
HP 64700-Series Emulators

PC Interface

Reference

HP Part No. 6 4740-97005
Printed in U.S.A.
May, 1990

Edition 3

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1987, 1988, 1990 Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

IBM and PC AT are registered trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

UNIX is a registered trademark of AT&T.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

Printing History

New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

A software code may be printed before the date; this indicates the
version level of the software product at the time the manual was
issued. Many product updates and fixes do not require manual
changes, and manual corrections may be done without
accompanying product changes. Therefore, do not expect a
one-to-one correspondence between product updates and manual
revisions.

Edition 1 64740-90906, November 1987 E1187

Edition 2 64740-90906, September 1988 E0988

Edition 3 64740-97005, May 1990

Using this Manual

Topics Covered This manual, the HP 64700 Series Emulators PC Interface User’s
Reference, explains how the PC Interface operates on HP Vectra
and IBM compatible PCs. It covers installation and use of the PC
Interface, including:

An Introduction - Chapter 1

Installation - Chapter 2

Getting Started - Chapter 3

Using the Windows - Chapter 4

Using System Features - Chapter 5

Controlling Emulators - Chapter 6

Creating and using Command Files - Chapter 7

Creating Function Key Macros - Chapter 8

Syntax Summary - Appendix A

The index contains terms and corresponding page numbers so that
you can locate information quickly.

The Analyzer PC Interface User’s Guide covers PC Interface analysis
capabilities.

Understanding
HP 64700 Terms

If you do not understand a term in this manual, refer to the
HP 64700 Emulators Glossary Of Terms.

Using the Manuals Use this manual with your HP 64700-Series Emulator PC Interface
User’s Guide. That manual contains information about operating
the emulator specific PC Interface for that emulator.

Refer to the HP 64700-Series Manual Maps for directions for
getting started with the appropriate manuals, the various
interfaces, and with using your emulator/analyzer. You can find the
maps in the package marked Read Me First.

Contents

1 Introducing the PC Interface

Features of the PC Interface . 1-1
Where to Find More Information 1-3

About the HP 64700-Series Products 1-3
About Configurations . 1-3
About MS-DOS/Vectra . 1-3
About HP Support Services . 1-3
About Analysis . 1-3

2 Installation and Setup

Topics Covered . 2-1
Before You Install the PC Interface 2-1
Install the PC Interface . 2-2
Define the Emulator for the PC Interface 2-3

Define Shell Environment Variable Space 2-6
Define Break Checking Variable 2-7

If the Baud Rate is < = 1200 . 2-7
What to Do If Problems Occur 2-7

Problems with Coresident Programs 2-8
Memory Use . 2-8
Interrupt Service Routines 2-8
Troubleshooting . 2-8

If All Else Fails . 2-9

3 Getting Started

Topics Covered . 3-1
Before Getting Started . 3-1

Conventions . 3-2
What We Mean When We Say “Form” 3-2

Create a Configuration File . 3-2
Function of this Configuration File 3-3

Start the PC Interface . 3-3
If You Didn’t Include the /m Option 3-5
Options You Can Use . 3-6

Contents-1

Understand the PC Interface Screen 3-7
Use Keys to Perform Various Functions 3-8

Escape Key Actions . 3-9
Use the PC Interface Commands 3-10
Follow a Tutorial to Learn the PC Interface 3-12

Access the Host Computer System 3-13
Learn How to Create a Command File 3-14
Create a User-defined Window 3-22
Load Data Into Another Window 3-25
Learning Basic Emulation Features 3-26
Execute the Command File 3-27

Exit the PC Interface . 3-27

4 Using Windows

Topics Covered . 4-1
Window Functions and Features 4-1

Functions of the System Windows 4-2
User-defined Windows . 4-4
Window Attributes . 4-4
Window Features . 4-5

Accessing the Window Functions 4-5
Open a Window . 4-5
How Many Windows You Can Create 4-7
Delete a User-defined Window 4-7
View a Window . 4-8
Hide a Window . 4-8
Erase a Window . 4-8
Activate a Window . 4-9
Load a Window . 4-9
Zoom a Window . 4-9
Store a Window . 4-10
Search a Window . 4-10
Summary of Window Control Characters 4-11

Window Characteristics and Parameters 4-11
The Cursor Location is Retained 4-11
About the Window Characteristics 4-11

Color . 4-12
Size . 4-12
Name . 4-12
Autoclear . 4-13
Buffer Size . 4-13

2-Contents

Display . 4-13
Scroll . 4-14

Window Tutorial . 4-14
 Delete the Window . 4-16

How to Use the System Terminal Window 4-17
Commands You Shouldn’t Execute 4-19
Specifics About the System Terminal Window 4-20

Printing Window Contents . 4-20

5 Using System Features

Topics Covered . 5-1
How to Execute System Level Commands 5-1

Execute a Single System Level Command 5-1
Execute multiple System Level Commands 5-3

Log Commands and Output to a File 5-4
Load and Display Symbols . 5-4

Details About Symbols . 5-5
Global Symbols . 5-5
Local Symbols . 5-6

Symbols defined as local and global 5-7
Emulator Symbol Capabilities 5-8

Global Symbol Options . 5-8
Local Symbol Options . 5-8

How to Store the PC Interface Configuration 5-9
PC Interface Configuration File Details 5-9
Window Configuration Information 5-10
Emulator-Specific Information 5-11

How to Load the PC Interface Configuration 5-13
Example Configuration Files 5-13

How to Exit the PC Interface 5-15

6 Controlling Emulators

Topics Covered . 6-1
Modify the General Emulator Configuration 6-2
Microprocessor Execution . 6-2

Run the Microprocessor . 6-2
Step the Microprocessor . 6-4
Break the Microprocessor . 6-5
Reset the Microprocessor . 6-5
Display I/O Port Addresses . 6-6
Modify I/O Port Addresses . 6-7

Contents-3

Start the Emulator When CMB Events Occur 6-8
The Memory Mapper . 6-9

Modify the Memory Mapper 6-9
Storing the Memory Map 6-12

Reset the Memory Map . 6-12
Controlling Memory . 6-13

Display Memory . 6-13
Modify Memory . 6-14
Store Memory to a File . 6-15
Load Memory from a File . 6-15
Copy Memory . 6-16
Find a Data Pattern in Memory 6-17
Entering Memory Ranges . 6-17

Break Events . 6-18
Configure Break Events . 6-19
Control Software Breakpoints 6-19
Display Software Breakpoints 6-20
Add Software Breakpoints 6-20
Remove Software Breakpoints 6-21
Set Software Breakpoints . 6-22
Clear Software Breakpoints 6-23

Emulator Registers . 6-24
Display Registers . 6-24
Modify Registers . 6-24

Coverage Analysis . 6-25
Reset the Coverage Hardware 6-26
Run the Processor . 6-26
Check an Address Range . 6-26
Make a Percentage Measurement 6-27

Using the Emulator While Connected to a Target System . . . 6-27
Where to Find More Information 6-28

7 Creating and Using Command Files

Topics Covered . 7-1
What Are Command Files? . 7-1
What You Can Do with Command Files 7-2

Commands Not to Include . 7-2
Command File Specifics . 7-3
Nesting Command Files . 7-3

How to Create Command Files 7-3
Using an Editor . 7-3

4-Contents

Using the System Log Feature 7-4
How to Use Command Files . 7-7

8 Function Key Macros

Introduction . 8-1
How to Define Function Key Macros 8-1

Creating a Macro . 8-1
Nesting and Chaining Macros 8-3
Keystroke Representations . 8-3
Editing Macros . 8-4
Organizing Your Macros . 8-4
Saving/Restoring Macros . 8-5
Predefined Macros . 8-5

How to Use Function Key Macros 8-5
Examples . 8-6

A PC Interface Syntax Summary

Introduction . A-1
Conventions Used . A-1

Window Syntax Summary . A-2
System Syntax Summary . A-3
Registers Syntax Summary . A-4
Processor Syntax Summary . A-5
Breakpoints Syntax Summary A-6
Memory Syntax Summary . A-7
Configuration Syntax Summary A-8
Analysis Syntax Summary . A-9
Expressions . A-10

Values . A-10
Operators . A-12
Using Expressions in Addressing and
 Analyzer Expressions A-16

Analyzer Pattern Expressions A-17
Syntax . A-17
Description . A-18

Pattern Labels and Ranges A-18
Sets . A-18
Intraset Operations . A-18
Interset Operations . A-19
Combination . A-19
DeMorgan’s Theorem and Complex Expressions A-20

Contents-5

Illustrations

Figure 1-1. Where the PC Interface Operates 1-2
Figure 2-1. How the PC Interface locates an Emulator 2-3
Figure 2-2. Example Emulator Device Table File 2-5
Figure 2-3. How the PC Interface recognizes Emulators 2-6
Figure 3-1. Example Form (opening a Window) 3-2
Figure 3-2. Example Configuration File 3-3
Figure 3-3. The Default PC Interface Screen 3-4
Figure 3-4. PC Interface Screen with “newwindow” 3-7
Figure 3-5. How to choose an Option 3-11
Figure 3-6. Example Tutorial File 3-14
Figure 3-7. How the Log Command Operates 3-15
Figure 3-8. Displaying the File You Created 3-18
Figure 3-9. Example Command File “tutorial” 3-19
Figure 3-10. PC Interface and System Interaction 3-21
Figure 3-11. Responses for creating MYWINDOW 3-23
Figure 3-12. Your User-Defined Window 3-23
Figure 3-13. Methods for exiting the PC Interface 3-26
Figure 4-1. PC Interface Window Representations 4-2
Figure 4-2. More System Window Representations 4-3
Figure 4-3. How to open a Window 4-6
Figure 4-4. Your User-Defined Window (MYWINDOW) . . 4-16
Figure 4-5. System Terminal Window displayed 4-19
Figure 6-1. Default Memory Map 6-11
Figure 7-1. Using the Log Commands 7-6

6-Contents

1

Introducing the PC Interface

Welcome to the PC Interface. This is a program that allows you to
interact with and control HP 64700-Series emulators, and
communicate with your host computer. As you will see, the PC
Interface provides ways of controlling your HP 64700-Series
emulator that are more straightforward than using the emulator’s
built-in Terminal Interface.

The PC Interface allows you to monitor all emulation and analysis
data. In addition, executing PC Interface commands can be done
quickly because you need only type a single letter to perform a
function.

Features of the
PC Interface

The PC Interface allows you to:

Organize the results of emulation commands in
window-oriented displays.

Define custom windows.

Enter your data in easy-to-follow forms.

Use control characters for quick command execution.

Enter commands using the best technique for you.

Control emulation and analysis activities.

Introducing the PC Interface 1-1

Save output to a file.

Use symbolic addresses when running your program.

Store and load absolute files.

Store and load the PC Interface configuration.

Create and use command files.

Create and use function key macros.

Temporarily access the MS-DOS system level at any time.

Execute individual MS-DOS commands.

Figure 1-1. Where the PC Interface Operates

1-2 Introducing the PC Interface

Where to Find
More Information

About the
HP 64700-Series

Products

Refer to the HP 64700 Emulators System Overview manual for
details on the complete HP 64700-Series environment.

About Configurations Refer to the HP 64700 Emulators Hardware Installation And
Configuration Manual for information on configuring your HP
64700-Series system. The PC Interface Emulator User’s Guides
contain details for configuring HP 64700-Series Emulators.

About MS-DOS/Vectra You can find information on MS-DOS and the HP Vectra in your
set of MS-DOS and HP Vectra Manuals.

About HP Support
Services

Refer to the HP 64700 Emulators Support Services manual for
information on the following:

what to do if your HP 64700-Series emulator fails
how to get your HP 64700-Series emulator fixed
Software Materials Subscription
Response Centers
HP Sales/Service Offices

About Analysis Refer to the Analyzer PC Interface User’s Guide for details about
analyzer expressions and using the emulation analyzer or external
analyzer with the PC Interface.

Introducing the PC Interface 1-3

Notes

1-4 Introducing the PC Interface

2

Installation and Setup

Topics Covered Before You Install the PC Interface

Install the PC Interface

Define the Emulator for the PC Interface

What To Do If Problems Occur

Before You Install
the PC Interface

Before you begin installing the PC Interface:

1. Verify that your system has the required hardware (refer to
the Hardware Installation and Configuration Manual).

2. Make sure your system has enough disk space to hold the
PC Interface software. To operate the PC Interface, your
system must have 640 Kbytes of standard memory. You
will need approximately 600 Kbytes of storage on your
hard disk for the standard PC Interface. The PC Interface
version that supports integrated timing analysis requires
approximately 750 Kbytes of disk space.

3. Make sure that your \config.sys file contains the statement
“files = 20.” In this statement, the number of files
specified must be 20 or more for the PC Interface to work
properly.

Installation and Setup 2-1

Install the PC
Interface

Your PC Interface software comes on media that is compatible
with your host computer.

You will find correct software installation instructions for the PC
Interface in the MS-DOS software installation instructions you
received.

Note Be sure to install all the PC Interface software supplied on the
media, including the emulator device table file. The file’s default
name is “64700tab” in the \hp64700\tables directory.

2-2 Installation and Setup

Define the
Emulator for the
PC Interface

You must define your emulator’s environment in a file so that the
PC Interface has the correct communication parameters for your
emulator. The PC Interface reads the file on startup.

Once you do this, your emulator(s) will work with the PC Interface.

Figure 2-1. How the PC Interface locates an Emulator

Installation and Setup 2-3

Note The emulator device table file contains emulator port
communication information. It allows you to access the PC
Interface with correct emulator communication parameters by
specifying the emulator device name. The PC Interface reads the
emulator device table file to determine which emulator is
connected to each system port. If you are using multiple emulators,
and have multiple environments defined in the device table file, the
PC Interface will recognize each of them, and allow you to start any
one.

To allow the PC Interface to recognize an emulator, follow these
steps.

1. Use an editor to modify the existing emulator device table
file to define the environment for your emulator(s). This
file is on the media with the PC Interface, and will be
located on your system as “\hp64700\tables\64700tab” by
default.

2. You may relocate the emulator device table file, by setting
the environment variable HPTABLES= "path of file" (for
example, HPTABLES= \mydir\emulator). You may
include the statement in the \autoexec.bat file, or execute it
from the MS-DOS command line. Refer to the set
command in your MS-DOS Manual.

Note You can define multiple environments for multiple emulators in
the emulator device table file. There is only one emulator device
table file.

For example, the following emulator device table file
provides communication between the PC and three
emulators, including the 68000, Z80, and 80186. Refer to
your HP 64700 Emulator PC Interface User’s Guide for the
correct device name for your emulator.

2-4 Installation and Setup

In the second line of the example emulator device table
file:

Parameter Meaning

z80emul logical emulator name

Z80 emulator name (defined by you)

com1 physical port name

off transparency mode setting

9600 baud rate

none parity

off transmit/receive pacing

1 stop bits

8 dataword width in bits

Notice the emulator name (z80emul). You will use this in
chapter 3 when starting up the PC Interface.

When you finish modifying the emulator device table file,
save it in the current directory.

Note If your emulator is not connected to port 1 (com1), be sure to
include the correct port in the emulator device table. Otherwise,
the PC Interface will not recognize the emulator.

emul68k m68000 com2 off 9600 none on 1 8
z80emul z80 com1 off 9600 none off 1 8
emul186 i186 com1 off 9600 none off 1 8

Figure 2-2. Example Emulator Device Table File

Installation and Setup 2-5

3. Equate the shell environment variable to the emulator
device table file.

set HPTABLES=c:\<directory_path>

< directory_path> is the directory on your computer
where the emulator device table file (64700tab) resides.
The default directory is \hp64700\tables. You can put this
environment variable in your \autoexec.bat file. Then, the
environment variable will be set automatically every time
you reboot your computer.

4. The PC Interface uses a file named pcexpr.x to install
additional command features in the emulator. This file is
installed in the directory \hp64700\bin by default. If you
install it in a different directory or move it, you need to set
the environment variable HPBIN as follows:

set HPBIN=c:\<directory_path>

Define Shell
Environment Variable

Space

If your system runs out of space for environment variables, you can
redefine the number of allowable environment variables that your
computer will handle. Depending on the version of your MS-DOS
software, this may be defined differently.

For MS-DOS versions 3.0 and 3.1, the shell command defines
these environment variables in a certain format. In the \config.sys
file, you would add the command:

shell= command.com /e:xx

“xx” indicates the number of 16-byte memory blocks to reserve for
your computer environment. This value can be from 10 to 62.

Figure 2-3. How the PC Interface recognizes Emulators

2-6 Installation and Setup

MS-DOS 3.2 and 3.3 use a similar scheme, but the “xx”indicates
the number of bytes to reserve for the environment. Refer to your
MS-DOS Manual for additional details.

Define Break
Checking Variable

In the \config.sys file, you should add the break= on command to
allow the system to check for two break conditions (Ctrl-Break
and Ctrl-c).

If the Baud Rate is
< = 1200

If you toggle the “xon” parameter using the stty command when
running the emulator at 1200 baud or less, invalid characters will
be displayed. For example, if the stty command shows:

stty A 1200 xon

and then you enter

stty=xon

invalid characters will appear on screen.

To avoid this problem, set switch S13 on the HP 64700 rear panel
to “1.” This prevents use of “xon”, even if you enter the stty
command shown above. The PC Interface will start properly.

What to Do If
Problems Occur

If you encounter problems while installing the PC Interface:

1. Make sure that your system has the required 640 kilobytes
of memory for operating the PC Interface.

2. Be sure to include the “files= 20” statement in your
\config.sys file.

If your system still has problems, reboot the PC to clear any other
system problems that may exist.

Installation and Setup 2-7

Problems with
Coresident Programs

Coresident programs include TSR (terminate-and-stay-resident)
utilities, device drivers, and operating system modifier programs
(such as LAN shells). These programs may cause problems with PC
Interface operation.

Memory Use

Once a coresident program loads, it may not leave enough free
memory for the PC Interface to load and run correctly. Or, the
coresident program may dynamically allocate memory during
execution, causing problems when the PC Interface needs memory
to perform its functions.

Interrupt Service Routines

In certain situations, the PC Interface cannot service incoming data
from the serial port (sent by the emulator) because of interrupt
interference by coresident programs. The results are lost data and
erroneous measurement displays. The problems caused by
coresident programs may be one of the following:

The coresident program disables interrupts while
performing its actions. This includes certain disk caching
programs.

