
HP 9000 Series 200/500 Computers

HP-OX Concepts and Tutorials
Vol. 3: Shells and Miscellaneous Tools .

Flidl HEWLETT
~~ PACKARD

HP-UX Concepts and Tutorials
Vol. 3: Shells and Miscellaneous Tools
for the HP 9000 Series 2001500 Computers

Manual Part No. 97089-90004

© Copyright 1984, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

© Copyright 1980, Bell Telephone Laboratories, Inc.

© Copyright 1979, 1980, The Regents of the University of California.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the
Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

July 1984 ... First Edition

warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products sold in the U.S.A. and Canada, this warranty applies for ninety (90) days from the date of delivery.'
Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not
provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter­
rupted or error free.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett­
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

• For other countries, contact your local Sales and Support Office to determine warranty terms

Contents

The articles contained in HP-UX Concepts and Tutorials are provided to help you use the com­
mands and utilities provided with HP-UX. The articles have several sources. Some were written at
Hewlett-Packard specifically for the HP 9000 family of computers. Others were written at Bell
Laboratories and may discuss options or command behavior that does not apply to your system.

HP-UX Concepts and Tutorials has four volumes:

• Volume 1: Text Processing and Formatting

• Volume 2: Program Development and Maintenance

• Volume 3: Shells and Miscellaneous Tools

• Volume 4: Data Communications

This is "Vol. 3: Shells and Miscellaneous Tools" and the articles it includes are:

1. Bourne Shell Programming

2. The C Shell (csh)

3. Bc: A Desk Calculator Language

4. Dc: An Interactive Desk Calculator

iii

iv

v

Table of Contents

Bourne Shell Programming
Terminology ... 1
Creating a Simple Shell Script ... 2

Example .. 2
Creating the Script. ... 2
Running the Script. ... 3

Parameters ... 5
Types of Parameters .. 5

Common Parameters ... 5
Positional Parameters ... 5
Special Parameters ... 6

How to Use Parameters ... 6
Parameter Substitution .. 8

Quoting .. 10
The Backslash ... 10
The Single Quote .. 10
The Double Quote ... 12
The Grave Accent. ... 13

Using Parameters in Shell Scripts ... 14
Examples .. 14

Example 1 - The Compile Shell Script.. ... 14
Example 2 - The Modfile Shell Script... .. 15
Example 3 - Comments and Here Documents ... 16

Command Separators ... 18
The Semicolon .. 18
The Ampersand ... 18
Mixing; and & Separators .. 19
The Double Ampersand ... 19
The Double Vertical Bar. .. 19
Mixing && and II Separators .. 19
Mixing;, &, &&, and II Separators ... 20

Command Grouping ... 21
Grouping With Parentheses ... 21
Grouping With Braces ... 23

vi

Control-Flow Constructs .. 24
The FOR Construct .. 24

Examples .. 24
The CASE Construct .. 25

Examples .. 26
The IF Construct. .. 27

Examples .. 27
The WHILE Construct .. 28

Example ... 28
The UNTIL Construct ... 29

Example ... 29
An Example Shell Program .. 30
For More Information ... 32

Bourne Shell Programming

The shell is perhaps one of the most versatile programs in your HP-UX system. The shell has two
main roles. Its most common role is that of a command interpreter - reading input from your ter­
minal, and interpreting it as a request for a particular program to be executed. The shell as a
command interpreter is discussed in the supplied tutorial text by Jean Yates.

The second role of the shell is that of a programming language. The shell programming langu­
age is a structured programming language that is directly recognized and executed by the shell; it
requires no compilation. It includes structured programming constructs like if, case, for, while, and
until. In addition, all HP-UX commands, as well as any commands you may have written yourself,
can be executed within a shell program. Other capabilities, such as parameters, parameter substi­
tution, command substitution, and comments, are also supported.

This article describes the shell programming language in detail, including tutorial examples as ap­
propriate.

Terminology
The terms shell script and shell program are often used interchangeably to refer to a program
written in the shell programming language. In this article, however, these two terms are used dif­
ferently. For the remainder of this article, shell script refers to a list of commands that is executed
once, in the order the commands are listed. A shell script contains no conditional testing, no
looping, no branching, and no structured programming constructs; it mayor may not contain
one or more parameters. A shell program refers to those procedures that do not qualify as shell
scripts. The term procedure refers to both shell scripts and shell programs. It is used when descri­
bing concepts that are common to both.

1

2 Bourne Shell

Creating a Simple Shell Script
A simple shell script is one in which no parameters occur. A simple shell script is useful when the
following two conditions are true:

you anticipate having to perform one or more tasks several times over a period of time, and

the tasks you must perform, the commands needed to perform those tasks, and the ar­
guments to the commands never change.

A simple shell script is not well adapted to change, because you are required to edit the script if
changes are necessary. However, a simple shell script can save you a lot of time and typing, as
well as relieve you of certain mundane chores, if you have a well-defined set of objectives for your
script.

Example
Suppose you want to monitor the user activity on a multi-user system. After considering the prob­
lem, you decide that your script should give you the following information:

1. the current date and time;
2. the names of the users currently logged in;
3. a list of all the processes on the system;
4. the number of disc blocks being used by each user.

You can see that each numbered item is satisfied by a single command:

1. date
2. who
3. ps-e
4. du lusers

To make the output more readable, you decide to include the echo command, also. You now
have a complete list of all the commands you need to perform the tasks at hand. All that remains is
to put them all together in your script.

Creating the Script

Any procedure is simply an ASCII text file. Thus, you may use the editor of your choice to create
your script. The editor ed is used in this example.

)

Bourne Shell 3

You decide that status is a good name for the script, since it gives information about the status
of the system at a particular date and time. In the following editing session, your input is shown in
bold:

$ ed status
?status
a
echo" Current date and time: 'date''''-n''
echo ""'-nUsers logged in: "'-n "
who
echo ""'-nCurrent processes: "'-n "
ps-e
echo ""'-nUser disc usage: "'-n "
du lusers
echo ""'-n* * * * * * * * * *"'-n"

w
204
q
$

You now have a file called status containing the commands you want to run.

Running the Script

You can execute status by typing

$ sh status

which creates a new shell to run the script. A more common way, however, is to mark status as
executable, so that it may be executed just like other commands. To do this, use the chmod com­
mand, and type

$ chmod 755 status

which sets the mode of status such that everybody may read and execute status, but only you
can modify it. (Note that you are free to assign whatever mode you want, as long as you give
yourself execute permission. You should also give yourself read and write permission, because
you cannot read or modify your script without them!) You may now execute status by typing

$ status

which causes the shell to execute the commands contained in status. The output appears on
your terminal.

4 Bourne Shell

You have already saved yourself a lot of typing with status, but there is still more you can do.
Suppose you want to collect this information in a file called logfile for later inspection. You can do
this by typing

$ status > > logfile

The append redirection > > is used instead of > so that successive invocations of status do not
overwrite the old contents of logfile. In this way, you can keep a history of user activity that is
updated as often as status is executed.

The only problem with this is that you are required to manually execute status every time you
want to update logfile. However, there is a command, called cron, that executes commands on a
scheduled basis, according to entries in the file lusrlliblcrontab. Thus, you can schedule status
to be run as often as once a minute (note that crontab may be protected such that no one ex­
cept the super-user may edit it - ask your super-user for details). Your only task is to check
logfile periodically to get the information you need, and remove information that is no longer
useful.

Bourne Shell 5

Parameters
Procedures almost always make use of at least one parameter. A parameter is a string of one or
more characters that is made to stand for another string of characters. Parameters are similar in
many respects to variables in other programming languages.

Types of Parameters
Parameters can be divided into three types: common parameters, positional parameters, and
special parameters.

Common Parameters
A common parameter is a name consisting of a series of letters, digits, and/or underscores. The
first character must be a letter or an underscore. Common parameters are completely user­
defineable. Values are assigned to common parameters by writing

parameter = value

where value is the value to be assigned to parameter. The values of common parameters are
always character strings. Some examples of valid assignment statements are:

dir = /usr/lib/gates
user = fred
null =
cwdir = 'pwd'

In these examples, the string "/usrllib/gates" is assigned to dir, "fred" is assigned to user, and
the null string is assigned to null. In the last example, the name of your current working directory
is assigned to cwdir using command substitution. Whenever a command is enclosed in grave ac­
cents (' '), the command is replaced by its output when the command is executed. Command
substitution is explained in the supplied tutorial text by Jean Yates.

Positional Parameters

Whenever you give the shell a command to execute, the shell automatically sets the values of ten
positional parameters named $0, $1, $2, ... $9. Each positional parameter contains the value of
one argument specified on a command line. For example, if you type

$ cc prog1.c prog2.c prog3.c

then the shell sets $0 equal to "cc", $1 equal to "prog1.c", $2 equal to "prog2.c", and $3 equal
to "prog3.c". $4 through $9 are set equal to the null string. Thus, $0 always contains the name of
the invoked command, and $1 through $9 contain the values of the command's arguments, if any,
in the order they are specified. The null string is assigned to all positional parameters not given a
value on the command line.

6 Bourne Shell

If more than ten arguments (including the command name) are specified on the command line,
only the first ten are assigned to positional parameters. The remaining arguments are saved, but are
not accessible until the shift command is used. The shift command shifts the value of $2 to $1, $3 to
$2, $4 to $3, etc. Thus, the remaining arguments are shifted into $9 one at a time, until eventu­
ally all the remaining arguments are addressable through positional parameters.

These parameters are available for use in procedures, and enable you to write procedures that
accept arguments. Their values cannot be changed except with the set and shift commands (docu­
mented in Special Commands under sh(1), in the HP-UX Reference manual).

Special Parameters

Several parameters are" special", either because they are used elsewhere by the HP-UX sys­
tem, or because they are automatically set by the shell. Parameters that are automatically set by
the shell are:

the number of non-null positional parameters in decimal; can be greater than 10;

the flags supplied to the shell on invocation, or by the set command; flags are stored in - as a
character string, with each character in the string specifying a shell flag that has been set;

? the decimal value returned by the last synchronously executed (i. e. not executed in the
background) command;

$ the process ID of the shell running the current procedure;

the process number of the last background (asynchronous) command invoked.

The values of these parameters cannot be changed.

Parameters that are used by the system are HOME, PATH, TERM, SHELL, EXINIT, MAIL, TZ,
PSI, PS2, and IFS. Some of these parameters (TERM, PATH, and possibly MAIL, SHELL, and
EXINIT) are environment parameters, which are used to set up the environment in which your
processes run. These parameters should not be changed indiscriminately. For example, PATH
tells the shell which directories it should search to find the programs you want to execute. If you
redefine PATH with some unrelated value, the shell no longer knows where to look. Thus, as
a safety precaution, all of the above parameters should be avoided for general use in pro­
cedures, whether they are part of the environment or not.

How to Use Parameters
Once a parameter has been assigned a value, you may obtain its value by preceding the
parameter with a dollar sign ($). For example,

dirname = /users/bill/dir 1
cd $dirname

Bourne Shell 7

This example assigns the string" /users/bill/dirl" to dirname, and then uses dirname to change the
current working directory. The cd command, after substituting the value of dirname, is equivalent
to

cd /users/bill/dirl

The dollar sign signals the shell that the following characters specify a parameter, and that the
parameter's value is to be substituted in its place. If you had omitted the dollar sign in the pre­
vious example, the shell would assume that you want to change your current working directory to a
directory called "dirname".

Whenever a parameter is preceded by a dollar sign, the parameter is said to be dereferenced.
All parameters must be dereferenced to obtain their values (positional parameters always appear
with a dollar sign, and thus are always dereferenced).

One or more characters can be added to the end of a parameter value by enclosing the parameter
name in braces, and explicitly typing the added character(s}. For example,

dirname = /users/bill/dir
cd ${ dirname} 1

cd ${dirname}2

This example assigns "/users/bill/dir" to dirname, and then appends a single character to dir­
name in subsequent cd commands. The two cd commands are equivalent to

cd /users/bill/dirl

and

cd /users/bill/dir2

respectively. Note that the appended character does not affect the value of dirname. The fol­
lowing example shows how characters can be added to the beginning and the end of a parameter
value:

fn=progl
dirname = /userslbill
mv $fn $dirname/bill.${fn}.R2

8 Bourne Shell

Although somewhat difficult to read, this example shows a commonly used method of bUilding
file names from parameters. Using the given values of fn and dirname, the mv command is
equivalent to

mv prog 1 luserslbillibili. prog 1. R2

which moves progl from the current working directory to the directory luserslbill, and renames
it hill.progl.R2. Note that the braces are necessary only when a parameter name is followed by one
or more characters that are not to be interpreted as part of the parameter name. (Note also that the
braces are not necessary if the parameter name is immediately followed by a slash (I), as shown by
dirname in the previous example.)

Parameter Substitution
There are constructs that enable you to substitute other values in place of parameter values,
depending on whether or not the parameter is set or null. The four constructs are:

${parameter:-word}
If parameter is set and non-null, then dereference its value. Otherwise, substitute word,
where word can be any valid parameter value.

${parameter: = word}
If parameter is not set or is null, then set it to word. The value of parameter is then dereferen­
ced. Positional parameters may not be set in this way.

${parameter:?word}
If parameter is set and is non-null, then dereference its value. Otherwise, print word and exit
from the current process. If word is omitted, then the message "parameter null or not set" is
printed.

${parameter: + word}
If parameter is set and is non-null, then substitute word. Otherwise, substitute a null value.

Here are some examples:

echo "The directory being processed is ${1:--pwd-}."

This statement could exist in a procedure that performs a specific task on each file in a particular
directory. The first argument to the procedure ($1) is the name of the directory to process. If no
directory is specified, the current working directory is used. This echo statement reports which
directory is being processed. If $1 is set, its value is printed; otherwise, command substitu­
tion is used to print the name of the current working directory.

pr ${whichfiles: = *} >/dev/lp

Bourne Shell 9

This statement could be used to print one or more files on the line printer /dev/lp. The parameter
whichfiles could be either a single file name, or a pattern of special characters, specifying the
file(s) to print. If whichfiles is set, its value is dereferenced, and the specified files are printed.
If whichfiles is not set or is null, it is set equal to an asterisk (*). Its value is then dereferenced,
causing all the files in the current working directory to be printed.

cd ${arg3:? 11 Arg3 not set "}

This statement could appear in a procedure to inform the user when a necessary argument (arg3,
in this case) has not been set. In this example, arg3 is the name of a directory which must be
specified. If arg3 is set, the cd command is executed; otherwise, the message 11 arg3: Arg3 not set 11

is printed, and the process is terminated. The initial 11 arg3: 11 in the message is added by the
shell as an additional identifier. (Note that, if your terminal is set to echo all eight bits of an ASCII
character, you might get garbage output on your terminal.)

${dirname: + 'echo cd $dirname'}

In this example, if dirname is set, then the command 11 cd $dimame 11 is substituted. Otherwise, no
action is taken. The echo command used inside command substitution marks is necessary for the
follOWing reasons:

The shell expects a single word of information following the + in this example. Thus, the cd
command and its argument must be enclosed in double quotes to force the shell to treat it as
a single word.

EnclOSing 11 cd $dirname 11 in double quotes is not enough, however, because a subtle error
is generated. For example, suppose you typed the follOWing lines in a shell program:

dirname = /users/bill
${ dirname: + II cd $dirname 11 }

The shell sees that 11 cd $dirname 11 is to be treated as a single word, and looks for a com­
mand named II cd /users/bill" (instead of a command named II cd 11 with an argument of
II /users/bill")! Expressed in this way, the shell cannot distinguish two arguments; it only sees
one argument and, obviously, an error is generated.

The solution to this is to allow the echo command to pass two distinct arguments to the shell,
but still make the entire construct look like a single word. This is easily done, because a com­
mand substitution construct is always treated as a single word by the shell. Thus, the double
quotes surrounding II cd $dirname 11 are not necessary, and the construct 'echo cd $dir­
name' causes this example to execute correctly.

The braces are necessary in all four of the previously described constructs. If the colon is om­
itted in any of the constructs, the shell simply checks to see if parameter is set or not, and no other
action is taken.

10 Bourne Shell

Quoting
There are four characters used to quote other characters in procedures. These characters are the
backslash (""-), the single quote n, the double quote ("), and the grave accent (').

The Backslash
The special meaning of a character can be stripped away by preceding that character with a
backslash. Whenever a character is preceded by a backslash, the character is said to be quoted, and
it is interpreted literally. For example,

The first argument tells echo to print all files in the current directory whose names begin with
"prog" , followed by any number of characters, followed by ".c". The second argument tells echo
to print "*list*", since both asterisks are quoted, and are thus interpreted literally. The third ar­
gument tells echo to print all files in the current directory whose names are "lib?3" followed by any
single character. The first question mark is literal; the second stands for any single character.

The backslash is the most powerful quoting character, in that it can quote all special characters, in­
cluding itself. It is also the most limited in scope, since it can quote only one character at a time.
The following list shows all the characters that are special to the shell, all of which are quotable with
a backslash:

? * [1 ""- $ - " ' I & ; () < > { } new-line

Note that, if a new-line is quoted by a backslash, the new-line is ignored completely.

