HP 3000 SERIES II
COMPUTER SYSTEM
SYSTEM MICROPROGRAM LISTING

Manual Part No. 30000-90023
Microfiche Part No. 30000-90037

Printed in U.S.A. 8/76

notice

The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of Hewlett-Packard Company.

```
Scpyrgh: © 10TS by MENLET-PAOKARD COMPAN:
```


LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within the manual, changes are marked with a vertical bar in the margin.

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated, the manual is reprinted but neither the date on the title page and back cover nor the edition change.

First edition June 1, 1976

Update 1 June 15,1976

Second edition August 13, 1976

Revised to incorporate Revision A changes and to add Extended Instruction Set Listing

Revised to incorporate Update 1 and Revision B Microprogram Listing

This document consists of three elements.

1. The Look-up Table. The table is located following the first divider.
2. The HP 3000 Series II Microprogram Listing. The listing follows the second divider.
3. The HP 3000 Series II Extended Instruction Set Listing. The Listing follows the third divider.
4. The Microprogramming Language Description. The description follows the fourth divider.

HP 3000 Series II
 Computer System

LOOK
 UP
 TABLE

QUT	CONT	TROL	RAR	LABEL	OP	CODE	ENTRY	INSTR	SRP =	PREAODER	W	JLUI	COMMENTS
)25	1111	1010	0153	AC4S			S-		0	10-15	1	YES	
026	1111	1111	0211	STOR			JLUI		?		1	NO	MICROCODE INSURES
													SA二 ${ }^{\text {P }}$, 0
027	1111	1111	0502	MTEI			P	LOOP C	0	A-15	1	NO	INSURE. SR > ? (TBX,MTRX) OR
				\cdots									SR=3 (TAA, MTAA)
330	1111	1110	0043	ACID	06		DBQ	CMPM	0	$9-15$	1	YES	
1) 31	1111	1010	0042	$A C 15$			S-		n	10-15	1	YES	
)32	1111	1111	0004	CMPM			JLUI		0		1	No	Microcode ingures
													$S R>0$
133	1111	1110	0060	ACIP			P		0	$8-15$	1	Yes	
334	1111	1110	0043	$A C 1 D$	07		DBQ	$\triangle D D M$	0	A-15	1	YES	
J35	1111	1010	0042	ACIS			S-		0	10-15	1	YES	
J36	1111	1111	0075	ADDM			JlUI		0		1	NO	MICROCODE IHSURES
037	1111	1110	0060	ACIP			P		0	$8-15$	1	YES	SR > 0
040	1111	1110	0043	$A C 1 D$	10		DBQ	SUBM	0	8-15	1	YES	
041	1111	1010	0042	ACIS			S*		0	10-15	1	YES	
342	1111	1111	0075	ADDM			JLUI		0		1	NO	MTCROCODE INSURES
													$S R>0$
343	1111	1110	0060	ACIP			P		0	8-15	1	YES	
444	1111	1110	0.043	ACID	11		DBQ	MPYM	0	日 - 15	1	YES	
345	1111	1010	0042	ACIS			5-		0	10-15	1	YES	
3)46	1111	1111	0702	MPYM			JLUI		9		1	No	MICROCODE INSURES
													SR > 0
947	1111	1110	0060	ACIP			p		0	A - 15	1	YES	
) 50	1111	1110	0043	ACID	12		DBQ	DECM	0	8-15	1	YES	
951	1111	1010	0042	ACIS			S-		0	10-15	1	YES	
1)52	1111	1111	0011	IOMY			JLUI		0		1	NO	
053	1111	1110	0070	AINC			DQS	INCM	0	$3-15$	1	YES	MICROCODE SWLITS
	.												DRQ/S-. PANO IS CORRECT (DR/Q/S)
154	1111	1110	0043	AC1D	13		DBO	LDX	0	8-15	1	YES	
${ }^{6} 55$	1111	1010	0042	AC15			S-		0	10-15	1	YES	
056	1111	1111	0021	LOX			JlUI		n		1	NO	
457	1111	1110	0060	$A C 1 P$			\bigcirc		0	8-15	1	YES	
060	1110	1111	0401	BRD	14		DBQ	BR/BCC	0	A-15	1	No	$Z=0$ MICROCODE
													SPLITS HR/ACC. PADO IS CORRECT
362	1210	1011	0400	BRS			5-		0	10-15	1	NO	$Z=0$ MICROCODE
													SPLITS BR/BCC. PMDD IS CORRECT
1)62	1111	1111	7777				Jul		\cdots		1	No	Not USED
1163	1111	1111	0412	BRP			-	BR	$?$	9-15	1	No	
1)64	1111	1110	0126	AC3D	15		DBQ	LDD	n	ค - 15	1	YES	
065	1111	1010	0125	AC3s			S-	L-DO	0	10-15	1	YES	
\$)66	1111	1111	0142	LDD			JluI		9		1	NO	```MICROCODE INSURES SH}<```
067	1111	1111	0222	ALSB			DQS	LDS	0	8-15	1	NO	$\begin{aligned} & \text { MICROCODE SPLITS } \\ & \text { DBQ/SO. PADC IS } \\ & \text { CORRECT (DR/Q/S) } \end{aligned}$
170	1111	1110	0166	AC50	16		DBQ	STD	0	8-15	1	YES	
4) 71	1111	1010	0165	AC5S			S-	STD	0	10-15	1	YES	
072	1111	1111	0200	STD			JLUI		0		1	No	

LUT	CON	ROL	RAR	LABEL	Op	CODE	ENTRY	INSTR	SR> $=$	PqEADDER	w	JLUI	COMMENT	
073	1111	1111	0222	ALSB			DQS	STB	0	8-15	1	No	MICROCODE	SPLTTS
													DBQ/S-. CORRECT	$\begin{aligned} & \text { PADD IS } \\ & \text { (DB/O/S) } \end{aligned}$
074	1111	1110	0104	AC2D	17		DBQ	LRA)	B-15	1	Yes		
075	1111	1010	0103	ACES			S-		0	10-15	1	YES		
070	1111	1111	0123	LRa			JLUI		9		1	NO	MICROCODE	IMSURES
													$\mathrm{SH}<4$	
077	1111	1110	0114	AC2P			P		0	$8-15$	1	YES		

SUBOP 1 SHIFTS AND BRANCHES
SINGLE ENTEY PER OPCODE.
PADD $=$ SHIFT COUNT FOR ALL SHIFTS, WITH W =
INHIBITING 3 IT 10 SIGN INTERPRETATION.
FADD IS NOT INDEXED: MICROCODE USES XC OPTION.
CTSS, CTSD DETERMINE TYPE OF SHIFT FOR GHAREN
SHIFT MICROCODE ENTRIES.
FOR BRANCHES, PADD = P REL. DISDLACEMENT, $W=1$
ENABLES SIGN BIT. NO INDEXING

100	1101	1001	1263	SHFL	SUROP 1 $=00$	ASL	1	$10-15$	0	No
101	1101	1001	1255	SHFR		\triangle St	1	10-15	0	NO
102	1101	1001	1263	SHFL		LSL	1	10-15	0	No
103	1101	1001	1255	SHFR		LSR	1	10-15	0	No
104	1101	1001	1263	SHFL		CSL	1	10-15	0	NO
105	1101	1001	1255	S4FR		CSR	1	$10-15$	0	No
106	1101	1001	142 ?	SCAN		Scan	1	10-15	\bigcirc	No
107	1101	0111	0456	IABZ		I $A B Z$	1	11-15	1	\cdots
110	1001	1001	1304	TASL		TASL	3	10-15	0	No
111	1001	1001	1317	TASR		TASR	3	10-15	0	No
112	1111	0111	0450	1×182		IXBZ	0	11-15	1	NO
113	1111	0111	0453	DXBZ		DXAZ	n	11-15	1	NO
114	1111	0111	0445	BCY		BCY	0	11-15	1	No
115	1111	0111	0443	BNCY		BNCY	0	11-15	1	NO
116	1001	1001	1323	TNSL		TNSL	3	10-15	0	NO
117	0111	1001	1336	QAIR		QASL/OASR	4	10-15	0	NO
120	1011	1001	1270	SHIDL		DASL	2	10-15	0	No
121	1011	1001	1376	SHDR		DASR	2	10-15	0	NO
122	1011	1001	1270	SHDL		OLSL	2	$10-15$	0	No
123	1012	1001	1276	SHIDR		DLSR	$\stackrel{3}{2}$	10-15	0	No
124	1011	1001	1270	SHDL		DCSL	$?$	10-15	0	No
125	1011	1001	1276	SHDR		DCSR	2	10-15	0	NO
126	1011	0111	0472	CPRB		CPRB	2	11-15	1	No
127	1101	0111	0461	DABZ		DABZ	1	11-15	1	NO
130	1111	0111	0434	BOV		BOV	0	$11-15$	1	No
131	1111	0111	0440	BNOV		BNOV	0	11-15	1	NO)
132	1101	1001	1440	TBC		TBC	1	10-15	0	No
133	1101	1001	1432	TRBC		TRAC	1	10-15	0	NO
134	1101	1001	1434	TSBC		TSBC	1	10-15	0	NO
135	1101	1001	1436	TCRC		TCBC	1	10-15	0	NO
136	1101	0111	0467	BRO		PRO	1	11-15	1	NO
137	1101	0111	0464	BRE	SUBOP = $=37$	BRE	1	11-15	1	NO

				SUBOP 2 MOVES, MINIS DOUBLE ENTRY PER MOVEOP, SINGLE ENTRY PER MINIOP. $W=0 / 1$ SPECIFIES +/- PADD.										
140	1001	1101	2001	MVWP	Sub	2	MOVEOPS	MOVF	PR	3	8	-15	0	No
141	1001	1101	2000	MVWD				MOVE	$D E$	3	3	- 15	0	NO
142	1001	1101	2047	MVBP				MVB	$P B$	3	8	- 15	0	NO
143	1001	1101	2046	MVBD				MVB	DB	3	8	- 15	0	NO
144	0111	0001	2266	MABS				MABS/	MVBL	4	$1 ?$	- 15	n	No
145	1011	0001	2162	SCW				SCW/M	Mtos	2	1?	- 15	0	vo
146	0111	0001	2267	MOS				MOS/M	MVL9	4	12	- 15	0	
147	1011	0001	2161	Scu				SCU/M	MFDS	2	12	- 15	0	No
150	1011	1101	2025	MVBW				MVBW	-N	2	8	- 15	0	NO
151	1012	1101	2025	MVBW				MVBW	N	$?$	3	- 15	0	NO
152	1001	1101	2047	MVBP				CMPE		3	9	- 15	0	No
153	1001	1101	2046	MVBD				CMPE		3	${ }^{8}$	- 15	0	NO
154	0111	1101	1570	LLSH	Sus	2	MINIOPS	RSW/L	LSH	4	3	- 15	0	N0
155	1111	1101	0307	PLSA				PLDA/	PPSTA	0	8	- 15	0	No
156	1011	1101	0323	LSAB				EXT	$\triangle D D R$	$?$	n	-15	0	
157	1111	0001	2535	IXIT				PROCE	ESS	0	$1 ?$	$=15$	0	
160	1111	1111	7777		UNNA	ASe	SIGNED							

```
MICROCODE CHECKS
    CIR(13)
MICROCODE CHECKS
    CIR(13)
MICROCODE CHECRS
    CIR(15)
MICROCODE CHECKS
    CIR(15)
MICROCODE CHECKS
    CIR(14-15)
IXIT, LOCK, PCV,
    UNLK DECODEO FROM
    PAOD(14-15)
```


SPEC $3=00 / 17$

SINGLE ENTRY PER INSTRUCTION.
PADD IS CIR(12-15): $W=0 / 1$ SPECIFIES +/-PAOD.

200	1101	0001	0347	LST	SPEC $3=00$	LST	1	12-15	0	NO
201	1110	2001	2764	PAUS		paus	0	12-15	0	No
202	1111	0001	1674	SED		SED	0	12-15	0	No
203	1011	0001	1544	XCHD		XCHI/MPE	2	$12=15$	0	NO
204	1101	0011	1706	SMSK	\bullet	SMSK/SCLK	1	$1 e=15$	1	No
205	1111	0011	1701	RMSK		RMSK/RCLK	0	$12=15$	1	No
206	1100	0001	1561	XEQ		XEQ	1	12-15	0	No
207	1101	0001	1617	SIO	.	SIO	1	12-15	0	No
210	1111	0001	1630	RIO		R10	0	$17-15$	0	No
211	1101	0001	1641	WIO		WIO	1	1\%-15	0	No
212	1111	0001	1653	TIO		TIO	0	12-15	0	No
213	1101	0001	1660	CIO		CIO	1	1?-15	0	NO
214	1101	3001	1670	CMD		CMD	1	12-15	0	No
215	1011	0001	0360	SST		SST	2	12-15	0	NO
216	1111	0001	1664	SIN		SIN	0	12-15	0	NO
217	1111	0001	2757	HALT	SPEC 3 $=17$	HALT	0	12-15	0	No
220	1111	1111	7777		UNNASSIGNED					No

$z=0$
XGMD, PSDE, DISP, SEE: DECONED FROM PADO(14-15)
MTCROCODE CHECKS CIR(15). -PADD MICROCODE CHECKS CIR115) -PADO $z=0$

221	1111	1101	2411	SCAL	SUBOP $3=01$	SCAL	0	8	- 15	0	No	
222	1111	1101	2412	PCAL		PCAL	0	B	- 15	0	NO	
223	1111	1101	2456	EXIT		EXIT	0	8	- 15	0	NO	
224	1101	1111	2444	SXIT		SXIT	1	8	- 15	1	NO	-PADO
225	1111	1101	0754	ADXI		ADXI	0	R	- 15	0	No	
226	1111	1111	0754	ADXI		SBXI	n	-	- 15	1	NO	-PADO
227	1111	1101	2400	LLBL		LLBL	0	8	- 15	0	NO	
230	1111	1101	0277	LUPB		LDPP	0	8	- 15	0	NO	
231	1111	1111	0277	LDPB		LDPN	0	8	- 15	1	NO	-PADO
332	1101	1101	1553	ADDS		ADDS	1	3	- 15	0	NO	
233	1101	1111	1552	SUES		SUBS	1	8	- 15	1	NO	-Pano
234	1111	1111	7777			SPARE					NO	
235	1101	1101	0755	ORI		ORI	1	8	- 15	0	No	
236	1101	1101	0756	XORI		XORI	1	8	- 15	0	No	
237	1101	1101	0757	ANDI		ANDI	1	B	-15	0	No	
240	1111	1111	7777		UNASSIGNED							
241	1111	1111	7777									
242	1111	1111	7777									
243	1111	1111	7777									
244	1111	1111	7777									
245	1111	1111	7777									
246	1111	1111	7777									
247	1111	1111	7777									
250	1111	1111	7777									
251	1111	1111	7777									
252	1111	1111	7777									
253	1111	1111	7777									
254	1111	1111	7777									
255	1111	1111	7777									
256	1111	1111	7777									
257	1111	1111	7777									
260	1111	1111	7777									
261	1111	1111	7777									
262	1111	1111	7777									
263	1111	1111	7777									
264	1111	1111	7777									
265	1111	1111	7777			.						
266	1111	1111	7777									
267	1111	1111	7777									
270	1111	1111	7777									
271	1112	1121	7777									
272	1111	1111	7777									
273	1111	1111	7777									
274	1111	1111	7777									
275	1111	1111	7777									
276	1111	1111	7777									
277	1111	1111	7777									


```
STACKODS
SINGLE ENTRY PER INSTRUCTION.
W, PADD ARE DONTT CARES
DEFAULT IS PADD =-CIR(8-15).
```


300	1111	1111	0564	NOP	StACKOPS	NOP	0	ค－ 15	1	No
301	1011	1111	0646	DELB		DELb	2	（3－15	1	NO
302	1011	1111	0644	DOEL		DDEL	2	日－15	1	NO
303	1111	1111	0775	ZROX		ZROX	n	A－15	1	no
304	1111	1111	0552	INCX		INCX	0	A－ 15	1	No
305	1111	1111	055.3	DECX		DECX	0	$n=15$	1	NO
306	1111	1111	0773	ZERO		ZERO	0	3－15	1	NO
307	1111	1111	0767	DZRO		DZRO	0	8－15	1	NO
310	0111	1111	0634	DCMP		DCMP	4	月－15	1	NO
311	0111	1111	0820	DADD		DAOD	4	日－ 15	1	NO
312	0111	1111	0624	DSUB		DSIJB	4	$n-15$	1	NO
313	1011	1111	0705	MPYL		MPYL	2	A－ 15	1	No
314	1002	1111	0724	DIVL		DIVL	3	8－15	1	NO
315	1011	1111	0630	DNEG		DNEG	2	A－15	1	NO
316	0111	1111	0574	DXCH		DXCH	4	8－15	1	NO
317	1011	1111	0615	CMP		GMP	$?$	（ $)^{\text {－}} 15$	1	NO
320	1011	1111	0612	ADD		ADO	$?$	A－15	1	NO
321	1011	1111	0613	SUB		SUB	2	－-15	1	NO
322	1011	1111	0704	MPY		MPY	$?$	$9-15$	1	NO
323	1011	1111	0721	DIV		OIV	2	8－15	1	No
324	1101	1111	0614	NEG		NEG	1	$4-15$	1	NO
325	1101	1111	1261	TEST		TEST	1	8－15	1	NO
326	1011	1111	0610	STBX		STBX	$?$	9－15	1	NO
327	1011	1111	0560	DTST		DTST	2	A－15	1	NO
330	1011	1111	1212	DFLT		OFLT	2	\＆－15	1	NO
331	1101	1111	1262	BTST		BTST	1	$A=15$	1	NO
332	1011	1111	0572	XCH		XCH	2	$\theta=15$	1	NO
333	1101	1111	0554	INCA		INCA	1	8－15	1	NO
334	1101	1111	0555	DECA		DECA	1	8－15	1	NO
335	1101	1111	0566	XAX		$X \triangle X$	1	A－ 15	1	NO
336	1101	1111	0605	ADAX		ADAX	1	－－ 15	1	No
337	1101	1111	0603	ADXA		ADXA	1	A－15	1	NO

HP 3000 SERIES II

MICROPROGRAM LISTING

110		
111		
112		
113		
114		
115	0020	23137767777
116		
117		
118		
119	0021	26557757757
120		
121	0022	37467367475
122		
123		
124		
125	0023	32653357553
126		
127	0024	23137557777
128	0025	26277777217
129	0026	37467367475
130		
131		
132		
133	0027	32643357553
134		
133	0030	23137657777
136	0031	20277777217
137	0032	37467367475
138		
139		
140		
141	0033	32643757553
142		
143	Q034	23137551777
144	0035	26277717217
145	0036	22767127355
146	0037	37766203120
147	0040	20277777217
148	0041	37467317455
149		
150		
151		
152		
153		
154		
155		
156		
157		
158		
159		
160		
161		
162	0042	37777777777
163	0043	161377 ¢7561
164	0044	23767117776

0457	37766300424
0460	37777757777
0461	37665017773
0462	37766360424
0463	37777757777
0464	33777437577
0465	37766300424
0466	37777757777
0	
0467	33777427577
0470	37766300424
0471	37777757777

0472	33767077566
0473	16167377777
0474	16777537577
0475	37777757706
0476	16767077730
0477	16767377777
0500	16766130424
0501	37777757677

PAGE 14		ADDRESS	6 CONIENTS	$\triangle A B_{L}$	- RBUS	sBus	FUNC	SHFT	STOR	SPEC	SKIP		COMMENTS		FRI, AUG
893		0524	377622<1737				JSR	PSHM			SR4		EXACTLY 3 TOS R	REGS	FILLED
694		0525	23337777357			SM	$\triangle \cap D$		SPO	CLIB			SPO-SM, CLR MEM	REF	BNK FF
693		0526	22117777571		RC	DB	ADD		ASP1	ROD			$E=R C+D F \%$, READ T	TEST	$V A R=(E)$
696		0527	16766777775		SPO	UBUS	BNDT						CHECK SM>EE IF	NPRV	
697		0530	34766777414		SP1	OL	BNDT			SF2			GHECK EPEDL IF	NPRV	
698		0531	00777453777			CIR	ADD	SR1			BITf				
699		0532	26306300512			OPND	JMP	MTAE	SP1		UNC		JMP IF TBA		
700		0533	01177777557			SPI	ADO		RUS	WRD			MTEA $(E)=(E)+R$		
701		0534	26117477432		RB	OPND	$\triangle D D$		ASP1	DATA	NOFL				
702		0535	31766300520				JMP	MTE4			UNC		TERMINATE LOOP	IF	VFL
703		0536	37766300512				JMP	MTAE			UNC		TEST FOR COMPLE	ETION	
704				\cdots											
705				*											
706				*		CMPI,	CMPN								
707				*	ENTER	WITH	SR>	$=11$ PA	$D D=-N$	N FOR	CMPI,	PAUD=	- F FOR CMPN ICI	IR(8)	151)
708				*											
709		0537	02777477553	CMPI	I RA	PADD	ADD			POPA	NOFL		CCA ON (S)-N		
** WARNING	1	8) **	TUS LOAD NAME	IS ol	OLD NAM	E BEF	ORE	PRECED	ING P	PUSH,	POP OR				
710		0540	00773357753		RA	CIR	IOR			CCA	NEXT		REVERSE CCL, CC	C IF	OVFL
711		0541	3777775!777								NEXT		$(C I R>0 \quad S O \quad N O$	CCE	IF OVFLI
712				$*$											
713				*											
714				*		DIVI									
715				*	ENTER	WITH	SR>								
715				*											
117		0542	02726003130	DIVT		PADD		TRP4	SP2		ZERO		DIVIUE AY ZERU		
718		0543	33317527777			RA	$A D D$		SP1		pos				
719		0544	33307777777			RA	sub		SP1				SPI-ABS(1)		
720		0545	37772577777				REPN				21				
721		0546	35764332276	\cdots		SPI	OVSB	SLI		INCT	CTRM				
722		0547	33763137774		SP1	RA	XOR				NEG		IF SIGNU S = SIG	GN W	
723		0550	01677751757			SP1	AOD				NEXT		THEN (S)-W, C	CCA,	UONE:
724		. 0551	02667757757			SP1	Sup		HA	CCA	NEXT		ELSE (S) - - W,	CCA	DONE
725				*											
725				*											
727				0		INCX,	DECX								
128				*											
129		0552	37554757766	INCY	Y x		INCO		x		NEXT		$x_{-} x+1 ; C C A, O \cup F L$		
730		0553	375453ら7766	DECX	$\times 1$		CADO		\times		NEXT		$X_{-} X-1 ; C C A, O V F L$		
731				\cdots									-		
732				*											
733				*		INCA,	DECA								
734				*	ENTER	WITH	SR>:								
735				*											
736		0554	33674757777	INCA		RA	INSCO		QA		NEXT		(S) $=(5)+13$ CCA,	, OVFL	
737		0555	37665357773	DECA	\wedge RA		CADO		RA		NEXT		(5)-(5)-1: CCA,	OVFL	
738				*											
739				*											
740				*		INCB,	DECF								
741				$*$	ENTER	WITH	SR> $=$								
742				*											
743		0556	32654757777	INCa		RB	INCO		Q8		NEXT		$(S-1)-(S-1)+13$	CCA	OVFL
744		0557	376453 ¢T772	DECB	RB		CADO		RB		NEXT		(5-1)-(5-1)-1;	CCA	OVFL
745				\cdots											
746				-											

PASE	27	ADDRESS	CONTENTS	$L A B ;$	Reus	SBUS	FUNC S	SHFT	STOR	SPEC	SKIP	COMMENTS	FRI, AUS		
1349				*											
1350		1262	33777754017	BTST		RA	$A D D$	RRZ		CCB	NEXT	CCE ON (S) (8: 25),	NEXT		
1351	-			*											
1352				-											
1353				*		ASL, L	LSL,	CSL							
1354				*	ENTER	WITH	SRD=	11 Pa	$D D=C I$	R110:	15)	.			
1355				*											
1356		1263	02777777767	SHFI.	$x C$	PADD A	$A D D$								
1357		1264	16347317777			UBUS	CAD		CTRL			CTR $=-$ CNT-1			
1358		1265	33772337277			RA R	REPC			INCT	CTRM				
1359		1266	$166763 \leq 2$ 2̇27			UBUS	CTSS	SL 1	RA	INCT	CTRM	SHIFT IF CNT NZRO			
1360		1267	33777757757			RA	$A D D$			CCA	NEXT	CCA, NEXT		\cdots	
1361				*											
1362				*											
1363				*		DASL,	OLSL	, DCs	SL						
1364				*	ENTER	WITH	$S R>=2$	2, PA	DDmCI	R110:	15)				
1365				4											
1366		1270	02777777767	SHD	xc	PADD	ADD								
1367		1271	16347377777			UBUS	CAD		CTRL			CTR - - COJNT-1			
1368		1272	33306350563			RA	JMP	DCCA	SP1		CTRM	EXIT IF COUNT $=2$ ERO			
1369		1273	32772377277			RB R	REPC			INCT		TBUS - MSW			
1370		1274	16653732277			UBUS	CTSD	SLI		INCT	CTRM	SHIFT LEFT			
1371		1275	01666300563			SPI	JMP	DCCA	RA	-	UNC	SET CC ON RESULT			
1372				*											
1373				*											
1374				*		DASR,	DLSt	, nes							
1375				\cdots	ENTER	WITH	SR>=	$2, ~ P A$	$D D=C I$	1R1) 0 :	15)				
1376				*											
1377		1276	02777717767	SHD	$x C$	PADD A	ADD								
1378		1277	16347377777			UBUS	$C A D$		CTRL			CTR - - COUNT-1			
1379		1300	33526350563			RA	JMP	DCea	SP3		CTRM	EXIT IF COUNT=ZERO			
1380		1301	32772377277			RB H	REPC			INCT		TBUS - MSW			
1381		1302	16653733277			UBUS	CTSD		QB	INCT	CTRM	SHIFT RIGHT			
1382		1303	25666.300563			SP3	JMP	DCCA	QA		UNC	SET CC ON RESULT			
1383				*											
1384				*											
1385				*		TASL,	tasp								
1385				*	ENTER	W WITH	SR> $=3$	3 , PA	$\triangle D=C I$	18110:	15)				
1387		-		*											
1388		1304	02777777767	TASI	xc	PADD A	$A D D$								
1389		1305	16347377777			UBUS	$C A D$		CTRL			CTR - - COUNT-1			
1390		1306	33306331313		\cdots	RA	JMP	TASE	SP1		CTRM	SP1-w $32: 47)$: EXIT	IF	CNT=0	
1391		1307	325377007777			RB A	ADD		SP3		RSB	SP3.W(16:31): RtT	IF T	TASR	
139 ?		1310	31772377277			RC	PFPC			INCT					
1393		1311	16620.332277			UBUS 0	QASL	SLI	RC	INCT	CTRM	SL KC,SP3,SP1			
1394		1312	25657777777			SP3	$\triangle D D$		RB			RB-W(16:31)			
1395				*											
1398		1313	31777407757	TAS.		RC	$A D D$			CCA	ZERO	CCA ON NSW: ZERO?			
1397		1314	01677751777			SP1	$A D D$		RA		NEXT	NOS HA-W (32:47), DON	ONE		
1398		1315	01773377652		RB	SPI	IOR			ccz		YES: CCZ ON W(16:47)	7),		
1399		1316	01677751777			SP1	ADD		RA		NEXT	RA-W (32:47), NONE			
1400				*											
1401				*											
1402		1317	37762361304	TASR			JSB	TASL			UNC	SET UP SP3,SP1,CTR	FOR	R SHFT	
1403		1320	31772377277			RC R	REPC			INCT					

1400	02377712764
1401	02531377760
1402	14537777764
1403	25352377777
1404	16337733277
1405	25351377767
1406	00766091412
1407	33772377777
1410	16735333277
1411	35663757755
1412	33663777775
1413	16772377777
1414	16675332277
1415	25351377760
1416	37772377775
1417	16735332277
1427	$3576277777 ?$
1421	16653357553

