
User’s Guide

Software Performance
Analyzer
(HP B1487A)

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

© Copyright 1991, 1992, 1993, 1994 Hewlett-Packard Company.

This document contains proprietary information, which is protected by copyright.
All rights are reserved. No part of this document may be photocopied, reproduced
or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject
to change without notice.

HP is a trademark of Hewlett-Packard Company.
UNIX is a registered trademark of UNIX System Laboratories Inc. in the U.S.A.
and other countries.
SunOS, SPARCsystem, Open Windows, and Sun View are trademarks of Sun
Microsystems, Inc.
Microtec is a registered trademark of Microtec Research, Inc.
TORX is a registered trademark of the Camcar Division of Textron, Inc.

Hewlett-Packard Company
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software Clause in DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.
Rights for non-DOD U.S. Government Departments and Agencies are as set forth
in FAR 52.227-19 (c) (1,2).

ii

Printing History

New editions are complete revisions of the manual. The date on the title page
changes only when a new edition is published.

A software code may be printed before the date; this indicates the version level of
the software product at the time the manual was issued. Many product updates and
fixes do not require manual changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a one-to-one
correspondence between product updates and manual revisions.

Safety information and Certification and Warranty

Safety information and certification and warranty information can be found at the
end of this manual on the pages before the back cover.

Edition 1
Edition 2
Edition 3
Edition 4

B1487-97000
B1487-97001
B1487-97002
B1487-97003

October 1991
November 1991
October 1992
April 1993

Edition 5 B1487-97004 January 1994

iii

In This Book

This book documents the HP B1487A Software Performance Analyzer. It is the
only book you will need to operate and service the analyzer. It contains:

Part 1. Quick Start Guide

Chapter 1 presents an overview of the Software Performance Analyzer and quickly
shows you how to use it.

Part 2. Making Measurements with The Software Performance Analyzer

Chapter 2 shows how to prepare to make measurements.
Chapter 3 shows how to make measurements.
Chapter 4 shows how to obtain and interpret measurement results.
Chapter 5 shows how to perform miscellaneous tasks, such as saving measurement
specifications, and turning off event numbers.
Chapter 6 lists problems you may see and ways to clear the problems.

Part 3. Concepts

Chapter 7 lists and describes the kinds of measurements that are made. It also
shows the kinds of problems you can solve with the Software Performance
Analyzer, and the effects of caches, prefetching, and recursive functions.
Chapter 8 shows the equations used by the Software Performance Analyzer.

Part 4. Reference

Chapter 9 shows details of the Softkey and Graphical User Interfaces.
Chapter 10 shows the syntax of analyzer commands, and the command tokens.
Chapter 11 lists error messages, their causes and corrections .
Chapter 12 interprets the events list and helps you understand events.
Chapter 13 shows how to interpret displays of measurement setups and results.
Chapter 14 shows how to use triggers with the host emulator and/or emulation bus
analyzer.
Chapter 15 lists commands that do not appear on softkeys, and shows their use.
Chapter 16 lists the specifications of the Software Performance Analyzer.

Part 5. Installation and Service

Chapter 17 shows how to install and service the Software Performance Analyzer .
Chapter 18 shows how to install and update firmware into the Flash EPROM
memory of the analyzer card using "progflash".

iv

Contents

Part 1 Quick Start Guide

1 Quick Start Guide
The Software Performance Analyzer - At a Glance 4
To use the interface in this demonstration 7
Step 1. Obtain the demonstration program 7
Step 2. Start your emulator and run the demonstration program 8
Step 3. Start the Software Performance Analyzer 9
Step 4. Start a performance measurement 10
Step 5. Sort the histogram to show events that used the most execution time 12
Step 6. Look at the table of statistical information recorded in the
measurement 13
Step 7. Make a performance measurement of function durations 14
Step 8. Look at a histogram of calls 16
Step 9. See statistical information for each event in the function_duration
measurement 18
Step 10. Expand an event to see greater details of its execution 19
Step 11. Measure performance of selected intervals 21
Step 12. Get help when measuring software performance 23
Measurement Problems 24
Running the Debug Environment demo program 25
About the Debug Environment demo 25
Using markers in MC68040 and MC68030 measurements 26

v

Part 2 Making Measurements With The Software Performance
Analyzer

2 Preparing the Software Performance Analyzer to Make
Measurements
To prepare your program for Software Performance Analysis 31
To prepare your emulator to accept the Software Performance Analyzer 32
To start the Software Performance Analyzer 32
To define events 33
To define events for a class of symbols in the symbols data base 33
To have events automatically defined for you 34
To define a set of desired events 35
To define a single event 37
To modify the specification of a single event 42
To name an event 43
To define events that are fetched on byte, word, or long-word boundaries 44
To select events from the events list to be included in the next measurement 45
To unselect events, but keep them available for future measurements 48
To delete events 49
To set up a measurement of activity following an enable condition 50
To prepare for a measurement of durations within limited regions of
execution 52
To hold off measurement start until a trigger is received from an emulator or
analyzer 53
To cause the emulator to break to its monitor when an event runs too long 54
To set up taking a trace in the emulation-bus analyzer when an event runs too
long 56
To set up taking a trace when an expanded event executes in an abnormal time
range 57
To set up a measurement that ends after a time period, or after obtaining a data
stability 59
To qualify your measurement on processor status like user or supervisor 60
To position the cursor beside a new event on screen 60

Contents

vi

3 Controlling the Profile Measurement
To make the most simple profile measurement 63
To obtain a profile of the activity of your program code 63
To obtain a profile of the activity of variables and I/O ports 65
To obtain a profile of durations of functions defined in your source files 66
To obtain a profile of durations of intervals 68
To see the time-range details under a selected event 70
To create your own time ranges to be used under an event in a duration
measurement 72
To stop the present profile measurement 74

4 Managing the Display of Measurement Results
To display a histogram of time periods measured 77
To display a histogram of cycles or calls measured 78
To change the scale of the histogram display 79
To interpret a table of time and cycles from an activity measurement 80
To interpret a table of time and calls from a duration measurement 81
To sort the events on the display 83
To obtain a list of the most active events in a file (even a file having thousands of
events) 84
To obtain three significant digits in the columns of the table or histogram 85
To print a copy of measurement results 85

5 Supporting Tasks that Add Flexibility to Performance
Measurements
To save and reload a profile specification with measured data 89
To obtain help screens for making performance measurements 91
To obtain help screens of general information about the Graphical User
Interface 92
To see the software version number of the Software Performance Analyzer 92
To get help in controlling the appearance and operation of the Graphical User
Interface 93
To edit a source file during a measurement when using the Graphical User
Interface 93
To control the stability calculation 94
To specify a desired confidence in the stability of the measurement data 95
To change the histogram character 96
To turn on or off the event numbers 97
To resize the display window 98

Contents

vii

To define action keys 99
To define action keys that run profile measurements 100
To define an action key that deletes low-usage events 101
To define an action key that runs a command file 102
To define two or more lines of action keys 102
To place information strings in the entry buffer of the Graphical User
Interface 103
To copy the entry buffer to the command line of the Graphical User
Interface 104
To copy an event name to a dialog box 104
To use the Software Performance Analyzer with C++ Programs 105
Defining C++ functions 107

6 Measurement Problems
If the Software Performance Analyzer won’t turn on 111
If symbols are not loaded 111
If the Software Performance Analyzer won’t make a measurement 112
If measurement results are incorrect 112
If the Software Performance Analyzer did not save data when it saved its profile
specification 114
If the Event Rate Overflow message appears on the display 115
If the Stack Overflow message appears on the display 117
If the Event Rate Underflow message appears on the display 118
If only small blocks of the histogram or table are updated during the
measurement 119
If the display often freezes for several seconds during a measurement 119
If events are not being defined for some functions, but are for others in a source
file 120
If the content of the Time and Time% columns do not total 100% 121
If the trigger (trig2) does not seem to work correctly 123
If the "XSigServe" process continues to run after you exit the Graphical User
Interface 124
If the drag-thru menu selection is too slow when using the Graphical User
Interface 124
If the help screens cover the display window when using the Graphical User
Interface 124

Contents

viii

Part 3 Measurement Concepts

7 Software Performance Measurement Techniques and Difficulties
What does the Software Performance Analyzer do? 129
The process of Software Performance Analysis 130
What kinds of problems can be solved by using the Software Performance
Analyzer? 130
Preparing your program for Software Performance Analysis 132
How the Software Performance Analyzer picks events to include in a
measurement 134
How the Software Performance Analyzer determines whether your event is a
function or a variable 134
How the Software Performance Analyzer makes activity measurements 135
Program activity 135
Memory_and_io Activity 137
Example of an activity measurement 138
Effects of the emulation monitor on activity measurements 139
Using delay in activity measurements 139
Effects of reset on activity measurements 139
Defining additional status types for your emulator 140
How the Software Performance Analyzer makes duration measurements 141
Interval duration 141
Function duration 142
How function-duration measurements use an internal stack 143
Comparing measurements of time, calls, and cycles 144
EXPANDED time ranges 145
Trigger generation 145
Effects of reset on duration measurements 145
Effects of emulation monitor on duration measurements 146
Using delay in duration measurements 146
Using disable/enable pairs in duration measurements 146
How a cache can affect Software Performance Analyzer measurement
results 147
How unused prefetches affect measurements of the Software Performance
Analyzer 148
How unused prefetches affect activity measurements 148
How unused prefetches affect duration measurements 148
Prefetch correction designed into function-duration measurements 149
Interval-duration measurements without prefetch correction 149
How the Software Performance Analyzer measures recursive functions 150

Contents

ix

If you do not identify the recursive function correctly 150
If you identify the recursive function correctly 151
Steps you can take to correct for unused prefetches 152
Adding NOP instructions between functions. 152
Offsetting address recognition with HPSPAADJUST. 152
Using HPSPAADJUST to overcome prefetch for Motorola 68000, 68010, 68302,
6833x and 68340 microprocessors. 153
Using HPSPAADJUST to overcome prefetch for Motorola 68360, 68020, and
68030 microprocessors. 154
Additional help for using HPSPAADJUST 154
Markers and how to use them to overcome the effects of an enabled cache or
prefetching 155
Advantages of using markers in your functions 155
Conditions to meet before you can use markers 155
The format of marker names 156
Example measurement using markers 156
Effects of adding markers to your code 157
To instrument your code with markers 158
The HP Marker Preprocessor 159
To tell the Software Performance Analyzer to use markers 160
To tell the Software Performance Analyzer to NOT use markers 161
How an MRI compiler instruments code for markers 161
How the Software Performance Analyzer makes its measurements when it uses
markers 162
Additional help for using HPSPAMARKERS 162
Overcoming measurement difficulties when measuring performance of an Intel
80960 Sx 163
Overcoming measurement difficulties when measuring performance of a Motorola
68040 164
Overcoming difficulties in measurements of processors that manage
memory 165
Overcoming the effects of multi-byte return instructions 166
Analyzing software performance in assembly language files 167

8 How Good Are Your Test Results
Mean 172
Standard deviation 173
When Mean and Standard Deviation May Not Give Best Results 174
Stability 175

Contents

x

Part 4 Reference

9 The User Interface
The Softkey User Interface 180
The Graphical User Interface 181
Features of the Graphical User Interface 182
The menu bar 182
The Action Keys line 183
The entry buffer line 183
The display area 183
The status line 183
The command line 184
Dialog boxes of the Graphical User Interface 184
Popup menus of the Graphical User Interface 184
Mouse button and keyboard bindings 185

10 Syntax of the Software Performance Analyzer Commands

How Pulldown Menus Map to the Command Line 198

How Popup Menus Map to the Command Line 201

Syntax Conventions 202
Oval-shaped Symbols 202
Rectangular-shaped Symbols 202
Circles 203
The —NORMAL— Key 203

Summary of Commands 204
copy 205
define 208
delete_events 213
display 215
end 220
load 222
profile 223
renumber_events 226
select_events 227
set 229

Contents

xi

set <Environment variable name> 232
setup_measurement 233
stop_profile 236
store 237
symbol_offset 238
--SYMB-- 239
unselect_events 241

11 Error Messages
Error Messages 244
Software Performance Analyzer Messages 244
Error log displays 262

12 The Events List
Interpreting the Events List 264
What is an event? 266
How events are used 267
The events list when markers are used 268

13 Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Table 270
Interpreting a Histogram 273
Interpreting a Measurement Specification 274

14 Using trig1 and trig2 to Control Measurements with Emulators
and Other Analyzers
Trigger lines used by the Software Performance Analyzer 278
Trigger events must be selected 279
Trigger events in activity measurements 279
Restrictions on the event used to generate trig2 279
How trigger operates 280
Qualifying the trigger 280
If you trigger on functions that are prefetched 280
If you trigger on the duration of a recursive function 281
If calls are excluded 281
If an enable/disable window is used 281

Contents

xii

15 Hidden Commands of the Software Performance Analyzer
Change directory 285
Working symbol (pws and cws) 285
UNIX COMMAND (<!CMD!>) 286
Software version 286
help 287
log_commands 289
pod_command 290
wait 292
forward 294

16 Software Performance Analyzer Specifications
Software Performance Analyzer Specifications 296

Part 5 Installation and Service

17 Installation and Service
Before installing the circuit card of the Software Performance Analyzer 304
To install the circuit card of the Software Performance Analyzer 305
To install the software 307
To install software on an HP 9000 hosted system 308
To exclude partitions or filesets 309
To install software on a Sun SPARCsystem 310
To verify installation of the Software Performance Analyzer User Interfaces 311
To verify performance of the Software Performance Analyzer 311
To ensure software compatibility 313
Parts List 315
What is an Exchange Part? 315

Contents

xiii

18 Installing/Updating Software Performance Analyzer Firmware

Installing/Updating Software Performance Analyzer Firmware 318
To update Software Performance Analyzer firmware with "progflash" 318
To display current firmware version information 319
If there is a power failure during a firmware update 320

Glossary

Index

Contents

xiv

Part 1

Quick Start Guide

1

This part of the manual contains the following chapter:

Chapter 1. Quick start guide

Part 1

2

1

Quick Start Guide

In this chapter, you will see typical measurements that will help you become
familiar with the Software Performance Analyzer. At the end of this chapter you
will see how to use on-line help to answer many of your questions on screen.
Install the hardware and software according to Chapter 17 before performing these
procedures.

3

The Software Performance Analyzer - At a Glance

The Software Performance Analyzer helps you understand the execution of
software modules in an executable file. It measures execution of software
modules, interation between software modules, and usage of data points and I/O
ports. It answers questions, such as:

"Why does it take so long to execute my program?"
"Which modules are slowing down overall program execution?"
"How intensive is my use of this data or I/O port?"
"How much time is spent getting between various points in my program?"
"Which function is called most often?"
"Which functions are taking the most processor time?"
"What is the time distribution of calls to my functions?"

The Software Performance Analyzer consists of measurement software that runs on
an analyzer circuit board. The Software Performance Analyzer can operate
through one of two user interfaces: (1) the Softkey User Interface shown on this
page, or (2) the Graphical User Interface shown on the next page. The Softkey
User Interface requires you to either press softkeys or type commands on the
command line. The Graphical User Interface allows you to compose commands by
moving a cursor with a mouse to select desired options or softkeys, and then
clicking the mouse button. If you have a display capable of running X windows,

Histogram: Function Duration include calls Run Time: 0:41 Stability: 99%
Name(sort:_time)_____|__Time__|__%___0%_____20%_____40%_____60%_____80%___100%
 22 parse_command | 37.9 s| 90.68|************************************
 1 apply_controller | 31.9 s| 76.22|******************************
 2 apply_productions | 27.2 s| 65.01|**************************
 12 get_next_token | 6.2 s| 14.83|******
 31 stack_library | 6.1 s| 14.59|******
 16 lookup_token | 5.3 s| 12.62|*****
 28 semantic_check | 3.8 s| 9.08|****
 27 scan_string | 2.9 s| 7.05|***
 25 request_command | 2.1 s| 4.90|**
 14 initialize | 2.0 s| 4.80|**
 19 math_library | 1.9 s| 4.64|**
 20 move_byte | 1.8 s| 4.38|**
 23 report_errors | 1.8 s| 4.37|**
 24 report_result | 1.5 s| 3.52|*
___5_clear_buffer______|___1.2_s|__2.90|*_______________________________________
 Profiled Absolute | 41.8 s| 100% 0% 20% 40% 60% 80% 100%

STATUS: M68000--Running user program Measurement in process________........
profile function_duration include_calls

profile define setup display EXPAND delete end ---ETC--

Chapter 1: Quick Start Guide
The Software Performance Analyzer - At a Glance

4

you can use either interface. If you are using a terminal, you must use the Softkey
User Interface.

In order to make a performance measurement of an address or range of addresses in
the source file, the Software Performance Analyzer must have an event defined to
represent that address or range of addresses. The Software Performance Analyzer
can automatically define the events it needs for measurements. Simply decide
which measurements you want to make. The Software Performance Analyzer will

Chapter 1: Quick Start Guide
The Software Performance Analyzer - At a Glance

5

define the events, run the measurement, and present the results. Of course, you can
also define events yourself if you have special requirements.

The following four kinds of events can be defined for measurements by the
Software Performance Analyzer:

• functions, and recursive functions: events that represent functions in the
program memory.

• static variables: events that represent variables at fixed addresses within the
program (not variables in stack space).

• ranges: events that represent a contiguous group of functions, static variables, or
memory locations.

• intervals: events that represent a pair of addresses (an interval-start address and
an interval-stop address).

The Software Performance Analyzer can make the following four profile
measurements of the event types (italics) listed above:

• Program Activity. This records instruction execution within functions or ranges
of program memory.

• Memory and I/O Activity. This records reads and/or writes to static variables or
ranges of addresses in data memory and I/O space.

• Function Duration. This records the execution periods of selected source-file
functions.

• Interval Duration. This records periods between occurrence of a start address
and an end address of an interval. Any addresses can be specified to be the start
and end addresses of an interval (as long as they are not also the start and/or end
address of another interval).

When the Software Performance Analyzer makes a measurement, it displays the
results in two formats: histogram, and table. Histograms show graphic bars beside
each of the events in the measurement. The lengths of the bars are proportional to
the information measured for the associated events. Tables show columns of
numbers beside each of the events. These columns give statistical details about
executions of each of the events.

Once the Software Performance Analyzer has identified the functions (or other
software structures) that are slowing down the performance of your system, you
can modify their source code to make them run faster.

Chapter 1: Quick Start Guide
The Software Performance Analyzer - At a Glance

6

To use the interface in this demonstration

The procedures in this chapter are written to help you use either the Graphical User
Interface or the Softkey User Interface. Each procedure shows command forms to
use in both interfaces.

The command form to use in the Graphical User Interface is given first. A typical
command will be: Display→Sort_Events→Time. To execute this command,
place the cursor on Display in the menu bar (top line of the interface) and press the
command select mouse button. A pull-down will appear. Move the cursor to
Sort_Events in the pull-down. A small menu will appear. In the small menu,
move the cursor to Time and release the mouse button.

The second command form in each procedure will show how to enter commands in
the Softkey User Interface. In this interface, enter commands by either typing them
on the command line, or by pressing softkeys. To enter the command in the above
example, you might press the following softkeys: display, sort, time, and Return.

Step 1. Obtain the demonstration program

• Enter the following command:

cd $HP64000/demo/spa/demo1

Where $HP64000 is the path to your hp64000 directory. This directory contains a
demonstration program that is precompiled to run with your emulator. The source
of this demonstration program is listed in the file runtest.c. An example of the
Makefile that was used to make the executable is contained in the file Makefile. In
this getting started example, you will load a configuration file that is appropriate
for your emulator and the appropriate executable. The Software Performance
Analyzer will make measurements on the executable as it runs on your emulator.

The executable for the 80960 Sx emulator (r80960.x) was made with MRI
Compiler tools and linked in the appropriate initialization routines to run with the
80960 Sx emulator. Refer to the 80960Sx debug environment demo directory
($HP64000/demo/debug_env/hp64760) for an example Makefile. Remember to
compile all files you want to analyze with the "-Kt" compiler option.

Chapter 1: Quick Start Guide
To use the interface in this demonstration

7

Step 2. Start your emulator and run the
demonstration program

• If using the Graphical User Interface, enter the following commands:

1 emul700 <logical name>

2 File→Load→Emulator Config.... A dialog box opens. Click on
<directory>/c<processor_number>.EA and OK in the dialogue box.

3 File→Load→Executable.... A dialog box opens. Click on
<directory>/r<processor_number>.x and OK in the dialog box.

4 Execution→Run→from Transfer Address (for most emulators. See
exceptions below.)

• If using the Softkey User Interface, enter the following commands:

1 emul700 -u skemul <logical name>

2 load configuration c<processor_number>.EA

3 load r<processor_number>.x

4 run from transfer_address (for most emulators. See exceptions below.)

• Notes for the above procedures:

<logical name> = the name you assigned to identify your emulation system.

<processor_number> identifies your emulation processor (for example,
68000 for an M68000 emulation processor, 80960 for an Intel 80960 Sx
emulation processor, etc.).

• Exceptions for Step 4 above:

If you are using the Software Performance Analyzer with a 68340 Emulator,
use run from reset, and then run from transfer_address.

If you are using the Software Performance Analyzer with an 80960 Emulator,
use run from reset.

Chapter 1: Quick Start Guide
Step 2. Start your emulator and run the demonstration program

8

The above commands set up your emulator so that the Software Performance
Analyzer can analyze the demonstration program. These commands loaded a
configuration file, loaded an executable, and started the executable running in
emulation. In general, you will follow the same steps for any programs you wish to
analyzer with the Software Performance Analyzer.

Step 3. Start the Software Performance Analyzer

• Enter one of the following two commands.

• If using the Graphical User Interface, choose:

 File→Emul700→Graphic Windows, Performance Analyzer...

• If using the Softkey User Interface, enter:

!emul700 -u skperf <logical name>

The above commands call the Software Performance Analyzer to operate
through the desired interface. You will find the Graphical User Interface more
user-friendly. The Softkey User Interface can can provide faster response on
smaller HP 9000 Series 300 systems.

Chapter 1: Quick Start Guide
Step 3. Start the Software Performance Analyzer

9

Step 4. Start a performance measurement

• If you are using the Graphical User Interface, select one of the two actions below:

• Click on the Profile action key (second line of the interface).

• Move the cursor into the keywords line (top line of the display), and choose
Profile→Profile Again.

• If you are using the Softkey User Interface, enter the command: profile

This causes the Software Performance Analyzer to make a default measurement of
program activity. A histogram of program activity will be shown on the screen.

Histogram: Program Activity Run Time: 1:13 Stability: 57%
_Name__________________|__Time__|__%___0%_____20%_____40%_____60%_____80%___100%
 1 apply_controller | 3.2ms| 0.11|
 2 apply_productions | 1.4 s| 49.88|********************
 3 atexit | 0.0us| 0.00|
 4 calculate_answer | 2.7ms| 0.09|
 5 clear_buffer | 73.4ms| 2.53|*
 9 endcommand | 27.5us| 0.00|
 11 format_result | 1.5ms| 0.05|
 12 get_next_token | 6.4ms| 0.22|
 14 initialize | 1.7ms| 0.06|
 15 input_line | 55.5ms| 1.92|*
 16 lookup_token | 56.6ms| 1.96|*
 17 main | 196.0us| 0.01|
 19 math_library | 98.5ms| 3.40|*
 20 move_byte | 134.8ms| 4.65|**
__21_outputline________|__81.4ms|__2.81|*_______________________________________
 Totals Absolute | 2.8 s| 100% 0% 20% 40% 60% 80% 100%

Chapter 1: Quick Start Guide
Step 4. Start a performance measurement

10

Here’s what happened when you entered the "profile" command:

1 The Software Performance Analyzer checked its events list to see if any events
had been defined for a measurement. Since no events had been defined, the
Software Performance Analyzer defined a set of events as outlined in the next
step.

2 The Software Performance Analyzer accessed the symbols data base for the
absolute file running in emulation, and defined events to represent those
symbols, as follows:

Up to 1000 events were defined to represent the first 1000 functions
or static variables found in the symbols data base. Any symbol
beginning with "_" was ignored (compilers generate symbols whose
names begin with "_").

Each Software Performance Analyzer event represents one source-file
symbol (either a function, or a variable).

The Software Performance Analyzer assigned a name and address to
each event:
(1) the event name is the same as the symbol name it represents.
(2) the address is the same as the address or address range occupied by
the code associated with the source-file symbol.

3 The Software Performance Analyzer performed a measurement of program
activity (the default measurement). The Software Performance Analyzer can
include up to 254 events in a single program-activity measurement. The first
254 functions in the events list were included.

4 The Software Performance Analyzer presented a histogram of the program
activity it found for each of the selected events. The lengths of the bars on the
histogram are proportional to the totals of the times measured for the
associated events.

Activity measurements record information on up to 254 events. The Software
Performance Analyzer can make two kinds of activity measurements: program
activity, and memory and I/O activity. Program activity measurements obtain
information about program execution. Memory and I/O activity measurements
record usage of static variables and I/O addresses.

The Software Performance Analyzer makes activity measurements by sampling.
That is, it activates one event in its events list at a time. The Software Performance
Analyzer records incoming bus cycles if they meet the specifications of the active
event. If not, the bus cycles are ignored.

Chapter 1: Quick Start Guide
Step 4. Start a performance measurement

11

After about 2.5 ms, the Software Performance Analyzer deactivates its present
event (stops recording bus cycles for it), and activates the next event in the list
(starts recording bus cycles for it). When the Software Performance Analyzer has
sampled activity for each of the events in the list, it starts over again with the first
event. The Software Performance Analyzer continues to sample and record
incoming activity until the measurement ends.

Step 5. Sort the histogram to show events that
used the most execution time

• If you are using the Graphical User Interface, select one of the two actions below:

• Click on the Sort->Time action key.

• Move the cursor into the keywords line (top line of the display), and choose
Display→Sort_Events→Time.

• If you are using the Softkey User Interface, enter the command:
display histogram sort_events time

The functions that used the most system time are shown at the top of the histogram
display.

Chapter 1: Quick Start Guide
Step 5. Sort the histogram to show events that used the most execution time

12

Step 6. Look at the table of statistical information
recorded in the measurement

• If you are using the Graphical User Interface, select one of the two actions below:

• Click on the Table action key.

• Move the cursor into the keywords line, and choose Display→Table.

• If you are using the Softkey User Interface, enter the command: display table

The table display shows the event measurement in greater detail. The following
information is shown:

• Event name and event number.

• Cycles. This is a count of the number of bus cycles that were associated with
this event during the measurement.

• Time. This is a record of the total time of all bus cycles that were associated
with the event.

Table: Program Activity Run Time: 1:13 Stability: 57%
Name(sort:_time)_____|_Cycles_|__Time__|_Time_%_|_Mean(1s)|_StDv(1s)|_Time/cyc
 2 apply_productions | 2.64E06| 1.4 s| 49.88 | 498.8ms| 446.5ms| 546.9ns
 31 stack_library | 782034| 419.8ms| 14.49 | 144.9ms| 248.5ms| 536.8ns
 27 scan_string | 404891| 214.7ms| 7.41 | 74.1ms| 208.5ms| 530.2ns
 20 move_byte | 251109| 134.8ms| 4.65 | 46.5ms| 141.5ms| 536.9ns
 23 report_errors | 250261| 134.3ms| 4.64 | 46.4ms| 140.8ms| 536.8ns
 19 math_library | 180832| 98.5ms| 3.40 | 34.0ms| 101.3ms| 544.8ns
 21 outputline | 156125| 81.4ms| 2.81 | 28.1ms| 158.9ms| 521.2ns
 5 clear_buffer | 134565| 73.4ms| 2.53 | 25.3ms| 142.0ms| 545.6ns
 16 lookup_token | 102740| 56.6ms| 1.96 | 19.6ms| 62.7ms| 551.1ns
 15 input_line | 106926| 55.5ms| 1.92 | 19.2ms| 129.2ms| 519.2ns
 26 scan_number | 57989| 31.1ms| 1.07 | 10.7ms| 90.0ms| 536.8ns
 24 report_result | 52309| 28.5ms| 0.99 | 9.9ms| 83.9ms| 545.7ns
 33 syntax_check | 39934| 21.9ms| 0.76 | 7.6ms| 47.5ms| 548.5ns
 28 semantic_check | 16318| 9.4ms| 0.33 | 3.3ms| 9.8ms| 577.0ns
__12_get_next_token____|___11475|___6.4ms|___0.22 |____2.2ms|___18.4ms|__561.8ns
 Totals Absolute | 5.22E06| 2.8 s| 100% |

Chapter 1: Quick Start Guide
Step 6. Look at the table of statistical information recorded in the measurement

13

• Time_%. This is an expression of the time recorded for this event as a percent
of the total execution time that was recorded for all events.

• Mean(1s). This indicates the average time this event would be active during any
given second.

• StDv(1s). This indicates the standard deviation of the mean. A standard
deviation value that is greater than the mean indicates that there are large
fluctuations about the mean.

• Time/cyc. This indicates the average time required to complete one bus cycle
associated with this event.

Step 7. Make a performance measurement of
function durations

• If using the Graphical User Interface:

1 Place the cursor in the menu bar and choose Profile→Profile.... A dialog box
opens.

2 In the dialog box, click on Function Duration Including All Calls , and click
OK .

3 Again, sort the functions with either the Sort->Time action key or by choosing
Display→Sort_Events→Time in the pull-down menus.

• If using the Softkey User Interface, enter the following commands:
profile function_duration include_calls
display sort_events time

The Software Performance Analyzer can make two duration measurements:
function_duration, and interval_duration. In a function_duration measurement,
only events that represent functions in the source file can be included. The table
display now shows data about the functions defined in the source file.

Chapter 1: Quick Start Guide
Step 7. Make a performance measurement of function durations

14

Here’s what happened when the profile measurement was made:

1 The Software Performance Analyzer checked its events list to see if any events
had been defined for a measurement. Events were defined so the Software
Performance Analyzer did the next step.

2 The Software Performance Analyzer accepted the first 84 functions that were
selected in the events list.

3 The Software Performance Analyzer performed a measurement of function
durations on the events it accepted.

Duration measurements continuously record information for all the selected events
in the measurement (no sampling is done in duration measurements). Duration
measurements can record information for up to 84 events. When the Software
Performance Analyzer makes a duration measurement, all of the selected events are
active throughout the measurement.

Table: Function Duration include calls Run Time: 1:05 Stability: 99%
Name(sort:_time)_____|_Calls_|__Time__|_Time_%|__Max__|__Min__|_Mean__|Std_Dev
 22 parse_command | 145| 59.8 s| 91.11|412.3ms|412.3ms|412.3ms| 0.0us
 1 apply_controller | 436| 50.2 s| 76.49|115.1ms|115.1ms|115.1ms| 0.0us
 2 apply_productions | 3933| 42.6 s| 65.00| 11.7ms| 10.0ms| 10.8ms|525.3us
 12 get_next_token | 291| 9.7 s| 14.79| 33.3ms| 33.3ms| 33.3ms| 0.0us
 31 stack_library | 13109| 9.6 s| 14.59|730.3us|730.2us|730.2us| 0.0us
 16 lookup_token | 1748| 8.3 s| 12.61| 4.7ms| 4.7ms| 4.7ms| 0.0us
 28 semantic_check | 2621| 6.0 s| 9.09| 2.3ms| 2.3ms| 2.3ms| 0.0us
 27 scan_string | 5245| 4.6 s| 7.04|880.3us|880.2us|880.2us| 0.0us
 25 request_command | 146| 3.2 s| 4.91| 22.1ms| 22.1ms| 22.1ms| 0.0us
 14 initialize | 146| 3.1 s| 4.80| 21.6ms| 21.6ms| 21.6ms| 0.0us
 19 math_library | 35746| 3.0 s| 4.64|188.0us| 19.0us| 85.2us| 44.6us
 20 move_byte | 3936| 2.9 s| 4.38|730.3us|730.2us|730.2us| 0.0us
 23 report_errors | 3929| 2.9 s| 4.37|730.3us|730.2us|730.2us| 0.0us
 24 report_result | 146| 2.3 s| 3.55| 19.1ms| 8.8ms| 16.0ms| 4.2ms
___5_clear_buffer______|____438|___1.9_s|___2.90|__4.3ms|__4.3ms|__4.3ms|__0.0us
 Totals Absolute | 76497| 65.6 s| 100% |

Chapter 1: Quick Start Guide
Step 7. Make a performance measurement of function durations

15

Step 8. Look at a histogram of calls

• If using the Graphical User Interface, place the cursor in the menu bar and choose
the following commands:

Display→Histogram

Either click on the Sort->Calls action key, or choose the following:

Display→Performance Data→Calls

Display→Sort_Events→Calls

• If using the Softkey User Interface, enter the following commands:

display histogram data calls

display histogram sort_events calls

Histogram: Function Duration include calls Run Time: 1:05 Stability: 99%
Name(sort:_calls)____|__Calls_|__%___0%_____20%_____40%_____60%_____80%___100%
 19 math_library | 35746| 46.73|*******************
 31 stack_library | 13109| 17.14|*******
 27 scan_string | 5245| 6.86|***
 20 move_byte | 3936| 5.15|**
 2 apply_productions | 3933| 5.14|**
 23 report_errors | 3929| 5.14|**
 28 semantic_check | 2621| 3.43|*
 16 lookup_token | 1748| 2.29|*
 26 scan_number | 1746| 2.28|*
 33 syntax_check | 1308| 1.71|*
 5 clear_buffer | 438| 0.57|
 15 input_line | 438| 0.57|
 1 apply_controller | 436| 0.57|
 11 format_result | 349| 0.46|
__21_outputline________|_____349|__0.46|__
 Totals | 76497| 100% 0% 20% 40% 60% 80% 100%

Chapter 1: Quick Start Guide
Step 8. Look at a histogram of calls

16

The histogram of calls is sorted so the events that were called most are shown first.
The display shows:

• How many calls were recorded for each event.

• The percentage of calls that were made to the associated event as a percent of all
recorded calls.

• A histogram bar expressing the percent of all calls that were calls to the
associated event.

Chapter 1: Quick Start Guide
Step 8. Look at a histogram of calls

17

Step 9. See statistical information for each event
in the function_duration measurement

• If using the Graphical User Interface, either click on the Table action key, or use
the pull-down menus to choose Display→Table.

• If using the Softkey User Interface, enter the command: display table

The table display is sorted to place events with the most calls first. It shows:

• How many calls were made to the associated function.

• How much execution time was spent in the associated function.

• The percent of all execution time that was spent executing this function.

• What was the longest single execution time measured for this function.

• What was the shortest single execution time measured for this function.

• What was the average time of all executions of this function.

• What was the standard deviation of the execution times of this function.

Table: Function Duration include calls Run Time: 1:05 Stability: 99%
Name(sort:_calls)____|_Calls_|__Time__|_Time_%|__Max__|__Min__|_Mean__|Std_Dev
 19 math_library | 35746| 3.0 s| 4.64|188.0us| 19.0us| 85.2us| 44.6us
 31 stack_library | 13109| 9.6 s| 14.59|730.3us|730.2us|730.2us| 0.0us
 27 scan_string | 5245| 4.6 s| 7.04|880.3us|880.2us|880.2us| 0.0us
 20 move_byte | 3936| 2.9 s| 4.38|730.3us|730.2us|730.2us| 0.0us
 2 apply_productions | 3933| 42.6 s| 65.00| 11.7ms| 10.0ms| 10.8ms|525.3us
 23 report_errors | 3929| 2.9 s| 4.37|730.3us|730.2us|730.2us| 0.0us
 28 semantic_check | 2621| 6.0 s| 9.09| 2.3ms| 2.3ms| 2.3ms| 0.0us
 16 lookup_token | 1748| 8.3 s| 12.61| 4.7ms| 4.7ms| 4.7ms| 0.0us
 26 scan_number | 1746| 1.3 s| 1.94|730.3us|730.2us|730.2us| 0.0us
 33 syntax_check | 1308| 1.6 s| 2.41| 1.2ms| 1.2ms| 1.2ms| 0.0us
 5 clear_buffer | 438| 1.9 s| 2.90| 4.3ms| 4.3ms| 4.3ms| 0.0us
 15 input_line | 438| 1.2 s| 1.81| 2.7ms| 2.7ms| 2.7ms| 0.0us
 1 apply_controller | 436| 50.2 s| 76.49|115.1ms|115.1ms|115.1ms| 0.0us
 11 format_result | 349| 1.7 s| 2.66| 5.0ms| 5.0ms| 5.0ms| 0.0us
__21_outputline________|____349|___1.7_s|___2.61|__4.9ms|__4.9ms|__4.9ms|__0.0us
 Totals Absolute | 76497| 65.6 s| 100% |

Chapter 1: Quick Start Guide
Step 9. See statistical information for each event in the function_duration measurement

18

Step 10. Expand an event to see greater details of
its execution

• If using the Graphical User Interface, select one of the two actions below:

• Place the cursor on the math_library event and click the select mouse button.

• Place the cursor on the math_library event and press and hold the select mouse
button until a popup menu appearrs. Click on Expand Event Toggle in the
popup menu.

• If using the Softkey User Interface, position the cursor (">") beside the event
named, "math_library" in the Name column by using the arrow keys on your
keyboard (if not already there). Now press the EXPAND softkey.

An expanded window is opened under the math_library event. It shows six time
ranges. The columns of information beside the time ranges are set to zero when the
time ranges are first opened. Now the duration of each execution of math_library
will update two locations as the measurement progresses:

• The duration will be added to the total time shown in the line beside the event
name, as before.

Table: Function Duration include calls Run Time: 0:49 Stability: 99%
Name(sort:_calls)____|_Calls_|__Time__|_Time_%|__Max__|__Min__|_Mean__|Std_Dev
 19 math_library | 27244| 2.3 s| 4.64|188.0us| 19.0us| 85.2us| 44.6us
 1.00us - 10.0us | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 10.0+us- 100us | 17919| 1.1 s| 2.11| 97.0us| 19.0us| 58.8us| 27.0us
 100+us - 1.00ms | 9325| 1.3 s| 2.54|188.0us|110.0us|136.0us| 22.5us
 1.00+ms- 10.0ms | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 10.0+ms- 100ms | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 100+ms - 1.00s | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 non_range | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 ______________________|_______|________|_______|_______|_______|_______|_______
 31 stack_library | 9992| 7.3 s| 14.59|730.3us|730.2us|730.2us| 0.0us
 27 scan_string | 3996| 3.5 s| 7.04|880.3us|880.2us|880.2us| 0.0us
 2 apply_productions | 2997| 32.5 s| 65.00| 11.7ms| 10.0ms| 10.8ms|525.4us
 20 move_byte | 2997| 2.2 s| 4.38|730.3us|730.2us|730.2us| 0.0us
 23 report_errors | 2997| 2.2 s| 4.38|730.3us|730.2us|730.2us| 0.0us
__28_semantic_check____|___1998|___4.5_s|___9.09|__2.3ms|__2.3ms|__2.3ms|__0.0us
 Totals Absolute | 58299| 50.0 s| 100% |

Chapter 1: Quick Start Guide
Step 10. Expand an event to see greater details of its execution

19

• The duration will also be added in the appropriate time-range column. For
example, if one of the time ranges is 100+us - 1.00 ms, and an execution of
math_library is completed in 254 usec, then that duration will be added in the
table beside the 100+us - 1.00 ms time range.

The Software Performance Analyzer can "EXPAND" up to ten events at the same
time during a measurement, and each expanded event can have up to ten time
ranges shown below it. Additionally, a non-range entry will be included along with
the time ranges; it will show executions that did not fall within any of the time
ranges.

The EXPAND feature provides a look at the time distribution of the selected event.
The time ranges let you see how many of the executions of a particular event were
completed within each of the time ranges. This information might show an event
that normally completes its execution in one time range, but occasionally takes ten
times as long to complete its execution. This could help you identify an
intermittent problem in a function.

The EXPAND feature is simply a switch. If you click the select mouse button
again on math_library, or if you press EXPAND again, the set of time ranges under
the expanded function will disappear (and their values will be reset to zero).

• Unexpand the display by clicking the mouse on math_library, or by pressing the
EXPAND softkey .

Chapter 1: Quick Start Guide
Step 10. Expand an event to see greater details of its execution

20

Step 11. Measure performance of selected
intervals

• If using the Graphical User Interface, enter the following commands:

1 Click on the action key labeled, Stop Profile.

2 In the menu bar, choose: Display→Events.

3 In the menu bar, choose: Events→Define Single Event This opens a
dialog box. Enter the following in the dialog box:

– Select Interval.

– Type count in the Start Address entry field.

– Type count in the End Address entry field.

– Click Apply.

4 Enter the following in the dialog box:

– Type tasknumber in the Start Address entry field.

– Type tasknumber in the End Address entry field.

– Click OK.

Note that steps 3 and 4 defined two interval events. When you clicked Apply
in step 3, the event was defined and the dialog box was left open so that you
could define another event. When you clicked OK in step 4, the event was
defined and the dialog box was closed.

5 In the menu bar, enter Profile→Profile.... A dialog box will open.

In the dialog box, click on Interval Duration . Beside Status Qualification,
select data_write. Now click OK .

Chapter 1: Quick Start Guide
Step 11. Measure performance of selected intervals

21

• If using the Softkey User Interface, enter the following commands:

stop_profile

display events

define single_event interval count thru count

define single_event interval tasknumber thru tasknumber

profile interval_duration status data_write

In an interval_duration measurement, only events that represent intervals can be
included. The interval events must be uniquely defined before an interval_duration
measurement can be made. Interval events can have start addresses that are lower
or higher than their end addresses, or be the same as their end addresses (as in this
example). The table display below shows how often the count variable is accessed
for a write transaction and how often the tasknumber variable is accessed for a
write transaction.

Table: Interval Duration Run Time: 0:47 Stability: 93%
Name(sort:_calls)____|_Calls_|__Time__|_Time_%|__Max__|__Min__|_Mean__|Std_Dev
 35 count__count | 167| 46.8 s| 97.61|453.5ms| 4.0us|280.5ms|219.0ms
 36 tasknumber__tasknu| 105| 46.8 s| 97.62|453.5ms| 5.8us|446.2ms| 44.2ms
_Undefined_Addresses___|______?|_______?|______?|_______|_______|_______|_______
 Totals Absolute | 272| 48.0 s| 100% |

Chapter 1: Quick Start Guide
Step 11. Measure performance of selected intervals

22

Step 12. Get help when measuring software
performance

• If using the Graphical User Interface, two groups of help displays are available:
Help→General Topic ..., and Help→Command Line Place the cursor in the
keywords line and select Help→Command Line A dialog box opens.

• Use the scroll bar to bring time_ranges into view. Click on time_ranges and click
OK , or double-click on time_ranges.

or

• If using the Softkey User Interface, on the command line, type: help

• Press the ---ETC-- softkey to see the names of the help files available.

• Press the softkey labeled: time_rng, or type the command: time_ranges.

The softkeys name subjects for which the Software Performance Analyzer can give
helpful information. Help is offered for each of the first-level softkeys, and
additionally, for tasks you may want to do that don’t appear on the first-level
softkeys, such as setting up your own time ranges, sorting events, or understanding
absolute and relative values on the display.

Select other help files from the Graphical User Interface Help selections, or from
the softkeys of the Softkey User Interface to see the kinds of online help available
in the Software Performance Analyzer.

Refer to the General Topics Help information available in the interface screen
(Help→General Topic) titled "Duration and Activity Distinctions" for a
discussion of the basic measurements performed by the Software Performance
Analyzer.

Chapter 1: Quick Start Guide
Step 12. Get help when measuring software performance

23

Measurement Problems

If you have problems while running the procedures in this quick-start guide, refer
to Chapter 6, which has a complete list of possible problems and checks you can
make to solve those problems.

---Syntax---

display time_ranges <TIME>, (TIME>, ...
 <TIME> thru <TIME>, <TIME thru <TIME>, ...

 start_at <TIME>

 end_at <TIME> [number_divisions #DIVS]
 [linear/logarithmic]
 plus_increment <INC> [number_divisions #DIVS]
 multiply_increment <INC> [number_divisions #DIVS]

---Function---

time_ranges lets you specify the time ranges to be displayed below an
expanded event in a histogram or list. You can see the present set of
time ranges by displaying the measurement specification.

You can specify each individual time range desired, or you can specify
one overall time period and the Software Performance Analyzer will
divide it into a set of equal time ranges. Up to 10 time ranges
---More---28%
STATUS: M68000--Running user program Measurement in process________........
help time_range

profile define setup display EXPAND delete end ---ETC--

Chapter 1: Quick Start Guide
Measurement Problems

24

Running the Debug Environment demo program

If you have the Debug Environment for your emulator, you may want to examine
the debug environment demo. The demo program, "ecs.x", implements a
hypothetical (E)nvironmental (C)ontrol (S)ystem for a computer room. To run this
demo, enter the following commands:

1 cd $HP64000/demo/debug_env/hp<XXXXX>

2 Startall <logical name>

3 Execution→Run→from Transfer Address (for most emulators. See
exceptions below.)

Notes:

<XXXXX> is the product number of your emulator (for example, hp64742 is the
product number of a 68000 emulator and hp64748 is the product number of a
68020 emulator.).

<logical name> is the name you assigned to identify your emulation system.

Exceptions for Step 3 above:

If you are using the Software Performance Analyzer with an HP MC68340
Emulator, use run from reset, and then run from transfer_address.

If you are using the Software Performance Analyzer with an HP I80960 Emulator,
use run from reset.

About the Debug Environment demo

The Software Performance Analyzer in this demo uses a different set of action
keys. This set of action keys has been designed for use in sales demonstrations; it
shows a few of the features of the Software Performance Analyzer. Some of the
action keys do more than you might want to do during normal use of the analyzer.
The additional tasks performed by an action key might lead to confusion about the
measurements of the analyzer.

Chapter 1: Quick Start Guide
Running the Debug Environment demo program

25

The Break Dur () action key sends a break command to the emulator when the
duration of a specified function exceeds a specified time. This works as it should,
but the action key also forces a measurement of function durations, excluding all
calls. While the durations presented exclude all calls, the duration that is sent out
as a trigger is based on a measurement of function durations, including all calls.
Therefore, it is impossible to correlate the duration of an event on the display with
the duration of the event that causes the trigger. A second problem with the Break
Dur () action key is that it is assumed that the emulator has been set up to receive
the trig2 signal to cause a break. This is not the default case of an emulator
configuration; it must be set up separately.

Another point that can cause confusion when using these action keys is that they do
multiple commands. The Prog Activity, Var Activity and Func Durations action
keys will sort the histogram displays after they start their measurements. In
addition, the Func Duration action key only makes measurements of function
durations, excluding all calls.

Therefore, when examining this demo, it might be best to avoid using the action
keys altogether; use only the pull-down menu commands and window popups.

You may want to repeat steps 4 through 10 of this chapter to make sure you
understand the general operation of the Software Performance Analyzer.

Using markers in MC68040 and MC68030
measurements

Markers let you make measurements when the address and data caches of your
emulation processor are turned on. A demonstration program has been developed
to let you see the effects of using markers with the caches enabled. This
demonstration program is set up for the MC68040 and MC68030 emulation
processors. To see this demonstration, change your directory to
$HP64000/demo/spa/demomt, and follow the procedure given in the README
file. To find out more about marker based measurements, refer to the section titled
"Markers and how to use them..." in Chapter 7.

Chapter 1: Quick Start Guide
Using markers in MC68040 and MC68030 measurements

26

Part 2

Making Measurements With The
Software Performance Analyzer

27

This part of the manual contains the following chapters:

Chapter 2. Preparing the Software Performance Analyzer to make measurements

Chapter 3. Controlling the profile measurement

Chapter 4. Managing the display of measurement results

Chapter 5. Miscellaneous tasks performed when using the Software Performance
Analyzer

Chapter 6. Measurement problems

Part 2

28

2

Preparing the Software Performance
Analyzer to Make Measurements

The Software Performance Analyzer makes its measurements on an executable file
running in emulation. This chapter shows you how to set up the Software

29

Performance Analyzer and prepare it to make measurements. The following topics
are covered in this chapter:

• Preparing your program for Software Performance Analysis.

