
User’s Guide

HP B3080A
Real-Time OS Measurement
Tool for pSOS+

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1992, 1994, Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

Microtec is a registered trademark of Microtec Research Inc.

pSOS+ and pROBE+ are trademarks of Integrated Systems Inc.

SunOS, SPARCsystem, OpenWindows, and SunView are trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of the
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19(c)(1,2).

2

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Edition 1 B3080-97000, August 1992

Edition 2 B3080-97001, September 1994

3

Measurements for the pSOS+
Real-Time Operating System

The RTOS Measurement Tool is a collection of files that are used with your
real-time OS application and the HP 64700 emulation/analysis system to view
program execution in the context of the real-time OS. For example, you can view
service calls and their parameters, task switches, clock ticks, and dynamic memory
usage.

4

By linking your real-time OS application with an "instrumented" service call
library (an interface library with instructions that write to a data table), you can
capture writes to the data table with the HP 64700 emulation bus analyzer. A
special inverse assembler decodes the captured information and displays it in an
easy-to-read format. You can also use the software performance analyzer to
measure time taken by tasks.

Command files are provided for common RTOS measurements, and you can run
them by clicking on action keys. You can also create custom command files and
action keys for your own RTOS measurements.

With an Emulation Bus Analyzer, You Can ...

• View problems at the task level.
• Use one button point-and-click commands (or run command files in the

command line).
• Display the real-time OS trace with the native service call mnemonics of your

OS.
• Track all OS service calls and display entry parameters and return values.
• Capture task switches caused by OS service calls or system clock ticks.
• Understand how interrupts are affecting your high level task flow.
• Stop program execution if any OS service call ever fails.
• Identify which tasks access a shared function or variable.
• Trigger when a certain message is sent to a specified mailbox.
• Capture activity after task A switches into task B in sequence.
• Detect attempts to free invalid memory segments.
• Display size and location of local stacks.
• Track all dynamic memory allocation and freeing.
• Trigger on stack overflow.

With the Software Performance Analyzer, You Can ...

• Perform time profiling of task durations in your application.
• Measure time spent in OS kernel versus application tasks.
• Measure the percentage of time spent in each application task.
• Stop program execution if a task exceeds a maximum time.
• Find out how often each OS service call is invoked.

5

In This Book

This book describes the HP B3080A Real-Time Operating System Measurement
Tool for the pSOS+ Operating System from Integrated Systems Inc.

This book assumes you are familiar with the Emulator/Analyzer interface, whether
it be the graphical interface or the terminal emulation based softkey interface.

This book is organized into three parts whose chapters are described below.

Part 1. User’s Guide

Chapter 1 explains how to prepare your application to use the RTOS
measurement tool.
Chapter 2 describes how to make RTOS measurements in the emulator/analyzer
interface.
Chapter 3 describes how to make RTOS measurements in the Software
Performance Analyzer interface.
Chapter 4 describes how to access the pROBE+ OS Debugger through a
simulated I/O window in the emulator/analyzer interface.
Chapter 5 shows you how to customize the RTOS Measurement Tool.

Part 2. Concept Guide

Chapter 6 describes how the RTOS measurement tool works.

Part 3. Installation Guide

Chapter 7 shows you how to install the RTOS emulation product on HP 9000
Series 300/400/700 computers and on Sun SPARCsystem computers.

6

Contents

Part 1 User’s Guide

1 Preparing Your Application for RTOS Measurements
Step 1: Make a new source directory 16
Step 2: Retrieve the RTOS source files 17
Step 3: Add the RTOS measurement files to your application 19
Step 4: Build the new application file 20
Step 5: Open the RTOS emulation window 21
Step 6: Configure the emulator and load the application 22
Step 7: Test the RTOS measurement tool 23
Step 8: Test the Software Performance Analyzer 24

2 Making RTOS Measurements with the Emulator/Analyzer

Tracking the Flow of OS Activity 27
To track all service calls (including device calls) 29
To track all service calls plus the stack activity 30
To track all OS calls before an error occurs 31
To track everything 32

Tracking Particular OS Service Calls 33
To track all queue calls 34
To track all queue calls (include task switches) 35
To track all event calls 36
To track all event calls (include task switches) 37
To track all semaphore calls 38
To track all semaphore calls (include task switches) 39
To track a single service call 40
To track two service calls 41

Tracking Particular Tasks 42
To track a single task and all OS activity within it 43

7

To track four tasks and all OS activity within them 44
To track about a specific task switch 45
To track about a specific task sending a message to a specific queue 46
To trace before an event is received by a specific task 47
To track activity after a function is reached 48
To track activity about the access of a variable by a specific task 49

Tracking Accesses to Functions or Variables 50
To track which tasks access a specific function 51
To track which tasks access a specific variable 52

Tracking Dynamic Memory Usage 53
To track only stack data 54
To track all memory calls (include task switches) 56

Displaying Traces 57
To switch to a normal trace display 58
To switch to the RTOS trace display 59

3 Making RTOS Measurements with the SPA

Making Time Profile Measurements 64
To define SPA events for tasks, service calls, and user events 64
To display a time histogram of task events 65
To show a table of SPA events 66
To display a count histogram of task events 67
To measure only data from a specific task 68
To show a table of service call invocations 69
To show a normal function duration histogram 70
To show a histogram of task and user events 71

Coordinating Measurements with the Emulator 72
To break on task time overflow 72
To disable the SPA trig2 73

Handling Multiple Projects on One Machine 74
To set up unique SPA windows for multiple projects 74

Contents

8

4 Accessing pROBE+ through Simulated I/O
To prepare your application for simulated I/O access of pROBE+ 77
To break pSOS+ execution and enter pROBE+ 80
To exit pROBE+ and return to RTOS measurements 81

5 Customizing the RTOS Measurement Tool

Creating Your Own RTOS Measurements 85
Data Table Description 85
Data Table Contents 89
To set up trace commands to capture RTOS information 91
To place your measurements in command files 95
To place your measurements on action keys 96

Limiting the Intrusion Caused by Instrumented Service Calls 98
To comment out Level 5 (Id-to-name translation) 99
To comment out Level 4 (Stack tracking) 99
To comment out Level 3 (SPA support) 99
To comment out Level 2 (Overhead, intrusion and error returns) 100
To comment out Level 1 (Task entry/exit and service calls) 100

Part 2 Concept Guide

6 How the RTOS Measurement Tool Works

Instrumented Code for Real-Time OS Tracking 105
Service Call Tracking 105
Task Switch Tracking 107
Clock Ticks 107
Selective Tracking 108
OS Overhead Tracking 108
Task and Queue Naming 108
Stack and Memory Tracking 109
User-Defined Areas 109
RTOS Symbol Names 110

Contents

9

The Data Table 111
Extra Memory Locations 112

How OS Service Calls are Captured and Displayed 113
Inverse Assembler 113
Instrumented Library Writes to the Data Table 113
Data Table Writes Captured by Analyzer 114
Parameters Displayed with Mnemonics 114
Service Call Entry and Exit and Task Switches 115
Inverse Assemblers are Tailored to the OS 115

Part 3 Installation Guide

7 Installation
To install HP 9000 software 121
To install Sun SPARCsystem software 123

Contents

10

Part 1

User’s Guide

A complete set of task instructions and problem-solving guidelines, with a few
basic concepts.

11

Part 1

12

1

Preparing Your Application for RTOS
Measurements

13

Preparing Your Application for RTOS Measurements

Before preparing your application for RTOS measurements, you should have
already:

• Installed the emulator, emulation bus analyzer, and Graphical User Interface as
described in their User’s Guide manuals. The emulator/analyzer interface
software must be version C.05.00 or greater.

• Installed the HP B3080 Real-Time Operating System Measurement Tool as
outlined in the "Installation" chapter of this manual.

If you wish to make profile measurements on RTOS tasks and service calls, you
should have already:

• Installed the HP 64708A Software Performance Analyzer and its interface
software (HP B1487) as described in the Software Performance Analyzer
User’s Guide.

It’s helpful if you are already familiar with your emulator, the software
performance analyzer, and their interfaces before preparing your multi-tasking
application for real-time operating system measurements. It’s best if you have
already loaded and run the application under the emulator.

With the emulator/analyzer interface already running, you should see two new
entries under the File→Emul700 pulldown menu: PSOS+ RTOS Measurement
Tool ... and SPA for pSOS+ If you do not see these new entries, review the
installation procedure to make sure it was done correctly, and make sure the
/system/B3080/customize script was run. If you still do not see these new entries,
contact your Hewlett-Packard representative.

14

To prepare your application for real-time operating system measurements with the
emulation bus analyzer and the software performance analyzer, take the following
steps:

1 Make a new source directory.

2 Retrieve the RTOS measurement source files.

3 Add the RTOS measurement files to your application.

4 Build the new application file.

5 Start the emulator.

6 Configure the emulator and load the application.

7 Test the RTOS measurement tool.

8 Test the Software Performance Analyzer.

The remainder of this chapter describes these steps in detail.

Chapter 1: Preparing Your Application for RTOS Measurements

15

Step 1: Make a new source directory

• Make a new directory, for example ".../hprtos_src", to hold the instrumented code
which needs to be linked to your existing application.

Create the directory somewhere convenient for linking its files to your application.

Chapter 1: Preparing Your Application for RTOS Measurements

16

Step 2: Retrieve the RTOS source files

If you have already installed the RTOS Measurement Tool, source files will be
found under the $HP64000/rtos/B3080A directory. If you haven’t installed the
product, refer to the "Installation" chapter.

During installation, you set the environment variable HP64000 to the directory in
which the HP 64000 software has been installed. This directory is "/usr/hp64000"
unless you installed the software in a directory other than the root directory.

1 Copy the product files into the directory that was created in Step 1. The files are
found under $HP64000/rtos/B3080A. You must copy the following file:

track_os.s

2 While in the directory created in Step 1, run the $HP64000/bin/rtos_edit_psos
script.

Doing so creates your application specific "tables.s" file. This assembly language
file will contain information that customizes the RTOS tool for your application.
This file will be assembled and linked in with your application code. The
"rtos_edit_psos" tool asks you whether you wish to edit the file for 16-bit or 32-bit
microprocessors.

The "rtos_edit_psos" tool also asks you for the task and queue names in your
application. Enter the four letter names of the tasks and message queues you use in
your application. These are the names that are defined as parameters to the
following OS service calls:

t_create() Create a named task.

q_create() Create a named message queue.

Tables.s allows a "bucket" to be created in memory for each task and message
queue entry you define. Information is written to the buckets when task switches
and message queue accesses occur.

The "rtos_edit_psos" script also creates a file called "s_init". This is a command
file that customizes the Software Performance Analyzer system to your application.

The "rtos_edit_psos" script may be run anytime you wish to add or delete task or
queue name information.

Chapter 1: Preparing Your Application for RTOS Measurements

17

3 If you want to access pROBE+ from a simulated I/O window in the
emulator/analyzer interface, copy the following files:

io_drivers.c
probe_io.c

And, copy the following files from the $HP64000/rtos/B3080A/include directory:

simio.h
psos.h

Chapter 1: Preparing Your Application for RTOS Measurements

18

Step 3: Add the RTOS measurement files to your
application

1 Add "track_os.s" and "tables.s" into your makefile and linker files.

"Track_os.s" contains assembly language code that allows a user to call the pSOS+
OS service call routines from a high-level "C" language. This file also contains
special code that writes out RTOS information to the analyzer anytime an OS
service call is invoked.

This file must replace the pSOS+-to-"C" language interface code previously used in
the application.

The data table that resides in "track_os.s" and spans from the symbol
"HP_RTOS_TRACK_START" through "HP_RTOS_TRACK_END" only needs to
be in an address range that is writeable. Because the data table is never read from,
the values written to it don’t have to be stored; therefore, no real physical memory
is needed.

The pSOS+-to"C" language interface routines in the file "track_os.s" have been
validated with the HP AxLS and the Microtec Research "C" compilers. To use this
product with a different compiler, you should edit the "track_os.s" file to match the
parameter passing protocol of the desired compiler.

