from a
command file is much more efficient than most or all known editors even if that editor can be driven
by a pre-written script.

The main interactive editor functions lost when using sed are the lack of relative addressing
(because of the line-at-a-time operation) and lack of immediate verification that a command has
done what was intended.

Sed is a lineal descendant of the HP-UX editor, ed. Because of the differences between interactive
and non-interactive operation, considerable changes have been made between ed and sed. even
seasoned users of ed will frequently be surprised (and probably chagrined), if they rashly use sed
without carefully reading this article.

The most striking family resemblance between the two editors is in the class of patterns ("regular
expressions") they recognize; both are nearly identical; having virtually identical code.

1

Overview of Operation
Sed copies the standard input to the standard output, perhaps performing one or more editing
commands on each line before writing it to the output. This behavior may be modified by com­
mand-line flags (discussed later in this section.

The general format of an editing command is:

[addressl,address2] [function] [arguments]

One or both addresses may be omitted; address format is explained in the Addresses section of this
article. Any number of blanks or tabs can separate the addresses from the function. The function
must be present; available commands are discussed in the Functions section of this article.Argu­
ments may be required or optional, depending on which function is being used. Refer to Functions
section for details.

Tab characters and spaces at the beginning of lines are ignored.

Command-line Flags
Three flags are recognized on the command line:

- n tells sed not to copy all lines, but only those specified by p functions or p flags after s
functions (see Functions section)

- e tells sed to take the next argument as an editing command;

- f tells sed to take the next argument as a file name. The file should contain editing
commands, one to a line.

Order of Application of Editing Commands
Before any input file is opened or any editing is done, all the editing commands are compiled into a
form that will be moderately efficient during the execution phase (when the commands are actually
applied to lines of the input file). The commands are compiled in the order in which they are
encountered which is also the general order in which they will be attempted at execution time. The
commands are applied one at a time; the input to each command being the output of all preceding
commands.

The default linear order of application of editing commands can be changed by the flow-of-control
commands, t and b (see Functions section). Even when the order of application is changed by these
commands, it is still true that the input line to any command is the output of any previously applied
command.

Pattern-space
The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line of
the input text, but more than one line can be read into the pattern space by using the N command

2 Sed

Examples
The examples shown throughout this tutorial are all based on the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on
Coleridge.)

Example:
The command

quits after copying the first two lines of input text, and produces the following output:

In Xanadu did Kubla Khan
A stately pleasure dOMe decree:

Sed 3

Addresses: Selecting lines for editing
Addresses are used to determine which lines in the input text or filets) are to be affected by editing
commands. Addresses can be either line numbers or context addresses.

Several commands can be associated with a single address or address-pair by enclosing the group
of commands between a pair of curly braces("{ }").

Line-number Addresses
Line-number addresses are used to specify which lines (in numerical sequence) in the input text are
to be modified by the associated sed editing commands. As each line is read from the input, an
integer decimal line-number counter is incremented. This counter is used to match input lines to the
addresses in sed commands; when the current line number matches the sed address, the command
is executed on that line. When editing multiple input files, the counter continues to increment with
each line, and does not reset as successive files are opened.

As a special case, the character $ specifies the last line of the last input file.

Context Addresses
A context address is a pattern (regular expression) enclosed between a pair of slashes (/<regular
expression> /). <Regular expressions> recognized by sed are constructed as follows:

1. An ordinary character (not one of those discussed below) is a regular expression, and
matches that character.

2. A circumflex (,'.) at the beginning of a regular expression matches a null character occurring at
the beginning of a line.

3. A dollar -sign ($) at the end of a regular expression matches a null character occurring at the
end of a line.

4. The characters \ n match an embedded newline character, but not the newline at the end of
the pattern space.

5. A period (.) matches any character except the terminal newline of the pattern space.

6. A regular expression followed by an asterisk (*) matches any number (including 0) of
adjacent occurrences of the regular expression it follows.

7. A string of characters in square brackets ([l) matches any character in the string, and no
others. If, however, the first character of the string is a circumflex ("'), the regular expression
matches any character except the characters in the string and the terminal newline of the
pattern space.

8. A concatenation of regular expressions is a regular expression which matches the concatena­
tion of strings matched by the components of the regular expression.

9. A regular expression between the sequences \ (and \) is identical in effect to the unadorned
regular expression, but has side-effects which are described under Substitute Function and in
the next item of this list.

10. The expression \ d means the same string of characters matched by an expression enclosed
in \ (and \) earlier in the same pattern. Here oj is a single digit; the string specified is that
beginning with the dth occurrence of \ (counting from the left. For example, the expression
'\ (. * \) \ 1 matches a line beginning with two repeated occurrences of the same string.

4 Sed

11. The null regular expression standing alone (e.g., I I) is equivalent to the last regular express­
ion compiled.

To use one of the special characters (" $. * [1 " /) as a literal (to match an occurrence of itself in
the input), precede the special character by a backslash ''\''.

For a context address to "match" the input requires that the whole pattern within the address
match some portion of the input line's pattern space.

Number of Addresses
The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. Any command having more addresses than the
maximum allowed is considered an error.

• If a command has no addresses, it is applied to every line in the input.

• If a command has one address, it is applied to all lines which match that address.

• If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,
and the process is repeated.

Two addresses are separated by a comma.

Examples:
I an I

rani

I • I

1\ • I

matches lines 1, 3, 4 in our sample text

matches line 1

matches no lines

matches all lines

matches line 5

matches lines 1,3, 4 (number = zero!)

1\ (an \) • * \ 11 matches line 1

Sed 5

Functions
All functions are named by a single character. In the following summary, the single-character
function name is listed in the first column. Possible arguments are enclosed in angles (< »,
followed by an expanded English translation of the single-character name. The second column
contains the number of addresses allowed with that function and an expanded English translation
of what thefunction does. The angles around the arguments are not part of the argument, and
should not be included in actual editing commands.

Whole-line Oriented Functions

(delete lines)

n

(next line)

a\<text>
(append lines)

i \ <text>
(insert lines)

c\<text>
(change lines)

6 Sed

(2 addresses allowed) Deletes all lines matched by address{es) and does not
write them to the output. Side effect: No further commands are attempted on
the corpse of a deleted line. As soon as the d function is executed, a new line
is read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2 addresses allowed) Reads the next line from the input, replacing the current
line. The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

(1 address allowed) Causes <text> to be written to the output after the line
matched by its address. This command is inherently multi-line; a must appear
at the end of each line, and <text> may contain any number of lines. To
preserve the one-command-to-a-line fiction, the interior newlines must be
hidden by a backslash character (\) immediately preceding each newline. The
<text> argument is terminated by the first un hidden newline (the first one not
immediately preceded by backslash).

