
Concepts Of Emulation
And Analysis

HP Part No. 6 4000-97000
Printed in U.S.A.
November 1990

Edition 1

Notice Hewlett-Packard makes no warranty of any kind with regard to
this material, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability
of its software on equipment that is not furnished by
Hewlett-Packard.

© Copyright 1990, Hewlett-Packard Company.

This document contains proprietary information, which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to
another language without the prior written consent of
Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

UNIX is a registered trademark of AT&T in the U.S.A. and in
other countries.

Torx is a registered trademark of Camcar Division of Textron, Inc.

Hewlett-Packard Company
Logic Systems Division
8245 North Union Boulevard
Colorado Springs, CO 80920, U.S.A.

RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure
by the U.S. Government is subject to restrictions set forth in
subparagraph (C) (1) (ii) of the Rights in Technical Data and
Computer Software Clause at DFARS 252.227-7013.
Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA
94304

Printing History New editions are complete revisions of the manual. The date on
the title page changes only when a new edition is published.

Edition 1 64000-97000, November 1990

Using This Manual

This manual discusses concepts associated with emulation and
analysis. Separate chapters are devoted to discussions of emulation
monitors and the process of mapping memory.

This manual will be useful to a designer who has been using an
emulator and/or analyzer and would like a greater understanding of
these tools. This manual will also be useful to the person who is
new to emulation and analysis and would like to gain a quick
perspective on these tools.

Notes

Contents

1 Introduction To Emulation

What Is An Emulator? . 1-1
What Is The Purpose Of An Emulator? 1-4
Can An Emulator Help Me Before My Target System Is Ready
To Run? . 1-5
Physical Description Of An Emulator 1-5
What Are The Steps In Using An Emulator? 1-6
What Tasks Are Done By An Emulator? 1-7
What Is Happening While My Program Is Running In
Emulation? . 1-9

While Execution Is In The Target Program 1-9
While Execution Is In The Monitor Program 1-10

How Does An Emulator Affect My Program? 1-11
Real-Time Mode . 1-11
Non-Real-Time Mode . 1-11

How Does An Emulator Affect My Target System? 1-12
Can An Emulator Run Interactively With Other
Emulation/Analysis Systems, And With External Analyzers? . 1-13

2 Comparing In-Circuit And Out-Of-Circuit Emulation

Out-Of-Circuit Emulation . 2-1
Things You Can Do Using Out-Of-Circuit Emulation 2-2
In-Circuit Emulation . 2-3
Things You Can Do In-Circuit That You Can’t Do
Out-Of-Circuit . 2-4

3 The Emulation Monitor

What Is A Monitor? . 3-1
What Does A Monitor Do? . 3-2
The Break Function Of The Emulation Monitor 3-3
Where Is The Monitor? . 3-3

Background Monitors . 3-4
Advantages Of Background Monitors 3-4
Disadvantages Of Background Monitors 3-4

Contents-1

Foreground Monitors . 3-5
Advantages Of Foreground Monitors 3-5
Disadvantages Of Foreground Monitors 3-6

Some Emulators Have Both A Background And Foreground
Monitor . 3-6

When To Use The Background Monitor 3-6
When To Use The Foreground Monitor 3-7

For The Emulator With No Foreground Monitor 3-8
Customizing The Emulation Foreground Monitor 3-8
How Monitors Are Structured . 3-9

Processor Exception Vector Table 3-9
Activating Processor Exception Vectors 3-11
Modifying The Processor Exception Vector Table 3-11

Entry Points Into The Monitor 3-12
Break_Entry . 3-12
Bus_Error_Entry and User_Entry 3-12
Software_Breakpoint_Entry 3-12
Reset_Entry . 3-13
Exception_Entry . 3-13

Emulation Command Scanner 3-13
Command Execution Modules 3-13

Are_You_There? . 3-13
Exit_Mon . 3-14
Copy . 3-14

Monitor Routines You May Want To Modify 3-14
Read/Write Target Memory Space 3-14
Display/Modify Registers Of A Coprocessor 3-14
Bus-Error/Address-Error Storage 3-16
Messages Displayed On The STATUS Line 3-16
Simulated Interrupts For Out-Of-Circuit Emulation 3-16
Exception Vectors, Selecting Your Own 3-16

Monitor Routines You Should Not Modify 3-16
Linking The Emulation Foreground Monitor 3-17
Loading The Emulation Monitor 3-18
Memory Requirements For Emulation Foreground
Monitors . 3-18

2-Contents

4 The Emulation Configuration

What Is An Emulation Configuration File? 4-1
Modifying The Emulation Configuration File 4-2
View The Configuration File And Its Present Answers 4-3
The Configuration File To Use When Starting Your Target
 System . 4-3

5 Memory Mapping

How The Two Maps Depend On Each Other 5-3
What Do You Do When You Map Memory 5-3
Example Emulation Memory Map 5-3
Managing The Emulation Memory Hardware 5-4
Emulation Memory Architecture 5-4
Example Linker Load Map . 5-6

Special Considerations For The Emulation Memory Map 5-7
Selecting The Best Memory Hardware To Use 5-7
Dividing Memory Into Blocks 5-7
Three Kinds Of Memory In The Emulation
Memory Map . 5-8
Mapping A Foreground Monitor 5-10
Deleting Map Entries . 5-10
Overlay . 5-10
Additional Characterizations Available In Some Emulators 5-11
Problem When Specifying Certain Address Ranges 5-11

6 Command Files

What Is A Command File? . 6-2
How Are Command Files Useful? 6-2
Methods Used To Create Command Files 6-4

Automatic Creation Of A Command File While You Use
The Emulator/Analyzer . 6-4

Things To Correct During The Edit 6-4
Logging To Enlarge An Existing Command file 6-5
Logging Calls To Other Command Files 6-5
Logging Commands That Spawn New Processes 6-5

Using An Editor To Create Command Files 6-5
Editing An Existing Command File 6-6
How To Execute A Command File 6-7

Executing A Command File Alone 6-7
Using A Script And Command File Together 6-7

Contents-3

Conventions For Naming Command Files 6-8
Nesting And Chaining Command Files 6-8

Nesting Command Files . 6-8
Chaining Command Files . 6-8

Executing Scripts Automatically Upon Login 6-9
Things To Remember When Using Command Files 6-9
If The Command File Does Not Work Properly 6-11

7 Coordinated Measurements Through CMB And IMB

IMB Information . 7-2
Master Enable . 7-2
Emulation_start . 7-3
Trigger enable . 7-3
Trigger . 7-3
Storage Enable . 7-3
Delay Clock . 7-3

CMB Information . 7-4
CMB Trigger Line . 7-4
CMB READY Line . 7-4
CMB EXECUTE Line . 7-5
BNC Internal-To-External Connection 7-5
CMB Interaction With External Analyzers 7-5

8 Introduction To Analysis

Types Of Analyzers . 8-1
Emulation Bus Analyzer . 8-1
External Analyzer . 8-1

External State Analyzer . 8-2
External Timing Analyzer 8-2

Basis Branch Analyzer . 8-2
Coverage Analyzer . 8-2
Software Performance Analyzer 8-2

Specifications Needed To Set Up A State Analyzer 8-3
Trigger . 8-3
Store . 8-3
Count . 8-3

Special Considerations . 8-4

4-Contents

9 How An On-Chip Cache Affects An Analyzer

What Is An On-Chip Cache? . 9-1
How Does A Cache Affect Analysis? 9-1
Disabling And Enabling The Cache 9-2

10 Prestore Trace Measurements

How Is A Prestore Trace Useful? 10-3
Setting Up The Analyzer To Make A Prestore Trace 10-3

Store Qualification . 10-3
Prestore Qualification . 10-4

Reading Prestore Trace Lists 10-4

11 Tracing Processors That Prefetch Instructions And Use An
Instruction Pipeline

What Is Meant By Prefetching And Pipeline? 11-1
Reading Prefetch/Pipeline Trace Lists 11-2
Unused Prefetches . 11-4
How To Avoid Triggering, Enabling, Or Disabling On Unused
Prefetches . 11-5

12 What To Do If Your Emulator Doesn’t Work

Debugging The Connection To The Target System 12-1
Hardware Problems . 12-1
Electrical Problems . 12-2
Architectural Problems . 12-2

Make Sure The Emulation Configuration Is Correct 12-3
Use The Emulation Bus Analyzer 12-3
Use Status Messages . 12-4
Run Performance Verification (PV) 12-4
If All Else Fails . 12-5

Glossary

Index

Contents-5

Illustrations

Figure 1-1. Developing Software On An Editor 1-2
Figure 1-2. Creating Absolute Files 1-3
Figure 1-3. Running In Emulation 1-3

Figure 2-1. Out-Of-Circuit Emulation 2-2
Figure 2-2. In-Circuit Emulation 2-3

Figure 3-1. Typical Processor Exception Vector
Table . 3-10
Figure 3-2. Emulation Monitor, Typical Block
Diagram . 3-15

Figure 5-1. Simplified Emulation Memory Map 5-3
Figure 5-2. Emulation Memory Architecture 5-5
Figure 5-3. Simplified Linker Memory Map Content . 5-6

Figure 10-1. Making The Prestore Trace
Measurement . 10-1
Figure 10-2. Making A Prestore Trace List 10-2

Figure 11-1. Pipeline Diagram Of The 68020 11-2
Figure 11-2. Trace List Showing Pipeline And
Prefetch . 11-3

6-Contents

1

Introduction To Emulation

This chapter answers the following questions:

What is an emulator?

What is the purpose of an emulator?

Can an emulator help me before my target system is ready
to run?

Physical description of an emulator.

What are the steps in using an emulator?

What tasks are done by an emulator?

What is happening while my program is running in
emulation?

How does the emulator affect my program?

How does the emulator affect my target system?

Can an emulator run interactively with other
emulation/analysis systems, and with external analyzers?

What Is An
Emulator?

An emulator is part of an environment in which hardware and
software are developed and integrated to create products that
depend on embedded microprocessors. To understand an
emulator, you need to understand the microprocessor development

Introduction To Emulation 1-1

environment (also called development system). Then you will
understand how an emulator fits into a development system. A
development system will have a work station (a terminal in a
network, or a personal computer).

A development system has an editor (figure 1). An editor is a
software module that allows you to create and modify files by
typing them on the keyboard of your workstation. You use the
editor to create the text files (also called source files) of program
code you intend to run in your target system (the product you are
developing).

A development system has a compiler and/or assembler and a
linker (figure 2). These are software modules that read source files
and create corresponding files of machine code that can be
executed by target-system hardware. You use these modules to
generate the object files that perform the tasks implemented in the
text files you created in your editor.

These object files contain your actual binary code which directly
controls your target microprocessor. However, it isn’t until the
linker module creates an absolute file from the object file, that the
file can be loaded into the emulation and/or target-system memory.

Figure 1-1. Developing Software On An Editor

1-2 Introduction To Emulation

Finally, you have an emulator (figure 3). An emulator is the
interface between your workstation and the product you are
developing (called the target system). An emulator provides the
mechanism that loads the executable (or absolute) file you created
into the target system. An emulator is the linkage that allows you
to run and stop program execution in your target system. An
emulator lets you view (on your workstation display) the changing
conditions within the target-system microprocessor as each of the
instructions in your program is executed.

An emulator is connected to a target system by removing the
microprocessor from the target system and plugging in the
emulator probe cable in its place. Differences between the

Figure 1-2. Creating Absolute Files

Figure 1-3. Running In Emulation

Introduction To Emulation 1-3

emulator and the target microprocessor are usually transparent to
the target system.

You control what the emulator does by entering commands on
your keyboard. The emulator has all the capabilities of the target
system processor, and a lot more. An emulator can load the
absolute files into hardware memory in your target system. If your
target system does not have the hardware memory needed to
contain your program, your emulator can provide memory
hardware; your target processor can address code in emulation
memory and execute it as easily as if it were in the target system.

Your emulator gives you control over the running of your absolute
files in the target system microprocessor. You can start execution
at any instruction address you desire in your program.

Your emulator can show you how your target system processes
your code. Your emulator can show you how your code affects
registers and other components in your target processor. If your
emulator has an internal analyzer associated with it, the analyzer
can record the series of states that were executed so you can see the
details of how your target system processed the program you wrote.
In this way, your emulator helps you understand the results of
running your target program in your target system.

What Is The
Purpose Of An
Emulator?

The purpose of an emulator is to help you develop and integrate
target system hardware and software. You can use an emulator to
ensure that your target system hardware and software work
together. The emulator can be used by itself, or it can be used with
other test equipment (other emulators, analyzers, debuggers) to
debug and integrate your target system hardware and software. In
order to meet its purpose, the emulator must have excellent
transparency, that is, it must look like the target microprocessor
from the point of view of your target system hardware. Refer to
the glossary in this manual for details of characteristics that are
considered when designing for transparency.

1-4 Introduction To Emulation

Can An Emulator
Help Me Before
My Target System
Is Ready To Run?

Yes it can. You can run your emulator even though it’s not
connected to a target system. An emulator can make a lot of
hardware available to substitute for your target system hardware.
An emulator has memory (called emulation memory) that you can
load your absolute files into before your target system memory is
available. You can run your program from emulation memory just
as if the program was loaded into target system memory.

Many emulators can supply other hardware to substitute for
hardware that is not yet available in your target system. The
keyboard of your workstation may be used as a substitute for a
keyboard you intend to include in your target system. The display
of your workstation may substitute for a display you intend to have
in your target system. Other equipment (printers, etc) can often be
simulated by your emulator so that you can test code you are
developing to communicate with the other equipment even before
the target system printers, etc., are available.

Physical
Description Of An
Emulator

A typical emulator will include:

An emulation probe. The probe replaces the processor in
your target system. The probe plugs into your target
system microprocessor socket. Remove the
microprocessor from your target system and plug in the
emulation probe in its place. To your target system, the
emulation probe appears to be the processor you just
removed. For details, refer to the discussion of
transparency in the glossary of this manual.

An emulation probe cable. This cable carries control
signals and processor information back and forth between
the emulation probe and the emulator control and
memory hardware.

Introduction To Emulation 1-5

The emulator control and memory hardware. This
circuitry controls operation of the processor, and provides
emulation memory in which you can store part or all of
your absolute file.

An emulation bus analyzer (also called internal analyzer).
This analyzer is usually installed in the same frame with
the emulator control and memory hardware. The analyzer
stores a record of the details of state executions in the
emulator and target system. Your workstation can display
a trace list of these state executions (or inverse-assemble
them into opcodes and operands to show you the
instructions that were executed) so you can see how the
target system processed each instruction in your absolute
file.

What Are The
Steps In Using An
Emulator?

There are three steps in the emulation process.

1. Prepare The Software

Create your program. Assemble or compile the program
and link the assembled or compiled modules. This obtains
an absolute file that performs the tasks in the program you
created, but in a form that can be executed by your target
microprocessor. These are the steps shown in figures 1-1
and 1-2.

2. Prepare The Emulator

Install your emulator hardware (emulator control board,
emulation memory, analyzer, etc). Then connect your
emulator probe to the target system. This connection is
optional; it depends on whether or not you need to
perform tests in target-system hardware. (Refer to the
discussion of in-circuit/out-of-circuit emulation in a
separate chapter in this manual). Finally, on your
workstation, answer a series of questions that define the
details of the configuration of your emulator; invoke this

1-6 Introduction To Emulation

series of questions using a keyboard command (such as
"modify configuration").

3. Run Your Target Software Using The Emulator

Use the emulator to load your absolute file into memory
hardware. Then use the features of the emulator to
execute your absolute code and see how your program
runs in your target processor. While using the emulator,
you can display the contents of the registers and/or
memory to help you debug your hardware and software.
This is shown in figure 1-3.

What Tasks Are
Done By An
Emulator?

The following paragraphs describe tasks that are normally
performed by an emulator under control of the emulator user.

Program Loading. An emulator can load emulation
memory or target system memory with the absolute file
you developed using an editor, compiler, assembler, and
linker.

Run/Stop Controls. An emulator can run your programs,
starting from any address in memory. A program running
in your target system can be stopped by the emulator at
any point you select, and then resumed again at the point
where it was stopped. Execution can also be stopped by
resetting the microprocessor.

Reset Support. The emulator can be reset from the
emulation system under your control; or your target
system can reset the emulation processor.

Introduction To Emulation 1-7

Memory Display/Modification. An emulator can display
the code contained at addresses in target system memory
or emulation memory. You can use an emulator to modify
the code present at these memory addresses, if desired.

Global and Local Symbols Display. An emulator can show
you the names of all the global and local symbols you
defined in your program, along with the memory addresses
where code associated with those symbols is located.

Internal Resource Display/Modification. An emulator can
display the present values in the internal resources of the
emulation processor, such as registers, and modify those
values, if desired. This includes modifying the program
counter so you can control where the emulator starts a
program run. An emulator can also display or modify the
contents of a memory-management unit (MMU register),
if your target processor includes memory management.

Analysis (in some systems, analyzer boards are optional).
An analyzer can record the states that appeared on the
emulation processor bus. The analyzer can show you a list
of those states as a trace list of instructions and data flow.

Program Stepping. An emulator can execute your
program one instruction at a time (or a selected number of
instructions at a time). After each execution, the emulator
will stop so you can see how the internal machine states
changed.

Memory Mapping. An emulator can place your absolute
code in emulation memory or in target system memory, or
it can place portions of your code in each memory.

Memory Characterization. An emulator can cause
emulation memory to behave as ROM or RAM (even
though all emulation memory is RAM). This allows you
to test code that will eventually reside in ROM without
having to use ROM hardware.

1-8 Introduction To Emulation

Breakpoint Generation. Breakpoints are temporary
instruction codes that you can have an emulator place in
your program code to halt execution or perform desired
tasks after a particular event occurs. You can use your
emulator to set breakpoints that are recognized on the
occurrence of a selected machine state or on the
occurrence of any state within a range of states.
Breakpoints cause the emulator to halt program execution
when the program reads from or writes to a memory
location, or after the program executes an instruction at a
specified memory location.

Clock Source Selection. An emulator generates an
internal clock that you can use for program execution
before your target-system clock is available. You may
need to include wait states in your program code if the
clock is too fast for some of the hardware in your target
system, such as memory or I/O ports.

Modify I/O Ports. An emulator can read from and write to
external devices.

What Is
Happening While
My Program Is
Running In
Emulation?

