
Operating Notice

Using the MON64700 Monitor
Connection Utility

Using the MON64700 Monitor Connection Utility

B1480-92000  April, 1994 1



Contents

Introduction   3
ROM monitor limitations   4
Installation   4

Setting up mon64700   5
To install the MON64700 software   5
To build a monitor   6
To verify the contents of the support file   7
To set up serial device files   9
To verify the low-level connection to the target
system   10
To set up the host workstation files   10
To set up additional workstations   12

Using MON64700   13
To start mon64700   13
To stop mon64700   14
To verify that you can connect to your target   14
To start a Debug Environment connection to the
target   15
To compile a program   15
To modify a Debug Environment demo to work
with your ROM monitor   16
To run the Debug Environment demo   18
To load a program   18
To run a program   19
To stop program execution   19
To connect to HP SoftBench   20
To configure the debugger   20
To end the debugger connection   21
To check the status of mon64700   21
To continuously monitor the ROM monitor
connection   21
To define a new reset function   22

How mon64700 works    24
How mon64700 determines the processor 
type    24
Base Address Registers (CPU32 and 
M68302)   24

If you have problems   26
If your target system is not communicating with
your workstation    26
If the connection has been interrupted   27
If the debugger interface stops responding   28
If the workstation "hangs"   28
If the target ROM monitor stops operating
properly   28
If the Debugger/Monitor fails to start 
properly   29
If the debugger takes a long time to start   29
If the program does not stop   29
If mon64700 cannot connect   30

Using the MON64700 Monitor Connection Utility

2 B1480-92000  April, 1994



Introduction

Mon64700 provides a connection between the HP64700 Debug Environment and a
MRI monitor running on your target or microprocessor development board. With
mon64700, you can run the HP64700 Debug Environment (Debugger/Monitor
Graphical interface) on your host or on any other host where the Debug
Environment software has been installed.

 Mon64700 allows your workstation to simulate (act in place of) an HP 64700
emulator. When the debugger graphical interface is connected to mon64700, it
works just as if it were connected to an emulator or a simulator. Mon64700 accepts
the emulator commands generated by the debugger interface and translates them
into the equivalent ROM monitor commands.

Mon64700 runs on a workstation which is connected to your target system via a
serial cable.  This is called the host workstation.  You may use the
Debugger/Monitor interface on the host workstation or on another workstation.

Using the MON64700 Monitor Connection Utility
Introduction

B1480-92000  April, 1994 3



The Debugger/Monitor interface communicates with mon64700 by means of a
socket connection. Sockets are communication endpoints that allow processes to
communicate either locally or remotely. Sockets are accessed by means of
operating system procedure calls. You do not need to understand sockets to use
mon64700—these instructions will explain how to set up the socket connection.

ROM monitor limitations

Features which are not available are either "grayed out" on the menus or generate
appropriate error messages. The unavailable features are:

• Simulated I/O (simio) is not supported at this time.
• Trace—ROM monitors do not provide a trace mechanism.
• Breakpoints—ROM monitors do not support breakpoints on memory reads or

writes. In addition, the only 16 instruction breakpoints are allowed.
• Floating point register display—this is not supported by the MRI ROM

monitor.  Floating point operations, however, are supported.
• MMU register display—not supported by the MRI ROM monitor.
• SIM and emulator copy of SIM register comparison.

Installation

The MON64700 files are installed with the debugger software.

Using the MON64700 Monitor Connection Utility
Introduction

4 B1480-92000  April, 1994



Setting up mon64700

Follow these steps to get mon64700 and the Debugger/Monitor interface to work
with your target system:

1 Install the software.

2 Build a monitor.

3 Verify the contents of the support file.

4 Set up serial device files.

5 Verify the low-level connection to the target system.

6 Set up the host workstation files.

7 Set up additional workstations.

To install the MON64700 software

• If you have not yet installed the debugger, install it now.

The MON64700 fileset is installed when you install the debugger software.

See also See the debugger User’s Guide and the Software Installation Guide (for Sun
software) for information on how to install the software.