If you are ever in doubt about whether or not a character needs quoting, it is safe to precede
the character with a backslash; if the character has no special meaning, the backslash is ignored.

The Single Quote
The single quote quotes all the special characters except the single quote itself. It has the added
advantage of enabling you to quote several characters at once. For example,

prints the exact characters listed between the single quotes. Even the backslash is treated literally.
This means that a string like

echo -Can""--t find file-

does not work as expected, because the backslash loses its quoting ability when enclosed between
single quotes. Thus, there is no way to put a single quote between single quotes without inad­
vertently confusing the shell.

Bourne Shell 11

The previous example produces a subtle error that deserves more explanation. If you type

$ echo 'Can ~'t find file'

to the shell, the shell first examines the command line looking for syntax errors. It sees first the string
" echo" , followed by the quoted string "can ~ " , followed by the characters "t find file" , followed
by the beginning of another quoted string. But wait a minute! Where's the rest of the second
quoted string? The shell needs more input, so it types

$ echo 'Can ~ -t find file'
>

back at you. The> is the shell's default secondary prompt, which the shell uses to signal that more in­
formation is needed. Suppose you then type

$ echo -Can ~ -t find file­
> text-

just to complete the command line so echo will run. Well, this satisfies the shell's syntax rules, so the
shell prepares to execute the following command line:

echo Can ~t find file(new-line)text

(Note that, although the single quotes have disappeared, their effect can be seen in that the
backslash in the first quoted string has been interpreted literally.) Where did the new-line come
from? It was the first character of the second quoted string! The command now runs" successful­
ly" , and you get

$ echo -Can ~-t find file­
> text-
Can find file
text
$

on your screen. Hold on! Where's the "~t"? And where did all the spaces come from? This time
it's not the shell's fault. The echo command has a few tricks of its own in the form of escape sequences.
Escape sequences are character pairs consisting of a backslash and another character (for a com­
plete list of echo's escape sequences, refer to echo(1) in the HP -UX Reference manual). Each escape
sequence is interpreted to mean something else, and ~t causes echo to output a tab.

There are two lessons to learn from this. First, do not try to embed a single quote inside a string
quoted by single quotes. You will invariably confuse the shell (and yourself, when you try to figure
out what went wrong)! Second, beware of escape sequences in arguments to echo. It can be very
difficult to figure out why literal characters disappear when using echo to print them on your screen.

12 Bourne Shell

Since $ and' are quoted within single quotes, parameter and command substitution cannot be per­
formed. For example,

echo '${cmdname}: current working directory is 'pwd'.'

still echoes the exact characters shown between the single quotes.

The single quote also forces the shell to interpret several words as a single word (a word is a
string of one or more characters, delimited by one or more spaces, tabs, and/or new-lines).
Thus, many words can be enclosed in single quotes and assigned to a parameter. For example,

errmesg = 'Cannot find specified file. '

assigns the string "Cannot find specified file. " to errmesg. The space characters embedded in the
string no longer delimit words. Instead, the shell treats the entire string as a single word. If errmesg
is later dereferenced, the string will look exactly as it did when it was assigned to errmesg.

The Double Quote
The double quote quotes all special characters except ",,-, $, ", and '. Since the backslash is not
quoted within double quotes, it may be used to quote these four characters. In the following ex­
ample,

echo "The computer responds ""- " Not found""-" and exits. "

the backslash is used to quote the double quote character. Thus, a double quote may be inclu­
ded in a string enclosed in double quotes. Note that the backslash itself must also be quoted to be
interpreted literally within double quotes.

The infamous example given in the last section can be executed with no surprises using double
quotes:

echo" Can't find file. "

This time, all characters show up as expected on your screen.

Since $ and ' are not quoted, parameter and command substitution are permitted. For ex­
ample,

echo "$dirname processed at 'date'. "

prints out the name of the directory currently being processed, and the date and time at which it
was processed. Note that braces are not required around dirname, since it is separated from the
next word by a space. The backslash can be used to quote $ and " to prevent parameter and com­
mand substitution from occurring.

The double quote also enables you to assign several words to a parameter. For example,

descr = 11 print date and time 11

cmd = date
cmddescr = 11 $cmd _ $descr 11

Bourne Shell 13

This example assigns the short description of date to descr, using double quotes to force the shell to
interpret the four words as a single word. The string 11 date 11 is assigned to cmd. Finally, the two
parameters are dereferenced as shown, and assigned to cmddescr. Thus, cmddescr now con­
tains a string similar to that found under the NAME heading in the HP-UX Reference manual.

The Grave Accent
The grave accent is used to signal the shell that a command substitution is to be performed. No
special characters are quoted within grave accents. Whatever characters you type between grave
accents are interpreted exactly as if they were typed after the shell prompt. For example,

This example outputs the heading 11 File contents: ", followed by a new-line ("'n). Then, the cat
command is executed to print out the contents of all files in the current working directory whose
names contain the characters 11 UX 11 , and end with a single digit in the range 1 through 5. Note
that, even though the command substitution is enclosed in double quotes, the characters *", [,
and 1 are treated as unquoted in the command substitution.

The backslash may be used to quote characters within a command substitution.

14 Bourne Shell

Using Parameters in Shell Scripts
Adding parameters to shell scripts makes them more flexible and adaptable to your changing
needs. Positional parameters are especially useful, in that they enable you to pass arguments to
your shell scripts.

Examples

Example 1 - The Compile Shell Script

Compile is a short shell script that accepts one argument. It is useful when you have several C
programs that you want to compile, one at a time. Each a.out file that is produced is renamed
such that it has the same name as its corresponding source file, with the ".c" suffix removed.
Compile contains the following lines:

cc $1
fn = 'basename $1 .c'
mv a.out $fn

The basename command strips away all but the last component of a path name, and optionally
removes a specified suffix (see basename(l) in the HP-UX Reference manual}. Thus, if you in­
voke compile by typing

$ compile /userslfred/programs/prog 1. c

the shell sets $1 equal to ,. /userslfred/programs/progl.c", and the commands in compile become

cc /userslfred/programs/prog 1. c
fn = 'basename /userslfred/programs/prog1.c .c'
mv a.out prog1

The basename command removed ,. /userslfred/programs/" and ".C" from the string contained in
$1, causing fn to be set equal to ,. prog1". Thus, no matter what directory the source file is located
in, you always end up with an executable file in your current working directory with a name simi­
lar to that of its source file.

Note that you can also invoke compile as

$ compile progl. c

with the same results. The basename command removes parts of a path name only if those parts
exist. Thus, the only part that is removed from" progl.c" is ".c". Compile can therefore be used
to compile C programs no matter where the source files reside.

Bourne Shell 15

Example 2 - The Modfile Shell Script

The modfile shell script copies a file from one directory into another, edits it according to a script
of ed commands, and records the fact that the file has been copied in a bookkeeping file. It ac­
cepts three arguments: the source directory, the destination directory, and the name of the file
to be copied, respectively. Modfile contains the following lines:

log = lusers/kbllogfile
edsc = lusers/kb/tools/edscript
cp $11$3 $2
ed - $2/$3 <$edsc
echo" $3 copied and edited." > >$log

Absolute path names are used for log and edsc so that modfile does not depend on your current
working directory. Thus, you can type

$ modfile luserslfred . filel

which copies file1 from luserslfred into your current working directory, or

$ modfile . .lCprogs lusers/bill prog4.c

which copies prog4.c from the directory Cprogs in your parent directory into luserslbill. Thus,
modfile enables you to copy a file from any directory into any other directory, no matter what your
current working directory is, provided the modes of the specified directories permit you to copy
files.

The - option silences ed so that no character counts appear on your screen. The file edscript con­
tains a list of one or more ed commands that ed is to apply to each file that is copied. Finally, the out­
put from the echo command is redirected to the file luserslkbllogJile, so that a record of the action tak­
en is saved as a convenient reminder.

Note that modfile is written so that changes can be made without having to actually change the
code. The directory names and the file to be copied are all parameters, and the file edscript
can be edited to change the way ed modifies the copied file.

16 Bourne Shell

Example 3 - Comments and Here Documents
A comment is introduced by a pound sign (#), and continues until the next new-line. All charac­
ters between the pound sign and the new-line are ignored by the shell. Comments can be added to
the modfile shell script as follows:

Initialize parameters

log = /users/kb/logfile
edsc = /users/kb/tools/edscript

Copy file

cp $1/$3 $2

Modify copied file

ed - $2/$1 < $edsc

Write record

echo "$1 copied and edited." > > $log

It is good programming practice to proVide comments in your shell scripts where necessary. They
not only help others understand your scripts, but they can also help refresh your memory if you re­
visit a script that you have set aside for awhile.

A here document is a type of I/O redirection that enables you to include input to a certain program
inside the shell script itself. A here document has the following form:

command [args ... 1 < < [- 1 word

word

The < < redirection tells the shell that the input for command is to be taken from the follOWing here
document. Word consists of one or more characters, and signals the beginning and the end of the
here document. All lines between the beginning and ending word are given to command as its
standard input. If any character of word is quoted, then all characters within the here document
are quoted. Otherwise, parameter and command substitution take place, the characters ,,-,
$, and - are special, and the first character of word must be quoted if it is used within the here do­
cument. If - is appended to < <, then all leading tabs are removed from the here document and
from word.

The ed command in modfile

ed - $2/$3 <$edsc

can be rewritten to use a here document, as shown:

ed - $2/$3 < <-"'" %
Horlc
while(i ! = limit) {

g/exit/d
%

Bourne Shell 17

In this example, % defines the beginning and end of a here document containing four lines of
input for ed. % is preceded by a -, to strip away all leading tabs in the document, and by""" to en­
sure that all characters in the document are quoted. The here document is indented for clarity.

Using a here document in modfile requires that you edit modfile if you want to change the way
ed modifies the copied file. However, by including the here document, you can eliminate the file
edscript. Also, it is more convenient to debug a procedure if a command's input is readily acces­
sible. Here documents become more valuable as the size and complexity of the procedure grows.

18 Bourne Shell

Command Separators
The characters ;, &, &&, and II can be used to separate one or more commands or pipelines,
causing sequential, asynchronous (background), or conditional execution of the commands or pi­
pelines.

The Semicolon
The semicolon (;) causes sequential execution of each command or pipeline specified. It is
equivalent to a new-line. For example,

cd lusers/kb; mv . .lfredlfilel .; Is

causes the shell to execute the cd command, then the mv command, and finally the Is command.
Sequential execution means that the shell waits for each command to finish before executing the
next one. Thus, only one additional process exists at any given time. Note that sequential execu­
tion is the normal mode of execution for the shell, so a semicolon is not needed after the Is com­
mand to ensure that it executes sequentially.

The Ampersand
The ampersand (&) causes asynchronous execution of each command or pipeline specified. For
example,

cc prog1.c prog2.c & sort -d -0 filel filel & wc textfile &

causes the shell to create a new process for each command listed. Asynchronous execution
(sometimes referred to as executing a command in the background) means that the shell does not
wait for termination of the first command before executing the next. Thus, depending on how
long each command executes, three processes can exist at the same time in the previous ex­
ample. The first process is compiling prog1.c and prog2.c, the second is sorting filel, and the
third is counting the number of lines, words, and characters in textfile. Note that the ampersand fol­
lowing the wc command must be specified, or the wc command is executed sequentially.

The shell reports the process numbers of each process created by a & separator. Thus, if you exe­
cute the above example, three numbers are printed on your screen which identify the three pro­
cesses created. These are provided for your convenience, should you decide to terminate these
processes prematurely with the kill command.

Bourne Shell 19

Mixing; and & Separators
Sequential execution works well with commands that have short execution times, and asynchro­
nous execution works well with commands that have long execution times. It is helpful to be able
to choose the type of execution based on the execution time of a command. The semicolon and
ampersand separators can be intermixed on a line, so you can avoid having to wait for lengthy
commands. For example,

cc prog1.c prog2.c prog3.c & cd lusers/bil\; Is -I

Here, the shell creates a new process and executes cc in that process. Then, without waiting for
cc to finish, the shell sequentially executes cd and is, waiting for the cd command to finish before
executing the is command.

Note that a syntax error is generated if a semicolon and an ampersand appear adjacent to each
other.

The Double Ampersand
The double ampersand (&&) causes the next command or pipeline in the sequence to be execu­
ted only if the previous command or pipeline executes successfully. For example,

test -d lusers/kb/tools && cd lusers/kb/tools

first checks to make sure that luserslkbltoois exists. If so, the current working directory is changed
to luserslkbltoois. If not, no further action is taken.

The Double Vertical Bar
The double vertical bar (II) causes the next command or pipeline in the sequence to be exe­
cuted only if the previous command or pipeline was unsuccessful. For example,

test -d lusers/kb/tools II mkdir lusers/kb/tools

first checks to see if the directory luserslkbltoois exists. If so, no further action is taken. If not, the
directory is created using mkdir.

Mixing && and II Separators
The && and II separators can also be intermixed on a line. For example,

test -d lusr/tmp && rm lusr/tmpl * II echo "Permission denied"

which first checks to see if the directory lusrltmp exists. If so, all files in lusrltmp are removed. If rm
fails, the message "Permission denied" is printed. If lusrltmp does not exist, no further action is
taken.

20 Bourne Shell

Mixing ;, &, &&, and II Separators
All four command separators can be intermixed on a line, but the interpretation of the actual exe­
cution sequence becomes more complex. For example,

test -d Itools && cd Itools; test -z "$fn" II sort -0 $fn $fn &

The shell uses ; and & to terminate a command sequence. Thus, this example contains two
command sequences. The first command sequence is

test -d Itools && cd Itools;

which first checks to make sure that the directory Itoo1s exists. If it does, it becomes the current
working directory; if not, no further action is taken. Since sequential execution is required by the
semicolon, the shell executes this command sequence first, waiting until the test and cd com­
mands have finished before executing the second command sequence. The second command
sequence is

test -z "$fn" II sort -0 $fn $fn &

which first checks to see if the value of fn has a zero length. If not, the contents of the file speci­
fied by fn is sorted; otherwise, no further action is taken. Note that the terminating & places this
entire command sequence in the background, not just the sort command.

All four command separators are rarely combined in a single command line as shown above.
Other constructs in the shell programming language provide the same functions in a much more
readable format. Also, the time required to design and debug lengthy sequences of commands
is prohibitive. If space is a consideration, however, there is no more compact way of expressing a
particular command sequence.

\

/

Bourne Shell 21

Command Grouping
The left and right parentheses () and the left and right braces {} can be used to force several
commands to be grouped together in a single unit.

Grouping With Parentheses
All commands enclosed in parentheses are passed to a new shell process to be executed. For
purposes of discussion, new process refers to the process that is created to execute the
parenthesized commands, and calling process refers to the process that reads the parenthesized
commands, creates the new process, and passes the commands to the new process. Both pro­
cesses have their own shell. For instance, in this example,

(who;ls)

the calling process creates a new process to which the who and is commands are passed. The
new process executes who and is sequentially. The calling process waits for the new process to
signal that the commands have been executed. When the signal is received, the new process dies,
and the calling process reads the next command.

The & separator can be used to cause asynchronous execution in one or both of the processes.
For example,

(cd $HOME; ed - newfile <script; rm script) &

The & in this example is seen only by the calling process. The new process sees

cd $HOME; ed - newfile <script; rm script

and executes each command sequentially. The calling process treats the entire parenthesized
sequence as a command that is to be run asynchronously. Thus, the process number of the new
process is reported, and the calling process proceeds to the next command, without waiting for the
new process to signal that the job is completed. (Note that the cd command affects only the
current working directory in the new process; the calling process's current working directory is
unchanged.)

If the sequence is typed as follows,

(cd $HOME; ed - newfile <script &)

then only the new process is aware of the & separator. The calling process simply sees a
command that is to be run sequentially, and waits for a signal from the new process before con­
tinuing. The new process sees

cd $HOME; ed - newfile <script &

22 Bourne Shell

Thus, cd is executed sequentially, and a separate process is created to execute ed. The new
process reports the process number of the process that is executing ed, signals the calling process
that the job is completed, and dies, even though ed is still executing asynchronously. The calling
process then reads the next command.

Parentheses can be nested, with the result that more than one new process is created. For example,

test -f $fn && (ed - $fn <edl && (rm edl; sort -0 $fn $fn &)) &

The calling process sees

test -f $fn && (...) &

which tells it to execute the sequence asynchronously. Thus, the calling process creates another
process (process A) to execute the sequence, reports the process number of that process, and
reads the next command. As far as the calling process is concerned, the specified command
sequence has been executed.

Meanwhile, process A sees

test -f $fn && (...)

which is everything that the calling process saw, except that the final & is missing. Thus, process A
begins sequential execution of its command sequence. It first executes the test command, and, if
unsuccessful, signals the calling process and dies. Nothing more is done. If successful, however,
process A creates a new process (process B) to execute everything within the first level of
parentheses. Because there is no & separator, process A waits for a signal from process B that the
job is done. When process B's signal is received, process A in turn signals the calling process that
the job is done. Note that process A's signal is ignored by the calling process, regardless of
whether or not process B is created, since the calling process has already proceeded on to the next
command.