The emulator performs different tasks, depending on whether it is
executing your target program, or it is executing its monitor
program. (A monitor program is the set of software routines that
provide the features of the emulator, such as read/write target
memory, display/modify registers, and control execution of the
target program. Monitor concepts are discussed in a separate
chapter in this manual.)

While Execution Is In
The Target Program

During execution of your target program, the emulation processor
(acting as the target processor) generates an address for each bus
cycle. If the generated address is mapped to target system memory,
the emulator enables the data path buffers between the emulation
processor and your target system. If the generated address is
mapped to emulation memory, the emulator enables the data path

Introduction To Emulation 1-9

buffers between the emulation processor and the emulation bus.
This way, the emulator makes sure that each address generated by
the emulation processor arrives at the appropriate memory
hardware.

As your program runs, the analyzer records the activity on the
emulation bus. Activity of the emulation processor is always
available to the emulation bus analyzer, regardless of whether an
address is located in the target system or in emulation memory. If
you set up the analyzer to store state flow, your terminal can
display a list of the states in the order that they appeared on the
bus.

While Execution Is In
The Monitor Program

Many emulator functions are done by breaking (transferring
execution to the routines in the emulation monitor). One monitor
routine stores the values of the emulation processor registers.
These values can be reloaded later if you want to resume execution
of your target program at the point where the break occurred.

In the monitor, the emulation processor executes a tight loop while
it waits for a command from you. You can display the register
values that were saved at the time when the "break" occurred,
display the present content of code in emulation memory or
target-system memory, load new program code, single-step through
the target program instructions, or perform a variety of other tasks,
depending on the capabilities of the routines that make up the
monitor. When you have finished making the tests and
measurements that are provided by monitor routines, you can exit
the monitor and resume execution of your target program, if
desired.

1-10 Introduction To Emulation

How Does An
Emulator Affect
My Program?

An emulator does not alter your program, but the operating mode
of the emulator may affect the way your program runs. There are
two operating modes of an emulator: real-time mode, and
non-real-time mode.

Real-Time Mode In real-time mode, the emulator runs your program without
interfering with its execution. Real-time mode is the mode to use
if you have circuitry that can be damaged by an inadvertent break
during execution of your target code. The only way to break
execution when in real-time mode is for you to enter a BREAK
command on the command line and press the RETURN key.

Whenever the emulator is executing any routine in the monitor
program, it is not executing in real-time mode. The following is a
list of features that cannot be performed when the emulator is in
real-time mode because these require execution of one or more
routines in the monitor program. Depending on which emulator
you are using, there may be additional features that cannot be
performed when the emulator is in real-time mode:

Target memory accesses -- display, copy, load, modify, and
store.

Register accesses--display, copy, and modify.

Software breakpoints--set and reset.

The features above can be accessed even if the emulator is
configured for real-time mode if you first issue a BREAK
command. In the case of a software breakpoint, you can set a
breakpoint and then run your program in real-time mode. When
the software breakpoint instruction is executed, the monitor will be
entered. Of course, your mode will no longer be real-time when
this happens.

Non-Real-Time Mode In non-real-time mode, the emulator can break program execution
and begin executing a monitor routine in response to a variety of
internal program conditions (such as an attempted write to ROM),
as well as a BREAK command from you. The non-real-time mode

Introduction To Emulation 1-11

offers use of the full feature set of the emulator, but the timing of a
break during execution of your target code may cause erratic
behavior in your target system.

How Does An
Emulator Affect
My Target System?

When an emulator is designed, every effort is made to make the
emulator transparent to the target system. Even so, an emulator is
not the processor it replaces. It will usually have some parameters
that are different from those of the target processor. The following
is a series of items you should consider when using an emulator in
place of your target-system microprocessor.

Consider mechanical accessibility of the target processor. It may
be necessary to place the circuit board containing the
microprocessor on an extender board to gain access to the
processor connection. Some circuits may not work properly if the
circuit board is extended from its motherboard connection.

Consider interference with nearby components. Other
components close to the processor may interfere with installation
of the emulator probe cable. With older processors, you could
install extender sockets between the processor socket and the
emulator to overcome this problem, but with todays clock speeds,
extender sockets may cause unreliable operation do to their effects
on impedence or crosstalk.

Consider the processor timing specifications. It’s important that
your target system avoids violating any of the timing specifications
of the microprocessor that will be emulated. Even if the
microprocessor will work in circuits that violate some of its timing
specifications, the emulator may become erratic or not be able to
work at all because of these timing violations.

Consider delays. Some processor cycles, such as memory accesses
may not have the full memory access timing cycle available when
the emulator is connected. This is because of signal delays caused
by the emulation probe cable and the buffers for the cable
drivers/receivers. In these cases, you might replace your standard
memory hardware with faster hardware in your prototype design.

1-12 Introduction To Emulation

Consider power and ground circuits. If your target-system
prototype is a wire-wrapped design with little or no power and
ground facilities, it may not work well with an emulator. This is
because emulators use high-current drivers to maintain the
integrity of the signals in the emulation probe cable. The high
currents can cause voltage pulses to develop in unpredictable
points in such a wire-wrapped circuit. These voltage pulses may
exceed the thresholds of some of your target-system components.

Consider circuitry that needs to be refreshed. If your target system
includes a watch-dog timer that must be updated periodically, you
may need to disable it in order to prevent it from shutting down
your target system when the emulator is executing routines in a
background monitor.

Can An Emulator
Run Interactively
With Other
Emulation/Analysis
Systems, And
With External
Analyzers?

By using intermodule connections to connect control board
assemblies together, emulation and analysis hardware can interact
with other emulators and/or analyzers. Interaction allows you to
develop systems that use two or more microprocessors together or
that need more analyzer channels then are available in a single
analyzer. Things you can do by using interaction include:

Starting two or more measurements at the same time.

Using conditions found by one analyzer to control
measurements taken by another analyzer.

Starting execution of a program when a measurement
starts.

Introduction To Emulation 1-13

Notes

1-14 Introduction To Emulation

2

Comparing In-Circuit And Out-Of-Circuit
Emulation

Emulators can be used for both out-of-circuit emulation and
in-circuit emulation. Simply stated, in-circuit emulation is when
you have your emulator connected into your target system, and you
are using the emulator to run your target code in your target
hardware. Out-of-circuit emulation is when you have your
emulation probe disconnected from any target hardware. Using
out-of-circuit emulation, you run your target code on the
emulation processor, storing it in emulation memory, and using the
facilities of your emulation system to substitute for the hardware of
your target system.

Out-Of-Circuit
Emulation

Figure 2-1 shows an emulator used to perform out-of-circuit
emulation. Normally, out-of-circuit emulation is used to develop
software before the target-system hardware is available. The
out-of-circuit emulator allows you to run your code on your target
processor; the emulator contains the target processor (also called
the emulation processor). When you have written a program, you
can store it in emulation memory, and the emulation processor can
fetch its instructions and write its data to locations in emulation
memory.

Comparing In-Circuit/Out-Of-Circuit Emulation 2-1

Things You Can
Do Using
Out-Of-Circuit
Emulation

The most obvious thing you can do is start developing and testing
your code before the target system hardware exists. The following
paragraphs list some emulator features that allow you to do this
code development.

The emulator has memory. You can use it to store your code
before there is any target memory available.

Many emulators have simulated I/O. It can simulate the behavior
of keyboards, displays, printers, etc. With simulated I/O, you can
test the code that the processor will execute when it services these
I/O devices, even before you have the I/O devices available.

Figure 2-1. Out-Of-Circuit Emulation

2-2 Comparing In-Circuit/Out-Of-Circuit Emulation

In-Circuit
Emulation

Figure 2-2 shows an emulator being used to perform in-circuit
emulation. Using in-circuit emulation, you can develop and test
your target system hardware. You can also test your code in the
actual environment where you intend for your code to run.

Your target system operates as though its normal microprocessor
is installed, but the emulator gives you control over that processor
so you can control program execution.

With in-circuit emulation, you can load the program you have
created into address space that exists on your target system. If your
target system is not yet complete, you can load part of your
program code in target system memory, and the rest of your code in
emulation memory (where emulation memory simply provides
space that will ultimately reside in your target system).

Figure 2-2. In-Circuit Emulation

Comparing In-Circuit/Out-Of-Circuit Emulation 2-3

Things You Can
Do In-Circuit That
You Can’t Do
Out-Of-Circuit

When you have target system hardware available and connect your
emulation probe into it, you can load your target program into
your target-system memory and test the behavior of your target
hardware when it tries to execute the instructions.

You can use the "display/modify memory" features of the emulator
to send patterns to addresses in your target hardware and then read
the contents of those addresses. In this way, the emulator can help
you determine that your target system components are wired
correctly.

You can also eliminate the differences that may exist between the
behavior of your target devices and the emulation system that
simulated those devices.

There may be differences in the response of emulation
memory compared with the response of your target
memory hardware.

There may be differences between the way your I/O devices
operate and the way the emulator simulated those I/O
devices.

There may be differences in the way your interrupting
devices operate and the way you might have simulated an
interrupt while operating out-of-circuit.

As soon as your target hardware is available, you will probably
want to develop your product using in-circuit emulation.

2-4 Comparing In-Circuit/Out-Of-Circuit Emulation

3

The Emulation Monitor

What Is A Monitor? A monitor is a group of software routines that provide the features
of the emulator. The following is a list of features that are
normally provided by routines in the monitor:

Read/write target memory.

Display/modify registers or flags in the emulation
processor.

Display/modify contents of memory.

Control execution of the target program.

Execute a target program to a predetermined point, and
then halt. (This is useful when you want to begin a test at
a point deep within the target program.)

Break from target program (see The Break Function Of
The Emulation Monitor later in this chapter).

Reset into monitor.

Single step (execute one program instruction each time a
"step" key is pressed).

Monitor Concepts 3-1

What Does A
Monitor Do?

Many emulator functions are achieved by transferring control from
your target program to one of the routines in the emulation
monitor. Whenever the monitor program is entered, it saves the
values of the emulation processor registers. You can immediately
display and examine the register information (the values of the
emulation processor registers immediately before entry into the
monitor.

The monitor routines perform the emulator functions you request,
such as displaying target system memory. When you display target
system memory, the monitor program executes instructions in the
emulation processor to read target memory locations and return
their contents to the emulator.

Caution DAMAGE TO TARGET SYSTEM HARDWARE. When the
emulator detects an illegal condition, such as when the emulation
processor tries to write to guarded memory, or when you request a
memory access that uses a monitor routine (such as "display
memory"), the emulator stops executing your target code and
begins executing code in the monitor. Be careful if you have
circuitry that may be damaged if the emulator stops executing your
target code at a critical point. You may need to restrict the
emulator to real-time mode to prevent it from transferring control
(breaking) to the emulation monitor. In real-time mode, you can
only break to the monitor by entering the "break" command and
pressing the Return key.

3-2 Monitor Concepts

The Break
Function Of The
Emulation Monitor

The most common method used to transfer control (break) to the
monitor program is by assertion of the microprocessor’s
non-maskable interrupt pin. However, other techniques may be
used, depending on the architecture of the target microprocessor.
When a break condition is detected, the emulator asserts the
non-maskable interrupt of the emulation processor to stop
execution of the target program and begin execution in the
emulation monitor. The following conditions can cause a break to
be generated:

An illegal memory reference (such as an attempt to read
guarded memory space).

A bus condition that the internal analyzer detects (such as
a bus error).

A request by the target software (such as a software
breakpoint).

Typing "break" from the keyboard, and pressing RETURN.

Where Is The
Monitor?

The monitor may be located in background or foreground memory
space, or both background and foreground. Background memory is
memory that is separate (and isolated) from the memory addressed
when running the target program; you may have an instruction
beginning at address 1000H in foreground memory and an
unrelated instruction at address 1000H in background memory.
Foreground memory is the memory space directly addressable by
the target processor; it is the address space that is shared by the
target program, I/O ports, etc., of the target system. Most
emulators place the monitor in either background or foreground
memory space. Some emulators place part of the monitor in
background and the rest in foreground. Background and
foreground monitors are discussed in the following paragraphs.

Monitor Concepts 3-3

Background Monitors If the monitor is in background, it operates in a memory space that
is not directly accessible to your target system. This memory space
is called "background" memory, from which the name "background
monitor" is derived. The emulation system controls processor
access to the background memory.

Advantages Of Background Monitors

Background monitors have two main advantages:

1. A background monitor is easy to use. It is available at
power up. You don’t have to spend any time learning how
the monitor routines work. Emulators equipped with
background monitors are easier to use than those with
foreground monitors when testing and debugging
hardware at the early stages of a design project, before
target-system code is written, or before all of the target
system memory space is defined or operational.

2. Background monitor routines don’t consume any of the
address space of your target system.

Disadvantages Of Background Monitors

Background monitors have two main disadvantages:

1. When a processor is executing code within background
memory, its ability to detect and handle target system
interrupts is severely limited. Therefore, interrupts may be
ignored and refresh cycles needed by DRAM’s, etc., may
not be generated. If a watchdog timer is operating in your
system to check on system updating processes, the
watchdog timer will not be updated as necessary, and
therefore, it may shutdown or reset your target system.
Real-time servicing of keyboards, displays, etc., will not
occur as long as the emulation processor is executing in
background space.

3-4 Monitor Concepts

2. The routines within background monitors cannot be
accessed or modified. If you’d like to add a feature to your
emulator for better support of your target system, or if
you’d like to change the way a monitor routine works with
your target system, there’s no way to do it.

Foreground Monitors Foreground monitors are supplied as source files. They are written
in the assembly language of the processor they emulate. You can
edit the monitor source file, if desired. Then you must assemble
the monitor program, link it, and load it in emulation memory. It
is important to load the foreground monitor into emulation
memory because this permits the emulation processor and the rest
of the emulation hardware to communicate properly.

Advantages Of Foreground Monitors

Foreground monitors have at least three primary advantages over
background monitors:

1. A foreground monitor can continue to service the needs of
a target system (i.e., interrupts, memory refresh, etc.) while
the monitor routines are executing. By making
appropriate modifications to your foreground monitor,
your emulator will be able to service real-time events, such
as interrupts and watchdog timers in the target system
while the emulator is executing your monitor code. For
most multitasking, interrupt-intensive applications, you
will need a foreground monitor.

2. You can modify the monitor routines to meet the needs of
your target system. You can customize the way your
emulator handles instructions. You can assign different
priorities to your target system interrupts. You can modify
the monitor program in cases where operation of a
monitor routine conflicts with operation in your target
system.

Monitor Concepts 3-5

3. You can write routines to perform special tasks for your
target system and then call your routines by using the
structure of the monitor. For example, you might call a
routine you have written that allows your target system to
modify the values in coprocessor registers (if your target
system uses a coprocessor).

Disadvantages Of Foreground Monitors

The disadvantage of a foreground monitor is that you need to
assemble it, link it, and load it in emulation memory before you can
use it. If you want to customize the monitor for your target
application, you will have to understand how the monitor works.
Also, you’ll have to sacrifice a portion of your target processor’s
addressable memory space to contain the foreground monitor
code. This may not be much of a problem when developing code
for a 32-bit processor, but it can cause significant problems when
developing target systems that use 8-bit processors with 64K of
address space.

Some Emulators
Have Both A
Background And
Foreground
Monitor

When an emulator has both a background and foreground
monitor, the support provided by each monitor may be different.
For example, full support of emulation may be supplied by the
background monitor, and interrupt handling and custom
coprocessor support may be provided by the foreground monitor.
If your emulator has both a background and foreground monitor,
the following paragraphs will help you decide when to use each one.

When To Use The
Background Monitor

Use the background monitor during the early stages of hardware
development, before the target system interrupt, bus error, and
other asynchronous capabilities are available. The background
monitor is the ideal environment to make the first operational
tests. Because designers of a background monitor make no
assumptions about the status of the target system, you can execute
simple tests even without any components, except the emulator
probe plugged into the target system. Using an emulator with a

3-6 Monitor Concepts

background monitor, you can write a standard checkerboard bit
pattern to various data, address, and control lines to verify that
they’re wired correctly. When you start adding RAM or I/O chips
to your target hardware, you can use the display/modify target
memory features to send test bits and read the results.

An emulator with a background monitor can also run some simple
test programs. For example, you can create an infinite loop to
write alternating "ones" and "zeros" to a memory address. Then,
with an oscilloscope, you can probe various points in your target
hardware to check for ringing on power and ground lines,
violations of setup and hold times on read/write devices, and
crosstalk between lines.

When To Use The
Foreground Monitor

Use the foreground monitor when the background monitor no
longer supports development of your target system. For example,
if your target system uses dynamic RAM, the data in the dynamic
RAM will be lost when the background monitor is entered because
no refresh cycles will be generated. If your target system includes
I/O buffers that communicate with the host computer,
communication will cease because the interrupt/handshake cycles
needed by the host-based I/O drivers cannot be generated when
execution is in background memory.

If the design of the target system hardware is nearly complete and
the target memory system is stable and reliable, it’s time to use the
foreground monitor. An emulator is more transparent when it is
used with a foreground monitor. Interrupts, bus errors, and other
exceptions can be handled by the target system software as if the
emulator were not present. All emulation and analysis functions
are available. You can customize the monitor program to fit your
application. Target-specific messages can be added and displayed
on the emulation terminal. Display and modification of
coprocessor registers (if present) can be done by adding the
necessary code to the foreground monitor program.

One example of development that would need a foreground
monitor is development of target system interrupt service routines
(ISR’s). Because interrupts do not affect the operation of monitor
routines, you can analyze the execution of your ISR’s with an
internal analyzer while using your emulator (with foreground
monitor) to watch data move between I/O and memory addresses.

Monitor Concepts 3-7

You can also single step through one ISR routine while other
ISR’s continuously generate interrupts. An interrupt of higher
priority can always take control from an interrupt of lower priority.
By changing the relative priority levels of the ISR’s, you can
single-step through an ISR that you have given a low priority and
watch the higher priority ISR’s periodically take control.

For The Emulator
With No
Foreground
Monitor

The rest of the chapter discusses information needed by users of
emulators with foreground monitors. If your emulator does not
have a foreground monitor, you don’t need to read any more of this
chapter.

Customizing The
Emulation
Foreground
Monitor

The source file for a foreground monitor is thoroughly commented
so you can understand its routines and make desired modifications.
A flowchart of a typical emulation monitor is given in this chapter.