1556		1473	03677757617			RBR	$A D D$		QA	S	NEXT		SUBST S-BANK,	OONE IF	F 2
1557		1474	22206141470			DB	JMP	PSH2	PUSH		F 1		PUSH DH: DONE	IF Fl	
1558		1475	03217757617			RER	$\triangle D D$		PUSH	s	NEXT		PUSH S-BAVK: 0	DONE	
1559				*											
1560				*											
1561				-		SETR									
1562				-	SET	T S-BANK	K,OB,	OB-BAN	NK, DL,	, Z,STA	$A, X, 0, S$				
1563				*	AS S	SPECIF	BY C	CR1日:	15):	S-BNK	THROUGH	2	AND STA $0,1,3$,	, 8:15) A	RE PRV
1564				*	ENTE	TER WITH	HRE	4, PAD	DOECIR	R(8:15)					
1565				-											
1568		1476	02311777760	SETD		PADD	ROM		SP1	17776			SPI POS IF ANY	Y CIR(8:	11)
1567		1477	03537667617			RBR	ADO		SP3	5	NPRV		SP3-5-RANK		
1569		1500	01346301507			SPI	JMP	SETI	CTRL		UNC		CTR-CIR(12:15)	$1: J M P$	F PRV
1569				*											
1570		1501	01346123117			SP1	JMP	TRO6	CTRL		POS		ELSE TRPG IF A	ANY CIR(8:11)
1571		1502	33321627400			RA	ROMN		SPO	02740	0		ISOLATE (S)12,	,4:7)	
1572		1503	24301700377			STA	ROMN		SP1	15037			SPImSTA WITH B	BITS 2,4	17 CLH
1573		1504	15367057777			CTRH	CAD		CTRH		BITG		SET STA (2,4:7)	$)$ IF CIR	(le)
1574		1505	01513377575		SPO	SPI	IOR		STA	POP			SET STAR」47)	-	(1)
1575		1506	37766361526				JMP	SET3			UNC		CHECK CIR(13:1	15)	
1576				*											
1577		1507	02317525777	SET,		PADD	ADD	RL7	SP1		POS		IF CIR(A) THEN		
1578		1510	33537777577			RA	$A D D$		SP3	POP			SP3_(S) (SET	T S-BANK	
1579		1511	01317532577			SPI	ADO	SL 1	SP1	POP	NEG		SET DE, DE-ENK	It CIR	
** W	WARNING	8) **	TOS LOAD NAME	IS OL	D NA	NAME BEF	ORE	PRECEO	ING	PUSH,	POP OR				
1580		1512	33206361515			RA	JMP	SET?	PUSH		UNC		NO, REPLACE TO		
***	WARNING	8)	TOS LOAD NAME	Is mL	D NA	NAME BEF	FOHE	PRECED		PUSH.	POP OK				
1581		1513	30457777577			RD	AnO		OA	DOP			YESI SET DF, UB	-B-BANK	
* $4 *$	WARNING	$8)$ \%	TOS LOAD NAME	IS OL	1 NA	NAME BEF	ORE	PRECED	ING P	PUSH,	POP OK				
1582		1514	33157777417			RA	$A D D$		SER	DB					
1583		1515	01317522777	SET.		SP1	$\triangle D D$	SLI.	SPI		POS		SET OL IF CIPP	(10)	
1584		1516	22717777573		RA	D8	100		IL	POP			SET UL IF CIA1	(10)	
1585		1517	37762201732				JSB	PULI			SRL		fill at least	ONE TOS	REG
1586		1520	01317522777			SPI	$\triangle D O$	SL1	SPI		POS		SET 2 IF CIRII	11)	
1587		1521	22257777573		RA	DB	$\triangle D D$		2	POP					
1588		152 ?	3776220173 ?				JSB	PUL 1			SRZ		Fill at least	ONE TOS	HEG
1589		1523	15367007777			CTRH	CAD		CTRH		BITA		SET STA IF CIR	(12)	
1590		1524	33517777577			RA	ADO		STA	POP					
1591		1525	3!762201732				JS θ	PULI			SRZ		FILL AT LEAST	ONE TOS	REG
1592				*											
1593		1526	15773003364	SET\%	PADD	D CTRH	IOR	SR1		LBF	BIT ${ }^{\text {P }}$		SFE IF CIP(14)) CIR(1)	
1594		1527	33557777577			RA	ADD		X	POP			YES, SET X		
1595		1530	237261!1535			SM	JMP	SET4	SP 2		NF2		SPE.SM, JMP IF	- No CIR	(14)
1595		1531	33762201732			RA	JSB	PULI			SRZ		FILL AT LEAST	ofe tus	FEG
1597		1532	22317777776		ubus	S DB	$\triangle D D$		SP1				SPILNEW O		
1598		1533	25722301751			SM	JSE	BNDC	SPC		UNC		SPR-SM, CK NEW	N0	
1599		1534	01437777577			SP1	AnD		0	POP			SET Q,		
1600		1535	02777437777	SET ${ }^{\text {S }}$		PADD	ADD				ODO		SET S IF CIRII	5)	
1601		1536	25157757617	SETi		SP3	ADD		S8R	S	NEXT		ELSE S-BAVK_SP	3, DUNE	
1602		1537	33762201732			RA	JSA	PULI			SRZ		Fill at least	ONE TOS	REG
1603		1540	22317777776		ubus	S DB	ADO		SPI				SPI-NEW S		
1604		1541	16722301751			UBUS	JSB	BNDC	SP2		UNC		SPE-NEW S, CK	DOUNDS	
1605	-	1542	37762211744				JSB	PSHA			SRNZ		EMPTY TOS REGS		
1606 1607		1543	35466301536	*		SP2	JMP	SETS	SM		UNC		SET S		

34

1962	2076	26317714777			OPND	$A D D$	RR2	SP1			SOURCE WAS KH
1963	2077	30177567577			RD	ADO		hus	ROD	F?	READ TARGET WORU
1964	2100	3ち766362111			SP2	JMP	MB9\%			UNC	UQUS_SP?: UMF IF MVB INSTR
1963	2101	15761600100			CTRH	ROMN			0001		ISOLATE UPSHIFT BIT
1966	2102	16763713774		SP1	UBUS	AND	SR1				UPSHIFT IF LOWER ALPHA
1967	2103	16302777014		SP 1	UBUS	CAND		SP1	CCB		AND UPSHIFT BIT ON
1968	2104	15761600600			CTRH	LOMN			0006		ISOLATE CCF
1969	2105	27763417176		UnUS	CC	ANO				NZRO	CCFFCCE OF SOURCE?
1970	2106	37766302124				JMP	MB24			UNC	NO, DONE MVEIW
1971	2107	33766002127			RA	JMP	MA 26			ZERO	ERROR IF COUNT = LERO
1972	2110	35766322124	MB21		SP2	JMP	MBP4			TEST	JMP IF MVBW AND INT PENDINS
1973	2111	25763127776	MB2?	UBUS	SP3	XOR				POS	UPDATE SOURCE AUDR IF
1974	2112	26337777775		SPO	SP3	ADI)		SPO			LAST BYTE OF SOURCE WORD
1975	2113	25637427771		RC	SP3	ADO		HC		even	UPDATE TARGET PTR
1976	2114	01317765777			SPI	$\triangle O D$	RLz	SP1		UNC	SHIFT SOURCE IF TARG WAS LH
1977	2115	26737701777			OPND	$\triangle D D$	LL 7.	SP2		UNC	TARGET WAS RH
1970	2116	20737714777			OPND	ADO	RRZ	SP\%			TARGET WAS LH
1979	2117	30177777557			RD	$A D D$		RUS	W120		
1980	2120	35173377434		SPI	SP2	IOR		BUS	DATA		WRITE UPDATED TARGET WORD
1981	2121	25667507473		RA	SP3	SU3		LiA	SFI	NFI	UPOATE COUNT
1982	2122	25617717450		RO	SP3	400		RD	CF 1		UPOATE TARGET AUDR IF GYTE
1983	2123	37766302070				JMP	MB? 0			UNC	WAS LAST BYTE OF TARG WORI)
1984			*								
1985			*	MVBW	INT	AND N	NORM CO	COMPLET	TION	IMVB TERMIN	NATION TESTS Imbedoted abovel
1986	2124	25647727572	$\mathrm{MB2}_{4}$	RB	SP3	SUS		QR	DOP	TEST	ADJUST SOJRCE PTR ANO STK
1987	2125	31766302201				JMP	D03s			UNC	DONE MVBW; DEL FROM STK
1988	2126	31766363000				JMP	IR?			UNC	JMP IF INT PENDING
1989			*								
1990			*	MVBW	BOUND	DS VI	IOLATIO	ON			
1991	2127	2476613211n	MBCa		STA	JMP	MB? 1			NEG	NO ERROR IF PRV
1992	2130	2564777757?		RB	SP3	SUB		PB	DOP		ADJUST SOJRCE PTR AND STK
1993	2131	37346213013				JMP	BNTV	CTRL		SRN?	CTR-O: BNDV INT (2C JMP)
1994			*								
1995			*	ENTRY	PDI:	NT FO	OR CMP:	H COMP	PARE	BYTES LOOP	
1996			*								
1997	2132	30177777577	CMP		RO	ADN		BUS	ROD		READ FIRST TARGET WORD
1998	213.3	31775.113737			RC	CRS	SR 1		CCE		SET CCE IV CASE CNT $=0$
1099	2134	25763377316		UBUS	SP3	$\times \mathrm{OR}$			HAF		SFI IF IH IN FIRST TARGET
2000			*								
2001			*	CMPE	COMP	ARES	BYTES	UNTIL	NOT	evual or on	CNT $=0$ FOR CMPG INSTR.
2002			*	IT EN	NDS WI	ITH C	CCA SET	T ON	LAST	ITARGET MIN	NUS SOURCEI SCANNED IF NOT
2003			*	EQUAL	, OR	WITH	H CCE S	SFT IF	F ALL	TAKGET ANO	SOURCE GYTES ARE EQUAL.
2004			*	RA $=$ S 1	GNED	COUN	NT, QS=	=SOURC	ce By	TE PTR, RC=	ETARGET BYTE HTR,
2005			$\$$	SPO $=$ S	OURCE	E ADD	DR, $\square^{\text {a }}$ ($=$ TARGE	ET AD	DR, SP3=DEL	TA.
2005			$\stackrel{*}{*}$								
2007	2135	33766002202	CMP7		RA	JMP	D031			ZERN	IF CNT $=0$ JONE, DEL FR STK
2008	2136	37766323000				JMP	1 RL			TEST	JMP IF INT PENDING
2009	2137	257374 27771		RC	SP3	ADO		SP2		EVEN	SPP-UPDATED TARGET PTR
2010	2140	26317760777			OPND	ADD	LR2	SPl		UNC	TARGET WAS LH
2011	2141	26317714777			OFND	400	RR7	Spl			TAFGET WAS RH
2012	2142	37177777175		Spo		$A D D$		qus	ROA		KEAD SOURCE WORU
2013	2143	25355152477			SP3	CRS	SLI	CTRI.	SFl	NF1	CTR (5)-SP3(0)
2014	2144	26617777450		RD	SP3	ADD		QD	CFI		UPDATE TARG ADDR IF FI
2015	2145	14763027772		RB	CTRL	XOR				EVEM	UPCATE SOJRCE ADOR IF
2016	2146	25337777775		SPO	SP3	ADO		SPO			LAST BYTE OF SOURCE WOKI

2072
2073
2074
2074
2075
2076
2078
2079
2080
2081
2082
2083
2085
2086
2087
2088
2090
2091
2092
0094
2095
2096
2097
2098
2099
2100
2101
103
2104
2106
2107
2108
2110
2111
2113
2114 2116 2117 2118 2119 2121
2122
2124 2125
2126

221101467757776

2212	37762302217
2213	30763007514
2214	25763017534
2215	37766362201
2216	35646362212

UBUS SPI SUB
SM
NEXT
S_S-SPl-4, DONE
CAN UNTIL LOOF
RB=BYTE PTR, SPO=WORD ADDR, RD=TERMINAL BYTE, SP3=TEST BYTE, RCESTA

GSCB SUPPLIES SOURCE GYTES IN RH SPI FUR SCU AND SCW INSTRS,
SETS CCE, TESTS FIQ INTERRUPTS PEIVDING AND IF NPRV SOURCE ADDR>SM. SPOEWORD ADDR, RBEBYTE PTRI UPDATFD PTR KETURNED IN SPR. IF INTERRUPT RG LOADED INTO STA AEFORE TKANSFEKING TO IHD

2217 23767117775
$2220 \quad 373462630.13$
2221 32736427777
2222 26317700777
$2223 \quad 26317724777$
2224 37136707575
222537766303000

2226	$3376600220 ?$
2227	22302301737
2230	03357567617
2231	34306302021
2232	14157777417
2233	03357777417
2234	16157777017
2235	34322302353
2236	14157777417
2237	37766302023

$2240 \quad 31762211732$
22416302231732
224231176772177

224337766203117

2127	2244	33766002206		RA	JMP	D05s			ZERO	EXIT IF COUNT=ZERO
2128	2245	31536547777			INC		SP3		F1	SP3-1 (DELTA FOK MV LOOP)
212%	2246	30317777417		RD	$\triangle D O$		SP1	SF2		IF MTUS SPI_USEG\#, SF?
2130	2247	37762362355			JSB	DSEG			UNC	SET UP OSEG
2131	2250	03357577417		R日R	$\triangle D O$		CTRL	$D B$	NF2	CTR-UB-BAVK
2132	2251	01326362260		SP1	JMP	MTIS	SPO		UNC	JMP IF MTOS INSTR
2133			*							
2134	2252	22337777777	MFDe	DB	a0o		SPO			SPO (TARGET BASE) - Dt
2135	2253	26157777017	MFD	OPND	$\triangle \cap 0$		SBR	$\triangle E S$		HBS (SOURCE) BANK_DSEG RNK
2136	2254	31617777777	MFD ${ }_{3}$	RC	$4 D \cap$		RD			SWITCH RC ANO RU
2137	2255	30622302353		RD	JSA	MVWS	QC		UNE	MOVE WOROS
2138	2256	31617777777		RC	$A D D$		N0			FESTORE RC AND RD
2139	2257	30626302263		RD	.JMP	MTD2	RC		UNC	CHECK INT, DEL FROM STACK
2140			*							
2141	2260	14157777017	MTD.	CTRL	CDD		CBH	ABS		AHS (SOURCE) BINK_CTK=OB-BNK
2142	2261	26157777417		OPND	$\triangle D D$		SBR	$D B$		DB (TARGET) BAVK_USEG BAAIK
2143	2262	22302212353		OB	JSB	MVWS	SPI		SRNZ	SPI (SFC 3ASE)_OB: 2C JMP
2144	2263	141577 C7417	MTD,	CTRL	$\triangle \cap D$		S8R	08	TEST	RESTORE UB-BANK
2145	2264	37766302206			JMP	D055			UNC	DONE: DEL FROM STACK
2146	2265	37766303000			JMP	IR!			UNC	JMP IF INTERNUPT PEENOING
2147			*							
2148			*							
2149			-	MABS.	MDS					
2150			4	ALSO ENTRY	Y FOR	MVGL	ANO	MVLB		
2151			-	MOVE WOROS	FROM	M Data	- SEG	TO DA	TA SEG	
E15?			*	RAZ+-CNT:	PR,RC	= SOUR	PCE P	TR AND	OSEGa!	KD, (SIC) = TARGLT PTK AND OSEGU
2153			\cdots	MUVE WORDS	FROM	4 APS	$\triangle D D R$	TO AB	S AgDR	
2154			*	$R A=+-C N T ;$	RC, RB	= $=$ SOUR	CEE B	ANK, AD	DF; (SM)	, ROI TARGET 3ANK, ADDR
2155			4	ENTER WITH	+ SR=	, pa?	$\bigcirc \times C$ I	(12:1	5)	
2156			*							
2157	2266	31317777417	MABs		ADO		SPd	SF 2		SFC, SP1.0 IF MAGS OR MVML
2158	2267	37766263117	MUS		.JMP	TRPR			NPRV	MARS,MVBL, MDS, MVLB ARF. PRV
2159	2270	2ゝ177777777		5 M	ADD		rus	ROS		HEAD (S-4)
2160	2271	33777537777		RA	$\triangle D D$				NEG	SP3=DELTA FOR MV LOOP
2161	2272	37536767777			INC		SP3		UNC.	SP3-1 IF CNT POS
2162	2273	37527377777			CAD		SP3			ELSE SP3-1
2163	2274	02761410010		PADD	HOMN			0010	NZRO	
2164	2275	37766302226			JMP	MVAL			UNC	JMP IF MVBL OR MVLE
2165	2276	33766002206		RA	JMP	D05S			ZEFO	EXIT IF COUNT= TRRO
2166	2277	0,3357567417		RBR	$\triangle D O$		CTRL	OH^{H}	F2	CTH-DB-BAVK
2167	2300	37766362304			JMP	MDS 1			UNC	JMP IF MDS
2168			4							
2169	2301	31157777017	MAB ${ }^{\text {, }}$	RC	400		SBR	$\triangle B S$		ABS-BANK_SOURCE GANK
2170	2302	26157777417		OPND	$4 \cap D$		SAE	$D A$		OB-BANK_tARGET BANK
2171	2303	37326362254			JMD	MFO3	SPO		UNC	SPO (TARGET EASE) - 0
2172			4							
2173	2304	37176!12177	MDS ${ }_{1}$		INC	SLI	Pus:	ROA		head dst ptr
2174	2305	26302362355		OPND	JSE	DSEG	SPI		UNC.	SPI-TARGET DSEG
2173	2306	16737777777		UBUS	and		SPE			SPR_TARGET DSEG ADOR
2175	2307	31176712177			INC	SL'	pus	ROA		READ DST DTR
2177	2310	26157777417		OPND	$\triangle D D$		Sef	$D \mathrm{H}$		DB-EANK_TARGET GANK
2178	2311	31302302355		RC	JSB	DSEG	SP1		UNC	SPI-SOURCE OSEGH
2179	2312	3532636̈2253		SPZ	JMP	MFO2	SPO		UNC	SPO-TARGET DSEG AODR
2180 2181			*							

35777713777 22617777776 03357777417 03357777417
03767417616 03767417616
22767507762 22777707777 34767507776 37777707777 30767517774 34767507770 30611700000 34766567776 34766567776 30766667774
30766707774

35761600001 26777777316 16777713337
16737777470
34766777776 35766707774

2345	25657777772
2346	26637777771
2347	31177777555
2350	26177727437
2351	25667417773

2237
 2238
 2239 2240
 2241
 2242
 2243
 2244
 2245
 2248
 2247 2248
 2249
 2250
 2251
 2252
 2253
 2256
 2258 2259 2260 2261 2262

2275
 2275 2277
 2277 2278
 2270
 2280
 2281
 2282
 2283 2284
 2284 2285
 2286
 2287
 2289
 2289 2289
 2289 2290 2291
 2292 2293
 229
 2295
 2298
 229
 2298
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 307
 2309
 2310
 2311
 2312
 313 2314
 2314
 2315 2316
 2317
 2318
 319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328

2400	37177777360
2401	02537715777
2402	24337774777
2403	02722221737
2404	37302362705
2405	26777527477
2406	16217757777
2407	25766132711
2410	25213357335

2464	26667777054
2465	01477777777
2466	32767537762
2467	33767527762
2470	37306362527
2471	37127377775
2472	26606192476
2473	22767537772
2474	22767527773
2475	30766123120
2476	37127377775
2477	26637777777
2500	30537537777
2501	$2476312277 n$
2502	37766203117
2503	24501737777

2517	04537767457
2520	30502302672
2521	37731720001
2522	30761410376
2523	37766362762
2524	35766123122
2525	01766003123
2526	37346163067
2527	37731717401
2530	04361400020
2531	37766362762
2532	01766013067
2533	31731714001

*	TRACE	, ABS	, STTV, C		cstV A	AND STOV SYSH	
*	T,A	RDITARGET		SEG*	, SP1<>0,		NFEmA
*		FROM I		/EXIT	ENTER AT		EXIR
*	STTV	RD=SOURCE		SEG\#	, SPI=03		ENTER
*	CSTV	RD $=$ TAREGET		SEGH	, SPlato,		SP2>=0
*	STOV	SPI $=0 \% \mathrm{EN}$		NTER	AT Exil		
		PADD	ADO		SP3	CFl	UNC
EXIn		RD	JSB	STMK	STA		UNC
\cdots							
EXI?			ROM		SP2	1200	
EXIn		RD	ROMN			0376	NZRO
			JMP	SYSH			UNC
		SP2	IMP	CSTV			POS
		SPI	JMP	STTV			ZERO
			JMP	INTS	CTRL		F2
EXI;			ROM		SP?	1174	
		CPX1	ROMN		CTRH	0020	ZERO
			JMP	SYSH			UNC
		SP1	JMP	INT5			NZRO
			ROM		SP2	1140	

```
CF1: SP3 - PARAM:N
SET NEW STTA AND
    STITK IF T,A FROM PCAL
    TRACE LABEL=32,1
SEG# IN RD
SYS HALT IF SEGH<2
JMP IF CSTV (SP1=0)
JMP IF STTV
CTR-U: TRACE IF NOT ABS
ABS &AREL=31,1
CTA_OI SYS HALT IF
CTR_O& SYS HALT IF 
    STOV OR ABS ON ICS
ABS TRAP IF NOT STOV
STOV LABEL_-24.1
```


2546 2547
 2547 2548 2549 2550 2551
 2552
 2553 2554 2555 2556 2556 2557 2558 2559

2616	05355133304
2617	37762271737
2620	37766263117
2621	14355143317
2622	16217754777
2623	37177777126
2624	14721200007
2625	26317447377
2626	37766102623
2627	14762407774
2630	37762142641
2631	37177547146
2632	14173367434
2633	37177757437
2634	24777532777
2635	37766362762
2636	01766000564
2637	20771777777
2640	37766362764
2641	35177777037
2642	37177707057

SFI IF LOCK OR UNLK：

$$
\begin{aligned}
& \text { CTH } 2 \text { OR 3, OR } 4 \text { OR } 5 \\
& \text { MPTY ONE TOS RHG IF PCN }
\end{aligned}
$$

EMPTY ONE TOS RHE IF PCN
PCN，LOCK，JNLK ARE PRV
CTR－1 OR 2：SFI IF UNLK IF PCN TOS＿CPUHI OR 2 ，DONE

HEAD $(x),(x)--1$
SPC． 5 IF CPU ELESE 6
SP1－$-(x)$
KEAD（X）AGAIN IF－ 1
IF UNLK INT OTHER MOUS
REQUESTIVG RESOURCE IF ANY
LOCK；（x）．（x）YR：CPU\＃
UNLK：$(x)-0$, DONE
SYSH IF EXT INTS DISAELED
DONE IF $(X)=0$
ELSE THY LOCK AGAIN
AFTEK INTERRUPT
CRL－OTHER CPUSS MOD：
15 IF CPUH2 ELSE 6）

DISP／PSD日／PSE日
＊REQUEST RE－DISPATCH／DISABLE／ENABLE DISPATCHER
REQUEST RE－DISPATCH／DISABLE／ENABLE DISPATCHER
INITIAL ENTRY AT XCHE；SPZ $=$ PADO $=$ CIK（12：15）
TO ENTER DISPATCHFR，INTERRUHT HANNLER（INTI）USED TO SET UP ICS THEN IXIT PATH（5）FOLLOWEO．

2643 05176714177
264404341600030
264537311177756
$2646 \quad 26137777176$
2647 35766032655
$2650 \quad 01167777155$
$2651 \quad 37171700000$
265226777417737
265314766003024
2654 37777757717
$2655 \quad 00777713377$
$2656 \quad 37177567155$ 265726176757437 $\begin{array}{ll}2660 & 37167047436\end{array}$ 266102167767175 $2662 \quad 26777757717$ 26631676600 ざ762 $\begin{array}{ll}2664 & 15777457737 \\ 2665 & 37766302670\end{array}$ $2665 \quad 37766302670$ $\begin{array}{ll}2666 & 01167777155 \\ 2667 & 37177767437\end{array}$

SECTOR 6

INTERRUPT PRICESSOR
INTERRUPTS DETECTED BY FIRMWARE OPTION TEST ENTER AT IRO OR IR． HARDWARE DETECTEO INTERRUPTS ENTER AT IR（VIA LOC 3）．
FIRMWARE DETECTED BOUNDS VIOLATIONS ENTER AT BNDV WITH CTR＝0．
INTO AND INTI ARE ENTRIES FOR ICS INTERRUPTS；SP2＝LAHEL，SP3＝PARAM，
SP1《＞－1（INTO）OR FI＝0（INT1），FZ＝CLR CONDITION（CTRL，SWAB，CCPX）．
INTI IS ALSO USED RY DISP／PSEB TO CHANGE TO THE ICS．
INTE IS THE ENTRY FOR COLD LOAD（VIA CODE SHARED WITH SYSTEM DUMP）， AND POWER ON（VIA PWR ROUTINE）．
NT4 IS A SHORTCUT ENTRY FOR EXTERNAL INTERRUPTS PENDING
WHEN A PREVIOUS EXTERNAL INTERRIJPT IXITS．
INT＇S AND INTY ARE ENTRIES FOR NON－ICS INTERRUPTS；SPZ＝LABEL，
SP3：PARAM，FI＝O，F2\＃CLR COND：INTT USES PSHA AND STMK THEN INTS．
TRPG，STUN，STOV，DSTV，CSTV，STTV，TRPY，TRPS，4，3，己，1 AND 0
ARE ENTRIES FOR SPECIFIC NON．ICS INTERRUPTS．
THE HALT MODE INTERRUPTS ARE ENTERED VIA HMOD VIA IR（VIA LOC 3）． SYSH IS THE ENTRY FOR SYSTEM HALTS（UETECTEO AY MICRO－CODE）．
PWR IS USED BY PWF AND PON INTERRIJPTS（PON ENTERS VIA LOC 1）．
ENTRY FOR HW DETECTED INTERRUPTS AND INTERRUFTS DETECTEU BY TEST． DETERMINE INTERRUPT TYPE；P－P－I IF ENTEREO AT IRD．
EXIT TO HMOD IF HALTED，WITH SPZ＿CPXZ：
ELSE EXIT TO STOP IF RUN／HALT SW OR NO RUN MODF IVTERRUPTS：
ELSE EXIT TO INTI，INTT OR TPIE WITH APPROPRIATE CONDITIONS，
AND $(Z I+1)$＿CPXZ IF PWF OENDING．

```
8000
```

8000

H

P	ROM		0	177777	
CPX2	JMP	HMOD	SP？		EVEへ
UBUS	JMP	STOP			NEG
CPXI	ROMN		SP3	17770	
UBUS	aOMX			0200	NZRO
	$J M D$	INTI	SP2		UNC
SP3	JMP	STOP	CTRH		ZERO
UBUS	JMP	TRIE			NEG
CTRL	JSA	PWQ	CTRH		000
SP3	REPC	SLI			NEG
UBUS	ADD	SL 1		INCT	NEG
CTRL	ROM		SP1	7771	NZRO
	JMP	INT1．	SPZ		UNC
SP1	ROM			00061	
UBUS	ADO	SWAB	SP2	INCT	
UBUS	$A D D$		SP3	SFit	

P

ENTRY FOR SOME ICS AND NON－ICS INTERRUPTS
ALSO USED AY INTERNAL ICS INTERRUPTS ENTERING ABOVE．
ICS INT \quad SPI＞$=-4$ ，SP2＝LABEL，SP3＝PARAM OR SP3＿MOU\＃
IF SPI：－1，F2＝CLR COND（IN CTR）；
NON－ICS INT：SPI＜－4，SP2＝LABEL，SP3＝PARAM，FZ＝CLR COND，
FImO，EXIT TO INTT IF NON．ICS INTERRUPT．

300106726023143
300 に 16766132760
300304521777700
300416761010200
$3005 \quad 37726363024$ 300625366002760 $3007167661 \$ 1251$ $3010 \quad 14362032742$
301125772132777
301216777532277
301314311417771
$3014 \quad 31726303024$
301501771600610
$3016 \quad 16737776277$

2808
 2809
 2811
 2812
 2813
 2814
 2815
 2817
 2818
 2820
 2821
 2822
 2823
 2824
 2825
 2827
 2828
 2829 2830
 2831
 2832
 2833
 2834 2835
 2836
 2837 2838
 2839
 2840 2841
 2841 2842
 2843
 2844

$3055 \quad 21471600002$ $3056 \quad 35766013067$ $3057 \quad 11537714457$ $3060 \quad 16136772776$
\qquad
306237167377775
306326457717417
$3064 \quad 37157777417$ 306537351600010 306626726363071

3067	37511700000
3070	35766122601
3071	23176777757
3072	25177777437
3073	23476777777
3074	00557777777
3075	37157577017
3076	14777716037

2972		
2973		
2974	3232	37157577017
2975	3233	01137767777
2976	3234	01326223244
2977	3235	01316637777
2978	3236	26537767777
2979	3237	2620630323 ?
2980	3240	01177777777
2981	3241	16116777717
2982	3242	26737777777
2983	3243	01176777777
2984		
2985		
2986		
2987		
2988		
2989		
2990	3244	37107167155
2991	3245	37517777777
2992	3246	37171640000
2993	3247	37177777155
2994	3250	07177710437
2995	3251	31136567155
2998	3252	37771617740
2997	3253	16171600000
2999	3254	37136567155
2999	3255	16776777777
3000	3256	10177777437
3001	3257	37176777155
3002	$326 n$	37131634000
3003		
3004		
3005		
3006		
3097		
3008		
3009	3261	07301600077
3010	3262	16136712156
3011	3263	37177774435
3012	3264	37127377155
3013	3265	37171614000
3014	3266	37167377155
3015	3267	16116777437
3016	3270	01531701000
3017	3271	25337777777
3018	3272	37762301724
3017	3273	37511644000
3020		
3021	3274	24537777777
3022	3275	04777467777
3023	3276	37766303275
3024	3277	25517777777
3025	3300	24777627037

3301	37167377174
3302	11531302000
3303	07763377456
3304	16761400077
3305	37766303272
3306	37762361724
3307	01311600006
3310	26767537776
3311	37766233345

3312 3!5261/3033 3313 2ذ526233341

331401462211744 $3315 \quad 37217777775$ 3316 36217717777 $3317 \quad 26202361744$ 3320 31217777766 332134217717777 332 2 03217777417 3323. 22202361744 3324 21217777777 3325 25202361744 332614211777777 332737217777762 333024202301744 $\begin{array}{ll}3330 & 24202301744 \\ 3331 & 03217777217\end{array}$ $3332 \quad 36202361744$ 333320217777777 333437217777760 333500202301744 $3336 \quad 37731610000$ 3337 3/617777217 $3340 \quad 04657777217$

SP1		CAD		AUS	ROA
	IOA	ROMI		SP3	102000
UBUS	SWCH	XOR			CFI
	UBUS	ROMN			0077 ZERO
		JMP	DMP9		UNC
		JSA	IODA		UNC
	SP1	ROM		SP1	000006
UBUS	OPND	SUE			NEG
		JMP	DMPS		SRN

```
FEAD.I/O PTR IF UMP I~N
FORM RIL CMD
CFI
JMP IF NOT CORRECT DEVICE
SEND RIL TO (CORR) DEVICE
SP1-DEV##4+7
JMP IF ABN END AND DMMP I-N
    (FOLLOWING SBUS=0)
```

EXIT TO CLO LD WITH SP3_O IF NF2;
ELSE SP3_SM, EXIT TO DMP4 IF REC I-N (SRN4).