The coresident program has an interrupt service routine of
higher priority than the PC Interface, and the routine
takes an excessive amount of time. Thus, more than one
character is received by the serial interface during the
service routine, causing data loss. (The standard PC serial
port is unable to accept more than one character at a
time.) Programs that cause this problem include HP
ARPA Services for the PC, and may include others.

Troubleshooting

If you think a coresident program may be causing
problems, remove each program (device driver, TSR, LAN
shell, and so on) from your system until the problem is
resolved.

2-8 Installation and Setup

The HP RS-422 communications interface (HP 64037A)
uses a buffer for incoming data, which may help prevent
data loss for all but exceptionally long service routines.

If All Else Fails If all else fails, refer to the HP 64700-Series Emulator Support
Services manual. This manual will lead you in the right direction for
solving problems.

Your emulator and the PC Interface are ready to communicate.
Proceed to the next chapter, which shows you how to get started.

Installation and Setup 2-9

Notes

2-10 Installation and Setup

3

Getting Started

Topics Covered This chapter teaches you to use the PC Interface. You’ll get the
most benefit from this chapter if you do the examples on your
system using the PC Interface. You will learn to:

Create a Configuration File

Access the PC Interface

Understand the PC Interface Screen

Use Keys to Perform Various Functions

Use the PC Interface Commands

Follow a Tutorial to learn the PC Interface

Exit the PC Interface

Before Getting
Started

Make sure that you are working in the same directory where the PC
Interface resides, or that you have added that directory name to
your PATH variable. For MS-DOS computers, modify the
\autoexec.bat file to add the directory to your PATH statement.
Refer to the appropriate Emulator PC Interface User’s Guide if
necessary.

Also make sure that you have added you emulator’s environmental
specifications to the emulator device table file. See chapter 2 for
more information.

Getting Started 3-1

Conventions This manual uses the following conventions:

Bold text indicates commands that you type.

< > (angle brackets) enclose variables that you type.

^ (up carat) indicates the keyboard Ctrl (control) key.

^ z means press and hold the Ctrl key and then press z.

What We Mean When
We Say “Form”

A form is a part of the PC Interface display that you use to enter
data. It differs slightly between the various PC Interface options.
Forms allow you to modify current settings, set parameters for the
first time, load files, create user-defined windows, and so on. You
will learn more about forms through examples in the rest of this
manual. An example form for creating a user-defined window
appears like this:

Create a
Configuration File

Use an editor to create the example configuration file shown in
figure 3-2. Chapter 4 explains the parameters in the file, so don’t
worry about their meanings now. But, if you are using a
monochrome monitor, change “color” to “mono” in the $misc
section of the configuration file shown below.

Name the configuration file “myconfig.” This file should be in the
directory where you are now working. Take time now to look at the
list of files in the current directory, and make sure that the
configuration file you just created (myconfig) is there. Then, verify
that the content of “myconfig” appears exactly like the example
configuration file shown above.

Window Open -> ___________Top row ___Bottom row___ Autoclear? _
Buffer size ____ Left edge ___Right edge ___ Display? _

Figure 3-1. Example Form (opening a Window)

3-2 Getting Started

Function of this
Configuration File

This file configures your PC display monitor when you access the
PC Interface. It also creates a user-defined window. Configuration
files can perform many other functions (see chapter 6 for details).

Start the PC
Interface

There are several ways to start the PC Interface.

Note If you are using a monochrome monitor, add the /m option in each
command that shows how to access the PC Interface. If you don’t
use the /m option, fields in the forms will not have borders because
the borders are “white” on “white.” Using /m avoids this situation.
For example, for the next command you would type: pcz80 /m
< z80emul> if you are using the HP 64753 Z80 emulator.

The first method is to enter the PC Interface using default
parameters.

For example, you enter:

pc<product> <emulator_name>

The term < product> refers to your type of emulator. For example,
if you are using the Z80 emulator, you would type pcz80. For the
HP 64742 68000 emulator, you would specify pcm68k for

$misc
color white blue
$misc
$userwin
newwindow T T F 0,0 10,35 30
$userwin

Figure 3-2. Example Configuration File

Getting Started 3-3

< product> . For the 80186/88 emulator (HP 64764/65), you would
use pci18x. Your Emulator PC Interface User’s Guide has the
details.

The name we gave to the Z80 emulator is “z80emul,” and is
included in the emulator device table file explained in chapter 2. If
you included something other than z80emul in your emulator
device table file, be sure to use that term here also.

This command displays three windows by default:

Exit the PC Interface now by entering:

System Exit Locked

This will return control to the MS-DOS operating system.

 pc<product> /w myconfig <emulator_name>

Figure 3-3. The Default PC Interface Screen

3-4 Getting Started

Note If you used something other than “z80emul” in the emulator device
table file, be sure to use that same term here.

You typed in a command that initiated a PC Interface session,
indicated that a configuration file would be used (/w), specified the
name of the configuration file that customizes the PC Interface
window and emulator environment (myconfig), and supplied the
emulator name (z80emul). If you used the /m option, the PC
Interface recognized your monitor as a monochrome monitor.

The PC Interface activates after several moments. The display
shows four windows on screen: the three default windows, and a
user-defined window (newwindow). The status line and PC
Interface key descriptions appear at the bottom of the screen.

Note As the PC Interface starts, you may see the message “Loading host
commands” flashing at the bottom of the screen for a few seconds.
The PC Interface is loading extensions to the HP 64700-Series
Terminal Interface command set (from the file pcexpr.x—see
chapter 2 for more details). The new command is called _pc and is
used by the PC Interface for expression validation. Do not use this
command within the System Terminal window.

If You Didn’t Include
the /m Option

When you start the PC Interface, the default monitor type is color.
Don’t worry if you didn’t include the /m option when starting up
the PC Interface while using a monochrome monitor. At first you
will notice that the screen is difficult to follow, because some
borders are invisible. To view the screen as you would with the /m
option, change the monitor type within the PC Interface. To do
this, enter:

Window Utility Color

A form is displayed that contains data for the window color and
monitor type parameters. Press:

<Tab>

Getting Started 3-5

Notice that the monitor type changed to “mono.” When you save
the data in the form (by pressing End Enter), you will notice that
the PC Interface screen is much easier to read.

Options You Can Use You can use the following options when accessing the PC Interface:

/m tells the PC Interface that you are using a monochrome
monitor. For the PC Interface, the default monitor type is color.
Because the default monitor type is color, the commands in this
chapter do not contain the /m option. Remember to include this
option when using a monochrome monitor, so that the PC
Interface forms and windows display correctly.

/w tells the PC Interface to load a configuration file, which will
customize the PC Interface window and emulator environment.
The specifications you define in the configuration file will be
interpreted by the PC Interface for the customization process.

/c instructs the PC Interface to take input from a specified
command file. Within a command file you can include various
commands to perform functions automatically when accessing the
PC Interface (see chapter 7 for details on command files).

/? displays the options available from the command line when
starting the PC Interface.

The complete syntax for invoking the PC Interface is:

pc<product> [/m] [/w config_file] [/c command_file] <emulname>

3-6 Getting Started

Understand the
PC Interface
Screen

Four windows should be displayed on the screen. The upper left
window should be labeled “newwindow”. It was created when you
entered the PC Interface using the configuration file named
“myconfig.”

The PC Interface screen should now resemble:

The PC Interface screen is 80 columns wide, with the left column
defined as 0 and the right column defined as 79. The screen height
is a total of 25 rows. The top row is row 0, and the bottom row is
row 24.

The PC Interface always uses four of these 25 rows.

The functions of these bottom four rows are:

1 Status line displays emulation and PC Interface status.

2 Data Entry lines allow you to enter data.

Figure 3-4. PC Interface Screen with "ne wwindow"

Getting Started 3-7

1 Command/Message line keeps you informed.

When you need to be alerted of some activity, the line above the
Status line will show “ALERT:” or “ERROR:” and include a
message. ALERT messages do not always report errors.

Use Keys to
Perform Various
Functions

You will be using many keyboard keys. Below are the ones that you
will use most often.

Note The functions of the following keys depend on whether you use
them to enter commands or to enter data in a form.

Key Function

Backspace Deletes characters from right to left.

Ctrl [Returns to the previous PC Interface level (same as ESC key),
and aborts some PC Interface operations. See the list following
this table.

Ctrl \ Aborts System Terminal operation.

Ctrl Break Always interrupts data transfers between the emulator and the
host that were initiated by the present command (thus canceling
the command).

Ctrl c Usually interrupts data transfers between the emulator and the
host that were initiated by the present command (thus canceling
the command).

Ctrl Left Arrow Moves through text in forms without overwriting text in fields.

Ctrl Right Arrow Moves through text in forms without overwriting text in fields.

3-8 Getting Started

Key Function

Ctrl ScrLck Same as Ctrl Break .

DEL Deletes a character at the cursor location.

End Shows bottom of text in windows. Also saves information in a
form when followed by pressing Enter.

Enter Enters commands into PC Interface and emulation/analysis
system.

ESC Same as Ctrl [. Exits or aborts various PC Interface operations.
See the list following this table.

Home Shows top of text in the active window.

Ins Allows insertion of characters at the cursor location.

Left/Right Arrows Moves cursor to previous/next location.

Pg Dn Shows the next page of text or data in a window.

Pg Up Shows the previous page of text or data in a window.

Shift Tab Selects the previous valid option in a form field.

Tab Selects the next valid option in a form field.

Up/Down Arrows Select windows in forms and can scroll window text.

^ z Zooms a window to full screen size, or back to original size.

^ e Erases the currently active window.

^ a Activates another window automatically.

^ r Recalls the last command you executed.

Escape Key Actions The escape key (Esc or Ctrl-[) has the following actions:

Exit from any data form without completing the operation.

Aborts command file execution, command recall (^ R), or
a key macro.

Getting Started 3-9

Aborts a window search operation.

Aborts a window store operation.

Exits Memory Display Repetitively mode.

Exits timing waveforms displayed in Analysis Display
External.

Use the PC
Interface
Commands

You can quickly execute PC Interface commands by pressing the
first letter of an option that is displayed at the bottom of the PC
Interface screen. Each time you choose an option, the “next level”
options are immediately displayed at the bottom of the screen. This
can help you choose the next selection.

If you prefer, you can select PC Interface commands by pressing
the left and right arrows to highlight a command. Then press
< ENTER> to accept the command.

Command lookahead allows you to see the next options. These are
displayed on the bottom row of the display, below the current
command selections.

Now the PC Interface should be at the main level. Notice the labels
displayed at the bottom of the screen. These labels represent the
main PC Interface options:

Window System Register Processor Breakpoints Memory Config Analysis

If you have not yet accessed the PC Interface, type: pc< product>
< emulname>. Remember to use the /m option if you are using a
monochrome monitor. The PC Interface labels should now be
present at the bottom of your screen.

Just to become familiar with how the PC Interface operates, access
the System option. Enter:

System

3-10 Getting Started

Did the screen display a new set of labels? If not, try pressing
System again. (To return to the previous PC Interface level from
any level, press ESC.) Enter:

MS-DOS Fork

See how direct the method is? You have accessed the system fork
feature. This provides access to the MS-DOS host computer system
level, so that you can perform system functions temporarily from
within the PC Interface. We will discuss more about this feature in
chapter 5. For now, use some of your favorite commands at this
system level. When you are ready, at the system prompt, enter:

exit <ENTER>

Figure 3-5. How to choose an Option

Getting Started 3-11

This ends operation at the host computer system level and returns
control of the system to the PC Interface.

If you access the system level with the System MS-DOS Fork
command, then forget that you’re there, and try to access the PC
Interface again, the message “Program too big to fit in memory”
will appear. Just type exit to get back to the PC Interface. Any
program which has large memory requirements will not run in the
system fork mode. You can see how much free memory is available
for programs while at the system level using the MS-DOS
CHKDSK command.

Follow a Tutorial
to Learn the PC
Interface

In this tutorial you will type the first letter of a PC Interface option
to select the option. For example, we will tell you to type w for
window. You could instead use the arrows to highlight the window
option, then press Enter to select that option.

When we say “main level,” we are referring to the PC Interface
commands you see when you first start it.

If you press a key that is not the first letter of a displayed PC
Interface options, the PC will beep. To correct this, choose a valid
letter.

In this tutorial you will:

Learn to use the system features.

Create a command file.

Learn to use the window features.

Learn basic HP 64700-Series emulation features.

Execute the command file.

3-12 Getting Started

Follow the tutorial, working the examples on your system.
Remember to include the /m option if your monitor is
monochrome. To begin, enter

pc<product> <emulator_name>

< emulname> is the name you assigned to your emulator in
chapter 2. This command starts the PC Interface. If you have any
questions about how to start the PC Interface, see chapter 2.

The PC Interface status line should show that your emulator is
reset.

Access the Host
Computer System

Enter:

System MS-DOS Fork

You have accessed the host computer system. Try executing some
of the commands you typically use. For example:

dir <ENTER>

Note Do not run any programs that access the communication port
connected to your emulator. Doing this could cause your emulator
to stop operating properly.

Files in the current directory are displayed. At this level you can
run various applications that you normally use, and can return to
the PC Interface with one command. You should be able to print
files at this point. Go ahead and execute any other system
commands you desire.

Getting Started 3-13

When you finish, start your favorite editor. Create the following
file:

Save this file in the current directory (which is \hp64000\bin if you
started the PC Interface from there), and name it “ILEARNED.”
Now type:

exit <ENTER>

This returns control of the system to the PC Interface.

Note In the commands that follow, watch the PC Interface options at the
bottom of the screen change as you press each letter.

Learn How to Create
a Command File

Enter:

System Log Both Enable

You will be prompted for a log file name. Type:

tutorial <ENTER>

All commands and results of the commands that you type will be
recorded in the file named “tutorial.” This is the process of logging
commands. This type of file is called a log file.

In this tutorial I learned how to:

. use system features

. create a command file

. use the window features

. use basic emulation features

. execute a command file

Good Job! To continue, press any key.

Figure 3-6. Example Tutorial File

3-14 Getting Started

You can log either the input (the commands that you enter) or
output (the results of the commands that you entered), or both.
For this example, you will log both the input and output.

The PC Interface automatically returns to the main level. We will
return to “tutorial” later.

Note When creating log files, you may specify a path for the log file if
you want it located in another directory.

System Wait Time 10 <Enter>

You have instructed the PC Interface to idle (wait) for 10 seconds.
Watch the counter at the bottom of the screen decrement until the
10 seconds tick away. You can press any key during this time to
stop the wait process. Enter:

System MS-DOS Command dir <ENTER>

Figure 3-7. How the Log Command Operates

Getting Started 3-15

You have temporarily accessed the host system to execute an
MS-DOS command. Files in the current directory are displayed.
Press any key to return to the PC Interface main level. Enter:

System Wait Time 5 <ENTER>

“Wait” periods can be useful in command files to allow time to
observe the results of processes. When this 5 second wait period
ends, enter:

Window Active

PRESS: <Tab> until “Emulation” appears in
the form, then press <ENTER>

The Emulation window now has a highlighted border indicating
that it is the active window.

Note If you specify the name of a window which is not visible, the
message “< Window> is not visible at this point” will appear. Type
in the name of a valid window.

Window Zoom <ENTER>

The Emulation window enlarges (zooms) to the full screen size.
You can zoom any of the PC Interface windows. The currently
active window is zoomed. Enter:

Window Zoom <ENTER>

The Emulation window reduces to its default size.

Break the emulation processor to the monitor.

Processor Break

Now, display the processor’s registers:

Registers Display <ENTER>

Options for displaying your emulator registers will appear. Select
an option, and watch what occurs. Refer to your Emulator PC
Interface User’s Guide to learn how your emulator’s registers are
displayed.

3-16 Getting Started

Note The system windows will always display specific data resulting from
an operation. For example, register content will always be directed
to the Emulation window, trace results to the Analysis window,
symbols information to the Symbols window, and so on.

When you execute the command Register Display for your
emulator, your emulator’s registers will automatically be displayed
in the Emulation window. Execute those commands and observe
the results.

Note When you enter a command that affects a system window, that
window automatically becomes active. That window is then
automatically selected for any other window commands.

Now look at that file you created and named “ILEARNED.” First,
enter:

Window Active <ENTER>

Then enter:

Code <ENTER>

The system window named “Code” should be displayed at the top
of the screen. This window is provided specifically for you to load
your programs. Let’s load the file you created. Enter:

Window Load <ENTER>

ILEARNED <ENTER>

Notice that the file you created is displayed in the window named
“Code.” Does it look familiar? You probably can’t see the entire
file, so enter:

^z

Getting Started 3-17

Note When we say press ^ z, this means you should press and hold the
Ctrl key and then press z.

This zooms (enlarges) the window to the full screen size. You
should see the entire file. It should look familiar now. Enter:

System Wait Key <ENTER>

This feature allows you to delay PC Interface execution until you
press a key to continue. When you are ready, enter:

any key you desire

Now let’s turn off logging of commands to the file “tutorial.” Enter:

System Log Both Disable

Figure 3-8. Displaying the File You Created

3-18 Getting Started

Commands will no longer be recorded in the file “tutorial.” Look
at the contents of “tutorial.” Enter:

Window Load Code <ENTER>

tutorial <ENTER>

This is the command file you created. To observe the entire file,
enter:

^z

You also can use the cursor keys to scroll through the file.

Note Press End to see the end of any file in a window. Press Home to see
the top of any file in a window. You also can use Pg Up and Pg Dn
to look at one window-sized page of text at a time.

swt
@10
smc
@dir
swt
@5
wa
@Emulation
wz
@Emulation
wz
@Emulation
pb
rda
pc = 00000000 st = 2700 ssp = 000006fa usp = 00000000
a0 = 00000000 a1 = 00000000 a2 = 00000000 a3 = 00000000
a4 = 00000000 a5 = 00000000 a6 = 00000000 a7 = 000006fa
d0 = 00000000 d1 = 00000000 d2 = 00000000 d3 = 00000000
d4 = 00000000 d5 = 00000000 d6 = 00000000 d7 = 00000000

wa
@Code
wl
@Code
@ilearned
swk

Figure 3-9. Example Command File "tutorial"

Getting Started 3-19

Notice the lines in this file. The commands that you typed were
recorded just as you typed them. Data that you entered is preceded
with the “@” symbol. The results of PC Interface operations are
preceded with the “# ” symbol. Use the up and down arrows to
scroll through the lines.