Caution POSSIBLE LOSS OF WORK SESSION!
SYSTEM MAY BECOME UNUSABLE. Do not let the routines
you customize in the emulation monitor exit the monitor. The
monitor has a defined exit routine that reloads appropriate values
in registers, etc. It must be used. Exiting the monitor by any other
path may cause the entire system to become unusable.
Do not modify routines in the monitor unless changes are
recommended and instructions are outlined in your monitor source
file. Incorrect changes in some sections of a foreground monitor
may cause emulation features to stop working.

3-8 Monitor Concepts

Caution LOSS OF ORIGINAL MONITOR SOURCE PROGRAM!
Do not modify the original source file for the foreground monitor.
Copy the monitor source file to your own subdirectory and make
modifications only to your copy.

Some emulation monitor source files are shipped with "read-only"
permissions. If your monitor was shipped this way, you will need to
execute "chmod 666 < monitor file name> " on your copy before
you modify it. After modifying your foreground monitor,
reassemble it and relink it.

How Monitors Are
Structured

An emulation monitor is made up of the following major sections:

1. Processor exception vector table.

2. Entry points into the monitor.

3. Emulation command scanner.

4. Command execution modules.

Each of these sections is discussed in the following paragraphs.

Figure 3-2 is an example flow chart of a typical emulation monitor.
This flow chart does not show the processor exception vector table.
The processor exception vector table for this example flow chart
has uncommented six entry vectors.

Processor Exception
Vector Table

The emulation monitor (figure 3-1) is entered through processor
exceptions. The emulation monitor program contains instructions
that load the processor exception vector table with the addresses of
the routines that handle the various exceptions.

Monitor Concepts 3-9

 ORG 0 ---RESET---
 DC.L SP_TEMP
 DC.L RESET_ENTRY
* ORG 8 ---BUX ERROR---
* DC.L BE_ENTRY
* ORG $0C ---ADDRESS ERROR---
* DC.L AE_ENTRY
* ORG $10 ---ILLEGAL INSTRUCTION---
* DC.L II_ENTRY
* ORG $14 ---ZERO DIVIDE---
* DC.L ZD_ENTRY
* ORG $18 ---CHK INSTRUCTION---
* DC.L CI_ENTRY
* ORG $1C ---TRAPV INSTRUCTION---
* DC.L TI_ENTRY
* ORG $20 ---PRIVILEGE VIOLATION---
* DC.L PV_ENTRY
 ORG $24 MONITOR SINGLE-STEP ENTRY
 DC.L MONITOR_ENTRY
* ORG $24 ---TRACE---
 DC.L T_ENTRY
* ORG $28 ---1010 EMULATOR---
* DC.L EA_ENTRY
* ORG $2c ---1111 EMULATOR---
* DC.L FE_ENTRY
* ORG $34 ---CP PROTOCOL VIOLATION---
* DC.L CPV_ENTRY
* ORG $38 ---FORMAT ERROR---
* DC.L FT_ENTRY
* ORG $3C ---UNINITIALIZED INTERRUPT---
* DC.L UI_ENTRY
* ORG $C0 ---FPCP UNORDERED CONDITION---
* DC.L FBUC_ENTRY
* ORG $C4 ---FPCP INEXACT RESULT---
* DC.L FIR_ENTRY
* ORG $C8 ---FPCP ZERO DIVIDE---
* DC.L FZD_ENTRY
* ORG $CC ---FPCP UNDERFLOW---
* DC.L FU_ENTRY
* ORG $D0 ---FPCP OPERAND ERROR---
* DC.L FOE_ENTRY
* ORG $D4 ---FPCP OVERFLOW---
* DC.L FO_ENTRY
* ORG $D8 ---FPCP SIGNALING NAN---
* DC.L FNAN_ENTRY
* ORG $E0 ---PMMU CONFIGURATION---
* DC.L PMC_ENTRY
* ORG $E4 ---PMMU ILLEGAL OPERATION---
* DC.L PMIO_ENTRY
* ORG $E8 ---PMMU ACCESS VIOLATION---
* DC.L PMAV ENTRY

Figure 3-1. Typical Processor Exception Vector Table

3-10 Monitor Concepts

Activating Processor Exception Vectors

Emulation monitor programs are normally shipped from the
factory with all of the exception vectors (except RESET and
MONITOR SINGLE STEP) contained in comment fields. This is
done to allow you to supply the addresses for your own exception
handler routines, if you have written any. If you have not written
any exception handlers, remove the comment delimiters (*) from
those provided in the processor exception vector table. This
enables the emulator to use the processor exception vector table
provided with your monitor program.

If your target application has its own RESET handler, you can
modify the reset vector address in the processor exception vector
table to point to the routine in your target code. You will also
need to disable the reset-to-monitor function by answering "no" to
the appropriate emulation configuration question.

Often, the portion of the monitor containing the processor
exception vector table is not relocatable, as is the rest of the
monitor. If the processor exception vector table of your monitor
must reside in a specific address space, be sure to map the
appropriate block of memory to emulation RAM (or to
target-system ROM, if permitted by your emulator).

Modifying The Processor Exception Vector Table

Use your editor to remove the comment delimiters (*) from the
start of each line of code that you want to be active in your
processor exception vector table. Lines that begin with comment
delimiters will be ignored during execution.

End out of your edit session, making sure that you save your
changes.

By removing the comment delimiters, you have made the exception
vector table usable. The processor exception vector table points to
addresses of the appropriate emulation monitor entry point
routines.

Monitor Concepts 3-11

Entry Points Into The
Monitor

Emulation monitor entry points are input routines for the various
entry paths into the monitor code. The following paragraphs
describe typical monitor entry and input handler routines.

Break_Entry

This is the entry point taken when you use the Break command to
transfer control from your target program to the monitor program.
When a break to BREAK_ENTRY occurs, the program counter
and status register of your emulation processor are saved on the
stack, as is normally done when an exception occurs. The
emulation monitor proceeds to the monitor loop where it waits for
a command from the keyboard.

During the time that the monitor is in use, the emulation processor
may move code into target memory, or perform some other task
that affects the state of the emulation processor. By storing the
entry values of the emulation processor, these same values can be
restored later so that execution can be returned to the point where
it was interrupted in the target program when you have finished
using the monitor functions.

Bus_Error_Entry and User_Entry

These entry points are taken when the emulation processor detects
either a bus error or an address error exception. The only
difference between these entries and the BREAK_ENTRY
described above is that some additional words required to
understand these exceptions are saved in variables.

Software_Breakpoint_Entry

This entry point is taken when a software breakpoint is processed.
You might use a software breakpoint when you want to begin
single-stepping through your target code after several target-system
processes have begun. You can set the software breakpoint at an
address in your code following startup of these activities.

The emulator processes a software breakpoint by removing and
storing the instruction that resides at the selected address and
replacing it with a BKPT instruction. When the BKPT is found,
execution enters the monitor loop and waits for a keyboard

3-12 Monitor Concepts

command. At the same time, the emulator discards the BKPT
instruction and restores the previous instruction that was at that
address. Note that you can’t set a software breakpoint at any
address mapped to target ROM.

Reset_Entry

This entry point is taken when the emulation processor executes
the reset exception. RESET_ENTRY returns the stack pointer to
the first address in the stack, and sets all of the emulation
processor’s registers to default values. Then the monitor loop is
entered, and the emulator waits to detect a new command.

Exception_Entry

A set of exception entry points allow the emulator to display status
messages for the exception vectors after reset. These exception
vectors are provided for your convenience, and may be deleted or
modified. For more information on the exception vector entry
points, refer to the paragraph in this chapter titled "Modifying The
Exception Vector Table".

Emulation Command
Scanner

Command scanning is done in the monitor loop, an idle loop that
continuously tests for the existence of a keyboard command. When
a keyboard command is found, the corresponding command
routine is executed. Depending on which keyboard command was
issued, execution may end with a return to the monitor loop to
await further commands, or the state of the system may be restored
to its pre-break condition, and execution may resume where it left
when the break was detected.

Command Execution
Modules

The following paragraphs describe typical emulation command
execution modules that reside in a monitor.

Are_You_There?

An are_you_there routine is used by the emulator to determine
whether the emulation processor is executing in the monitor or in
the target system code. The are_you_there routine can also pass an

Monitor Concepts 3-13

ASCII message to be displayed on the status line of the emulation
display, such as, "Running in monitor."

Exit_Mon

This is the path to use when exiting the monitor. An exit_mon
routine will reload the processor registers from the variables that
were stored when the monitor was entered. The program will then
exit the monitor and resume execution of the target system code.

Copy

The copy routine moves data between the monitor and
target-system memory. This command is used to modify and
display target-system memory.

Monitor Routines
You May Want To
Modify

The following paragraphs describe examples of modifications you
may want to make to a monitor program. Not all of these
selections are available in every foreground monitor.

Read/Write Target
Memory Space

You may want to change the size of the monitor transfer buffer.
Some foreground monitors allow you to change the size of this
buffer to obtain increased performance during target-system
accesses. Monitors that allow these changes will precede the global
symbol for the buffer size (typically called MON_XFR_BUF) with
suggested values and value limits.

Display/Modify
Registers Of A

Coprocessor

You may have written a routine to load values into coprocessor
registers. The monitor offers an easy way to identify the location of
that routine so it will be executed by the emulator when you want
to load the registers. The monitor source file will show a
modification you can make so that the emulator will execute your
routine when desired.

3-14 Monitor Concepts

Figure 3-2. Emulation Monitor, Typical Block Diagram

Monitor Concepts 3-15

Bus-Error/Address-
Error Storage

You may want to modify your monitor so that it will save
additional information about the state of the emulator when a bus
error or address error occurs.

Messages Displayed
On The STATUS Line

You may want to change the words of an existing message, or
create some new messages to be displayed on the status line.

Simulated Interrupts
For Out-Of-Circuit

Emulation

Some monitors allow you to set up parameters so you can force the
emulation processor to branch to your interrupt-handler routine
and run it during execution of your target program.

Exception Vectors,
Selecting Your Own

The monitor program may contain a list of exception vectors that
are preceded by comment delimiters. If you would like to enable
any or all of these exception vectors, simply edit your copy of the
monitor source file to remove the comment delimiters.

Monitor Routines
You Should Not
Modify

Normally, you should never modify the monitor routines that
provide the following features for the emulator:

Display/modify registers of emulation processor

Execute your target program

Break into monitor from target program

Reset into monitor

Single-step program instructions

Break away from target program

3-16 Monitor Concepts

Linking The
Emulation
Foreground
Monitor

The emulation foreground monitor must be assembled and linked
before it can be used by the emulation system. Depending on the
emulator you are using, there may be special constraints imposed
on your foreground monitor. Below is a list of some of things you
should consider before linking your emulation foreground monitor:

Some emulators allow you to link the foreground monitor with
your target code to form a single executable module. Linking the
monitor separate from the target code is preferred. Linking
monitor programs separately is more work initially, but with
separate linking, the monitor can be loaded efficiently during the
configuration process.

Some emulators specify that the foreground monitor must be
linked as a separate module and loaded first into memory before
you can even load your target code. In these systems, one of the
monitor routines performs the task of loading your target program.

In some systems, you tell your emulator the address of the
foreground monitor by answering a single configuration question.
With this information, the system can figure out everything else it
needs to know to use the monitor routines.

In some systems, the processor exception vector table must be
placed in a specific address range, but the remaining routines of the
monitor can be placed in any address range you desire.

In one emulator, the foreground monitor must be placed entirely
within a specific address range, and the foreground monitor for
that emulator cannot be modified.

Monitor Concepts 3-17

Loading The
Emulation Monitor

By using options to the "load" command, you can load the monitor
into emulation memory, and then load your target system code into
target system memory. Load the emulation monitor code first.

Most foreground monitors reside in RAM space in emulation
memory hardware. Prepare your load map so the emulation
memory hardware containing the foreground monitor will be part
of the same logical address space that contains the target program
code. This way, the target processor will be able to run monitor
code in the same space as its own target code (servicing interrupts
and providing refresh cycles), even though the hardware that
contains the monitor code is emulation hardware, not
target-system hardware.

Memory
Requirements For
Emulation
Foreground
Monitors

The size of the relocatable portion of a foreground monitor differs
from one emulator to another. You can determine the size of your
emulation monitor if you look at the MODULE SUMMARY
section of its linker listing file.

When you load your foreground monitor into memory, start the
monitor on the first address in a new memory block. The
emulation system divides the available memory hardware into
blocks of equal size. Some emulators allow you to specify the size
of the blocks desired (typically from 256 bytes per block to 4K
bytes per block). Other emulators divide all memory into one
block size (typically 256 bytes per block).

Foreground monitors should reside in RAM space in emulation
memory. The emulator cannot always access target-system
memory, but it can always access emulation memory. Some
emulators have additional requirements (such as function codes)
for the kind of memory where they reside. Refer to your emulator
User’s Guide for specific requirements for your monitor.

3-18 Monitor Concepts

Some portions of the foreground monitor may need to be mapped
to specific address ranges, such as the processor exception vector
table of certain monitors. Sometimes the entire foreground
monitor must be located in a specified range of address space.
These restrictions vary from one emulator to another and may not
apply to the foreground monitor you are using.

Emulators for processors that use memory management units
(MMU) may need the monitor located in address space where
logical address= physical address so that monitor routines are not
affected by translations made by the MMU.

Monitor Concepts 3-19

Notes

3-20 Monitor Concepts

4

The Emulation Configuration

What Is An
Emulation
Configuration File?

 The emulation configuration file is a file containing a series of
questions and answers that define the kind of support to be
provided by the emulator. Many aspects of the way your emulator
operates are governed by its configuration file An emulation
configuration file is supplied with a set of default answers to its
questions. You can select different answers to these questions, if
desired.

Loading the configuration file is one of the first things you do when
you gain access to your emulator. The configuration file sets up
the operating mode you desire. Aspects of emulator operation that
are usually governed by its configuration file include:

How your emulator to handles various conditions it may
encounter during your tests.

How your emulator manages the memory hardware it has
available.

How resources are shared between your emulator and your
target system.

How the emulator and target system interact.

Which operations are enabled in the emulation
environment.

Emulators are supplied with default configuration files that answer
the questions in ways that are typical for most applications. You
can modify the configuration file to match the needs of your target
system by invoking the series of emulation configuration questions
and providing your own answers to the questions when they appear
on your workstation. After modifying the emulation configuration

Emulation Configuration 4-1

file, you can save it under a filename of your own. Then you can
load your new configuration file instead of the default
configuration file each time you enter emulation
(example: load configuration myconfig RETURN).

The following conditions are typically managed by the emulation
configuration file:

Selecting real-time or non-real-time emulation mode.

Enabling breaks to the emulation monitor.

Selecting whether to reset into the emulation monitor or
to use the user reset exception vector.

Configuring the foreground and background monitors.

Setting the software breakpoint instruction.

Configuring custom coprocessor functions.

Configuring memory.

Configuring the emulator probe.

Configuring simulated I/O and simulated interrupts.

Modifying The
Emulation
Configuration File

To modify the emulation configuration file, invoke the file from
within emulation by entering a command such as:

modify configuration Return

The first question in the series of questions will appear on the
screen of your terminal. When you answer it, the next question will
appear. Each question is displayed with its present answer. You
can continue to use the present answer to a question (present setup

4-2 Emulation Configuration

for that aspect of the configuration) by pressing the Return key.
Optional answers to each configuration question can be selected by
pressing an appropriate softkey or by typing in the desired answer
on the command line, and then pressing Return.

Note If you need to back up to a question you already answered, press
the RECALL softkey. Each time you press RECALL, the
emulator will back up one configuration question.

View The
Configuration File
And Its Present
Answers

An incorrect configuration file may cause improper operation of
your emulator. Review the entire configuration file to make sure
all of the questions are answered correctly. If you are not sure how
to answer a particular question, refer to your emulator user’s guide
for details of the consequences of selecting each answer to a
particular configuration question.

Enter the command "!more < configfilename> .EA" to view the
entire configuration file, along with its present answers.

The Configuration
File To Use When
Starting Your
Target System

Target systems that can operate with the target microprocessor
instead of the emulation pod should be able to start without
difficulty when you load the default configuration file that was
supplied with your emulator. Use the default configuration file
whenever you start a new emulation session. The default
configuration file enables all of the target system signals, maps all
memory as target RAM, and specifies that the emulation monitor
is not loaded. Verification of proper operation should be made
using the emulation bus analyzer and indications from the target
system. When you first connect the emulator to the target system,
correct any failures you find using a minimum emulation
configuration, no emulation memory or emulation monitor. Once

Emulation Configuration 4-3

the default configuration works properly, you can add emulation
memory and an emulation monitor.

4-4 Emulation Configuration

5

Memory Mapping

This chapter discusses how to map memory for an emulation
session. When you map memory, you identify the memory
hardware that will be used during the emulation session, and you
specify the absolute code modules that will reside in that hardware.
To support these specifications, two maps are required. The use of
each map is described below:

Using the emulation memory map (part of the emulation
configuration file):

– You specify the size of each block of contiguous
address space. The range of addressable memory of
your target system will be divided into blocks of the
sizes you specify (down to the minimum block size your
emulator will support). Some emulators allow you
specify their minimum block size.

– You characterize the hardware that will support each
block of contiguous address space. You might identify
the first block of addresses as ROM space. The next
block of addresses may reside in RAM hardware.
Some emulation memory maps allow additional
characterization, depending on the capabilities of the
target processor.

– You identify the location of the memory hardware that
supports each address block. One block of addresses
might reside in emulation memory. Another block of
addresses may reside in hardware on the target system.

Using the linker load map:

– You identify the code modules (by name) that will
reside in each of the address blocks.

Mapping Memory 5-1

The way the emulator uses the emulation memory map is:

The emulator manages each block of addresses separately.
Emulators limit the number of separate blocks they can
manage. You need to select a block size that avoids
exceeding this limit. Usually this limit is equal to the
number of spaces available for entries on the emulation
memory map.

The emulator will allow reads and writes to addresses in
blocks you’ve characterized as RAM space, but it will not
allow writes to addresses in blocks you’ve characterized as
ROM space.

The emulator will turn on one set of address buffers if the
present address is part of a block that resides in the target
system. The emulator will turn on a different set of
address buffers if the present address is part of a block that
resides in the emulation memory.

The emulator interface software uses the linker load map
when it loads the target code into memory. It loads each
of the target modules into the address space you specified
in this map.

Any block of memory addresses can be specified as
guarded space (meaning these addresses don’t exist. An
attempt to read or write to guarded memory space is an
illegal condition). The emulator will try to break to the
emulation monitor if your target program tries to access
guarded memory. This can be used to halt a runaway
program.