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SM JMP | INTE | SP3 | NF2 | JMP IF COLD LOAL |
| JMP | SP3 | SRN4 | JMP IF OMP REC $1-N$ | |

PUSH REGS,ETC. INCL DO-5,7 IN TOS,SPO,SP2,OPND, ORG S-BNK (+1)
IN CTR AND ORG SM IN SP3 EXCEPT CPXI,CPX2,DG AND SIZE INTO MEM BEGINNING AT S-BNK,SPI+1=0EV\#\# $4+8$.
PAN (MEM) DIAGS USE LIMP3 AS A SUBR TO FIND MEM SIZE: ENTERING WITH
$S-B N K=0, S R=0$: EXIT (FROM DMP4) WITH SHO-RD +S-BVK=LAST ADDR + I,
(ILL $A D O R$ INT CLEARED), SR_2, SP2,RA-C,CIR MODIFIED. EXIT WITH SPZ-4K, RD_O, RB_CPXI, SR-2, SM_OEV\#\$4+28. DUSH FUSH OPND JSE PSHA PUSH UNC DUMP DU,DS.DT
$\times \quad A D D$ PSHA PUSH
2USH DUSH DU
 Q 400 USH UNC DUMP $Q, S M$ PUSH 177777 DUSH
PSMA PUSH UNC DUMP S-BANK,Z,STA OUSH PB
(CTR=S-BAVK+1)
z
$\begin{array}{lll}\text { CTRL ROM } \\ \text { STA } & \\ \text { ADO } \\ \text { JSE }\end{array}$

| STA | JSE PSHA PUSH | UNC | OUMP S-BANK,Z,STA | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| RRR | ADD | OUSH PB | | |
| OB | JSE PSWA FUSH | UNC | DUMP PF-AANK,PB | |

PL
OUSH
DUSH
PSHA OUSH UNC DUMP P,PL,CIR SP2 01.0000 SP2-4K
OD INSR $\quad K D=O, S R=1$
Q INSR $\quad R B_{-} C P \times 1, S R=2$
FIND MEM STZE: PUSH CPXI,CPXZ,DG AND SIZE INTO MEM GEGINNING AT
S-BNK, SM +1 =DEV\#a4+29; DUMP REC $1 \rightarrow N$ (4K EACH, BEG WITH 0-7777),
ENTER WITM RD=O, $2 H=C P X 1, S R=2, S M \exists D E V \# 4+28, ~ A B S-E N K=0, S-B N K=0$,

SPI $=D E V \# \# 4+7, S P 2=4 K, \quad S P 3=0 R G S M, ~ N I R=1.6$.
DMPB USED TO WRITE REC $1-N$? WRITE $4 K$ AND WRITE ADDR SET AT DEV肘 $+5,6$, $2 H$ SPO BNK AND SM_SP3 BEFORE EACH TRANSFER TO DMPE:
IF ABN I 10 PROGRAM END DMP 3 ENTERS AT DMPS WITH SBUS=0 (SRe0)
TO TERMINATE DMP WITH ADDR + BNK OF REC BEING WRITTEN IN CIR.
EXIT TO WAIT AFTER LAST RECORD, WITH ENVIRONMENT UNCHANGED EXCEPT

3081		
3082	3341	35617417770
3083	3342	03156777617
3084	3343	16137617770
3085	3344	16177777237
3086	3345	17631601200
3067	3346	31777777025
3088	3347	04621620000
3089	3350	31761404003
3090	3351	31766003360
3091	3352	06677707777
3092	3353	3762620761
3093	3354	37157777617
3094	3355	00202301744
3095	3357	31677777215
3096	3369	37766231744
3097	3361	37177777235
3098	3362	37107377154
3099	3363	30177717437
3100	3365	37167377154
3101	33171600000	
3102	366	25466303261

3105
3108
3109
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134

SECTOR ?
OPTIONAL INSTR JMP TABLE
PANEL DIAGNOSTICS: AOUR TEST, REG TEST, I/O TEST MEMORY ADDR TEST

OPTIONAL INSTR JMP TABLE
INSTRS $020400 / 1$ THROUGH $020576 / 7 \mathrm{WHICH} A R E$ IN OPTION GROUPS CONFIGURED AS PRESENT ENTER AT $34, C I R(9: 14)$ FROM OPTX, WITH SR=4 AND PADDECIR(B:15).

```
OPTION GROUP O EFP
```

```
OPTION GROUP O EFP
```

UMP	UNIM		UNC	120	EADD/ESUG	020400/1
JMP	UNIM		UNC	120	EFMP/EDIV	213
JMP	UNIM		UNC	120	ENEG/ECMP	$4 / 5$
JMP	UNIM		UNC	120	TRP 7	$6 / 7$
HOM		a $A R$	010023	130	EAUD/ESU'́s	020410/1
ROM		RAR	$010 \% 43$	130	EMPY/EDIV	213
ROM		RAR	010701	130	ENEG/ECMP	$4 / 5$
ROM		RAF	007777	130	TRP7	$\mathrm{G} / 17$

OPTION GROUP 1 APL

PADD ROMX	RAR	016011
PADD ROMX	RAR	016103
PADD ROMX	HAR	016233
PADD ROMX	LAR	016047
PAOD ROMX	PAR	016367
PADD ROMX	HAR	016477
PAOD ROM	RAR	016737
PADD ROM	PAR	016737

LOV/STV	16031/0	01
NWF V/MWIV	16121/0	213
MBFV/METV	16217/6	$4 / 5$
L.DVE/STVB	16061/0	6/
NiVW/	16.357/6	$020430 / 1$
1	16445/4	$2 /$
1	16773/4	$4 /$
1	16775/6	

206757	$020440 / 1$
06761	$2 / 3$
06763	$4 / 5$
06765	$6 / 7$
06767	$020450 / 1$
06771	$2 / 3$
06773	$4 / 5$
06775	$6 / 1$

3214
3215
3218 3218 3217 3218 3219
3220 3220
3221 3222 3223 3224 3225 3226 3227 3228
3229 3230
$3477 \quad 37777777777$ $3500 \quad 37766357777$

3324
3325
3328
3327
3328
3329
3330
3331
3332
3333
3334
3335
3338
3337
3338
3339
3340
3341
3342
3343
3344
3345
3348
3347
3348
3349
3350
3351
3352
3353
3354

3635	01617777777
3636	10636777777
3637	16656777777
3640	16676777777
3641	16376777777
3642	16156777017
3643	16156777217
3644	16156777417
3645	10156777617
3646	30762303672
3647	31762363672
3650	32762363672
3651	33762303672
3652	01761770077
3653	15777777776
3654	16762303672
3655	01761777774
3656	03777777016
3657	16762363672
3660	01761777774
3661	03777777216
3662	16762363672
3663	01761777774
3664	03777777416
3665	16762303672
3666	01761777774
3667	03777777616
3670	16762363672
3671	37766303530

3672	01163017236
3673	01316707777
3674	37511600200
3675	00167777234
3676	24772377037
3677	37770327777
3700	24777777037
3701	37766362761

	SPI	$A D D$		OD		$20-$	－base	25
	UBUS	INC		PC		HC	＂	26
	UBUS	INC		Re		Re	＂	¢ 7
	UBUS	INC		RA		RA	＂	30
	UBUS	INC		CTRH		CTRH	＂	31
	UBUS	INC	－	SBR	ABS	A－BNK	NK＂	32
	ubus	INC		SER	PB	P－BNK	NK＂	33
	UBUS	INC		SHR		O－BNK	NK＂	34
	UBUS	INC		SER	S	S－ENK	NK＂	35
－${ }^{\text {a }}$								
	RD	JSE	PRGS		UNC	CK St	SuUS RO	
	RC	JSA	PRG5		UNC	CK St	Seus kC	
	RA	JSA	PRG5		UNC	CK Se	Sous R3	
	RA	JSE	PRGS		UNC	CK St	Stus ra	
	SP1	ROMN			170077			
ubus	CTRH	ADD						
	usus	JSB	PRGS		UNC	CK C	CTRH	
	SP1	ROMN			J77774			
ubus	RBR	ADO			ABS			
	UBUS	JS9	PRG5		UNC	CK At	AHS－BNK	
	SP1	ROMN			177774			
UBUS	RBR	AnD			PG			
	UBUS	JSA	PRG5		UNC	CK PB	PB－BNK	
	SPI	ROMN			177774			
UBUS	RER	A．DO			D88			
	UBUS	JSA	PRG5		UNC	CK Le	U⿴囗－ENK	
	SP1	FOMN			177774			
UBUS	RBR	ADO			S			
	UHUS	JSA	PRGS		UHC	CK S	S－hnk	
		JMP	PRG1		UNC	NEXT	T pass	

	SPI	ADD		00		$20-$	－base	25
	UBUS	INC		AC		HC	＇	26
	ubus	INC		Re		Re	＂	¢ 7
	UBUS	INC		RA		RA	＂	30
	UBUS	INC		CTRH		CTRH	H	31
	UBUS	INC	－	SBR	ABS	A－BNK	NK＂	32
	UBUS	INC		SBR	PB	D－BNK	NK＂	33
	UBUS	INC		SHR	$D B$	U－BNK	NK＂	34
	UBUS	INC		SER	S	S－ENK	NK＂	35
＊								
	RD	JSE	PRGS		UNC	CK St	SuUS RO	
	RC	JS ${ }^{\text {a }}$	PRG5		UNC	CK St	Stus kC	
	RE	JSA	PRGS		UNC	CK Se	Sous R3	
	RA	JSE	PRGS		UNC	CK St	Stus ra	
	SP1	ROMN			170077			
UBUS	CTRH	ADD						
	Usus	JSB	PRGS		UNC	CK C	CTRH	
	SP1	ROMN			J77774			
ubus	RBR	ADO			ABS			
	UBUS	JS9	PRG5		UNC	CK At	AGS－BNK	
	SPI	ROMN			177774			
UBUS	RBR	AnD			PG			
	UBUS	JSA	PRG5		UNC	CK PB	PB－BNK	
	SPI	ROMN			177774			
UBUS	RBR	ADO			De			
	UBUS	JSA	PRG5		UNC	CK UB	U日－bNK	
	SP1	FOMN			177774			
UBUS	RBR	ADO			S			
	UHUS	JSA	PRGS		UHC	CK S	S－hnk	
		JMP	PRG1		UNC	NEXT	T pass	

＊

	SPI	ADD		00		$20-$	－base	25
	UBUS	INC		AC		HC	＇	26
	ubus	INC		Re		Re	＂	¢ 7
	UBUS	INC		RA		RA	＂	30
	UBUS	INC		CTRH		CTRH	H	31
	UBUS	INC	－	SBR	ABS	A－BNK	NK＂	32
	UBUS	INC		SBR	PB	D－BNK	NK＂	33
	UBUS	INC		SHR	$D B$	U－BNK	NK＂	34
	UBUS	INC		SER	S	S－ENK	NK＂	35
＊								
	RD	JSE	PRGS		UNC	CK St	SuUS RO	
	RC	JS ${ }^{\text {a }}$	PRG5		UNC	CK St	Stus kC	
	RE	JSA	PRGS		UNC	CK Se	Sous R3	
	RA	JSE	PRGS		UNC	CK St	Stus ra	
	SP1	ROMN			170077			
UBUS	CTRH	ADD						
	Usus	JSB	PRGS		UNC	CK C	CTRH	
	SP1	ROMN			J77774			
ubus	RBR	ADO			ABS			
	UBUS	JS9	PRG5		UNC	CK At	AGS－BNK	
	SPI	ROMN			177774			
UBUS	RBR	AnD			PG			
	UBUS	JSA	PRG5		UNC	CK PB	PB－BNK	
	SPI	ROMN			177774			
UBUS	RBR	ADO			De			
	UBUS	JSA	PRG5		UNC	CK UB	U日－bNK	
	SP1	FOMN			177774			
UBUS	RBR	ADO			S			
	UHUS	JSA	PRGS		UHC	CK S	S－hnk	
		JMP	PRG1		UNC	NEXT	T pass	

170077
UBUS
CTRH ADD
URUS JSB PRGS
SPI ROMN
ubus

UBUS USA PRGF

 SPI ROMNUBUS UBUS JSA PRGS SPI ROMN
UBUS RER ADO UBUS JSA PRGS SP1 ROMN

RG5 SP 1
RBR UBUS JSA PRGS
JMP，PRG1

	SPI	ADD		00		$20-$	－base	25
	UBUS	INC		AC		HC	＇	26
	ubus	INC		Re		Re	＂	¢ 7
	UBUS	INC		RA		RA	＂	30
	UBUS	INC		CTRH		CTRH	H	31
	UBUS	INC	－	SBR	ABS	A－BNK	NK＂	32
	UBUS	INC		SBR	PB	D－BNK	NK＂	33
	UBUS	INC		SHR	$D B$	U－BNK	NK＂	34
	UBUS	INC		SER	S	S－ENK	NK＂	35
＊								
	RD	JSE	PRGS		UNC	CK St	SuUS RO	
	RC	JS ${ }^{\text {a }}$	PRG5		UNC	CK St	Stus kC	
	RE	JSA	PRGS		UNC	CK Se	Sous R3	
	RA	JSE	PRGS		UNC	CK St	Stus ra	
	SP1	ROMN			170077			
UBUS	CTRH	ADO						
	Usus	JSB	PRGS		UNC	CK C	CTRH	
	SP1	ROMN			J77774			
ubus	RBR	ADO			ABS			
	UBUS	JS9	PRG5		UNC	CK At	AGS－BNK	
	SPI	ROMN			177774			
UBUS	RBR	AnD			PG			
	UBUS	JSA	PRG5		UNC	CK PB	PB－BNK	
	SPI	ROMN			177774			
UBUS	RBR	ADO			De			
	UBUS	JSA	PRG5		UNC	CK UB	U日－bNK	
	SP1	FOMN			177774			
UBUS	RBR	ADO			S			
	UHUS	JSA	PRGS		UHC	CK S	S－hnk	
		JMP	PRG1		UNC	NEXT	T pass	

COMPARE REG ON UBUS wITH SP1．IF NO ERROR SPI＿SPI＋1，RFTURN； ELSE PAUSE IIN RUN MODEI WITH CIR＝U日US XOR SPI JNTIL RUNJHALT SWITCH（TEST，STA天x20O），THEN EXIT TO WAIT WITH CIRェERROH＊

PRGe
UBUS
SP1 XOR

hus	NIR NZRO	NIR－bAL EITS
SPI	RS8	IF NO FRR INCR SHI，HETUAN
STA	000200	ELSE STA＿VIR TO CIH K
aUs	NIR	NIR－ERROK
	CCPx	CIR－GAD EITS
	TEST	PAUSE （SPI＝CORRECT UATA）
	copx	CIK．ERROR ${ }^{\text {a }}$
	UNC	EXIT TO WAIT

ANEL I／O TEST
SPI＝2．SEND TIO TO GEVICES 3 THROUGH \＆177：PAUSING（IN RUN MOUE） WITH CIRaDEV OF FIRST RESPONOING DEV UNTIL RUN／HALT SW，THEN WAIT（IN HALT MODE）WITH CIR＝DEV STA UNTIL RN／HLT（TEST，STA＜\＆ZOO）， THEN TEST NEXT DEVI AFTER LAST DEV EXIT TO WAIT WITH CIR＝\％200．

3702	01116777237
3703	37631640201
3704	16777777037

$3704 \quad 16777777037$
370501506062761

3488		
3489		
3490	0777	32312035756
3491	1777	003666!0515
3492	2777	06563506317
3493		
3494		
3495		
3498		
3497		
3498		
3499		
3500		
3501	2373	01526203140
3502	2374	00761410020
3503	2375	14157777417
3504	2376	37766303140
3505	2377	23150104577
3506		
3507		
3508		
3509		
3510		
3511		
3512		
3513	2557	26622302775
3514		
3515	2775	14167777155
3516	2776	37167307437
3517	2774	14762712217
3513		
3519		
3520		
3521		
3522		
3523		
3524		
3525		
3526	1626	37762361764
3527		
3528	1764	01177712174
3529	1765	37766361724
35.30	1776	0.1166364167

700037157777017 700131176777157 700237176777437 700322311200020 $7004 \quad 31277777025$ 700537176777057 $7006 \quad 37177777437$ $7007 \quad 37176777177$ $7010 \quad 37611607777$ 701126757407417 $7012 \quad 30617712777$ $\begin{array}{lll}7013 & 16302771774 \\ 7014 & 0367771416\end{array}$ $7015 \quad 17157777017$

70163763160740 f

701730537777054
$7020 \quad 36116777154$
702134762711031
702234177777437
$7023 \quad 34762701031$
702425343007774
702533326367020

7026	33177777157
7027	34707377457

$7027 \quad 34707377457$

* SECTUR 14

N*\# 2 MEMORY TEST

DMUL/ODIV

NH\#2 MEMORY TEST
INITIALIZATION: ENTRY POINTS AT NQTS ANO NQTI(2).
DB-BNK, DBEFIRST BLOCK, S-BNK,ZwLAST BLOCK.
TEST FOR INTERLEAVED MEMORY, PB-ZWI FLAG;
ABS =BNK, SPI AND RA_STARTING ADDR OF FIRST HLOCK, RD. DELTA ENDING AUDF IN BLOCK, F2_1.

```
6000
```

NQOI SDO SBR ABS ABS-BANK_O
$\begin{array}{ll}\text { SBR ABS } \\ \text { GUS WHA } & \text { ABSFBANK-O } \\ \text { STORE AT ADOR } 1\end{array}$
$\begin{array}{ll}\text { INC } & \text { RUS DATA } \\ \text { DB ROM } & \text { SPI } 000020\end{array}$
SPI 000020

	$D B$	ROMI		SP1	000020
RBUS		$\triangle 00$		aus	CRL
		INC		uUS	CMD
		AOD		nus	DATA
		INC		aus	ROA
		HOM		RD	007777
	OPND	$\triangle \cap D$		$P B$	SF?
	QD	A0D	SL:	RD	
SP1	ubus	CAND	LLZ	SP1	
UBUS	RBR	$A \cap D$	LLZ	RA	OB
	sbus	nod		SBR	nes

SP1-OR(0:3)...
STORE O AT ADDR 1 IN MOD O: IF INTERLEAVEO ADOR $1=1$
ELSE ADDR $1=0$
RD_BLOCK RANGE $(4 K-1)$
PG_2WI FLAG ($0=F, 1=T), S F 2$
HLOCK RANGE_AK-C It 2WI
ABS—BNK, SPI AND RA-STARTING
$A D O R=O B-B N K, U H(0: 2,3), 0$

FILL BLOCK WITH OIS OR 1,S (DL): $\triangle B S-B N K, S H I$ AND RA=STARTING ALIDR, RD=DELTA ENDING AMOR. PB=?WI FLAGI KC_CMFL MCULP, CLR DPK K'S, SPO-FIELD STARTING ADDR, SP3_ENDING ADOR, SR_O, CTR_O, SPI MODIF.

NQ1a
NOI: SPI RD

RC	007406	
SPA	CLSA	
OSPI	WRA	
	CCPX	
BUS	OATA	
	CCPX RSE	
CTRL		ZERA
SPO		UNC

HC_CMPL MCUDF,CLR DPE KIS
SP3-ENOING ADDR, SR_O
FILL BLOCK, EXCEPT STARTING ADDF, WITH 17 EITS OF
0 'S (EVEN PARITY) IF $D L=0$
OR 17 BTS OF I'S IF DL=-1 RET IF SUBRI CTR..O SPU_FIELD STARTING AUDR

TEST BLOCKI MOVING I'S $(P=1)$ THROUGH FIELD OF OIS $(P=0)$.
$O L=0, A B S-B N K, S P O$ AND RA=STARTING ADDR, SP3=ENDING ADDK, RO=DELTA
ENDING ADDR, $P B=2 W I$ FLG, RC=CMPL MCUDP, CLR UPE, $F 2=1, S R=0, C T R=0$. IF ERROR EXIT TO NQBO-3 WITH ABS-RNK, SPO-FIELD ADOR,
RA-TEST ADDR, SPI-BAD DATA BITS, RE.SELECTED CPXI BITS, DL $=0$;
DATA ERRORS ARE DETECTED BEFORE GPXI ERRORS.
ELSE EXIT TO NQ30 WITH SPO-ENDING ADDR, SPI,RA,RB,FI MODIFIED.
NQ17
$\begin{array}{llll}R A & A D D & \text { QUS WRA } \\ D L & C A D & O L & C F I\end{array}$
UNC
CFI: WRITE TEST WORD,
PRESERVING DL IN SPI

3585	7031	00763377013		RA	RBR	XOO			ABS		NIR-TEST AOOR (0:9) + BNK
3546	7032	1416337723 A		ubus	CTRL	XOR		GUS	VIR		(CTR=TEST ADDR(10:15))
3587	7033	37771700103				ROM			1001		
3588	7034	37767315036		usus		CAD	RLI		CCPX		RUN, CLR ILLEGAL ADOR
3589	7035	31777715025		RBUS		ADO	RLI		CCPX		RUN,CLR COU TIMER
3590	7036	37776776025		RBUS		INC	SWAB		$C C P X$		RUN,NIRTOCIR,CLK SPE
3591	7037	31767375031		RC		CAD	RLL		CCPX		CLR APE
3592	7040	31777715037			RC	ADO	RLI		CCPX		CLR UPE
3593	7041	01706137062			SP1	JMP	NQ>3	NL		NEG	OL_SPI: JMP IF FIELU OF 1 ,
3594	7042	37177767175		SPO		$\triangle D O$		mus	ROA	UNC	READ FIRST OIS WURD
3595	7043	36136777175	NQ14	SPO	$P B$	INC		ASPO	ROA		READ O'S NORD
3596	7044	04641637000			CPX1	ROMN		PB	0370		RE_CPX1(2:6), JMP
3597	7045	16766017134			ubus	JMP	NQAO			NZKN	If ERR REAIING 1's
3598	7046	25767777315		SPO	SP3	SUR			HBF		SFI IF NOT END UF BLOCK
3599	7047	33177777177			RA	400		RUS	ROA		HEAD I'S WORD
3600	7050	26306017126			OPND	JMP	NQ83	SP1		NZRO	JMP IF POSS ERR IN OIS DATA
3601	7051	31777715037			RC	ADO	RLZ		CCPx		ELSE CLR EXPECTED DPE
3602	7052	04641411000			CPX1	ROMN		RB	1000	NZRn	IN OIS, RB_CPXI(6),
3603	7053	37766367132				JMP	NQE?			UNC	OTHER ERAS CNT AS LIS
3604	7054	26307017777	NQ1*		OPND	CAD		SP1		NZRO	JMP IF NO ERK IN I'S
3605	7055	37766141043				JMP	NQ 14			F1	ANU NOT END OF ELOCK
3606	7056	01766017133			SP1	JMP	NQ3 1			N $\angle R$ O	JMP IF ERR IN I'S DATA
3607.	7057	04641637000			CPX1	ROMN		RB	0370		RE_CPXI(2:6), JMP IF
3608	7060	10766017134			ubus	JMP	NQ90			NZRO	ERR READING I'S LAST
3609	7061	37766367102				JMP	NQ30			UNC	ENO OF GLOCK
3610			*								
3611			*	TEST	BLOCK	1 mov	VING 0	O. $51 P$	=01	THROUGH	LD OF 1.S ($P=1$).
361?			*	DLE	$1 . ~ A f ~ A ~$	S-BNK	K, SPO	AND	RAIST	ARTING	, SP3afinding ADOR, RD_DELTA
36:3			*	ENDIN	G \triangle OD	R, PB	B=2WI.	RC=	MPL	MCUDP, C	$P E, F 2=1, F 1=0, S R, C T R=0$.
3614			*	If ER	ROR	Exit T	TO NQH	-0-3	ITH	ABS-RNK	_FIELD ADOR,
3615			*	RA.TE	ST AD	ORH, S	SP1_BA	A DA	A Bi	TS, RH.	CTED CPXI EITS, OL= -11
3615			*	DATA	ERROR	S ARE	E DETE	CTED	QEFOR	RE CPXI	ORS.
3617			*	ELSE	SPI,R	A, RB,	,F1 MO	OIFIE			
3618			\bullet								
3619	7062	31177767175	NQ27	SPO		$A D D$		aus	ROA	UNC	LEAD FIRST I'S WORO
3620	7063	36136777175	NQ24	SPO	Pb	INC		QSPO	ROA		HEAD I'S NORO
3621	7064	31777715037			RC	$\triangle D O$	RLI		CCPx		DPE EXPECTEO IN OPS IF NOT
3622	7065	04641411000			CPX1	ROMN		HB	1000	NZRO	STARTING ADOR, RA_CPX1(6)
3623	7066	37766147134				JMP	NQ8)			F1	OTHEF ERRS CNT AS 1.5
3624	7067	25767777315		SPO	SP3	SUA			- 48		SFI IF NOT END UF BLOCK
3625	7070	33177777177			RA	ADD		gus	ROA		READ O'S WURU
3626	7071	26307007777			OPND	$C A D$		SP1		ZERA	
3627	7072	31766367126				MP	Non 3			UNC	JMP IF POSS ERR IN LIS DATA
3623	7073	04641631000			CPX1	ROMN		RB	03700		HB_CPX1(2:6), JMP
3629	7074	1076601713 ?			UBUS	JMP	NQRe			N2RO	IF ERROR READING IIS
3630	7075	26306017133	NQ2s		OPND	JMP	NQR1	spl		NZRO	JMP IF ERP IN O'S UATA
3631	7076	37766147063				JMP	NQ34			F1	JMP IF NOT END OF IBLOCK
36.72	7077	31777715037			RC	$A D D$	RL?		CCPx		RG_CPXI(6), CLR EXPECTED
3633	7100	04641411000			CPX1	HOMN		RE	1000	NZRO	DPE IN REAOING OIS LAST,
3634	7101	37766367134				JMP	NQso			UNC	OTHER ERRS CNT AS 1 I'S
3635			*								
3636	7102	33177777157	NQ3^		RA	ADD		Bus	WRA		RESTORE TEST LOC TO
3637	7103	37762367021				JS8	NQ12			UNC	HACKGROUND FIELD
3638	7104	30327717775		SPO	RD	sus		SPO			RESET FIELD ADDR
3639	7105	25767777313		RA	SP3	SUE			HBF		SFI IF NOT DONE WITH BLOCK

LAB;' RBUS SBUS FUNC SHFT STOR SPEC SKIP

3959		
3960		
3961		
3962		
3963		
3964.		
3965		
3965		
3967		
3968		
3969		
3970		
3971		
3972		
3973		
3974	7473	37431760405
3975	7474	37671607476
3978	7475	37506367532
3977	7476	37436712057
3978	7477	37671607501
3979	7500	37766367545
3980		
3981		
3982		
3983	7501	37431750405
3984	7502	37671607504
3985	7503	3776636753 ?
3986	7504	374367!2777
3987	7505	37671607507
3988	7506	37766367545
3989		
3990		
3991		
3992	7507	37771615545
3993	7510	16602367551
3994		
3995		
3996		
3997	7511	37417777777
3993	7512	37762367573
3999	7513	32617715777
4000	7514	37762367573
4001	7515	32777774777
4002	7516	30616777775
4003	7517	37762367573
4004	7520	32637715777
4005	7521	37762367573
4005	752 ?	32657714777
4007	7523	20177777157
4008	7524	31177777432
4009	7525	20416777777
4010	7526	37507007450
4011	7527	37766367517
4012	7530	35526303033

4068 4069 4070 4071 4073 4074 4075 4075 4075 4077 4078 4079 4079 4080 4080 4081

4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4135
4137
4138
4139
4140
4141
4142
4143
4144
4145
4148
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4137
4159
4159
4160
4161
4162
4133
4164
4165
4168
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4

7643	37171634000
7644	07301600077
7645	25326367672
7646	37537557455
7647	31766367636
7650	01137777141
7651	37171604000
7652	37167377155
7653	37171640000
7654	37136777155
7655	37171600000
7656	37136777155
7657	16177777437
7660	37136777155
7661	37131634000
7662	37176777155
7663	26177777437

7664	01301600077
7665	10136772156
7666	37177774435
7667	37127377155
7670	37171614000
7671	25337777437
7672	37107377155
7673	01531701000
7674	01176777437
7675	37762301724
7676	37511644000
7677	24537777777
7700	04777467777
7701	37766367700
7702	25517777777
7703	24777627037
7704	01177777177
7705	11531302000
7706	07763377774
7707	16761400077
7717	37766367675

		FOM		Rus	034000	IOCW IENO	WITH	INT)	
DDOR	SWCH	ROMN		SP1	000077	SPI-DEV\#,	SAVE	SP3,	FINJSH
	SP3	JMP	DDEA	SPO	UNC	SEEK PR	grams	11 C	JMP)

AFTER EXECUTING SEEK I/O PROGRAMS DDOA AIND DUQB RETURN TO DUMI WITH
 SPOFORG (D4), SQ1=DEVW\&4: SP3_SPO, CFI, EXIT TO DOOB IF FI WAS ON

 CREATE SECOND PART OF WRITE I/O PROGRAM, BEGINNINS AT$A B S=B N K, S P 1+3=$ DFV\#44+3: CTRL WRT, WRT $4 K$ FROM DK, ENO W/ INT SRE4; ORG (DA) RESTOPED FROM OPND, RH SPO_O.