Enter ̂ z to zoom back out of the Code window.

Note You do not need to edit command files before executing them. The
recorded results are “commented out” due to the “# ” in the first
column, and the PC Interface reads the “@” as data input.

Window Store Emulation 1 <ENTER>

This stores the Emulation window content to a file. All the lines in
the window will be stored, because you specified that the “From
line” is “1,” the first line in the window. You could store a range of
lines by specifying different numbers from the “From line” and “To
line” fields in the form. You still need to specify a file name (which
you will do in the next step).

Note Whenever the name of the window you request appears in a form,
press Enter to accept it. This is true for data in any field of a form.

reglist <ENTER>

The content of the Emulation window is stored in a file named
“reglist.” This file now exists in the current working directory
(\hp64000\bin) on your host computer. The PC Interface remains
at the main level.

Let’s make sure that the file “reglist” was created.

System MS-DOS Fork

You should now be observing the host system prompt.

dir <ENTER>

3-20 Getting Started

Check for the file named “reglist.” It should exist in the current
listing of files. When you find it, enter:

type reglist <ENTER>

Does this file contain a listing of your emulator’s registers? If it
does, proceed to the next example. Otherwise, try executing the
commands again, starting with “Window Store Register 1
< ENTER> < ENTER> .”

Note To make sure the registers are displayed correctly for your
emulator, refer to your Emulator PC Interface User’s Guide.

Then continue in the tutorial. Don’t worry if you miss a step. It
won’t affect the remainder of the tutorial very much. Type:

 exit <ENTER>

Figure 3-10. PC Interface and System Interaction

Getting Started 3-21

This returns control of the system to the PC Interface. Now, enter:

Window Store <ENTER> <ENTER> <ENTER> <ENTER>

This will resave the register contents in the file “reglist.” Enter:

System MS-DOS Fork

Again, you have accessed the host system using the System Fork
feature. Notice that the data was appended to the file. Enter:

 type reglist <ENTER>

Notice that “reglist” now contains two listings of the registers,
separated by a blank line. The last stored entry is appended to the
end of the file.

Note Appending to files, rather than overwriting them, can be reassuring
if you accidentally specify an existing file name to contain the data.
With this feature you don’t have to worry about losing data already
contained in previously stored files.

 exit <ENTER>

This returns control to the PC Interface.

Create a
User-defined Window

Enter:

Window Open

Enter the following terms shown below in bold for each field in the
form that is displayed.

Note If you pass a field in the form, press the left arrow key to return to
the previous field. To advance through the fields without changing
the data in them, press < ENTER> , or use the right arrow.

3-22 Getting Started

This creates a user-defined window in the lower right section of
your display. Notice that this window has a highlighted border. It is
active because you just created it.

Your screen should now resemble:

Window Open -> MYWINDOW Enter

Top row -> 9 Enter

Bottom row -> Enter

Autoclear? -> Enter

Buffer size -> 50 Enter

Left edge -> 45 Enter

Right edge -> Enter

Display? -> Enter

Figure 3-11. Responses for creating MYWINDOW

Figure 3-12. Your User-Defined Window

Getting Started 3-23

Press:

 ^z

This is a quick way to zoom a window. Notice that MYWINDOW
is now the full screen size.

Let’s load a file into your new window. Because MYWINDOW is
already active, enter:

Window Load <ENTER>

Note You can always use the < Tab> and < Shift> < Tab> keys to select
other window names within a form.

Enter:

 reglist <ENTER>

This gives the filename to load into the window. The contents of
the file “reglist” will be displayed in the user-defined window
named MYWINDOW. Enter:

Window Erase <ENTER>

This erases your user-defined window contents. You will be
prompted for a “y” response to confirm the erasure. Type:

y <ENTER>

The content of MYWINDOW is erased. Now, enter:

Window Active Code <ENTER>

This activates the Code window. MYWINDOW automatically
reduces to its original size.

3-24 Getting Started

Load Data Into
Another Window

You can view registers in a window other than the Emulation
window. Here’s how:

Earlier you stored the register content in a file named “reglist.”
Now that you have activated the Code window, you can view the
register content in that window by loading it with the file “reglist.”
Enter:

Window Load <ENTER>

The file name “reglist” already exists in the form from the previous
window load. Press:

<ENTER>

You have done what we described earlier:

1. displayed registers

2. saved the register listing in a file

3. loaded that file into a window other than the Emulation
window

Note You could choose any window for viewing the file by pressing the
Tab or Shift -Tab keys until the window name you want appears in
the form. Then press Enter. You also could type a window name
into the form, then press Enter.

The content of the file “reglist” is displayed in the Code window.
You cannot see the entire file because the Code window buffer size
is too small. To observe the entire file, enter:

^z

The Code window enlarges to the full screen size. It will stay
enlarged until you reduce it, or until you perform an action on
another window. Press:

^z

Getting Started 3-25

Notice that the Emulation window still contains the original listing
of registers. The Code window should contain two listings of the
register contents.

Just for fun, enter:

^a

Watch the active window deactivate and another window become
active. This is a handy feature you can use to quickly cycle through
the windows to select each in turn. Continue pressing ̂ a and
watch each window become active when you press it. Notice that
the active window will overwrite another window if the areas
overlap. Press ^ a until MYWINDOW is the active window. Press:

^z

This returns the PC Interface screen to its original size. All
previously displayed windows should appear.

Erase the other windows. Enter:

Window Erase Code <ENTER>

y <ENTER>

The content of the Code window is erased. Enter:

Window Erase Emulation <ENTER>

y <ENTER>

The content of the Emulation window is erased. Now enter:

Window Delete <ENTER>

< Tab> until MYWINDOW is selected for deletion. Then enter:

y <ENTER>

MYWINDOW should disappear from the screen. Your screen
should now appear as if you just started the PC Interface.

Learning Basic
Emulation Features

Each HP 64700-Series emulator has a unique way of handling
registers, memory, and I/O locations. That is why you have a
separate manual for the emulator that describes how to use the
emulator with the PC Interface.

You should review the rest of this manual to gain a general
understanding of the PC Interface. Perform all the examples and

3-26 Getting Started

tutorials in this manual. Then proceed to your Emulator User’s
Guide. Chapter 6 in this manual covers details on how the PC
Interface controls the emulators.

Execute the
Command File

Now execute the command file “tutorial.”

System Command tutorial <ENTER>

Watch your command file execute. You can press ESC to
terminate the command file execution. To learn more about
command files, see chapter 7.

Exit the PC
Interface

To exit the PC Interface, return to the main PC Interface level by
pressing <ESC> until “System” appears. Choose System and Exit.

Now, choose Locked to retain the current configuration, Unlocked
to start the PC Interface later with the reset configuration, or
No_Save to start the PC Interface later without saving the current
configuration.

See the section titled “How to Exit the PC Interface” in chapter 5
for more information on exit options.

Getting Started 3-27

Notes

3-28 Getting Started

4

Using Windows

Topics Covered This chapter shows you how to use the PC Interface windows. The
topics covered include:

Window Functions and Features

Accessing the Window Functions

Window Characteristics and Parameters

Window Tutorial

How to Use the System Terminal Window

Printing Window Contents

Window Functions
and Features

A window is a view of your input data and measurement results. It
is displayed on screen and allows you to observe emulation and
analysis operations.

The PC Interface windows allow you to perform multiple
operations simultaneously, and help you organize your tasks. You
can execute one function in one window and a different function in
another window. When you are through with this chapter you
should be able to use PC Interface windows to perform emulator
and analyzer functions with ease.

There are two types of windows in the PC Interface: system
windows and user-defined windows.

Using Windows 4-1

Functions of the
System Windows

The system windows allow you to:

Display emulation processor registers (Emulation
window).

Display emulation and target system memory (Emulation
window).

Trace emulator operation with the built-in analyzer
(Analysis window).

Display currently defined breakpoints (Emulation
window).

Display emulation processor I/O locations (Emulation
window).

Figure 4-1. PC Interface Window Representations

4-2 Using Windows

Observe status and error messages (Error_Log window).

Operate your emulator using the Terminal Interface
(Terminal window).

Display your programs (Code and user-defined windows).

Display symbols associated with your programs (Symbols
window).

The system windows and their names are predefined. You cannot
accidentally delete any of the system windows. You can “hide”
them. You also can change their size and location on the screen.

Figure 4-2. More System Window Representations

Using Windows 4-3

User-defined
Windows

The user-defined windows:

are created and named by you

can show the content of files

initially have default size, location and attributes

can be deleted

Window Attributes One of the windows displayed on screen is always active. The
currently active window has a solid highlighted border. All window
commands act on the currently active window by default. When you
specify another window for an operation, that window
automatically becomes active.

To browse through a window, you can use these keys:

up and down arrows

Ctrl-left arrow and Ctrl-right arrow to move left and right.
If you have more than 78 columns of text, you can scroll to
view the additional columns using these keys.

Home and End

Pg Up and Pg Dn

space bar

All PC Interface windows are surrounded with a double-line
border. The border on a “zoomed” window is solid because it is
active. The status window (status lines at the bottom of the screen)
does not have a visible border.

Note The PC Interface status line is updated about every 300
milliseconds.

4-4 Using Windows

Each window has a memory buffer that contains data sent to it
because of a command. You can configure each window’s memory
buffer size with PC Interface commands. The memory buffer size
limit depends on the amount of free memory available on the host
computer. This is because the memory buffer is allocated from the
computer’s pool of free memory.

Window Features You can manipulate PC Interface windows using the following
options:

activate
delete
erase
load
open
store
color
hide
parms
search
view
zoom

Note You can delete user-defined windows. You cannot delete the
system windows.

Accessing the
Window Functions

After you have accessed the PC Interface, type w to access the
“Window” menu.

You also can select the window feature by pressing < ENTER> ,
because the “Window” label is already highlighted.

Open a Window Opening a window allows you to create a new user-defined window.

Using Windows 4-5

To open a window, enter:

Window Open

Specify a unique name of 12 characters or less for the window.
When you open a window, the top, bottom, left edge, and right
edge values appear as default values. If you do not change these
values when opening a new window, the size defaults to the full
length and width of the screen.

To select the default values, just press < ENTER> for each field,
and watch the new window appear after you have completed the
form.

A memory buffer is created for each new window opened, and is
automatically set to 20 rows. You cannot set the buffer size to
anything less than 20. The autoclear feature is turned on. If you are
using a color monitor, the default colors are white text on a blue
background. For monochrome monitors, the default colors are
white text on a black background.

Figure 4-3. How to open a Window

4-6 Using Windows

If the size of the window is smaller than the window name, the
window name will be truncated on screen. The complete name will
appear in the forms.

How Many Windows
You Can Create

You can create four user-defined windows.

Note You should delete any user-defined windows that you are not using
because each user-defined window uses memory on your host
computer. The amount of memory each window consumes depends
on the buffer size you specified, and on the data loaded into the
buffer. A buffer of 20 can consume as much as 2 kilobytes of
memory.

Delete a User-defined
Window

You can delete a user-defined window when you have finished with
it or if you opened it by mistake. When you delete a window, the
memory it consumed is returned for reuse by the PC Interface. It is
not available to the system until you exit.

To delete a window, enter:

Window Delete

Specify the window name in the form that appears. You are asked
to confirm the deletion. If you type anything other than y, the
window will not be deleted.

Note If you delete a window without specifying a window name, the
currently active user-defined window will be selected for the
deletion. Be careful when deleting your windows!

Even if a user-defined window is not visible on screen, you can still
delete it.

Using Windows 4-7

View a Window Viewing a window allows you to display a window that was
previously hidden with the hide command, or one that is hidden by
default when you enter the PC Interface. To view a window, you
need only specify the window name.

To view a window, enter:

Window Utility View

and specify the window to view in the form that appears. You can
use Tab and Shift Tab keys to choose the window. Watch the
window appear on screen as the view command completes.

Hide a Window You can hide a window to temporarily remove it from the screen.
The window definition remains on the system. When you hide a
window, you can still write data to it just as if it is being displayed.
If you choose to hide a window, but do not specify a window name,
the currently active window will be hidden.

To hide a window, enter:

Window Utility Hide

and specify the window name in the form that appears. Watch the
window disappear from the screen. To verify that the window is
hidden, you can use the Window Utility View command. Only
hidden windows will be listed, not those which are inactive and
merely obscured by other windows.

Erase a Window Erasing a window removes the contents of that window.

To erase a window, enter:

Window Erase

Specify the window name. If you choose to erase a window, but do
not specify the window name, the currently active window is erased.
You are asked to confirm the erasure. If you type anything other
than y, the window will not be erased. You also can press ^ e to
erase a window, but you are not asked to confirm the erasure.

4-8 Using Windows

Note When a window contains important data, be sure to use the PC
Interface Window Store feature (described later in this chapter) to
save the data in a file before you erase the window. If you have not
saved the data, it will be lost when you erase the window.

Activate a Window Activate a window when you want to perform a function using that
window. When a window becomes active, you can use the up, down,
Ctrl-left arrow, and Ctrl-right arrow , with the Home, End, Pg Up,
and Pg Dn keys, and the space bar to view the content of the
window. To activate a window, you need only to specify the window
name. You also can press ^ a to change the currently active
window.

To activate a window, enter:

Window Active

and specify the window name in the form that appears. Watch the
window’s border change to a solid line as you activate it.

Load a Window You can load an ASCII file into a window. This allows you to view
your file while running other commands.

To load a file into a window, enter:

Window Load

Specify the window name, the file name and any applicable
directory information. If you choose to load a window, but do not
specify a window name, the active window will be loaded. If the
window was inactive, it will become active when you start the load
process. Files with a length exceeding the window buffer size will
be truncated, and a message will be displayed indicating “File is too
big for window memory buffer...Lines may be truncated.”

Zoom a Window You can zoom a window to expand its boundaries to the full
screen.

To zoom a window, enter:

Window Zoom

Using Windows 4-9

Specify the window name in the form that appears. When you want
to reduce a zoomed window to its original size, just choose zoom
again. If you choose to zoom a window, but do not specify a
window name, the currently active window will be zoomed. You
also can press ^ z to zoom the currently active window.

Store a Window You can store part or all of a window’s contents in an ASCII file.

 To store a window, enter:

Window Store

Specify the window name, the range of lines to store, and the
destination file where the window content will be stored in the
form that appears.

If you do not specify the window name, the active window will be
stored.

Specify a range of line numbers. The value in the “From line” field
gives the line number of the current cursor location in the window.
You can use the up and down arrows to position the cursor on any
line in the window. To return to the form, just press either the
right or left arrow, or press < ENTER> . The default is to store all
lines in the window.

You can include any valid directory information if you want to
store the file in another directory. You also can add an extension to
the file (for example yourfile.ext).

Note The PC Interface will not let you store an empty window into a file.

You can use the System MS-DOS Fork feature to verify that the
window content was stored. Chapter 3 tells how to access the
MS-DOS system level with the “fork” feature.

Search a Window The window search feature allows you to locate the first occurrence
of a string within the specified window. To find a user-defined

4-10 Using Windows

string, specify the window name, string to be found, and a range of
line numbers to be searched.

To search a window, enter:

Window Utility Search

and specify the window to be searched, the range of lines in which
to search for the string, and the string to be located. The cursor will
then be placed immediately after the string, and the string will be
displayed at the top of the window.

Summary of Window
Control Characters

Keystroke Action

^ a Activates the currently active window.

^ e Erases the currently active window.

^ z Zooms the currently active window.

Window
Characteristics
and Parameters

The Cursor Location
is Retained

When you work within multiple windows, the PC Interface retains
the cursor location in each of those windows. The PC Interface will
retain the cursor location for each window no matter how often
you switch between the windows, or even if you remove a window
from the screen (hide it) and then redisplay (view) it.

About the Window
Characteristics

All the PC Interface windows have characteristics of color, size,
name, autoclear and buffer size. You can change these
characteristics to suit your needs by using the Window Parameter
command, and the Window Utility Color command.

Using Windows 4-11

Before you modify a window’s characteristics, you must specify that
window’s name. Otherwise, the active window is modified.

Color

You can set the foreground and background colors. Foreground
color applies to the text in a window. Background color applies to
the area on which the text is displayed. When you use a color
monitor, the available foreground and background colors are black,
blue, green, cyan, red, magenta and white. This applies to all the
windows (user-defined and system windows). The default colors
(for a color monitor) are white text on blue background.

Changing colors affects all the windows. You cannot assign
different colors to individual windows.

Note The PC Interface will not let you set the foreground and
background colors the same.

Size

Using the size parameter, you can determine the size and location
of each window on the screen. To change the size and/or location
of a window, specify new values for the window’s length and height.
The length can be defined within the range of 0 to 79 columns. The
height can be defined within the range of 0 to 20 rows. The
windows must be located in the first 20 rows, because the bottom 4
rows are reserved for status messages and command entry. The
largest possible window can be defined with all 80 columns and all
20 rows.

The smallest possible window size is 5 columns by 5 rows. This is
because the window must have a name. With a 5 x 5 window, there
is enough room for a name that has a single letter.

Name

Each window name is an ASCII string of 12 alphanumeric
characters or less. The window name appears in the upper left

4-12 Using Windows

center of the window. You cannot change any of the window
names. But, when you create a user-defined window, you do assign
a name to it. Every new window must have a unique name. If you
try to duplicate a window name, the message “Another window
exists by this name” will appear at the bottom of the screen. Then
you must select a unique name.

If you specify a window name that is larger than the window itself,
the name will be truncated. When you zoom the window, the entire
name will appear. Also, when you perform an action on that
window using a form, the entire window name will appear in the
form when you press the Tab key. If you plan to type in the window
name, you must specify the entire name, or the PC Interface will
not accept the name.

Autoclear

This parameter determines whether each window should be cleared
before writing data to it. With this parameter set to “y,” new data
overwrites previous data displayed in that window.

With this parameter set to “n,” each time you display data in that
window, it is appended to the previous display until the window
buffer fills. The data then scrolls upward. You cannot recover any
data on lines that are scrolled off the top of the window memory
buffer.

Buffer Size

The window buffer size is defined by a number of rows. The buffer,
which is allocated from the pool of free memory on the host
computer, stores the data displayed by the window. You can change
the buffer size of any of the windows. Whenever you change a
window’s buffer size, all data currently stored in that buffer is lost.
A buffer size of 20 can consume as much as 2 kilobytes of memory.

The minimum buffer size is 20. The maximum buffer size is 1030.