5-2 Mapping Memory

How The Two
Maps Depend On
Each Other

The purpose of the following discussion is to introduce the
emulation memory map and the linker load map, and show you
how these two maps work together to load your target program
into memory hardware.

What Do You Do
When You Map

Memory

Using the emulation memory map, you allocate and characterize
memory space available in your hardware. The linker load map is
where you specify which code module is going to reside in the
memory address space available. Each of these maps is described
separately in the following paragraphs.

Example Emulation
Memory Map

Figure 5-1 shows a simplified emulation memory map. The exact
format of the emulation memory map in your emulator may be
different, but it will carry the same kind of information as shown in
figure 5-1.

The emulation memory map shows a list of address ranges. Beside
each address range, the emulation memory map shows whether the
memory hardware that will support that range is located in the
emulator or in the target system. Finally, it shows whether that
hardware is to be treated as RAM or ROM.

Entry address range location/description

1 0 - FF EMUL/ROM

2 100 - 1FF TARGET/RAM

3 1000 - 11FF EMUL/RAM

4 1200 - 12FF EMUL/RAM

5 2000 - 23FF TARGET/ROM

Figure 5-1. Simplified Emulation Memory Map

Mapping Memory 5-3

Managing The
Emulation Memory

Hardware

 In figure 5-1, some emulation memory is specified as ROM space,
and some as RAM space. All of the hardware on the emulation
memory board is RAM hardware, but your map specification will
control the way the emulator manages access to the memory. If
you specify an entry as RAM space, the emulator will allow reads
from and writes to that space during runs of your target program.
If you specify an entry as ROM space, the emulator will allow reads
from that space during a run of your target program, but not allow
writes to that space. If a write is attempted to space you’ve mapped
as ROM space, the emulator will signal that an illegal condition
has occurred.

Emulation Memory
Architecture

Figure 5-2 is a simplified schematic showing the logical
architecture of the emulation memory board assembly. The
memory mapper hardware is set up to support each entry in the
emulation memory map (figure 5-1 in this example). Each entry is
explained below:

Entry 1 in the emulation memory map is the 256-byte range of
addresses from 0 through 0FFH. For this example, it has been
mapped as Emulation ROM. When the mapper hardware receives
any address in this range, it performs an address translation to map
the address into the appropriate space in emulation RAM. It also
causes the attribute memory to supply the appropriate control
signals to the emulation run control so that the emulation cycle
will be treated as an access to ROM (no write transactions
allowed) and as a read from the emulation memory.

Entry 2 in the emulation memory map is the 256-byte range of
addresses from 100 to 1FFH. It is target ROM. The mapper
hardware will not perform an address translation. The attribute
memory will send the signal "target ROM" to the emulation run
control. The emulation run control will t urn on the appropriate
buffers to send the address to hardware in the target system. The
emulator will manage each address according to its rules for
accesses to ROM space.

Entries 3 and 4 are mapped to emulation memory. The mapper
hardware will perform the appropriate address translations to map
each of the addresses to the appropriate spaces in emulation RAM.
The attribute memory will send the appropriate signals to the

5-4 Mapping Memory

emulation run control so that each address cycle will be managed
as an access to RAM (as specified in the emulation memory map).

Entry 5 in the emulation memory map is a 1-Kbyte range of
address space in target ROM. Again, the mapper performs no
address translation. The attribute memory sends the code for
"target ROM" to the emulation run control, and it sends the
address to target-system hardware. The emulator manages each
address according to its rules for accesses to ROM space.

Figure 5-2. Emulation Memory Architecture

Mapping Memory 5-5

Note
The preceding discussion explains why emulation memory is
expensive. It has to be faster than target memory to allow time for
the translations that must be performed by the mapper. If the
target memory must respond in 80 nsec, then the emulation
memory must typically respond in 35 to 40 nsec.

Example Linker
 Load Map

Figure 5-3 shows an example linker load map. This map specifies
the addresses where each module of your target code will be loaded
in memory. Many linker load maps show only the address of the
first byte of code of each module. This example assumes that
module 1 will be no larger than the 256-byte space available in
entry 1 on the emulation memory board (figure 5-2). Module 3 will
be no larger than the target memory space allocated to entry 5 on
the emulation memory map (figure 5-1). The monitor is no larger
than the 512-byte space made available in entry 3 of the emulation
memory map.

Note that the mapper can use any block of emulation memory
hardware to support any range of addresses. This flexibility is not
available when mapping target memory. The addresses supported
in target hardware depend on how you wired your target system.

The linker load map must be in agreement with the emulation
memory map. If you set up the linker load map to place a code
module at addresses 1000H through 10ffH, then you need to make
sure your emulation memory map allocated memory hardware to
support that address range. If you decide to place data within an

Code Module Name Load Address

Module 1 0000

Module 2 0100

Module 3 2000

Monitor 1000

Module 4 1200

Figure 5-3. Simplified Linker Memory Map Content

5-6 Mapping Memory

address range, and your program is intended to write to that data
space, then you need to specify that address range as RAM space in
your emulation memory map.

Note For complex programs, it may be helpful to have a copy of your
linker load map when you are setting up your emulation memory
map. You can use it to make sure you provide hardware for every
software module in your linker load map.

Special
Considerations
For The Emulation
Memory Map

The following considerations apply when filling out most
emulation memory maps.

Selecting The Best
Memory Hardware To

Use

As soon as target system memory becomes available, you should
include its address space in the emulation memory map so you can
load your program into it and use it for project development.
Normally, target system memory hardware will have response
characteristics that are different from the response characteristics
of the emulation memory hardware.

Dividing Memory Into
Blocks

A single address block (entry on the emulation memory map) can
be as small as a single page. (The page size used in the example in
this chapter is 256 bytes.) An address block can also be as large as
the entire memory space available.

Each address block can have one memory characterization. An
emulator cannot manage two different memory characteristics
within one block of addresses (it can’t treat one-half of an address
block as ROM and the other half of the same address block as
RAM).

Mapping Memory 5-7

The ability to select from a variety of choices for page sizes can be
useful in emulators that limit the number of separate entries that
can be maintained in an emulation memory map. The page size
you specify will apply to all memory in the map.

By specifying a particular block size (having one or more pages),
you determine how many separate address spaces must be managed
by the emulator. Each address in a block of address space will be
treated as though it resides in the type of hardware you specify for
the block: RAM or ROM.

When you enter a specification on your emulation memory map,
the emulation mapper will assign at least one page of hardware
addresses to support that specification. This is true, even if there is
only one or two bytes in the code module that will occupy that
block. The emulator cannot allocate memory space smaller than
the page size you specify.

Three Kinds Of
Memory In The

Emulation Memory
Map

The emulator, can manage three kinds of hardware: RAM, ROM,
and guarded.

RAM space is any memory address space that allows
random access for both read and write transactions by the
emulation processor.

ROM space is any memory address space that allows
random access for read transactions, but no access for
write transactions. If the emulation processor (processor
in the probe that replaces the target processor) tries to
write to space you’ve characterized as ROM, the emulator
will detect this event as an illegal transaction, and place a
warning message on the status line of the display. Note
that the emulation control board can write your program
into ROM space. Only the emulation processor (in the
emulation probe) is prevented from writing to memory
you’ve characterized as ROM space.

Guarded space is any memory address space you are not
using (whether or not memory hardware is available to

5-8 Mapping Memory

support that space). Address space characterized as
"guarded" should never be accessed by the emulation
processor. This designation normally identifies
non-existent space. If the emulation processor ever tries
to read from or write to memory space that is
characterized as guarded, the emulation control board will
detect this as an illegal event and place a warning message
on the status line of your display. (Note that no emulation
memory hardware is required to support any address space
designated as guarded space.)

One of the questions in the emulation-configuration set of
questions asks if you want the emulator to break from your target
program and begin executing in the monitor if the target program
attempts to write to an address you’ve characterized as ROM
space. If you answer yes, any attempt to write to ROM will cause a
break to the monitor. If you answer no, the write instruction will
have no effect on the execution of your target program. In either
case, the content of emulation ROM space will not change. The
content of ROM space in your target system may or may not
change, depending on the design of your target system.

Caution In some target systems, there is risk involved with electing to break
to the monitor on an attempted write to ROM. If you have some
target-system activity that should not be abandoned until it is
complete, (such as a moving hydraulic arm that could over-travel if
your target program suddenly jumped to the monitor) you might
want to answer "no" to the configuration question that asks, "break
on write to ROM?". (If using a foreground monitor, you might
overcome this problem by modifying your monitor program.)

You can set up the emulation bus analyzer (if available) to trace
the activity preceding and following an attempted write to ROM.
This can be done by setting the trigger to occur on any address in
the range you’ve specified as ROM space, and then specifying that
the trigger be in the center of the trace memory.

Mapping Memory 5-9

If you have activated the monitor and are using non-real-time
mode, an attempted access to guarded memory will cause execution
to break from your target program to the monitor.

Any address ranges not mapped when the mapping session is
terminated are asigned the memory default. The default attribute
can be target RAM, target ROM, or guarded. Unless otherwise
specified, the system defaults all unmapped address space to
guarded.

Mapping A
Foreground Monitor

Most foreground monitors can be mapped to any address space
having the RAM attribute as long as its located in emulation
memory hardware. A few foreground monitors require special
considerations when mapping memory (such as placing them in a
specified range of addresses).

Deleting Map Entries Some emulation memory maps will not allow you to delete all of
the map entries. They may reserve one range of addresses for a
processor-specific usage, such as an exception-vector table for a
foreground monitor.

Overlay If you want a block of hardware memory to respond to two or more
address ranges, use the overlay capability in the emulation memory
map. When you overlay one address range onto another, you can
characterize the emulation memory differently for each address
range, if desired.

A typical use of the overlay feature would map a single 256-byte
block to support two address ranges: 1000H thru 10FFH as ROM,
and 1800H thru 18FFH as RAM. When the emulation processor
addresses any location from 1000H to 10FFH, the emulator will
allow reads but not writes. When the emulation processor
addresses any location from 1800H through 18FFH, the emulator
will allow both reads and writes. Therefore, the emulation
processor could overwrite the content at any address in the
256-byte block if it addressed it using its 18XX address, but could
not write to it at all if it addressed the same memory hardware
using its 10XX address.

You can only specify memory overlay using emulation memory
hardware, not hardware on your target system, but you can map a

5-10 Mapping Memory

block of memory space in your target system and then overlay it
with a block of emulation memory hardware. The range of your
overlay specification must be the same size as the range it is
overlaying.

Additional
Characterizations
Available In Some

Emulators

Some emulators allow you to specify a wide variety of attributes
that can be included when characterizing blocks of memory. Your
emulation memory map may allow you to include one or more of
the following descriptions to further characterize your memory
hardware:

program code/data code

processor function codes

synchronous or asynchronous cycles

8-bit, 16-bit, or 32-bit data widths

emulation memory whose cycles are interlocked with
target system memory

cache disables to turn of a processors cache when
execution is in a particular address range

Problem When
Specifying Certain

Address Ranges

The problem discussed in this paragraph generates the message,
"ERROR: Lower address in range greater than upper address."
It results from the way an emulator processes the highest address in
an address range specification. For most range specifications, the
emulator accepts your specification as you enter it. The problem
occurs when the highest address in an address range is the lowest
address of an address block (e.g. xxxx00h), In this case, the
emulator rounds down the address by one byte (e.g. xxxxffh).

If you attempt to specify an address range by using the same value
for both the start and end addresses, and the address you choose is
the first address in a new memory block (map 100h thru 100h
emulation ram), the emulator will round down the ending address.
When rounded down, the ending address (0FFH) is lower than the
starting address (100H).

Mapping Memory 5-11

Notes

5-12 Mapping Memory

6

Command Files

This chapter provides the following information about command
files:

what is a command file?

how are command files useful?

methods used to create command files

editing an existing command file

how to execute a command file

conventions for naming command files

nesting and chaining command files

making a command file fit into a script

executing scripts automatically upon login

things to remember when using command files

what to do if your command file doesn’t work

Command Files 6-1

This chapter does not provide details of how to make a command
file execute in every kind of system. For example, you can quote
strings of characters to be passed as parameters during execution of
your command file. Some systems allow you to use several
different characters for quoting characters. Other systems allow
you to use only quotation marks for quoting characters. You’ll
have to refer to your system user’s guides and/or reference manuals
to find out which quoting characters you can use in command files
for your system.

What Is A
Command File?

A command file is simply a file that contains commands. When
you type the name of the command file on your interface, the
commands are pulled one at a time from the file and executed in
your system. Command files are useful because they allow you to
create a setup or test that involves several command entries, and
then perform that setup or test any time you want by simply typing
the name of the command file on the command line and pressing
the RETURN key.

Command files are similar to HP-UX scripts. The difference is
that the commands in your command file must be native to the
interface you are using. Also, command files must not have
execute permissions.

How Are
Command Files
Useful?

Command files minimize the need to type on the keyboard, and
they speed up the process of emulation because each new
command is entered as soon as the system is ready to accept it.

You can use command files to duplicate measurements. For
example, every time you want to assemble, link, load, and run a
program, you can type the name of a command file that contains
the appropriate assemble, link, load, and run commands. All of the
steps will be executed automatically.

6-2 Command Files

The following is a list of tasks that are easy to implement in a
command file:

1. Compile, assemble, and link programs.

2. Enter emulation and do emulator tasks.

3. Invoke an external analyzer (State, Timing, or Software
Performance), and perform analysis tasks, such as:

a. Specify trigger conditions.

b. Trace.

c. Copy trace list to printer.

4. To run an emulation and analysis session, you enter a
series of commands that gain access to emulation, load the
different memories with your absolute code, run your code
from selected addresses, and trace program execution
using selected trigger states and storage qualifications.
The commands you enter to perform these actions can be
placed in a command file under a name you select.

All you have to do to repeat the same session later is type
the name of the command file on the command line. The
system will execute the commands in the order they appear
in your command file.

When you configure the emulator for an application, you answer a
series of configuration questions. These questions and the answers
you give are stored in a command file generated by the emulator.

Command Files 6-3

Methods Used To
Create Command
Files

There are two methods to create command files: (1) automatic
creation by recording the commands you use during a test, and (2)
opening a file and typing in a series of command lines. Both
methods are described in the following paragraphs.

Automatic Creation
Of A Command File
While You Use The
Emulator/Analyzer

You can have the emulation system keep a record of the commands
you execute while performing a test. (This is called "logging
commands to a file"). In this way, you can concentrace on running
your test without having to think about command files. When you
finish your test, turn off the logging process. The file may be edited
to view or alter the command list. Creation of a command file by
logging commands ensures that the syntax of the commands is
correct.

To turn on the process of logging commands, some interfaces let
you enter a command such as:

log_commands to < filename> RETURN

Once you have done this, all of the commands you use will be put
into a file whose name is the < filename> you specified in the
command. Each command will be saved on a separate line.

When you finish your tests, enter the command to stop the logging
process. Some interfaces use the command:

log_commands off RETURN

The command file is in your present working directory, ready for
edit.

Things To Correct During The Edit

If you ended your session with the "end" command, that command
will be the last command in your log file. You will probably want
to delete this command. For other editing considerations, refer to
the paragraph titled, "Editing An Existing Command File", later in
this chapter.

6-4 Command Files

Logging To Enlarge An Existing Command file

If you already have a command file with the same name as the file
you are logging commands to, your new commands will be
appended to the previous command file. To avoid this, accompany
your "log_commands" entry with "noappend". When you specify
noappend, the previous log file will be overwritten (if you have
permission to write to the file).

Logging Calls To Other Command Files

If you call an existing command file to perform some activity while
you have the "log_commands" process turned on, the logging
process will t urn off while the called file executes. Only the call to
the command file will be logged, not the commands within the
called file.

Logging Commands That Spawn New Processes

You cannot log commands that spawn new processes. For
example, "!vi" in the command file will invoke the "vi" editor, but
will not log any of the "vi" editor commands. When the "vi" editor
is terminated, commands will again be logged to your file.

You can log single shell commands, such as "!ls" or "!asm -o
sample.s > sample.o".

Using An Editor To
Create Command

Files

You can use the Softkey Driven Editor or any HP-UX editor to
create command files. The syntax diagrams in your emulation and
analysis user’s or reference manuals will be helpful when
composing your command lines. Proceed as follows:

1. Invoke the editor you want to use to create the command
file.

2. Type in the desired commands. Make sure the commands
you type are in the form that appear on the command line,
not the abbreviations that appear on some of the softkeys.
Also, make sure you use the correct command syntax.

Command Files 6-5

Editing An
Existing
Command File

Before you can use an existing command file, it may need to be
edited. Edit the command file just as you would edit any other file:

Scroll through the text. If you ended the log process by using the
"end" command, the last line of your file will be "end". Delete this
command.

Edit out any lines containing "!sh" in a command file. Otherwise,
your command file will become suspended until you press
< CNTL> d. After pressing < CNTL> d, your command file will
resume.

Edit out any control characters in command files.

Note Do not make command files executable. One difference between
command files and HP-UX scripts is that scripts must have the file
permissions set to "executable" before you can use them.
Command files must not have execute permissions.

6-6 Command Files

How To Execute A
Command File

To execute a command file, you must be in an emulation/analysis
session. You cannot start a command file from a shell prompt.
However, you can create a shell script (an HP-UX file of
commands that can be invoked from the HP-UX shell) that gains
access to your emulation/analysis session, and then run a command
file once that access has been obtained. You can also create an
HP-UX script that enters an emulation/analysis session and then
performs the actions of an embedded command file to complete a
series of emulation and analysis tasks. These methods of execution
are discussed in the following paragraphs.

Executing A
Command File Alone

The most simple case of executing a command file is to type in the
commands that gain access to your emulation/analysis system
interface, and then type the name of the command file.

Using A Script And
Command File

Together

This case is a little more complicated because you must create two
files. This case provides greater benefits because it reduces the
number of commands you need to type in when performing your
test. To do this:

1. Make a command file.

2. Make a script whose last entry accesses the
emulation/analysis interface where you want to start your
command file. Make the script executable (chmod + x
< script_name>).

3. Type the name of your script at the system prompt.

4. Type the name of your command file when your script
finishes executing and the desired interface is on screen.

Command Files 6-7

Conventions For
Naming Command
Files

A command file name can have up to 14 characters. A name with
more than 14 characters will be truncated. If your command file
name begins with an alpha character, simply type the command file
name and press RETURN to execute the file.