DDM;

4178
 4179
 4180
 4181
 4182
 4183
 4184 4185
 4185 4188
 4188 4187
 4188
 4189 4190

$711 \quad 37762301724$
 $7712 \quad 23526157646$
 771301311600007
 771426767537776
 771537766237751
 771637766237745

$7717 \quad 01462211744$
772037217777775
7721 3ち217777777
772213202301744
7723 37217777766
$\begin{array}{ll}7723 & 37217777766 \\ 7724 & 34217777777\end{array}$
$\begin{array}{ll}7724 & 34217777777 \\ 7725 & 03217777417\end{array}$
$\begin{array}{ll}7725 & 03217777417 \\ 7726 & 22202301744\end{array}$
7727 21217777777
$7730 \quad 25202301744$
7731 14211777777
$7732 \quad 37217777762$
$7733 \quad 24202301744$
$7734 \quad 03217777217$
$7735 \quad 36202361744$
$\begin{array}{ll}7736 & 20217777777 \\ 7737 & 31217777760\end{array}$
$7740 \quad 00202301744$
$7741 \quad 37731610000$
$7742 \quad 37617777217$
774304657747217

7745	36617417770
7746	03156777617
7747	16137617770
7750	10177777237
7751	17631601200
7757	37777777025
7753	04621620000
7754	31761404003
7755	31766007764

SP3 SM: JME IF SEEK PROGS SPl-UEV\#\#4+7
JMP IF ABV END AND DMP $1-N$
\FOLLOWING SBUS=0)

PUSH REGS,ETC. INCL DO-5,7 IN TOS,SPO,SP2,PCLK, ORG S=ANK(+1)
IN CTR AND ORG. SM IN SP3 EXCEPT CPXI, CFXZ,DG AND SIZE INTO
MEM BEGINNING AT S $-B N K, S P 1+1=D E V * * 4+8$ 。 S-GNK, SM+1=DEV\#\#4+?9; DUMP REC I-N (4K EACM, BEG WITH U-T777). SPI =DEV*44*7, SP2=4K, SP3=ORG SM, NIK=136.
DOMB USED TO WRITE REC I-N: WRITE $4 K$ AND WFITE ADDR SET AT
 O
EXIT TO WAIT AFTER LAST RECORD, WITH ENVIRONMENT UNCHANGED EXCEPT (DEV\#\#4) THROUGH (DEV\#\#4+32), CIR=LAST $A O O R+1$ + S-BNK= $3 N K$.
$\stackrel{\square}{\square}$

JMP If NOT ILLEGAL ADUH

COMMENTS

```
PAGE R3
```

```
AC12 0044 < = 0074
```

AC12 0044 < = 0074
AC13 0050< < 0057
AC13 0050< < 0057
AC14 0055 < = 0047 0141
AC14 0055 < = 0047 0141
ACID 0043
ACID 0043
ACIP 0060
ACIP 0060
AC1S 0042
AC1S 0042
AC2D 0104
AC2D 0104
ACEP 0114
ACEP 0114
AC2S 0103
AC2S 0103
AC3D 0126
AC3D 0126
AC35 0125
AC35 0125
AC4D 0154
AC4D 0154
AC4S 0153
AC4S 0153
AC5D OL65
AC5D OL65
ACSS 0165
ACSS 0165
ADAX 0605
ADAX 0605
40日x 0611
40日x 0611
ADO 0612
ADO 0612
ADOI 0760
ADOI 0760
AODM 0075
AODM 0075
ADOS 1553
ADOS 1553
ADXA 0603
ADXA 0603
AOXB 0607
AOXB 0607
ADXI 0754
ADXI 0754
AINC 0070
AINC 0070
ALS1 0226 < = 0255
ALS1 0226 < = 0255
ALS2 0253 < = 0233
ALS2 0253 < = 0233
ALS3 0256<< 0230

```
ALS3 0256<< 0230
```

```
ALSE 0222
AND 0033
ANDI 0757
ASaK 1716 < % 1617 1630 1641 1653 1&60 1664 1670
AT10 3712 <2 3731 3751
ATS1 3716 <% 3777
ATS2 3727 < 3742
AT33 3742<3 3775
AT$4 3747 < 3776
ATS5 3757 <= 7140
ATS6 3762< = 3710
ATST 3766<\approx 3756
AT58 3771 <= 3735
ATST 3777 < 3525
BCC1 0422<0 0402
BCC2 0424< < 0436 0441 0444 0446 0451 0454 0457 0462 0465 0470 0500 0517
BCC3 0427 < = 0433
8cc4 0432<m 0411
BCY 0445
BNCY 0443
BND2 1752** 1451
BNDC 1751 < 1533 1541 1557 2452
BNDV 3013 < 2131 2220 2446
BNOV 0440
BOV 0434
8RO 0401
BRE 0464
8RO 0467
```

```
PAGE E5
BRP 0412
BRPR \(0414<=0421\)
BRS 0400
BTST 1262
CAB 0577
CIO 1660
CLAC 2711 < 2407 244」 5112
CLAB \(2705 \leqslant 24043110\)
CLO1 7517 < 7527
CND 1670
CNP 0625
CMPO \(2132<2065\)
CMPB \(2135 \leqslant 22155\)
CMPI 0537
CMPM 0004
COLD 3206 < 3154
CPRB 0472
CPRS 2765 \(=00022751\)
CSTV 3122 < \(2524 \quad 2117\)
D031 2202 < 20012024 2071 2135 2, 60 2207 2229
D03S 2201 < 21252215
D05S \(2206<224422642276\)
DABZ 0461
DADD 0620
D日8C 2321 < \(2030 \quad 2033 \quad 20522064\) 2,67
OAWC 2313 < 2016 2020
```



```
DCLO \(7473<=7773\)
```

DCLD	7773	< $=$	3230	
DCM2	0636	<	1203	1206
DCMP	0634			
DDOA	7617			
0008	7636	<	7647	
DOOC	7644	<	7635	
DD8A	7672	< $=$	7645	
DOEL	0644	<	2204	
D012	7373	<	7345	
0013	7342	<	7300	
DOI 4	7333	< $=$	7317	7326
DOI5	7355	<	7341	
DOI6	7362	<	7355	
DOI7	7364	$\leqslant=$	7361	
DOI 8	7370	<	7364	
DOIV	7300	<	7235	
DDM 1	7646	<	7712	
DDM4	7745	< 8	7716	7764
DDMS	7751	< $=$	7715	
DOM6	7764	<	7755	
DDME	7664	< $=$	7772	
DDM9	7675	<	7710	
DDMP	7601	<	7774	
DDUP	0753			-
DECA	0555			
DECB	0557			
DECX	0553			
OEL	0645	<	0220	

```
OCLD 7773 <= 3230
DCM2 0636 < = 1203 1206
DCMP 0634
ODOA 7617
ODOB 7636 < % 7647
DOOC 7644 <s 7635
DD8A 7672 < }764
DOEL 0644 < = 2204
DOI2 7373 <E 7345
DO13 7342 < 7300
DOI4 7333 < = 7317 7326
DDI5 7355 <= 7341
DOI6 7362 << 7355
ODI7 7364 <= 7361
DDI8 7370 <= 7364
ODIV 7300 < = 7235
DDM1 7646<%.7712
ODM4 7745 < = 7716 7764
DDM5 7751 < % 7715
DOM6 7764 <* 7755
DDME 7664 < = 7772
DDM9 7675 < % 7710
DDMP 7601 <E 7774
DDUP 0763
0555
OECB 0557
DEL 0645 <a. 0220
```



```
DNEO 0630
DPF 1412 ce 1406
OPL9 7603 < 7606
DSEG 2355 < = 2247 2305 2311
0302 2372 < 2367
OSp2 2653 <= 267n
DSTV 3121 <E 2361 2362
DSUR 0624
DTST 0560 < 0714 1242 1246
DUM" 3221 <2 3152 3206
DUP 0761
DVL2 0732 < 0723 0726
OVNR 1651 < < 1622 1635 1645
0x82 0453
DXCH 0574
DZR2 0772 <= 0757
0ZRO. 0767
Ex10 2522 <= 2723
Ex11 2527 <a 1743 1752 2416 2440
EXF 1407
EXIO-2455 <5 2460
EXII 2463 <2 2600
EXI2 2471
EXI3 2476<日 2472
ExI8 2520 <= 3107
EXI9 2521 <* 2711
EXIT 2456
ExSW 3203 < = 3164
```

FADI	1011	<	1006		
FAD4	1031	< $=$	1025		
FADD	1001				
FCMP	1201				
Foiv	1110				
Fove	1143	<	1136		
Fov3	1163	\leqslant	1151		
POzR	1166	<	1112		
Fixe	1242	\leqslant	1236	1237	1254
Fix4	124.7	<	1231		
FIXR	1223				
FIXT	1222				
Flet	1207				
fmpy	1.060				
FNEG	1175				
fnge	1200	<	1040	1214	1233
FOV	1056	< $=$	1053		
Fsub	1000				
OSCB	2217	<	2173	2212	
halt	2757		.		
HMOD	3143	<	3001		
IABZ	0456				
IDMZ	0015	\ll	0011		
IdMY	0011				
INCA	0554				
INCB	0556				
Incx	0552				
INTO	3020	<	2534		

INTE $3033<2754 \quad 3312 \quad 1530$
INT3 3045 <a 3036

```
INTI 3024 <n 2653 3005 5014
```

INTI 3024 <n 2653 3005 5014
INT4 305S <E 2551 3040 \044
INT4 305S <E 2551 3040 \044
INTS 3067 <m 2526 2532 3056 3114 3;42
INTS 3067 <m 2526 2532 3056 3114 3;42
INT6 3071 <% 3060
INT6 3071 <% 3060
INT7 3140 < 2373 3023 \126 2373 2,76
INT7 3140 < 2373 3023 \126 2373 2,76
IOPA 1724 < = 1621 1026 1633 1637 10;43 1656 1666 2550
IOPA 1724 < = 1621 1026 1633 1637 10;43 1656 1666 2550
IOPD 1723 <= 1647 1662 1712
IOPD 1723 <= 1647 1662 1712
IR 3001 < < 0003 2771
IR 3001 < < 0003 2771
IFO 3000 <a 1603 2023 <073 2126 2,36 2225 2265
IFO 3000 <a 1603 2023 <073 2126 2,36 2225 2265
IX2A 2775 < = 2557
IX2A 2775 < = 2557
IXBZ 0450
IXBZ 0450
IXII 2552 < = 2546
IXII 2552 < = 2546
IXI2 2554 < 2542 2611
IXI2 2554 < 2542 2611
IXI3 2572 <= 2553 2006 2612
IXI3 2572 <= 2553 2006 2612
1X14 2575 <2, 2615
1X14 2575 <2, 2615
IXI6 2601 < 2552 3070
IXI6 2601 < 2552 3070
IXIT 2535
IXIT 2535
4200 6757 < = 3420
4200 6757 < = 3420
L202 6761 <% 3421
L202 6761 <% 3421
4204 6763 <% 3422
4204 6763 <% 3422
L206 6765 <= 3423
L206 6765 <= 3423
4210 6767 < 3424
4210 6767 < 3424
L212 6771 <a 3425
L212 6771 <a 3425
L214 6773 < = 3426
L214 6773 < = 3426
4216 6775 <E 3427
4216 6775 <E 3427
LADD.0647

```
LADD.0647
```

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline LADR & 3167 & < & 3160 & & \\
\hline LCK1 & 2623 & < \({ }^{\text {I }}\) & 2626 & & \\
\hline LCK2 & 2641 & < \(=\) & 2630 & & \\
\hline LCMP & 0642 & & & & \\
\hline LDG & 0236 & & & & \\
\hline LOO & 0142 & & & & \\
\hline LOD2 & 0150 & \(\leqslant E\) & 0306 & 0334 & 0766 \\
\hline LDI & 0751 & & & & \\
\hline LOIV & 0663 & & & & \\
\hline LOPB & 0277 & & & & \\
\hline Lova & 0674 & < & 0666 & & \\
\hline LDX & 0021 & & & & \\
\hline LOXA & 0601 & & & & \\
\hline LOXB & 0606 & & & & \\
\hline LOXI & 0753 & & & & \\
\hline LLBL & 2400 & & & & \\
\hline LLS 1 & 1574 & \(<{ }^{\text {c }}\) & 1605 & & \\
\hline LLSH & 1570 & & & & \\
\hline LMEM & 3171 & < & 3161 & & \\
\hline LMPY & 0655 & & . & & \\
\hline LOAD & 0101 & & & & \\
\hline LRA & 0123 & & & & \\
\hline LREG & 3166 & < & 3256 & & \\
\hline LSAS & 0335 & < \(=\) & 0325 & & \\
\hline LSA6 & 0344 & < & 0337 & & \\
\hline LSAB & 0323 & & & & \\
\hline LST & 0347 & & & & \\
\hline Lsue & 0650 & & & & \\
\hline
\end{tabular}
```

```
MAB1 2301
MABS 2266
MB10 2066 <= 2045
Mg2O 2070 < = 2123
ME21 2110 < 2127
MB22 2111 < = 2100
MB24 2124 <= 2106 2110
MB26 2127 <" 2107
MOS 2267
MDSI 2304 < 2300
MFD2 2253 <= 2312
MFD.3 2254 <a 2303
MFOS 2252
MFTD 2240 <m 2163
MFY 0704
MPYI 0701
MFYL 0705
MPYM 0702
MTB2 0512 <a 0532 0536
MT84 0520}<=0511 053
MTE6 0523 < = 0505
MTEI 0502
MTDE 226.3 <E 2257
MTOS 2260 < 225%
Mve3 2063 < = 2053
Mves 2065 < 2050
MVBD 2046
MVBL 2226 < 2275
```

```PABE
MVBP 2047
Mvaw 2025
MVW1 2003 <% 2051
MVW2 2016 <= 2007
MVW3 2020 <E 2015
MVW4 2021 <a 2231
MVWS 2023 < 2237
MVWD 2000
MVWP 2001
MVWS 2353 <# 202? 2235 2255 2262
MWIL 2345 < 2354
MZRO 3207
MZR1 3210
MZR2 3213 < = 3215 3^17
NEO 0614
NOP 0564<= 2636
NORM 1041 < = 1107 1165 1221
NOT 0654
NQO1 7000 < 7125
NQ10 7016 <z 7117
NQL1 7020 < = 7025
NG12 7021 <* 7030 7103
NG13 7026 < 7107
NO14 7043 <# 7055
NO15 7054 <% 7127
NO23 7062 < = 7041
NQ24 7063 < = 7076
NQ25 7075 < 7130
```

```
N630 7102 < % 7061
```

N630 7102 < % 7061
NO40 7110 <% 7155
NO40 7110 <% 7155
NQ41 7125 <x 7156
NQ41 7125 <x 7156
NO8O 7134 <= 7045 7060 !066 7101
NO8O 7134 <= 7045 7060 !066 7101
NGA1 7133 < % 7056 7075
NGA1 7133 < % 7056 7075
NG82 7132 < = 7053 7074
NG82 7132 < = 7053 7074
NO83 7126 <E 7050 7U72
NO83 7126 <E 7050 7U72
N085 7145 <= 7124
N085 7145 <= 7124
NQ36 7157 < = 7142 7143 1144 7145 7,50
NQ36 7157 < = 7142 7143 1144 7145 7,50
NQ87 7167 <= 7141 7162
NQ87 7167 <= 7141 7162
NOgS 7170 < = 7152 7154 7201
NOgS 7170 < = 7152 7154 7201
N689 7163 <a }717
N689 7163 <a }717
NQ90 7171 <= 7173
NQ90 7171 <= 7173
NOT1 7775 <m 3526
NOT1 7775 <m 3526
NOT2 7123 < 7775
NOT2 7123 < 7775
NGTS 7121
NGTS 7121
OPTX 1613
OPTX 1613
OR 0023
OR 0023
OR1 0755
OR1 0755
PANT 3520 <= 3225
PANT 3520 <= 3225
PAUS 2764 <m 264n
PAUS 2764 <m 264n
PCAL 2412
PCAL 2412
PCLO 2433 < = 241?
PCLO 2433 < = 241?
PCl.1 2417 <= 2437
PCl.1 2417 <= 2437
PCLZ 2441 < = 2417
PCLZ 2441 < = 2417
PCL3 3077 <= 2421
PCL3 3077 <= 2421
PCL5 2422 < = 2443 2516 5115 3116
PCL5 2422 < = 2443 2516 5115 3116
PCL6 2423 <\# 2511

```
PCL6 2423 <# 2511
```

```
PCN 2616 <= 2535
PLSA 0307
PRO1 3530 < = 3671
```



```
PRGT 3527 <E 352n
PSD2 2670 <= 2665
PSDE 2655 < 2647
PSH2 1470 <m 1474
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PSWA & 1744 & < & 1446 & 1461 & - 1464 & \(1 \rightarrow 42\) & 154 & 1555 & 1747 & 2414 & 2435 & 2450 & 2455 & 2766 & 3024 & 3140 & 3314 & 3317 & 3323 & 332.5 & \(333 \%\) \\
\hline & & & 3332 & 3335 & 3355 & 3357 & 7717 & 7722 & 7726 & 7730 & 7733 & 7735 & 7740 & 7761 & 776.3 & & & & & & \\
\hline PSHM & 1737 & < & 0101 & 0123 & 0144 & 0146 & \(0 \div 36\) & 0302 & 0304 & 0315 & 0326 & 0330 & 0344 & 0356 & 0524 & 0601 & 0702 & 0751 & 0761 & 0163 & 0765 \\
\hline & & & 0770 & 0771 & 0773 & 121 & \(1 a 1\) & 1631 & 165 & 1654 & 170 & 2002 & 2025 & 2027 & 2047 & 2) 64 & 2166 & 2227 & 2403 & 2617 & \\
\hline
\end{tabular}
PSHR 1446
PSTA 0317 < 0314
```



```
PUL8 3232 <\pi, 3237
PWa 2755 <= 2427
PWR 2742<= 0001 3010$143
QALRR }133
QLRE 1345 < 1355
QLR3 1346 < = 1340
QLR5 1353 <= 1341
REC1 7575
REC2 }756
RECV 7573 <= 7512 7514 !517 7521 7=76
RIO 1630
RMSK 1701
```

```
RSW 1611 <x 1570
SCAL 2411
SCAN 1422
SCN2 1430 <a 1420
scu 2161
scul 2212 < 2 2172 2216
Scw 2162
SCw1 2173 <= 2175
SED 1674
SEN1 }755
SENE 7561 < = 7564
SEN3 }756
SEN4 7571
SEN5 7552 <# 7571
SEN6 }755
SEND 7551 <= 751n
SET1 1507 < = 1500
SET2 1515<= 1512
SET3 1526 < < 1505
SET4 1535 < 153%
SETS 1536 <% 1543
SETR 1476
SHDL 1270
SFDR 1276
SHFL 1263
SHFR 1255
SIiv 1664
SING 3202<= 3151 3163
```

```
PAGE 97
```

```
SIO 1617
```

SIO 1617
SIO2 1764<= 1626
SIO2 1764<= 1626
SMSK 1706
SMSK 1706
SRP1 0034
SRP1 0034
SRPR 0030
SRPR 0030
SRP3 0024
SRP3 0024
SRP4 0020
SRP4 0020
SSEG 2712 < 2512 3103
SSEG 2712 < 2512 3103
SST 0360
SST 0360
STAX 0604
STAX 0604
STB 0242<0 0235
STB 0242<0 0235
STBX 0610
STBX 0610
STD 0200
STD 0200
STMK 2672 <= 2420 2520 3025 3141
STMK 2672 <= 2420 2520 3025 3141
STOP 2760 < = 3002 3006 S165
STOP 2760 < = 3002 3006 S165
STOR 0211 < = 0205
STOR 0211 < = 0205
STH2 0221 < % 0247 0317
STH2 0221 < % 0247 0317
STTV 3123 < 2525
STTV 3123 < 2525
STUN 3120 <= 0037 1734 1754 2475
STUN 3120 <= 0037 1734 1754 2475
Sua 0613
Sua 0613
SUBS 1552
SUBS 1552
SXIT 2444
SXIT 2444
SYSH 2762 < 1730 2523 2531 2635 2\&63 7543
SYSH 2762 < 1730 2523 2531 2635 2\&63 7543
PAS2 1313 <E 1306 1322
PAS2 1313 <E 1306 1322
TASL 1304< < 1317
TASL 1304< < 1317
TASR 1317
TASR 1317
TBC 1440 <n 1432 1434 1436
TBC 1440 <n 1432 1434 1436
TCBC 1436

```
TCBC 1436
```

```
TCIO 7545 < = 750n 7500 !560 7570
TEST 1261
TIO 1653
T10A 7540 < = 755,
TIOD 7537 <= 7546
TAS2 133n <= 1324
TNSL 1323
TR1F 1251 < = 3007
TRAC 1432
TRIO 7531 < 760n
TRPO 3134
TRO1 3133 <= 125%
TRPR 3132 <E }105
TRP3 3131 <* 1057
TRP4 3130 < = 0542 0664 0733 7342
TRP5 3127 < = 1170
```



```
TAP7 3124 < = 0000
TRWl 7533 < < 7535
TSuC 1434
TSC1 0274 <= 0313
TSCK 0272 < = 0055 0111 0132 0147 0,61 0174 0206 0217 0257 0407
TTIO 7547<= 756% 7574
TW1O 7532 < = 7475 7b03 !555
UANS 1171 < = 1011 1023 1062 1113
UNIM 7777 < < 1613 3400 3401 3402 3403 3500
UNPK 1012 < = 1063 1115
WAIT 2761 < = 3170 3201 3353 3550 3701 3705 3716 7757
```

PAGE 99	
WIO	1641
XAX	0566
XEX	0570
XCH	0572
XCHD	1544
XEQ	1561
XOR	0027
XORI	0756
ZERZ	0774
ZERO	0773
ZROB	0640
ZROX	0775

	0017	1754	MKEG	0003	3	PADO	0004	17	PL	0000	18	RA	OC13	56	RB	0012	43
Reus	0005	23	RC	0011	27	RD	0010	41	SPO	0015	145	SP1	0014	71	SR	0001	27
UBus	0016	110	x	0006	35	XC	0007	29	z	0002	16						

<<<<<<<<<<SAUS>>>>>>>>>>

	0037	747	cc	0027	2	C18	0000	3 n	CPx 1	0004	26	CPx 2	0006	8	CTRH	0015	11
CTAL	0014	35	Oם	0022	42	DL	0034	34	IOA	0012	3	100	0012	5	MOD	0005	a
OPND	0026	133	p	0020	19	PADD	0002	88	Pb	0036	27	PCLK	0013	3	Q	$00<1$	18
ODWN	0010	2	RA	0033	150	RB	0032	107	RB'	0003	45	RC	0031	53	RO	00\$0	77
Seus	0017	19	Sm	0023	53	SP1	0001	145	SP2	n035	87	$5{ }^{\text {P3 }}$	0025	119	STA	0024	30
SWCH	0007	14	uous	0016	266												

400	0037	801	AUDO	0033	9	ANO	0007	17	BNOT	0015	43	CAD	0016	123	CADU	001 L	9
Cand	0005	7	CRS	0032	21	CTSU	0027	4	ctss	0034	2	DCAD	0036	0	UVSE	0010	10
ING	0035	163	INCO	0031	8	IOR	0026	34	JMD	0014	398	JSE	0004	219	MPAD	0030	12
PNe,	0020	- 4	PNLS	0021	1	GASL	0000	\checkmark	QASR	0001	6	REPC	0024	28	REPN	0025	23
ROH	0023	188	ROMI	0022	27	ROMN	0003	70	ROMX	0002	10	Sus	0017	111	SUBO	0013	5
Ubit	0011	10	XOR	0006	37												

	0037	962	BSPO	0005	57	BSP1	0004	28	Bus	0007	217	CTRH	0017	16	CTRL	0016	47
DB	0022	7	DL	0034	11	IOA	0001	k	IO.	0002	6	MREG	0003	4	p	0020	20
PB	0036	4	PCLK	0000	3	PL.	0011	4	PUSH	0010	85	0	0021	19	Qup	0013	5
RA	0033	103	RAR	0027	47	R6	0032	106	RC	0031	41	RO	0030	54	SGR	0006	54
SM	0023	22	SPO	0015	65	SPI	0014	154	SP 2	0035	93	S03	0025	111	STA	$00<4$	22
X	0026	27	2	0012	6												

	0037	781	BIT6	0005	12	BIT8	0006	15	CRRY	0010	19	CTRM	0033	55	EVEN	0002	$=1$
F1	0014	34	F2	0016	25	F3	0034	14	INOR	0024	6	JLUI	0031	17	NCRY	0011	43
NEG	0013	50	NEXT	0035	159	NFI	nols	33	NF 2	0017	17	NOFL	0007	8	NPRV	0020	28
NSME	0004	8	NZRO	0001	81	000	0003	12	POS	0012	47	RSR	0030	46	SR4	0022	29
SRL2	0025	4	SRL3	0027	10	SRN4	0023	11	SRNZ	0021	22	SRZ	0020	16	TEST	0032	12
UNC	0036	407	ZERO	0000	78							-					

	0037	1267	CCA	0036	42	CCB	0000	5	cce	0035	12	cco	0034	8	CCL	0033	6
Ccpx	0001	28	CCRY	0025	7	ccz	0032	9	CFI	0022	26	CF 2	0021	14	CF 3	0007	2
CLIA	0016	11	CLO	0031	12	CLSR	0002	16	CTF	0006	23	DCSR	0011	15	FHB	0015	5
Hef	0014	20	INCN	0012	9	INCT	0013	63	INSR	0010	16	Lef	0017	9	POP	$00<7$	36
POPA	0026	24	SCRY	0024	5	SDF゙G	0005	1	SF1	0023	21	SF 2	0020	15	SF3	0003	9

ABS	0000	. 34	CHD	0002	3	CRL	0001	3	DATA	0021	45	08	0020	30	OPOP	0022	8
NIT	0011	15	OPND	0031	11	PE	0010	8	RND	0024	0	RNP	0014	5	RNS	0034	3
ROA	0007	53	ROD	0027	18	ROND	0023	0	RONP	0013	2	RONS	00.33	0	ROP	0017	9
ROS	0037	31	ROSA	0005	1	ROSO	.0025	0	S	0030	23	WFA	0006	54	WRD	0026	7
WRS	0036	11															

$\langle\lll \lll \ll S H I F T\rangle \ggg \ggg\rangle$

HP 3000 SERIES II COMPUTER SYSTEM

EXTENDED

INSTRUCTION
SET
(EIS)
$0023 \quad 22117777573$
002423662360770 0 On25 01765777773 $0026 \quad 01136777577$ 0027 26617777777 $0030 \quad 34766777774$
$0031 \quad 29637777771$
ก032 16765707773
003322117777572
$\begin{array}{ll}0033 & 2211777757 ? \\ 0034 & 25537777777\end{array}$
$\begin{array}{ll}0034 & 25537777777 \\ 0035 & 34766779771\end{array}$
0036 34766777774
003701766707773
$0040 \quad 01176777577$
$0941 \quad 26657777317$
に012 02777427777
$\begin{array}{ll}0043 & 30611700010 \\ n 044 & 30737777337\end{array}$
0044 30737777337
$0045 \quad 01117777561$
$\begin{array}{ll}0047 & 35767117152\end{array}$
$0050 \quad 25757407153$
$0051 \quad 37777777077$
$0057 \quad 37167377574$
005326677557777
$0054 \quad 32725360057$
005516537777777
$0055 \quad 16537777777$
$\begin{array}{ll}0.56 & 25737777777 \\ 0057 & 37116777575\end{array}$
$0060 \quad 26337777777$
0061 3076.3177632
006237777777417
0063 01176777577
006426306340067
0065 167674171ヶ5
$0065 \quad 26767777153$
$0067 \quad 23176777$ 757
$0070 \quad 31177777437$

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
130
131
172
133
174
185
186
197
188
139
190
191
192
193
194
1906
195
196
196
197
198
199
200
201
202
203

0200	15767777770
0201	32657777336
0202	17735372305
0203	37127377555
0204	25177777437
0205	25633377051
0206	37177377555
0207	32177777437
0210	35766030214
0211	35773007471
0212	37777757777
0213	32726340740

$0714 \quad 24357771777$ $0215 \quad 16777572776$ 021622207777775
021714531550010
$0220 \quad 16536777777$ $0271 \quad 37571603134$

RD	CTRH	SUR				
URUS	R ${ }^{\text {a }}$	＾DI）		PR	FHR	
RHIS	SPIIS	CRS	St 1	SF？	HRF	
SDO		CAD		RSPO	WPD	
	Sp 3	ADD		nus	D＾ta	
FC	SP3	TOP		PC．	Cisp	
SPO		can		RSOO	wRT	
	RH	$A D N$		RUS	DATA	
	SP2	JMP	EFOV			กñ
RC	SP？	［0］			SF゙ 1	7．E．RT
		\triangle DD				NEXT
	R ${ }^{\text {d }}$	JMP	E．CPa	$\leqslant{ }^{\text {P2 }}$		F3