• Preparing the emulator to accept the Software Performance Analyzer.

• Starting the Software Performance Analyzer.

• Defining events.

• Defining events for a class of symbols in the symbols data base.

• Having events automatically defined.

• Defining events from the keyboard.

• Modifying the specification of an event.

• Rules to follow when naming an event.

• Defining events to be fetched on byte, word, or long-word boundaries.

• Selecting events to be included in the next measurement.

• Unselecting events to keep them out of the next measurement.

• Deleting events.

• Preparing to make duration measurements within limited regions of execution.

• Measuring activity following an enable condition.

• Holding off measurement start until after a trigger signal is received from an
associated emulator or analyzer.

• Setting up a measurement in which the emulator will break to its monitor
program when an event runs too long.

• Setting up a measurement in which the emulation-bus analyzer will take a trace
of state flow when an event runs too long.

• Setting up a trace when an expanded event hits a certain time range.

• Setting up a measurement that ends after a specified period of time, or after
obtaining a desired stability of measured data.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements

30

• Qualifying a measurement on processor status, such as user or supervisor.

• Positioning the cursor beside a new event on screen.

To prepare your program for Software
Performance Analysis

There are a variety of compiler issues that must be considered when preparing a
program to make it work with the Software Performance Analyzer. If you are
using an HP AxLS compiler, your program can be prepared correctly and you will
have to be concerned about only the last three issues listed below. If you are not
using an HP AxLS compiler, depending on which compiler you are using, the items
of concern will be:

• Ensuring source file symbols are available to the emulation system.

• Ensuring proper function entry and exit points in your program.

• Overcoming complications caused by multibyte return instructions.

• Avoiding function address overlaps.

• Instrumenting markers in your program to allow measurements when the
instruction and/or data caches are turned on.

• Instrumenting markers in your program to allow function-duration
measurements in Motorola 68040 and Intel 80960 microprocessors.

For detailed discussions about each of the above issues, refer to the paragraph titled
"Preparing your program for Software Performance Analysis" in Chapter 7 of this
manual.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To prepare your program for Software Performance Analysis

31

To prepare your emulator to accept the Software
Performance Analyzer

1 Start your emulator.

2 Load your emulator configuration file.

3 Load the absolute file.

4 Start your absolute file running in emulation.

If you are using the Softkey Interface of your emulator, you may want to end your
emulation session with end <RETURN>. This will leave your program running
and remove the emulation interface from your screen. The Software Performance
Analyzer will make its measurements on the code that the emulator is running. The
Software Performance Analyzer will gain access to the symbols data base within
the emulator.

To start the Software Performance Analyzer

• If you are using the graphical user interface, click on:

 File→Emul700→Graphic Windows→Performance Analyzer...

• If you are using the softkey interface, enter the command:

emul700 -u skperf <logical name>

Replace <logical name> with the name of the emulation system that is running the
file to be analyzed. The above commands call the Software Performance Analyzer
to operate on your emulator through the appropriate interface.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To prepare your emulator to accept the Software Performance Analyzer

32

To define events

There are four kinds of events that can be defined for the Software Performance
Analyzer:

• functions

• static variables

• ranges

• intervals

The Software Performance Analyzer can automatically define events to represent
functions and static variables in your symbols data base. If you want events that
represent ranges or intervals, you will need to define them, yourself. The following
paragraphs show you how to define events.

Note that the static variables are not properly defined if using the "-h" option to
your Hewlett-Packard compiler. In general, static variables are available if you are
using IEEE or OMF format symbol files.

To define events for a class of symbols in the
symbols data base

• Using the command line, enter the set symbols command.

The symbols setting you select will determine which symbols from the symbols
data base will have events defined for them in the Software Performance Analyzer.
If you set symbols high (the default symbols setting), the Software Performance
Analyzer will define events to represent the high level source-file symbols. If you
set symbols low, events will be defined to represent the assembly level symbols in
the symbols data base. If you set symbols all, then events will be defined to
represent the source-file symbols and the assembly level symbols.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define events

33

Examples To have symbols defined for only the high level source-file symbols:

set symbols high

To have symbols defined for only the assembly level symbols in the symbols data
base:

set symbols low

To have symbols defined for the high level source-file symbols and the assembly
level symbols:

set symbols all

To have events automatically defined for you

• Choose Profile→Profile Again.

• Choose Profile→Profile ..., and select the desired profile type and status
qualification (if applicable) from the dialog box. Then click OK or Apply.

• Using the command line, enter the command: profile

When you enter any form of the "profile" command, the Software Performance
Analyzer first checks to see if events have been defined in the events list. If no
events have been defined, the Software Performance Analyzer delays the making
of the measurement while it defines a list of events.

The Software Performance Analyzer accesses the symbols data base for the
absolute file running in emulation, and it defines events to represent each of the
symbols it finds. The specifications of the automatic-definition process are as
follows:

• Up to 1000 events can be defined in the events list (for the first 1000 symbols
found in the emulator symbol data base).

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To have events automatically defined for you

34

• Each event represents one function or one static variable found in the symbols
data base.

• The Software Performance Analyzer assigns a name and address to each event:

The event name is the same as the symbol name it
represents, except that special characters in the
symbol name will be replaced by underscores "_" in
the event name.

The address is the same as the address or address
range occupied by the code associated with the
symbol. The addresses of functions will be aligned
according to the current alignment setting (long, word,
or byte).

Symbol names beginning with "_" are ignored during
automatic definition (these are the compiler-generated
and assembler-generated symbols).

When an event is defined to represent a static variable, it may represent a single
address, or it may represent the address of an array or structure in your absolute file.

If you are using markers to represent function-start and function-end locations, the
Software Performance Analyzer will define events that show both the address
range of the function events and the addresses of the event markers. Refer to
Chapter 7 for a complete description of markers.

To define a set of desired events

• Choose Events→Define Events ..., and from the dialog box, select the desired type
of events, pattern to be matched or not matched by symbol names, and symbolic
filter desired. Then click OK or Apply.

• Using the command line, enter the define multiple_events command.

You can define groups of events by specifying the characteristics of the events you
want defined. Multiple events can be defined for functions and/or variables that

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a set of desired events

35

reside in the absolute file under test and have symbols in the symbols data base in
the emulator. The Software Performance Analyzer accesses the symbols data base
and defines events for symbols it finds there.

There are cases where the process of automatic definition takes a long time. The
Software Performance Analyzer can check your specification against
approximately 50 symbols in the symbols data base every second. If you use a
define multiple_events command to define events for a file that has 50,000
symbols, execution of the command could take 15 to 20 minutes. There are ways
you can use qualifiers, file names, or module names to limit the regions that are
accessed for creation of the events. If your absolute file had seven principle files,
but you know that the events you want to measure all exist in one or two of those
principle files, you can include the names of those files in the Symbolic Filter of
the dialog box, or in your command on the command line.

If you want to define events to represent ranges or intervals, refer to the next
discussion. Ranges and intervals must be defined as single events.

Examples To define events for all global functions whose names begin with the characters str:

Choose Events→Define Events ..., and set up the dialog box as shown.

or on the command line, enter:

define multiple_events functions globals_only matching "str*"

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a set of desired events

36

To define events for symbols in a particular file or module of the program under
test:

Choose Events→Define Events ..., and set up the Symbolic Filter in the dialog
box to contain the file or module name desired. Click on Globals Only if necessary
to activate the Symbol entry area. Then click OK or Apply. You can enter
multiple module names by separating them with a comma.

define multiple_events funcs_and_vars_static myfile.c:, hisfile.c:, herfile.c:
define 1 thru 12 multiple_events functions file1.c:
define multiple_events functions mymodule(module)

To define events for all functions except those whose names begin with myvar:

Choose Events→Define Events ..., and set up the Pattern Filter in the dialog box
to activate "Not Matching", and type myvar* in the Pattern entry field. Then click
OK or Apply.

define multiple_events variables_static not_matching "myvar*"

To define events for all global functions in your executable:

Choose Events→Define Events ..., and select Event Type Functions, and set the
Symbolic Filter to Globals Only in the dialog box. The Symbol line will be
grayscaled and unresponsive. Then click OK or Apply.

define multiple_events functions globals_only

To define a single event

• Choose Events→Define Single Event ..., and in the dialog box, select the desired
event type, and enter the event number and/or name, and event address range.
Then click OK or Apply.

• In the entry buffer, type the name of the symbol for which you want to create an
event. Then choose Events→Define Single Event ().

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a single event

37

• Place the global or local symbols display on screen. Place the mouse pointer
beside the symbol for which you want to define an event. Press the select mouse
button to obtain the popup menu. Then click on Define Single Event in the popup
menu.

• Using the command line, enter the define single_event command.

There are four types of events: functions (inclucing recursive functions), static
variables, intervals, and ranges. The Software Performance Analyzer can define an
event to represent a single function in your source file. The Software Performance
Analyzer can also define an event to represent a static variable. In either case, the
Software Performance Analyzer will access the emulation data base to obtain the
symbol name and corresponding addresses.

You can define a single event to represent a range of functions (function1 thru
function9), a range of variables (var1 thru var27), or a simple range of address
space (1000H thru 2000H). The Software Performance Analyzer will find the
lowest address and the highest address in your definition, and define your event to
include all addresses within the range.

If you define a single event to represent a range of addresses, all addresses within
the range will be included. You might define an event to represent all of the
addresses from the start of FunctionX to the end of FunctionY. This allows you to
make a measurement that records all activity within two or more functions, and
provides just one number to represent all of the activity. Check to see what will be
included when making such a definition. A compiler that is optimizing your code
might place additional functions within the address range represented by your event.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a single event

38

The Software Performance Analyzer does not allow overlapping events (two events
representing the same address). Before it accepts your definition for a function,
variable, or range event, the Software Performance Analyzer will check if any
event already represents an address in your definition. If it finds that your new
definition will overlap one or more events, the Software Performance Analyzer will
show you one of the overlapping events and ask if you want to delete all of the
overlapping events.

• If you press ’yes’, all of the overlapping events will be deleted and your new
event will be defined.

• If you press ’no’, none of the overlapping events will be deleted, and your new
event will not be defined.

To see the overlapping events that will be deleted by your new definition, display
the events list and sort it by address.

An interval is any address space defined by a starting address and an ending
address. The starting address may have a lower value or higher value than the
ending address. The starting and ending addresses may have the same value. An
interval with the same starting and ending addresses is useful to measure how often
a static variable is accessed for a write transaction.

Interval event specifications are separate from function, variable, and range events.
An interval event cannot have the same start or end address as another interval
event. Otherwise, there are no restrictions on addresses within the ranges of the
intervals. If you try to define an interval event that has a start or end address that is
the same as the start or end address of another interval event, an error message will
ask if you wish to delete all of the overlapping events.

• If you press ’yes’, all of the overlapping events will be deleted and your new
event will be defined.

• If you press ’no’, none of the overlapping events will be deleted, and your new
event will not be defined.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a single event

39

Examples To define an event to represent a range of address space:

Choose Events→Define Single Event ..., and set up the dialog box. The example
dialog box is set up to define a range event to represent addresses from 1000h
through 2000h. The Software Performance Analyzer will name the event using its
naming conventions.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a single event

40

or on the command line, enter:

define single_event range 1000h thru 2000h
define single_event range function1 thru function4 end

To define an event to represent a function or static variable, place the mouse
pointer beside a symbol name in the symbols display. Press the select mouse
button to obtain the popup menu. Click on Define Single Event.

To define an event to represent an interval between the start address of Symbol2
and the start address of Symbol9:

Choose Events→Define Single Event ..., and set up the dialog box to select Event
Type Interval, and type Symbol2 beside Start Address, and Symbol9 beside End
Address. Then click OK or Apply.

define single_event interval Symbol2 thru Symbol9

To define an event to represent an interval between the start address of Symbol2
and the end address of Symbol9:

Choose Events→Define Single Event ..., and set up the dialog box to select Event
Type Interval, and type Symbol2 beside Start Address, and Symbol9 end beside
End Address. Then click OK or Apply.

define single_event interval Symbol2 thru Symbol9 end

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define a single event

41

To define and name an event to represent an array variable:

Choose Events→Define Single Event ..., and set up the dialog box to select Event
Type Static Variable, click Auto Create Number and Name to activate the
associated fields and type data1 beside Name, type 01234h beside Start Address,
and +010h beside End Address. Then click OK or Apply.

define single_event named data1 variable_static 01234h thru +010h

To define an event to represent a recursive function

Choose Events→Define Single Event ..., and set up the dialog box to select Event
Type Recursive Function. Enter the name of the function (e.g. function2) in the
Start Address field, and leave the End Address field blank. Then click OK or
Apply.

define single_event function Function2 recursive_function

When you define an event to represent a function and specify that the function is
recursive, prefetch correction is turned off for that function. The prefetch
correction algorithm may concatinate repetitive calls of a recursive function into a
single call.

To modify the specification of a single event

• Create the modified event specification by clicking Auto Create Number and Name
to activate the Number and Name text entry areas. Enter the event number or name
in the appropriate box and click on Show Current Definition. Now modify the
definition, as required, and click OK or Apply.

• Using the command line, enter define <EVENT> modify_command

The above command calls the present definition for <EVENT> to the command
line where you can modify it and reenter it. The Software Peformance Analyzer
will accept the changes you make and redefine the selected event, as long as the
address range in your modified definition does not overlap an address in an existing
event.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To modify the specification of a single event

42

Examples To modify the definition of a single event:

define 4 modify_command
define clear_buffer modify_command

To name an event

• Choose Events→Define Single Event ..., and in the dialog box, enter the desired
Event Number and/or Name and associated Event Type and Event Address Range.
Then click OK or Apply. If this will replace an existing event, the Software
Performance Analyzer will ask if you wish to delete the overlapped events. Click
Yes.

• Using the command line, enter the define single_event named <NAME> ...
command.

• Use the define <EVENT> modify_command command and modify the definition
of the event on the command line.

The name of an event can be 40 or more characters long. If you define an event
without giving it a name, the Software Performance Analyzer will name the event
for you. Event names will be identical to the symbol names of the functions or
variables they represent. If the event symbol contains non-alphanumeric
characters, like "?A5", the event name will have to be placed in quotes to use the
name in a command.

If an event represents a numeric address range, the Software Performance Analyzer
will create a name that includes the address range of the event (example:
_1000h__1010h). Leading underscores will be added to all numeric-named events.
If you want to assign a new name to one of the numeric-named events, or if you
want to delete a numeric-named event from your events list, be sure to include the
leading underscore in your command, or use the event number.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To name an event

43

To define events that are fetched on byte, word,
or long-word boundaries

• Use the set byte_alignment command on the command line.

The addresses used in event definitions for symbols in program memory will be
aligned according to the normal addressing scheme of your target microprocessor
(by default). If you need a different alignment for addressing some of the events in
program memory, you must specify the alignment before you enter the definitions
of your events. You can define events whose addresses will be fetched on byte,
word, or long-word boundaries.

You can define some function events to be fetched on long-word boundaries (every
4th byte), and others in the same measurement to be fetched on word boundaries
(fetch even bytes), or byte boundaries (fetch every byte).

Events defined to be functions will be aligned according to your set
byte_alignment specification. Events defined to be variables and ranges will not
be aligned. Events defined to be intervals will be aligned if the symbols in your
definition are function symbols. Otherwise, no alignment will occur.

Examples: To define a set of events whose addresses are aligned on long-word boundaries:

set byte_alignment long
define multiple_events functions file1.c:
define single_event function myfunction
define interval myfunction

To define a set of events whose addresses are aligned on word boundaries:

set byte_alignment word
define multiple_events functions file2.c:
define single_event interval myfunction1 thru myfunction2

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To define events that are fetched on byte, word, or long-word boundaries

44

To select events from the events list to be
included in the next measurement

• Choose Events→Select Events ..., and in the dialog box, select the desired Event
Operation, event type to be selected, pattern to be matched or not matched by the
event names, and range of events within the events list. Then click OK or Apply.

• Place the mouse cursor beside the event to be selected. Press the select mouse
button, and click on Select Event Toggle or Select Events Thru End in the popup
menu.

• Using the command line:

1 Enter the command: display events

2 Place the cursor beside the event number to be included, and press: SELECT

• Use the select_events command

You can select individual events, and you can select classes of events, such as
functions or intervals. An event is either selected or not selected. If a symbol
appears beside the event name in the events list (*, ?, or r), it is selected. If no
symbol appears, the event is not selected. Interpret these symbols as follows:

If "*" is shown beside the name of an event in the events list, the event is selected
for the next profile measurement. If a performance measurement has already been
made, the "*" beside an event name shows that the event was included in the last
profile measurement.

If "?" is shown beside the name of an event, the event was selected but not
qualified to be in the most recent profile measurement (for example, static variables
are not qualified to be in function_duration measurements). If the next profile
measurement you perform is one for which this event is qualified, it will be
included, and it will show "*" beside its name in the events list.

If "r" is shown beside the name of an event, the event was selected and qualified to
be in the most recent profile measurement, but it was not included because of
resource limitations. The Software Performance Analyzer can include up to 254

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To select events from the events list to be included in the next measurement

45

events in a program-activity measurement (the first 254 functions or ranges
selected in the events list). Event 255 may also be selected and qualified for the
measurement, but the Software Performance Analyzer will not have enough
resources to include it in the measurement. Therefore, the "r" will appear beside its
name in the events list. If you unselect or delete enough events preceding this
event in the list, there will be resources available to include this event in the next
profile measurement.

Examples To select events to be included in the next measurement:

Choose Events→Select Events ..., and set up the dialog box. The example dialog
box will select function events whose names do not begin with "sru_", and whose
locations in the events list are between numbers 20 and 205:

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To select events from the events list to be included in the next measurement

46

Place the mouse cursor beside the event to be selected, and click the select mouse
button. This will toggle the event from unselected to selected.

Place the mouse cursor beside the event to be selected, and press the select mouse
button. Then click on Select Event Toggle or Select Events Thru End.

or on the command line enter:

select_events functions
select_events append functions matching "mem*"
select events variables_static
select events 20 thru 205 notmatching "sru_*"

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To select events from the events list to be included in the next measurement

47

To unselect events, but keep them available for
future measurements

• Choose Events→Select Events ..., and in the dialog box, click on Unselect Events
in the Event Operation area. Then choose the desired event type to be unselected,
pattern to be matched or not matched by the event names, and range of events
within the events list. Then click OK or Apply.

• Place the mouse cursor beside the event to be unselected. Press the select mouse
button and click on Select Event Toggle, Unselect Event, or Unselect Events
Thru End in the popup menu.

• Using the command line:

1 Enter the command: display events

2 Place the cursor beside the event number to be unselected, and press SELECT

• Enter an appropriate command beginning: unselect_events

You can unselect a single events or groups of events. Characteristics you can
specify when unselecting groups of events are:

• functions

• variables

• ranges

• intervals

• ranges of event numbers

• events whose names begin with (match), or do not begin with, (not match) a
pattern of characters

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To unselect events, but keep them available for future measurements

48

To delete events

• Choose Events→Delete All Events.

• Choose Events→Select Events ..., and in the dialog box, click on the Delete
Events Event Operation. Then specify the Event Type, Pattern Filter, and range in
the events list where events are to be deleted. Then click OK or Apply.

• Place the mouse cursor beside the event to be deleted, or the first event to be
deleted, in the events list. Press the select mouse button and click on Delete Event
or Delete Events Thru End in the popup menu.

• Using the command line, enter the delete_events command.

The delete_events methods let you delete events you do not need. You may want
to delete events that show low usage during a measurement. Using the command
line, simply move the cursor down the list of events on display to the first event
with low usage and enter a command that deletes events through the end of the list.

You can delete events from the cursor position through the start of the list, if
desired, by using a command-line entry.

You can delete events when a histogram or table is on screen. By default, only
events shown on the present display will be deleted. For example, if a histogram of
function durations is on screen, only events that represent functions will be present.
Therefore, function events will be deleted, but events that represent variables, I/O,
intervals, and ranges will remain in the events list.

In any display, you can delete specific types of events (functions variables, etc.), or
you can delete events whose names begin with certain characters (or whose names
don’t begin with certain characters).

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To delete events

49

Examples To delete events from the present display:

Choose Events→Delete All Events, or Events→Select Events ..., and set up the
dialog box to identify the events to be deleted. Then click OK or Apply.

Obtain the popup menu and click on Delete Events Thru End.

or on the command line enter:

delete_events
delete_events functions
delete_events range_types matching "RNG3*"
delete_events 10 thru 105
delete_events interval_types 44 thru start
delete_events functions thru 205 notmatching "sru_*"

To set up a measurement of activity following an
enable condition

• Using the pulldown menus:

1 Choose Display→Measurement Spec.

2 Choose Modify →Setup→Enable/Disable ..., and in the dialog box, enter the
name or number of the event to enable, and an enable status qualification, if
desired. Then click OK.

• Using the command line, enter the commands:

display measurement_spec

setup_measurement enable start_address <enable event name>

profile program_activity

With the above commands, you have set up an enable condition. The Software
Performance Analyzer will not collect data until it finds the state that satisfies the
enable condition. When this address is found, the Software Performance Analyzer

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To set up a measurement of activity following an enable condition

50

will begin making its measurement. This method can also be used to enable
duration measurements.

Examples To specify enable events for an activity measurement:

Choose Modify →Setup→Enable/Disable ..., and set up the dialog box as shown.
The example dialog box will enable the measurement on the start address of
stack_library:

or on the command line enter:

setup_measurement enable start_address initialize
setup_measurement enable end_address move_byte
setup_measurement enable any_address stack_library

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To set up a measurement of activity following an enable condition

51

To prepare for a measurement of durations within
limited regions of execution

• Using the pulldown menus:

1 Choose Display→Measurement Spec.

2 Choose Modify →Setup→Enable/Disable ..., and in the dialog box, enter the
names or numbers of the events to enable and disable the profile measurement;
click on the event starting address, ending address, or any address within the
event range. In the Enable/Disable Options block, you can specify an
enable/disable status qualification, if desired. Then click OK.

• Using the command line, enter the following commands:

display measurement_spec

setup_measurement enable start_address <start event name>

setup_measurement disable end_address <end event name>

profile function_duration

Enable/disable (measurement) windows can only be used in duration
measurements. The above commands set up a measurement window. The
Software Performance Analyzer will suspend its collection of data until it sees the
address that represents the enable condition. Collection of data will proceed
according to the specifications entered in the Software Performance Analyzer until
appearance of the address that represents the disable condition. At that point, all
data collection will be suspended. The measurement will be suspended until the
address that represents the enable condition appears again.

The enable and disable specification can be used to include or exclude regions of
program execution. You can set up the enable and disable occurrences to be true
on the start address or end address of any event in the events list. You can also set
up the enable or disable to be recognized on any address within the range
represented by an event, provided that event is not an interval event. You can
further qualify your enable or disable specifications with a status assignment (such
as writes).

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To prepare for a measurement of durations within limited regions of execution

52

The following limitations apply when setting up measurement enable and disable
specifications:

• You cannot use the same address for both the enable and disable specifications.

• Events used to enable and/or disable a measurement cannot be part of the profile
measurement.

• Activity measurements cannot recognize disable specifications; therefore,
activity measurements cannot be windowed.

Examples To qualify regions of execution for performance measurements:

Choose Modify →Setup→Enable/Disable ..., and in the dialog box, select Start
Address of Event parse_command, and Disable End Address of Event
parse_command.

setup_measurement enable start_address initialize
setup_measurement disable end_address move_byte
setup_measurement disable any_address main

To hold off measurement start until a trigger is
received from an emulator or analyzer

• Using the command line, enter the command: setup_measurement start
after_receiving_trig1

trig1 is the only external trigger that can be used to delay the start of measurements
in the Software Performance Analyzer. With the above command, the Software
Performance Analyzer will wait until trig1 is received before it begins its profile
measurement. Using trig1, the emulator or emulation bus analyzer can hold off the
performance measurement until a particular software condition has occurred.
Typical uses for this measurement setup include:

• Holding off the measurement until a specified initialization routine has
completed so that measurement results are not affected by executions within the
initialization routine.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To hold off measurement start until a trigger is received from an emulator or analyzer

53

• Measuring performance of a set of functions, but only after your emulator or
emulation bus analyzer detects completion of a sequence of software execution
in the absolute file under test.

No provision is made to specify trig1 usage in the pulldown menus of the Software
Performance Analyzer.

To cause the emulator to break to its monitor
when an event runs too long

• Choose Modify →Setup Trig2 ..., and in the dialog box, select Drive After Time
Exceeded and enter the Trig2 time and event name and/or number. Then click OK.

• Using the command line, enter the setup_measurement drive trig2_after
command.

The above command sets up the Software Performance Analyzer to generate a
signal on trig2 when an event you name runs continuously for too long a period of
time. You can set up the emulator to break to its monitor program when it receives
trig2. By using the drive trig2_after command, you can use the emulator to
review the state of your microprocessor and examine program execution when a
particular function runs longer than you think it should.

The setup_measurement drive trig2_after function is only available when
making function-duration and interval-duration measurements.

Note that the trigger command always calculates its interval as an including_calls
time (even if the present measurement is function_duration excluding_calls). In
addition, the trigger command is not corrected for prefetch conditions. Prefetch
correction is discussed in detail in Chapter 7.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To cause the emulator to break to its monitor when an event runs too long

54

Examples To specify a measurement that causes an emulation break to occur when an event
runs too long:

Choose Modify →Setup Trig2 ..., and set up the dialog box as shown. The
example dialog box sets up generation of Trig2 when report_result runs for 500
msec:

or on the command line enter:

setup_measurement drive trig2_after 500 msec report_result
setup_measurement drive trig2_after 100 msec int_loop

To set up the emulator to respond to the trig2 signal:

Choose Modify →Emulator Config ..., and in the dialog box, click on Interactive
Measurement Specification, and Modify Section. Then advance to the question:
Should Emulator break receive Trig2? yes. Answer the remaining questions, and
click on Apply to Emulator. Select a configuration file name, and click OK or
Apply. Finally, in the Emulator Configuration Main Menu, click on Exit Window.

or on the command line enter:

modify configuration
modify interactive measurement specification? yes
should emulator break receive trig2? yes

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To cause the emulator to break to its monitor when an event runs too long

55

To set up taking a trace in the emulation-bus
analyzer when an event runs too long

• Choose Modify →Setup Trig2 ..., and in the dialog box, select Drive After Time
Exceeded and enter the Trig2 time and event name or number. Then click OK.

• Using the command line, enter the setup_measurement drive trig2_after
command.

The above command sets up the Software Performance Analyzer to generate a
signal on trig2 when an event you name runs continuously for too long a period of
time. You can set up the emulation-bus analyzer to capture a trace of state
execution when it receives trig2. By using the drive trig2_after command with
the emulation-bus analyzer, you can see the states being executed when your
program runs longer than you think it should.

The setup_measurement drive trig2_after function is only available when
making function-duration and interval-duration measurements.

Note that the trigger command always calculates its interval as an including_calls
time (even if the present measurement is function_duration excluding_calls). In
addition, the trigger command is not corrected for prefetch conditions. Prefetch
correction is discussed in detail in Chapter 7.

Examples To specify a measurement that starts after an event runs too long:

Choose Modify →Setup Trig2 ..., and in the dialog box, select Drive After Time
Exceeded, enter a Time of 500 msec, and an Event name of report_result. Then
click OK.

setup_measurement drive trig2_after 500 msec report_result
setup_measurement drive trig2_after 100 msec int_loop

To set up the emulation-bus analyzer to respond to the trig2 signal:

Choose Modify →Emulator Config ..., and in the dialog box, click on Interactive
Measurement Specification, and Modify Section. Then advance to the question:
Should Analyzer drive or receive Trig2? receive. Answer the remaining questions,

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To set up taking a trace in the emulation-bus analyzer when an event runs too long

56

and click on Apply to Emulator. Select a configuration file name, and click OK or
Apply. Finally, in the Emulator Configuration Main Menu, click on Exit Window.

or on the command line enter:

modify configuration
modify interactive measurement specification? yes
Should Analyzer drive or receive trig2? receive

A useful emulation trace to capture all states before the trigger would be:
trace arm_trig2 before address 0xxxxxxxxh
OR
trace arm_trig2 before anystate

To set up taking a trace when an expanded event
executes in an abnormal time range

1 Stop the duration measurement.

2 Set up your emulation-bus analyzer to start a trace when it receives the trig2 signal,
as discussed in the paragraph titled, "To set up taking a trace in the emulation-bus
analyzer when an event runs too long."

3 Place the mouse pointer on the abnormal time range.

4 Press the select mouse button to obtain the popup menu, and click on
Drive TRIG2 on Range Min.

5 Start a new duration measurement.

The above procedure causes trig2 to be generated when the expanded event runs
long enough to record an execution in the time range you selected with your mouse
pointer. This is useful if you notice that most executions of an expanded event
occur within one or two time ranges, but on rare occasions, an execution of the
event takes a much longer time (is recorded in a longer time range). This feature

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To set up taking a trace when an expanded event executes in an abnormal time range

57

lets you take a trace of processor activity when the event runs that abnormally long
time.

Note that the setup for this measurement can only be made when no profile
measurement is running.

Examples To trigger a trace when the expanded event runs for more than 1 second:

Set up the emulation-bus analyzer to start a trace when it receives trig2.

Place the mouse pointer on the 1.00+s - 10.0s time range, obtain the popup menu,
and click on Drive TRIG2 on Range Min. Then start a new measurement.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To set up taking a trace when an expanded event executes in an abnormal time range

58

To set up a measurement that ends after a time
period, or after obtaining a data stability

• Use the command line to enter the setup_measurement termination command.

Commands like those above let you set up a measurement that will run until some
desired condition is reached by the Software Performance Analyzer. You can set
up your measurement to run continuously for a period of time. You can set up your
measurement to run until a desired stability of measured data is achieved (refer to
discussions of stability and confidence in Chapter 8 for further information). You
can set up your measurement to run for either a period of time or level of stability,
whichever happens first.

Stability can be specified between 51 and 99 percent. Termination time can be
specified between 5 seconds and 100 hours. Your measurement will end when
your specification is satisfied in the Software Performance Analyzer.

Examples To stop a measurement automatically when a condition is reached:

setup_measurement termination run_time 10 minutes
setup_measurement termination stability 95 percent
setup_measurement termination stability 80 percent or 600 seconds

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To set up a measurement that ends after a time period, or after obtaining a data stability

59

To qualify your measurement on processor
status like user or supervisor

• Choose Settings→Status Qualifications→<desired status qualification>.

• Use the set status_qualification command.

If the emulation microprocessor you are using has user/supervisor modes, or
similar modes, the Software Performance Analyzer will offer this command form.
You can use it to qualify your measurement on processor status. This command
form lets you ensure that the data in your measurement results will only be taken
when your emulation processor is executing in the desired status.

Examples To qualify measurement data to be taken only during selected processor status:

Settings→Status Qualifications→supervisor

 set status_qualification supervisor
 set status_qualification user
 set status_qualification any

To position the cursor beside a new event on
screen

• In the Graphical User Interface, place the cursor beside the desired event and hold
the select mouse button to obtain the popup menu. Choose Reposition Cursor
from the popup menu.

• Use the keyboard arrow keys to move the cursor.

Chapter 2: Preparing the Software Performance Analyzer to Make Measurements
To qualify your measurement on processor status like user or supervisor

60

3

Controlling the Profile Measurement

The Software Performance Analyzer makes profile measurements using two basic
measurement modes: activity and duration. The activity measurement mode
records activity in regions of program or memory address space. Activity mode
uses a sampling technique; it samples activity in each memory region or event,

61

sequentially. Only one event is active (being sampled) at a time. The activity
measurement mode can accept up to 254 events in a single measurement.

The duration measurement mode operates in a real-time manner. Only events that
represent functions or intervals can be active in a duration measurement. All
selected events are active throughout the measurement. In the duration mode, the
entry and exit points of each event are recorded. The Software Performance
Analyzer matches the entry and exit points with each other and records the
durations between them. Up to 84 functions or intervals can be included in a
single, duration measurement.

Topics covered in this chapter include:

• Making the most simple profile measurement.

• Obtaining a profile of the activity of your program code.

• Obtaining a profile of the activity of variables and I/O ports.

• Obtaining a profile of durations of functions defined in your source files.

• Obtaining a profile of durations of intervals.

• Obtaining time-range details under a selected event.

• Creating your own set of time ranges for expanding events.

• Stopping the present profile measurement.

Chapter 3: Controlling the Profile Measurement

62

To make the most simple profile measurement

• Choose Profile→Profile Again.

• Using the command line, enter the command: profile

With this command, the Software Performance Analyzer will first check to see if
events have been defined. If not, events will be defined as described in Chapter 2.
With events defined, the Software Performance Analyzer will begin a new
measurement of the same type as performed last. If this is the first "profile" to be
taken, the Software Performance Analyzer will profile program activity. If a
previous measurement is being repeated, the former results display will be placed
on screen (either a histogram or table). If this is the first profile measurement (a
default measurement of program activity), a histogram will be placed on screen.

To obtain a profile of the activity of your program
code

• Choose Profile→Profile ..., and in the dialog box, click on Program Activity.
Then click OK or Apply.

• Using the command line, enter the command: profile program_activity

With this command, the Software Performance Analyzer will first check to see if
events have been defined. If not, events will be defined as described in Chapter 2.
Then the Software Performance Analyzer will begin sampling activity for all of the
qualified events. To qualify for a program activity profile:

• An event must represent program address space (either a function or a range of
functions).

• An event must be "selected" in the events list.

Chapter 3: Controlling the Profile Measurement
To make the most simple profile measurement

63

A results display will appear on screen. It will be a histogram, unless you selected
a table display in your last measurement. The data shown in the display of
measurement results will be updated continuously until you stop the measurement.
To select a different display of measurement results, use the display command
discussed in Chapter 4.

Examples To begin a profile of program activity, choose Profile→Profile ..., and set up the
dialog box as shown:

or on the command line enter:

profile program_activity

Chapter 3: Controlling the Profile Measurement
To obtain a profile of the activity of your program code

64

To obtain a profile of the activity of variables and
I/O ports

• Choose Profile→Profile ..., and in the dialog box, click on Memory/IO Activity.
You can specify the type of processor status that will qualify the addresses of the
variables and I/O ports, if desired. Then click OK or Apply.

• Using the command line, enter the command: profile memory_and_io_activity

With this command, the Software Performance Analyzer will first check to see if
events have been defined. If not, events will be defined as described in Chapter 2.
Then the Software Performance Analyzer will begin sampling activity for qualified
events. To qualify for a memory_and_io_activity profile:

• An event must represent memory address space (either a static variable, an I/O
port, or a range of variables).

• An event must be "selected" in the events list.

You can further qualify the types of cycles that the Software Performance Analyzer
will record by specifying status conditions. If you specify status any, all cycles that
match the active event will be recorded. If you specify a particular kind of status,
only cycles that match the active event and are of the specified type will be
recorded.

A results display will appear on screen. It will be a histogram, unless you selected
a table display in your last measurement. The data shown in the histogram will be
updated continuously until you stop the measurement. To select a different display
of measurement results, use the display command discussed in Chapter 4.

Examples To profile activity of variables and I/O ports:

Choose Profile→Profile ..., and make desired selections in the dialog box.

profile memory_and_io_activity
profile memory_and_io_activity status data_write
profile memory_and_io_activity status any

Chapter 3: Controlling the Profile Measurement
To obtain a profile of the activity of variables and I/O ports

65

To obtain a profile of durations of functions
defined in your source files

• Choose Profile→Profile ..., and in the dialog box, click on one of the profile types
beginning with Function Duration. Then click OK or Apply.

• Using the command line, enter the profile function_duration command.

With this command, the Software Performance Analyzer will first check to see if
events have been defined. If not, events will be defined as described in Chapter 2.
Then the Software Performance Analyzer will begin making real-time records of
the durations of the qualified events. To be qualified for function_duration
measurements:

• An event must be defined as a function in the events list (representing a function
in the source file). No intervals, ranges, or static variables will be accepted in
this measurement.

• An event must be "selected" in the events list.

The function-duration measurement offers three measurement modes: including all
calls, excluding all calls, and excluding profiled calls. The including all calls mode
includes in the function-duration, all time associated with calls made by the
function and all time taken by interrupts to the function.

The excluding all calls mode excludes from the function duration the time
associated with any call to any function (whether measured or not). The measured
time is strictly the time required to execute the code in the address range of the
function.

The excluding profiled calls mode is similar to the including calls mode, except
that any call to another profiled function (one that is also being profiled in the
present measurement) will be excluded from the time of the current function.
Interrupts, if not being profiled, will be included into the durations of the functions.
Interrupts that are being profiled as functions in the present measurement will be
excluded from the measured function durations.

You can set up an enable/disable specification to exclude interrupt processing time,
if desired.

Chapter 3: Controlling the Profile Measurement
To obtain a profile of durations of functions defined in your source files

66

A results display will appear on screen. It will be a histogram, unless you selected
a table display in your last measurement. The data shown in the histogram will be
updated continuously until you stop the measurement. To select a different display
of measurement results, use the display command discussed in Chapter 4.

Examples To profile the durations of functions and include time spent executing code in other
functions called by the selected functions, and time spent processing interrupts that
occur while the event is active:

Choose Profile→Profile..., and click on Function Duration Including All Calls

profile function_duration include_calls

To profile the durations of functions, but record none of the time spent executing
code in other functions called by the selected functions, and none of the time spent
processing interrupts:

Choose Profile→Profile..., and click on Function Duration Excluding All Calls

profile function_duration exclude_calls

To profile the durations of functions, but:

• record none of the time spent executing code in other functions that are
presently included in the measurement.

• include all of the time spent processing interrupts and executing code in
functions that are not included in this measurement:

Choose Profile→Profile..., and click on Function Duration Excluding Profiled
Calls

profile function_duration exclude_profiled

Chapter 3: Controlling the Profile Measurement
To obtain a profile of durations of functions defined in your source files

67

To obtain a profile of durations of intervals

• Choose Profile→Profile ..., and in the dialog box, click on Interval Duration. You
can specify the type of processor status that will qualify the interval addresses, if
desired. Then click OK or Apply.

• Using the command line, enter the profile interval_duration command.

With these commands, the Software Performance Analyzer will begin making
real-time records of the durations of qualified interval events. To qualify an event
for an inverval_duration profile:

• An event must be defined as an interval in the events list. Refer to Chapter 2 for
instructions on how to create single events for intervals. No functions, ranges,
or static variables will be accepted in this measurement.

• An event must be "selected" in the events list.

Interval measurements can include "status". That is, an interval can begin and end
on a write transaction to an address; with this specification, read transactions to that
same address would be ignored during the measurement.

A results display (histogram unless you selected table in your last measurement)
will appear on screen. The data in the histogram will be updated continuously until
you stop the measurement. To select a different display, use the display command
discussed in Chapter 4.

Note that interval_duration measurements are not corrected for unused prefetches.
Refer to interval_duration measurements without prefetch correction in Chapter 7.

Chapter 3: Controlling the Profile Measurement
To obtain a profile of durations of intervals

68

Examples To define interval events for measuring durations between two points:

Choose Events→Define Single Event ..., and click on Interval, and type
myfunction1 beside Start Address, and myfunction2 beside End Address.

define single_event interval myfunction1 thru myfunction2

To define interval events for measuring durations between transactions to a single
point (such as writes to a variable):

Choose Events→Define Single Event ..., and click on Interval, and type
myvariable beside Start Address and myvariable beside End Address.

define single_event interval myvariable thru myvariable

To execute interval_duration measurements:

Choose Profile→Profile ..., and click on Interval Duration. Select a Status
Qualification, if desired.

profile interval_duration
profile interval_duration status data_write

Chapter 3: Controlling the Profile Measurement
To obtain a profile of durations of intervals

69

To see the time-range details under a selected
event

• Place the mouse pointer on the desired event Click the select mouse button, or use
the select mouse button to obtain the popup menu, and click on Expand Event
Toggle.

• If using the command line:

1 Place the cursor beside the event of interest in the Name column of the table or
histogram.

2 Press the softkey named: EXPAND

Expanding an event to see its time-range details is only available in
interval_duration and function_duration measurements. A set of time ranges will
appear under the event name. Initially, the time ranges will show values of zero.
Each new duration measurement will be recorded in two places:

• It will be added to the value of duration shown beside the event name.

• It will be shown beside the time range where it fit.

If a duration of 720 usec is recorded for an expanded event, and if you have a 100
us - 1 ms time range under that event, the 720-us duration will be shown beside it.
Otherwise, it will be added to the time range labeled non-range.

You can define a different set of time ranges, if desired. Use a command beginning
with: display time_ranges The next paragraph in this chapter explains how to
set up your own set of time ranges. This information is also available in the help
screens of the Software Performance Analyzer.

Chapter 3: Controlling the Profile Measurement
To see the time-range details under a selected event

70

Examples To obtain expanded information for an event:

Place the mouse pointer on the event you wish to expand. Obtain the popup menu,
and click on Expand Event Toggle.

Chapter 3: Controlling the Profile Measurement
To see the time-range details under a selected event

71

To create your own time ranges to be used under
an event in a duration measurement

• Choose Display→Time Ranges ..., and in the dialog box, specify the start and end
limits of the time ranges, the number of ranges desired, and whether those ranges
will be logarithmic or linear. Then click OK or Apply.

• Using the command line, enter the display time_ranges command.

The present set of time ranges are shown in the measurement specification display.
There are several ways you can define a new set of time ranges to be shown under
an expanded event during a measurement. You can enter a single range of time
and let the Software Performance Analyzer divide it into the number of ranges you
desire, or you can specify the exact time ranges desired.

Up to 10 time ranges can be created to show below expanded events in histograms
and tables.

You can only expand events to see durations in your set of time ranges during
function_duration and interval_duration measurements. Durations of events are
not recorded in activity measurements.

Examples To specify an overall range to be divided into a set of time ranges, choose
Display→Time Ranges ..., and set up the dialog box as shown:

The example dialog box defines a single, overall range; it will be divided
automatically into time ranges by the Software Performance Analyzer. The time
ranges will be divided logarithmically. The overall range will be divided into six
time ranges.

Chapter 3: Controlling the Profile Measurement
To create your own time ranges to be used under an event in a duration measurement

72

or on the command line enter:

display time_ranges start_at 10 usec end_at 1 msec logarithmic
number_divisions 6

To specify an overall range that begins at 1 usec, is divided into 10 time ranges,
and each time range is 50 usec wide, use the command line below. Note that
"plus_increment" accepts values from 1 to 100,000. Ten is the maximum (and
default) number of time ranges that can be defined.

display time_ranges start_at 1 usec plus_increment 50 number_divisions 10

To specify an overall range that begins at 10 usec, and the length of each time
range is equal to the lowest value of the range multiplied by 5, use the command
line below. Note that "multiply_increment" accepts values from 2 to 1000. Ten
time ranges will be created, by default. The list below the command line shows the
time ranges that will be created by the example command:

display time_ranges start_at 10 usec multiply_increment 5
10.0 us - 50.0us
50.0+us- 250us
250+us - 1.25ms
1.25+ms- 6.25ms
6.25+ms- 31.2ms
31.2+ms- 156ms
156+ms - 781ms
781+ms - 3.91s
3.91+s - 19.5s
19.5+s - 97.7s

Chapter 3: Controlling the Profile Measurement
To create your own time ranges to be used under an event in a duration measurement

73

To specify four time ranges by specifying range ending values, enter the following
command on the command line. Note that each number in the command represents
the end of a time range. Each range begins at the lowest possible number. The
first range, by default, begins at 1 usec; it runs from 1 usec to 10 usec. The second
range runs from 10+ usec to 40 usec. The plus sign indicates the second time range
does not overlap the first; it begins at a point just beyond the first time range. You
can specify time ranges from 1.00 usec through 999.0 seconds.

display time_ranges 10 usec, 40 usec, 100 usec, 1 msec

To specify three time ranges by specifying beginning and ending values, use the
command line to enter the following command. This example command
specifically defines the beginning and ending values of each time range. Again, the
beginning values of all ranges after the first range will carry "+" signs to show they
do not overlap the ranges preceding them.:

display time_ranges 10 usec thru 100 usec, 100 usec thru 1 msec, 1 msec thru 1
sec

To stop the present profile measurement

• Choose Profile→Stop Profile.

• Using the command line, enter the command: stop_profile

With the above command, the present profile measurement will end and all data
capture and display updates will end.

Chapter 3: Controlling the Profile Measurement
To stop the present profile measurement

74

4

Managing the Display of
Measurement Results

Histograms and tables are used to show the results of measurements made by the
Software Performance Analyzer. This chapter shows how to obtain and control
those displays.

75

The following information is discussed in this chapter:

• Displaying a histogram of time periods measured.

• Displaying a histogram of cycles or calls measured.

• Changing the scale of the histogram display

• Interpreting a table of time and cycles from an activity measurement.

• Interpreting a table of time and calls from a duration measurement.

• Sorting events on the display.

• Obtaining a list the most active events in a file.

• Obtaining three significant digits of information in columns of table and
histogram displays.

• Printing a copy of measurement results.

Chapter 4: Managing the Display of Measurement Results

76

To display a histogram of time periods measured

• Choose Display→Histogram. Then choose Display→Performance Data→Time.

• Using the command line, enter the display histogram command.

You can display a histogram of time periods measured for each of the events
selected in the measurement. You can add absolute or relative to the command to
obtain the desired type of time values in the display. Your selection will determine
the lengths of the histogram bars and the percentages beside each event, as follows:

In absolute displays, the percentages and histogram bars will be adjusted by
the value of the "Undefined Addresses" event, which represents all address
space that was not represented by any other event in the measurement.

In relative displays, the percentages and histogram bars will be calculated on
the totals of all events included in the measurement, ignoring executions in
address space that was unrepresented by an event.

Examples: To display a histogram of time periods measured:

Choose Display→Histogram, then Display→Performance Data→Time, and
finally Display→Performance Data→Absolute or Relative.

On the command line:

display histogram data time
display histogram data time absolute
display histogram data time relative

Chapter 4: Managing the Display of Measurement Results
To display a histogram of time periods measured

77

To display a histogram of cycles or calls
measured

• Choose Display→Histogram. Then choose Display→Performance Data→Calls
or Cycles.

• Using the command line, enter the display histogram data command.

A histogram of cycles is available in activity measurements; it shows the number of
cycles recorded for each active event. A histogram of calls is available in duration
measurements; it shows the number of calls that were made to each event in the
measurement. You can specify that the numbers recorded for each of the events be
in absolute or relative values. Your selection will determine the lengths of the
histogram bars and the percentages beside each event, as follows:

In displays of absolute values, the percentages and histogram bars will be
adjusted by the value of the "Undefined Addresses" event, which shows cycles
in address space that was not represented by any other event in the
measurement.

In displays of relative values, the percentages and histogram bars show the
total of calls or cycles for each of the events included in the measurement,
ignoring cycles in address space that was not represented by any event.

Examples: To display a histogram of cycles or calls:

Choose Display→Histogram, then Display→Performance Data→Calls or
Cycles, and finally Display→Performance Data→Absolute or Relative.

On the command line:

display histogram data cycles
display histogram data cycles relative
display histogram data calls absolute

Chapter 4: Managing the Display of Measurement Results
To display a histogram of cycles or calls measured

78

To change the scale of the histogram display

• Place the mouse pointer on an event for which you would like the histogram
rescaled. Then press the select mouse pushbutton, and in the popup menu, click on
Rescale Event.

• To rescale the histogram back to 100%, place the mouse pointer on the line that
shows the percentages above the Histogram. Press the select mouse pushbutton,
and in the popup menu, click on Rescale Event.

• Using the command line, enter the display histogram rescale command.

You can change the scale of the histogram bars to obtain the best resolution of the
data. If you specify a percentage on the command line, the display of histogram
bars will be adjusted to fit your scale. Histogram bars that exceed the percentage
you specify will be shown across the entire display. No indication will be given to
show how much they exceed the percentage you specified in your command.