2 If you want to make pROBE+ accessible from a simulated I/O window, add
"probe_io.c" and "io_drivers.c" to your makefile and use the include files "simio.h"
and "psos.h". Don’t forget to change pROBE+ drivers to use the routines in
"probe_io.c" . For more information, refer to the "Accessing pROBE+ through
Simulated I/O" chapter.

3 Change your pSOS+ configuration table so the task switching callout field,
KC_SWITCHCO, has a pointer to the "HPOS_SWITCH_CALLOUT" routine and
the task start callout field, KC_STARTCO, has a pointer to
"HPOS_START_CALLOUT" routine. (Both routines are defined in "track_os.s".)
Refer to your pSOS+ manual for more information on pSOS+ configuration tables.

Chapter 1: Preparing Your Application for RTOS Measurements

19

Step 4: Build the new application file

• Rebuild your application with the new files. The service routines in "track_os.s"
have been defined according to the pSOS+ standard so your application should
require no changes.

Chapter 1: Preparing Your Application for RTOS Measurements

20

Step 5: Open the RTOS emulation window

• With the emulator/analyzer interface already running, you can open the RTOS
emulation window by choosing the File→Emul700→PSOS+ RTOS
Μεασυρεµεντ Τοολ pulldown menu item.

• If the emulator/analyzer interface is not already running, you can start the RTOS
emulation window using the "emulrtos_psos" script found in "$HP64000/bin".
This is a simple script which sets up a few things before calling emul700 with your
given emulator name. The syntax for using this script is:

emulrtos_psos [-c <command_file>] PROCESSOR <emulator_name>

The PROCESSOR type of your emulator (for example, 68302 or 68020) is needed
to run the "emulrtos_psos" script. You can either enter it on the command line or
let the script prompt you for it. If you don’t want to enter the processor or be
prompted for it every time, you may edit the script and assign a value to the
variable PROCESSOR.

Opening the RTOS emulation window does several things:

1 Action keys are defined for easy "one click" measurements.

2 Environment variables are set so the command files related to the action keys
are found.

3 The PATH variable is set so shell scripts needed by command files will be
found.

Chapter 1: Preparing Your Application for RTOS Measurements

21

Step 6: Configure the emulator and load the
application

• Now, load an emulator configuration and your application program into the
emulator.

A few notes on the configuration:

1 You MAY set the emulator to be restricted to real-time runs. The RTOS
measurements are done without breaking into the emulation monitor.

2 You may use either a foreground or background monitor.

You are now ready to test your application.

Chapter 1: Preparing Your Application for RTOS Measurements

22

Step 7: Test the RTOS measurement tool

1 Click the Track OS calls action key.

2 Start your application running from its start address (assuming the start address has
initialization code and starts your "ROOT" task).

You should now see a trace display of your "ROOT" task setting up application
tasks and performing any other initializations.

If you page down the display, you will see all of the "ROOT" task’s OS activity
and possibly the start of your application’s tasks.

3 Click the Track OS calls action key again to see a "running snapshot" of what
your application is currently doing.

The action keys for RTOS measurements are described in the "Making RTOS
Measurements with the Emulator/Analyzer" chapter.

Chapter 1: Preparing Your Application for RTOS Measurements

23

Step 8: Test the Software Performance Analyzer

If your HP 64700 emulation system includes a Software Performance Analyzer,
you can test it by performing the following steps.

1 Bring up SPA window by choosing the File→Emul700→SPA for PSOS+
pulldown menu item.

2 If you wish to make cross-trigger measurements between SPA and the emulation
system, make sure the emulation configuration has the following question and
answer:

Should Analyzer drive or receive Trig2? receive

Refer to your emulator/analyzer User’s Guide for information on modifying the
emulator configuration.

3 In Step 2, when you ran the "rtos_edit_psos" tool, a command file "s_init" should
also have been created. If not, rerun "rtos_edit_psos", request only the "s_init" file
to be created, and enter the exact task names as given the first time the tool was run.

4 Click the Initialize action key in SPA to define the events that correspond to each
task. This uses the command file "s_init" that you just created.

5 Click the Time Tasks action key to see a dynamic histogram of the currently
running tasks.

If your application isn’t running, start it running from the emulation window either
before or after the action key is pressed.

If you have multiple projects on one machine, you’ll need to set up unique SPA
windows for each project. For more information, refer to the "Handling Multiple
Projects on One Machine" section of the "Making RTOS Measurements with the
SPA" chapter.

Chapter 1: Preparing Your Application for RTOS Measurements

24

2

Making RTOS Measurements with
the Emulator/Analyzer

25

Making RTOS Measurements with the Emulator/Analyzer

Action keys for
RTOS
measurements.

Clock tick.

Service call entry.

Service call exit.

Task switch.

Parameters
(decoded if
possible).

Return value. Time stamp.

RTOS measurements are easy to set up and use. To set up a measurement you
simply point and click on the appropriate action key (which runs a command file),
and the setup is done automatically. If parameters are required, you are prompted
for them. In the graphical interface, these prompts appear as dialog boxes in which
you can either type or cut-and-paste the required parameters.

You can modify the provided command files and set up action keys for your own
RTOS measurements (refer to the "Creating Your Own RTOS Measurements"
chapter for more information).

26

Interpreting the measurement output is also very easy. All OS service calls are
displayed just as they appear in the OS vendor’s manual. Input parameters and
return values are decoded into their English language equivalents wherever
possible. And, OS specific resources such as task names and mailbox names are
decoded into their user-defined ASCII equivalents wherever possible.

Real-time OS measurements in the emulator/analyzer interface are made using the
HP 64700 series emulation bus analyzers. The analyzer traces real-time OS
activity such as service calls, task switches, and dynamic memory usage.

Each state stored in the trace has a time stamp that shows relative or absolute time.
This is useful for verifying the system clock tick interval, measuring non-running
time of tasks, and understanding the timing needs of various communications
mechanisms such as sending a message or responding to an event.

The RTOS Measurement Tool comes with a default set of measurements that
appear as action keys and are grouped into the following sections:

• Tracking the flow of OS activity.

• Tracking particular OS service calls.

• Tracking particular tasks.

• Tracking accesses to functions or variables.

• Tracking dynamic memory usage.

• Displaying traces.

Additional measurements exist as command files and can be put on action keys or
run directly from the command line. A complete list of these measurements can be
found in the files $HP64000/rtos/B3080A/CMDLIST16 or CMDLIST32
(depending on whether a 16- or 32-bit processor is being used).

Tracking the Flow of OS Activity

The HP 64700 series emulation bus analyzer can measure the real-time task flow
that is occurring in your system. As your application calls into the real-time OS
kernel through OS service calls, the emulation bus analyzer captures the activity
including the value of input and output parameters and the return value. If the OS
switches context into another task, the analyzer can also capture this information.
One simple measurement monitors the service call return values while tracking OS

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

27

activity and stops if a failure is ever detected; this helps designers guard against
unchecked return values.

This section shows you how to:

• Track all service calls (including device calls).

• Track all service calls plus the stack activity.

• Track all OS calls before an error occurs.

• Track everything.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

28

To track all service calls (including device calls)

• Click on the Track OS calls action key (or run the e_trkcalls command file by
entering it on the command line).

This command takes a trace of all OS service calls and task switches.

Service call entry.

Service call exit.

Parameters
(decoded if
possible).

Task switch. Return value. Time stamp.

Note that there are entry and exit arrows on the left of the screen to show when a
service call is entered and, on a separate line, to show when a service call is exited.
This is important since an OS service call may switch to another task while in the
OS and not return to the calling service call for a long time, if ever.

As much of the trace information as possible is decoded. The OS service calls are
decoded into the same mnemonics that appear in the OS manual. The parameters
and return values that are associated with service calls are displayed. The
parameter variable names also appear as they do in the OS manual decoded into
their English mnemonics. Some of the parameter values and all return values are
also decoded whenever there are a finite number of responses as listed in the OS
manual. If the return value at a service call is zero (0), meaning the call was
successful, no return value is printed. Any non-zero return values are printed with
their English decoding.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

29

To track all service calls plus the stack activity

• Click on the Track OS +stack action key (or run the e_trk_stack command file by
entering it on the command line).

This measurement is useful not only if you want to see the stack usage as you enter
and exit tasks but also if you want to see what service calls may have changed the
stack usage. It will give you all service call activity plus show you when the task
switches occur and how much stack is left on entering and exiting each task.

For more information on stack activity measurements, see the "Tracking Dynamic
Memory Usage" section that follows.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

30

To track all OS calls before an error occurs

• Click on the Trace before Err action key (or run the e_before_err command file
by entering it on the command line).

One common problem for software developers is the habit of not checking return
values from system service calls that "should" never fail. Unfortunately, when one
does fail it then can become very difficult to locate.

This command lets you use the analyzer to continuously monitor the system and
check if any service call ever fails, even if the developer is not checking that return
value.

When the trace completes, you can see the activity that occurred before the failed
service call, and the error return value itself is decoded into an easily readable error
message as described in the OS kernel manual.

Note: The trace may be modified to break emulator execution on any error
occurrence by adding "break_on_trigger" to the end of the trace specification either
on the command line or in the command file.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

31

To track everything

• Click on the Track Everything action key (or run the e_trkall command file by
entering it on the command line).

This action key is used so that service calls, task switches, clock ticks, stack
activity, and user-defined events are all tracked and displayed in the trace.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking the Flow of OS Activity

32

Tracking Particular OS Service Calls

There are also RTOS measurements provided to track particular types of service
call activity or OS resources such as events, messages, or semaphores. You can
also track individual service calls.

This section shows you how to:

• Track all queue calls.

• Track all queue calls (include task switches).

• Track all event calls.

• Track all event calls (include task switches).

• Track all semaphore calls.

• Track all semaphore calls (include task switches).

• Track a single service call.

• Track two service calls.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

33

To track all queue calls

• Click on the Only Queues action key (or run the e_onlyqs command file by
entering it on the command line).

This action key is used if you are interested in all queue activity. No other types of
calls are tracked (neither are task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

34

To track all queue calls (include task switches)

• Click on the Tasks & Queues action key (or run the e_trackqs command file by
entering it on the command line).

This action key is used if you are only interested in queue activity but want to
know the task context also.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

35

To track all event calls

• Click on the Only Events action key (or run the e_onlyevs command file by
entering it on the command line).

This action key is used if you are interested in all event activity. No other types of
calls are tracked (neither are task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

36

To track all event calls (include task switches)

• Click on the Tasks & Events action key (or run the e_trackevs command file by
entering it on the command line).

The command above traces only events and task switches so you can see what
tasks use events and how they effect system flow.

The display shows that task ’paal’ is receiving event signals from the other tasks.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

37

To track all semaphore calls

• Click on the Only Semaphores action key (or run the e_onlysms command file by
entering it on the command line).

This action key is used if you are interested in all semaphore activity. No other
types of calls are tracked (neither are task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

38

To track all semaphore calls (include task
switches)

• Click on the Tasks & Semaphrs action key (or run the e_tracksms command file
by entering it on the command line).

This action key is used if you are only concerned about semaphore calls and the
task context.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

39

To track a single service call

• Click on the Only Call X action key (or run the e_onecall command file by
entering it on the command line).

You are prompted for the name of the service call you wish to track. Enter the
service call name in all lower-case characters.

This action key is used if you have a specific service call you want to track and
have no need of the context in which the calls are made.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

40

To track two service calls

• Click on the Only Calls X & Y action key (or run the e_twocalls command file by
entering it on the command line).

You are prompted for the names of the two service calls you wish to track. Enter
the service call names in all lower-case characters.

You may track just the relationship between two service calls with this action key.
For example, the above trace shows who is sending messages with "q_send" and
who is receiving them with "q_receive".