Using the MON64700 Monitor Connection Utility
Setting up mon64700

B1480-92000  April, 1994 5



To build a monitor

You may need to build a custom monitor with mct68k. Skip this step if you already
have an MRI monitor running on your target system.

If you will be using the MRI language tools:

If you will be using the MRI language tools to build the monitor, refer to the MRI
manuals.

If you will be using the HP AxLS language tools:

1 Run mct68k to specify the parameters and create the source files for the monitor:

mct68k -s

2 Copy the build script to your working directory:

cp /usr/mri/mon68k/buildmon .

3 Change the permissions on buildmon:

chmod 777 buildmon

4 Edit the buildmon file.  Change all instances of the MRI language tools to HP
language tools.  For example, change asm68k and lnk68k to as68k and ld68k.

5 Start a C-shell:

csh

6 Build the monitor:

buildmon monitor

The name of the monitor will be monitor.x, an S-Record file.

Using the MON64700 Monitor Connection Utility
Setting up mon64700

6 B1480-92000  April, 1994



7 Exit the C-shell:

exit

You can overlay the new monitor in RAM or you may burn it into the target system
ROMs. 

If at all possible, you should build a MRI monitor that can respond to interrupts and
that can respond to a break command coming over the serial connection. This will
make the Debug Environment more responsive and eliminates the need to press the
target abort button or to restart the entire system when it doesn’t respond as
expected or ends up in an infinite loop. 

Keep the support file which you generated (the .sup file). In addition, if your MRI
monitor overlays an existing monitor, keep this MRI monitor executable. 

If you use a PC to generate the MRI monitor, you will need to transfer the resulting
files to your workstation.

See also MRI MCT68K Monitor Configuration Tool documentation.

To verify the contents of the support file

• Check that your support file contains only one serial communication setup line.
Here is an example of such a line: 

S:/dev/plt_rs232_a,9600,8,n

• Verify that the serial port name and the baud information are correct. 

On HP 9000 Series 300 and Sun SPARCstation workstations, you may need to
create a serial device to communicate with the serial port.  Be sure to correctly
specify the serial port name in the support file.

Using the MON64700 Monitor Connection Utility
Setting up mon64700

B1480-92000  April, 1994 7



• Check that your support file contains a line specifying the processor type.  For
example, if the processor is an M68332, the support file should contain the
following line:

T:m68332

• Check that the name of the monitor executable file is a full path name.  For
example:

M:$HOME/mondir/monitor.x

Support file options supported by mon64700

Option Meaning

A Start address
B Buffer clearing command
D Download command for the monitor file
M Monitor executable file name
L Download the monitor executable when required. Mon64700 will

determine if the monitor needs to be downloaded; if the monitor is already
running in the target system, it will not be downloaded.

G Go command for auxiliary monitor 
S Serial communication setup
T Processor type. This option has been added so that mon64700 can

distinguish between the various processors which may be supported by a
single debugger.

W Character/line wait
X Display setup information

See also See your MRI Debugger Monitor manual for a full explanation of these options.
Note that the L option behaves differently for mon67000, and that the T option has
been added by HP.

Using the MON64700 Monitor Connection Utility
Setting up mon64700

8 B1480-92000  April, 1994



To set up serial device files

If serial device files do not already exist on your host, you need to create them.
Once they exist, you need to ensure that they have the appropriate permissions so
that you can access them.

1 Log in as root.

2 Use the following command to find out what devices are available on the host
workstation:

/etc/dmesg

3 Now use a command similar to this to create the serial device if it does not exist:

/etc/mknod /dev/ttyXX c 1 0xSCf004

where /dev/ttyXX is a unique device, SC is the select code, and f is the function
number.

4 To change the permissions on the device file, use the following command:

chmod 666 /dev/ttyXX

See also Consult your system documentation or ask an experienced system administrator for
help with setting up a serial device.

Using the MON64700 Monitor Connection Utility
Setting up mon64700

B1480-92000  April, 1994 9



To verify the low-level connection to the target
system

If you are sure that your workstation can communicate with the monitor running on
the target system, you can skip this step.