If you rescale the histogram to current_max on the command line, the scale of the
histogram will be set to the percentage of the longest histogram bar. No automatic
rescaling of the histogram display takes place while the measurement is in
progress. If the longest histogram bar gets a higher value during the measurement,
you may want to enter the command again to rescale the display to the new
current_max.

When the measurement is stopped with rescale set to current_max, the histogram
will be rescaled, automatically.

You can specify rescale values of 0.1 percent to 100 percent.

Examples To rescale the histogram display:

Place the mouse pointer on an event to be rescaled. Obtain the popup menu, and
click on Rescale Event.

On the command line:

display histogram rescale current_max
display histogram rescale to_max 60 percent

Chapter 4: Managing the Display of Measurement Results
To change the scale of the histogram display

79

To interpret a table of time and cycles from an
activity measurement

• Choose Display→Table.

• Using the command line, enter the command: display table

The display shows the details of information obtained in the present, or most
recent, program_activity or memory_and_io_activity measurement. The columns
of the display show the following:

• Name and number of the event.

• Number of cycles that were associated with the event during periods when the
event was actively being sampled.

• Total amount of time recorded for all bus cycles associated with the event while
the event was being sampled.

• Percentage of time recorded during the measurement that was recorded for this
event (as a percent of profiled time). The percentage shown will be less when
you show absolute values because the calculation will include the value of the
"Undefined Addresses" event, which represents all addresses that were not
represented by any of the events included in the measurement.

• The Mean(1s) is the average time the associated event is likely to be active
during any given second of program execution.

• The standard deviation is the variation between executions of the event at the
point of one standard deviation. The StDv(1s) is the value of one standard
deviation of the event during any given second of program execution. A
standard deviation that is greater than the mean indicates there are large
fluctions about the mean.

• The last column shows the average time required to complete one bus cycle
associated with the event.

Chapter 4: Managing the Display of Measurement Results
To interpret a table of time and cycles from an activity measurement

80

To interpret a table of time and calls from a
duration measurement

• Choose Display→Table.

• Using the command line, enter the command: display table

The display shows the details of information obtained in the present, or most
recent, interval_duration or function_duration measurement. The columns of the
display show the following:

• Name and number of the event.

• Number of calls made to the event.

• Total amount of execution time spent in the event during the measurement.

• Percentage of execution time recorded for this event (as a percent of the profiled
time). The percentage shown will be less in a display of absolute values
because the calculation of percentage will include the value of the "Undefined
Addresses", which represents all addresses that were not represented by events
included in the measurement.

• The longest single duration measured during any execution of this event.

Table: Program Activity Run Time: 1:13 Stability: 57%
Name(sort:_time)_____|_Cycles_|__Time__|_Time_%_|_Mean(1s)|_StDv(1s)|_Time/cyc
 2 apply_productions | 2.64E06| 1.4 s| 49.88 | 498.8ms| 446.5ms| 546.9ns
 31 stack_library | 782034| 419.8ms| 14.49 | 144.9ms| 248.5ms| 536.8ns
 27 scan_string | 404891| 214.7ms| 7.41 | 74.1ms| 208.5ms| 530.2ns
 20 move_byte | 251109| 134.8ms| 4.65 | 46.5ms| 141.5ms| 536.9ns
 23 report_errors | 250261| 134.3ms| 4.64 | 46.4ms| 140.8ms| 536.8ns
 19 math_library | 180832| 98.5ms| 3.40 | 34.0ms| 101.3ms| 544.8ns
 21 outputline | 156125| 81.4ms| 2.81 | 28.1ms| 158.9ms| 521.2ns
 5 clear_buffer | 134565| 73.4ms| 2.53 | 25.3ms| 142.0ms| 545.6ns
 16 lookup_token | 102740| 56.6ms| 1.96 | 19.6ms| 62.7ms| 551.1ns
 15 input_line | 106926| 55.5ms| 1.92 | 19.2ms| 129.2ms| 519.2ns
 26 scan_number | 57989| 31.1ms| 1.07 | 10.7ms| 90.0ms| 536.8ns
 24 report_result | 52309| 28.5ms| 0.99 | 9.9ms| 83.9ms| 545.7ns
 33 syntax_check | 39934| 21.9ms| 0.76 | 7.6ms| 47.5ms| 548.5ns
 28 semantic_check | 16318| 9.4ms| 0.33 | 3.3ms| 9.8ms| 577.0ns
__12_get_next_token____|___11475|___6.4ms|___0.22 |____2.2ms|___18.4ms|__561.8ns
 Profiled Absolute | 5.22E06| 2.8 s| 100% |

Chapter 4: Managing the Display of Measurement Results
To interpret a table of time and calls from a duration measurement

81

• The shortest single duration measured during any execution of this event.

• The average execution of the event is shown under Mean. For a duration
measurement, the Mean is the true average duration of one execution of the
event.

• The standard deviation is the variation between executions of the event (it is the
value of one standard deviation of the event).

Table: Function Duration include calls Run Time: 1:05 Stability: 99%
Name(sort:_time)_____|_Calls_|__Time__|_Time_%|__Max__|__Min__|_Mean__|Std_Dev
 22 parse_command | 145| 59.8 s| 91.11|412.3ms|412.3ms|412.3ms| 0.0us
 1 apply_controller | 436| 50.2 s| 76.49|115.1ms|115.1ms|115.1ms| 0.0us
 2 apply_productions | 3933| 42.6 s| 65.00| 11.7ms| 10.0ms| 10.8ms|525.3us
 12 get_next_token | 291| 9.7 s| 14.79| 33.3ms| 33.3ms| 33.3ms| 0.0us
 31 stack_library | 13109| 9.6 s| 14.59|730.3us|730.2us|730.2us| 0.0us
 16 lookup_token | 1748| 8.3 s| 12.61| 4.7ms| 4.7ms| 4.7ms| 0.0us
 28 semantic_check | 2621| 6.0 s| 9.09| 2.3ms| 2.3ms| 2.3ms| 0.0us
 27 scan_string | 5245| 4.6 s| 7.04|880.3us|880.2us|880.2us| 0.0us
 25 request_command | 146| 3.2 s| 4.91| 22.1ms| 22.1ms| 22.1ms| 0.0us
 14 initialize | 146| 3.1 s| 4.80| 21.6ms| 21.6ms| 21.6ms| 0.0us
 19 math_library | 35746| 3.0 s| 4.64|188.0us| 19.0us| 85.2us| 44.6us
 20 move_byte | 3936| 2.9 s| 4.38|730.3us|730.2us|730.2us| 0.0us
 23 report_errors | 3929| 2.9 s| 4.37|730.3us|730.2us|730.2us| 0.0us
 24 report_result | 146| 2.3 s| 3.55| 19.1ms| 8.8ms| 16.0ms| 4.2ms
___5_clear_buffer______|____438|___1.9_s|___2.90|__4.3ms|__4.3ms|__4.3ms|__0.0us
 Profiled Absolute | 76497| 65.6 s| |

Chapter 4: Managing the Display of Measurement Results
To interpret a table of time and calls from a duration measurement

82

To sort the events on the display

• Choose Display→Sort Events→<sort criterion>

• Using the command line, enter the display histogram (or table) sort_events
command.

You may want to sort the events before removing those with low usage, or before
creating a range event that overlaps several existing events. You can sort events in
the histogram, table, or events list in one of five orders:

• time, which places the events that used the most system time first, and the
events that used the least system time last.

• cycles or calls, which places the events that recorded the most cycles or calls
first.

• address which places the events that represent the lowest addresses first.

• alphabetical order which arranges the display in the order of the event names.

• definitions, which places the events in the order in which they were defined
(order of event numbers).

The sort you choose affects all displays. If you sort the histogram by time, the
table and events list will also be sorted by time.

Examples To sort events on the display:

Choose Display→Sort Events→Time

On the command line:

display events sort_events address
display table sort_events time
display histogram sort_events cycles
display events sort_events defined

Chapter 4: Managing the Display of Measurement Results
To sort the events on the display

83

To obtain a list of the most active events in a file
(even a file having thousands of events)

1 Make the profile measurement.

2 Choose Display→Histogram, or on the command line, enter: display
histogram.

3 Choose Display→Performance Data→Time, or on the command line, enter:
display data time.

4 Choose Display→Sort Events→Time, or on the command line, enter: display
sort_events time.

5 Place the mouse pointer beside the first event that recorded a small amount of
time.

6 Press the select mouse button and click Delete Events Thru End in the popup
menu, or on the command line, enter: delete_events thru end.

7 Make another profile measurement. This loads more events from the events
list.

8 Repeat the above process until all events from the events list have been
profiled, and only the most active events remain.

The above commands obtain a profile of the events and sort them in order, placing
the event that uses the most system time at the top of the list. The last command
deletes all the events that use little system time.

When you make a new profile measurement, new events from the events list will
be included in the measurement. The new events are profiled against the list of
active events from the preceding measurement. After several profile measurements
are made, you obtain a histogram or table of the most active events from the events
list.

This method can be used to accumulate a histogram or table of the most active
events from a file having thousands of events. Simply make measurements, delete
the inactive events (as above), define more events from the file under test, and
rerun the measurements.

Chapter 4: Managing the Display of Measurement Results
To obtain a list of the most active events in a file (even a file having thousands of events)

84

To obtain three significant digits in the columns
of the table or histogram

• Choose Settings→Decimal Alignment.

• Enter the command: set decimal_alignment off

The above commands cause the values shown in the columns to be displayed to
three significant digits. (The first command is a toggle.) With these selections, the
values in the columns might not have their decimals aligned vertically.

To print a copy of measurement results

• Define the shell variable, HP64PRINTER.

Before you can specify the printer as the destination device for your copy
command, you must define HP64PRINTER as a shell variable. Make this
definition at the shell prompt ("$" symbol).

Example To define the shell variable, HP64PRINTER:

If using sh(1) or ksh(1), enter:

$ HP64PRINTER = lp
$ export HP64PRINTER

If using csh(1),

setenv HP64PRINTER lp

Chapter 4: Managing the Display of Measurement Results
To obtain three significant digits in the columns of the table or histogram

85

Example To keep the print message from appearing or from overwriting the softkey
command line, execute:

If using sh(1) or ksh(1), enter:

$ HP64PRINTER = "lp -s"
$ export HP64PRINTER

If using csh(1),

setenv HP64PRINTER "lp -s"

The -s above makes the print message silent.

• Print measurement results.

You can print a copy of the present measurement results by using the copy
command. The copy command will print the entire content of the histogram, table,
measurement specification, or events list to the printer. The inverse-video bars of
the histogram display will be automatically replaced by asterisks (*) when you use
copy.

To obtain a copy of only the present display on screen (instead of the entire content
of a histogram, table, measurement_spec, or events list), use the copy display
command. If your display is a histogram that uses inverse-video bars, the bars will
not be copied. Use the set histogram_character command to choose an ASCII
character for the histogram bars before you execute the copy display command.

Examples To print copies of analyzer displays:

Choose File→Copy→<display_name>..., and in the File Selection dialog box,
enter the name of the destination file under "copy <display_name> to". Then click
OK. Filenames in other directories can be obtained by entering the desired
directory under File Filter and clicking on the Filter pushbutton in the dialog box.

copy histogram to printer
copy table to printer
copy measurement_spec to printer
copy events to printer
copy display to printer

Chapter 4: Managing the Display of Measurement Results
To print a copy of measurement results

86

5

Supporting Tasks that Add Flexibility
to Performance Measurements

The tasks described in this chapter will be used occasionally during operation of
the Software Performance Analyzer. They add flexibility to the analysis process

87

offered by the Software Perfformance Analyzer. The information in this chapter
shows you how to do the following:

• save and reload a profile specification with present measured data.

• bring help screens to the display to answer questions during operation.

• see the software version number of the Software Performance Analyzer.

• edit a source file while using the Graphical User Interface.

• set the rate of recalculating stability to improve display-updates, or turn it on or
off.

• specify a desired confidence in the data obtained by analysis.

• select histogram character to be used as histogram bars on display copies.

• turn off event numbers to get more space for event names.

• increase size of the display window to get more space for event names.

• defining action keys for the Graphical User Interface.

• placing information strings in the entry buffer and command line.

• copying event names to a dialog box.

• using Software Performance Analyzer with C++ programs.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements

88

To save and reload a profile specification with
measured data

• Choose File→Store→Profile Spec ..., and in the dialog box, enter the name of the
file to store your profile specification.

• Choose File→Load→Profile Spec ..., and in the dialog box, select the file that
contains the profile specification you wish to load.

• Using the command line, enter the store profile_spec and/or load profile_spec
commands.

The store command in the following examples will cause the Software
Performance Analyzer to store all setup commands, display specifications, and
present measurement data in a file named MYfile2. If you changed any
specification since the last measurement, the data will not be stored. File names
can include numbers and letters; they must begin with a letter. The stored file will
be placed in your current working directory.

The load command in the examples below will cause the Software Performance
Analyzer to configure itself according to the measurement setup that was present
when the file named test24 was created. The measured data that was present when
the file was created will be loaded into the analyzer memory. You can obtain
histograms and tables of that data, and use it for comparison against data you
obtain in future measurements with the setup.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To save and reload a profile specification with measured data

89

Examples To store new profile specifications and/or load existing profile specifications (with
measurement data):

Choose File→Store→Profile Spec ..., and set up the dialog box to specify the file
name to contain the profile specification. The example dialog box is set up to store
MYfile2 in the directory shown in the File Filter entry area.

Choose File→Load→Profile Spec ..., and set up the dialog box. The only
difference in the Load and Store dialog boxes is the word Load or Store above the
Profile Specification entry area.

or on the command line, enter:

store profile_spec MYfile2
load profile_spec test24

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To save and reload a profile specification with measured data

90

To obtain help screens for making performance
measurements

• Choose Help→Command Line ..., and in the dialog box, click on the command
you wish to review. Then click OK or Apply.

• Use the help or ? command on the command line.

Help screens are provided for each of the Software Performance Analyzer
commands, and additionally for tasks you may need to do that do not appear on
first-level commands, such as defining time ranges, specifying display stability,
and rescaling the histogram. The help screens show command syntax, and give
detailed information about the function requested, as well as example commands,
default values, and descriptions of command parameters.

The help screens answer questions you may have while working with the Software
Performance Analyzer. This manual provides the information you need to fully
understand the Software Performance Analyzer so you can use it to its full
capability.

Examples To obtain help screens written for the Software Performance Analyzer:

Choose Help→Command Line...→SELECT_key

help time_range
? time_range
help SELECT

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To obtain help screens for making performance measurements

91

To obtain help screens of general information
about the Graphical User Interface

• Choose Help→General Topic ..., and in the dialog box, click on the topic you
wish to review. Then click OK or Apply.

• Click on the Help button at the bottom of the Graphical User Interface screen.

These help screens explain details about topics related to use of the Graphical User
Interface implementation for the Software Performance Analyzer.

To see the software version number of the
Software Performance Analyzer

• Choose Help→Version ...

• Using the command line, type: version

If you clicked on Version... in the Graphical User Interface, a dialog box will
appear that shows the version number. The software version number of the
Software Performance Analyzer will also appear on the status line if you entered
version on the command line.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To obtain help screens of general information about the Graphical User Interface

92

To get help in controlling the appearance and
operation of the Graphical User Interface

• Choose Help→X Resource Names ...

The dialog box gives you information you need to set the X resources that control
the appearance and operation of the Graphical User Interface. You can click on the
Help button in the dialog box to get a brief description of the X windows concepts
necessary to understand how to set the interface resources.

To edit a source file during a measurement when
using the Graphical User Interface

1 Place the cursor (pointing finger) on an event in a histogram, table, or events list.

2 Press and hold the select mouse button until a popup menu appears.

3 Click on Edit File at Event in the popup menu.

4 Edit your source file in the new window that appears.

5 Quit the edit file window when you finish.

6 Recompile your executable file and test the results of your changes.

The edit window that appears when you perform the above steps shows your source
file at the point where the event you selected in Step 1 is defined. By default, the
vi editor is active in the edit window. You can change the editor in this window to
an editor of your choice by changing the application defaults.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To get help in controlling the appearance and operation of the Graphical User Interface

93

To control the stability calculation

• Use the display stability command.

The present stability of the data on display is shown in the upper, right-hand corner
of the histogram or table. The calculation of stability includes the values of the
mean and standard deviation (Chapter 8 of this manual discusses these parameters
under a paragraph that shows you how to determine the validity of statistical
measurements).

You can select any interval of time (in seconds) between recalculations of the
stability of measured data. Each time the Software Performance Analyzer
recalculates the stability, it suspends the display-update process. The more events
that are included in your measurement, the longer the display-update process will
be suspended. If you have included many events in your measurement, the
process of recalculating stability may suspend the display-update process for
several seconds.

By default, stability is recalculated every 30 seconds. You can have stability
recalculated less often if suspending the display-update process causes problems
for your display, or you can turn off the recalculation altogether.

You can set up a measurement to end automatically when a desired stability is
reached. For this measurement, the stability calculation must be turned on; if
stability is turned off, in this case, it will turn on automatically and be recalculated
every 30 seconds, by default.

No method is available in the pulldown menus for setting the rate of recalculating
stability.

Examples To have stability recalculated every 120 seconds, enter:

display stability after_every 120 seconds

To turn off the stability calculation, enter:

display stability off

To have your measurement end when 98% stability is obtained, enter:

setup_measurement termination stability 98 percent

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To control the stability calculation

94

To specify a desired confidence in the stability of
the measurement data

• Use the set confidence command.

By default, the Software Performance Analyzer has a setting of 95% confidence.
This indicates the percent of confidence you require in the value of stability that is
returned.

The confidence you set in your measurement specification will determine how long
your measurement must run. Stability specifications (discussed in Chaper 8)
interact with confidence specifications. If, for example, you specify that your
measurement should run until 98% stability is achieved in the measurement results,
then the Software Performance Analyzer will run until it has captured enough data
to be 95% confident (with the example specification below) that its data has
reached a stability of 98%. Refer to Chapter 8 for further information.

No method is available in the pulldown menus for setting confidence in the
stability of measurement data.

Example To specify desired confidence in measurement data:

 set confidence 95 percent

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To specify a desired confidence in the stability of the measurement data

95

To change the histogram character

• Use the set histogram_character command.

By default, the histogram_character is an inverse-video bar. You might want to use
this command to select a different histogram character when copying your display
to a printer.

The inverse-video bars will be replaced with asterisks (*) in the file that is created
by execution of the copy histogram command.

When you use the copy display command with a histogram on screen, the
inverse-video bars are not copied at all. You must use the set
histogram_character command to define a histogram character before you enter
the copy display command.

The set histogram_character command accepts decimal values between 33 and
127. The value you choose will specify the corresponding ASCII character. A
decimal value of 127 makes a good histogram bar with most fonts. You can also
enter the character you want to use by placing it in quotes in the command.

No method is available in the pulldown menus for setting the histogram character.

Examples: To specify a histogram character to be used when printing histogram copies:

set histogram_character 127
set histogram_character "#"
set histogram_character "*"

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To change the histogram character

96

To turn on or off the event numbers

• Choose Settings→Event Numbers

• Using the command line, enter the set event_numbers command.

You might want to turn off the event numbers in your display to obtain additional
character space for the names of your events. By turning off the event numbers,
four additional character spaces will be available.

The event numbers, by default, show the order in which events were defined. To
reassign event numbers, sort the events in the desired order and choose
Events→Renumber Events, or enter the command: renumber_events.

Examples: To turn on and turn off the event numbers:

Choose Settings→Event Numbers

on the command line:

set event_numbers on
set event_numbers off

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To turn on or off the event numbers

97

To resize the display window

• To obtain a new size for the display window allocated to the Graphical User
Interface, add the following lines to your .Xdefaults file:

HP64_Softkey.lines: <HEIGHT>
HP64_Softkey.columns: <WIDTH>

or, for only the Software Performance Analyzer:

perf.lines: <HEIGHT>
perf.columns: <WIDTH>

• If you are going to use the Softkey User Interface to the Software Performance
Analyzer, the following steps will resize a display window:

1 On your workstation, place the mouse pointer on the window edge you wish to
move. (The Software Performance Analyzer must not be running in the
window at this time.) Press and hold the pushbutton select mouse button and
drag the window edge to the desired size.

2 Enter: eval ‘resize‘

3 Start the Software Performance Analyzer with the command:

emul700 -u skperf <logical name>

In entry above, the left-hand single-quote mark is used on both sides of ‘resize‘.

By increasing the width of the display window that contains the Software
Performance Analyzer, more space will be allocated to display event names. This
can be helpful if you are using very long event names. Note that this will not
increase the space allocated to display of the histogram lines, display of data in
table columns, or display of the command line.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To resize the display window

98

To define action keys

1 In your .Xdefaults file, find the structure that looks like the following:

!---

! Action Key Definitions (See also XcHotkey discussion above)

perf*actionKeysSub.keyDefs:\

 "< Demo >" "!telldemoHP! in_browser" \

 "Profile" "profile" \

 "Prog Activity" "profile program_activity" \

 "Histogram" "display histogram" \

 "Sort->Time" "display data time; display sort_events time"\

 "< Your Key >" "!tellkeysHP! in_browser" \

 "Define ()" "define single_event ()" \

 "Stop Profile" "stop_profile" \

 "Func Duration" "profile function_duration" \

 "Table" "display table" \

 "Sort->Calls" "display data calls; display sort_events calls"

2 Edit the above structure to add:

 "Sort->Calls" "display data calls; display sort_events calls"\

 "<label string>" "<action string>" \

 "<label string>" "<action string>"

3 Restart the interface.

You can define action keys to appear in the Action Keys line of the Graphical User
Interface and set them up to perform tasks you desire. An action key definition
consists of a label string and an action string. If either string contains a blank
space, quote the string. Place each label-string/action-string pair on a separate line
for readability. Separate the label string from the action string by at least one space.

The .Xdefaults file is read when the interface starts. New action keys will appear.
They will have the names you assigned in <label string>. When you click on one
of them, the associated command (<action string>) will be executed.

Note that if these definitions are not in your .Xdefaults file, you can copy them
from the HP64softkeys file in the app-defaults directory.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To define action keys

99

Example To enter additional action-key definitions in the .Xdefaults file:

 "Sort->Calls" "display data calls; display sort_events calls"\

 "Mem/IO" "profile memory_and_io_activity" \

 "Delete()->End" "delete_events () thru end"

To define action keys that run profile
measurements

• Enter the following label-string/action-string pairs in the .Xdefaults file:

 "<action key name>" "<action string that is a profile command>"

The action-key feature is useful if you want to run a series of measurements that
require you to switch back and forth between measurement types. You can simply
click on the action key that represents the measurement desired; the associated
profile command will be executed.

For general information on defining action keys, refer to the previous paragraph
titled, "To define action keys."

Example To define action keys that run profile measurements:

 "Func_Inc" "profile function_duration include_calls" \

 "Func_Exc" "profile function_duration exclude_calls" \

 "Mem/IO" "profile memory_and_io_activity"

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To define action keys that run profile measurements

100

To define an action key that deletes low-usage
events

• For general information on defining action keys, refer to the paragraph titled, "To
define action keys" in this chapter.

• Enter the following label-string/action-string pair in the .Xdefaults file:

"Delete()->End" "delete_events () thru end"

The above step creates an action key that will delete low-usage events from the
events list. When you restart the interface, the Delete()->End key will appear in
the action keys line. Use it after each new performance measurement, as follows:

1 Sort the histogram, table, or events list by time, cycles, or calls (as appropriate).

2 Click on the first event to have low usage. This places its event name in the
entry buffer text area.

3 Click on the Delete()->End action key. All events will be deleted from the first
low-usage event through the end of the display.

The content of the entry buffer string will replace the "()" in your action string. It’s
a good idea to include the "()" symbol in your action key name to remind you to
place the appropriate information in the entry buffer before you click on the action
key.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To define an action key that deletes low-usage events

101

To define an action key that runs a command file

• For general information on defining action keys, refer to the task module titled, "To
define action keys" in this chapter.

• Enter the following label-string/action-string pair in the .Xdefaults file:

"<label string>" "<command file name>"

You can define an action key to run a command file. This way, you can execute an
action that requires a series of commands.

To define two or more lines of action keys

• Enter the following resources in your .Xdefaults file:

perf*actionkeys.packing:PACK_COLUMNS

perf*actionKeys.numColumns:<number of lines desired>

The above lines enable a multi-line action key display. You can define two or
more lines of action keys. You will have to experiment with this entry because of
differing lengths of key names in your label strings.

Example To define three lines of action keys:

perf*actionkeys.packing:PACK_COLUMNS

perf*actionKeys.numColumns:3

Note that normally columns are vertical and rows are horizontal. In this case, these
are columns rotated 90 degrees.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To define an action key that runs a command file

102

To place information strings in the entry buffer of
the Graphical User Interface

• Place the cursor in the field of the entry buffer and type in the desired information
string.

• Cut words or lines from a histogram, table, events list, or any other display by
highlighting the desired text using the left mouse button.

• Click on the Recall button to obtain the Recall dialog box. Click on the
information string desired in the Recall dialog box. Now click on APPLY or OK.

If you obtain information strings from the Recall dialog box, you can click on
either APPLY or OK to enter the information in the entry buffer. If you click on
APPLY, the dialog box will remain on screen. If you click on OK, the dialog box
will close. You can also double click on the desired line; this is the same as
clicking OK.

Use the entry buffer to create information strings for commands. You can copy the
content of the entry buffer into the command line. Action keys can be defined to
include the present content of the entry buffer in their commands.

If you try to cut words or lines from a histogram or table display while a
measurement is in progress, you may get unexpected results because the display is
updated constantly during the measurement. It is best to stop the profile
measurement before cutting from the histogram or table to the entry buffer.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To place information strings in the entry buffer of the Graphical User Interface

103

To copy the entry buffer to the command line of
the Graphical User Interface

1 First place the desired information in the entry buffer. See the paragraph titled "To
place information strings in the entry buffer of the Graphical User Interface."

2 Place the cursor at the desired point in the command line and click the command
paste mouse button.

To copy an event name to a dialog box

1 First place the desired information in the entry buffer. See the paragraph titled "To
place information strings in the entry buffer of the Graphical User Interface."

2 Double click the left mouse button in the entry buffer to highlight the entry buffer
content.

3 Move the cursor to the destination field in the dialog box and click the command
select mouse button.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To copy the entry buffer to the command line of the Graphical User Interface

104

To use the Software Performance Analyzer with
C++ Programs

The Software Performance Analyzer has been designed to work with C programs.
If your C++ compiler translates the C++ programs to C before compiling, you
should be able to use the Software Performance Analyzer with it.

The Software Performance Analyzer has been tested with the MRI C++ compiler.
The MRI C++ compiler uses a translator to translate the C++ files to C files. The
translation process creates a variety of C functions, each of which corresponds to
one of the member functions of the C++ program. The Software Performance
Analyzer can measure the duration and activity of these created functions just as it
would a C function.

When using the MRI compiler, set up the needed function start and end prefetch
adjustment (HPSPAADJUST), or use markers (HPSPAMARKERS). Refer to
Chapter 7 or to the "prefetch" and "markers" help page.

As an example, using a Motorola 68000 microprocessor, and the MRI C++
compiler, set the shell variable HPSPAADJUST="2 0". With this setting, a
function duration measurement will yield the following results. Note that the
"perf.columns:100" resource has been set in the Xdefaults file to get a wider
Sofware Performance Analyzer window.

Histogram: Function Duration exclude profiled Run Time: 0:54
Name(sort?_time)_________________________|__Time__|__%___0%_____20%_____40%___
 15 fnIdle__Fv | 19.8 s| 35.98|**************
 7 d_move__7DisplayFiT1 | 14.2 s| 25.75|**********
 10 d_printf2s__7DisplayFPcT1 | 10.8 s| 19.55|********
 42 showBuf__7DisplayFPcT1 | 9.0 s| 16.38|*******
 :
_Undefined_Addresses_______________________|__61.7ms|__2.11|____________________
 Profiled Absolute | 55.0 s| 100% 0% 20% 40%

If the above result is passed through the Host C++ utility c++filt(1), we can get a
C++ description of the function names. Use the commands below to get the next
display.

copy histogram to /tmp/SPA_results noappend
!cat /tmp/SPA_results | c++filt !in_browser

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To use the Software Performance Analyzer with C++ Programs

105

Note that column alignment is affected after using the above commands.

Software Performance Analyzer Wed Aug 11 14:02:58 1993

Histogram: Function Duration exclude profiled Run Time: 0:54
Name(sort?_time)________________________|__Time__|__%___0%_____20%_____40%___
 15 fnIdle(void) | 19.8 s| 35.98|**************
 7 Display::d_move(int,int) | 14.2 s| 25.75|**********
 10 Display::d_printf2s(char*,char*) | 10.8 s| 19.55|********
 42 Display::showBuf(char*,char*) | 9.0 s| 16.38|*******
_Undefined_Addresses______________________|__61.7ms|__2.11|____________________
 Profiled Absolute | 55.0 s| 100% 0% 20% 40%

Now run the following commands to reformat the display:

copy histogram to /tmp/SPA_results noappend
!cat /tmp/SPA_results | c++filt | cut -c1-42 >/tmp/SPA.start! in_browser
!cat /tmp/SPA_results | c++filt | cut -f2,3,4 -d\| >/tmp/SPA.end! in_browser
!paste /tmp/SPA.start /tmp/SPA.end !in_browser

The display will be rearranged to look something like this:

Software Performance Analyzer Software Performance Analyzer
 Wed Aug 11 14:02:58 1993

Histogram: Function Duration exclude profi Histogram: Function Duration exc
Name(sort?_time)________________________ __Time__|__%___0%_____20%_____40
 15 fnIdle(void) 19.8 s| 35.98|**************
 7 Display::d_move(int,int) 14.2 s| 25.75|**********
 10 Display::d_printf2s(char*,char*) 10.8 s| 19.55|********
 42 Display::showBuf(char*,char*) 9.0 s| 16.38|*******
_Undefined_Addresses______________________ __61.7ms|__2.11|________________
 Profiled Absolute 55.0 s| 100% 0% 20% 40

In summary, if you have a Native c++filt(1), or a command line utility to reformat
the C++ names, then you can add the above commands into a command file. An
action key can be used to run this command file to create displays that are easier to
read.

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
To use the Software Performance Analyzer with C++ Programs

106

Defining C++ functions

To selectively define events (functions to measure), you can use features of the
Define Events dialog box, obtained by entering: Events→Define Events.... You
can specify the file names from which to extract functions, or you can enter a
pattern to be matched for the base class name from which to look for functions.

For example, to define events for all of the functions in "main.cxx", unselect the
"Globals Only" toggle and enter "main.cxx:" in the "Symbol:" entry field in the
Symbolic Filter region.

To get all functions of the base class "Display", select the "Matching" option in the
"Pattern Filter" region and then enter "*DisplayF*" in the "Pattern:" entry field. Be
sure to clear the "Symbol:" option or select "Globals Only" in the Symbolic Filter
region.

For additional help, refer to the description of the Define Events dialog box in
Chapter 9, or to the help screen for "Dialog Box: Define Events".

Chapter 5: Supporting Tasks that Add Flexibility to Performance Measurements
Defining C++ functions

107

108

6

Measurement Problems

The problem-solving information in this chapter is to help you with problems you
may encounter while trying to run the Software Performance Analyzer.
Problem-solving information to help a service technician is presented in Chapter 17
of this manual.

109

Problems discussed in this chapter include:

• Software Performance Analyzer won’t turn on.

• Symbols not loaded in emulation data base.

• Software Performance Analyzer won’t make a measurement.

• Incorrect measurement results.

• Data not saved with profile specification.

• Appearance of the Event Rate Overflow message.

• Appearance of the Stack Overflow message.

• Appearance of the Event Rate Underflow message.

• Histogram or table updated in small blocks during the measurement.

• Display often freezes for several seconds during a measurement.

• When events are defined for some functions, but not for others.

• When the Time and Time% columns do not total 100%.

• If the trigger (trig2) does not seem to work correctly.

• If "XSigServe" runs after you exit from the Graphical User Interface.

• Drag-thru menu selection is too slow with Graphical User Interface.

• Help screens cover display window with Graphical User Interface.

Chapter 6: Measurement Problems

110

If the Software Performance Analyzer won’t turn
on

Check that you loaded the proper configuration into the emulator.

Check that you loaded the absolute file and started it running before you attempted
to call the Software Performance Analyzer.

If symbols are not loaded

Check that the symbol data base does exist. To check the symbol data base:

1 Enter "!ls" on the command line and see if the file "<FILENAME>.Ys" exists
in your present working directory ("<FILENAME>.Ys" is the symbol data
base).

2 If "<FILENAME>.Ys" exists, enter:
load symbols <FILENAME>.

3 If "<FILENAME>.Ys" does not exist, enter
!srubuild <FILENAME> .
Then enter: load symbols <FILENAME>.

Recompile your program.

• Enter: !make runtest

Chapter 6: Measurement Problems
If the Software Performance Analyzer won’t turn on

111

If the Software Performance Analyzer won’t make
a measurement

Check that events are defined.

Check that events are selected.

Check that the emulator is still running your program.

Check that trig1 has occurred if the measurement is set up to wait for trig1.

Check to see if you have an enable specification and the enable has occurred.

If measurement results are incorrect

Check if the emulator reported a slow clock.

Check if the emulator was running in its monitor program during the measurement.
Time spent running in the monitor program is added to the totals measured in some
duration measurements. Refer to Chapter 7 for a discussion of the effects of the
emulation monitor on activity measurements and duration measurements.

Check if prefetching or recursion have caused a problem. Refer to the reference
information about prefetch and recursion in Chapter 7.

Check if the cache of your emulation processor is turned on. If it is, either turn it
off, or refer to Chapter 7 for information on how to use markers to overcome the
effects of an enabled cache.

Chapter 6: Measurement Problems
If the Software Performance Analyzer won’t make a measurement

112

Check if you are making measurements in a real-time operating system.
Function-duration and interval-duration measurements require a special setup when
they are made in a real-time operating system. You must ensure that the
measurement of duration is only made when the task of interest is active. HP
recommends you set up your operating system to notify you when it activates and
deactivates the task of interest by having it write to a pair of variables (such as:
start_task2, and end_task2). Then you can use the enable/disable feature of the
Software Performance Analyzer to ensure that durations are only recorded when
the task of interest is active (such as: enable on start_task2, and disable on
end_task2). Refer to the paragraph titled "To prepare for a measurement of
durations within limited regions of execution" in Chapter 2 of this manual.

You can obtain additional information to help you understand your measurement
results by using your emulators emulation-bus analyzer. Trace on the addresses of
the events that produce confusing results (trace on event-start and event-end
addresses). The trace list of the emulation-bus analyzer will show what the
Software Performance Analyzer is trying to measure.

For additional information, refer to the online help information available by
choosing Help→General Topic ..., and selecting Real-Time OS Considerations
from the Help index. Using the command line, enter help real_time_OS.

Chapter 6: Measurement Problems
If measurement results are incorrect

113

If the Software Performance Analyzer did not
save data when it saved its profile specification

Check to see if you changed any measurement specification after capturing the
data. The data will only be saved if the setup used to capture it has not been
changed. Changes to any of the following specifications will prevent the Software
Performance Analyzer from saving its data:

any setup_measurement command

a define command

a delete command

a time_range change command

a select command

an unselect command

an expand command

a load command

a set status qualifier command

a profile command that produced no output

Chapter 6: Measurement Problems
If the Software Performance Analyzer did not save data when it saved its profile

114

If the Event Rate Overflow message appears on
the display

Check to see if your program is short, having only a few functions that repeat so
often that the Software Performance Analyzer had insufficient time to calculate the
time and record the measured data.

Check if your program enters a loop that executes a few small functions several
thousand times, allowing insufficient time to calculate and record measured data.

Unexpand one or more events in your table or histogram, if events are presently
expanded.

Unselect a few of the functions that are being called most often, or select fewer
functions.

The Software Performance Analyzer may be thought of as a microprocessor trying
to keep up with your target microprocessor. Normally, the Software Performance
Analyzer has an advantage because it is examining fewer functions than the total
number of functions that are executing. The Software Performance Analyzer also
typically has an advantage because it only looks for entry and exit pairs of
addresses (not all of the addresses) of functions or intervals.

Once an entry and exit pair have been found, the Software Performance Analyzer
must calculate the time and record the statistics for that pair. In normal test
conditions, there is sufficient time to do the calculations and record keeping.

If your program is short and has only a few functions that execute repeatedly, or if
your program enters a loop that executes a few small functions several thousand
times, the Software Performance Analyzer may not be able to perform its
calculations and keep up with the incoming events. In this case, the incoming
events are stored in an internal buffer. If this buffer becomes full, the Software
Performance Analyzer stops gathering events temporarily while it processes all of
the events in the buffer. When the buffer is empty, the Software Performance
Analyzer resets and starts gathering events again.

When events are expanded in a table or histogram display, additional processing
time is required. This requirement for additional processing time might cause
event rate overflow to occur.

Chapter 6: Measurement Problems
If the Event Rate Overflow message appears on the display

115

When event rate overflow occurs, many event entry and exit points can be lost.
The Software Performance Analyzer operates in a sampling-like mode. You can
determine the approximate amount of sampling that has occurred by comparing the
run time shown at the top of the display with the profiled time shown at the bottom
of the Time column. For example, if the run time is 2 minutes and the profiled
time is 60 seconds, the sampling is about 50 percent.

If an enable and disable pair are specified and event rate overflow occurs, the
measurement will resume after the events buffer has been processed, but the
Software Performance Analyzer may be disabled. The Software Performance
Analyzer keeps track of whether it is enabled or disabled even during periods of
event rate overflow. The amount of time shown as the disable time will be
approximately correct after an event rate overflow has occurred.

The time lost while the Software Performance Analyzer is not gathering events is
deducted from the total execution time. Some additional time is typically added to
the Undefined Address time. The time percentages shown might not be exactly
correct. The max, min, and mean times recorded for the events will be correct for
the data they have captured.

The message, "Event rate overflow" will be shown on the table or histogram
whenever an event rate overflow has occured during a measurement. The same
message will appear on the Status line only during the time the overflow condition
is occurring.

The search for a trigger event (to generate trig2) is not affected by an event rate
overflow condition.

Chapter 6: Measurement Problems
If the Event Rate Overflow message appears on the display

116

If the Stack Overflow message appears on the
display

Add NOP padding between functions in your source file to prevent function start
addresses from appearing as unused prefetches.

Unselect events that represent alternate functions in the source file, and rerun your
test. You can reselect these alternate events and unselect the others in a later
measurement.

The stack overflow status message appears in function-duration measurements
when the appropriate exit points are not found for events whose entry points are
already in the stack. The internal stack of the Software Performance Analyzer is
1000 states deep and behaves like a function-call stack. If you have defined
functions with incorrect exit points, or if extra entry points are prefetched in a
unique way, the stack will fill up with entry points. This will happen if your
compiler has placed the exit point of one function together with the entry point of
another function at the same program address (such as the same long-word address
in the program memory of a 68020 microprocessor). Now assume that the
Software Performance Analyzer is only measuring the second function. (The
Software Performance Analyzer will not allow both functions to be measured
because they overlap.) Because the exit point and entry point are both fetched
together in the same fetch cycle, the Software Performance Analyzer will record a
function entry anytime the long-word address is fetched. This will occur even
when the long-word address is being accessed simply to obtain the exit of the
previous function.

Normally, the problem of stack overflow can be corrected by separating the
functions from one another by inserting some NOP instructions between them. A
second method you can use to correct the problem is to isolate the functions that
cause the problem. Do this by unselecting groups of functions and trying to make
the measurement again. You can reselect the offending functions to include them
in later measurements with other functions. A third method you can use to correct
this problem is to adjust the definition of the start and end of the function. Refer to
the paragraphs that describe steps you can take to correct for unused prefetches in
Chapter 7.

When the stack overflows, the time associated with the events in the stack will be
added to the event named, "Undefined Addresses".

Chapter 6: Measurement Problems
If the Stack Overflow message appears on the display

117

The search for a trigger event (for trig2) is not affected by a stack overflow
condition.

If the Event Rate Underflow message appears on
the display

The simplest way to fix an event rate underflow condition is to select at least one
function that is executed a least once every second.

A second solution may be to use the enable and disable pair to disable the Software
Performance Analyzer when it is running in the block of functions that you don’t
care to measure.

A third solution may be to create interval events to represent the events you want to
measure and use the interval duration measurement mode. Interval duration
measurements have no minimum rate requirement, but they also don’t correct for
common prefetch conditions.

Function duration measurements need events (entry or exit points) to occur at least
once every 1.25 seconds. This minimum event rate will keep the prefetch
correction circuitry in sync with the time counter. If the minimum event rate is not
met, the event rate underflow message will appear and a few entry and/or exit
points will be lost. The effect you will see most often when event rate underflow
occurs is the lack of recording functions that last more than 1 second.

The time that is lost when an the event rate underflow occurs will be added to the
time shown beside the event named, "Undefined Addresses".

The search for a trigger event (to generate trig2) is not affected by an event rate
underflow condition.

Chapter 6: Measurement Problems
If the Event Rate Underflow message appears on the display

118

If only small blocks of the histogram or table are
updated during the measurement

Network transfer rates might affect the display-update process of the Software
Performance Analyzer. If you are using the Software Performance Analyzer
through an RS-232 network, the transfer rate of the network will affect your
display. HP recommends you do not use the Software Performance Analyzer
through an RS-232 network.

The Software Performance Analyzer updates its display one time each second
while a measurement is in progress. The display-update process takes about 0.4
second. The transfer rate of RS-232 is too slow to supply all of the information
needed to completely update your screen in one 0.4-second period. Therefore, the
display of measurement results are updated in a phased process. You will see a
block of your display updated each second. At any given moment, some of the
information will be current and the rest of it will be old. The only way to overcome
the phased-update problem is to work through a faster network. If you are using
the Software Performance Analyzer through a local-area network (LAN), your
display will be updated correctly.

If the display often freezes for several seconds
during a measurement

Check to see if the recalculation of stability is causing the problem. Each time the
Software Performance Analyzer recalculates stability, it freezes its display-update
process. If you have included many events in your measurement, the process of
recalculating stability may freeze the display-update process for several seconds.
You can make recalculations of stability happen less often, or you can turn off the
recalculation altogether.

Examples To change the stability recalculation, try one of these commands:

display stability after_every 120 seconds
display stability off

Chapter 6: Measurement Problems
If only small blocks of the histogram or table are updated during the measurement

119

If events are not being defined for some
functions, but are for others in a source file

Check the error_log display for additional information on how many events were
defined.

Check to see if the problem is listed as overlapping events in the error_log. The
problem of how overlapping events can occur is explained below.

Many microprocessors fetch operands on long-word boundaries. This is no
problem for the Software Performance Analyzer, except when the compiler places
the end instruction of one function and the start instruction of another function
together in the same long word. For the Software Performance Analyzer to work
properly, the compiler must place the start addresses and end addresses of all
symbols (functions) in different long-word addresses. Otherwise, the Software
Performance Analyzer reports overlapping addresses for the two events whose start
and end addresses are together in the same long word.

With HP 64000 AxLS compilers, separating function-end and function start
addresses into different long words is done by adding "debug" options (-OG) to
your compiler command. The debug options cause the compiler to insert NOP
instructions between the functions when it creates the executable file.

The same problem occurs if your microprocessor fetches byte instructions on word
boundaries (the exit of one function and the entry of another function might be
placed in the same 16-bit word). Again, the Software Performance Analyzer needs
unique addresses for each function entry and function exit.

If you cannot add NOP instructions between two functions, you can still use the
Software Performance Analyzer. Use the HPSPAADJUST feature to offset the
points where the Software Performance Analyzer recognizes function-start and
function-end addresses. HPSPAADJUST offsets the recognition addresses to
points within the functions instead of the actual function-start and function-end
addresses. The HPSPAADJUST option must be exported at the shell. You will
need to redefine your events after using the HPSPAADJUST feature in order to
record new event-start and event-end addresses in the events list. Refer to the
information that describes steps you can take to correct for unused prefetch in
Chapter 7, or in the online help screen of the Software Performance Analyzer.

Chapter 6: Measurement Problems
If events are not being defined for some functions, but are for others in a source file

120

If the content of the Time and Time% columns do
not total 100%

Sometimes the content of the columns total more than 100% and sometimes they
total less than 100%. The Time and Time% columns typically total 100% in the
following measurements:

• Program Activity

• Memory Activity

• Function Duration excluding all calls

• Function Duration excluding profiled calls

The Time and Time% columns typically total more than (or less than) 100% in the
following measurements:

• Function Duration including all calls

• Interval Duration

In activity measurements, the sampling process may cause the percents to fluctuate
for a period of time during the measurement. Therefore, the percents will not
always total 100%.

In duration measurements, if an event rate overflow or underflow condition occurs,
the column contents may not total 100%.

The percents displayed in the Time% column show the percent of execution time
used by each individual function compared to the profiled time (not compared to
the execution time of all the other functions). In a duration measurement including
calls, the time recorded for a function will include the time spent executing
functions that it called. If these called functions are also displayed, their times will
also be shown. This means the execution time of a function will be added to its
event name and also to the event names of any functions that called it. Because of
this, the summation of Time and Time% of functions can easily exceed 100 percent.

As a simple example, consider the case of a looping program that calls three
identical functions: afunc, bfunc, and cfunc. If each function is called serially, you
might expect to see 33% of the total time spent in each of the three functions, and
that is what the Software Performance Analyzer will display.

Chapter 6: Measurement Problems
If the content of the Time and Time% columns do not total 100%

121

Now consider the case of a looping program that calls only afunc, and afunc (in
turn) calls only bfunc, and bfunc (in turn) calls only cfunc. The call sequence
might look like this:

 afunc-start

 bfunc-start

 cfunc-start

 cfunc-end

 bfunc-end

 afunc-end

 afunc-start

 bfunc-start

 cfunc_start

In the above example, afunc including calls could be using 99% of the profiled
time, bfunc including calls could be using 66% of the profiled time, and cfunc
could be using 33% of the profiled time. This is what the Software Performance
Analyzer will display.

If you were to define intervals for each of the three functions above, the interval
duration measurement would yield the same results.

If you were to switch to the excluding calls measurement mode, you would again
see afunc, bfunc, and cfunc each using only 33% of the profiled time.

In very small programs, a recursive function can show a high Time% because each
recursive call is added to the time of the called function as well as the times of all
of the calling functions in the recursive chain. The summation of times in the
recursive chain can be greater than 100% for a recursive function. This is typically
true after you have identified the function as recursive in the Events list.

For example, consider the measurement of a single recursive function (afunc) that
recursively calls itself 3 times. If the function is not declared recursive, the
recursive nature of the function may be lost due to prefetch correction, and the
Time % may indicate 99% (the number of calls will be displayed as 1/3 of the
actual number of calls).

If the function is declared recursive, the Time % may indicate 198%, and will be
the result of the summation of 99% for the first call of afunc, 66% for the second
call of afunc, and 33% for the third call of afunc.

Chapter 6: Measurement Problems
If the content of the Time and Time% columns do not total 100%

122

If the trigger (trig2) does not seem to work
correctly

The trig2 trigger is generated by the Software Performance Analyzer after the
specified time of the trigger event has been exceeded. The trigger timer (for trig2)
starts on the first occurrence of the start address of the interval or function to be
measured. The timer continues to count until the end address is found.

If the sequence A-start1, A-start2, A-start3, A-end1, A-end2, A-end3 occurs in
your executable file, and you have specified: "setup_measurement drive trig2_after
100 msec A" the trigger timer will measure the time from A-start1 to A-end1. If
the specified time of the interval is exceeded (100 msec in the command above),
the trigger will be generated at the moment the time is exceeded.

The trigger timer does not correct for prefetch or recursion, does not exclude calls
to other functions, and does not exclude time spent servicing interrupts. The only
time period that the trigger timer will exclude from its count is time that the
Software Performance Analyzer is disabled, if any. In other words, the trigger
timer will only be frozen between a disable address and the next enable address.
The disable/enable feature can be used to exclude interrupts from a trigger event,
provided that the enable and disable are properly defined. For example,
"setup_measurement disable start_address interrupt", and "setup_measurement
enable end_address interrupt".