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular OS Service Calls

41

Tracking Particular Tasks

Using the powerful sequence triggering capability of the HP 64700 series
emulation bus analyzers, several RTOS measurements allow you to capture a very
specific sequence of events or very rare events. For example, one point-and-click
measurement watches for a user-defined message being sent to a specific mailbox;
this could help detect a very rare message occurrence. Another point-and-click
sequence measurement triggers only when 4 (or less) specific tasks are switched
into and out of in any order.

This section shows you how to:

• Track a single task and all OS activity within it.

• Track four tasks and all OS activity within them.

• Track about a specific task switch.

• Track about a specific task sending a message to a specific queue.

• Trace before an event is received by a specific task.

• Track activity after a function is reached.

• Track activity about the access of a variable by a specific task.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

42

To track a single task and all OS activity within it

• Click on the Only Task X action key (or run the e_trk1task command file by
entering it on the command line).

You are prompted for the name of the task that you want to trace. You can type in
the four letter name of the task you are interested in, or in the graphical interface,
by using the cut buffer, you can cut and paste a task name from the screen into the
dialog box.

Notice that the time stamp on the right hand side of the screen gives a useful
indication of the time between task exit and the next entry into this same task. In
this example, the elapsed time was 5.73 milliseconds.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

43

To track four tasks and all OS activity within them

• Click on the Only Tsk W,X,Y,Z action key (or run the e_trk4task command file
by entering it on the command line).

You can use this command to track OS activity within up to four tasks. One, two,
or three tasks can also be tracked by entering duplicate names. For example, if you
wanted to track only tasks "cosp" and "bose", enter "cosp" in the first dialog box
and "bose" in the remaining dialog boxes.

You can also edit the command file to create two new command files which would
be used specifically for tracking two or three tasks.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

44

To track about a specific task switch

• Click on the Task switch A->B action key (or run the e_AthenB command file by
entering it on the command line).

This measurement will trace when the kernel switches from one desired task
immediately into another desired task. The dialog box first prompts for the task
that is being switched out of.

When the trace completes, you can see the activity before and after the task switch
occurred. This type of measurement may lead you to a problem surrounding a task
switch.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

45

To track about a specific task sending a message
to a specific queue

• Click on the Tsk A msg->Que X action key (or run the e_tsk2queue command file
by entering it on the command line).

You are prompted first for the task name and then for the queue name to which the
task sends a message.

This measurement is useful if you have a task that sends a message to a specific
queue intermittently and you either want to verify that the message gets sent or you
want to see the service call context under which the message is sent.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

46

To trace before an event is received by a specific
task

• Click on the Tsk A <- Event X action key (or run the e_tskrcv_ev command file
by entering it on the command line).

You are prompted first for the task name and then for the numeric value
designating the event(s). The event number may be entered in decimal,
hexadecimal, or binary, the latter two being followed by "h" and "b", respectively.
These numeric entries may also include don’t care values such as 10XX0X11b.

T
his measurement allows you to view the context under which a specific event is
received by a specific task. In the above example, we have captured a trace when
task "paal" received event 0001.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

47

To track activity after a function is reached

• Click on the Task A: FuncX action key (or run the e_afterfunc command file by
entering it on the command line).

The normal "C" source code tracing is still available whenever you need to see
your actual application code. In fact you can use an RTOS trigger point to then
capture source code activity.

This command will trace into a source code function but only when it has been
called from a certain task. You are first prompted for the calling task and then the
desired function.

You can easily return to the RTOS trace display by clicking on the Disp RTOS
Trace action key (or by entering the display trace real_time_os command on the
command line) and making another RTOS measurement.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

48

To track activity about the access of a variable by
a specific task

• Click on the Task A: VarX action key (or run the e_aftervar command file by
entering it on the command line).

You are prompted first for the task name and then for the variable name which the
task accesses.

This measurement allows you to see when a specific variable is accessed by a
specific task and the source code context under which the variable is accessed.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Particular Tasks

49

Tracking Accesses to Functions or Variables

Another useful RTOS measurement identifies which tasks are accessing a shared
global variable or calling a shared function.

This section shows you how to:

• Track which tasks access a specific function.

• Track which tasks access a specific variable.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

50

To track which tasks access a specific function

• Click on the ? Task: FuncX action key (or run the e_qtskfunc command file by
entering it on the command line).

You are prompted for the function name.

All tasks that call a specific function can be tracked with this measurement.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

51

To track which tasks access a specific variable

• Click on the ? Task: VarX action key (or run the e_qtskvar command file by
entering it on the command line).

You are prompted for the variable name.

All tasks that access a specific variable can be tracked with this measurement.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Accesses to Functions or Variables

52

Tracking Dynamic Memory Usage

Tracking dynamic memory usage has always been difficult in an embedded design.
With these new real-time operating system measurement tools, however, even
these debugging headaches become easy to solve.

The basic measurement set displays the size and location of a memory segment
whenever the system allocates a new block of memory. The system also reports
whenever a previously allocated block of memory is freed and gives an error if a
corrupt pointer is ever detected. This allows you to detect memory allocation
problems.

Stack allocation information (that is, size and stack pointer) are also provided.
With this information, you can use the analyzer to monitor for stack overflow
conditions.

This section shows you how to:

• Track only stack data.

• Track all memory calls (include task switches).

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

53

To track only stack data

• Click on the Stack Usage action key (or run the e_stack command file by entering
it on the command line).

You can enter this command before you run your application from its startup
address to capture the initialization of the application which shows you where each
local stack is allocated and how large it is.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

54

If you perform this same measurement while the application is running, you see the
amount of stack remaining every time a task switch occurs. This gives you a quick
indication of potential stack usage problems.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

55

To track all memory calls (include task switches)

• Click on the Memory Usage action key (or run the e_memory command file by
entering it on the command line).

This command simply tracks all service calls for regions or partitions, giving you
an idea of general memory usage.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Tracking Dynamic Memory Usage

56

Displaying Traces

The normal "C" source code tracing is still available whenever you need to see
your actual application code. You can switch between the normal "C" source code
display and the RTOS measurements display with a simple click of an action key
or by entering a display trace command.

This section shows you how to:

• Switch to a normal trace display.

• Switch to the RTOS trace display.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

57

To switch to a normal trace display

• Click on the Disp NonRTOS Trc action key (or run the e_normtrace command
file by entering it on the command line, or enter the display trace mnemonic
command on the command line).

Writes to the data
table.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

58

To switch to the RTOS trace display

• Click on the Disp RTOS Trace action key (or enter the display trace
real_time_os command on the command line).

Task switch.

Service call entry.

Service call exit.

Parameters
(decoded if
possible). Return value. Time stamp.

Note that there are entry and exit arrows on the left of the screen to show when a
service call is entered and, on a separate line, to show when a service call is exited.
This is important since an OS service call may switch to another task while in the
OS and NOT return to the calling service call for a long time, if ever.

As much of the trace information as possible is decoded. The OS service calls are
decoded into the same mnemonics that appear in the OS manual. The parameters
and return values that are associated with service calls are displayed. The
parameter variable names also appear as they do in the OS manual decoded into
their English mnemonics. Some of the parameter values and all return values are
also decoded whenever there are a finite number of responses as listed in the OS
manual.

You may have noticed that the line numbers in the first column of the display are
not sequential. This is because several trace states may be disassembled for each
line in the RTOS trace display.

Chapter 2: Making RTOS Measurements with the Emulator/Analyzer
Displaying Traces

59

60

3

Making RTOS Measurements with
the SPA

61

Making RTOS Measurements with the SPA

Action keys for
RTOS
measurements.

The HP 64708A Software Performance Analyzer (SPA), a plug-in card for the
HP 64700 emulation system, provides valuable OS-level profiling measurements.
This makes finding bottlenecks simple. In addition, the number of times each task
is called can be displayed, providing valuable information on system "thrashing".
Also, the number of times each OS service call is invoked from your application
can be tracked, helping to isolate bottlenecks from over-utilized system features.

The Software Performance Analyzer can also detect when a task has exceeded a
maximum preset time duration. When combined with the cross triggering
capabilities of the emulation system, you are able to capture a historical trace
showing the sequence of events leading up to the overflow and/or the system can
be halted to allow browsing through the current state of the system.

If you have multiple projects on one machine, you’ll need to set up unique SPA
windows for each project.

These tasks are grouped into the following sections:

62

• Making time profile measurements.

• Coordinating measurements with the emulator.

• Handling multiple projects on one machine.

Chapter 3: Making RTOS Measurements with the SPA

63

Making Time Profile Measurements

By measuring the time between writes made to task entry and exit locations, the
Software Performance Analyzer (SPA) can provide time interval measurements for
the tasks in your application as well as for the OS.

The time duration of each task can be displayed in an easy to read histogram.
Cumulative, maximum, and minimum time spent in each task can be displayed in a
table.

This section shows you how to:

• Define SPA events for tasks, service calls, and user events.

• Display a time histogram of task events.

• Show a table of SPA events.

• Display a count histogram of task events.

• Measure only data from a specific task.

• Show a table of service call invocations.

• Show a normal function duration histogram.

• Show a histogram of task and user events.

To define SPA events for tasks, service calls, and
user events

• Click on the Initialize action key (or run the s_init command file by entering it on
the command line).

These instructions assume you have edited the s_init command file by running the
tool "rtos_edit_psos".

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

64

To display a time histogram of task events

• Click on the Time Tasks action key (or run the s_timetasks command file by
entering it on the command line).

You see that the task names are listed in SPA, and a histogram showing the amount
of time each task is taking is being displayed. This is very useful for detecting
system bottlenecks.

Note that one line of the histogram is labeled "OS_Time". This indicates how
much time the application is spending in the OS kernel itself. This OS overhead
measurement has some limitations however. Refer to the "OS Overhead Tracking"
section in the "How the RTOS Measurement Tool Works" chapter for more
information.

Another line is labeled "Measure_Ovrhd". This indicates how much intrusion is
caused by the RTOS measurement tool routines. The amount of time spent in
measurement overhead caused by the RTOS tool is typically around 1%. The
intrusion percentage is controllable by commenting out code in the "track_os.s" file
(refer to the "Limiting Intrusion Caused by Instrumented Service Calls" section of
the "Customizing the RTOS Measurement Tool" chapter). The example above
displays an extreme case where our demo code uses about 4% measurement
intrusion overhead time.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

65

To show a table of SPA events

• Choose the Display→Table pulldown menu item (or enter the display table
command on the command line).

A raw numbers view of the accumulated data is displayed.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

66

To display a count histogram of task events

• Click on the Count Tasks action key (or run the s_counttasks command file by
entering it on the command line).

The histogram shows the the number of times each task is entered (and exited).
This can be very useful for detecting system "thrashing" between tasks.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

67

To measure only data from a specific task

• Click on the TaskX: Servcalls action key (or run the s_taskwindow command file
by entering it on the command line).

This displays a histogram of the number of times each service call is invoked from
a single task.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

68

To show a table of service call invocations

• Click on the Count Srvc Calls action key (or run the s_countsrvcls command file
by entering it on the command line).

This displays a histogram of the number of times each service call is invoked from
all tasks.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

69

To show a normal function duration histogram

• Click on the FunctionDuration action key (or run the s_funcdur command file by
entering it on the command line).

This performs a normal function duration profile measurement.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

70

To show a histogram of task and user events

• Click on the Tsk & User Evnts action key (or run the s_tasknuser command file
by entering it on the command line).

This measurement includes any user-defined events you may have set up. The
example above shows that user event "UserIntr_1" uses greater than 1% of the
system time.

Chapter 3: Making RTOS Measurements with the SPA
Making Time Profile Measurements

71

Coordinating Measurements with the Emulator

During a Software Performance Analyzer duration measurement, the SPA can
generate a trig2 signal if the event being measured executes for too long a period of
time. This signal can be used by the emulator to stop the application program, or it
can be used by the emulation analyzer to trace activity up to that point.

This combination of events allows you to stop the application program when a task
exceeds a certain amount of continuous execution time and/or track activity that
leads up to the break.

This section shows you how to:

• Break on task time overflow.

• Disable the SPA trig2.