```
EXP \(=\mathrm{FXP}+-\mathrm{NORM}\) SHTFT CNT
PACK SGN AND EXP［MTO W
SP2＿CSI（ABS（N1）），SFT TF
POSS UNFF．
STHRE W2
RC－W4 TOR W3 I IRR W2，SR＿n
SPO＿V DB RFL ADDR
STORF：W1
JMP IF UN（F1）／IVVFI．
POSS TNFL IF ARS \((W)=0\)
FILSE DINF：
IMP，CCA TF ARS（V C\()=0\) AND
\(A B S(N)=0\) IS \(\cap K\)（ 2 C JMP）
```

$*$
$*$
$*$
$*$
$*$
$*$
$*$
$*$
$*$
$*$
$*$

ADI／SUH	FXP OVFI：	1000			UNFI：	0000	（ $W=0$ ）	T0	1711
MPY		1000	T0	1377		0000	（ $W=0$ ）	To	1400
OIV		1000	TO	1377		0000	（ $w=0$ ）	TO	1400

OVFT：F1＝0，PAPA＂＿R1C UNFI：F1＝1，PARAM＿＊11 FO7R（EFV1）：
THIIS＝STA，$F 1=0$ CTF＝？，PAPAM O12：SPO＝iv ABS ADDR，SR＜4．
EXIT TA TRUO WTTH SP3＿PARAM ANC IF TRAPS F：AMLFD TOS＿W DR PEL BONR．
TRFO SFTS IP INTFFPUPT 1,25 TF TPAFS ENARLFD EIISF SOV，NEXT
＊ H FOV

	STA	ADD	I．T．Z	CTPT，		
ursus	Jras	ADD	SI． 1			Pas
SPC	DH	SHR		Filsh		
	CTRI	HO		SF3	0010	NF1
	Unils	TNO		PF3		
		FiT，		PAR	TPPO	

CTR＿？
$\therefore T A(?)=1 ?(T R A P S$ FNARLFD）
YFES TUS＿N DR RESI ADTIK

+1 IF FI
トイT＇T TOTRPO

HAR1：F1，fPNT＝NSRN，FXP，RH，SD3，SP1（SE2，SPO TF NF3），RA＝W1［F］－4， SK＝3，NVFI CTF：EXIT IANT 4ITHF1，RD，RH，SP3，SP1，RA＿W，F3＿1．

HAN？：F1，RW，RK，Sr3，SFI，RA＝W，F3＝1，SR＝3，JVFT，CI，R； EXIT TO RACK UTTH OPNI＿N ARS ADDR，CTR＿O．

RET，RH＿O IF SP1，SH3＜＞0
RD＿0，7AN2 IF F3
ELSE IJAN1：RP＿N1F
PD＿WFXP，JMP IF SP3，SP1 OK
SPコーSPの＝N3．SF3

PR＿O，CF1
SP3－0，SF3
SP1

READ N ARS ADDR FROM $S M+$
CTR＿O；PACK AND STORF：N

$0302 \quad 0153777.7077$ 030325772607717
030416774333273
030517557517766
$0306 \quad 03156777017$
$\begin{array}{ll}0306 & 03156777017 \\ 0307 & 37167377575\end{array}$
$\begin{array}{ll}0307 & 37167377575 \\ 0310 & 26357777317\end{array}$
$\begin{array}{ll}0311 & 16326010314\end{array}$
0312 31773017770
031301766000070
$0314 \quad 14531600100$
$0315 \quad 37772707766$
031616774333272
031717557771777
032017657774777
032135773377777
032233773017776
$\begin{array}{ll}0322 & 33773017776 \\ 0323 & 26766000920\end{array}$ $0323 \quad 26766000920$ $\begin{array}{ll}0324 & 25357777337 \\ 0325 & 16761777700\end{array}$ $\begin{array}{ll}0325 & 16761777700 \\ 0326 & 16177777635\end{array}$ $\begin{array}{ll}0325 & 16176377535 \\ 0327 & 26763375\end{array}$ $0330 \quad 14331600100$ 033116537777777 033225772706177 . 033316774333274 $0334 \quad 17657774777$ $0335 \quad 17777770766$
033603557777016

0337	31537777777
0340	25772506772
0341	16774333273
0347	17557517046
0343	37777777217
0344	35537777777
0345	25772607777
0346	16774333270
0347	17557517756
0350	37777777217
0351	25657777777

$0352 \quad 37531777775$
035337772707766
035416774333271

OPND,RN,RC=UFXF+VEXP,UTF-3, SPO,RA,SP2=VTF-3,
$S R, X, S P 3=P 10, F 1=W, G G^{M}, R H=N 4, F 3=0, A B S-3 N K W N D F, S P 1$ FYPTY

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
3

035517557771777
035617317774777
$0357 \quad 35637777777$
036026721600077
$0361 \quad 16531600100$
036225772706774 036316774333271
036417317774777
$0365 \quad 17777770766$
03661655777776
03673053777777
0370 25772606774
$0371 \quad 1677433327$
037217557517046 03733777777217 0.37425317777777
$0375-37537777775$
$0376 \quad 37772707766$
037716774333270
$0400 \quad 17617771777$
$0401 \quad 17637774777$
040235531600100
040325772706771
040416774333273
040517637774777
040617777770770
0407 166177.77041
$0410 \quad 25637776211$
041135531600100
041230772707217
041316774333275
041417677777777

0415	23176777761
0416	26761777700
0417	16611737700
0420	31537777777
0421	25772736773
0427	32640733276
0423	17677777217
0424	23176777777
0425	26546360154

	SBUS	ADD	L, H. 2	χ		(SR=P10 CRRY)
	SRUS	ADD	RPZ	SP1		LH X,RH SP1.TIH SP3_P11
	SP2	ADD		FC		PC_V3
	OPND	ROMN		SP2	000077	SP2_UIF W/O T,FADING ONE
	URUS	ROM		SP3	000100	LOAD UTF INCL I,EADING ONE
SP1	SP3	PEPN	SWiAF		10	
PC	URUS	MPAD	SR1		LNCT CTRM	
	SBUS	ADD	RPZ	SP1		P12=((11) *V3+LSP11)+MSP11)
X	SbiJs	$A D D$	LPZ			+P10 CRRY
SR	URUS	ADD		χ		X,RH SP1, TH SP3_P1?
	RD)	ADO		SP3		T,OAD 172 FOR P13
SP1	SP3	REPN	SWAP		20	
HA	URUS	NPAD	SP1		INCT CTR:A	
X	spus	$A D D$		x	CT.SP NCRY	P13=(U2*V2+LSP12)+RSए12
		ADD			TNSR	SR, X, SP3_P13
	SO3	ADN		SP1		SP1-T,SP13=W3

OPND=UEXP + VFXF,UYF, SP2,RD=U1F-2 W/O LFADING ONE, SPO, RA=V1F-2, $S R, X, S P 3=P 13, F 1=W S G r, S P 1, R B=W 3-4, F 3=0, A B S-R N K$ INDF, PC EMPTY

SPO		ADD		SP3		THAD VIF FOR P14
χ		PEPN			10	
RD	HRIIS	MPAD	SP1		[NCT CPRM	P14=V1*U2+MSP13
	SAUS	ADD	LIT. 7.	FD		(S P=P13 (CRRY)
	SRUS	ADD	RFZ	PC		LH RD, FH RC, LH SP3_P14
	SP2	POM		SP3	nonomon	rioan utf INCL LIEARTNG GNE
RC	SP3	PEPN	SWAP		10	
RA	JROS	MPAD	SP1		TVCT CTVM	
	SBIJS	$A D D$	FRZ	PC		P15=((U1*V7+I.SP14)+MSP14)
FD	SRUS	ADD	I, DZ			+P13 CRRY
SR	unis	ADD		Pr	CLSH	PD, RH RC, HH SP3_P15
RC.	SP3	ADD	SWAE	FC	INSP	RC_RH RC, LH SP3=W2, SR_1
	SP2	POM		SP3	000100	LOAD UTF IACI LEADING IVF.
	RI)	EEPN			T'SP 10	SP_2
SPO	Unils	MPAL.	SP1		INCT CTPM	P15=11*V1+MSP15
	SBIIS	ADD		RA		RH RA, LH SP3_P16

OPND=UFXP +VFXP,U1F, F1=NSGN, RA(10:15),LH SP3,PC,SP1,RP=W,
F3=0, $S R=2$, AHS-FNK UNNF, SPO, SP?,RD, X EMPTY

$P D-W F X P-1$, RR, SP3, SP1,RA-WTF-A*2.
FXTT TO NOF 3 TE FINISH NORNALITATION, RND ANN PACK.

SR	SM	INC		rus	ROS	
	OPNT	FOMN			177700	
	unus	FOM		RD	137790	
	RC	$A D D$		SP3		
RA	SP3	REPN	SWAP			05
URIIS	RH	OASR	SF1	RR	InCT	CTRM
	SRIIS	ADD		RA	TNSR	
	SM	INC		Plis	RIS	
	IIPND	JMP	NOR3	x		UNC

PEAD X FPOM SM+3
RD_UFXP +VFXP-257=WFXP-1
IOAD W? FOR NORMALIZATION
$R B(7: 15), S P 3, S P 1, R A-W 1 F=4 *$?

$$
\mathrm{SR} 3, \mathrm{Crp}-0
$$

READ W ARS ADDR FROM SM+1 RESTORE X : NORM, RND, PACK

0477	14771600100
0473	25772576776
0474	33764332276
0475	37557573425
0476	16551700000
0477	32537770777
0500	37772707777
0501	16774333274
0502	17537777777
0503	25327777157
0504	26537777777
0505	25772607777
0506	16774333274
0507	17537777777
0510	25607157150
0511	17607777150
0512	35537777777
0513	25772607777
0514	16774337274
0515	17537777777
0516	25627157151
0517	17627777151
0520	25527157146
0521	2552777714 n
0527	01557557777
0573	31306360535
0524	32337517275
0525	26776407777
0526	16617517770
0527	35776407777
0530	16637517771
0531	25536767153
0537	25537777153
0533	31306150574
0534	14547777766

$*$	V
$*$	
$*$	
$*$	

ON COMPLETTIN DONF WTTY V4．RR，RC EMPTY，F2＿O，F1 MODIFIFD．

ED10		CTRI	FIOM			00010			
	UBUS	Sp3	REPM	Su＇AR			21		リ1（SLR）WITH LEADING ONF，
	UBUS	RA	CVSB	SI． 1		INCT	CTRM		SP1－O1＝U1，2／V1
	RBUS		ADD	SF 1	x	CF2	NF？		CF2．
		URUS	ROM		X	10000	00		X＿R11
		PB	ADD	IP\％	SP3				LOAD V4 FOR P13
			RFEPN				10		
	SP1	URUS	MPAD	SR1		INCT	CTRM		P1 3＝ 4 4＊01
		SAUS	ADD		SP3				SP3＿MSP13
		SP3	SUB		SPO	CTF			SPO＿－LSP13＝R11（F1 TF 0）
		OPND	ADn		SP3				IOAD V3 FORR D17
		SP3	REPM				20		
	SP1	URUS	MPAD	SP 1		LPCT	CTRM		$\mathrm{p} 12=\mathrm{V} 3 * 01+\mathrm{MSP} 13$
		SRUS	ADD		Sp3				SP3＿MSP1？
	R！	SP 3	CAD		PT	STF	NF1		PD＿U4－T，SP12－（1 TF NF1）
	RD	SRUS	SUB		RD）	CTF			＝R13（F1［F mPnS＂）
		SP2	$A D D$		SP3				LDAD V2 FOR P11
		SP 3	REPN				20		
	SP1	URUS	MPAD	SP1		INCT	C．TRiA		$\mathrm{P} 11=\mathrm{V} 2 * 01+\mathrm{MSP} 12$
		SRUS	$A D N$		SP3				SP3＿＊SP11
	RC	Sp3	CAD		PC．	CTF	NF1		RC＿T3－ISP11－（1 IF NF1）
	RC	Suls	SUR		PC	CTF			＝R12（F1 IF＂POS＂）
	X	SD3	CAD		¢P 3	CTF	NF1		SP3－R11－MSP11－（1．IF NFI）
	X	SP3	SUR		SP3	CTF			＝R11（F1 TF POS）
		Sp1	ADD		χ		NF1		Y＿O1．
		RC	TMP	FD20	SP1		UNC		JMP，SP1－R12 IF P1 POS
En12	SPO	RH	Ajn		SPO	TNC．T	MCRY		R14－R14＋V4，CRRY？
		OPND	INC				7ERT		YES：V3＝V3＋1，CRRY？
	P0	URUS	ADI		RD		NCRY		Vi）：P13＿R13＋V3，CRPY？
		SP2	INC				2FRO		YES：V2＝V2＋1，CRRY？
	PC．	URUS	AUD		FC		NCRY		MO：R12－R12＋V2，CRRY？
	RA	SP3	TNC		SP3	CTF	IINC		VES：R11－R11＋V1＋1，F1 IF POS
	RA	SP3	ADD		SP3	CTF			NO：R11－R11＋V1，SF1 IF POS
		RC	JMP	F．017	SP1		NFI		ADD RK AGAIN IF R1 NFG，
	X	CTRL	SUA		X				SP1－P12，O1＿O1－CTR
＊	$01=x$								
＊	$\mathrm{Fl}=\mathrm{SP}$	3，SP1	，RD． S	Sp	X	15 X	16X	16 X	7X 90
＊	$\mathrm{V}=\mathrm{PA}$ ，	SP2．0	PND			15 X	16 X	16 X	

CAIC： $02=R 1.1 .12 / V 1$ CARRIFN OUT 17 PLACES（17 STCNIFICANT BITS）． TF O2＜2＊＊1f：R2＝R21．13．14－02＊Vク．3．
IF 02＞＝2＊＊16：F2＝R21．13．14－2＊＊16＊V2．3；［F R2＞＝0 02．3．4＿－1；
IF 02＞ク＊＊16 THEN R2－R2＋V1，2，3－V2，3，02－02－1，
TF R2＞＝0 02．3．4＿－1．
TF R2＜0：R2＿F2＋V＋［V］，02－02－1－［1］．


```
V1,2,3 TF ADD FK 1 15X 16X 7X 9X
ON COMPLFITON NONE WITH V3. RC,RD,OPND EMPTY, F1,2 MODTFTED
F020
UBUS RA
REPN
CTF
#3
2n
INCT CTR:A
    SP3
    FC CTF UF
    FC
    P3
                            NFI
IF1
I:F1
    INCT NCRY
                TFRO
    MCF
                                    NFI
                                    NF
```


 POS UNC NF? 000 2)
CTRMINCT CTRM
RB_R21
P22=1/3*02
N=V3*O2
SPO_R14-I.SP22=R23
Iח\D V2 FOP P21 $F1="POS")
P21=V2*01+mSP22.
 SP3_MSP21
 RC_R13-L,SP21-(1 IF NF1)
 RC-R13-L,NPLIF "POS")
 SPZ_R21-MSP21-(1 IF NF1)
 =R21 (F1 IF POS)
RB_O2.
 IMP,SP1_R22 IF R2 POS
R23-R23+V3, CRRY?
YES; V2=V2+1, CRPY?
40: R22-R22+V2, CRRY?
YFS; R21_R21+V1+1,F1 IF POS
M: R21-R21+V1 SF1 TF POS
T); R21-R21+V1, SF1 TF POS
 ID RK AGATN TF P2 N
```
```
```
SP1_R2=R11,17/V1
```
```
SP1_R2=R11,17/V1
    JMP IF Q>>=2**16
    JMP IF Q>>=2**16
IOAD V3 FOR P22.
```
IOAD V3 FOR P22.
```
\(115 x \quad 16 x$
``` ```
O1,2=x,RR 16x 15x x
```O1,2=x,RR 16x 15x x R2=SP3,SP1.SPG X 15x 15x 15x R2=SP3,SP1.SPG X 15x 15x 15x v=RA,SP2 v=RA,SP2 CAIC: 03=R21, 22/V1 CARRTED OHT 17 PT,ACFS ( 17 SIGNIFICAMT RITS). 1F 03<2**16: R?=P31,23-03*V2. TF O3>=2**16: R3=R31.23-2**16*V2: TFR3>=0 03.4_-1```

```
IF R3<0: R3_F3+V+[V], 03_03-1-111.

$03=R C$	(X) 15 X	X	
P3 $=$ SP0, SP1		$x 15 x$	$16 x$
03*V?		$x 15 x$	$16 x$
V1.2 IF ADN RK		$115 x$	$16 \times$

ON COMPLETTON OONE WITH V?. SP2, SP3,RD EMPTY, F1 MODIFIEN. TF FXIT TO ED4O THFN OPND_WEXP-256, F2_0.
F.) 30

	SP3	REPN			CF2	21
IRUUS	RA	IVSR	SL3		TNCT	CTRM
RBIIS		CRS	SP1	PC.		POS
		JMP	En 36			INC

CF2
SP1_03=R21.22/V1
F2,RC(1:15)_R31.
JMP TF $03>=2 * * 16$
LOAD V2 FOR p31.

```

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{589} \\
\hline \multicolumn{3}{|l|}{590} \\
\hline \multicolumn{3}{|l|}{591} \\
\hline \multicolumn{3}{|l|}{592} \\
\hline \multicolumn{3}{|l|}{503} \\
\hline 594 & 0634 & 26627567150 \\
\hline 595 & 0635 & 32771700000 \\
\hline 596 & 06.36 & 35527157156 \\
\hline 597 & 0637 & 35527777145 \\
\hline 598 & 0640 & 37766140644 \\
\hline 599 & 0641 & 01645000561 \\
\hline 600 & 0642 & 25537507773 \\
\hline 601 & 0643 & 37646360561 \\
\hline \multicolumn{3}{|l|}{} \\
\hline 603 & 0644 & 37647377777 \\
\hline 604 & 0645 & 23177777761 \\
\hline 605 & 0646 & 37627377777 \\
\hline 606 & 0647 & 37307377777 \\
\hline 607 & 0650 & 37766360620 \\
\hline \multicolumn{3}{|l|}{608} \\
\hline \multicolumn{3}{|l|}{609} \\
\hline \multicolumn{3}{|l|}{610} \\
\hline \multicolumn{3}{|l|}{611} \\
\hline \multicolumn{3}{|l|}{612} \\
\hline \multicolumn{3}{|l|}{613} \\
\hline \multicolumn{3}{|l|}{614} \\
\hline \multicolumn{3}{|l|}{615} \\
\hline 616 & 0651 & 37617567435 \\
\hline 617 & 0657 & 31771700000 \\
\hline 618 & 0653 & 35377777156 \\
\hline 619 & 0654 & 37766142645 \\
\hline 620 & 0655 & 01626000606 \\
\hline 621 & 0656 & 33337507775 \\
\hline 622 & 0657 & 376763611606 \\
\hline 623 & 0667 & 37766360645 \\
\hline \multicolumn{3}{|l|}{624} \\
\hline \multicolumn{3}{|l|}{625} \\
\hline \multicolumn{3}{|l|}{626} \\
\hline \multicolumn{3}{|l|}{627} \\
\hline \multicolumn{3}{|l|}{628} \\
\hline 629 & 0661 & 01176777561 \\
\hline 630 & 0662 & 01177777561 \\
\hline 631 & 0663 & 26642360666 \\
\hline 632 & 0664 & 26733377052 \\
\hline 633 & 0665 & 01177777577 \\
\hline \multicolumn{3}{|l|}{634} \\
\hline 635 & 0.066 & 31136777541 \\
\hline 636 & 0667 & 10177777437 \\
\hline 637 & 0670 & 37127377555 \\
\hline 638 & 0671 & 26177707437 \\
\hline \multicolumn{3}{|l|}{639} \\
\hline 640 & 0672 & 26777417757 \\
\hline 641 & 0673 & 35773377650 \\
\hline 642 & 0674 & 24766360215 \\
\hline 643 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline 0701 & 22117777573 \\
\hline 0702 & 23337777777 \\
\hline 0703 & 34766777274 \\
\hline 0704 & 01766777775 \\
\hline 0705 & 00766020747 \\
\hline 0706 & 22117777572 \\
\hline 0707 & 26657777577 \\
\hline 0710 & 34766777574 \\
\hline 0711 & 01766777775 \\
\hline 0712 & 22136777571 \\
\hline 0713 & 26637777317 \\
\hline 0714 & 30763127776 \\
\hline 0715 & 00773357751 \\
\hline 2716 & 01116777577 \\
\hline 0717 & 26737557777 \\
\hline 0720 & 31767417750 \\
\hline 9721 & 30767407751 \\
\hline 0722 & 37777757777 \\
\hline 0723 & 23176777757 \\
\hline 0724 & 32177777437 \\
\hline 0725 & 37136777575 \\
\hline 9726 & 26622360741. \\
\hline 9727 & 01116777577 \\
\hline 0730 & 26737777777 \\
\hline 0731 & 23177777741 \\
\hline 0732 & 33177777437 \\
\hline 0733 & 37176777575 \\
\hline 0734 & 26672360741 \\
\hline 0735 & 01176777577 \\
\hline 0736 & 26737777777 \\
\hline 0737 & 2662.2360741 \\
\hline 0740 & 35777757757 \\
\hline 0741 & 35763017776 \\
\hline 0742 & 35723701777 \\
\hline 0743 & 31767547156 \\
\hline 0744 & 35767777151 \\
\hline 0745 & 00726140740 \\
\hline 0746 & 37777757677 \\
\hline
\end{tabular}







\section*{904 \\ 905
906 \\ 907 908 909 910 911
912 913}
*THIS SUBROHTTNF SHTFTS LFFT 2 DIGITS
*ORTG On OO 0000001111111
*חRIC \(12 \begin{array}{llllllll} & 34 & 56 & 78 & 9 \cap & 12 & 34 & 56\end{array}\)
*
* SL2 \(00000000011111111 x\)
*SL? 234567890173 45 \(6 x\)
L2. RA FOMN 7400 ZERT) ADD SCRY
L.21)
\begin{tabular}{|c|c|c|c|c|}
\hline & RA & D & RF7. & \\
\hline UBI'S & R4 & IOR & L. T . 7. & \\
\hline \multirow[t]{2}{*}{RBIIS} & Jabus & ADD & SWAF & RA \\
\hline & RR & ADD & PRZ & \\
\hline URIIS & RC. & TOR & LTHZ & \\
\hline \multirow[t]{2}{*}{RRUS} & bras & ADD & SWAP & FR \\
\hline & RC & ADD & RFZ & \\
\hline UPIS & RD & InR & F.T.7. & \\
\hline \multirow[t]{3}{*}{RBUS} & UBUS & ADN & SWAR & PC \\
\hline & RD) & Ano & RT. 2 & RD \\
\hline & RD & \(A D N\) & PFZ & \\
\hline PL & URIUS & JOR & L.JZ & \\
\hline UBIIS & srus & ADD & SWAP. & RD \\
\hline PL & *. & \(A D O\) & RP7. & \\
\hline UBUS & DI. & JOR & IT.Z & \\
\hline \multirow[t]{2}{*}{-blis} & JRUS & ADO & SWAR & F/, \\
\hline & DL & \(A D D\) & RP7. & \\
\hline UBIS & DP & IOR & LTH. & \\
\hline \multirow[t]{2}{*}{PBI'S} & daus & AbI & Swnf & r \\
\hline & DR & ADn & RF7. & \\
\hline HAUS & 0 & Jop & LITZ & \\
\hline RBIIS & JRUS & ADD & Swit & nB \\
\hline
\end{tabular}
\((8,0)\)
\((0,8)\)
\((9,10)+(0,8) \Rightarrow(9,0)\)
\((9.0)+(0.8) \Rightarrow(8,9)\)
(0.10)
\((0.10)+(11.12) \Rightarrow(11.0)\)
\((0.10)+(11.0) \Rightarrow(10.11)\)
(0.12)
\((0.12)+(13.14)=>(13.0)\)
\((0.17)+(13.0)=>(12.13)\)
(i), 14)
\((0.14)+(15.16) \Rightarrow(15.0)\)
\((0.14)+(15.0) \Rightarrow(14.15)\)

\begin{tabular}{ll} 
& \\
& \\
& \\
& \\
1246 & 33677770777 \\
1247 & 33777774777 \\
1250 & 32773371776 \\
1251 & 16657776765 \\
1252 & 32777774777 \\
1253 & 31773371776 \\
1254 & 16637776765 \\
1255 & 31777774777 \\
1756 & 30773171776 \\
1257 & 16617706765 \\
1260 & 16617776777 \\
1261 & 30777774777 \\
1262 & 16773371760 \\
1263 & 17237776776 \\
1264 & 37777774760 \\
1265 & 34773371776 \\
1266 & 16717776765 \\
1267 & 34777774777 \\
1770 & 22773371776 \\
1271 & 16457776765 \\
1277 & 27777771777 \\
1273 & 21773371776 \\
1274 & 16437706765
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
*THTS \\
* \(\cap\) RTG
\end{tabular}} & SURR & ROIJTIN & \multicolumn{2}{|l|}{SHTFTS} & PTGHT & \multirow[t]{2}{*}{2 DIGITS} \\
\hline & 00 & 00 on & no 01 & 11 & 1111 & \\
\hline * & 123 & 3456 & 7890 & 12 & 3456 & \\
\hline \multicolumn{7}{|l|}{*} \\
\hline *SR2 & \(\times 0\) & 0000 & 0000 & 11 & 1111 & \\
\hline *SR7 & \(\times 12\) & 2345 & 6789 & 01 & 2345 & \\
\hline \multirow[t]{23}{*}{R20} & & RA & AD & LRZ & FA & \\
\hline & & RA & \(A D D\) & PRZ & & \\
\hline & HRUS & RP & IUP. & LTZ & & \\
\hline & RRUS & URUS & ADP & Shap & PR & \\
\hline & & RH & ADD & RPZ & & \\
\hline & HBIS & RC & IOR & LT.Z. & & \\
\hline & \% Bus & UnUS & MDN & SUAF & FC & \\
\hline & & RC & ADD & RFA & & \\
\hline & llatis & RI) & IOR & TH.Z. & & VF? \\
\hline & RHISS & IIHUS & Ant & SuAP & On & RSA \\
\hline & & URIJS & ADD & SkAF & FD & \\
\hline & & R[: & ADN & PP'Z & & \\
\hline & PL, & UHIJS & TOR & HL 7 & & \\
\hline & URIIS & SRUS & ADN & Stap & F「 & \\
\hline & PL & & ADI & PRZ & & \\
\hline & usus & DI, & TOR & LT 7 & & \\
\hline & PRUS & UBljs & ADD & S \({ }^{\text {W, }} \boldsymbol{A F}\) & مL & \\
\hline & & DI. & ADO & HPZ. & & \\
\hline & Hials & DPa & tine & H.T. 7. & & \\
\hline & PRISS & S limus & ADn & Sbind & ra & \\
\hline & & DR & ADT & PD 7. & & \\
\hline & Juns & 5 & jup & T.T.2. & & \\
\hline & RRIIS & S Juus & ADD & Silat & & FSR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\[
(0,1)
\]} \\
\hline \[
(0,2)
\] & \\
\hline \((0,2)\) & \(+(3,1) \Rightarrow(2,0)\) \\
\hline (3.0) & \(+(0,2) \Rightarrow(2,3)\) \\
\hline \((0.4)\) & \\
\hline \((0,4)\) & \(+(5,5) \Rightarrow(5,0)\) \\
\hline \((0,4)\) & \(+(5,0)=>(4,5)\) \\
\hline \((0,6)\) & \\
\hline \((0,6)\) & + (7,8) \(\Rightarrow(7,0)\) \\
\hline (0,6) & \(+(7,0) \Rightarrow(6,7)\) \\
\hline \multicolumn{2}{|l|}{\((0.8)\)} \\
\hline \multicolumn{2}{|l|}{\((9.10)+(0.8) \Rightarrow(9,0)\)} \\
\hline \multicolumn{2}{|l|}{\((9,0)+(0,8) \Longrightarrow(9,9)\)} \\
\hline \multicolumn{2}{|l|}{(0,10)} \\
\hline (0,10) & \(+(11.12)=>(11.0)\) \\
\hline (0.10) & \(+(11,0) \Rightarrow(10.11)\) \\
\hline \multicolumn{2}{|l|}{\((0,12)\)} \\
\hline \multicolumn{2}{|l|}{\((0.12)+(13.14) \Rightarrow(13.0)\)} \\
\hline \multicolumn{2}{|l|}{\((0,12)+(13,0) \Rightarrow(12,13)\)} \\
\hline \multicolumn{2}{|l|}{(0.14)} \\
\hline \((0,14)\) & \(+(15.16) \Rightarrow(15.0)\) \\
\hline 0,14) & \((15.0)=>(14.15)\) \\
\hline
\end{tabular}




\section*{1094 \\ 1095 \\ 1096 \\ 1097 \\ 1098 \\ 1099 \\ 1100 \\ 1101
1102 \\ 1103 \\ 1104 \\ 1105 \\ 1106}
\begin{tabular}{ll}
1452 & 37531520017 \\
1453 & 37531520013 \\
1454 & 37762361374 \\
1455 & 37766361461 \\
1456 & 37531570015 \\
1457 & 37531600013 \\
1460 & 37762361465 \\
1461 & 24777777057 \\
1462 & 16777522616 \\
1463 & 37571603134 \\
1464 & 37766362270
\end{tabular}

\begin{tabular}{ll} 
\\
1465 & 23776777777 \\
1466 & 16136777777 \\
1467 & 16136777777 \\
1470 & 26557777777 \\
1471 & 37136777775 \\
1472 & 26757777777 \\
1473 & 37136577775 \\
1474 & 26257707777 \\
1475 & 16246361500 \\
1476 & 23331600005 \\
1477 & 16177777777 \\
1500 & 37136777775 \\
1501 & 26237177777 \\
1502 & 37136777775 \\
1503 & 25717777717 \\
1504 & 37136777775 \\
1505 & 26457777777 \\
1506 & 26437707777
\end{tabular}
*THIS SUAFOUTTNF RESTIPFS THE 3 OR 7 REGISTFPS FRFED BY FPEF
RSTA SM TNC