• Connect the target system to your host workstation via a serial cable.

• Use the MRI Communication Test Tool (ctt68k) to verify communication between
your host workstation and your target.

When you are finished, you should be able to connect with cu or kermit  from your
workstation to the MRI monitor and you should get the MRI monitor prompt
"!@A" when you press the <Return> key.

If you have problems with this connection, see the section "If you have problems"
on  page 26.

See also Refer to the MRI monitor documentation for detailed information on establishing
communication with the target system.

To set up the host workstation files

1 Copy the support file and monitor executable file that you generated to a safe
location on your host workstation. 

If you built the monitor executable file on another workstation, and you use ftp  to
transfer the files, remember to set binary  transfer for the binary files and ascii
transfer for the ASCII files.

2 Set up the 64700tab.net file.  

The 64700tab.net file is used by the mon64700 to define both the serial connection
to the target and socket connection to the Debug Environment.  The 64700tab.net

Using the MON64700 Monitor Connection Utility
Setting up mon64700

10 B1480-92000  April, 1994



file also defines the type of HP 64700-compatible ROM monitor that mon64700
should present to the Debug Environment.

The 64700tab.net file is located in the directory $HP64000/etc (/usr/hp64000/etc by
default).

For each MRI monitor/target that you have connected to a serial port on  your host
add a line to 64700tab.net.  The line should have this format:

lan: <logical_name> <processor_type> <host_name> <port_number> <support_file>

<logical_name> The name that you want to attach to this monitor/target. This name can be any easy
to remember name, perhaps a unique name for the target or processor (m68k).

<processor_type> A general classification of the processor type. Its value can be one of the following:
m68000, m68020, m68030, m68040, m68302, m6833x, m68340, or m68360.  If
you are using an M6833x-series processor (for example, an M68331 or M68332),
the processor_type must be "6833x"; use the T: line in the support file to specify
the exact processor type (see page 8).

<host_name> The logical_name or the IP number of the workstation host where the the serial
ports are connected.

<port_number> The designated socket port to be used when Debug Environment connects to a
specific mon64700. Port numbers must be even numbers and must be unique for
each mon64700/serial port pair used on a given workstation host. Typically 6470 is
used for the first serial port and 6472 is used for the next, and so on.  You may
need to check  with your system administrator to verify that the socket values that
you select are not being used by any other process.  

If you have multiple ROM monitors on multiple workstations, you can have a 6470
port on each workstation. If more than one ROM monitor is connected to a single
workstation, you must designate unique socket port numbers (for example, 6470
and 6472).

<support_file> The full path file name of the support file that describes the serial port and how to
start the ROM monitor.

Example Here is an example line from /usr/hp64000/etc/64700tab.net  for a 68332 processor
connected to workstation "lab2":

lan:  mon68332  m6833x  lab2  6470 /users/myproject/mon64700/xhm68k.sup

Using the MON64700 Monitor Connection Utility
Setting up mon64700

B1480-92000  April, 1994 11



To set up additional workstations

You can run the Debugger/Monitor on a workstation other than the one connected
to the ROM monitor.

• On additional hosts where you want to run the Debugger/Monitor add a line to
64700tab.net:

lan: <logical_name> <processor_type> <host_name> <port_number>

<port_number> The designated socket port to be used when Debug  Environment connects to a
specific mon64700. This port number must match the port number that you
assigned to mon64700 on the host workstation where the actual serial connection is
made.  If you assigned 6470 as the port number on your host workstation, you
could leave this field blank because 6470 will be used as default.

The 64700tab.net file is used by the Debug Environment to define the socket
connection that should be used to find the specified HP64700 compatible ROM
monitor. If you are running the Debug Environment on the same host as
mon64700, 64700tab.net is already set up to communicate with the Debug
Environment. 

Using the MON64700 Monitor Connection Utility
Setting up mon64700

12 B1480-92000  April, 1994



Using MON64700

To start mon64700

1 Verify that you have power to your monitor/target and that the serial line is still
connected.   

2 Enter the following command at the operating system prompt:

mon64700 <logical_name>

You should see the following message:

mon64700: Ready for Debugger/Monitor connection.