Display

This parameter determines whether the window should be viewed
or hidden. With the parameter set to “y,” the window is visible
after ending the command. When set to “n,” the window is hidden

Using Windows 4-13

and can only be seen when made visible with the Window Utility
View command.

The display parameter is only available when you are defining a
new window. It is not available through the Window Utility
Parameters menu. If you want to view a window, use Window
Utiltity View. To hide it, use Window Utility Hide.

Scroll

This parameter determines the scrolling method for the window. It
is only available through the Window Utiltity Parameters menu.

If you choose “y,” data is written to the window one line at a time
as it is received from the emulator or the host system. This can be
useful when you want to display large source files or trace listings.

If you choose “n,” the window is not updated until the PC Interface
has all the requested data available. All the information is written
in a single operation. This method is faster overall, but you may
have a noticeable wait period while the PC Interface collects the
data.

Window Tutorial You may want to define windows for your use. These can be useful
for reviewing your programs, and viewing command or
configuration files. You probably can think of other ways to use
them. This tutorial shows you how to create and delete windows.

Follow the example, using your computer and the PC Interface to
create a window.

1. From the main level enter Window then Open. A form will
be displayed at the bottom of the screen:

Window Open Top Row 0 Bottom Row 20 Autoclear? y

Buffer size 20 Left edge 0 Right edge 79 Display? y

4-14 Using Windows

2. Specify a name for the Window Open process by typing
MYWINDOW . You can use upper and lower case letters in
the name. They are matched in the window display.

3. Use the right arrow or < ENTER> key to move the cursor
to the next field.

4. Specify a row number for the location of the top of the
window by typing 0.

5. Move the cursor to the “Bottom Row” field and specify the
bottom location for the window by typing 20. This value
cannot be larger than 20.

6. Move the cursor to the “Autoclear” field. The default is
“y”es to clear the window. Let’s leave it as is. Press
< ENTER> . Each time you display data in this window,
old data will be overwritten. (To change the field to
append to any data that was previously stored, you would
just type n.)

Note Whenever you encounter a “yes” or “no” option within a form, you
can type an uppercase letter if you prefer.

7. Specify a buffer size by typing 100. This value can be as
large as 1030 rows.

8. Specify the window’s left edge by typing 40. This value can
be from 0 to 79.

9. Specify the window’s right edge by typing 79. This value
can be from 0 to 79.

10. Move the cursor to the “Display” field. The default is
“y”es. Let’s leave it as is. Press < ENTER> . The window
will be displayed after you create it. (To create a window,
but not display it, you would just type n. Then you would
use Window Utility View to make it visible.)

Using Windows 4-15

Your window should now be displayed on the right half of the
screen. You can see that it’s yours because the name you assigned
is at the top (MYWINDOW).

 Delete the Window To delete the user-defined window you just created (named
MYWINDOW):

1. Make sure you are at the main PC Interface level. If not,
press the ESC key until the main PC Interface labels
appear.

2. Type w then d.

Figure 4-4. Your User-Defined Window (MYWINDOW)

4-16 Using Windows

3. The form at the bottom of the screen should display
“MYWINDOW.” If you created any additional windows in
previous steps, the name of the last window you created
will be displayed in the form. Press < ENTER> if the
name of the window you want to delete appears in the
form. Otherwise, press Tab until the name of the window
you want to delete appears in the form, then press
< ENTER> .

4. You are asked to confirm the deletion. Type y and press
< ENTER> again to delete MYWINDOW. (If you don’t
want to delete the window, type n (which is the default
answer.)

Note You can scroll through the list of possible windows to delete by
pressing the Tab and Shift Tab keys. If there is only one
user-defined window, the name in the form will not change when
you press Tab or Shift Tab.

If you haven’t created any user-defined windows, you will not be
able to delete any windows. If you try it anyway, the PC Interface
will return to the main level, and the message “No user-defined
windows have been created” will appear.

You can delete a user-defined window even if it isn’t visible on the
screen.

How to Use the
System Terminal
Window

To access the System Terminal window:

1. Return to the main PC Interface level by pressing ESC.

2. Press System Terminal.

Notice that the window named Terminal is active. You can tell that
it is active because its border is highlighted.

Using Windows 4-17

If you press < ENTER> now, you should see an emulator prompt
appear at the top of the window. This feature allows you to access
and operate your emulator using the Terminal Interface. Don’t
change the emulator configuration while working in the Terminal
Interface. Otherwise, some features may no longer work properly
when you exit the System Terminal.

The default size of the System Terminal window is 80 characters
wide, and 20 rows deep.

To exit the system terminal window, press < CTRL> \.

The Terminal window has a 48 line buffer. When you exit the
Terminal window, all information stored in that buffer is retained.
You can then reenter the Terminal window, and find the same
information displayed. In addition, if you “hide” the Terminal
window, and then view it, all information stored in the window
buffer is retained.

Refer to the Terminal Interface Reference for information on
Terminal Interface commands.

4-18 Using Windows

With the System Terminal window displayed, your screen should
resemble:

Note In the System Terminal window, you can use ^ r to recall
commands from the previous command. You also can use ^ b to
recall commands from the first command you entered. To recall
multiple commands sequentially, continue pressing either ̂ r or
^ b.

Commands You
Shouldn’t Execute

While working in the Terminal window, don’t execute the
following commands, because emulator operation may be
suspended:

<CTRL> s followed by <CTRL> \

po

stty

Figure 4-5. System Terminal Window displayed

Using Windows 4-19

init -pv

xp

echo

mac

wait

pv

t

Specifics About the
System Terminal

Window

When you start the System Terminal window, everything you type
at the keyboard is sent to that window, which corresponds directly
to that communication port on the host computer. The PC
Interface does not recognize the commands you type, because you
are accessing the emulator directly through the Terminal Interface,
not the PC Interface.

You can perform most of the functions on the System Terminal
window that you perform on the other windows. One thing that
you cannot change is whether the System Terminal window is
displayed. When you access the System Terminal window, it is
automatically displayed. You can then use the Window Utility Hide
feature to hide the System Terminal window.

You can put System Terminal window parameters in a
configuration file that you execute when initiating the PC
Interface. This file could include details about the size and location
of the System Terminal window on the screen.

Printing Window
Contents

You can print the contents of a window. To do this, enter:

Window Store prn

This tells the PC Interface that the file is to go directly to the
device named “prn.” If your printer has a different name, specify its
name in place of “prn.”

4-20 Using Windows

5

Using System Features

Topics Covered How to Execute System Level Commands

Log Commands and Output to a File

Load and Display Symbols

How to Store the PC Interface Configuration

How to Load the PC Interface Configuration

How to Exit the PC Interface

How to Execute
System Level
Commands

System level commands are those you typically execute at the
MS-DOS system level, like dir, chkdsk, and copy.

There are two ways to execute system level commands from within
the PC Interface. You can use the single command execution
feature, or you can temporarily access the system level to execute
multiple system level commands. The following paragraphs
describe both methods.

Execute a Single
System Level

Command

This feature allows you to execute a system level command, such as
dir , by completing a form. The form requires that you type in the
single command (chapter 3 describes forms).

Using System Features 5-1

You can redirect the output of one command into the input of
another command. For example, you could type dir | more to view
the list of files in the current directory screen by screen, if
supported by your PC.

You also could use an editor to modify or create a file. When you
save the file, control of the system automatically returns to the PC
Interface.

Note When you use this method, the system level command does not
interact with the PC Interface windows. While the command is
executing, the PC Interface is temporarily suspended.

With the single system level command, you can redirect the output
of the command into a file. For example, you could type dir >
filelist to store the list of files in the current directory into a file
named “filelist.” You could include directory information if you
want the resulting file stored in another directory.

Note All single system level commands will act on the current directory,
unless you specify otherwise by including directory information.

To access the system level and display all files in the current
directory, enter:

System MS-DOS Command dir

This command informed the PC Interface that an MS-DOS system
level command will be executed, and dir displayed a listing of the
files in the current directory.

To access the system level and format a flexible disk on drive a,
enter:

System MS-DOS Command format a:

5-2 Using System Features

You must then insert the flexible disk into the drive, and wait for
the format to complete. When you finish formatting diskettes,
press any key to return to the PC Interface.

Try executing other system level commands using this method.

Execute multiple
System Level

Commands

This feature gives you temporary access to the MS-DOS system
level. Once you have accessed the system level, you can execute as
many commands as you want before returning to the PC Interface.

You cannot execute the command to access the PC Interface. If you
forget that you’ve accessed the system level, and then try to access
the PC Interface again, the message “Program too big to fit in
memory” will appear.

To access the MS-DOS system level, enter:

System MS-DOS Fork

This indicated to the PC Interface that you temporarily transferred
control to the MS-DOS host operating system. At this point you
can use your host computer for many typical system functions.

Try this feature. Then, when you are ready, enter:

exit

Now press < ENTER> to return to the PC Interface.

Note Do not run any programs that modify the RS-232 ports. Also, you
should not run any programs that consume memory and without
returning it to the host computer. Some examples include:
operating HP AdvanceLink, starting a LAN (Local Area Network)
connection, and copying files from another computer system. Also,
you will not be able to execute any commands that require large
amounts of system memory, such as compilers, complex text
editors, and so on. You can use the MS-DOS CHKDSK command
to determine the amount of free memory available after you fork
the system.

Using System Features 5-3

Log Commands
and Output to a
File

The PC Interface “log” feature allows you to store commands
and/or the results of those commands in a file. You can use it later
as a command file to perform tasks automatically.

Command and log files are PC Interface system features. Chapter 7
describes how to create and use them.

Load and Display
Symbols

The PC Interface allows you to access a symbol database on the
host computer. Using this feature, you can connect to a symbol
database, display global symbols, and display local symbols. For
each of these processes, a form will appear on screen. You must
make your choices in this form.

To load a symbol database, enter:

System Symbols Global Load <filename.L>

The “.L” suffix specifies a linker symbol file produced by an
HP 64000 software development tool. The proper filename for you
tools depends on the file formats you use. See the appendices of
your Emulator PC Interface User’s Guide for more information.

To display global symbols in the database you just loaded, enter:

System Symbols Global Display

The global symbols in the database will automatically be displayed
in the Symbols window.

Note You must load a symbol database before displaying symbols.
Loading a program module (using the Memory Load command)
automatically loads the symbol database for most file formats.
Refer to your Emulator PC Interface User’s Guide.

5-4 Using System Features

To display local symbols from the symbol database, enter:

System Symbols Local <filename.S>

The “.S” suffix specifies a source module for an HP 64000 software
developent tool. Again, the filename and extension you need
depends on the file formats you use. Refer to the appendices of
your Emulator PC Interface User’s Guide for more information.

Note The top of the global symbols display lists the modules which can
be referenced for local symbols. You can enter any of the names
listed when displaying local symbols. Though the MS-DOS
operating system is not case sensitive, you must enter these names
in the same case as their listing in the global symbols display. This
supports situations where code development is done on systems
which are case-sensitive, such as HP-UX.

Details About
Symbols

Symbol files are created when generating absolute files with the
HP 64000-PC Cross Assembler/Linkers. When you assemble a
source file, an assembler symbol file (with the same base name as
the source file but with an extension of “.a”) is created. The
assembler symbol file contains local symbol information.

When you link relocatable assembly modules, a linker symbol file
with the same base name as the absolute file but with a “.L”
extension is created. The linker symbol file contains global symbol
information and information about the relocatable assembly
modules that were combined to form the absolute. The file reader
for the HP64000 format collects the information from the “.L” and
“.A” (assembler symbol) files to construct the symbol database.
Readers for other file formats may use different methods to build a
symbol database.

Global Symbols

When any files supported by a file format reader are loaded into
the emulator (using the Memory Load command), the PC Interface
connects to the corresponding symbol database. You also can
connect to the symbol database with the System Symbols Global

Using System Features 5-5

Load command. Use this command in situations where you are
loading multiple absolute files into the emulator. It allows you to
connect to symbol databases corresponding to the various absolute
files. When you specify a new symbol database, information
contained in a previous symbol database is no longer accessible
(only one symbol database can be loaded at a time).

After you load global symbols, both global and local symbols can
be used when entering expressions. Global symbols are entered as
they appear in the source file or in the global symbols display.

Local Symbols

If you display local symbols with the System Symbols Local
command, you also can enter local symbols as they appear in the
source file or local symbol display.

If you have not displayed local symbols, you can still enter a local
symbol by including the name of the module:

module_name:[scope.]*symbol

In other words, you specify a module name, followed by zero or
more optional scope specifiers (separated by periods), followed by
the symbol name. For example, suppose you have a C module
named proj.c, with a function called test which defines a static int
index. You refer to this variable as:

proj.c:test.index

Note The symbol database does not contain information about symbols
within functions that refer to variables on the stack.

You also can specify ranges using symbols using the syntax:

<lower_bound>..<upper_bound>

Suppose you had a table of messages defined in your program and
wanted to display the memory where the messages were stored.

Memory Display Byte
cmd_rds.S:Cmd_A..cmd_rds.S:Cmd_I

5-6 Using System Features

This also works across modules, as long as both modules
referenced are part of the same symbol database (that is, both
module names are listed when you display global symbols). For
example, suppose Cmd_I is in inv_proc.S, which links with
cmd_rds.S to form the program whose symbol database is loaded:

Memory Display Bytes
cmd_rds.S:Cmd_A..inv_proc.S:Cmd_I

When you include the name of a local symbol module with a local
symbol, that module becomes the default local symbol module, as
with the System Symbols Local command. Local symbols must be
from modules that were linked to form the absolute whose symbol
database is currently loaded. Otherwise, no symbols will be found
(even if the named module exists and contains information).

The only valid module names are those listed in the current global
symbols display. The module names are displayed at the beginning
of the global symbols list. You must match the case shown in the
global symbols listing when entering module names. For example,
if the global symbols list shows a module named CMD_RDR.S,
then cmd_rdr.s and Cmd_Rdr.S will be rejected as module names.
Only CMD_RDR.S will be accepted.

Symbols defined as
local and global

It is possible for a symbol to be local in one module and global in
another, which may result in some confusion. For example,
suppose symbol “XYZ” is defined as global in module A and local
in module B and that these modules are linked to form the
absolute file. After you load the absolute file (and the
corresponding symbol database), entering “XYZ” in an expression
refers to the symbol from module A. Then, if you display local
symbols from module B, entering “XYZ” in an expression refers to
the symbol from module B, not the global symbol.

Now, if you want to enter “XYZ” to refer to the global symbol
from module A, you must display the local symbols from module A
(since the global symbol is also local to that module). Loading local
symbols from a third module, if it was linked with modules A and B
and did not contain an “XYZ” local symbol, also would cause
“XYZ” to refer to the global symbol from module A. You can also
refer to a global symbol explicitly using the syntax

:<symbol_name>

Using System Features 5-7

For example,

:XYZ

would refer to a global symbol with the name “XYZ”, even if a
local symbol exists with that name.

Emulator Symbol
Capab ilities

Certain emulators can internally store and reference local and
global symbols. If your emulator has this capability, you will see
additional options appear in the System Symbols Local and System
Symbols Global commands.

Symbol handling within the emulator provides additional PC
interface features. If you transfer global and local symbols to the
emulator, you will see symbol displays in the trace, memory
mnemonic, and single step displays.

Global Symbol Options

There are two additional options for global symbols.

System Symbols Global T ransfer

This command moves the global symbol data for the specified
absolute file into the emulator, where it can be used by the
emulator’s symbol handler.

System Symbols Global R emove

This command removes any global symbol data loaded into the
emulator.

Local Symbol Options

There are additional options for local symbols.

System Symbols Local Transfer Group
 <module, module, ...>

This command moves the local symbol data for the specified
modules into the emulator, where it can be used by the emulator’s
symbol handling tools. To transfer the local symbol data for all
modules in the current symbol database, enter:

System Symbols Local Transfer All

5-8 Using System Features

The command

System Symbols Local Remove Group
 <module, module, ...>

removes any local symbol data loaded into the emulator for the
specified modules only. To remove all local symbol data in the
emulator, enter:

System Symbols Local Remove All

To find out which local symbols are loaded into the emulator, enter:

System Symbols Local Loaded

 The PC Interface returns the module name(s) associated with that
symbol set.

How to Store the
PC Interface
Configuration

The PC Interface configuration feature allows you to store and/or
load all the PC Interface configuration data into a file that you can
reload later.

The configuration store feature saves:

miscellaneous information

key macro definitions

analyzer trace format and specification

system and user-defined window information

emulator-specific information

PC Interface
Configuration File

Details

The monitor color information is stored in the PC Interface
configuration file, under the topic of “miscellaneous.”

Using System Features 5-9

An example of the monitor section of a PC Interface configuration
file resembles:

$MISC
color white blue
$MISC

If you are using a monochrome monitor, the term “color” is
replaced by “mono.”

Window
Configuration

Information

All the system and user-defined window characteristics are stored
in the PC Interface configuration file.

Note Data displayed in any of the windows is not stored in the PC
Interface configuration file.

When loading the PC Interface configuration file, windows and
their characteristics will be redisplayed as they were when the
configuration was stored.

An example section of a PC Interface configuration file used to
define windows resembles:

$SYSWIN
Code F F F 0,0 6,60 20
Symbols T T F 0,61 15,79 20
Trace T T F 16,0 20,79 20 T
Error_Log F F F 16,0 20,79 20
Emulation T F F 7,0 15,60 20
Terminal F F F 0,0 15,79 20
$SYSWIN
$USERWIN
MYWINDOW T F F 0,40 20,79 20
$USERWIN

System window characteristics are enclosed with $SYSWIN.
User-defined window characteristics are enclosed with
 $USERWIN.

5-10 Using System Features

The user-defined window characteristics are:

Parameter Meaning

MYWINDOW user-defined window name

T display the window after it is created
(True)

F clear the window before writing data to it
(False)

0,40 Top,Left margins

20,79 Bottom,Right margins

20 Window buffer size

The system window characteristics also include these parameters.

Emulator-Specific
Information

The emulator-specific characteristics stored in the PC Interface
configuration file include:

emulator display and access modes

general emulator configuration

break conditions

emulator memory map terms

CMB setup

BNC trigger setup

CMB trigger setup

Using System Features 5-11

Note You can use the System Terminal feature to access the Terminal
Interface to modify the emulator-specific configuration. When you
return to the PC Interface, the new configuration parameters are in
effect. If you change the emulator configuration in the Terminal
Interface, some emulator features that worked before may not
work properly when you exit the System Terminal window.