Once an a function is successfully executed, <text> gets written to the output
regardless of what later commands do to the line which triggered it. The
triggering line can be deleted entirely, but <text> will still be written to the
output.

<Text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

(1 address allowed) Behaves identically to the a function, except that <text>
is written to the output before the matched line. All other comments about the
a function apply to the i function as well.

(2 addresses allowed) Deletes the lines selected by its address{es), and re­
places them with the lines in <text>. Like a and i, c must be followed by a
newline hidden by a backslash; and interior new lines in <text> must be
hidden by backslashes.

C can have two addresses, and therefore affect multiple lines. When two
addresses are present, all the lines in the range are deleted, but only one copy
of <text> is written to the output; not one copy per line deleted.

As with a and i, <text> is not scanned for address matches, and no editing
commands are attempted on it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions and the line is subsequently
changed, the text inserted by the c function is placed before the text of the a
or rfunction (r is described in the Input-Output Function section).

Note: In output text produced by these functions, leading blanks and tabs are eliminated, as in all
sed commands. To get leading blanks and tabs into the output, precede the first desired blank or
tab by a backslash (the backslash does not appear in the output).

Example:
The following commands, when applied to our example input text:

n
a\

produce:

In Xanadu did Kubhla Khan
\/\1\1\1
1\/\1\1\

Where Alph. the sacred ril.ler. ran

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following command
lists:

i \

Substitute Function

n
c\
V\f\/V
1\/\1\1\

The substitute function changes parts of lines selected by a context search within the line. Com­
mand structure is as follows:

s<pattern> <replacement> <flags>

• (2 addresses allowed) The s function replaces part of a line (selected by <pattern» with
<replacement>. It can best be read:

Substitute for <pattern>, <replacement>

• The <pattern> argument contains a pattern, exactly like the patterns in <addresses> (discus­
sed previously). The only difference between <pattern> and a context address is that the
context address must be delimited by slash (/) characters; <pattern> can be delimited by any
character other than space or newline.

• By default, only the first string matched by <pattern> is replaced, but see the g flag below.

• The <replacement> argument begins immediately after the second delimiting character of
<pattern>, and must be followed immediately by another instance of the delimiting character.
(Thus there are exactly three instances of the delimiting character in a given substitution
command.)

• The <replacement> is not a pattern, and the characters which are special in patterns have no
significance in <replacement>. Instead, other characters are special:

Sed 7

<Replacement> Special Characters
& is replaced by the string matched by <pattern>

\<d> (where <d> is a single digit) is replaced by the dth substring matched by parts
of <pattern> enclosed between \ (and \). If nested substrings occur in
<pattern>, the dth is determined by counting opening delimiters (\ ().

As in patterns, special characters may be made literal by preceding them with
backslash (\).

Substitute Function Flags
The <flags> argument can contain the following flags:

p

Substitute <replacement> for all (non-overlapping) instances of <pattern>
in the line. After a successful substitution, the scan for the next instance of
<pattern> begins just after the end of the inserted characters; characters put
into the line from <replacement> are not rescanned.

Print the line if a successful replacement was done. The p flag causes the line
to be written to the output if and only if a substitution was actually made by
the s function. Note that if several s functions, each followed by a· p flag,
successfully substitute in the same input line, multiple copies of the line will be
written to the output; one for each successful substitution.

w <filename> Write the line to a file if a successful replacement was done. The w flag causes
lines which are actually substituted by the s function to be written to a file
named by <filename>. If <filename> exists before sed is run, it is over­
written; if not, it is created

Examples:

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one input line being
written are the same as for p.

A maximum combined total of 10 different file names can be mentioned after
I. flags and w functions.

The following command, applied to our standard input,

s/to/bvlw changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file changes:

Through caverns measureless by man
Down by a sunless sea.

8 Sed

If the nocopy option is in effect, the command:

produces:

A stately pleasure dome decree*P: *
Where Alph*P, * the sacred river*P, * ran
Down to a sunless sea*P. *

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IX/s/an/AN/gp

produces:

In XANadu did Kubhla KhAN

Input-output Functions
p

(print)

w <filename>
(write on
<filename>)

r <filename>
(read the con­

tents of a file)

(2 addresses allowed) Writes the addressed lines to the standard output file at
the time the p function is encountered, regardless of what succeeding editing
commands may do to the lines.

(2 addresses allowed) Writes the addressed lines to the file named by
<filename>. If the file previously existed, it is overwritten; if not, it is created.
The lines are written exactly as they exist when the write function is encoun­
tered for each line, regardless of what subsequent editing commands may do
to them.

Exactly one space must separate the wand <filename>.

A maximum combined total of ten different files can be mentioned in write
functions and OJ flags after s functions.

(1 address allowed) Reads the contents of <filename> and appends
<filename> data immediately following the line matched by the address. The
file is read and appended regardless of what subsequent editing commands
do to the line that matched the address.

If r and a functions are executed on the same line, the text produced by the r
and the a functions functions is written to the output in the order that the
functions are executed.

Exactly one space must separate the r and <filename>. If a file mentioned by
an r function cannot be opened, it is considered a null file, not an error, and
no diagnostic is given.

Sed 9

Note
Since there is a limit to the number of files that can be opened simul­
taneously, care should be taken that no more than ten files be men­
tioned in w functions or flags; that number is reduced by one if any r
functions are present. (Only one read file is open at one time.)

Examples
Assume that the file note1 has the following contents;

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was
the .randson and most eminent successor of Gen.hiz (Chin'iz)
Khan. and founder of the Monlol dYnasty in China.

The following command:

IKubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was
the .randson and most eminent successor of Gen.hiz (Chin'iz)
Khan. and founder of the Monlol dYnasty in China.

A stately pleasure dome decree:
Where Alph. the sacred river. ran
Throu.h caverns measureless to man
Down to a sunless sea.

Multiple-input-line Functions
Three functions, all spelled with capital letters, deal specially with pattern spaces containing embed­
ded newline characters; they are intended principally to provide pattern matches across lines in the
input.

N

(next line)

D

(Delete first part of the
pattern space)

p

(Print first part of the pat­
tern space)

(2 addresses allowed) The next input line is appended to the current
line in the pattern space; the two input lines are separated by an
embedded newline character. Pattern matches can extend across the
embedded newline character(s).

Delete up to and including the first newline character in the current
pattern space. If the pattern space becomes empty (the only newline
character was the terminal newline), read another line from the input.
In any case, begin the list of editing commands again from its begin­
ning.

