
HP 64700 Operating Environment

Symbolic Retrieval
Utilities

User’s Guide

HP Part No. B 1471-97007
Printed in U.S.A.
March 1992

Edition 2

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1991, 1992, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of UNIX System Laboratories Inc.
in the U.S.A. and in other countries.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901-2197, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19(c)(1,2).

2

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1
Edition 2

B1471-97004, July 1991
B1471-97007, March 1992

3

What are Symbolic
Retrieval Utilities
(SRU)

SRU provides a mapping between symbols and addresses for some
HP 64000 products, such as emulation. The symbols may be
user-symbols (such as labels in assembly language, procedure
names in C, and packages in ADA) or compiler generated symbols
(such as loop-labels from the HP Advanced Cross Language
System (HP-AxLS) C compiler).

SRU consists of three supported utilities, an unsupported utility,
and a library that is loaded into products such as emulation. The
three supported utilities provided by SRU are srubuild, sruclean,
and sruprint. The unsupported utility included in the SRU
software provided to the user is sruaccess.

Srubuild builds a symbol database and is a replacement for the
edbuild utility for some emulators.

Sruprint prints the symbols in a symbol database and is a
replacement for the edbprint utility.

Sruclean removes or cleans up the datebase that is created for each
absolute file.

Sruaccess allows interactive examination of virtually all data within
the database through the use of the SRU library.

The architecture of SRU requires several other executable and text
files, but these files are not directly visible to the user.

4

In This Book

Chapter 1 Using Srubuild. This chapter how to use the srubuild utility to
build a symbol database.

Chapter 2 Using Sruclean. This chapter how to use the sruclean utility to
remove or clean up a symbol database.

Chapter 3 Using Sruprint. This chapter how to use the sruprint utility to
convert the contents of a SRU symbolic datebase file to a readable
format and print the contents to stdout.

Chapter 4 Using Sruaccess. This chapter how to use the sruaccess utility to
interactively examine data in an SRU database.

Appendix A Finding More Information . This appendix lists the online man
pages for commands and shows you how to access them.

5

Contents

1 Using Srubuild

What Is In This Chapter? . 9
What Is Srubuild? . 10

Incremental Builds . 10
Partial Builds . 11

HP-AxLS and SRU . 12
Without SRU . 12
With SRU . 12
AxDB and Emulators With SRU 12
SRU/EDB Compatibility . 12

Symbols in SRU . 13
Arrangement of Symbols . 13
Language Dependencies . 15
Procedure Special Symbols . 16
Symbol Attributes . 17

Symbol Types . 18
Symbol Levels . 19

Segment Symbols . 20
Language Sections Versus Segments 20

Symbol Tree. . 21
Linker’s View. . 22
Physical View. . 22

Unnamed Block Symbols . 23
Renaming of Symbols . 24
Maximum Symbol Length . 24
Entering Symbols Using --EXPR-- 24

The Values Referred To . 25
HP64KSYMBPATH and cws 27
Procedure Special Symbols 28
Segment Symbols . 28
Printing of Symbols (in Trace Lists) 28
Selecting High/Lowlevel Symbols 29

File Names . 30
UNIX File Names . 30
Non-UNIX File Names . 31

Contents

6

Search Algorithm for Locating File Name Symbols 31
How SRU File Name Mapping Works 33

Advantages . 33
The HP64_DEBUG_PATH Variable. 34
File Name Translation Table 35
Algorithm for Mapping File Names 36
Examples of Use . 38

Scenario 1 . 38
Scenario 2 . 38
Scenario 3 . 39
Scenario 4 . 40
Scenario 5 . 41

Messages Generated By SRU . 42
Error Messages . 42
IEEE-695 Specific Error Messages 52
Warning Messages . 54
IEEE-695 Specific Warning Messages 55

How To Use The Srubuild Command 58
Examples Using Srubuild . 61

2 Using Sruclean

What Is In This Chapter? . 63
What Is Sruclean? . 64
How To Use The Sruclean Command 65
Examples Using Sruclean . 66

Example 1: . 66
Example 2: . 66
Example 3: . 66
Example 4: . 66

3 Using Sruprint

What Is In This Chapter? . 67
What Is Sruprint? . 68
How To Use The Sruprint Command 68
Examples Using Sruprint . 69

Example 1: . 69
Example 2: . 69
Example 3: . 69

Contents

7

4 Using Sruaccess

What Is In This Chapter? . 71
What is Sruaccess? . 72
How To Use The Sruaccess Command 73

Sruaccess Commands . 73
Data-entry Formats . 76
Interactive Versus Batch Mode 77
Processor ID Names . 77
Address Types . 77

A Finding More Information

Index

Contents

8

1

Using Srubuild

What Is In This
Chapter?

The information in this chapter includes:

What Srubuild Is.

HP-AxLS and SRU.

Symbols in SRU.

File Names .

Printing of Symbols in Trace Lists.

How SRU File Name Mapping Works.

Messages You May Get While Building an SRU Data
Base.

How To Use The Srubuild Command.

Examples Using Srubuild.

9

What Is Srubuild? Srubuild builds a symbol database from an object module. The
object module is typically built by a compiler, assembler and linker.
The symbol database consists of several files that are stored in a
single subdirectory. The subdirectory name is based on the name of
the absolute file. For example, the subdirectory name for an
absolute file named "myprog.X" will be "myprog.Ys".

Database files with an extension ".GY" or ".LY" are considered
private to SRU. Users should not remove or modify any of these
files except as occurs as a result of action from one of the SRU
utilities.

The srubuild utility has been designed to read in only part of the
symbol or executable file at a time and write out the database as
the symbols are read in. The database consists of a set of files that
are stored in a single subdirectory. One file contains all the global
symbols; this would be all the symbols in the linker symbol file (.L
file) for HP 64000 format files.

There is also a database file for each set of the local symbols; this is
all the symbols in a single assembler symbol file (.A file for
HP 64000 format files).

Incremental Builds Srubuild is capable of doing incremental builds for object formats
that contain sufficient information to support this feature. If one
source file in a multi-file program is modified and the program is
then compiled and linked, the symbol information for the files that
were not modified is retained from the previous srubuild; only the
modified symbols need to be rebuilt. This feature reduces the
amount of time required to build a symbol database when changes
are made in the source files. The HP/MRI IEEE-695 format and
HP 64000 format are the only currently supported formats that
contain sufficient information for this feature.

The srubuild utility and SRU library benefit from previous builds
by using a process called "incremental build". The SRU global
symbol file and each local symbol file contains a creation date.
When an absolute file is updated, the dates in the SRU database
files are compared to dates in the absolute file. Any symbol files
that were not modified when the absolute was updated can
continue to be used without modification. The global symbol file

Using Srubuild
What Is Srubuild?

10

will be updated whenever the absolute file changes, along with any
SRU local symbol files that are affected.

The ability of this incremental build methodology to work is
dependent on having correct dates in the absolute file. The
HP/MRI IEEE 695 file format contains a date for every module in
the absolute file. Language tools which place this date correctly in
the IEEE file (such as the HP-AxLS language tools) will work
correctly with incremental builds. The HP 64000 absolute file
formats do not contain creation dates. In this case, the .X, .L and
.A file modification dates are used as creation dates. Incremental
builds work as long as file modification dates are not changed.
Changing the modification date will have the same effect as
recompiling the module, and will cause the symbol information to
be rebuilt for that file.

Partial Builds The srubuild utility and SRU library are also capable of "partial
builds"; that is, building only part of the database. If you choose to
use the srubuild utility you can specify which modules to build or
ignore. The edbuild utility had a similar option. An important
extension available in SRU is the ability to build additional parts of
the database at a later time. For example, you can ask the srubuild
utility to create symbol information for only the modules of
interest. If, during emulation, you need to access a symbol that is
not in the SRU database, SRU will automatically create the
missing symbol information.

These abilities cause some side effects in your emulation tools. For
example, if you display (symbols on) a trace list that contains
addresses from files that have not been built, there will be a pause
in the trace display while the symbol information is added to the
SRU database. There will be a message on the status line informing
you that symbol information is being updated, and the status line
will report progress every few seconds. Another side effect is that if
you build the database from within emulation (rather than using
the srubuild command in your makefile) only the global file will be
built; local files will be built on demand. If srubuild is invoked from
the command line, both local and global information is built.

Using Srubuild
What Is Srubuild?

11

HP-AxLS and SRU

Without SRU Before SRU, it was necessary to compile and link with the -h
option when using an HP-AxLS (Advanced Cross Language
System) compiler (such as cc68000). When using the -h option, the
HP-AxLS compiler would generate files (file.L, file.X, file.A)
needed by EDB.

Note that the HP-AxLS compilers let you compile all the files with
-h, then link either with -h or without, letting you create two
different absolute files (with different OMFs) without having to
recompile the source files.

With SRU SRU will read the HP/MRI IEEE-695 OMF that the HP-AxLS
generates without the -h option. Further, better symbol
information will be available. Therefore, it is preferable to remove
the -h option on your compile lines.

AxDB and Emulators
With SRU

Note that the Advanced Cross Debug (AxDB) tools do not require
the -h option, so if you used a debugger and an emulator using
EDB, you had to do one link with the -h and another link without
the -h option. Now that you have an emulator using SRU, you may
use the same absolute file with the debugger and with the emulator.

SRU/EDB
Compatibility

Since SRU and EDB create different databases, it is permissible to
link with the -h option and without the -h option, and then use
srubuild and edbuild. Although this is an option, there is probably
no reason that you would ever need to use it.

Using Srubuild
HP-AxLS and SRU

12

Symbols in SRU

Arrangement of
Symbols

Symbols are arranged in a ’tree’ structure that mimics the natural
scoping of the user’s source language as much as possible. All
emulation references to symbols - both input from the keyboard
and output displays - make use of the tree structure to show the
scoping of symbols and to disambiguate symbols that have the same
name but different scopes.

Each absolute file has its own symbol tree. The exact entries in the
tree depends on the language used, but in general the tree looks
like:

 |- child1_1
 |- child1---|- child1_2
 |- child2 |- child1_3
 root ----|
 |- child3

Each entry in the symbol tree has a type and a name. The types
define such attributes as "procedures", "tasks", etc. They do not
indicate language types, e.g. "int" or "char *". See "Symbol
Attributes", later in this chapter for more information.

The names are an ASCII string, such as "main" or "sub_program_1".