Process B comes to life and sees

ed - $fn <edl && (...)

Thus, process B begins sequential execution of its command sequence. The ed command is
executed and, if unsuccessful, process B signals process A that the job is done, and dies. If suc­
cessful, process B creates a new process (process C) to execute everything between the second level
of parentheses. Process B then waits for a signal from process C that the job is completed. When
process C's signal is received, process B sends a signal to process A, which in turn signals the cal­
ling process.

'\
)

Bourne Shell 23

Process C sees the following command sequence:

rm ed1; sort -0 $fn $fn &

Process C first executes the rm command. When rm has terminated, process C creates another
process (process D) to execute the sort command, reports process D's process number, signals
process B that the job is done, and dies.

Finally, process D sees the following command:

sort -0 $fn $fn

Process D sequentially executes the sort command. When sort has terminated, process D signals
process C that the job is done, and dies. Process C, however, has already died, so process D's sig­
nal is ignored. In fact, process D probably begins its task after processes C, B, and A have already
died!

Command sequences like the previous example are seldom, if ever, used. Designing a com­
mand sequence that performs exactly like you want it to perform takes a great deal of time. There
are other constructs available that perform the same functions and are much easier to read and de­
bug. However, command sequences like the previous example are ideally suited to those pro­
grammers who want their procedures to be as concise as possible.

Grouping With Braces
Braces are useful for grouping two or more commands together for the purpose of redirecting
their combined input or output. Braces do not in themselves cause the creation of new processes.
For example, in the following procedure,

{
date
Is
pr *
} >dircontents

date, is, and pr are executed sequentially, and their output is collected in the file dircontents.
Note that the braces do not create a new process to execute the commands. The braces are sim­
ply used to cause the 110 redirection to apply to all three commands.

The ;, &, &&, and II separators can be used within braces, and braces can be nested. They are
most commonly used as shown in the previous example, with each brace appearing on a line by
itself, and any number of valid commands and/or control-flow constructs appearing between
them.

24 Bourne Shell

Control-Flow Constructs
With the introduction of control-flow constructs, procedures cease to be shell scripts, and
become shell programs. Control-flow constructs are perhaps the most useful elements of the
shell programming language, for they enable you to create powerful shell programs that incor­
porate conditional testing, branching, and looping.

The FOR Construct
The for construct enables you to execute a set of commands once for every new value assigned
to a parameter. The for construct has the following syntax:

for name [in wordlist 1
do command-list
done

Name is any valid parameter name. Wordlist contains a list of one or more values that are to be as­
signed to name. One at a time, a value from wordlist is assigned to name, and the list of commands
in command-list is executed. Execution terminates when there are no more values left in wordlist.
If the in clause is omitted, then name is assigned the value of each positional parameter that is
set, and execution terminates when all positional parameters have been used.

Examples

for i in *.c
do

cc $i
mv a.out 'basename $i .c'

done

This example is a variation of the compile shell script discussed earlier. The parameter i is assig­
ned the name of each file in your current working directory that ends in ".c". That file is then
compiled, and the resulting a.out file is renamed such that its name is the same as its corresponding
source file with the ".c" removed. Execution ends when i has been assigned the names of all C
source files in your current working directory.

for dir in Idev lusr lusers llib lete Ibin Itmp
do

done

num = 'Is $dir I wc -w'
echo "$num files in $dir"

Bourne Shell 25

This example assigns each directory name to dir. The contents of each directory are listed, and the
number of files is counted with wc and assigned to nUffi. The number of files in each directory is
then printed.

for i
do

done
sort -d -0 ${i}.srt $i

Since the in clause is missing, i is assigned the value of each positional parameter that is set on the
command line. The result is that each file that is specified on the command line is sorted. The sor­
ted version is placed in a file having the same name as the unsorted file, with a ".srt" appended to
it.

Note that the wordlist part of the for construct can be almost anything. Some examples are

for i in $1

which enables you to specify wordlist from the command line, or

for file in $dir/[a-fJ?[1-4J.c

which causes wordlist to include all files in the directory specified by dir that begin with a lower­
case letter in the range a through f, followed by any single character, followed by a digit in the range
1 through 4, followed by ".c".

Note that do or done is recognized only when following a new-line or semicolon.

The CASE Construct
The case construct enables you to execute a specific set of commands, depending on the value
of a parameter. The case construct has the following syntax:

case $name in
pattern] [I pattern2 ... J) command-list] ;;

esac

Name is a dereferenced parameter name. The patterns are strings of one or more literal
characters and/or the special characters *, ?, [,], and "'. The command-list is a list of one or more
commands to be executed if one of the associated patterns matches the value of name. The last
command in command-list must be terminated with a double semicolon (;;).

26 Bourne Shell

Examples

case $fn in

esac

*.c) cc $fn
mv a.out 'basename $fn .c' ;;

*.f) fc $fn
mv a.out 'basename $fn .f ;;

*.p) pc $fn
mv a.out 'basename $fn .p';;

*) echo II $fn: not a source file. II

exit 1 ;;

This example compares the value of fn with each pattern listed, in the order in which the patterns
are listed. If fn is a file name ending in ".C ", then the commands associated with the "*.C II pat­
tern are executed, and so on. The final pattern consisting of a single asterisk acts as a default condi­
tion. If none of the other patterns are matched, the commands associated with the asterisk are
executed, since the asterisk matches anything. It is important that the asterisk be listed last, be­
cause any patterns following the asterisk are never matched. Note that the case construct ter­
minates after a match is made.

fori
do case $i in

esac
done

-[dO]) echo II Please specify directory. II

read dir;;
-bl-r) rfiag=y;;
*) echo II $i: unknown option. II

exit 1 ;;

This example illustrates how a case construct may be included within a fOf construct. This com­
bination is very common, and is most often used to process options from the command line. This
particular example accepts -d, -D, -b, and -f as valid options, and flags any others as invalid.
The case construct is executed once for every positional parameter set on the command line. The
first pattern matches -d or -D, both of which require the user to enter a directory name from his
terminal (the read command is described under Special Commands in sh(l), in the HP-UX Re­
ference manual). The second pattern matches either -b or -f, both of which set rfiag equal to II y II
(note that the second pattern could be written as "-[br]II). Finally, any other option prompts an
error message, and the process is terminated.

Bourne Shell 27

The IF Construct
The if construct enables you to execute certain commands, depending on the result of one or
more conditional tests. The if construct has the following syntax:

if command-list]
then command-list2
elif command-list3
then command-list4

else command-listn
fi

Only the if, then, and terminating fi are necessary; all elif sections and the else section are op­
tional. Each command-list is a list of one or more commands. The list associated with if is executed
first. If the last command of the list is successful, the list associated with the first then is executed,
and the construct is terminated. If the list associated with if is unsuccessful, the list associated
with the next elif is executed. If that elif s list is successful, the list associated with the next then is
executed, and so on. If all elif lists are unsuccessful, the list following else is executed, and
the if construct terminates.

Examples

if [-f -w "$fn" 1
then

ed - $fn <script
fi

This example shows the if construct in its simplest form. The square brackets are the alternate
syntax for the test command, and are equivalent to

test -f -w "$fn"

28 Bourne Shell

Thus, if the file specified by fn is both an ordinary file and writable, then it is edited according to
the ed commands in script. Otherwise, no action is taken. Note that this if construct is
equivalent to

test -f -w "$fn" && ed - $fn <script

if [-f -r /users/kb/$fn]
then

diff /users/kb/$fn $fn >diffile
elif [-f -r /users/bill/$fn]
then

diff /userslhill/$fn $fn >diffile
elif [-f -r /userslfred/$fn]
then

diff /users/fred/$fn $fn >diffile
else

echo" Can't find $fn for comparison. "
fi

This example shows all the parts of an if construct. Here, the directories /users/kb, /users/bill, and
/users/fred are searched for the file specified by fn. If it is found, it is compared to a file with the
same name in your current working directory. The output from diff is redirected into a file called
diffile. The else clause functions as a default; if all other tests fail, the echo command is executed.

The WHILE Construct
The while construct repeatedly executes a list of commands and, if the last command in the list
is successful, executes a second list of commands. The while construct has the following syntax:

while command-listl
do command-list2
done

Command-listl is a list of one or more commands that is repeatedly executed. If the last com­
mand in this list executes successfully, the commands in command-list2 are executed. The loop ter­
minates when the last command in command-listl executes unsuccessfully.

Example

while [-n "$1"]
do

done

sort -d --0 $1 $1
ed - $1 <edscript
pr -f $1 >/dev/lp
shift

Bourne Shell 29

This example operates on the positional parameter $1. The while loop continues as long as the
value of $1 has a non-zero length. First, the file name specified by $1 is sorted. Then, it is edited
according to the ed commands in edscript, and printed on the system's line printer. The shift com­
mand moves the value of $2 to $1, $3 to $2, $4 to $3, and so on. Thus, different files are sorted,
edited, and printed each time through the loop, even though the parameter name stays the
same. The loop terminates when a null value is shifted in for $1.

The UNTIL Construct
The until construct repeatedly executes a list of commands and, if the last command in the list is
unsuccessful, executes a second list of commands. The until construct terminates when the last
command in the first command list executes successfully. Thus, the while and until constructs dif­
fer only in the condition required to terminate the loop. The until construct has the following syn­
tax:

until command-listl
do command-list2
done

Command-listl is a list of one or more commands that is repeatedly executed. If the last
command in command-list1 executes unsuccessfully, the commands in command-list2 are execu­
ted. The until construct terminates when the last command in command-list1 executes successfully.

Example

until who I grep fred >/dev/null
do

sleep 300
done
write fred <fredletter

This example checks to see if Fred is logged in. If not, the process "sleeps" for five minutes,
and checks again. This continues until Fred finally logs in, at which time the until construct ter­
minates, and the message in fredletter is sent to Fred via the write command. Note that the out­
put from grep is redirected to I devlnull, which essentially discards the data into the system's "bit
bucket". A shell program like this can be executed in a background process to ensure that a
particular user gets an important message as soon as he logs in.

30 Bourne Shell

An Example Shell Program
The following is a shell program that is used to print files on the system's line printer, /dev/lp.

rd=n
range = *
dir='pwd'
days =

Parse options.

while [-n "$1"
do case $1 in

-c) rd=y

-d)
shift ;;
shift
dir=$l
shift ;;

raw dump

directory name

-f) shift # last-modified time
days = $1

esac
done

shift ;;
-r) shift # files to print

range = $1
shift ;;

*) echo "$1: unrecognized option. "
exit 1 ;;

Move to specified directory.

cd $dir

If -f specified, move all affected files.

if [-n "$days" 1
then

fi

mkdir . ./temp
find. -mtime $days -exec mv {} . ./temp "'-;

Begin printing.

for i in $range

)

do case $rd in

esac
done

n) pr -f -r $i >/dev/lp;;
y) cat $i >/dev/lp

echo 11 "'n "'n 11 >/dev/lp;;

Printing is done. Clean-up time.

test -n II $days 11 && (mv . .itemp/* .; rmdir . .itemp)
exit 0

This shell program, called print, accepts four options:

Bourne Shell 31

the -c option, which specifies that the contents of the files are to be printed with no for­
matting (Le. a 11 raw dump"). The cat command is used for this. The -c option requires
no argument. If the -c option is not specified, then the contents of the files are printed out
with a heading and page numbers. The pr command is used for this.

the -d option, which implies that the argument to follow specifies the name of the directory
containing the files to be printed. If the -d option is not specified, the user's current working

/

directory is used.

the -f option, which implies that the argument to follow specifies an argument for the
find command. If -f is specified, a temporary directory called temp is created in the parent
directory, and the find command is used to move all files of a certain modification date to
temp, thus excluding them from the printing. The -f argument can have the following three
forms:

+ n exclude those files modified more than n days ago;

-n exclude those files modified less than n days ago;

n exclude those files modified exactly n days ago.

This argument is combined with the -mtime option of the find command (seefind(l) in the
HP-UX Reference manual). If the -f option is not specified, no files are excluded on the
basis of modification date.

the -f option, which implies that the argument to follow specifies a string of literal and/or
special characters. The string is used in the in clause of a fOf construct to print a subset of
the files in the directory. If the -f option is not specified, an asterisk is used, causing all files
to be printed.

32 Bourne Shell

The following examples show some of the valid ways to invoke print:

print -c

causes all the files in the current working directory to be printed in "raw" form using cat.

print -d lusers/bill/Cprogs -r "'[a-f"'l'" * -f + 3 -c

does several things. First, the current working directory is changed to luserslbilllCprogs.
Then, the directory lusersibillitemp is created, and all files in Cprogs modified more than 3 days
ago are moved to temp, thus excluding them from the printing. Finally, all files in Cprogs that
begin with a lower-case letter in the range a through f are printed in "raw" form using cat. Note
that the special characters in [a-f]* must be quoted to prohibit the shell from expanding the pat­
tern, and replacing it with the files that match it in the current working directory. When the printing
is done, all the files in temp are moved back to Cprogs, and temp is removed.

print -r thesis -d lusers/bill/school

prints the single file thesis in the directory lusersibillischool. The pr command is used to produce a
formatted printing.

Using the case construct to parse options enables you to specify them in any order on the
command line. The only requirements are that the options be immediately followed by their im­
plied arguments, and that all options and arguments be delimited by spaces.

For More Information
The sh(l) entry in the HP-UX Reference manual functions as a comprehensive, though somewhat
cryptic, reference for the shell programming language. Some topics are not covered in this chapter
because of infrequent use, or because one example is sufficient to give gUidance in several areas.
Most of the omitted topics are related to the shell's special commands, which are discussed under
Special Commands in the sh(l) entry. You should read this section thoroughly to familiarize
yourself with the many commands that are built directly into the shell.

Many HP-UX commands are actually shell programs. The HP-UX Reference manual specifies
which commands are shell programs under the appropriate manual entries. The following is a list
of some of them:

letcirc
letciwhodo
letc/mkdev

It is helpful to examine the contents of these commands to see how the shell programming language
is used. Since these files contain ASCII data, you can print them out using cat, provided your sys­
tem administrator has assigned permissions to these files that enable you to do so.

Table of Contents

The C Shell (csh)
Introduction .. 1
The System You Received .. 1
Shell Startup and Termination. .. 2

Running csh From the Bourne Shell. .. 2
Making the C Shell Your Login Shell .. 2
Terminating a C Shell .. 2

What Happens When csh Is Executed. .. 4
Setting Environment and Shell Variables. 4
The .cshrc Shell Script File .. 4
The .login Shell Script File .. 6

What Happens When You Log Out .. 7
The C Shell Command History .. 7

Reexecuting Events. .. 8
Reuse of Command Arguments .. 9
Modifying Previous Events ... 10
An Example. .. 12

Alias ... 14
Alias Substitution ... 14
Restrictions Using Alias .. 14
Aliasing Existing Commands. .. 15
Creating Custom Commands .. 15
Unaliasing an Alias ... 15

Command Substitution ... 16
Metacharacters in C Shell ... 16

Syntactic Metacharacters .. 16
Filename Metacharacters .. 17
Quotation Metacharacters .. 18
Input/Output Metacharacters. .. 18
Expansion/Substitution Metacharacters .. 19
Other Metacharacters .. 19

Using Metacharacters an Normal Characters .. 20
Built-in Shell Variables ... 21
Numeric Shell Variables .. 24
File Evaluation .. 26
C Shell Commands. .. 27
Jobs ... 30

ii

C Shell Scripts .. 31
When Not to Use a Script .. 31
Running a Script ... 31
Script Execution .. _. .. 32
Shell Script Expressions .. 33
Shell Script Control Structures .. 34
Supplying Input to Commands ... 37
Catching Interrupts ... 37
An Example Shell Script. .. 38

The C Shell (csh)

Introduction
The C Shell is an HP-UX command language interpreter and a high-level programming language.
It is used to translate command lines into actions, such as running programs, moving between
directories, and controlling the flow of information between programs. It also has the following
features:

• a command history buffer and associated history substitution facility. Recently executed com­
mands may be modified and re-executed with ease.

• an aliasing facility. Useful statements can be referenced with a short alias.

• an extensive, C-like command and control capability.

For further information about HP-UX shells, read "Bourne Shell Programming" in the HP-UX
Concepts and Tutorials.

This document uses the following conventions:

• All examples assume the C Shell prompt has been changed to show the current command
event number by entering the follOWing set command in either $HOMEI. cshrc or $HOMEI
.login:

set proMPt = "[\1] Z "

Your resulting prompt appears as:

[23] X.

• Dot - Mat r i x font is used to show what you should see on your screen. For example, to activate
the C shell type csh. Terminating command sequences with (ENTER] or (RESULT] is assumed.

• Bold font is used to emphasize important information and key words.

• Italic font is used to indicate commands and to refer to words illustrated in commands.

The System You Received
Your HP-UX system has both the Bourne Shell and the C Shell as command interpreters. When
your system is shipped to you, the Bourne shell is the default shell when you login.