The interval duration measurement and the trigger timer will record the same time
periods, except in the case of an event rate overflow.

A measurement of function duration including calls will typically record
approximately the same time period as the trigger timer, except that function
duration measurements are corrected for prefetch.

A measurement of function duration excluding calls will always record a different
time from the trigger timer because the trigger timer does not exclude calls to other
routines.

Chapter 6: Measurement Problems
If the trigger (trig2) does not seem to work correctly

123

If the "XSigServe" process continues to run after
you exit the Graphical User Interface

This is a normal condition. The "XSigServe" process translates kill characters such
as ctrl-c and ctrl-\ to kill signals that are sent to the interface. It continues to run for
each emulation session. The "XSigServe" process will die when you log out. It
does not use system cycles unless the graphical user interface is running. You can
kill the "XSigServe" process manually, if desired.

If the drag-thru menu selection is too slow when
using the Graphical User Interface

Use "single click" menu selection, as follows:

1 Move to the menu bar item you want to select and click the mouse button
(instead of click-hold-drag). This leaves the menu "tacked open".

2 Now move the mouse pointer to the next menu selection and click again.

Use this method for Sun OpenWindows environment. The low resolution of the
Sun optical mouse may make "drag-thru" selections inaccurate.

If the help screens cover the display window
when using the Graphical User Interface

This is a normal condition. When called, the help screens first appear on top of the
display window where they were called. You can move the help selection box and
the help text browser window to unused areas of your display using the normal
window move function. Once you have moved these display windows, they will
stay in the new locations throughout the session.

Chapter 6: Measurement Problems
If the "XSigServe" process continues to run after you exit the Graphical User Interface

124

Part 3

Measurement Concepts

125

This part of the manual contains the following chapters:

Chapter 7. Software performance measurement techniques and difficulties

Chapter 8. How good are your test results?

Refer to the HP manual titled, "Concepts of Emulation and Analysis" for a greater
understanding of general emulation and analysis concepts

Part 3

126

7

Software Performance Measurement
Techniques and Difficulties

This chapter provides an understanding of what the Software Performance
Analyzer is and how it performs its work, along with explanations of problems it is

127

designed to overcome. The following information is covered in detail in this
chapter:

• What the Software Performance Analyzer does.

• Kinds of problems that can be solved using performance analysis.

• How to prepare your program for Software Performance Analysis.

• How the Software Performance Analyzer decides whether to include events
from your events list in a measurement.

• How the Software Performance Analyzer determines whether your event is a
function or a variable.

• How the Software Performance Analyzer makes activity measurements.

• How to define additional status types for your emulator.

• Effects of the emulation monitor on activity measurements.

• Using delay in activity measurements.

• Effects of reset on activity measurements.

• How the Software Performance Analyzer makes duration measurements.

• How function-duration measurements use an internal stack

• Comparing measurements of time, calls, and cycles.

• Using expanded time ranges.

• Generating triggers during measurements.

• Effects of reset on duration measurements.

• Effects of the emulation monitor on duration measurements.

• Using delay in duration measurements.

• Using disable/enable pairs in duration measurements.

• How a cache can affect performance measurement results.

• How unused prefetches can affect performance measurement results.

• How the Software Performance Analyzer measures recursive functions.

Chapter 7: Software Performance Measurement Techniques and Difficulties

128

• Using HPSPAADJUST to overcome problems caused by prefetch.

• Using markers to overcome problems caused by an enabled cache and/or
prefetch

• Overcomming measurement difficulties that are unique to Intel 80960 Sx.

• Overcoming difficulties measuring processors that manage memory.

• Overcoming the effects of multi-byte return instructions.

• Analyzing software performance in assembly language files.

What does the Software Performance Analyzer
do?

The Software Performance Analyzer records information about the execution of
events. Events represent addresses in the absolute file. Events can be defined to
represent functions or static variables. You can also define events to represent
broad ranges of address space, and you can define events to represent intervals
between two addresses.

Two kinds of measurements are made by the Software Performance Analyzer:
activity measurements, and duration measurements. Both measurement types
record time spent executing selected events.

The Software Performance Analyzer can show you a histogram or table that lists all
of the events that were included in the measurement, along with all of the recorded
data for each event. This way, you can compare the performance of each of the
selected events.

The Software Performance Analyzer can give greater details about the execution of
each event when making duration measurements. This is done by adding a set of
time ranges to an event. Executions of the event are then mapped into these time
ranges. These time ranges show whether or not executions of the event are
completed within the same range of time, or whether there are great differences
between the time required to complete one execution of an event and the time
required to complete another execution of the same event.

Chapter 7: Software Performance Measurement Techniques and Difficulties
What does the Software Performance Analyzer do?

129

The process of Software Performance Analysis

The Software Performance Analyzer makes its measurements on an executable file
running in emulation. The Software Performance Analyzer works through the
emulator. The symbols in the emulator symbol data base are used by the Software
Performance Analyzer when it defines events to represent functions and static
variables in the executable file. If you define an event to represent a function,
static variable, range, or interval, the Software Performance Analyzer will check
your definition against the emulator symbol data base to make sure the symbol
name and symbol type in your definition agree with the symbols data base. Events
that are entered as hexadecimal values will be accepted without checking against
the emulator symbol data base, but the Software Performance Analyzer will check
to make sure your definitions do not overlap addresses already represented by
events in the events list.

What kinds of problems can be solved by using
the Software Performance Analyzer?

The Software Performance Analyzer can quickly identify slow-running functions in
programs that have many functions. It can also compare relative efficiencies of
portions of your program with one another.

The Software Performance Analyzer helps a designer understand the execution of
software. Software Performance Analyzer measurements may be taken when a
designer needs to answer the question, "Why does it take so long to execute my
program?" "Which function or functions are taking extra-long times to execute?"
Once the designer identifies the functions that are slowing down the system, the
designer can then analyze those functions to correct problems so that they run
faster.

The Software Performance Analyzer will often be used by someone who
recognizes that there is a problem in the software that causes it to take too long to
execute, but the program is huge. The Software Performance Analyzer shows you
which routines (or even which libraries) are slowing execution of the program.
The Software Performance Analyzer helps identify the functions and libraries that
should be optimized.

Chapter 7: Software Performance Measurement Techniques and Difficulties
The process of Software Performance Analysis

130

Another user of the Software Performance Analyzer may be someone who has
written a block of code with several functions and simply wants to see how
efficiently each of the functions runs by comparing each function against all the
other functions. The Software Performance Analyzer will show side-by-side
comparisons of up to 84 functions, indicating max, min, and mean execution rates.

The table and histogram displays show the functions in your software, along with
the amount of time spent executing each one of them. You can sort the list of
functions to place those that took the most time at the top of the list. With this
information, you can quickly find the most time-consuming functions in your
source files.

The following typical measurement quickly identifies a function that has a problem.

1 A measurement of function durations was made with: Profile→Profile..., and
Function Duration Excluding Profiled Calls was selected in the dialog box.

2 The measurement was stopped when the desired information stability was
obtained: Profile→Stop Profile

3 The events were sorted by time: Display→Sort Events→Time

4 The following histogram was obtained. The "apply_productions" function is
the one to investigate to see why it is taking so much system time.

Histogram: Function Duration exclude profiled Run Time: 1:11 Stability:100%
Name(sort:_time)_____|__Time__|__%___0%_____20%_____40%_____60%_____80%___100%
 2 apply_productions | 36.8 s| 51.49|*********************
 31 stack_library | 10.4 s| 14.59|******
 27 scan_string | 5.0 s| 7.05|***
 19 math_library | 3.3 s| 4.64|**
 20 move_byte | 3.1 s| 4.39|**
 23 report_errors | 3.1 s| 4.38|**
 21 outputline | 1.9 s| 2.60|*
 5 clear_buffer | 1.7 s| 2.41|*
 26 scan_number | 1.4 s| 1.95|*
 15 input_line | 1.3 s| 1.81|*
 16 lookup_token | 1.2 s| 1.66|*
 33 syntax_check | 681.2ms| 0.95|
 24 report_result | 581.3ms| 0.81|
 28 semantic_check | 229.2ms| 0.32|
__12_get_next_token____|_174.7ms|__0.24|__
 Profiled Absolute | 71.5 s| 100% 0% 20% 40% 60% 80% 100%

Chapter 7: Software Performance Measurement Techniques and Difficulties
What kinds of problems can be solved by using the Software Performance Analyzer?

131

Preparing your program for Software
Performance Analysis

There are a variety of compiler issues that must be addressed to ensure that a
program is suitable for analysis by the Software Performance Analyzer. The
following list is a brief synopsis of the some of those issues. Refer to the
Measurement Problems chapter in this manual for additional information about
compiler issues that affect performance measurements.

• Symbols must be available to the emulation system. Compile your programs in
a manner that allows symbols to be available to the emulation system. In
particular, the Software Performance Analyzer will need to use compiler-level
function and static variable symbols. Within the symbol database, the filenames
that compose your program should be preserved as full path filenames. Some
compilers only record the base filename and not the full path to the file unless
an option is specified. In those compilers, be sure to specify that option.

• The Software Performance Analyzer assumes that the functions have a single
entry point and a single exit point. In addition, the entry is assumed to be the
start of the address range of the function and the exit is assumed to be the end of
the address range of the function. If you have a compiler option that guarantees
that the function will only have one exit point, then use that option. Also,
assembly functions that you want to measure should be set up this way. Refer
to the section entitled "Analyzing software performance in assembly language
files" in this chapter for additional information.

• Overcome multi-byte return instructions. If you have an option in your
compiler that allows you to use single-byte instead of multiple-byte return
instructions, as is available with some Intel and Intel-like microprocessors, it is
best to use the single-byte return. If you elect to use a multiple-byte return
instruction, then you can use the HPSPAADJUST shell variable to correct for
possible overlap problems that may occur. If you are using both single-byte and
multiple-byte return instructions in functions that you want to include within a
performance analysis, you will need to use markers to make the desired
measurements. Refer to the section titled "Overcoming the effects of multi-byte
return instructions" later in this chapter.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Preparing your program for Software Performance Analysis

132

• Overcome function address overlap. If possible, direct your compiler to pad a
few NOP’s between functions. If you can pad a few NOP’s (3-NOP’s is ideal)
between functions, you can ignore the effects of prefetching and function
address overlaps. If you can at least long align each function, you can avoid the
function address overlap problem. Function overlap occurs when the return
instruction of one function is packed in the same long word with the start
instruction of the following function. This problem typically occurs when using
a Motorola 68020, 68030, or 68040 microprocessor. The HPSPAADJUST shell
variable, which allows you to adjust the start and end addresses of functions,
will correct for this problem.

• Use markers. If you are using a Motorola 68040 or Intel 80960 microprocessor,
you must use markers to make function-duration measurements. The HP
marker preprocessor can simplify the task of adding markers in your files if you
are using an HP AxLS or MRI compiler. Refer to the man pages cc68040mt(1),
mcc68kmt(1), or mcc960mt(1) for complete details. Also, refer to the
discussion about markers in this chapter.

• Overcome effects of caches. If you want to make performance measurements
with the instruction and data caches turned on, you will have to compile your
files using markers. You must also allow the data to write through the cache so
that the markers will be available to the Software Performance Analyzer. Refer
to the discussion about markers and setting the HPSPAMARKERS shell
variable to tell the Software Performance Analyzer that you are using markers.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Preparing your program for Software Performance Analysis

133

How the Software Performance Analyzer picks
events to include in a measurement

To be included in a measurement, an event must meet two requirements:

• It must be selected (have *, ?, or r beside its name in the events list).

• It must be the type(s) appropriate for the measurement.

How the Software Performance Analyzer
determines whether your event is a function or a
variable

When you enter a definition for an event to represent a function or static variable,
the Software Performance Analyzer accesses the symbols data base for the
executable file running in emulation and checks the event name and event type
against the content of the symbols data base. Your definition is accepted if the
symbol name and type match a symbol in the data base. If not, the Software
Performance Analyzer will question your definition. This safeguard helps ensure
the accuracy of your measurement results by making sure they are made on valid
events.

Measurement Type Appropriate Event Type

Program Activity functions and ranges

Memory and IO Activity static variables and ranges

Interval Duration intervals

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer picks events to include in a measurement

134

How the Software Performance Analyzer makes
activity measurements

Activity measurements are normally the first measurement to use when
investigating a problem because they can collect data about a large number of
events. Activity measurements are overview-type measurements. They are
designed to give you a broad understanding of the time and memory bus cycles
required by various segments of your program. They identify the areas of your
program that use the most processor bus cycles and take the most time to execute.

Activity measurements are made by sampling. The sampling technique
concentrates the resources of the Software Performance Analyzer on one event at a
time, for about 2.5 milliseconds per sample. During one sample period, the
Software Performance Analyzer counts each bus cycle that fits within the address
range of the active event, and is of the specified type. In addition, a timer is started
at the beginning of each bus cycle. The timer records time until the bus cycle exits
or an appropriate termination condition is found.

The Software Performance Analyzer makes two types of activity measurements:
program_activity, and memory_and_io_activity. The following paragraphs discuss
the two types of activity measurements in detail. Additional details and examples
of activity measurements are given in the online help screens of the Software
Performance Analyzer; choose Help→General Topic ..., and from the Help Index,
select Duration and Activity Distinctions.

Program activity

This measurement records instruction execution within ranges of addresses. Events
that represent functions and ranges can be included in this measurement. Events
that represent variables and I/O addresses, or events that represent intervals, cannot
be included in this measurement.

When measuring program activity (see diagram next page), the Software
Performance Analyzer checks each opcode fetch to see if it is within the address
range of the present active event. If an opcode is fetched from the address range of
the active event, its event count is incremented, and a timer is started. All reads,
writes, etc., are recorded as part of the active event until the next opcode is fetched.
If the next opcode is fetched from the same range of addresses, the count for the
active event continues to be incremented. If the next opcode is fetched from a
different address range, the timer and counter for the active event are turned off.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer makes activity measurements

135

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer makes activity measurements

136

Memory_and_io Activity

When measuring memory and I/O activity (see diagram below), the Software
Performance Analyzer records the number of read, write, or other
processor-specific bus cycles (as specified by the user), and the amount of time
required to execute each of them. Events that represent functions or intervals are
not included in this measurement.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer makes activity measurements

137

Example of an activity measurement

This example assumes the following two events have been defined:
Event1 = the address range of function1.
Event2 = the address range of an array of 80 integers.

Assume your first measurement is a program activity measurement that includes
event1. During the first sampling period for event1, function1, is executing. The
Software Performance Analyzer might record 2453 cycles and 68.0 usec of time.

The next time the Software Performance Analyzer samples activity for event1,
function1 might not be active. In this case, the Software Performance Analyzer
will record 0 cycles and 0 time. After enough sample periods have been given to
event1, the Software Performance Analyzer activity measurement will record an
average of how much time function1 is executing in relation to all other events.

The power of program activity measurements is that they allow you to define
events that cover large segments of memory. You can define an event for each of
the libraries of a program; the Software Performance Analyzer can quickly
determine which library is using the most processor resources. With this
information, you can define events to represent each of the functions in the slow
library and make a new profile measurement to find out which function is taking
too much time.

Assume your next measurement is a memory and I/O activity measurement that
includes event2. During the first period that the Software Performance Analyzer
samples activity for event2, it records 20 writes. The Software Performance
Analyzer would show 20 cycles, and perhaps 10 usec of time (20 x 500 nsec) for
event2. Each sampling period for event2 will probably record a different time, but
after enough samples have been taken, the Software Performance Analyzer will be
able to show how much time, on average, is spent executing event2 during any
given second of program execution.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Example of an activity measurement

138

Effects of the emulation monitor on activity
measurements

If the microprocessor is running the emulation monitor program, a variety of
different results may be obtained, depending on the type of monitor program
(foreground or background) and the type of measurement (program or memory
activity). To obtain the most accurate activity measurement, avoid using the
emulation monitor, or use it sparingly because some monitor activity might be
recorded as event activity during a measurement.

Using delay in activity measurements

You can delay the start of an activity measurement by setting up the Software
Performance Analyzer to wait for a trigger from the emulation bus analyzer or to
wait for its own enable specification to be satisfied. If you specify both a trigger
and an enable, your measurement will not start until first the trigger is received and
second the enable specification is satisfied, in that order.

Effects of reset on activity measurements

Activity measurements are made with the microprocessor running your target
program. If the microprocessor is reset, the activity measurement will be
suspended. If you start the microprocessor from reset, the Software Performance
Analyzer will not be able to recognize an enable condition (if you set up an enable
specification) during the first 5 milliseconds after the microprocessor begins
running from emulation reset.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Effects of the emulation monitor on activity measurements

139

Defining additional status types for your emulator

The most common status conditions that will be seen by the Software Performance
Analyzer are defined in a file that is supplied with your analyzer software. If you
want to define additional status conditions, you can edit the status64708A file
associated with your emulator and add the desired status. The status64708A file
contains instructions that show you how to add status entries.

Status files (status64708A) are located in directories named
$HP64000/inst/emul/<product_number>/etc.
Where $HP64000 is a shell variable defining the location of the hp64000 directory,
and <product_number> is in the form 64742A, 64747A, ...

Be careful when adding status entries to the file. Do not change the existing status
entries or the Software Performance Analyzer will not operate properly.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Defining additional status types for your emulator

140

How the Software Performance Analyzer makes
duration measurements

Duration measurements are real-time, non-sampled measurements. They
continuously capture information about all of the events selected in the
measurement (unlike activity measurements which sample information for only one
event at a time). The Software Performance Analyzer records the number of calls,
execution duration, and maximum and minimum execution times for each event.
Two types of duration measurements can be made by the Software Performance
Analyzer: interval duration, and function duration.

During a duration measurement, the Software Performance Analyzer waits until it
sees the entry address of one of the selected events. It measures elapsed time until
it sees the exit address of the same event. At the end of the measurement, the
Software Performance Analyzer will show you how much time was spent
executing each of the selected events.

The following paragraphs discuss the two types of duration measurements.
Additional details and examples of duration measurements are given in the help
screens of the Software Performance Analyzer; choose Help→General Topic ...,
and from the Help Index, select Duration and Activity Distinctions.

Interval duration

Interval events have a start address and an end address. When the Software
Performance Analyzer makes an interval-duration measurement, it records the time
between the interval-start address and the interval-end address. These addresses
can be segments of an executable program, such as the start of function1, and the
end of function4. Intervals can be defined to have start addresses that are higher or
lower than their end addresses in the range of program code.

Intervals can also be defined using memory and I/O addresses. Interval-start and
interval-end addresses can be further qualified by including processor status in your
profile command. You can even define an interval that has the same address for
both the interval-start and interval-end addresses. This is useful if you want to
measure durations between writes to a selected variable.

Note that interval_duration measurements are not corrected for unused prefetches.
Refer to interval_duration measurements without prefetch correction later in this
chapter.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer makes duration measurements

141

Function duration

Function events represent individual functions in the source file. When the
Software Performance Analyzer makes a function-duration measurement, it
measures the execution time of selected source-file functions. In function-duration
measurements, you can have the Software Performance Analyzer:

• include all of the time spent executing code of other functions called by the
present function, and include all time spent servicing interrupts.

• exclude all time spent executing code of other functions called by the present
function, and exclude all time spent servicing interrupts.

• exclude all time spent executing code of other functions called by the present
function if that code is represented by an event selected in the measurement, but
include execution of code of other functions if that code is not represented by
any event selected in the measurement.

The illustration below shows a function-duration measurement of Afunc in each of
the three function-duration measurement modes. In the diagram, Afunc calls
Bfunc. When execution of Bfunc is complete, Afunc calls Cfunc. Afunc and
Bfunc are both being profiled in the measurement, but Cfunc is not.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer makes duration measurements

142

How function-duration measurements use an internal
stack

The Software Performance Analyzer uses an internal stack to make
function-duration measurements. This stack stores function-entry points to be
matched with function-exit points. Proper calculations of function durations
depend on the validity of this internal stack.

If multiple entry points occur or if exit points do not occur for entry points already
on the stack, the internal stack of the Software Performance Analyzer can yield
function durations that are inaccurate or even missing.

Consider the case where Afunc calls Bfunc which in turn calls Cfunc. If execution
is in the middle of Cfunc, the stack will contain Afunc.entry, Bfunc.entry, and
Cfunc.entry. When Cfunc.exit occurs, it will be matched with Cfunc.entry and the
duration of Cfunc will be calculated. Then Cfunc.entry will be removed from the
stack. This is the normal operation of the stack. As each exit point is found, the
corresponding entry point is found on the stack and the duration of the function is
calculated and accumulated.

Now consider the case described above (Afunc.entry, Bfunc.entry, and Cfunc.entry
are all on the stack), but Bfunc.exit and Cfunc.exit are not properly set up. The
Software Performance Analyzer finds Afunc.exit. It matches Afunc.exit with
Afunc.entry, yielding an appropriate time for Afunc, and then it purges Bfunc.entry
and Cfunc.entry from the stack.

If none of the exit points are found, the stack will grow until it overflows. The
internal stack is set at a size limit of 1000 deep. If two functions, Afunc and Bfunc,
are set up such that the exit points are never found, the stack will grow because
Afunc.entry and Bfunc.entry will always be added but never removed from the
stack.

Finally, consider the case of a recursive function, Dfunc, that has not been declared
recursive. Because the function is not treated as a recursive function, the multiple
entry points are ignored; only the first Dfunc.entry point is saved. Therefore, the
time associated with the total number of recursive calls to function Dfunc may be
summed into one call to function Dfunc. The extra Dfunc exits may be purged by
the hardware (because they are treated as prefetches), or they may be matched with
other Dfunc.entry points much earlier on the stack, creating erroroneous time
measurements.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer makes duration measurements

143

To summarize, if the Software Performance Analyzer seems to yield strange
results, there are two approaches you might try to solve the problem:

• Use the emulation-bus analyzer to trace a few of the function-entry and
function-exit points to verify that the functions are behaving in a stackable
manner. Remember that prefetch can cause strange problems; be sure you are
compiling in such a way to avoid prefetch.

• Use marker technology (discussed in this chapter); this will avoid the prefetch
and compiling restrictions altogether.

Comparing measurements of time, calls, and
cycles

Activity measurements record cycles and time. Cycles is a count of the bus cycles
that were executed within the address range of the event.

Duration measurements record calls and time. Calls is a count of calls to the
function or interval identified as an event.

Time is the length of time spent executing within the defined event.

The "cycles" information might show you that a particular module is running
slowly (a small number of bus cycles executed for the amount of time used). This
condition could identify an inefficient routine, for example, one that fetches
instructions or data from slow memory when the information is already available in
a cache or faster memory.

The "calls" information might show you that a particular routine is called an
unusual number of times. For example, you might find that a print routine is being
called to perform a print function one thousand times for each print that is needed.

The "time" information might show an event that normally completes in a few
milliseconds, but on rare occasions it takes several hundred milliseconds to
complete. You can trigger a trace in the emulation-bus analyzer if this event
exceeds normal execution time and find out why these rare executions take so
much time to execute.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Comparing measurements of time, calls, and cycles

144

EXPANDED time ranges

Expanded time ranges are available in duration measurements to let you look at the
execution of an event in greater detail. If you expand an event in a histogram or
table display during a measurement, each new time recorded for the event (whether
in an interval-duration or function-duration measurement) will be shown beside the
appropriate time range, as well as added to the total amount of time recorded for
the event.

Trigger generation

When making duration measurements, the Software Performance Analyzer can
generate a trigger. The trigger can be used to cause the emulator to break to its
monitor program. It can also be used to start a measurement in an associated state,
timing, or emulation bus analyzer. The trigger is supplied on trig2. The example
command below sets the analyzer to generate a trigger if the event named
"move_byte" runs continuously for at least 2 milliseconds:

setup measurement drive trig2_after 2 msec move_byte <RETURN>

Note that the trigger command always calculates its interval as an include_calls
time (even if the present measurement is function_duration exclude_calls). In
addition, the trigger command is not corrected for prefetch conditions. Prefetch
correction is discussed in detail at the end of this chapter.

Effects of reset on duration measurements

Avoid resetting the target microprocessor when making a duration measurement.
Duration measurements should be made with the microprocessor running your
target program. If the target microprocessor is reset for more than 1.0 second, the
current interval or function being measured will be deleted and the measurement
will be suspended. When the target microprocessor restarts, the measurement will
continue. All durations of functions or intervals occurring during the reset time
will be lost.

Chapter 7: Software Performance Measurement Techniques and Difficulties
EXPANDED time ranges

145

Effects of emulation monitor on duration
measurements

Avoid using the emulation monitor program, or using emulator features that require
the monitor program (such as, display memory) when making a function-duration
or interval-duration measurement. If the emulator switches from the target
program to its monitor program while measuring the duration of an event, the time
spent running in the monitor will be added to the time recorded for the duration of
the event. If you are making a duration measurement, excluding calls, and the
emulator switches to its monitor program, other error conditions can occur. If you
specify generation of trig2 after a duration of some event, and if the emulator runs
in its monitor program while that event is being measured, trig2 will be generated
in error.

Using delay in duration measurements

You can delay the start of a duration measurement by setting up the Software
Performance Analyzer to wait for a trigger from the emulation bus analyzer or by
specifying an enable condition to be recognized in the Software Performance
Analyzer. If you specify both a trigger and an enable condition, the measurement
will not start until first the trigger is received and second the enable condition is
found, in that order. The initial time (before the Software Performance Analyzer is
enabled) is not recorded.

Using disable/enable pairs in duration
measurements

If you specify a disable condition and an enable condition, any time spent disabled
during a measurement (between finding the disable condition and finding the next
enable condition) will be shown in the histogram or table beside "Disable time".
The initial disable time (before the first enable is found) is not recorded. Note that

Chapter 7: Software Performance Measurement Techniques and Difficulties
Effects of emulation monitor on duration measurements

146

"Disable time" only appears in tables and histograms when an enable/disable pair is
specified.

How a cache can affect Software Performance
Analyzer measurement results

Many microprocessors use a cache to store recently used instructions. By keeping
recently used instructions in a cache, the microprocessor can access these items if
they are used again without having to initiate external bus cycles. When the
microprocessor fetches an instruction, it checks to see if that instruction is already
in its cache, and if it is, it fetches the instruction from the cache and does not
perform any external bus cycles.

When the microprocessor is operating with its cache enabled, software
performance analysis is limited because the analyzer can only recognize activity
occurring on the external buses, and no bus cycles are performed to fetch
instructions that reside in the cache. Therefore, transactions involving the cache
will either be incomplete or in error. For example, if you are measuring interval
duration, the starting address of the interval may be placed in the cache the first
time it is called. After that, each time the interval is executed again, its starting
address may be obtained from the cache; the software performance analyzer will
not be able to measure any further executions of the interval.

Usually, you will want to disable the cache of the microprocessor when performing
software analysis of a program. In this way, all of the instructions executed by the
microprocessor will be fetched on the processor memory bus where they can be
recognized by the software performance analyzer. There is a way to measure
function durations and interval durations with the Software Performance Analyzer
when the cache is enabled; refer to the discussion on markers, later in this chapter.
Using markers is required when measuring function durations and interval
durations in an Intel 80960 Sx microprocessor because its cache is always enabled.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How a cache can affect Software Performance Analyzer measurement results

147

How unused prefetches affect measurements of
the Software Performance Analyzer

How unused prefetches affect activity measurements

Activity measurements will be affected if an address in the range of the active
event appears in an unused prefetch. This will typically add a small amount to the
count of functions when they are not actually executing. This has very little effect
on the overall accuracy of activity measurements. If you insert NOP instructions in
your source file to separate your functions from each other, activity measurements
for the functions will be completely accurate (slightly more correct than if you did
not insert the padding). If you insert NOP instructions between functions, you may
see slightly more activity recorded in the event called Undefined Addresses. This
additional activity is the prefetching of the NOP addresses.

How unused prefetches affect duration measurements

Unused prefetches can have a large effect on duration measurements. The
Software Performance Analyzer would have an easy time measuring the durations
of functions or intervals if it weren’t for prefetching (and recursion, discussed
later). It would simply start its clock when it saw the first address and stop its
clock when it saw the last address of a function or interval. Then it would record
the time on the clock.

Software Performance Analyzer measurements are more complicated when code is
executed by a processor that prefetches instructions and uses an instruction queue.
Consider the case when your processor prefetches through the end of one function
into the start address of the function you want to measure. You don’t want the
clock to start running from the occurrence of this unused prefetch.

Prefetch correction is designed into function-duration measurements (but not
interval-duration measurements) to remove this unused prefetch. Some types of
prefetches can be corrected by the circuitry and some types of prefetches are
removed by processes in the software of the Software Performance Analyzer. If
excessive numbers of prefetches occur that must be removed by the software, you
may see a message on the status line warning about stack overflow.

No prefetch correction circuitry or algorithm is foolproof. You must examine all
measurement results looking for errors that might be caused by prefetching in order
to properly interpret the results.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How unused prefetches affect measurements of the Software Performance Analyzer

148

Prefetch correction designed into function-duration
measurements

In function-duration measurements, prefetch correction circuitry is turned on. This
circuitry removes two of the following three types of unused prefetches. The
performance analyzer software removes most of the third type of unused prefetches:

 A
 | Function A loops back into A but prefetches through Aend
 ^ | and non-measured memory. Hardware prefetch correction
 | | will remove the prefetched Aends.
 -Aend
 Non-measured memory

 A
 | Function A loops back into A but prefetches through Aend
 ^ | and Bstart. Hardware prefetch correction will remove
 | | the prefetched Aends and Bstarts.
 -Aend
 Bstart

 Non-measured function

 | A non-measured Function loops back into itself but
 ^ | prefetches through Astart. Hardware prefetch correction
 | | will NOT remove the prefetched Astarts. A software
 | | process of the Software Performance Analyzer will
 | | normally remove most occurrences of this prefetch.
 -Non-measured end
 Astart

This provides proper prefetch correction for most functions, except recursive
functions (discussed later).

Interval-duration measurements without prefetch
correction

In interval-duration measurements, the prefetch correction circuitry used for
function-duration measurements is turned off. If you are measuring the duration
between two address points, an unused prefetch of an address point may start or
end the interval measurement. Interval-duration measurements record the time
between the first occurrence of the interval-start address and the first occurrence of
the interval-end address. For example, suppose your interval-duration
measurement records the time between address A and address B. Then consider
the following sequence of addresses: A,A,A,A,B,B,B. The interval-duration
measurement will measure from the first occurrence of A through the first
occurrence of B. All other occurrences of A and B will be ignored. If the first

Chapter 7: Software Performance Measurement Techniques and Difficulties
How unused prefetches affect measurements of the Software Performance Analyzer

149

occurrence of A was the result of an unused prefetch made at the end of some other
function, the recorded interval will be from the prefetch of A to the first occurrence
of B. Inserting NOP instructions ahead of A and B in the source file should correct
most prefetch problems. Another way to work around this problem is to use the
HPSPAADJUST feature described later in this chapter. A final way to treat the
problem of prefetching may be to qualify the interval duration addresses with a
status of write (useful if you are trying to measure the time between writes to two
addresses). Memory locations where data is stored are not prefetched.

How the Software Performance Analyzer
measures recursive functions

If you do not identify the recursive function correctly

If a function is recursive to itself and you do not designate it as recursive in the
events list, prefetch correction will typically remove all calls but the first one, and
all exits but the last one. Therefore, time will be measured from the start of the
recursive function to the last exit of the recursive chain.

 A-start<-time.start A-end<-time.end

 ↓ ↑
 A-start A-end

 ↓ ↑
 A-start A-end

The count of calls will also be incorrect. The Software Performance Analyzer will
only record one call to the recursive function instead of the true number of
recursive calls.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer measures recursive functions

150

If you identify the recursive function correctly

If you identify the recursive function as recursive in the events list, the prefetch
correction circuitry will be turned off. The Software Performance Analyzer will
measure the recursive function correctly, if the entry and exit addresses of the
recursive function do not appear as unused prefetches.

The following example shows how the Software Performance Analyzer will
measure the times from start to end of each recursive call. Each recursive call will
be recorded, individually. (Note: when computing execution duration of the
function, the values of time1.start through time1.end, time2.start through
time2.end, and time3.start through time3.end will be added to the measurement
report.)

 A-start<-time1.start A-end<-time1.end

 A-start<-time2.start A-end<-time2.end

 A-start<-time3.start A-end<-time3.end

If a recursive function is identified as recursive in the events list, and if its end
address appears as an unused prefetch, the Software Performance Analyzer may
report misleading time measurements.

 A-start<-time1.start A-end

 A-start<-time2.start A-end

 A-start<-time3.start A-end<-time1.end

 A-end-prefetch<-time2.end

 A-end-prefetch<-time3.end

This type of prefetch error can occur if you have a loop near the exit of function A.
By manually inserting NOP instructions in your source file ahead of the exit
addresses that follow branch instructions, you can prevent the above problem.

Chapter 7: Software Performance Measurement Techniques and Difficulties
How the Software Performance Analyzer measures recursive functions

151

Steps you can take to correct for unused
prefetches

Adding NOP instructions between functions.

One way to limit the effects of unused prefetches is to insert NOP instructions
between the functions in your source file (before function entry addresses and after
function exit addresses). Hewlett-Packard C compilers will automatically insert
NOP instructions between the functions when you use the "debug" (-OG) option of
the compiler. The NOP adresses are prefetched at the end of a function instead of
prefetching the entry address of the next function. This improves the accuracy of
your measurement results. You can also change your specification of function-start
and function-end addresses by specifying addresses that are further inside the
function (see the instructions for using HPSPAADJUST next in this chapter).

A second common prefetch correction is to make sure there is sufficient NOP
padding between the exit of a function and any loop construct that precedes the exit
within the function. Looping near the exit of a function may prefetch the exit
address of the function several times. Again, Hewlett-Packard compilers with the
debug option will typically insert enough NOP instructions or inline code before
the exit to reduce the probability of the exit being prefetch by looping activity.

Offsetting address recognition with HPSPAADJUST.

If you are not using a Hewlett-Packard C Cross Compiler with the "debug" (-OG)
option, there is another way to overcome prefetch problems. Instead of inserting
NOP instructions between functions and before function-end addresses, apply
offset values to the function-start and function-end addresses when the function
events are defined. This way, function events are recognized at addresses within
the functions instead of at the function-start and function-end addresses. The
HPSPAADJUST feature of the Software Performance Analyzer causes all of the
addresses of function events to be offset by the needed values when the events are
defined.

To use the HPSPAADJUST feature, at the shell (before you enter the Software
Performance Analyzer), set the HPSPAADJUST shell variable. Then when the
Software Performance Analyzer defines events, it will apply the needed offsets to
obtain the proper event-start and event-end addresses. The following example
shows the format of the HPSPAADJUST shell variable:

Chapter 7: Software Performance Measurement Techniques and Difficulties
Steps you can take to correct for unused prefetches

152

$ HPSPAADJUST="<start_offset> <end_offset>"

 where:
 <start_offset> is the number of bytes to add to the function-start address.
 <end_offset> is the number of bytes to subtract from the function-end
 address.

Using HPSPAADJUST to overcome prefetch for Motorola
68000, 68010, 68302, 6833x and 68340 microprocessors.

For these microprocessors (if using a non-HP C Cross compiler), HP recommends
the following HPSPAADJUST setting:

$ HPSPAADJUST="2 0"

After the offset is applied, the byte addresses of the events for the above
microprocessors will be adjusted to word boundaries to match the addressing
schemes of the emulated microprocessors.

Example result of using: $ HPSPAADJUST="2 0"

Note that the adjustment applied to an interval address depends on whether the
address is the start or end of a function, not whether the address is the start or end
of the interval.

If you use the HPSPAADJUST feature, you must ensure that your newly defined
event-start and event-end addresses are outside of all loop constructs in the
functions. If you compile your code using the MRI compiler, the -Kt or -Kf
options will ensure that your functions will not loop into these newly defined
event-start and event-end addresses.

Original Adjusted Aligned (word)

Event Type Event Name Start End Start End Start End

Function
Function
Interval
Interval

Afunc
Bfunc
Afunc thru Bfunc start
Afunc end thru Bfunc end

102
300
102
2ff

2ff
3fd
300
3fd

104
302
104
2ff

2ff
3fd
302
3fd

104
302
104
2fe

2fe
3fc
302
3fc

Chapter 7: Software Performance Measurement Techniques and Difficulties
Steps you can take to correct for unused prefetches

153

Using HPSPAADJUST to overcome prefetch for Motorola
68360, 68020, and 68030 microprocessors.

For these microprocessors (if using a non-HP C Cross compiler), HP recommends
the following HPSPAADJUST setting:

$ HPSPAADJUST="6 2"

After the offset is applied, the byte addresses of the events for the above
microprocessors will be adjusted to long-word boundaries to match the addressing
schemes of the emulated microprocessors.

Example result of using: $ HPSPAADJUST="6 2"

Note that the adjustment applied to an interval address depends on whether the
address is the start or end of a function, not whether the address is the start or end
of the interval.

If you use the HPSPAADJUST feature, you must ensure that your newly defined
event-start and event-end addresses are outside of all loop constructs in the
functions. With HPSPAADJUST="6 2", your compiler must generate assembly
code that has at least 10 bytes of executed code before the first loop label occurs. If
you are using the MRI compiler, the -Kt and -Kf options will ensure that your
functions will not loop into these newly defined event-start and event-end
addresses.

Additional help for using HPSPAADJUST

Use of the HPSPAADJUST feature is also described in the online help topics of the
Software Performance Analyzer. Choose Help→General Topic..., and from the
Help Index, choose Problems with Prefetch. Using the command line, enter: help
prefetch.

Original Adjusted Aligned (long)

Event Type Event Name Start End Start End Start End

Function
Function
Interval
Interval

Afunc
Bfunc
Afunc thru Bfunc start
Afunc end thru Bfunc end

102
300
102
2ff

2ff
3fd
300
3fd

108
306
108
2fd

2fd
3fb
306
3fb

108
304
108
2fc

2fc
3f8
304
3f8

Chapter 7: Software Performance Measurement Techniques and Difficulties
Steps you can take to correct for unused prefetches

154

Markers and how to use them to overcome the
effects of an enabled cache or prefetching

Markers are write statements placed at the start and end of each function. The
Software Performance Analyzer measures periods between executions of these
statements to make function-duration and interval-duration measurements. When
using markers, the duration of a function is measured from the function-start
marker to the function-end marker, instead of from the function-start address to the
function-end address.

The primary need for markers is to make software performance measurements with
Motorola 68040 and Intel 80960 processors. The emulators for these processors do
not allow the Software Performance Analyzer to make valid performance
measurements without the use of markers. Marker-based software performance
measurements can also be helpful when making measurements for other
microprocessors.

Advantages of using markers in your functions

• Markers allow you to measure performance with address and data caches turned
on, provided that marker write statements can write through the caches and
appear on buses external to the microprocessor.

• Markers allow you to compile your programs in a more optimal manner. For
example, when using the HP AxLS compiler, markers allow you to leave out
options -OG, which pad NOPs between functions.

• Markers eliminate all of the problems of prefetching because write transactions
are never prefetched (even if the write instructions are prefetched).

Conditions to meet before you can use markers

• Each function that is to be measured must have a unique start marker and a
unique end marker. If the markers are not unique, or if they overlap with other
function markers, the functions will not be defined. The best way to do this is to
add two static variables (unsigned short or char to save memory space) in each
function that you want the Software Performance Analyzer to measure.

• You must tell the Software Performance Analyzer to look for these markers, and
you must also tell it how to recognize them (discussed later).

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

155

The format of marker names

Each marker name must be unique. To instrument your functions with markers,
add two static variables to each function you want the Software Performance
Analyzer to measure; use unsigned short or char variables to save memory space.
The name of each start variable and the name of each end variable will consist of a
prefix followed by the name of the function. You can use any prefix for the marker
prefix, but you must use it consistently throughout the program under test. If you
choose to use "s_" for start markers and "e_" for end markers, then each
instrumented function will have additional variables named s_<function name>,
and e_<function name>. If you choose to use "abc_" for start markers and "xyz_"
for end markers, then each instrumented function will have variables named
abc_<function name>, and xyz_<function name>.

Example measurement using markers

Assume the function main has a start variable labeled s_main and an end variable
labeled e_main. When main begins to execute, a value is written to s_main. When
main finishes its execution, a value is written to e_main. The value that is written
to these variables is not important; the Software Performance Analyzer does not
read the values of markers, it only looks for a status of "write" to the marker
addresses.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

156

Effects of adding markers to your code

As an example, consider the case of a Motorola 68EC030 and the compiler options
that can be used to make software performance measurements.

Measurement type
and results

AxLS Compiler
Options

Typical Performance
Improvement of Function

Typical Size
Improvement

Traditional SPA
measurement

-OG 0% faster 0% smaller

Marker-based SPA
measurement

-O + markers 5% to 20% faster 1% to 5% smaller

Marker-based SPA
Measurement with
Caches enabled.

-O + markers + caches 40% to 80% faster 1% to 5% smaller

Note that the -OG option must be used with traditional SPA measurements to avoid
prefetch problems. You cannot make valid Software Performance Analyzer
measurements without it.

Another way to view the effects of adding markers is to see how they slow the
execution of your file. The addition of markers slows execution of each function
by approximately the equivalent time needed to execute two assembly move
instructions. If a typical function executes 100 assembly instructions, the
performance penalty using markers may be only 2%. Adding the markers also
adds about 20 bytes to each function that is instrumented. Using an HP AxLS
compiler, both the performance and size penalty can be compensated by using the
-O compiler option to compile in a more optimal manner than when using the
normal -OG option (which must be used when making software performance
measurements without markers).

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

157

To instrument your code with markers

One way to instrument your code with markers is to use the HP Marker
Preprocessor, discussed next. Another way is to add "#ifdef" statements at the
appropriate places in your program. By using #ifdef statements, you can
conditionally compile markers in and out of your executable file. For example:

#ifdef MARKERS
 static unsigned short s_testvalue;
 static unsigned short e_testvalue;
 static unsigned short s_main;
 static unsigned short e_main;
#endif

int testvalue(myvalue)
int myvalue;
{
#ifdef MARKERS
 s_testvalue = 0;
#endif
 if (myvalue > 100)
 {
#ifdef MARKERS
 e_testvalue = 0;
#endif
 return(1);
 }
 else
 {
#ifdef MARKERS
 e_testvalue = 0;
#endif
 return(0);
 }
}

main()
{
#ifdef MARKERS
 s_main = 0;
#endif
 testvalue(10);
#ifdef MARKERS
 e_main = 0;
#endif
}

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

158

The HP Marker Preprocessor

A more convenient method to instrument your code with markers is to use the HP
Marker Preprocessor. The HP marker preprocessor instruments markers at the
beginning and ending of each function during the compile process. To use the HP
Marker Preprocessor, replace your normal HP AxLS or MRI compile command
with the appropriate marker compile command (such as cc68040mt, mcc68kmt, or
ccc68kmt).

The marker preprocessor is supported on AxLS and MRI compilers. It is especially
useful with HP emulators for Motorola 68020, 68030, and 68040 processors, and
with HP emulators for Intel 80960SA/SB processors. You can also use the marker
preprocessor with HP emulators for Motorola 68000, 68302, 6833x, and 68340
processors. For details of how to use the marker preprocessor, refer to the man
pages cc68000mt(1), mcc68kmt(1), mcc960mt(1), and ccc68kmt(1).

If you use the HP Marker Preprocessor, you will also need to define a section in
your linker command file to contain the markers. Simply add the section named
"markers" to your linker command file. The section that contains the markers
should be located in a region of RAM memory similar to the data section. Refer to
the marker man pages for complete details.

The marker preprocessor is not supported for use with HP emulators for Intel 8086,
80C186, 80C18X, 80286; Hatachi H8/510, H8/532, H8/536; Mitsubishi 7700; and
Nec V53 processors.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

159

To tell the Software Performance Analyzer to use markers

Enter the following shell variable before you start your emulation session:

If using sh(1) or ksh(1), enter:

HPSPAMARKERS="[yes/no] <start prefix>[+offset] <end prefix>[+offset]"

export HPSPAMARKERS

If using csh(1),

setenv HPSPAMARKERS "[yes/no] <start prefix>[+offset]
<end prefix>[+offset]"

where [yes/no] = yes markers are used and must be included in definitions
 when events are defined, or no markers are not used in the executable
 file.

 <start prefix> = the unique prefix preceding function names that
 identifies start markers.

 <end prefix> = the unique prefix preceding function names that
 identifies end markers.

 [+offset] = a byte offset to optionally add to the address of the marker.
 An offset of +2 tells the Software Performance Analyzer to look for
 writes to the address of the prefixed symbol +2 bytes.

Note that you can set the shell variable HPSPAMARKERS in your .profile so that
your performance analyzer is automatically set up each time you login.

If you export the shell variable HPSPAMARKERS="yes s_ e_" before you start
the emulation session, each function event (when defined) will include the full
address range of the function and the addresses of both of its markers. The marker
addresses will be used to make function-duration and interval-duration
measurements. The normal address range of the function will be used to make
activity measurements.

_Number_Name_________________Address_Range_____Type______Address_Markers_
 1 * apply_controller 00001026-000010AC func 000603C6 000603C8
 2 * apply_productions 00000E42-00000EE6 func 000603B6 000603B8
 3 * calculate_answer 000010B4-0000113E func 000603CA 000603CC
 4 * clear_buffer 00000CB0-00000D02 func 000603A6 000603A8
 5 ? data1 00060056-00060059 var
 6 ? data2 00060376-00060379 var
 7 * main 00001294-0000131C func 000603DA-000603DC
 8 * move_byte 00000A28-00000A6E func 0006038A 0006038C
 9 ? main_move_byte 00001294-00000A28 interval 000603DA 0006038A
 10 ? data1_data2 00060056-00060376 interval 00060056 00060376

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

160

Note that markers won’t improve the quality of activity measurements (Program
Activity or Memory and IO Activity) when the microprocessor cache is turned on.
Operation of the cache will obscure some of the activity. To get accurate activity
measurements, the cache must be turned off.

To tell the Software Performance Analyzer to NOT use
markers

Set up the shell variable HPSPAMARKERS="no" before you start your emulation
session. In most cases, you can also simply unset the shell variable to turn the
markers off. In the case of the Motorola 68040 and the Intel 80960, you must
explicitly set HPSPAMARKERS="no" to turn off the checking for markers.

How an MRI compiler instruments code for markers

The MRI compiler automatically instruments markers into your functions when
you use the -Kt compiler option. The Software Performance Analyzer can read
these MRI markers and define events using them. The format of the MRI
marker-variable write statements are either "_r_<function name>" or
"r_<function name>", depending upon which MRI compiler you have. The MRI
Motorola compiler will add statements to write to _r_main at the start of the
function main, and _r_main+2 at the end of the function main. To use these MRI
tags as markers, export the shell variable: HPSPAMARKERS="yes _r_ _r_+2".

The shell variable format must be exactly as described in the paragraph titled, "To
tell the Software Performance Analyzer to use markers."

Make sure you do not add spaces between the prefix and the offset; the prefix and
offset must be viewed as a single token (e.g. _r_+2, not _r_ + 2).

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

161

How the Software Performance Analyzer makes its
measurements when it uses markers

When markers are instrumented in your code and the Software Performance
Analyzer is told to use them, all functions and intervals will be identified by their
marker addresses. Functions that do not have marker addresses will not be defined,
unless you define them yourself using one of the "define single-event" methods.
Only functions having markers will be accepted in function-duration measurements.

When making interval-duration measurements, the Software Performance Analyzer
will look for function markers if they exist, but will use any related addresses that
can be found. For example, defining an interval from the start of main to the start
of a routine lableled move_byte will use the appropriate markers for the start of
each of these functions, if they exist. However, an interval event defined between
accesses to variables labeled data1 and data2 will not use markers but will use the
addresses of the variables.

The status qualification for interval-duration measurements that use markers must
be "any" or "data_write"; a status of "data_read" or "prog" won’t work because
markers are only recognized as write transactions to marker addresses.

When using the enable/disable feature, the Software Performance Analyzer will
enable and disable on the marker addresses of the specified events if you have
specified function-duration or interval-duration measurements. However, when
making activity measurements, the true start and end addresses of the events will
be used as the enable point.