Sometimes a child symbol can appear to be in two places. For
example, consider a global symbol; it is considered to be a child of
"root" and a child of the file in which it is defined. In this case
consider the symbol to be accessible in both places (for both input
and output).

You can uniquely identify any entry in the symbol tree with a
combination of type-name pairs, just as UNIX file names are
uniquely identified by their paths from /. For example, consider the
following tree, where each entry is shown as (< type> , < name>):

 |- (static, "c")
 |- (procedure, "main")-----|- (static, "getopt_return")
 |- (procedure, "bonzoid") |- (static, "i")
 | |- (module, "getopt_return")
 root ----|
 |- (filename, "dumper")----- (static, "i")

Using Srubuild
Symbols in SRU

13

The type "static" refers to a symbol with a fixed address, and is not
one of the attributes described above (procedure, module, task, file
name, segment, procspecial (ENTRY/EXIT), or source-reference).

In this tree, there are two entries with the same name (static, "i"),
but they are unique because their full paths are different:

symbol 1: (procedure, "main"), (static, "i")
symbol 2: (filename, "dumper"), (static, "i")

The full path of a symbol consists of the names of the entries
separated by dots (or colons if the preceding symbol was a
filename). The "root" is never displayed. The types are not usually
displayed or entered as part of the name unless necessary; for
example:

symbol 1: main.i
symbol 2: dumper:i

Note that this is equivalent to, but a lot faster to type in than:

symbol 1: main(procedure).i(static)
symbol 2: dumper(filename).i(static)

In the case where two symbols with the same parent have the same
name, the type information is necessary, and is added as part of the
ASCII string which represents the symbol. For example:

symbol 1: main.getopt_return(static)
symbol 2: main.getopt_return(module)

Using Srubuild
Symbols in SRU

14

Language
Dependencies

SRU attempts to reconstruct the user’s view of user symbol space.
However, it is limited by the information that the Object Module
Format (OMF) can represent. For example, a common C language
tree might look like:

 |-- (static, "j")
 |- (procedure, "main")---|
 |- (filename, "main.c")----| |-- (static, "index")
 root-| |- (static, "global")
 |
 |- (filename, "dump.c")----- (static, "i")
 |
 |- (static, "global")

However, for an OMF which is task-based (such as the 80386
OMF), the linker enforces the creation of "tasks". For the 80386,
the above tree would look like:

 |-- (static, "j")
 |- (procedure, "main")---|
 |- (module, "main")----| |-- (static, "index")
 root-| |- (static, "global")
 | |- (filename, "main.c")
 |
 |- (module, "dump")----|- (static, "i")
 | |- (filename, "dump.c")
 |
 |- (static, "global")

Note that in the 80386 OMF the global symbols would be "main",
"dump" and "global" instead of "main.c", "dump.c" and "global".
Also note that if you want to refer to the variable "j" in the
procedure main, you would enter a different command. (Refer to
"Entering Symbols Using --EXPR--", later in this section for more
information.)

main.c:main.j # non-80386 OMF reference to "j"
main.main.j # 80386 OMF reference to "j"

If you are unsure of what your "language tree" looks like, you can
use the sruprint program to print out portions of your tree.

Using Srubuild
Symbols in SRU

15

Procedure Special
Symbols

All symbols of the type "procedure" have zero or more children of
the type "procspecial". These symbols contain information about
the entry and exit points of the procedure. They each contain the
address of the exit or entry point of the procedure. In EDB, these
symbols existed but were hidden from the user. In SRU, they will
show up on a "display symbols" listing, and can be entered from the
keyboard like any symbol, or you can continue to use the implied
method from EDB.

They have names of the form:

ENTRY if this is present, it means that the procedure
had exactly one entry point. This is the most
common case; FORTRAN and ADA can
have multiple entry points as of this writing.

EXIT if this is present, it means that the procedure
had exactly one exit point. This is common
when there is a large amount of code
generated for an exit (for example, popping
the stack or resetting an interrupt state), or
the procedure has been compiled for
debugging. Note that if a C function has
multiple return statements it may or may not
have multiple exit points; the compiler
makes this decision.

ENTRY0,
ENTRY1, ...

These are present when a procedure has
multiple entry points.

EXIT0,
EXIT1, ...

These are present when a procedure has
multiple exit points.

TEXTRANGE This symbol has the range of the code
associated with the specified procedure. This
may be different from the range of ENTRY
through EXIT if the compiler generates code
(such as a code-space optimized subroutine)
which is after the EXIT.

Using Srubuild
Symbols in SRU

16

DATARANGE This symbol has the range of the code plus
data associated with this procedure. This is
different from TEXTRANGE in the case
where the compiler generates data
associated with a procedure that is after the
last section of code.

Consider the following two procedures:

 procA(a, b)
 {
 if (a == b)
 return a;
 return b;
 }

 procB(a,b)
 {
 int rvalue;
 if (a == b)
 rvalue = a;
 else
 rvalue = b;
 return rvalue;
 };

There will be the following symbols in the SRU (depending on the
compiler):

 (procedure, "procA")----|--(procspecial, "ENTRY")
 |--(procspecial, "EXIT0")
 |--(procspecial, "EXIT1")

 (procedure, "procB")----|--(procspecial, "ENTRY")
 |--(procspecial, "EXIT")

Symbol Attributes Each symbol in SRU has a "type" and a "level". The "types" are used
when necessary to disambiguate between two symbols of the same
name but of different type. You may specify the type of a symbol on
input, and the output routines will display the type when necessary.
You may also select the "level" of symbols that will be displayed.

Using Srubuild
Symbols in SRU

17

Symbol Types

static Static symbols - includes global variables
(global to a specific task and/or program).
The static does not mean that the symbol
declaration was prefaced with the C static
keyword. It means that it has a logical
address which will not change.

procedure Procedure (or function) symbols. Also used
for code blocks in C. For example; when

 m()
 {
 static int alpha;

 if (alpha == 0)
 {
 static int o;
 }
 }

occurs in a C file, the following tree is built:

 |-(static, "alpha")
 (procedure, "m")--|
 |-(procedure, "BLOCK_1")--|-(static, "o")

Refer to "Unnamed Block Symbols" later in this section for more
information on block symbols.

filename Source file name symbols. These are
"symbols" which actually define the name of
a file (such as the ".c" files for C). Source
references occur only under filename
symbols.

module Module symbols. For 80386 C, these names
are derived from the source file name. For
Ada, they are packages. Other language
systems may permit the user to explicitly
name these.

Using Srubuild
Symbols in SRU

18

task Denotes task symbol. Task symbols are
specific to a multi-tasking environment and
therefore have a range defined by that task.
The meaning of the range may vary with
processor and language system used.

procspecial Special symbol names are used to denote
language-system symbols not defined by the
user (refer to "Renaming of special Symbols"
later in this section for more information).
Any symbol of this type is always the direct
child of a renaming of symbol.

fsegment This is currently used only in the 80386
environment to hold code or data fsegments
that are in the Global Descriptor Table
(GDT). The names are made up and only
information about their address range is
available.

Symbol Levels

highlevel This indicates that the symbol was emitted
by a "high level" in the tool chain (that is;
symbols that were available from the
compiler).

lowlevel This indicates that the symbol was generated
by a compiler or is an assembler symbol.

Using Srubuild
Symbols in SRU

19

The following truth table defines the symbol level conditions and
their meanings.

hilevel lowlevel Meaning

0
0
1
1

0
1
0
1

Cannot happen
This symbol is a low level symbol
This symbol is a high level symbol
Insufficient information to determine what
this is (that is, it might be high or low level)

Refer to "Selecting High/Lowlevel Symbols" later in this section for
more information.

Segment Symbols Depending on the OMF, "segment" symbols will be generated. The
purpose of the "segment" symbols is to provide a convenient
method of relating an assembler listing and a linker listing with
what is displayed on the screen.

An assembler listing shows addresses as offsets from the start of a
’segment’. The linker listing shows the start of each segment.
Without the SRU ’segments’, you would have to subtract the
linker’s "start of segment" to obtain an offset that you could use
with your assembler listing.

Language Sections Versus Segments

A language "section" consists of all identically-named segments
which are contiguous in memory; a "segment" starts with each
source file.

To show this difference, consider the examples on the following
pages.

Using Srubuild
Symbols in SRU

20

The set of tables for the linker’s view and the physical view, that
follow, all refer to the following four symbols:

fileA and fileB are files;
symA is a symbol which is defined within fileA (for example, it
 might be a variable outside of any renaming of scope);
symB is a symbol defined in fileB.

Further, the tables assume the following HP-AxLS linker
commands:

 SECT PROG $1000 # Start of full PROG section
 SECT DATA $3000 # Start of full DATA section
 LOAD fileA,fileB # fileB’s PROG section is placed
 # immediately after fileA’s PROG
 # section, and fileB’s DATA section will
 # immediately follow fileA’s DATA
 # section

Symbol Tree. The symbol tree associated with this example,
including segment information, is:

 |-(static, "symA")-|-(segment, "PROG")
 |-(filename, "fileA")--|-(segment, "PROG")
 | |-(segment, "DATA")
 root ---|
 |-(filename, "fileB"(--|-(static, "symB")-|-(segment[0], "PROG")
 |-(segment, "PROG")
 |-(segment, "DATA")

Note The "segments" are shown as being in the tree only for the sake of
making this clearer; they are not in the tree, in that you cannot
enter a symbol named

fileA:PROG

and get anything back (other than "symbol not found"!), and they
do not show up in the "display symbols" command.