Startup8 RETURN

A command file name can begin with a number (e.g. 35test). When
the first character of a command file name is a number, you must
precede the invocation with a backslash.

\35test RETURN

Characters after the first in a command file name can be alpha or
numeric. Most characters can be used in a command file name,
except # | > < ; () / and ’ .

Nesting And
Chaining
Command Files

Nesting command files means calling a command file from within
another command file. You can nest command files up to 50 levels
deep.

Nesting Command
Files

A command file call is similar to a subroutine call.

When a command file calls another command file, the calling
command file must supply any parameters needed by the called
command file. Otherwise, execution will stop. Once execution has
started, you will not be prompted for missing parameters.

Chaining Command
Files

Command files are said to be chained when the last line of a
command file calls another command file. You can chain as many
command files as you like. Chaining command files is preferred to
nesting because nesting command files is not supported on some
host systems.

6-8 Command Files

Executing Scripts
Automatically
Upon Login

You can set up a script to execute automatically when you log in to
the system. To do this:

1. Make the script executable.

2. Execute the script to make sure no errors occur. Fix any
errors that occur. Then proceed.

3. Invoke your .profile file in an editor.

4. Add the script name to a line in your .profile file.

5. Save the .profile file, and exit the editor.

6. Log off the system. Log on again to verify that the script
executes correctly.

Things To
Remember When
Using Command
Files

The following general information will help you use command files
effectively:

1. A command file that is started in an emulation/analysis
session will continue to execute until an end-of-file is
found, or until a syntax error occurs.

2. You can stop a command file by pressing < CNTL> c or
the BREAK key.

3. Command files can contain shell variables if they begin
with "$" and use an identifier. An identifier is a sequence
of letters, digits, or underscores beginning with a letter or
underscore. The identifier may be enclosed by braces "{}"
or entered directly following the "$" symbol. Braces must
be used when the identifier is followed by a letter, digit, or
underscore that is not part of its name.

For example, assume a directory named /users/softkeys and
a shell variable "S" whose value is "soft". By specifying the

Command Files 6-9

directory as "/users/${S}keys", the correct result
(/users/softkeys) is obtained. However, if you specify the
directory as "/users/$Skeys", the host will look for the value
of "Skeys".

4. You can examine the current values of all shell variables
defined in your environment with the command "env".
Positional shell variables, such as $1, $2, and so on, are not
supported. Special shell variables, such as $@, $*, are also
not supported.

5. Command file lines can be longer than one screen width.
Break long command lines by ending the line with a
backslash (\). A line terminated by "\" is concatenated with
the line that follows it. This continues until a line is found
that does not end with a backslash. A line constructed in
this manner is recognized and executed as one single
command line. If the last line in a command file is
terminated by "\", it appears on the command line but is
not executed. Normally, the line feed is recognized as the
command terminator.

6. Commmands in shell scripts can also be longer than one
screen width. Do this by quoting the command. The HP
64000-UX environment recognizes three quoting
characters for shell commands: double quotes ("), single
quotes (’), and the backslash symbol (\).

For example, the following three lines are treated as a
single shell command. The two hidden line feeds are
ignored because they are inside the two single quotes (’):

!awk ’/$/ { blanks+ + }

END { print blanks }

’ an_unix_file

7. An HP-UX hosted linker may not work if it is invoked
from a command file and has no argument specified. The
linker looks for input from the keyboard. It cannot read
the input from the command file.

6-10 Command Files

8. Do not set the execute permission of a command file. If
permission is set (chmod + x commandfile), the command
file will not work.

If The Command
File Does Not
Work Properly

Command files execute properly when they have no syntactical or
semantic errors. If an error is found, execution of the command
file stops, and a message is displayed.

Command file execution will stop if:

1. The command file contains a syntax error.

2. An error is detected by the application program.

3. You press < CNTL> c or the BREAK key.

Command Files 6-11

Notes

6-12 Command Files

7

Coordinated Measurements Through CMB And
IMB

High-speed communication is used to coordinate triggering,
enabling and disabling of functions, and synchronization of execute
and halt between two or more emulators and/or analyzers involved
in a measurement. The coordinating signals pass through the CMB
and/or IMB listed below:

CMB (The Coordinated Measurement Bus).

IMB (The InterModule Bus).

These two buses have differences, but the functions they perform
are the same.

Differences include:

The number of lines and types of signals carried.
An emulator on CMB must use a background monitor.
An emulator on IMB can use either a background or
foreground monitor.
You can interconnect a great many emulator/analyzer sets
with CMB and only a few with IMB.
The maximum overall length of the bus cable depends on
which bus you are using.
When using the CMB, external analyzers, such as the HP
1630 Logic Analyzer, can provide control signals to other
emulator/analyzers on the bus. With the IMB, analyzers
outside the card cage can only receive signals from the bus,
not supply signals to the bus.
When using the CMB, an analyzer outside the card cage
can cause all emulators on the bus to break to their
monitor programs. No such capability is offered on the
IMB.

Coordinated Measurements Through CMB And IMB 7-1

The CMB and IMB interconnect certain measurement functions so
that activity in all of the participating emulators and analyzers can
respond to the same control sources. Coordination offered when
using the measurement buses includes:

Synchronized runs of your target program.
All analyzers accept the present state as their trigger when
a designated analyzer recognizes its trigger event.
One emulator on the bus can stop execution of your target
program and break to its monitor program when an event
is recognized by an analyzer in a different
emulator/analyzer set.

IMB Information The IMB is a 6-conductor cable that interconnects control signals
for emulation and analysis through a special IMB plug at the top of
all control boards. The coordinating signals on the IMB are
described in the following paragraphs:

Master Enable All analyzers that are to participate in a coordinated measurement
receive this signal. This is the execute/halt signal. When it is true,
it enables all analyzers that receive it. When it is false, it disables
the analyzers. There can only be one driver for the master enable
line: either the execute/halt function (the default configuration), or
one of the analyzers assigned to participate in the measurement.

The purpose of the master enable line is to synchronize
measurement start in all analyzers. At measurement start (execute
key pressed or true state from designated master enable driver),
each analyzer tries to start. The master enable line remains false
until all analyzers are ready. Then it switches true, releasing all
analyzers to start together.

When the master enable line is driven by one of the analyzers, it
can alternate between true and false during a measurement to
exclude unwanted activity from the coordinated measurement.
When an analyzer receives this line from another analyzer, all of its
analysis functions are disabled during disable periods.

7-2 Coordinated Measurements Through CMB And IMB

Emulation_start The purpose of the emulation_start command is to couple an
analyzer into a measurement with other emulators and analyzers
that do not have, or are not using, any other IMB lines. When the
analyzer you coupled is driving the emulation_start line or
driving/receiving any other IMB line, it will start before any
emulators in the coordinated measurement.

Trigger enable The trigger-enable line carries a logic level. When it is true, it
enables the receiving analyzers to recognize their internal triggers,
if they occur. When it is false, it disables trigger recognition in the
receiving analyzers. The trigger enable line can alternate between
true and false during a measurement to allow the controlling
analyzer to window the activity where trigger recognition can
occur. If no analyzer is designated to drive this line, it will default
to the true state.

Trigger The trigger line carries a transition from false to true. When the
trigger line switches from false to true during a measurement, it
remains true for the rest of the measurement. An analyzer can
drive the trigger transition when it recognizes its trigger
specification. An analyzer can receive the trigger transition from
another analyzer on the bus. A receiving analyzer will identify the
present state as its trigger state when the trigger line switches true.
The trigger line can have more than one designated driver. When
more than one driver is designated, the first driver to recognize its
trigger becomes the trigger source for the measurement in process.

Storage Enable The storage enable line carries a logic level. An analyzer can drive
this line, controlling when the receiving analyzers can store
information. If an analyzer receives this line, it will store states
that meet its store specification when this line is true. The analyzer
that controls this line can switch it between true and false during a
measurement to window activity that can be stored. If no analyzer
is designated to drive this line, it defaults to the true state.

Delay Clock The delay clock line carries a stream of clock pulses. Certain
analyzers can generate this stream of clocks. Other analyzers (such
as timing analyzers) can receive these clocks and use them to count
delays when taking their measurements (delay by numbers of
clocks).

Coordinated Measurements Through CMB And IMB 7-3

CMB Information The CMB consists of three bi-directional signal lines. These lines
are available through a connector on the exterior of the card cage.
The signals that coordinate measurements on the CMB are:

CMB Trigger line

READY line

EXECUTE line

Emulators and analyzers that coordinate measurements over the
CMB offer commands you can use to:

Enable and disable interaction on the READY line.

Allow EXECUTE to start running your target program in
emulation.

Drive or received the CMB trigger line by any unit on the
CMB.

Note The CMB trigger line also goes true briefly following receipt of an
EXECUTE signal. Because of the short-duration true state on the
CMB trigger line, do not use it to trigger external instruments if
the EXECUTE function is also being used.

CMB Trigger Line The CMB Trigger line is low true. It can be used directly as a break
source to the emulator, or it can be used indirectly as a break
source through the internal trigger lines. When used as a break
source, the driving function must be cleared before the emulator
can resume running.

CMB READY Line The CMB READY line is high true. It is open collector and
performs ANDing of the ready state of all enabled emulators on
the CMB. Each emulator on the CMB releases this line when it is
ready to run. This line goes true when all enabled emulators are
ready to run, providing a synchronized start. When CMB is

7-4 Coordinated Measurements Through CMB And IMB

enabled, each emulator is required to break if CMB READY goes
false, and will wait for CMB READY to go true before returning
to the run state. When an enabled emulator breaks to the monitor,
it will drive CMB READY false. The emulator that drives CMB
READY false holds it false until it is ready to resume running the
target program. When the emulator is reset, it also drives CMB
READY false.

CMB EXECUTE Line The CMB EXECUTE line is low true. Any emulator or analyzer
on the CMB can drive this line. It serves as a global interrupt, and
is accepted by analyzers and emulators.

BNC
Internal-To-External

Connection

The BNC input on the card cage can either supply the analyzer
trigger to external equipment, or receive an analyzer arm, an
analyzer trigger, or an emulator break request from external
equipment.

CMB Interaction With
External Analyzers

You can make measurements that include an external logic
analyzer or oscilloscope connected to the CMB bus through a
connector on the card cage (some card cages use BNC connectors,
others have special connectors for this purpose). The lines on the
CMB are bi-directional so you can use them to drive an external
device, or receive arming or triggering signals from an external
device.

Through command choices, you can specify which of the emulators
and analyzers will drive and receive the trigger signals. This allows
flexible interconnections between the emulation and analysis
systems installed in the card cage and analyzers outside the card
cage that are connected through CMB or BNC ports.

Coordinated Measurements Through CMB And IMB 7-5

Notes

7-6 Coordinated Measurements Through CMB And IMB

8

Introduction To Analysis

An analyzer is an instrument that captures signal activity
synchronously with a clock signal. An analyzer can display a
history of the signal activity over the period of the measurement. If
the period of the measurement was greater than the capacity of the
analyzer memory, the most recent signal activity will be shown.
There are several types of analyzers used with emulators. These
types are described below.

Types Of
Analyzers

Emulation Bus
Analyzer

An emulation bus analyzer captures bus cycle information from the
address, data, and status buses of an emulation processor in sync
with the emulation processor clock. The states captured show a
history of activity on the emulation processor bus. This history can
be presented as a list of states expressed in numerical values
(hexadecimal, binary, etc), or it can be inverse assembled into a list
similar to an assembly language program listing.

External Analyzer An external analyzer captures activity on signal nodes that are
external to the buses of the emulation processor. To use an
external analyzer, you connect the external analyzer probe cable to
signal nodes in your target system. The external analyzer probe
cable is a set of signal lines, each with an individual probe
connection. External analyzers can make state measurements
and/or timing measurements, as described below.

Introduction To Analysis 8-1

External State Analyzer

An external state analyzer can use the same clock as the emulation
bus analyzer so that the states at the signal nodes can correspond
to the states captured by the emulation bus analyzer.

External Timing Analyzer

An external timing analyzer can record logic levels at the nodes you
selected at each occurrence of a sampling clock within the analyzer.
You select a clock rate that provides the measurement resolution
desired. The clock rate must be faster than the data rate to prevent
the analyzer from detecting a glitch on the occurrence of a single
data bit. (A glitch is both a positive and a negative transition
occurring between any two sampling clocks.)

Basis Branch
Analyzer

This is a testing method that determines the extent to which
branches are executed during runs of your target program. The
measurement tells you if each possible path of the branch was
executed during the test. You can use this type of analyzer to
ensure that your tests do a thorough job of program testing. This
analyzer identifies branches that are not completely tested so you
can write new tests to verify paths not taken. HP offers its HP
Branch Validator to make basis branch analysis tests.

Coverage Analyzer A coverage analyzer measures the percent of memory accessed by a
target program. A coverage analyzer reserves one bit in its memory
for each byte of HP emulation memory. When a byte of emulation
memory is accessed (written to or read from), the corresponding
bit in the memory of the coverage analyzer is set. After a test, the
coverage analyzer can show you the memory locations that were
accessed.

Software
Performance Analyzer

A software performance analyzer measures performance
characteristics of code modules. You can use software
performance measurements to compare code modules with each
other to see how much execution time and state activity each one
uses in your program. These measurements help you identify code
modules that need to have their performance optimized.

8-2 Introduction To Analysis

Activity measurements record information about memory activity
and program activity to tell how much execution time is spent and
how many states are executed by each function and variable defined
in the program under test. Activity measurements are also used to
compare these functions and variables with one another to
determine their relative use of time and states. Duration
measurements record the time spent executing selected functions
and procedures. You can use duration measurements to determine
the average time it takes to execute a program module, and detect
events when the duration of a module is abnormally different from
its average duration.

Specifications
Needed To Set Up
A State Analyzer

Analysis functions may include trigger, storage, and count
directives. The analyzer can capture a number of states in its
memory, depending on the capacity of its memory. These states
will include address, data, and conditions of the status bits.

Trigger A trigger is a point of reference within the trace memory. It may be
some unique state and you want to see the activity that led up to its
occurrence. It may be some starting event and you want to observe
the activity that follows after its occurrence. If your measurement
is not keyed on the capture of some significant event, specify a
trigger of any_state.

Store The store function sets up the analyzer to store states of interest in
its trace memory. The default of the store specification (any_state)
sets up the analyzer to store every state, regardless of its content.
When you are interested in analyzing the activity associated with a
particular address range, you can store-qualify just that address
range, and the analyzer will store only states executed within that
address range. If you want to observe a series of writes to a
variable, you can store-qualify write transactions to the address of
the variable, and the analyzer will store only those write states.

Count The count function measures periods of time or numbers of state
transactions between states stored in memory. You can set up the

Introduction To Analysis 8-3

analyzer count function to count occurrences of a selected event
during the trace, such as counting how many times a variable is
read between each of the writes to the variable during a trace. The
analyzer can also be set up to count elapsed time, such as counting
the time spent executing within a particular function during a run
of your target program.

Special
Considerations

Chapter 9 of this manual discusses the way your measurements may
be affected by operation of an internal cache (for processors
equipped with a cache). Chapter 11 discusses difficulties you may
have, and ways to overcome those difficulties, when analyzing the
trace lists obtained from processors that prefetch instructions and
use an instruction pipeline. Chapter 10 discusses a special
measurement that some analyzers can make to help you find the
cause of problems that may appear during execution of your target
program.

8-4 Introduction To Analysis

9

How An On-Chip Cache Affects An Analyzer

What Is An
On-Chip Cache?

An on-chip cache is an area of memory that is used to store
recently used instructions and/or data on a microprocessor. Some
microprocessors are equipped with caches for instructions only,
while others have caches for both instructions and data. The
purpose of an on-chip cache is always the same - to improve
efficiency of program execution by the microprocessor.

By keeping recently used instructions and/or data in an on-chip
cache, a microprocessor can access these items if they are used
again without having to initiate external bus cycles. When the
microprocessor fetches an instruction or accesses some data, it
checks to see if that instruction or data is already in the cache, and
if it is, the microprocessor loads it from the cache and does not
perform any external bus cycles.

How Does A
Cache Affect
Analysis?

An emulation bus analyzer can only trace activity that appears on
external processor buses. When the microprocessor is operating
with its cache(s) enabled, analysis of processor activity is limited
because no bus cycles are performed to fetch items already in the
on-chip cache. Therefore, transactions involving the cache will
either be incomplete or will not appear at all in trace lists.

On-Chip Cache 9-1

Disabling And
Enabling The
Cache

Usually, you will want to disable the on-chip cache of a
microprocessor when tracing execution of a program. In this way,
all of the instructions executed by the microprocessor will be
fetched on the processor memory bus and can be captured in the
analyzer trace. Typically, emulators built for microprocessors that
have on-chip caches will have a selection within the emulation
configuration that you can use to disable or enable the cache(s).

Sometimes you may want to perform analysis with the cache(s)
enabled. This will be the case when you want to measure speed of
execution because on-chip caches can greatly increase the speed of
execution of some programs.

9-2 On-Chip Cache

10

Prestore Trace Measurements

The word "prestore" sounds like something is being stored before it
happens. Obviously, that’s not possible. What’s "prestore" really
mean? Prestore is a measurement mode that lets the analyzer
capture the last occurrence of some event every time a new state is
stored in the trace memory (you might prestore the last write
instruction before data is written to a selected variable). Here’s
how prestore works.

To make a prestore measurement, the trace memory of the
analyzer is divided in half. One half of the memory stores states
that meet the store qualification. The other half of the memory
stores states that meet the prestore qualification.

Figure 10-1 shows imaginary men working inside your analyzer to
make prestore measurements. Each state that enters the analyzer

Figure 10-1. Making The Prestore Trace Measurement

Prestore Measurement Concepts 10-1

is examined by Store Man. He looks to see if the state meets the
store qualification you set up before the trace began. If the state
meets the store qualification, it is stored in the trace memory, as is
described later. If the state doesn’t meet the store qualification,
the state is passed to Prestore Man. Prestore Man examines the
state to see if it meets the prestore qualification. If it does,
Prestore Man places the state behind his ear and throws away any
state that he had been holding there before. If it doesn’t meet the
prestore qualification, he throws the state in the bit bucket.

This process continues, with Store Man looking at each state, and
then passing the state on to Prestore Man. Finally, a state comes in
that meets Store Man’s qualification. He places that state in the
store memory. When this happens, Prestore Man places the state
he has behind his ear into the prestore memory.