If you did not specify the processor type in your 64700tab.net file or in the support
file, you will be prompted to enter a precise description of the processor type. You
can avoid this question by adding a T:<processor_type> to your support file. The
value of <processor_type> can be one of the following: m68000, m68020, m68030,
m68040, m68302, m68331, m68332, m68340, or m68360. 

If mon64700 does not find a support file associated with the logical_name, you will
be prompted to enter the name of the support file.  To avoid this question, be sure
to add the name of a support file to the line describing your ROM monitor in the
64700tab.net file.

Example If you have set up a monitor connection to an M68332 processor in your
64700tab.net file called "mon68332", enter:

mon64700 mon68332

Using the MON64700 Monitor Connection Utility
Using MON64700

B1480-92000  April, 1994 13



To stop mon64700

1 Exit any debugger interfaces which are using the monitor.

2 Enter the following command at the operating system prompt:

mon64700 -q <logical_name> 

Mon64700 is similar to the power switch on an HP64700 emulator. It is NOT
intended to be shut down unless a major failure occurs, or you are moving the
target to another host machine. You do not need to shut down mon64700 after you
exit a Debug Environment session.

To verify that you can connect to your target

You can verify that mon64700 is working properly by means of an emul700
command.  

• Enter the following command: 

emul700 -lv <host_name>

where <host_name> is your logical host name or IP address where the
monitor/target is connected via the serial line. You should obtain a status report
like the following: 

m68k - m68020 available 
description:     M68020 ROM Monitor 
user interfaces:  xdebugmon 
internet address: <host_name>

The emul700 command is usually used to start an emulator/analyzer graphical
interface. If you specify a ROM monitor system instead of an emulator, emul700
will start the Debugger/Monitor interface.  The "-lv" option checks the status of the
emulator or mon64700 and then exits without starting the interface.

Using the MON64700 Monitor Connection Utility
Using MON64700

14 B1480-92000  April, 1994



To start a Debug Environment connection to the
target

Note Remember to start mon64700 before you start any of the Debug Environment
interfaces.

• To use the debugger interface, enter:

db68k -e <logical_name> &

• To use the debugger interface, you may also enter: 

emul700 <logical_name> &

• To use the HP SoftBench interface, enter:

debug64700 <logical_name> &

If you only have one ROM monitor connected to a workstation, you can use the
host name of the workstation instead of <logical_name> in all of the above
commands.

See also The debugger User’s Guide
emul700(1)
debug64700(1)
db68k(1)
db86(1)

To compile a program

There are a few constraints that you need to be aware of when you compile your
program for the Debugger/Monitor:

Using the MON64700 Monitor Connection Utility
Using MON64700

B1480-92000  April, 1994 15



• Be aware of the memory location of your monitor.  Your final link should not
try to load code on top of the monitor code or the monitor data locations.  The
starting address and ending address of the monitor program are displayed
when you start mon64700.

• Avoid using the vectors that the MRI monitor uses to communicate and run.
By default, mon64700 is configured to protect the breakpoint vector and the
trace vector (the trace vector is used for stepping). All other vectors are
unprotected.  For example, if your i8086 monitor uses the NMI vector and
your target executable file overwrites this vector, the monitor connection will
hang or terminate.

Emulators (and some other "execution engines") require the initialization of
some of the vectors which are needed by the ROM monitor.  You can use the
same executable file in both the emulator and the ROM monitor if you protect
these vectors from being overwritten. The Debugger/Monitor can
automatically protect a range of vectors.  Select Modify →Config from the
Debugger/Monitor menu bar to define the range of vectors to protect. 

• The initial value of the interrupt mask is set upon reset to an initial state. The
first instructions of your program should change the interrupt mask to an
appropriate value so that the break command will work properly.  For
example,  you could set the interrupt mask to 0.

• If your processor has reset vectors, they should be defined to appropriate
values. Generally speaking the reset vectors should be compiled in to your
target executable.