Using Srubuild
Symbols in SRU

21

Linker’s View. This shows how the two segments (sections)
defined above (PROG and DATA) are loaded into memory:

Full sections PROG DATA

Start address 1000 3000

(fileA’s PROG @ 1000 (fileA’s DATA @ 3000

fileB’s PROG @ 1101) (fileA’s DATA @
3053)

End address 1200 3098

Physical View. This shows how the symbols and files are loaded
into memory. The "offset from start of segment" is useful to know
when you are looking at a linker listing and at an assembler listing.
Note that while the files have DATA segments, the symbols do not.
(This is typically defined by each compiler/assembler/linker tool
chain.)

symbols fileA symA fileB symB

PROG

absolute start address
offset from start of section

1000
 0

1030
 30

1101
 101

1154
 154

absolute end address
offset from start of section

1100
 100

1036
 36

1200
 200

1167
 167

DATA

start absolute address
offset from start of section

3000
 0

3053
 53

absolute end address
offset from start of section

3052
 52

3098
 98

Using Srubuild
Symbols in SRU

22

Unnamed Block
Symbols

Consider the following code:

 main()
 {
 static int outside_static;

 if (j == 0)
 {
 static int inside_static;
 }
 }

You can easily get access to the variable "outside_static" by using
the name:

main.outside_static

but you get access to the variable "inside_static" as follows:

SRU will create a name for each "unnamed code block", so that any
variables declared in it are accessible. The format for the name
depends on the OMF. Some OMFs will tell the line number where
the code block starts. In that case, the name created for the
unnamed code block will be in the form:

BLOCK_< line_number>

If the OMF tells only that you are entering an unnamed code
block, the format will be:

< ordinal number> _BLOCK

Where < ordinal number> starts with "1" and increments for each
encountered code block. To discover which code block a given
< ordinal number> _BLOCK is related to, use "display symbols" to
look at the addresses of source references, then the address
associated with the < ordinal number> _BLOCK.

Some language tools will create their own name for "unnamed code
blocks". In that case, SRU will pass on the created name. Do a
"display symbols < procedure name> " to see what they look like
when you encounter this case.

Using Srubuild
Symbols in SRU

23

Renaming of Symbols Some languages (notably Ada) allow multiple symbols with the
same names.

For example, Ada allows a procedure named "multiply" with three
parameters and a different procedure named "multiply" with two
parameters; the correct procedure is called based on the number of
parameters in the invocation.

However, SRU does not allow two symbols of the same "type" to
have the same name (where "type" is "procedure", "module",
"procspecial", etc.). So, SRU will rename the symbols by adding a
unique suffix to each instance. To determine what symbols were
renamed, use the "display symbols < symbol> " command and look
at the address ranges.

Maximum Symbol
Length

SRU does not place any limit on the number of characters that a
symbol (a language symbol or a filename) may have. However,
HP/MRI IEEE-695 has a maximum length of 127 characters, and
OMF-386 has a limit of 40 characters. Further, each tool chain
(typically the assembler or compiler and/or linker) places a
constraint on the maximum number of characters a symbol may
have.

For HP-AxLS, the assembler has a significance limit of 31
characters; the compiler 30 characters for external symbols, and
255 characters for non-external symbols. All SRU utilities are
compatible with the UNIX "long filenames" system.

Entering Symbols
Using --EXPR--

Entering symbols from the command line is done using the
"--EXPR--" prompt softkey. The command syntax for entering a
symbol is:

 [.|:][<file:>|<ident.>[(<type>)]]*{<ident>[(<type>)]|<file:>}

optionally, this is followed by:

 procedure {entry_exit_range | text_range}

Refer to "Renaming of special Symbols," later in this section for
more information.

For comparison, EDB’s command syntax was:

Using Srubuild
Symbols in SRU

24

 [:][<file:>][<ident.>]*<ident>

Note that this is expressed in a common UNIX notation:

 <string> - a non-literal string
 [<anything>] - anything between brackets can be omitted
 {<string1>|<string2>} - string1 or string2 is valid as input
 [<string1>|<string2>] - either string1, string2, or nothing is valid
 [<anything>]* - anything may be repeated indefinitely or omitted

Some examples:

 globalvar # a global variable - but see HP64KSYMBPATH later in
 # this aection

 :globalvar # The leading colon forces "globalvar" to refer to a
 # global variable instead of a local variable. A
 # leading dot means the same thing.

 main.c:index # anything preceding a colon (up to a previous
 # colon) is part of a filename

 file1.c:file2.c: # file2.c has actual code but is an include file
 # reference in file1.c

 file1.c:"file2.c" # a variable named "file2.c" in file file1.c Use
 # quotes to surround any "special characters" (dots
 # and colons) to prevent them from being used as
 # separators.

 "a:b.c":alpha # the variable named alpha in the file named a:b.c -
 # again note the use of quotes to prevent inter-
 # pretation of the colon after the ’a’

 .procedure.block1.block2.static_variable # a global procedure....

 :main(procedure) # a global procedure - but there is another
 # global symbol named ’main’ which is of a
 # different type

 :package1."file.c": # the file "file.c" which is a child of the global
 # symbol "package1". If a file is a child of a
 # non-file symbol, the entire filename
 # must be surrounded in quotes.

The Values Referred To

The following rules determine what address is referred to when
entered using either the --EXPR-- or --SYMB-- softkeys:

Using Srubuild
Symbols in SRU

25

1. If a procedure is entered, the default range is the
ENTRY/EXIT range. If the ENTRY/EXIT range does not
exist, the TEXTRANGE is used (and you will receive a
warning on the status line). If the TEXTRANGE does not
exist, the range of the symbol itself is used (and you will
receive a warning on the status line).

2. If a filename is entered, the default range is the segment
named "PROG". If there is no such segment, the segment
named "prog" will be used. If that does not exist, the first
segment with attribute "code" will be returned (if the OMF
supports it). Otherwise, no symbol is returned.

3. If a line number is specified, the default range is the first
through last address associated with that line number.

4. If math is performed on a symbol (including the three
outlined above), the starting address associated with that
symbol is used unless the "end" softkey is present.

5. If the symbol is in a context that cannot use a range (such
as "display memory at < symbol> "), the start address
associated with the symbol is used.

Examples:

trace_on_range file.c: # trace addresses between the start and end addresses
 # of the "PROG" segment of file.c (or "prog" segment,
 # or first segment with type "code" found)

trace_on_range proc(procedure) # trace addresses between the start and end addresses
 # of the ENTRY/EXIT range of proc (or, if the OMF does
 # not support ENTRY/EXIT range, the TEXTRANGE)

trace_on_range symbolA # trace addresses between the start and end addresses
 # of the symbol "symbolA"

trigger on symbolA # trigger on the start address of the symbol "symbolA"

trigger on symbolA end # trigger on the end address of the symbol "symbolA"

trigger on symbolA + 4 # trigger on 4 plus the start address of the symbol
 # "symbolA"

trace_on_range proc text_range # trace addresses between the start and end addresses
 # associated with the TEXTRANGE of procedure ’proc’

Using Srubuild
Symbols in SRU

26

HP64KSYMBPATH and cws

SRU has symbol-searching capability. Further, it has the ability to
explicitly set a "current working symbol" (cws), which allows you to
refer to symbols relative to the cws (just like a UNIX ’cd’ command
allows you access to files below your current working directory).

When the shell variable HP64KSYMBPATH is set (and exported)
to be a blank-separated list of symbols, a "search list" is set. When a
symbol is entered without the leading colon or dot (which forces it
to be global), the following happens:

1. The current working symbol (if there is one) is prefixed to
the entered symbol; if the resulting symbol exists, that will
be the symbol used.

2. For each entry in HP64KSYMBPATH:

a. prefix the entry with the entered symbol. If the symbol
exists, that is the symbol to use.

b. Otherwise, remove the last entry in the
HP64KSYMBPATH’s symbol and repeat the previous
step (refer to the following examples - they make the
meaning of this statement clearer.)

Example:

set HP64KSYMBPATH=".file1:proc1 .file2:proc2:code_block_1"
cws :omega.c: # cws is the file "omega.c"
hello.stat # the entered symbol

look for symbol :omega.c:hello.stat # prefix with cws (assume symbol not found)
look for symbol :file1:proc1.hello.stat # prefix with first entry in HP64KSYMBPATH
look for symbol :file1:hello.stat # remove one element & prefix
look for symbol :file2:proc2.code_block_1.hello.stat # prefix with second entry in
 # HP64KSYMBPATH
look for symbol :file2:proc2.hello.stat # remove one element & prefix
look for symbol :file2:hello.stat # remove one element & prefix

The current working symbol can always be changed with the "cws"
command. Some emulation products may supply a softkey-method
of changing it, but "cws < symbol> " is always available.

Further, the command "pws" (print working symbol) is also
available. It displays the current working symbol on the status line.

Using Srubuild
Symbols in SRU

27

Procedure Special Symbols

When you have entered a procedure, SRU provides a special syntax
to access the ENTRY and EXIT symbols that are associated with a
procedure. The syntax is:

< symbol> procedure {entry_exit_range | text_range}

Using the entry_exit_range will cause SRU to return all ENTRY
and EXIT symbols related to the procedure < symbol> . For speed
of prompting, the special syntax is available even when you have
not entered a procedure; but, after you hit < RETURN> , if the
< symbol> is not a procedure an error is generated.

If you use "text_range", the addresses associated with
TEXTRANGE will be returned by the parser.

Segment Symbols

When you have entered a filename, you may use the syntax:

< filename> segment < segment>

Where < segment> is a string (such as "axls_named_segment")
with or without quotes. In EDB, there were only 3 segments:
"PROG ", "DATA ", and "COMM ". For compatibility, if SRU
encounters a segment named "PROG " but no segment named that
exists, it will search for a segment named "PROG" or "prog".

If you enter a < filename> with no "segment < segment> ", the
segment named "prog" will be used. For OMFs which support
’typing’ of segments ("code", "data", or "unknown"), if no segment
named "prog" exists, the first segment of type "code" will be used.

Printing of Symbols (in Trace Lists)

In general, when a symbol is displayed in the trace list it looks
much like it would look if the user typed the symbol in.

SRU will display as much of the symbol as possible. If necessary,
the following truncation rules (from last to be truncated to first to
be truncated) apply:

1. Sign of the offset (+ /-) truncated on the right.

2. Last part of symbol name truncated on the right.

Using Srubuild
Symbols in SRU

28

3. If the next to last part of the name exists and is not a
filename (most closely enclosing scope), it is next,
truncated on the right.

4. Basenames of parts of symbol name that are filenames
truncated on the right.

5. Last part of segment name truncated on the right.

6. Remaining name parts that aren’t file names truncated on
the right as individuals but taking the most closely
enclosing ones first (truncating left to right).

7. Remaining names from any parts that are filenames.

The basename is the last name on the right for UNIX filenames.
UNIX filename components are separated by slashes. Remaining
names are taken in right to left priority for UNIX filenames.

The segment name will be separated from the symbol name by a ’| ’.
File names will be separated from the next name part by a ’:’. The
name parts that aren’t filenames will be separated from each other
by a ’.’. A ’:’ or ’| ’ that occurs as the right most character will be
output, but a ’.’ in this position will be suppressed. If NULL names
are encountered, they are replaced by "??" and an appropriate
separator is added.

