
HP 64700 Operating Environment

Simulated I/O

User’s Guide

HP Part No. B 1471-97009
Printed in U.S.A.
November 1992

Edition 3



Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1991, 1992, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and in other countries.

Hewlett-Packard 
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304.  Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19(c)(1,2).

2



Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2
Edition 3

B1471-97003, July 1991
B1471-97006, March 1992
B1471-97009, November 1992

3



In This Book

This Simulated I/O User’s Guide contains five chapters: an
introduction to simulated I/O, two reference chapters, and one
examples chapter. Also, there is a chapter which describes the error
codes used with simulated I/O. A description of the five chapters is
given below.

Chapter 1 Introducing Simulated I/O. This chapter introduces you to the
simulated I/O emulation feature by explaining what simulated I/O
is, how it works, what steps you must take in order to use simulated
I/O.

Chapter 2 Configuring Simulated I/O. This chapter describes the simulated
I/O configuration questions which appear as a part of the general
emulation configuration questions. This chapter also lists
restrictions on the use of simulated I/O.

Chapter 3 Simulated I/O Protocol. This chapter describes how emulation
system programs must communicate with the simulated I/O
process in order to open, close, read from, and write to simulated
I/O files/devices. This chapter also describes the communication
process whereby emulation systems can execute UNIX processes.

Chapter 4 Examples. This chapter shows you how to use the simulated I/O
commands to use your workstation’s display and keyboard as
simulated I/O devices. This chapter also steps you through the
process of compiling, linking, and running a simulated I/O demo
program.

Chapter 5 Error Codes. This chapter describes the simulated I/O error codes
as they relate to the particular simulated I/O commands.

In This Book

4



Conventions Example commands throughout the manual use the following
conventions:

bold Commands, options, and parts of command
syntax.

bold italic Commands, options, and parts of command
syntax which may be entered by pressing
softkeys.

normal User specified parts of a command.

$ Represents the UNIX prompt. Commands
which follow the "$" are entered at the UNIX
prompt.

<RETURN> The carriage return key.

In This Book

5



Contents

1 Introducing Simulated I/O

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Simulated I/O Is ... .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9

How Does Simulated I/O Work?  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
User Program Request:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10
Response:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

Using Simulated I/O  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

2 Configuring Simulated I/O

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
 Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
Answering The Simulated I/O Configuration Questions  .  .  .  .  . 14
Restrictions On Simulated I/O .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

3 Simulated I/O Protocol

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Open File (90H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21

Open File Option  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21
Length of Path Name  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Path Name  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23

Close File (91H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24
File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

Read from File (92H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25
File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Number of Bytes to Read  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Actual Number of Bytes Read  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26
Actual Bytes Read  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

Write to File (93H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27
Number of Bytes to Write  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28
Bytes to be Written  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28
Actual Number of Bytes Written  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 28

Contents

6



Delete a File (94H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
Path Name Length  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29
Path Name  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29

Position File Pointer (95H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30
Relative Byte Offset  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
Starting Location .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
Absolute Byte Offset .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32

Position Cursor on Display (96H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33
File Descriptor (Returned from Open)  .  .  .  .  .  .  .  .  .  .  .  .  . 33
Line Number  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33
Column Number  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Clear Display (97H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34
File Descriptor (Returned from Open)  .  .  .  .  .  .  .  .  .  .  .  .  . 34

UNIX Command (98H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35
Open Pipe Specification .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Command Name Length  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Command Name  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Simulated I/O Process ID  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Stdin File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
Stdout File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
Stderr File Descriptor  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37

Kill Simulated I/O Process (99H)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Simulated I/O Process ID  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38
Signal to Send to Process  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 38

Reset Simulated I/O (9AH)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39

4 Examples

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Using Display Simulated I/O  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42

To Open Display Simulated I/O:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42
To Write to Display Simulated I/O:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
To Position the Cursor:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44
To Clear the Display:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
To Close Display Simulated I/O:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46

Using Keyboard Simulated I/O  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
To Open Keyboard Simulated I/O: .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46
Reading From the Keyboard:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48
To Close the Keyboard Interface:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

Running The Simulated I/O Demo Program .  .  .  .  .  .  .  .  .  .  .  . 49
Copying the Simulated I/O Demo Program .  .  .  .  .  .  .  .  .  .  . 50

Contents

7



Compiling the Simulated I/O Demo Program  .  .  .  .  .  .  .  .  . 50
Copying the Default Emulator Configuration File .  .  .  .  .  .  . 50
Entering the Softkey Interface  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Configuring for Simulated I/O  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51
Loading the Absolute File  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
Displaying Simulated I/O  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 52
Running the Demo Program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
Modifying the Keyboard to Simulated I/O  .  .  .  .  .  .  .  .  .  .  . 53
Using Emulation Commands while Simulated I/O is Running 55
Closing the Keyboard Simulated I/O Demo  .  .  .  .  .  .  .  .  .  . 55

RS-232 Simulated I/O .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Configuring RS-232 Lines for Simulated I/O  .  .  .  .  .  .  .  .  .  . 69

Serial Lines in UNIX Systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Serial Lines Used with Simulated I/O  .  .  .  .  .  .  .  .  .  .  .  . 70
Serial Lines for User Terminals and Simulated I/O  .  .  .  . 70
Dedicated Serial Lines  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 71

Example Programs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72
Special Considerations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 72

5 Error Codes

Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
Error Code Description (By Simulated I/O Command)  .  .  .  .  . 81

General Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81
Open (90H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 81

Open File Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
Close (91H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82

Close File Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
Read (92H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82

Read File Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 82
Write (93H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83

Read File Errors  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 83
Delete File (94H) Simulated I/O Errors .  .  .  .  .  .  .  .  .  .  .  .  . 83
Position File (95H) Simulated I/O Errors .  .  .  .  .  .  .  .  .  .  .  . 83
Position Cursor (96H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  . 84
Clear Display (97H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  .  . 84
UNIX Command (98H) Simulated I/O Errors  .  .  .  .  .  .  .  .  . 84
 Kill Process (99H) Simulated I/O Errors  .  .  .  .  .  .  .  .  .  .  .  . 85

Contents

8



1

Introducing Simulated I/O

Overview This chapter will answer the following questions:

What is simulated I/O?

Generally, how does simulated I/O work?

What steps do I have to take to use simulated I/O?

Note Simulated I/O is not available when your emulator has been
restricted to real-time runs.

Simulated I/O Is ... Simulated I/O is a process which allows your emulation system to
communicate with host computer files, keyboard, and display.

Simulated I/O also allows your emulation system to execute UNIX
commands; this means that, in addition to being able to
communicate with your keyboard and display, your emulation
system can also communicate with other host computer I/O
devices, such as printers, plotters, modems, etc.

How Does Simulated
I/O Work?

Communication between your emulation system and host
computer files takes place through contiguous byte length
emulation system memory locations. The first memory location is
called the Control Address (CA). The Control Address and the
memory locations which follow it are referred to as the CA buffer.

9



The Control Address (CA) buffer should be located in    emulation
RAM.  It is possible, however, for the CA buffer to be located in
target system RAM, but there will be a performance penalty for
doing so.  We recommend that you locate the Control Address and
the CA buffer in emulation RAM.

Control Address buffers will never be more than 260 bytes in   
length because a maximum 256 bytes of information can be
transferred between your emulation system and the host computer
at a time.  (Some simulated I/O commands require four additional
bytes for command parameters.)

Communication between your emulation system and simulated I/O
takes place as a series of requests by your emulation system and
responses by simulated I/O.

User Program
Request:

(1) Simulated I/O command parameters are first placed into the
appropriate CA buffer locations.

(2) After the CA buffer is loaded with simulated I/O command
parameters, the command code is placed into the Control Address
(CA) to cause the execution of the command.

Introducing Simulated I/O
Simulated I/O Is ...

10



Response: (3) Before returning a value to the Control Address, some
simulated I/O operations return additional information to the CA
buffer.

(4) If the operation was successful, a 00H is returned to the
Control Address.  If the operation was not successful, an error code
is returned to the CA.

Using Simulated
I/O

The steps that you must take in order to use simulated I/O are
listed below.

You must write a program (to be executed by the
emulator) which loads the CA buffer with the appropriate
command parameters, places the appropriate command
codes into the CA, and waits for the responses from
simulated I/O.  Command codes, command parameters,
and simulated I/O responses are described in the
"Simulated I/O Protocol" chapter.

You must answer the simulated I/O emulation
configuration questions.  These questions are explained in
the "Configuring for Simulated I/O" chapter.

The steps involved in using simulated I/O are also shown in the
"Examples" chapter.

Introducing Simulated I/O
Using Simulated I/O

11



12



2

Configuring Simulated I/O

Overview This chapter will:

Explain the simulated I/O emulation configuration
questions.

List the restrictions on the use of simulated I/O.

 Introduction The simulated I/O subsystem must be set up by answering a series
of configuration questions.  These questions are a part of the
general emulation configuration.  They deal with enabling
simulated I/O, setting the control address(es), and defining files
used for standard I/O.  The simulated I/O configuration questions
are reached by answering yesto the following question.

Note Simulated I/O is not available if the emulator is configured for
real-time runs.  When the emulator is configured for real-time
runs, the following questions will not appear among the emulator
configuration questions.

13



Answering The
Simulated I/O
Configuration
Questions

Modify simulated I/O configuration?  no  (yes) 

no  Answering no will cause the simulated I/O
configuration questions to be skipped.  The
current simulated I/O configuration will not be
modified.

yes  Answering yes causes the following questions,
which will allow you to modify the simulated I/O
configuration, to be asked.

Enable polling for simulated I/O?

no Prevents the emulation software from reading
the control address for simulated I/O commands.
Answering no to this question will allow you to
disable simulated I/O while maintaining the
current simulated I/O configuration.  Later,
when you wish to enable simulated I/O, you may
do so without having to re-enter control
addresses or the file names for standard input,
standard output, and standard error output.
Answering no will also cause the rest of the
simulated I/O questions to be skipped.

yes Causes the emulation software to read the
control address frequently to determine if the
user program has requested any simulated I/O
commands.  Answering yes will also cause the
following questions to be asked.

Simulated I/O control address 1?  SIMIO_CA_ONE   

Simulated I/O control address 2?  SIMIO_CA_TWO

Configuring Simulated I/O
Answering The Simulated I/O Configuration Questions

14



Simulated I/O control address 3?  SIMIO_CA_THREE

Simulated I/O control address 4?  SIMIO_CA_FOUR

Simulated I/O control address 5?  SIMIO_CA_FIVE

Simulated I/O control address 6?  SIMIO_CA_SIX

The symbol SIMIO_CA_ONE is the default symbol associated
with the  first simulated I/O Control Address.  The default symbol
may be replaced with any other valid symbol or an absolute
address. If a symbol is specified, polling on that control address will
not begin until a file containing that symbol is loaded.  If an
absolute address is specified, polling on that address will begin
immediately.