When using markers, the "function-duration excluding all calls" measurement
mode is not available; the "function-duration excluding profiled calls", and
"function-duration including all calls" modes are available.

Additional help for using HPSPAMARKERS

Use of the HPSPAMARKERS feature is also described in the online help topics of
the Software Performance Analyzer. Choose Help→General Topic..., and from
the Help Index, choose Using Markers. Using the command line, enter: help
markers.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Markers and how to use them to overcome the effects of an enabled cache or prefetching

162

Overcoming measurement difficulties when
measuring performance of an Intel 80960 Sx

The Software Performance Analyzer obtains its information from the analysis bus
of the emulator. It depends on capturing transactions from the emulation
microprocessor that appear on the bus. The instruction cache of the 80960 Sx is
always enabled, and therefore, many of its instructions are obtained from the cache
and never appear on the bus.

You can make valid function-duration and interval-duration measurements in an
Intel 80960 Sx processor using markers. In fact, the Software Performance
Analyzer, when used with the Intel 80960 Sx, is preconfigured to use MRI markers
as defined by the MRI Mcc960 Compiler and its -Kt compiler option. To invoke
another marker format for the Intel 80960 Sx, set the HPSPAMARKERS shell
variable. Refer to the paragraph titled "Markers and how to use them to overcome
the effects of an enabled cache or prefetching" earlier in this chapter.

Activity measurements in an Intel 80960 Sx processor are not very accurate
because of the bus cycles that are obscured by operation of the cache. Still, some
information can be gained from activity measurements of this processor:

• The results of program activity measurements will show the average number of
noncache memory cycles that occur in a given period. This may help you to
decide to restructure your program to reduce the number of noncache hits in a
particular routine.

• The memory and IO activity measurement yields accurate results for variables
because data reads and writes are not affected by the cache. Variables that
appear to be used excessively may indicate a problem in your program.

The Software Performance Analyzer will report a large amount of program activity
as undefined addresses during an activity measurement because reads of data
memory have the same processor status as program memory reads. HP
recommends you make program activity measurements using the relative
measurement mode to avoid seeing an excessive count of undefined addresses in
your measurement results.

To tell the Software Performance Analyzer to NOT use markers, set up the shell
variable HPSPAMARKERS="no" before you start your emulation session.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Overcoming measurement difficulties when measuring performance of an Intel 80960 Sx

163

Overcoming measurement difficulties when
measuring performance of a Motorola 68040

The Motorola 68040 microprocessor has a deep instruction prefetch queue. This
queue causes the Software Performance Analyzer to yield invalid results when
making function-duration and interval-duration measurements if these
measurements are based on fetches of the start and end addresses of the functions
and intervals. The Software Performance Analyzer must use markers (write
statements at the beginning and ending of each function) in order to make valid
duration measurements. You can automatically insert the needed markers into your
files by using the HP marker preprocessor.

The HP marker preprocessor is invoked when you use special compiler commands.
Replace the standard AxLS or MRI compiler commands (cc68040, mcc68k, or
ccc68k) with the special compiler commands (cc68040mt, mcc68kmt, or
ccc68kmt). These compiler comands work about the same as their standard
counterparts, except that they first execute the HP marker preprocessor, which adds
markers to the functions it instruments. These markers write to a data section
labeled "markers". When you link your program, you must add the marker section
to your linker command file. Refer to the man pages cc68040mt(1), mcc68kmt(1),
and ccc68kmt(1) for details.

If you are not using the AxLS or MRI compiler, you will need to instrument your
own markers into the functions you want to measure. Refer to the section titled
"To instrument your code with markers" earlier in this chapter for details of how to
instrument your program with markers.

When using markers, you can turn on the instruction cache and the data cache (as
long as write statements can write through the data cache), and you can compile
your programs in an optimized manner. Your performance measurements will be
made correctly by the Software Performance Analyzer. With the instruction and
data caches on and your programs compiled in an optimized manner, you can make
performance measurements of your program as it will typically run in your final
product.

The Software Performance Analyzer, when used with the HP MC68040 emulator,
is preconfigured to read markers as instrumented by the marker preprocessor and
define function events based on the marker addresses. To use any other marker
format for the MC68040, set the HPSPAMARKER shell variable.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Overcoming measurement difficulties when measuring performance of a Motorola 68040

164

The HPSPAADJUST shell variable is also automatically set to "2 0" for the
MC68040. You will not need to set it yourself. HPSPAADJUST avoids problems
with address overlaps in the program you are testing.

To tell the Software Performance Analyzer to NOT use markers, set up the shell
variable HPSPAMARKERS="no" before you start your emulation session. If you
turn off markers (with the MC68040), remember that only activity measurements
will be valid. The function duration measurements will be invalid due to prefetch
problems.

Refer to the on-line help screens for detailed information about how to instrument
your code and use markers when measuring performance of your program running
on an HP MC68040 emulator.

Overcoming difficulties in measurements of
processors that manage memory

The only additional requirement for successful performance analysis of a processor
that manages memory is that when the MMU of the processor is turned on, the
deMMUer of the emulator must also be turned on. The Software Performance
Analyzer must receive logical addresses (not physical addresses) from the analysis
bus of the emulator when it makes performance measurements.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Overcoming difficulties in measurements of processors that manage memory

165

Overcoming the effects of multi-byte return
instructions

Multiple-byte return instructions are typically a problem with Intel and Intel-like
microprocessors. With these microprocessors, the Software Performance Analyzer
is looking for executed cycles, not simply read cycles from addresses. In addition,
the Software Performance Analyzer is assuming that the first byte is the start of a
function and the last byte is the end of a function. With functions that use
single-byte return instructions, the last byte of the function is the executed return
instruction that the Software Performance Analyzer is looking for and the
measurement of function duration is made correctly.

With a function that uses multiple-byte return instructions, the last byte of the
function is typically an address that is read but not executed. In this case, the
Software Performance Analyzer may be looking for a transaction that will never
occur. To correct for this problem, you need to tell the Software Performance
Analyzer the location of the executed byte of the return instruction. If your
compiler consistently uses a three-byte return instruction, where the first of the
three bytes is executed, you can adjust the end point of each function by setting the
HPSPAADJUST shell variable to "0 2"; this will tell the Software Performance
Analyzer to use the end address of the function minus 2 bytes as the true end of the
function. In a like manner, you can set HPSPAADJUST to "0 1" if your compiler
consistently generates 2-byte return instructions, where the end byte is an address
value to be read. If your compiler generates return instructions of different lengths
in the same program, you must use markers to make duration measurements.

There is a slight possibility that you can avoid the use of markers when your
compiler generates multiple-length return instructions. If you set the
HPSPAADJUST variable to the worst instruction "0 2" and then visually inspect
the generated assembly code of the other functions, and if you find that the
compiler always locates an executed instruction at the requested two bytes before
the end of the function, then you can avoid using markers. The location of the
executed instruction must be an address that is also part of the exit, not part of a
branch instruction. Again, this depends on which compiler you are using, and will
require some investigation of the assembly code.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Overcoming the effects of multi-byte return instructions

166

Analyzing software performance in assembly
language files

The following paragraphs are for the software developer who is writing an
assembly language program and wants to test its performance using the Software
Performance Analyzer. The Software Performance Analyzer is designed to obtain
its address information from an emulator database that contains symbols developed
by a compiler. The paragraphs below show how to write assembly language
programs that yield C language style databases.

Be sure to write your program in such a way that each function has only one entry
point and one exit point. The entry point must be at the start of the function. The
exit point must be the last statement of the function (you cannot exit from the
middle of the function block).

A function symbol must be present in the emulator database that represents the
range of the assembly language function. One way to make sure that a function
symbol will be generated for the emulator database is to add appropriate directives
to the assembly code so that the compiler will generate a function symbol. Another
method allows you to avoid having to enter these directives; it includes the
assembly statements within the body of a C function, as shown in the example
below. Note that HP 64000 C Cross compilers enable this method with their ASM
and END_ASM pragmas.

afunc()
{
#pragma ASM
; Assembly statements
;
#pragma END_ASM
}

Be sure to add the appropriate number of NOP’s between functions to avoid
prefetch from the exit of one function into the entrance of another.

Align the start instruction and end instruction of your function on addresses that are
fetch boundaries of your microprocessor. This ensures that the addresses that
represent the start and end of the function will be fetched and executed. Some
microprocessors have three-byte return instructions, where the microprocessor
alignment is on 16-bit boundaries and the last two bytes are only read, but not
executed. These three-byte return instructions should not be used.

Avoid use of setjump and longjump assembly instructions.

Chapter 7: Software Performance Measurement Techniques and Difficulties
Analyzing software performance in assembly language files

167

You can avoid some of the constraints discussed above by adding markers to your
assembly code. Simply add write statements to be used as start and end markers
when you enter and before you exit the function. Refer to the paragraph titled,
"Markers and how to use them to overcome the effects of an enabled cache or
prefetching", earlier in this chapter. Even if you are using markers, you will still
need to add assembly directives to generate the needed function symbol.

Two example assembly functions are shown below. Each example has the
appropriate directives to generate a function suitable for use with the HP 68000
emulator and Software Performance Analyzer. For other compilers and other
assemblers, you may need to experiment in order to determine the equivalent
directives.

This is the equivalent source of the following functions.

/* Function Test Program for SPA */
int a;

afunc()
{
 a += 1;
}

main()
{
 afunc();
}

This file is written to be compiled with an HP 68000 C Cross compiler. Note the
use of the ?file, ?x_f_d, ?end, and ?endf directives.

Example to be compiled with HP 68000 C Cross compiler

 CHIP 68000
 NAME runtest
*
 ?file ’/hp/hp64000/demo/spa/demotest/runtest.s’
 SECT prog,2,C,P
 NOP
 ?f_x_d ’afunc’
 XDEF _afunc
_afunc
 LINK A6,#-0
 ADDQ.L #1,(_a+0).L
 NOP
 UNLK A6
 RTS
 ?end
 NOP
 ?f_x_d ’main’
 XDEF _main
_main
 LINK A6,#-0
 JSR (_afunc+0).L
 NOP
 UNLK A6

Chapter 7: Software Performance Measurement Techniques and Difficulties
Analyzing software performance in assembly language files

168

 RTS
 ?end
 NOP
 SECT data,2,D,D
 XDEF _a
 ALIGN 2
_a
 DCB.B 4,0
 ?endf
 END

This file is written to be compiled with an MRI mcc68k compiler. Note the use of
the ?file, ?x_f_d, ?end, and ?endf directives. Also, the assembler options listed in
the OPT line are needed.

* Assembler options:
 OPT D,CASE
 NAME runtest
 ?file /usr/Testing/usr_hp64000/demo/bba/demomri2/runtest.s
 XCOM _a,4
 SECTION code,,C
 nop
 XDEF _afunc
 ?f_x_d ’afunc’
_afunc:
 addq.l #1,_a
 rts
 ?end
 nop
 XDEF _main
 ?f_x_d ’main’
_main:
 bsr.w _afunc
 nop
 rts
 ?end
 nop
 ?endf
 END

Chapter 7: Software Performance Measurement Techniques and Difficulties
Analyzing software performance in assembly language files

169

Finally, the following approach allows you to obtain the needed function symbols
in the emulator data base without having to use the special directives that were
needed in the preceding examples; it places the assembly language program code
inside the pragmas of a compilable C file. Note that ASM pragmas were also used
to insert a NOP between the functions to avoid problems with prefetch for a 68000
microprocessor.

/* Function Test Program for SPA */
int a;

afunc()
{
#pragma ASM
 ADDQ.L #1,(_a+0).L
 NOP
#pragma END_ASM
}

#pragma ASM
 NOP
#pragma END_ASM

main()
{
#pragma ASM
 JSR (_afunc+0).L
 NOP
#pragma END_ASM
}

Chapter 7: Software Performance Measurement Techniques and Difficulties
Analyzing software performance in assembly language files

170

8

How Good Are Your Test Results

By knowing how to interpret the information given to you by the Software
Performance Analyzer, you can ensure that you get the test results you need in
order to meet the specifications and requirements of your design project. The
information in this chapter will help you interpret your test results.

171

Statistics calculated by the Software Performance Analyzer are based upon mean
and standard deviations of time. In addition, the Software Performance Analyzer
calculates a stability value that is based upon both the mean and standard deviation.
The paragraphs in this chapter define these terms:

• Definition of mean, which differs in activity and duration measurements.

• Definition of standard deviation in activity and duration measurements.

• When mean and standard deviation may be misleading.

• What stability means and how it is calculated.

Mean

The way the mean is calculated depends on the measurement type. In duration
measurements, the calculated mean is the true mean. Every duration of an event is
recorded. The sum of all durations of an event is divided by the number of times
the event was called.

In activity measurements, the calculated mean is the average amount of time that
the event is active in each second of program execution. The mean is calculated
using information obtained during the sampling process. The mean will only be
correct after a measurement has run long enough to allow sufficient samples to be
obtained for the event. The following is the equation used to calculate the mean in
an activity measurement:

Where:
 Sum_Event_times = total time the event was sampled active
 during the sample periods that were used for the event.
 Number of samples = Number of sample periods used to
 sample information for the event.
 One_sample_period = length of time spent in each
 sample period (approximately 2.5 ms).

Chapter 8: How Good Are Your Test Results
Mean

172

The following is an example calculation of the mean in an activity measurement.
This example assumes that the measurement ran until 50 sample periods had been
used for event1. It was active for a sum of 34.0 ms. The time of one sample period
was 2.5 ms. The mean of a 1-second interval for event1 is calculated as follows:

(34.0 ms / 50) * (1.0 sec /2.5 ms) = .272 sec, or 272 ms

The mean indicates that in any given second of program execution, event1 is active
for an average of 272 ms.

Standard deviation

The standard deviation is the calculated deviation about the mean. In a duration
measurement, the standard deviation is represented by this equation:

where:
 Num_calls = Number of calls to this event.
 Sum_time_sq = Sum of the squares of the individual time
 durations of this event.
 Mean_sq = Mean * Mean.

In an activity measurement, the standard deviation is calculated by this equation:

where:
 Num_samples = number of times this event was sampled.
 Sum_time_sq_sample = sum of the squares of the individual
 event times (times when event was active during any of its
 sample periods).

Chapter 8: How Good Are Your Test Results
Standard deviation

173

 Mean_sq_sample = Mean_sample * Mean_sample
 Mean_sample = (Sum of event times) divided by (Num_samples).
 One_sample_period = length of time spent in each
 sample period (approximately 2.5 ms).

Note that the standard deviation for an activity measurement is also scaled to
reflect the standard deviation of the mean, assuming a one-second sampling
interval. A large standard deviation implies that the event was not uniformly active
during the sampling intervals that were used for the event.

Referring to the example discussed earlier, which had a mean of 272 ms per
1-second period of program execution, a standard deviation of 40 ms would imply
that the above event is typically active between 232 ms and 312 ms for each second
of program execution.

When Mean and Standard Deviation May Not Give
Best Results

The Mean and Standard Deviation may not give the best statistical results for
execution periods that do not have Gaussian distributions. Consider the problem of
trying to calculate statistics on the duration of a function that executes at three
different time intervals (x, 2x, and 10x). If the function were to execute five times
in each of its three intervals, the calculated mean would be 4.33x, and the standard
deviation might be 4.17x. In short, the mean and standard deviation you see may
not always provide the best statistical information about the period being measured.

Chapter 8: How Good Are Your Test Results
When Mean and Standard Deviation May Not Give Best Results

174

Stability

Stability is an indication of how well the Software Performance Analyzer has
characterized the measurement. In a pure sense, stability is a measure of the
average of standard deviation error tolerances subtracted from 100%.

The stability percent is an indication of how stable the data has become. For
example, if the stability is 98% (with confidence level set at 95%), you can be 95%
confident that the data is 98% correct.

The longer a measurement runs, the greater its stability will be. Some
measurements become stable quickly. Others take a longer period of time to
become stable. The following equations are used to calculate stability:

where:
 Sum_StDv_errors = Sum of StDv_error_e1 +
 StDv_error_e2 + ... + StDv_error_eX
 StDv_error_e1 = Standard deviation error tolerance for
 event 1
 StDv_error_e2 = Standard deviation error tolerance for
 event 2
 StDv_error_eX = Standard deviation error tolerance for
 event X
 Number_of_events = Number of events that were active in
 this measurement and had some time recorded during the
 measurement.

Chapter 8: How Good Are Your Test Results
Stability

175

 where:
 t = table entry in Student’s "T" distribution for given level
 of confidence.

The stability calculation is based upon the Student’s "T" distribution. The
Student’s "T" distribution is used because it provides a more accurate result for
small sample sizes. As the sample size increases, the Student’s "T" distribution
approaches a standard normal distribution.

Chapter 8: How Good Are Your Test Results
Stability

176

Part 4

Reference

177

This part of the manual contains the following chapters:

Chapter 9. The user interface

Chapter 10. Syntax of Software Performance Analyzer commands

Chapter 11. Error messages

Chapter 12. The events list

Chapter 13. Interpreting tables, histograms, and measurement specifications

Chapter 14. Using trig1 and trig2 to control measurements with emulators and
other analyzers

Chapter 15. Hidden commands of the Software Performance Analyzer

Chapter 16. Specifications of the Software Performance Analyzer

Part 4

178

9

The User Interface

The Software Performance Analyzer can operate through one of two user
interfaces: (1) the softkey interface, and (2) the graphical user interface. Both
interfaces are described in this chapter.

179

The Softkey User Interface

Whether you are using a display capable of running X windows or you are using a
terminal, you can use the softkey interface. The top of the Softkey User Interface
is the display area. It shows all the Software Performance Analyzer displays:
histograms, tables, events lists, etc. Below the display area is the Status line. It
shows all status and error messages. Below the Status line is the command line.
To control operation of the analyzer, you must either press softkeys or type
commands on the command line.

Histogram: Function Duration include calls Run Time: 0:41 Stability: 99%
Name(sort:_time)_____|__Time__|__%___0%_____20%_____40%_____60%_____80%___100%
 22 parse_command | 37.9 s| 90.68|************************************
 1 apply_controller | 31.9 s| 76.22|******************************
 2 apply_productions | 27.2 s| 65.01|**************************
 12 get_next_token | 6.2 s| 14.83|******
 31 stack_library | 6.1 s| 14.59|******
 16 lookup_token | 5.3 s| 12.62|*****
 28 semantic_check | 3.8 s| 9.08|****
 27 scan_string | 2.9 s| 7.05|***
 25 request_command | 2.1 s| 4.90|**
 14 initialize | 2.0 s| 4.80|**
 19 math_library | 1.9 s| 4.64|**
 20 move_byte | 1.8 s| 4.38|**
 23 report_errors | 1.8 s| 4.37|**
 24 report_result | 1.5 s| 3.52|*
___5_clear_buffer______|___1.2_s|__2.90|*_______________________________________
 Profiled Absolute | 41.8 s| 100% 0% 20% 40% 60% 80% 100%

STATUS: M68000--Running user program Measurement in process________........
profile function_duration include_calls

profile define setup display EXPAND delete end ---ETC--

Chapter 9: The User Interface
The Softkey User Interface

180

The Graphical User Interface

The graphical user interface provides several ways to command actions to be
performed by the Software Performance Analyzer. It also provides additional
capabilities that are not available through the softkey user interface. In order to use
the Graphical User Interface, you must have a display capable of running X
windows.

Chapter 9: The User Interface
The Graphical User Interface

181

Features provided by the graphical user interface that are not provided by the
softkey interface include:

• Menu-driven command entry

• User-definable Action keys

• Pushbutton control of the interface

• Directory and symbol context selection dialog boxes

• File selection dialog boxes

• Command recall dialog box

• Event definition and selection, and profile command dialog boxes

• Dialog boxes for specifying a set of time ranges for duration measurements,
measurement enable/disable specifications, and generation of a trigger to start
measurements in associated equipment

• Pop-up menus on the histogram, table, events list, symbols screens, status line,
and command line entry area.

Features of the graphical user interface

Many entries are made by placing the display cursor on top of a displayed button
and clicking (pressing and releasing) a button on the mouse. Unless otherwise
specified, clicking on a selection is done using the left mouse button.

The top three lines in the graphical user interface consist of the menu bar, the
action keys line, and the entry buffer. These lines can be used to compose
commands and control measurements in the Software Performance Analyzer. They
are discussed below.

The menu bar

The top line has key words that begin commands for the analyzer. The keywords
in the menu bar open pull-down menus that offer additional parameters. Where
appropriate, additional windows will open to offer options for your selections. For
example:

Chapter 9: The User Interface
Features of the graphical user interface

182

The "File" pulldown offers several selections. If you select "Load", a sub-menu
appears. If you select "Symbols Only ...", a dialog box will open to show the
symbol files available in your present working directory. Simply click on a file
name and click on OK, and your symbols file will be loaded. This is the same as
composing a command line in the softkey interface, but it offers more help when
entering filenames. If you have the command line portion of the graphical user
interface turned on, you will see the softkey interface form of the command line
you have composed appear in the command line section of the interface.

The Action Keys line

The action keys line of the interface has keys that command immediate action. If
you click on the "Profile" action key, the profile command will be executed. You
can define your own action keys to perform immediate actions that you desire.
Your action keys can simplify your test procedures. Refer to Chapter 5 for
instructions showing how to define action keys.

The entry buffer line

The entry buffer begins with "():". Use this buffer to create information strings to
be used in commands in the interface. You can enter information into the entry
buffer from the keyboard, by cutting words or lines from a display, or by clicking
on information in the Recall dialog box.

The display area

The display area shows all the displays that are available in the softkey interface
(such as, histogram, tables, and events list). Pop-up windows are available in the
display area to speed-up operations. When you see a pointing finger, a pop-up
window can be called for that portion of the display. Scroll bars appear if the
information available to the display is greater than one screen long.

The status line

The status line displays messages the same as it does when you use the Softkey
User Interface. When you click on an error or warning message, the message will
go away. A pop-up menu is available to show status-line information.

Chapter 9: The User Interface
Features of the graphical user interface

183

The command line

The command line area can be used to compose commands just like in the Softkey
User Interface. The command line area can also be turned off, if desired. If you
turn off the command line, all commands must be composed by using the
Graphical User Interface features discussed above.

Dialog boxes of the Graphical User Interface

To simplify the task of composing commands for actions to be performed by the
Software Performance Analyzer, dialog boxes are provided. These dialog boxes
are obtained when you click on pulldown menu items whose names end in "...".
The dialog boxes listed below are unique to the Software Performance Analyzer;
they are discussed in detail on the pages following the table of mouse button and
keyboard bindings:

• File Selection (store or load file selection)

• Define Events

• Define Single Event

• Select Events

• Profile

• Time Ranges

• Setup Enable and Disable

• Setup Trig2

Popup menus of the Graphical User Interface

The popup menus that are unique to the Software Performance Analyzer are
discussed following the dialog boxes in this chapter. The popup menus cause
immediate action to be taken on the item in the display where the popup menu is
called. You can call a popup menu for any item in a display if the mouse cursor in
the display is a hand symbol. The popup menus that are unique to the Software
Performance Analyzer are listed below:

• Events Display

• Histogram/Table Display

Chapter 9: The User Interface
Features of the graphical user interface

184

• Global (or Local) Symbols Display

Mouse button and keyboard bindings

Because the Graphical User Interface runs on different kinds of computers, which
may have different conventions for mouse buttons and key names, the Graphical
User Interface supports different bindings and the customization of bindings.

This manual refers to the mouse buttons using general (or "generic") terms. The
following table describes the generic mouse button names and shows the default
mouse button bindings.

Mouse Button Bindings and Description

Generic
Button
Name

Bindings:

DescriptionHP 9000
Sun
SPARCsystem

paste left left Paste from the display
area to the entry buffer.

command pastemiddle1 middle1 Paste from the entry
buffer to the command
line text entry area.

select right right Click selects first item in
popup menus. Press and
hold displays menus.

command selectleft right Displays pulldown menus.

pushbutton
select

left left Actuates pushbuttons
outside of the display
area.

1 Middle button on three-button mouse. Both buttons on two-button mouse.

Chapter 9: The User Interface
Features of the graphical user interface

185

File Selection (for Store or Load Profile) dialog box

Place the mouse
pointer in the text
entry area and
specify the
directory whose
files will be listed
below.

Click on a file in
this block to select
a predefined or
previously
specified file name.

Place the mouse
pointer in the text
entry area and type
the name of the file
that will store the
present profile
specification, or that
contains the profile
specification to be
loaded into the
Software
Performance
Analyzer.

Click this button to
cancel storing
(or loading) of the
profile specification
and close the dialog
box.

Click OK to store
(or load) the profile
specification and close
the dialog box.

Click on Filter to
update the Files list
for the directory
named in the Filter
entry area.

Chapter 9: The User Interface
Features of the graphical user interface

186

 Define Events dialog box

Place the mouse
pointer in the text
entry area and type in
the pattern to be
matched or not
matched by function
and variable symbol
names in order to have
events created for
them.

Click this button to
select predefined or
previously specified
patterns.

Click this button to
select predefined or
previously specified
modules or files that
identify the scope
where events will be
defined.

Click this button
to cancel the
event-defining
process and
close this dialog
box.Click Apply to

define events
and leave this
dialog box open
on screen.

Click OK to
define events
and close the
dialog box.

Place the mouse pointer in the text
entry area and type in the modules or
files where functions and/or variables
reside for which you want to define
events. You can enter multiple
modules or files by separating each
with a comma.

Toggle this button
to make events for
all global symbols
or for all symbols
resident in the
modules or files
specified below.

Choose the
desired type of
events to be
created by
clicking the
associated button.

Chapter 9: The User Interface
Features of the graphical user interface

187

 Define Single Event dialog box

Choose the desired
type of event to be
created by clicking
the associated
button.

Click this button to
show the current
definition of the
event whose name
and/or number
appears above.

Place the mouse
pointer in the text
entry area and type
the start address and
end address that are
to be associated
with the new event.
You can enter a
symbol in Start
Address; SPA will
assign the end
address of that same
symbol if you leave
End Address blank.

Click OK to
define the single
event specified
and close the
dialog box.

Click Apply to
define the single
event specified
and leave the
dialog box open.

Click this
button to
cancel the
event
definition and
close the
dialog box. Click these

buttons to select
predefined or
previously
specified entries.

Place the mouse
pointer in the
text entry area
and type the
number and/or
name of the
event to be
defined.

Toggle this
button to choose
either automatic
creation of a
name and
number, or use
the Number and
Name entries
when creating
an event for the
content of the
Event Address
Range fields.

Chapter 9: The User Interface
Features of the graphical user interface

188

 Select Events dialog box

Choose the desired operation on
the specified events by clicking the
associated button. You can:
- Select all events that match
specifications below, and append
them to the list of selected events.
- Select only events that match
specifications below, and unselect
all other events.
- Unselect all events that match
specifications below.
- Delete from the current display
all events that match specifications
below.

Choose the desired type of event to
be operated on by your "Select
Events" specification.

Toggle this button to make your
specification apply to all events in
the current display, or to only the
events between the specified start
event and/or specified end event in
the events list.

Place the mouse pointer in
the text entry area and type
in the pattern to be
matched/not matched by
names in the events list.

Click this button to select
predefined or previously
specified patterns.

Place the mouse pointer in
the text entry area and type
the name or number of the
first and/or last events in the
event list that define the
portion of the list to receive
the Event Operation
specified above.

Click these buttons to select
predefined or previously
specified entries.

Click this button
to cancel the
Event Operation
and close the
dialog box.

Click Apply to
activate the
Event
Operation and
leave the
dialog box
open.

Click OK to
activate the Event
Operation and
close the dialog
box.

Chapter 9: The User Interface
Features of the graphical user interface

189

 Profile dialog box

Choose the desired type
of measurement by
clicking the associated
button.

Click OK to begin
the profile
measurement
selected and close
the dialog box.

Click this
button to
cancel the
profile
measurement
specification
and close the
dialog box.

In Memory/IO Activity
measurements, click this
button to choose the type
of processor status to
qualify the address
cycles to be saved in
analyzer memory.

In Interval Duration
measurements, click this
button to choose the type
of processor status to
qualify the start and end
addresses of the interval
measurement.

Click to begin
the profile
measurement
selected and
leave the dialog
box open.

Chapter 9: The User Interface
Features of the graphical user interface

190

 Time Ranges dialog box

Click this button to divide
the Range Limits fields into
a set of logarithmic ranges.

Click this button to divide
the Range Limits fields into
a set of linear ranges.

Place the mouse pointer in
the text entry area and enter
the lowest value of the time
ranges.

Click these buttons to select
the desired time unit.

Place the mouse pointer in
the text entry area and enter
the highest value of the time
ranges.

Click this button to select
the number of ranges
desired.

Click this button to
cancel the time
range modification
and close the dialog
box.

Click Apply to
modify the time
ranges of the
measurement
specification and
leave the dialog
box open.

Click OK to modify
the time ranges of the
measurement
specification and
close the dialog box.

Chapter 9: The User Interface
Features of the graphical user interface

191

 Setup Enable and Disable dialog box

Choose the
desired address
point within this
enable event.

Place the mouse
pointer in the text
entry area and
type the name or
number of the
event to enable
and/or disable the
measurement.

Click OK to establish
the specified
enable/disable setup and
close the dialog box.

Click this button to
cancel the
modifications and
close the dialog box.

Choose the
desired address
point within the
disable event by
clicking the
associated button.

Click this button
to select
predefined or
previously
specified entries.

Click this button
to change the
processor status
used to qualify
the enable and
disable
addresses. Note:
default causes
the enable and
disable addresses
to be qualified
on the same
processor status
used by the
profile command.

Chapter 9: The User Interface
Features of the graphical user interface

192

 Setup Trig2 dialog box

Click this button to
generate Trig2
when the event
below exceeds the
time specified.

Click this button to
turn off the Trig2
specification.

Place the mouse
pointer in the text
entry area and type
in the name or
number of the event
that will cause Trig2
when it runs longer
than the specified
time.

Click OK to activate the
Trig2 specification and
close the dialog box.

Click this button to
cancel the Trig2
modification and
close the dialog box.

Place the mouse
pointer in the text
entry area and
type in the time to
be exceeded.

Click this button
to select the
desired time unit.

Click this button
to select
predefined or
previously
specified entries.

Chapter 9: The User Interface
Features of the graphical user interface

193

 Events Display popup menu

Click to
select or
unselect
the
highlighted
event.

Click to
move the
cursor to
the
highlighted
event.

Click to
select this
event and
all others
to the end
of the list.

Click to
unselect
this event
and all
others to
the end of
the list.

Click to
delete the
highlighted
event.

Click to
delete the
highlighted
event and
all other
events to
the end of
the list.

Click to
open an edit
window
into the
source file
where this
event is
defined.

Chapter 9: The User Interface
Features of the graphical user interface

194

 Histogram/Table Display popup menu

Click to place
time ranges
below the
highlighted
event.

Click to
move the
cursor to the
highlighted
event.

Click to
rescale the
histogram for
best
resolution of
the
highlighted
event.

Click to drive
trig2 when
the expanded
event runs
long enough
to be
recorded in
the
highlighted
time range

Click to
unselect the
highlighted
event.

Click to
unselect
the
highlighted
event and
all other
events to
the end of
the list on
display.

Click to
delete the
highlighted
event.

Click to
delete the
highlighted
event and
all other
events to
the end of
the list on
display.

Click to
open an
edit
window
into the
source file
where this
event is
defined.

Chapter 9: The User Interface
Features of the graphical user interface

195

 Global (or Local) Symbols Display popup menu

Click to
display
symbols
local to the
highlighted
symbol.

Click to
display the
parent
symbol of
the
highlighted
symbol.

Click to
place the full
symbol name
in the entry
buffer.

Click to
open an
edit
window
into the
source file
where the
highlighted
symbol is
defined.

Click to
define a
single
event to
represent
the
highlighted
symbol.

Chapter 9: The User Interface
Features of the graphical user interface

196

10

Syntax of the Software Performance
Analyzer Commands

This chapter discusses commands that appear in pulldown menus and on the
softkeys. Syntax diagrams are provided to help you understand the commands.
Each command token is described. Refer to Chapter 15 for hidden commands.

197

How Pulldown Menus Map to the Command Line

Pulldown Command Line

File→Context→Directory
File→Context→Symbols
File→Load→Emulator Config ...
File→Load→Executable ...
File→Load→Program Only ...
File→Load→Symbols Only ...
File→Load→Profile Spec ...
File→Store→Profile Spec ...
File→Copy→Display ...
File→Copy→Histogram ...
File→Copy→Table ...
File→Copy→Events ...
File→Copy→Measurement Spec ...
File→Copy→Global Symbols ...
File→Copy→Local Symbols () ...
File→Copy→Error Log ...
File→Copy→Event Log ...
File→Log→Playback ...
File→Log→Record ...
File→Log→Stop
File→Emul700→Graphic Windows
File→Emul700→<other products>
File→Edit→File ...
File→Edit→At () Location ...
File→Term ...
File→Exit→Window (save session)
File→Exit→Locked (all windows, save session)
File→Exit→Released (all windows, release
emulator)

cd
cws
load configuration ...
load <abs_file>
load <abs_file> nosymbols
load symbols ...
load profile_spec ...
store profile_spec ...
copy display to
copy histogram to
copy table to
copy events to
copy measurement_spec
copy global_symbols to
copy local_symbols_in --SYMB-- to
copy error_log to
copy event_log to
<command file>
log_commands to
log_commands off
N/A
N/A
! vi <file> ! no_prompt_before_exit
! vi +<line> <file> ! no_prompt_before_exit
!
end
end locked
end release_system

Chapter 10: Syntax of the Software Performance Analyzer Commands

198

Pulldown Command Line

Display→Context ...
Display→Histogram
Display→Table
Display→Events
Display→Measurement Spec
Display→Sort Events→Time
Display→Sort Events→Calls
Display→Sort Events→Cycles
Display→Sort Events→Address
Display→Sort Events→Alphabetic
Display→Sort Events→Defined
Display→Performance Data→Time
Display→Performance Data→Calls
Display→Performance Data→Cycles
Display→Performance Data→Absolute
Display→Performance Data→Relative
Display→Time Ranges ...
Display→Global Symbols
Display→Local Symbols ()
Display→Error Log
Display→Event Log

pwd, pws
display histogram
display table
display events
display measurement_spec
display sort_events time
display sort_events calls
display sort_events cycles
display sort_events address
display sort_events alphabetically
display sort_events defined
display data time
display data calls
display data cycles
display data absolute
display data relative
display time_ranges ...
display global_symbols
display local_symbols_in --SYMB--
display error_log
display event_log

Modify →Emulator Config ...
Modify →Setup Enable/Disable ...
Modify →Setup Trig2 ...
Modify →Setup Performance Analyzer Default

modify configuration ...
setup_measurement enable/disable ...
setup_measurement drive trig2_after ...
setup_measurement default

Execution→Run→from PC
Execution→Run→from Transfer Address
Execution→Run→from Reset
Execution→Break
Execution→Reset

run
run from transfer_address
run from reset
break
reset

Events→Display
Events→Define Events ...
Events→Define Single Event()
Events→Define Single Event ...
Events→Select Events ...
Events→Delete All Events
Events→Renumber Events

display events
define multiple_events ...
define single_event <EVENT>
define single_event ...
select_events ..., unselect_events ..., delete_events ...
display events; delete_events
renumber_events

Chapter 10: Syntax of the Software Performance Analyzer Commands

199

Pulldown Command Line

Profile→Profile ...
Profile→Profile Again
Profile→Stop Profile

profile ...
profile
stop_profile

Settings→Status Qualification→any
Settings→Status Qualification→<TYPE>
Settings→Decimal Alignment
Settings→Event Numbers
Settings→Command Line

set status_qualification any
set status_qualification <TYPE>
set decimal_alignment on/off (toggle)
set event_numbers on/off (toggle)
N/A (toggles the command line)

Chapter 10: Syntax of the Software Performance Analyzer Commands

200

How Popup Menus Map to the Command Line

Histogram/Table Display Popup Command Line

Expand Event Toggle
Reposition Cursor
Rescale Event
Drive TRIG2 on Range Min

Unselect Event
Unselect Events Thru End
Delete Event
Delete Events Thru End
Edit File At Event

expand <event name or number> (toggle)
N/A (use keyboard keys)
display histogram rescale to_max (for selected event)
setup_measurement drive trig2_after <TIME> <EVENT>
unselect_events <EVENT>
unselect_events <EVENT> thru end
delete_events <EVENT>
delete_events <EVENT> thru end
! vi +<line> <file> ! no_prompt_before_exit

Events Display Popup Command Line

Select Event Toggle
Reposition Cursor
Select Events Thru End
Unselect Events Thru End
Delete Event
Delete Events Thru End
Edit File At Event

select <event name or number> (toggle)
N/A (use keyboard keys)
select events append <EVENT> thru end
unselect_events <EVENT> thru end
delete_events <EVENT>
delete_events <EVENT> thru end
! vi +<line> <file> ! no_prompt_before_exit

Symbols Display Popup Command Line

Display Local Symbols
Display Parent Symbols

Cut Full Symbol Name
Edit File Defining Symbol
Define Single Event

display local_symbols_in <SYMBOL>
display local_symbols_in <SYMBOL>, display
global_symbols
N/A
! vi +<line> <file> ! no_prompt_before_exit
define single_event <SYMBOL>

Chapter 10: Syntax of the Software Performance Analyzer Commands

201

Syntax Conventions

Conventions used in the command syntax diagrams are defined below.

Oval-shaped Symbols

Oval-shaped symbols contain command tokens. Command tokens, together with
symbols and numeric values, make up complete Softkey Interface commands. Most
command tokens appear on softkey labels. Those that do not appear as softkeys
must be typed into the command line (for example, log_commands and wait). An
example of an oval-shaped symbol is as follows:

Rectangular-shaped Symbols

Rectangular-shaped symbols contain prompt softkeys, softkey-changers, and
references to other syntax diagrams. Prompt softkeys are enclosed in angle brackets
(< and >). Softkey-changers are enclosed in dashes (--). References to other
diagrams are shown in all capital letters without any enclosing symbols.

Examples of all three kinds of rectangular symbols follow:

Prompt Softkey. Press to get a hint about the kind of
information needed.

Softkey Changer. Press to get another set of softkeys.
Some softkey changers have their own syntax diagrams in
this chapter.

Reference to a diagram showing details in this chapter.

Chapter 10: Syntax of the Software Performance Analyzer Commands

202

Circles

Circles contain operators and delimiters used in expressions and on the command
line. An example of a circle symbol is as follows:

The —NORMAL— Key

The softkey labeled —NORMAL— is a special softkey-changer; use it to return to
the former set of softkeys. For example, you can press the —EXPR— softkey to
call up a set of prompt softkeys to help you complete an expression. After you
complete the expression, you can return to the set of softkeys containing the
—EXPR— softkey by pressing the —NORMAL— softkey.

Chapter 10: Syntax of the Software Performance Analyzer Commands

203

Summary of Commands

Softkey Interface commands are summarized in the following table:

Software Performance Analyzer Commands

UNIX_COMMAND1

break2

cd (change directory)1

copy display
copy error_log
copy events
copy event_log
copy global_symbols
copy help
copy histogram
copy local_symbols_in
copy measurement_spec
copy pod_command
copy table
cws(change working symbol)1

define multiple_events
define single_event
delete_events functions
delete_events interval_types
delete_events range_types
delete_events variables_static
display data
display error_log
display events
display event_log
display global_symbols
display histogram
display local_symbols_in

display measurement_spec
display pod_command
display sort_events
display stability
display rescale
display table
display time_ranges
end
forward1

help1

load <FILE>2

load configuration2

load profile_spec
load symbols
log_commands1

modify configuration2

pod_command1

profile function_duration
profile interval_duration
profile memory_and_io_activity
profile modify_command
profile program_activity
pws (print working symbol)1

reset2

renumber_events
run2

run from reset2

run from transfer_address2

select_events functions
select_events interval_types
select_events range_types
select_events variables_static
set <environment variable>
set byte_alignment
set confidence
set decimal_alignment
set event_numbers
set histogram_character
set langinfo
set status_qualification
set symbols
setup_measurement default
setup_measurement disable
setup_measurement drive
setup_measurement enable
setup_measurement start
setup_measurement termination
stop
stop_profile
store profile_spec
unselect_events functions
unselect_events interval_types
unselect_events range_types
unselect_events variables_static
version1

wait1

1 Refer to the chapter titled, "Hidden Commands of the Software Performance Analyzer"
2 These are emulator commands that can be forwarded from the Software Performance Analyzer.
 Refer to your emulator manual for command details.

Chapter 10: Syntax of the Software Performance Analyzer Commands

204

copy

The copy command copies selected information to your system printer or to a
listing file, or pipes it to a UNIX filter.

The parameters are as follows:

histogram histogram lets you copy the current histogram to the destination you choose.

table table lets you copy the current table to the destination you choose.

Chapter 10: Syntax of the Software Performance Analyzer Commands
copy

205

measurement_spec measurement_spec lets you copy the current Software Performance Analyzer
measurement specification to the destination you choose.

events events lets you copy all of the events in the events list to the destination you choose.

global_symbols global_symbols lets you copy a list of all global symbols in memory to the
destination you choose.

local_symbols_in local_symbols_in lets you copy a list of local symbols in a specified source file to
the destination you choose.

pod_command pod_command lets you copy a summary of the most recent commands sent to the
HP64700 pod via the command, "pod_command".

error_log error_log lets you copy a list of the most recent errors that were caused by
commands entered on the command line (or supplied by command files).

event_log event_log lets you copy the most recent events (not "events_list" events) that have
occurred in the emulation/analysis system. Events in the log include software
breakpoints and other changes in the status of the emulator and/or analyzer.

display display lets you copy the information currently on the screen to the destination you
choose.

help help lets you copy the contents of the on-line help files to the destination you
choose.

to to lets you specify the destination of the copied information. to must be included in
the copy command line.

<FILE> <FILE> prompts you for the name of the listing file where you want the specified
information to be copied.

noappend noappend causes the copied information to overwrite any file with the same name
as <FILE>. If you do not specify "noappend", the copied information will be
appended to <FILE>, if a file by that name exists.

noheader noheader specifies the information be copied without headings.

Chapter 10: Syntax of the Software Performance Analyzer Commands
copy

206

printer printer specifies your system printer as the destination for the copy command.
Note: Before you can specify printer as the destination device, you must first define
PRINTER as a shell variable.

If using sh(1) or ksh(1), enter:

$ HP64PRINTER = lp
$ export HP64PRINTER

If using csh(1),

setenv HP64PRINTER lp

UNIX CMD UNIX CMD represents a UNIX filter or pipe that is the destination of your copy
command. UNIX commands must be preceded by an exclamation point (!). If you
place an exclamation point after your UNIX command, your system will return to
the emulation environment after command completion, allowing you to continue
command-line execution. Emulation will not be affected by a UNIX command that
is a shell intrinsic.

! The exclamation point "!" is the delimiter for UNIX commands. An exclamation
point must precede all UNIX commands. An exclamation point following a UNIX
command is optional.

If an exclamation point is also part of a UNIX command, escape the exclamation
point with a backslash (e.g. \!).

Examples copy histogram to <FILE>

copy table to printer

copy events to printer

copy display to <FILE>

copy local_symbols_in SOURCE.S: to printer

copy pod_command to <FILE>

copy error_log to <FILE>

copy event_log to <FILE>

Chapter 10: Syntax of the Software Performance Analyzer Commands
copy

207

define

Chapter 10: Syntax of the Software Performance Analyzer Commands
define

208

The define command lets you define events to be used in Software Performance
Analyzer measurements. These events can represent functions, static variables,
single addresses, or simple address ranges in your absolute file. The Software
Performance Analyzer can accept up to 1000 events in its events list. If your
absolute file has more than 1000 functions and/or variables, there are ways to
qualify your event definitions so that you can measure only the functions and/or
variables you want to measure.

Your target program may have functions and variables that were developed by
other people, but you may only want to test the performance of the functions and
variables you developed. The define command makes it easy for you to define
events for just the functions and variables you want to test. For example, you can
enter a command to define events for only the functions and/or variables in a
particular file:
"define multiple_events funcs_and_vars_static myfile.c:"

You may want to examine only the functions that deal with a particular task, such
as data-base management. If you gave names to these functions that began with
particular characters, such as "db", then you could use a command like: "define
multiple_events functions matching "db*"

You may know the names of a few files whose functions you want to test. You can
define events for only the functions in those files with a command, such as: "define
multiple_events functions driver.c: , convert.c: , update.c:"

No overlapping events are allowed. If you try to define an event that represents
addresses that are already represented by other events, the analyzer will ask if you
want to delete all overlapping events. If you answer "yes", all of the other events
that overlap the range of your new event will be deleted, and your new event will
be created, automatically.

Interval events are the one exception to the rule for overlapping events, described
above. Interval events can overlap all other events, except that no interval event
can have either a start or end address that is the same as a start or end address in
another interval event.

If no events have been defined when the profile command is executed, the
Software Performance Analyzer will execute this command before performing the
profile measurement:
define multiple_events funcs_and_vars_static globals_only notmatching "_*"

This causes the Software Performance Analyzer to search your symbol data base
and create up to 1000 events to represent functions and static variables that are

Chapter 10: Syntax of the Software Performance Analyzer Commands
define

209

listed in the symbol data base. The "_*" specification prevents defining events for
the assembler-generated and compiler-generated symbols.

The parameters are as follows:

<EVENT> <EVENT> is the number of the event you want to define or modify.

multiple_events multiple_events lets the Software Performance Analyzer create a series of events
with a single command. For example, "define multiple_events functions" tells
the Software Performance Analyzer to find all of the functions in your symbol data
base and create events to represent them.

If you specify an event type (functions, variables_static, etc.), events of the
specified type will be created to represent corresponding symbols in your symbol
data base.

If you include a range of event numbers with this command (define 1 thru 12
multiple_events functions), events that already have those numbers in your
present events list will be deleted. Then the Software Performance Analyzer will
define new events for those numbers.

If you do not include a range of event numbers with your command, the Software
Performance Analyzer will create new events until the limit of 1000 events is
reached, or until there are no more events of the specified type and/or name that
can be created from your symbol data base.

single_event single_event lets you create or modify a single event as specified by the event
number.

"define 12 single_event function Function_1" causes the Software Performance
Analyzer to define event number 12, identify it as a function, and assign it the same
name and address range presently occupied by Function_1 in your absolute file.

"define 4 modify_command" causes the Software Performance Analyzer to bring
the present definition of event 4 to the command line where you can edit it.

functions functions specifies that events are to be defined to represent functions in the
symbol table.

funcs_and_
vars_static

funcs_and_vars_static specifies that events are to be defined to represent both
functions and static variables in the symbol table.

variables_static variables_static specifies that events are to be defined to represent static variables
in the symbol table.

Chapter 10: Syntax of the Software Performance Analyzer Commands
define

210

range range causes the Software Performance Analyzer to treat the address range you
enter as a simple address range, not a function or static variable. Range events can
be included in measurements of memory and program activity. Range events are
not included in measurements of function or interval duration.

interval interval causes the Software Performance Analyzer to treat the address values you
enter as an interval for an interval duration measurement. Intervals are only valid
in interval duration measurements.

globals_only globals_only specifies that events are to be defined to represent only global
functions and/or global static variables in the symbol table.

matching
<PATTERN>

matching <PATTERN> specifies a character sequence that the Software
Performance Analyzer will try to match with the names of functions and/or static
variables in the symbol data base. Events will be defined for functions and/or static
variables whose names match <PATTERN>. The Software Performance Analyzer
accepts shell-like pattern-matching symbols for expressing patterns (example:
"f*"). Put <PATTERN> in quotes.

notmatching
<PATTERN>

notmatching <PATTERN> specifies a character sequence that the Software
Performance Analyzer will try to match with the names of functions and/or static
variables in the symbol data base. Events will be defined for all functions and/or
static variables, except those whose names match <PATTERN>. The Software
Performance Analyzer accepts shell-like pattern-matching symbols for expressing
patterns (example: "f*"). Put <PATTERN> in quotes.

named <NAME> named <NAME> lets you specify a name for an event. The name you specify will
override the name generated by the Software Performance Analyzer.

recursive_function recursive_function further describes a function as a recursive function. The
Software Performance Analyzer needs this information to make accurate
function-duration measurements on recursive functions.

modify_command modify_command recalls the definition of the specified event to the command line.