Selecting High/Lowlevel Symbols

Each product will have a command to select either high, low, or
both high and low level symbols for display. When this command is
given, only the specified level of symbol will be displayed in trace
lists, "display symbols" commands, etc. Note, however, that any
level of symbol may be entered at any time.

Using Srubuild
Symbols in SRU

29

File Names

UNIX File Names SRU (for OMF’s that use file names) maintains a list of all files
used in making an absolute. When you enter a filename without its
path (e.g. "util.c" instead of "/users/mike/util.c"), a search is made of
the filename list. If there is only one file named "util.c", it does not
matter what directory you are in - you refer to that file. If there is
more than one "util.c" used to make the absolute file, the one in
your current directory will be chosen (if that was one of them), or
neither will be chosen (yielding a "symbol not found") for the case
where neither of the two files are in your directory.

The exact search algorithm used is described in detail at the end of
this section.

A relative filename works the same way. Examples:

Files in SRU’s file list:
 /users/mike/src1/util.c
 /users/mike/src1/globs.c
 /users/mike/src2/util.c

Current directory: /users/mike

Input filename filename referenced
globs.c /users/mike/src1/globs.c # no conflict
util.c - symbol not found - # conflict: which ’util.c’?
src1/util.c /users/mike/src1/util.c # no conflict; the "src1" was sufficient
 # info to disambiguate between the two

Current directory: /users/mike/src2

Input filename filename referenced
util.c /users/mike/src2/util.c # current directory used to disambiguate
src1/util.c /users/mike/src1/util.c # again "src1" sufficient

As a further convenience (especially for those uploading files from
a system which only supports upper-case filenames), if the search
for a filename fails, SRU will search again; this time
case-insensitively.

Using Srubuild
File Names

30

Non-UNIX File Names As long as the OMF permits, the filename that you wrote the file
with will be used in SRU. For example, if you wrote and compiled
the files on a VAX/VMS system, then transferred the files to
UNIX, you could refer to your VMS filenames if you used the
HP/MRI IEEE-695 file format.

Any filename may be entered as long as:

1. Any characters that are special to the parser (e.g. ":", "(",
"+ ") must be escaped by quoting them.

2. the filename is followed by a non-escaped colon.

For example:

hello.c:dolly.c: # two files: the file "dolly.c" as included by "hello.c"
"hello.c:dolly.c": # one file named "hello.c:dolly.c"; the colon is escaped
 # by the quotes
"vaxa::user$disk:[del.bozo]util.c": # the colons are escaped
"dir1\dir2\file.c": # the backslashes are escaped

Search Algorithm for
Locating File Name

Symbols

As previously mentioned, SRU maintains a list of all files used in
making the absolute file. When you enter a file name, the list of
files is searched, looking for a match. If a match cannot be found,
SRU will cause an error message to be printed. The following steps
describe the sequence of events for finding a match.

Step 1. Search for an exact match. Match found?

Yes Search ends. (This will always work if the file
name is typed exactly as it appears within the
OMF file).

No Go to step 2.

Step 2. Search again using a truncated search looking for any file
name ending with the same file name entered on the command
line. Exactly one match found?

Yes Search ends.

No Go to step 3.

Using Srubuild
File Names

31

Step 3. More than one file name found in step 2?

Yes Go to step 4.

No Go to step 5.

Step 4. Prefix the current working directory to the file name
entered on the command line and search for an exact match. (This
step provides backwards compatibility with EDB for
disambiguating multiple file name symbols by using the current
working directory.) Match found?

Yes Search ends.

No Go to step 8.

Step 5. Search for a match using a case-insensitive search. (This
step provides more flexibility for entering case-insensitive VMS
and MS-DOS file names.) Exactly one match found?

Yes Search ends.

No Go to step 6.

Step 6. More than one match found in step 5?

Yes Go to step 8.

No Go to step 7.

Step 7. Search for a match using a case-insensitive, truncated
search looking for any file name ending with the same file name
entered on the command line. Exactly one match found?

Yes Search ends.

No Go to step 8.

Using Srubuild
File Names

32

Step 8. Two or more files matching?

Yes Message: Ambiguous file names.

No Message: Symbol not found.

Note VMS version numbers and version delimiter (;) are only used in
comparisons if the file name entered on the command line is
specified with a version number and version delimiter.

How SRU File
Name Mapping
Works

SRU needs to access source and symbol (HP OMF .A) files in
order to display source references and to build the local symbols
database. The path names of these files are extracted from the
absolute (OMF) file when the global symbols database file is
created. Normally these file names reflect the correct paths to
these files unless the files have been moved or the absolute file was
created on a different host. For example, if a program is compiled
and linked on a remote VAX/VMS system, the absolute (OMF)
file will typically contain embedded VMS path names. In the past,
when files are moved, the user was required to change the file
names within the absolute (OMF) file to reflect the new paths.
However, SRU has implemented a feature which allows the user to
specify the location of user files and still retain the original path
names within the absolute file.

Advantages Preserves the original file names within the OMF,
allowing the user to see and reference files by their
original name.

Allows UNIX, VMS and/or MS-DOS file names with
absolute or relative paths to be specified within the OMF.

Facilitates software development on similar or diversified
remote hosts.

Using Srubuild
How SRU File Name Map ping Works

33

Supports file transfers from a remote host using standard
file transfer file utilities instead of requiring a specialized
tool which changes the file names within the absolute
OMF) file.

Supports the use of Remote File Access (RFA) or
Network File System (NFS) to access source and symbol
files across a network.

The
HP64_DEBUG_PATH

Variable.

SRU checks for the environment variable HP64_DEBUG_PATH
to determine the location of source and symbol files at run-time.
This variable is similar to the "PATH" variable in the shell but is
used to find source and symbol files. If this variable is defined,
searches will be performed on the path(s) it specifies. Multiple
directories are are seperated by a colon (:). For example, in shell
notation:

 HP64_DEBUG_PATH= /sources:/users/me/src:%
export HP_DEBUG_PATH

will tell SRU to first look for files in the directory /sources, then in
the directory /users/me/src, and finally by the path specified in the
absolute (OMF) file (designated by the % character).

When using the HP64_DEBUG_PATH variable to search in a
directory, SRU will strip off any directory path information from
the original file name before prefixing the search path. File naming
conventions are determined by the existence of their respective
directory delimiters: slash (/) for UNIX, square or angle bracket
pairs ([] or < >) for VMS and backslash (\) for MS-DOS. If the
original file name is determined to be a VMS or MS-DOS file
name, SRU will also strip off any VMS version number and
semicolon delimiter (;), then look for the file using a
case-insensitive search.

For example, if SRU needs to access a source file referred to in the
absolute (OMF) file as USER$DISK:[BARB]MAIN.C;5, the
search will be performed using the file name MAIN.C. Assuming
this file was moved to /sources/main.c, SRU should find it correctly.

If the HP64_DEBUG_PATH variable is not defined, SRU will
search for files in the following order:

Using Srubuild
How SRU File Name Map ping Works

34

1. Using a file name translation table, (described later in this
section).

2. Using the path specified in the absolute file.

3. In the current working directory.

File Name Translation
Table

If the HP64_DEBUG_PATH contains a double percent directive
(%%) or the default search path is used, SRU will use a file name
translation table (mapfile) to locate files. A mapfile is an ASCII
file providing a one-to-one mapping of file names appearing within
the absolute (OMF) file to corresponding UNIX files accessible on
the local file system.

The mapfile should have the same name as the absolute (OMF) file
with the extension ".MP". For example, if the name of your
absolute file is /myproject/builder.X, the mapfile should be called
/myproject/builder.MP. In addition to this mapfile (which is
considered to be specific to a particular absolute) SRU will also
look for a global mapfile in your login directory. The name of this
file is $HOME/.mapfile.MP. If both files exist, both will be used.

The format of the mapfile is simple:

Each line in the mapfile should contain a from-pattern
(the original file name appearing within the absolute
(OMF) file), a to-pattern (the alternate file name
accessible on the local file system) and an optional
comment, all separated by white space (blank(s) or tab(s)).

White space before the first field will be ignored.

Comments are delimited by a ’# ’ and a new line.

Either pattern may be optionally delimited by double
quotes.

A limited form of wildcarding is also supported:

– A single asterisk may appear at the beginning of
from-pattern (a suffix pattern), at the end of

Using Srubuild
How SRU File Name Map ping Works

35

from-pattern (a prefix pattern), or as the entire
from-pattern.

– The asterisk matches any string , including the null
string.

– The asterisk may appear anywhere in to-pattern.

If an input file name matches the from-pattern, the file
name will be converted to the form defined by the
to-pattern.

For example, consider the the following mapfile which contains
two exact mapping patterns and three wildcard mapping patterns:

 HP$DISK:[MYPROJECT]MAIN.C;2 /sources/main.c #exact match
 HP$DISK:[MYPROJECT]FILE1.C;5 /sources/file1.c #exact match
 /bozo/* /users/me/* #prefix pattern
 *.C *.c #suffix pattern
 * /net/remotesys* #add prefix

Given the file name HP$DISK:[MYPROJECT]FILE.C;5, SRU
would map the file name to /sources/file1.c (by applying the exact
match rule) before checking to see if the file exists. Similarily, a file
named /bozo/glomp.c would be mapped to /users/me/glomp.c by
applying the prefix-pattern rule. A file named /users/barb/main.c
would be mapped to /net/remotesys/users/barb/init.c by applying
the add prefix rule.

Algorithm for
Mapping File Names

The following steps are performed to map the input file name
using the file name translation table. When testing for matches
using a wildcard, if there are multiple prefix- or suffix-patterns that
match the input file name, the one matching the more explicit
characters is used.

Step 1. Test for an exact match.
Does the input file name match a from-pattern without a wildcard?

Yes Search ends. The associated to-pattern is the
mapped file name to look for.

Using Srubuild
How SRU File Name Map ping Works

36

No Go to step 2.

Step 2. Test for prefix-pattern match.
Does the input file name match a from-pattern ending in a
wildcard?

Yes Transform the input file name as specified by
the associated to-pattern. Characters from
the input file name that match the wildcard
replace the wildcard in the to-pattern. Go to
step 3.

No Go to step 3.

Step 3. Test for suffix-pattern match.
Does the input file name (or the transformed file name from step
2) match a from-pattern starting in a wildcard?