An example emulation section of a PC Interface configuration file
(for the Z80 emulator):

$EMUL
mo -ab -db
cf clk=int
cf rrt=dis
cf qbrk=en
cf trfsh=dis
cf tbusack=dis
cf busreq=en
cf int=en
cf nmi=en
cf waitem=en
cf wrdata=dis
cf moncyc=dis
cf monbase=0000
bc -d bp #disable
bc -e rom #enable
bc -d bnct #disable
bc -d cmbt #disable
bc -d trig1 #disable
bc -d trig2 #disable
map 00000..07fff eram # term 1
map 08000..08fff erom # term 2
map other eram
cmb -d #cmb currently disabled
bnct -d none -r none
cmbt -d none -r none
tgout none
tarm always
$EMUL

Notice that all the emulation configuration items are included.
Break conditions, the memory map, CMB, and trigger details are
also included.

5-12 Using System Features

How to Load the
PC Interface
Configuration

You can load the PC Interface configuration file in two ways:

1. You can specify the configuration file name (with the /w
option) when accessing the PC Interface.

2. You can use the Config Load command from within the
PC Interface.

You can modify an existing configuration file using an editor, then
reload the configuration file. The parameters in the new version of
the configuration file will immediately take effect.

You can change all or part of the PC Interface program
configuration by loading a complete configuration file, and then
loading subsequent partial configuration files.

Example
Configuration Files

Suppose you have several configuration files, organized like this:

Configuration file # 1, named “entire.cfg,” contains all the
characteristics from a previous configuration.

Configuration file # 2, named “window.cfg,” contains only
user-defined window characteristics. You could have created this
file manually, or you could have edited a previous configuration
file.

Configuration file # 3, named “emul.cfg,” contains all the
characteristics for your emulator configuration.

Here’s how you could use these files:

First, you could load the complete configuration file “entire.cfg” by
specifying the file name when accessing the PC Interface. Next, you
could automatically recreate any user-defined windows by loading
the file “window.cfg” with the “Config Load” command. Then, to
perform specific tasks with the emulator, you could use the “Config
Load” command to load the configuration file “emul.cfg.” This file
may contain characteristics to change your emulator configuration
to operate with a target system.

Using System Features 5-13

Using configuration files this manner can help you initialize your
emulation system quickly and completely to perform a wide range
of tasks.

5-14 Using System Features

How to Exit the PC
Interface

There are three methods for exiting the PC Interface and returning
to the host computer operating system:

To exit the PC Interface and keep it locked, enter:

System Exit Lock

To exit the PC Interface and leave it unlocked, enter:

System Exit Unlock

To exit the PC Interface without saving the current configuration,
enter:

System Exit No_save

The following table summarizes these exit choices and their effects:

Action System Exit

Locked No_save Unlocked

Saves current
configuration?

Yes No No

Initialize emulator on
next PC Interface
entry?

No No Yes

Load emulation
configuration items
($EMUL) on next PC
Interface entry?

No No Yes

When you reenter the PC Interface, it always loads any
configuration file specified with the /w command line parameter.
(Although it may ignore certain configuration file parameters; see
the table above.) If none is given, the default configuration file is
loaded (if it exists). Otherwise, the emulator configuration is
determined by the PC Interface defaults.

Using System Features 5-15

If you exit with the Unlocked option, the emulator is reinitialized
to its powerup state the next time you enter the PC Interface.
Then, any existing configuration files are loaded. The interface will
take a little longer to start up, since it must wait for the
initialization to complete.

Note When executing a command file, the PC Interface will exit (return
control to the host computer) only if the last command in the file is
“s e l” (System Exit Locked), “s e u” (System Exit Unlock), or “s
e n” (System Exit No_save).

Note The PC Interface allows you to execute a command file to perform
these functions for you. When restarting the PC Interface, you can
execute a command file to reconfigure your system as it was
previously configured. Chapter 7 contains the details.

5-16 Using System Features

6

Controlling Emulators

Topics Covered This chapter explains how the PC Interface controls the
HP 64700-Series emulator. The topics include:

Modifying the General Emulator Configuration

Microprocessor Execution

The Memory Mapper

Emulation Memory

Break Events

Emulator Registers

Using the Emulator While Connected to a Target System

Continue with this chapter to learn how the PC Interface does this.
The following pages describe each of these major topics and their
subtopics.

Note For additional information on using HP 64700-Series emulators
with the PC Interface, refer to your Emulator PC Interface User’s
Guide or the HP 64700 Emulator Terminal Interface User’s Guide. If
you have questions about terms in this chapter, refer to the
HP 64700 Emulators Glossary Of Terms.

Controlling Emulators 6-1

Modify the
General Emulator
Configuration

Each HP 64700-Series emulator has its own specific configuration
information. Refer to your Emulator PC Interface User’s Guide for
details about modifying your emulator general configuration.

Microprocessor
Execution

Microprocessor features controlled by the PC Interface are:

Run

Break

Reset

I/O Display/Modify *

Memory Display/Modify

CMB Execution

Single Step

* Refer to the appropriate Emulator User’s Guide for details.

Run the
Microprocessor

The run commands cause the emulator to execute from either:

an address in emulation or target system memory

the current program counter value

the reset address of the emulator or target system

If an error occurs, the “Error_Log” window displays an appropriate
error message. For example, if your program encounters a software
breakpoint, the result is displayed in the Error_Log window.

6-2 Controlling Emulators

Otherwise, the run commands do not have any output location for
data. When you execute any of the run commands, the status line
displays the current state of the emulator.

Let’s suppose your emulator has a short program in emulation
memory, starting at address 0.

1. To run from the start of this program, enter:

Processor Go Address

A form appears for you to enter the address from which
the processor should begin executing your program. Enter
the starting address of your program. Notice that the
status line shows a user program is running.

Note The emulation processor might halt if there is no valid code to
execute.

2. To run from the current program counter value, enter:

Processor Go PC

Notice the status line says “Running user program.”

3. To run the emulation processor from target system reset,
enter:

Processor Go Reset

Now you must reset the target system microprocessor. If
you have a hard reset button in your target system, after
you press it the target system program will continue to
execute. (If your target system does not have a hard reset
switch, the target program execution will continue when
the emulation processor is reset.)

A key feature of HP 64700-Series emulators is the Coordinated
Measurement Bus (CMB). You can use this to make synchronized
measurements among multiple emulators/analyzers. To do this,
you specify the CMB trigger setup using the “Config Trigger”
menu, then instruct the emulation processor to execute on CMB
Trigger. This is explained later in this chapter.

Controlling Emulators 6-3

Step the
Microprocessor

There are many ways you can single-step the emulation processor.

You can control the events which occur at the end of the
single-step. You also control the data that is displayed. You can
specify the number of instructions you want the microprocessor to
step. The default is to step one instruction. The maximum number
of instructions you can specify is 99.

Register contents are automatically displayed in the Emulation
window. If any errors occur, the results will be displayed in the
Error_Log window.

1. To step the emulation processor four instructions from the
current program counter address, enter:

Processor Step PC 4

Note When stepping the microprocessor, registers are automatically
displayed in the Emulation window.

2. To step the emulation processor from a specified address,
enter:

Processor Step Address

A form prompts you to enter the number of instructions to
single-step, and an address from which the emulation
processor should begin stepping. Go ahead and enter a
desired number (no larger than 99). Then enter the
address from which the processor should begin stepping
your program.

3. To do a conditional single-step, enter:

Processor Step Event

A form lets you specify whether register contents and
mnemonics should be displayed. Then you may specify the
name of a command file to execute the actions you want
when the step completes.

6-4 Controlling Emulators

Break the
Microprocessor

The break feature allows you to redirect the emulation processor
execution from user program execution to the emulation monitor.
There are no options to this command.

Note If your HP 64700-Series emulator is part of a CMB measurement,
the break command causes a break in all other HP 64700-Series
emulators in the measurement.

To break your emulator into the monitor, enter:

Processor Break

The processor suspends execution of your program, and begins
executing in the monitor. Notice that the status line displays the
emulator’s current state.

Reset the
Microprocessor

The reset command stops execution of the current instruction and
either begins execution in the monitor or remains reset, depending
on which option you choose. No information is saved through the
reset.

After the reset, the emulator’s program counter is set to the
powerup reset address. To run the emulator from the program
counter value now would be the same as running from a powerup
condition. Notice that the status line displays the emulator’s
current state.

1. To reset your emulator and start monitor execution, enter:

Processor Reset Monitor

2. To reset and hold your emulator in the reset state, enter:

Processor Reset Hold

The emulation processor is reset, and will r emain in the
reset state until you cause it to do something else. Notice
the status line indicates “Emulation reset.”

Controlling Emulators 6-5

Note To release the emulator from the halted state, enter Processor
Break at the main PC Interface level. The emulator will begin
executing in the monitor.

Display I/O Port
Addresses

The I /O Display command allows you to display the contents of the
emulation processor or target system microprocessor I/O port
addresses.

Note This command is only valid for emulation processors that have
separate I/O and memory address spaces. Refer to your Emulator
User’s Guide for details about your emulator’s capabilities.

You can display emulation processor I/O port addresses by
specifying the addresses either symbolically or with absolute values
by entering your choices in the form that appears.

When you display I/O addresses, a momentary break of foreground
execution occurs. After the display is complete, foreground
execution resumes.

The Emulation window contains the results of this command. You
may have to use the Window Zoom command to see the entire
window content.

To display your emulator’s I/O port address 0, enter:

Processor I /O Display 0

The result in the I/O window is:

Address Value

------- -----

0000H = FF

The data in your emulation processor port addresses may be
different that the values shown here.

6-6 Controlling Emulators

Note You can enter multiple I/O port addresses by separating them with
a semicolon (;).

Modify I/O Port
Addresses

The I /O Modify command allows you to modify data at emulator
I/O port addresses.

Note This command is only valid for emulators that have separate I/O
and memory address spaces. Refer to your Emulator User’s Guide
for details about your emulator’s I/O capabilities.

You can specify the I/O addresses either symbolically or with
absolute values.

When you modify I/O addresses, a momentary break of foreground
execution occurs. After the modify is complete, foreground
execution resumes.

To modify data at your emulator’s I/O port address 0 to “1,” enter:

Processor I /O Modify 0=1

You indicated that data at I/O port address 0 would be changed to
“1.” With this command, you must equate a port address to data
that you want stored at that address.

You can write multiple data values to the same I/O address by
equating the address to multiple terms separated by a comma (,).
For example, you could enter:

Processor I /O Modify 0=1,2,3,4

I/O port address 0 would then contain 1, then 2, then 3, and then 4.

You can also enter ASCII strings. To send the null-terminated
string "ABCD" to I/O port zero, enter:

Processor I /O Modify 0="ABCD",0

Controlling Emulators 6-7

Start the Emulator
When CMB Events

Occur

The Processor CMB command asserts the Coordinated
Measurement Bus (CMB) EXECUTE signal.

The CMB synchronizes starts and stops among multiple HP
64700-Series emulators. You can enable CMB interaction through
the emulation configuration command. Each emulator has a
unique CMB interaction question in the emulator configuration.
When you enable CMB, you can use the Processor CMB Go
command to start the emulators executing at a specified address
when the CMB EXECUTE signal becomes valid. All HP
64700-Series emulators waiting for the CMB EXECUTE signal
will start executing when the CMB EXECUTE signal goes true.

A line above the status line shows “ALERT: CMB execute; run
started.” The same result also will be displayed in the Error_Log
window.

Note Refer to the CMB User’s Guide for details on CMB Operation.

To run the emulators from the current PC when CMB trigger goes
valid, enter:

Processor CMB Go PC

The processor begins executing your program from the current
program counter when CMB trigger is driven. Notice that after you
enter this command, the emulation processor will not begin
executing until you issue a Processor CMB Execute command on
one of the emulators participating in the measurement.

To run the emulators from a specific address when the CMB
trigger goes valid, enter:

Processor CMB Go Address

The processor begins executing your program from the address you
specified (required parameter) when CMB trigger is driven. Notice
that after you enter this command, the emulation processor will

6-8 Controlling Emulators

not begin executing until you issue a Processor CMB Execute
command.

To begin execution in all emulators connected to the CMB, enter:

Processor CMB Execute

All emulators connected to the CMB will begin executing in
foreground once the CMB trigger signal becomes valid. Notice that
the message “ALERT: CMB execute; run started” is displayed
above the status line. The same information is also displayed in the
Error_Log window.

The Memory
Mapper

Each HP 64700-Series emulator provides emulation memory that
the emulation processor can use. The emulator must control access
to this memory and the memory in your target system. The
HP 64700-Series emulators use a memory mapper to divide the
microprocessor’s logical address space into regions of memory that
reside either in your target system, in the emulator, or as guarded
(inaccessible) space. Target system memory also can be mapped.

You can program your emulator’s memory mapper to resemble the
memory configuration of your target system by specifying
individual address ranges and memory types. The number of
memory mapper terms you can define varies between emulator
types. Refer to your Emulator User’s Guide for details about your
emulator’s memory mapper.

The PC Interface allows you to modify and/or reset the emulation
memory mapper features.

Modify the Memory
Mapper

This feature allows you to modify the memory map terms. Memory
map terms are definitions that you specify in the memory map
menu.

Controlling Emulators 6-9

Note Each emulator restricts the blocksizes you can define to some
value, such as 256, 512 or 1024 bytes. For example, the Z80
emulator requires that memory ranges you define be specified in
multiples of 256-byte blocks. If you specify a range that is not a
multiple of 256-byte blocks, the memory map automatically adjusts
to make it a multiple of 256-byte blocks.

Emulators also restrict the starting range of blocks to a multiple of
the blocksize value.

Refer to your Emulator User’s Guide for details about your
emulator’s memory mapper.

Each memory map term has an address range and a memory type.
The memory types are:

eram (emulator RAM)

erom (emulator ROM)

tram (target system RAM)

trom (target system ROM)

grd (guarded/inaccessible)

When modifying the memory map configuration, you must type
your choices in the form that appears. You must specify the
address range for each term that you add or modify.

6-10 Controlling Emulators

To modify the memory map, enter:

Config Map Modify

The memory map will automatically be displayed. It should
resemble:

You enter mapper terms by typing in the address range you want to
map, and selecting the memory type. For example, to define a new
term 1, you might type 0..3ffh and use Tab to select erom in the
Memory Type field. A shorthand entry method is to type only the
starting address of the range, followed by two periods (..). This
gives you one block.

Memory Map Configuration

Unmapped memory type eram

Term Address Range Memory Type

1 Empty grd

2 Empty grd

3Empty grd

4Empty grd

5Empty grd

6Empty grd

7Empty grd

8Empty grd

9Empty grd

10Empty grd

11Empty grd

12Empty grd

13Empty grd

14Empty grd

15Empty grd

16Empty grd

Figure 6-1. Default Memory Map

Controlling Emulators 6-11

Note The Terminal Interface command map addr..addr+ 7fh < type> is
sent to the emulator when you use this shorthand method. If this
specification spans more than one block in the mapper, the mapper
will allocate two memory blocks. Suppose your emulator maps
memory in 1 Kbyte blocks. If you specify a memory block as
1000h.., the emulator will map a block of memory from 1000h to
13ffh. But, if you specify the block as 13f0h.., the emulator will map
a block of memory from 1000h thru 17ffh (effectively two
contiguous blocks).

When you have finished editing the memory mapper terms and exit
the form, the new memory mapper configuration is in effect.

To learn more about defining ranges of memory for your emulator
as either eram, erom, tram, trom, or grd, refer to your Emulator PC
Interface User’s Guide.

Storing the Memory Map

You can save the current memory map in a file using the PC
Interface Config Store command. If you want to load that memory
map later, use the Config Load command.

Reset the Memory
Map

This feature allows you to delete all current memory map term
definitions. All of emulation memory will become the default
memory type. Refer to your Emulator PC Interface User’s Guide for
details about the default memory type for your emulator.

To reset the emulation memory map, enter:

Config Map Reset

Any previously defined memory map terms are deleted, and the
memory map is set to the default state.

6-12 Controlling Emulators

Note Be sure that you want to reset the memory map before using this
command. If you are not sure that you want to delete all the terms,
first store the PC Interface configuration to a file. Then you can
retrieve any of the terms you need without having to recreate them
manually.

Controlling
Memory

The PC Interface controls these emulation memory and target
system memory features:

Display

Modify

Load

Store

Copy

Find

Display Memory This feature allows you to display the emulation processor address
space.

When the microprocessor is executing in foreground, and you
display memory addresses that map to your target system, a
momentary break of foreground execution occurs. After the
memory display is complete, foreground execution continues.

The Emulation window contains the output from all memory
display commands.

To display memory, enter:

Memory Display

Controlling Emulators 6-13

Now you must specify how you want the memory display formatted.
Depending on your emulator’s capabilities, you may specify the
data associated with these ranges in bytes, words, mnemonics, long
words, or various floating point types. Refer to your Emulator PC
Interface User’s Guide for details.

A form will appear asking you to enter one or more address ranges.
You can specify as many address locations or ranges as the form
will allow by separating each range with a semicolon (;).

Note To display multiple memory ranges with a single command,
separate the ranges with a semicolon (;).

To view the entire content of the Memory window, use the Home
and End keys. To save more lines in the window, increase the
window’s buffer size using the Window Utility Parameter command.

You can use the Memory Display Repetitively command to
constantly update the memory display. The display format and
range is that selected for the last Memory Display command. Use
the Esc key to terminate the command.

Modify Memory This feature allows you to modify the values of your emulation
processor memory or target system memory locations. You can
specify as many address locations or ranges as the form will allow
by separating each range with a semicolon (;).

When the microprocessor is executing in foreground, and you
modify memory addresses that map to your target system, a
momentary break of foreground execution occurs. After the
memory modify is complete, foreground execution continues.

To modify multiple memory ranges with a single command,
separate the ranges with a semicolon (;).

6-14 Controlling Emulators

Note Depending on your emulator’s capabilities, you may specify the
data associated with these ranges in bytes, words, mnemonics, long
words, or various floating point types. Refer to your Emulator PC
Interface User’s Guide for details.

Store Memory to a
File

The memory store feature allows you to copy a block of emulation
memory or target system memory to an absolute file on your host
computer.

To store memory to a file, enter your choices in the form that
appears on screen. Specify the file format, the address range to
store, and the file name where the data will be stored. You can
include any valid directory name if you want to store the data in a
file in another directory.