Examples define multiple_events functions

define multiple_events functions globals_only

define multiple_events variables_static

define multiple_events funcs_and_vars_static

define 1 thru 12 multiple_events functions file1.c:

Chapter 10: Syntax of the Software Performance Analyzer Commands
define

211

define multiple_events functions matching "ab*"

define multiple_events functions notmatching "ab*"

define single_event range Symbol_1 thru Symbol_2

define 12 single_event function Function_1

define 14 single_event function Function_2 recursive_function

define single_event named data1 variable_static 01234h thru + 010h

define single_event named data2 range 0400fh thru 04bcfh

define single_event function 0800fh thru 08bcfh

define single_event interval Function_1

define 4 modify_command

Chapter 10: Syntax of the Software Performance Analyzer Commands
define

212

delete_events

The delete_events command lets you delete events you do not need. You can
identify events to be deleted by specifying the type of events (functions), the range
of event numbers (6 thru 15), or the event names. Deleted events are removed
from all displays and all measurement specifications.

If you delete events "thru end" on a histogram or table, all events from the cursor
position through the end of the current display will be deleted. For example, if the
current display is a histogram from a function_duration measurement, it will show
events that represent source-file functions. It will not show other kinds of events.
If you place the cursor on an event in the histogram, and delete "thru end", all
events from the cursor position through the end of the histogram will be deleted.
All events ahead of the cursor position, and all events that were not part of the
histogram display will still remain in the events list.

The command "delete_events <RETURN>" will delete all events. If in the
histogram or table, only the events in the display will be deleted.

The parameters are as follows:

functions functions specifies deletion of function-type events.

variables_static variables_static specifies deletion of variable-type events.

range_types range_types specifies deletion of range-type events.

Chapter 10: Syntax of the Software Performance Analyzer Commands
delete_events

213

interval_types interval_types specifies deletion of interval-type events.

thru thru specifies deletion of all events within the range of event numbers indicated by
the thru option. The "thru end" option deletes all events from the cursor position
thru the end of the current display.

<EVENT> <EVENT> is the number of the event to delete.

matching
<PATTERN>

matching <PATTERN> specifies deletion of all events whose names match the
<PATTERN>.

notmatching
<PATTERN>

notmatching <PATTERN> specifies deletion of all events, except those whose
names match the <PATTERN>.

Examples delete_events

delete_events functions

delete_events variables_static

delete_events 10 thru 105

delete_events thru start

delete_events thru end

delete_events thru 205

delete_events functions thru 205 notmatching "sru_*"

Chapter 10: Syntax of the Software Performance Analyzer Commands
delete_events

214

display

Chapter 10: Syntax of the Software Performance Analyzer Commands
display

215

Chapter 10: Syntax of the Software Performance Analyzer Commands
display

216

The display command places the information you select on your screen. You can
use the roll_up, roll_down, home_up, home_down, next_page, previous_page,
cursor_up, and cursor_down keys to view displayed information.

Depending on the information selected, defaults may be the options selected for the
last display command.

The parameters are as follows:

histogram histogram lets you display the current histogram.

table table lets you display the current table.

measurement_spec measurement_spec lets you display the current measurement specification.

events events lets you display the list of defined events.

global_symbols global_symbols lets you display a list of all global symbols in memory.

local_symbols_in local_symbols_in lets you display a list of the local symbols in a specified source
file.

Chapter 10: Syntax of the Software Performance Analyzer Commands
display

217

<FILE> <FILE> is the name of the local file (e.g. myfile.S:).

data data lets you change the histogram to show time or cycles for activity
measurements, or to show time or calls for duration measurements. In addition,
you can choose to display your data in absolute or relative values.

sort_events sort_events causes the Software Performance Analyzer to rearrange the events in
any order you choose. You can have the events sorted by times, cycles, calls,
addresses in numerical order, names of events in alphabetical order, or by how the
events were defined or numbered.

rescale rescale lets you change the scale of the histogram by specifying a maximum
display percent.

stability stability lets you turn on or turn off the stability calculation. It also lets you specify
how often stability information is recalculated during a measurement.

time_ranges time_ranges lets you specify the time ranges used in measurements of
EXPANDED events. To see the time ranges, make a duration measurement and
press the EXPAND key beside an event of interest.

error_log error_log lets you display the most recent errors that resulted from commands
entered on the command line (or supplied from command files).

event_log event_log lets you display the most recent events (not "events_list" events) that
have occurred in the emulation/analysis system. These events include software
breakpoints and other changes in the status of the emulator and/or analyzer.

pod_command pod_command lets you display a summary of the most recent commands sent to the
HP64700 pod via the command, "pod_command".

Examples display histogram data relative

display histogram sort_events time

display table sort_events address

display events sort_events alphabetically

display measurement_spec

display global_symbols

display local_symbols_in myfile.S:

display pod_command

Chapter 10: Syntax of the Software Performance Analyzer Commands
display

218

display error_log

display event_log

display data calls

display sort_events cycles

display rescale to_max 50 percent

display stability after_every 60 seconds

display time_ranges start_at 10 usec end_at 20 msec logarithmic

Chapter 10: Syntax of the Software Performance Analyzer Commands
display

219

end

The end command terminates the current session of Software Performance
Analysis. Only a single window into the user interface is allowed. The ’end’
command ends that window.

Unless you choose "end release_system", the current Software Performance
Analysis setup is stored so that you can resume the session later when you reenter
the Software Performance Analyzer.

Note that typing "<control> D" is the same as "end <RETURN>".
Typing "<control> \" or "<control> |" (i.e. sending SIGQUIT to the user interface
process) is the same as "end release_system <RETURN>".

The parameters are as follows:

<default> Return to the environment (UNIX shell, PMON, or emulation interface) where you
were when you entered the ’emul700 -u skperf <logical name>’, or ’emul700 -u
xperf <logical name>’ command. Save the current measurement specification, and
lock the Software Performance Analyzer to the current user so that the session may
be continued later.

locked Close all active interfaces of the Software Performance Analyzer and emulator (in
one or more windows and/or terminals). Each interface will return to the
environment where its ’emul700’ command was entered. Thus, "end locked" is the
same as entering "end" in each one of the windows.

release_system Close all active interfaces of the Software Performance Analyzer and emulator (in
one or more windows and/or terminals). Each interface will return to the
environment where its ’emul700’ command was entered. In addition, the Software
Performance Analyzer and emulator will be unlocked so they can be used by
someone else on your UNIX system. The information needed to continue your
session will be lost. (If you do not release the system, no other people can use it.)

Chapter 10: Syntax of the Software Performance Analyzer Commands
end

220

Example end

end locked

end release_system

Chapter 10: Syntax of the Software Performance Analyzer Commands
end

221

load

The load symbols command lets you load a symbol data base into the user interface.

The load profile_spec command lets you load a previous profile specification along
with its captured data into the Software Performance Analyzer. After loading a
profile_spec, you can use the display command to view the data that was stored, or
you can perform new measurements using the setup that was stored in the
profile_spec file.

In addition, you can load a configuration and an absolute file if your emulator
and/or debugger has software version number 5.00, or greater. Refer to your
emulator manual for full syntax and command description.

The parameters are as follows:

profile_spec profile_spec lets you load a profile specification file that you previously created
using the store profile_spec command. To start a measurement after a new
profile_spec is loaded, simply enter the "profile" command.

symbols symbols lets you load a symbol data base associated with an absolute file without
loading the absolute file.

<FILE> <FILE> is the pathname of the file (symbols or profile_spec) to be loaded from the
system disk. You do not need to include the file name suffix (".Ys" for a symbol
data base, and ".PS" for a profile specification). The file name suffix will be
automatically appended to the file name you specify.

Examples load symbols myexecutable

load profile_spec profspec

Chapter 10: Syntax of the Software Performance Analyzer Commands
load

222

profile

The profile command causes the Software Performance Analyzer to begin the
specified measurement. If you enter "profile" alone, the Software Performance
Analyzer will start the same measurement it made after the last profile command.
If this is the first profile measurement, the Software Performance Analyzer will
start a default measurement. If you enter "profile modify_command", the
Software Performance Analyzer will recall the last profile command to the
command line. If no events have been defined when you enter "profile ", the
Software Performance Analyzer will create a list of events by searching the symbol
data base for functions and static variables.

The default profile command is: profile program_activity

Chapter 10: Syntax of the Software Performance Analyzer Commands
profile

223

The parameters are as follows:

program_activity program_activity specifies that the Software Performance Analyzer record program
execution for selected events that represent functions and address ranges.

memory_and_io_
activity

memory_and_io_activity specifies that the Software Performance Analyzer record
use of the selected events that represent static variables and ranges. The Software
Performance Analyzer will record memory cycles and cycle times for each of the
selected events. You can further qualify the types of cycles that the Software
Performance Analyzer will record by specifying status conditions.

interval_duration interval_duration specifies that the Software Performance Analyzer record the
amount of time between cycles at the beginning and at the ending of the specified
intervals. You can qualify the types of cycles that the Software Performance
Analyzer must look for at the interval start and interval end addresses by specifying
status conditions.

function_duration function_duration specifies that the Software Performance Analyzer record the
amount of time it takes to execute selected events that represent functions. A
function_duration measurement can be further qualified by "including calls" or
"excluding calls" to other functions. The time recorded for a function in an
inverval_duration measurement is typically the same as the time recorded in a
function_duration including_calls measurement.

exclude_calls exclude_calls specifies that a function_duration time does not include any time
spent executing code in other functions that were called by this function. Note also
that all time spent servicing interrupts will be excluded from the function duration.

exclude_profiled exclude_profiled specifies that a function_duration time does not include any time
spent executing code in other functions that were called by this function, if those
other functions are also included in this measurement. However, time spent
executing code in other functions that are not part of this measurement will be
added to the time recorded for this function.

include_calls include_calls specifies that a function_duration time must include all of the time
spent executing code in other functions that were called by this function.

status status further qualifies a measurement. In memory_and_io_activity measurements,
status specifies the type of cycles and time to be recorded. If you specify "status
any", all cycles that match the event being sampled will be recorded. If you
specify a single type of status, only cycles that also match the type you specify will
be recorded. In an interval_duration measurement, status specifies the type of
cycles to begin and end a duration measurement. Using status, you can measure
time between writes or reads or program execution.

Chapter 10: Syntax of the Software Performance Analyzer Commands
profile

224

Status specifications depend on the processor you are testing. Use the "set
status_qualification" command to set global status qualifications for your
processor, such as "supervisor" cycles, or "user" cycles.

Examples profile

profile program_activity

profile memory_and_io_activity status memread or memwrite

profile interval_duration status prog

profile function_duration exclude_calls

profile modify_command

Chapter 10: Syntax of the Software Performance Analyzer Commands
profile

225

renumber_events

The renumber_events command lets you renumber the events in the present display
of the Software Performance Analyzer. If you renumber the events and then sort
them by some other criteria (such as time, calls, cycles, or addresses), the event
numbers may be out of order.

Chapter 10: Syntax of the Software Performance Analyzer Commands
renumber_events

226

select_events

The select_events command lets you select groups of events to be included in a
Software Performance Analyzer measurement. You can qualify the events to be
selected by specifying a type of event, a range of event numbers, or the event
names.

Events that are selected will be included in the next measurement (if they are
appropriate for the measurement type, and if the number of events does not exceed
the hardware resource limit of the Software Performance Analyzer).

The command "select_events <RETURN>" will select all events.

The parameters are as follows:

append append specifies that the events selected by this command will be added to the
events that are already selected. If you do not use the append option, all events will
first be unselected, and then only the events specified in your command will be
selected.

functions functions specifies only function-type events are to be selected.

variables_static variables_static specifies that only variable-type events are to be selected.

Chapter 10: Syntax of the Software Performance Analyzer Commands
select_events

227

range_types range_types specifies that only range-type events are to be selected.

interval_types interval_types specifies that only interval-type events are to be selected.

thru thru is used to make a number range. All events with numbers in the number range
will be selected. The "thru end" command will select all events from the cursor
position thru the end of the current display.

<EVENT> <EVENT> is the event number to select.

matching
<PATTERN>

matching <PATTERN> specifies selection of all events whose names match the
<PATTERN>.

notmatching
<PATTERN>

notmatching <PATTERN> specifies selection of all events, except those whose
names match the <PATTERN>.

Examples select_events

select_events functions

select_events append functions matching "mem*"

select_events variables_static

select_events 10 thru 105

select_events thru start

select_events thru end

select_events append thru 205

select_events functions thru 205 notmatching "sru_*"

Chapter 10: Syntax of the Software Performance Analyzer Commands
select_events

228

set

Chapter 10: Syntax of the Software Performance Analyzer Commands
set

229

The set command modifies the measurement and display options for the Software
Performance Analyzer. In addition, you can define shell environment variables
with the set command (explained on the next sheet, titled, "set <Environment
variable name>").

Initial default values are as follows:

symbols are set high
confidence is set at 95 percent
event_numbers are on
decimal_alignment is on
histogram_character = inverse_video_bar
byte_alignment is preset to match the normal operating
 mode of your emulator
status_qualification any
langinfo C

The parameters are as follows:

<VAR> Refer to the next page for a discussion of
"set <Environment variable name>"
and examples of its use.

symbols symbols lets you specify the type of symbols that you wish to use as high (user
defined in the source file), low (assembly level), or both.

confidence confidence specifies the level of confidence required in the value of stability that is
generated. Setting the confidence to a higher percent will make the analyzer run
longer to reach a given level of stability.

event_numbers event_numbers determines if event_numbers are to be displayed along with
event_names. If event_numbers are turned off, the additional spaces can be used to
display more characters of the event names.

decimal_alignment decimal_alignment forces the decimal points to be aligned in the columns of
values. With this selection, the values might not be displayed to three significant
digits.

histogram_
character

histogram_character lets you define the character to be used to make the bars on a
histogram display. Either select "inverse_video_bar", enter a decimal value
between 33 and 127, or quote the character to use. With some fonts, the character
127 makes a good histogram bar. If you select "inverse_video_bar", the
inverse-video bars will be used to make the histogram.

Chapter 10: Syntax of the Software Performance Analyzer Commands
set

230

byte_alignment byte_alignment lets you specify the boundaries of address ranges to be aligned by
byte, word (even bytes), or long (every 4th byte). The Intel 80960 Sx emulator can
align to byte, short (even bytes), or word (every 4th byte).

status_qualification status_qualification defines the global status qualification to be used with the
Software Performance Analyzer. This command is only available if the emulator
you are using has multiple operating modes such as, "supervisor" or "user".

langinfo langinfo defines the language type being used. Setting this to match the language
allows the symbols to be used properly by the Software Performance Analyzer.

Examples set symbols low

set confidence 99 percent

set event_numbers off

set decimal_alignment on

set histogram_character ’*’

set histogram_character 127

set byte_alignment byte

set status_qualification user

set langinfo ADA

Chapter 10: Syntax of the Software Performance Analyzer Commands
set

231

set <Environment variable name>

You can use the set <Environment variable name> command to define system
environment variables for use within the analysis session. For example, if you
enter the command:

set x = /usr/hp64000/demo/spa/demo1

then, "$x" (the string represented by "x") may be used in place of
"/usr/hp64000/demo/spa/demo1" in your commands. For example:

cd $x will perform the same function as cd /usr/hp64000/demo/spa/demo1

If you set <Environment variable name> equal to a string that contains internal
spaces, put the string in quotation marks.

(If you defined and exported HP-UX environment variables before the emulation
session, you can use those environment variables in the Software Performance
Analyzer. You won’t have to execute new "set <Environment variable name>"
commands from within this session.)

Examples set emuldir = /users/<yourlogin>/emul68000
set loadrt = "load symbols runtest"
set disph = "display histogram sort_events time"

The above commands allow you to use:

cd $emuldir
$loadrt
profile
$disph

Chapter 10: Syntax of the Software Performance Analyzer Commands
set <Environment variable name>

232

setup_measurement

Chapter 10: Syntax of the Software Performance Analyzer Commands
setup_measurement

233

The setup_measurement command lets you define several qualifications for your
Software Performance Analyzer measurement. These qualifications include when
to start the measurement, conditions on which to enable or temporarily disable the
measurement, trigger conditions, and when to terminate the measurement.

By default, the measurement starts when you enter the profile command.

The parameters are as follows:

start start lets you specify a condition on which to start a profile measurement.

enable enable lets you specify an address condition on which the Software Performance
Analyzer can begin (or continue) to gather data.

disable disable lets you specify an address condition on which to temporarily suspend the
gathering of software performance data. Disable is only available during
function_duration and interval_duration measurements.

status_enable_
disable

status_enable_disable lets you select a status condition to qualify the enable and
disable addresses. If you specify a status_enable_disable, it will qualify both your
enable and disable addresses. One of the following three conditions can be
selected:

• A status condition selected from those appearing on the softkeys.

• "default" which causes both the enable and disable conditions to be qualified on
the status used by the profile command.

• "any" turns off the status qualification for both the enable and disable addresses.

drive drive lets you set up the Software Performance Analyzer to drive trig2 after a
particular event has executed continuously for a specified period of time. The
emulator can use the signal from trig2 to trigger its emulation bus analyzer or to
cause an emulation break. Drive is only available during function_duration or
interval_duration measurements.

termination termination lets you specify conditions that terminate the measurement. The
Software Performance Analyzer can be set to terminate its measurement after a
specified time or after a stability level is reached. The interface must be running in
order to terminate a measurement on a stability condition.

default default sets the entire measurement specification of the Software Performance
Analyzer to initial conditions.

Chapter 10: Syntax of the Software Performance Analyzer Commands
setup_measurement

234

Examples setup_measurement start after_receiving_trig1

setup_measurement enable start_address main

setup_measurement disable any_address wait_for_io

setup_measurement termination run_time 5 minutes or stability 98 percent

setup_measurement drive trig2_after 100 msec int_loop

setup_measurement default

Chapter 10: Syntax of the Software Performance Analyzer Commands
setup_measurement

235

stop_profile

The stop_profile command causes the Software Performance Analyzer to terminate
its present profile measurement.

Examples stop_profile

stop

Chapter 10: Syntax of the Software Performance Analyzer Commands
stop_profile

236

store

The store command lets you store the present measurement setup and the present
profile data in a profile specification file (filename.PS file).

<FILE> is the name of the file that stores the measurement setup and profile data.
The store command creates a new file of the specified name. It will overwrite an
existing file by that name if entered from a command file. A prompt will ask
permission to overwrite the old file if the store command is entered from the
keyboard.

Examples store profile_spec myprofile

Chapter 10: Syntax of the Software Performance Analyzer Commands
store

237

symbol_offset

A symbol and offset expression is a combination of symbols, operators, numerical
values, and parentheses specifying an address to be used in Software Performance
Analyzer commands. The expressions can be any combination of "symbol +
offset" or "symbol - offset" where the offset is a combination of symbols,
operators, and numerical values.

The parameters are as follows:

--SYMB-- --SYMB-- is a symbolic reference to an address, file, or other value. Symbols may
be UNIX paths, referenced line numbers in a file, file segments (prog, data,
common), or global and local symbols.

+ Algebraic addition (plus).

- Algebraic negation (minus).

() Parentheses may be used in offset expressions. For every opening parenthesis, a
closing parenthesis must exist.

<NUMBER> <NUMBER> is a numeric value in any base (decimal, hex, octal, or binary).

<OP> <OP> is an algebraic or logical operand. <OP> may be:

Examples DISP_BUF + 5
SYMB_TBL + (OFFSET / 2)
START
myfile.S: line 30
file1.c:PROCEDURE.LOCAL_VAR - (2 * 100h + 20h)

+
-
/
*
|
&
mod
~

(plus)
(minus)
(divide)
(multiply)
(logical OR)
(logical AND)
(modulo)
(logical NOT)

Chapter 10: Syntax of the Software Performance Analyzer Commands
symbol_offset

238

--SYMB--

--SYMB-- is a symbolic reference to an address, file, or other value. Symbols may
be UNIX paths, referenced line numbers in a file, file segments (prog, data,
common), or global and local symbols.

The parameters are as follows:

file file is a UNIX path specifying a source file. If no file is specified, and the
identifier is not a global symbol in the executable file that was loaded, then the
default file is assumed (the last absolute file specified by a display
local_symbols_in command).

identifier identifier is the name of an identifier as declared in the file.

line line specifies that the following value is a line number.

<LINE> <LINE> prompts you to enter a line number.

scope scope is the name of the portion of the program where the specified identifier is
defined or active.

segment segment indicates that the following string specifies a program segment (prog, data,
common) in the source file.

<SEGMNT> <SEGMNT> prompts you to enter a program segment. The softkeys appear as
prog, data, and common. The actual text that appears when the softkeys are
pressed is "PROG", "DATA", and "COMMON". A user-defined segment name
can be used, as well.

<SYMBOL> <SYMBOL> prompts you to enter a symbol name in one of the following forms:

symb [procedure {entry | text}]
[file] segment <SEGMNT>
[file] line <LINE>

where: file is: [.|:] [{filename:|scope.} ...] filename:
 symb is: [.|:] [{filename:|scope.} ...] scope
 scope is: identifier[(type)]

A <SYMBOL> may also be followed by "start" or "end" when an address range is
returned, so that the desired address may be chosen.

<SYMBOL> start
<SYMBOL> end

Chapter 10: Syntax of the Software Performance Analyzer Commands
--SYMB--

239

(type) type differentiates between identifiers with the same name but of different type
(filename, fsegment, module, procedure, procspecial, static, or task).

: A colon (:) separates the UNIX path specifier from the line, segment, or symbol
specifier. In the case of a line or segment selection, there must be a space after the
colon. For a symbol specifier, there must NOT be a space after the colon if the path
specifier is present, otherwise there may or may not be a space after the colon.

Note that if a path specifier precedes the :, there should NOT be a blank between
them.

Examples module.S: line 5

keybd.S:scankeys.LOOP1

generic.C: segment data

something_global

:main(procedure) start

line 151

sample.C: segment PROG

main.c:index

file1.c:file2.c: # file2.c as included in file1.c

:package1."file.c": # the file "file.c" which is a child of package1

"a:b.c":alpha # the symbol alpha in the file named a:b.c

Chapter 10: Syntax of the Software Performance Analyzer Commands
--SYMB--

240

unselect_events

The unselect_events command lets you unselect events from a Software
Performance Analyzer measurement. You can identify the events to be unselected
by specifying an event type, a range of event numbers, or the event names. When
events are unselected, they are removed from the current measurement results, and
will not be part of a future measurement. Unselected events are still in the "events
list" and can be selected again, if desired.

The command "unselect_events <RETURN>" will unselect all events.

The parameters are as follows:

functions functions specifies that only function-type events will be unselected.

variables_static variables_static specifies that only variable-type events will be unselected.

range_types range_types specifies that only range-type events will be unselected.

interval_types interval_types specifies that only interval-type events will be unselected.

thru thru is used to identify a range of event numbers. All events in the event number
range will be unselected. The "thru end" command will unselect all events from
the present cursor position thru the end of the display.

Chapter 10: Syntax of the Software Performance Analyzer Commands
unselect_events

241

<EVENT> <EVENT> is the number of the event to be unselected.

matching
<PATTERN>

matching <PATTERN> specifies unselecting all events whose names match
<PATTERN>.

notmatching
<PATTERN>

notmatching <PATTERN> specifies unselecting all events, except those whose
names match <PATTERN>.

Examples unselect_events

unselect_events functions

unselect_events functions matching "mem*"

unselect_events variables_static

unselect_events 10 thru 105

unselect_events thru start

unselect_events thru end

unselect_events thru 205

unselect_events functions thru 205 notmatching "sru_*"

Chapter 10: Syntax of the Software Performance Analyzer Commands
unselect_events

242

11

Error Messages

243

Error Messages

This chapter contains descriptions of error mesages that can occur while using the
Software Performance Analyzer. The error messages are listed in alphabetical
order. Each description includes the cause of the error message and the action you
should take to correct the condition.

Note that most error messages are recorded into the error log display. You can
view them there, if necessary. Also, the Multiple Event Definition Summary
shown in the error log is discussed at the end of this chapter.

Software Performance Analyzer Messages

Address not found

Cause: This message occurs in emulators that have segment:offset addressing
modes. The Software Performance Analyzer could not create a valid address based
upon the segment address that it was passed.

Action: Enter a correct segment address.

Address range overlaps event XX; delete overlapped events?

Cause: You have tried to define a new event whose address overlaps at least the
event whose number appears in the message. Other events may also be overlapped
by your new event. Do you wish to delete all of the overlapping events?

Action: Answer either yes or no. If you answer yes, the Software Performance
Analyzer will delete all of the overlapping events and define your new event. If
you answer no, the Software Performance Analyzer will make no changes and will
delete your new event definition.

Chapter 11: Error Messages
Error Messages

244

Any_address is not valid with type ’interval’

Cause: You tried to set up an enable or disable condition using an interval-type
event and selected "any_address". Interval-type events do not have a range
associated with them. The resulting enable specification has been converted to
enable on the starting_address of the interval_type event.

Action: Select either the starting_address or ending_address of interval-type events
when using them in enable and disable specifications.

Cannot find file: /usr/hp64000/inst/emul/64742A/etc/info64708A

Cause: The software for the Software Performance Analyzer was not properly
installed or has been removed.

Action: Reinstall the User Interface Software for the Software Performance
Analyzer. Installation is discussed in Chapter 17.

Cannot find file: /usr/hp64000/inst/emul/64708A/tables/confidence

Cause: The software for the Software Performance Analyzer was not properly
installed or has been removed.

Action: Reinstall the User Interface Software for the Software Performance
Analyzer. Installation is discussed in Chapter 17.

Cannot initialize performance analyzer

Cause: The Software Performance Analyzer cannot be initialized properly.

Action: Try repowering the HP64700 emulation system.

Cannot start multiple performance analyzer windows

Cause: You have tried to start the Software Performance Analyzer when it is
already running in another window on your screen. The Software Performance
Analyzer can only have one active window to an emulator at a time.

Action: Find the original window and close it, or execute "end release_system" to
restart the emulation system.

Chapter 11: Error Messages
Software Performance Analyzer Messages

245

Command not allowed while a measurement is in process

Cause: You have tried to enter a command that cannot be executed while a
measurement is in process.

Action: Stop the Software Performance Analyzer measurement. Then the
command can be executed.

Defined XX (of XXX) events; display error_log for details

Cause: This is an information message that appears when defining multiple events.
It indicates the number of events that were defined from the total number of
possible events (functions and static variables) found in the source file.

Deleted XX events incompatible with current symbol database

Cause: This is an informational message about the number of events that had to be
deleted after the profile command was entered. These events had to be deleted
because the loading of a new symbol database made them invalid. They are invalid
because either:

• There are no symbols in the database for these events.

• They now have addresses that overlap other events.

• They now are trivial functions (functions whose starting and ending addresses
are aligned to the same identical address).

Disable event not valid, address overlaps enable

Cause: Your disable and enable events have overlapping addresses. Disable and
enable events cannot have overlapping addresses. Both events must have unique
addresses or address ranges.

Action: Redefine either your enable event or your disable event so that both events
have unique addresses or address ranges.

Chapter 11: Error Messages
Software Performance Analyzer Messages

246

Disable event not valid with activity measurements

Cause: You tried to run an activity measurement that had a disable event as part of
its specification. Disable events cannot be used in activity measurements. Disable
events can only be used in function-duration and interval-duration measurements.

Action: Remove the disable event from your activity measurement specification.

Disable not available without a valid enable

Cause: The enable event is not valid. Therefore, the disable event is not available.

Action: Correct your definition of the enable event. This will make the disable
feature available.

Disable shares addresses with event XX

Cause: The disable event and the selected event named in this message have
identical or overlapping addresses. The disable event must have addresses that are
different from all of the events that are to be measured.

Action: Redefine the disable event or unselect the event whose addresses overlap
the disable event. Then make the measurement.

Enable and Disable events cannot be profiled

Cause: You tried to include your enable and/or disable event in the profile
measurement. Enable and disable events cannot be selected to be included in the
current profile measurement.

Action: Unselect the enable and disable events. Then make your measurement.

Enable shares addresses with event XX

Cause: The enable event and the selected event named in this message have
identical or overlapping addresses. The enable event must have addresses that are
different from all of the events that are to be measured.

Action: Redefine the enable event or unselect the event whose addresses overlap
the enable event. Then make the measurement.

Chapter 11: Error Messages
Software Performance Analyzer Messages

247

Event does not exist

Cause: You have not correctly spelled the event name, or have entered an event
number that does not exist.

Action: Check the name and number of your event on the events list display. An
event name can be up to 40 characters long and may start with an underscore "_".
It might be easier to use the event number instead of the event name.

Event name is invalid

Cause: You are trying to define an invalid name for an event.

Action: Enter a valid event name in your definition. Valid event names consist of
alphanumeric characters and begin with an alpha character or underscore "_".

Event number does not exist

Cause: You entered an event number that does not exist. No events have been
defined for the event number you entered.

Action: Check the number of your event on the events list display. Then enter the
correct number in your command.

Event number is invalid (1 thru 1000)

Cause: You are trying to enter an event number that is not between 1 and 1000.

Action: Make sure you define events whose numbers are between 1 and 1000.

Event rate overflow

Cause: The defined events are coming in too fast or have come in too fast at some
point during the measurement. This has not allowed time for the Software
Performance Analyzer to capture them and perform its calculations. Some function
durations are lost.

Action: Select fewer functions to measure in the present measurement. Refer to
Chapter 6 for a detailed discussion about the event rate overflow condition.

Chapter 11: Error Messages
Software Performance Analyzer Messages

248

Event rate underflow

Cause: The defined events are coming in too slowly for the Function Duration
measurement. Some function durations are lost. Function entry or exit points must
occur at a rate of at least 1 every 1.25 second.

Action: Select a function that is executed at least once every second and include it
in the measured functions. A second solution is to define interval events to
represent the functions you want to measure and use the interval duration
measurement mode. Event rate underflow will not occur in interval duration
measurements. Refer to Chapter 6 for a detailed discussion about the event rate
underflow condition.

XX events incompatible with new symbol database

Cause: This is an informational message about the number of events that will have
to be deleted when the profile command is entered. These events will have to be
deleted because the loading of a new symbol database makes them invalid. They
are invalid because either:

• There are no symbols in the database for these events.

• They now have addresses that overlap other events.

• They now are trivial functions (functions whose starting and ending addresses
are aligned to the same identical address).

File could not be opened

Cause: File could not be opened for read or write.

Action: Check your permissions on the file.

File not found

Cause: File or path to file does not exist.

Action: Check the spelling in your command.

Chapter 11: Error Messages
Software Performance Analyzer Messages

249

Function is trivial and cannot be measured

Cause: You are trying to measure a function that is too short for the Software
Performance Analyzer to measure. In many cases, the start and end addresses of
the function are adjusted and aligned to the same address. This often occurs when
a function consists of only a return command.

Action: Make sure the function you are trying to measure is long enough to have
unique word or long-word addresses for its start and end addresses.

Function marker start and end addresses are identical

Cause: The addresses of the function-start and function-end markers were found to
be identical. This is an invalid condition.

Action: Check your definition for the symbols that the function should use to
define marker addresses. For further information on defining and using markers,
refer to Chapter 7.

Function start and end addresses are identical

Cause: You are trying to measure a function that is too short for the Software
Performance Analyzer to measure. In many cases, the start and end addresses of
the function are adjusted and aligned to the same address. This often occurs when
a function consists of only a return command.

Action: Make sure the function you are trying to measure is long enough to have
unique word or long-word addresses for its start and end addresses.

HP64700 I/O error; communications timed out

Cause: The HP 64700 cardcage has lost communication with your host.

Action: Reconnect the communication channel and/or repower the HP 64700
emulation system.

Chapter 11: Error Messages
Software Performance Analyzer Messages

250

Interval overlaps event XX: delete overlapped events?

Cause: You have tried to define a new interval event whose address overlaps at
least the event whose number appears in the message. Other events may also be
overlapped by your new interval event. Do you wish to delete all of the
overlapping events?

Action: Answer either yes or no. If you answer yes, the Software Performance
Analyzer will delete all of the overlapping events and define your new event. If
you answer no, the Software Performance Analyzer will make no changes and will
delete your new event definition.

Invalid syntax in HPSPAADJUST Environment Variable

Cause: You used incorrect syntax when you tried to export your HPSPAADJUST
environment variable.

Action: Export your HPSPAADJUST environment variable using correct syntax.
Correct syntax is: HPSPAADJUST="<NO.1> <NO.2>".

Where:
<NO.1> is the number of bytes to adjust forward from the start address of the
function.
<NO.2> is the number of bytes to adjust backward from the end of the function.

Typical HPSPAADJUST values are "2 0" for 68000, 68010, 68302, 6833x, and
68340; and "6 2" for 68020 and 68030. Refer to Chapter 7 for complete
information about using HPSPAADJUST.

Chapter 11: Error Messages
Software Performance Analyzer Messages

251

Invalid syntax in HPSPAMARKERS Environment Variable

Cause: You tried to export a specification for HPSPAMARKERS using incorrect
syntax.

Action: Export your HPSPAMARKERS environment variable using correct
syntax. The correct syntax for an HPSPAMARKERS specification is either:
HPSPAMARKERS="no", or
HPSPAMARKERS="yes start_prefix[+offset] end_prefix[+offset]".

Where:
start_prefix is the prefix to be added to a function name to create the name of the
variable that is written when the function is entered.
end_prefix is the prefix to be added to a function name to create the name of the
variable that is written when the function exits.
[+offset] is an optional number of bytes to adjust from the variable address.

A typical HPSPAMARKERS value for some MRI compilers is:
"yes _r_ _r_+2"

Limit of 10 expanded events exceeded, only 10 are now expanded

Cause: A new measurement found that more than 10 events were expanded.

Action: There is nothing you need to do. The display will automatically unexpand
all events after the first 10 expanded events.

Limit of 10 expanded events reached, unexpand other events

Cause: You tried to expand an event when you already have 10 events expanded.
Only 10 events can be expanded at one time.

Action: Unexpand one or more events before trying to expand this new event.

Loaded symbol data base

Cause: This information message tells you that a symbol database has been loaded.

Chapter 11: Error Messages
Software Performance Analyzer Messages

252

Measurement complete - stable

Cause: Software Performance Analyzer measurement is complete due to a
stability-termination condition.

Measurement complete - time

Cause: Software Performance Analyzer measurement is complete due to a
time-termination condition.

Measurement in process

Cause: Software Performance Analyzer measurement is running.

Measurement spec has changed, unable to store data with spec

Cause: This is a warning message to indicate that only the specification has been
saved and not the data from the last measurement. The measurement specification
has been changed and the data associated with the last measurement cannot be
saved with the current measurement specification.

Action: Make another measurement and save it before you change any aspect of
the measurement specification.

Measurement stopped

Cause: Software Performance Analyzer measurement has been stopped by the user.

No available event locations

Cause: You are trying to define more than 1000 events. No more than 1000 events
can be defined at one time.

Action: Delete some of the existing events. This will allow resources to define
additional events.

Chapter 11: Error Messages
Software Performance Analyzer Messages

253

No events are valid for this measurement

Cause: Either you have not defined valid events for this measurement or you have
not selected the appropriate type of events for this measurement.

Action: Make sure valid events are defined and selected for the measurement you
wish to make. The following list shows measurement types and the events that can
be included in the measurements:

• Program Activity - Events that represent either functions or ranges.

• Memory and I/O Activity - Events that represent either static variables or ranges.

• Function Duration - Events that represent functions.

• Interval Duration - Events that represent intervals.

No such symbol: <symbol>

Cause: The symbol <symbol> you entered in your command does not exist.

Action: Check the spelling of the symbol name.

No valid event on selected line

Cause: You are trying to select a line from the Graphical User Interface that does
not have an event.

Action: Select only the event lines when using the popup windows on the
histogram, table, and events list displays.

No valid symbol on selected line

Cause: You are trying to select a line from the global and local symbols display
that does not have a valid symbol.

Action: Select only symbol lines when using the popup menu of the global and
local symbols display.

Not allowed while a measurement is in process

Cause: You tried to enter a command for an action that cannot be taken when a
measurement is in process.

Action: Stop the measurement. Then you can enter your command.

Chapter 11: Error Messages
Software Performance Analyzer Messages

254

Not a compatible profile specification file - load aborted

Cause: The profile specification file is not compatible with the current software
version and cannot be loaded. This happens when a more recent profile
specification file is loaded into an older version of the Software Performance
Analyzer Software.

Action: Reinstall the User Interface Software for the Software Performance
Analyzer. Installation is discussed in Chapter 17.

Not a valid profile specification file - load aborted

Cause: The profile specification file <file.PS> has been corrupted and cannot be
loaded.

Action: Delete the file.

Possible 64708A hardware problem, run performance verification

Action: Try the following sequence:

1 Exit the user interface.

2 Cycle power on the emulation card cage.

3 Restart the emulation system.

4 Enter the Software Performance Analyzer.

If the above steps do not solve the problem, try reseating the HP 64708A analyzer
card.

If reseating the analyzer card does not solve the problem, and you are sure that all
software is properly installed, run the performance verification procedures
described in Chapter 17 of this manual.

Chapter 11: Error Messages
Software Performance Analyzer Messages

255

Profile command sets status_enable_disable to default

Cause: This error message appears when the current selected profile measurement
requires that the enable and disable status be changed. This error only occurs with
the Intel 80286 emulator when you have requested a status that cannot be measured
with the current profile command.

Action: Review your status specification and select one that is appropriate for the
profile measurement. The enable and disable status must be of type "exec" for
program_activity and function_duration measurements. In interval_duration and
memory_activity measurements, if you have selected "exec" as the measurement
status, the enable and disable status must be of type "exec". Otherwise, if you have
selected any other measurement status, the enable and disable status can be of any
type except "exec".

For Intel 80286 Only:

Measurement Measurement Status Enable and Disable Status

program_activity
function_duration
memory_activity
memory_activity
interval_duration
interval_duration

exec
exec
exec
any status except exec
exec
any status except exec

default or exec
default or exec
default or exec
any status except exec
default or exec
any status except exec

Slow clock

Cause: The emulator is not sending analysis clocks to the Software Performance
Analyzer.

Chapter 11: Error Messages
Software Performance Analyzer Messages

256

Stack overflow

Cause: The internal stack of the Software Performance Analyzer is not finding
appropriate exit points for the function entry points it has found. This can occur
when your emulator is prefetching the starting addresses of measured functions in a
manner that is not recognized by the prefetch-correction circuitry of the Software
Performance Analyzer.

Action: Make the following checks to correct this problem:

• Make sure your symbol data base is up to date.

• Make sure your functions are defined properly.

• Compile your executable file with the debug (-OG) options; these insert NOP
padding between function exits and function entries.

• Select fewer functions for the present measurement.

Refer to Chapter 6 for a detailed discussion about the stack overflow condition.

Symbols not accessible; Symbol database not loaded

Cause: The symbol database for the executable file is not loaded.

Action: Load the symbol database in order to use the symbols.

Termination condition specified cannot turn off stability

Cause: You tried to turn off the stability calculation, but the stability calculation is
being used as part of the termination condition.

Action: Either remove the termination condition from your specification, or leave
the stability calculation turned on.

Time range of 1.0us - 1.0us defaulted to 1.0us - 2.0us

Cause: You entered a 1.0 usec through 1.0 usec time range. There are several ways
you might have done this. This range has been defaulted to 1.0 usec to 2.0 usec.

Action: Remove the defaulted time range and enter the desired time range.

Chapter 11: Error Messages
Software Performance Analyzer Messages

257

Time range values are identical; defaulted to 1.0us - value

Cause: You entered identical values for the start and end of the time range. Your
specification was defaulted to a range of from 1.0 usec to the value you entered.

Action: Reenter your specification to obtain the desired time range.

Trigger event cannot be a static variable or range

Cause: You selected a variable or range type event to be the trigger event. A
trigger event must be either a function or interval event, depending upon the type of
measurement being made.

Action: If making a function duration measurement, select a function event as the
trigger event. If making an interval duration measurement, select an interval event
as the trigger event.

Trigger event cannot have identical start and end addresses

Cause: You selected a trigger event that has the same address for both its start
address and its end address.

Action: Select a trigger event in an interval duration measurement that has different
start and end addresses.

Trigger event cannot match enable or disable events

Cause: You selected the same event to be a trigger event and either the enable or
disable event. The events selected for enable or disable cannot match the trigger
event.

Action: Either select another event for an enable or disable event, or select a
different trigger event.

Trigger event must be type ’func’ for Function Duration

Cause: You did not select a function type event to be the trigger event in a function
duration measurement.

Action: Select a function type event to be the trigger event, or change to an interval
duration measurement and select an interval type event to be the trigger event.

Chapter 11: Error Messages
Software Performance Analyzer Messages

258

Trigger event must be type ’interval’ for Interval Duration

Cause: You did not select an interval type event to be the trigger event in your
interval duration measurement.

Action: Select an interval type event to be the trigger event, or change to a function
duration measurement and select a function type event to be the trigger event.

Trigger event only valid with Duration measurements

Cause: You tried to include a trigger event within your specification for an activity
measurement. Trigger events cannot be found during activity measurements.

Action: Change to a function-duration or interval-duration measurement to use
your trigger event.

Unable to find file for selected event

Cause: The source file cannot be found for the event you selected in the Graphical
User Interface.

Unable to obtain the current task information

Cause: The Software Performance Analyzer cannot create a valid address based on
the current task.

Action: Redefine the event and enter the full address for this event or enter a
symbol for this event.

Unrecognized file type - <file>

Cause: The symbol file you specified is not a symbol file.

Action: Check the spelling of the file name.

User interface "debug" blocked on its own forwarded command

Cause: The user interface will not accept the command you just entered because it
is responding to a previously forwarded command.

Action: Wait until the forwarded command is completed. Then enter your
command again.

Chapter 11: Error Messages
Software Performance Analyzer Messages

259

User interface "debug" or "emul" not running

Cause: The command you entered cannot be forwarded to either of these interfaces
because they are not running.

Action: Start up either a debugger or an emulation interface and enter your
command again.

User interface "emul" blocked on its own forwarded command

Cause: The user interface will not accept the command you just entered because it
is responding to a previously forwarded command.

Action: Wait until the forwarded command is completed. Then enter your
command again.

Validating defined events (XX of XXX)

Cause: This is an informational message about how many of the defined events
have been validated correctly after a new symbol data base was loaded.

Waiting for enable

Cause: Software Performance Analyzer measurement is waiting for the occurrence
of the enable condition defined in the setup_measurement command.

Waiting for trigger

Cause: Software Performance Analyzer measurement is waiting for the trig1 signal
to be delivered from the emulation system. Trig1 will be supplied to the Software
Performance Analyzer when the emulator finds its trace point (trigger plus delay
specification).

Warning: at least one integer truncated to 32 bits

Cause: This warning occurs when the address value you entered is greater than 32
bits.

Action: Correct the address value to 32 bits.

Chapter 11: Error Messages
Software Performance Analyzer Messages

260

Warning: emulator is not configured to receive TRIG2

Cause: This warning appears when the Software Performance Analyzer is set up to
drive trig2 and the emulator is not configured to receive trig2.

Action: Modify the configuration of the emulator to receive trig2, either for trace
arming, or to cause a break to the emulation monitor.

Warning: trigger timer does not exclude calls

Cause: This occurs when you are defining a trigger event in a function duration
"excluding calls" measurement. It is a reminder that the trigger time will not match
the time shown on the excluding_calls measurement display.

64708A firmware incompatible, update 64708 and 64708S

Cause: The firmware on the HP 64708A analyzer card has not been properly
updated. Run the progflash utility and update both the HP 64708 and HP 64708S.
Refer to Chapter 18 for details.

64708A software problem, reload all B1487 software + firmware

Cause: The software is not communicating properly. Perhaps some part of the
software is out of date.

Action: Update to the latest software by reinstalling the HP B1487 product. Make
sure that all of the HP B1487 filesets are loaded, including the HP B1487PERF
fileset. When the software has been installed, progflash the HP 64708 and
HP 64708S firmware onto the HP 64708A analyzer card. Refer to Chapter 18 for
details.

Chapter 11: Error Messages
Software Performance Analyzer Messages

261

Error log displays

The Multiple Event Definition is placed in the error log. This is an informational
message.

 Multiple Event Definition Summary:

 Total Functions : 10

 Address Overlaps : (0)

 Pattern Mismatches: (0)

 Trivial Functions : (0)

 New Defined Events: 10

The multiple event definition summary reports the results of using the
multiple_events command. The contents are defined as follows:

Total Functions: Total functions scanned.

Address Overlaps: Number of functions that had address overlaps.
Use the AxLS compiler debug option (-OG) to avoid
address overlaps of entry and exit events.

Pattern Mismatches: Number of functions that did not meet the
pattern qualification that was entered.

Trivial Functions: Number of functions that were found to have
identical start and end addresses after the
appropriate byte-alignment was applied.

New Defined Events: Number of new defined events.

Chapter 11: Error Messages
Error log displays

262

12

The Events List

This chapter discusses the events list. It shows you how to interpret the content of
the events list. It also shows you how to create events for the events list, and
explains details you should understand when creating events.

263

This chapter discusses the following:

• How to interpret an Events List.

• Detailed definition of the term, "event".

• How events are used by the Software Performance Analyzer.

Interpreting the Events List

This paragraph discusses the Events List (shown below) used by the Software
Performance Analyzer. The events list tells you if an event was (or was not)
included in a measurement, and the reason the event was left out of the
measurement. This chapter shows how you can make sure a desired event will be
included in your measurement.

The event number shows the order in which the associated event was defined.

The symbol beside the event is defined in the table on the next page.

In the case of functions and static variables, the name of the event is the same as
the name of the source-file symbol it represents. In the case of ranges and
intervals, the name is either the name you specified when you defined the event, or
a combination of the symbols or addresses used in defining the event.

Events *-Function Duration include calls ?-Invalid Type
_Number__Name___Address_Range_____Type____
 1 * apply_controller 00000C82 - 00000CCE func
 2 * apply_productions 00000B98 - 00000BE6 func
 3 * atexit 00001216 - 00001246 func
 4 * _01_calculate_answer 00000CD0 - 00000D1C rec func
 5 ? _02_calculate_answer 00000CD0 - 00000D1C interval
 6 ? count 00060056 - 00060059 var
 7 ? data 00060376 - 00060379 var
 8 * clear_buffer 00000AD4 - 00000AFC rec func
 9 * endcommand 00000DB2 - 00000DB2 func
 11 * format_result 00000BE8 - 00000C10 func
 12 ? request_command__syntax_check 00000D1E - 00000B36 interval
 13 ? i_o 0006036E - 00060371 var
 15 ? exec_cmd__exec_cmd 00062000 - 00062000 interval
 16 ? utility_routines 00080000 - 000865FF range
 17 * main 00000DB4 - 00000E0A func
___19_?__math_library______________________________00063000_-_0006744B__range___

Chapter 12: The Events List
Interpreting the Events List

264

Symbol Interpretation

*

?

r

(no symbol)

Selected to be in the next profile measurement. Was included in the last
profile measurement.

Selected to be in the next profile measurement. Was not included in the last
profile measurement because it was the wrong type for that measurement.

Selected to be in the next profile measurement. Was not included in the last
profile measurement because or resource limits. The measurement already
had all of the events it could include before it saw this event.

Not selected to be in any measurement.

Interpreting Symbols In The Events List

Type Interpretation

func

rec func

var

interval

range

Source-file function. Represents the address range occupied by the
corresponding function in the executable file.

Recursive source-file function. Represents the address range occupied by the
corresponding recursive function in the executable file.

Static variable. Represents a static variable or array variable in the executable
file, or the address of an IO port.

Interval. Defined by a start address and an end address. The start address may
be higher, lower, or the same as the end address. Addresses inside the interval
boundaries are not recognized.