Yes Transform the input file name as specified by
the associated to-pattern. Characters from
the input file name that match the wildcard
replace the wildcard in the to-pattern. Go to
step 4.

No Go to step 4.

Step 4. Was the input file name transformed in step 2 and/or step 3?

Yes Search ends. The transformed file name is
the mapped file name to look for.

No Search ends. The input file name is the
mapped file name to look for.

Using Srubuild
How SRU File Name Map ping Works

37

Examples of Use The following scenarios describe the various development
environments and what the user must do to run emulation.

Scenario 1

Software development and debug are performed on the same host;
source and symbol files are not moved.

1. The user compiles/links program on local HP 64000-UX
host.

2. The user starts an emulation session. The user will see and
reference the original file names. Files can be referenced
by basename, relative path (must be in the correct
directory) or absolute path. No mapping of file names is
required to access source and/or symbol files.

Scenario 2

Software development and debug are performed on the same host;
source and symbol files are moved to another directory.

1. The user compiles/links program on local HP 64000-UX
host.

2. The user moves all source and symbol file(s) to a different
directory (ie: /test).

3. The user creates a file name translation table so that
source and symbol files will be accessed in test. For
example, if the original files were located in the directory
/users/me, the file name translation table could be created
with the following commands:

srubuild -ln /test/glomp.X | mapfn -p’/users/me/* /test/*’
/test/glomp.MP

The srubuild command will print out a list of file names
appearing within the OMF file and the mapfn command
will translate this list into a list of file name pairs, with the
original file name first and the mapped file name second.

Alternatively, the user defines a directory search path
using the environment variable HP64_DEBUG_PATH.

Using Srubuild
How SRU File Name Map ping Works

38

For example, if the executable was originally created in
directory /users/me, and all source and symbol files are
now located in the subdirectories srcdir1 and srcdir2:

HP64_DEBUG_PATH= /test/srcdir1:/test/srcdir2

4. The user starts an emulation session. The user will see the
original file names of /users/me. The user can reference
files with relative or absolute paths under /users/me; files
cannot be referenced with absolute paths under /test. The
file name translation table and/or the
HP64_DEBUG_PATH environment variable will force
emulation to access the correct source and symbol files
under /test.

Scenario 3

Software development and debug are performed on different hosts;
HP 64000 format absolute files are created; source and symbol files
are transferred to the debug host (original pathnames may or may
not be retained).

1. The user compiles/links program on the remote host.

2. The user moves all source and symbol file(s) from the
remote host to the local HP 64000-UX host.

3. If the pathnames are the same in both lists, the user simply
starts an emulation session. Files can be referenced by
basename, relative path (must be in the correct directory)
or absolute path. No mapping of file names is required to
access source and/or symbol files.

4. If the original pathnames are not retained, the user creates
a file name translation table and/or defines a directory
search path as described above.

Using Srubuild
How SRU File Name Map ping Works

39

5. The user starts an emulation session. The user will see the
original file names. The user can reference files by original
relative or absolute paths; files cannot be referenced using
absolute paths on the local system. The file name
translation table and/or the HP64_DEBUG_PATH
environment variable will force emulation to access the
correct source and symbol files on the local system.

Scenario 4

Software development and debug are performed on different Sun
hosts; source and symbol files are remotely accessed using RFA
(original pathnames are not retained).

1. The user compiles/links program on a remote host.

2. The user logs in to HP 64000-UX host and establishes a
netunam connection back to the remote development host.

3. The user creates a file name translation table. For
example, if the name of the remote system is remotesys, a
file name translation table could be created in the user’s
home directory with a single wildcard pattern:

echo "/* /net/remotesys/*" $HOME/.mapfile.MP

Alternatively, the user defines a directory search path
using the environment variable HP64_DEBUG_PATH.
For example, if all source and symbol files are located in
the subdirectories srcdir1 and srcdir2:

 HP64_DEBUG_PATH= /net/remotesys/users/me/srcdir1:
/net/remotesys/users/me/srcdir2

4. The user starts an emulation session. The user will see the
original file names without /net/remotesys. Files can be
referenced by original, relative or absolute paths; files
cannot be referenced by absolute paths beginning with
/net/remotesys/.... . The file name translation table and/or
the HP64_DEBUG_PATH environment variable will
force emulation to access the correct source and symbol
files under /net/remotesys/users/me on the remote system.

Using Srubuild
How SRU File Name Map ping Works

40

Scenario 5

Software development and debug are performed on different hosts;
source and symbol files are remotely accessed using NFS (original
pathnames may or may not be retained).

1. The user compiles/links program on a remote host.

2. The user logs in to 64000-UX host and has access to
remote files using NFS set up by the system administrator.

3. If the original pathnames are retained, the user simply
starts an emulation session. Files can be referenced by
basename, relative path (must be in the correct directory)
or absolute path. No mapping of file names is required to
access source and/or symbol files.

4. If the original pathnames are not retained, the user creates
a file name translation table or defines a directory search
path as described above.

5. The user starts an emulation session. The user will see the
original file names. Files can be referenced by original
relative or absolute paths; files cannot be referenced by
their alternate pathnames. The file name translation table
and/or the HP64_DEBUG_PATH environment variable
will force emulation to access the correct source and
symbol files on the NFS mounted file system.

Note NFS products on VAX computers vary. VAX source files will need
to be converted to HP ASCII for successful emulation.

Using Srubuild
How SRU File Name Map ping Works

41

Messages
Generated By SRU

Error Messages "Absolute file < file name> is newer than .GY file."

The absolute file has been modified since the SRU database files
were built.

What might have gotten you there:

The modification date associated with your absolute file
became newer than the dates on the SRU database files.

What to do:

Rebuild the SRU database files.

"ABSTXT not found"

What might have gotten you there:

Loading an OMF386 file that has no absolute data.

What to do:

No absolute data can be loaded into memory since there is
none in the file.

"Address error: < explanation> "

Internal software error.

What might have gotten you there:

Users should not see this message. This implies a defect in
the database software. Please try to remember and/or
reproduce the steps you used to produce the problem.

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

Using Srubuild
Messages Generated By SRU

42

"Ambiguous name: < symbol name> "

More than one symbol referred to in the absolute file is named
< symbol name> .

What might have gotten you there:

Using duplicate symbol names for symbols.

What to do:

Rename the symbols that have duplicate names.

"Bad name passed to database (< name>)"

A call was made to the database with incorrect parameter data.

What might have gotten you there:

Users should not see this message. This implies a defect in
the database software. Please try to remember and/or
reproduce the steps you used to produce the problem.

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

"Bad processor id in < file name> : < processor-id name> "

A processor id read from the absolute file cannot be handled by the
version of SRU database software that you are using.

What might have gotten you there:

Reference to a absolute file that is not the correct format
for the processor tool you are trying to use.

What to do:

Reference (or create) a different absolute file.

"Bad query made to database (< function name>)"

A call was made to the database with insufficient data or it was
made at a time when the database was not set up for the call.

What might have gotten you there:

Users should not see this message. This implies a defect in
the database software. Please try to remember and/or
reproduce the steps you used to produce the problem.

Using Srubuild
Messages Generated By SRU

43

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

"Builder cannot read < file name> "

The software needed to read the absolute file < file name> is not
part of the SRU database software linked into your product.

What might have gotten you there:

You are using the incorrect HP product to handle your
absolute file.

What to do:

Obtain the correct HP product.

"Cannot build database: < .GY file name> "

The global symbol information associated with an absolute file
cannot be built.

What might have gotten you there:

At the time that you were trying to build a database, there
was another process also trying to build the database. This
other process failed in its build and your process detected
this.

What to do:

Query the other process to see why the build failed or retry
the build in your process to find out why it fails.

"Database < file name> cannot be used"

The .GY file for < file name> had inconsistent data within it as
compared to the information within the absolute file and therefore,
the .GY file cannot be used.

What might have gotten you there:

Your absolute file might have been recompiled with a
compiler for a different processor than it was compiled for
when the .GY database file was generated.

Or the global database (.GY) may have been built for one
product with a older version of the data base software than
the version that the product you are trying to use has

Using Srubuild
Messages Generated By SRU

44

linked in. This will not usually be a problem, but it is
possible for HP tools to exist that create/use incompatible
data bases.

On initial release of the database software, all .GY’s will
be compatible for the same processor file formats. It is
possible that future releases of the database software will
result in incompatible databases among products and
processor file formats.

What to do:

Regenerate the .GY file using the srubuild command (and
the -p option) or regenerate it using the consumer tool
(e.g. emulation).

"DEBTXT not found"

What might have gotten you there:

Loading an OMF386 file that has no debug information.

What to do:

You will have no symbols available until you load a file
that has symbols (in a DEBTXT section).

"< file name> : absolute file is already open"

< file name> has already been opened by the SRU software (a
database may only be opened once per database session).

What might have gotten you there:

Users should not see this message. This implies a defect in
the database software. The database software should
prevent multiple opens on the same absolute. Please try to
remember and/or reproduce the steps you used to produce
the problem.

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

Using Srubuild
Messages Generated By SRU

45

"< file name> : < strerror() explanation of problem> " - An I/O
error was detected.

What might have gotten you there:

You were trying to access a file that is not
readable/writable or does not exist or has incorrect
permissions.

What to do:

Check file names, file permissions, etc.

"< file name> : unexpected end of file"

I/O error when reading < file name> .

What might have gotten you there:

Refer to UNIX man pages read(2) and write(2)

What to do:

Check the permissions on your files and their contextual
validity. Perhaps regenerate files. Refer to UNIX man
pages read(2) and write(2).

"Global symbols not found"

What might have gotten you there:

Making a symbol-to-address request when there is no
symbol database, e.g. "display memory MY_SYMBOL".

What to do:

Load an absolute that contains symbols or don’t try to use
symbol names on the command line.

"Incorrect abs/sym mode when reopening file"

Internal software error.

What might have gotten you there:

Please try to remember and/or reproduce the steps you
used to produce the problem.

What to do:

Contact your nearest HP representative.

Using Srubuild
Messages Generated By SRU

46

"Incorrect file format in < file name> "

The reader for an absolute file detected an error in the absolute file
during reading.

What might have gotten you there:

An absolute file was incorrectly modified and no longer
meets the format specifications for its format.

What to do:

Regenerate the absolute file or refer to a different
absolute file.