The default shell prompt for the Bourne Shell is the dollar sign ($) symbol. When C Shell is made
the active shell, the prompt becomes the percent (%) symbol. The prompts for both shells can be
changed to any symbols you want, but more about that later.

1 This software and documentation is based in part on the fourth Berkeley Software distribution under license from the regents of the University
of California. We acknowledge the follOWing individuals and institutions for their role in its development: William Joy.

1

2 C Shell

Shell Startup and Termination

Running csh From the Bourne Shell
The name of the C Shell program is csh; therefore, to run the C Shell from the Bourne Shell, just
type in:

csh

Your prompt changes to the C Shell prompt, % (provided you have not redefined the prompt).

Making the C Shell Your Login Shell
To make the C Shell your default login shell instead of the Bourne Shell, type in:

chsh lo~in_naMe Ibin/csh

The argument 1 0 !1 i n _ n aM e is your login name.

The command chsh changes your login shell by modifying your entry in /etc/passwd (see your
HP-UX System Administrator Manual). When you change shells, the new shell is your default login
shell until you use chsh again. Chsh changes your login shell, but not your current working shell.
You must log out and then log in again in order for the new shell to be executed.

The full path name of the C Shell program is /bin/csh, while the Bourne Shell program is /bin/sh. If
you want to make the Bourne shell your login shell, just type in:

chsh lo!1in_naMe Ibin/sh

If no shell path name is specified on the chsh command line, the login shell is set to /binlsh.

Terminating a C Shell
The main control for how you terminate a C shell is the value of the shell boolean variable
ignoreeof. To see the condition of this variable, execute set without arguments. This lists all shell
variables and their current values. Boolean variables are listed if they are set. For example:

[25] 'X, set
ar!1u () autolo!1out 15
cwd lusers/lo~in_naMe

history 15
hOMe lusers/lO!1in_naMe
i !1no reeof 1----- ignoreeof is set for this example
noclobber proMPt [!] Z
shell Ibin/csh
status o
terM hp2622
path (/bin lusr/bin Ilbin lusr/lbin letc/users/lo!1in_naMe •)
[26] 'X,

C Shell 3

If ignoreeof is set, you must use either ex i t or 10!1 0 u t to terminate the C Shell. If it is not set, you
must use (CTRL)-~ .

Returning to a Parent Shell
If you executed csh from a· Bourne Shell or another C Shell, when you terminate the current C
Shell process you return to the parent shell process. If ignoreeof is set, return to the parent process
by typing:

exit

If the parent shell process was the Bourne Shell, you should now see your Bourne Shell prompt. If
you use (CTRL)-~ to exit the C Shell, the error message:

Use "exit" to leave csh.

is printed.

If you executed csh from the Bourne Shell without setting ignoreeof, use (CTRL)-~ to exit the
shell.

Logging Off Your System
If the C Shell is your login shell and the shell variable ignoreeof is not set, type in:

(CTRL)-~

to log off your system.

If ignoreeof is set, use either:

exit

or:

10!1out

to log off the system. In this case, (CTRL) -~ does not log you off your system. If you do enter a
(CTRL) -~, your system responds with:

Use "lO!1out" to 10!1out.

4 C Shell

What Happens When csh Is Executed
There are two shell script files that csh looks for when it is executed:

.cshrc

.login

Whenever a C Shell process is started, whether as your login shell or from another
shell, this shell script file is executed, if it exists in your home (login) directory .

If you log into your system and the C shell is your login shell, after executing. cshrc a
shell script called .login is also executed, if it exists in your home directory.

Neither of these files are required by the C Shell; however, they provide a convient method of
customizing your shell environment.

Setting Environment and Shell Variables
There are two kinds of variables that you can set in the .cshrc and .login files:

environment variables

shell variables

variables that are global to your login shell process and any processes
spawned by the shell process. These are represented by uppercase
letters.

variables that are local to a shell process and are not inherited by
spawned processes. These are represented by lowercase letters.

Normally, environment variables are set with the setenv command and shell variables are set with
the set command. However, three of the most commonly used environment variables USER,
TERM, and PATH are automatically imported to and exported from three corresponding shell
variables: user, term, and path. Thus, if you execute:

set patn=(/bin lusr/binl

the value of the environment variable PATH also becomes "lbin:/usr/bin" (Note the difference in
the syntax of the two variables.)

The set and setenv commands can either be used interactively at a terminal or they can be placed in
either the . cshrc or .login files.

The .cshrc Shell Script File
If this shell script file exists in your home directory, all C Shells started during your session execute
the commands contained in this file. The C Shell uses the information contained in this shell script
file to set variables and parameters that are local to the shell process.

Since every C Shell created executes this file, it is customary to use it to set shell variables by placing
set command lines in it. If you do not have a .cshrc file, HP-UX spawns a C Shell process with
default values for these variables.

C Shell 5

To see what shell variables are currently set, execute set

[25] '.\', set
a r!l'v ()
autolo!l'out 15
cwd lusers/lo!l'in_name
history 15
home lusers/lo!l'in_name
i!l'noreeof
noclobber
prompt [!] 'X,

shell Ibin/csh
status 0
term hp2622
path (/bin lusr/bin Ilbin lusr/lbin letc/users/lO!l'in_name •)
[26] '.\',

Some of the commands you might want to put in this file, and their meanings are shown below. Use
your login name for the variable login_name shown.

Command

set ignoreeof

set prompt = "[""-.!] %"

set history = 15

set savehist = 15

set noclobber

Meaning

Traps (CTRL) {I) , s to avoid accidental system log off. Use
the logout command.

This command causes your C Shell prompt to be the current
event number in square brackets followed by a percent sign.
This is very helpful when using the command history buffer.

Sequentially keeps a buffer of your last (15 in this case) events.

This command saves the last (15 in this case) events when you
log off your system. When you log back onto your system, the
event history is restored.

This command stops the C Shell from overwriting and des­
troying the information in an existing file.

Note that you can suppress the execution of .cshrc by using csh's -f option:

csh -f

6 C Shell

The .login Shell Script File
If the C Shell is your login shell and a shell script file .login exists in your home directory, the file is
executed whenever you login (after .cshrc). It is customary to set environment variables in this file
by including setenv commahd lines. Some of the commands you might want to put in this file and
their meanings are shown below. The variable $LOGNAME refers to your login name.

Command

setenv TERM hp2622

setenv TZ MST7MDT

Meaning

Sets the system variable TERM to recognize the HP 2622 as
your terminal.

This command sets the time zone variable. The example
changes from Mountain Standard Time to Mountain Daylight
Time.

setenv PATH /bin:/usr/bin:/lbin:/usr/lbin:/etc:/users/$LOGNAME This command sets the the
search pattern the system uses
for finding commands.

set mail = /usr/mail/$LOGNAME Required to set notification of mail for HP-UX.

/bin/mail -e Message to notify you that you have mail.

if ($status = = 0) then echo
"You have mail"

alias h history

alias bye logout

cat /etclmotd

tabs -Thp

news -n

news more

Make the character h an alias for your command history file.

For some, bye is easier to remember than logout as a session
termination order.

Get the message of the day from the system.

Set tabs on HP terminals.

Get the names of the news items from the system.

More the news.

C Shell 7

What Happens When You Log Out
If the C Shell is your login shell and the variable ignoreeof is set, the system looks for a shell script
file called .logout in your home directory to execute whenever you log out. You log out of your
system by typing in:

logoff

or

exit

These commands read your shell script file .logout and execute any commands found there.
Commands typically found in this shell script file are shown below, along with their meaning.

Command

echo' ,
echo '** You are logged out now.'
echo' ,

date

sync

Meaning

Print logout message to your standard output device.

Prints your log out date and time.

Put all information stored in all buffers onto the system disc.

The C Shell Command History
The C Shell always maintains a Command History Buffer capable of holding your last command.
By setting the history shell variable to some integer value, say 20, the history buffer can hold many
(in this case 20) commands. These saved commands, sometimes called events, can be accessed in
many useful ways. Since these commands can be quite complex, we use the term event to refer to
commands stored in the Command History Buffer from now on. A buffer size of 10 to 20 is about
right for most situations.

You can take advantage of this history buffer by using C Shell's history substitution facility. This
facility allows you to use words from previous command events as portions of new commands,
repeat command events, repeat arguments of a previous command in the current command event,
and fix spelling mistakes in a previous event.

History substitutions begin with an exclamation point (!). They can begin anywhere in an event;
however, they can not be nested.

To see how this all works, enter the following lines in either your .cshrc or .login files in your home
directory.

set history = 15
set savehist = 15
set proMPt = "[\!] 'X, "

8 C Shell

These statements:

• create a fifteen-event Command History Buffer;

• save the last 15 events in your command history buffer when you log off the system and
restore them the next time you log on the system;

• cause your C Shell prompt to display the event number of each event.

All of the capabilities that you are about to see work without this special prompt, but history
substitutions are easier to handle if your prompt indicates the event number of each event ex­
ecuted.

To see what is in your history buffer, type in the command his tor y without arguments. Your
display may appear as shown below:

[8] ox. history
1 s -als

2 cat junK
3 pr MeMO > /de~J/lpr&
4 Mail jd " , MeMO
5 vi • c s h rc
8 historY

[7] 'X,

Re-executing Events
You can re-execute a previous event by using the history substitution facility to reference the event
in your history buffer. An event can be referenced by:

• its event number;

• its location relative to the current event;

• the text of the event.

As a special case, the immediately previous event can be referenced by double exclamation points
(!!). (Actually, the first exclamation point activates the history substitution facility and the second
references the previous event.)

Referencing by Event Number
One way to re-execute an event stored in the history buffer is to reference its event number. For
example:

[7] ox, ! 2

cat junK

This is the contents of the file junK.
[8] OX,

re-executes event number 2. Notice that the event to be re-executed is echoed on the terminal
before it is actually executed, allowing you to verify that you are referencing the correct event.

C Shell 9

Referencing by Relative Location
Another way to re-execute an event is to reference its postion in the history buffer relative to the
current event. For example:

[8] 'x, i-a
Mai 1 Jd < MeMO
[9] 'X.

executes event four (8 - 4 = 4), in this case sending a memo to user jd again.

Referencing by Event Text
You can re-execute an event by entering the first few characters of the event's command line. If you
have previously executed history, you can see what the current history buffer contains using:

[9] 'X. ! n

The history substitution facility searches backward through the buffer until it finds an event whose
command line begins with the letter "h". When it finds the event with the history command line, it
re-executes it.

[9] 'X. !n
1 1 s -a1s
2 cat junK
3 pr MeMO) Idev/lpr&:
a Mail Jd < MeMO
5 vi .cshrc
6 history
7 vi MeMO
8 Mail Jd < MeMO
9 historl'

[10] 'X.

Reuse of Command Arguments
The history substitution facility allows you to use parts of previous commands as building blocks of
new commands. Each command argument in a command event is numbered .. To reference a
command argument, specify the event with one of the methods described above in "Re-executing
Events" and then use a colon (:) followed by the argument's position number.

The first argument, usually the command, is argument number zero (0). The second argument is
argument number one (1), etc. The last argument is given the special reference of the dollar sign
($). The second argument, usually the first argument after a command word is given the special
reference of the caret ("). To see how this works, begin with the example shown below.

[10] % nroff -Man csh.l : col -1) Idev/1p &:

To see what the last argument in this event is, type in:

[11] 'x, ! 10:$

&:
[12] 'X.

10 C Shell

The last argument in event 10 is the ampersand (&). The history substitution facility extends the
normal meaning of 'argument' to include important metacharacters. The argument specified by a
caret (") is -M an. To verify this, type in:

[12] % echo !10:·
echo -Man
-Man
[13] X.

The referenced argument can be made part of another command. A range of event arguments can
also be specified by using a dash (-) to separate the range endpoints. For example:

[13] % echo !10:3-$
echo : col -1 > /dev/1p &
[1] 188311 18835
[ill] X.

Note that the example generated a new C Shell with the job number [1] and two process IDs
188311 18835. This new shell is called a background process. The arguments col -1 are printed on
the line printer (ldevllp). Jobs and job numbers are discussed later in this tutorial.

If you want to reuse all of the arguments of an event that follow an initial command, you can use an
asterisk (*):

[ill] % MKdir /users/bi11 /users/pete /users/MarY
[15] % rMdir !111:*

Modifying Previous Events
As you use the C Shell, you will find that re-executing a previous event with minor modifications
will save you typing. To modify and then re-execute a previous event, you should form a command
line in the following manner:

1. Begin by referencing the previous event by either its event number, its location relative to the
current event, or by text contained in the event's command line. See the previous section
"Re-executing Commands". This reference always begins with a"!".

2. Optionally, you can specify particular words on the chosen event's command line. See the
previous section "Reuse of Command Arguments". This specification is usually separated
from the event reference (step 1) with a ":".

3. Finally, specify how you want the event changed using a modifier from the table below. If
you skipped step 2, the modifier applies to the entire event. If you specified particular words
in the event in step 2, the modifier applies to those words. The modifiers are always prefixed
with a ":". You can use several modifiers in sequence, separating each of them with a ":".

C Shell 11

The following is a list of modifiers that you can use to modify your re-executed events and their
command arguments (step 3).

Modifier

s/old/new

g

h

p

q

r

&

Definition

substitute

global

head

print

quote

root

tail

repeat

Effect

Substitute old for new. Any character may be used as the delimiters be­
tween the substitution strings. An ampersand (&) in the new string is re­
placed with the whole old string. Note that this only effects the first occur­
rence of old on an event's command line. Use the "gs" combination if you
want the effect to be global.

Use in combination with another modifier to make the effect of the modifier
global for an event's entire command line. (e.g. gs/old/new replaces all
occurances of old with new).

Note that only one substitution can can made per argument in an event. For
example, the effect of gs/joe/mary on the path name
I I.t 5 e r 5 I joe / joe _ f i 1 e would be to make the following modification:

Use only the directory path name of a specified argument in an event by by
removing its final path name component (Le. use only the path name's
head).

Print the event specified, but do not execute it. This is useful if you just want
to verify what a particular event was. For example:

[10]i,,!3:p

prints event number 3 on your terminal without executing it.

Quote the modifications so that no further modifications can take place.

Remove the file name extension. If a file name's tail ends with a "." followed
by one or more characters, the "." and the characters that follow it are
dropped. (Le. remove .0 from file. 0 leaving file).

Remove all elements of a path name except the last element (Le. the path
name's tail).

Do the previous substitution again. The history substitution facility keeps
track of the last substitution you performed with the s modifier, thus allOWing
you to easily perform the same change on different events that you want to
re-execute.

For example, suppose you enter the following command:

[14] % car /users/jacK/docUMentS/MeMO
car: COMMand not found.
[15J i"

12 C Shell

The cat command in event 14 was misspelled. To fix this, type:

[15] % !14:s/car/cat
cat /users/JacK/documents/memo

This is a test.
[18] /.,

This executes the command correctly, without retyping the whole path name of the file that you
want to look at. To look at a file called "list" in the same directory you can now enter:

[18] % !15:s/memo/list
cat /users/JacK/documents/list

apples
o ran ges
bananas
pineapples
stral~berries

plums
[17] %

Now, suppose that you want to move to the directory containing the files that you just looked at.
You can do this with:

This is quite a complex command, but typing is still saved. The double exclamation marks reference
the immediately previous event, the caret (") argument specifier selects the second word on the
event's command line and the h modifier indicates that only the head of the specified word is used
(" /users/jack/ documents' ').

To return to your home directory, type in:

[18] /., cd
[19] 'Y"

An Example
To see how this all comes together, the following example shows how you can use the C shell to
modify, compile, and execute a C program called "bug.c".

[22] /., cat bug,c

fIla i n ()

{

printf("hello) ;
}

[23]/.,cc!!:$
cc bug,c

Prompt set to show current comand number

Compile file named in last event.

"bug,c"tline 4: nelAlline in string or char constant
"bug,c"tline 5: syntax error

[24] /., e d !!: $

e d b u!1 • c

28
45/) j/"&:/p

IN
30
9

printf ("hello");

[24] '1., ! c
cc bu!1.c

[25] /., a.out

hello [28] /" !e
ed bU9.C

30
4s/1o/1o\\n/p

printf("hello\n") j

IN
32
9

Edit file named in last event.

Do last event that began with
small c character.

Not right, run ed again.

[28] /" ! c - 0 b u!1 Do the last c event and append
c c b u !1 • c - 0 b u !1 the -0 option and word "bug".

[27] /., 5 i z ea. 0 u t b U 9 Execute size.

a.out: 2784+384+1028 = 4178b = Ox1050b
bu!1: 2784+384+1028 4178b = Ox1050b

[28] % 1 5 - 1 !!: * Prefix last event's arguments
1 s - 1 a. 0 U t b u!1 with an Is -I command.

-rINxr-xr-x
-rwxr-xr-x

[28] 'X, bU!1

hello

derald
derald

[30] % nUM bU9.C : spp
SPP: COMMand not found.