The control address must be loaded into memory space assigned  
as RAM.  It is recommended that the control address be located in
emulation RAM since this allows user programs to run faster.
Using target RAM causes the emulator to break into the monitor
program every time the control address is polled for simulated I/O
commands or data.

The following questions deal with the files associated with the       
three reserved file names "stdin", "stdout", and "stderr".

File used for standard input?  /dev/simio/keyboard  

File used for standard output?  /dev/simio/display  

File used for standard error output?  /dev/simio/display  

The default answers for these questions are "/dev/simio/keyboard",
"/dev/simio/display", and "/dev/simio/display" respectively.

These files are not actually opened until Open (90H) is called with
the file names "stdin", "stdout", and "stderr" and are only provided
to allow easy redirection of input and output from the keyboard or
display to a file, etc., without modifying the user program.  (The
compiler standard I/O libraries may open some or all of these
reserved files automatically if simulated I/O is used.  For more
details, see the documentation on the simulated I/O libraries for
the compiler in question.)

Configuring Simulated I/O
Answering The Simulated I/O Configuration Questions

15



Enable simio status messages?

yes The simulated I/O command and return code are
displayed in the upper right hand corner of the
display.

no Disables the simulated I/O status messages.
Simulated I/O runs faster when the status
messages are disabled.

Note With HP 64700 firmware version 4.0 or greater, much of simulated
I/O has been moved to the emulation card cage, and some
simulated I/O operations complete without host intervention or
notification (for example, reading from a file descriptor that has
not been opened).  With simulated I/O status messages enabled,
there can be some simulated I/O commands that are not reported.

In addition, the simulated I/O write operation is now completed in
the card cage, and any errors from write operations will not be
reported on the write command that caused the error. Eventually,
the host will report to the card cage that a write has failed and any
write operations after this will receive the error.

Configuring Simulated I/O
Answering The Simulated I/O Configuration Questions

16



Restrictions On
Simulated I/O

The only two restrictions on the use of simulated I/O are:   

There is a limit of 12 open files at any one time.

There may only be 4 active simulated I/O processes at any
one time.

Since any simulated I/O file that is opened is associated   with a file
descriptor, opened files are independent of the Control Address.
Up to 12 files may be opened with a single Control Address (CA).
A total of 6 Control Addresses are allowed so that you can execute
simulated I/O commands concurrently.  Remember, a maximum of
12 simulated I/O files (between the 6 Control Addresses) may be
opened at any one time.

Configuring Simulated I/O
Restrictions On Simulated I/O

17



18



3

Simulated I/O Protocol

Overview This chapter will:

Present the simulated I/O commands.

Describe the simulated I/O command parameters.

Describe the responses to simulated I/O commands.

Introduction Communication between your emulation system and simulated I/O
takes place as a series of requests by your emulation system to
execute simulated I/O commands and responses by simulated I/O
which tell your emulation system whether the command was
successful or not.  The communication between your emulation
system and simulated I/O is done through byte length emulation
system RAM locations (preferably emulation RAM, which is
faster, but possibly target system RAM with less performance). All
simulated I/O command codes and parameters are placed into
memory locations relative to a Control Address (CA) memory
location.  (Control Addresses are assigned when configuring your
emulation system for simulated I/O.)  There are 10 simulated I/O
commands: 

19



Command Code Simulated I/O Command

90H Open file

91H Close file

92H Read from file

93H Write to file

94H Delete a file

95H Position file pointer

96H Position cursor (display simulated I/O only).

97H Clear display (display simulated I/O only).

98H UNIX command

99H Kill simulated I/O process.

9AH Reset simulated I/O.

This chapter contains descriptions of the simulated I/O protocol,
that is, the rules which govern the exchange of messages between
your emulation system and simulated I/O.

Simulated I/O Protocol
Introduction

20



Open File (90H) Open (90H) opens a file or device for reading and/or writing by
simulated I/O.

To invoke open, an open file option must be stored in address
CA +  1, the length of the path name must be stored in location
CA +  2, and the path name must be stored in CA +  3 and the
following locations.  Then, the open control code (90H) is stored in
CA.

Note The maximum number of simulated I/O files that may be open at
any one time is 12.

Open File Option The open file option stored in location CA +  1 must be one or
more of the following flags OR-ed together:

Simulated I/O Protocol
Open File (90H)

21



Note Exactly one of the first three open option flags must be used.

Read Only        (code =  00H)

Write Only (code =  01H)

Read and Write (code =  02H)

Create (code =  04H) The file is opened if it exists; otherwise,
a new file is created and opened.

Append (code =  08H) The current position is changed to the
end of file prior to each write.

Truncate  (code =  10H) If the file exists, its length is truncated to
0.

Exclusive  (code =  20H) If both this flag and the create flag are
set, open will fail if the file exists.  It has
no effect if the create flag is not set.

No Delay  (code =  40H) Read requests on this file will return
immediately. With ordinary files this has
no effect, but with devices such as a tty,
emulation will not wait until data is
available.’ This flag may affect
subsequent reads and writes. See open
(2), read (2), and write (2) in the UNIX
Reference manual for more details.

Open will fail if the file does not exist unless the create option is
set.  The open will succeed if the create option is set even if the file
already exists, unless the exclusive option is also set. Upon
opening, the file position pointer is set to the beginning of the file
unless the append option is used where it points to the end of the
file.

Simulated I/O Protocol
Open File (90H)

22



Length of Path Name The length of the path name placed into location CA +  2 is the
number of bytes in the path name where each (ASCII) character
represents one byte.  The "path name" can be shorter than the
"length of path name" if the path name is null terminated
(null =  00H).  The path name need not be null terminated if its
length is exact.  (A null will be added after the specified number of
characters.)

Path Name The files "stdin", "stdout", and "stderr" are reserved for simulated
I/O.  When files with these names are opened, the file specified at
configuration time for the standard I/O name requested will be the
file actually opened.  NOTE: unlike commands executed under a
UNIX shell, these files are NOT automatically opened, but must be
opened by your program.

The file names "/dev/simio/keyboard" and "/dev/simio/display" are
also reserved.  They represent devices for simulated I/O keyboards
and displays.  These file names are interpreted internally by the
emulation software and do not exist as actual UNIX files. See
examples of display and keyboard simulated I/O in the "Examples"
chapter.

Absolute path names must be specified for the file names reserved
for simulated I/O.  Relative path names, as well as absolute path
names, may be specified for other simulated I/O files.

File Descriptor The file descriptor returned by open should be saved for use by all
reads, writes, seeks, or closes on the opened file. All simulated I/O
commands which require a file descriptor specify that the file
descriptor be in location CA +  1, and none of these commands
modify the location CA +  1.  Therefore, the file descriptor
returned by open need not be saved if a unique Control Address is
used for each open file or device, and the value at location CA +  1
is never modified from the time the file is opened until the file is
closed.  The file descriptor is one created and managed by
emulation software and is not an actual UNIX file descriptor.

Simulated I/O Protocol
Open File (90H)

23



Close File (91H) Close (91H) closes the file or device associated with the file
descriptor specified.  The file descriptor of the desired file is stored
in CA +  1, and 91H is then stored in CA to invoke the close
command.  Zero is returned in the CA if the operation was
successful, otherwise an error code is returned indicating why it
failed.

File Descriptor The file descriptor placed into CA +  1 is the file descriptor that
was returned by simulated I/O when the file was originally opened.

Simulated I/O Protocol
Close File (91H)

24



Read from File
(92H)

To initiate a read operation, first store the file descriptor of the
open file into CA +  1.  Then, store the number of bytes (maximum
of 255) to read in location CA +  2.  A buffer large enough for the
bytes requested must be provided starting at location CA +  3.
Finally, store the read control code (92H) into location CA to
initiate the read.

When the read operation is complete, the number of bytes actually
read is returned to location CA +  2, the bytes read are stored in
the buffer starting at location CA +  3, and 00H is returned to
location CA if the operation was successful, or a nonzero error
code is returned to location CA indicating why the operation failed.

Read behaves differently for the simulated keyboard device.  The  
read will return only after a line has been completed (a
< RETURN>  or one of the softkeys has been pressed).  The read
will never return more than a single line of input.  (A single line
will return unless the number of characters requested is smaller
than the length of the input; multiple reads will be required in this
case, but a single read will never return text from more than one
line, even if more than one line of text is available.)  This will

Simulated I/O Protocol
Read from File (92H)

25



generally be less than the requested number of characters.  See the
keyboard simulated I/O example in the "Examples" chapter.

File Descriptor The file descriptor placed into CA +  1 is the file descriptor that
was returned by simulated I/O when the file was originally opened.

Number of Bytes to
Read

The number of bytes to read is placed in location CA +  2. The
maximum number of bytes that can be read per read command is
255.  Make sure that the CA buffer is big enough to hold the
number of bytes that you wish to read.

Actual Number of
Bytes Read

The end of file is indicated when 00H is returned to CA +  2.  No
error is indicated if fewer than the specified number of bytes are
actually read.  (This can happen when there are fewer than the
specified number of bytes remaining in the file and, in most cases,
when reading from the keyboard.)

Actual Bytes Read The bytes that were read from the file/device are placed into CA
buffer locations starting at location CA +  3.  A maximum number
of 255 bytes can be read.

Simulated I/O Protocol
Read from File (92H)

26



Write to File (93H) To initiate a write  operation, a buffer containing the bytes   to be
written must be set up at location CA +  3.  The actual number of
bytes to write (maximum of 255) must be stored in location
CA +  2, and the file descriptor of an open file must be stored in
location CA +  1.  Finally, the write  control code (93H) must be
stored in location CA.

When the write  operation is complete, 00H is returned to location
CA if the write was successful, and the actual number of bytes
written is returned to location CA +  2 (the file descriptor in
CA +  1 is unchanged); otherwise, an error code is returned to
location CA indicating why the operation failed, and the number of
bytes written is set to 00H.

If the file was opened with the "append" option, the file pointer is
positioned to the end of file prior to each write.  (NOTE: the
"append" option is ignored if the file is the display.)

File Descriptor The file descriptor placed into CA +  1 is the file descriptor that
was returned by simulated I/O when the file was originally opened.

Simulated I/O Protocol
Write to File (93H)

27



Number of Bytes to
Write

When requesting to write, the number of bytes to write is placed
into location CA +  2.  The maximum number of bytes that can be
written per write command is 255. Make sure that the CA buffer is
big enough to hold the number of bytes you wish to write.

Bytes to be Written The bytes to be written are placed into the CA buffer starting at
location CA +  3.  The maximum number of bytes that can be
written is 255.