Print up to and including the first newline character in the pattern
space.

The P and D functions are eqUivalent to their lowercase counterparts if there are no embedded
newline characters in the pattern space.

10 Sed

Hold and Get Functions
Four functions save and retrieve part of the input for possible later use.

h

(hold pattern space)

H

(Hold pattern space)

9

(get contents of hold
area)

G

(Get contents of hold
area)

(exchange)

Example
The commands

1 h
lsi did.*11
1 x
G
s/\enl :1

(2 addresses allowed) Copies the contents of the pattern space into a
hold area (destroying the previous contents of the hold area).

(2 addresses allowed) Appends the contents of the pattern space to the
contents of the hold area. The former and new contents are separated
by a newline character.

(2 addresses allowed) Copies the contents of the hold area into the
pattern space (destroying the previous contents of the pattern space).

(2 addresses allowed) Appends the contents of the hold area to the
contents of the pattern space; the former and new contents are sepa­
rated by a newline character.

(2 addresses allowed) Interchanges the contents of the pattern space
and the hold area.

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dOMe decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns Measureless to Man :In Xanadu
DOI,1n to a sunless sea. :In){anadu

Sed 11

Flow-of-Control Functions
These functions do not alter the input lines, but control the application of functions to the lines
selected by the address part.

(Don't)

{

(Grouping)

: <label>
(place a label)

b<label>
(branch to label)

t<label>
(test substitutions)

(2 addresses allowed) Causes the next command (written on the same line),
to be applied to all and only those input lines not selected by the adress
part.

(2 addresses allowed) The grouping command "{" causes the next set of
commands to be applied (or not applied) as a block to the input lines
selected by the addresses of the grouping command. The first of the com­
mands under control of the grouping may appear on the same line as the {
or on the next line.

The group of commands is terminated by a matching} standing on a line by
itself.

Groups can be nested.

(No address allowed) Marks a place in the list of editing commands that can
be referred to by band t functions. <Label> can be any sequence of eight
or fewer characters. If two different colon functions have identical labels, a
compile-time error diagnostic is generated, and no execution is attempted.

(2 addresses allowed) Causes the sequence of editing commands being
applied to the current input line to be restarted immediately after the place
where a colon function with the same <label> was encountered. If no
colon function with the same label can be found after all the editing com­
mands have been compiled, a compile-time error diagnostic is produced,
and no execution is attempted.

A b function with no <label> is taken to be a branch to the end of the list of
editing commands. Whatever should be done with the current input line is
then done, and another input line is read. The list of editing commands is
restarted from the beginning on the new line.

(2 addresses allowed) Tests whether any successful substitutions have been
made on the current input line. If so, it branches to <label>; if not, it does
nothing. The flag which indicates that a successful substitution has been
executed is reset by:

1) reading a new input line, or
2) executing a t function.

Miscellaneous Functions

(equals)

q

(quit)

12 Sed

(1 address allowed) Writes to the standard output the line number of the
line matched by its address.

(1 address allowed) Writes the current line-to-be-written to the output (if it
should be), plus any appended or read text to be written, then terminates
execution.

Table of Contents

A WK: A Programming Language for Manipulating Data
Introduction .. 1
The Command Line .. 2
Structure of Awk Programs ... 3
Predefined Variables. .. 3
Output. ... 4

Redirecting Output to Files. .. 4
Formatting Output. .. 5

Details of Awk Programming .. 6
Designing Patterns ... 6

Regular Expressions and Special Characters. .. 6
Relational Expressions. .. 8
Combinations of Patterns. .. 9
Pattern Ranges .. 9

Designing Actions .. 9
Variables .. 9
Field Variables. .. 10
Arrays ... 11
Built-in Functions ... 11
Flow-of-Control Statements .. 12

Commenting .. 13
Error Messages. .. 14
Notes on the Design .. 15
Notes on Awk Implementation ... 15
Annotated Examples ... 16

Generating Reports ... 16
Doing Calculations .. 19
Rearranging Data .. 20

References .. 22

ii

Awk: A Programming Language
for Manipulating Data

Introduction
Awk is a useful tool for manipulating data and text. Unlike the HP-UX commands that do similar
work, awk comprises its own programming language. This lets you process input in various ways,
such as:

• Generate reports on the contents of files

• Transform the text or data within files

• Manipulate columnar data

• Search files for specific patterns

With awk's ability to search files and generate reports, you can treat some of your ordinary files as
databases. The terminology used in awk - "records" and "fields" - reinforces this idea.

The awk programming language includes such constructs as for, while, and if-else, as well as a set
of built-in functions and variables. The language resembles the C programming language. If you are
familiar with C, you should be able to master awk almost immediately. If you don't know C, you
should still find awk easy to learn and use.

Awk is named for its designers: Alfred V. Aho, Peter J. Weinberger, and Brian W. Kernighan, from
Bell Laboratories. For a detailed discussion written by these people, read "Awk-A Pattern Scan­
ning and Processing Language," published by Bell Labs in 1978 and available in many technical
libraries.

This article is for the user who is familiar with HP-UX and who has used a programming language.
There are examples throughout the article; you should try them as you encounter them. You
should take time now to create a small input file, using any of the HP-UX editors, or by typing the
following command line:

$ cat >hello.awk

The cat command followed by > allows you to type text directly into the file hello.awk from the
keyboard. The filename is arbitrary; the .awk suffix is just a reminder for you and is optional.

Now type in

Hello",lorld l

HOI,l,jy, partner l

End the file by typing CONTROL and CB together (the end-of-file character) and then pressing
RETURN. (CONTROL may be marked CNTL or (CTRL) on your keyboard; RETURN is marked (ENTER) on
some keyboards with HP-UX overlays.) The shell prompt should reappear; your example file is
ready to use.

1

The Command Line
You can program awk entirely on the same line with the prompt. This is often done in practice. The
format is:

The dollar sign at the begining of this command line represents the shell prompt in this tutorial.
Your shell prompt may be different.

Command-line awk programs must be surrounded by single or double quotes, so that the shell will
see the whole program as a single argument to the command. Single quotes prevent the shel1 from
interpreting any special characters you may have included in the awk program. All examples in this
tutorial use single quotes.

If your awk program exceeds one line, you can type a backslash ("'), then press the RETURN key,
and continue typing the program. For example:

$ awk 'awK_pro\ RETURN
> 9 ralTl' in\ RETURN

puLfilenalTle RETURN
output of program

$

The> is an auxiliary prompt (which may be different on different systems or shells) that tel1s you
you're still typing a single logical command line.