To break on task time overflow

You can also set up a coordinated measurement between the software performance
analyzer and the emulation bus analyzer. For example, you might like to capture a
trace and then break into the emulation monitor if a certain task ever takes longer
than a specified maximum time. Tracing before the time overflow will show a
history of what led up to the time overrun.

1 In the emulation window, click on the Before SPA trig2 action key.

Or (in the emulation window), run the e_spatrig command file by entering it on the
command line.

You have now set up the analyzer to capture a trace when a signal is received from
SPA. Note that the trace has started but has not completed because it is waiting for
the trig2 signal as its trigger point.

2 In the SPA window, click on the Trig2 on Overflw action key.

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

72

You can now set up SPA to detect the time overflow and then send the appropriate
signal to the emulation window. The dialog box again prompts you for specific
information. The first box prompts you for a task name.

3 In the dialog box, type the name of the task; then, click the "OK" pushbutton.

Another dialog box now appears asking you for the maximum time limit to be
watching for. Type in the number of milliseconds that is the maximum time you
want the given task to ever continuously execute.

4 In the dialog box, type in the limit; then, click the "OK" pushbutton.

After a while you see that the emulator is running in monitor due to a time
overflow break from SPA. The status line of the emulation window shows a "trig2
break" which came from SPA. The trace has completed and shows you a historical
trace of what led up to the time overflow. Notice that the application has just
entered the task which you specified.

To disable the SPA trig2

• In the SPA window, click on the Disable Trig2 action key.

This action key must be pressed whenever cross-trigger measurements to the
emulator are no longer desired.

Note Until the trig2 signal from SPA is disabled, the signal will be continually sent to the
emulation system. This may result in unexpected behavior such as continually
breaking into the monitor or traces being started but not completing.

Chapter 3: Making RTOS Measurements with the SPA
Coordinating Measurements with the Emulator

73

Handling Multiple Projects on One Machine

In order to run multiple sessions—one for each unique application—of the RTOS
product on one machine, a couple of changes need to be made. These changes are
required because a command file for the Software Performance Analyzer contains
application specific commands that set up intervals for each task.

To set up unique SPA windows for multiple
projects

• If more than one project is using the RTOS Measurement Tool, you need to make
sure the Initialize action key calls a command file specific to your currently loaded
application.

There is a semi-automated way to have unique SPA windows which run
application specific command files:

1 Re-run the $HP64000/bin/rtos_edit_psos script.

2 Answer "y" only to the question "Do you want to create a new ’s_init’ file?".

3 Enter your task names from your application.

4 Answer "y" to the question "Do you need to customize the SPA environment?".

5 Enter a short unique string (your initials are suggested) for a suffix.

6 You must set the environment variable RTOS_UNIQUE to the unique string
you just entered. When this environment variable is set, the RTOS tools know
to use the specific command file that has been created.

Don’t forget to always have RTOS_UNIQUE set in any window in which you run
the RTOS product.

Chapter 3: Making RTOS Measurements with the SPA
Handling Multiple Projects on One Machine

74

4

Accessing pROBE+ through
Simulated I/O

75

Accessing pROBE+ through Simulated I/O

A pSOS+ compatible static OS debugger, called pROBE+, is also available from
Integrated Systems, Inc. Supplied with the RTOS product is a connection library
that allows you to run pROBE+ through the simulated I/O window in the
emulator/analyzer interface, thereby eliminating the need for a separate hardware
I/O device to connect to pROBE+.

pROBE+ is a static debugger that is a complementary product with the real-time
"dynamic" RTOS measurement tools. With the real-time debugger you can capture
flow-of-information in a dynamic, real-time mode. The static OS debugger can be
used to browse through the internal OS resource lists such as mailbox contents or
task status lists when running in the OS-resident debug monitor.

To help you access pROBE+ from a simulated I/O window, the files "io_drivers.c"
and "probe_io.c" (found in the $HP64000/rtos/B3080A directory) are included
with the RTOS measurement tool.

The "io_drivers.c" file contains routines for using simulated I/O in the
emulator/analyzer interface.

The "probe_io.c" file contains user-supplied initialization and console procedures
that must be linked in with the application and identified in pROBE+’s
configuration table.

You also need the include files "simio.h" and "psos.h" (found in the
$HP64000/rtos/B3080A/include directory).

This chapter shows you how to:

• Prepare your application for simulated I/O access of pROBE+.

• Break pSOS+ execution and enter pROBE+.

• Exit pROBE+ and return to RTOS measurements.

76

To prepare your application for simulated I/O
access of pROBE+

To integrate pROBE+ into your application and have it be available through
through the simulated I/O window, you must do the following:

1 Put the simulated I/O drivers into the application’s I/O jump table.

For example:

 XDEF _DRVR_TBL
_DRVR_TBL:
 XREF _simio_init
 XREF _open_driver
 XREF _close_driver
 XREF _read_driver
 XREF _write_driver
 XREF _simio_clear_screen

 DC.L _simio_init ;init
 DC.L _open_driver ;open
 DC.L _close_driver ;close
 DC.L _read_driver ;read
 DC.L _write_driver ;write
 DC.L _simio_clear_screen ;cntrl
 DC.L 0 ;reserved
 DC.L 0 ;reserved

2 Have a pointer to the I/O jump table within pSOS+’s configuration table; in other
words, set the KC_IOJTABLE to the address of your I/O jump table.

3 Include "probe_io.c" and "io_drivers.c" in your application.

Chapter 4: Accessing pROBE+ through Simulated I/O
To prepare your application for simulated I/O access of pROBE+

77

4 Initialize pROBE’s configuration table to have pointers to the initialization and
console procedures found in "probe_io.c".

For example:

static struct s_rc rom_rc =
 {PROBE_CODE, /* Address of pROBE code */
 (INT32)&probe_data[0x800], /* Adress of pROBE data */
 (INT32)pio_init, /* Address of I/O init procedure */
 (INT32)pio_consts, /* Address of console status
 procedure */
 (INT32)pio_conin, /* Address of console input
 procedure */
 (INT32)pio_conout, /* Address of console output
 procedure */
 (INT32)0, /* Address of host status procedure */
 (INT32)0, /* Address of host input procedure */
 (INT32)0, /* Address of host output procedure */
 0x4E41, /* Breakpoint opcode */
 ...

5 Define a simulated I/O buffer.

For example:

 SECTION iobuf,,D
 XDEF _systemio_buf
_systemio_buf
 DS.B 512
 END

Chapter 4: Accessing pROBE+ through Simulated I/O
To prepare your application for simulated I/O access of pROBE+

78

6 Rebuild your application.

After completing the above tasks, your application will have pROBE+ available in
a simulated I/O window. Start your task running within the emulator and
depending on how you have the RC_SMODE value set in pROBE+’s
configuration, you will now be able to access pROBE+.

1 If RC_SMODE is set to "0" (meaning normal start-up), you can just enter:

display simulated_io
modify keyboard_to_simio.

2 If RC_SMODE is set to "1" (meaning silent start-up), your application will be
running with continuous checks by the kernel for console status. Enter the
following commands:

modify memory break_to_probe to 1
display simulated_io
modify keyboard_to_simio

You will now see the "pROBE+>" prompt in the simulated I/O display. Enter
commands as you normally would to pROBE+. When done, press the suspend
softkey and you will return to normal emulator control.

Chapter 4: Accessing pROBE+ through Simulated I/O
To prepare your application for simulated I/O access of pROBE+

79

To break pSOS+ execution and enter pROBE+

1 Click on the Break to Probe action key.

Or, run the e_brk2probe command file by entering it on the command line.

2 In the simulated I/O window, enter the modify keyboard_to_simio command
using the command line.

You have now broken into the pROBE+ monitor. Any command can now be given
to pROBE+, and the output will appear in the simulated I/O window. For example,
you can query the task status list by typing in the pROBE+ "qt" command on the
command line and pressing <RETURN>.

You see that the query task command browses through the internal OS kernel and
displays the status of each task. Note that the task names are the same as you see in
the emulation window.

If you try to take a real-time trace, for example by clicking on the Track OS calls
action key, you see that the status line indicates "Emulation trace started", but the
trace does not complete because the application is in the pROBE+ monitor with no
application tasks running.

Chapter 4: Accessing pROBE+ through Simulated I/O
To break pSOS+ execution and enter pROBE+

80

To exit pROBE+ and return to RTOS
measurements

• In the simulated I/O window, type in "go" on the command line, and press
<RETURN>.

After issuing the "go" command to pROBE+, the application tasks begin running
again.

If you started a trace while in pROBE+, the trace becomes complete.

If your application uses the simulated I/O feature of the emulator/analyzer
interface, the simulated I/O window returns to displaying the application output
instead of the pROBE+ prompt.

Chapter 4: Accessing pROBE+ through Simulated I/O
To exit pROBE+ and return to RTOS measurements

81

82

5

Customizing the RTOS Measurement
Tool

83

Customizing the RTOS Measurement Tool

You can customize the RTOS Measurement Tool to create your own RTOS
measurements. You can set up your own trace commands that capture particular
writes to the data table, put these commands in command files, and set up action
keys that run these command files.

Though the level of intrusion introduced by the "instrumented" service call library
is very limited, you can customize the RTOS Measurement Tool to further limit the
intrusion if it becomes a problem.

These tasks are grouped into the following sections:

• Creating your own RTOS measurements.

• Limiting the intrusion caused by instrumented service calls.

84

Creating Your Own RTOS Measurements

Real-time OS measurements in the emulator/analyzer interface are made by using
the emulation bus analyzer to capture writes made to a data table. Assembly
language instructions in the "instrumented" service call library write values to the
data table when:

Tasks start.
Tasks switch.
Service calls are entered and exited.

Any states captured by the emulation bus analyzer outside the range of the data
table are interpreted as non-RTOS states.

When you display the RTOS trace, the inverse assembler looks at the information
written to the data table, and, since it knows how these locations are defined, it
interprets the information and presents it in an easy to read form on the trace
display.

In order to understand how to make your own RTOS measurements, you must
understand what writes to each of the locations in the data table mean. Once you
understand this, you will be able to enter your own trace commands to capture the
RTOS information you’re looking for.

If your measurements will be made often, you can create your own command files
and add your own action keys to the emulator/analyzer interface.

Data Table Description

The data table reserves space for information saved when tasks start, when tasks
switch, and when service call functions are entered or exited.

There are also locations for device service call, stack, user-defined, clock tick, and
error checking information.

The part of the "track_os.s" source file that reserves space for the data table is
shown below.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

85

**
* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of ’traced’ data is dependent -=- *
* -=- on the relative offsets of symbols -=- *
**
HPOS_Start_Ovrhd DS.W 1 ;Start of OS interval for SPA
HPOS_Stop_Ovrhd DS.W 1 ;End of OS interval for SPA

HPOS_Start_Intrusion DS.W 1 ;Start interval for measuring intrusion
HPOS_Stop_Intrusion DS.W 1 ;End interval for measuring intrusion

 ; The name of this symbol MUST NOT CHANGE!!!
HP_RTOS_TRACK_START ; It is required that the interface find this
 ; symbol and pass its value to the Interpreter
 ; so the beginning of this table is known.