Actual Number of
Bytes Written

If the write operation was successful, simulated I/O will tell you
how many bytes were actually written by placing their number into
location CA +  2.

Simulated I/O Protocol
Write to File (93H)

28



Delete a File (94H) Delete File (94H) removes the directory entry named.  This action
is invoked by storing the length of the file name in location
CA +  1, the file name (relative path or absolute path) starting at
location CA +  2, and then storing the delete file control code
(94H) into the CA.

Path Name Length The length of the path name placed into location CA +  1 is the
number of bytes in the path name where each (ASCII) character
represents one byte.  The "path name" can be shorter than the
"path name length" if the path name is null terminated
(null =  00H).  The path name need not be null terminated if its
length is exact.  (A null will be added after the specified number of
characters.)

Path Name Note that the file names for delete file are not interpreted by
simulated I/O; therefore, special files such as "stdin" or
"/dev/simio/display" are treated as standard UNIX files. For
example, trying to delete a file called "stdin" will attempt to to
remove the file "./stdin", not the special simulated I/O "stdin" file.

Simulated I/O Protocol
Delete a File (94H)

29



Position File
Pointer (95H)

To initiate a position file operation, store the file descriptor into
CA +  1, the starting code (see below) into location CA +  6, and a
32 bit SIGNED integer into locations CA +  2 through CA +  5.
The 32 bit signed integer will indicate a byte offset from the
starting code.  The least significant byte of the offset will be in
location CA +  2, and the most significant byte will be in location
CA +  5.  After the file descriptor, the byte offset, and the starting
code are placed in the CA buffer, store the position file control
code (95H) into CA.

When the operation is complete, the absolute offset from the 
beginning of the file is returned into locations CA +  2 through CA
+  5 (a 32 bit SIGNED integer whose least significant byte is in
location CA +  2 and whose most significant byte is in location CA
+  5), and 00H is returned to CA if the operation was successful or
an error code is returned to CA if the operation failed.

Simulated I/O Protocol
Position File Pointer (95H)

30



Note If the file was opened with the "append" option, the position
pointer will automatically be repositioned to the end of file before
any write operation, even if you use a position command before the
write.  You can, however, use the position file command followed
by a read command to read from a specific position in a simulated
I/O file that was opened with the "append" option.

This command has no effect on the special simulated I/O files
"/dev/simio/keyboard" and "/dev/simio/display", and if it is used, an
error code for INVALID COMMAND (09H) will be returned.

FILE DESCRIPTOR. The file descriptor placed into CA +  1 is
the file descriptor that was returned by simulated I/O when the file
was originally opened.

Relative Byte Offset The relative byte offset is a 32 bit SIGNED integer which indicates
a byte offset from the starting location. The relative byte offset is
placed into locations CA +  2 through CA +  5 (with the least
significant byte in location CA +  2 and the most significant byte in
location CA +  5).

Starting Location The starting location placed in location CA +  6 will determine the
position to which the "relative byte offset" will be added to
determine the resulting pointer position.  The codes which may be
placed in the "starting location" are:

starting code =  00H The offset is from the beginning of the
file.

starting code =  01H The offset is from the current position.

starting code =  02H The offset is from the end of the file.

To rewind a file, use starting code =  00H and offset =  00H. To
find the current position in the file, use the starting code =  01H
and offset =  00H (the current location is returned in the "absolute
offset" from the beginning of the file.

Simulated I/O Protocol
Position File Pointer (95H)

31



Absolute Byte Offset The absolute byte offset returned to locations CA +  2 through CA
+  5 is a 32 bit SIGNED integer whose least significant byte is in
location CA +  2 and whose most significant byte is in location
CA +  5.

Simulated I/O Protocol
Position File Pointer (95H)

32



Position Cursor
on Display (96H)

To position the cursor for writes to the screen, store the file
descriptor returned from the open command in location CA +  1,
the desired line number (0 through 49) in location CA +  2, and the
desired column number (0 through 79 or one minus the number of
columns on the display device if greater than 80) into location
CA +  3.  Then, store the position cursor control code (96H) into
CA.  The next write will begin at this location.  Zero is returned to
location CA if the position cursor operation is successful;
otherwise, a nonzero error code is returned to CA.

File Descriptor
(Returned from Open)

The file descriptor that is placed into location CA +  1 is the file
descriptor that was returned when the file was originally opened.

Line Number The line number placed into location CA +  2 must be one of the
50 lines of display simulated I/O (0 through 49).

Column Number The column number placed into location CA +  3 must be 0
through 79 (or one minus the number of columns on the display
device if greater than 80).

Simulated I/O Protocol
Position Cursor on Display (96H)

33



Clear Display
(97H)

To clear the display, the file descriptor returned from open must be
stored into location CA +  1, the clear display control code (97H) is
stored into location CA.  Zero is returned to location CA if the
operation was successful; otherwise, a nonzero error code is
returned to CA.  When the display is cleared, the cursor is left at
column 0, line 0.

File Descriptor
(Returned from Open)

The file descriptor that is placed into location CA +  1 is the file
descriptor that was returned when the file was originally opened.

Simulated I/O Protocol
Clear Display (97H)

34



UNIX Command
(98H)

UNIX Command (98H) allows you to execute a UNIX command
from emulation.  In order to execute a UNIX command, emulation
forks off a process which then opens pipes to the first three file
descriptors (the requested command’s standard in, out, and error).
This forked process will then execute the requested command in a
sub shell with communication (if requested) to the shell’s "stdio".

Note A maximum number of 4 simulated I/O processes can be active at
any one time.

If any pipes are opened to the simulated I/O process (i.e., bits in
the Open Pipe Option are SET), they are considered to be open
files.  A maximum of 12 open files are allowed at any one time.

Simulated I/O Protocol
UNIX Command (98H)

35



Open Pipe
Specification

The pipes to open are specified as a bitmap in location CA +  1.

Bit 0 set specified "stdin" to be opened.

Bit 1 set specifies "stdout" to be opened.

Bit 2 set specifies "stderr" to be opened.

If any of the three bits is cleared, "/dev/null" will be opened. Inputs
to the UNIX command can be sent by using the Write (93H)
command and the "stdin" file descriptor which is returned to
location CA +  2.  Likewise, outputs from the UNIX command can
be read by using the Read (92H) command and the "stdout" and
"stderr" file descriptors which are returned to locations CA +  3 and
CA +  4, respectively.

Command Name
Length

The length of the command name placed into location CA +  2 is
the number of bytes in the command name where each (ASCII)
character represents one byte.  The "command name" can be
shorter than the "command name length" if the name is null
terminated (null =  00H).  The command name need not be null
terminated if its length is exact.  (A null will be added after the
specified number of characters.)

Command Name The command name is executed as an argument to "sh" executed
with the "-c" option so any valid shell command line can be
specified and shell features such as I/O redirection, pipes, and
filename expansion using "*", "?", etc., can be used.  Thus, the
strings like "pr |  lpr" and "ls *.c >  source_files" are valid command
names.

Simulated I/O
Process ID

The "simulated I/O process ID" returned to location CA +  1 is a
process ID internal to simulated I/O and, therefore, does not
directly correspond to a UNIX process ID.  This allows the ID to
be contained in one byte.

Stdin File Descriptor If the open pipe option specifies that "stdin" be opened, the
descriptor of the file that is opened is returned to location CA +  2.

Simulated I/O Protocol
UNIX Command (98H)

36



Any inputs to the UNIX command may be written to the "stdin"
file by using the simulated I/O Write (93H) command, just as any
other simulated I/O file is written to.

Stdout File Descriptor If the open pipe option specifies that "stdout" be opened, the
descriptor of the file that is opened is returned to location CA +  3.
Any outputs from the UNIX command can be read from the
"stdout" file by using the simulated I/O Read (92H) command, just
as any other simulated I/O file is read from.

Stderr File Descriptor If the open pipe option specifies that "stderr" be opened, the
descriptor of the file that is opened is returned to location CA +  4.
Any error outputs from the UNIX command can be read from the
"stderr" file by using the simulated I/O Read (92H) command, just
as any other simulated I/O file is read from.

Simulated I/O Protocol
UNIX Command (98H)

37



Kill Simulated I/O
Process (99H)

Kill (99H) can be called to terminate the execution of a UNIX
process started under simulated I/O.  This command sends the
signal specified in CA +  2 to the requested process.

This command can also be used to determine if a process is still
running by sending a signal 00H to the process.  A return value of
00H indicates that the process is still active and a nonzero return
value indicates that the process no longer exists.

Simulated I/O
Process ID

The simulated I/O process ID placed into location CA +  1 is the
process ID that was returned from the simulated I/O UNIX
Command (98H) operation.

Signal to Send to
Process

See signal (2) in the UNIX reference manual for information on
the signal to send to the process.

Simulated I/O Protocol
Kill Simulated I/O Process (99H)

38



Reset Simulated
I/O (9AH)

Reset simulated I/O (9AH) closes all open simulated I/O files and
removes all entries from the simulated I/O process table.  The
processes are not explicitly killed, but SIGPIPE is sent to each
process connected by a pipe to simulated I/O when the pipe is
closed; this, by default, kills the process.  This command is
provided to allow restarting a program running on an emulated
processor without having side effects from previously opened files
or previously executed processes.

Simulated I/O Protocol
Reset Simulated I/O (9AH)

39



40



4

Examples

Overview This chapter will:

Show you how to use display simulated I/O.

Show you how to use keyboard simulated I/O.

Step you through the process of running the simulated I/O
demo program.

Introduction Simulated I/O lets you use your workstation display and keyboard
as emulation system output and input devices. This chapter will
show you how to use the simulated I/O commands for display and
keyboard simulated I/O.

This chapter also contains a "C" demo program which uses display
and keyboard simulated I/O, and other simulated I/O commands as
well. The demo program in this chapter has been included with the
Softkey Interface emulation software. The examples at the end of
this chapter step you through the process of compiling, linking, and
running the demo program in emulation.

41



Using Display
Simulated I/O

The simulated I/O display interface allows your emulation system
program to access the workstation display. The use of the
simulated display does not actually put anything on the display
until activated by pressing the "display" then "sim_io" softkeys.
Instead, the characters are stored in a buffer and displayed when
the simulated I/O display is activated. This allows you to use the
emulation "display" command to display memory, registers, etc.,
while your display simulated I/O program is running. The display
buffer can always be updated (by a write or clear) whether it is
currently being displayed or not. No data is lost if the workstation
display is being used for other emulation commands while your
simulated program is writing to display simulated I/O.

To Open Display
Simulated I/O:

To open the display, the standard simulated I/O open command is
used. The file descriptor returned by "open" must be saved for all
accesses to the display. The special file name "/dev/simio/display" is
reserved for use by the simulated I/O display. This file does not
correspond to any actual UNIX file, but instead is internal to the
emulation software.