This maneuver is called escaping the newline character. You can use it when invoking any com­
mand from the shell.

For some applications you may want to write awk programs that are many lines long. It makes
sense to store such long programs, and any programs that you often use, in separate files. Note that
no compilation step is necessary. The file doesn't have to be executable, just readable.

To invoke awk using a program stored in a separate file, use the - f option:

You can give an awk program input from your keyboard (standard input) by typing a dash (" - ")
instead of an input filename. Keyboard input is terminated by typing CONTROL-CD. Your com­
mand line would look like this:

$ awk 'awK_pr09ralTl' -

or

An example of this procedure is shown in the Annotated Example, "Doing Calculations."

2 Awk

Structure of Awk Programs
Awk programs are built of one or more statements that have the general form:

pattern {action}

For every line in the input that matches the pattern, the specified action is executed. The action part
is always enclosed in braces.

You can specify multiple actions within the action part by separating them with semicolons or
newline characters (typing RETURN creates a newline character).

Awk processes input one line at a time. For each line of input, awk scans all the patterns in the
program. Whenever it finds a pattern that matches the line of input in question, it executes the
associated action.

An awk statement may consist of the pattern or the action or both. A pattern without an action
prints out each input line that matches the pattern (this is the default action); an action without a
pattern executes the action on every line of input (the default pattern matches anything).

Predefined Variables
The input is made up of a series of records. The default record separator is a newline character; by
default, each input line is a record.

Records are divided into fields; the default field separator is white space (tabs or blanks). So the
input

Hello",'orld'

consists of one record (one line) and two fields (the strings "Hello," and "world!", which are
separated by a blank).

The output is also made up of fields and records. The default output field separator is a blank and
the default output record separator is the newline character.

The variables FS and RS contain the current input field and record separators; the output separ­
ators are in OFS and ORS. You can change any of them at any time by simply assigning them any
single character value.

On the command line, you can use the argument - Fe, which sets FS to the character value c. Use
aSSignment statements (such as RS = "@") to specify new values for any ofthe other predefined
variables or as an alternate way to change FS. (Be sure to put double quotes around new separ­
ators to ensure that they are interpreted correctly.)

Each field is deSignated by a field variable. In the first record of hello.awk, the string "Hello," is
stored in the field variable $1 and "world!" is stored in the field variable $2. In general, field n of the
current record is stored in the variable $n. The whole current record is stored in $0.

A predefined variable called NF contains the number of fields in the current record. The number of
the record currently being processed is stored in NR; you can find out how many records are in the
input by printing NR at the end of your program.

Awk 3

Output
The simplest type of awk program prints out each line in an input file that matches a specified string.
Try this command:

$ awK '/Hello/' hello.awK

There is no action supplied here, so each record (line) that contains "Hello" somewhere within it is
printed. Note that the string is surrounded by slashes, and that the whole awk program is sur­
rounded by single quotes. You must always use these slashes around patterns which consist of
strings that are regular expressions (described in the section of this article entitled "Regular Express­
ions and Special Characters"), and you should use single quotes around a command-line program
so the shell will see it as one argument and not attempt to interpret any special characters that may
be lurking within the program.

The output for the above command is the matching record:

Hello. world!

The following program contains an action, but it does the same thing as the above actionless
program:

$ awK '/Hello/ {print $O}' hello.awK

This is an example of the print action. Since $0 refers to the entire record, this program prints every
record containing "Hello" on the standard output. To print out the second and first fields, in that
order, of each record containing "Hello", type:

$ al"IK '/Hello/ {print $2. $1}' hello.al.K

and you'll get:

world! Hello.

The comma between the field arguments tells awk to put an output field separator (a space by
default) between the output fields. Without the comma, the fields would be concatenated (run
together).

Redirecting Output to Files
You can send the output of the print action into files by using> or > >. The program

$ awK '/Hello/ {print $1)"filel"; print $2)"file2"}' hello.awK

4 Awk

writes the first field, "Hello,", into filel and the second, "world!", into file2 (creating the files if
necessary). You must put double quotes around the file names. The program:

$ awk '/Hello/ {print $1 »"filel"}' hello,awk

appends the first field to filel rather than overwriting it, so now filel contains:

Hello.
Hello.

The file name to which you divert your output may also be a variable or a field. The action:

$ awK '/Hello/ {print NF > $2}' hello.awK

uses $2 for the filename. You should take care in cases like this one that the value assigned to the
variable is a valid file name. If it is not, you will get an error message and the program will abort.

Formatting Output
You can format your output with the printf statement. The awk printf statement is identical to the
printf library routine used in the C programming language. The statement's structure is

printf format, expr, expr, ...

The format for the list of expressions is specified in the format argument. Printf prints the express­
ions in the specified format. For example,

$ awk '{printf "%75 %10.3f\n". $1. NF}' hello.awk

prints $1 (the first field) as a seven-character string, and NF as a floating point number in a ten-digit
field width with three digits after the decimal point. Try this and get:

Hello. 2.000

The newline character is "n, which appears at the end of the format. You must specify all spaces,
separators, and newlines that you want in the output. Note that you don't have to specify a newline
when using print, because print automatically appends the output record separator (by default, a
newline) to its output string.

For a full discussion of printf, look in McGilton and Morgan's Introducing the UNIX@! System,
Kernighan and Ritchie's The C Programming Language, or the article "Using the C Library
Routines" in Volume 2 of HP-UX Concepts and Tutorials. (These are listed in a reference section at
the end of this tutorial.)

Awk 5

Details of Awk Programming
The full structure of awk programs includes optional statements labeled by the special patterns
BEGIN and END.

BEGIN {action}

pattern { action }

END { action}

The action in the BEGIN statement is executed once before any of the input has been read (hence
before any patterns are evaluated). The action in the END statement is executed once after all the
input has been read. These special statements give you opportunities to set parameters before the
program begins or to process or tabulate data after awk has seen all of the input. For example,

BEGIN {DFS = @}
END {print NR}

changes the output field separator to "@" before any input is read, and prints out how many
records are found in the input after all of it has been read.

Designing Patterns
You have many options for writing awk patterns, including:

• Regular expressions

• Relational expressions

• Combinations of expressions

• Boolean expressions

• Ranges of patterns

You have a complete set of operators and special characters with which to build patterns.

Regular Expressions and Special Characters
Patterns can be made from regular expressions. Regular expressions are always enclosed in slashes.
A simple pattern is a string enclosed in slashes:

/world/

If entered as a program ($ a w f('/ IN 0 rId /' hello. a w K) this expression would print out all lines in an
input containing occurrences of "world", both as a field alone (a complete word) and as part of a
field, such as "worldly" or "world!"