"Internal error in < function name> " - Database software problem.

What might have gotten you there:

Users should never see this error message. This occurs
when the software detects an unrecoverable fault
condition. We can’t predict what might get you there since
it should not be possible to get this message. Please try to
remember and/or reproduce the steps you used to produce
the problem.

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

"MMU Info not found"

What might have gotten you there:

Loading an OMF386 file with no absolute data or no
Global Descriptor Table/Local Descriptor Table
(GDT/LDT) information.

What to do:

All addresses will be interpreted as "Real Mode" addresses.
If the file was supposed to be a "Protected Mode" file, it is
possible that an error was made during the build phase.
HP consumers of OMF386 rely on the presence of
GDT/LDT information in the bootloadable file so the
absolute file must be built with this information.

Using Srubuild
Messages Generated By SRU

47

"No absolute file: < file name> "

The absolute file < file name> does not exist.

What might have gotten you there:

Reference to an incorrect absolute file name or to an
absolute file that was deleted or to an absolute file with no
read permission.

What to do:

Regenerate your absolute file or change its permissions.

"No absolute file, No database: < file name> "

Both the absolute file and the .GY SRU database file for < file
name> do not exist.

What might have gotten you there:

Use of an incorrect absolute file name.

What to do:

Refer to a different absolute file name or regenerate your
absolute file.

"No database: < file name> "

The SRU database file < file name> does not exist.

What might have gotten you there:

In an attempt to read information from a previous .GY
file, the file was found to not exist.

What to do:

Regenerate the .GY file using the srubuild command or
from within the HP product.

"No symbol file: < file name> "

The .GY SRU database file is corrupt or a HP 64000 format
symbol file (.L or .A file) could not be found.

What might have gotten you there:

The .GY file in your directory is corrupt or a HP 64000
format .L or .A file was deleted.

Using Srubuild
Messages Generated By SRU

48

What to do:

Regenerate the .GY file using the srubuild command or
from within the HP product OR regenerate the
appropriate .L or .A file.

"Reader called with wrong request: < function name> "

Internal database software error.

What might have gotten you there:

Users should not see this message. This implies a defect in
the database software. Please try to remember and/or
reproduce the steps you used to produce the problem.

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

"Reader error detected in < function name> "

The database builder detected an error in the data passed back by
the file format reader software.

What might have gotten you there:

Users should not see this message. This implies a defect in
the database software. Please try to remember and/or
reproduce the steps you used to produce the problem.

What to do:

Copy the exact text of the message and contact your
nearest HP representative.

"Segment not found"

What might have gotten you there:

Asking for the segment of a symbol when that symbol does
not contain the segment, e.g. "display memory file.c:
segment DATA". If that file does not contain any memory
in a segment named "DATA", then this message will be
seen.

What to do:

Don’t ask for segments that are not associated with the
symbol.

Using Srubuild
Messages Generated By SRU

49

"Source reference not found"

What might have gotten you there:

Requesting the address of a source line number that does
not exist, e.g. "display memory file.c: Line 87".

What to do:

Display symbols in the file to see which line numbers exist,
e.g. "display local_symbols_in file.c:". Many language
systems do not generate source references for every source
line, only source lines that generate code.

"Subtree < .LY file name> cannot be accessed."

The .LY with the local symbol information cannot be built (nor
accessed) OR its information is out of date with respect to the
absolute file.

What might have gotten you there:

The SRU database files in the .Ys directory may have been
deleted or permissions modified so that the database files
cannot be correctly accessed. References to symbols that
are not present in the absolute file might also generate this
error. For example, library modules are often present in
the absolute code, but symbols are usually stripped. If you
use a library module called "math.c" and enter the
command "display local_symbols_in math.c:", you may see
this message.

What to do:

You will be unable to refer to symbols in the module.

"Symbol not found" - Information for a symbol was not found in the
database.

What might have gotten you there:

Symbol was referenced whose information is not contained
within the absolute file.

What to do:

Check the symbol name or the valid symbols in your
absolute file.

Using Srubuild
Messages Generated By SRU

50

"Transfer address not found"

What might have gotten you there:

"run from transfer_address" when there is no transfer
address. Some file formats (e.g. OMF386) do not contain a
transfer address. Most language systems that support the
concept of a transfer address require the user to explicitly
specify this address.

What to do:

Check your language tools to see what you must do to
ensure that there is a transfer address in the absolute file.

"Unrecognized file type - < file name> "

The file < file name> cannot be handled by the version of SRU
database software linked into your product.

What might have gotten you there:

The absolute file you are loading in is of a format that
cannot be identified by the SRU database software.

What to do:

Use a different absolute file or a different HP tool.

"Write error: exceeded allotted capacity of file < file name> "

The attempt to write to a file exceeded the allotted capacity of the
file either because of the current ulimit() or because the physical
end of the medium was detected.

What might have gotten you there:

The current ulimit() is too low or you need a bigger disk.

What to do:

Reset ulimit(); install a larger disk.

Using Srubuild
Messages Generated By SRU

51

IEEE-695 Specific
Error Messages

"File error: An address is not in the range of a BB11"

A BB11 is a part of an IEEE-695 file that describes the address
ranges of a module. The BB11 must describe all the address ranges
of all the symbols that appear in a module. It is an error for an
IEEE-695 file to contain a symbol whose address is not
encompased by an address range in the BB11 associated with the
module.

What might have gotten you there:

This message indicates a defect in the tool that produced
the IEEE-695 file. In most cases fixing this defect will be
beyond the users control.

What to do:

Contact your nearest HP representative. If the language
tool that produced the IEEE-695 file was not HP, you may
also need to contact their representative.

"File error: No BB11 found in module < module name> ’s BB10
scope"

A module did not have a BB11 part. The BB11 part describes the
address ranges of the module. It is an error for this part of the file
to be absent.

What might have gotten you there:

This message indicates a defect in the tool that produced
the IEEE-695 file. In most cases fixing this defect will be
beyond the users control.

What to do:

Contact your nearest HP representative. If the language
tool that produced the IEEE-695 file was not HP, you may
also need to contact their representative.

"File error: Type (TY) record has invalid index"

A type record is used to describe a user defined type such as a
structure. Each type record contains an index so that data elements
can simply refer to the type by its index. Some index numbers are
reserved for pre-defined types. It is an error for an IEEE-695 file to
contain a type record that uses one of these reserved indexes.

Using Srubuild
Messages Generated By SRU

52

What might have gotten you there:

This message indicates a defect in the tool that produced
the IEEE-695 file. In most cases fixing this defect will be
beyond the users control.

What to do:

Contact your nearest HP representative. If the language
tool that produced the IEEE-695 file was not HP, you may
also need to contact their representative.

"Form C LR/LT record in data part"

An LR or LT record can be used to specify data to be loaded into
memory. There are three forms of an LR or LT record. Form A
consists of an array of data to be loaded in memory. Form B and
Form C are used for relocation. A Form B LR or LT record can
safely be ignored, but a Form C record in an absolute file indicates
a fatal error. It is pointless to continue to attempt to read the data
part after encountering a Form C LR or LT record.

What might have gotten you there:

This message indicates a defect in the tool that produced
the IEEE-695 file. In most cases fixing this defect will be
beyond the users control.

What to do:

Contact your nearest HP representative. If the language
tool that produced the IEEE-695 file was not HP, you may
also need to contact their representative.

"Module < module name> could not be read"

What might have gotten you there:

The IEEE-695 file was modified between the time it was
opened and the time of the access that produced this
message.

What to do:

Rebuild the IEEE-695 file and the SRU database, if the
error persists contact your nearest HP representative.

Using Srubuild
Messages Generated By SRU

53

Warning Messages

Note Warnings that are generated by SRU are written to files to be
referenced later. Warnings will usually be one line long. However,
if a warning spans two lines, it will be followed by a blank line in
the file to enhance readability.

"Adjacent source references in < file> at line < # > "

If an absolute contains source references that are adjacent
(consecutive when sorted by line and column) aand have the same
address, they are considered to be the same source reference and
their source ranges are merged.

"Identical source references in < file> at line < # > "

If an absolute contains more than one source reference for a given
line and column in a given module, those source references are
considered to be identical. Identical source references are merged,
that is; only one source reference will appear in the database but it
will have multiple code ranges, one for each occurrence of that
source reference in the absolute file.

"No symbols in < file> "

The builder attempted to build a subtree, but there were no
symbols for that subtree. An empty subtree was created and there
will be no further attempt to build this subtree until the entire
database is rebuilt (that is; the next execution of srubuild).

"Symbol < name1> was renamed to < name2> to avoid name
conflict"

Generated when symbols of the same type with the same name are
detected in an absolute. They will be renamed by the SRU database
software and the warnings generated will tell you the new name of
the symbol. You should refer to the symbols using the new name
assigned by SRU when using the HP product in order for the SRU
database software to be able to derive information about the
symbol.

Using Srubuild
Messages Generated By SRU

54

IEEE-695 Specific
Warning Messages

"HP/IEEE f ile offset (ASWx) was null. Part access not possible"

The IEEE-695 file consists of several parts, each with a set of
related information. The first part of the file contains an index
which specifies the locations of all the other parts. The ASWx
record is used to specify the location of each part; if the ASWx
record is null, the corresponding part of the file is missing or
inaccessable.

What might have gotten you there:

The IEEE-695 file does not have an ASW record
specifying the location of the debug part. Some language
tools require the user to use a "debug" option on the
command line in order to enable the generation of all the
parts of the IEEE-695 file.

What to do:

Rebuild your program using the "debug" option on all
tools involved in translating and linking your code. If that
fails, contact your nearest HP representative. If the
language tool that produced the IEEE-695 file was not
HP, you may also need to contact their representative.

"Section with address < hex address> was renamed < section
name> "

The IEEE-695 file contains records for describing memory address
regions, called sections, including the name of the sections. These
section names are required for the incremental building feature of
SRU. If section names are omitted in the IEEE-695 file, a name
will be created by SRU.

Using Srubuild
Messages Generated By SRU

55

What might have gotten you there:

This message indicates that two sections in the IEEE-695
file were given the same name. This will most likely occur
when absolute sections have been given a name consisting
of a single blank i.e. " ".

What to do:

You may use the absolute file and SRU symbol database.
The message is intended only to make you aware of the
section name that will be used. If you are concerned,
contact your nearest HP representative. If the language
tool that produced the IEEE-695 file was not HP, you
may also need to contact their representative.