Examples
Using Display Simulated I/O

42



The display opened is a 50 line by at least 80 column buffer. (The
actual number of columns is 80 or the number of columns on the
display device, whichever is greater.) The display buffer has
associated with it a current cursor location, and all writes begin at
this current cursor location. When the display is open, the cursor is
located at the upper left corner of the display buffer (row 0, column
0), and the cursor position is updated after each write and position
cursor command.

Only 16 lines of the buffer can be displayed at one time on the
standard 24 line display; the actual number of lines displayed will
be the number of lines on the display device minus 2 lines for the
simulated I/O header and 6 lines for the status, command and
softkey lines.

The < NEXT PAGE> , < PREV PAGE> , < ROLL UP> , and
< ROLL DOWN>  keys can be used to position the display
anywhere in the buffer when the simulated I/O display is the active
emulation display. (But, note that the display is updated to include
the current cursor position in the visible region after each write  or
position cursor command.)

Any write past the last column will automatically wrap to the next
line, and any write past the last column on the 50th line will cause
all the lines to be scrolled up by one.

To Write to Display
Simulated I/O:

To write to the display, the standard simulated I/O write command
is used. The file descriptor returned from the open command must
be stored in location CA +  1. A buffer containing the text to be
written must be set up starting at location CA +  3. The length of
the text must be stored in location CA +  2; then, the write control
code (93H) must be written to location CA. Zero is returned to the
control address, and the number of bytes actually written is
returned to location CA +  2 if the write was successful; a nonzero
error code is returned to location CA if the write operation was not
successful.

Examples
Using Display Simulated I/O

43



If the text to be written spans more than one line (contains more
characters than the number of columns or contains a newline
character), the writing will continue on the next line at column 0.

Text is written to the current cursor position, and the cursor
position is updated after each write.

To Position the
Cursor:

To position the cursor for writes to the screen, store the file
descriptor returned from the open command in location CA +  1,
the desired line number (0 through 49) in location CA +  2, and the
desired column number (0 through 79 or one minus the number of
columns on the display device if greater than 80) in location
CA +  3. Then, store the position cursor command code (96H) in
location CA. The next write will begin at this location. Zero is
returned to location CA if the position command is successful; a
nonzero error code is returned otherwise.

Examples
Using Display Simulated I/O

44



To Clear the Display: To clear the display, the file descriptor returned from open must be
stored in location CA +  1, the clear display command code (97H)
is stored in location CA. Zero is returned to location CA if the
command was successful; otherwise, a nonzero error code is
returned to location CA.

The display is cleared, and the cursor is left at row 0, column 0.

Examples
Using Display Simulated I/O

45



To Close Display
Simulated I/O:

To close the display, the standard simulated I/O close command is
used. The file descriptor returned from the open command must be
placed in location CA +  1; then, the close command code (91H) is
placed into location CA. Zero is returned to CA if the close is
successful; otherwise, a nonzero error code is returned.

Using Keyboard
Simulated I/O

The simulated I/O keyboard interface allows your emulation
system program to access the workstation keyboard as an input
device.

To Open Keyboard
Simulated I/O:

To open the simulated I/O keyboard, use the standard simulated
I/O open command. The open option code stored in location CA +
1 should be 0 for read only. Simulated I/O uses the special file
name "/dev/simio/keyboard" to indicate the keyboard interface; this
name must be stored in the CA buffer starting at location CA +  3,
and the length of the name (13H) must be stored in location
CA +  2. The open file command code must be stored in location
CA. Zero is returned to location CA if the open is successful;
otherwise a nonzero error code is returned. A file descriptor is

Examples
Using Keyboard Simulated I/O

46



returned by the open command to location CA +  1 if the open is
successful.

This file descriptor must be saved for use by all other commands
accessing the keyboard.

Opening the keyboard does not actually direct keyboard  characters
to simulated I/O until you activate the simulated I/O keyboard by
pressing the "modify" softkey followed by the "keyboard_to_simio"
softkey. Modifying the keyboard to simulated I/O clears the
command line area of the workstation display and begins storing
the keyed in lines for reading by the simulated I/O system.

All characters input from the keyboard are displayed in the
command line area of the display as they are being typed. The
command line can be edited using the standard command line
editing facilities before < RETURN>  is pressed. The input line
can be terminated by pressing < RETURN> , any of the softkeys,
or < CTRL>d. No characters can be read by the simulated I/O
program until < RETURN> , one of the softkeys, or < CTRL>d is
pressed.

Examples
Using Keyboard Simulated I/O

47



Reading From the
Keyboard:

To read from the keyboard, the standard simulated I/O read
command is used.

The keyboard input is saved as a list of lines, and each call to read
will read a maximum of one line of text. (The actual number of
characters read will be returned.) The last characters of the line
read will be a newline, which indicates that the input line was
terminated by a < RETURN>  or an escape character and an
ASCII 1 through 8, indicating one of the softkeys f1 through f8 was
used to terminate the input line. (Note that f1 corresponds to the
"suspend" softkey.) If the keyboard input line was terminated with a
< CTRL> d, no characters are added to the line. If the number of
characters to read is less than the length of the line, multiple calls
to read will be required to read the complete line, and no
characters will be lost. The maximum length of a keyboard input
line is 240 characters; therefore, a complete line will always be read
if the number of characters requested in the read command is 240.

Examples
Using Keyboard Simulated I/O

48



To Close the
Keyboard Interface:

To close the keyboard interface, the standard simulated I/O close
command is used. The file descriptor returned from the open
command must be placed in location CA +  1; then, the close
command code (91H) is placed into location CA. Zero is returned
to CA if the close is successful; otherwise, a nonzero error code is
returned.

Running The
Simulated I/O
Demo Program

The simulated I/O demo program which follows is written in the
"C" language. This section will step you through the process of
compiling and linking the demo program and running it in
emulation.

The examples that follow have been created in the HP 64742 68000
emulation environment. The choice to run the demo program in
the HP 64742 emulation environment is purely arbitrary, and most
of the instructions that follow will be very similar, if not the same,
for whichever emulation system you choose run this demo in.

Examples
Running The Simulated I/O Demo Program

49



Copying the
Simulated I/O Demo

Program

The simulated I/O demo program shown in figure 4-3 has been
included with your emulation software and is located in the
directory /usr/hp64000/demo/emul/simio. To copy the demo
program to your directory, enter the commands shown below.

(The period just before the < RETURN>  specifies that the file
will have the same name in your current directory.)

$ cp
/usr/hp64000/demo/emul/simio/simiodemo.h .
<RETURN>

$ cp
/usr/hp64000/demo/emul/simio/simiodemo.c .
<RETURN>

Compiling the
Simulated I/O Demo

Program

To compile the simiodemo.c demo program with the AxLS
(Advanced Cross Language System) 68000 C Cross Compiler,
enter the following command.

$ cc68000 -vOGNr  hp64742 -o  simiodemo
simiodemo.c <RETURN>

(There is one duplicate symbol error when compiling the program
this way, but the compiler ignores the symbol that should be
ignored, and the generated absolute file works correctly.)

Notice that the compiler’s "-N" (no I/O) option is used. This is
because the demo program contains routines that use simulated
I/O. When the "-N" option is not used, the compiler links in its own
I/O routines which use simulated I/O.

Copying the Default
Emulator

Configuration File

Since the AxLS 68000 C Cross Compiler provides default
configuration files for the HP 64742 68000 Emulator, copy the
default emulator configuration file to the current directory before
you enter the emulation system.

$ cp  /usr/hp64000/env/hp64742/config.EA
config.EA <RETURN>

Examples
Running The Simulated I/O Demo Program

50



Entering the Softkey
Interface

If you have installed your emulator and Softkey Interface software,
opened a window, and set and exported the proper environment
variables as directed in the Softkey Interface Installation Notice, you
can enter the Softkey Interface with the following command:

$ emul700  <emul_name> <RETURN>

The "emul_name" in the command above is the logical emulator
name given in the HP 64700 emulator device table
(/usr/hp64000/etc/64700tab.net).

Configuring for
Simulated I/O 

First, load the compiler’s emulator configuration file.

load configuration  config <RETURN>

Now, modify the configuration to enable the simulated I/O feature
and to give the Softkey Interface the demo program’s control
address.

modify configuration  <RETURN>

Now step through the emulation configuration questions, by
pressing the < RETURN>  key, until you come to the question:

Modify simulated I/O configuration? yes
<RETURN>

Answer the simulated I/O configuration questions as shown below.

Enable polling for simulated I/O? yes
<RETURN> 
Simulated I/O control address 1?
SIMIO_CA_ONE control_addr  <RETURN> 
Simulated I/O control address 2?
SIMIO_CA_TWO <RETURN> 
Simulated I/O control address 3?
SIMIO_CA_THREE <RETURN> 
Simulated I/O control address 4?
SIMIO_CA_FOUR <RETURN> 
Simulated I/O control address 5?
SIMIO_CA_FIVE <RETURN> 
Simulated I/O control address 6?
SIMIO_CA_SIX <RETURN> 

Examples
Running The Simulated I/O Demo Program

51



File used for standard input?
/dev/simio/keyboard <RETURN> 
File used for standard output?
/dev/simio/display <RETURN> 
File used for standard error output?
/dev/simio/display <RETURN> 
Enable simio status messages? yes

Press < RETURN>  for the rest of the emulation configuration
questions until you are asked the name of the configuration
command file. Answer as shown below.

Command file name? simiodemocfg  <RETURN>

Simulated I/O is now configured for the demo program. Notice
that the demo program only uses one CA. The name
"control_addr" is the symbol associated with the "control_addr"
array defined in the simiodemo.c program.

Loading the Absolute
File

To load the absolute file, enter the following command:

load  simiodemo.x <RETURN>

Displaying Simulated
I/O

To display the contents of the display simulated I/O buffer, enter
the command shown below.

display simulated_io  <RETURN>

The simulated I/O display is shown in figure 4-1.

Examples
Running The Simulated I/O Demo Program

52



Running the Demo
Program

To run the simulated I/O demo program, enter the following
command:

run from entry  <RETURN>

The symbol "entry" was created by the "C" library which was linked
with the demo program. The message "KEYBOARD NOW
OPEN" will be written to the display simulated I/O buffer and will
be displayed on the screen.

Modifying the
Keyboard to

Simulated I/O

To be able to use your workstation keyboard as the standard input
to the simulated I/O demo program, you must first activate your
keyboard with the command shown below.

modify keyboard_to_simio  <RETURN>

Your keyboard is now active as the simulated I/O input device as
you can tell by the appearance of the suspend softkey. You can now

 Simulated I/O display

STATUS:  M68000--Running in monitor____________________________________...R....
_display  simulated_io

  run     trace     step   display           modify   break     end    ---ETC--

Figure 4-1.  Displaying Simulated I/O

Examples
Running The Simulated I/O Demo Program

53



enter text on the command line using the standard command line
editing features.