To modify a Debug Environment demo to work
with your ROM monitor

A simple demonstration program has been provided. With two modifications to a
linker command file, this demo should work with your monitor.  

1 Find the proper Debug Environment demo directory:

Processor       Debug Environment demo directory 
M68000         $HP64000/demo/debug_env/hp64742 
M68020         $HP64000/demo/debug_env/hp64748 
M68030         $HP64000/demo/debug_env/hp64747 

Using the MON64700 Monitor Connection Utility
Using MON64700

16 B1480-92000  April, 1994



M68040         $HP64000/demo/debug_env/hp64783 
M68302         $HP64000/demo/debug_env/hp64746 
M6833x         $HP64000/demo/debug_env/hp64749 
M68340         $HP64000/demo/debug_env/hp64751 
M68360         $HP64000/demo/debug_env/hp64780 

where $HP64000=/usr/hp64000 by default.

2 Copy the demo files to a new directory.  For example, if you are using an M68020:

cd $HOME 
cp -r $HP64000/demo/debug_env/hp64748 hp64748mon

Using the HP AxLS compiler    

• Edit the file Linkmon.k and verify that the program, data, and stack portions of the
program will be in available RAM memory. In particular, check the values on these
lines:   

SECT  env=$6000         ; Load address for prog/const sections
SECT  envdata=$B000     ; Load address for data sections 
SECT  stack=$C200       ; Load address for stack section

• Remove the old object files with the make clean command. 

• Compile the demo program with make ecsmon

Using the MRI compiler

• If you have not already done so, set and export the MRI_68K_BIN environment
variable.

• Edit the file mri/linkmon.cmd and verify that the program, data, and stack portions
of the program will be in available RAM memory. In particular check the values on
these lines: 

common   stack=$0C200   ; set starting address of stack section
sect     literals=$6000 ; set starting address of prog/const sections
sect     vars=$B000     ; set starting address of data sections

Using the MON64700 Monitor Connection Utility
Using MON64700

B1480-92000  April, 1994 17



• Remove the old object files with the make clean command. 

• Compile the demo program with make ecsmon.mri 

To run the Debug Environment demo

• Modify the demo program as described in the previous section.

• Start the demo program as described in the debugger User’s Guide.

• Before you execute the demo program, choose Execution→Reset to Monitor.

To load a program

• In the debugger interface, select File→Load→Executable and enter the name of
the executable to load. 

If you are using the Debug Environment demo, enter "ecsmon.x".

Downloading over the serial port will take longer than downloading into an
emulator. Larger programs may take a considerable amount of time (especially at
9600 baud). To improve the download rate, you may consider increasing the ROM
monitor baud rate, or you may consider alternative methods of getting your
program into your target and then only loading the symbols in the
Debugger/Monitor.

Using the MON64700 Monitor Connection Utility
Using MON64700

18 B1480-92000  April, 1994



To run a program

1 Verify that the stack pointer is pointing to a usable RAM location.  

If you have compiled the Debug Environment Demo, you can select
Execution→Reset to Monitor to correctly initialize the stack pointer and program
counter.

2 Use the step, set breakpoint and run commands just as you use them in the
Debugger/Simulator or the Debugger/Emulator.

See also Refer to the debugger manual for complete details about running programs in the
debugger interface. 

To stop program execution

Here are two ways to stop a running program:

• With the mouse pointer in the main debugger window, press <Ctrl>-C.

If you have specified an interrupt (or other mechanism) to cause a break, you can
use <Ctrl>-C to stop program execution. 

Or

• Press the abort button on your target.

See also If the program does not stop, see page 29.

Using the MON64700 Monitor Connection Utility
Using MON64700

B1480-92000  April, 1994 19



To connect to HP SoftBench

1 Compile your programs for static analysis.

2 Set X resources for the SoftBench action keys.

3 Verify that SoftBench is properly configured.

4 Start the Debug64700 system.

See also See the Debug64700 User’s Guide for detailed information on setting up your
project for Debug64700.

To configure the debugger

• In the debugger interface, select Modify →Configuration....