HPOS_TASK_EXIT DS.L 1
HPOS_TASK_ENTRY DS.L 1

HPOS_t_create_Entry DS.L 5
HPOS_t_create_Exit DS.L 2
HPOS_t_ident_Entry DS.L 2
HPOS_t_ident_Exit DS.L 2
HPOS_t_start_Entry DS.L 7
HPOS_t_start_Exit DS.L 1
HPOS_t_restart_Entry DS.L 5
HPOS_t_restart_Exit DS.L 1
HPOS_t_delete_Entry DS.L 1
HPOS_t_delete_Exit DS.L 1
HPOS_t_suspend_Entry DS.L 1
HPOS_t_suspend_Exit DS.L 1
HPOS_t_resume_Entry DS.L 1
HPOS_t_resume_Exit DS.L 1
HPOS_t_setpri_Entry DS.L 2
HPOS_t_setpri_Exit DS.L 2
HPOS_t_mode_Entry DS.L 2
HPOS_t_mode_Exit DS.L 2
HPOS_t_getreg_Entry DS.L 2
HPOS_t_getreg_Exit DS.L 2
HPOS_t_setreg_Entry DS.L 4
HPOS_t_setreg_Exit DS.L 1

HPOS_T_TRANS_TID DS.L 1
HPOS_TTRANS_ERR DS.L 1
HPOS_TASK_BKT_UNDEF DS.L 1

HPOS_rn_create_Entry DS.L 5
HPOS_rn_create_Exit DS.L 3
HPOS_rn_ident_Entry DS.L 1
HPOS_rn_ident_Exit DS.L 2
HPOS_rn_delete_Entry DS.L 1
HPOS_rn_delete_Exit DS.L 1
HPOS_rn_getseg_Entry DS.L 4
HPOS_rn_getseg_Exit DS.L 2
HPOS_rn_retseg_Entry DS.L 2
HPOS_rn_retseg_Exit DS.L 1

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

86

HPOS_pt_create_Entry DS.L 6
HPOS_pt_create_Exit DS.L 3
HPOS_pt_ident_Entry DS.L 2
HPOS_pt_ident_Exit DS.L 2
HPOS_pt_delete_Entry DS.L 1
HPOS_pt_delete_Exit DS.L 1
HPOS_pt_getbuf_Entry DS.L 1
HPOS_pt_getbuf_Exit DS.L 2
HPOS_pt_retbuf_Entry DS.L 2
HPOS_pt_retbuf_Exit DS.L 1
HPOS_pt_sgetbuf_Entry DS.L 1
HPOS_pt_sgetbuf_Exit DS.L 3

HPOS_q_create_Entry DS.L 3
HPOS_q_create_Exit DS.L 2
HPOS_q_ident_Entry DS.L 2
HPOS_q_ident_Exit DS.L 2
HPOS_q_delete_Entry DS.L 1
HPOS_q_delete_Exit DS.L 1
HPOS_q_send_Entry DS.L 5
HPOS_q_send_Exit DS.L 1
HPOS_q_urgent_Entry DS.L 5
HPOS_q_urgent_Exit DS.L 1
HPOS_q_broadcast_Entry DS.L 5
HPOS_q_broadcast_Exit DS.L 2
HPOS_q_receive_Entry DS.L 3
HPOS_q_receive_Exit DS.L 5

HPOS_Q_TRANS_QID DS.L 1
HPOS_QTRANS_ERR DS.L 1

HPOS_ev_send_Entry DS.L 2
HPOS_ev_send_Exit DS.L 1
HPOS_ev_receive_Entry DS.L 3
HPOS_ev_receive_Exit DS.L 2

**
* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of ’traced’ data is dependent -=- *
* -=- on the relative offsets of symbols -=- *
**

HPOS_as_catch_Entry DS.L 2
HPOS_as_catch_Exit DS.L 1
HPOS_as_send_Entry DS.L 2
HPOS_as_send_Exit DS.L 1
HPOS_as_return_Entry DS.L 1
HPOS_as_return_Exit DS.L 1

HPOS_sm_create_Entry DS.L 3
HPOS_sm_create_Exit DS.L 2
HPOS_sm_ident_Entry DS.L 2
HPOS_sm_ident_Exit DS.L 2
HPOS_sm_delete_Entry DS.L 1
HPOS_sm_delete_Exit DS.L 1
HPOS_sm_v_Entry DS.L 1
HPOS_sm_v_Exit DS.L 1
HPOS_sm_p_Entry DS.L 3

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

87

HPOS_sm_p_Exit DS.L 1

HPOS_tm_tick_Entry DS.L 1
HPOS_tm_tick_Exit DS.L 1
HPOS_tm_set_Entry DS.L 3
HPOS_tm_set_Exit DS.L 1
HPOS_tm_get_Entry DS.L 1
HPOS_tm_get_Exit DS.L 4
HPOS_tm_wkafter_Entry DS.L 1
HPOS_tm_wkafter_Exit DS.L 1
HPOS_tm_wkwhen_Entry DS.L 3
HPOS_tm_wkwhen_Exit DS.L 1
HPOS_tm_evafter_Entry DS.L 2
HPOS_tm_evafter_Exit DS.L 2
HPOS_tm_evevery_Entry DS.L 2
HPOS_tm_evevery_Exit DS.L 2
HPOS_tm_evwhen_Entry DS.L 4
HPOS_tm_evwhen_Exit DS.L 2
HPOS_tm_cancel_Entry DS.L 1
HPOS_tm_cancel_Exit DS.L 1

HPOS_k_fatal_Entry DS.L 2
HPOS_i_return_Entry DS.L 1

HPOS_m_ext2int_Entry DS.L 1
HPOS_m_ext2int_Exit DS.L 2
HPOS_m_int2ext_Entry DS.L 1
HPOS_m_int2ext_Exit DS.L 2

HPOS_SERVICE_CALLS ; Label to make tracing easier

HPOS_de_init_Entry DS.L 2
HPOS_de_init_Exit DS.L 3
HPOS_de_open_Entry DS.L 2
HPOS_de_open_Exit DS.L 2
HPOS_de_close_Entry DS.L 2
HPOS_de_close_Exit DS.L 2
HPOS_de_read_Entry DS.L 2
HPOS_de_read_Exit DS.L 2
HPOS_de_write_Entry DS.L 2
HPOS_de_write_Exit DS.L 2
HPOS_de_cntrl_Entry DS.L 2
HPOS_de_cntrl_Exit DS.L 2

HPOS_SRVC_DEVICES ; Label to make tracing easier

HPOS_T_START_NAME DS.L 1
HPOS_T_ENTRY_STACK DS.L 1
HPOS_T_EXIT_STACK DS.L 1
HPOS_T_STACK_VAR1 DS.L 1
HPOS_T_STACK_VAR2 DS.L 1
HPOS_T_STACK_VAR3 DS.L 1
HPOS_T_STACK_VAR4 DS.L 1

HPOS_SRVC_DEV_STACK ; Label to make tracing easier

HPOS_USER_DEFENTRY1 DS.L 1 ; data entries to be used for
HPOS_USER_DEFEXIT1 DS.L 1 ; either SPA intervals or

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

88

HPOS_USER_DEFENTRY2 DS.L 1 ; for general program tracking
HPOS_USER_DEFEXIT2 DS.L 1
HPOS_USER_DEFENTRY3 DS.L 1
HPOS_USER_DEFEXIT3 DS.L 1
HPOS_USER_DEFENTRY4 DS.L 1
HPOS_USER_DEFEXIT4 DS.L 1
HPOS_USER_DEFENTRY5 DS.L 1
HPOS_USER_DEFEXIT5 DS.L 1
HPOS_USER_DEFENTRY6 DS.L 1
HPOS_USER_DEFEXIT6 DS.B 3

HP_RTOS_TRACK_END ;End of list indicator
HPOS_END_OF_DATA_AREA DS.B 1

HPOS_CLOCK_TICK DS.L 1

HPOS_CHECK_ERRORS DS.L 1

**
* -=- THIS DATA TABLE MUST NOT BE CHANGED IN ANY WAY -=- *
* -=- The interpretation of ’traced’ data is dependent -=- *
* -=- on the relative offsets of symbols -=- *
**

Data Table Contents

The types of values that are written to the data table are:

HPOS_TASK_EXIT
HPOS_TASK_ENTRY

The four character ASCII name of the task being exited or entered is written to
these locations. By triggering on specific data values written to these
locations, you can trigger on a particular task’s entry or exit.

HPOS_<svc_call_sym>_Entry
HPOS_<svc_call_sym>_Exit

The parameters passed to, or returned from, a service call are written to these
locations.

When creating your own RTOS trace commands, be sure to store writes
through the full range of the symbol; once the inverse assembler sees the first
word written to these locations, it expects an exact number of subsequent
writes to follow.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

89

HPOS_T_<stack_info_sym>

Stack information is written to these locations by the task start and task switch
callout routines.

When including stack information in the RTOS trace, store writes to the entire
range identified by the T_ symbols.

HPOS_CLOCK_TICK

This location is written to as system clock ticks are sent into the OS kernel.
You have to instrument your clock interrupt service routine (ISR) to see this
functionality.

HPOS_CHECK_ERRORS

Error return codes are written to this location when service calls exit.

HPOS_USER_DEF[ENTRY|EXIT]n

These locations are reserved for tracking user-defined activity. For more
information, refer to the "How the RTOS Measurement Tool Works" chapter.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

90

To set up trace commands to capture RTOS
information

• Use the "only" syntax of the trace command to specify the storage qualifier.

The most basic thing to realize about capturing RTOS information with the
emulation bus analyzer is that you only want to store writes to the data table. Any
other stored state will be displayed in the RTOS trace display as a non-RTOS state.

Virtually all the trace commands you enter to capture RTOS information will
specify that "only" a range of locations in the data table or "only" a range and other
specific locations in the data table are to be stored in the trace. (If you wish to look
at all code execution you will store all states.)

One exception to this guideline is the ability to capture both writes to the data table
and your application code execution excluding execution of the actual pSOS+ code
itself. This can usually be accomplished by storing all activity not in the range of
the pSOS+ code (that is, trace only address not range <pSOS_start> thru
<pSOS_end>). Once the analyzer has captured this data, you may find it helpful to
use two emulation windows simultaneously: one to display the normal source code
trace, and the other to display the RTOS trace.

• Use the "after", "about", or "before" syntax of the trace command if you wish to
trigger the analyzer on a certain event or occurrence in your program. The option
you choose specifies the position of the trigger point in trace memory.

• Use the "find_sequence" syntax of the trace command if you wish to trigger the
analyzer on a certain sequence of events or occurrences in your program.

• Use the "enable" and "disable" syntax of the trace command to capture only certain
parts (in other words, windows) of program execution.

When using data qualifiers to identify the entry or exit of a particular task,
remember the emulation bus analyzer captures 16 bits of data per state when used
with 16-bit processors and 32 bits of data per state when used with 32-bit
processors. Because 4 ASCII character (32-bit) task names are written to
HPOS_TASK_ENTRY and HPOS_TASK_EXIT, you must capture the write of
the high-order word or low-order word to identify a particular task when using a

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

91

16-bit processor. (This is the reason the first two and last two characters must be
made unique when naming your tasks in the "tables_16.s" file.)

Examples To track only queue and event service calls:

trace only address range HPOS_q_create_Entry thru
HPOS_as_catch_entry-1 <RETURN>

This captures all writes to the data table that correspond to any event or queue
service calls.

To track only queue and event service calls including task switches (for 16-bit
processors):

trace only address range HPOS_q_create_Entry thru
HPOS_as_catch_entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_EXIT+2 or HPOS_TASK_ENTRY or
HPOS_TASK_ENTRY+2 <RETURN>

This captures the same data table writes as the previous command and also the task
entries and exits.

To track only queue and event service calls including task switches (for 32-bit
processors):

trace only address range HPOS_q_create_Entry thru
HPOS_as_catch_entry-1 or HPOS_TASK_EXIT or
HPOS_TASK_ENTRY <RETURN>

This captures the same data table writes as the previous command, but it is for
32-bit processors.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

92

To track only the "cosp" task and queue service calls (for 16-bit processors)
(note that the hex value for "co" is 636fh and the hex value for "sp" is 7370h):

trace enable address HPOS_TASK_ENTRY data 636fh disable
address HPOS_TASK_EXIT+2 data 7370h only address range
HPOS_q_create_Entry thru HPOS_ev_send_Entry-1 <RETURN>

This trace starts or resumes capturing data when "co" (636FH) is written to the first
word of the task entry location and halts data capturing when "sp" (7370H) is
written to the task exit location. While enabled to capture data, the only states
captured are the data table accesses that correspond to queue service calls.