Address range. Must begin on an address lower than the ending address. All
addresses are recognized as part of the range event.

Event Types

Chapter 12: The Events List
Interpreting the Events List

265

The Address Range is the addresses in the executable file that are represented by
the event.

The event types are listed and described in the "Event Types" table.

What is an event?

An event is a name that represents an absolute address or a range of absolute
addresses in your executable file. If an event represents the address of a variable,
its name will be the same as the name of the variable. If an event represents a
function, its name will be the same as the function name.

Through the emulator, the Software Performance Analyzer can access the symbols
data base for your absolute file under test and create a list of events whose names
and addresses are the same as those in the data base. If you would like to make
event definitions of your own, you can define a single event that represents any
address or range of addresses (such as an event that represents many source-file
functions). You can assign any name you choose to your event. Duplicate names
will be made unique by preceding them with a number. The number will appear
like: _01_NAME, _02_NAME, etc.

Note that extremely short functions that have no code associated with them may
become aligned so that they have the same starting address and ending address.
Such functions cannot be defined. For functions to be defined, they must have
different, byte_aligned, entry and exit addresses.

Chapter 12: The Events List
What is an event?

266

How events are used

The Software Performance Analyzer uses events in its measurements. It can
recognize events that are appropriate for measurements and events that are not.
You can select all events in your present events list and then start a measurement.
The Software Performance Analyzer will only include appropriate events in the
measurement.

If the measurement you start is a "memory_and_io_activity" measurement, the
Software Performance Analyzer will read through the events that are selected in the
events list and only accept events that represent variables or ranges of code. If you
then start a program activity measurement, the Software Performance Analyzer will
read through the events list and only accept selected events that represent functions
and ranges. If you finally start a measurement of function duration, the Software
Performance Analyzer will only accept selected events that represent functions
defined in the absolute file under test. If you start an interval_duration
measurement, only events that represent intervals will be accepted.

Profile
Measurement
Type

Event Type

Function Recursive
Function

Variable Interval Range

Program
Activity X X X

Memory and
I/O Activity X X

Interval
Duration X

Function
Duration X X

Chapter 12: The Events List
How events are used

267

The events list when markers are used

The display below shows the format of an events list whenmarkers are used. The
events list contains all of the information that is in an events list without markers,
and additionally contains the marker addresses (for example, apply_controller
shows the start and end addresses of the function, and the addresses of its
associated start marker and end marker. Note that the apply_productions_calculat
interval (number 6) was defined as an interval beginning with the start address of
apply_productions, and ending with the start address of calculate_address.
Therefore, the start markers of those two functions are used as the start and end
markers of the interval.

For complete details of how to use markers, refer to Chapter 7.

Events *-Function Duration include calls ?-Invalid Type
_Number_Name__________________________Address Range___Type______Address Markers
 1 * apply_controller 00000FDE-00001062 func 000600B6 000600B8
 2 * apply_productions 00000E02-00000EA4 func 0006009E 000600A0
 3 * calculate_answer 0000106A-000010F2 func 000600BC 000600BE
 4 ? count__count 000600E0-000600E0 interval 000600E0 000600E0
 5 ? count 000600E0-000600E3 var
 6 ? apply_productions__calculat 00000E02-0000106A interval 0006009E 000600BC
 7 ? dma 000603FC-000603FF var
 8 * endcommand 00001242-00001260 func 000600D4 000600D6
 9 ? errno 00060496-00060499 var
 10 * format_result 00000EAC-00000EFA range
 11 * get_next_token 00000F70-00000FD6 func 000600B0 000600B2
 12 ? i_o 000603F8-000603FB var
 13 * initialize 00000F02-00000F68 func 000600AA 000600AC
 14 * input_line 00000992-000009F6 func 00060056 00060058
 15 * lookup_token 00000CD0-00000D36 func 0006008C 0006008E
 16 * main 00001268-000012EC func 000600DA 000600DC
___17_?_mask_value__________________000600E4-000600E7_var_______________________

Chapter 12: The Events List
The events list when markers are used

268

13

Interpreting Tables, Histograms, and
Measurement Specifications

This chapter discusses the displays of measurement results presented by the
Software Performance Analyzer. It shows how to interpret each of the displays.

269

The contents of this chapter discuss detailed information for:

• Interpreting a Table display.

• Interpreting a Histogram display.

• Interpreting a Measurement Specification display.

Interpreting a Table

This paragraph discusses the table displays of the Software Performance Analyzer.
Each column on the table display is explained. Two table displays are shown for
measurements made by the Software Performance Analyzer: one to show the
results of an activity measurement and the other to show the results of a duration
measurement. Their contents are different.

A table of activity measurement results is shown and described below:

• Run Time shows how long your measurement has run.

• Stability is an indication of how well the Software Performance Analyzer has
characterized the measurement. In a pure sense, it is a measure of the average
of standard deviation error tolerances subtracted from 100%.

Table: Program Activity Run Time: 1:13 Stability: 57%
Name(sort:_time)_____|_Cycles_|__Time__|_Time_%_|_Mean(1s)|_StDv(1s)|_Time/cyc
 2 apply_productions | 2.64E06| 1.4 s| 49.88 | 498.8ms| 446.5ms| 546.9ns
 31 stack_library | 782034| 419.8ms| 14.49 | 144.9ms| 248.5ms| 536.8ns
 27 scan_string | 404891| 214.7ms| 7.41 | 74.1ms| 208.5ms| 530.2ns
 20 move_byte | 251109| 134.8ms| 4.65 | 46.5ms| 141.5ms| 536.9ns
 23 report_errors | 250261| 134.3ms| 4.64 | 46.4ms| 140.8ms| 536.8ns
 19 math_library | 180832| 98.5ms| 3.40 | 34.0ms| 101.3ms| 544.8ns
 21 outputline | 156125| 81.4ms| 2.81 | 28.1ms| 158.9ms| 521.2ns
 5 clear_buffer | 134565| 73.4ms| 2.53 | 25.3ms| 142.0ms| 545.6ns
 16 lookup_token | 102740| 56.6ms| 1.96 | 19.6ms| 62.7ms| 551.1ns
 15 input_line | 106926| 55.5ms| 1.92 | 19.2ms| 129.2ms| 519.2ns
 26 scan_number | 57989| 31.1ms| 1.07 | 10.7ms| 90.0ms| 536.8ns
 24 report_result | 52309| 28.5ms| 0.99 | 9.9ms| 83.9ms| 545.7ns
 33 syntax_check | 39934| 21.9ms| 0.76 | 7.6ms| 47.5ms| 548.5ns
 28 semantic_check | 16318| 9.4ms| 0.33 | 3.3ms| 9.8ms| 577.0ns
__12_get_next_token____|___11475|___6.4ms|___0.22 |____2.2ms|___18.4ms|__561.8ns
 Profiled Absolute | 5.22E06| 2.8 s| 100% |

Chapter 13: Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Table

270

• Cycles is the number of cycles recorded for the associated event.

• Time is the total time of all cycles recorded for the event.

• Time % is an expression of the time recorded for this event as a percent of the
profiled time.

• Mean(1s) shows the average amount of execution time that is used by the
associated event during any given second of program execution.

• StDv(1s) is the variation between 2.5 ms samples of event activity scaled to 1
second.

• Time/cyc is the average time required to complete one bus cycle for the
associated event.

• Profiled time is the amount of time that has been completely profiled in making
the activity measurement. If you were to have 1 second of profiled time, this
would indicate that an equivalent of execution time has been completely
dissected into all of the specified address ranges, functions, or variables
included in the measurement.

A table of duration measurement results is shown and described below:

• Run Time shows how long your measurement has run.

• Stability is an indication of how well the Software Performance Analyzer
characterized the measurement. In a pure sense, it is a measure of the average
of standard deviation error tolerances subtracted from 100%.

Table: Function Duration include calls Run Time: 0:49 Stability: 99%
Name(sort:_calls)____|_Calls_|__Time__|_Time_%|__Max__|__Min__|_Mean__|Std_Dev
 19 math_library | 27244| 2.3 s| 4.64|188.0us| 19.0us| 85.2us| 44.6us
 1.00us - 10.0us | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 10.0+us- 100us | 17919| 1.1 s| 2.11| 97.0us| 19.0us| 58.8us| 27.0us
 100+us - 1.00ms | 9325| 1.3 s| 2.54|188.0us|110.0us|136.0us| 22.5us
 1.00+ms- 10.0ms | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 10.0+ms- 100ms | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 100+ms - 1.00s | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 non_range | 0| 0.0us| 0.00| 0.0us| 0.0us| 0.0us| 0.0us
 ______________________|_______|________|_______|_______|_______|_______|_______
 31 stack_library | 9992| 7.3 s| 14.59|730.3us|730.2us|730.2us| 0.0us
 27 scan_string | 3996| 3.5 s| 7.04|880.3us|880.2us|880.2us| 0.0us
 2 apply_productions | 2997| 32.5 s| 65.00| 11.7ms| 10.0ms| 10.8ms|525.4us
 20 move_byte | 2997| 2.2 s| 4.38|730.3us|730.2us|730.2us| 0.0us
 23 report_errors | 2997| 2.2 s| 4.38|730.3us|730.2us|730.2us| 0.0us
__28_semantic_check____|___1998|___4.5_s|___9.09|__2.3ms|__2.3ms|__2.3ms|__0.0us
 Profiled Absolute | 58299| 50.0 s| |

Chapter 13: Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Table

271

• Calls is the number of times the associated event was called during the
measurement.

• Time is the total time of all executions of the associated event.

• Time % shows what percent of profiled time was recorded for the associated
event.

• Max shows the longest single duration measured during any execution of the
event.

• Min shows the shortest single duration measured during any execution of the
event.

• Mean shows the average time for one execution of the event.

• Std Dev is the variation between executions of the event (the value of one
standard deviation of the event).

• Expanded events show greater detail. Each time range under an expanded event
shows information about the executions of the event that were completed within
the time range.

• Profiled time is the amount of time that has been completely profiled in making
the measurement. In duration measurements, this is typically equivalent to the
run time.

Chapter 13: Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Table

272

Interpreting a Histogram

The following paragraphs discuss the content of the histogram display (shown
below), which shows the results of a Software Performance Analyzer
measurement. The example histogram shows values of time recorded during the
measurement. You can also obtain histograms that show values of cycles (for
activity measurements), and calls (for duration measurements).

• Run Time shows how long your measurement has run.

• Stability is an indication of how well the Software Performance Analyzer
characterized the measurement. In a pure sense, it is a measure of the average
of standard deviation error tolerances subtracted from 100%.

• Time shows the total amount of time recorded for the associated event.

• % is an expression of the time recorded for this event as a percent of the profiled
time.

• 0% thru 100% shows graphic bars to represent the amount of time used by the
associated event, compared with the amounts of time used by the other events.

Histogram: Program Activity Run Time: 0:40 Stability: 69%
Name(sort:_time)_____|__Time__|__%___0%_____10%_____20%_____30%_____40%____50%
 2 apply_productions | 779.7ms| 49.30|***************************************
 31 stack_library | 211.5ms| 13.37|***********
 27 scan_string | 110.9ms| 7.01|******
 19 math_library | 86.9ms| 5.50|****
 20 move_byte | 74.6ms| 4.72|****
 23 report_errors | 63.1ms| 3.99|***
 5 clear_buffer | 37.5ms| 2.37|**
 16 lookup_token | 30.4ms| 1.92|**
 26 scan_number | 30.0ms| 1.90|**
 21 outputline | 26.7ms| 1.69|*
 15 input_line | 20.8ms| 1.31|*
 33 syntax_check | 12.7ms| 0.81|*
 28 semantic_check | 5.5ms| 0.35|
 12 get_next_token | 5.1ms| 0.32|
__24_report_result_____|___4.6ms|__0.29|__
 Profiled Absolute | 1.5 s| 100% 0% 10% 20% 30% 40% 50%

Chapter 13: Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Histogram

273

Interpreting a Measurement Specification

The following paragraph discusses the content of the measurement setup (shown
below) of the Software Performance Analyzer. The measurement setup below
contains more information than the default measurement setup. Each element of
information in a measurement setup is discussed below.

The measurement specification display shows the following:

• The name of the symbol file for the present program under test.

• The default measurement type (measurement performed by pressing "profile"
alone.

• Condition that starts the measurement in the Software Performance Analyzer.

• Event that enables the Software Performance Analyzer to collect data.

• Event that temporarily disables the collection of data.

• Trigger generation that occurs after continuous execution of specified event.

• Condition, when achieved, causes measurement to end automatically.

• Whether the default type of output display is histogram or table.

Measurement Specification Symbol File: /usr/hp64000/demo/spa/demo1/runtest.x
__
PROFILE | function_duration include_calls
 |
SETUP | start after_receiving_trig1
 | enable start_address scan_string (27)
 | disable end_address semantic_check (28)
 | status_enable_disable default (prog)
 | (Enable and disable events cannot be selected/measured)
 | drive trig2_after 150 msec parse_command (22)
 | termination stability 98 percent
 | (termination by stability only occurs if this interface is active)
 |
DISPLAY | table data absolute
 | sort_events time
 | rescale to_max 100 percent
 | stability after_every 30 seconds
 | time_ranges 1.00us - 10.0us
 | 10.0+us- 100us
_________|______________100+us_-_1.00ms___

Chapter 13: Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Measurement Specification

274

• Whether data is expressed in absolute or relative values.

• The present way events are sorted in tables and histograms.

• The present scale of information on histogram displays.

• An indication of how often the data stability is recalculated.

• The present set of time_ranges defined. You can use the roll or arrow keys to
see all of the time ranges if they are not presently on screen.

Chapter 13: Interpreting Tables, Histograms, and Measurement Specifications
Interpreting a Measurement Specification

275

276

14

Using trig1 and trig2 to Control
Measurements with Emulators and
Other Analyzers

277

This chapter discusses the high-speed communication that can be used to enable
measurements, trigger measurements, and cause emulation breaks when using the
Software Performance Analyzer. The contents of this chapter include:

• Trigger lines used by the Software Performance Analyzer.

• Trigger events reduce the events that can be in a measurement by one.

• Trigger events, how they are handled during activity measurements.

• Restrictions on the event used to generate trig2.

• How trigger operates.

Trigger lines used by the Software Performance
Analyzer

The Software Performance Analyzer is designed to use two trigger signals when
coordinating measurements with other instruments: trig1, and trig2. These trigger
signals are described below:

trig1 is an input to the Software Performance Analyzer. It is a measurement-enable
level. You can set the Software Performance Analyzer to hold off its measurement
until after it receives trig1. In this way, you can hold off starting your
measurement until the instrument generating trig1 (normally the emulation bus
analyzer) finds a desired location in state flow, such as the completion of an
initialization process.

trig2 is an output from the Software Performance Analyzer. It commands
immediate action. You can set the Software Performance Analyzer to generate
trig2 during a duration measurement if an event you select executes continuously
for too long a period of time. You can set up the emulator to break to its monitor
program when it receives trig2, or you can set up the emulation bus analyzer to
take a trace of program execution when it receives trig2.

Chapter 14: Using trig1 and trig2 to Control Measurements with Emulators and Other Analyzers
Trigger lines used by the Software Performance Analyzer

278

Trigger events must be selected

If you specify trigger generation after an event has executed for some period of
time, then the event named in your trigger specification must be selected in the
measurement. Therefore, the number of other events that can also be selected in
the measurement is reduced by one.

Trigger events in activity measurements

If you have a trigger event specified, and you select an activity measurement
(triggering is not possible in activity measurements), your specification will
continue to be listed in the measurement setup, but it will not be active.

Restrictions on the event used to generate trig2

• A trigger event for a function_duration measurement must be a function or
recursive function.

• A trigger event for an interval_duration measurement must be an interval.

• If you are making a measurement that uses an enable and/or disable, the enable
and/or disable specifications must use a different event from the one used for the
trigger event. You cannot use the same event for both a trigger event and an
enable or disable event.

• A trigger event cannot be defined to have the same address for both its start
address and its end address.

Chapter 14: Using trig1 and trig2 to Control Measurements with Emulators and Other Analyzers
Trigger events must be selected

279

How trigger operates

Trigger operation is independent of the duration-measurement mode. The trigger
generator operates very much like an interval-duration measurement. The first
address of the trigger event will start the trigger counter. If the trigger counter
exceeds the time specified for trigger generation before the trigger-event
stop-address is found, the trigger will occur. A delay of about 500 ns will occur
after the specified time has been reached before the trigger actually appears.

Qualifying the trigger

The trigger-event start address and stop address will be qualified by the global
status specification you use (such as "set status_qualification user" or "supervisor",
as applicable to your target microprocessor). The trigger-event addresses will also
be qualified by your interval-duration status specification (such as "profile
interval_duration status prog", or "status data_read", as applicable to your target
microprocessor).

If you trigger on functions that are prefetched

The trigger event is not corrected for unused prefetches. If the starting address of
your trigger event appears in an unused prefetch, the Software Performance
Analyzer might begin counting time to generate trig2. The result might be trigger
generation before the event has been active. In the same way, if the end address of
your trigger event appears in an unused prefetch, the "trig2_after" specification
may never be exceeded because the prefetch of the end address terminates the
event time too early.

If prefetching causes problems for the execution of your trigger specification, you
can modify your source file to put additional NOP instructions before the entry and
exit addresses of the function used by the trigger specification. The NOP
instructions will be prefetched instead of the entry and exit addresses.

Another way to solve the above problem takes more work to set up, but avoids the
prefetch problem, entirely. Edit your source file to add an instruction that writes to
a variable just after the function start, and another instruction that writes to a
different variable just before the function end. Then define an interval event that
starts at the first variable and ends at the last variable. Perform an
interval-duration measurement that is qualified on write transactions, and specify
trigger to occur when the duration of your interval event is exceeded.

Chapter 14: Using trig1 and trig2 to Control Measurements with Emulators and Other Analyzers
How trigger operates

280

Refer to the discussion on using markers at the end of Chapter 7 for information
that may help you with this last method of overcoming prefetch problems when
generating triggers.

If you trigger on the duration of a recursive function

The trigger counter will record the time during the recursive call string from the
first occurrence of the trigger event start address to the first recursive end address
(not the last recursive end address). The result will be trigger generation if the
period of the recursive call string is long enough to meet your specification,
measured from the unused prefetches of the function (if any) to the first recursive
end address.

If calls are excluded

The trigger counter is not corrected for the excluding-calls mode. If your
measurement mode is "function_duration exclude_calls", the trigger counter will
continue to run during execution of calls to other events.

If an enable/disable window is used

If your measurement uses an enable/disable specification, the trigger counter will
not run during periods when the Software Performance Analyzer is disabled.

Chapter 14: Using trig1 and trig2 to Control Measurements with Emulators and Other Analyzers
How trigger operates

281

282

15

Hidden Commands of the Software
Performance Analyzer

This chapter lists and describes commands you can use with the Software
Performance Analyzer that do not appear on the softkeys. You must type these
commands directly on the command line.

283

The following commands do not appear on the softkeys. In cases where it is
appropriate, parameters will be offered on the softkeys once you have typed the
command on the command line. Commands described in this chapter include:

• cd (change directory)

• pws and cws (print working symbol and change working symbol).

• <!CMD!> (UNIX COMMAND).

• version (to see the software version number on the STATUS line).

• help.

• log_commands.

• pod_command.

• wait.

• forward.

The following hidden commands are emulator commands. They are added as a
convenience for the user of the Software Performance Analyzer. The commands
are only available if you are running a Graphical User Interface or Debugger
Graphical User Interface with software version number 5.00, or higher. Refer to
your emulator manual for a complete description:

• run.

• run from reset.

• run from transfer_address.

• reset.

• break.

• modify configuration.

Chapter 15: Hidden Commands of the Software Performance Analyzer

284

Change directory

You can change your working directory while in a measurement session by typing
a cd command on the command line. To see your present working directory, type
pwd on the command line.

Working symbol (pws and cws)

The Symbolic Retrieval Utilities (SRU) handle symbol access within emulation.
SRU maintains trees representing the symbol structure and scoping within your
program code. You can specify a path in the tree by typing the cws (current
working symbol) command. After you specify a symbol in this way, other symbol
accesses are assumed to be relative to this symbol unless you specify complete
paths. You can display the current working symbol on the status line by typing the
pws (print working symbol) command.

More information about SRU is given in the chapter on SRU in the Softkey
Interface User’s Guide/Reference manual for your emulator/analyzer.

Chapter 15: Hidden Commands of the Software Performance Analyzer
Change directory

285

UNIX COMMAND (<!CMD!>)

UNIX commands can be entered from the command line by preceding them with
an exclamation point (!). If you want command line execution to continue in the
softkey interface after the UNIX command is finished, follow your command with
an exclamation point.

Examples To enter a UNIX command from the command line of the Software Performance
Analyzer:

!ls
!more myfile1.c

To enter a command that has command line execution continuing in the softkey
interface after the UNIX command is finished:

copy table to !lp! noheader

Software version

You can type version on the command line to see the software version number and
release date of the Software Performance Analyzer. This information will be
shown on the STATUS line.

Chapter 15: Hidden Commands of the Software Performance Analyzer
UNIX COMMAND (<!CMD!>)

286

help

When typed on the command line, help displays information about the features of
the Software Performance Analyzer. Typing help or ? displays softkey labels that
list the options on which you can receive help. When you select an option, the
system will list the information to the screen.

You can either press a softkey representing the help file, or type in the name of the
help file. If you type in the help file name, make sure you use the complete name.
Not all softkey labels have the complete help file names.

The following is a summary of the help files available when you type help or ?:

system_commands
profile
define
setup
display
SELECT
delete
load
store
renumber
copy
select
unselect
set
absolute
relative
sort
rescale
stability
time_ranges
EXPAND
end
stop
enable
trigger
symbols
symbol_offset

Chapter 15: Hidden Commands of the Software Performance Analyzer
help

287

pod_command
wait
run
break
reset
modify
dur_act_distinctions
real_time_OS
prefetch
markers
I80960

Examples help SELECT

? profile

Chapter 15: Hidden Commands of the Software Performance Analyzer
help

288

log_commands

This feature allows you to keep a record of commands that are executed during a
performance measurement session. During a measurement session, all commands
that are executed are also stored in a file. After the session, you can edit the file to
create a command file.

To execute the saved commands after the log file is closed, type the name of your
log file on the command line.

Default value Commands are not logged (stored) in a file.

Parameters

<FILE> This prompts you to enter the name of the file where you
want to store commands that are executed while running
the Software Performance Analyzer.

off This turns off the process that logs commands to a file.

to This allows you to specify a file for the logging of
commands.

Examples log_commands to myfile

log_commands off

See also help system_commands

Chapter 15: Hidden Commands of the Software Performance Analyzer
log_commands

289

pod_command

This command lets you control the emulator directly through the Terminal
Interface. You can access this interface and enter Terminal Interface commands
using pod_command. The options to pod_command allow you to supply one
command at a time, or you can select a keyboard mode which gives you interactive
access to the Terminal Interface.

Avoid using the following commands while using pod_command:

To see the results of a particular pod_command (the information returned by the
emulator pod), use display pod_command.

There is no default, but you must specify either a particular Terminal Interface
command as a quoted string or enter the Keyboard mode.

stty, po, xp Do not use. These commands will change the operation of the
communications channel, and are likely to hang the Softkey
Interface and the channel.

echo, mac Using these may confuse the communications protocols in use
on the channel.

wait Do not use. The pod will enter a wait state, blocking access by
the softkey Interface.

init This will reset the emulator pod and force an end
release_system command.

t Do not use. The trace status polling and unload will become
confused.

lanpv Do not execute this command while the emulator is connected
to the LAN (local area network).

Chapter 15: Hidden Commands of the Software Performance Analyzer
pod_command

290

If you suspect problems in your system hardware, you can use the pod_command
to run performance verfication (PV) on the emulator and Software Performance
Analyzer from the Graphical or Softkey User Interface. Although this will reset
the emulator and force you to end and release the system, after you know that your
system components are operating correctly, just start up a new emulation session.

You can execute the lan command in pod_command to view LAN configuration
settings. Do not execute the lanpv command in pod_command while the emulator
is connected to the LAN. Instead, you must set up an RS-232 connection between
the emulator and the host computer to run lanpv. The lan and lanpv commands in
the terminal interface User’s Guide describe this.

Parameters

keyboard Enters an interactive mode where you can simply type
Terminal Interface commands (unquoted) on the command
line. Use display pod_command to see the results
returned from the emulator.

<POD_CMD> Prompts you for a Terminal Interface command as a quoted
string. Enter the command in quotes and press RETURN.

suspend This command is displayed once you have entered
keyboard mode. Select it to stop interactive access and
return to the Graphic or Softkey User Interface.

Examples This example shows a simple interactive session with the Terminal Interface.

display pod_command
pod_command keyboard
cf
tsq
tcq

See also display pod_command

help pod_command

Also see the Terminal Interface User’s Guide/Reference manual.

Chapter 15: Hidden Commands of the Software Performance Analyzer
pod_command

291

wait

The wait command is a delay command. Delay commands are normally used
within command files where they give added flexibility (although delay commands
can also be used outside command files). By using delay commands in command
files, you can give an emulation system and target processor time to reach some
condition or state before bringing in the next command.

The wait command is not shown on the softkeys of the Software Performance
Analyzer. Type the command from the keyboard. After you type "wait", the wait
command parameters will appear on the softkeys.

Default Value Wait for <control> C (SIGINT).

The parameters are as follows:

measurement_
complete

measurement_complete causes the system to wait for a measurement in progress to
finish before the next command is executed.

Note that the Software Performance Analyzer measurement will be complete when
the termination condition is found. You can set up the termination condition by
using the setup_measurement termination command.

<TIME> <TIME> is the number of seconds of delay before accepting the next command.

Chapter 15: Hidden Commands of the Software Performance Analyzer
wait

292

Examples wait wait for <control> C before accepting the next command.

wait 6 wait for <control> C or 6 seconds before accepting the next command.

wait measurement_complete wait for <control> C, or wait for the present
measurement to complete. If no measurement is in progress, the wait will be
satisfied immediately.

wait measurement_complete wait for <control> C, for the present measurement
to complete, or for 20 seconds (whichever occurs first) before accepting the next
command.

Chapter 15: Hidden Commands of the Software Performance Analyzer
wait

293

forward

A background process allows commands to be forwarded from one HP 64700
interface to another. All interfaces having software versions above 5.00 can
forward commands; only Graphical User Interfaces can receive commands that
have been forwarded.

The parameters are as follows:

bms sends the quoted command string to the broadcast message server.

debug sends the quoted command string to the high level debugger.

emul sends the quoted command string to the emulator.

perf sends the quoted command string to the Software Performance Analyzer.

<UINAME> prompts for the name of the user interface to receive the quoted command string.

Examples To send the command, "run from transfer_address", to an emulator, enter:

forward emul "run from transfer_address"

To send the Program Run command to a high-level debugger, enter:

forward debug "Program Run"

Or, because only the capitalized key is required for a debugger, enter:

forward debug "P R"

Chapter 15: Hidden Commands of the Software Performance Analyzer
forward

294

16

Software Performance Analyzer
Specifications

295

Software Performance Analyzer Specifications

Emulators Supported

Measurements Available

• Program Activity (sampled)

• Memory And I/O Activity (sampled)

• Interval Duration (non-sampled)

• Function Duration Including All Calls (non-sampled)

• Function Duration Excluding All Calls (non-sampled)

• Function Duration Excluding Profiled Calls (non-sampled)

Hardware Timing Specifications

• Maximum Bus Rate: 25 MHz

• Timing Clock Rate: 50 MHz (20 ns)

• Timing resolution: +/- 40 ns

• Maximum Continuous Measurement Time: 24 days

HP Product No. Description HP Product No. Description

64146
64732
64737
64739
64742
64744
64745
64746
64747
64748
64749A/B/C

MELPS7700 Emul
H8/510 Emulator
H8/532 Emulator
H8/536 Emulator
68000 Emulator
68000EC Emulator
68010 Emulator
68302 Emulator
68030 Emulator
68020 Emulator
6833X Emulator

64751
64757
64760
64762
64763
64764
64765
64766
64767
64780
64783

68340 Emulator
NEC V53 Emul
80960 Sx Emulator
8086 Emulator
8088 Emulator
80C186 Emulator
80C188 Emulator
80286 Emulator
80C18X Emulator
68360 Emulator
68040 Emulator

Chapter 16: Software Performance Analyzer Specifications
Software Performance Analyzer Specifications

296

Trigger Specifications

• Maximum Measurable Trigger Duration: 2.5 seconds

• Minimum Measurable Trigger Duration: 1 usec

• Trigger Duration Resolution: 500 ns +/- 160 ns

• Emulator Trigger Recognition Delay: 500 ns approx.

Event Specifications

• Maximum Number of Defined Events: 1000

• Maximum Number of Expanded Events: 10

• Maximum Number of Expanded Time Ranges: 10

Enable/Disable Feature:

• Enable/Disable Pairs: One

• Enable: Available in all Measurements

• Disable: Available in Interval/Function Duration Measurements

Activity Measurements (sampled):

• Maximum Number of Measured Events: 254

• Maximum Continuous Event Rate: 25 MHz

• Sampling Period: 2.5 ms per active event

• Scanning Period: 5.0 ms + (2.5 ms * number_of_events)

• Random restart to avoid synchronization with user program under test

• Cannot respond to an enable during first 5 msec after microprocessor transition
from reset to running

Chapter 16: Software Performance Analyzer Specifications
Software Performance Analyzer Specifications

297

Interval Duration Measurements (real-time data collection;
non-sampled):

• Maximum Number of Measured Events: 84

• Maximum Continuous Event Rate: 80 usec for entry/exit pair [Note 1]

• Minimum Continuous Event Rate: None

• Maximum Number of Events at Burst Rate of 25 MHz: 500 approx.

Function Duration Measurements (real-time data collection;
non-sampled):

• Maximum Number of Measured Events: 84

• Maximum Continuous Event Rate: 100 usec for entry/exit pair [Note 1]

• Minimum Continuous Event Rate: 1.25 sec for entry or exit event

• Maximum Number of Events at Burst Rate of 25 MHz: 500 approx.

Histogram Types Available: Time, Calls, Cycles

Table Data Available:

• Activity: Cumulative Cycles, Cumulative Time, Time %, Mean Time,
Stdv Time, Time/Cycle

• Duration: Cumulative Calls, Cumulative Time, Time %, Max Time,
Min Time, Mean Time, Stdv Time

Sorting Orders Available:

Time, Calls, Cycles, Address, Alphabetical, Defined order

Notes:

[1] Expanded events, or prefetched event entry/exit addresses will reduce the
Maximum Continuous Event Rate.

Chapter 16: Software Performance Analyzer Specifications
Software Performance Analyzer Specifications

298

Part 5

Installation and Service

299

This part of the manual contains the following chapters:

Chapter 17. Installation and service

Chapter 18. Installing/updating Software Performance Analyzer firmware

Part 5

300

17

Installation and Service

301

Equipment supplied

The Software Performance Analyzer (SPA) package contains

• Software Performance Analyzer User’s Guide and Support Services.

• Software Performance Analyzer media.

• Software Performance Analyzer hosted user interface license.

• Analysis Bus cable.

• Software Performance Analyzer board.

Tools needed

• Torx T-10 screw driver

Chapter 17: Installation and Service

302

Antistatic precautions

Computer cards contain electrical components that are easily damaged by small
amounts of static electricity. To avoid damage to the emulator cards, follow these
guidelines:

• If possible, work at a static-free workstation.

• Handle the parts only by the edges; do not touch components or traces.

• Use a grounding wrist strap that is connected to the computer’s chassis.

Installation Considerations

The Software Performance Analyzer is designed to be used with HP 64700 Series
Card Cages that are connected to host computers by way of LAN or RS422.
Connecting HP 64700 Series Card Cages to host computers through RS232 is not
recommended when running the Software Performance Analyzer. If using an
RS232 connection, you may experience long delays in the operation of the user
interface. This occurs when the Software Performance Analyzer transfers large
amounts of data over the connection.

Installation Overview

When you order a complete system (an emulator and Software Performance
Analyzer in an HP 64700A Card Cage), the Software Performance Analyzer card is
preinstalled in the card cage at the factory. The installation procedure in this
chapter is provided for users that already have an HP 64700A Card Cage and want
to install the Software Performance Analyzer in the card cage.

Caution If you already have a modular HP 64700A Card Cage and want to add the Software
Performance Analyzer, the HP 64700 Series generic firmware and analyzer
firmware may NOT be compatible and the software will indicate incompatibility.
In this event, you must purchase a Flash EPROM board to update the firmware.
Instructions for installing this board and programming it from a PC or HP 9000 are
provided in the HP 64700A Card Cage Installation/Service manual.

After hardware and software installation, run a performance test to verify that the
emulator and Software Performance Analyzer are working properly. After you
verify performance of the system, you are ready to use the Software Performance
Analyzer.

Chapter 17: Installation and Service

303

Use this chapter to accomplish:

• hardware/software removal and installation procedures,

• running performance verification,

• ordering parts.

Refer to the HP 64700 Series Card Cage Installation/Service manual for:

• information on system configurations,

• installing product software,

• software updates, and ordering parts related to the card cage.

Before installing the circuit card of the Software
Performance Analyzer

Before installing the Software Performance Analyzer card, set the master/slave
switch to master. The slave position is not used. The figure below shows the
master/slave switch on the Software Performance Analyzer card.

Chapter 17: Installation and Service
Before installing the circuit card of the Software Performance Analyzer

304

To install the circuit card of the Software
Performance Analyzer

1 Turn power off.

2 Remove the HP 64700A Card Cage top cover.

3 Remove the HP 64700A Card Cage side panel.

4 Install the Software Performance Analyzer card.

5 Connect the analysis bus generator cable as shown in the first figure in this chapter.
Note that this step will not be necessary in every system installation. Some
installations will have a different version of the cable from the cable shown in the
installation figure. Certain other installations will not have this cable at all.

6 Replace the HP 64700A Card Cage side panel and top cover.

The table on the following page shows the different configurations when using a
Software Performance Analyzer card. Instructions for removing and installing
cards into and out of the HP 64700A Card Cage are provided in the HP 64700A
Installation/Service manual and on the HP 64700A Card Cage label on the bottom
of the HP 64700A Card Cage.

Chapter 17: Installation and Service
To install the circuit card of the Software Performance Analyzer

305

Possible Card Slot Configuration

• If a Flash EPROM card is NOT required and the emulation subassembly
requires only one card, you will have two empty slots.

Slot Card

1
2
3
4
5
6

Host Controller Card
Analyzer Card
SPA Card
empty
empty
Emulator Controller Card

• If the emulator sub-assembly uses only one card, and requires a Flash
EEPROM card, you will have one empty slot.

Slot Card

1
2
3
4
5
6

Host Controller Card
Analyzer Card
SPA Card
empty
Flash EEPROM Card
Emulator Controller Card

• If the emulator requires two cards (Emulator memory and controller), and
requires a Flash EPROM card, all available card slots are used.

Slot Card

1
2
3
4
5
6

Host Controller Card
Analyzer Card
SPA Card
Flash EEPROM Card
Emulator Memory
Emulator Controller Card

Chapter 17: Installation and Service
To install the circuit card of the Software Performance Analyzer

306

To install the software

The installation of the Software Performance Analyzer should occur after you
complete all of the software installation and verification of your emulator. The
table below lists most of the emulators that are supported by the Software
Performance Analyzer. A complete list of emulators supported by the Software
Performance Analyzer is in the Specifications Chapter of this manual.

If you intend to use the Software Performance Analyzer Graphical User Interface,
you should first install and test the emulation Graphical User Interface. Refer to
the "Installing the Software" chapter in the Graphical User Interface User’s Guide
for complete details.

If you intend to use the Software Performance Analyzer with the Softkey Interface,
you should first install and test the emulator’s Softkey Interface. Refer to the
Softkey Interface Installation Notice supplied with your emulator Softkey Interface
documentation. This notice describes what you should do to install and/or update
the appropriate Softkey Interface software for your emulation system.

HP Product No. Description

64742
64745
64746
64747
64748
64749A/B/C
64751
64760
64762
64763
64764
64765
64766
64767
64780
64783

68000 Emulator
68010 Emulator
68302 Emulator
68030 Emulator
68020 Emulator
6833X Emulator
68340 Emulator
80960 Sx Emulator
8086 Emulator
8088 Emulator
80C186 Emulator
80C188 Emulator
80286 Emulator
80186EA/EB/EC
68360 Emulator
68040 Emulator

Chapter 17: Installation and Service
To install the software

307

To install software on an HP 9000 hosted system

During the install process, you have some choices about how much you load from
the product media. As a general rule, you should load everything from the media
because this ensures that you will not miss filesets and therefore have problems
with the operation of the software. However, you may not need or want to install
certain partitions or filesets from the product media when installing the Software
Performance Analyzer. There are at least two reasons why that is so.

• You may not have the system performance necessary or choose, for some other
reason, not to use the Graphical User Interface and instead use the conventional
Softkey Interface. If that is the case, then you should exclude the filesets that
contain the Graphical User Interface because:

– You will save about 3.5 megabytes of disk space.

– The Graphical User Interface is the default interface if you are using X
Windows. If you load the Graphical Interface but do not use it, you
will have to manually override it each time you begin an emulation
session.

• You may not need to install the SPA versions of the AxLS C Cross compiler
libraries. Or you may want to include only the SPA version of the AxLS C
libraries for the AxLS C Cross compiler you are using. If you are using MRI
compiler tools or other language tools, do not include these libraries. These
libraries are modified to work more correctly with the Software Performance
Analyzer. In particular, they have been compiled with the -OG option to add
NOP’s between functions to avoid problems with prefetch. At this writing, SPA
versions of AxLS C Cross compiler libraries were available for the following
four compilers:

– cc68000
– cc68020
– cc68030
– cc68332

Chapter 17: Installation and Service
To install software on an HP 9000 hosted system

308

To exclude partitions or filesets

The following sub-steps assume that you may want to exclude partitions or filesets.
Perform the following sub-steps to load the software on your system:

1 Become the root user on the system you want to update.

2 Make sure the tape’s write-protect screw points to SAFE.

3 Put the product media into the tape drive that will be the source device for the
update process.

4 Confirm that the tape drive BUSY and PROTECT lights are on. If the
PROTECT light is not on, remove the tape and confirm the position of the
write-protect screw. If the BUSY light is not on, check that the tape is
installed correctly in the drive and that the drive is operating correctly.

5 When the BUSY light goes off and stays off, start the update program by
entering

/etc/update

at the HP-UX prompt.

6 When the HP-UX update utility Main Menu screen appears, confirm that the
source and destination devices are correct for your system. HP recommends
that you install the software under the same path where your other HP 64000
software is installed (typically "/"). The Help screen will tell you how to
change the source and/or destination devices. Refer to your HP-UX System
Administrator documentation if you need more details about how to modify
these values.

7 Select the choice on the update menu that allows you to view the product
partitions.

8 Mark "y" beside 64700 SERIES FIRMWARE partition to load the firmware of
the Software Performance Analyzer.

9 If you plan to install and use the Software Performance Analyzer Graphical
User Interface, do the following:

• Mark "y" beside the SOFTWARE ANALYSIS TOOLS partition.

• Skip to sub-step 11 of these instructions.

Chapter 17: Installation and Service
To install software on an HP 9000 hosted system

309

10 If you do not want to install the Graphical User Interface, do the following:

• Enter the command that lets you View the Filesets that make up the
SOFTWARE ANALYSIS TOOLS partition.

• Mark the fileset B1487XUI with "n" to exclude it from installation.

• Mark all other filesets in the partition with "y" to confirm installation.

• Return to the partition screen.

11 To prevent installation of the SPA versions of the AxLS C Cross compiler
libraries:

• Enter the command that lets you view the filesets that make up the SPA
COMPILER LIBRARIES partition.

• Mark each fileset with "y" to include it or "n" to exclude it.

• Return to the partition screen.

12 From the partition screen, choose the update utility softkey (named Start
Loading) that starts the installation process.

To install software on a Sun SPARCsystem

The tape that contains the Graphical User Interface software to be installed on Sun
SPARCsystem workstations may contain several products. Usually, you will want
to install all of the products on the tape. However, to save disk space, or for other
reasons, you can choose to install selected filesets.

If you intend to use the Softkey Interface instead of the Graphical User Interface,
do not install the filesets with ".XUI" suffixes. (If you do not to install the
Graphical User Interface, you will not have to use a special command line option to
start the Softkey Interface.)

Refer to the Software Installation Notice for software installation instructions.
After you are done installing the software, look in the manual for your emulator to
see how to start the X server and OpenWindows, and how to set the necessary
environment variables.

Chapter 17: Installation and Service
To install software on a Sun SPARCsystem

310

To verify installation of the
Software Performance Analyzer User Interfaces

To verify that the Software Performance Analyzer is properly installed, you should
be able to execute the sequence of steps in the quick start guide in Chapter 1 of this
manual.

To verify performance of the
Software Performance Analyzer

1 Turn on power.

2 Establish communication with the emulator from your host or ASCII terminal.

3 Enter: pv n <return>

where “n” is the desired number of cycles for running performance verification
(pv).

There are different hardware system configurations for the HP 64700 Series
system. For information on hardware configurations, refer to the HP 64700A
Installation/Service manual. The interface you are using depends on the type of
host computer used. The pv command is a Terminal Interface command.

• If you are using the Terminal Interface, simply enter the command

pv 1 <return>

If you are using another interface, you can still run performance verification. You
might be using one of two other interfaces, Softkey Interface or PC Interface. You
can access Terminal Interface commands (known as pod commands) through the
Softkey or PC interface.

Chapter 17: Installation and Service
To verify installation of the Software Performance Analyzer User Interfaces

311

• If you are using the Softkey Interface, enter

pod_command "pv 1" <return>

• If you are using the PC Interface, enter

System Terminal pv 1 <return>

Examples Invoke the Self-test routines by typing the command:

pv n

(where n=1,2,3,.... specifies the number of times to run the set of performance
verification tests.)

A message similar to the following should appear:

 R>pv 1

 Testing: HP64753A Z80 Emulator
 PASSED
 Number of tests: 1 Number of failures: 0
 Testing: HP64740 Emulation Analyzer
 PASSED
 Number of tests: 1 Number of failures: 0
 Testing: HP64708A Software Performance Analyzer
 testing: MASTER SPA (Test Time is ~3 Minutes)
 MASTER SPA --> passed
 PASSED
 Number of tests: 1 Number of failures: 0

 Copyright (c) Hewlett-Packard Co. 1987
 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: A.03.00 13Dec90

 HP64753A Z80 Emulator
 HP64740 Emulation Analyzer
 HP64708A Software Performance Analyzer
 HP64701A LAN Interface
 R>

If you have a Software Performance Analyzer failure, you can replace the card
through your local Hewlett-Packard representative, and through the
Support Materials Organization (SMO)

Chapter 17: Installation and Service
To verify performance of the Software Performance Analyzer

312

To ensure software compatibility

There are various sets of firmware resident in the assemblies contained in the
HP 64700A Card Cage. The versions of these code modules could change
occasionally and it is important to insure that all the versions are compatible
between the group of products that you have installed.

There are five assemblies that have firmware in the HP 64700A Card Cage. These
assemblies are the:

• Host Controller card

• Emulator card

• Analyzer card

• Software Performance Analyzer card

• Local Area Network card (if present)

By entering the ver command, you can determine if you have the correct versions
for your system. HP 64700 Series Emulation System software must be version
3.00 or later. A typical display when you enter the ver command is shown below.

 R>ver

 Copyright (c) Hewlett-Packard Co. 1987
 All Rights Reserved. Reproduction, adaptation, or translation without prior
 written permission is prohibited, except as allowed under copyright laws.
 HP64700 Series Emulation System
 Version: A.03.00 13Dec90

 HP64753A Z80 Emulator
 Version: A.00.01 25Jan88
 Speed: 10 MHz
 Memory: 64 KBytes

 HP64740 Emulation Analyzer
 Version: A.02.00 29Jun89

 HP64708A Software Performance Analyzer
 Version: A.05.21 22Nov93

 HP64701A LAN Interface
 Version: A.00.03 09Apr91

Chapter 17: Installation and Service
To ensure software compatibility

313

If you purchased a complete Emulation/Analysis System from HP, all the products
contained in the HP 64700A Card Cage contain compatible firmware at the time of
sale. Software compatibility problems can occur when you swap the host
controller card, emulator card, analyzer card, or local area network (LAN) card
from one HP 64700A Card Cage to another.

For example, you might purchase an emulator subassembly and replace the original
emulator subassembly with the one you just purchased. In this case, the host
controller may contain a version of firmware that is older than required to operate
the new emulator; hence, compatibility problems are caused by a newer emulator
needing newer generics. All emulators will work with the latest generics, but you
may not have all the features available using old generic firmware. The emulator
software will warn you of incompatible software.

The Software Performance Analyzer card, LAN card (if present), and some
emulator cards have Flash EPROMs that can be updated with current versions of
firmware. Other Products (assemblies) that do not use the Flash EPROM
technology can also be updated with the latest firmware by adding a Flash EPROM
card that is available from Support Materials Organization (SMO). A Flash
EPROM card can be inserted in an available slot in the card cage to override old
versions of firmware in products with conventional EPROMs. The HP 64700A
Card Cage host controller is already programmed to look for a Flash EPROM card
if one is inserted into the card cage.

The latest versions of firmware for the host controller card, analyzer card, and LAN
card along with a program called progflash are part of the B1471 software for the
HP 9000 Workstation, HP 64700 Option 006 software for PCs, and B1471
software for Sun SPARCsystems. Current versions of emulation firmware come
with the Softkey Interface software, and on a separate diskette for PC Interface
software.

The latest versions of firmware for the Software Performance Analyzer circuit card
(HP 64708A) are included within the HP B1487 filesets. A new Software
Performance Analyzer card will be programmed with the latest software before it is
sent to you. If you need to load updated software on a Software Performance
Analyzer card, you will need to progflash both the HP Product Number 64708 and
HP Product Number 64708S firmware.

When you load all your new versions of software onto your host computer, you are
ready to load the new version of firmware from your host computer to the
assemblies that are in the HP 64700A Card Cage.

Chapter 17: Installation and Service
To ensure software compatibility

314

To load the new firmware, use the progflash command. The progflash command
displays a list of card cages, and subassemblies in each card cage on your system.
From these lists, you can select which product to update. For more information on
using the progflash command, and updating your HP 64700 Series firmware, refer
to the HP 64700 Series Card Cage Installation/Service manual.

Parts List

HP B1487A #AAX Software Performance Analyzer media and manual.

The Manual HP Part Number is shown on the Printing
History page at the front of this manual. Order extra copies
using an HP number like B1487-99003, which is the
B1487-97003 manual installed in a 3-ring binder.
(included as part of HP B1487A #AAX, above.)

HP B1487 #UBX Software Performance Analyzer hosted user interface
license.

HP 64708A Analysis Bus Cable and Software Performance Analyzer.

Software Performance Analyzer circuit card, HP Part
Number 64708-66505.
Analysis Bus Cable, HP Part Number 64708-61601.
(both included as part of HP 64708A, above.)

What is an Exchange Part?

Defective parts can be returned to HP for repair in exchange for a rebuilt part. The
HP part number for a rebuilt Software Performance Analyzer card is:

64708-69505 Software Performance Analyzer Card - Rebuilt

Chapter 17: Installation and Service
Parts List

315

316

18

Installing/Updating Software
Performance Analyzer Firmware

317

Installing/Updating Software Performance
Analyzer Firmware

The HP 64708 Software Performance Analyzer firmware is included with the
interface software, and the program that downloads the Software Performance
Analyzer firmware is included with the HP B1471 64700 Operating Environment
product.

The Software Performance Analyzer firmware is supplied under two HP Part
Numbers: 64708, and 64708S. You must progflash both the 64708 and 64708S
firmware at the same time to properly update the software of the Software
Performance Analyzer.

Before you can update the Software Performance Analyzer firmware, you must
have already installed the HP 64708A Analyzer card into the HP 64700A,
connected the HP 64700A to a host computer or LAN, and installed the Software
Performance Analyzer interface and HP B1471 software as described in the
"Installation and Service" chapter.