\(S M+5\)
\(5 M+6\)
SM+7
spn
0
AUI \(1 N C\)
\begin{tabular}{|c|c|}
\hline & \\
\hline 510 & 32 \\
\hline 1511 & 3777777 \\
\hline 517 & 3276705 \\
\hline 3 & 167 \\
\hline 1514 & 266637 \\
\hline 1515 & 17643 \\
\hline 1516 & 377777 \\
\hline 1517 & 371 \\
\hline 1520 & 3276141 \\
\hline 1521 & 177777 \\
\hline 1522 & 16761 \\
\hline 1523 & 031567 \\
\hline 1524 & 377777 \\
\hline 1525 & 373517 \\
\hline 1526 & 357315 \\
\hline 1527 & 377663615 \\
\hline 1530 & 3712737 \\
\hline 1531 & 2677973727 \\
\hline 1537 & 16206361 \\
\hline 1533 & 166775577 \\
\hline 1534 & 336777070 \\
\hline 1535 & 162377777 \\
\hline 1535 & 327177774 \\
\hline 1537 & 314577777 \\
\hline 1540 & 304263615 \\
\hline 1541 & 36663777 \\
\hline 1542 & 2377160000 \\
\hline 1543 & 16177777777 \\
\hline 1544 & 37772337277 \\
\hline 1545 & 37217737277 \\
\hline 1546 & 37617557777 \\
\hline 1547 & 30617707057 \\
\hline 1550 & 16437777777 \\
\hline 1551 & 31457777777 \\
\hline 1552 & 32717777777 \\
\hline 1553 & 33237777777 \\
\hline 554 & 3763 \\
\hline & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1181 & 1556 & 37677707057 & & & \multicolumn{2}{|r|}{ADD} & & \multirow[t]{2}{*}{RA} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CJSR RSA}} \\
\hline 1182 & & & * & & & & & & & \\
\hline 1183 & & & * & & & & & & & \\
\hline 1184 & & & * & & & & & & & \\
\hline 1185 & & & * & WORDS & FFTCHFD & F2 & NF 2 & & & \\
\hline 1186 & & & * & & 1 & 28 & 35 & & & \\
\hline 1187 & & & * & & 2 & 32 & 39 & & & \\
\hline 1188 & & & * & & 3 & 36 & 43 & & & \\
\hline 1189 & & & * & & 4 & 40 & 47 & & & \\
\hline 1190 & & & * & & 5 & & 55 & & & \\
\hline 1191 & & & * & & 6 & & 59 & & & \\
\hline 1192 & & & * & & 7 & & 63 & & & \\
\hline 1193 & & & * & & 8 & & 67 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll}
1557 & 37311777774 \\
\(156 n\) & 01137567577 \\
1561 & 37311777770 \\
1562 & 37351777774 \\
1563 & 25776417774 \\
1564 & 37766361574 \\
1565 & 35733377763 \\
1566 & 01316737277 \\
1567 & 37766361563 \\
1570 & 37677777760 \\
1571 & 34651777717 \\
1572 & 22637777777 \\
1573 & 21606361563 \\
1574 & 37777777767 \\
1575 & 16762777763 \\
1576 & 35733007776 \\
1577 & 37777777462 \\
1600 & 16723777763 \\
1601 & 17767377777 \\
1602 & 26763777776 \\
1603 & 35073377776 \\
1604 & 25177777575 \\
1605 & 37327367775 \\
1606 & 35733377763 \\
1607 & 01777447777 \\
1610 & 37766361671 \\
1611 & 37136777555 \\
1612 & 37177777423 \\
1613 & 01316737277 \\
1614 & 37766361606 \\
1615 & 37677777760 \\
1616 & 34657777777 \\
1617 & 22637777777 \\
1620 & 21606361606
\end{tabular}

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & *THIS SFCT & ITN S & STOPFC & THF & SIGN & WORD & \\
\hline 1621 & 23311600003 & \multirow[t]{8}{*}{STSN} & SM & \multicolumn{2}{|l|}{FOM} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SP1 } \\
& \text { RUS }
\end{aligned}
\]} & \multicolumn{2}{|l|}{000003} \\
\hline 1622 & 16176777777 & & Ubus & TNC & & & ROS & \\
\hline 1623 & 26537774777 & & OPND & \(A D D\) & RRZ & SP3 & & \\
\hline 1624 & 35777417777 & & SP2. & \(A D N\) & & & & M7RD \\
\hline 1625 & 37777777737 & & & \(A D D\) & & & CCE & \\
\hline 1626 & 37731600014 & & & POM & & SP? & 0000 & \\
\hline 1627 & 24761400400 & & STA & Homp & & & 0400 & 7ERD \\
\hline 1630 & 37731600015 & & & PO\% & & SP? & 0000 & \\
\hline 1631 & 37167377774 & spl & & CAD & & Plis & Pas & \\
\hline 1632 & 26257777777 & & OPND & N10 & & 7 & & \\
\hline 1633 & 37777427766 & x & & ADr) & & & & FVFN \\
\hline 1634 & 37537767777 & & & ADD & & SP3 & & HVC \\
\hline 1635 & 35737776177 & & Sp 2 & AD! & Shaf & ¢P2 & & \\
\hline 1636 & 25613377770 & PD) & SF. 3 & I \(\cap \mathrm{R}\) & & RD & & \\
\hline 1637 & 37136777555 & SPO & & INC & & FiSPO & WPD & \\
\hline \multirow[t]{13}{*}{1640} & 35173307430 & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{*}} & PuS & dATA & HSH \\
\hline & & & & & & & & \\
\hline & & \multicolumn{7}{|l|}{*} \\
\hline & & \multicolumn{7}{|l|}{*} \\
\hline & & \multirow[t]{2}{*}{* Lematmi} & WORIS & S F2 & NF? & & & \\
\hline & & & 0 & 58 & 90 & & & \\
\hline & & * & 1 & 56 & 88 & & & \\
\hline & \(\because\) & & 2 & 54 & 96 & & & \\
\hline & & * & 3 & 52 & 44 & & & \\
\hline & & & 4 & & -2. & & & \\
\hline & & * & 5 & & 80 & & & \\
\hline & & \multirow[t]{2}{*}{*} & 6 & & 78 & & & \\
\hline & & & 7 & & 76 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1331 & 1726 & 37777777677 & & & ADI) & & & & \\
\hline 1332 & 1727 & 25536777777 & CAD4 & sp3 & INC & & SP3 & & \\
\hline 1333 & 1730 & 37766361743 & & & JMD & CADG & & INC & GOTO Linop \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|}
\hline 1389 & & \multicolumn{2}{|l|}{\(\cdots\)} \\
\hline \multicolumn{4}{|l|}{1390} \\
\hline \multicolumn{4}{|l|}{1391} \\
\hline \multicolumn{4}{|l|}{1392} \\
\hline 1393 & & 2023 & 37777777077 \\
\hline 1394 & \(\cdots\) & 2024 & 23337777537 \\
\hline 1395 & & 2025 & \(37777777 \% 66\) \\
\hline 1396 & & 2025 & 16541600037 \\
\hline 1397 & & 2027 & 23311600007 \\
\hline 1398 & & 2030 & 16767507762 \\
\hline 1399 & & 2031 & 37571601752 \\
\hline 1400 & & 2037 & 33771507743 \\
\hline 1401 & & 2033 & 31777517625 \\
\hline 1402 & & 2034 & 37766361452 \\
\hline 1403 & & 2035 & 33766002537 \\
\hline 1404 & & 2036 & 31766007537 \\
\hline \multicolumn{4}{|l|}{1405} \\
\hline \multicolumn{4}{|l|}{1406} \\
\hline \multicolumn{4}{|l|}{1407} \\
\hline \multicolumn{4}{|l|}{1408} \\
\hline \multicolumn{4}{|l|}{1409} \\
\hline 1410 & & 2037 & 91177777757 \\
\hline 1411 & & 2040 & 36177777437 \\
\hline 1412 & & 2041 & 32777777377 \\
\hline 1413 & & 2042 & 37777573377 \\
\hline 1414 & & 2043 & 16776777377 \\
\hline 1415 & & 2044 & 15357773777 \\
\hline 1416 & & 2045 & 32777773777 \\
\hline 1417 & & 2146 & 22737777776 \\
\hline 1418 & & 2047 & 34767517776 \\
\hline 1419 & & 2050 & 35767507775 \\
\hline 1420 & & 2051 & 35731700000 \\
\hline 1421 & & 205 ? & 31766777776 \\
\hline 1422 & & 2053 & 14777777765 \\
\hline 1423 & & 2054 & 16766707775 \\
\hline \multicolumn{4}{|l|}{1424} \\
\hline \multicolumn{4}{|l|}{1425} \\
\hline 1426 & & 2055 & 37777577766 \\
\hline 1427 & & 2056 & 16771600002 \\
\hline 1428 & & 20.57 & 16177777637 \\
\hline
\end{tabular}

\begin{tabular}{lll}
1429 & & \\
1430 & & \\
1431 & & \\
1432 & & \\
1433 & 2060 & 01176777757 \\
1434 & 2061 & 37177777422 \\
1435 & 2062 & 30777777377 \\
1436 & 2063 & 31777573377 \\
1437 & 2064 & 16776777377 \\
1438 & 2065 & 16537773777 \\
1439 & 2066 & 37167377754 \\
1440 & 2067 & 37177777426 \\
1441 & 2070 & 30777773777 \\
1442 & 2071 & 22317777776 \\
1443 & 2072 & 34767517776 \\
1444 & 2073 & 01767507775 \\
1445 & 2075 & 01311700000 \\
1446 & 2076 & 25777777776 \\
1447 & 2077 & 16766707775 \\
1448 & & \\
1449 & \(210 n\) & 37757577766 \\
1450 & 2101 & 26771777776 \\
1451 & 2107 & 16177667637 \\
1452 & & \\
1453 & 2103 & 37762361346 \\
1454 & 2104 & 23176777741 \\
1455 & 2105 & 26177777437 \\
1456 & 2106 & 37762361331 \\
1457 & &
\end{tabular}
```

*THIS SURPOITTNF CHECKS THF ROIJNDS OF OPEPAND A
*TT ASSUMFS SPO CONTATNS THE HIGHFST IFFGAT ADORFSS IN THE STACK
*IT RFTURNS THE WOFO NDROFSS IN SP1
*IT RETURNS TYE WORR COINT (0-7) IN SP3
*TT SFIS F2 IF THE STCP WORD IS A F!HI, WOPD
CKAK SP1 INC FUS WPS ASM+R (FINAL, SM+4)

```

```

 HYTE COUNT -1
 INCR IF ISP(RYTF: A) =1
 SP3 - WORD COINN - -
 ASM+\overline{5}(FTNAL,SY+2)
 SP1 - FIRST TIJFSS AT WORD a
 AMSW > DT ?
 SM > aNSW?
 TOGGLE IF NOT(PR<RMSW<SM)
 **

```


\section*{1462 \\ 1463 \\ 1464 \\ 1465 \\ 1466 \\ 1467 \\ 1468 \\ 1469 \\ 1471 \\ 1472 \\ 1473 \\ 1474
1475 \\ 1476 \\ 1476
1477 \\ 1478 \\ 1479
1490 \\ 1480 \\ 1482 \\ 1483 \\ 1484 \\ 1485 \\ 1486
1487 \\ 487 \\ 488 \\ 1490 \\ 1491 \\ 1492 \\ 1493 \\ 1494 \\ 1495 \\ 1496 \\ 497 \\ 1499 \\ 1500 \\ 1501 \\ 1502 \\ 1503 \\ 1504 \\ 1505 \\ 1506 \\ 1507 \\ 1508
1509 \\ 1510 \\ 1511 \\ 1512 \\ 1514}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1515
1516 & 2156 & 2.6341527774 & & & OPND & ROMN & & CTRL & 7774 & POS & DEIIETE 2LSR OF MOD. X \\
\hline 1517 & 2157 & 37766367277 & & & & JAP & Stisp & & & INC & IF A RIGHT SHIFT IS NFEDED \\
\hline 1518 & 2160 & 26761410003 & & & OPND & ROMN & & & 0003 & NTAO & \\
\hline 1519 & 2161 & 16766362173 & & & UBUS & JMP & SIXX & & & UNC & \\
\hline 1520 & 2162 & 16761000001 & & & UBUS & ROMX & & & 0001 & 7FPR & \\
\hline 1521 & 2163 & 16766362166 & & & UBUS & JMP & SIXh & & & UNC & \\
\hline 1522 & 2164 & 16762361024 & & & UBUS & TSH & Lit \(10^{\circ}\) & & & UNC & \\
\hline 1523 & 2155 & \(3776636 \% 173\) & & & & IMP & Stixx & & & UNC. & \\
\hline 1524 & 2165 & 16761000003 & SLXW & & UBUS & ROMX & & & 0003 & ZERO & 11 NITT 10 CAUS PREV 01 \\
\hline 1525 & 2167 & 37766362172 & & & & IMP & * + 3 & & & UNC & \\
\hline 1526 & 2170 & 37762361215 & & & & ISR & L70 \({ }^{\circ}\) & & & Hnc & \\
\hline 1527 & 2171 & 37777767777 & & & & \(A D N\) & & & & UNC & \\
\hline 1528 & 2177 & 37762361120 & & & & JSA & L.35 & & & U.VC & \\
\hline 1529 & 2173 & 14767773157 & Stix & & CTRT, & SUR & SP1 & & STF & & F1:1 IF \#ND SHTFTS=0 \\
\hline 1530 & 2174 & 16357773777 & & & JHUS & ADT & SF1 & CTRL & & & \\
\hline 1531 & 2175 & 35526142213 & & & SP2 & Jmp & Stix 7. & SP3 & & F1 & TME TF NO SHIFT NFFDFD \\
\hline 1532 & 2176 & 33777407777 & \(1.40^{\circ}\) & & RA & ADD & & & & 7FRO & WILL ANY OIGITS RH, LOST? \\
\hline 1533 & 2977 & 37777777517 & & & & ADI & & & SCPY & & TF SO, THEN SET CARRY \\
\hline 1534 & 2200 & 37766162206 & & & & JMP & St XY & & & \(\mathrm{F}^{2}\) & WMP TF SHOPT:UBUS_0 \\
\hline 1535 & 2201 & 37437777777 & & & & \(\triangle \mathrm{DN}\) & & \(\cap\) & & & \\
\hline 15.36 & 2202 & 21457777777 & & & 0 & ADD & & ! \({ }^{\text {P }}\) & & & \\
\hline 1537 & 2203 & 22717777777 & & & DF & AD & & ¢ \(\mathrm{I}_{1}\) & & & \\
\hline 1538 & 2704 & 34237777777 & & & OT, & ADI) & & DT, & & & \\
\hline 1539 & 22.05 & 37777777760 & & PL & & ADD & & & & & \\
\hline 1540 & 2206 & 16617777777 & Stixy & & URUS & \(A D D\) & & FI) & & & \\
\hline 1541 & 2207 & 30637777777 & & & R & \(A D D\) & & FC & & & \\
\hline 1542 & 2210 & 31657777777 & & & RC & ADD & & FR & & & \\
\hline 1543 & 2211 & 32.677737277 & & & Ra & \(A D D\) & & FA & InCT & CrPa & SKIP NHEF NOME, \\
\hline 1544 & 2) 12 & 37766362176 & & & & JMP & L. \(a_{\text {[ }}{ }^{\text {e }}\) & & & IINC & \\
\hline 1545 & 2213 & 37317777455 & Stix 7 & spn & & ADO & & ¢P1 & CF1 & & RFST' An TN SPI:CFI FOP STOF \\
\hline 1546 & 2214 & 37772361557 & & & & JSF & ETCP & SP? & & IINC & \\
\hline 1547 & 2215 & 37777557777 & & & & ADI & & & & NFT &  \\
\hline 1548 & 2716 & 37777777517 & & & & ADD & & & SCHY & & \\
\hline 1549 & 22.17 & 26542171476 & RFST & & nopy & ,ISH & FSTt. & \(x\) & & NF? & ISH TF LUNG: \\
\hline 1550 & 2.220 & 00761410060 & ADOP & & CTR & IOMN & & & 0060 & NZOg & \\
\hline 1551 & 2221 & 37777757777 & & & & ADN & & & & NE.XT & \\
\hline 1552 & 2222 & 23471777776 & & & SM & FOM & & SM & 1777 & 76 & \\
\hline 1553 & 2223 & 00761410040 & & & Cir & ROMN & & & 0040 & N2P0 & \\
\hline 1554 & 2224 & 37777757777 & & & & AD) & & & & NF.XT & . \\
\hline 1555 & 22.25 & 23471777776 & & & Sr: & POM & & cm & 1777 & 76 & \\
\hline 1556 & 2226 & 37777757777 & & & & ADD & & & & NEXT & \\
\hline
\end{tabular}

\section*{1557 \\ 1558 \\ 550 \\ 1550 \\ 55 \\ 562 \\ 553 \\ 1554 \\ 1555 \\ 1566 \\ 1567 \\ 1568 \\ 1569 \\ 1569 \\ 570 \\ 571 \\ 1573 \\ 1574 \\ 1575 \\ 1576 \\ 577 \\ 1578}
\begin{tabular}{ll}
2227 & 26762031064 \\
\(223 n\) & 26762021216 \\
2731 & 35526367213 \\
& \\
& \\
2232 & 37762361401 \\
2233 & 16666907141 \\
2234 & 23136777577 \\
2235 & 31635372777 \\
2236 & 33777777770 \\
2237 & 16767517771 \\
2240 & 37766362141 \\
2741 & 33667507511 \\
2247 & 37766361457 \\
2243 & 37176777755 \\
2244 & 33167777430 \\
2245 & 26667777776 \\
2246 & 23176777757 \\
2247 & 33167777437 \\
2250 & 37766367141
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{SI/SR} & & OPND & JSR & R1D & & & ODD \\
\hline & & OPND & JSB & R 2 D & & & FVEN \\
\hline & & SP2 & JMF' & ST X 7. & SP3 & & UNS \\
\hline \multicolumn{8}{|l|}{*} \\
\hline \multicolumn{8}{|l|}{*} \\
\hline \multicolumn{8}{|l|}{*} \\
\hline \multirow[t]{14}{*}{NSL, \({ }^{*}\)} & & & JSR & Srip & & & IVN \\
\hline & & uhus & JMP & Stiny & PA & & 7.ERO \\
\hline & & S! & TNC & & RSP0 & ROD & \\
\hline & & \(R \mathrm{C}\) & CRS & SI. 1 & HC & & \\
\hline & RD & RA & ADO & & & & \\
\hline & RC & Hidus & SIIR & & & & MCPY \\
\hline & & & TMP & StPx & & & UNC \\
\hline & RC & PA & SUR & & PA & SCRY & CRRY \\
\hline & & & . TME & T^13 & & & IUC \\
\hline & spo & & TMC & & rils & URS & \\
\hline & \(\mathrm{PI})\) & RA & SUH & & RUS & DAT^ & \\
\hline & HBIS & nron & SUF & - & FA & & \\
\hline & & SM & JNC & & PIIS & WPS & \\
\hline & & RA & SIIR & & PIJS & D^TA & \\
\hline
\end{tabular}

SPO(IRIIS) HAS SIG NIGITS FETCH SAVED MOD. \(X\) \& \(\mathrm{SM}+\) RESTIRF RC FRUN ASKA TARG LFN NEEDFE \((X+S I G)\) (ACT. TARG) \(>=(T A P G\) NFFINED)? VES.JUST SID VEW SHIFT AMOUNT SET IJVFRFLOW IF SIG>TADG SM+2 REVISED X;UBUS_(ITR (;X-NEWX)

STORF AT \(S M+1\) SiA+1-NFWX+-2

\begin{tabular}{lll}
1633 & & \\
1634 & & \\
1635 & & \\
1636 & & \\
1637 & 2335 & 16777077777 \\
1638 & 2336 & 37766363767 \\
1639 & 2337 & 35733377774 \\
1640 & 2340 & 01521770000 \\
1641 & 2341 & 16777773777 \\
1642 & 2342 & 16777773777 \\
1643 & 2343 & 25537773776 \\
1644 & 2344 & 01761607400 \\
1645 & 2345 & 25537777776 \\
1646 & 2346 & 16777773777 \\
1647 & 2347 & 16777773777 \\
1648 & 2350 & 25537773776 \\
1649 & 2351 & 01761600360 \\
1650 & 2352 & 25537777776 \\
1651 & 2353 & 16777773777 \\
1652 & 2354 & 16777773777 \\
1653 & 2355 & 25537773776 \\
1654 & 2356 & 01761600017 \\
1655 & 2357 & 25537707776
\end{tabular}
* DAR CONVERTS 1 WOPD ( 4 [IGTTS) DEC TO 1 wnRD RIN
* DFCC NORD RFCEIVFD OP UBUS,SP1 - RETURNED TN SP3,UBUS
* SP2 is usfod fint ati o JNDICATION (SP2=0)
* 「Raps on tnvalín necimat.

D4B
TNVALID DEC. TRAP
 SP1 ROMN SP3 170000 FXTRACT MS DIGTV IURUS ADD SP1 UBUS \(\triangle D D\) SP1
\(\begin{array}{lllll}\text { URISS SP3 ADD SP1 SF3 } \\ \text { SP1 } & \text { HOMN }\end{array}\) IHAUS SP3 ADN SE3 URIIS ADD SR1 JRUS ADN SR1
UBIS SF3 ADD SP1 SP3
SP1 ROMN \(000360 \quad\) FiXTRACT 3RN NIGJT

IRIS SP 3 ADD SF3 \(\begin{array}{ll}\text { URUS ADD } & \text { SP1 } \\ \text { UBIIS ADD } & S F 1\end{array}\)
llaU'S SP3 ADN SF1 SF3
JHIIS SP3 ADN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1657
1658 & & & \&2360 & & & & & \\
\hline 1659 & 2360 & 37766362400 & & JMP & UNIN & & UNC & \\
\hline 1660 & 2361 & 37766361275 & & TMP & DMPY & & UNC & \\
\hline 1661 & 2362 & 37766361641 & & JMP & CVAD & & UNC & \\
\hline 1662 & 2363 & 37766363323 & & JMP & CVDA & & UNC & \\
\hline 1663 & 2364 & 37766363112 & & , TMP & CVPT & & IVC & \\
\hline 1664 & 2365 & 37766363450 & & JMP & CVEF & & UNC & \\
\hline 1665 & 2366 & 37766362024 & & TMP & Stid & & INC & \\
\hline 1666 & 2367 & 37766362073 & & IMP & NSLIN & & Mise. & VSL.D \\
\hline 1667 & 2370 & 37766362.251 & & JNP & SPD & & VNC & \\
\hline 1668 & 2371 & 37766367403 & & dMP & AnUn & & INC & \\
\hline 1669 & 2372 & 37766362402 & & JMP & SUBT & & INS & CMPD \\
\hline 1670 & 2373 & 37766362402. & & JMP & SIIRT & & UNC & \\
\hline 1671 & 2374 & 37766362566 & & JMP & MFYT & & HJC & \\
\hline 1672 & 2375 & 37777777777 & & ADD & & & & \\
\hline 1673 & 2376 & 37777777777 & & ADD & & & & \\
\hline 1674 & 2377 & 37777777777 & & ADD & & & & \\
\hline 1675 & 2400 & 37571607777 & UNIM & ROM & & FAR & 007777 & \\
\hline 1676 & & & * & & & & & \\
\hline 1677 & & & * & & & & & \\
\hline 1678 & & & * & & & & & \\
\hline 1679 & 2401 & 37777777777 & & A.DI) & & & & SPACER \\
\hline
\end{tabular}



\begin{tabular}{|c|c|}
\hline 2566 & 23322362077 \\
\hline 2567 & 37762362060 \\
\hline 2570 & 32775263317 \\
\hline 2571 & 37762361346 \\
\hline 2572 & 37762361335 \\
\hline 2573 & \(3776236 ? 107\) \\
\hline 2574 & 37762362124 \\
\hline 2575 & 37771600011 \\
\hline 2576 & 23137777756 \\
\hline 2577 & 37177777472 \\
\hline 2600 & 37777427476 \\
\hline 2601 & 25531700000 \\
\hline 2602 & 37136777755 \\
\hline 2603 & 25177777477 \\
\hline 2604 & 37176777755 \\
\hline 2605 & 01177777437 \\
\hline 2606 & 37437777766 \\
\hline 2607 & 37762361401 \\
\hline 2610 & 16662261433 \\
\hline 2611 & 16767137773 \\
\hline 2612 & 17626367757 \\
\hline 2613 & 33771537761 \\
\hline 2614 & 37766361457 \\
\hline 2615 & 25457777777 \\
\hline 2616 & 01717777417 \\
\hline 2617 & 37551600017 \\
\hline 2620 & 14771537774 \\
\hline 2621 & 37766362771 \\
\hline 252. & 14722361507 \\
\hline 2623 & 37777747777 \\
\hline 2624 & 37752361155 \\
\hline 2625 & 37762311064 \\
\hline 2626 & 37777777437 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{1872} \\
\hline 1873 & & \\
\hline 1874 & 2627 & 37331623420 \\
\hline 1875 & 2630 & 33302362335 \\
\hline 1876 & 2531 & 16677777777 \\
\hline 1877 & 2632 & 32302362335 \\
\hline 1878 & 2633 & 37762263745 \\
\hline 1879 & 2534 & 31302362335 \\
\hline 1880 & 2635 & 37762363737 \\
\hline 1881 & 2636 & 30302362335 \\
\hline 1882 & 2637 & 37762363731 \\
\hline \multicolumn{3}{|l|}{1983} \\
\hline \multicolumn{3}{|l|}{1884} \\
\hline 1885 & 2640 & 34737777777 \\
\hline 1886 & 2641 & 22357777777 \\
\hline 1887 & 2647 & 37757777762 \\
\hline 1888 & 2ヶ4.3 & 21657777777 \\
\hline 1889 & 2644 & 32537777777 \\
\hline 1890 & 2645 & 31317777777 \\
\hline 1891 & 2646 & 30251777777 \\
\hline 1892 & 2647 & 37551600017 \\
\hline 1893 & 2650 & 14772361507 \\
\hline \multicolumn{3}{|l|}{1894} \\
\hline \multicolumn{3}{|l|}{1895} \\
\hline \multicolumn{3}{|l|}{1896} \\
\hline 1897 & 2651 & 25546002655 \\
\hline 1898 & 265? & 23176777757 \\
\hline 1899 & 2653 & 25177777437 \\
\hline 1900 & 2651 & 37557767217 \\
\hline 1901 & 2655 & 01766007660 \\
\hline 1902 & 2556 & 01177777637 \\
\hline 1903 & 2657 & 37777777217 \\
\hline 1904 & 2660 & 37157747717 \\
\hline 1905 & 2661 & 37762361027 \\
\hline 1906 & 2567 & 37322341172 \\
\hline 1907 & 2663 & 37522362145 \\
\hline \multicolumn{3}{|l|}{1908} \\
\hline 1909 & 2664 & 03777427017 \\
\hline 1910 & 2665 & 37777777677 \\
\hline \multicolumn{3}{|l|}{1911} \\
\hline 1912 & 2666 & 37537777442. \\
\hline 1913 & 2667 & 37257777177 \\
\hline 1914 & 2670 & 37317777760 \\
\hline 1915 & 2671 & 37237777777 \\
\hline
\end{tabular}


\begin{tabular}{lll}
1949 & & \\
1950 & & \\
1951 & 2776 & 23771600011 \\
1952 & 2727 & 16137777777 \\
1953 & 2730 & 37637777775 \\
1954 & 2731 & 37457777766 \\
1955 & 2737 & 37717777762 \\
1956 & 2733 & 37677777777 \\
1957 & 2734 & 37136777775 \\
1958 & 2735 & 26257777777 \\
1959 & 2736 & 36657777777 \\
1960 & 2737 & 35617777777 \\
1961 & 2740 & 37737777777 \\
1962 & 2741 & 37176777775 \\
1963 & 2742 & 26357527317 \\
1964 & 2743 & 37551430117 \\
1965 & 2744 & 37551617400 \\
1966 & 2745 & 23771600003 \\
1967 & 2746 & 16177777777 \\
1968 & 2747 & 26322151172 \\
1969 & 2750 & 37762141077 \\
1970 & 2751 & 37317777455 \\
1971 & 2752 & 14537777777 \\
1972 & 2753 & 26742361557 \\
1973 & 2754 & 26542361476 \\
1974 & 2755 & 37766141453 \\
1975 & 7756 & 37766367220
\end{tabular}

\begin{tabular}{lll}
1977 & & \\
1978 & 2757 & 31771537761 \\
1979 & 2760 & 37765361457 \\
1980 & 2761 & 32437777417 \\
1981 & 2762 & 37657777766 \\
1982 & 2763 & 36257777777 \\
1983 & 2764 & 37757777762 \\
1984 & 2765 & 11457777777 \\
1985 & 2766 & 25357777777 \\
1985 & 2767 & 35717777777 \\
1987 & 2770 & 01726362617 \\
1988 & & \\
1989 & 2771 & 14722361507 \\
1990 & 2772 & 33222361155 \\
1991 & 2773 & 36763777760 \\
1992 & 2774 & 16777772776 \\
1993 & 2775 & 16777777776 \\
1994 & 2777 & 16673377433 \\
1995 & & 37765367677
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{1997} \\
\hline \multicolumn{3}{|l|}{1998} \\
\hline \multicolumn{3}{|l|}{1999} \\
\hline \multicolumn{3}{|l|}{2000} \\
\hline \multicolumn{3}{|l|}{2001} \\
\hline 2002 & 3024 & 34317777777 \\
\hline 2003 & 3025 & 35772577437 \\
\hline 2004 & 3026 & 36764332276 \\
\hline 2005 & 3027 & 37737773765 \\
\hline 2006 & 3030 & 01717777777 \\
\hline 2.007 & 3031 & 37317777760 \\
\hline 2.008 & 3032 & 35772577437 \\
\hline 2009 & 3033 & 36764332276 \\
\hline 2010 & 3034 & 37737773765 \\
\hline 2011 & 3035 & 01237777777 \\
\hline 2012 & 3036 & 30317777777 \\
\hline 2013 & 3037 & 35772577137 \\
\hline 2014 & 3040 & 36764332276 \\
\hline 2015 & 3041 & 37737773765 \\
\hline 2016 & 3047 & 01617777777 \\
\hline 2017 & 3043 & 31317777777 \\
\hline 2018 & 3044 & 35772577437 \\
\hline 2019 & 3045 & 36764332276 \\
\hline 2020 & 3046 & 37737773765 \\
\hline 2071 & 3047 & 01637777777 \\
\hline 2022 & 3050 & 32317777777 \\
\hline 2023 & 3051 & 35772577437 \\
\hline 2024 & 3052 & 35754337276 \\
\hline 2025 & 3053 & 37737773755 \\
\hline 2026 & 30.54 & 01657777777 \\
\hline 2027 & 3055 & 33317777777 \\
\hline 2028 & 3055 & 35772577431 \\
\hline 2.029 & 3057 & -3F764337276 \\
\hline 2030 & 3060 & 37737773765 \\
\hline 2031 & 3061 & 01677777777 \\
\hline 2032 & 3067 & 37751631000 \\
\hline 2033 & 3063 & 37311777777 \\
\hline 2.034 & 3064 & 35777707437 \\
\hline 2.035 & 3065 & 36764332776 \\
\hline 2.036 & 3065 & 37737777765 \\
\hline 2037 & 3067 & 37751650000 \\
\hline 2038 & 3070 & 35772747437 \\
\hline 2039 & 3071 & 36764337276 \\
\hline 2.040 & 3072 & 37317777765 \\
\hline 2041 & 3073 & 01737777777 \\
\hline 2047 & 30)74 & 37751602400 \\
\hline 2.043 & 3075 & 35772747437 \\
\hline 2044 & 3076 & \(36764 \times 32276\) \\
\hline 2045 & 3077 & 37737777765 \\
\hline 2046 & 3100 & 01777772774 \\
\hline 2047 & 3101 & 16777777776 \\
\hline 2.048 & 310 ? & 15317776777 \\
\hline 2.049 & 3103 & 37751623420 \\
\hline 2050 & 3104 & 35737707774 \\
\hline
\end{tabular}
\(\& 302.4\)
* THIS IS THF SFCTTON OF CODF THAT PERFOPMS THF CHAINNED DIVIDFS *RY 10,000 ANT THF: FAST DTVTDFS BY 100 AND 10 TO GET A RCD DICITS * PEH SIIARHUTTMF CAI.