Note Each time Store Man places a state in store memory and Prestore
Man places the last state he held behind his ear in prestore
memory, then a new measurement begins. If the first state
examined by Store Man meets the store qualification, no prestore
state will be stored. Therefore, no prestore state will be shown in
the trace list preceeding it.

When the trace is complete and you call for a trace list, the content
in store memory and prestore memory are arranged as shown in
figure 10-2.

TRACE LIST

PSTORE STATE (state 1 in the prestore memory)

+0001 STATE (state 1 in the store memory)

PSTORE STATE (state 2 in the prestore memory)

+0002 STATE (state 2 in the store memory)

PSTORE STATE (state 3 in the prestore memory)

+0003 STATE (state 3 in the store memory

Figure 10-2. Making A Prestore Trace List

10-2 Prestore Measurement Concepts

How Is A Prestore
Trace Useful?

A prestore trace is useful when some error is being made to a point
in your program, and there are several possible sources of the
error. For example, assume there are several program modules
that write to a variable, and sometime during execution of your
program, that variable is getting bad data written to it. Using a
prestore measurement, you can find out which module is writing
the bad data. You can store-qualify writes to the variable. Using
prestore, you can capture the instructions that caused those writes
to occur.

The prestore measurement is used to answer such questions as,
"Who is writing to this variable?", and "Which modules are calling
this module?"

The information available in a prestore trace list can also be found
by reading a default trace list, but you might have to read many
thousands of trace list lines to find the number of transactions of
interest that are shown on just one screen of a prestore trace list.

Setting Up The
Analyzer To Make
A Prestore Trace

When you set up the analyzer to make a prestore trace, you
store-qualify some event of interest. and then prestore-qualify a
related event.

Store Qualification You might store-qualify events such as:

1. Store the entry to a selected code module.

2. Store the address of a variable.

3. Store an interrupt request.

Several different events can be store-qualified during a single
prestore trace. This lets you test for the causes of several different
errors in the same trace.

Prestore Measurement Concepts 10-3

Prestore Qualification In the prestore memory, you qualify a kind of action that affects the
store-qualified event. This may be:

1. Store calls to a code module.

2. Store fetches of instructions. (These can show which
module accessed a variable, or where code was executing
when the event was stored).

Here, again, several kinds of transactions can be prestore-qualified
during a trace.

Reading Prestore
Trace Lists

When the prestore trace list is displayed, it will be a list of trace
memory line numbers, preceded by prestored events. The trace
memory line numbers will identify the store-qualified states, and
the "pstore" lines preceding them will show the last
prestore-qualified state that was captured before the stored event.

With a specification such as "STORE_ON a= 4000H", and
"prestore on program read", you’ll get a trace list that shows all the
accesses to address 4000H. Preceding each access to 4000H, the
list will show the most recent program read instruction.

+0001 00004000
pstore (last program read before +0002)
+0002 00004000
pstore (last program read before +0003)
+0003 00004000
pstore (last program read before +0004)
+0004 00004000

Note It’s possible to see a prestore trace list with no "pstore" events.
Because each state is examined to see if it meets the store
qualification first, prestore memory will never save any states if
"prestore" and "store" both have the same qualification (or if
prestore has a more specific qualification than store). Make sure
your prestore and store qualifications are exclusive.

10-4 Prestore Measurement Concepts

11

Tracing Processors That Prefetch Instructions
And Use An Instruction Pipeline

This chapter discusses the difficulties you encounter when making
traces of activity generated by microprocessors that prefetch
instructions and use an instruction pipeline. This chapter shows
steps you can take to overcome the problems when you are taking a
trace, and it shows you how to simplify the task of reading trace
lists of processor activity.

What Is Meant By
Prefetching And
Pipeline?

Figure 11-1 shows the instruction pipeline used in a Motorola
68020 microprocessor. While pipelines vary from one processor to
another, figure 11-1 can be used to understand the concept.

A processor is said to be prefetching instructions, when it fetches
the instructions before it is ready to execute them. A processor will
prefetch instructions from the instruction cache if the instructions
are resident there and the instruction cache is active, or it will
prefetch the instructions from external memory.

A pipeline is made up of two or more stages that store, decode, and
execute instructions simultaneously as they move through the
pipeline. This increases the performance of the processor because
several instructions can be at different stages of the pipeline at any
time, but it makes analysis of processor activity difficult. An
analyzer captures states from processor buses, and there may be a
delay of several cycles between the time an instruction is fetched
(the instruction appears on the bus) and the time it is executed (the
resulting operand cycles appear on the bus).

Prefetch and Pipeline 11-1

Reading
Prefetch/Pipeline
Trace Lists

We are used to reading a trace list that shows an instruction
followed by the activity resulting from the execution of that
instruction. We don’t see that order in trace lists made from
microprocessors that prefetch instructions and use a pipeline.
Instead, we may see an instruction fetch, then activity generated by
execution of instructions that were fetched earlier, then prefetches
of instructions to be executed in the future, and finally, the
execution of the instruction of interest (denoted by its operand
cycles).

Figure 11-2 shows the difficulty of reading trace lists made from
processors that prefetch instructions and use an instruction
pipeline. It was made by tracing activity of a Motorola 68020
microprocessor. While addressing schemes, etc., vary from one
processor to another, figure 11-2 does demonstrate the difficulty of

Figure 11-1. Pipeline Diagram Of The 6 8020

11-2 Prefetch and Pipeline

reading the trace lists. Trace memory line number + 0004 contains
an instruction. It requires an add to be performed. Notice that the
resulting operand cycles of the add instruction are not performed
until trace memory line numbers + 0007 and + 0008. The activity
on lines + 0005 and + 0006 have nothing to do with the instruction
on line + 0004. They are simply instruction prefetches that were
pushed into the pipeline after the instruction on line +0004 was
fetched, and before it was executed.

Trace List

Label: Address Opcode or Status time count

Base: symbols mnemonic w/symbols relative

-0002 _move_.+00000000 LINK.W A6,#$0000 0.24us

-0001 s:stack+00007F40 $000011E8 supr data long wr (ds32) 0.16us

trigger _move_.+00000004 MOVE.L A2,-(A7) 0.20us

 =_move_.+00000006 LEA ($000051B0,PC),A2

+0001 s:stack+00007F3C $7FFFFF60 supr data long wr (ds32) 0.28us

+0002 _move_.+00000008 $81700000 supr prgm long rd (ds32) 0.20us

+0003 s:stack+00007F38 $FFFEA194 supr data long wr (ds32) 0.28us

+0004 =_move_.+0000000E ADDQ.L #1,($8010,A5) 0.36us

+0005 =_move_.+00000012 JSR ($FE78,PC) 0.56us

+0006 =_move_.+00000016 MOVE.L ($****,A6),-(A7) 0.28us

+0007 towers.:move_num $00000005 supr data long rd (ds32) 0.20us

+0008 towers.:move_num $00000006 supr data long wr (ds32) 0.24us

+0009 _show_.+00000000 MOVE.L rm=$3C38,-(A7) 0.28us

+0010 s:stack+00007F34 $00001092 supr data long wr (ds32) 0.20us

+0011 _show_.+00000004 MOVE.L A5,D0 0.16us

STATUS: M68020--Running Trace complete______________...R....

display trace disassemble_from_line_number -2

 run trace set step display modify end ---ETC--

Figure 11-2. Trace List Showing Pipeline And Prefetch

Prefetch and Pipeline 11-3

Unused Prefetches Sometimes, instructions are prefetched and placed in the pipeline,
and never executed at all. For example, this may happen when
there is a branch instruction at the end of a function, just before
the entry to a new function. When the program nears the end of
the function that has the branch instruction, the processor
prefetches the entry to the next function (because of its close
location in memory). When the branch instruction is executed, the
next function is not entered, but instead, execution jumps back to
some point specified by the present function. When the processor
branches, it flushes the content of its pipeline and begins execution
at the "branch-to" address.

The problem the analyzer has with this operation is that it records
the fetch of the entry to the new function when it appears on the
processor bus. If your trace specification calls for some analyzer
response when this entry address appears (trigger, etc.), then the
analyzer will react as specified, even though that new function may
not be active.

Figure 11-2 also shows an unused prefetch on line +0006. The
"MOVE.L" instruction was prefetched by the processor and placed
in the pipeline, but it was never executed. That’s because the
instruction that was prefetched before it was a JSR. When the JSR
was executed, it caused the program to jump to a new address and
flush the MOVE.L instruction from the pipeline. (Note that the
MOVE.L instruction contains asterisks in the trace list because the
end of the instruction was not prefetched before the JSR was
executed, and the pipeline was flushed.)

Note Certain HP analyzers are able to perform trace list dequeuing.
Dequeued trace lists do not show unused prefetches. They are
much easier to read because they show logical processor activity
instead of bus cycle executions.

11-4 Prefetch and Pipeline

How To Avoid
Triggering,
Enabling, Or
Disabling On
Unused Prefetches

The entry address to the next function is always prefetched at the
exit of the function immediately before it in memory (assuming no
padding exists between the two functions). To avoid triggering a
trace or enabling/disabling a measurement window on an unused
prefetch of a function-entry address, you can use a specification
such as "trigger_on < functionname> + 6" in your trace command.
The "+ 6" specification is enough if you are tracing a Motorola
68020. If tracing a different processor (such as an Intel 80386), you
may need to select a different offset. Select a value that ensures
that you won’t trigger or enable/disable a measurement window on
an unused prefetch of the entry to your function. If you use this
method for enabling and disabling, you will miss the first few words
of the function entry, but these words may only be stack-frame
initialization instructions.

The latest versions of Hewlett-Packard "C" Compilers for
processors that prefetch instructions have a "debug" option that
inserts padding between each of the functions (padding is a series
of no-op instructions inserted ahead of each function name). The
no-ops are prefetched at the end of the preceding function so the
specification of "< functionname> + 6" is not necessary.
When using one of these compilers, you can define your
specifications to be met on the address of the function entry,
without concern that the function-entry address might appear in an
unused prefetch.

The exit address may also appear in an unused prefetch. If it does,
a measurement window you’ve specified may be ended
prematurely, even though the function on which you enabled is still
active. For debugging purposes, you may wish to add some no-op
instructions (any instructions that do not affect the functional
results) at the end of your function, just preceding the exit
instruction. In this way, the no-ops will be prefetched instead of
the exit instruction, and you will be able to obtain a full-length
enable period in your measurement window.

In an example program used for demonstrating certain
Hewlett-Packard emulators and analyzers, there are two places
where program instructions named "rts_prefetch = 0" have been
added. These no-op instructions are only activated when the
example program is compiled on other than a Hewlett-Packard

Prefetch and Pipeline 11-5

compiler that offers the debug options. These instructions were
placed at the end of the functions to overcome a problem that
occurred when the microprocessor prefetched the exit address of
the function and caused the analyzer to prematurely end a
measurement-enable period. These no-op instructions moved the
exit addresses far enough away so that they were no longer
prefetched before the nearby branch instructions were executed.
Before "rts_prefetch = 0" was used, some activity generated during
execution of the function was missed because the measurement
window that enabled on that function would disable when the exit
address appeared in an unused prefetch.

11-6 Prefetch and Pipeline

12

What To Do If Your Emulator Doesn’t Work

This chapter discusses things you can try if you are having trouble
with your emulator.

Debugging The
Connection To
The Target System

When your emulator is connected to a target system, emulator
operation is complicated by the hardware of the target system and
the probe and cable assembly. The following paragraphs will help
you find solutions to problems that may occur when an emulator is
connected into your target-system hardware.

Hardware Problems If you need to place a target-system board assembly on an extender
board to gain access to the target processor connector, the extender
board may cause problems. With the clock rates of some
processors exceeding 20 MHz, and with some processors using
burst mode, the delay caused by the extender-board hardware may
be too great for proper operation of the target system with the
emulator. Try to find a way to access the processor socket without
using an extender board.

If you have circuit components mounted close to your target
microprocessor, you may need to use stacked sockets to allow
proper connection of the emulation probe. Stacked sockets can
affect the impedance and ground pathways at the processor pins,
degrading the performance of your target system.

Troubleshooting An Emulator 12-1

Electrical Problems Be careful to design your target system hardware to operate within
the timing specifications of the components you are using. Some
target systems will operate even when part of their components are
operating outside of their timing specifications. In these target
systems, the same components may fail to operate once the
emulation probe is connected. Timing problems of this sort may
appear as improper accesses to emulation memory and
target-system memory, as well as failures during DMA cycles.

The emulator may increase the time required to access memory
because of the delays associated with sending a signal through the
emulation probe cable, and turning on the cable buffers. If you
suspect this may be a problem you are having, consider replacing
the memory hardware in your target system with faster hardware
that can compensate for this delay.

Wire-wrapped prototype hardware in a target system may be
difficult to interface with an emulator. This is especially true if that
hardware is poorly grounded. The emulation probe uses
high-current drivers for its signal lines to maintain the integrity of
its signals. These high currents can create voltage pulses within
wire-wrapped circuitry; some of these voltage pulses may even
exceed the switching thresholds of components in your target
system.

Sometimes the problem discussed above can be solved by creation
of a damping socket (processor socket with resistors connected in
some of the critical signal lines). Usually resistor values between
10 and 100 ohms are used. Twenty-two ohms is a good starting
value. In many cases, damping sockets have provided great
improvements in the way a target system operates with an emulator.

Architectural
Problems

Some target systems fail only in one or two modes when an
emulator is connected. These failures may be due to certain
target-system circuitry that is only active during these operating
modes. Consider the case of a target system that uses a watch-dog
timer that must be refreshed periodically or else it will shut down
the system. In target systems using circuitry like this, you may solve
the problem by simply disabling this kind of circuit during
emulation.

12-2 Troubleshooting An Emulator

Make Sure The
Emulation
Configuration Is
Correct

An incorrect configuration file can cause improper operation.
Review the entire configuration file and make sure all of the
questions are answered correctly for your target system. If you are
not sure how to answer a particular question, refer to your
emulator user’s guide for details of your configuration file and
information about the target system interface. Enter the command
"!more < your_configfile_name> .EA" to view the entire
configuration file, along with its present selections.

Target systems that can operate with the target processor but not
the emulation processor should be able to start with the default
configuration file. This is the configuration file that was shipped
with your emulator. The default configuration file enables all of
the target system signals, maps all memory as target RAM, and
specifies that the emulation foreground monitor is not loaded.

Isolate plug-in failures with the default configuration before
attempting to use configurations that include emulation memory
or an emulation foreground monitor. Once the default
configuration works properly, add emulation memory and the
foreground monitor, if applicable.

Use The
Emulation Bus
Analyzer

The emulation bus analyzer can be used with any configuration
without interfering with the emulation processor. It passively
monitors each bus cycle that the processor executes. All of the
analyzer data can be displayed without disrupting the emulation
process. The analyzer can be used to verify the proper operation of
the program being executed and the proper operation of the
hardware.

When debugging hardware failures with the emulation bus
analyzer, start with a "trace TRIGGER_ON a= anystate"
specification before allowing the processor to run. This will
capture all bus cycles starting with the reset address. Pay particular
attention to the bus size bit and the data field of the first few cycles.
The triggering capability of the analyzer can be used to capture
conditions that are the result of a failed interface by using the
"trace TRIGGER_ON < failure_condition> " specification. These

Troubleshooting An Emulator 12-3

conditions are usually incorrect code branches or status conditions
such as halt or shutdown.

Failures can sometimes be debugged using the trigger of the
emulation bus analyzer to drive external test equipment. Set the
emulation bus analyzer to trigger on the bus cycle in error. Use the
trigger output with timing analyzers or oscilloscopes to monitor
the target system. When observing the data, consider delays. The
trigger pulse may actually occur between one and two clock cycles
after the end of the bus cycle.

Use Status
Messages

The user’s manual for your emulator has a complete list of
status-line messages and the problems that cause them to appear.
Status messages such as "Write to ROM fc= < code> ", "halted" and
"slow device fc= < code> " provide address or status information
that you can use as a trigger for making a trace with the analyzer.

Run Performance
Verification (PV)

The service manual for your HP emulator includes instructions for
running performance verification on your emulation system. The
PV tests will identify failures in the emulation and analysis
hardware, if any.

12-4 Troubleshooting An Emulator

If All Else Fails If the emulator is configured properly, and the target program and
foreground monitor are loaded, unexplained behavior may still
exist. This is frequently due to foreground monitor interaction
with the target software and/or hardware.

In the software category, check that it is appropriate to disable
interrupts while in the foreground monitor. Some systems with
delta-time-interrupt structures for real-time clocks, operating
system functions, etc., will crash if the delta-time-interrupt is not
serviced within a preset time limit. The foreground monitor can be
customized to enable or disable interrupts, as required.

It is possible to "disable" the normal target system function of the
non-maskable interrupt through vector table modifications, and a
small amount of additional foreground monitor code.

Ensure that the program being executed is not accidentally
overwriting the foreground monitor or vise versa.

Obtain a listing of the foreground monitor and the program being
executed, and use the analyzer to verify proper operation of both.

Set the analyzer to trigger on the foreground monitor entry address
and set the trigger position to the center of the trace. This will
allow you to examine CPU activity before and after entry to the
foreground monitor. You can observe the stacking activity of the
non-maskable interrupt, as well as emulator generated jam cycles.
This will enable you to determine if the foreground monitor is
being entered properly.

Ensure that the foreground monitor exits and returns to the
normal program properly. Set the analyzer to trigger on the
foreground monitor exit address, and observe the unstacking
process when a return instruction is executed. Be sure that the
stack contents are not corrupted, and that the program returns to
the expected location.

Troubleshooting An Emulator 12-5

Notes

12-6 Troubleshooting An Emulator

Glossary

absolute file This file contains machine-readable instructions
and/or data. The instructions and/or data are stored at absolute
addresses. Absolute files are generated by the
compiler/assembler/linker. These files are loaded into memory for
execution by the target processor.

analyzer This is an instrument that captures activity of signals
synchronously with a clock signal. An emulation bus analyzer
captures emulation bus cycle information. An external analyzer
captures activity on signals external to the emulator. Refer to
Chapter 8 for a discussion of the types of analyzers.

arm condition A condition that reflects the state of a signal
external to the analyzer. The arm condition can be used in branch
or storage qualifiers. External signals can be from another analyzer
or an instrument connected to the CMB or BNC.

assembler A program that translates symbolic instructions into
object code.

background A memory that parallels the emulation processor’s
normal address range. Entry to background can only take place
under system control, and cannot be reached via a user’s program.

background monitor A set of fixed, general-purpose routines that
do not occupy processor address space. A background monitor is
designed to support several of the test and measurement
capabilities of an emulator in a wide variety of applications. Refer
to the chapter on Monitor Concepts in this manual.