The items you can configure vary from processor to processor. In most cases, you
can configure the following items:

• Protect Breakpoint and Step vectors?
• Protect vectors 0h thru memory address? 

Details about the configuration items are provided in the on-line help in the
configuration dialog.

Configuration files

You can save the results of your configuration session to a file.   Select
File→Save... or Store→Configuration ... from the configuration dialog. Enter a
configuration file.  The name of the file will be appended with ".MA"
(Debugger/Monitor ASCII configuration file).

Using the MON64700 Monitor Connection Utility
Using MON64700

20 B1480-92000  April, 1994



See also For information on using the configuration dialog, refer to the “Configuring the
Emulator” chapter in the debugger User’s Guide.

To end the debugger connection

• In the debugger interface, select File→Exit→Released.

This will exit the Debugger/Monitor and allow another user access to the target
system.

Exiting the Debugger/Monitor does not affect operation of mon64700. You do not
need to stop mon64700 at this point unless you plan to physically disconnect the
target system from the host workstation.

To check the status of mon64700

• At the operating system prompt, enter:

mon64700 -s <logical_name>

The status of the ROM monitor connection will be displayed.

To continuously monitor the ROM monitor
connection

• At the operating system prompt, enter:

 mon64700 -l <logical_name>

Using the MON64700 Monitor Connection Utility
Using MON64700

B1480-92000  April, 1994 21



This command displays messages that can tell you whether the connection has been
started, interrupted, or reestablished. This command runs in the foreground and will
continue to write error messages to the window in which it was started.  It may be
best to start this command in its own separate window and iconify it after it is
started.  This command does not display any of the data which is exchanged
between the debugger interface and the target system.

To define a new reset function

You can write a new reset function and make it appear on an action key:

1 Decide which debugger commands your reset function needs to perform.

2 Define a reset macro in the debugger startup file.

3 Define an action key to execute the reset macro.

Why you might need to define a new reset function

The Debugger/Monitor uses a pseudo processor reset function which differs from
the reset function used by an emulator or simulator. The pseudo reset does the
following:

1 The status register is set to 0x2700.

2 A new stack pointer is loaded from vector 0.

3 A new program counter is loaded from vector 1.

4 The monitor is entered.

The pseudo reset does not modify the following registers:

• The vector base register (VBR). 

• The cache control registers.

• The address or data registers.

Using the MON64700 Monitor Connection Utility
Using MON64700

22 B1480-92000  April, 1994



If the serial communication peripheral is reset, the communication link between the
target and the debugger interface will be broken.  For this reason a RST is not
executed when doing a reset from the Debugger/Monitor interface. 

If the reset function provided does not meet your needs, you can write your own
reset function.

Example The following macro resets the VBR register then performs the same actions as the
default reset function:

/* reset macro for Motorola 68030, 68040, and CPU32 processors */
D M A  my_reset()
{
   long *ptr;

   @SR=0x2700;
   @VBR=0;
   /* set stack pointer from vector 0, address is (VBR+(4*0))=0 */
   ptr=0;  
   @A7=*ptr;
   /* set stack pointer from vector 0, address is (VBR+(4*1))=4 */
   ptr=4;  
   @PC=*ptr;
}
.

To use this macro with the debugger demonstration program: add the macro to the
end of the Cmd_dbmac.com file, which you can find under cmdfiles/debug in your
demo directory.  Notice that you must finish the macro with a period on a line by
itself.

To add the macro to one of the demo program action keys, append the provided
Xdefaults.all file to the .Xdefaults file in your home directory.  Look for a "Your
Key" line like the following:

debugmon. processor .actionKeysSub.keyDefs:
...
"< Your Key >"   "D H tellkeysHP     InBrowser" \

Change the "Your Key" line to:

"My_reset"       "D M C my_reset( )" \

Notice that the function call uses a space between the parentheses. 

When you start the demo program with Startdebug, the new action key will
appear.  If you have not defined the XENVIRONMENT environment variable, you
may need to restart your window manager before this change will take effect.