"No source line information was found for module name"

The IEEE-695 file consists of several parts, each with a set of
related information. The debug part contains symbol information
for the program. Each module may have a set of language symbols
and a set of source references.

What might have gotten you there:

A module in the IEEE-695 file does not contain source
reference information.

What to do:

Review the documentation for the language tools that
produced the IEEE-695 file. Some tools may require a
special "debug" option to produce source references.
Rebuild your program using the "debug" option on all
tools involved in translating and linking your code. If that
fails, contact your nearest HP representative. If the
language tool that produced the IEEE-695 file was not
HP, you may also need to contact their representative.

Using Srubuild
Messages Generated By SRU

56

"Form B LR/LT record in data part"

An LR or LT record can be used to specify data to be loaded into
memory. There are three forms of an LR or LT record. Form A
consists of an array of data to be loaded in memory. Form B and
Form C are used for relocation. A Form B LR or LT record can
safely be ignored, but a Form C record in an absolute file indicates
a fatal error. It is pointless to continue to attempt to read the data
part after encountering a Form C LR or LT record.

What might have gotten you there:

This message indicates a defect in the tool that produced
the IEEE-695 file. In most cases fixing this defect will be
beyond the users control.

What to do:

If you are concerned, contact your nearest HP
representative. If the language tool that produced the
IEEE-695 file was not HP, you may also need to contact
their representative.

Using Srubuild
Messages Generated By SRU

57

How To Use The
Srubuild
Command

Using the srubuild command requires the following syntax:

srubuild [options] filename [buildf ile...]

Where:

filename is the path name (full or relative to the current
directory) of the program (i.e. absolute file) whose
symbolic database is to be built. The files created for the
database will be placed in the subdirectory filename.Ys
located in the same directory as filename.

Options are:

-a addresstype srubuild can usually determine the correct
address-driver to use just by looking at the
absolute file. However, in the event the
absolute file does not contain the necessary
information, this option can be used to
instruct srubuild to use a specific
address-driver when building the database.
To get a listing of valid address types, enter
an illegal value in the command; for example
type in the command srubuild -a XXX.

-l causes a list of the source file names whose
source files were used to create filename to
be copied to stdout (standard output file).
This option is used to generate a list of
source files that may need to be transferred
from a remote system that the absolute was
linked on, to the system which needs access
to the source files (for displaying
source-references). By default no list is
produced.

-m messagefile specifies the name of the file in which you
want to append error and warning messages
that may be produced during the building of

Using Srubuild
How To Use The Srubuild Command

58

the database. If neither the -m or -q options
are specified, the default message file
filename.Ys/bldmessages.WY will be used.

Note that messages generated during
subsequent building of local symbols, by
either srubuild or HP 64000-UX products
that perform "on demand" building, will
continue to use the same message file that
was in effect when the global symbols were
built.

-p product specifies the product that will be using the
database that is built. If this option is not
specified, srubuild will build the database in
a manner it selects as appropriate for the
absolute file.

-q This option may be used instead of -m to
completely suppress writing out of messages
produced during the building of the
database. If the -m option is be specified, the
-q option will be ignored.

Note that srubuild and HP 64000-UX
products that perform "on demand" building
will continue to suppress build messages
during all subsequent local symbol builds
until the global symbols are rebuilt again.

-v prints the results of each of the global and
local builds to the stderr (standard error file).

By default, the entire database is built. This means that data on all
source files will be created. If you are only interested in a subset of
the source files, however, you can reduce the time and disk space
required by using the following options:

-g Only global symbols will be built; this means
that no local symbols will be built at this
time. However, local symbols will be

Using Srubuild
How To Use The Srubuild Command

59

available because the local symbols will be
built "on demand" when necessary.

This means that you can determine what
subset of source files you are interested in
when you are in an HP 64000-UX program
instead of deciding ahead of time.

This option is ignored if either the -f option
is used or one or more buildfile arguments
are given.

-f buildfilelist allows you to specify a subset of the program
modules or source files to be processed. This
means that the database for the local
symbols defined by those program modules
or source files is created by this command;
when the local symbols are used in an
HP 64000-UX program the data does not
have to be built.

The buildfilelist consists of a number of
lines. On each line is the name of a program
module or the absolute path of a source file.
Blank and comment lines beginning with the
’# ’ character will be ignored.

-n requests srubuild to only scan the absolute
file without building the database. This
option is only useful in conjunction with the
-l option to get a list of source file names
from an absolute file without incurring the
overhead of building the database.

Using Srubuild
How To Use The Srubuild Command

60

Examples Using
Srubuild

A convenient place to invoke srubuild is within a makefile. Part of
an example makefile includes:

 CC = cc68000
 prog : program.o file1.o file2.o
 $(CC) -o prog program.0 file1.o file2.o
 srubuild prog

Sophisticated makefiles can be used to create the file list (for the -f
flag). The following rule (used to make a relocatable file from a C
source file) appends the assembly symbol file name to a file named
"interesting", for example, only when the file is updated. This
"interesting" file (file list) can then be used with the -f flag to
specify "interesting" files. When this method is used, it is necessary
to truncate this file on occasion since the "interesting" files are
likely to change over time. For example:

 CC = cc68000
 prog : program.o file1.o file2.o
 $(CC) -o prog program.o file1.o file2.o
 srubuild -f interesting prog

Using Srubuild
Examples Using Srubuild

61

62

2

Using Sruclean

What Is In This
Chapter?

The information in this chapter includes:

What Sruclean Is.

How To Use The Sruclean Command.

Examples Using Sruclean.

63

What Is Sruclean? HP 64000-UX products make use of the SRU database to get
access to symbolic information produced by HP 64000-UX (or
compatible) language systems (compilers, assemblers, and linkers).
The database is placed in a subdirectory, which has the name of the
absolute with ".Ys" appended.

The sruclean utility will remove or clean up the database that is
created for each absolute file (created either by the srubuild
command or by the HP 64000-UX products).

The directory or file arguments are interpreted as follows:

If the argument ends in ".Ys" and is a directory, only the
files in that directory will be modified as specified by the
options.

If the argument is a directory that does not end in ".Ys",
the disk will be searched starting with that directory, and
all files in subdirectories that end in .Ys will be modified
as specified by the options.

If the argument is not a directory, it is assumed to be an
absolute file, and the SRU files associated with that
absolute file will be modified as specified by the options.

You must specify at least one directory or file. If you want your
entire file system to be searched (including network mounted file
systems) use:

sruclean < options> /

Using Sruclean
What Is Sruclean?

64

How To Use The
Sruclean
Command

Using the sruclean command requires the following syntax:

sruclean [-v] [-m] [-r] [-o] [directory ...] [absolute file ...]

where:

-v Prints actions (to stderr) as they happen.
This will also print out how many bytes were
deleted from the disk (if the -r option was
used), or how many lines removed from the
"bldmessages.WY" file (if the -m option was
used).

-m Cleans up the "bldmessages.WY" file.
During srubuild or incremental builds,
information about the build is appended to
this file. Unless this option is used, the file
will grow without bounds. So, you should
consider using this in a crontab.

-r Removes all SRU files and the ".Ys"
directory. You could also use the

rm -fr < sru directory>

command, but -r is somewhat safer in that it
guarantees that only directories ending in
.Ys will be removed.

-o This will remove any obsolete SRU files.
Usually obsolete files are removed
automatically when srubuild is run. Under
certain conditions, however, they will have to
be removed with this option.

If no options are given, it is equivalent to the command:

sruclean -m -o

Using Sruclean
How To Use The Sruclean Command

65

Examples Using
Sruclean

Example 1: sruclean -r control race

This command will remove all SRU files associated with the
absolute files control and race.

Example 2: sruclean /users

This command will remove all obsolete SRU files and clean up
message files under the directory /users.

Example 3: sruclean -m *.Ys

This command will clean up the message file in all SRU directories
in the current directory.

Example 4: 0 3 * * 6 usr/hp64000/bin/sruclean /

This crontab entry will remove all obsolete SRU files and clean up
message files every week starting at 3:00 AM on Saturday.

Using Sruclean
Examples Using Sruclean

66

3

Using Sruprint

What Is In This
Chapter?

The information in this chapter includes:

What Sruprint Is.

How To Use The Sruprint Command.

Examples Using Sruprint.

67

What Is Sruprint? Sruprint is a utility that converts the contents of the SRU symbolic
database file to a readable format and causes the contents of the
file to be printed to stdout (normally your terminal unless it is
redirected to a file).

The sruprint utility will only print symbols that are already in the
database; it will not build symbols for modules that have not been
built.

How To Use The
Sruprint Command

Using the sruprint command requires the following syntax:

sruprint [options] absolutefile [< symbol> ...]

Where:

absolutefile is the absolute file built by sruprint. If
< symbol> does not follow absolutefile, the global
symbols in the absolute file will be printed.

If one or more < symbol> arguments follow the
absolutefile, they are assumed to be symbol names. This
specifies that you also want symbols that are their children
to be printed.

Options are:

-f symbolfile allows you to specify a list of symbols in a file
rather than on the command line.

The symbolfile consists of a number of lines.
On each line is the name of a symbol. Blank
and comment lines beginning with ’# ’
character will be ignored.

-g suppresses printing of the global symbols.

Using Sruprint
What Is Sruprint?

68

Examples Using
Sruprint

Example 1: sruprint myexec.X

This command only prints the global symbols associated with the
absolute file myexec.X. Global symbols include global procedure
names, global variables, and file names. When this command is
used, the listing will include the symbol name, logical address, and
the symbol’s offset from the start of the segment which contains the
symbol.

Example 2: sruprint -f my_sources myexec.X

This command prints the global symbols and children of the
sources files listed in my_sources command file.

my_sources looks like:

/users/me/controller/main.c:
/users/me/controller/sighandle.c:R/users/me/controller/except.c:
/users/projA/library/except.c:
/users/projA/library/margin.c:

Example 3: sruprint -g -f my_sources myexec.X

This command prints only the symbols that are children of the
source files listed in my_sources. See example 2 for what the
my_sources command file looks like.

Using Sruprint
Examples Using Sruprint

69

70

4

Using Sruaccess

What Is In This
Chapter?

The information in this chapter includes:

What Sruaccess Is.

How To Use The Sruaccess Command.

71

What is
Sruaccess?