BNC connector A connector that provides a means for the
emulator to drive/receive a trigger signal to/from an external device
(such as a logic analyzer, oscilloscope, or HP 64000-UX system).

Glossary-1

basis branch analysis This is a testing method that determines the
extent to which branches are executed during runs of your target
program. These tests are performed by HP’s Branch Validator.

breakpoint A point at which emulator execution breaks from the
target program and begins executing in the monitor. (See also
Hardware Breakpoint and Software Breakpoint.)

cache control Cache control is an emulator capability that can turn
on and turn off the cache of the emulation processor. You might
want to turn on the cache to determine how fast your target system
will run when the cache is enabled. You will want to turn off the
cache when you are making measurements with an internal
analyzer so that the analyzer will have access to all of the processor
activity on the emulation bus.

code coverage analysis This form of analysis records every access
to every address during a run or your program. It is used to find
program portions that have not been tested during exhaustive test
procedures.

code segment See executable segment.

command files A file containing a sequence of commands to be
executed. Command files are discussed in detail in a chapter of this
manual.

compiler A program that translates high-level language source
code into object code, or produces an assembly language program
with subsequent translation into object code by an assembler.
Compilers typically generate a program listing which may list
errors displayed during the translation process.

configuration file A file in which configuration information is
stored. Typically, configuration files can be modified and reloaded
to configure instruments (such as an emulator) or programs (such
as the PC Interface).

context A context is a measurement window above selected
measurement parameters. A context can be set up to limit the
scope of a single measurement parameter, such as enabling trigger
recognition to occur only when interrupts are pending. A context
can be set up to limit the entire analyzer, such as allowing the
analyzer to trace only during execution of a selected code module.

2-Glossary

control flow transfer Any change in the normal sequential
progress of a program. JMP, CALL, RET, IRET, and INT
instructions, as well as exceptions and external interrupts, can
cause a change in control flow.

coordinated measurements These are measurements performed by
two or more emulators and/or analyzers in which measurement
parameters are shared over an interconnecting bus. This is
discussed in detail in the chapter titled, "Intermodule Buses (IMB
And CMB)."

coprocessor support Some emulators contain an on-board
floating-point processor that provides support for custom
coprocessors. In those emulators, you can display and modify the
content of custom coprocessor registers.

count The count function measures periods of time or numbers of
state transactions between states stored in memory. You can set
up the analyzer count function to count occurrences of a selected
event during the trace, such as counting how many times a variable
is read between each of the writes to the variable during a trace.
The analyzer can also be set up to count elapsed time, such as
counting the time spent executing within a particular function
during a run of your target program.

coverage analysis A measure of the percentage of memory
accessed by a target program. For each byte of emulation memory,
there is one bit of analyzer memory, and it is set when that byte is
accessed (written to or read from).

cross trigger The situation in which the trigger condition of one
analyzer is used to trigger another analyzer. Signals internal to HP
emulation/analysis systems can be used to cross trigger between
emulation and external analyzers.

data communications equipment (DCE). A specific RS-232C
hardware interface configuration. Typically, DCE is a modem.

data segment A segment that contains data (other than immediate
data) for an executable segment. A data segment is identified by a
specific type code in the descriptor of the segment.

Glossary-3

dequeued instructions A set of instructions and executions
presented in the order of execution, which is different from the
order captured by the emulation bus analyzer.

downloading The process of transferring absolute files from a host
computer into the emulator.

DTE (Data Terminal Equipment) A specific RS-232C hardware
interface configuration. Typically, DTE is a terminal or printer.

emulation/analysis system (subsystem) A set of hardware and
software capable of performing emulation functions on a target
system that uses a particular microprocessor.

emulation bus The emulation bus contains all of the signals on the
pins of the emulation microprocessor.

emulation bus analyzer A component in the emulation system
that captures the emulation processor’s address, data, and status
information.

emulation command scanner This is a function in the monitor.
After the monitor is invoked and processor information is stored,
the emulation command scanner is executed. Here, the emulator
continuously tests to see if a new command has been issued. The
new command may be to perform one of the monitor routines or to
exit the monitor and return to execution of a target program.

emulation data base (EDB) Data base used during the first ten
years (approximately) of production of HP’s emulation and
analysis products. This data base maintained a cross reference
between symbols defined in source files and the absolute addresses
where the related code was placed in memory. The Emulation
Data Base (EDB) has been replaced by the Symbol Retrieval
Utility (SRU) in HP’s recent emulation and analysis products.

emulation memory This is memory space that resides in your
emulator hardware.

4-Glossary

emulation memory map The emulation memory map defines the
addresses supported by memory hardware during emulation. You
set up this map during the emulation-configuration process. In it,
you assign hardware memory in your emulator, and/or in your
target system, to support ranges of addresses. In this map, you also
define the behavior of the memory so that it will act as RAM
hardware or ROM hardware to emulate the type of memory you
intend to install in your target system when its design is complete.

emulation processor The emulation processor is the processor
that replaces the target-system processor during an emulation
session. The emulation processor is part of the emulation probe.

emulator A tool that replaces the processor in your target system.
The goal of the emulator is to operate just like the processor it
replaces. The emulator gives information about the bus cycle
operation of the processor and allows control over target system
execution. Using the emulator, you may view contents of processor
registers, target system memory, and I/O resources.

emulator probe The cable that connects the emulator to the target
system microprocessor socket.

entry point An executable-segment offset that identifies the
starting point for execution, as when the segment is invoked via a
gate.

error message Any message placed on the screen of your emulator
terminal to notify you of a problem (or potential problem) with
your emulator setup or most recent command.

exception A processor-detected condition that requires software
intervention. Many microprocessors communicate exceptions to
software by means of the interrupt mechanism.

emulation bus analysis The process of capturing states from the
emulation bus, using the emulation processor clock. These states
are shown in list form. They show the details of the execution of a
target program.

Glossary-5

escape sequence (transparent mode) A keyboard input consisting
of a special sequence of characters, beginning with the escape
character (1C hexadecimal). This sequence is used to access an
emulator while in transparent mode. When using multiple
emulators and transparent mode to access the different emulators,
each one must be given a unique escape character.

external analyzer An analyzer that captures activity on signal
nodes external to the emulation processor buses.

external timing analyzers These analyzers capture timing
information by recording the logic levels at selected nodes at each
occurrence of an analyzer clock. The clock rate must be selected so
that it is faster than the data rate to avoid detecting a glitch on the
occurrence of a single data bit.

external analyzer probe A set of signal lines that connect the
external analyzer to target-system signals.

external clock Any clock other than the clock source of the
emulator. Typically, the clock of the target system is used as an
external clock for emulation tests and measurements.

flag One of several Booleans maintained by the CPU, including
arithmetic flags, control flags, and nested task flag.

foreground The directly addressable memory range of the
emulation processor.

foreground monitor Foreground monitors are supplied as source
files. They are written in the assembly language of the processors
they emulate. You can edit forground monitors to customize them
for support of your target system. Before you can use a foreground
monitor, you must assemble it and link it and load it in a portion of
your emulation memory. Refer to the chapter on monitor
concepts in this manual for further discussion of foreground
monitors.

fork Temporary diversion from one program or process to start
another program or process.

form The part of the PC Interface screen that allows you to enter
data for modifying various parameters.

6-Glossary

function codes Some emulators support the use of processor
function codes. In these emulators, emulation memory can be
mapped to any of the functional address spaces (CPU, supervisor
or user, program or data, or undefined). Function codes can be
used as additional qualifications when referencing memory.

glitch This is the name assigned to the detection of at least one
transition in both directions between any two sampling clock
pulses during a timing measurement.

guarded Any memory address space that you are not using
(whether or not memory hardware is available to support this
address space). This identifies address space that should never be
accessed by the emulation processor, either for a write or read
transaction. Guarded normally identifies non-existent memory
space. If the emulation processor ever tries to read from or write
to memory space mapped as guarded, the emulator will detect this
event and place an error message on the status line of your display.
If you are operating your emulator in a mode that allows breaks to
the monitor (a mode other than real-time mode) execution will
break from the target program and begin executing the monitor
program. If you have an internal analyzer, you may be able to trace
activity leading up to an attempted access to guarded memory
space. (Note that no emulation hardware memory is used to
support an address space designated as guarded space.)

handshaking A process of receiving and/or sending control
characters that indicate a device is ready to receive data, that data
has been sent, and that data has been accepted.

hardware breakpoint Hardware breakpoints are generated by the
emulation bus analyzer when it recognizes a specific state, or any
state in a range of states, you specified. To achieve a hardware
breakpoint, the emulation bus analyzer uses the non-maskable
interrupt signal to force the emulator to transfer execution to its
monitor program.

host computer A computer to which an HP emulator can be
connected. A host computer may run interface programs that
control the emulator. Host computers may also be used to develop
programs to be downloaded into the emulator.

Glossary-7

host processor The host processor (also called emulation-control
processor) is the processor that controls the emulator, and controls
the emulation processor during an emulation session.

hybrid foreground/background monitors Refers to an emulation
design that allows the use of background and foreground monitor
programs together.

in-circuit/out-of-circuit emulation In-circuit emulation is
emulation performed with the emulation processor connected into
the target system hardware. In this mode, you can use and test the
resources of the target system, such as target-system memory and
target-system I/O ports. Out-of-circuit emulation is emulation
performed with the emulation processor disconnected from the
target system hardware. In this mode, you must use the resources
of your emulator, such as emulation memory and simulated I/O.

index The field of a selector that identifies a slot in a descriptor
table.

initialization See hardware/software initialization.

instruction pipeline This is a set of logic hardware designed to
store and decode a series of instructions that are waiting to be
executed in a microprocessor.

instrumentation card cage The hardware frame and power supply
built to accept installation of emulation and analysis board
assemblies, and to provide interconnections for boards and
interconnections for development stations that control the
development hardware.

intermodule bus (IMB) The bus connecting two or more HP
emulators/analyzers or connecting an HP 64000-UX
emulator/analyzer and an HP IMB/CMB Interface to allow
coordinated measurements.

internal analysis (also called emulation bus analysis) An analysis
performed by capturing states executed by the emulation processor
and appearing on the emulation bus.

interrupt This can have at least two meanings: (1) the electrical or
logical signal that indicates an event has occurred, and (2) the
mechanism by which a computer system responds quickly to events
that occur at unpredictable times.

8-Glossary

interrupt handler A routine that is invoked by the occurrence of
an interrupt.

inverse assembler A program that translates absolute code
captured by an emulation bus analyzer into assembly language
mnemonics.

labels A label identifies a data input or set of data inputs to be
monitored. You might assign a label called ADDRESS to identify
all of the lines connected to the processor address bus. Normally,
you will define the logic polarity of the data inputs included in a
label, and define the logic thresholds of those data inputs. Not all
analyzers allow you to define your own labels.

linker A program that combines relocatable object modules into
an absolute file which can be loaded into the emulator and
executed.

linker map The linker map identifies code modules that will be
loaded into address space that was made available in the emulation
memory map.

load memory The name of the activity that places a copy of your
target program in the memory available in your emulator or your
target system, or both.

locked exit One of two methods used to leave the PC Interface and
return to a host computer operating system. A locked exit
command allows you to exit the PC Interface and re-enter later
with the current configuration. (See also Unlocked Exit.)

logging commands The process of automatically storing each
entered command into a file. This file can later be used as a
command file. A chapter in this manual discusses the details of
command files.

logical address range The range of addresses that store the entire
program in a system employing memory management. Logical
address range is the same as virtual address range.

logical address space The amount of virtual memory that a
microprocessor is capable of accessing. Virtual memory
techniques (for example, using pages or segments to address
memory consisting of a limited amount of high-speed physical
memory and a large capacity memory device such as a disc) can

Glossary-9

allow a processor to access more memory than permitted by the
size of the address bus.

macros Custom made commands that represent a sequence of
other commands. Entire sequences of commands defined in
macros will be automatically executed when you enter the macro
name. Macro nesting is permitted; this allows a macro definition
to contain other macros.

maximum clock speed This is the fastest clock speed that still
allows hardware to operate correctly.

memory management unit A memory management unit is used to
achieve apparently large addressable memory in a system with
limited addressable memory. This is done by placing the target
program into a large, usually slow, logical (virtual) memory space.
As portions of the program are needed for execution by the target
processor, the memory management unit of the processor swaps
blocks of code from the slower, logical memory space to the faster,
physical memory. The processor fetches its instructions and
performs its data writes in physical memory space. When all of the
physical memory space is filled and additional code is required for
execution, blocks from the existing physical memory space are
written back out to the logical memory space where they are stored
until they are need again for future executions.

memory mapping This is the process of assigning hardware
memory to support addresses occupied by software. For a detailed
discussion of this process, refer to the memory mapping concepts
chapter in this manual.

memory mapper term A number assigned to a specific address
range in the memory map. Term numbers are consecutive.

monitor The monitor is a collection of routines that perform many
of the functions needed in an emulator, such as displaying the
content of registers or loading code into memory so that the code
can be executed during a test. For a detailed discussion of
monitors, refer to the monitor concepts chapter in this manual.

10-Glossary

monitor program A program executed by the emulation processor
that allows the emulation system control to access target system
resources. For example, when you enter a command that requires
access to target system resources, the system controller writes a
command code to a storage area and breaks the execution of the
emulation processor from the target program into the monitor.
The monitor program then reads the command from the storage
area and executes the processor instructions that access the target
system. After the target system resources have been accessed,
execution returns to the target program.

multiprocessing Using more than one CPU to execute a
multi-tasking system.

multi-tasking The capability to support more than one task either
simultaneously (by using more than one CPU) or virtually
simultaneously (by multiplexing one CPU among several tasks).

non-maskable interrupt (NMI) An external interrupt presented to
the NMI pin of a microprocessor. Interrupts presented on the
NMI pin cannot be ignored by the microprocessor, regardless of
the present conditions of any interrupt masks in force.

object module format (OMF) A standard for the structure of
object code files.

offset The address of a location within a segment, expressed as a
quantity to be added to the base address of the segment.

operating system Software that controls the execution of
computer programs and the flow of data to and from peripheral
devices.

out-of-circuit emulation See in-circuit/out-of-circuit emulation.

overlay (used when creating an emulation memory map) This
parameter allows you to map two or more address ranges to the
same physical memory hardware. The two or more address ranges
can even have different hardware characteristics: one can be RAM
and another can be ROM, if desired.

Glossary-11

parity setting The configuration of parity switches. Depending on
the configuration of the parity output switch and the parity switch,
a parity check bit is added to the end of data to make the sum of
the total bits even or odd. A parity check is performed after data
has been transferred, and is accomplished by testing a unit of the
data for either odd or even parity to determine whether an error
has occurred in reading, writing, or transmitting the data.

path Also referred to as a directory (for example \users\projects).

pass through mode See transparent mode.

PC Interface A program that runs on the HP Vectra and IBM
PC/AT compatible computers. This is a friendly interface used to
operate an HP 64700-series emulator.

performance measurements Performance measurements are taken
to help you improve software performance; they involve
measurements of program activity and module duration. Activity
measurements record information about memory activity and
program activity to tell how much execution time is spent and how
many states are executed by each function and variable defined in
the program under test. Activity measurements are also used to
compare these functions and variables with one another to
determine their relative use of time and states. Duration
measurements record the time spent executing selected functions
and procedures. You can use duration measurements to determine
the average time it takes to execute a program module, and detect
events when the duration of a module is abnormally different from
its average duration.

performance verification (PV) A program that tests the emulator
to determine whether the emulation and analysis hardware is
functioning properly.

physical address In an 80286 processor, a 24-bit address, such as
that used as a base address, capable of encompassing the entire
address space of the 80286. In a system using memory
management, physical addresses are addresses where the target
processor will fetch its code and perform its address reads and
writes. See the discussion called "memory management unit" in
this glossary for further details.

12-Glossary

physical address space The amount of real address space that a
microprocessor is capable of addressing. A processor’s physical
address space can be determined by the number of address lines
(for example, a microprocessor with 16 address lines has an address
space of 2 to the 16th power, or 64K memory locations.

prefetch The ability of a microprocessor to fetch additional
opcodes and operands before the current instruction is finished
executing.

prestore This is the capture of prestore-qualified states that
precede store-qualified states. Prestore measurements are
discussed in detail in a chapter of this manual.

privilege The right to access certain portions of memory or to
execute certain processor instructions.

privilege level (PL) A measure of privilege. In the 80286
architecture, privilege is measured by integers in the range 0-3,
where 0 is the most privileged and 3 the least.

protection A mechanism that limits or prevents access to areas of
memory or to instructions.

RAM space Any memory address space assigned to act as
Random-Access Memory space during a run of program on your
emulator. Emulation RAM space will allow the emulation
processor to read from it or write to it.

ranging The term used to describe measurements where any value
or address within a range of values or addresses will satisfy the
specification. A label is assigned to represent the range of values
or addresses (for example, RANGE1 can represent 100H through
1FFH). Then a measurement could be specified to be qualified on
any address in RANGE1. If address 104H appeared, it would be
qualified because it is within the range of RANGE1. Specifically, it
would be shown as RANGE1+ 0004 (assuming you specified that
values within RANGE1 would be counted beginning with the
lowest value and proceeding to the highest value).

Glossary-13

real-time vs. non-real-time emulation You can operate your
emulator in one of two modes: real-time mode, or non-real-time
mode. In real-time mode, you can run your target program
continuously at full rated processor speed, but all of the emulation
features that interfere with target program execution are disabled.
In non-real-time mode, execution of your target program may be
interrupted at any time, but the full feature set of your emulator is
always available.

Many emulator features are implemented by routines in the
monitor. Whenever the emulator is running a monitor routine, it
is (of course) not executing your program in real time. When
using non-real-time mode, breaks to the monitor may be initiated
by commands you enter or by conditions detected by the emulator.
When using real-time mode, features implemented by monitor
routines are not available.

real-time execution Refers to the emulator configuration in which
commands that temporarily interrupt target program execution
(for example, display/modify target memory or processor registers)
are not allowed.

Real-time mode capabilities Here is a list of features that are
typically available in emulators running in real-time mode:

run

some display commands

some modify commands

specify

execute

trace

load trace

stop_trace

14-Glossary

Non-real-time mode capabilities All of the emulation features
available in real-time mode are also available in non-real-time
mode. Additionally, the following emulation features are also
available:

target memory accesses - display, copy, load, modify, and
store.

register accesses - display, copy, and modify.

software breakpoints - set and reset.