To track only the "cosp" task and queue service calls (for 32-bit processors)
(note that the hex value for "cosp" is 636f7370h):

trace enable address HPOS_TASK_ENTRY data 636f7370h
disable address HPOS_TASK_EXIT data 636f7370h only
address range HPOS_q_create_Entry thru
HPOS_ev_send_Entry-1 <RETURN>

This is the same as the previous command, except the starts and halts are done on
data of "cosp" since the full 32-bit name is written in one cycle for 32-bit
processors.

To trigger before an error return in task "cosp" (for 16-bit processors):

trace find_sequence HPOS_TASK_ENTRY data 636fh restart
HPOS_TASK_EXIT+2 data 7370h trigger before
HPOS_CHECK_ERRORS data not 0 only address range
HP_RTOS_TRACK_START thru HPOS_TRACK_END <RETURN>

Starting (enabling) and halting (disabling) are done the same way as in previous
commands, but now instead of capturing data, a specific event (in this case, a write
of something other than zero (0) to HPOS_CHECK_ERRORS) is looked for as the
trigger to complete the trace.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

93

To trigger before an error return in task "cosp" (for 32-bit processors):

trace find_sequence HPOS_TASK_ENTRY data 636f7370h
restart HPOS_TASK_EXIT data 636f7370h trigger before
HPOS_CHECK_ERRORS data not 0 only address range
HP_RTOS_TRACK_START thru HPOS_TRACK_END <RETURN>

This is the same as the previous command, but it is for 32-bit processors.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

94

To place your measurements in command files

1 If your measurement is similar to a measurement that already exists on the action
keys (and therefore in a command file), the best way to create the new command
file is to copy and modify the similar command file.

2 Add the directory that contains your custom command files to the HP64KPATH
environment variable.

Examples Suppose you want to create a command file for an RTOS measurement that tracks
a particular task and all the queue service calls that occur during the task. Notice
that this is similar to the provided RTOS measurement that tracks only task X,
except that you want to limit the service calls that are stored in the trace to just
queue service calls.

First copy the existing command file.

$ cp $HP64000/rtos/B3080A/act_keys_302/e_trk1task
e_trk1tsknqs <RETURN>

The storage qualifier part of the command you wish to create is:

... only address range HPOS_q_create_Entry thru
HPOS_ev_send_Entry-1 <RETURN>

So, edit the "e_trk1tsknqs" command file so that only writes to the locations above
are stored in the trace.

If your command file is placed in the $HOME/rtoscmdf directory, you should set
the HP64KPATH environment variable as follows:

If you’re using "sh" or "ksh":

$ HP64KPATH=$HP64KPATH:$HOME/rtoscmdf; export HP64KPATH
<RETURN>

If you’re using "csh":

$ setenv HP64KPATH ${HP64KPATH}:$HOME/rtoscmdf <RETURN>

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

95

To place your measurements on action keys

• The easiest way to include an RTOS measurement on an action key is to first place
the measurement in a command file; then, edit the "emulrtos_psos" script to add an
action key label and the name of the command file.

When you open the RTOS emulation window (either by choosing the
File→Emul700→PSOS+ RTOS Measurement Tool pulldown menu item in the
emulator/analyzer interface or by using the "$HP64000/bin/emulrtos_psos" script),
the emul700 command is issued with the -xrm option to set the X resource that
defines action keys.

The "actionKeysSub.keyDefs" X resource defines a list of paired strings. The first
string defines the text that appears on the action key pushbutton. The second string
defines the command or, in the case of the RTOS measurement tool, the command
file that should be sent to the command line area and executed when the action key
is pushed.

The command files associated with action keys typically set up trace commands
that capture real-time OS activity. If parameters are required, the command files
prompt you for them. Also, some command files have commands that extract
information from memory.

Examples Suppose you wish to create an action key for the command file created in the
previous "To place your measurements in command files" section.

Edit the "emulrtos_psos" script.

vi $HP64000/bin/emulrtos_psos <RETURN>

Add a line that defines the action key label "Tsk X & Queues" and the location of
the command file. In this case, add the line:

\"Tsk X & Queues\" \"e_trk1tsknqs\" \

as part of the "keyDefs" resource definition.

You may also set the "actionKeys.numColumns" resource to manage the number of
rows of action keys.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

96

The next time you start the emulator/analyzer interface using the modified script,
the new action key will appear. Clicking on the new action key will cause the
associated command file to be run.

Chapter 5: Customizing the RTOS Measurement Tool
Creating Your Own RTOS Measurements

97

Limiting the Intrusion Caused by Instrumented
Service Calls

Within the "track_os.s" file, some sections/statements are labeled as being at a
certain "level". The level indicates certain groupings of measurements that can be
made. Even within levels, some subsets of measurement data could possibly be
divided up but the levels keep similar measurements together for easier editing and
understanding.

Level 1 Service call tracking (entry and return), task switching, clock
ticks.

Level 2 Operating System overhead tracking, Intrusion measurement,
Tracking Service call error returns

Level 3 SPA support - real time histogram of tasks

Level 4 Stack tracking - creation and dynamic sizes of stacks

Level 5 Task and queue id-to-name translation.

There are approximately 300 total lines of assembly code added within the service
call functions and another 150 lines of support routine code. This may be cut down
to about 100 lines in the service calls and only two lines of support routine code
which will still show all service calls and task switching.

To reduce the amount of intrusion (and correspondingly the amount of
measurement data), you may remove any of the levels. When levels are removed
(generally by commenting out the relevant code), you should remove complete
levels and you may only remove a level when all the levels "ranked" above it are
removed. For example, if you don’t want the intrusion imposed by the level 3
routines (in other words, task and queue naming), you must also remove levels 4
and 5. This is the recommended method, but you may find other ways which work
for you.

This section shows you how to comment out the various levels of RTOS
measurement support. Different variations on commenting out the instrumentation
code may work but they will not be supported.

Chapter 5: Customizing the RTOS Measurement Tool
Limiting the Intrusion Caused by Instrumented Service Calls

98

To comment out Level 5 (Id-to-name translation)

1 Comment out the call to _SAVE_QUEUE_INFO in the q_create service call.

2 Comment out all calls to WRITE_TASK_NAME in all service calls. The affected
calls are t_restart, t_delete, t_suspend, t_resume, t_setpri, t_getreg, t_setreg,
ev_send, and as_send.

3 Comment out all calls to HPOS_WRITE_Q_NAME in all queue service calls. The
affected calls are q_delete, q_send, q_urgent, q_broadcast, and q_receive (2 calls).

To comment out Level 4 (Stack tracking)

1 Comment out the call to SAVE_STACK_INFO in the "_t_create" service call.

2 Comment out all instructions in the _HPOS_SWITCH_CALLOUT routine labeled
with comments as "HP-RTOS-Level-4".

3 Comment out all instructions in the _HPOS_START_CALLOUT routine within
the section labeled as "HP-RTOS-Level-4".

To comment out Level 3 (SPA support)

1 Comment out all instructions in the _HPOS_SWITCH_CALLOUT routine
EXCEPT the 2 instructions labeled as "HP-RTOS-Level-1" and the 4 instructions
labeled as "HP-RTOS-Level-2".

2 Remove the _HPOS_START_CALLOUT entry from your configuration table so it
is no longer invoked when "t_start()" is called.

Chapter 5: Customizing the RTOS Measurement Tool
Limiting the Intrusion Caused by Instrumented Service Calls

99

To comment out Level 2 (Overhead, intrusion and
error returns)

• Comment out all instructions in "track_os.s" which are commented by the string
"HP-RTOS-Level-2".

To comment out Level 1 (Task entry/exit and
service calls)

1 Remove the _HPOS_SWITCH_CALLOUT entry from your configuration table so
it is no longer invoked when a task switch is done.

2 Comment out all instructions in "track_os.s" which are commented by the string
"HP-RTOS-Level-1".

3 If instrumented, remove any writes to the data area from your application code.

Chapter 5: Customizing the RTOS Measurement Tool
Limiting the Intrusion Caused by Instrumented Service Calls

100

Part 2

Concept Guide

Topics that explain concepts and apply them to advanced tasks.

101

Part 2

102

6

How the RTOS Measurement Tool
Works

103

How the RTOS Measurement Tool Works

The RTOS measurement tool lets you perform a real-time trace of all calls and
returns between your application and a Real-Time Operating System (RTOS). The
RTOS measurement tool works with the HP 64700 series emulation bus analyzer
and includes a specially developed inverse assembler. The trace display is easily
readable and includes a fully interpreted display of all parameters passed into and
returned from the RTOS along with possibly other pertinent data.

The following topics are discussed in this chapter:

• Instrumented code for real-time OS tracking.

• How OS service calls are captured and displayed.

104

Instrumented Code for Real-Time OS Tracking

In order to make RTOS measurements, a few instructions must be added to the
application program. The level of intrusion introduced by these instructions is very
limited. The simplest level of RTOS measurements require only two MOVEM
assembly language instructions for each service call and a two-instruction task
switch callout routine.

Additional RTOS measurements like stack tracking, measurements that include
clock ticks, and real-time (no sampling) software performance analysis can be
provided by adding a few more instructions to the application program. The level
of intrusion is still quite minimal.

If the intrusion introduced becomes a problem, you can comment out some of the
added instructions (in the "track_os.s" file) to find the right balance between
intrusion and debugging capabilities (see the "Limiting the Intrusion Caused by
Instrumented Service Calls" section in the "Customizing the RTOS Measurement
Tool" chapter).

Service Call Tracking

Tracking of service calls takes advantage of the fact that there is usually an
interface library which allows a high-level language application to call an
assembly language based RTOS. This library is a set of functions that correspond
directly to each routine available from the RTOS. We will refer to these functions
as service calls of the RTOS.

Each function in the library is accessible via a normal high-level subroutine call.
The function is responsible for taking parameters off the stack and placing values
into proper registers. A "trap" instruction is then executed to pass control to the
RTOS which interprets the registers and determines which of its own functions
needs to be run. (The D0 register is usually set in the interface function to arbitrate
which function in the RTOS is being requested.)

In order to track service calls, code has been added to each service call in the
interface library. This code writes the contents of the registers that are used to
specific known locations within a defined data table. The data table has defined
offsets within it for each parameter of each function. (For pSOS+, the data table
requires about 1000 bytes.)

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

105

So for each function, any register that has been set with a specific value to be
passed to the RTOS has its value written to a location unique to that function and
parameter. This is accomplished through a simple MOVEM instruction which
writes all registers that have been assigned values by the service call to a specific
memory location in the data area. One MOVEM is done right before the "trap"
instruction and one is done upon return.

When running an application that uses the "instrumented" interface library (that is,
the interface library to which code has been added for RTOS measurements),
tracing the address range of the defined data table captures all data being passed
into and returned from each and every service call.

When trace information is captured, a RTOS specific inverse assembler decodes
the information and displays the intimate details of the interaction between an
application and a RTOS.

The data table needed for a specific RTOS relates directly to the number of
functions available from a RTOS and the number of parameters passed to and
returned from such a RTOS. For each function, there is a set of long words
associated with the call to the function and a set for the return from the function.

For instance, in the pSOS+ RTOS, there is a function called "t_create()" which
creates a task. There are 6 registers which are assumed to be set before trapping to
the kernel and 2 output registers which are set by the kernel before it returns. One
of the 6 input registers is D0 whose contents, as noted above, specify the function
pSOS+ should execute. Because the function is already identified by the data table
locations being written to, it is not necessary to write out the value of D0.
Consequently, only 5 long words are reserved for register values written when the
"t_create" function is called. Upon return, both registers contain information
specific to the call; therefore, 2 long words are reserved for the "t_create" return
values.

The portion of the code in the "instrumented" interface library for the "t_create"
call would look like:

MOVEM.L D1-D5,HPOS_t_create_Entry ; write out input data
TRAP #SVCTRAP ; trap to the kernel
MOVEM.L D0-D1,HPOS_t_create_Exit ; write out return data

and the respective data area declarations would look like:

HPOS_t_create_Entry DS.L 5
HPOS_t_create_Exit DS.L 2

Notice that a single MOVEM instruction can move multiple register values to the
data area.