\(\begin{array}{ll}3105 & 37107167574 \\ 3105 & 26727707277\end{array}\)
\(3105 \quad 26737707277\)
310716767147277
\(3110 \quad 16737707777\)
\(3111 \quad 16736707157\)

THIS SUHROHTINF ACCESSFS AND COMPLGMENTS ANOTHER WORD
*F2 = "CTMPLFMENT"
*F1 = "CARRY IN"
RDFT SPI CAD
OPNI AJI
JHIIS CAD
HRIS AD!
IRAIS TNC

FESP1 RICD F2
SPD TNCT RSR INCT FI
SP2 RSR SP? ETF PSB
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{2.060} \\
\hline 2.061 & 3112 & 23311600007 \\
\hline 2062 & 3113 & 16767507762 \\
\hline 2.063 & 3114 & 37571601752 \\
\hline 2064 & 3115 & 31771507743 \\
\hline 2065 & 3116 & 3377151.7771 \\
\hline 2066 & 3117 & 37766363310 \\
\hline 2067 & 3120 & 33766003306 \\
\hline 2068 & 3121 & 31766003306 \\
\hline 2069 & 3127 & 01177777757 \\
\hline 2070 & 3123 & 36177777437 \\
\hline 2071 & 3124 & 22737777632 \\
\hline 2072 & 3125 & 34766777776 \\
\hline 2073 & 3125 & 23322362060 \\
\hline 2.074 & 3127 & 37762351335 \\
\hline 2075 & 3120 & 23337777777 \\
\hline 2076 & 3131 & 37767377773 \\
\hline 2077 & 3132 & 35737777776 \\
\hline 2078 & 3133 & 16766777775 \\
\hline 2079 & 3134 & 2 2177777572 \\
\hline 2080 & 3135 & 37237667717 \\
\hline 2081 & 3136 & 3776)361346 \\
\hline 2082 & 3137 & 35722362107 \\
\hline 2083 & 3140 & 2677502.377 \\
\hline 2084 & 3141 & 37777777677 \\
\hline 2085 & 3142 & 37136777755 \\
\hline 2086 & 3143 & 32177777437 \\
\hline 2087 & 3144 & 37717777777 \\
\hline 2088 & 3145 & 37476777055 \\
\hline 2089 & 3146 & 31136777755 \\
\hline 2090 & 3147 & 33.177777437 \\
\hline 2091 & 3150 & 01337777477 \\
\hline 2092 & 3151 & 37751623420 \\
\hline 2093 & 3152 & 35117777577 \\
\hline 2094 & 3153 & 33347377777 \\
\hline 2095 & 3154 & 37602363105 \\
\hline 2096 & 3155 & 15666333260 \\
\hline 2097 & 3156 & 37752363105 \\
\hline 2098 & 3157 & 16646333251 \\
\hline 2099 & 3160 & 37762363105 \\
\hline 2100 & 3161 & 16625333240 \\
\hline 2101 & 3167 & 37762.63105 \\
\hline 2102 & 3163 & 16606333275 \\
\hline 2103 & 3164 & 37752363105 \\
\hline 2104 & 3165 & 16226.333206 \\
\hline 2105 & 3166 & 377623631 n5 \\
\hline 2106 & 3167 & 16706003206 \\
\hline 2107 & 3170 & 3772236307.4 \\
\hline 2108 & 3171 & 16437777777 \\
\hline 2109 & 3172 & 34722363031 \\
\hline 2110 & 3173 & 37737777760 \\
\hline 2111 & 3174 & 35442363036 \\
\hline 2112 & 3175 & 15717777777 \\
\hline 2113 & 3176 & 30722363043 \\
\hline
\end{tabular}

\section*{CVAD}
7.

\(R B\)
\(\square\)


\(R\)
R
S
\begin{tabular}{|c|c|c|}
\hline & 54 & POM \\
\hline \multirow[t]{9}{*}{7.} & URUS & sup \\
\hline & & POM \\
\hline & RC & prim \\
\hline & ? A & Don \\
\hline & & JMP \\
\hline & RA & .TMP \\
\hline & RC & IMP \\
\hline & SP1 & \(\triangle D N\) \\
\hline & PR & ADI) \\
\hline
\end{tabular}

FINAT, SM + 3 FOR CKAR
sirnv
```

SAVE PR NT SM*+3

```
aMSW

WCNT - 1
aLSW
FETCII R:SW
7ERY PT: FOP CB1.2N
SPITT STACK?
RENEW SP? TF SPLT MONIFIED
F:2="NFCATIVE"
SFT OF:GATIVE: STGN

TFRO DI, FITR ROI

SAVE aA IN SPO
FETCH ISW
CTRL - (WD CNT + 1)
CTDL - (WD CNT + 1)
ZERI RD FOR BD \(1,2,3 \mathrm{~W}\)
FIX RA: JNP IF CNT=1
FIX RB:JYP TF CNT=?
1MD TF CNT=3
IMD TF CNT=4

O, DI, PI.,RD,RC,RB,RA/10K
FIRS'T PESUIT WORD
NL,PL,RD,RC,PR,RA/10K
DL,RI, RC, RR, DA/I \(\cap K\)
SECOND RESULT WIORD
THTRN PFSGUS'T WMRT
PD,RC, DB,RA/10K
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2114 & 3177 & 16237777777 & & & URUS & \(A D D\) & & FL & \\
\hline 2115 & 3200 & 31722363050 & & & RC & ，TSR & D 7 & SP2 & HNC \\
\hline 2116 & 3201 & 16617777777 & & & URIIS & ADD & & PD & \\
\hline 2117 & 3202 & 32722363055 & & & RRA & IS & 01 & SP？ & IVC： \\
\hline 2118 & 3203 & 16637777777 & & & unaus & ADD & & RC & \\
\hline 7119 & 3204 & 37722363055 & & & & JSh & n 1 & SP2 & UNC \\
\hline 2120 & 3205 & 16646363266 & & & ymus & TMP & RIFEN & FR & HNC \\
\hline 2121 & 3206 & 37777417760 & BO 5 w & PL & & ADD & & & 1／7RO \\
\hline 2122 & 3207 & 37766363225 & & & & IMP & Bn4r & & INC \\
\hline 2123 & 3210 & 37722363031 & & & & ．15B & 05 & SP？ & INS \\
\hline 2174 & 2211 & 37737777760 & & PL & & AD & & Sp？ & \\
\hline 2125 & 3212 & 35422363036 & & & SP2 & JSA & 114 & 0 & HNC \\
\hline 2126 & 3213 & 16457777777 & & & jruis & \(\triangle D N\) & & np & \\
\hline 2127 & 3214 & 30722363043 & & & R \({ }^{\text {a }}\) & ISR & N3 & SP？ & INT \\
\hline 2128 & 3215 & 16717777777 & & & 134is & ADO & & ris & \\
\hline 2129 & 3216 & 31722363050 & & & RC． & ISH & D\％ & SP？ & 11．JC \\
\hline 2130 & 3217 & 16237777777 & & & IjRUS & ADO & & Pt， & \\
\hline 2131 & 3220 & 32722363055 & & & RR & JS？ & D1 & SP2． & ！VC \\
\hline 2132 & 3221 & 16617777777 & & & URUS & A OT） & & PD & \\
\hline 2133 & 322 ？ & 37722363055 & & & & TS4 & ［1 & SD 2 & INS \\
\hline 2134 & 3223 & 16637777777 & & & uniss & ann & & \(F C\) & \\
\hline 2135 & 3224 & 33646363265 & & & RA & 1 MP & H「FA & PR & H：NC \\
\hline 2136 & 3225 & 30766003240 & RO4w & & p & JMF & RD3\％ & & 2FPR \\
\hline 2137 & 3226 & 37722363036 & & & & ISA & ［4 & CP2 & IINC \\
\hline 2138 & 3727 & 164.37777777 & & & URILS & ADn & & 0 & \\
\hline 2139 & 3230 & 30722363043 & & & RI） & 1，\({ }^{\text {a }}\) & D3 & SP？ & UNC \\
\hline 2140 & 3731 & 16457777777 & & & IRPIS & Ano & & \(n \mathrm{n}\) & \\
\hline 2141 & 3732 & 31722363050 & & & PC & ISH & りつ & Sp？ & 1／v \\
\hline 2142 & 3233 & 16717777777 & & & mans & \(A D^{\prime \prime}\) & & TL & \\
\hline 2143 & 32.34 & 32722363055 & & & KR & ，ISA & ［1］ & \(\leqslant P\) \％ & IPr \\
\hline 2144 & 32.35 & 16737777777 & & & H！uIS & MDn & & \({ }_{5} \mathrm{~L}\) & \\
\hline 2145 & 3236 & 33722363062 & & & RA & ，15A & 00 & CP） & HiNC \\
\hline 2146 & 3737 & 16606363263 & & & undes & 1 MD & FADE & a & INC \\
\hline 2147 & 3240 & 31766003251 & Bn3w & & Pr： & ．IMP & 大ワつい & & 7．F．Ri） \\
\hline 2148 & 3241 & 37722363043 & & & & ITSH & 「3 & SP？ & WNC \\
\hline 2149 & 3242 & 16437777777 & & & IJRUS & AnO & & \(\bigcirc\) & \\
\hline 2150 & 3243 & 31722363050 & & & RC & ．1SA & n） & SP2 & INC \\
\hline 2151 & 3244 & 16457777777 & & & IIRIIS & ADD & & nR & \\
\hline 2152 & －3245 & 32722363055 & & & Hh & is & n 1 & CP？ & UNC \\
\hline 7153 & 3246 & 16717777777 & & & ymus & Aun & & nL & \\
\hline 2154 & 3247 & 33722363062 & & & RA & JSn & DO & SD？ & INC． \\
\hline 2155 & 3250 & 16276363263 & & & yRus & JMP & hnfer & FL & UNC \\
\hline 2156 & 3251 & 32766003260 & FII2 \({ }^{\text {W }}\) & & PR & ，IMP & R 1 w & & ZERO \\
\hline 2157 & 3252 & 37722363050 & & & & USA & ®2 & SP？ & 11vC \\
\hline 2158 & 3253 & 16437777777 & & & UAIIS & Afin & & \(\bigcirc\) & \\
\hline 2159 & 3254 & 32722353055 & & & R9 & ，ISA & D1 & SP2 & IVNC \\
\hline 2160 & 3255 & 16457777777 & & & URIIS & ADD） & & rB & \\
\hline 2161 & 3256 & 33772363062 & & & RA & JSA & D0 & SP2 & IINC \\
\hline 2162 & 3257 & 16706363263 & & & IJRIIS & JMPD & prec & CT， & IINC \\
\hline 2163 & 3260 & 37727363055 & HD1 10 & & & JSA & D 1 & SP 2 & INC \\
\hline 2164 & 3261 & 16437777777 & & & unus & ADD & & \(\bigcirc\) & \\
\hline 2165 & 3262 & 33457777777 & & & RA & ACD & & FB & \\
\hline 2166 & 3263 & 37637777777 & BOEC & & & Ant & & FC & \\
\hline 2167 & 3264 & 37657777777 & & & & \(A D D\) & & FR & \\
\hline 2168 & 3265 & 37677777777 & BDEA & & & \(A D D\) & & PA & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{FOIRTH RFSULT WORD} \\
\hline \multicolumn{4}{|l|}{RC，RH，RA／1 OK} \\
\hline \multicolumn{4}{|l|}{FIFTH PESULT W WRD} \\
\hline \multicolumn{4}{|l|}{RB，RA／10K．} \\
\hline \multicolumn{4}{|l|}{SIXT＇4 RESUUT，T WMR} \\
\hline \multicolumn{4}{|l|}{O，RA／10K} \\
\hline \multicolumn{4}{|l|}{7TH RESULT WURI：RA HAS RTH} \\
\hline \multicolumn{4}{|l|}{TMP TF PL \(=0\)} \\
\hline \multicolumn{4}{|l|}{O，PL，RD，RC，RR，RA／ 10 K} \\
\hline \multicolumn{4}{|l|}{PI，RD，RC，PR， \(\mathrm{HA} / 10 \mathrm{~K}\)} \\
\hline \multicolumn{4}{|l|}{FIRST RESUTT WIRT} \\
\hline \multicolumn{4}{|l|}{SECOND RFSSULT WITPD} \\
\hline \multicolumn{4}{|l|}{RD，RC， \(\mathrm{PR}, \mathrm{RA} / 10 \mathrm{~K}\)} \\
\hline \multicolumn{4}{|l|}{THIRN RESUIT WORD} \\
\hline \multicolumn{4}{|l|}{RC，RR，RA／ 10 K} \\
\hline \multicolumn{4}{|l|}{FIJIRTH RFSSILT NORD} \\
\hline \multicolumn{4}{|l|}{PR，RA／ 10 OK} \\
\hline \multicolumn{4}{|l|}{FIFTH RESULT WIRN} \\
\hline \multicolumn{4}{|l|}{n，PA／10K} \\
\hline \multicolumn{4}{|l|}{6TH RESUTT WORD；\({ }^{\text {SA }}\) HAS 7TH} \\
\hline \multicolumn{4}{|l|}{25TH DIGTE TO RH} \\
\hline \multicolumn{4}{|l|}{，JMD IF RD＝0} \\
\hline \multicolumn{4}{|l|}{C，RD，RC，PR，RA／10K} \\
\hline \multicolumn{4}{|l|}{FIRST RESULT w} \\
\hline \multicolumn{4}{|l|}{SECiND RESULT WMRD} \\
\hline \multicolumn{4}{|l|}{PC．RR，RA／10K} \\
\hline \multicolumn{4}{|l|}{THERU EESUTT WMRN} \\
\hline \multicolumn{4}{|l|}{RM，RA／10k} \\
\hline \multicolumn{4}{|l|}{FIURTM RFSULT WIOPD} \\
\hline \multicolumn{4}{|l|}{GET 4 DICITS FPTM RA} \\
\hline \multicolumn{4}{|l|}{FIFTH PESUI，W WGR} \\
\hline \multicolumn{4}{|l|}{IMP IF RC＝0} \\
\hline \multicolumn{4}{|l|}{0，RC，RFF，RA／10K} \\
\hline \multicolumn{4}{|l|}{FIRST RESUI．\({ }^{\text {a }}\) NMRD} \\
\hline \multicolumn{4}{|l|}{PC，RR，2A／10K} \\
\hline \multicolumn{4}{|l|}{SECOMD RESUI，T WDRO} \\
\hline \multicolumn{4}{|l|}{PR，RA／10K} \\
\hline \multicolumn{4}{|l|}{THTRN RESII，T w} \\
\hline \multicolumn{4}{|l|}{GET 3 DICITS FRGM RA} \\
\hline \multicolumn{4}{|l|}{FIIIRTH RFSULT WORD} \\
\hline \multicolumn{4}{|l|}{1MP TF RR＝0} \\
\hline \multicolumn{4}{|l|}{O，RR，RA／10K} \\
\hline \multicolumn{4}{|l|}{FIRST RESUT，T NTR} \\
\hline \multicolumn{4}{|l|}{2B，RA／10K} \\
\hline \multicolumn{4}{|l|}{SECHHD RF．SILT WORD} \\
\hline \multicolumn{4}{|l|}{GET \(\boldsymbol{C}\) DICTTS FPOM RA} \\
\hline \multicolumn{4}{|l|}{THTRD RFESIITT WMRE} \\
\hline \multicolumn{4}{|l|}{O．RA／10K} \\
\hline \multicolumn{4}{|l|}{FIRST RESUIT WORT} \\
\hline \multicolumn{4}{|l|}{GET ONF CIGIT FROM RA} \\
\hline \multicolumn{4}{|l|}{CLFAR RC} \\
\hline \multicolumn{4}{|l|}{CLEAR RB} \\
\hline \multicolumn{4}{|l|}{CLFAR RA} \\
\hline
\end{tabular}

FOIRTH RFSSULT WORD
RC，RH，RA／1 1 K
RB．RA／10K
O．RA／ 1 OK
7TH RESULT WORI：RA HAS RTH
IMP TF PL＝O
O，PL，RD，RC，RR，RA／ 10 K
hest RC，PR，RA／InK
SECIND RFISILLT KMPD
RD，RC．RK，RA／1OK
HIRN RESUIT WHRD
RC，RR，RA／IOK
FUIVTH RFSSHIT NORD
pirRaliok
O．DA／1OK
6TH RESUTT WORD；PA HAS 7TH
TH DIGTI TO RH

GIRST RESAR RAMOK

SECiND RESILT WITRD
PC，RR，RA／10K
RH，RA／IOK
（ot RFSTLT wopo
TS FFIM RA
IMP IF RC＝0
0，RC，RFI，RA／1OK
C．RR \(2 A / 1\) K N

SItis wopo

GET 3 DICITS FRIM
FIIIRTH PFSULT WORD
IMP TF \(R R=0\)
O，RB，RA／10K
FIRST RESUT，T NORN
B．RA／AOK
SHLT WORD
THTRD RFESIIT W WRO
A／1のK
TRST RFISUIT WORN
CLFAR RC
CLEAR RB
CLFAR RA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2198 & & & & & & & & & & \\
\hline 2199 & 3323 & 23311600007 & CVDA & SM & HOM & & SP1 & 00000 & & SET SP1 FUR CKA* \\
\hline 2200 & 3324 & 16767507762 & Z & HB31S & SUB & & & & CRRY & \\
\hline 2201 & 3325 & 37571601752 & & & ROM & & FAP & Brin? & & \\
\hline 2202 & 3326 & 23322361374 & & SM & JSR & PSHA & SFO & & UNC & RA:SAD;RR:TCNT:RC:TAD \\
\hline 2203 & 3327 & 32771517743 & & RA & POM & & & 7743 & ncry & \(>28\) \\
\hline 2.204 & 3330 & 37766363442 & & & TMP & TC17 & & & UNC & \(>28\) \\
\hline 2205 & 3331 & 37336777635 & SPO & & TNC & & \(\bigcirc P 0\) & こ1.0 & & SPC - S-3 FOP ROUNDS TSTS \\
\hline 2206 & 3332 & 37767377232 & PB & & \(C A D\) & & & DCSR & & DF,C. SR FOR FOI,LOWTNG PUSH \\
\hline 2207 & 3333 & 32657777776 & UB11S & RH & AD) & & RH & & & FIX A DIGIT CNT FOF COVS \\
\hline 2208 & 3334 & 17206003137 & & Shtis & . MP & CFOF & FUSH & & 7.ERA) & JUST SDEC IF DITD RR=0 \\
\hline 2209 & 3335 & 37762367062 & & & JSP & CKA & & & INC & A:DCNT;B:SAD:C:DCNT*2:D:TAD \\
\hline 2210 & 3336 & 24762131346 & & STA & ISP & SPIT & & & NEG & \\
\hline 2211 & 3337 & 01177777577 & & SP1 & Ant & & Rus & ROn & & FETCU FIRST TAPCFFT whrd \\
\hline 2.212 & 3340 & 37572362041 & & & , ISR & CK \({ }^{\circ}\) & SP3 & & INC & CLFAR SP3:CHFCK R-PNOS \\
\hline 2213 & 3341 & 30777657377 & & RD & ADO & & & H, HF & n:PPVV & F2="FIRST ASCTT IN RTGYT" \\
\hline 22.14 & 3342 & 35762361346 & & SP? & ISA & Srit & & & IINC & FIX SP? IF SPI, TT STACK \\
\hline \(22!5\) & 3343 & 16137577577 & & IfRIS & \(A D N\) & & PSPO & \(\mathrm{R} \cap \mathrm{n}\) & NF? & FETCH 1ST;SPT OK EITHER WAY \\
\hline 2216 & 3344 & 26537771777 & & OPND & ADD & LI. Z & SP 3 & & & SP3 - GARHAGE RYTE IF F2 \\
\hline 22:7 & 3345 & 37307377774 & SP1 & & CAN & & SP1 & & & IFACR SPI FOR LATER INCR \\
\hline 2218 & 3346 & 37351777773 & & & pnm & & CTPL. & 17777 & & CNTR - - 5 \\
\hline 2219 & 3347 & 37611777766 & & & priv & & PO) & 17776 & & -10 USEN FOP VAIIIIITY \\
\hline 2220 & 3350 & 32777427777 & & He. & ADD & & & & FVFN & IS SAD FVEN? \\
\hline 2221 & 3351 & 26737765457 & & OPND & ADD & Fi. \({ }^{\text {, }}\) & SP? & CF1 & HNC & \\
\hline 7222 & 335 ? & 26737767457 & & OOND & ADD & & SP? & CF1 & Hide & SP? - A'ED RCO RYTE IN LEFT \\
\hline 2223 & 3353 & 37351777775 & & & POM & & CTRI, & 17777 & 5 & CVTR - -3 TF RA ODD \\
\hline 2224 & 3354 & 37136777575 & SPO & & INC & & ASPO & R(1) & & GEET NEXT SUUPCF NOPD \\
\hline 2225 & 3355 & 37657777777 & & & ADD & & FR & & & CTEAM RA(NON-ZFRT! + F,AG) \\
\hline 2226 & 3356 & 33766033361 & & RA & JMP & [) 1 & & & non & VOTE:TF JMP:URUS=SPT;SL4 \\
\hline 22.27 & 3357 & 35737776277 & & SP? & ADI & SuAr & SP 7 & [ NCT & & \\
\hline 2278 & 3360 & 15755363355 & & JRUS & (TMD & U12 & & & VNC & NOTE: [F , JMP: IRITS=SF2:SL8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{2229} \\
\hline \multicolumn{3}{|l|}{2230} \\
\hline \multicolumn{3}{|l|}{\[
2231
\]} \\
\hline \multicolumn{3}{|l|}{2232} \\
\hline \multicolumn{3}{|l|}{2.233} \\
\hline \multicolumn{3}{|l|}{2.234} \\
\hline \multicolumn{3}{|l|}{2235} \\
\hline \multicolumn{3}{|l|}{2236} \\
\hline \multicolumn{3}{|l|}{2237} \\
\hline \multicolumn{3}{|l|}{2238} \\
\hline \multicolumn{3}{|l|}{2239} \\
\hline \multicolumn{3}{|l|}{2240} \\
\hline 2241 & 3361 & 16775372777 \\
\hline 2242 & 3362 & 16775377777 \\
\hline 2243 & 3363 & 16775372777 \\
\hline 2244 & 3364 & 16735372777 \\
\hline 2245 & 3365 & 16621400017 \\
\hline 2246 & 3366 & 16657777150 \\
\hline 2247 & 3367 & 25531600060 \\
\hline 2248 & 3370 & 37766143443 \\
\hline 2249 & 3371 & 37667017273 \\
\hline 2250 & 337 ? & 37766363405 \\
\hline 2251 & 3373 & 25533167411 \\
\hline 2252 & 3374 & 16766363400 \\
\hline 2253 & 3375 & 01116777557 \\
\hline 2254 & 3375 & 25177777437 \\
\hline 2.255 & 3377 & 37537777437 \\
\hline 2256 & 3400 & 16537736777 \\
\hline 2257 & 3401 & 35766363361 \\
\hline 2.258 & 3402 & 37351777773 \\
\hline 2259 & 3403 & 37136777575 \\
\hline 2260 & 3404 & 26776363361 \\
\hline
\end{tabular}
* Iif the matn portion of thts instriction
* RA = BTGIT COUN'T
* RR = - NHM-ZFRN DTGIT STRVED* - (NOT CCA)
* RC = SFIFCTFD ACD DIGTT
\(\begin{array}{rl}* \\ * R C & =\text { SFIFFTF } \\ * & 177756(-10)\end{array}\)
- \(S P O=A R C D\)
* SP1 = AASCT
* \(S P 2=\) BCD NORT (FATATFS)
* SP3 = THAT WHTCH TS STOPED
* F? \(=\) 'RIGHT ASCIT EYTF'
* \(F 1={ }^{\circ}\) Jhbecial DIGTT \({ }^{\circ}\)

DA1 JBUS CRG SI 1
IRUS CRS SI.
JRUS CRS SII
JHIS CRE STI
DA2.
JBUTS RTIMN
URIJS ADD FB CTF SD? OOOn60 \(\begin{array}{lll}\text { JMP } & \text { FC15 } & \text { FI } \\ \text { CAN } & & \text { INCT NZRII }\end{array}\)
RA CAN
PC
SP3 JMP

SPI INC Na3 RSPI WRD
\(\begin{array}{ll}\text { SP3 ADN RUS DATA } \\ A D N & \text { GP3 EF2 }\end{array}\)
URUC ADN
CT12N
HS LINF TFF MIGく>0

DIGIT CNT - \(1=0\) ?
PROCESS SIGN
RIGHT ASCII RYTE ?
RIGHT ASCII PYTE ?
WO, SKIP NEXT SFCTIIN
WRITF. TI
CLFAR SP3 FITR NEXT PASS
SOURCE NORD FI?ISHED ?
NO,GO BACK
CNRR - -5
.OחP
2261
2262
2263
2264
7265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
\begin{tabular}{ll}
3405 & 35737770717 \\
3406 & 01176777577 \\
3407 & 00761410100 \\
3410 & 35731947417 \\
3411 & 25766363426 \\
3417 & 25777777677 \\
3413 & 25531600031 \\
3414 & 35771440040 \\
3415 & 37766363423 \\
3416 & 25531777747 \\
3417 & 37777777717 \\
3420 & 00761400040 \\
3421 & 37766363426 \\
3422 & 25531600070 \\
3423 & 31766713476 \\
3424 & 25531430064 \\
3425 & 16771600007 \\
3426 & 16537777771 \\
3427 & 37756163433 \\
3430 & 25537775777 \\
3431 & 26777774777 \\
3432 & 75517777776 \\
3433 & 01176177557 \\
3434 & 25177777437 \\
3435 & 37777417777 \\
3436 & 37777777737 \\
3437 & \(n 0761400070\) \\
3440 & 23771777776 \\
3441 & 37467357776 \\
3442 & 37531520017 \\
3443 & 37531670015 \\
3444 & 24777777617 \\
3445 & 16777529776 \\
3446 & 37571603134 \\
3447 & 37766363437
\end{tabular}
＊
＊herr til process sign
 ＇）A4
DA6 RC

\begin{tabular}{|c|}
\hline SP2
SP1 \\
\hline CTR \\
\hline SP） \\
\hline So3 \\
\hline Sp3 \\
\hline S03 \\
\hline S＇2 \\
\hline Sp3 \\
\hline CIR \\
\hline Sp3 \\
\hline RT \\
\hline SP3 \\
\hline 1141 \\
\hline
\end{tabular}
cc．
ROD

0100 ：7， 0.3

CCI
nOOO
0040 HSME
USNE
UNC
177747
ccc
0040 ZFRO
INC
SP3 000 O20
SP3 0054 NDR
000007
SP3
F2．
SP3
Spz
PIIS WDR
plis Dita
－／／RTI
CCF
กO20 7 FRI
177776