Type in a line of text on the command line.
<RETURN>

The text that you just entered will appear on the simulated I/O
display (see figure 4-2). Reads of the simulated I/O keyboard will
only take place after the < RETURN>  key or one of the softkeys
has been pressed.

Pressing the "suspend" softkey will not close the simulated I/O
keyboard; it will, however, deactivate your workstation keyboard as
the simulated I/O input device, and allow you enter emulation
commands.

 Simulated I/O display                  Simulated I/O command: read
 display is open                                Return code: 00H  
 KEYBOARD NOW OPEN
 OUTPUT: Type in a line of text on the command line.

STATUS:  M68000--Running user program_________________________________........
_

suspend  ________ ________ ________          ________ ________ ________ ________
 

Figure 4-2.  Entering Text from the Keyboard

Examples
Running The Simulated I/O Demo Program

54



Using Emulation
Commands while

Simulated I/O is
Running

It is possible to enter emulation commands while your simulated
I/O program is running. For example, enter the commands shown
below.

suspend

trace  <RETURN>

display trace  <RETURN>

display simulated_io  <RETURN>

modify keyboard_to_simio  <RETURN>

You once again displaying simulated I/O and your workstation
keyboard is again the active simulated I/O input device. You can
enter text followed by the < RETURN> , and the demo program
will move the text to the simulated I/O display buffer.

Closing the Keyboard
Simulated I/O Demo

The simulated I/O demo program will deactivate the keyboard as
an input device when the following key is pressed:

<RETURN>

Keyboard simulated I/O is now closed, and the rest of the
simulated I/O demo program will begin executing. You will see the
simulated I/O demo program test the "position cursor" command
by selectively writing to a single display location. Then, the execute
"UNIX command" is used to concatenate the simiodemo.c demo
program to the simulated I/O "stdout" file (which was specified as
"/dev/simio/display" in the simulated I/O configuration). Other
simulated I/O commands are executed as well. Look at the
simiodemo.c file (figure 4-3) to see exactly what the simulated I/O
demo program does.

Examples
Running The Simulated I/O Demo Program

55



#include "simiodemo.h"

#define READ_BUF_SIZE 255
#define TRUE 1
#define FALSE 0

/* FORWARD DECLARATIONS */
extern int initsimio();
extern int open();
extern int close();
extern int read();
extern int write();
extern int clear_screen();
extern int pos_cursor();
extern int exec_cmd();
extern int kill();
extern int unlink();
extern long lseek();

unsigned char control_addr[300];
unsigned char *simio_addr;
int errno;

main()
{
        int fd1, fd2, fd3;          /* Declarations for the file descriptors. */
        int fd4;
        int pid1, pid2;             /* Declarations for process IDs.          */
        int numb_read;
        unsigned char buf[READ_BUF_SIZE];

        simio_addr = control_addr;
        initsimio();

        /* 
         *      Open stdout and stdin -- typically a display and 
         *      keyboard.  These can be set up during configuration
         *      to be the defaults of /dev/simio/display and
         *      /dev/simio/keyboard or changed to a file or
         *      directly to another terminal (/dev/tty00 for example).
         */     

        fd1 = open("stdout", S_O_WRITE);
        fd4 = open("stdin", S_O_READ | S_O_NDELAY);

        write(fd1, "KEYBOARD NOW OPEN\n", 18);

        /* 
         *      This loop reads the keyboard until a line containing
         *      only a <RETURN> is encountered.
         *
         *      Each line read is written to the display following
         *      the string "OUTPUT:  ".
         */

        while (TRUE)
        {

Figure 4-3.  The "simiodemo.c" Demo Program

Examples
Running The Simulated I/O Demo Program

56



                numb_read = read(fd4, buf, READ_BUF_SIZE);
                if (numb_read > 0)
                {
                        /* keyboard input detected */
                        write(fd1, "OUTPUT:  ", 9);
                        write(fd1, buf, numb_read);
                        if (*buf == ’\n’)
                        {
                                break;
                        }
                }
        }

        close(fd4);
        write(fd1, "KEYBOARD NOW CLOSED\n", 20);
        close(fd1);

        /*   Examples of position cursor and clear screen commands.           */

        fd1 = open("/dev/simio/display", S_O_WRITE);
        pos_cursor(fd1, 5, 30);
        write(fd1, "TESTING #1 POSITION CURSOR COMMAND", 34);
        pos_cursor(fd1, 5, 39);
        write(fd1, "2", 1);
        pos_cursor(fd1, 5, 39);
        write(fd1, "3", 1);
        pos_cursor(fd1, 5, 39);
        write(fd1, "4", 1);
        clear_screen(fd1);
        close(fd1);
        fd2 = open("stdout", S_O_WRITE | S_O_CREATE);

        /*
         *      Example of the CREATE and EXCL flags.
         *
         *      If the file "simiodemo.out" does not already exist
         *      the file is created and the message "File did not exist"
         *      is written to the file "simiodemo.out".  If the file
         *      already existed it is removed then created and the
         *      text "File already existed" is written to the file.
         *      If the file cannot be opened, the message "Cannot open
         *      simiodemo.out" is written to standard out.
         */

        fd3 = open("simiodemo.out", S_O_RDWR | S_O_CREATE | S_O_EXCL); 
        if (fd3 < 0)
        {
                if (errno == FILE_EXISTS)
                {
                        unlink("simiodemo.out");
                        fd3 = open("simiodemo.out", S_O_RDWR | S_O_CREATE | S_O_EXCL); 
                        write(fd3, "File already existed\n", 21);

                }
                else
                {
                        write(fd2, "Cannot open simiodemo.out", 25);
                }

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

57



        }
        else
        {
                write(fd3, "File did not exist\n", 19);
        }

        /*
         *      Example of the position file command. -- This assumes that the
         *      file "simiodemo.out" was successfully opened and written to
         *      by the code above.
         */

        /*      Position from beginning of file.                              */

        lseek(fd3, 0L, 0);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        lseek(fd3, 1L, 0);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        lseek(fd3, 2L, 0);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        /*      Offset from the current position.
         *      -- Note that this is the end of file 
         *      because of the reads which read to end of file.
         */

        lseek(fd3, -1L, 1);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        lseek(fd3, -2L, 1);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        lseek(fd3, -3L, 1);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        /*      Position from end of file.                                    */

        lseek(fd3, -1L, 2);

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

58



        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        lseek(fd3, -2L, 2);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        lseek(fd3, -3L, 2);
        if ((numb_read = read(fd3, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);
        }

        /* 
         *      Example of using the execute HP-UX command.
         *
         *      A pipe is connected to the standard output of the cat
         *      command.  This output is then written to the display.
         */

        pid1 = exec_cmd("cat simiodemo.c", (int *) 0, &fd1, (int *) 0);

        /*
         *      The sleep command is executed as an example of the
         *      kill command.  A kill with signal 0 (NULL signal)
         *      is issued to find the status of the sleep.  The NULL
         *      signal will not terminate the process but the return
         *      value of the kill routine indicated if the process
         *      exits or not.
         */

        pid2 = exec_cmd("sleep 5", (int *) 0, (int *) 0, (int *) 0);

        while ((numb_read = read(fd1, buf, READ_BUF_SIZE)) > 0)
        {
                write(fd2, buf, numb_read);

                /* See if sleep is still alive.                               */

                if (kill(pid2, 0) == 0)
                {
                        write(fd2, "\nProcess still alive\n", 21);
                }
                else
                {
                        write(fd2, "\nProcess terminated\n", 20);
                }
        }

        write(fd2, "\nDEMO COMPLETE", 14);

        close(fd1);
        close(fd2);

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

59



        close(fd3);
}

int
initsimio()

/*
 *      This command is not actually required, but it allows
 *      the program to be stopped while simio files are still
 *      open and restarted without side effects from the previously
 *      opened files.
 *
 *      RETURNS         0 for no error.
 *                     -1 for errors during the simio reset command
 *                      and the global errno is set to the error code.
 */

{
        *simio_addr = S_RESET;

        while (*simio_addr == S_RESET)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return 0;
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
open(path, open_option)
char *path;
int open_option;

/*
 *      RETURNS         file descriptor >= 0 -- if the open succeeded.
 *                      -1 if the open failed, errno is set the the
 *                      error code.
 */

{
        unsigned char *addr_ptr;

        addr_ptr = simio_addr + 1;

        *addr_ptr = open_option;
        addr_ptr++;

        *addr_ptr = 255;
        addr_ptr++;

        while (*path != ’\0’)

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

60



        {
                *addr_ptr = *path;
                addr_ptr++;
                path++;
        }

        *addr_ptr = ’\0’;

        *simio_addr = S_OPEN;

        while (*simio_addr == S_OPEN)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return (unsigned int) *(simio_addr + 1);
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
close(file_des)
int file_des;

/*
 *      RETURNS         0 for no error.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        *(simio_addr + 1) = file_des;
        *simio_addr = S_CLOSE;

        while (*simio_addr == S_CLOSE)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return 0;
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
read(fd, buffer, nbytes)
int fd;
unsigned char *buffer;

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

61



int nbytes;

/*
 *      RETURNS         number of bytes read (>= 0) if sucessfull.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        unsigned char *addr_ptr;
        unsigned char index;

        addr_ptr = simio_addr + 1;
        *addr_ptr = fd;
        addr_ptr++;
        *addr_ptr = nbytes;
        addr_ptr++;

        *simio_addr = S_READ;
        
        while (*simio_addr == S_READ)
        {
                /* Empty loop - wait for results */
        }

        addr_ptr = simio_addr + 3;

        for (index = 0; index < (*(simio_addr + 2)); index++)
        {
                *buffer = *addr_ptr;
                addr_ptr++;
                buffer++;
        }

        if (*simio_addr == 0)
        {
                return (unsigned int) *(simio_addr + 2);
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
write(fd, buffer, nbytes)
int fd;
unsigned char *buffer;
int nbytes;

/*
 *      RETURNS         number of bytes written (>= 0) if sucessfull.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        unsigned char *addr_ptr;
        int index;

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

62



        addr_ptr = simio_addr + 1;
        *addr_ptr = fd;
        addr_ptr++;
        *addr_ptr = nbytes;
        addr_ptr++;

        for (index = 0; index < nbytes; index++)
        {
                *addr_ptr = *buffer;
                addr_ptr++;
                buffer++;
        }

        *simio_addr = S_WRITE;
        
        while (*simio_addr == S_WRITE)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return (unsigned int) *(simio_addr + 2);
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
clear_screen(fd)
int fd;