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

106

Instructions added for service call tracking represent the most minimal intrusion
while giving you almost complete knowledge of the interaction between your
application and the RTOS kernel. The information that’s missing is knowledge
about the tasks running and when task switches take place. You can add task
information by writing a "task switch callout" routine.

Task Switch Tracking

The task switch callout routine is a hook provided by the RTOS vendor. It allows a
user to define a routine to be called every time a task switch occurs. Upon calling
the routine, two registers are set with pointers to the task control blocks of the task
exiting and the task being entered.

For the simplest task switch tracking, the callout routines need only consist of two
instructions: one writing out the task name of the task being exited, one writing the
task name of the task being entered. This means the data area must have two
positions for task entry and exit.

For software performance analysis support, a little more needs to be done. The
software performance analyzer needs separate memory locations for the start and
end of each interval it is measuring. Since each task needs to be measured, each
task must have its own unique start and end memory locations. The callout routine
must write to these unique locations depending on which tasks are switching. In
the callout routine, the task ID is used as an index to a special task data buckets
area where there is a unique location for every task’s exit and entry. This data area
is application dependent and must be modified with the application’s task names.
The "rtos_edit_psos" script creates the file "tables.s" which defines these task
buckets.

Clock Ticks

There are two methods for tracking clock ticks. First, if the application uses the
TM_TICK OS service call, clock tick information is automatically available since
this service call is instrumented.

However, some applications may choose not to use the "C" interface function for
this feature and may write the associated interrupt service routine (ISR) directly in
assembly language code for speed reasons. In this case, the interrupt service
routine should be instrumented with a simple MOVE.W Dx,HPOS_CLOCK_TICK
instruction before the trap to pSOS+. (Make sure it is a word write to the
HPOS_CLOCK_TICK location.) The memory location corresponding to

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

107

CLOCK_TICK is placed at the end of the data table so it may be simply included
or excluded from the range of memory accesses stored in the trace.

Selective Tracking

With the data area for service calls defined, it is possible to selectively trace certain
functions. The only limiting factors are the resources of the emulation bus analyzer
which allow you to track any range (of any size) along with any 8 distinct memory
locations. The 8 locations may be consecutive which, in essence, provides another
range for needed cases.

OS Overhead Tracking

In order to get some idea of how efficient an application is, that is, to see how
much time is spent switching tasks as opposed to executing them, the software
performance analyzer can display a dynamic histogram of the time spent in the OS
kernel.

This is done, as is the service call tracking, by adding simple MOVE instructions to
the service call routines. The first MOVE instruction, executed just before the trap
to the kernel, writes to a location that represents the start of the OS interval. The
second MOVE instruction, executed just after the return from the trap, writes to a
location that represents end of the OS interval. The software performance analyzer
measures the time between these writes as time spent in the OS kernel.

Note Using this method, some kernel time may be missed due to clock ticks. The time
spent processing clock ticks is minimal and consistent, so this time is of little
consequence. Additional kernel time is missed when task switches occur because
the task has used up its time slice. If excessive timeouts occur, the measurement of
the kernel’s accumulated time will be slightly low.

Task and Queue Naming

Tasks and queues are created with ASCII names but mostly referenced with
numbers. If a little more information is written out on each service call, these
numbers can be translated into names when displayed in the trace. After the
register values are written via the MOVEM instruction (for service call tracking), a
short subroutine that translates the ID number into a 32-bit name may be called.

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

108

This translation is possible because information was stored earlier when the item
was created. When a "<t|q>_create" service call is made, the name of the item is
written to a table indexed by the ID number. With the name stored, it’s easy (and
quick) to reference any name if the ID number is known.

If the "translation" routine is called, it will index into the appropriate table and
write out the 32-bit name to a designated location. If this location is traced, the
RTOS inverse assembler can decode the data and output a name "xyzz" instead of
just "id=00030000".

Stack and Memory Tracking

Stack information such as size, pointers, and bytes left on stack can be tracked
dynamically as an application runs. The necessary data is mostly written out
during the task switch callout routine. For this to work, there are several things that
must be done before the application is running and switching tasks:

1 The "bucket" table must be filled with all the names of the application’s tasks.
This creates a data area that will be used to save the task’s stack values.

2 The "t_create" service call is instrumented to call a routine that will save each
task’s two stack sizes in the appropriate bucket.

3 The "t_start" service call is instrumented to call a routine that will save several
data items: the task ID number, the memory locations in the Task Control
Block that hold the stack pointer values, the limit for each stack, and the task
bucket’s address. Also, data is written to a special area in the general data area
so the stack creation information can be captured and seen in the trace display
at startup time.

Once the application is switching tasks, the task switch callout routine uses the
previously saved data to keep track of stacks. In the callout routine, the task being
pre-empted and the task being started running are found by indexing via the task ID
to the saved task bucket’s address. This address is used to access stack data. The
stack data can then be written out and interpreted by the RTOS inverse assembler
to display the stack bytes left on exit from a task and entry to a task.

User-Defined Areas

At the bottom of the general data table is a set of user-definable locations. There
are twelve locations which an application can use in any way. These locations are
intended to allow you to track other parts of an application while simultaneously
following the kernel activity.

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

109

A good example use of this facility would be to instrument the entry and exit of
your application’s interrupt service routines. By doing this, you could get a
histogram in SPA of the time spent in any interrupt service routine.

If a write is done to any of these locations, the captured data is displayed as a hex
number and, if possible, translated to ASCII characters. This allows easier
debugging since seeing "Loop" in a display easily reminds you what part of the
application you just executed versus seeing "0x4c6f6f70" and trying to mentally
translate a number to a location of code.

Note If you are capturing on a range that includes any of the 12 user-defined locations,
all of these locations must be written to with longword writes in order for the trace
display to work correctly.

RTOS Symbol Names

When your application includes the instrumented service calls, the data area
included has many global symbols names. In order to keep these names from
conflicting with your application’s symbol names, the symbols all have one of
three standard prefixes: "HPOS_", "HP_RTOS_" or "_HPOS_". The most
common standard prefix for the data area symbols is "HPOS_". Only four (4)
symbols do not use that prefix: HP_RTOS_TRACK_START,
HP_RTOS_TRACK_END, _HPOS_START_CALLOUT, and
_HPOS_SWITCH_CALLOUT.

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

110

The Data Table
Task Entry (1 long word)
Task Exit (1 long word)
Service Call 1 Entry (n1 longs)
Service Call 1 Exit (n1’ longs)
Service Call 2 Entry (n2 longs)
Service Call 2 Exit (n2’ longs)
Service Call 3 Entry (n3 longs)
Service Call 3 Exit (n3’ longs)
 .
 .
 .
Service Call N Entry (nN longs)
Service Call N Exit (nN’ longs)
Clock Tick (1 word)
Task Name (1 long)
Queue Name (1 long)
Semaphore Name (1 long)
Region Name (1 long)
Stack Task Name (1 long)
Stack Supr Size (1 long)
Stack Supr Ptr (1 long)
Stack User Size (1 long)
Stack User Ptr (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Numeric (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)
User Ascii (1 long)

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

111

Extra Memory Locations
Kernel Overhead Start (1 word)
Kernel Overhead End (1 word)
 Task Buckets (created by macro)
Task_abcd ’abcd’
Enter_Task_abcd (1 long word) ;SPA interval starting address
Exit_Task_abcd (1 long word) ;SPA interval ending address
MStack_Siz_abcd (1 long word) ;Master stack size
MStack_Ptr_abcd (1 long word) ;Master stack ptr
MStack_Lmt_abcd (1 long word) ;Master stack limit
UStack_Siz_abcd (1 long word) ;User stack size
UStack_Ptr_abcd (1 long word) ;User stack ptr
UStack_Lmt_abcd (1 long word) ;User stack limit
Tid_abcd (1 long word) ;Task id number
Task_name_abcd EQU ’name’ ;task name symbol

Task_cdef ’cdef’
Enter_Task_cdef (1 long word) ;SPA interval starting address
 ...
Task_name_cdef EQU ’cdef’ ;task name symbol

Task_efgh ’efgh’
Enter_Task_efgh (1 long word) ;SPA interval starting address
 ...
 .
Task_name_xyzz EQU ’xyzz’ ;task name symbol

Chapter 6: How the RTOS Measurement Tool Works
Instrumented Code for Real-Time OS Tracking

112

How OS Service Calls are Captured and Displayed

The RTOS Measurement Tool uses the emulation bus analyzer and software
performance analyzer to capture operating system software activity in real-time.
The captured data is actually a series of memory writes to a data table. These
writes can contain encoded information about an OS service call that was just
executed or a task switch that just occurred.

When an RTOS action key is pressed in the emulator/analyzer interface, a
command file sets up the analyzer to capture the writes to the data table. By setting
up the analyzer to capture only writes to selected areas of the data table, you can
track specific OS activity or look for a specific sequence of activity.

Inverse Assembler

In the same way that bus cycle information is decoded into assembly language
mnemonics in a normal trace display, writes to the data table are decoded into OS
service call mnemonics in the RTOS trace display. The software mechanism that
decodes information captured by the emulation bus analyzer is called an Inverse
Assembler (IA).

A short example should help. First, let’s assume the segment of a user’s
application that makes an OS service call looks as follows:

.

.
mailbox = 2;
message = 1234;
priority = URGENT;
return_value = q_send(mailbox, message, priority);
.
.

The function "q_send()" is an OS service call that sends a message to a specific
mailbox.

Instrumented Library Writes to the Data Table

Because the user has substituted our instrumented interface library in place of the
original OS interface library, the call to "q_send" causes additional code to execute.
This code simply writes information to the data table that identifies the OS service
call being executed, the parameters being passed into it, and upon return, writes out
the return value from the OS kernel.

Chapter 6: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

113

Data Table Writes Captured by Analyzer

By clicking on an action key (or running a command file), the emulation bus
analyzer is automatically set up to capture memory writes to the data table. The
captured data represents the flow of activity into and out of the OS kernel through
OS service calls. For the example above, the inverse assembler would decode the
captured data and display it as:

.

.
-> q_send(mbox=2, msg=1234, prio=URGENT)
<- q_send()
.
.

Parameters Displayed with Mnemonics

Using the example above, a few more details of inverse assembly can be described.
First, you can see that the actual parameter values were captured by the analyzer
and are displayed in the trace. Note further that each parameter is preceded by a
mnemonic that indicates what the parameter is. The mailbox parameter value of 2
is preceded with a "mbox=". These are the same parameter mnemonics that the OS
vendor uses in their OS manual. This allows very easy interpretation of the trace
parameters without needing to reference the OS manual.

Also notice that the parameter indicating message priority, "prio=" does not have a
numeric value but displays the word "URGENT". Since many OS service call
parameters have a finite number of valid input values, we have decoded these
parameters directly into their English language equivalents to again make it easy to
read the trace without referencing the OS manual.

Chapter 6: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

114

Service Call Entry and Exit and Task Switches

Another point of interest is the entry (->) and exit (<-) arrows. This is where an
RTOS trace most greatly differs from a normal source code trace.

Since a real-time OS is used in part to manage application execution at a higher
level, it has the capability to switch execution from one task to another whenever
any OS service call is executed. This may happen for any number of reasons based
on changing task priorities, the sending and waiting for messages at mailboxes, or a
task using up a given time slice.

Given this behavior, application code that evokes an OS service call may not
immediately return from that service call but may instead begin executing code in
another task. For example, when the "q_send()" OS service call in the previous
trace example sent a message to the mailbox, if another task of higher priority was
waiting for a message at that same mailbox, then that task would now resume
executing and the trace would look something like the following:

.

.
-> q_send(mbox=2, msg=1234, prio=URGENT)
--- Exiting Task ’TSK1’ -------------
--- Entering Task ’TSK2’ ------------
<- q_receive(msg=1234)
.
.

You can see that task ’TSK1’, which sent the message has now exited and task
’TSK2’, which had been waiting for a message with the "q_receive()" OS service
call, has now started up again. You can also see in the return parameter of the
"q_receive()" call that it did indeed receive the same message that was sent.