6 Awk

Between the slashes that delimit regular expressions, you can use most of the standard special
characters (or metacharacters) that are recognized by the ed editor and by the shell. The available
special characters for use between slashes in regular expressions are:

perform a logical OR of the regular expressions on either side of the vertical bar.

+ match if there are one or more occurrences of the preceding regular expression.

? match if there are zero or one occurrence(s) of the preceding regular expression.

[] match any of the characters inside the brackets.

[x-x] match any character in the lexical range bounded by the characters on either side of
the dash. The range is enclosed by the brackets.

match only if the matching regular expression is found at the beginning of the line.

$

*
match only if the matching regular expression is found at the end of the line.

match any combination of characters, including a null string.

match anyone character in the position of the period.

turn off the special meaning of the next character, so the character can represent itself
(a maneuver known as escaping the character).

() group the evaluation of regular expressions.

For example,

matches records beginning with "main", and:

$ awK '/Albu9uer9ue:Santa Fe/' article_about_NM

matches records containing a reference to either Albuquerque or Santa Fe.

To turn off a special character's special meaning, precede it with a backslash in the expression. For
example,

/\/.*\//

matches any string of one or more characters that is enclosed in slashes.

You can abbreviate a sequence of characters in a string. This is called character class abbreviation.
For example,

$ awK '/[HhJello/' hello.awK

matches:

Hello. world!

but it would also have matched a record containing:

Well. world. hello!

Awk 7

The sequence [a - z A - Z 0 - 9l would match all letters, both upper and lower case, and all digits. To
use such ranges you need to understand how your character set is arranged. McGilton and Morgan
explain this in their book.

In patterns, you can specify that a field or variable (an expression) matches a regular expression
using the tilde character "~,, to mean "match" and "!~" to mean "don't match." For example,
the pattern:

$ awk '$1 N /[Hhlello/' hello.awK

matches all records that contain either "Hello" or "hello" in the first field. This pattern also matches
records containing "Othello" in the first field. To reject records with "Hello", use

$ al.K '$1 !N /[Hhlello/' hello.a,,'k

Relational Expressions
In awk patterns, you can use the relational operators <, < =,
expressions. For example, the pattern

$ awK '$Z >= $1 + 100' fi lenal!le

! = > =, and > between

selects lines in which the second field is numerically at least 100 greater than the first field.

Relational operations are always numeric comparisons (as in the above example) unless both
operands are strings; in that case a string comparison is made. Fields are treated as strings unless
there is information to the contrary, so

automatically performs a string comparison on the first two fields, matching if $1 has a larger
character value (in ASCII) than $2.

Note that the regular expressions in the last two examples of the Regular Expressions and Special
Characters section match the string "Hello," in the hello.awk file as well as "Hello" or "hello", or
even "helloes". You can eliminate these various matchings by using a string instead of a regular
expression:

$ awf~ '$1 == "Hello ," :: "hello ," , hello.al.K

matches only if $1 is either the string "Hello," or "hello," and nothing else. This generates the same
output as the program

which specifies that $1 starts with "H" or "h" and ends with a comma. In this case it's shorter to use
the regular expression.

If you use regular expressions in your patterns, you can match many strings. But if you use strings in
your patterns, you can match only those exact strings in the input. Both tactics are valuabl~ in
different situations.

8 Awk

Combinations of Patterns
You can combine several patterns into one using the Boolean operators II (or), && (and),
(equal to), and! = (not equal to). For example, the pattern

"I" && NF == 2 && $2 != "world l "' hello.awK

matches records that begin with "H" and have two fields but do not have "world!" as the second
field. The record "Hello, world!" won't match, but the record "Howdy, partner!" (or "Houston,
Texas" for that matter) will match.

Awk always evaluates the operands of && and II from left to right. The evaluation stops as soon as
the expression is found to be true or false. You can use parentheses freely to force the order of
evaluation or to increase legibility.

Pattern Ranges
The pattern you specify in a pattern-action statement can consist of two patterns separated by a
comma. When you specify the pattern in this way, the action is executed on each record from an
occurrence of the first pattern through the next occurrence of the second pattern. For example,

$ awK '/Hello/,/partner/' hello.al,IK

prints all records from the first one matching "Hello" through the next one matching "partner".
The statement

$ awK 'NR == 10, NR == 30 {print $O}' filename

prints records 10 through 30 of some file (try it on one of your files). If you use the above program
on a 20-line file, awk will print lines 10 through 20 and stop without generating an error.

Designing Actions
Actions consist of one or more statements. A statement can include:

• Arithmetic expressions

• Assignment statements

• Output statements

• Built-in function calls

• Flow-of-control statements

Variables
In awk programs, you do not need to write declaration statements for variables. The variables take
on numeric (floating point) or string values automatically, according to context. For example,

x =

x = IIHP_U}{II

x = 113 11 + 11411

gives x a numeric value;

gives x a string value;

assigns 7 to x as if the equation were x = 3 + 4 (because context demands
numeric values in this case).

Awk 9

Variables are automatically initialized to the null string (numerical value = 0), so you don't need to
initialize variables in a BEGIN statement. For example, the sums of the first two fields of all records
can be computed by a two-line program:

51 = 51 + $1; 52 = s2 + $2 }
END {print 51 t 52 }

which you can enter and then try by typing

Awk does all of its arithmetic internally and in floating point. The available operators are:

+, -, *, and 1

%

+ + and --

+ =, - =, *=, 1=, and %=

addition, subtraction, multiplication, and division

the mod operator (for example, the pattern NF % 2 = = Oprints
all lines in the input that have an even number of fields)

the increment and decrement operators (like those in C lan­
guage)

the C language assignment operators (for example, x + = 1 is
the same as x = x + 1).

Any of these operators may be used in an expression.

Field Variables
You can treat the field variables ($1, $2, etc.) just as any other variable. You can replace fields with
other numbers, assign results to a field, or use fields in expressions. For example,

$ a.,k '{ $1 = $2 + $3; print $0 }' filenartle

accumulates fields 2 and 3 into field 1 and prints out the record with a new field 1. If you use
heJJo.awk for filename, awk will convert the strings to numbers in response to the context and $1
will turn out to be zero. $3 is a null string which equals zero.