/*
 *      RETURNS         0 if sucessfull.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        *(simio_addr + 1) =  fd;
        *simio_addr = S_CLEAR_DISP;
        
        while (*simio_addr == S_CLEAR_DISP)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return 0;
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

63



int
pos_cursor(fd, line, col)
int fd;
int line;
int col;

/*
 *      RETURNS         0 if sucessfull.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        unsigned char *addr_ptr;

        addr_ptr = simio_addr + 1;
        *addr_ptr = fd;
        addr_ptr++;
        *addr_ptr = line;
        addr_ptr++;
        *addr_ptr = col;

        *simio_addr = S_POS_CURSOR;
        
        while (*simio_addr == S_POS_CURSOR)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return 0;
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
exec_cmd(command, file1, file2, file3)
char *command;
int *file1, *file2, *file3;

/*
 *      PARAMETERS      command - a string containing the name and parameters
 *                                of the command to execute.
 *                      file1, file2, file3 - pointers to variables to return
 *                      the file descriptors of the pipes connected to the
 *                      stdin, stdout, and stderr of the process executed.
 *                      If any pointer is NULL, that pipe is connected to /dev/null
 *                      and no file descriptor is returned.
 *
 *      RETURNS         process id (>=0) if sucessfull and the file descriptors of
 *                      the pipes are returned in file1, file2, and file3.
 *                     -1 for error and the global errno is set to the error code.
 */

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

64



{
        unsigned char *addr_ptr;
        unsigned char bitmap = 0;

        if (file1 != 0)
        {
                bitmap |= 1;
        }
        if (file2 != 0)
        {
                bitmap |= 2;
        }
        if (file3 != 0)
        {
                bitmap |= 4;
        }

        addr_ptr = simio_addr + 1;
        *addr_ptr = bitmap;
        addr_ptr++;
        *addr_ptr = 255;
        addr_ptr++;

        while (*command != ’\0’)
        {
                *addr_ptr = *command;
                command++;
                addr_ptr++;
        }

        *addr_ptr = ’\0’;

        *simio_addr = S_EXEC_CMD;
        
        while (*simio_addr == S_EXEC_CMD)
        {
                /* Empty loop - wait for results */
        }

        if (file1 != 0)
        {
                *file1 = *(simio_addr + 2);
        }
        if (file2 != 0)
        {
                *file2 = *(simio_addr + 3);
        }
        if (file3 != 0)
        {
                *file3 = *(simio_addr + 4);
        }

        if (*simio_addr == 0)
        {
                return (unsigned int) *(simio_addr + 1);
        }
        else
        {

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

65



                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
kill(pid, sig)
int pid, sig;

/*
 *      RETURNS         0 if the process exists.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        *(simio_addr + 1) = pid;
        *(simio_addr + 2) = sig;
        *simio_addr = S_KILL;

        while (*simio_addr == S_KILL)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return 0;
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

int
unlink(path)
char *path;

/*
 *      RETURNS         0 if sucessfull.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        unsigned char *addr_ptr;

        addr_ptr = simio_addr + 1;
        *addr_ptr = 255;
        addr_ptr++;

        while (*path != ’\0’)
        {
                *addr_ptr = *path;
                addr_ptr++;
                path++;
        }

        *addr_ptr = ’\0’;

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

66



        *simio_addr = S_DELETE_FILE;

        while (*simio_addr == S_DELETE_FILE)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                return 0;
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

long
lseek(fd, offset, whence)
int fd;
long offset; 
int whence;

/*
 *      RETURNS         non-negative integer indicating file pointer if sucessfull.
 *                     -1 for error and the global errno is set to the error code.
 */

{
        unsigned char *addr_ptr;

        addr_ptr = simio_addr + 1;
        *addr_ptr = fd;
        addr_ptr++;

        *addr_ptr = offset & 0xff;
        addr_ptr++;
        *addr_ptr = (offset >> 8) & 0xff;
        addr_ptr++;

        /* The following code checks to see if the compiler for this
         * processor supports 32 bit (4 byte) longs.  If so, the offset
         * parameter is used.  Otherwise only 16 bits are available and
         * the offset is sign extended to created a 32 bit integer.  This
         * code must be altered if files greater than 64K bytes long must
         * be supported with compilers which do not support 32 bit integers.
         */

        if (sizeof(long) >= 4)
        {
                *addr_ptr = (offset >> 16) & 0xff;
                addr_ptr++;
                *addr_ptr = (offset >> 24) & 0xff;
                addr_ptr++;
        }
        else  if (offset >= 0)
        {

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

67



                /* Compiler does not support 32 bit longs - sign extend.      */

                *addr_ptr = 0;
                addr_ptr++;
                *addr_ptr = 0;
                addr_ptr++;
        }
        else
        {
                *addr_ptr = 0xff;
                addr_ptr++;
                *addr_ptr = 0xff;
                addr_ptr++;
        }

        *addr_ptr = whence;

        *simio_addr = S_POS_FILE;

        while (*simio_addr == S_POS_FILE)
        {
                /* Empty loop - wait for results */
        }

        if (*simio_addr == 0)
        {
                if (sizeof(long) >= 4)
                {
                        /* Compiler supports 32 bit longs -- the offset 
                         * is already guarenteed to be non-negitive.
                         */

                        return ((*(simio_addr + 2) & 0xff) 
                                | ((*(simio_addr + 3) << 8) & 0xff) 
                                | ((*(simio_addr + 4) << 16) & 0xff) 
                                | ((*(simio_addr + 5) << 24) & 0xff));
                }
                else
                {
                        /* Truncate most significant bits of absolute offset 
                         * to 15 bits to guarentee that number is non-negative.
                         */

                        return (*(simio_addr + 2) & 0xff) | ((*(simio_addr + 3) << 8) &
0x7f);
                }
        }
        else
        {
                errno = (unsigned int) *simio_addr;
                return -1;
        }
}

Figure 4-3.  The "simiodemo.c" Demo Program (Cont’d)

Examples
Running The Simulated I/O Demo Program

68



RS-232 Simulated
I/O

Simulated I/O is a technique for reading and writing to files or
devices from an emulator. A segment of emulation RAM is
dedicated to the simulated I/O and shared by the emulator and the
emulation system controller. To cause simulated I/O to occur, the
emulator writes a command byte into the initial location of the
shared segment, called the Control Address (CA). The emulation
software polls this location continuously searching for commands
from the emulator. When a command is recognized, the action is
carried out by the emulation software on the host computer.
Simulated I/O actions include open, close, read and write to a file.
Since devices are treated as files in UNIX, simulated I/O to a
device is similar to simulated I/O to a file.

Configuring RS-232
Lines for Simulated

I/O

In order to use an RS-232 line on the UNIX host computer for
simulated I/O from a emulator the line must first be configured, it
can then be treated as a file. An understanding of how serial lines
are dealt with in UNIX systems is an important prerequisite to
configuration.

Serial Lines in UNIX Systems

When a UNIX system is booted, the initial process is called "init".
This process always has process ID 1 and is the parent or ancestor
of every other process running on the system. In the subdirectory
/etc a file named inittab lists all the devices to be initialized by init
when the system starts up. This file will contain entries for each
serial line specifying the initial state of the line, whether to spawn a
process for line and what to do if that process terminates. If a line
is listed as requiring a process, init spawns a process called getty for
that line. Getty sets the communication parameters for that line
and prints the banner and login prompt on the line. When a login
name is typed in, getty spawns a login process which asks for the
password. If the password is correct, login forks a shell (command
interpreter) process and attaches the standard input and standard
output file descriptors for that shell to the /dev entries for that
particular serial line.

Examples
RS-232 Simulated I/O

69



Serial Lines Used with Simulated I/O

Using a serial line device file as a read/write file from an emulator
may require a different sequence of events in the startup of that
line. UNIX avoids deadlock problems by permitting race
conditions to occur. Two processes can simultaneously read and
write the same file, assuming both have read/write permission,
without complaint from the operating system. This does not imply
that there will be no problems. Two processes reading the same
device file will get alternate characters. If a shell is running on a
given serial line and a user attempts simulated I/O reads from that
line, both the shell and the emulator will get part of the input. If
both the shell and an emulator write to a serial line, the output will
be interleaved. There are several ways of solving this problem,
depending on the operating environment.

Serial Lines for User Terminals and Simulated I/O

The first is the situation where it is desired to generally use the
serial line as a user terminal line and occasionally use it for
simulated I/O. In this case the /etc/inittab file would probably
contain a line to initialize the serial line for the getty, login, shell
sequence of processes. The line can then be used for standard login
sessions. If the user wishes to make the line available to the
emulator for simulated I/O reads, the he can simply issue a sleep(1)
command which will suspend the shell process for whatever period
of time the user wishes. While the shell is suspended the emulator
can read the serial line without interference from the shell, since
the shell will issue no reads while it is suspended. Anything typed
at the terminal could then be read by the emulator. If the user
wished to use the line to communicate with some other device, for
example, some other computer, an RS-232 ABC switch could be
used to switch either the terminal or the computer to the serial line.

There is one potential problem with switching lines in this manner.
The serial lines on the UNIX host computer can be configured to
send a hang-up signal to the attached process if the DTR line is
dropped. This is in fact the normal configuration. Switching the
line from one device to another will cause DTR to be momentarily
disconnected which will be interpreted as a dropped line. This will
cause a hang-up signal to be sent to the shell, which will murder its
siblings (sleep) and exit. When the shell exits, init will respawn a

Examples
RS-232 Simulated I/O

70



getty process for that line which will issue a read on the serial line,
creating a race condition between getty and the emulator program.
This problem can be eliminated by reconfiguring the serial line,
which requires powering the machine down, removing the serial
line card and changing the DIP switch configuration. Alternately a
special cable can be wired which will loop the modem control
signals back to the serial line, making it impossible for the line to
be dropped. Simply wire pins 4, 5, and 6 together and 8 to 20 on the
connector to the UNIX host computer.

Dedicated Serial Lines

Another possibility is that a line is to be dedicated to
communication with some external device and it is desired that the
getty, login, shell sequence never occur on that line. The line is
then configured to be "off" in the /etc/inittab file. In this
configuration the line is initialized to standard defaults (300 baud,
no parity, etc.). These defaults are nearly useless and were chosen
when UNIX was an infant and have been kept around for historic
reasons, there being no good reason for their existence. Another
unfortunate fact is that there is no way to modify these defaults
since they are hard-wired into the UNIX kernel. The most direct
way to change the configuration of a port is to use the stty(1)
command. The action of this command can be directed to any
terminal so it can change the defaults of any terminal.
Unfortunately, as soon as the stty command terminates it will close
the device file at which time it will return to its default (useless)
configuration. A workaround for this problem is to issue a stty
command that will not terminate until the emulation process
opens the device file, for example:

(stty -modes; sleep 100000)  /dev/tty?? &

In this sample command, -modes refers to the list (possibly long
list) of modes the user wishes to apply to the line. The argument to
sleep is the number of seconds to suspend the process. By grouping
the stty and sleep commands, the affected device file will not be
closed until both commands terminate. There are some drawbacks
to this method. The command itself is not intuitive and will
probably have to be killed manually at some later point. There is
also no way to prevent another user from reading or writing the
device file or changing its configuration with stty.