Inverse Assemblers are Tailored to the OS

Note that the examples above use the inverse assembler for the pSOS+ real-time
OS. Each RTOS Measurement Tool has a unique inverse assembler that is tailored
to the particular real-time OS.

Chapter 6: How the RTOS Measurement Tool Works
How OS Service Calls are Captured and Displayed

115

116

Part 3

Installation Guide

Instructions for installing and configuring the product.

117

Part 3

118

7

Installation

119

Installation

This chapter describes the installation of RTOS emulation software that runs on
UNIX workstations.

The RTOS emulation product is an extension to the HP 64700 Series emulator and
Graphical User Interface (or Softkey Interface) products.

If you have ordered the emulator, interface, and RTOS emulation products together
(or just the interface product and the RTOS emulation product), the software
products are on the same media. In this case, refer to the installation instructions in
your Graphical User Interface User’s Guide.

If you have ordered the emulator interface and RTOS emulation products
separately, install the emulator interface first. Then, install the RTOS emulation
product using the instructions in this chapter.

This chapter shows you how to:

• Install HP 9000 software.

• Install Sun SPARCsystem software.

When the Real-Time OS Measurement Tool is installed, you will have an enhanced
emulation window with two additional entries available in the File→Emul700
pulldown menu: PSOS+ RTOS Measurement Tool ... and SPA for PSOS+
These two entries will, respectively, bring up a new emulation window and bring
up a Performance Analyzer window, each with RTOS action keys defined. You
can do anything in these windows that you would normally do.

120

To install HP 9000 software

Perform the following steps to install HP 64700 Series software on the HP 9000
Workstation:

1 Check the HP-UX operating system version

HP 64700 Series software requires an HP-UX operating system version of 7.03 or
greater. To determine the version of your HP-UX operating system, enter the
command:

uname -a <RETURN>

If the version number of the HP-UX operating system is less than 7.03, you must
update the operating system to 7.03 or higher before you can use the RTOS
emulation product.

Refer to the "Updating HP-UX" chapter of the HP-UX System Administration
Tasks manual for detailed information on updating your system.

2 Become the root user on the system you want to update.

3 Make sure the tape’s write-protect screw points to SAFE.

4 Put the "HP 64700 Series Products" update tape in the tape drive that will be the
"source device".

5 Be sure that the tape drive BUSY and PROTECT lights are on. If either the
PROTECT or BUSY light is off, check the tape’s write-protect screw or the tape
drive for proper operation. The tape drive will condition the tape for about three
minutes or less for shorter tapes.

6 When the BUSY light stays off for at least 10 seconds, start the update program by
typing:

/etc/update

7 When the HP-UX Update Utility Main Menu screen appears, make sure that the
source and destination devices are correct. The defaults are:

Chapter 7: Installation
To install HP 9000 software

121

/dev/update.src (for Series 300 and 400 Workstations)

/ (for the destination directory)

8 If you do not use the defaults, change the "source device" and/or "destination
directory" as appropriate.

9 Select Load Everything from Source Media when your source and
destination directories are correct.

10 To begin the update, press the softkey <Select Item> . At the next menu, press
the softkey <Select Item> again. Answer the last prompt with

y

and press <RETURN>. It takes about 10 minutes to read the tape.

11 When the installation is complete, read /tmp/update.log to see the results of the
update.

Chapter 7: Installation
To install HP 9000 software

122

To install Sun SPARCsystem software

Refer to the Software Installation Guide operating notice (included with this
binder) for instructions on installing software on Sun SPARCsystem computers.

If you are installing a Graphical User Interface product, refer to the Graphical User
Interface User’s Guide for additional software installation instructions.

If you are installing a Softkey Interface product, refer to the How to Use the Softkey
Interface on Your SPARCsystem operating notice for additional software
installation instructions.

Chapter 7: Installation
To install Sun SPARCsystem software

123

124

Glossary

bucket a portion of a memory area to which information about a particular task
or queue is saved.

callout routine a mechanism provided by the real-time OS that allows you to
execute a routine at certain points in the application, for example, when a task
starts or when a task switch occurs.

data table the table to which real-time OS information is written while the
application executes in real time. The emulation bus analyzer captures writes to
the data table and decodes the stored trace information in an easy-to-read display.

device call a service call that communicates with an I/O device.

emulation bus analyzer the analyzer that captures information on the
processor bus as programs execute. This analyzer is used to capture writes to the
data table which are then decoded to provide RTOS measurement information.

instrumented service call library an interface library with callout routines
and instructions that write to the data table and save information in task and queue
buckets.

interface library a library of assembly language routines which allow a
high-level language application to call an assembly language based real-time
operating system.

inverse assembler software that decodes hexadecimal machine code values
into mnemonics that are easy to read. In the case of the RTOS measurement tool,
writes to the data table are decoded into real-time OS mnemonics.

task an independent program or process that executes under the real-time
operating system.

service call a call, made by a task, to a function in the real-time OS kernel.

125

software performance analyzer an instrument that records information about
events that occur during program execution. The software performance analyzer is
used to compare time spent in different program modules.

Glossary

126

Index

A about, trace command option, 91
action keys, 96
actionKeys.numColumns, X resource, 96
actionKeysSub.keyDefs, X resource, 96
after, trace command option, 91

B background emulation monitor, 22
before, trace command option, 91
break_on_trigger (in trace command), 31
bucket, 17, 109, 125
buckets, 107
bytes left on stack, 109

C callout routine, 125
callout routines

task start, 19
task switch, 19, 105, 107, 109

clock ticks, 32, 85, 90, 105, 107-108
command files, 95
configuration table, pROBE+, 76
console procedures, pROBE+, 76
coordinated measurements, 72-73
count histogram display of task events, 67
custom RTOS measurements, 85-97
customize script, 14

D data bus width, 91
data table, 19, 85, 105, 111, 125

description, 85
device call, 125
device calls, 29
disable, trace command option, 91
duration (function), show histogram, 70
dynamic memory usage, tracking, 53-56

E emul700 command, 21
-xrm option, 96

127

emulation bus analyzer, 5, 14, 26, 72, 85, 114, 125
resources of, 108

emulation monitor, 22
emulrtos_psos, emulator startup script, 21, 96
enable, trace command option, 91
environment variables, 21

HP64000, 17
HP64KPATH, 95
PATH, 21
PROCESSOR, 21
RTOS_UNIQUE, 74

error checking information, 85, 90
error return, 31

commenting out, 100
event calls, 36-37
event numbers, 47
event, received by specific task, 47
events (SPA)

defining for tasks, 64
table display, 66

events (task)
count histogram display, 67
time histogram display, 65

F files
io_drivers.c, 18, 76
probe_io.c, 18, 76
psos.h, 18, 76
RTOS source, 17
simio.h, 18, 76
tables.s, 17, 19
tables_16.s, 92
track_os.s, 17, 19, 65, 85, 98, 105

find_sequence, trace command option, 91
foreground emulation monitor, 22
function

any task using a, 51
specific task using a, 48

function duration histogram, show normal, 70

G glossary, 125-126

128

H histogram
normal function duration, 70
task events, 71
user events, 71

histogram display of task events
count, 67
time, 65

HP64000 environment variable, 17
HP64KPATH environment variable, 95

I ID-to-name translation, commenting out, 99
initialization procedures, pROBE+, 76
installation, 120

HP 9000 software, 121-122
Sun SPARCsystem, 123

instrumented service call library, 85, 98-100, 106, 113, 125
interface library, 105, 113, 125
intrusion, 98-100, 105
inverse assembler, 85, 104, 106, 109, 113, 115, 125
invocations (service call), show table, 69
io_drivers.c file, 18, 76

L levels of RTOS measurements, 98

M Measure_Ovrhd in SPA, 65
memory calls, 56
memory usage, 109
memory usage, tracking, 53-56
memory, extra locations, 112
message queues

See queues
message, from specific task to specific queue, 46
mnemonics in RTOS trace display, 114
monitor, emulation, 22

N names, for tasks and queues, 108
non-RTOS states, 85, 91

O only, trace command option, 91
operating system versions supported, 121
OS overhead tracking, 100, 108
OS_Time in SPA, 65
overflow, task time, 72

Index

129

overhead (OS) tracking, 108
commenting out, 100

P PATH environment variable, 21
prepare for RTOS measurements, 14
pROBE+, 18-19, 76
probe_io.c file, 18, 76
PROCESSOR environment variable, 21
processor type, 21
psos.h file, 18, 76

Q queue calls, 34-35
queue naming, 108
queues

defining, 17
naming, 17

R real-time runs, emulator restriction, 22
requirements, 14
RTOS information, trace commands to capture, 91
RTOS measurement tool

how it works, 104
overview, 4
testing, 23

RTOS measurements
creating your own, 85-97
emulator/analyzer, 26
preparing for, 14
software performance analyzer, 62

RTOS source files, 17
RTOS symbol names, 110
rtos_edit_psos script, 17, 74
RTOS_UNIQUE environment variable, 74

S scripts
customize, 14
rtos_edit_psos, 17, 74

selective tracking, 108
semaphore calls, 38-39
service call library (instrumented), 85, 98-100
service calls, 29, 32, 85, 105, 108, 113-115, 125

commenting out, 100
entry and exit, 115

Index

130

parameters, 89
show table of invocations, 69
single call tracking, 40
two call tracking, 41

simio.h file, 18, 76
simulated I/O, 18, 76
software performance analyzer, 5, 14, 62, 105, 107-108, 126

testing, 24
software versions, 121
source files, RTOS, 17
SPA events

See events (SPA)
SPA support, commenting out, 99
stack activity, 30, 32

commenting out, 99
stack information, 85, 90
stack pointers, 109
stack size, 109
stack usage, 54, 105, 109
storage qualifiers in trace commands, 91
supported system versions, 121
symbol names, 110

T t_create service call, 109
t_create() function, 106
t_start service call, 109
table display of SPA events, 66
table of service call invocations, 69
tables.s file, 17, 19
tables_16.s file, 92
Task Control Block, 109
task events histogram, 71
task naming, 108
task start callout routine, 19, 85
task switch callout routine, 19, 85, 105, 107, 109
task switches, 32, 89, 107-108, 115

commenting out, 100
in event call tracking, 37
in memory call tracking, 56
in queue call tracking, 35
in semaphore call tracking, 39
specific task switch tracking, 45

Index

131

task time overflow, 72
tasks, 125

defining, 17
four task tracking, 44
naming, 17
single task tracking, 43
SPA data for specific task, 68
SPA event definition, 64
time interval measurements, 64-71

time histogram display of task events, 65
time interval measurements, 64-71
time overflow, task, 72
time slice, 108
time stamp, 27
trace commands

about option, 91
after option, 91
before option, 91
disable option, 91
enable option, 91
find_sequence option, 91
only option, 91
storage qualifier, 91

trace commands to capture RTOS information, 91
trace display

mnemonics in, 114
normal, 58
RTOS, 59

traces, displaying, 57-59
track_os.s file, 17, 19, 65, 85, 98, 105
tracking

memory, 109
OS overhead, 108
OS overhead, commenting out, 100
selective, 108
stack, 109

translation (ID to name) routine, 109
trig2 break, 73
trig2 signal, 24, 72

disabling, 73
type of processor, 21

Index

132

U user events histogram, 71
user-defined areas in data table, 109
user-defined data table locations, 85, 90

V variable
any task accessing a, 52
specific task accessing a, 49

X X resources
actionKeys.numColumns, 96
actionKeysSub.keyDefs, 96

Index

133

Index

134

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

	Measurements for the pSOS+ Real-Time Operating System
	In This Book
	Contents
	User’s Guide
	Preparing Your Application for RTOS Measurements
	Making RTOS Measurements with the Emulator/Analyzer
	Making RTOS Measurements with the SPA
	Accessing pROBE+ through Simulated I/O
	Customizing the RTOS Measurement Tool

	Concept Guide
	How the RTOS Measurement Tool Works

	Installation Guide
	Installation

	Glossary
	Index
	Certification and Warranty