Using the MON64700 Monitor Connection Utility
Using MON64700

B1480-92000  April, 1994 23



How mon64700 works 

This section provides some additional information on how mon64700 works. 

How mon64700 determines the processor type 

Mon64700 looks in the following places to determine the type of processor in the
target system: 

1 The processor type specified in the 64700tab.net file. 

2 The processor type specified on the T: line in the support file. 

3 If the processor type is not specified in the 64700tab.net file or the support file,
then when it is started, mon64700 will prompt for the processor type.

Base Address Registers (CPU32 and M68302)

The Motorola M68302 and CPU32 processors provide on-chip peripheral devices.
The registers associated with these devices are mapped into a contiguous block of
memory starting at some base address.  

The Debugger/Monitor does not make use of the base address information stored
by the processor.  You must select the base address via the Debugger/Monitor
configuration process or register modification commands. 

The form of the base address depends upon the processor type.

M68302

The M68302 processor stores the upper 12 bits of the base address in bits 0 through
11 of memory location $0F2.  The Debugger/Monitor ignores this value.

Use the M68302 Debugger/Monitor configuration dialog to specify a value for the
upper 12 bits of the base address used by the debugger.  The BAR register shown
by the Debugger/Monitor reflects this value.  The actual value of the processor
BAR register may be examined by displaying the memory at location $0F2.  

Using the MON64700 Monitor Connection Utility
How mon64700 works 

24 B1480-92000  April, 1994



M6833x

The Motorola M6833x family of processors uses the state of the module
configuration register (the MCR, duplicated as the SIM_MCR) modmap bit (MM)
to determine the location of the peripheral devices.  The MCR register is located in
the system integration module which is mapped by the value of the MCR MM bit.
In other words, the location of the MCR register depends on the value of the MCR
register.

The M6833x Debugger/Monitor configuration allows you to select one of two
possible values for the base address. The value shown by the debugger for the
MCR is read from the MCR register on the processor.

M6834x and M6836x

The value of the base address is stored in the base address register (MBAR).  This
register can be accessed by using the MOVES instruction to address $0003FF00 in
the CPU function code address space. The Debugger/Monitor ignores this value.

You must specify a value to be used as the MBAR for locating memory mapped
device registers.  Debugger reads and writes to MBAR act on a copy of MBAR
which is local to the debugger; debugger reads and writes have no effect on the
actual processor MBAR register.

Using the MON64700 Monitor Connection Utility
How mon64700 works 

B1480-92000  April, 1994 25



If you have problems

The following sections describe some common problems and what to do about
them.

If you have problems setting up or communicating with the monitor, you should
also consult the MRI monitor documentation.

If you have problems using the debugger, you should also consult your HP
debugger User’s Guide.

If your target system is not communicating with
your workstation 

Check that you are using the proper serial port name. Examples of typical serial
device names are: /dev/plt_rs232_a (for HP 9000 series 700 workstations),
/dev/ttya (for Sun workstations), and /dev/tty00 (for HP 9000 series 300
workstations).

If the serial port device file does not exist, you need to create one as described on
page 9.

Check that the serial device file has open permissions.

Use an ls command to verify that the permissions are "read or write by anyone."
The permissions should look like this:

$ ls -l  /dev/plt_rs232_a 
crw-rw-rw-  2 lp   bin    1 0x204004 Jan 15  1994 /dev/plt_rs232_a

To change permissions to allow the file to be read or written by anyone, enter a
command like this:

chmod 666 /dev/plt_rs232_a

Check that you are using the appropriate serial cable. Some hosts need a null
modem; others need a direct cable.

Using the MON64700 Monitor Connection Utility
If you have problems

26 B1480-92000  April, 1994



If you are using cu to communicate with the target system, check that you have set
up the device name.

For example, on an HP 9000 Series 700 host, check that the following lines are in
/usr/lib/uucp/Devices:

Direct plt_rs232_a - 9600 direct 
Direct plt_rs232_b - 9600 direct

If they are not found, add them using root privileges.

Verify that you can make a low-level connection to the target system.