[31] % !! :$:s/spp/ssp
nUIl1 bU9. c : sSP

1 III a i n ()
3 {

3832 Feb 28 08:00 a.out
3832 Feb 28 08:01 bu!1

Execute bug.

Correct spelling in last event
from "spp" to "ssp".

4 printf("hello\n") j

5 }

[32] % !! > /dev/lp
nUM bu!1.c ssp> /dev/lp

[33] /.,

Execute last executable event
(!!) and send to line printer.

C Shell 13

14 C Shell

Alias
The C Shell allows you to customize commands with an alias facility. This facility allows you to
make standard commands do non-standard functions and allows you to define new commands.
The alias facility is similar to a macro facility in that when an alias is detected, it is replaced by the
alias definition.

To see what aliases exist, enter alias without arguments. For example:

[1I1] 'X. alias
cd cd 1* j 1 s

h history
print pr !* I col -1 > /dev/lp I

w who j echo "You are t t. + t +. " who aM
d i r (1 s -alsl

You can create the above aliases either interactively or by placing alias commands in a shell script.

Alias Substitution
After a command line is scanned, it is parsed into distinct command arguments The first word of
each command, left-to-right, is checked to see if it has an alias. If it does, the alias string replaces the
aliased word. The process begins again. The substituted alias string is marked to avoid looping and
does not modify the rest of the command word's arguments.

Alias uses the same substitution scheme as the history facility uses. A single exclamation point
represents the current event and is preceded by a backslash so that the shell does not interpret it,
but passes it on to alias. History modifiers also work in alias statements.

Restrictions Using Alias
There are two basic restrictions that you must adhere to when you use the alias facility:

• You cannot alias the alias command. If you do, an error message is generated .

• To prevent the formation of an alias loop, the C Shell allows a particular alias string to appear
only once in another alias definition. Also, the command that is being aliased can appear only
once in its own alias definition. For example:

[32] % alias Is Is

works, but:

[33] % alias Is 'Is; Is'

doesn't. If you try to execute 15 after it has been aliased with event 33 above, you see:

[311] 'X. Is
Alias loop,
[35] 'X.

C Shell 15

Aliasing Existing Commands
You can alias HP-UX commands so that they perform non-standard functions. Suppose you like to
get a directory listing whenever you change directories. Do this by aliasing cd in the following way:

[42J % alias cd 'cd ,!* ; Is'

Using a command statement in the alias of the command is acceptable.

We enclosed the entire alias definition in single quote characters to prevent most substitutions from
occuring and the semicolon character from being interpreted as a metacharacter.

We place the backslaah ("') in front of the exciaimation point to prevent the exciaimation point
from being interpreted as a history substitution. The result of the string' ! * is that it substitutes the
entire argument list to the pre-aliasing cd command.

The semicolon separates commands to be executed sequentially.

Creating Custom Commands
The C Shell's alias facility also allows you to create new commands. Suppose you want to get a
long, alphabetical listing of your current working directory showing the size of each file. You could
type in:

Is -als

each time, but you want to make up your own command

d i r

and get the same results. To do this, type in:

alias dir Is -als

Unaliasing an Alias
The following aliases exist:

[41] 'X, alias
cd cd !* ; Is
h history
print pr !* I col I

I,.J l,.Jh 0 ; echo
d i r (Is -als)

-1 :> /dev/lp
HYott are •••••• +11 who anl

To unalias the change directory command (cd) type in:

[42J % unalias cd
[42J 'X, alias

h histon"
p r i n t pr !* : col -1 :> /dev/lp
w who; echo "You are """," who aM
dir (Is -als)

16 C Shell

Command Substitution
A command enclosed in single quote characters is replaced, just before filenames are expanded, by
the output from that command. Thus, it is possible to use:

[43] % set pwd='pwd'

to save the current directory in the variable plAId. You can now print the value of the pwd variable
with:

[44] '.\', echo $pwd

/users/joe/docuMents
[45] 'X,

Command substitution also provides a way of generating arguments for other commands. For
example:

ex '~rep -1 TRACE*.c'

runs the editor ex, supplying as arguments those files whose names end in • c and beginning with
the string TRACE.

Metacharacters in C Shell
The C Shell recognizes a number of characters as having special meaning. We say that these special
characters have syntactic and semantic meaning to the shell. These special characters are called
metacharacters.

Metacharacters effect the C Shell only as the characters are read into the shell. The C Shell displays
an & as a prompt when reading. The metacharacters recognized by the shell are not recognized
when it is running another program, such as vi or mail. Thus, don't worry about metacharacters in a
letter you are sending via mail or when you are typing in text or data with vi.

Syntactic Metacharacters

()

&

separates commands to be executed sequentially.

separates commands in a pipeline. Commands in a pipeling execute sequentially with
the output of one command being fed as input to the next command.

isolates commands separated by";" or pipelines so that the result appears as a simple
command. This allows pipelines enclosed in parentheses to themselves be compo­
nents of another pipeline. Parenthesized commands are always executed in a subshell .

....
indicates commands to be executed as a background process. For example, to print
the file 1 e t t eras a background process on the system printer / del) IIp, type in:

cat letter) Idel)/lp &

II separates commands or pipelines indicating that the second is performed only if the
first fails.

&& separates commands or pipelines indicating that the second is performed only if the
first succeeds.

C Shell 17

Filename Metacharacters
If a file's name contains one of the following metacharacters, then the name is a candidate for file
name substitution. There are two basic types of file name metacharacters. The first type indicates
that the name is a pattern v.thich the shell should replace with all of the file names that match it. The
second type indicates that the name is an abbreviation which the shell should expand to the
appropriate file name.

The metacharacters that indicate patterns are:

?

*

[1

expansion character matching any single character when specifying a filename. For
example, to collect the files filea.o, fileb.o and filec.o in the file named total. 0, type in:

cat file?o > total.o

expansion character matching any sequence of characters, including the empty sequ­
ence. To remove all files beginning with the word 0 I d, type in:

rill old*

expansion matching of anyone of the characters enclosed or range of characters
separated with a dash (-) listed within the brackets. For example, to list all the files with
the same root name (file), type in:

Is file.[a-z]

This could produce:

file.o file.p

The metacharacters that indicate abbreviations are:

{} abbreviates a set of words which have common parts. Curly brackets are seldom
needed. For example, the files lis t, I as t and los t can be listed with:

Is Haio};t

gives access to the path name from the root to the home directory of a user. The
syntax is the tilde followed by the login name of the desired user. You must have
superuser capability to use this metacharacter. If a ~ appears in the middle of a word
or is followed by a character other than a letter or a /, it is not interpreted as a
metacharacter and is left undisturbed.

The following character also has a special meaning in file names:

/ separates components of a file's path name. For example, / bin / c s h is the path name
to the file c s h. The first slash in a path name or a lone slash references the system's
root directory.

18 C Shell

Quotation Metacharacters
'" prevents meta-meaning of the following single character. For example, typing:

, ,

" "

Is *
prints a list of all of your files and directories in your current directory. Typing in:

Is *

prints:

* not found

prevents meta-meaning of a group of characters. For example, if you set a variable to
a command string, the command string may contain metacharacters. When you refer­
ence the variable, the metacharacters could be processed. Using single quotes inhibits
the processing of any metacharacters in the string.

prevents meta-meaning of a group of characters, but allows variable and command
expansion. This is like using a single-quote, except that only the metacharacters are
left unprocessed.

Input/Output Metacharacters
<name

>name

indicates redirected input from name. For example,

mail boss < memo &

sends the file memo to boss.

indicates redirected output to name. For example:

grep -vn file1 file1 > numbered.file1

puts a copy of f i 1 e 1, with each line numbered, in the new file n u m b ere d • f i 1 e 1. This
metacharacter causes the target file to be overwritten (unless the variable noclobber is
set).

>&name direct the diagnostic output along with the standard output into the file name.

>!name redirect output with over-write of target file. This is used when noclobber is set. You
can also combine the effect of >& and>! by using >&!.

> > name redirect output by appending it to the end of name. If the file name does not exist and
the variable noclobber is set, and error occurs.

> >&name append diagnostic output along with the standard output to the end of name.

> > !name Acts like> > except in the case where name does not exist and the noclobber variable
is set. In such a situation, > >! creates name and no error occurs. You can also
combine the effect of > >& and> >! by using> >&!.

C Shell 19

< < word read the shell input up to a line which is identical to word. Word is not subjected to
variable, file name or command substitution, and each input line is searched for word
before any substitutions are performed on it. Files processed in this manner are
commonly called here documents.

Note that if you do not want meta-substitutions performed on the lines in the shell
script, enclose word in single quotes « <' word').

forms a pipeline between two processes. A pipeline causes the output of the process
before the "I" to be the input of the process after the "I".

1& forms a pipeline between two processes that sends diagnostic output as well as stan­
dard output from the first process as input to the second process.

Expansion/Substitution Metacharacters
$ indicates variable substitution. For example,

?

set Ml = /usr/man/man3
cd SMl

The path name is assigned to the variable M1. To use the variable, preceed the
variable name with a dollar sign.

Note that you could also execute cd Mi. The C Shell looks for a directory called "Ml"
and when it cannot find it it looks for a variable with that name. When the variable is
found, its value is used as an argument to cd.

indicates history substitution. See the History discussion in this tutorial.

precedes substitution modifiers. See the History discussion in this tutorial.

used in special forms of history substitution indicating command substitution.

Other Metacharacters
indicates shell comments and begins scratch file names. Must be the first character in a

shell script to be executed by the C Shell.

% prefixes job name specifications. For example:

[58] % cc test.c >& test &
[1] 3285
[57] X, Kill X,l
[58] X,

Event 57 kills the background process with the job number 1.

20 C Shell

Using Metacharacters as Normal Characters
Metacharacters pose a problem in that we cannot use them directly as parts of command argu­
ments. Thus the command:

echo *

does not echo the character *. It either echoes a sorted list of file names in the current working
directory, or prints the message No klatch if there are no files in the working directory.

To change metacharacters into normal characters, put them in single quotes. The command:

echo '*'

echoes an asterisk to your display.

There are three metacharacters that cannot be "escaped" with single quotes. They are:

• the exclamation mark (!)

• the backslash ("-)

• the single-quote (')

The backslash must be used to cancel the special shell meaning of these metacharacters. Thus:

echo \'\!\\

prints:

'!\

These two mechanisms, the single-quote and the backslash, let you use any printable character in a
shell command. They can be combined, as in:

echo \"*'

which prints:

'*

The backslash (\) escapes the first single-quote (,) and the astrisk (*) is enclosed between single­
quotes. The result is a Single-quote and astrisk.

C Shell 21

Built-in Shell Variables
The shell maintains a set of variables. Shell variables may be assigned values by the set command.
Shell variables may be used to store values which are to be used in commands later through a
substitution mechanism. The shell variables most commonly referenced are, however, those which
the shell itself refers to. By changing the values of these variables one can directly affect the
behavior of the shell. The following variables are supported by HP-UX and the C Shell.

The $argv Variable
This variable contains the command line arguments from the calling shell. These are position
numbered so that $argv[O] is the command, $argv[l] is the first argument that follows it, and so on.

The $autologout Variable
This variable is used to automatically log you off the system if you do not use the system for a
specified amount of time. For example,

set auto logout = 60

will automatically log you off the system if you do not use the system for an hour (60 minutes).

To disable autologout, set it to zero (0) time. For example:

set autologout = 0

or

unset auto logout

The $cwd Variable
The cwd variable contains the pathname to your current working directory. This variable is auto­
matically changed with each cd (Change Directory) command. At log-on, the default for this
variable is the directory in the system variable $HOME.

The $home Variable
The home variable contains the path name to your home directory. The default value for this
variable is specified in the system file /etc/passwd. (See passwd(5))

The ignoreeof Boolean Variable
The variable ignoreeof is a boolean that indicates if (CTRL) -CD is allowed to log you off the
system. If set,

set i gno reeof

you log off the system with logout. If unset,

unset ignoreeof

then the (CTRL) -CD will log you off. The default is set.

22 C Shell

The $cdpath Variable
This variable allows you to specify alternate directories that the system will search to find the
subdirectory arguments that you use with the pushd, cd, and chdir commands.

The noclobber Boolean Variable
Suppose you use the following command sequence to take the input from the keyboard and
redirect it to a file called new f i Ie.

eat> newfile

If new f i I e exists before this command sequence is executed, the old copy of new f i I e will be
overwriten and destroy. In this way you may accidentally overwrite a file which is valuable. If you
would prefer that the shell not overwrite files, set the noclobber boolean with:

set noelobber

in your .login file. To see how this can work, type in:

l'. eat> newfile
This is a test Messa~e.
EOT
%set noelobber
eat> newfile
newfile: File Exists.
'X.

When you tried to cat to an existing file with noclobber set, the system tells you the F i leE xis t s •
and aborts the command. To override noclobber, use the exclamation mark metacharacter. For
example:

%eat) newfi1e
newfile: File Exists.
%eat)! newfile
This is an override test.
EOT
'X.

The notify Boolean Variable
If the notify variable is set, you are immediately notified when a background process is finished. If it
is unset, you will be notified that a background process is finished with the next presentation of the
C Shell prompt. Use the set command to set notify.

The $path Variable
One of the most important variables is the variable path. This variable contains a sequence of
directory names the C Shell searches for commands. For example:

set path=(/bin Ius rib in IlbiD lusr/bin lete .)

or

setenv PATH=(/bin lusr/bin Ilbin lusr/bin lete .)

C Shell 23

PATH is an environment variable and path is a C Shell variable that does the same job. Normally,
environment variables are global to the shell and any processes it creates while shell variables are
local just to the shell process in which they are set. However, in the case of PATH and path when
you assign a value to one the system automatically changes the other. Thus, the effect of modifying
either PATH or path is global.

When csh is first executed, a hash table of command locations is created. This table is created by
looking through the directories specified in $PATH, except for the current working directory, in the
order shown. If you write new commands and store them in other than your current working
directory, the system doesn't know they are there. To tell the system about these new commands,
use the rehash command.

The $prompt Variable
This variable is used to customize your C Shell prompt. For example,

Z set proMPt = "[\!J Z "
[ZZ J 1.

sets the prompt to indicate the command (event) number of the current command. This is very
useful when using the C Shell's history facility.

The $shell Variable
When a command is invoked that is not a C Shell command (see "C Shell Commands" later is this
tutorial) a new shell is spawned to execute it. This variable is used to indicate what kind of shell
should be created in this situation. It can be assigned to either Ibin/csh or Ibinlsh. For example:

set shell = Ibin/csh

spawns a C Shell, while

set shell = Ibin/sh

will spawn a Bourne shell.

There are some commands that usually depend upon the value of $shell, such as maiix and vi. If
you change the value of $shell and execute maiix or vi, they will be spawned with the new shell
type. This mayor may not be what you intended.

The $status Variable
This variable return 0 is the most recently executed command executed without error. A non-zero
value means an error was detected.

24 C Shell

Numeric Shell Variables
The at (@) command assigns a value to a numeric variable name, just as the set command assigns a
string to a non-numeric variable name. Numeric values can be integer(octal or decimal), real(octal
or decimal) or boolean. Values beginning with zero (0) are considered octal.

For example:

[22] 'X. @ sUM=(l + 4)
[23] 'X. echo $SUM
5
[24] 'X. @ SUM = (01 + 012)
[25] 'X. !23
echo $SUM
13
[26] 'X.

Arrays of numeric variables must be declared with the set command before they can be used.
Elements of the array are specified by:

where the index is a numeric constant or numeric variable and the C_operator and C_expression is
defined as shown below.

Numeric expressions evaluated by (@) are very similiar to those found in the C programming
language. The syntax for this command is:

(@) variable_name C_operator C_expression

The variable_name can be

The C_operator can be:

operator

A equals B
A + equals B
A -equals B

A *equals B
A/equals B

A %equals B

meaning

A equals B
A equals A + B
A equals A - B
A equals A * B
A equals A / B
A equals A MOD B

C Shell 25

The C_expression can be composed of constants, numeric variables and the following operators.

operator

()

+

*

%
»
«
>
<

>=
<=
!=

&

I
&&

II

meaning

Parentheses used to change order of evaluation.
Tilde used as unary one's complement
Exclamation point for negation
Plus for addition
Dash for subtraction
Asterisk for multiplication
Slash for division
Percent used for remainder
Double Greater Than for right shift
Double Less Than for left shift
Boolean Greater Than
Boolean Less Than
Boolean Greater Than or Equal
Boolean Less Than or Equal
Boolean Not Equal
String comparison equal
Bitwise AND
Bitwise exclusive OR
Bitwise inclusive OR
Logical AND
Logical OR

26 C Shell

File Evaluation
Expressions can also return a value based on the status of a file. If the specified file expression is
true, the expression returns one (1). If not true then the expression returns a zero (0). It the file does
not exist or is not accessible, the expression returns zero (0). The syntax for a file expression is:

-file_test filenaMe

where file_test is selected from the following list.

file_test meaning

d Is filename a directory?
e Does filename exist?
f Is filename a plain file?
o Do I own filename?
r Do I have read access to filename?
w Do I have write access to filename?
x Can I execute filename?
z If filename empty (zero bytes long)?