Sruaccess is a utility that allows interactive examination of virtually
all data within the database.

Note
Sruaccess is an unsupported utility program. It is not part of any
Hewlett-Packard product and is provided at no cost.
Hewlett-Packard makes no warranty on its quality or fitness for a
particular purpose. However, for your convenience, its purpose
and use are described in this chapter.

Using Sruaccess
What is Sruaccess?

72

How To Use The
Sruaccess
Command

Using the sruaccess command requires the following syntax:

sruaccess [-a < addrtype>] [-f < fmt-options>] [-p < product>]
[abs-filename]

Where command line options are:

-a < addrtype> Sets the default address type to addrtype; see
the command setaddrtype for more
information.

-f < fmt-options> Sets the default print format to
< fmt-options> ; see the fmt command for
more information.

-p < product> Use the builder process that is shipped with
< product> . If this option is not specified, a
builder will be selected from available
builders on the system when an open
command is executed. See the command
prodid.

Sruaccess
Commands

The following commands are accepted by sruaccess:

absrec [startflag] If startflag is not present or if it is "F", print
the next absolute record. If startflag is "T",
get the first absolute record.

childinfo Give info about the current working
symbol’s children.

close Closes the current database.

Using Sruaccess
How To Use The Sruaccess Command

73

cd < name> and cs < name>

Change the current working symbol to the
symbol named < name>.

create < name> Create a database for the absolute file
< name>.

fmt [options] Defines the format that symbols are printed
in. Use the command with no options to get
a list of currently-supported formats.

fseg Print fsegment information for the current
symbol. An fsegment is a mechanism used
to implement incremental builds. This
command is useful to the SRU implementers
and probably to no one else.

lc [-r] [-p < pattern>] [< type>] and
ls [-r] [-p < pattern>] [< type>]

Print the current working symbol’s children,
using the format last defined with the fmt
command. The < type> of the children to
be listed can be specified.

The -r option lists the children recursively
(normally only the symbol’s immediate
children are printed).

The -p < pattern> command requests that
all children whose name matches < pattern>
(an sh(1) style wildcard string) should be
printed.

open < abs-filename> [symbolic]

Attempts to open the database associated
with the given absolute file. If a database is
already open, this will close the previous one.

Using Sruaccess
How To Use The Sruaccess Command

74

symbolic (which is either T or F) sets the
value of the symbolic parameter to sruopen
to either TRUE or FALSE. If not present
on the command line, it is set to TRUE.

procid Print the processor id associated with the
current database.

prodid < name> Set the product id to < name>.

pwd Print the name of the present working
directory.

pws Print the name of the current working
symbol.

range < start> < end> [< incr> [< type>]]

Print all symbols that are within the specified
address range. This is essentially:

 for (addr = start; addr <= end; addr+= incr)
 {
 sym addr [<type>]
 }

reopen Reopen an already open database. This
command is useful to the SRU implementers
and probably no one else.

sa Print the attributes associated with the
current working symbol. These include the
symbol type, name, address range, etc.

setaddrtype [< addrtype>]

This command affects how address are both
printed and entered. Normally, addresses are
up to 32-bits of physical address - that is; the
libaddrII ADDRATPHYSICAL type. When
this command is given, all subsequent input

Using Sruaccess
How To Use The Sruaccess Command

75

is in the ADDRAT.... type you entered. If
the specified addrtype has more than one
libaddrII element, they will be printed out
separated by colons.

When the command is given, a line will be
printed telling what each of the
colon-separated elements will be.

The command with no < addrtype> will
print a list of currently implemented
addrtypes.

sourceref < address>

Print the source reference for the specified
address.

sym < address> [< type>]

Print the symbol of < type> that most
closely encloses < address>.

xfraddr Get the transfer address.

Data-entry Formats

< address> See the command setaddrtype.

< name> This is the name of a symbol. "| " means the
root symbol. If a name does not begin with
"| ", the specification is appended to the
current working symbol to form the full
symbol name. Other than that, the format of
< name> is:

< ascii> [-< type>][| < ascii> [-< type>] ...]

Where < ascii> is the ascii portion of the
SRUNAME, and < type> , if present, is the

Using Sruaccess
How To Use The Sruaccess Command

76

type portion of the SRUNAME. See below
for what < type> looks like.

< type> < type> is one of the following strings:

high, low, fsegment, static, sourceref,
procedure, filename, module, task, special,
alltype. If < type> is not specified, it will
default to alltype.

Interactive Versus
Batch Mode

The sruaccess utility can be operated interactively or in batch
mode. To use batch mode, simply create a file with the commands
of your choice and use the shell to direct the file into sruaccess, for
example:

sruaccess < mycommands

Operation of the utility is slightly different in interactive and batch
modes. A command line prompt is printed only in the interactive
mode. In the interactive mode, commands may be abbreviated to
any unique prefix. In batch mode all commands must be
completely specified. The interactive mode will return to the
command prompt on input of control-C. Both modes will exit on
end of file.

Processor ID Names Refer to the manual page given in appendix D for the list of
processor ID names.

Address Types Refer to the manual page given in appendix D for the list of
supported address types.

Using Sruaccess
How To Use The Sruaccess Command

77

78

A

Finding More Information

The Symbolic Retrieval Utilities software includes on-line "man"
page information on the various related commands and files. This
information is accessed by using the UNIX man command.

Because the "man" page files are installed under the $HP64000
directory, you must first modify the MANPATH environment
variable. When using "sh" or "ksh":

$ MANPATH=$MANPATH:$HP64000/man:\
> $HP64000/contrib/man; export MANPATH

Or, when using "csh":

$ setenv MANPATH $MANPATH:$HP64000/man:\
> $HP64000/contrib/man

Once the MANPATH environement variable is set, you can access
the on-line "man" page information. For example:

$ man srubuild <RETURN>

On-line "man" pages are included for the following commands:

sruaccess
srubuild
sruclean
sruprint
sruxlate

79

Finding More Information

80

Index

A AxDB and Emulators With SRU 12

E EDB/SRU compatibility 12
error messages

IEEE-695 specific 52
SRU 42

H -h option 12
HP-AxLS and SRU 12

M man pages 79 - 101
messages

error, IEEE-695 specific 52
SRU 42 - 57
warning, SRU 54

O option, -h 12

P procspecial 16
procspecial symbol

DATARANGE 17
ENTRY 16
ENTRY0.. 16
EXIT 16
EXIT0.. 16
TEXTRANGE 16

S SRU
--EXPR--, values referred to 25
arrangement of symbols 13
entering symbols using --EXPR-- 24
file mapping 33 - 41
file mapping, advantages 33
file name mapping, examples of use 38
file name mapping, HP64_DEBUG_PATH Variable 34
file name mapping, using file name translation table 35
file names 30 - 32
file names, search algorithms for locating file name symbols 31

81

SRU (continued)
full path of a symbol 14
highlevel/lowlevel symbols, selecting 29
HP64KSYMBPATH and cws 27
language dependencies 15
language sections versus segments 20
maximum symbol length 24
non UNIX file names 31
printing of symbols in trace lists 28
procedure special symbols 16, 28
renaming of symbols 24
segment symbols 20, 28
segment symbols, linker’s view 22
segment symbols, physical view 22
segment symbols, symbol tree 21
symbol attributes 17
symbol levels, highlevel 19
symbol levels, lowlevel 19
symbol types 18
symbol types, filename 18
symbol types, fsegment 19
symbol types, module 18
symbol types, procedure 18
symbol types, procspecial 19
symbol types, static 18
symbol types, task 19
symbols in 13 - 29
UNIX file names 30
unnamed block symbols 23

SRU and HP-AxLS 12
SRU error messages 42
SRU messages 42 - 57
SRU warning messages 54
SRU/EDB compatibility 12
sruaccess

address types 77
data entry formats 76
finding more information 79
interactive versus batch mode 77
processor id names 77
what it is 72

Index

82

sruaccess command 71 - 78
how to use 73 - 77
options 73
syntax 73

sruaccess commands 73
srubuild command 9 - 61

examples using 61
how to use 58 - 60
options 58
syntax 58

srubuild utility, what it does 10
srubuild, finding more information 79
srubuild, incremental builds 10
srubuild, partial builds 11
srubuild, what it is 10 - 11
sruclean command 63 - 66

examples using 66
how to use 65
options 65
syntax 65

sruclean, finding more information 79
sruclean, what it is 64
sruprint command 67 - 70

examples using 69
finding more information 79
how to use 68
options 68

sruprint, what it is 68

U using the sruaccess command 71 - 78
using the srubuild command 9 - 61
using the sruclean command 63 - 66
using the sruprint command 67 - 70

W warning messages, SRU 54

Index

83

84

Certification and
Warranty

Certification Hewlett-Packard Company certifies that this product met its
published specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements
are traceable to the United States National Bureau of Standards, to
the extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Warranty This Hewlett-Packard system product is warranted against defects
in materials and workmanship for a period of 90 days from date of
installation. During the warranty period, HP will, at its option,
either repair or replace products which prove to be defective.

Warranty service of this product will be performed at Buyer’s
facility at no charge within HP service travel areas. Outside HP
service travel areas, warranty service will be performed at Buyer’s
facility only upon HP’s prior agreement and Buyer shall pay HP’s
round trip travel expenses. In all other cases, products must be
returned to a service facility designated by HP.

For products returned to HP for warranty service, Buyer shall
prepay shipping charges to HP and HP shall pay shipping charges
to return the product to Buyer. However, Buyer shall pay all
shipping charges, duties, and taxes for products returned to HP
from another country. HP warrants that its software and firmware
designated by HP for use with an instrument will execute its
programming instructions when properly installed on that
instrument. HP does not warrant that the operation of the
instrument, or software, or firmware will be uninterrupted or error
free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse,

operation outside of the environment specifications for the
product, or improper site preparation or maintenance.

No other warranty is expressed or implied. HP specifically
disclaims the implied warranties of merchantability and fitness for
a particular purpose.

Exclusive Remedies

The remedies provided herein are buyer’s sole and exclusive
remedies. HP shall not be liable for any direct, indirect, special,
incidental, or consequential damages, whether based on contract,
tort, or any other legal theory.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

	What are Symbolic Retrieval Utilities (SRU)
	In This Book
	Contents
	Using Srubuild
	Using Sruclean
	Using Sruprint
	Using Sruaccess
	Finding More Information
	Index
	Certification and Warranty