Examples
RS-232 Simulated I/O

71



Another way to deal with this problem is to write a program that
will configure the serial line. Since simulated I/O can spawn new
processes, the program can be started and halted from within the
program using simulated I/O. Using a program to configure the
device file also presents an opportunity to create lock files to
prevent race conditions between two processes trying to
communicate with the same device. The cu(1) utility uses this
technique to prevent multiple access to a single serial line.

Example Programs Two example programs for configuring ports are presented here.
The first, "useport.c" (figure 4-4), creates a lock file and configures
the port. It then copies its standard input to the device file and
writes any characters appearing as input to the device file to its
standard output. Useport.c acts as a filter program.
Communicating with a device file becomes a simple matter of
starting up the useport process and communicating with its
standard input and standard output.

The second example program, "setport.c" (figure 4-5), is nearly
identical to useport.c. The only difference is that setport.c never
reads or writes the device file, it merely configures the file and then
sleeps. After the setport process is started, the device file can be
opened directly for reads and writes. This method has the
convenience of using a process to configure a port without the
overhead of passing all the characters through an additional filter
process.

Special
Considerations

There are some special considerations when using simulated I/O to
communicate with processes. If a process started by simulated I/O
exits, there is no explicit notification of that fact. The problem is
most severe when the process is opened for no wait reads. In this
case a read which returns a length of zero does not indicate end of
file, which is the normal way of determining that a process has
terminated. When the process is started, its standard error output
can be connected to a simulated I/O file descriptor. The process
can indicate that it is exiting by writing a message to this file. It is
also possible to use the simulated I/O "kill process" command to
determine if the process is still alive. Simply send signal 0, which
has no effect, a return value of 0 indicates that the process is still
alive.

Examples
RS-232 Simulated I/O

72



It is always a good idea to execute the simulated I/O "reset"
command as the first simulated I/O command in a program.
Simulated I/O reset will clean up any remains of a possible
previous execution. This is particularly true when using simulated
I/O to communicate with processes. The simulated I/O Reset
command will send signal SIGPIPE to each simulated I/O process.
It is important to catch this signal, do any necessary clean up and
exit in any processes spawned by simulated I/O.

One final consideration is necessary if simulated I/O is to be used
for machine to machine communication. Not all RS-232 devices for
UNIX host computers are sufficiently buffered for reliable
machine to machine communication. Single character buffered
devices cannot be reliably used for machine to machine
communication.

Examples
RS-232 Simulated I/O

73



/* USEPORT.C
   Connect the standard input to a tty output
   and the standard output to a tty input.
   Create a lock file to prevent simultaneous
   access to the tty.
*/
#include <stdio.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <termio.h>
#include <fcntl.h>
#define  MIN    1       /* minimum chars to buffer for reads */
#define  TIME   1       /* delay for reads */

int fd, arg;
struct termio old;
char lock[256];

sig_func()
{
        /* restore stdin file mode */
        fcntl(0, F_SETFL, arg);
        /* restore terminal settings */
        ioctl(fd, TCSETA, &old);
        /* remove the lock file */
        unlink(lock);
        exit(1);
}

main(argc, argv)
int argc;
char *argv[];
{
        int i, count;
        FILE *fp;
        char c[1], buf[512], *p;
        struct termio new;

        if(argc != 2){
                fprintf(stderr,"Usage: %s ttyname\\n", argv[0]);
                exit(1);
        }
        if((fd = open(argv[1], O_RDWR | O_NDELAY)) == -1){
                fprintf(stderr,"Attempt to open %s failed\\n", argv[1]);
                exit(1);
        }
        if(isatty(fd) == 0){
                fprintf(stderr,"%s is not a tty\\n", argv[1]);
                exit(1);
        }

        /* Create a lock file */
        strcpy(lock, "/usr/spool/uucp/LCK..");
        p = ttyname(fd);

        /* this is not a nice way to skip over "/dev/" */
        p += 5;
        strcat(lock, p);

Figure 4-4.  The "useport.c" RS-232 Sim. I/O Example

Examples
RS-232 Simulated I/O

74



        if((i = open(lock, O_RDONLY | O_CREAT | O_EXCL, 0444)) == -1){
                fprintf(stderr,"Cannot create lock file %s\\n", lock);
                exit(1);
        }
        close(i);

        /* get the tty status */
        ioctl(fd, TCGETA, &old);
        new = old;

        /* set up new terminal line characteristics */
        new.c_cflag =   B9600 |         /* 9600 baud */
                        CS7 |           /* 7 data bits */
                                        /* stop bits defaults to 1 */
                        CREAD |         /* enable receiver */
                        PARENB |        /* enable parity */
                                        /* parity defaults to even */
                        CLOCAL;         /* local line */
        new.c_lflag = 0;
        new.c_oflag = 0;
        new.c_iflag =   IGNBRK |        /* ignore break condition */
                        IGNPAR |        /* ignore parity errors */
                        ISTRIP |        /* strip all chars to 7 bits */
                        IXON |          /* enable start/stop output control */
                        IXOFF;          /* enable start/stop input control */
        new.c_cc[4] = MIN;
        new.c_cc[5] = TIME;
        ioctl(fd, TCSETA, &new);

        /* set no delay on stdin */
        arg = fcntl(0, F_GETFL, arg);
        fcntl(0, F_SETFL, O_NDELAY | arg);

        /* catch all signals */
        for(i = 1; i < 24; i++)
                signal(i, sig_func);

        while(1){
                if((count = read(0, buf, 1)) == -1){
                        fprintf(stderr,"Error reading stdin\\n");
                        sig_func();
                        exit(1);
                }
                if(count){
                        write(fd, buf, count);
                }
                if((count = read(fd, buf, 1)) == -1){
                        fprintf(stderr,"Error reading %s\\n", argv[1]);
                        sig_func();
                        exit(1);
                }
                if(count)
                        write(1, buf, count);
        }
}

Figure 4-4.  The "useport.c" Example (Cont’d)

Examples
RS-232 Simulated I/O

75



/* SETPORT.C
   Set terminal characteristics.
   Create a lock file to prevent simultaneous
   access to the tty.
*/
#include <stdio.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <termio.h>
#include <fcntl.h>
#define  MIN    1       /* minimum chars to buffer for reads */
#define  TIME   1       /* delay for reads */

int fd, arg;
struct termio old;
char lock[256];

sig_func()
{
        /* restore terminal settings */
        ioctl(fd, TCSETA, &old);
        /* remove the lock file */
        unlink(lock);
        exit(1);
}

main(argc, argv)
int argc;
char *argv[];
{
        int i, count;
        FILE *fp;
        char c[1], buf[512], *p;
        struct termio new;

        if(argc != 2){
                fprintf(stderr,"Usage: %s ttyname\\n", argv[0]);
                exit(1);
        }
        if((fd = open(argv[1], O_RDWR | O_NDELAY)) == -1){
                fprintf(stderr,"Attempt to open %s failed\\n", argv[1]);
                exit(1);
        }
        if(isatty(fd) == 0){
                fprintf(stderr,"%s is not a tty\\n", argv[1]);
                exit(1);
        }

        /* Create a lock file */
        strcpy(lock, "/usr/spool/uucp/LCK..");
        p = ttyname(fd);

        /* this is not a nice way to skip over "/dev/" */
        p += 5;
        strcat(lock, p);
        if((i = open(lock, O_RDONLY | O_CREAT | O_EXCL, 0444)) == -1){
                fprintf(stderr,"Cannot create lock file %s\\n", lock);
                exit(1);

Figure 4-5.  The "setport.c" RS-232 Sim. I/O Example

Examples
RS-232 Simulated I/O

76



        }
        close(i);

        /* get the tty status */
        ioctl(fd, TCGETA, &old);
        new = old;

        /* set up new terminal line characteristics */
        new.c_cflag =   B9600 |         /* 9600 baud */
                        CS7 |           /* 7 data bits */
                                        /* stop bits defaults to 1 */
                        CREAD |         /* enable receiver */
                        PARENB |        /* enable parity */
                                        /* parity defaults to even */
                        CLOCAL;         /* local line */
        new.c_lflag = 0;
        new.c_oflag = 0;
        new.c_iflag =   IGNBRK |        /* ignore break condition */
                        IGNPAR |        /* ignore parity errors */
                        ISTRIP |        /* strip all chars to 7 bits */
                        IXON |          /* enable start/stop output control */
                        IXOFF;          /* enable start/stop input control */
        new.c_cc[4] = MIN;
        new.c_cc[5] = TIME;
        ioctl(fd, TCSETA, &new);

        /* catch all signals */
        for(i = 1; i < 24; i++)
                signal(i, sig_func);

        while(1){
                /* nap */
                sleep(1000);
        }
}

Figure 4-5.  The "setport.c" Example (Cont’d)

Examples
RS-232 Simulated I/O

77



78



5

Error Codes

Overview This chapter contains:

A table of the simulated I/O error codes.

A description of the errors as they relate to the simulated
I/O commands.

Introduction This chapter contains a list of all simulated I/O error codes and a
description of when they can occur and what condition causes each
error.

79



Table 5-1. Simulated I/O Error Codes

ERROR CODE ERROR NAME

03H FILE NOT FOUND

04H FILE ALREADY EXISTS

08H CANNOT READ MEMORY

09H INVALID COMMAND

0BH INVALID ROW OR COLUMN

0FH INVALID FILE NAME

11H NO FREE DESCRIPTORS

12H INVALID FILE DESCRIPTOR

16H NO PERMISSION

17H INVALID OPTIONS

18H TOO MANY FILES

19H NO FREE PROCESS ID

1AH TOO MANY PROCESSES

1BH INVALID COMMAND NAME

1CH INVALID PROCESS ID

1DH INVALID SIGNAL

1EH NO SUCH PROCESS

1FH NO  SEEK ON PIPE

7EH UNIX ERROR

7FH CONTIUE ERROR

Error Codes
Introduction

80



Error Code
Description (By
Simulated I/O
Command)

General Errors 08H  CANNOT READ MEMORY .  The read of the command code
from memory failed.

09H  INVALID COMMAND .  Command code is not in the range
90H through 9BH.