Fields can be referred to by numerical expressions, such as $(i), $(n + 1), or $(NF*4 + 3/(NR -5)).
(If the expression comes out non-integer, awk truncates the decimal portion and uses the remaining
integer portion as the result.) For example, to refer to the last field when you're unsure how many
fields are in the record, use $NF

Whether a field variable is considered numeric or string depends on context. The matter is not a
concern to most awk users. You may run into ambiguous cases such as

if ($1 == $2)

in which awk has no criteria for deciding whether to compare strings or numbers. Just as in the
relational expressions discussed earlier, awk solves the ambiguity by treating fields as strings in such
cases.

10 Awk

Arrays
Awk also defines and initializes arrays automatically. To create an array, simply mention it when
you need it; awk creates the array for you then and there. The subscripts can have numeric values
or string values, such as x["Hello,"]' The program

!Hello!
/l,Jorld!
END

{x["Hello"]++}

{xC "''''0 rId"]++}
{print x["Hello"]. x["world"]}

counts the occurrences of "Hello" and "world" in the input, stores the counts in elements of the
array, and prints the final results. Enter this progam in a file, and try it using the - f option.

Built-in Functions
You can use a number of built-in functions in your awk programs. These include both string and
arithmetic operations.

length(x)

sqrt(x)

log(x)

exp(x)

int(x)

returns the length of the argument. For example,

prints the length of the first field then prints out the entire record.

returns the square root of the argument.

returns the base e logarithm of the argument.

returns the exponential of the argument.

returns the integer part of the argument.

The arguments of functions can be any expression. For all of the above functions, the name of the
function alone, with no argument, will cause the function to be performed on the entire record.

substr(s,m,n) returns the substring of 5 that begins at position m and is at most n characters
long. For example,

$ a,,,,K '!Hello! {Print sl.Ibstr($2.3.S)}' hello.a'"f~

will produce

rId!

which is the substring of $2 - "world!" - starting with the third letter - "r" -
and is no more than five characters long (the length of this substring happens
to be four).

split(s,array,sep) splits the string 5 into array[ll, ... ,array[nl. (5can be a variable.) The number of
elements found is returned as n. If you don't provide a field separator in the
5ep argument, the current value of FS is used by default.

index(sl,s2) returns the position in which the string 52 occurs in the string 51. If 52 is not a
subset of 51, index returns a O. For example,

$ al"K '!world! {print index($2."r")}' hello.a'Nf~

prints out 3, because "r" is the third character in $2 ("world!").

Awk 11

sprintf(f,el,e2 ...) places the values of e1, e2, and so on into the formatted fields specified by f.
The argument f is the format string, which is like the printf format string. For
example,

$ a.,K '{x = snintf("%8s ~,I(1s", $1, $2) j\
> print x}' hello.awK

sets x to the string produced by formatting strings $1 and $2 and prints the
result. For a complete discussion of output formatting, look in "Using the C
Library Routines" in Volume 2 of HP-UX Concepts and Tutorials or Ker­
nighan and Ritchie's The C Programming Language.

The other built-in functions that you have already seen are:

print

printf

introduced in the Output section of this article

introduced in the Formatting Output section

Flow-of-Control Statements
You can use many of the same flow-of-control statements available in C (see The C Programming
Language). Awk provides if-else, while, and for statements, and statement grouping with braces
just as in C.

if(cone!) stmt

else stmt

the condition in parentheses is evaluated; if it's true, the statement following
the if is executed. Multiple statements are enclosed in braces and separated by
semicolons or new lines. The braces are optional if there is only one statement.

The optional else statement is executed if the if condition is false. Multiple
statements are enclosed in braces and separated by semicolons or new lines.
The braces are optional if there is only one statement. For example,

$ a,.t('{if($1 ,= "Hello,") print $(1;\
> else print "Arlh'''}' hello.awk

prints lines that do not start with "Hello," and prints a complaint when it
encounters a line that does. (Note the use of the backslash to fit this long
program onto a single command line.)

while(cone!) stmt The condition in parentheses is evaluated; as long as it is true, the statements
in braces are executed. Multiple statements are enclosed in braces and sepa­
rated by semicolons or newlines. The braces are optional if there is only one
statement. The while condition is tested before each pass. Try this example:

12 Awk

$ awK '{while(i(=2) {print $(i); i++ };\
> i=(I}' hello.awk

for(concl) stmt While a variable changes from an initial to a final value, the statement(s) in the
braces are executed. Multiple statements are enclosed in braces and separated
by semicolons or newlines. The braces are optional if there is only one state­
ment. Here is the format of the condition:

for (initialize; final; increment){ ... }

Also, you can use:

for (i in array) statement

This construction executes statement for each element in the specified array.
The elements are not necessarily accessed in order. Changing j or accessing
any new elements during the statement will introduce side effects.

The conditional expression used in the if, while, and for statements can contain any of the standard
relational operators «, < =, >, > =) as well as the match operators ~ and ! ~ and the logical
operators II, &&, = =, and! =. Parentheses for grouping are allowed (and encouraged).

Here are the other flow-of-control statements:

break

continue

next

exit

Commenting

exits the current while or for construct.

immediately starts the next iteration of the current loop.

causes awk to skip immediately to the next record and begin scanning the
patterns from the beginning of the program.

causes the program to behave as if the end of the input had occurred (thus
exit causes execution of the END statement if there is one)

Comments in awk programs begin with the # character and end with the end of the line:

/string/ {print 52. 55} #Print fields 2 and 5 if string matches

Awk 13

Error Messages
Diagnostic output for awk is sparse and cryptic. Most awk errors that stop the program are syntax
errors. Typical error statements are:

syntax error near line

illelal stateMent near line

Syntax errors often produce an additional message:

bailin. out near line 1

meaning that the program gave up and returned control to the shell.

"Near" means that the line specified in the error message may not be the line that contains the
actual error.

The message

funn>' l.lariable XXXXXXXXX

is awk's response to a variable it can't deal with, such as a the negative field variable $(-1).

Some awk messages are more specific:

newline in character class near line 1

states the problem clearly.

Except when redirecting output, if you refer to a file that doesn't exist or can't be opened, you'll get
the shell message:

14 Awk

Notes on the Design
Awk improves on grep, egrep, [grep, sed, and ed by offering numeric processing, logical relations,
and variables. Awk programs do not require compilation, as C programs do, and you do not need
to know the C programming language to use awk (though it sometimes helps). Awk is one of the
few tools on HP-UX that let you conveniently access fields within a line (cutis another such tool).

The designers of awk tried to integrate strings and numbers, treating all quantities as both, and
postponing a choice until the last minute. This is why you can generally ignore the difference
between a string and a number as you write a program.

Most awk users extract or manipulate information from the inputs. These usages are sometimes
referred to as report generation and data transformation.