This chapter shows you how to:

• Update firmware with the "progflash" command.

• Display current firmware version information.

To update Software Performance Analyzer
firmware with "progflash"

• Enter the progflash -v <emul_name> <product> command.

The progflash command downloads code from files on the host computer into
Flash EPROM memory on the HP 64708A Analyzer card.

The -v option (verbose) causes progress status messages to be displayed during
operation.

Chapter 18: Installing/Updating Software Performance Analyzer Firmware
To update Software Performance Analyzer firmware with "progflash"

318

The <emul_name> option is the logical emulator name as specified in the
/usr/hp64000/etc/64700tab.net file, such as m68000.

The <product> option names the product whose firmware is to be updated, such as
64708 and 64708S for the Software Performance Analyzer.

If you enter the progflash command without options, the downloading process
becomes interactive. If you do not include <emul_name>, your computer displays
the logical names in the /usr/hp64000/etc/64700tab.net file and asks you to choose
one. If you do not include <product>, your computer displays the products that
have firmware update files on the system and asks you to choose one. You can
abort the interactive progflash by pressing <CTRL>c.

progflash will return 0 if it is successful; otherwise, it will return a nonzero (error)
and a message will be written on the standard error output. You can verify the
update by displaying the firmware version information.

Examples To update the Software Performance Analyzer firmware in the HP 64700A that
contains the HP 64708A Software Performance Analyzer card:

$ progflash <emul_name> 64708 <RETURN>

Wait 15 seconds after the above command completes. Then enter:

$ progflash <emul_name> 64708S <RETURN>

To display current firmware version information

• Use the Terminal Interface ver command to view the version information for
firmware currently in the HP 64700A.

When using the Graphical User Interface or Softkey Interface, you can enter
Terminal Interface commands with the pod_command command. For example:

display pod_command <RETURN>
pod_command "ver" <RETURN>

Chapter 18: Installing/Updating Software Performance Analyzer Firmware
To display current firmware version information

319

Examples The Terminal Interface ver command displays information similar to:

 Copyright (c) Hewlett-Packard Co. 1987
All Rights Reserved. Reproduction, adaptation, or translation without prior
written permission is prohibited, except as allowed under copyright laws.

 HP64700 Series Emulation System
 Version: A.03.01 13Mar91

 HP64742 Motorola 68000 Emulator
 Version: A.00.05 17Feb88
 Speed: 12.5 MHz
 Memory: 126 Kbytes

 HP64740 Emulation Analyzer
 Version: A.02.02 13Mar91

 HP64708A Software Performance Analyzer
 Version: A.05.21 22Nov93

 HP64701A LAN Interface
 Version: A.00.04 21Oct91

If there is a power failure during a firmware
update

If there is a power glitch during a firmware update, some bits may be lost during
the download process, possibly resulting in an HP 64700A that will not boot up.

Repeat the firmware update process.

If the HP 64700A is connected to the LAN in this situation and you are unable to
connect to the HP 64700A after the power glitch, try repeating the firmware update
with the HP 64700A connected to an RS-232 or RS-422 interface.

Chapter 18: Installing/Updating Software Performance Analyzer Firmware
If there is a power failure during a firmware update

320

Glossary

absolute Absolute information accounts for all time spent making the
measurement, or all cycles executed during the measurement, whether or not the
time or cycles met the specifications of any of the events selected for the
measurement.

If you select "absolute" in a measurement, you’ll get an event named "Address
Undefined" that represents all ranges that aren’t presently assigned to labels in your
data base.

The percentages used to identify each of the selected events will be calculated by
including the "Address Undefined" event. To exclude the "Address Undefined"
event, calculating percentages only on the selected events, select "Relative" instead
of "Absolute".

In addition, if you have defined a disable-enable pair for a duration measurement,
you will see "Disable Time". This is the amount of time recorded when the
Software Performance Analyzer was in the disable state.

activity Activity measurements are designed to give you a broad understanding
of the time and memory bus cycles required by various segments of your program.
They identify the areas of your program that use the most processor bus cycles and
take the most time to execute. A single activity measurement can capture
information on a large number of events. The Software Performance Analyzer
makes two types of activity measurements: memory_and_io_activity, and
program_activity. These measurements are discussed in detail in Chapter 7 in this
manual.

calls The "Calls" column shows how many times the associated event (function
or address range) was called to execute, not the number of calls it made to other
events. The "Calls" column might show that a particular routine is called an
inordinate number of times, such as finding that a malloc routine is called one
million times.

321

confidence Refer to Stability and Confidence.

cycles Cycles is a count of bus cycles that fell within the address range of the
defined event. The "Cycles" column might show that a particular module is
running slowly (a small number of bus cycles executed over a long period of time).
This could indicate inefficiencies, such as a routine that goes out to slow memory
for information that it could also find in faster memory, such as in a cache.

defining events You can define multiple events or single events from the
command line. The Software Performance Analyzer processes commands
differently, depending on whether you are defining multiple events or single
events. These differences are described below.

 defining multiple events: A command that defines multiple events causes the
Software Performance Analyzer to look in the symbols data base for the file
running in emulation, and define events to represent symbols it finds there. A
"define multiple_events" command can create a set of events to represent
functions, static variables, or both. You cannot define multiple events to represent
ranges or intervals.

 defining single events: You can define single events to represent functions and
static variables. If you do this, the Software Performance Analyzer will obtain the
address information from the symbols data base for the file running in emulation,
just as it does when defining multiple events. When defining single events, you
can also define events to represent ranges and intervals.

Refer to Chapter 12 in this manual for a description of events, and to Chapter 2 for
complete details of how to define events.

disable when the measurement process is temporarily suspended. Refer to
"Enable" for further information.

disable time Disable Time is the time during the measurement when the
Software Performance Analyzer was not gathering information (between a disable
and a new enable) in a duration measurement. Disable Time is only shown if the
data is displayed in "Absolute" format.

Glossary
confidence

322

duration Duration measurements measure durations of all selected events during
the measurement (unlike activity measurements which sample information for only
one event at a time). The Software Performance Analyzer records the number of
calls, average execution time, maximum execution time, and the minimum
execution time for each event. Two types of duration measurements can be made
by the Software Performance Analyzer: interval duration, and function duration.
These measurements are discussed in detail in Chapter 7 of this manual.

enable When the Software Performance Analyzer is allowed to make a
measurement according to its present measurement specification. This occurs after
start up or after a disable event was found. You cannot enable (or disable) on an
event that is also specified as the trigger event.

events Events in the events list represent absolute addresses. An event may
represent a single address (such as the address of a variable), or a range of
addresses (such as the range occupied by a function). Through the emulator, the
Software Performance Analyzer can access the symbols data base for your absolute
file under test and create a list of events whose names and addresses are the same
as those in the data base. The Software Performance Analyzer uses the events from
its events list in its measurements. The Software Performance Analyzer can
recognize events that are appropriate for measurements and events that are not
appropriate. Refer to Chapter 12 for complete information about events, and to
Chapter 2 for instructions on how to define them.

excluding calls You can use the "exclude_calls" command token when making
function-duration measurements. Test results will show the execution times and
number of calls to the functions in the measurement. The times recorded for each
function will exclude time spent executing other functions that were called by the
functions. Time spent servicing interrupts will also be excluded from the recorded
times for the functions.

Glossary
duration

323

EXPANDED time ranges If you specify that you want to expand an event on a
histogram and show time ranges of 10 usec, 20 usec, and 40 usec, then the
Software Performance Analyzer will show you three time ranges, as follows:

1 - 10 usec

10+ - 20 usec

20+ - 40 usec

The + sign shown in two of the three time ranges above indicates that the time
range begins with times that are slightly longer than the associated number. For
example, 10 appears in 1 - 10 usec and in 10+ - 20 usec, above. A time
measurement of exactly 10 usec will be recorded in the 1 - 10 usec time range. If
the measurement of time is just slightly longer than 10 usec, it will be shown in the
10+ - 20 usec time range.

functions Events defined to represent functions will have the same name as the
function they represent, except that underscores "_" will be used to substitute for
special characters in the function name. Events that represent functions can be
included in measurements of program_activity and function_duration.

function duration When the Software Performance Analyzer makes a
function-duration measurement, it measures the execution time of selected
source-file functions. A time measurement will start at the first address of
function1 and end at the last address of function1. In function-duration
measurements, you can have the Software Performance Analyzer either exclude all
time spent in calls to other functions (just measure the time spent executing the
code of function1), or include all of the time spent in calls to other functions. If
including calls, the time measured in function1 is the time from the start of
function1 to the end of function1, regardless of where execution occurs between
the start and end points. For further details, refer to Chapter 7 in this manual.

including calls You can use "including calls" when making function-duration
measurements. Your results will show the total execution time from the
function-start address to the function-end address, regardless of where execution
may have occurred between the start and end addresses.

Glossary
EXPANDED time ranges

324

interval An interval is any address space defined by a starting address and an
ending address. The starting address may have a lower value than the ending
address, or it may have a higher value than the ending address. The starting and
ending addresses may have the same value. An interval whose starting and ending
addresses are the same would be useful if you wanted to measure how often a static
variable was accessed for a write transaction. For a detailed discussion of intervals,
refer to the paragraph titled, "To define a single event from the keyboard" in
Chapter 2.

interval duration When the Software Performance Analyzer makes an
interval-duration measurement, it measures the time between two points in a
program. The measurement starts when the Software Performance Analyzer
detects execution of the first address in the interval, and stops when the Software
Performance Analyzer detects execution of the last address in the interval. For
further details, refer to Chapter 7 in this manual.

label Refer to "name" in this glossary.

markers Markers are write statements that are instrumented into your code at the
start and end of your functions. The Software Performance Analyzer can use
markers to make function-duration and interval-duration measurements. When
using markers, the duration of a function is measured from the function-start
marker to the function-end marker, instead of from the function-start address to the
function-end address. Refer to Chapter 7 for a detailed discussion on markers and
how to use them.

max The Max column in the table display shows the longest duration measured
during the present, or most recent, duration measurement. This was the slowest
execution of this event.

mean The Mean column shows the average execution time of the associated
event. The details of how this calculation is made are discussed in Chapter 8.

In activity measurements, the mean is the average execution time of the event
during a typical 1-second period of program execution. In other words, in any
given 1-second period of execution, the associated event will be executing for the
indicated amount of time.

In duration measurements, the mean is the average time spent from entry address to
exit address. The duration mean is not obtained by sampling. Therefore, it reflects
the sum of all execution times for the function or interval, divided by the number of
executions of the function or interval.

Glossary
interval

325

memory_and_io activity This measurement records reads and/or writes to the
addresses of variables and I/O ports, or to any addresses within ranges of addresses.
Events that represent functions or intervals are not included in this measurement.
For complete details, refer to Chapter 7 in this manual.

min The Min column shows the shortest duration measured during any execution
of the associated event. This was the fastest execution of the associated event.

name The name of an event can be 40 or more characters long. Unnamed events
will be automatically named by the Software Performance Analyzer.

Most names will be identical to the name of the function or variable that is
represented by the event, except that all non-alphanumeric characters will be
replaced with underscores ’_’. If an event is a numeric address range, the Software
Performance Analyzer will create a name that includes the address range of the
event (example: _1000h_1010h). A leading underscore will be added to all
numeric events. If you want to assign a new name to one of the numeric-named
events, or if you want to delete a numeric-named event from your data base, be
sure to include the leading underscore in your command, or use the event number.

non-sampled measurement mode In the non-sampled mode, (which is used
in "duration" measurements), the Software Performance Analyzer compares
incoming information with all of the events included in the measurement at the
same time.

pattern filter This dialog box selection area allows you to specify a UNIX
shell-type string to limit the list of events created. For example, to omit most
assembler-generated symbols, which usually begin with underscores, set the pattern
filter to "Not Matching" and "_*". Wild cards can be used in the string (*=any
string; ?=any character; [Ab]=either A or b in this character space.

Glossary
memory_and_io activity

326

plus (+) sign This is used in time ranges when the Software Performance
Analyzer shows that a value is slightly greater than the value indicated. For
example, if you specify that you want the Software Performance Analyzer to
display a histogram that shows the following time ranges: 10 usec, 20 usec, and 40
usec, then the Software Performance Analyzer will show three time ranges, as
follows:

1 - 10 usec
10+ - 20 usec
20+ - 40 usec

The + sign in your display indicates that the time range begins with a time that is
just slightly above the associated number. For example, 10 appears in 1 - 10 and in
10+ - 20 above. A time measurement of exactly 10 usec will be recorded in the 1 -
10 usec time range. If the time is just long enough to exceed the 1 - 10 time range,
it will be recorded in the 10+ - 20 usec time range.

prefetch correction Prefetch correction occurs when your microprocessor
prefetches but does not execute the start or end address of a function or interval the
Software Performance Analyzer is trying to measure. Prefetch correction circuitry
will attempt to remove prefetched entry and/or exit points when making function
duration measurements. Prefetch correction is not used on interval duration
measurements.

Glossary
plus (+) sign

327

profile The "profile" command causes the Software Performance Analyzer to
perform a measurement of the same type as was performed last. If your last profile
measurement was "profile function_duration", the Software Performance Analyzer
will do a new "profile function_duration" measurement, by default. If you just
entered the Software Performance Analyzer, there is no previous measurement. In
this case, a "profile" command will execute the following commands:

define multiple_events funcs_and_vars_static global
notmatching ’_*’

profile program_activity

The following four types of profiles can be performed by the Software
Performance Analyzer:

profile program_activity: A measurement that looks for instruction execution.
Events that represent functions and ranges can be included in this measurement.
Events that represent variables or I/O addresses, or events that represent intervals
cannot be included in this measurement.

profile memory_and_io_activity [status: read/write/etc.]: A measurement that
records reads and writes to variables and I/O ports. Functions and intervals are not
included in this measurement.

Profile interval_duration [status: read/write/etc.]: All events that represent intervals
can be included in this measurement. It records time periods between the start and
end addresses of the interval. Variables, IO ports, functions, and ranges are not
included.

Profile function_duration [exclude_calls/include_calls/exclude_profiled]: Only
events that represent source-file functions can be included in this measurement. No
variables, intervals, or user-defined address ranges can be included. If you
"exclude_calls", the Software Performance Analyzer will exclude all time spent in
calls to other functions. If you "include_calls", all time spent in calls to other
functions will be recorded as part of the event. If you "exclude_profiled", only
other functions being measured will be excluded.

profiled calls This mode of function duration measurement is a compromise
between the including-calls and excluding calls measurements. The profiled-calls
mode does not record time spent executing code that is already represented by an
event that is also being measured. Time spent executing interrupts, and time spent
executing code that is not represented by any other event in the measurement is
included in the time of the calling event.

Glossary
profile

328

profiled time Profiled time is the amount of time that has been completely
profiled in making the measurement. If you were to have 1 second of profiled time
in an activity measurement, this would indicate that an equivalent of execution time
has been completely dissected into all of the specified address ranges, functions, or
variables included in the measurement. In duration measurements, profiled time is
typically equivalent to the run time.

program activity This measurement records instruction execution within ranges
of addresses. Functions and ranges can be included in this measurement. Events
that represent variables or I/O addresses, or events that represent intervals cannot
be included in this measurement. For complete details about this measurement,
refer to Chapter 7 in this manual.

range A range is a range of addresses. The beginning address has a value that is
lower than the ending address. During an activity measurement, the range
increases its time count when any address within its boundaries is accessed, as long
as sampling is in progress for the range event.

recursive functions If a function is recursive, be sure you define it as
"recursive" when you create an event for it. Otherwise the results you get for this
event may only include a portion of its activity. The Software Performance
Analyzer has prefetch correction that allows it to ignore unused prefetches of
addresses when it is collecting information about a function. All of the recursive
calls could be treated as prefetched entries of a non-recursive function, and the
recursive exits could be treated as prefetched exits. This will cause the
measurement to be made from the first occurrence of the function entry address to
the last occurrence of the function exit address. When a function is identified as
recursive, the prefetch correction is turned off. This allows all entries and exits to
be recorded. Although, if some of these entries and exits are prefetched, the results
of the time duration of a recursive function could be inaccurate. Refer to Chapter 7
for a detailed discussion.

relative Relative measurement results show all time spent executing the selected
events, or all cycles executed within the selected events. Relative does not account
for time spent or cycles found that were outside the specifications of the events that
were included in the measurement.

The percentages shown in a histogram or table display will be calculated as though
all execution during the measurement met the specifications of one of the events
included in the measurement. To obtain percentages that include executions in
addresses that were outside the specifications of the events included in the
measurement, use "Absolute" instead of "Relative".

Glossary
profiled time

329

sampled measurement mode Sampling techniques (which are used for
activity measurements) allow the Software Performance Analyzer to include up to
254 events in a single measurement. Sampling measurements are done by looking
for incoming activity that matches one event at a time. For example, the Software
Performance Analyzer may look for activity that meets the specification of event1
for one sample period (approximately 2.5 ms). Any activity that meets the
specification of event1 will be recorded. Activity that does not match event1 will
be ignored (even if it meets the specification of some other event). After the
sample period, the Software Performance Analyzer stops looking for activity that
matches event1 and starts looking for activity that matches event2. The Software
Performance Analyzer continues to cycle through the selected events in the events
list, increasing the total sample time for each event, until the measurement ends.

sorting Events can be sorted by time, calls, cycles, address ranges, event names,
or event numbers. The display will reflect the results of the last sorting command.

If the display was sorted by time, calls, or cycles, and you start a new
measurement, the display will indicate that the new sort may be invalid. This is
indicated by a question mark ’?’ beside the term "sort" in a column heading, such
as, "(sort? time)".

When the measurement is halted, the measurement results will automatically be
resorted according to the present sort specification.

If you exit the Software Performance Analyzer and then reenter later, the Software
Performance Analyzer will show the content of its memory sorted according to the
specification in force at the time you exited.

software performance analysis The Software Performance Analyzer helps a
designer understand the execution of the software modules in the absolute file.
Software Performance Analyzer measurements may be taken when a designer
needs to answer questions, such as:
"Why does it take so long to execute my program?"
"Which module or modules are taking extra-long times to execute?"

Once the modules are identified that are slowing down the performance of the
system, the designer can analyze the source files of those offending modules and
correct their problems so they run faster.

Glossary
sampled measurement mode

330

stability and confidence Stability is an indication of how well the Software
Performance Analyzer has characterized the measurement. Stability in a pure
sense is a measure of the average of standard deviation error tolerances subtracted
from 100%. The longer you let a measurement run, the greater will be the stability
of its measurement results. Some measurements will become stable quickly.
Others may take a longer period of time to become stable.

The Software Performance Analyzer lets you specify that its measurement must run
until its captured data reaches a desired stability. The Software Performance
Analyzer will stop the measurement when it has run long enough to give you the
stability you specify. Use a command such as:

setup_measurement termination stability 95 percent.

The "display stability ..." command lets you to specify how often the Software
Performance Analyzer recalculates its stability during a measurement. You can
also turn off the stability calculation (as long as you do not have your termination
condition based on stability). If you specify a termination condition based on
stability and the stability calculation is turned off, the Software Performance
Analyzer will turn it on.

Note that it may take the Software Performance Analyzer up to 2.0 seconds to
calculate stability because of the length of time required to unload all of the data.

In addition to the data, your selection of the confidence factor also affects stability.
The confidence factor defines the level of confidence that the Software
Performance Analyzer must attain in the stability of the measurement. The default
confidence for a Software Performance Analyzer measurement is 95%. If you
specify that the Software Performance Analyzer terminate its measurement when
its data reaches 85% stability, then the measurement will continue until the
Software Performance Analyzer is 95% confident that its data has reached at least
85% stability.

Setting the confidence to a higher percentage will require the Software
Performance Analyzer to gather data for a longer period of time. Setting the
confidence to a lower percentage will allow the Software Performance Analyzer to
reach its stability specification more quickly.

Glossary
stability and confidence

331

You can set any desired confidence to be met by the data captured by the Software
Performance Analyzer. Your measurement will continue to run until the Software
Performance Analyzer has captured information that meets the confidence and
stability you set. Setting the following values of confidence may yield the
associated values of stability for equal periods of measurement time:

confidence stability

51% 96%

95% 85%

99% 75%

You can interpret the above relationship as: the Software Performance Analyzer is
only 51% confident that its present measurement data has 96% stability, but it is
99% confident that its data has 75% stability.

standard deviation The Standard Deviation column shows a measure of the
variation of the time measurements from the average time measured. It is equal to
the root mean square of the individual deviations from the average.

If the display shows Mean=23.3ms, and StdDev=2.89 ms, this means the average
measurement falls between 26.19 ms and 20.49 ms (23.3+/-2.89 ms).

The method of calculating standard deviation is discussed in Chapter 8.

static variables A static variable is a fixed location statically allocated variable
within your source file. An event that represents a static variable may show a
single address or a range of addresses (the range occupied by an array variable, for
example). Measurements of memory_and_io_activity are made to record
information about static variables.

symbolic filter This dialog box selection area allows you to specify a limit to the
scope of the symbols used to create new events. You can type the name of any
valid symbol in the text entry field. You can type two or more symbols at a time
by using commas (e.g. module1, module2). The default value "<ROOT>" means
search the entire symbol database.

tags See markers.

Glossary
standard deviation

332

time The time column shows the length of time spent executing code within a
defined event. You might find "time" useful if an event normally completes in a
few milliseconds, but on rare occasions, it takes several hundred milliseconds to
complete. You could trigger a trace if execution of this event should ever exceed
some normal execution time. Then your trace might show why these rare
executions are taking such a long time. Your trace could answer the question,
"What is the routine doing when it takes so long to execute?"

The Time column shows the total time spent executing this event (all executions
added together took the amount of time shown). The Time% column shows how
much of the total execution time met the specification of the associated event. For
additional information, refer to EXPANDED time ranges in this glossary.

trigger Triggers can be generated by the Software Performance Analyzer when
making an interval_duration or function_duration measurement. Trigger
generation does not affect the measurement being made by the Software
Performance Analyzer. It is simply an added output that can be used by the
emulator or other analyzers during a measurement. The emulator can be set up to
break to its monitor when the trigger occurs. An analyzer can be set up to perform
a measurement when the trigger occurs.

There are three rules that apply to triggers generated by the Software Performance
Analyzer:

RULE 1: The event that is used as the trigger event must be appropriate for the
measurement. If making a function_duration measurement, the event must be a
function event. If making an interval_duration measurement, the event must be an
inverval event.

RULE 2: The trigger event must be selected for the measurement. If you unselect
the event that is specified as the trigger event, the Software Performance Analyzer
will automatically reselect it.

RULE 3: Trigger events cannot also be used in enable or disable specifications.

In interval_duration measurements, trigger events have the same status as the
inverval_duration measurement. For example, if your command was:
profile inverval_duration status data_write
then your trigger event will only be recognized if it is a write transaction.

Note that the trigger command always calculates its interval as an include_calls
time (even if the present measurement is function_duration exclude_calls). In
addition, the trigger command is not corrected for prefetch conditions. Prefetch
correction is discussed in detail in Chapter 7.

Glossary
time

333

undefined addresses If you select "absolute" for your display of measurement
results, the Software Performance Analyzer will add an event named "Undefined
Addresses". This event represents all addresses that aren’t presently represented by
any events in the measurement. The Software Performance Analyzer always
records information for the "Undefined Addresses" event so that it can be displayed
if you request measurement results in absolute values.

Glossary
undefined addresses

334

Index

68040, measurement difficulties, 164
80960 Sx, measurement difficulties, 163

A absolute, glossary definition of, 321
action keys

defined to delete low-usage events, 101
line in Graphical User Interface, 183
to run command files, 102
to run profile measurements, 100
defining multiple lines of, 102
how to define, 99

active events, obtaining an events list of, 84
activity

measured after an enable condition, 50-51
measurement example, 138
measurement table, how to interpret, 80
measurement, how analyzer makes it, 135-137
measurement, how it is affected by monitor, 139
measurement, how it is affected by reset, 139
measurements, how delay affects them, 139
measurements, how they are affected by prefetches, 148
of program measurement, 63-64
glossary definition of, 321

align decimal points in table or histogram, 85
analysis affected by cache, 147
analyzer did not save data with profile specification, 114
analyzer specifications, 296
analyzer won’t make a measurement, 112
analyzer won’t turn on, 111
appearance of Graphical User Interface, help, 93
APPLY used in Recall dialog box, 103
asterisk ’*’ interpretation in events list, 265
automatic events creation at profile start, 10-11

335

B basic profile measurement, 63
batch files run by action keys, 102
bindings, mouse button and keyboard, 185
break emulation from Software Performance Analyzer, 54-55

C cache, how it affects performance analysis results, 147
calls

histogram, how to display, 78
glossary definition of, 321

card slots, 306
change directory (cd) command details, 285
changing an event definition, 42
character used in histogram copies, 96
checks you can make when problems occur, 109
circuit card, master/slave switch, 304
command

summary, 204
files run by action keys, 102
line of Graphical User Interface, 184
line, to copy entry buffer content, 104
paste mouse button, 185
select mouse button, 185
syntax of Software Performance Analyzer, 197
forwarding to other interfaces, 294
syntax conventions in manual, 202

comparisons of new data with old data, 89-90
compiler issues affecting analysis, 132-133
concepts of measurements, PART 3 of manual, 125
confidence

glossary definition of, 331
how to specify for measurement data, 95

controlling the profile measurement, 61
copies of measurement results, how to print, 85-86
copy command details, 205-207
copying histogram characters, 96
correcting

for prefetch and recursion, 327
for recursive functions, 150-151

current working symbol (cws) command details, 285
cursor, to change its position on screen, 60

Index

336

cycles
histogram, how to display, 78
information, how it is useful, 144
glossary definition of, 322

D data not saved with profile specification, 114
data, to specify confidence in, 95
decimal points, to align in table or histogram, 85
define action key to delete low usage events, 101
define command details, 208-212
Define Events dialog box, 187
Define Single Event dialog box, 188
defining

events, glossary definition of, 322
multiple events, glossary definition of, 322
multiple lines of action keys, 102
range events, 38
single events from the keyboard, 37-41
single events, glossary definition of, 322

definitions of terms in glossary, 321-334
delay

of measurement start with trig1, 53
how it affects activity measurements, 139
how it affects duration measurements, 146

delete events, how to, 49
delete_events command details, 213-214
deleting partitions or filesets, 309
demonstration

markers used in MC68040 and MC68030, 26
program used in Chapter 1, 7

destination directory for installation, 309
details of activity measurements, 135-137
deviation (standard) how it is calculated, 173
dialog box

Define Events, 187
Define Single Event, 188
File Selection, 186
Profile, 190
Select Events, 189
Setup Enable and Disable, 192

Index

337

dialog box (continued)
Setup Trig2, 193
Time Ranges, 191

directory, source and destination for install, 309
disable time

glossary definition of, 322
when it appears in display, 146

disable, glossary definition of, 322
disable/enable

used with duration measurements, 146
window control on measurement, 52

display
area of Graphical User Interface, 183
command details, 215-219
freezes often during measurement, 119
histogram, interpretation of, 273
measurement specification, interpretation of, 274-275
stability, how and why to turn it off, 94
table, interpretation of, 270-272
updated in small blocks during measurement, 119
window covered by help screen, 124

Drive TRIG2 on Range Min, 57-58
duration measurement

problems solved using markers, 155-162
table, how to interpret, 81-82
enable/disable window, 52
how it is affected by delay, 146
using disable/enable, 146
creating time ranges, 72-73
how it is affected by monitor, 146
how it is affected by prefetch, 148
how it is affected by reset, 145
how it is made, 141-143

duration of functions profile measurement, 66-67
duration of intervals profile measurement, 68-69
duration, glossary definition of, 323

Index

338

E edit of source file in Graphical User Interface, 93
editing an event definition, 42
emul700 command, 8
emulation

break from Software Performance Analyzer, 54-55
bus analyzer triggered by trig2, 56
monitor, how it affects activity measurements, 139
monitor, how it affects duration measurements, 146

emulator
installing/updating firmware, 318
startup for demonstration program, 8
status, how to define additional status, 140
preparing for performance measurement, 32

emulators supported, 296
enable

and trigger, order of precedence, 146
used an with activity measurement, 50-51
glossary definition of, 323

enable/disable
used with duration measurements, 146
window control on measurement, 52

end command details, 220-221
ending a measurement after a period of time, 59
entry buffer

line in Graphical User Interface, 183
copying content to command line, 104
entering information strings, 103

error log display, 262
error messages, 244
event

definition, how to modify, 42
names, getting more space for, 97
numbers, to turn on and off, 97
runs too long, causing emulation break, 54-55
runs too long, triggers state trace, 56
symbols, interpretation of, 265
types, table of, 265
definition of, 266

Index

339

Events Display popup menu, 194
events list

interpretation, 264-265
details of how to use it, 263

events
used to generate triggers, rules for, 279
with low usage, action keys to delete, 101
a method to find the most active, 84
defining single events from keyboard, 37-41
different ways to delete them, 49
glossary definition of, 323
have them automatically defined, 34
how they are checked at profile start, 10-11
how they are used in measurements, 267
how to define, 33
how to define for a class of symbols, 33
how to fetch on selected boundaries, 44
how to select for a measurement, 45-47
how to sort them on the display, 83
how to unselect for a measurement, 48
rules when assigning a name, 43
types that you can define, 33
will they be included in measurement, 134

example of an activity measurement, 138
example program instrumented with markers, 158
exchange part, 315
excluding calls measurement example, 142
excluding partitions or filesets, 309
excluding profiled calls measurement example, 142
excluding_calls, glossary definition of, 323
expand time ranges, creating your own set, 72-73
EXPAND used to see time range details, 19-20
expanded

displays, how they are composed, 145
time range used to generate trig2, 57-58

EXPANDED time ranges, glossary definition of, 324
expanding an event to see time range details, 70-71

Index

340

F fetching events on non-standard boundaries, 44
file (source) edit in Graphical User Interface, 93
file filter, 186
File Selection dialog box, 186
filesets, 308
firmware

installing/updating on the emulator, 318
version, 319

forwarding commands to other interfaces, 294
func-type event, what it means, 265
function duration measurements

details of, 142
how these use an internal stack, 143
problems solved using markers, 155-162
profile measurement, 66-67

function duration, glossary definition of, 324
function or variable, how analyzer identifies the type, 134
functions, glossary definition of, 324
functions, recursive, how they affect measurements, 150-151

G getting started procedure, 3
Global Symbols Display popup menu, 196
glossary of terms, 321-334
Graphical User Interface

defining action keys, 99
general help, 92
general information, 181
how to start it, 32

H help
command details, 287-288
screens cover display window, 124
screens for Graphical User Interface, 92
screens for performance measurements, 91

histogram
character, how to select, 96
contents incorrect, 112-113
display, interpretation of, 273
of calls, how to interpret, 16-17
of cycles or calls, how to display, 78
of times measured, how to display, 77

Index

341

histogram (continued)
updated in small blocks during measurement, 119
how to change the scale, 79
how to control, 75
how to print a copy, 85-86

Histogram/Table Display popup menu, 195
hold off measurement start with trig1, 53
HP 9000 hosted system, software installation, 308-309
HP Marker Preprocessor, 159
HPSPAADJUST

general information, 152
format of command, 153

HPSPAMARKERS
format of command, 160

I I/O ports measured in a profile, 65
including calls

measurement example, 142
glossary definition of, 324

information -help-
for performance profiles, 91
on graphical user interface, 92

information, how to place in entry buffer, 103
installation

instructions, 301-315
overview, 303
software, 307
software on HP 9000 hosted system, 308-309
software on Sun SPARCsystem, 310
Software Performance Analyzer, 305-306
setting switch before installation, 304
updating emulator firmware, 318

Interfaces
forwarding commands to other interfaces, 294
Graphical User, 181
User Softkey, 180

interpretation of
histogram of measurement results, 273
table of measurement results, 270-272

Index

342

interval
duration, glossary definition of, 325
duration measurement details, 68-69, 141
duration measurements, how they use markers, 162
duration prefetch correction, 149
glossary definition of, 325
interval-type event, what it means, 265
measurement in demonstration chapter, 21-22
measurement problems solved by using markers, 155-162

introduction to Software Performance Analyzer, 3

K keyboard bindings, 185
keys

defining action keys, 99
profile measurements run by action keys, 100

L list, details of how to use the events list, 263
load

command details, 222
profile specification to set up analyzer, 89-90

Local Symbols Display popup menu, 196
log_commands command details, 289

M making measurements, PART 2 of this manual, 27
markers

advantages of using, 155
conditions to meet before you can use them, 155
defined, 155-162
demonstration use for MC68040 and MC68030, 26
example program instrumented with markers, 158
format of marker names, 156
glossary definition of, 325
how MRI compilers support them, 161
how SPA makes its measurements using them, 162
how to tell SPA to use them, 160
not for excluding all calls measurements, 162
qualifying status of, 162
to overcome enabled cache and prefetching, 155-162
typical measurement example, 156
used by enable/disable feature, 162
used in interval-duration measurements, 162
using the HP Marker Preprocessor, 159

Index

343

master/slave switch, 304
max, glossary definition of, 325
MC68040 and MC68030, demonstration using markers, 26
mean and standard deviation may be misleading, 174
Mean(1s) in table, what it means, 80
mean, how it is calculated by the analyzer, 172
measurement

concepts, PART 3 of manual, 125
coordination with trig1 and trig2, 278
ends when stability is reached, 59
example of an activity measurement, 138
histogram, interpretation of, 273
how activity is affected by reset, 139
how activity measurements are affected by delay, 139
how activity measurements are done, 135-137
how duration measurements are affected by delay, 146
how duration measurements are affected by monitor, 146
how duration measurements are affected by reset, 145
how duration measurements are made, 141-143
how they are affected by prefetches, 148-149
how to control a profile, 61
how to stop it, 74
not made by analyzer, 112
qualified on processor status, 60
run by action keys, 100
specification, interpretation of, 274-275
specifications, 296
table, interpretation of, 270-272
the most simple profile, 63
types and the events they include, 134

measurement difficulties
multi-byte return instructions, 166
unique to the 80960 Sx, 163
unique to the MC68040, 164

memory_and_io activity, detailed description, 137
menu bar of Graphical User Interface, 182
menu selection slow in Graphical User Interface, 124
messages, error and status, 244

Index

344

microprocessors supported, 296
min, glossary definition of, 326
modifying an event definition, 42
monitor

how it affects activity measurements, 139
how it affects duration measurements, 146

mouse button bindings, 185
mouse buttons, 185
multi-byte return instructions, 166
multiple event definition in error log, 262

N name, glossary definition of, 326
naming an event, 43
no symbols in symbol data base, 111
non-sampled measurement mode, glossary definition of, 326
—NORMAL— key, 203
number of software version, how to see it, 92
numbers of events, turning them on and off, 97

O operation of Graphical User Interface, help, 93
overview of Software Performance Analyzer, 4-6

P PART 1, Quick Start Guide, 1
PART 2, making measurements, 27
PART 3, measurement concepts, 125
PART 4, reference, 177
PART 5, installation and service, 299
partitions, 308
parts list, 315
paste mouse button, 185
pattern filter, 187
pattern filter, glossary definition of, 326
percent

of execution time in duration table, 81
of time in an activity table, 80

performance
analysis affected by cache, 147
analyzer won’t turn on, 111
problems solved by analyzer, 130-131
verification, 311-312

Index

345

performance measurement
specifications, 296
how it is affected by prefetch, 148-149
how it is made, 129

plus (+) sign
beside number in time range, 74
glossary definition of, 327

pod_command command details, 290-291
popup menu

Events Display, 194
Global (or Local) Symbols Display, 196
Histogram/Table Display, 195

power failure during firmware update, 320
prefetch correction

designed in duration measurements, 149
glossary definition of, 327
how prefetches affect measurements, 148-149
overcome prefetch in 68360, 68020, and 68030, 154
steps you can take to correct, 152-154

preparing emulator for performance measurement, 32
preparing program for analysis, 132-133
preprocessor, HP Marker Preprocessor, 159
print working symbol (pws) command details, 285
printing copies of measurement results, 85-86
problem software modules, how you might find them, 144
problems

analyzer won’t make a measurement, 112
analyzer won’t turn on, 111
data not saved with profile specification, 114
display freezes during measurement, 119
display update done in small blocks, 119
help screen covers display window, 124
measurement results incorrect, 112-113
slow drag-thru menu selection, 124
symbols are not loaded, 111
Time% column totals more than 100%, 121-122
XSigServe runs after session exit, 124
things to check, 109
that are solved by performance analyzer, 130-131

Index

346

process XSigServe runs after exit of session, 124
processors supported, 296
profile command

details, 223-225
what happens when you enter it, 10-11

Profile dialog box, 190
profile

function_duration measurement, 66-67
interval_duration measurement, 68-69

profile measurement
help screens, 91
how to control it, 61
how to stop it, 74
the most simple case, 63
run by action keys, 100
memory_and_io_activity measurement, 65
program_activity measurement, 63-64

profile, glossary definition of, 328
profiled calls, glossary definition of, 328
profiled time, glossary definition of, 329
progflash, 318

command, 314
example, 319

program activity
glossary definition of, 329
measurement, 63-64
measurement details, 135

program example instrumented with markers, 158
program used in Chapter 1 demonstration, 7
pulldown menus

how they map to the command line, 198
in Graphical User Interface, 182

pushbutton select mouse button, 185

Q qualify a measurement on processor status, 60
question ’?’ interpretation in events list, 265
quick start

demonstration of interval measurement, 21-22
guide, 3

Index

347

R ’r’ interpretation in events list, 265
range, glossary definition of, 329
range-type event, what it means, 265
ranges of time shown below an event, 70-71
rebuilt parts, 315
recursion correction, glossary definition of, 327
recursive functions

glossary definition of, 329
how they affect measurements, 150-151

reference information, PART 4 of manual, 177
relative, glossary definition of, 329
renumber_events command details, 226
reset

how it affects activity measurements, 139
how it affects duration measurements, 145

return instructions, multi-byte, 166

S sampled measurement mode, glossary definition of, 330
sampling used in activity measurements, 135-137
save profile specification with data, how to, 89-90
scale of histogram, how to select, 79
scripts run by action keys, 102
select events command details, 227-228
Select Events dialog box, 189
select mouse button, 185
selected events, will they be included, 134
selecting events for a measurement, 45-47
service information, 301-315
set command details, 229-231
set <environment variable name> details, 232
Setup Enable and Disable dialog box, 192
setup_measurement command details, 233-235
Setup Trig2 dialog box, 193
slow drag-thru menu selection, 124
slow module, how to find it using cycles results, 144
Softkey User Interface, 180

how to start it, 32
software

compatibility, 313-314
installation, 307

Index

348

software performance analysis
preparing your program for, 132-133
glossary definition of, 330
 won’t turn on, 111

Software Performance Analyzer
at a glance, 4-6
command syntax, 197
hidden commands, 283
how it works, 129
triggers state trace, 56

software version
command details, 286
how to see the version number, 92

sort events definitions, what that means, 83
sort the events on display, how to, 83
sorting, glossary definition of, 330
source directory for installation, 309
source file edit in graphical user interface, 93
specification, measure specification interpretation of, 274-275
specifications, 296
specify confidence in stability of data, 95
stability

display, how and why to turn it off, 94
used to end a measurement, 59
glossary definition of, 331
what it means, how it is calculated, 175-176

stack used for function-duration measurements, 143
standard deviation

and mean, may be misleading, 174
how it is calculated, 173
when it is large, 174

start of measurement delayed with trig1, 53
starting

emulator for demonstration program, 8
procedure for the new user, 3
the software performance analyzer, 32

static variables, glossary definition of, 332

Index

349

status
defining additional status, 140
line of Graphical User Interface, 183
of processor used to qualify measurement, 60

steps for creating events when profile starts, 10-11
stop_profile command details, 236
stopping the present profile measurement, 74
store

command details, 237
profile specification with data, how to, 89-90

strings, how to place in entry buffer, 103
summary of commands, 204
Sun SPARCsystem, software installation, 310
supported emulators, 296
--SYMB-- command details, 239-240
symbol_offset command details, 238
symbolic filter, glossary definition of, 332
symbols

are not loaded, 111
with events (*, ?, r) interpretation, 265
selecting a class to be represented by events, 33

Symbols Display popup menu, 196
syntax

command conventions in manual, 202
conventions, 202
copy command details, 205-207
current working symbol (cws) command details, 285
define command details, 208-212
delete_events command details, 213-214
display command details, 215-219
end command details, 220-221
help command details, 287-288
load command details, 222
log_commands command details, 289
of analyzer commands, 197
pod_command command details, 290-291
print working symbol (pws) command details, 285
profile command details, 223-225
renumber_events command details, 226
select_events command details, 227-228

Index

350

syntax (continued)
set command details, 229-231
store command details, 237
--SYMB-- command details, 239-240
symbol_offset command details, 238
set <environment variable name>, 232-236, 285-286
unselect_events command details, 241-242
version command details, 286
wait command details, 292-293
working symbol (pws and cws) command details, 285

T table
contents incorrect, 112-113
display, how to interpret, 13, 270-272
from duration measurement, how to interpret, 81-82
how to print a copy, 85-86
of time and calls, how to interpret, 81-82
of time and cycles, how to interpret, 80
updated in small blocks during measurement, 119

tables and histograms, how to control, 75
terms in the glossary, 321-334
test program for Chapter 1 demonstration, 7
test results, how good are they, 171
Time% column totals more than 100%, 121-122
time periods histogram, how to display, 77
time range

creating your own set, 72-73
(expanded), triggering on, 57-58
details in expanded displays, 145
numbers and command examples, 74
shown under an event, 70-71

Time Ranges dialog box, 191
time used to end a measurement, 59
time, glossary definition of, 333
trig1 and trig2, how to use them, 278
trig1

used to hold off measurement start, 53
definition of, 278

Index

351

trig2
generated when abnormal time range hit, 57-58
definition of, 278
how it is used by Software Performance Analyzer, 145

trigger
and enable, order of precedence, 146
generation, how it is used, 145
glossary definition of, 333
how it is affected by enable/disable specification, 281
how it is affected by ’excluding_calls’_, 281
how it is affected by prefetching and recursion, 280, 281
how it operates, 280-281
how to qualify it, 280

trivial functions, definition of, 262
types of events included in measurements, 134, 265
types of problems solved by performance analyzer, 130-131

U undefined addresses, glossary definition of, 334
UNIX_COMMAND (!CMD!) command details, 286
unselect_events command details, 241-242
unselecting events in the events list, 48
update of display stops often during measurement, 119
User Interface, Softkey, 180
User Interface, Graphical, 181
user/supervisor qualifies a measurement, 60

V var-type event, what it means, 265
variable or function, how analyzer identifies the type, 134
variables measured in a profile, 65
ver command, 313-314
verify performance, 311-312
version, 313-314
version command details, 286
version number of software/firmware, how to see it, 92, 319

W wait command details, 292-293
warning messages, 244
working symbol (pws and cws) command details, 285
wrong measurement results problem, 112-113

X XSigServe runs after you exit session, 124

Index

352

Certification and Warranty

Certification

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard further
certifies that its calibration measurements are traceable to the United States
National Bureau of Standards, to the extent allowed by the Bureau’s calibration
facility, and to the calibration facilities of other International Standards
Organization members.

Warranty

This Hewlett-Packard system product is warranted against defects in materials and
workmanship for a period of 90 days from date of installation. During the warranty
period, HP will, at its option, either repair or replace products which prove to be
defective.

Warranty service of this product will be performed at Buyer’s facility at no charge
within HP service travel areas. Outside HP service travel areas, warranty service
will be performed at Buyer’s facility only upon HP’s prior agreement and Buyer
shall pay HP’s round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall prepay shipping
charges to HP and HP shall pay shipping charges to return the product to Buyer.
However, Buyer shall pay all shipping charges, duties, and taxes for products
returned to HP from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its programming
instructions when properly installed on that instrument. HP does not warrant that
the operation of the instrument, or software, or firmware will be uninterrupted or
error free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or
inadequate maintenance by Buyer, Buyer-supplied software or interfacing,
unauthorized modification or misuse, operation outside of the environment
specifications for the product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically disclaims the
implied warranties of merchantability and fitness for a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive remedies. HP
shall not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory.

Product maintenance agreements and other customer assistance agreements are
available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

Safety

Summary of Safe Procedures

The following general safety precautions must be observed during all phases of
operation, service, and repair of this instrument. Failure to comply with these
precautions or with specific warnings elsewhere in this manual violates safety
standards of design, manufacture, and intended use of the instrument.
Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground The Instrument

To minimize shock hazard, the instrument chassis and cabinet must be connected to
an electrical ground. The instrument is equipped with a three-conductor ac power
cable. The power cable must either be plugged into an approved three-contact
electrical outlet. The power jack and mating plug of the power cable meet
International Electrotechnical Commission (IEC) safety standards.

Do Not Operate In An Explosive Atmosphere

Do not operate the instrument in the presence of flammable gases or fumes.
Operation of any electrical instrument in such an environment constitutes a definite
safety hazard.

Keep Away From Live Circuits

Operating personnel must not remove instrument covers. Component replacement
and internal adjustments must be made by qualified maintenance personnel. Do not
replace components with the power cable connected. Under certain conditions,
dangerous voltages may exist even with the power cable removed. To avoid
injuries, always disconnect power and discharge circuits before touching them.

Designed to Meet Requirements of IEC Publication 348

This apparatus has been designed and tested in accordance with IEC Publication
348, safety requirements for electronic measuring apparatus, and has been supplied
in a safe condition. The present instruction manual contains some information and
warnings which have to be followed by the user to ensure safe operation and to
retain the apparatus in safe condition.

Do Not Service Or Adjust Alone

Do not attempt internal service or adjustment unless another person, capable of
rendering first aid and resuscitation, is present.

Do Not Substitute Parts Or Modify Instrument

Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification of the instrument. Return the
instrument to a Hewlett-Packard Sales and Service Office for service and repair to
ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede potentially dangerous procedures
throughout this manual. Instructions contained in the warnings must be followed.

Warning Dangerous voltages, capable of causing death, are present in this instrument. Use
extreme caution when handling, testing, and adjusting.

Safety Symbols Used In Manuals

The following is a list of general definitions of safety symbols used on equipment
or in manuals:

Instruction manual symbol: the product is marked with this symbol when it is
necessary for the user to refer to the instruction manual in order to protect against
damage to the instrument.

Hot Surface. This symbol means the part or surface is hot and should not be
touched.

Indicates dangerous voltage (terminals fed from the interior by voltage exceeding
1000 volts must be marked with this symbol).

Protective conductor terminal. For protection against electrical shock in case of a
fault. Used with field wiring terminals to indicate the terminal which must be
connected to ground before operating the equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common,
as well as providing protection against electrical shock in case of a fault. A
terminal marked with this symbol must be connected to ground in the manner
described in the installation (operating) manual before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment
which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

Caution The Caution sign denotes a hazard. It calls your attention to an operating
procedure, practice, condition, or similar situation, which, if not correctly
performed or adhered to, could result in damage to or destruction of part or all of
the product.

Warning The Warning sign denotes a hazard. It calls your attention to a procedure, practice,
condition or the like, which, if not correctly performed, could result in injury or
death to personnel.

	In This Book
	Contents
	Quick Start Guide
	Quick Start Guide

	Making Measurements With The Software Performance Analyzer
	Preparing the Software Performance Analyzer to Make Measurements
	Controlling the Profile Measurement
	Managing the Display of Measurement Results
	Supporting Tasks that Add Flexibility to Performance Measurements
	Measurement Problems

	Measurement Concepts
	Software Performance Measurement Techniques and Difficulties
	How Good Are Your Test Results

	Reference
	The User Interface
	Syntax of the Software Performance Analyzer Commands
	Error Messages
	The Events List
	Interpreting Tables, Histograms, and Measurement Specifications
	Using trig1 and trig2 to Control Measurements with Emulators and Other Analyzers
	Hidden Commands of the Software Performance Analyzer
	Software Performance Analyzer Specifications

	Installation and Service
	Installation and Service
	Installing/Updating Software Performance Analyzer Firmware

	Glossary
	Index
	Certification and Warranty
	Safety