7EH  UNIX ERROR.  This error means that some UNIX system
call has failed. When a system call fails, the reason for the failure is
indicated in a global variable errno __ see errno (2) in the UNIX
reference manual.  When simulated I/O returns UNIX ERROR,
the value of errno is returned in location CA +  2 (CA +  1, which
contains the file descriptor, is never modified).  No other error
codes return errno.

7FH  CONTINUE ERROR.  If emulation is exited and then
re-entered for a continued session, all simulated I/O files will be
closed and all simulated I/O processes will no longer be executing.
Any simulated I/O command that requires an open file (read, write,
position cursor, etc.) issued by your program after emulation has
been re-entered will get the CONTINUE ERROR error code.
(Commands like open, and UNIX command will proceed with no
errors.)  The simulated I/O reset command will prevent additional
CONTINUE ERRORs from occurring in the continued emulation
session.

Open (90H)
Simulated I/O Errors

0FH  INVALID FILE NAME .  File name length =  0.

11H  NO FREE DESCRIPTORS.  Too many simulated I/O files
are open.  The maximum is 12.

Error Codes
Error Code Description (By Simulated I/O Command)

81



Open File Errors

03H  FILE NOT FOUND .  UNIX open (2) failed, and errno =
ENOENT.

04H  FILE ALREADY EXISTS .  UNIX open (2) failed, and errno
=  EEXIST (create and exclusive options given).

16H  NO PERMISSION.  UNIX open (2) failed, and errno =
EACCES.

17H  INVALID OPTIONS .  The open options do not contain
exactly one of: read only (0), write only (1), or read-write (2).
Open options not valid.

18H  TOO MANY FILES .  UNIX open (2) failed, and errno =
EMFILE (NFILE UNIX descriptors are open by emulation).

7EH  UNIX ERROR.  Any error from close (2).

Close (91H)
Simulated I/O Errors

12H  INVALID FILE DESCRIPTOR .  File descriptor indicated not
open.

7FH  CONTINUE ERROR.  Attempt to close any file descriptor
after continue.  (See description under "General Errors".)

Close File Errors

7EH  UNIX ERROR.  Any error from close (2).

Read (92H)
Simulated I/O Errors

09H  INVALID COMMAND .  Attempt to read from the display.

12H  INVALID FILE DESCRIPTOR .  File descriptor indicated not
open.

7FH  CONTINUE ERROR.  Attempt to read anything after
continuation.  (See description under "General Errors".)

Read File Errors

7EH  UNIX ERROR.  Any error from read (2).

Error Codes
Error Code Description (By Simulated I/O Command)

82



Write (93H)
Simulated I/O Errors

08H  CANNOT READ MEMORY .  Cannot read buffer to write.

09H  INVALID COMMAND .  Attempt to write to keyboard.

12H  INVALID FILE DESCRIPTOR .  File descriptor indicated not
open.

7FH  CONTINUE ERROR.  Attempt to write anything after
continuation.  (See description under "General Errors".)

Read File Errors

7EH  UNIX ERROR.  Any error from write(2).

Delete File (94H)
Simulated I/O Errors

03H  FILE NOT FOUND .  UNIX unlink (2) failed and errno set to
ENOENT.

08H  CANNOT READ MEMORY .  Read of file name failed.

0FH  INVALID FILE NAME .  File name length =  0, or unlink (2)
failed (errno set to ENOTDIR).

16H  NO PERMISSION.  UNIX unlink (2) failed and errno set to
EACCES.

7EH  UNIX ERROR.  UNIX unlink (2) failed for some other
reason.

Position File (95H)
Simulated I/O Errors

09H  INVALID COMMAND .  File descriptor indicates open file of
type other than a UNIX file.

12H  INVALID FILE DESCRIPTOR .  File descriptor indicated not
open.

17H  INVALID OPTIONS .  Start code is not 0, 1, or 2, or lseek (2)
failed and errno set to EINVAL.

1FH  NO SEEK ON PIPE.  File descriptor indicates a pipe to a
UNIX command.

Error Codes
Error Code Description (By Simulated I/O Command)

83



7FH  CONTINUE ERROR.  A position file attempted after
continuation.  (See description under "General Errors".)

Position Cursor (96H)
Simulated I/O Errors

09H  INVALID COMMAND .  Attempt to position cursor on file
that is not a display.

0BH  INVALID ROW OR COLUMN .  The row number is greater
than or equal to 50 rows, or the column number is greater than or
equal to 80 columns (or the number of columns on the display
whichever is greater).

12H  INVALID FILE DESCRIPTOR .  Attempt to position cursor
on file that is not open.

7FH  CONTINUE ERROR.  Attempt to position cursor after
continuation.  (See description under "General Errors".)

Clear Display (97H)
Simulated I/O Errors

09H  INVALID COMMAND .  Attempt to clear display on file that
is not a display.

12H  INVALID FILE DESCRIPTOR .  Attempt to clear display on
file that is not open.

7FH  CONTINUE ERROR.  Attempt to clear display after
continuation.  (See description under "General Errors".)

UNIX Command
(98H) Simulated I/O

Errors

08H  CANNOT READ MEMORY .  Read failed on read of
command name.

11H  NO FREE DESCRIPTORS.  Simulated I/O descriptor table is
full.

18H  TOO MANY FILES .  UNIX pipe (2) failed.

19H  NO FREE PROCESS ID.  The maximum number of
processes are already active.

1AH  TOO MANY PROCESSES.  UNIX fork (2) failed and errno
=  EAGAIN.

Error Codes
Error Code Description (By Simulated I/O Command)

84



1BH  INVALID COMMAND NAME .  Command name length is 0.

7EH  UNIX ERROR.  UNIX fork (2) failed and errno does not
equal EAGAIN.

 Kill Process (99H)
Simulated I/O Errors

16H  NO PERMISSION.  Kill failed and errno =  EPERM.

1CH  INVALID PROCESS ID .  The simulated I/O process id is
unused or out of range (the simulated I/O process entry does not
exist).

1DH  INVALID SIGNAL .  Kill failed and errno =  EINVAL.

1EH  NO SUCH PROCESS.  Kill failed and errno =  ESRCH (the
UNIX process does not exist).

7EH  UNIX ERROR.  Kill failed with other error number.

Error Codes
Error Code Description (By Simulated I/O Command)

85



86



Index

A absolute byte offset (position file command), 30
absolute file for demo program, loading the, 52
activating the simulated I/O display, 52
activating the simulated I/O keyboard, 53
active processes, maximum number of, 17
append (open file option), 22
append option and positioning in files, 31

B buffer (Control Address), length of, 10
buffer (Control Address), locating in memory, 10
bytes to read, maximum number, 26

C column number (position cursor command), 33
columns in display simulated I/O buffer, 43
command name (execute UNIX command), 36
command name length (execute UNIX command), 36
compiling the simulated I/O demo program, 50
configuring simulated I/O for the demo program, 51
control address (CA) buffer, length of, 10
control address (CA) buffer, locating in memory, 10
control addresses, maximum number of, 17
copying the simulated I/O demo program, 50
create (open file option), 22

D delay, no (open file option), 22
demo program, configuring simulated I/O, 51
demo simulated I/O program, copying the, 50
descriptor, file, 23
dev/simio/display, default for standard error output, 15
dev/simio/display, default for standard output, 15
dev/simio/keyboard, default for standard input, 15
display simulated I/O, clearing the display, 45
display simulated I/O, closing, 46
display simulated I/O, number of lines and columns, 43
display simulated I/O, opening, 42
display simulated I/O, positioning the cursor, 44

87



display simulated I/O, writing, 43
display simulated_io emulation command, 42

E emulation ram, loading the control address into, 15
entering the measurement system for the demo program, 51
exclusive (open file option), 22

F file descriptor, 23
file descriptor for stderr (execute UNIX command), 37
file descriptor for stdin (execute UNIX command), 36
file descriptor for stdout (execute UNIX command), 37

I ID, simulated I/O process, 36

K keyboard simulated I/O, closing, 49
keyboard simulated I/O, opening, 46
keyboard simulated I/O, reading, 48
keyboard simulated I/O, reading from, 25
keyboard simulated I/O, terminating a line of input, 47

L length of path name (open command), 23
length of the control address buffer, 10
line number (position cursor command), 33
lines in display simulated I/O buffer, 43
loading the demo program absolute file, 52
locating control address into emulation ram, 15
locating the control address buffer in memory, 10

M maximum number of bytes that can be read, 26
maximum number of bytes that can be written, 27
maximum number of control addresses, 17
maximum number of open files, 17
measurement system for demo program, entering the, 51
modify keyboard_to_simio emulation command, 47

N no delay (open file option), 22

O open file option, 21
open files, maximum number of, 17
open pipe specification (execute UNIX command), 36
opening display simulated I/O, 42

P path name (open command), 23
pipe, open specification (execute UNIX command), 36
positioning in files opened with the append option, 31

Index

88



process ID (execute UNIX command), 36
processes (active), maximum number of, 17
protocol (general), 10

R read command, maximum number of bytes that can be read, 26
read only (open file option), 22
reading from keyboard simulated I/O, 25
real-time, 9
relative byte offset (position in file command), 31
reserved file names (stdin, stdout, and stderr), 15
reserved files, attempting to delete, 29
RS-232 simulated I/O, 69/77

S signal to send to process (kill command), 38
SIGPIPE, 39
simio_ca_xxx, symbols associated with control addresses, 15
simulated I/O commands, list of, 19
simulated i/o control address? (configuration questions), 14
simulated I/O demo program, copying the, 50
simulated I/O demo, configuring, 51
simulated I/O process ID (execute UNIX command), 36
softkeys (when keyboard simulated I/O is active), 48
special files, attempting to delete, 29
starting location (position in file command), 31
stderr file descriptor (execute UNIX command), 37
stderr, reserved file name, 15
stdin file descriptor (execute UNIX command), 36
stdin, reserved file name, 15
stdout file descriptor (execute UNIX command), 37
stdout, reserved file name, 15
suspend softkey, 48

T terminating an input line (keyboard simulated I/O), 47
truncate (open file option), 22

U using display simulated I/O, 42

W write command, maximum number of bytes that can be written, 27
write only (open file option), 22

Index

89



90



Certification and Warranty

Certification Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation.  During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s
facility at no charge within HP service travel areas.  Outside HP
service travel areas, warranty service will be performed at Buyer’s
facility only upon HP’s prior agreement and Buyer shall pay HP’s
round trip travel expenses.  In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer.  However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument.  HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,
operation outside of the environment specifications for the
product, or improper site preparation or maintenance.



No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.


	In This Book
	Contents
	Introducing Simulated I/O
	Configuring Simulated I/O
	Simulated I/O Protocol
	Examples
	Error Codes
	Index
	Certification and Warranty