Make the connection to the serial port. Use a command like:

/usr/bin/cu -l /dev/plt_rs232_a

Press the <Return> key. You should see a monitor prompt (for example,
"CPU32Bug" or "!@A"). If not, check power and the serial cable.

To exit cu, press enter ~. (a tilde followed by a period).

If kermit  is available on your system, you may find it easier to use kermit  than cu.
Enter the following commands:

kermit 
set line <device file name> 
set baud <baud rate> 
connect

Check that your downloadable monitor is properly built. Refer to your MRI
manuals for complete details.

If the connection has been interrupted

If, for example, the serial cable has been disconnected then reconnected, the
monitor connection should be reestablished automatically.  Select
Settings→Assembly Level Debug and then Settings→High Level Debug to view
the current value of the PC. You can watch what is happening to the connection by
using the mon64700 -l command.

Using the MON64700 Monitor Connection Utility
If you have problems

B1480-92000  April, 1994 27



If the debugger interface stops responding

If communications are interrupted during a program download, the debugger
interface may stop responding to keyboard or mouse commands.  If this happens:

1 Use the ps -e command to find the process ID numbers of the debugger
(xdbxxx), emul700dmn, and mon64700.

2 Use the kill  command to stop these processes.
3 Reset the target system.
4 Restart mon64700 and the debugger.

If the workstation "hangs"

On some workstations, toggling power to the target system (whether or not
mon64700 is running) can cause the workstation to "hang" (stop working
altogether).  This is a problem with the way the workstation handles serial
communications. If this happens, try any of the following:

Disconnect then reconnect the serial cable.

Toggle power to the target system a few times.

Turn off power to the workstation and the target system.

If the target ROM monitor stops operating
properly

Try pressing the abort button, if any, on your target system. 

Press the reset button (if any). 

Using the MON64700 Monitor Connection Utility
If you have problems

28 B1480-92000  April, 1994



After pressing the reset button you may have to restart mon64700 to get
resynchronized. Use mon64700 -q <logical_name> to halt mon64700 and
mon64700 <logical_name> to restart mon64700.

If the Debugger/Monitor fails to start properly

This problem can occur when an old version of the B1471 Operating Environment
software has been installed over the new version.  Check that the version of the
B1471 software is A.05.30 or higher (A.06.10 or higher for Solaris), then re-install
B1471 from the debugger tape if necessary.

If the debugger takes a long time to start

Determine if the debugger startup file is downloading a large executable file to the
target. If the executable doesn’t need to be downloaded every time the debugger
starts, edit the startup file (for Motorola processors, the file name is db68k.rc by
default).

If the program does not stop

Normally, you can stop a running program by pressing <Ctrl>-C or by pressing an
"abort" button on the target system.  If the program doesn’t stop, check for these
conditions:

The interrupt mask may be set to exclude the level of interrupt you are using to
break program execution.

The monitor may have been written to do polled I/O. The polling loop may not be
interruptible.

Using the MON64700 Monitor Connection Utility
If you have problems

B1480-92000  April, 1994 29



The program in the target system may have entered a state which has disabled
interrupts or corrupted the monitor.

If mon64700 cannot connect

If you see the following error messages:

mon64700: Unable to connect to socket port 6472
mon64700: Is "mon64700 mon68332" already running?
mon64700: Is an emul700dmn or other debugger process still running?
mon64700: mon68332 Quitting

Check that mon64700 is not already running. Use mon64700 -s <logical_name> to
determine whether mon64700 is running. To restart mon64700, use mon64700 -q
<logical_name> to halt mon64700.  Then use mon64700 <logical_name> to
restart.

Check whether an old emul700dmn or db68k process is still running from an
aborted session.  You will have to kill these processes before you can start
mon64700.

If you have just aborted mon64700, wait 1-2 minutes and try starting mon64700
again. Some workstations take a few minutes to clean up sockets from an aborted
session.

© Copyright 1994 Hewlett-Packard Company

Using the MON64700 Monitor Connection Utility
If you have problems

30 B1480-92000  April, 1994