In order to use the emulation features listed above when you have
real-time mode in effect, you must manually stop the real-time
execution by breaking into the emulation monitor; use a keyboard
"break" command, or a software break.

relocation Changing the physical location of a segment.

remote configuration The configuration in which an HP emulator
is directly connected to a host computer via a single port.
Commands are entered (typically from an interface program
running on the host computer) and absolute code is downloaded
into the emulator through that single port.

ROM space Any memory address space assigned to act as Read
Only Memory space during a run of program in your emulator.
Emulation ROM space will allow the emulation processor to read
from it, but not write to it. (Note that you can have your emulator
load code you’ve developed into emulation ROM space. This
space only acts as ROM hardware when your emulation processor
is running your target program.)

RS-232-C A standard serial interface used to connect computers
and peripherals.

Glossary-15

sequencer An analyzer state machine that searches for execution
of states in a particular sequence. In some analyzers, a sequencer
runs continuously during a trace (find state A, then state B, then
state C, then state D, then start over and find state A, then). In
some analyzers, a sequencer simply runs until a trigger is found; it
is used to enable trigger recognition (find state A, then state B,
then state C, then the trigger state). Normally a sequencer includes
a restart term (find state A, then state B, restart at state A if state Z
appears, then find state C, then find state D).

single step The execution of one microprocessor instruction.
Single-stepping the emulator allows you to view program exeution
one instruction at a time.

softkey interface The host computer interface program used in the
HP 64000-UX environment. The softkey interface is a friendly
interface used to control HP 64700 emulators.

software breakpoint Software breakpoints are accomplished by
removing an instruction from memory and placing it in temporary
storage, and then installing in its place a trap instruction that
transfers execution to the monitor. When the software breakpoint
is executed, the original instruction replaced in memory is restored
by the emulator. Software breakpoints are used to stop target
program execution at a particular point so that you can view the
state of the processor or target system, or begin program execution
from a preselected point in the target program.

Some processors, like the 680x0 family, can process software
breakpoints quite easily. Others, like the Z80, need hardware to
assist in this process. One limitation of the software breakpoint is
that you must be able to replace the original instruction you
removed as soon as the software breakpoint is executed.
Therefore, you can’t set a software breakpoint in target ROM,
unless you set up your memory map to overlay the target ROM
address with emulation memory.

standalone configuration The configuration in which a data
terminal is used to control the HP 64700-series emulator, and the
emulator is not connected to a host computer.

16-Glossary

stderr An abbreviation for "standard error output". Standard
error can be directed to various output devices connected to HP
ports.

state/timing analysis Refer to analyzer.

status bus The set of lines that carry information about
microprocessor status.

stdin An abbreviation for "standard input". Standard input is
typically defined as your computer keyboard.

stdout An abbreviation for "standard output". Standard output
can be directed to various output devices connected to HP ports.

store The store function sets up the analyzer to store states of
interest in the trace memory. The default of the store specification
(any_state) sets up the analyzer to store every state, regardless of
its content. When you are interested in analyzing the activity
associated with a particular address range, you can store-qualify
just that address range, and the analyzer will store only states
executed within that address range. If you want to observe a series
of writes to a variable, you can store-qualify write transactions to
the address of the variable, and the analyzer will store only those
write states.

step Refer to single step.

segment A variable-length area of contiguous memory addresses
not exceeding 64K bytes.

symbols Symbols are used to represent values. For example, you
may have assigned the symbol LOOP to identify the first
instruction in one of your code modules. The emulator will show
you an address associated with the symbol LOOP. This is the
memory address that stores the first byte of code in the instruction
beside your symbol LOOP. Symbols can also be used to identify
data values and states found on status buses, if desired.

Glossary-17

symbol retrieval utility (SRU) Data base used by the most current
HP emulation and analysis products. This data base maintains a
cross reference between symbols defined in source files and the
absolute addresses where the related code is placed in memory. It
replaces the Emulation Data Base (EDB) which was used in earlier
HP emulation and analysis products.

The SRU allows HP 64000-UX emulation software to read several
different file formats. With SRU, an emulator can use HP-MRI
IEEE-695 format files and get full symbol support. SRU provides
symbol information using the data in the object module format
(executable) file.

The IEEE-695 file format provides a sophhisticated view of the
executable file and its symbols. This view is more appropriate
when dealing with symbols in high level languages (such as C and
Ada) than when using assembly language.

The IEEE-695 file format uses symbol relationships that include
the concept of modules. Modules (known as packages in the Ada
language) reside at the highest level in the symbol hierarchy. For
the C language, the IEEE-695 file format will create a module for
each C source file. Modules reside at a higher level than source
files; a module "owns" the source file and any procedures/globals
the source file generates.

This symbol hierarchy can be seen when using IEEE-695 files and
accessing and displaying symbols in emulation. A source file is the
child of a module symbol. Local symbols are accessed as children
of file name symbols or children of modules symbols, depending on
the type of local symbol:

 Local symbols that are line numbers are accessed through
the file name symbol.

 Local symbols that are not line numbers are accessed
through the module name.

The most reliable results will be obtained when using syntax that
tells the emulator whether the local symbols reside in the module
symbol or in the source file symbol.

18-Glossary

synchronous execution The execution of multiple
emulator/analyzers at the same time (i.e., multiple emulator
start/stop).

syntax The way in which expressions are structured in command
languages (the order of entries in a command line). Syntax rules
determine which forms of command language syntax are
grammmatically acceptable.

target system memory This is memory space that resides within
your target system hardware.

target processor The target processor is the microprocessor that
controls execution in your target system. You remove the target
processor and replace it with the emulation probe to perform an
emulation session.

target system The system under development. The intended
product of your development efforts.

terminal interface The command interface present inside the HP
64700-series emulators that is used when the emulator is connected
to a simple data terminal. This interface provides on-line help,
command recall, macros, and other features that provide for easy
command entry from a terminal.

timing diagram A timing diagram presents the trace memory in a
waveform display. The diagram may appear as a graphics diagram
on high or medium resolution monitors, and as an ASCII character
diagram on standard terminals.

trace A measurement that collects a series of states. Each state
describes the conditions at several points in a system under test.
The series of states shows how conditions changed with time at
each of the monitored points.

trace list The trace list displays the trace memory contents in list
format. The trace memory can be displayed in binary, octal,
decimal, and hexadecimal formats, along with a time tag which
indicates when the samples were captured.

trace memory This is the memory that stores states captured
during a trace. This memory is read by the analyzer when it
composes trace lists.

Glossary-19

transparency To perform its function properly, the emulator
probe must look like the target microprocessor, from the point of
view of your target system hardware. The functions, signal quality,
signal timing, loading, drive capacity, and any other
processor-specific characteristics must be indistinguishable at the
plug-in connector. This is called emulator transparency.

Functional transparency is the ability of the emulator to
function the same as the target processor when the
emulator is connected to your target system. Total
functional transparency means the emulator can execute
your program, generate outputs, and respond to inputs in
exactly the same way as the target processor.

Timing transparency refers to the timing relationships
between signals on the pins of the emulation probe and
signals on the pins of the target processor. The timing
relationships of signals at the emulation probe are
designed to be equivalent to, or better than, the timing
relationships of signals on the target system
microprocessor.

Electrical transparency refers to the electrical
characteristics of pins on the emulation probe compared
to pins of the actual target processor. These
characteristics include rise and fall times, input loading,
output drive capacity, and transmission line
considerations. The electrical parameters of the
emulation probe pins are designed to be equivalent to, or
better than those of the target system microprocessor.

transparent configuration The configuration in which the
emulator is connected between a data terminal and a host
computer. When the emulator is in the transparent (pass through)
mode, the data terminal acts like a normal terminal connected to
the computer. In this configuration, you can develop code on the
host computer and download absolute code into the emulator for
debugging and testing.

20-Glossary

transparent mode The emulator mode in which all characters
received on one port will be copied to the other port. This mode
allows a data terminal (connected to one emulator port) to access a
host computer (connected to the other emulator port) through the
emulator.

trigger A trigger is a point of reference within the trace memory.
It specifies when a trace measurement is to be taken. Trigger also
refers to the analyzer signal that becomes active when the trigger
condition is found.

uploading The transfer of emulation or target system memory
content to a host computer.

unlocked exit One of two methods used to leave the PC Interface
and return to a host computer operating system. An unlocked exit
command allows you to exit the PC Interface and re-enter later
with the default emulation configuration. (See also Locked Exit.)

viewport See window.

virtual address An address that consists of a selector and an offset
value. The selector chooses a descriptor for a segment; the offset
provides an index into the selected segment.

virtual address space The set of all possible virtual addresses that
a task can access, as defined by the GDT and the task’s LDT. The
maximum possible virtual address space for one task is one
gigabyte.

virtual memory A style of memory management that permits the
virtual address space to exceed the physical address space of RAM.
With the help of processor features, the operating system simulates
the virtual address space by using secondary storage to hold the
overflow from RAM.

wait states Extra microprocessor clock cycles that increase the
total time of a bus cycle. Wait states are typically used when slower
memory is implemented.

Glossary-21

window A specified rectangular area of virtual space shown on the
display in which data can be observed. Note that there are also
measurement windows. Don’t confuse measurement windows with
multiple display areas on a computer terminal. A measurement
window is a period in state flow when analyzer tracing is enabled.
Analyzer tracing is disabled during the portion of state flow that is
outside the window.

word count A field of a gate descriptor that specifies the number
of words of parameters to be copied from the calling procedure’s
stack to the stack of the called procedure.

22-Glossary

Index

A absolute files, creating to run in emulation, 1-2
address error, storing additional information, 3-16
address rounding down problem, 5-11
address, special consideration for memory map, 5-7
addresses directed according to emulator map, 5-2
analysis, general information and types of, 8-1
analyzer prestore measurements, 10-1
analyzer problems with prefetch and pipeline, 11-1
analyzer setup for a prestore measurement, 10-3
analyzer, CMB connections to external analyzers, 7-5
analyzer, emulation bus (or internal) analyzers, 1-6
analyzer, how it is affected by an on-chip cache, 9-1
analyzer, how to set up for state measurements, 8-3
"are_you_there" execution module in monitor, 3-13

B background memory, definition of, 3-3
background monitor, definition of, 3-4
background monitor, when it’s best to use, 3-6
background monitors, advantages and disadvantages of, 3-4
BNC connection for external access to CMB, 7-5
break on write to ROM, when you should be careful of this, 5-9
break, definition of, 3-3
break, how it is implemented, 3-3
break, what causes it?, 3-3
break_entry into the monitor, 3-12
breaking defined, 1-10
bus error, storing additional information about the error, 3-16
bus_error_entry into the monitor, 3-12

C cable, emulation probe, 1-5
calling your own exception handlers, 3-11
calls to a module, prestored, 10-3
CMB, 7-1
CMB, how it interacts with external analyzers, 7-5
command files, 6-1
command files, chaining files, 6-8
command files, creating with an editor, 6-5

Index-1

command files, do not make them executable, 6-6
command files, editing of, 6-4
command files, how to create them, 6-4
command files, how to stop their execution, 6-9
command files, how to use shell variables in, 6-9
command files, if calling other command files, 6-5
command files, if commands spawn new processes, 6-5
command files, if lines are longer than the screen width, 6-10
command files, if linker doesn’t work with them, 6-10
command files, if they don’t work, 6-11
command files, naming conventions, 6-8
command files, nesting files, 6-8
command files, three ways to execute them, 6-7
command files, what to edit, 6-6
configuration file to use with new target system, 4-3
configuration file used for the emulator, 4-1
configuration file, items controlled by, 4-2
configuration file, modifying for emulation, 4-2
configuration file, recalling a former configuration question, 4-3
configuration file, viewing the file and its present answers, 4-3
coprocessor register, how to display and modify it, 3-14
copy routine in monitor, 3-14

D default emulation configuration file, 4-1
delay clock in IMB, 7-3
dequeuing trace lists, 11-4

E editor used with an emulator, 1-2
emulation bus analyzer, 1-6
emulation command scanner in the monitor, 3-13
emulation configuration file, items governed, 4-2
emulation configuration file, its purpose, 4-1
emulation configuration file, how to modify it, 4-2
emulation data-path buffers, 1-9
emulation memory mapping, 5-1
emulation probe, 1-5
emulation probe cable, 1-5
emulation process, the three steps of, 1-6
emulation, basics of, 1-1
emulation_start line in an IMB bus, 7-3
emulator directs addresses according to its map, 5-2
emulator interaction with other equipment, 1-13

2-Index

emulator, considerations when in-circuit, 1-12
emulator, list of tasks it does, 1-7
emulator, physical description of, 1-5
emulator, what can it do before you have a target system, 1-5
emulator, what if it doesn’t work, 12-1
emulator, what is it?, 1-1
emulator, what is its purpose?, 1-4
emulators that use MMU, where to load their monitors, 3-19
ERROR: Lower address greater than upper address, 5-11
exception vector table, 3-9
exception vectors, how to activate in a monitor, 3-16
exception_entry into the monitor, 3-13
execute line in CMB bus, 7-5
exit_monitor routine, 3-14
external analyzers, how they interact on CMB, 7-5

F file, emulation configuration, 4-1
files, command files, 6-1
foreground memory, definition of, 3-3
foreground monitor routines you may need to modify, 3-14
foreground monitor, definition of, 3-5
foreground monitor, mapping considerations, 5-10
foreground monitor, read before customizing, 3-8
foreground monitor, when it’s best to use it, 3-7
foreground monitors, advantages of, 3-5
foreground monitors, disadvantages of, 3-6

G glossary, Glossary-1
guarded memory managed in the emulation memory map, 5-8
guarded memory access, what the emulator does with it, 5-10

H how to read prestore trace lists, 10-4

I if you have both a background and foreground monitor, 3-6
IMB (Intermodule bus), 7-1
in-circuit emulation described, 2-3
in-circuit emulation, its uses, 2-3
interaction with other emulators, etc., 1-13
internal analyzer (also called emulation bus analyzer), 1-6
interrupts, how to simulate and control, 3-16

Index-3

L limiting number of blocks mapped in emulation, 5-2
linker doesn’t work with command file, 6-10
linker memory mapping for emulation, 5-1
linking the monitor program, 3-17
logging commands to command files, 6-4

M map entries, deleting, 5-10
mapping a foreground monitor, 5-10
mapping memory, shown by example, 5-3
master enable line in IMB, 7-2
measurement buses for coordinated measurement, 7-1
memory characterizations, some additional, 5-11
memory hardware, making the best selection, 5-7
memory map, special considerations, 5-7
memory mapping example, 5-3
memory mapping for an emulation session, 5-1
memory mapping using the overlay feature, 5-10
messages, how to create and call your own, 3-16
modifying the emulation configuration file, 4-2
monitor break function, definition of, 3-3
monitor command-execution modules, 3-13
monitor definition, 3-1
monitor entry points, 3-12
monitor program, considerations when linking, 3-17
monitor program, considerations when loading, 3-18
monitor program, how to determine its size, 3-18
monitor program, memory considerations, 3-18
monitor program, where to load in memory, 3-18
monitor routine’s emulation command scanner, 3-13
monitor routines you may want to modify, 3-14
monitor routines you should not modify, 3-16
monitor running in emulator, what’s happening, 1-10
monitor, how emulator detects execution there, 3-13
monitor, how to exit properly, 3-14
monitor, what it does, 3-2
monitors, how they are structured, 3-9

N non-real-time emulation mode, described, 1-11

O out-of-circuit emulation, its uses, 2-1
overlay used in mapping memory, 5-10

4-Index

P pipelines, how they complicate analysis, 11-1
prefetch and pipeline, definitions of, 11-1
prefetches, how they complicate analysis, 11-1
prefetches, how to avoid triggering and enabling on, 11-5
prefetches, how to recognize unused prefetches, 11-4
prestore, 10-3
prestore measurements, how they are made, 10-1
prestore measurements, how they can be useful, 10-3
prestore qualifications for measurements, 10-4
prestore states not shown in trace list, 10-2
prestore trace list with no "pstore" events, 10-4
prestore trace list, how to read, 10-4
probe and probe cable, emulation, 1-5
problem caused by address rounding down, 5-11
processor exception vector table, 3-9
program running in emulator, what’s happening when it does, 1-9

R RAM managed in the emulation memory map, 5-8
read/write target memory, how to modify, 3-14
ready line in CMB, 7-4
real-time emulation mode described, 1-11
recalling former configuration file questions, 4-3
reset_entry into the monitor, 3-13
ROM managed in the emulation memory map, 5-8

S scripts, executing automatically at login, 6-9
shell script lines longer than screen width, 6-10
shell variables, how to see their present values, 6-10
simulated I/O in emulation, 2-2
simulated interrupts, how to set them up, 3-16
software breakpoints, how to modify in real-time mode, 1-11
software_breakpoint, how it is processed, 3-12
software_breakpoint_entry into the monitor, 3-12
starting new system - which configuration file to use, 4-3
status line messages, how to call your own, 3-16
storage enable in IMB, 7-3
store qualifications for prestore measurement, 10-3

Index-5

T target system doesn’t work with emulator, 12-1
target system, considerations when connecting to emulator, 1-12
trace list dequeuing, 11-4
trace list from a prestore measurement, 10-2
trace lists, reading prefetches and pipeline, 11-2
tracing an attempted write to ROM, 5-9
trigger enable in IMB, 7-3
trigger in IMB, 7-3
trigger line in CMB, 7-4
troubleshooting your emulator, 12-1

U use of command files, 6-2
user_entry into the monitor, 3-12

V vector table, processor exception, 3-9
viewing the entire configuration file and its answers, 4-3

W write to ROM, how to trace the event, 5-9
write to ROM, what happens in the emulator, 5-9
write/read target memory, how to modify, 3-14
writes to a variable prestored, 10-3

6-Index

	Using This Manual
	Contents
	Introduction To Emulation
	Comparing In-Circuit And Out-Of-Circuit Emulation
	The Emulation Monitor
	The Emulation Configuration
	Memory Mapping
	Command Files
	Coordinated Measurements Through CMB And IMB
	Introduction To Analysis
	How An On-Chip Cache Affects An Analyzer
	Prestore Trace Measurements
	Tracing Processors That Prefetch Instructions And Use An Instruction Pipeline
	What To Do If Your Emulator Doesn’t Work
	Glossary
	Index