The output from this command is the absolute file. If there are
unmapped addresses in the specified address range, the command
will terminate when the process encounters an unmapped address.
Whenever an error occurs, no absolute file is created.

To store memory to a file, enter:

Memory Store

Now you must specify a name for the file, the absolute file type,
and an address range.

Note This command will automatically overwrite any existing file with
the specified name. Therefore, be careful that you don’t destroy
valuable information by storing the data to an existing file.

Load Memory from a
File

This feature allows you to load an absolute file into emulation
memory or target system memory.

The command results are not automatically displayed in any
window. You must inspect memory with the Memory Display

Controlling Emulators 6-15

command to display the program. If an error occurs, the error is
displayed in the Error_Log window, and the process is terminated.
Any memory that was loaded before the error will r emain altered.

To begin loading emulation memory with an absolute file, enter:

Memory Load

You need to specify the name of an absolute file and its type. Enter
your choices in the form provided on screen. Specify the absolute
file (including any applicable path information) and the file’s
format (HP64000, Intel_Hex, Motorola_Hex, or EXT_Tek_Hex).
The HP 64000 format includes an 8-bit binary mode that uses the
HP transfer protocol. Then specify whether you want to load
addresses mapped as target, emulation, or both.

Each emulator also comes with file format readers that support
special file formats for that processor. Refer to the Emulator PC
Interface User’s Guide for your emulator for further information.

The contents of the absolute file will be loaded into the same
locations they occupied before you saved them in a file. With the
Both option specified in the form, any memory mapped as target
and emulation memory will be loaded, if both are found in the
range you specify to load.

Copy Memory This command allows you to copy data from one area of memory to
another.

To copy a range of memory, enter your choices in the form that
appears on screen. Specify the source range (starting and ending
addresses) and destination address. The content of the source
memory range is then copied to a destination range beginning with
the address you specify.

Note All destination addresses included in the memory copy process
must be previously mapped as emulation RAM (eram) or ROM
(erom) or target system RAM (tram) or ROM (trom).

6-16 Controlling Emulators

To copy a range of emulation memory from 0 through 0ffh to 100h,
enter:

Memory Copy

Now you must specify the source range (0..0ffh) and the destination
starting address (100h).

You can verify the copy process by displaying memory locations
100h through 1ffh.

Find a Data Pattern in
Memory

This feature allows you to search an address range for the
occurrence of a specific data pattern. The data pattern can be 8
bytes or less.

To find a data pattern in emulation memory, enter:

Memory Find

Now you must specify a memory range to search (0..0fffh, for
example), and a data pattern (1,2,3,4,5,6,7,8, for example). Enter
your choices in the form that appears on screen. Specify the
address range and the data pattern to be located. The pattern can
be up to 8 hexadecimal bytes. After you enter the data, the PC
Interface searches the address range until all occurrences of the
data pattern are located. Then it displays all addresses where the
pattern is located.

When the data pattern is located, the address of the pattern’s first
byte is written to the Emulation window with the pattern. The
search then terminates. If the data pattern is not found, the
message “Unable to find pattern: < pattern> ” is displayed in the
Emulation window.

Entering Memory
Ranges

You can use expressions in memory ranges, including symbols
(assuming that global or local symbols are loaded). For example,
you can specify a memory range as:

Cmd_Input..Cmd_Input+4*2

If Cmd_Input is at address 400h, then the above expression is
equivalent to specifying the address range 400h..408h.

Controlling Emulators 6-17

You can also use a shorthand method to display a range of 128
locations. To do this, simply type two periods (..) after the lower
range specifier, and leave the upper range blank. For example:

Cmd_Input..

Is equivalent to:

Cmd_Input..Cmd_Input+7fh

Which is equivalent to:

400h..47fh

Break Events Break events stop execution of the user program and begin
emulation monitor execution. Break events occur when:

1. the emulation processor tries to write to a memory address
mapped as erom or trom

2. a pulse is received by the emulator external Trigger line

3. generated by the emulation analyzer or external state
analyzer

Software breakpoints are provided so that you can configure a
break event to occur on a certain instruction execution. You can
display, add, remove, set, and clear 32 or fewer breakpoints. You
can set, clear, or remove all the currently defined break events as a
group, or individually, using the break control commands described
in the following paragraphs.

Note Breakpoints will be displayed automatically in the Emulation
window when you define them, even if the Emulation window is
not visible on the screen. By default, the Emulation window is
displayed in the center of the screen. You can use the window
utilities to view the Emulation window and see the current
breakpoints.

6-18 Controlling Emulators

Configure Break
Events

You can enable or disable the following emulator break event
conditions.

These are part of the general emulator configuration (Config
General):

write-to-rom
software breakpoints

These break events are part of the cross trigger configuration
(Config Trigger):

external trigger
emulation trace
external trace

Refer to your Emulator PC Interface User’s Guide for details on
your emulator’s break event capabilities. Refer to the CMB User’s
Guide for information on cross triggering and coordinated
measurements.

To cause the emulator to break when it finds a breakpoint, enter
your choices in the cross trigger configuration form provided on
screen. If you do not load an emulation configuration file, the PC
Interface uses the default values.

Control Software
Breakpoints

You can define no more than 32 software breakpoints.

You can perform multiple functions on software breakpoints,
including:

Display

Add

Remove

Set

Clear

Controlling Emulators 6-19

Note If an error occurs anywhere while the breakpoint command is
executing, the result is written to the Error_Log window.

Display Software
Breakpoints

The Emulation window is displayed in the middle of the screen.
You can use ̂ a to select each window until the Emulation
window is active.

To display all currently defined breakpoints, enter:

Breakpoint Display

All breakpoints are automatically displayed in the Emulation
window. You can verify that all the software breakpoints are
displayed by looking at the Emulation window.

Memory locations that contain the same instructions used by
software breakpoints will not be displayed. Only the breakpoints
you define using the Breakpoint Add command will be displayed.

If no breakpoints are set, the Emulation window will indicate “No
software breakpoints are currently defined.”

If you display breakpoints, and they take up more than the entire
Emulation window, increase the window buffer size or window size
using the Window Utility Parameter command until you can see
them all.

Add Software
Breakpoints

When you add a software breakpoint, the command you execute
automatically modifies the content of that memory location to the
appropriate software breakpoint code for your emulator. For
example, for the Z80 emulator, the specified memory location
would be modified to 40h, which is the LD B,B statement.

If you add a breakpoint, but the address you specify already
contains the equivalent code for the breakpoint, the message
“Breakpoint code already exists: < address> ” appears in the
Error_Log window.

To add a software breakpoint at address 3000h, enter:

Breakpoint Add 3000h

6-20 Controlling Emulators

The breakpoint at address 3000h will automatically be displayed
and shown as “Set” in the Emulation window. Other breakpoints
you might add will be displayed at the end of the list.

The content of the Emulation window should resemble:

 Breakpoint

Status Address

------ -------

Set 3000H

You can enter a single address for a single breakpoint, or multiple
addresses for multiple breakpoints, each separated by a semicolon
(;). Multiple breakpoints will all automatically be added to the list.

Software breakpoints are always displayed in order of their address.
For example, if the next software breakpoint you define occurs at
1000h, it will be placed above the currently defined breakpoint
(3000h) in the list. Then if you define another breakpoint at 2000h,
it will be placed in the middle of the list, and the Emulation
window will resemble:

 Breakpoint

Status Address

------ -------

Set 1000H

Set 2000H

Set 3000H

Remove Software
Breakpoints

You use this feature to remove one or more existing software
breakpoints.

Note Even if the general emulator configuration previously disabled
software breakpoints, you can still remove them. Be careful,
because you cannot recover any removed breakpoints unless you
redefine them.

Controlling Emulators 6-21

If you try to remove a nonexistent breakpoint, the message
“ALERT: Specified breakpoint not in list: < breakpoint> ” will
appear above the status line. The same message is displayed in the
Error_Log window.

To remove all specified breakpoints, enter:

Breakpoint Reset All

All existing breakpoints will be removed. The Emulation window
then shows that no software breakpoints are defined.

To remove a single breakpoint, enter:

Breakpoint Reset Single

Now, enter the address of the individual breakpoint you wish to
remove.

Set Software
Breakpoints

You use this feature to set (activate) one or more previously
defined breakpoints. You may want to set all breakpoints, or an
individual breakpoint, if you want your program to stop executing
when it encounters any or all of them.

Note When an emulator encounters an active software breakpoint (one
that has been set), it stops foreground execution and begins
executing in the monitor.

To set any currently defined breakpoints that were cleared, enter:

Breakpoint Set All

The defined breakpoints will automatically be set. Any breakpoints
that were cleared will be shown as “Set” in the Emulation window.
You can verify that all software breakpoints are set by looking at
the Emulation window.

To set a single breakpoint, enter:

Breakpoint Set Single

Now enter the address of the breakpoint to be set.

6-22 Controlling Emulators

You can enter either a single address, or multiple addresses
separated by a semicolon (;).

Note If you try to set a breakpoint that is not already defined, the
message “ALERT: Specified breakpoint not in list:
< breakpoint> ” is displayed above the status line. This message
also is displayed in the Error_Log window.

Clear Software
Breakpoints

You use this feature to clear (deactivate) one or more previously
defined software breakpoints. You may want to clear selected
breakpoints if you want your program to ignore a particular
breakpoint when the program begins executing.

HP 64700-Series emulators ignore all software breakpoints that
have been cleared.

You can verify that all software breakpoints are cleared by
displaying breakpoints, then looking at the Emulation window.
When a breakpoint is cleared by a program execution, its status is
not automatically changed to “Clear” in the Emulation window.
But, when you use the Breakpoint Clear command to clear them,
the status automatically changes to “Clear” in the Emulation
window.

To clear a single breakpoint, enter:

Breakpoint Clear Single

Now, enter the address of the breakpoint to be cleared. The status
of the breakpoint is automatically changed to “Clear” in the
Emulation window.

You can enter either a single address, or multiple addresses
separated by a semicolon (;).

To clear all currently defined breakpoints, enter:

Breakpoint Clear All

The breakpoints will automatically be cleared. You can verify that
all software breakpoints are cleared by looking at the Emulation

Controlling Emulators 6-23

window. The status of the breakpoint is automatically changed to
“Clear” in the Emulation window.

Note If you try to clear an undefined breakpoint, the message “ALERT:
Specified breakpoint not in list: < breakpoint> ” is displayed above
the status line. This message is also displayed in the Error_Log
window.

Emulator Registers Since a microprocessor’s operation can be traced by its register
contents, the registers can be a valuable resource for solving
problems in microprocessor hardware and software. So, the PC
Interface allows you to display and modify the emulation processor
registers.

Display Registers This feature allows you to display the current contents of the
emulation processor registers.

To access the register display feature, enter:

Register Display

The Emulation window displays the results.

Displaying registers causes a break in foreground execution. After
the display process is complete, foreground execution continues.

Note Each type of emulator has a unique register set. The way those
registers are displayed is also unique. Refer to your Emulator PC
Interface User’s Guide for details about your emulator’s registers.

Modify Registers This feature allows you to modify the content of any of the
emulation processor registers.

6-24 Controlling Emulators

To modify a register, enter:

Register Modify

Enter your choices in the form provided on screen. Specify the
register name in the Modify Register field. Then specify a value in
the field below the register name. When you have completed the
form, the register will contain the new value. You can modify only
one register at a time. Modifying registers temporarily halts
foreground execution. After the modify is complete, foreground
execution continues. The command results are not displayed in a
window. You can verify that the register contents were changed by
using the Register Display command.

You can use the Tab and Shift Tab keys to select any of the
registers. Then type a new value for the register.

Refer to your Emulator PC Interface User’s Guide for details about
how your specific emulator registers are modified.

Note You can store the result of a mathematical equation in a register.
For example, you can store 4 * (5 + 2) in any of the emulator
registers. The register will then contain 1C hexadecimal (28
decimal). The register contents display is hexadecimal. See the
Expressions syntax in appendix A for more information.

Coverage Analysis HP 64700-Series emulators include hardware that allow you to
analyze memory coverage resulting from code execution. This can
help you determine whether specific procedures were executed, or
if a data block is accessed. The PC Interface includes commands to
control these coverage tools.

Note Coverage measurements are made only on emulation memory.

Controlling Emulators 6-25

The coverage hardware works by recording a hit on a memory
location any time that location is accessed, whether for a read or a
write. The hit is remembered until the coverage hardware is reset.
Therefore, you should remember to reset the coverage hardware
before making an entirely new measurement to avoid confusing
results. (However, if your goal is to exercise a new procedure and
note the resulting change in coverage, do not reset the coverage
hardware.)

Reset the Coverage
Hardware

You can reset the coverage hardware with the command:

Memory Report Reset

A coverage measurement made immediately thereafter will report
0% coverage.

Run the Processor Before you use the coverage measurement commands (and after
you have reset the coverage hardware), you need to execute the
user program. Otherwise, no memory locations will be accessed,
yielding meaningless coverage data.

Check an Address
Range

To see which memory locations were accessed within an address
range or ranges, use the command:

Memory Report Accessed <address range;
address range ...>

Specify one or more address ranges. If you specify multiple ranges,
they must be separated with semicolons. The Emulation window
will display a list of all memory ranges that were accessed within
the supplied ranges.

You can also find out which locations were not accessed within a
range. Use the command:

Memory Report Nonaccessd <address range;
 address range...>

You’ll see a list of all ranges within the specified range or ranges of
memory that were not accessed.

6-26 Controlling Emulators

Make a Percentage
Measurement

You may simply want a figure that represents the memory accessed
divided by the amount of memory in the range. To make this
measurement, use the command:

Memory Report Percent <address range;
 address range ...>

Using the
Emulator While
Connected to a
Target System

If you are using the HP 64700 emulator while it is connected to a
target system, you must do the following before the target system
will respond to the emulator.

1. Reset the emulator by entering: Processor Reset Hold

2. Access the memory map by entering: Config Map Modify

Note Refer to your Emulator PC Interface User’s Guide for details on the
next 3 steps, then return here.

3. Enter the memory map configuration and delete all
currently defined memory mapper terms.

4. Map memory according to your system needs (you might
have some memory mapped as emulation RAM and some
mapped as target system RAM).

5. Map all other memory as target system RAM (tram).

6. Save the memory map.

7. Enter the general emulator configuration by typing:
Configuration General

8. Select the external (target system) clock by responding
with n to the internal clock question.

Controlling Emulators 6-27

9. Save the general emulator configuration.

Now your emulator is ready to work correctly with your target
system.

Where to Find
More Information

To find out more about HP 64700-Series emulators, refer to the
HP 64700-Series Emulators Terminal Interface Reference and your
Emulator Terminal and PC Interface User’s Guides.

For details on CMB operation, refer to the CMB User’s Guide.

The HP 64700-Series Emulators Terminal Interface Reference
contains details about the CMB commands.

For information on PC Interface Analyzer operation, refer to the
Analyzer PC Interface User’s Guide.

See chapter 4 for details about the PC Interface windows.

6-28 Controlling Emulators

7

Creating and Using Command Files

Topics Covered What Are Command Files?

What You Can Do With Command Files

How to Create Command Files

How to Use Command Files

What Are
Command Files?

Command files are a collection of commands that allow you to
accomplish and duplicate activities without having to enter all the
commands manually.

Suppose that every time you access the PC Interface you want to
create some user-defined windows. You can save time and
keystrokes by creating a command file. Then you use that
command file each time you want those windows created when you
enter the PC Interface. You only need to create the command file
once.

Creating and Using Command Files 7-1

What You Can Do
with Command
Files

With command files you can:

Redefine monitor colors.
Redefine system window parameters.
Create user-defined windows.
Modify and display emulation processor registers.
Modify and display emulation memory.
Execute the emulation processor.
Define breakpoints.
Load and/or store a configuration file.
Make trace measurements.
Emulator configuration
Memory map
CMB and BNC trigger specifications

Any PC Interface commands that you execute using single letters
and/or numbers can be included in a command file.

Commands Not to
Include

There are commands that you cannot include in command files.
These include:

Key Macro Definitions
Analyzer Specification

These must be stored in a configuration file.

The PC Interface reads command files differently than
configuration files. Therefore, the method you use to load, store,
and execute command files differs from the method you use to
load, store, and use configuration files. (See chapter 5 for details
about loading and storing the PC Interface configuration).

7-2 Creating and Using Command Files

Command File
Specifics

In PC Interface command files:

A left angle bracket (<) resets the command file to the top
of the file.

An exclamation point (!) indicates a wait period of 1
second.

The @ symbol located in column 1 specifies data.

The # symbol preceding text signifies a comment.

Pressing ESC terminates a command file.

Nesting Command
Files

You can nest a maximum of 8 levels of command files. Nesting
command files means that one command file calls another.

How to Create
Command Files

You can create command files by:

1. Typing commands into a file using an editor.

2. Using the PC Interface System Log command to record
commands that execute during operation.

Using an Editor You can use any editor on your host computer to create a
command file. Create the command file as you would any text file.

At the top of the next page is a listing of a command file that
creates one new window. The lines with the # symbol in the first
column are comment lines.

Creating and Using Command Files 7-3

Create this command file using an editor. When you finish, name
the file “cmdfile.”

#open a new window
wo
#window name
@WIN1
#top row number
@0
#bottom row number
@5
#set autoclear on
@Y
#buffer size
@20
#left edge
@0
#right edge
@15
#display window when done
@Y

If you wanted to create 3 new windows, you would repeat this text 2
more times within the same file. Then you need to make each
window name unique, and change each window’s parameters to suit
you.

Using the System
Log Feature

Instead of using an editor to create a command file, you can start
the System Log option. This allows you to record all commands
that you execute, and/or the resulting output of those commands,
in a file.

Logging both commands and output can be helpful when executing
a set of commands that you are not sure will produce the results
you are seeking. By logging commands that you type, you can
record everything you try. By logging the resulting output, you can
see if the expected results occurred. When you finish logging
commands, you can use the “log” file as a command file.

Note You do not have to modify the log file to use it as a command file,
because all commands and output are stored in a format that the
PC Interface can read when you load the command file. Still, you
may want to edit the log file to remove any unwanted commands or
results, or to add commands or comments.

7-4 Creating and Using Command Files

To log both commands and the results from those commands into a
file, enter:

System Log Both Enable <log_file>

You can specify any valid directory information if you want the file
stored in another directory. If you try to enable logging of input
and output to a log file that is already enabled, the message “The
logging of input and output has already been enabled” will be
displayed at the bottom of the screen.