Notes on Awk Implementation
Aho, Weinberger, and Kernighan wrote awk using tools available on HP-UX, including yacc and
lex. The elements that recognize regular expressions are deterministic finite automata, constructed
directly from the expressions. When you invoke awk, your program is translated into a parse tree by
the parser that was generated by yacc and lex. A simple interpreter executes the parse tree.

Awk is not fast. Breaking input into fields and delaying the evaluation of variable types are inherent
bottlenecks. Further, there is no awk compiler, so you cannot use faster compiled versions of
oft-used programs. The awk command is a machine that translates (parses) and interprets a
program written in the awk language each time the program is run.

Awk 15

Annotated Examples

Generating Reports
One of the practical applications of awk is to put text into a different form or to alter its format for a
particular requirement. This example shows how text can be selectively extracted and manipulated
with a wk.

The input file is a list of universities from the Big 8, Big 10, and Pac 10 athletic conferences. (If you
wish to test this exaple, you must type in part of all of the file, or one like it.) The file lists the
universities' names (one or two fields), the states in which they are located, and the seating
capacities of their stadiums. The name of this file is schools. You can print the file with:

$ al.f, '{Print $O}' schools
Arizona AZ Pac 10 52000
Arizona State AZ Pac 10 70021
Southern Cal CA Pac 10 82516
Stanford CA Pac 10 84882
UCLA CA Pac 10 82516
WashinHon WA Pac 10 58800
WashinHon State WA Pac 10 40000
Oregon OR Pac 10 41008
Oregon State OR Pac 10 40583
California CA Pac 10 76780
MichiSan MI Big 10 101701
Ohio State OH BiS 10 85280
Indiana IN BiS 10 52354
10 'A' a IA Big 10 66000
Illinois IL Big 10 70806
Michigan State MI BiS 10 76000
Minnesota MN BiS 10 62212
No rthlAleste rn IL BiS 10 48256
Purdue IN Big 10 88250
Wisconsin WI Big 10 77280
OKlahoma OK BiS 8 75008
OUahoma State OK Big 8 50817
Missouri MO BiS 8 82000
IOI,la State IA Big 8 50000
Colorado CO Big 8 51805
NebrasKa NE BiS 8 73850
Kansas State KS Big 8 42000
Kansas KS BiS 8 51500
$

Suppose you became interested in how many of these 28 schools (print out NR to verify that) were
located in a particular state. Because each record contains the two-letter abbreviation of the
school's state, the command:

$ al,IK 'ICAI {print $O}' schools

results in:

Southe rn Cal CA Pac 10 82518
Stanfo rd CA Pac 10 84882
UCLA CA Pac 10 92518
California CA Pac 10 78780

16 Awk

Similarly, you can print all the records from a particular conference, or all the schools with "State"
in their names:

$ alNf, '/Statel {print $O}' schools
Arizona State AZ Pac 10 70021
Washington State WA Pac 10 40000
Ore gon State OR Pac 10 40583
Ohio State OH Big 10 85280
Michigan State MI Big 10 76000
Of,laholna State OK Bi!' 8 50817
1011\1 a State IA Big 8 50000
Kansas State KS Big 8 42000
$

In the last two examples, pattern matching was done using regular expressions. This could have
backfired if the file had included records on, say, the Central YMCA Community College of
Chicago (first example) or of a college on Staten Island (second example). When designing patterns
you should be aware of such potential pitfalls and think of ways around them.

Printing out all these records (lines) may not be all that you want to do. Suppose you're working for
a professional soccer league that's looking for stadiums. You've been assigned to find stadiums with
seating capacities greater than 60,000. The schools file is a limited resource, but it's a fair place to
start. To find out which stadiums are big enough for your needs, use an action containing an if
statement. Because you want to test every record, a pattern is not necessary. Type:

$ al,.,J r~ '{ if ($ (NF) :> 600(0) p r i n t $O} , schools

and get:

Arizona State AZ Pac 10 70021
Southern Cal CA Pac 10 82516
Stanfo rd CA Pac 10 84882
UCLA CA Pac 10 82516
California CA Pac 10 76780
Michigan MI Big 10 101701
Ohio State OH Big 10 85280
lOIN a IA Big 10 66000
Illinois IL Big 10 70806
Michigan State MI Big 10 76000
Minnesota MN Big 10 62212
Purdue IN Big 10 68Z50
Wisconsin WI Bi!' 10 77280
OKlahol.la OK Big 8 75008
Missouri MO Bi 9 8 62000
NebrasKa NE Big 8 73650

Remember, NF is the predefined variable that means the number of fields in the current variable.
You could do this job with just a pattern:

$ awK ' $NF > GOOOO ' schools

gets the same result (and it's shorter). If you want to save this information, type

$ alNK '{if ($NF > GOO(II)) print $0 »biLstadiullls}' schools

Awk 17

The> > operator appends the output to bifJ-stadiums; you should use this operator as you search
other files for similar information. Note the use of $NF for the stadium-capacity field. This is ~ed
because the number of fields per record varies, but the stadium capacity is always in the last field.

Assume you want to find the average size of a group of stadiums. You need to scan all the records
to add up the stadium sizes, then divide the total by the number of records to get the average. The
final calculation takes place in an END statement after you have processed all of the input. Due to
the size of this awk program, place it in a separate file:

'cat >avI_capacitr
{ x += '(NFI } # accu~ulate capacities in x
END { x 1= NR; print 'Averale Capacity = " x}
<control-d>

•
The <control-d> line represents typing CONTROL-CD.

No quotes are needed around the program to protect it from shell interpretation, because you are
not typing it on the command line. Also, you do not need to initialize x; awk sets x to the null string
when it is created. The arithmetic is automatically done in floating point. To run the program, use
the - f option:

• awK -f aul_capacity schools
Averale capacity = 64888.4
$

A longer program finds the average stadium capacity of each conference:

IPac!
IBi! 101
IBi! SI
END

{xp += '(NFI; ip++} #accu~ caps in xp; incr. count
{xl0 += '(NFI; il0++} #accu~ caps in xl0; incr. count
{x8 += • (NF I;
(print IIAv9.

p r i n t II AI) g.

p r i n t HAIl 9 f

}

i8++ }
cap. Pac
cap. Bil
cap. BI!

#accu~ caps in xS; incr. count
10 =', (xp/ipl
10 = " (xl0/il01
8 =', (xS/iSI

The calculations and print statements for each conference cannot be on the same line with the
accumulation statements because awk runs all the pattern-action pairs on each input record as it
arrives. END is executed after all the input comes in. You don't know all the data until the END
statement.