An Example
The following example evaluates a list of filenames and return their status as to if the filename
specifies a directory and if it is a directory, the number of lines in it.

This scriPt finds directories and lists the nUMber of files
in theM and their word count,

foreach dir (Sargv)
set nUM = 0
if (-d Sdir) then

echo "***** Sdir is a directorY,"
set Isfile = 'Is Sdir'

echo" nUMber of file in Sdir is S#lsfile"

foreach file (Slsfile)
set string = 'wc -1 SdirlSfile'
@ SUM += Sstring[l]

end
echo "

else
total nUMber of lines in Sdir directory is SSUM"

echo" ==) Sdir is not a directory,"
endif

end

Now execute the script called "fincLdir".

[45] % find_dir src find_dir
*** src is a directorY,

total nUMber of lines in src directory is 3948
==) find_dir is not a directorY,
[48] OZ,

C Shell 27

C Shell Commands
The C Shell supports several "built-in" commands - commands that are normally executed within
the current shell. If you invoke a command that is not a "C Shell Command", a sub-shell is created
to handle its execution.

The alias Command
The alias command is used to assign new aliases and to show which aliases have been assigned.
When executed without arguments, the currently defined aliases are printed. If it is given one
argument, the alias of that argument is printed. For example:

alias Is

shows the current alias, if there is one, for the directory list command ls.

The echo Command
The echo command prints its arguments to the shell's standard output. Unless redirected, standard
output is your CRT. It is often used in shell scripts to print information about what is happening
while the script is executing. For example:

echo 'Your Mail is sent. '

tells you that your mail is now sent.

The history Command
The history command shows the contents of the C Shell's history buffer. Numbers are assigned to
command events that can be used to reference and re-execute previous events.

There is also a shell variable called prompt. By placing a '!' character in its value the shell will then
substitute the number your current command line will have in the history buffer. This proVides an
easy way of keeping track of event numbers so that you can use them to reference and re-execute
previous events. To set the prompt variable you can use:

set proMPt='\!'X,'

Note that the '!' character had to be escaped here even within single quote characters.

The jobs Command
This command returns information about currently running jobs, including their job numbers, the
command event that created it, and the status of the job ("Stopped" or "Running"). See the
section "Jobs" later in this tutorial for more information.

The logout Command
The logout command can be used to terminate a login shell which has ignoreeof set.

28 C Shell

The rehash Command
The rehash command causes the shell to recompute a hash table of command locations. This is
necessary if you add a command to a directory in the current shell's search path and wish the shell
to find it. If you add a command and do not execute rehash the hashing algorithm tells the shell that
the command wasn't in that directory when the hash table was computed.

The repeat Command
The repeat command can be used to repeat a command several times. For example, to make 5
copies of the file 0 n e in the file f i v e you could execute:

repeat 5 cat one » five

The set Command
The set command with no arguments shows the value of all variables currently defined. For
example:

[28] 'X, set
ar9'v ()
cwd /usr/djp
history 15
hOMe /usr/djp
cohorts (bill becKy Keith steve MarK john)
i9'noreeof
noclobber
path
proMPt
she 11
status
terM
[27] 'X,

(. /usr/ucb /bin /usr/bin)
[!] 'X,
/bin/csh
o
hp

To set variables to specific values, use the set command with the appropriate variable names and
arguments. Each of the variables shown above were set initially with the set command.

For example, you can set a variable equal to a list of string values or a set of numeric values.

[22] 'X, set coho rt s = (bill
[23] 'X, echo $#cohorts
8
[211] 'X, echo $?cohorts
1
[25] 'X, echo $cohorts[3]
Keith
[28] % unset cohorts
[27] % echo $?cohorts
o

beCKY Keith

[28] % set nUMS = (1.2311 2 -3.1I5)
[29] % echo $nuMs[3]
-3.1I5
[30] 'X,

steve MarK john)

The variable expansion sequence $# returns the number of elements in the variable array. The
sequence $?returns a one (1) if the variable exists and a zero (0) if it does not exit.

C Shell 29

The setenv Command
The setenv command is used to set environment variables whose values are global to the shell and
any processes it creates.

setenv TERM hpZGZ7

sets the value of the environment variable TERM to hpZGZ7. See environ(7) in the HP-UX Refer­
ence.

The source Command
The source command is used to force an update of the current shell environment by causing it to
read commands from a file instead of standard input. For example:

source • csh rc

can be used after editing your .cshrc file to change any variables that you modified. Note that the
commands executed from the specified file are not placed in the history buffer, only "source
command_file" is.

The time Command
The time command is used to find out how long particular commands take to execute. When time is
followed by a command name argument, the command is executed and then time displays in­
formation about user, system, and real-execution times of the command. If no argument is specified
with time, it provides time information about the current shell and any child processes it has
created.

The unalias Command
The unalias command can be used to remove aliases that you have assigned in the current shell.
For example, if the alias command was used to cause the change directory command (cd) to also
print the working directory (pwd) each time it was called:

alias cd 'cd\!*ipwd'

then

unal ias cd

cancels that assigned meaning and cd is again interpreted as the standard HP-UX command.

The unset Command
This command removes the assigned values of a variable previously given those values by the set
command.

The unsetenv Command
The unsetenv command returns variables set with the setenv command to their default condition.

30 C Shell

Jobs
When one or more commands are typed together as a pipeline or as a sequence of commands
separated by semicolons, a single job is created by the shell consisting of these commands together
as a unit. Single commands wihout pipes or semicolons create the simplest jobs. Usually every line
typed to the shell creates a job. Some lines that create jobs (one per line) are:

sort < data
Is -s:sort -n:head -5
Mail harold

If the metacharacter '&' is typed at the end of the commands, then the job is started as a back­
ground job. This means that the shell does not wait for it to complete but immediately prompts and
is ready for another command. The job runs in the background at the same time that normal jobs,
called foreground jobs, continue to be read and executed by the shell one at a time. Thus

du > usage &:

runs the du program, which reports on the disk usage of your current working directory (as well as
any directories below it), puts the output into the file 'usage' and returns immediately with a prompt
for the next command without waiting for du to finish. The du program executes in the background
until it finished, and you can type and execute more commands in the mean time. When a
background job terminates, a message is typed by the shell just before the next prompt telling you
that the job has completed. In the folloWing example the du job finishes sometime during the
execution of the mail command and its completion is reported after the mail job is finished and
before you receive your next shell prompt.

[30] %du > usage &:
[1] 503
[31] % Mail bill
How do YOU Know when a bacKground job is finished?
EOT
[1] - Done du > usage
[32] %

If the job did not terminate normally the Don e message might say something else, like Kill e d. If you
want the terminations of background jobs to be reported at the time they occur, possibly interrupt­
ing the output of other foreground jobs, you can set the notify variable. In the previous example
this would mean that the Don e message might be displayed on your CRT while you are sending the
message to Bill. However, it would not become a part of the message.

Jobs are recorded in a table inside the shell until they terminate. In this table, the shell remembers
the command names, arguments and the process numbers of all commands in the job as well as the
working directory where the job was started. Each job in the table is either running in the fore­
ground with the shell waiting for it to terminate, or it is running in the background. Only one job can
be running in the foreground at one time, but several jobs can be running in the background at
once. As each job is started, it is assigned a small identifying number called the job number which
can be used later to refer to the job in the commands described below. A job keeps the same job
number until it terminates, at which time the number can be re-used by another job.

C Shell 31

When a job is started in the background using' &', its number and the process numbers of all its
(top level) commands, are displayed by the shell before prompting you for another command. For
example:

[40] % Is -s : sort -n > usa~e &
[2] 2034 2035
[41] 1.

executes pipes its output to the standard input of sort which puts its output into the file 'usage'.
Since the' &' was at the end of the line, Is and sort were started together as a background job. After
starting the job, the shell prints the job number in brackets ([2]) followed by the process number of
each program started in the job. Then the shell immediately prompts for a new command.

To check to see what jobs are currently active, use the job command. For example:

[42] % Jobs -1

gives you a list of the current jobs and their job numbers, the commands that they are executed, the
process IDs of those commands. It also indicates a status of either "Running" or "Stopped" for
each job.

C Shell Scripts
Shell scripts are files containing commands that the shell executes as a group. The files .login, . cshrc
and .logout are all shell scripts.

When Not to Use a Script
It is important to note what shell scripts are oot useful for. There are many excellent commands and
program libraries provided with HP-UX. Before you write a script, check your HP-UX Reference to
see if the solution to your problem is already provided for you.

Running a Script
A C Shell command script may be executed by typing in:

where s c rip t _ 0 n e is the name of the shell script file to execute, and a r ~ _1 a r ~ _2 ••• represents an
optional list of arguments that may be required by the script. The shell places these arguments in
the shell variable argv as argv[l], argv[2], etc. Instead of using the argv variable to reference these
arguments in the shell script, you may use $0, where 0 is the position of the argument on the
command line. In this example, $0 is set to scripLone. The C Shell sequentially reads commands
from scripLone.

If you want to execute shell scripts directly (not having to begin the command line with csh) you
must:

1. Change the mode of the shell script file so that it is executable:

chlllod +x script-one

2. If you want the shell script executed by the C Shell you must make the first character of the
first line a #.

If the file does not begin with a #, the Bourne Shell will execute it.

32 C Shell

Script Execution
The C Shell parses each shell script line into command arguments. Each distinct command is then
identified. Next, variable substitution is performed. Keyed by the Dollar Sign Character ($), this
substitution replaces the names of variables with their values. Thus:

echo $sufT11

when placed in a command script would cause the current value of the variable S UfT11 to be echoed
to the output of the shell script. S UMl must have a value at this time, or an error will result.

To discover if a variable has a value currently assigned to it, use the notation

$?suMl

The Question Mark (7) causes the expression to return a one (1) if the variable has a currently
assigned value and a zero (0) if not. This notation is the only way to access a variable that does not
have a value assigned to it without generating an error.

To discover the number of component variables assigned to a variable, use the notation

$#SUfT11

The Sharp Sign (#) notation causes the number of component variables assigned to be variable to
be returned. For example,

set sUM1=(a b c)
echo $?suMl
1
echo $#suMl
3
unset sUMl
echo $?sufT11
o
echo $#SUfT11
Undefined variable: sufT11
'X.

It is possible to access the individual components of a variable which has several values. Thus

echo $suMl [1]

echoes the first component variable of sum!. In the example above a is echoed. Similarly

$sum1 [$#sum1J

would return the component variable c.

hr9"v[1-Z]

would return both a and b. Other notations useful in shell scripts include:

a shorthand equivalent of

hr9"v[n]

C Shell 33

which will return the nth component variable of suml. Another is:

$*

which is a shorthand for

The difference between $ nand $ a r 9 I) [n] should be noted. $ a r 9 I) [n] will yield an error if n is not in
the range 1 through $# a r 9 1.1 while $n will never yield an out of range subscript error. This is for
compatibility with the way other shells handled parameters.

A way to avoid an error when $ a r 9 \1 [n] is out of range, is to use a subrange of the form n -IIi. If there
are less than n component variables for the given variable then an empty vector is returned. A range
of the form Nl- n also returns an empty vector without giving an error when Nl exceeds the number of
elements of the given variable, provided the subscript n is in range.

The form

$$

expands to the process number of the current shell. Since each process is unique, the process
number can be used to generate unique temporary file names.

The form

is replaced by the next line of input read from the shell's standard input, and not the script being
processed. This is useful for writing shell scripts that are interactive. For example,

echo "yes or no?"
set a=($()

would write the prompt yes 0 r no? to the shells standard output device and then read the answer
from the shells standard input device into the variable a.

Shell Script Expressions
In order for interesting shell scripts to be constructed it must be possible to evaluate expressions in
the shell based on the values of variables. In fact, all the arithmetic operations of the language Care
available in the shell with the same precedence that they have in C. In particular, the operations
, = =' and '! =' compare strings and the operators' &&' and' I' implement the boolean and/or
operations. The special operators' = ~, and'! ~, are similar to ' = =' and'! = ' except that the string
on the right side can have pattern matching metacharacters (like *.? or []) and the test is whether
the string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where? is replaced by a number of characters. For example the expression primitive

-r filename

returns the value TRUE if the file f i 1 en am e exists and is readable. Other primitives test for read,
write and execute access to the file, whether it is a directory, or has non-zero length. See test(1) in
your HP-UX Reference, for specifications of these primitives.

34 C Shell

It is possible to test whether COM Man d terminates normally by

{ COMMand }

This notation returns a one (1) if cOMMand terminates normally with exit status 0, or a zero (0) if the
command terminates abnormally or with exit status that is non-zero. If more detailed information
about the execution status of a command is required, the command can be executed and the
system variable $status examined in the next command. Since $status is set by every command, it
is very transient.

For a complete list of expression components available for shell scripts, see csh(l) in the HP-UX
Reference.

Shell Script Control Structures
The control structures allowed in C Shell are taken from the C programming language.

Comments (#)
Comment your script using the Sharp Sign (#).

The foreach Statement
The syntax for this statement is:

COMManLl
COMManL2

end

All of the commands between the for e a C h line and its matching end line are executed for each
value in loop_co unt_va 1 ue_1 is t . The variable in d e x_va r i ab 1 e is set to the successive values of
loop_count_va1ue_1ist.

Within this loop we may use the command b rea K to stop executing the loop and the command
con tin u e to prematurely terminate one iteration and begin the next. After the for e a C h loop is done,
the iteration variable, i nde X_C 0 un t e r, has the value atthe last element in 100 P_C 0 unLv a1 ue_1 i s t.

The if-then-endif Statement
This statement has the following syntax:

if (expression) then
COMManLl
COMManL2

endif

C Shell 35

The placement of the keywords here is not flexible due to the current implementation of the shell.
That means the control structure has to be exactly as shown. In other words, if and the n must be
in the same line and end i f must be in a separate line. For example:

and

if (expression
then

Corlulland_l
CorllMand_2

endif

!!!!! Won't work

if (expression) then Co~uJlanLl endif #!!!!! Won't i"lOrf(

are not acceptable to the shell.

You can nest if-then-endif statements using the keyword e 1 s e. For example:

If (expression) then

CorluJland_l

COMMand_2

else if expression) then

COMManLA

Co~uIlan d_B

else

CorJl~lanL>(

COMMand_Y

.endif

Note that one end i f ends the whole structure.

The C Shell has another form of the if statement shown below.

if (expression) COMMand

which can be written

if (expression) \
CorllfJlan d

If you only need one command executed, the end i f statement can be omitted. In the second
example, the non-printing newline character is escaped with the backslash ("') to allow the com­
mand to appear below the expression. This is to improve visual clarity.

36 C Shell

The while Statement
The wh i 1 e structure is like that found in the C programming language. For example:

while (expression
COfTlManLl
COflHnanLZ

end

The switch Statement
The s wit C h structure is like that found in the C programming language. For example:

switch (word

case strl:
cOMMands

breaKsw
case strn:

cOMMands

breaKsw
default:

cOMMands

breaKsw
endsw

Note
C programmers should note that the s wit c h statement uses b rea K s w to
exit and not b rea K. W h i 1 e and for e.a c h loops allow b rea K.

The 90to Statement
The C Shell allows the ~ 0 t 0 statement with labels, just like C.

loop:
COMManLl
COMManLZ

~oto loop

C Shell 37

Supplying Input to Commands
Commands executed in shell scripts receive by default the standard input of the shell which is
running the script. This is different from how other shells run under HP-UX. This allows shell scripts
executed by the C Shell to ,fully participate in pipelines, but requires extra notation for commands
which use inline data.

Thus we need a way to supply inline data to commands in shell scripts. As an example, consider this
script which runs the editor to delete leading blanks from the lines in each argument file.

foreach i ($ar~v)

ed - $i « 'STOP'
1 ,$sr[HII
w
'I

'STOP'
end

The notation < < ' S TOP' means that the standard input for the ed command is to come from the text
in the shell script file up to the next line. The shell uses the word following the < < as a pattern to
search for to terminate the passing of text to a command (which in this case is ed). In the example
above STOP is quoted with' 'to ensure that no variable or command substitutions are performed
on the text before it is passed to ed.

Catching Interrupts
If our shell script creates temporary files, we may wish to catch interruptions of the shell script so
that we can clean up these files. To do this, start your program with

onintr label

where label is a program label marking the code that handles the interrupt condition. If an interrupt
is received by the shell, the C Shell does an automatic

9'oto label

and executes the code located at 1 abe 1. If we wish to exit a program with a non-zero status, make

exit 1

a part of your interrupt handling code.

38 C Shell

An Example Shell Script
*I

foreach i ($argv)
if ($i \!N *.c) then
echo $i is not .c
continue
else
echo $i is a .c prOgraM
endif

echo checK file N/bacKup/$i:t

if (\! -r N/bacKup/$i:t) then

echo $i: not in bacKup ••• not cp\'ed
continue
endif

echo COMPare two files $i and N/bacKup/$i:t

*I is it a .c file?

*I is file part of bacKup?