Note If a file exists in the current directory with the same name that you
want to specify for the new file, this command will overwrite the
existing file. Make sure that an existing file does not have the same
name you want to use for the new file.

To log just the commands that you execute, enter:

System Log I nput Enable <log_file>

Only the input (commands that you type) will be recorded in the
log file. The results of the commands that you type will not be
recorded in the log file.

Note If you try to enable logging of input to a log file that is already
enabled, the message “The logging of input has already been
enabled” will be displayed at the bottom of the screen.

To log only the results of the commands that you execute, enter:

System Log Output Enable <log_file>

Only the output (results of the commands that you type) will be
recorded in the log file. The commands themselves will not be
recorded in the log file.

Creating and Using Command Files 7-5

Note If you try to enable logging of output to a log file that is already
enabled, the message “The logging of output has already been
enabled” will be displayed at the bottom of the screen.

To disable logging of input and output, enter:

System Log Both Disable

The recording of commands and results of commands to the log file
is automatically disabled.

You can disable either the logging of input or output to a log file
that already has both features enabled. After you disable either of
those features, you can enable them again later. If you disable
logging of both input and output, all logging to the log file is
disabled (see figure 7-1).

Figure 7-1. Using the Log Commands

7-6 Creating and Using Command Files

How to Use
Command Files

Suppose you want to use the command file you created in this
chapter. You can use the command file in two ways:

1. You can specify the command file name when starting up
the PC Interface. For example, enter:

pc<product> /c cmdfile <emulname>

2. After the PC Interface is started, you can use System
Command_file to load the command file from the
MS-DOS system level. For example, enter:

System C ommand cmdfile

In either case, your command file will produce the same results,
shown below.

Creating and Using Command Files 7-7

Notes

7-8 Creating and Using Command Files

8

Function Key Macros

Introduction Function Key Macros let you assign keystroke sequences to a
function key or function key combination. Thus, you can reduce
typing and simplify repeated measurements by assigning your most
frequent command sequences to a function key macro.

How to Define
Function Key
Macros

There are forty possible function keys that may be assigned to
macros.

Function keys F1-F10

Function keys F1-F10 in combination with Shift

Function keys F1-F10 in combination with Alt

Function keys F1-F10 in combination with Ctrl

Creating a Macro Suppose you want to create a macro to load memory with a certain
absolute file with a single keystroke. The file is CMD_RDR.L and
is in HP64000 file format. It’s in the directory \myproject\sources.

Enter the macro definition menu with the command:

System Config Key_Macro

The first field indicates the function key you want to define.
Suppose you want this sequence assigned to Ctrl-F5 . Use the Tab

Function Key Macros 8-1

and Shift-Tab keys until that sequence appears in the field. Press
Enter to accept your choice.

You can also select the key sequence by typing in the sequence of
characters that represent the sequence. For example:

If you want: Type:

F5 < F5>

Shift-F5 < ShftF5>

Alt-F5 < AltF5>

Ctrl-F5 < CtrlF5>

The second field allows you to select the key that terminates the
macro definition in the menu. It is predefined as Esc. For this
example, leave it as is.

For some macros, you might need to change this definition. For
example, you might need the Esc key within a macro to exit a
configuration menu without changing it. To change the
termination key, use the Tab and Shift-Tab keys to scroll through
the available choices. Press Enter when you’re finished.

The last field allows you to enter the keystroke sequence that will
be assigned to the given function key. For this example, we want to
load memory with an absolute file. Enter the key sequence:

MLHP64000EnterEnterEnterEnter
\myproject\sources\cmd_rdr.lEnterEsc

(When we say Enter in this section, we mean press the Enter key
on your keyboard.)

The final Esc character terminates the macro definition and won’t
appear in the definition string. The string will look like the
following (to see it, you have to reenter key_macro definition):

MLHP64000<^M><^M><^M><^M>
\myproject\sources\cmd_rdr.l<^M><^M>

 Now, when you press Ctrl-F5 , memory will be loaded with the
absolute file cmd_rdr.l .

8-2 Function Key Macros

Nesting and Chaining
Macros

You can nest macros to perform complex measurement sequences.
You might have the following sequence assigned to F3:

key_seq1<ShftF5>key_seq2

Shift-F5 may then have another sequence. Nesting of macros is
supported. For example, Shift-F5 might be assigned the following
key sequence:

key_seq3<F4>key_seq4

You are limited to 16 levels of nesting. Direct or indirect recursion
of macros is not permitted, except as a chain. For example, suppose
you have the following assigned to F3:

key_seq1<F3>key_seq2

This isn’t a valid macro. But you can do the following:

key_seq1key_seq2<F3>

Keystroke
Representations

When you selected the keystroke for activation of the macro, you
could either use Tab and Shift-Tab to select the desired
combination, or directly type in a character string to represent it.
This works for all key macro definitions. In fact, you can create
configuration files that define key macros by using a text editor , as
long as you follow the rules for representing keystrokes. The rules
are:

All keystroke sequences that are not part of the standard
ASCII character set must be enclosed in angle brackets.
(Characters in the range 128..255 decimal are not part of
the standard ASCII character set.) For example, function
key 3 is represented as < F3> . Also, characters 0-31
decimal in the ASCII set must be enclosed in angle
brackets (such as Ctrl-I (Tab) (^ I)).

Keystroke sequences including the control key (Ctrl) are
represented using the up caret symbol (^) when the
following character is part of the ASCII character set, and
by the string Ctrl when the following character is not part
of the ASCII character set. For example, Ctrl-M (Enter) is
shown as < ^ M> ; Ctrl-F5 is shown as < CtrlF5> .

Function Key Macros 8-3

Normally, when you’re using Config Key_Macro to define a macro,
it’s easier to simply use a particular key rather than enter a string
representing that key. But, when you’re using a text editor to create
a configuration file, pressing that key may have other
consequences. For example, if you press Enter in your editor, a new
line is started. So, you type < ^ M> in your editor file, which the
PC Interface uses to represent the Enter key.

Editing Macros The PC Interface provides intelligent editing of key_macros within
the Config Key_macro form. The following keys can help you when
entering or changing the key_macro definition:

Delete deletes the next actual keystroke character. For example, if
you have the cursor positioned on < ^ M> , pressing Delete will
remove all four characters associated with that sequence (which is
the Enter key).

Ctrl-left arrow and Ctrl-right arrow move the cursor left and right,
respectively, one keystroke at a time. Suppose you have the
following sequence:

<ShftF5>ml<^M><^M>

If you start with the cursor positioned at the beginning of
< ShftF5> , and press Ctrl-right arrow four times, the cursor will
be positioned at the beginning of the second < ^ M> . If you then
press Ctrl-left arrow twice, the cursor will be positioned on the l.

Organizing Your
Macros

Since you can define a large number of macros, you may want to
arrange them to aid your memory. For example, you might assign
all unshifted function keys to System functions, all Alt function
keys to Analysis functions, and so on. Or, if you are using the
emulator in a production testing environment, you might arrange
the macros so that the key number corresponds to steps in a
sequence.

For long keystroke sequences, it may be better to have the macro
call a command file. This is particularly true when you are
configuring the emulator for a measurement; for example, you
want to change the configuration, map memory, and load an
absolute file. Simplify by building command and configuration files
that will be loaded with one macro.

8-4 Function Key Macros

Saving/Restoring
Macros

Macro definitions are saved when you save the emulator
configuration in a file, and restored when you load a configuration
file. See chapter 5 for more information on configuration files.
Remember that you can define key macros externally, using a text
editor. See the earlier section on "Keystroke Representations."

Predefined Macros When you start the PC Interface without a configuration file, or
with the default configuration file, there are three predefined
function keys.

F1 is defined as

Processor Step Pc 1

F2 is defined as Ctrl \ (the system terminal abort sequence)

F10 is defined as

System Exit Locked

You can redefine these three keys to any sequence you want. Be
sure to save the new definitions by creating a new configuration
file. See chapter 5 for more information on configuration files.

How to Use
Function Key
Macros

You use function key macros by simply pressing the key with the
desired command sequence. For example, if you have System
Symbols Global Display assigned to Alt-F3 , press and hold the Alt
key, then press F3. Global symbols for the current absolute file (if
loaded) are displayed.

Press the Esc key to terminate the repetition of nested or chained
macros.

Function Key Macros 8-5

Examples Here are some example macros to help you understand how key
macros work, and give you ideas for building your own macros.
Each macro shows both the keystroke sequence and corresponding
string representation of the macro. You enter the given keystroke
sequence; the string will appear in the macro definition field. All
the examples assume that Esc (< ESC>) terminates the macro
definition; this key is not shown as part of the keystroke sequence.

Example 1 Build a macro to end modification of a PC Interface form and save
its contents.

Macro activated by: < F5>

Keystroke sequence: EndEnter

Corresponding String: < End> < ^ M>

Example 2 Build a macro to create a user-defined window and load a source
file into it. This example builds on the previous one by using F5 as
part of the macro sequence.

Macro activated by: < F6>

Keystroke sequence: wosource1EnterEnterEnterEnter1000Enter
40F5wlEntercmd_rdr.SEnter

Corresponding String: wosource1< ^ M> < ^ M> < ^ M> < ^ M>
1000< ^ M> 40< F5> wl< ^ M> cmd_rdr.S< ^ M>

Example 3 Although repetitive memory display is a feature in the PC
Interface, you can use macro definitions to build a similar
capability, which can be translated to other measurements. This
example builds a macro to repetitively display 128 bytes of memory
at a particular location. Two different macros are defined to
support this feature.

Macro activated by: < F7>

Keystroke sequence: Msg_Dest..Enter

Corresponding string: Msg_Dest..< ^ M>

8-6 Function Key Macros

Macro activated by: < F8>

Keystroke sequence: mdbF7F8

Corresponding string: mdb< F7> < F8>

Now, when you press F8, the memory at Msg_Dest thru
Msg_Dest+ 7fh will be repetitively displayed in byte format.

Example 4 This example builds a "trace continuous" feature. It requires three
macros. (You can put all the keystrokes into one macro if you
want.) It uses the previously defined EndEnter macro assigned to
F5. These examples assume that the analyzer has external analysis
capability. If your emulator doesn’t, simply omit the i from the
Shift-F1 and Shift-F2 macros.

Macro activated by: < ShftF1>

Keystroke sequence: abi

Corresponding string: abi

Macro activated by: < ShftF2>

Keystroke sequence: adiF5

Corresponding string: adi< F5>

Macro activated by: < ShftF3>

Keystroke sequence: Shift-F1Shift-F2Shift-F3

Corresponding string: < ShftF1> < ShftF2> < ShftF3>

Now, when you press Shift-F3, the analyzer repeats trace
measurement and display. If there are no states to display, the PC
Interface will beep. The analyzer will display the first 16 states by
default. For your measurements, you may want to define other
macros to set up the trace specification, and redefine the macro
assigned to Shift-F2 to select the states for display.

Function Key Macros 8-7

Note To improve the effect of this macro, use the Window Utilities
Parameters command to set the window parameter autoclear to y
and scroll to n. Then, the entire analysis window will be updated at
once.

8-8 Function Key Macros

A

PC Interface Syntax Summary

Introduction The PC Interface command syntax summary covers:

Windows
System
Registers
Processor
Breakpoints
Memory
Configuration
Analysis
Expressions
Analyzer Pattern Expressions

Conventions Used The conventions used in this chapter are:

Angle brackets (< >) enclose variables that you type in
or select with the Tab or Shift Tab keys.

A vertical bar (|) separates “or” options (y| n, for
example).

Parentheses (()) enclose results.

Letters in the first column refer to main level PC Interface
commands.

PC Interface Syntax Summary A-1

Letters in the second column refer to options to the main
level PC Interface commands.

Letters in the third column refer to options to the second
level PC Interface commands, and so on.

Window Syntax
Summary

System windows and user-defined windows can be accessed and
controlled with the following options.

W(indow) A(ctivate) <window>

 D(elete) <window> <y|n>*

 E(rase) <window> <y|n>

 L(oad) <window> <file>

 O(pen) <new_window> <top> <bottom> <autoclear>

 <buffersize> <left> <right> <display>

 S(tore) <window> <from> <thru> <destination>

 U(tility) c(olor) <monitor_type> <foreground> <background>

 H(ide) <window>

 P(arameter) <window> <top> <bottom> <autoclear>

 <buffersize> <left> <right> <scroll>

 S(earch) <window> <from> <thru> <find_string>

 V(iew) <window>

 Z(oom) <window>

* only valid if user-defined windows exist

A-2 PC Interface Syntax Summary

System Syntax
Summary

System features allow you to access the host computer system.

S(ystem) C(ommand_file) <command_file_name>

 W(ait) k <press_any_key>

 T(ime) <delay_in_seconds>

 M(easurement) I(nternal) ******

 E(xternal)

 B(oth)

 M(S-DOS) F(ork) *

 C(ommand) <MS-DOS_command>

 L(og) I(nput) E(nable) <log_file_name> **

 D(isable)

 O(utput) E(nable) <log_file_name> **

 D(isable)

 B(oth) E(nable) <log_file_name> **

 D(isable)

 T(erminal)***

 S(ymbols) G(lobal) D(isplay) <symbol_database_file>****

 L(oad) <symbol_database_file>

 T(ransfer)*****

 R(emove)*****

 L(ocal) <local_symbol_module>

 D(isplay) <local_symbol_module>*****

 T(ransfer) G(roup) <module, module, ...>*****

 A(ll)*****

 R(emove) G(roup) <module, module, ...>*****

 A(ll)*****

 L(oaded)*****

 E(xit) L(ock)

 U(nlock)

 N(o_save)

* accesses host system level...type exit to return to PC Interface

** only valid if a log file is not currently enabled

*** accesses Terminal Interface...type Ctrl backslash to return to PC Interface

**** only valid if a symbol file has been loaded

***** only valid if emulator has symbol handling capability

****** S(ystem) M(easurement) only valid if emulator equipped with external analyzer

PC Interface Syntax Summary A-3

Registers Syntax
Summary

Registers vary from processor to processor. Refer to your Emulator
PC Interface User’s Guide for details about how the PC Interface
controls your emulation processor’s registers.

Note This example describes the 68000 emulator registers.

R(egister) D(isplay) A(ll)

 S(ingle) <register_name>

 M(odify) <register_name> <value>

A-4 PC Interface Syntax Summary

Processor Syntax
Summary

The following options are available for controlling the emulation
processor.

P(rocessor) G(o) P(c)

 A(ddress) <address>

 R(eset) *

 B(reak)

 R(eset) M(onitor)

 H(old)

 I(/o) D(isplay) <I/O address;...>***

 M(odify) <I/O address=value;...>***

 C(mb) G(o) P(c) **

 A(ddress) <address> **

 E(xecute)

 S(tep) P(c) <#instructions>

 A(ddress) <#instructions> <address>

 E(vents) <displayreg><displaymnem><cmd_file>

 <displayonstepcntcomplete>

* only valid if a target system is connected and operating properly

** only valid after CMB trigger goes true

*** only valid for processors with separate memory and I/O

PC Interface Syntax Summary A-5

Breakpoints
Syntax Summary

You manage software breakpoints with the following options.

Note You must view the Breakpoint window to see the results of
breakpoint processes.

B(reakpoint) D(isplay)

 A(ddress) <address;address...>

 R(eset)* A(ll)

 S(ingle) <address>

 S(et)* A(ll)

 S(ingle) <address>

 C(lear)* A(ll)

 S(ingle) <address>

* only valid after adding one or more breakpoints

A-6 PC Interface Syntax Summary

Memory Syntax
Summary

You can control emulation memory and target system memory
with the following options.

M(emory) D(isplay) B(yte) <address;address...>

 W(ord) <address;address...>

 L(ongs) <address;address...>

 M(nemonic) <address;address...>

 R(epetitively) (press ESC to abort)

 M(odify) B(yte) <address=valuelist;address=valuelist...>

 W(ord) <address=valuelist;address=valuelist...>

 L(ongs) <address=valuelist;address=valuelist...>

 L(oad) <file_format> <memory_type><file/processor options>

 <absolute_file_name>

 S(tore) <file_format> <memory_range><absolute_file_name>

 C(opy) <source_range> <destination>

 F(ind) <memory_range> <data_pattern>

 R(eport) A(ccessed) <address_range;address_range...>

 N(onaccessed) <address_range;address_range...>

 P(ercent) <address_range;address_range...>

 R(eset)

PC Interface Syntax Summary A-7

Configuration
Syntax Summary

You can configure all the emulator features using the following
options.

C(onfig) L(oad) <config_file_name>

 S(tore) <config_file_name>

 G(eneral) *

 M(ap) M(odify) **

 R(eset)

 T(rigger) ***

 K(ey_macro) <fkey_combination><termination_char><key_sequence>

* enters general emulator configuration; press End Enter to save, or ESC to cancel

** enters emulator memory map; press End Enter to save, or ESC to cancel

*** enters cross-trigger configuration; press End Enter to save, or ESC to cancel

A-8 PC Interface Syntax Summary

Analysis Syntax
Summary

The following command sequences set up, start and stop analyzer
measurements.

A(nalysis) B(egin) I(nternal)

 E(xternal)

 B(oth)

 H(alt) I(nternal)

 E(xternal)

 B(oth)

 C(mb) B(egin) I(nternal)

 E(xternal)

 B(oth)

 E(xecute) I(nternal)

 E(xternal)

 B(oth)

 S(ystem) <external_pod_configuration>

 F(ormat) I(nternal)*

 E(xternal)**

 T(race) M(odify) I(nternal)***

 E(xternal)****

 R(eset) I(nternal)

 E(xternal)

 B(oth)

 D(isplay) I(nternal) <start_state> <end_state>

 E(xternal) <start_state> <end_state>

* Enters Internal State Format Specification, press END ENTER to save or ESC to cancel.

** Enters External State/Timing Format Specification.

*** Enters Internal State Trace Specification, press END ENTER to save or ESC to cancel.

**** Enters External State/Timing Trace Specification.

Note: Internal, External, and Both options are only displayed if the emulator is
equipped with the external analyzer option.

PC Interface Syntax Summary A-9

Expressions

Syntax

Description Numeric expressions are the root of all HP 64700 PC Interface
expression types, including analyzer expressions and address
specifications.