Notice that no semicolons are used in the multi-line END statement. Awk treats the newline as
another expression separator.

18 Awk

The output of this program is

AI)g. cap. Pac 10
AI,Ig. cap. Bd 10
Avg. cap. Big 8

85012.7
71024.9
57097.5

The information in the file schools forms a small database. Awk is useful for retrieving and manipu­
lating information from such databases. Other applications include updating or reformatting input
files.

One last job. Who has the biggest stadium?

Scat >findbiggest
{ x = S(NFl; if (x)yl {}'=x; biHecord SO}}
END {print bigrecord}
<control-d>
S

S awK -f findbiggest schools
Michigan MI Big 10 101701
S

DOing Calculations
The following program finds the mean and the square root of the sum of the squares (root-mean­
square or rms) of a list of input numbers. The work is performed on every record, so there are no
patterns in this program other than END. This example is taken from "A Walk Through Awk," a
paper by Leon S. Levy of Bell Laboratories.

{suM_of_s9uares += SI * SI}
{SUM += Si}
END {Mean = SUM I NR

print "Mean = II, Mean

#accUM sum of S9uares
#aCCUM nos for Mean calc
#calc Illean

rms = s9rt(sum_of_s9uares/NRl #calc rms
p r i n t II r hI 5 = II, r fTl 5

}

Type this program into a file called meanrms and type some numbers into an input file, perhaps
called meanrms. data.

Scat >meanrms.data
20
30
55
40
<control-d)
S awK -f meanrms meanrms.data
Itlean = 38.25
rms = 38.487
$

Awk 19

The <control-d> notation means you should press CONTROL-CD to end the new file.

You don't have to create an input file to use this program. You can run it using the standard input
(your keyboard):

The dash for the input is optional.

Type in each number you want in the calculation, pressing RETURN after each entry. After typing the
last entry and pressing RETURN, type CONTROL-CD (the end-of-file character). Awk then executes
the END statement.

Because awk treats variables as strings until otherwise informed, giving character strings to this
program produces unexpected answers. Mixing numbers and characters causes awk to calculate
the mean and rms using the ASCII values of the characters.

Rearranging Data
You can use awk to change the format of records in a file. Assume you have this list of names in a
file called poets:

Poe. Edsar Allan
Lonsfellow. Henry Wadsworth
Shakespeare. WilliaM
Frost. Robe rt
Dickinson. E.ily

To transpose the first and last names, type

$ awf('{print $2. $1}' poets

This successfully switches around the first two fields, but it leaves out the middle names on two of
the records and it leaves the commas on all the surnames.

To remove the commas, type

$ al,IK '{print $2. substr($1. 1. lensth($I)-1)}' poets

20 Awk

This complex-looking program drops the commas by printing a substring of the surname field
consisting of everything but the comma, using the substr function. The first parameter, $1, is the
object of the substr function. The second parameter, 1, means that we want the substring to start at
the beginning of $1. The third parameter, length ($1) -1, means that the substring should end one
character before the end of $1 (just before the comma).

Saving the middle names is more awkward. Try adding $3 to the print action:

$ al,IK '{print $2. $3. substr($I. I. len9th($I)-1)}' poets

The records with middle names come out correctly. But when no middle name is present an extra
space occurs between the first and last names. The extra space is an output field separator being
printed after $3; when $3 is null (no middle name), you get two output field separators in a row.

One solution is to use an if-else statement to detect a middle name in the record. The program

{if (length($3) 0) print $2. $3. substr($I. I. len9th($1)-1)
else print $2. substr($I. 1. len9th($I)-1) }

when run:

$ awK -f reverse_names poets

results in:

Edgar Allan Poe
Henry Wadsworth Longfellow
William ShaKespeare
Robert Frost
ElTlilY DicKinson

Now that you have the format you want, save it by redirecting it to another file:

$ awK -f reverse_names poets)poets.awKed

Another job you may want to do with a file like poets is to rearrange the records in alphabetical
order. Unfortunately, awk cannot reorder records. Try using the sort utility. Sort is described in the
HP-UX Reference and in the McGilton and Morgan book starting on page 138.

Awk 21

References
1. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, "Awk-A Pattern Scanning and

Processing Language", Bell Laboratories, September 1978. Second Edition. (Not available
from HP.)

2. Henry McGilton and Rachel Morgan, Introducing the UNIX@! System, McGraw Hill, 1983,
pp. 177-184. (UNIX is a trademark of AT&T Bell Laboratories.) HP Part # 98680-90025.

3. HP-UX Reference for the HP 9000 Series 2001500. HP Part # 09000-90007.

4. Brian Kernighan and Dennis Ritchie, The C Programming Language, Prentice-Hall, 1978.
HP part # 97089-90000.

5. "C Library Routines", Programming Environment, HP-UX Concepts and Tutorials.

22 Awk

MANUAL COMMENT CARD

Text Editors and Processors

HP-UX Concepts and Tutorials

HP Part Number 97089-90022 August 1986

Please help us improve this manual. Circle the numbers in the following state­
ment that best indicate how useful you found this manual. Then add any further
comments in the spaces below. In appreciation of your time, we will enter
your name in a quarterly drawing for an HP calculator. Thank you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments:

Name: __ ___

Job Title: _________________________ _

Company: __ __

Address: __ ___

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND,COLORADO

I I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

MANUAL COMMENT CARD

Text Editors and Processors

HP-UX Concepts and Tutorials

HP Part Number 97089-90022 August 1986

Please help us improve this manual. Circle the numbers in the following state­
ment that best indicate how useful you found this manual. Then add any further
comments in the spaces below. In appreciation of your time, we will enter
your name in a quarterly drawing for an HP calculator. Thank you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments:

Name: __ ___

Job Title: _________________________ _

Company: __ __

Address: __ ___

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND, COLORADO

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

MANUAL COMMENT CARD

Text Editors and Processors

HP-UX Concepts and Tutorials

HP Part Number 97089-90022 August 1986

Please help us improve this manual. Circle the numbers in the following state­
ment that best indicate how useful you found this manual. Then add any further
comments in the spaces below _ In appreciation of your time, we will enter
your name in a quarterly drawing for an HP calculator. Thank you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments:

Name: __ ___

Job Title: ________________________ _

Company: __ __

Address: __________________________ ___

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND, COLORADO

I II I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
97089-90022
Microfiche No. 97089-99022
Printed in U.S.A. 8/86

FliOW HEWLETT
~~ PACKARD

I " I 97089-90622
For Internal Use Only