CMP -s $i N/bacKup/$i:t *I has the file changed?

if ($status != 0) then
echo "new bacKup of $i"
CP $i N/bacKup/$i:t
endif
end

This script backs up a list of C programs only if they have been previously backed up. The files are
stored in your home directory and the subdirectory "backup". It makes use of the for e a c h state­
ment to execute all the commands between the for e a c h statement and its matching end

Table of Contents

BC: An Arbitrary Precision Desk-Calcuator Language
Running BC .. 2
Simple Computations with Integers .. " 2
Bases ... 4
Scaling .. " 5
Functions .. 6
Subscripted Variables (Arrays) .. 7
Control Statements .. 8
Some Details .. 10
Three Important Things .. 11
Notation .. 12

Tokens ... 12
Comments. .. 12
Identifiers. .. 12
Keywords. .. 12
Constants ... 13
Expressions .. 13
Function Calls .. 13
Storage Classes .. 16
Statements. .. 16
Quit. ... 17

ii

BC: An Arbitrary Precision
Desk-Calculator Language

BC is a language and a compiler for doing arbitrary precision arithmetic on your HP-UX system.
The output of the compiler is interpreted and executed by a collection of routines which can input,
output, and do arithmetic on indefinitely large integers and on scaled fixed-point numbers. These
routines are based on a dynamic storage allocator. Overflow does not occur until all available
internal memory is exahausted.

The BC language has a complete control structure as well as immediate-mode operation. Functions
can be defined and saved for later execution. A small collection of library functions is also available,
including sin, cos, arctan, log, exponential, and Bessel functions of integer order.

BC and BS are similiar in capabilities, with BS being a more complete language supporting strings
and 1/0, but limited to "ordinary" double-precision floating point numbers. BC is limited in operat­
ing on numeric data, but operates on arbitrary percision numbers and arbitrary bases. The selection
of one or the other is primarily based on the need for large value or high percision calculations. If
these are not needed, BS may be the better choice. There is no significant advantage of one over
the other for activities such as balancing your checkbook, unless you are the federal government.

Some of the uses of this compiler are:

• to do computation with large integers

• to do computation accurate to many decimal places

• conversion of numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation. Provision is also made for
input and output in bases other than decimal. Numbers can be converted from decimal to octal by
simply setting the output base te equal eight.

The actual limit on the number of digits that can be handled depends on the amount of internal
memory in the machine. Manipulation of numbers with many hundreds of digits is possible.

The syntax of BC is very similiar to the C programming language. This enables users who are
familiar with C language to easily work with Be.

1

2 Be

Running BC
To use be, type in:

be

Your prompt is no longer displayed, and the Be calculator is ready for use.

To exit be and return to your shell, type in:

(CTRL J-CTI

Your shell's prompt is displayed showing that you are no longer using be.

Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if you
type in the line:

142857 + 285714

the program responds immediately with the line

428571

The following operators may be used:

operator meaning

+ addition

%
"

subtraction
division
modulo (remaindering)
exponentiiation

Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated (the
unary minus sign). The expression

7+ -3

is interpreted to mean that -3 is to be added to 7 for a result of

4

More complex expressions with several operators and with parentheses are interpreted using the
following mathematical precedence hierarchy:

Precedence Operator

Highest Parentheses: (may be used to force any order of
operations.)

Functions, user-defined and machine- resident.

Exponentiation (right to left)

- (unary minus), + (unary plus)

Multiplication and Division (left to right)

Addition and Subtraction (left to right)

All relational operators (=, <, >, ...)

The following expressions are equivalent:

a'" b'" c and a'" (b'" C)

aH,*c and (a*b) *c

a/b*c and (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x.

When, as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling
below). The lines

x = 59 r t (181) execute assignment
x request current value of x

produce the printed result

13 current value of x

Be 3

4 Be

Bases
There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase', initially set
to 10, determines the base used for interpreting numbers read in. For example, the lines

ibase = 8
11

will produce the output line

8

and you are all set up to do octal to decimal conversions. Beware, however of trying to change the
input base back to decimal by typing

ibase = 10

Because the number lOis interpreted as octal, this statement will have no effect.

For those who deal in hexadecimal notation, the characters A through F are permitted in numbers
(no matter what base is in effect) and are interpreted as digits having values 10 through 15

respectively. The statement

ibase = A

will change you back to decimal input base no matter what the current input base is.

Negative and large positive input bases are permitted but useless. No mechanism has been pro­
vided for the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of obase, initially set to 10, are used as the base for output numbers. The lines

obase = 1B
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are per­
mitted.

An obase Gotcha
Remember that the output base of any number system is 10. If you want your output to be in
binary, and enter:

obase = 2
obase
10
12 + 10
10110

the lOis correct and the obase is binary (2) as shown by the sum.

For example, large numbers can be output in groups of five digits by setting obase to 100000.
Strange (Le. 1, 0, or negative) output bases are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued end
with a slash ("'). Decimal output conversion is practically instantaneous, but output of very large
numbers (Le., more than 100 digits) with other bases is rather slow. Non-decimal output conversion
of a one hundred digit number takes about three seconds.

It is best to remember that i bas e and 0 bas e have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion,
respectively.

Scaling
A third special internal quantity called sea 1 e is used to determine the scale of calculated quantities.
We refer to the number of digits after the decimal point of a number as its sea 1 e. Numbers may
have up to 99 decimal digits after the decimal point. This fractional part is retained in further
computations.

When two scaled numbers are combined by means of one of the arithmetic operations, the result
has a scale determined by the follOWing rules:

• For addition and subtraction, the scale of the result is the larger of the scales of the two
operands. In this case, there is never any truncation of the result.

• For multiplications, the scale of the result is never less than the maximum of the two scales of
the operands, never more than the sum of the scales of the operands and, subject to those two
restrictions, the scale of the result is set equal to the contents of the internal quantity sea 1 e and
always less than 100.

• The scale of a quotient is the contents of the internal quantity sea 1 e. The scale of a remainder is
the sum of the scales of the quotient and the divisor.

• The result of an exponentiation is scaled as if the implied multiplications were performed. An
exponent must be an integer.

• The scale of a square root is set to the maximum of the scale of the argument and the contents
of sea 1 e.

All of the internal operations are actually carried out in terms of integers, with digits being discarded
when necessary. In every case, truncation is used when digits are discarded. No rounding is ever
performed.

The contents of sea 1 e must be no greater than 99 and no less than O. It is initially set to O.

The internal quantities sea 1 e, i bas e, an-d 0 bas e can be used in expressions just like other variables.
The line

scale = scale + 1

increases the value of sea 1 e by one, and the line

scale

causes the current value of sea 1 e to be printed.

Be 5

6 Be

The value of 5 cal e retains its meaning as a number of decimal digits to be retained in internal
computation even when i bas e or obase are not equal to 10. The internal computations (which are
still conducted in decimal, regardless of the bases) are performed to the specified number of
decimal digits, never hexadecimal or octal or any other kind of digits.

Functions
The name of a function is a single lower-case letter. Function names are permitted to collide with
simple variable names. Twenty-six different defined functions are permitted in addition to the
twenty-six variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or more
statements, which make up the body of the function, ending with a right brace }. Return of control
from a function occurs when a return statement is executed or when the end of the function is
reached. The return statement can take either of the two forms

ret u rn
or

returrdx)

In the first case, the value of the function is 0, and in the second, the value of the expression in
parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x ,y 'z

There can be only one aut 0 statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside the
function are not disturbed. Functions may be called recurSively and the automatic variables at each
level of call are protected. The parameters named in a function definition are treated in the same
way as the automatic variables of that function with the single exception that they are given a value
on entry to the function. An example of a function definition is

define a(x,Y){
auto z

return(z)
}

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of argu­
ments is used.

Functions with no arguments are defined and called using parentheses with nothing between them:
bO.

If the function

a

above has been defined, then the line

a(7,3.1l1l

would cause the result 21. 98 to be printed and the line

x = a(a(3,1I),S)

would cause the value of x to become 60.

Subscripted Variables (Arrays)
A single lower-case letter variable name followed by an expression in brackets is called a sub­
scripted variable (an array element). The variable name is called the array name and the expression
in brackets is called the subSCript.

Only one-dimensional arrays are permitted.

The names of arrays are permitted to collide with the names of simple variables and function
names. Any fractional part of a subSCript is discarded before use.

SubSCripts must be greater than or equal to zero and less than or equal to 2047.

SubSCripted variables may be freely used in expressions, in function calls, and in return statements.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f (a [])

define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Be 7

8 Be

Control Statements
The if, 1.1 h i 1 e, and for statements may be used to alter the flow within programs or to cause
iteration. The range of each of them is a statement or a compound statement consisting of a
collection of statements enclosed in braces. They are written in the following way

or

iflrelation) stateMent
whilelrelation) stateMent
forlexpressionl; relation; expressionZ) stateMent

iflrelation) {stateMents}
whilelrelation) {stateMents}
forlexpressionl; relation; expressionZ) {stateMents}

A relation in one of the control statements is an expression of the form

x)y

where two expressions are related by one of the six relational operators:

operator meaning

< less than
> greater than

< = less than or equal
> = greater than

equals
! = not equal

Beware of using = instead of = = in a relational. Unfortunately, both of them are legal, so you will
not get a diagnostic message, but = will not do a comparison.

The i f statement causes execution of its range if and only if the relation is true. Then control passes
to the next statement in sequence.

The 1.1 hi 1 e statement causes execution of its range repeatedly as long as the relation is true. The
relation is tested before each execution of its range and if the relation is false, control passes to the
next statement beyond the range of the while.

The for statement begins by executing ex pre 5 s ion I. Then the relation is tested and, if true, the
statements in the range of the for are executed. Then ex pre s s ion Z is executed. The relation is
tested, and so on. The typical use of the for statement is for a controlled iteration, as in the
statement

forli=l; i<=1(1; i=i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define fln){
al.lto i, x
x = 1
forli=l; i<=n; i=i+l) x=x*i
returnlx)
}

The line

f (a)

will print

a

factorial if

a

is a positive integer. Here is the definition of a function which will compute values of the binomial
coefficient (m and n are assumed to be positive integers).

define ben tfll){
auto Xt j
x=l
for(j=11 j(=fIll j=j+l) x=x*(n\-J+l)/j
return(x)
}

The following function computes values of the exponential function by summing the appropriate
series without regard for possible truncation errors:

scale = 20
define e(x){

}

auto at bt Ct dt n
a = 1
b = 1
C = 1
d = 0
n = 1
while(l==l){

}

a = a*x
b = b*n
C = C + alb
n = n + 1
if(c==d) return(c)
d = c

Be 9

10 Be

Some Details
There are some language features that every user should know about even if he will not use them.

Normally statements are typed one to a line. It is also permissible to type several statements on a
line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere that an
expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an aSSignment statement even when it is not parenthe­
sized.

x = a[i=i+1]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language.
Consult the appendix or the C manual for their exact workings.

x=Y=Z is the same as x=(y=z)
x += y is the same as x = x+y
x - - y is the same as x -+y
x =* y is the same as x = X*Y
x =/ Y is the same as x = x/Y
x =X, Y is the same as x = XkY
x = • y is the same as x = x·y

Even if you don't intend to use the constructs, if you type one inadvertently, something correct but
unexpected may happen.

In some of these constructions, spaces are significant. There is a real
difference between x = -y and x = -yo The first replaces x by x-y and the
second by -yo

Be 11

Three Important Things
• To exit a BC program, type qui t or (CTRL) -~ .
• There is a comment convention identical to that of C. Comments begin with I * and end with

*1.

• There is a library of math functions which may be obtained by typing at command level

be -1

This command will load the following library functions:

• sin (named 5)

• cos (named e)

• arctangent (named a)

• natural logarithm (named 1)

• exponential (named e) and

• Bessel functions of integer order (named j (n 'x)).

The library sets the scale to 20.If you type

be file ...

be will read and execute the named file or files before accepting commands from the keyboard. In
this way, you may load your favorite programs and function definitions.

12 Be

Notation

Tokens
Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators
may be blanks, tabs, or comments. Newline characters or semicolons separate statements.

Comments
Comments are introduced by the characters 1 * and terminated by * I.

Identifiers
There are three kinds of identifiers:

• ordinary identifiers

The characters a through z are used as ordinary identifiers.

• array identifiers

Array identifiers are followed by square brackets, possibly enclOSing an expression describing a
subscript. Arrays are singly dimensioned and may contain up to 2048 elements. Indexing
begins at zero so an array may be indexed from 0 to 2047. Subscripts are truncated to integers.

• function identifiers

Function identifiers are followed by parentheses, possibly enclOSing arguments.

All three types consist of single lower-case letters. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x[] and a function named xO , all of which
are separate and distinct.

Keywords
The follOWing are reserved keywords:

• ibase

• if
.obase

• break

• scale

• define

• sqrt

• auto
• length

• return

• while

• quit

• for

Be 13

Constants
Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A through F are also recognized as digits with values 10 through 15 respectively.

Expressions
The value of an expression is printed unless the main operator is an assignment. Precedence is the
same as the order of presentation here, with highest appearing first. Left or right associativity, where
applicable, is discussed with each operator.

Named Expressions
Named expressions are places where values are stored. Simply stated, named expressions are legal
on the left side of an assignment. The value of a named expression is the value stored in the place
named.

Simple Identifiers
Simple identifiers are named expressions. They have an initial value of zero.

Array Elements
Array elements are named expressions. They have an initial value of zero.

Scale, Ibase and Obase
The internal registers scale, ibase and obase are all named expressions .

• scale is the number of digits after the decimal point to be retained in arithmetic operations.
Scale has an initial value of zero and a maximum possible value of 99 .

• ibase and obase are the input and output number radix respectively. Both ibase and obase
have initial values of 10.

14 Be

Function Calls
A function call consists of a function name followed by parentheses containing a comma-separated
list of expressions, which are the function arguments. A whole array passed as an argument is
specified by the array name followed by empty square brackets. All function arguments are passed
by value.

As a result, changes made to the formal parameters have no effect on the actual arguments. If the
function terminates by executing a return statement, the value of the function is the value of the
expression in the parentheses of the return statement or is zero if no expression is provided or if
there is no return statement.

s9rt(expression)

The result is the square root of the expression. The result is truncated in the least significant decimal
place. The scale of the result is the scale of the expression or the value of scale, whichever is larger.

lensth(expression)

The result is the total number of significant decimal digits in the expression. The scale of the result is
zero.

scale(expression)

The result is the scale of the expression. The scale of the result is zero.

Constants
Constants are primitive expressions.

Parentheses
An expression surrounded by parentheses is a primitive expression. The parentheses are used to
alter the normal precedence.

Unary operators
The unary operators bind right to left.

-(expression)

The result is the negative of the expression.

++(naMed-expression)

The named expression is incremented by one. The result is the value of the named expression after
incrementing.

--(naMed-expression

Be 15

The named expression is decremented by one. The result is the value of the named expression after
decrementing.

(naMed-expression)++

The named expression is incremented by one. The result is the value of the named expression
before incrementing.

(naMed-expression)--

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

Exponentiation Operator
The exponentiation operator binds right to left.

(expression)·(inte~er_expression)

The result is the first expression raised to the power of the second expression. The second express­
ion must be an integer. If a is the scale of the left expression and b is the absolute value of the right
expression, then the scale of the result is:

min (axb,max(scale, a))

Multiplicative Operators
The operators *, I, % bind left to right.

(expression) * (expression)

The result is the product of the two expressions. If a and b are the scales of the two expressions,
then the scale of the result is:

min(a + b,max(scale,a,b))
(expression) / (expression)

The result is the quotient of the two expressions. The scale of the result is the value of scale.

(expression) % (expression)

The % operator produces the remainder of the division of the two expressions. More precisely, a %b
is a-aIb*b.

The scale of the result is the sum of the scale of the divisor and the value of scale.

16 Be

Additive Operators
The additive operators bind left to right.

(expression) + (expression)

The result is the sum of the two expressions. The scale of the result is the maximum of the scales of
the expressions.

(expression) - (expression)

The result is the difference of the two expressions. The scale of the result is the maximum of the
scales of the expressions.

Assignment Operators
The assignment operators bind right to left.

named_expression = expression

The above expression results in assigning the value of the expression on the right to the named
expression on the left.

named_expression = + expression
named_expression = ~ - expression
named_expression = * expression
named_expression = / expression
named_expression = % expression
named_expression =" expression

The result
na~led expression
sign.

Relations

of the above expressions is equivalent to
natTled expression OP expression, where OP is the operator after the

Unlike all other operators, the relational operators are only valid as the object of an if, IAI hi 1 e, or
inside a for statement.

expression < expression
expression > expression
expression < = expression
expression > = expression
expression = = expression
expression ! = expression

Be 17

Storage Classes
There are only two storage classes in BC, global and automatic (local).

• Only identifiers that are to be local to a function need be declared with the auto command.

• The arguments to a function are local to the function.

• All other identifiers are assumed to be global and available to all functions.

• All identifiers, global and local, have initial values of zero.