The expression capability in the PC Interface is very powerful. You
may specify numbers in one of four different bases and use many
different arithmetic and logical operators to form more complex
expressions.

PC Interface expressions consist of other expressions and values,
which may be modified by various operators. You may change the
precedence of operators by enclosing expressions within
parentheses.

Values

Values consist of numbers (in one of four bases), patterns
(hexadecimal, octal, or binary numbers that also include don’t care
values), and labels (symbols which reference other numbers, from a
symbol database).

A-10 PC Interface Syntax Summary

Numbers are in hexadecimal, decimal, octal, or binary. You specify
the base as follows:

Y y Binary (example: 10010y)

Q q O o Octal (example: 377o or 377q)

T t Decimal (example: 197T)

H h Hexadecimal (example: 0A7fH) (Note that
hexadecimal numbers starting with any one
of the letter digits A-F must be prefixed with
a zero; otherwise the system will return an
error message)

If you do not specify a base, numbers default to hexadecimal or
decimal, depending on the context.

All numbers used in address specification, analyzer expressions,
and any other specification relating to a microprocessor address,
data or status value defaults to hexadecimal.

Numbers used to specify repeat count values, such as in the
analyzer trace specification or step count, default to decimal.

Floating point numbers are supported by some emulators. The
only legal operations on these values are addition, subtraction,
multiplication, and division. You represent a floating point value
as a decimal in the form:

[+|-]X.X[E[+|-]X]

Where X’s represent decimal values and E indicates a following
exponent.

Patterns are hexadecimal, octal, or binary numbers which include
don’t care digits, specified by the letters X or x. The character ?
represents a pattern of all don’t care digits. For example:

1011xx11y

0A7Xh (equivalent to 000010100111xxxxy)

2x5Q (equivalent to 010xxx101y)

You will generally use patterns only in analyzer expressions.

PC Interface Syntax Summary A-11

Labels refer to names equated to numbers via the symbol database
loaded for the current program or loaded using the System
Symbols Global Load command.

Operators

The expression capability includes a powerful set of operators,
freeing you from the need to calculate expressions before entering
them into other expressions. All operations are carried out on
32-bit two’s complement signed integers (values which are not
32-bit will be padded out with zeros when expression evaluation
occurs). For emulators that directly support floating point data
types, addition, subtraction, multiplication and division are done
using 64-bit floating point format.

A-12 PC Interface Syntax Summary

The operators are listed in the following diagram and described in
order of evaluation precedence. As mentioned above, you may use
parentheses in the expression to change the order of evaluation.

Note If your emulator supports symbols, and you are using a symbol in
an expression, only the + and - operators are valid before and after
the symbol. For example: 100h+ main-5

- ~ Unary two’s complement, unary one’s
complement. Two’s complement is not
allowed on patterns containing don’t care
bits. This is the truth table for one’s
complement:

0 = > 1
1 = > 0
X = > X

Examples:

~ 1x0y = 0x1Y

-1101Y = 0011Y

* / % Integer multiply, integer divide, integer
modulo. These operations are not allowed
on patterns containing don’t care bits.

Examples:

30afH*21 = 06468fH

23T%4T= 3

0fa6/2 = 07d3h

PC Interface Syntax Summary A-13

+ - Addition, subtraction. Not allowed on
patterns containing don’t care bits.

Examples:

03dh+ 03fh = 07ch

1110Y-101Y = 1001Y

< < < < <
> > > > >

Shift left, rotate left, shift right, rotate right
(you must specify the number of locations to
shift or rotate after the operator).

Examples:

1x0Y< < 1 = 1x00Y

1x0Y> > 1 = 01xY

1x01Y> > > 1 =
100000000000000000000000000001x0Y

0xxf0abcdH> > > 4 = 0dxxf0abcH

& This symbol (&) represents a bit-wise AND
operation. The truth table resembles:

& 0 1 X

0 0 0 0

1 0 1 X

X 0 X X

For example:

10xxy&11x1Y = 10xxY

A-14 PC Interface Syntax Summary

^ This symbol (^) represents a bit-wise
exclusive OR operation. The truth table
resembles:

^ 0 1 X

0 0 1 0

1 1 0 X

X 0 X X

For example:

10xxY^ 11x1Y = 01xxY

| This symbol (|) represents a bit-wise
inclusive OR operation. The truth table
resembles:

| 0 1 X

0 0 1 0

1 1 1 1

X 0 1 X

For example:

10xxY| 11x1Y = 11x1Y

PC Interface Syntax Summary A-15

&& This symbol (&&) represents a bit-wise
merge operation. The truth table resembles:

&& 0 1 X

0 0 * 0

1 * 1 1

X 0 1 X

An overlap, indicated by a * in the merge
truth table, may occur if two patterns specify
different values for a pattern bit. If an
overlap occurs, the first pattern’s value for
that bit overrides the second pattern’s value.

For example:

10xxY&&11x1Y = 10x1Y

Using Expressions in Addressing and Analyzer Expressions

You can use the expression evaluation capability to form more
powerful expressions for use in specifying addressing and analyzer
expressions. For example, suppose you want to trigger the analyzer
on the access to trap vector 13. Instead of calculating the address,
since you know the base address is 080 hex and each vector is 4
address bytes, you can specify this as:

tg addr= (080h+ (13T*4))

A-16 PC Interface Syntax Summary

Analyzer Pattern
Expressions

Syntax

PC Interface Syntax Summary A-17

Description In the PC Interface analyzer trace specification, you use pattern
labels, which have been assigned to various simple expressions, to
form complex expressions.

Pattern Labels and Ranges

You assign pattern labels to simple expressions using the analyzer
trace specification form. For example:

Pattern a: addr=2000
Pattern b: data!=00
Pattern c: stat=dma
Pattern d: addr=2000 and data=23
Pattern e: addr!=2105 and data!=0fc

You can also assign the range value:

Range: data=42..44

Sets

The pattern labels, along with the range and arm specifications, are
divided into two sets.

Set 1:

a,b,c,d,r,!r

Set 2:

e,f,g,h,arm

Intraset Operations

You use intraset operators to form relational expressions between
members of the same set. The operators are:

~ (intraset logical NOR)

| (intraset logical OR)

The operators must remain the same throughout a given intraset
expression. So, you could form the following types of intraset
expressions:

a~b~r

(Pattern a NOR pattern b NOR range.)

A-18 PC Interface Syntax Summary

b | !r

(Pattern b OR (NOT range).)

e | arm

(Pattern e OR arm.)

f ~ h

(Pattern f NOR pattern h.)

You cannot use the intraset operators to form expressions between
set 1 and set 2. Also, remember that the intraset operator must
remain the same throughout the set. Therefore, the following
examples are invalid :

b~c|d

(This is incorrect because the operator must remain the same
throughout the set.)

b~e

(You cannot use intraset operators for interset operations.)

Interset Operations

You use interset operators to form relational expressions between
members of set 1 and set 2. The operators are:

and (interset logical AND)

or (interset logical OR)

You can then form the following types of expressions:

(set 1 expression) and (set 2 expression)

(set 1 expression) or (set 2 expression)

The order of sets does not matter:

(set 2 expression) and (set 1 expression)

Combination

You can use both the intraset and interset operators to form very
powerful expressions.

PC Interface Syntax Summary A-19

a~b and e|arm
c or f~g~h

However, you cannot repeat different sets to extend the expression.
The following is invalid:

a~b and e and c and g

DeMorgan’s Theorem and Complex Expressions

It seems that you only have a few operators to form logical
expressions. However, using the combination of the simple and
complex expression operators, along with a knowledge of
DeMorgan’s Theorem, you can form virtually any expression you
might need in setting up an analyzer specification.

DeMorgan’s theorem in brief says that

A NOR B = (NOT A) AND (NOT B)

and

A NAND B = (NOT A) OR (NOT B)

The NOR function is provided as an intraset operator. However,
the NAND function is not provided directly. Suppose you wanted
to set up an analyzer trace of the condition

(addr= 2000) NAND (data= 23)

This can be done easily using the simple and complex expression
capabilities. First, you would define the simple expressions as the
inverse of the values you wanted to NAND:

Pattern a: addr!=2000
Pattern b: data!=23

Then you would OR these together using the intraset operators:

a|b

A-20 PC Interface Syntax Summary

This is effectively the same as:

(NOT addr= 2000) OR (NOT data= 23) =
(addr= 2000) NAND (data= 23)

If you need an intraset AND operator, you can use the same
theory. Suppose you actually wanted:

(addr= 2000) AND (data= 23)

First, define the simple expressions as the inverse values:

Pattern a: addr!=2000
Pattern b: data!=23

Then you would NOR these together using the intraset operators:

a~b

This is effectively the same as:

(NOT addr= 2000) NOR (NOT data= 23) =
(addr= 2000) AND (data= 23)

For further information on using and entering analyzer
expresssions, refer to the Analyzer PC Interface User’s Guide.

PC Interface Syntax Summary A-21

Notes

A-22 PC Interface Syntax Summary

Index

A ^ a, 3-26, 4-9, 4-11
absolute file, 6-15
activate a window, 4-8
active window, 3-17
add software breakpoints, 6-20
addition operator, A-14
ALERT messages, 3-8
analyzer

expressions, A-16
AND (bit-wise) operator, A-14
and, interset logical AND operator, A-19
appending to files, 3-22
arm condition

complex expressions, A-18
ASCII file loaded into a window, 4-9
attributes of system windows, 4-4
autoclear characteristic, 4-13

B ^ b, 4-19
background color, 4-12
bases (number), A-11
basic emulation features, 3-26
baud rate, 2-5
binary number base specifier, A-11
bit-wise operators

AND, A-14
exclusive OR, A-15
inclusive OR, A-15
merge, A-16

break events, 6-18
break the microprocessor, 6-5
Breakpoint window, 6-18
breakpoints syntax summary, A-6
buffer size characteristic, 4-13
buffer size consumes memory, 4-7

Index-1

C /c option, 3-6
characteristics of the windows, 4-11
clear software breakpoints, 6-23
clear window before writing data, 4-13
CMB EXECUTE signal, 6-8
CMB measurement, 6-5
CMB Trigger, 6-3, 6-8
Code window, 3-17
color characteristic, 4-12
columns, 3-7
command file, 3-14
command files, 7-1
command/message line, 3-8
commands, 3-10
commands in a log file, 3-20
communication port, 3-13, 4-20
complex expressions, A-20
config.sys file, 2-6
configuration file, 3-2, 5-9
configuration syntax summary, A-8
configurations, 1-3
configure break events, 6-19
control character summary, 4-11
control software breakpoints, 6-19
controlling emulators, 6-1
conventions, 3-2, A-1
Coordinated Measurement Bus (CMB), 6-3
copy memory, 6-16
Coresident Programs

problems with, 2-8
create a command file, 3-14
create a user-defined window, 4-5
creating a user-defined window, 3-22
creating command files, 7-1
current directory, 5-2
cursor location is retained, 4-11

D data entered into log file, 3-20
data entry lines, 3-7
data pattern in memory, 6-17
dataword width, 2-5
decimal number base specifier, A-11

2-Index

default colors, 4-6
define multiple environments, 2-4
define the shell environment variable, 2-6
define your own windows, 4-14
delete a user-defined window, 4-7
delete user-defined windows, 4-16
DeMorgan’s theorem, A-20
display I/O, 6-6
display memory, 6-13
display registers, 6-24
display software breakpoints, 6-20
display symbols, 5-4
divide (integer) operator, A-13
double-line border, 4-4

E empty window, 4-10
emulation features, 3-26
emulation memory, 6-13
emulation processor, 6-4
Emulation window, 6-6
emulator device table file, 2-2, 3-4
emulator type, 2-5
emulator-specific information, 5-11
emulators, 6-1
eram, 6-10
erase a window, 4-8
erasing your user-defined window, 3-24
erom, 6-10
error occurs, 6-2
Error_Log window, 6-2
example configuration files, 5-13
example emulator configuration, 5-12
example window configuration, 5-10
exclusive OR (bit-wise) operator, A-15
executing a single system level command, 5-1
executing example command file “tutorial", 3-27
executing multiple system level commands, 5-3
exit the PC Interface, 3-27
exit the System Terminal window, 4-18
expressions

analyzer, complex configuration, A-20
operators, A-12

Index-3

F features of the PC Interface, 1-1
features of the windows, 4-1, 4-5
field in a form, 3-22
file format, 6-16
find a data pattern in memory, 6-17
flexible disk, 5-3
foreground color, 4-12
fork feature, 3-11
form, 3-2
functions of the system windows, 4-5

G general emulator configuration, 6-2
getting started, 3-1
global symbols, 5-4 - 5-5
grd, 6-10

H H,h, hexadecimal number base specifier, A-11
halted state, 6-6
hexadecimal number base specifier, A-11
hide a window, 4-8
highlighted border, 3-16
host computer system, 3-13
how many windows you can create, 4-16
how to access and use the windows, 4-11
how to create command files, 7-3
how to delete user-defined windows, 4-7
how to exit the PC Interface, 3-27, 5-15
how to start the PC Interface, 3-3
how to use command files, 7-7
how to use the System Terminal window, 4-17

I I/O port addresses, 6-6 - 6-7
inclusive OR (bit-wise) operator, A-15
information, 1-3, 6-28
installation and setup, 2-1
interset operators, A-19
intraset operators, A-18
inverse values (complex analyzer expressions), A-20

K keys to perform various functions, 3-8

L labels, 3-10
learn about the PC Interface screen, 3-7

4-Index

load a window, 4-9
load memory, 6-15
load symbols, 5-4
loading the PC Interface configuration file, 5-13
local symbols, 5-4, 5-6
locate a string in a window, 4-10
location of window on screen, 4-12
log both commands and results, 7-5
log feature, 5-4
log file, 3-14
log only commands, 7-5
log only results of commands, 7-5
logging commands, 3-14
logging commands and output to a file, 5-4
logical emulator name, 2-5
logical operators

See operators

M /m option, 3-5
main level, 3-10, 3-12
main PC Interface options, 3-10
memory buffer, 4-6
memory mapper, 6-9
memory syntax summary, A-7
Memory window, 6-13
merge (bit-wise) operator, A-16
microprocessor execution, 6-2
modify I/O, 6-7
modify memory, 6-14
modify registers, 6-24
modify the general emulator configuration, 6-2
modify the memory mapper, 6-9
modulo (integer) operator, A-13
monochrome monitor, 3-2
monochrome monitor /m option, 3-3
MS-DOS command, 3-16
MS-DOS system level command execution, 5-2
multiply (integer) operator, A-13

N name characteristic, 4-12
NAND operator, A-20

Index-5

nesting command files, 7-3
NOR, intraset logical operator, A-18

O O,o, octal number base specifier, A-11
octal number base specifier, A-11
one’s complement (unary) operator, A-13
open a window, 4-5
operators, A-12

combining intraset and interset, A-19
interset, A-19
intraset, A-18
precedence, A-13

options used when accessing the PC Interface, 3-6
OR (bit-wise) operator, A-15
or, interset logical OR operator, A-19
OR, intraset logical operator, A-18
overlap

bit-wise merge, A-16

P parity, 2-5
path for the log file, 3-15
pattern

expressions, A-10
labels, A-18

PC Interface, 1-1
physical port name, 2-5
powerup reset address, 6-5
precedence, operator, A-13
problems, 2-7

LAN software, 2-8
PC Interface and coresident programs, 2-8

processor syntax summary, A-5

Q /? option, 3-6
Q,q, octal number base specifier, A-11

R ^ r, 4-19
ranges, A-18
redirect the output of a command, 5-2
register syntax summary, A-4
registers, 6-24
registers automatically displayed, 6-4
relational expressions, A-18 - A-19

6-Index

reset button in the target system, 6-3
reset the memory map, 6-12
reset the microprocessor, 6-5
results recorded in a log file, 3-20
rotate left/right operator, A-14
rows, 3-7
run the microprocessor, 6-2
run various applications, 3-13

S $SYSWIN definition, 5-10
search a window, 4-10
set software breakpoints, 6-22
sets (complex config. trace spec.), A-18
setup, 2-1
shell environment variable, 2-6
shift left/right operator, A-14
size characteristic, 4-12
smallest window size, 4-12
software breakpoints, 6-18
solid highlighted border, 4-4
start the microprocessor upon CMB events, 6-8
start the PC Interface, 3-3
status line, 3-7, 4-4
step the microprocessor, 6-4
stop bits, 2-5
store a window to an ASCII file, 4-10
store memory, 6-15
store the PC Interface configuration, 5-9
storing the memory map, 6-12
subtraction operator, A-14
support services, 1-3
symbols, 5-4 - 5-5
syntax for invoking the PC Interface, 3-6
syntax summary, A-1
system features, 5-1
system fork feature, 3-11
system level commands, 5-1
system syntax summary, A-3
System Terminal window, 4-17
System Terminal Window specifics, 4-20
system window functions, 4-2
system windows, 3-17, 4-1

Index-7

T T,t, decimal number base specifier, A-11
target system, 6-27
target system microprocessor, 6-3
temporarily remove a window from the screen, 4-8
Terminal window, 4-17
tram, 6-10
transmit/receive pacing, 2-5
transparency mode setting, 2-5
trom, 6-10
truth tables for logical operators, A-12
tutorial, 3-12
two’s complement (unary) operator, A-13

U $USERWIN definition, 5-10
unary ones’s complement operator, A-13
unary two’s complement operator, A-13
user-defined window, 3-22
user-defined windows, 4-1, 4-4
using an editor to create a command file, 7-3
using command files, 7-1
using keys to perform various functions, 3-8
using system features, 5-1
using the emulator with a target system, 6-27
using the log command to create command files, 7-4
using windows, 4-1

V value expressions, A-10
view a window, 4-8

W /w option, 3-6
wait, 3-15
window attributes, 4-4
window characteristics, 4-11
window configuration information, 5-10
window control character summary, 4-11
window features, 4-5
window name, 4-12
window store feature, 4-9
windows, 4-1

X XOR (bit-wise) operator, A-15

Y Y,y, binary number base specifier, A-11

8-Index

Z ^ z, 3-18, 4-10
zoom a window, 3-16, 4-9

Index-9

Notes

10-Index

	Using this Manual
	Contents
	Introducing the PC Interface
	Installation and Setup
	Getting Started
	Using Windows
	Using System Features
	Controlling Emulators
	Creating and Using Command Files
	Function Key Macros
	PC Interface Syntax Summary
	Index