Identifiers declared as auto are allocated on entry to the function and released on returning from the
function. They therefore do not retain values between function calls. auto arrays are specified by
the array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in C. On entry to a function, the
old values of the names that appear as parameters and as automatic variables are pushed onto a
stack. Until return is made from the function, reference to these names refers only to the new
values.

Statements
Statements must be separated by semicolon or newline. Except where altered by control state­
ments, execution is sequential.

Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

Compound statements

Statements may be grouped together and used when one statement is expected by surrounding
them with { }.

Quoted string statements
"any string"

This statement prints the string inside the quotes.

If Statements
if(relation)statement

18 Be

The statement is executed if the relation is true.

While Statements
while(relation)statement

The statement is executed while the relation is true. The test occurs before each execution of the
statement.

For Statements
for(expression; relation; expressionlstatement

The for statement is the same as

first-expression
while(relationl {

statement
last-expression

}

All three expressions must be present.

Break Statements
break

Break causes termination of a for or w h i 1 e statement.

l\utoStatements
auto ordinarry_identifier,array_identifier[]

The auto statement causes the values of the identifiers to be pushed down. The identifiers can be
ordinary identifiers or array identifiers. Array identifiers are specified by following the array name by
empty square brackets. The auto statement must be the first statement in a function definition.

Define statements
The define statement defines a function. The parameters may be ordinary identifiers or array
names. Array names must be followed by empty square brackets.

Return Statements
return
return(expression)

The return statement causes termination of a function, popping of its auto variables, and specifies
the result of the function. The first form is equivalent to return(O). The result of the function is the
result of the expression in parentheses.

Quit
The quit statement stops execution of a Be program and returns control to HP-UX when it is first
encountered. Because it is not treated as an executable statement, it cannot be used in a function
definition or in an if, for, or while statement.

Table of Contents

DC: Interactive Desk Calculator
Synoptic Description .. 2
Detailed Description ... 4

Internal Representation of Numbers. .. 4
The Allocator ... " 4
Internal Arithmetic. .. 5
Addition and Subtraction ... " 5
Multiplication. .. 5
Division .. 6
Remainder ... " 6
Sq uare Root. ... " 6
Exponentiation .. " 6
Input Conversion and Base ... " 7
Output Commands. .. 7
Output Format and Base .. 7
Internal Registers .. 7
Stack Commands .. 7
Subroutine Definitions and Calls ... " 7
Internal Registers - Programming dc. .. 8
Push-Down Registers and Arrays .. 8
Miscellaneous Commands .. 8
Design Choices .. 8

ii

DC:
Interactive Desk Calculator

De is an arbitrary-precision arithmetic package implemented in the HP-UX operating system in the
form of an interactive desk calculator. It works like a stacking calculator using reverse Polish
notation. Ordinarily, de operates on decimal integers, but you can optionally specify an input base,
output base, and the number of fractional digits to be maintained.

The size of numbers that can be manipulated is limited only by available memory. HP-UX can
handle number sizes varying from several hundred digits on the smallest systems to several
thousand on the largest.

A language called Be [1] has been developed which accepts programs written in the familiar style
of higher-level programming languages and compiles output which is interpreted by de. Some of
the commands described here were designed for the compiler interface and are not easy for a
human user to manipulate.

Numbers that are typed into de are put on a push-down stack. De commands then take the top
number or two off the stack, perform the desired operation, then push the result on the stack. If an
argument is given, input is taken from that file until its end, then from the standard input.

1

2 DC

Synoptic Description
This section describes the de commands that are intended for use by people. The additional
commands intended to be invoked by compiled output are described in the detailed description.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

nl.lhlbe r The value of the number is pushed onto the main stack. A number is an
unbroken string of the digits 0-9 and the capital letters A thru F which are
treated as digits with values 10 thru 15 respectively. Negative numbers
should be preceded by an underscore (_). Numbers can contain decimal
points.

+ - * I.. .'. The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (/), remaindered ('J..), or exponentiated ("'). The two entries are
popped off the stack, combined, then the result is pushed back on the
stack in their place. The result of a division is an integer truncated toward
zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal
point.

s<x> The top of the main stack is popped and stored into a register named
<x>, where <x> may be any character. If s is uppercase (L), <x> is
treated as a stack and the value is pushed onto it. Any character, even
blank or new-line, is a valid register name.

i<x> The value in register <x> is pushed onto the stack without being altered.
If 1 is uppercase (L), register <x> is treated as a stack and its top value is
popped onto the main stack. All registers start with empty value which is
treated as a zero by the command 1 and is treated as an error by the
command L

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged.

f All values on the stack and in registers are printed.

x Treats the top element of the stack as a character string, removes it from
the stack, and executes it as a string of de commands.

[... J Puts the bracketed character string onto the top of the stack.

q Exits the program. If executing a string, the recursion level is popped by
two. If q is capitalized (Q), the top value on the stack is popped and the
string execution level is popped by that value.

<x >x =x ! <x ! >x ! =x The top two elements of the stack are popped and compared. Register
<x> is executed if they obey the stated relation. Exclamation point is
negation.

v

e

o

k

z

?

Replaces the top element on the stack by its square root. The square root
of an integer is truncated to an integer. For the treatment of numbers with
decimal points, see the detailed description below.

Interprets the rest of the line as an HP-UX command. Control returns to de
when the HP-UX command terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for
further input. If i is uppercase (1), the value of the input base is pushed
onto the stack. No mechanism has been proVided for the input of arbitrary
numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for
further output. If 0 is capitalized (0), the value of the output base is
pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that
influences the number of decimal places that are maintained during multi­
plication, division, and exponentiation. The scale factor must be greater
than or equal to zero and less than 100. If k is uppercase (K), the value of
the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and
executed.

DC 3

4 DC

Detailed Description

Internal Representation of Numbers
Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form of a
string of digits to the base 100 stored one digit per byte (centennial digits). The string is stored with
the low-order digit at the beginning of the string. For example, the representation of 157 is 57,1.
After any arithmetic operation on a number, care is taken that all digits are in the range a thru 99
and that the number has no leading zeros. The number zero is represented by the empty string.

Negative numbers are represented in the lOa's complement notation, which is analogous to two's
complement notation for binary numbers. The high order digit of a negative number is always - 1
and all other digits are in the range a thru 99. The digit preceding the high order -1 digit is never a
99. The representation of -157 is 43,98, -1. We shall call this the canonical form of a number.
The advantage of this kind of representation of negative numbers is ease of addition. When
addition is performed digit by digit, the result is formally correct. The result need only be modified, if
necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can be
carried out and the handling of carries done later when that is convenient, as it sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the number of
assumed decimal digits after the decimal point. The representation of .001 is 1,3 where the scale
has been italicized to emphasize the fact that it is not the high order digit. The value of this extra byte
is called the scale factor of the number.

The Allocator
De uses a dynamic string storage allocator for all of its internal storage. All internal reading and
writing of numbers is done through the allocator. Associated with each string in the allocator is a
four-word header containing pointers to the beginning of the string, the end of the string, the next
place to write, and the next place to read. Communication between the allocator and de is done via
pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the one pointing
to this string are on a list of free headers. Requests for strings are made by size. The size of the string
actually supplied is the next higher power of 2. When a request for a string is made, the allocator
first checks the free list to see if there is a string of the desired size. If none is found, the allocator
finds the next larger free string and splits it repeatedly until it has a string of the right size. Left-over
strings are put on the free list. If there are no larger strings, the allocator tries to coalesce smaller free
strings into larger ones. Since all strings are the result of splitting large strings, each string has a
neighbor that resides next to it in memory and, if free, can be combined with it to make a string
twice as long. This is an implementation of the "buddy system" of allocation described in [2].

Failing to find a string of the proper length after coaleScing, the allocator asks the system for more
space. The amount of space on the system is the only limitation on the size and number of strings in
de. If at any time in the process of trying to allocate a string, the allocator runs out of headers, it also
asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the characters
of a string are read or written in succession by a series of read or write calls. The write pointer is
interpreted as the end of the information-containing portion of a string and a call to read beyond
that point returns an end-of-string indication. An attempt to write beyond the end of a string causes
the allocator to allocate a larger space and then copy the old string into the larger block.

Internal Arithmetic
All arithmetic operations are done on integers. The operands (or operand) used in the operation are
popped from the main stack and their scale factors stripped off. Zeros are added or digits removed
as necessary to get a properly scaled result from the internal arithmetic routine. For example, if the
scale of the operands is different and decimal alignment is required, as it is for addition, zeros are
appended to the operand with the smaller scale. After performing the required arithmetic operation,
the proper scale factor is appended to the end of the number before it is pushed on the stack.

A register called <scale> plays a part in the results of most arithmetic operations. <scale> is the
bound on the number of decimal places retained in arithmetic computations. <scale> can be set to
the number on the top of the stack truncated to an integer with the k command. K can be used to
push the value of <scale> on the stack. <scale> must be greater than or equal to 0 and less than
100. The descriptions of the individual arithmetic operations will include the exact effect of <scale>
on the computations.

Addition and Subtraction
The scales of the two numbers are compared and trailing zeros are supplied to the number with the
lower scale to give both numbers the same scale. The number with the smaller scale is multiplied by
10 if the difference of the scales is odd. The scale of the result is then set to the larger of the scales of
the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addition.

Finally, the addition is performed digit-by-digit from the low order end of the number. The carries
are propagated in the usual way. The resulting number is brought into canonical form, which may
require stripping of leading zeros, or for negative numbers replacing the high-order configuration
99, - 1 by the digit - 1. In any case, digits which are not in the range 0 thru 99 must be brought into
that range, propagating any carries or borrows that result.

Multiplication
The scales are removed from the two operands and saved. The operands are both made positive,
then multiplication is performed in a digit-by-digit manner that exactly mimics the hand method of
multiplying. The first number is multiplied by each digit of the second number, beginning with its
low order digit. The intermediate products are accumulated into a partial sum which becomes the
final product. The product is put into the canonical form and its sign is computed from the signs of
the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is larger
than the internal register <scale> and also larger than both of the scales of the two operands, then
the scale of the result is set equal to the largest of these three last quantities.

DC 5

6 DC

Division
The scales are removed from the two operands. Zeros are appended or digits removed from the
dividend to make the scale of the result of the integer division equal to the internal quantity
<scale>. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the two
numbers is computed. If the divisor is longer than the dividend, zero is returned. Otherwise the top
digit of the divisor is divided into the top two digits of the dividend. The result is used as the first
(high-order) digit of the quotient. It may turn out be one unit too low, but if it is, the next trial
quotient will be larger than 99 and this will be adjusted at the end of the process. The trial digit is
multiplied by the divisor and the result subtracted from the dividend and the process is repeated to
get additional quotient digits until the remaining dividend is smaller than the divisor. At the end, the
digits of the quotient are put into the canonical form, with propagation of carry as needed. The sign
is set from the sign of the operands.

Remainder
The division routine is called and division is performed exactly as described. The quantity returned
is the remains of the dividend at the end of the divide process. Since division truncates toward zero,
remainders have the same sign as the dividend. The scale of the remainder is set to the maximum of
the scale of the dividend and the scale of the quotient plus the scale of the divisor.

Square Root
The scale is stripped from the operand. Zeros are added if necessary to make the integer result have
a scale that is the larger of the internal quantity <scale> and the scale of the operand.

The method used to compute the square root of (Y) is Newton's method of successive approxima­
tions by the rule:

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation
Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1. If the
exponent is negative, then it is made positive and the base is divided into one. The scale of the base
is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the result
is obtained as a product of those powers of the base that correspond to the positions of the one-bits
in the binary representation of the exponent. Enough digits of the result are removed to make the
scale of the result the same as if the indicated multiplication had been performed.

Input Conversion and Base
Numbers are converted to internal representation as they are read in. The scale stored with a
number is simply the number of fractional digits input. Negative numbers are indicated by preced­
ing the number with an underscore L). The hexadecimal digits A thru F correspond to the numbers
10 thru 15 regardless of input base. The i command can be used to change the base of the input
numbers. This command pops the stack, truncates the resulting number to an integer, using it as the
input base for all further input. The input base is initialized to 10 but may, for example be changed
to 8 or 16 to do octal- or hexadecimal-to-decimal conversions. The command I will push the value
of the input base on the stack.

Output Commands
The command p causes the top of the stack to be printed. It does not remove the top of the stack.
All of the stack and internal registers can be output by typing the command f. The 0 command can
be used to change the output base. This command uses the top of the stack, truncated to an integer
as the base for all further output. The output base in initialized to 10. It will work correctly for any
base. The command 0 pushes the value of the output base on the stack.

Output Format and Base
The input and output bases only affect the interpretation of numbers on input and output; they
have no effect on arithmetic computations. Large numbers are output with 70 characters per line; a
backslash (""-) indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-to-octal or decimal-to­
hexadecimal conversions.

Internal Registers
Numbers or strings may be stored in internal registers or loaded on the stack from registers with the
commands sand 1. The command s<x> pops the top of the stack and stores the result in register
<x> where <x> can be any character. J<x> puts the contents of register <x> on the top of the
stack. The J command has no effect on the contents of register <x>. The s command, however, is
destructive.

Stack Commands
c clears the stack.

d pushes a duplicate of the number on the top of the stack on the stack.

z pushes the stack size on the stack.

X replaces the number on the top of the stack with its scale factor.

Z replaces the top of the stack with its length.

Subroutine Definitions and Calls
Enclosing a string in [] pushes the ASCII string on the stack. The q command quits or, in executing a
string, pops the recursion levels by two.

DC 7

8 DC

Internal Registers - Programming de
The load and store commands together with [J to store strings, x to execute and the testing
commands <, >, =, ! <, ! >, and ! = can be used to program de. The x command assumes the top of
the stack is a string of DC commands, and executes the string. Testing commands remove the top
two elements on the stack, test them, then, if the relation holds, execute the register following the
elements tested. For example, to print the numbers 0-9, use the following commands:

[lipl+ si lil0}a]sa
Osi lax

Push-Down Registers and Arrays
These commands involve push-down registers and arrays, and were designed for use by a compil­
er, not by people. In addition to the stack that commands work on, de can be thought of as having
individual stacks for each register. These registers are operated on by the commands 5 and L.
S<x> pushes the top value of the main stack onto the stack for register <x>. L <x> pops the stack
for register <x> and puts the result on the main stack. The commands sand 1 also work on
registers, but not as push-down stacks. 1 doesn't affect the top of the register stack; s destroys what
was there before.

The commands that work on arrays are colon (:) and semicolon (i). (: <x» pops the stack and
uses the value obtained as an index into the array <x>. The next element on the stack is stored at
the indexed location in <x>. The index value must be greater than or equal to 0 and less than
2048. (i <x» loads the main stack from the array <x>. The value on the top of the stack is
popped and used as the index into the array <x>. The indexed value is then loaded from the array
onto the stack.

Miscellaneous Commands
The command! interprets the rest of the line as an HP-UX command and passes it to HP-UX for
execution. Another compiler command is Q. This command uses the top of the stack as the number
of levels of recursion to skip.

Design Choices
The real reason for using dynamic storage allocation was that a general purpose program is useful
for a variety of other tasks. The allocator has some value for input and for compiling (Le. the bracket
[... J commands) where it cannot be known in advance how long a string will be. The result was that
at a modest cost in execution time, all considerations of string allocation and sizes of strings were
removed from the remainder of the program and debugging was made easier. The allocation
method used wastes approximately 25% of available space.

The choice of 100 as a base for internal arithmetic seems to have no compelling advantage, but
with a hardware limit of 127 and only 5% additional space required, debugging was made a great
deal easier and decimal output was made much faster.

Stack-type arithmetic design permitted all de commands from addition to subroutine execution to
be implemented in essentially the same way, resulting in a considerable degree of logical separation
of the final program into modules with very little communication required between modules.

Eliminating interaction between the scale and the bases provided an understandable means of
proceeding after a change of base or scale when numbers had already been entered. An earlier
implementation which had global notions of scale and base did not work out well. For example, if
the value of <scale>. were to be interpreted in the current input or output base, then a change of
base or scale in the midst of a computation would cause great confusion in the interpretation of the
results.

The scheme implemented has the advantage that the value of the input and output bases are only
used for input and output, respectively, and are ignored in all other operations. The scale value is
not used during program operation, serving only to reasonably limit the number of decimal places
resulting from arithmetic operations.

The design rationale for scaling arithmetic results was that no significant digits should be discarded if
there was any indication that the user actually wanted them. Thus, if the user wants to add the
numbers 1.5 and 3.517, it seemed reasonable to give him the result 5.017 without requiring him to
unnecessarily specify his rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits than
their operands and it seemed reasonable to give as a minimum the number of decimal places in the
operands but not to give more than that number of digits unless the user asked for them by
specifying a value for <scale>. Square root can be handled in just the same way as multiplication.
The operation of division gives arbitrarily many decimal places and there is simply no way to guess
how many places the user wants. In this case only, the user must specify a <scale> to get any
decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quotient
and remainder. This is easy to implement; no digits are thrown away.

DC 9

10 DC

Part No. 97089-90004
E 0784

Microfiche No. 97089-99004

F/iOW HEWLETT
~~ PACKARD

Printed in U.sA
. First Edition, July 1984