ED3 no17 F＇Js
CD3 noñ15 nonn
siv
par trpo pn
```

SIGI：DLGTT TO RT RYTF PRFFFTCH IAST TADC，WIRN NIT 9 ＇IF CIR
ABS SIGN ？（OOFX？）
1 IR 2 OVHO JMD；HRIS＝SP3
SP3－X．S．111（ \because AKFSS NFC） l：EC SIGN？（SP2＝\＆177737？） SKTP NFXT SECT．IF NEG SIGN PF．STIRFF \＆ 6 （ABS）
UIT 17 OF CIP ASSUMF AHS IF JIT NEG：IJ＝SP3 SP3－X，号100（MAKES POS） $1<=\mathrm{RC}<=9$ ；1F JUP，リBUS＝SO3 MAKE SP3＝X，＊164（＋）ORR175（－） $T F+$ 各164（＋）．MAKF o 173
TF RTGHT HYTF．JJST STORE
ANY M：TM－クERO DIGTTC？
SDFC BY？
SiJEC BY 1 MORE

```


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|l|}{2398} \\
\hline 2399 & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { * } 4 \text { WחRD } \\
& \text { NR } 4 \mathrm{~L}
\end{aligned}
\]} & \multicolumn{2}{|l|}{RESIJLT－} & \multicolumn{3}{|l|}{IIMNC DTE \＃ 17 Ins} & \multicolumn{5}{|l|}{18} \\
\hline 2.400 & & 3574 & 30302.362335 & & R 0 & ISP & ก18 & \multicolumn{2}{|l|}{SP1} & \multirow[t]{2}{*}{！ NC} & \multicolumn{4}{|l|}{COVV AS wnen 4 DIGITS} \\
\hline 2401 & & 3575 & 16677777777 & & unus & And & & DA & & & & & & \\
\hline 2402 & & 3575 & 37777777760 & PL & & ADO & & & & & & & & \\
\hline 2403 & & 3577 & 163 （12367335 & & ubils & iS3 & r．4R & SP1 & & UNC & cosv & 2ND WOR & & \\
\hline 2404 & & 3600 & 37762367745 & ． & & ISA & DRM1 & & & UNC & Come & whrns 1 & & \\
\hline 2.405 & & 3601 & 34302362335 & & DJ， & JSA & DAR & SP1 & & INC． & CONV & 3 RD WIR & & \\
\hline 2406 & & 3607 & 37762363737 & & & ISR & DuN？ & & & UNC & Comb & wnpus 1 & 2. & \\
\hline 2407 & & 3603 & 2.7302362335 & & na & JSH & \(D \triangle B\) & spl & & Inc & Cots & 4TH NOR & & \\
\hline 2408 & & 3604 & 37762363731 & & & ISP & ［FM 3 & & & UNC & COMR & wnkos 1 & 2. & 3，7 \\
\hline 2409 & & 3605 & 21302.362335 & & 0 & JSA & DOB & SP1 & & INC & rosv & 5TH WMR & & \\
\hline 2410 & & 3606 & 37762363723 & & & JSR & DRM4 & & & HNT & COMPI， & COvV． & & \\
\hline 2.411 & & 3607 & 37617777760 & PL & & ADO & & FD & & & SHIFT & HFFT 1 & & \\
\hline 2412 & & 3610 & 30637777777 & & R \({ }^{\text {a }}\) & \(\triangle \mathrm{DO}\) & & FC & & & & & & \\
\hline 2.413 & & 3611 & 31657777777 & & RC & ADO & & PR & & & & & & \\
\hline 2414 & & 3612 & 32677777777 & & PR & A 10 & & 1 F & & & & & & \\
\hline 2415 & & & & ＊comoom & PADT & JF 4 & OOPD & cases & & & & & & \\
\hline ＊＊＊ & WARMTNG & 2）＊ & ＊RRR COnflicts & WTTH PRFF & FTCH & ON TN & STK FN & NTPY & & & & & & \\
\hline 2416 & & 3613 & 03777437017 & DAW\％ & RMR & ADO & & & ARS & Ond & Fild S & TGN－A & \(\mathrm{S}=\) & \\
\hline 2417 & & 3614 & 3776636.3674 & & & ．TMP & DR4A & & & HNC & POSt＇t & IVf．Skt & & \(\mathrm{ONPI}_{\text {－}}\) \\
\hline 2418 & & 3615 & 30607507777 & & RI） & SUH & & F！ & & CRRY & & & & \\
\hline 2419 & & 3616 & 31627367777 & & Rr & （A1） & & FC & & UNC & & & & \\
\hline 2420 & & 3617 & 31627507777 & & PC & Stik & & \({ }^{\text {F }} \mathrm{C}\) & & CRPY & & & & \\
\hline 2421 & & 3620 & 32647367777 & & RR & CAT & & FR & & IINC & & & & \\
\hline 2422 & & 3521 & 32647507777 & & RH & Sin & & His & & CRRY & & & & \\
\hline 2423 & & 362.2 & 33657367777 & & H．A & Car & & FA & & Uv\％ & & & & \\
\hline 2424 & & 3623 & 33667777777 & & RA & SUH & & FA & & & & & & \\
\hline 2425 & & & & ＊cpripr 4 & wnup & RFSSII & & & & & & & & \\
\hline 2426 & & 3624 & 26137777557 & DFAA & DPNT & へ口ロ & & ESPO & ～\({ }^{\text {（ }} \mathrm{PI}\) ） & & & & & \\
\hline 2427 & & 3625 & 33177777427 & & ＋4 & And & & PIJS & DATA & & & & & \\
\hline 2428 & & 3626 & 37136777555 & SPI） & & JNC & & RSPO & 6．アリ & & & & & \\
\hline 2479 & & 3627 & 37177777437 & & RH & \(\triangle D D\) & & E．JS & DATA & & & & & \\
\hline 2430 & & 3630 & 37136771555 & SPO & & TNC & & FSPO & non & & & & & \\
\hline 2431 & & 2631 & 31177777437 & & RC & AnO & & PIIS & 1）ATA & & & & & \\
\hline 2432 & & 3632 & 37176777555 & Spo & & T NC． & & FIIS & WRD & & & & & \\
\hline 2433 & & 3633 & 30177777437 & & RN & ADO & & f．195 & dATA & & & & & \\
\hline 2434 & & ． 3634 & 37766363565 & & & ITMD & ［FF\％ & & & H\＄C & Comarl & IN COMPL & T & \\
\hline 2435 & & & & ＊ 4 wrird & CASF． & － Sk & ＞＜17 & & & & & & & \\
\hline 2436 & & 3635 & 37756163550 & 1）P48 & & JMP & DRAF & & & ＋2 & IF Rn & ，पB，RC， & & \\
\hline 2437 & & 36.36 & 37777777760 & Ft． & & And & & & & & & & & \\
\hline 2438 & & 3637 & 16302362335 & & URUS & ，15R & D＾R & sp1 & & ITMC & DH， \(\mathrm{Dr}_{\text {\％}}\) & ．DB．O C & SF： & \\
\hline 2439 & & 3640 & 16677777777 & & UBUS & Adf & & EA & & & & & & \\
\hline 2440 & & 3641 & 34307367335 & & nt， & JSB & DAK & CP1 & & U＇ve & cosv & 2：AD WOR & & \\
\hline 2441 & & 364. & 37762363745 & & & JSA & DRM 1 & & & HNC & Cush & whRDS 1 & & \\
\hline 2442 & & 3643 & 27302362325 & & 0 O & JSA & 040 & \＆PI & & リnc & conve & 3RD wnR & & \\
\hline 2.443 & & 3644 & 37762363737 & & & JSR & DFM？ & & & HVT & COME & WORTS 1 & 2. & \\
\hline 2444 & & 3645 & 21302367335 & & 0 & JS3 & D4F & cel & & UNC． & conv & 4TH WMR & & \\
\hline 2445 & & 3645 & 37762363731 & & & JSR & DPM & & & 11 NC & Compre & ETE CON & & \\
\hline 2446 & & 3647 & 37766363613 & & & TMD & DP，wis & & & UNC & cormn & ！s 4 WOR & & \\
\hline
\end{tabular}

\section*{7447
2448 \\ 2448
7449 \\ 2449
2450 \\ 2451 \\ 2452 \\ 2453 \\ 2454 \\ 2455 \\ 2455
2456 \\ 2456 \\ 2457 \\ 2458
2459 \\ 2460 \\ 2461 \\ 2462 \\ 2463 \\ 2464
2465 \\ 2465 \\ 2467 \\ 2468 \\ 2469 \\ 2470 \\ 2471 \\ 2472 \\ 2473 \\ 2474 \\ 2475 \\ 2476
7477 \\ 2478 \\ 479 \\ 2480 \\ 2481 2482}
\begin{tabular}{ll} 
& \\
3650 & 33302367335 \\
3651 & 16677777777 \\
3652 & 32302362335 \\
3653 & 37767363745 \\
3654 & 31302367335 \\
3655 & 37762363737 \\
3655 & 30302367335 \\
3657 & 37752363731 \\
3660 & 37766363613 \\
& \\
3661 & 32677077777 \\
3667 & 37766363770 \\
3663 & 31302362335 \\
3664 & 37762363745 \\
3665 & 30307362335 \\
3666 & 37762367737 \\
3667 & 03777437017 \\
3670 & 37766363674 \\
3671 & 31627507777 \\
3672 & 37647367777 \\
3673 & 32647777777 \\
& \\
3674 & 26137777557 \\
3675 & 32177777427 \\
3676 & 37176777555 \\
3677 & 31177777437 \\
3700 & 37766363565 \\
& \\
3701 & 30302367335 \\
3707 & 03777427017 \\
3703 & 25527777777 \\
3704 & 26177777557 \\
3705 & 25177777437 \\
3706 & 37766363565
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{* 4 WhiRD
nh} & RA,RF. & HC,Fn & & & & & \\
\hline & RA & JSB & D4R & CP1 & & UVC & CONV MS NORD \\
\hline & IJRUS & \(A D N\) & & FA & & & \\
\hline & PR & \(\mathrm{JSH}^{3}\) & U \(\triangle P\) & CE'1 & & Inc & COWV 2ND WORD \\
\hline & & TSA & DRM1 & & & INC & COMR WORDS 1,2 \\
\hline & \(R C\) & JSB & D4E & SP1 & & IINC & CONV 3PD WORE \\
\hline & & JSP & Devin? & & & INC & Cumh Nolins 1,2,3 \\
\hline & R 0 & ISA & T14B & SP1 & & Hisc & CONV 4TH WMRD \\
\hline & & , JSR & DPN3 & & & Hide & COPLETE COMV \\
\hline & & TMP & DPly 4 & & & UNC & COMMIN 4 NTRDS \\
\hline \multirow[t]{12}{*}{* 2 wnrns DRW?} & CASF & & & & & & \\
\hline & RRA & DCAT & & FA & & NIJFI, & TFSS FOR THIFGAH, DTGTT \\
\hline & & JMP & Tris & & & INC & NOTE JMP HFRF SET SP2_RH \\
\hline & RC & . ISA & DAH & SP1 & & リV & CONV 2ND WORN \\
\hline & & JSA & DPN: 1 & & & Inde & COMH WIODS \(1 . ?\) \\
\hline & R & .1.SR & D) 4 E & Spl & & UNC & COUV 3RD wnR \\
\hline & & JSR & DPM? & & & UNC & COPT,FTF CONV \\
\hline & RRR & ADP & & & ARS & nom & FOR SICIS - ARS=1. \\
\hline & & JMP & * + 4 & & & Hedr & SKtP CIIPt, tF Pns \\
\hline & RC & SUR & & \({ }^{\circ} \mathrm{C}\) & & CRPY & \\
\hline & R' & ran & & FB & & UNT & \\
\hline & R & s \(\mathrm{J}^{\text {a }}\) & & FH & & & \\
\hline \multirow[t]{6}{*}{* Stitre 2} & W Whros & & & & & & \\
\hline & mpan & 2.Di) & & FSPO & WRD) & & \\
\hline & RH & ADI & & PIIS & DATA & & \\
\hline & & T \({ }_{\text {N }}\) C & & PIIS & WRD & & \\
\hline & RC. & ADO & & H1S & DATA & & \\
\hline & & , TMP & 1) \(\mathrm{C}_{\text {er }}\) & & & liNC & CIMMMN EXIT \\
\hline \multirow[t]{7}{*}{* 1 nolrr DFW1} & CASE & & & & & & \\
\hline & RO & .1sa & V4R & SP1 & & 1 MC & CONV 1 wilr \\
\hline & RRP. & ADO & & & APS & FVEV & FOR SIGN - ARS \(=1\) \\
\hline & \(\mathrm{SP}^{12}\) & sup & & SP3 & & & COMPTIEMENT \\
\hline & IPNO & AD) & & Fils & Mpn & & STGRF \\
\hline & SP3 & ADH & & mus & DATA & & 1 NOFD \\
\hline & & .JMP & DFFA. & & & IIMC & COMMIN EXIT \\
\hline
\end{tabular}
\begin{tabular}{ll}
3707 & 34537417777 \\
3710 & 25446363715 \\
3711 & 17777677777 \\
3717 & 16774333275 \\
3713 & 17537777777 \\
3714 & 25457777777 \\
3715 & 37537417760 \\
3716 & 25706363773 \\
3717 & 17777607777 \\
3720 & 16774333775 \\
3721 & 17537777777 \\
3722 & 25717777777 \\
3723 & 30537117777 \\
3724 & 25226363731 \\
3725 & 17772607777 \\
3726 & 16774333275 \\
3727 & 17537777777 \\
3730 & 25237777777 \\
3731 & 31537417777 \\
3732 & 25606363737 \\
3733 & 17772607777 \\
3734 & 16774333775 \\
3735 & 17537777777 \\
3736 & 25617777777 \\
3737 & 37537417717 \\
3740 & 25676363745 \\
3741 & 17772607777 \\
3747 & 16774333275 \\
3743 & 17537777777 \\
3744 & 25637777777 \\
3745 & 33537417777 \\
3746 & 25657707777 \\
3747 & 17777607777 \\
3750 & 16774333275 \\
3751 & 17677777777 \\
3752 & 25657707777 \\
3 & 3
\end{tabular}
* SUBDIDTINF USFD FOR IOK MULTIPLICATION
* 10K IN x - MIITTIPTICAND
* DFPFNDIMG FN'TAY (TF.DRM1, DRM: 2.....) 1.2..... MFGTSTERS ARF

* LEAST SIGNIFICAUT WIRR (RFGJSTER)

SP3 IMD DRNG NH INC 20
SPO
SRIS REPN
nH
(1N0
TICT CTR:M
CP 3
DB
DHM5 Pr,
\begin{tabular}{llll} 
SP3 & ADD & & CPB \\
& ADI & & SP3 \\
SP3 & TMP & DPMA & CI \\
SHUS & FEPA: & &
\end{tabular}

MZRO
IZRO
HVC
20
INCT CTRM

NZRT
INC
20
DRM4
JRUS PPAD SDI
SRUS ADO
\(\begin{array}{ll}\text { SP3 ADN } & \text { SP } \\ \text { STH }\end{array}\) \(\begin{array}{llll}\text { R1) } & \text { ADD } & & \text { SP3 } \\ \text { SP3 } & \text { JMP } & \text { OLM } & \text { FT. }^{2}\end{array}\) SBUS RFPA 20
- SPN
\begin{tabular}{ll} 
WBUS MPAT SF1 & \\
SBUS ADD & SP3 \\
SP3 ADD & FI, \\
RC ADN & SP3
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline RC & - \(\begin{gathered}\text { ¢ }\end{gathered}\) & \\
\hline SP3 & JMD & DPPM? \\
\hline srus & PFPA & \\
\hline
\end{tabular} yMus MDAD SE1
\begin{tabular}{ll} 
SHUS ADD \\
SP 3 & \(A D N\)
\end{tabular}

7. DESS * 1 nK \(P R=0\)

PR * 1 OK
MS WIRH
IS ivIRD
1 REG * 10 OK
RETTFRA=0

RA * 10 K
MS wnht
I,S WORD
6 REGS * 10 K
D \(\mathrm{L}=0\)
i) L * 10 O

Mi WORD
I.S WIRD

5 RECS * 10 K
\(\mathrm{PI}_{1}=\) n
DT. * \(1 \cap \mathrm{~K}\) AS WIRD LS WORD
4 RE.GS * \(10 K\) \(\mathrm{PD}=0\)

RD * 10 K
MS WIRN
IS w wrin
IS WMRI
3 RECS * \(10 K\)
\(\mathrm{P} C=0\)
RC * 10 H
MS wIRD
Tis UnRT)

* snitucr nig a recervé IA pa - word alsín
* praturien in sf3

DAWC RA DOM


```

INV DICIT
PUSH 4 TNS RFGS
CVDB RRAF CONT
MPYD
INVATID NEC NIG
QESTIIRF: PL,DI,ONB,O IF T,ONG
IISFR TRAD?
YF.S
ON SINEC
DUSH 4 TOS RFG.
SDFC \& FXTT

```
```

SYMROL CROSS REFEREMCF TAPLIF

```
```

10CM 2520

```
10CM 2520
9CMP 1361 < = 2433 2516
9CMP 1361 < = 2433 2516
ADDD 2403 <= 2371
ADDD 2403 <= 2371
ADDN 2535 <= 2437 2.444 2451 2455 2463 2470 2475 250%
ADDN 2535 <= 2437 2.444 2451 2455 2463 2470 2475 250%
ADFN 2531 <= 2515
ADFN 2531 <= 2515
ADSC 241?
ADSC 241?
ADSH 2463 <= 24.36
ADSH 2463 <= 24.36
ADZL, 2537 <= 2035 2036
ADZL, 2537 <= 2035 2036
APOP 2220 < = 1464 2534 2540 2565 2756
APOP 2220 < = 1464 2534 2540 2565 2756
BD1W 3260 < = 3155 3251
BD1W 3260 < = 3155 3251
BD2W 3251 <= 3157 3240
BD2W 3251 <= 3157 3240
BD3W 3240 < = 3161 3225
BD3W 3240 < = 3161 3225
RD4W 3225 <= 3163 3207
RD4W 3225 <= 3163 3207
BD5W 3206 <= 3165 3167
BD5W 3206 <= 3165 3167
RDEA 37.65 <= 3224
RDEA 37.65 <= 3224
BDEC. 3263 <= 3237 3250 3257
BDEC. 3263 <= 3237 3250 3257
BDEN 3766 <= 3205
BDEN 3766 <= 3205
RDFT 3105 < = 3154 3156 3160 3162 316A 3156
RDFT 3105 < = 3154 3156 3160 3162 316A 3156
BOZL 3306 <= 3120 3121
BOZL 3306 <= 3120 3121
BND2. 1752
BND2. 1752
BPOP 3302 < 1650 1651 1777 3207 3322
BPOP 3302 < 1650 1651 1777 3207 3322
CAD1 1667 <= 1663
CAD1 1667 <= 1663
CAD2 1723<= 1736
CAD2 1723<= 1736
CAD3 1725 <= 1711
CAD3 1725 <= 1711
CAD4 1727 <= 1713
CAD4 1727 <= 1713
CAD5 1731 <= 1753 1760
CAD5 1731 <= 1753 1760
CAD6 1743 <= 1720 1730
CAD6 1743 <= 1720 1730
CAD7 1744 <= 1701 1705 1724 1731
```

CAD7 1744 <= 1701 1705 1724 1731

```
```

PAGF. }6

DA 3	3400	< $=$	3374						
DA4	3405	$<=$	3372						
DA5	3423	<	3415						
DA6	3426	< $=$	3411	3421	3423				
DA7	3433	$<$	3427						
DR4A	3624	$<=$	3614						
DR4B	3650	<	3635						
DR4 5	3574	<	3512						
DR4S	3635	<	3510						
DR6A	3551	<	3534						
DREN	3565	<	3634	3700	3706				
DRM 1	3745	<	2633	3517	3600	3642	3653	3664	3747
DRM2	3737	<	26.35	3521	3602	36.44	3655	3666	3732
DRM 3	3731	<	2637	3524	36004	3646	3657	3724	
DRM4	3723	<	3526	3 FO 06	3716				
DBM5	3715	$<=$	2530	3710					
DRM6	3707	$<=$	3537						
DRW1	3701	<	3504						
DRW2	3661	<	3506						
DRW4	3613	$<=$	3547	3660					
DRWC	3753	$<$	3463						
DRZL	3776	<	3455						
DMPO	2757	<	2612						
DMP1	2617	$<=$	2770						
DMP2.	2771	<	2621						
DMP 3	2627	<	2777						
DMP 4	2672	<	2725						
DMP5	2674	<	2721						

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline DMP6 & 2704 & \(<\) & 2722 & & \\
\hline DMP7 & 2705 & \(<=\) & 2673 & & \\
\hline DMPR & 2723. & < & 2710 & & \\
\hline DMP9 & 2726 & \(<=\) & 2707 & & \\
\hline DMPY & 1275 & < & 2361 & & \\
\hline DPOP & 3570 & < & 3775 & 3777 & \\
\hline EAS 1 & 0030 & \(<\) & 0250 & & \\
\hline FAS? & 0035 & \(<=\) & 0253 & & \\
\hline EAS4 & 0057 & \(<\) & 0054 & & \\
\hline EAS5 & 0067 & \(<\) & 0064 & & \\
\hline EAS6 & 0074 & < & \(0 \cap 71\) & & \\
\hline EAS 7 & 0113 & < & 0103 & & \\
\hline EAS8 & 0124 & < & 0116 & & \\
\hline F.AS9 & 0130 & < & 0123 & & \\
\hline EASR & 0023 & & & & \\
\hline ECMP & 0701 & & & & \\
\hline F.CP5 & 0740 & \(<\) & 02.13 & 0745 & \\
\hline ECP7 & 0741 & \(\leqslant\) & 0726 & 0734 & 0737 \\
\hline E. 10 & 0472 & & & & \\
\hline ED 12 & 0524 & <= & 0533 & & \\
\hline En20 & 0535 & < & 0523 & & \\
\hline E.D22 & 0561 & \(<\) & 0566 & 0641 & 0643 \\
\hline E026 & 0634 & \(<=\) & 0540 & & \\
\hline ED27 & 0644 & \(<\) & 0640 & & \\
\hline ED30 & 0570 & < & 0560 & & \\
\hline ED32 & 0606 & < & 0611 & 0655 & 0657 \\
\hline E.D34 & 0613 & < & 0605 & & \\
\hline ED36 & 0651 & \(<=\) & 0573 & & \\
\hline
\end{tabular}
```

En37 0645 < 0654 0660
ED40 0614
ED47 0647,<= 0615
ED50 0620 <= 0650
EDIV 0426<= 0256
EnZ2 0666 <= 0663
EDZR 0661 <= 0434
F.FOV 02.14 <= 0210
F.FV1 07.15 <= 0674
EMP2 0314<= 0311
EMPY 0243
ENE,G 0747 <= 0705
ENG2 0750 < 0 0761 0765 0765
F.NG4 0753 <= 0747
FRAD 132.7 <= 2406
FRER 1332<= 3471
FRFE 1331<= 2106 276.3
FRLG 1335 <= 1330 257% 3127
FTA. 1575 <= 1540
FTAG 1526 <= i537
FTCH 1507 <= 2141 2266 2411 262? 2650 2.771 3412
FTDN 1541 <= 1527
L1D 1027 <= 2332 2F61 2750 32.71
L1D' 1024 <= 2164
L2D 1217 <= 2333 2417
L2D* 1715 <= 2170
L3D 112? < 256? 2747 3273
L3D' 1120 <= 2172

```
```

SIDX 2141 <= 2.233 2.40 2250

```
SIDX 2141 <= 2.233 2.40 2250
SI.SR 2.2.2 <= 2157
SI.SR 2.2.2 <= 2157
SI,XW 2166 <= 2163
SI,XW 2166 <= 2163
SIXX 2173<= 2161 2165
SIXX 2173<= 2161 2165
SIXY 2706 <= 220n
SIXY 2706 <= 220n
SLXZ 2.213 <= 2175 2231
SLXZ 2.213 <= 2175 2231
SPLT 1346 < = 1655 1661 2103 2?b? 2405 2571 3136 3335 334? 3467
SPLT 1346 < = 1655 1661 2103 2?b? 2405 2571 3136 3335 334? 3467
SPT1 1355<= 1351
SPT1 1355<= 1351
SRD 2251 <= 2370
SRD 2251 <= 2370
SRLD 2025 <= 2251
SRLD 2025 <= 2251
SRSL 233? <= 2771
SRSL 233? <= 2771
SRXW 2300 <= 2275
SRXW 2300 <= 2275
SRXX 2305<= 2773.2.277
SRXX 2305<= 2773.2.277
SRXY 2321 <= 2707 2334
SRXY 2321 <= 2707 2334
STMS 1574<= 1564
STMS 1574<= 1564
STOR 1557 <= 2.214 2330 2531 2753 3277
STOR 1557 <= 2.214 2330 2531 2753 3277
STRS 1606 <= 1614 1620
STRS 1606 <= 1614 1620
STSC 1563 <= 1567 157.3
STSC 1563 <= 1567 157.3
STSN 1621<= 1610
STSN 1621<= 1610
SUBD 2402 <= 237? 2373
SUBD 2402 <= 237? 2373
TA13 1457 <= 2247 2614 2674 2704 2760
TA13 1457 <= 2247 2614 2674 2704 2760
TA15 1456 < = 2146 2150 215 ( 2154 2443 2450 2455 2467 2467 2474 2501 2506 3767
TA15 1456 < = 2146 2150 215 ( 2154 2443 2450 2455 2467 2467 2474 2501 2506 3767
TA17 1452 <= 2034
TA17 1452 <= 2034
TAIIT 1461 <= 1455
TAIIT 1461 <= 1455
TR13 3315 <= 3301
TR13 3315 <= 3301
TRLN 3310<= 3117
TRLN 3310<= 3117
TRITT 3317 <= 3314
TRITT 3317 <= 3314
TC15 3443 <= 3370
```

TC15 3443 <= 3370

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TC 17 & 3442 & < & 3330 & & & & \\
\hline TCID & 3767 & \(<=\) & 2336 & & & & \\
\hline TD15 & 3770. & < & 3667 & & & & \\
\hline TD17 & 3764 & \(<\) & 3454 & & & & \\
\hline tnut & 3777 & < & 3766 & & & & \\
\hline TF. 14 & 3316 & < & 1707 & 1715 & 1722 & 1737 & 1742 \\
\hline TFP17 & 3313 & < & 1647 & & & & \\
\hline TPPO & 3134 & & & & & & \\
\hline TX13 & 1453 & < & 2533 & 2755 & & & \\
\hline UAN1 & 0225 & < & 0120 & & & & \\
\hline IIAN2 & 0235 & < \(=\) & 0226 & 0230 & & & \\
\hline UNIM & 2400 & < & 2360 & & & & \\
\hline ZAN1 & 0224 & & & & & & \\
\hline ZAN2 & 0731 & < & 0224 & 9292 & & & \\
\hline ZAN3 & 0070 & < & 0313 & 0323 & 0464 & & \\
\hline ZR23 & 0222 & < & 0101 & 0145 & & & \\
\hline
\end{tabular}
<<<<<<<<<<<RRUS>>>>>>>>>>
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0017 & 1392 & MREG & 0003 & 5 & PADI & 0004 & 0 & Pr. & 0000 & 36 & RA & 0013 & 34 & R \({ }^{\text {a }}\) & 0017 & 30 \\
\hline RRUS & 0005 & 42 & RC & 0011 & 38 & R \({ }^{\text {I }}\) & 0010 & 29 & SPO & 0015 & 121 & SP1 & 0014 & 33 & SR & 0001 & 22 \\
\hline URUS & 0016 & 125 & X & 0006 & 38 & XC. & 0007 & 0 & Z & 0002 & 19 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0037 & 591 & CC & 0027 & 0 & CTR & 0000 & 14 & CPX1 & 0004 & 0 & CPX2 & 0006 & 0 & CTRH & 0015 & 1 \\
\hline CTRI, & 0014 & 35 & DR & 0022 & 47 & DI. & 0034 & \(\triangle 5\) & TOA & 0011 & 0 & Tחn & 0012 & 0 & MOD & 0005 & 0 \\
\hline OPND & 0026 & 131 & P & 0020 & 0 & DADH & 0002 & 1 & PB & 0036 & 19 & PCt.k & 0013 & 0 & 0 & 0021 & 26 \\
\hline ODWN & 0010 & 3 & RA & 0033 & 88 & QA & 0037 & \(R 1\) & RBR & 0003 & 16 & RC & 0031 & 80 & RD & 0030 & 74 \\
\hline SBUS & 0017 & 62 & SM & 0023 & 63 & SP1 & 0001 & 106 & SP? & 0035 & 81 & SP3 & 0025 & 131 & STA & 0024 & 12 \\
\hline
\end{tabular}

\section*{<<<<<<<<FUNCTTON>>>>>>>}
\begin{tabular}{lrrrrr} 
AMD & 0037 & 749 & AnDO & 0033 & 0 \\
CAND & 0005 & 1 & CRS & 0037 & 31 \\
INC & 0035 & 127 & INCN & 0031 & 0 \\
PNLR & 0020 & 0 & PNLS & 0021 & 0 \\
ROM & 0023 & 154 & ROMI & 0027 & 4 \\
URNT & 0011 & 0 & XOR & 0006 & 5
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline AND & 0007 & 25 & QNDT & 0015 & 19 & CAI) & 0016 & 58 & \(C \triangle D O\) & OC12 & 0 \\
\hline CTSD & 00:27 & 0 & CTSS & 0034 & 0 & OCAF & 2036 & 36 & DVSA & 0010 & 14 \\
\hline TOR & no2h & 48 & JMP & 0014 & 242 & JSB & 0004 & 193 & MPAD & \[
0030
\] & 29 \\
\hline OASt. & 0000 & 27. & OASP & \(0 \cap \bigcirc 1\) & 30 & REPC & 0024 & 4 & RPPM & 0025 & 45 \\
\hline RTMM, & 0003 & 45 & RTin \(\mathrm{X}_{1}\) & 0002 & 9 & Stis & 0017 & 74 & Silino & 0013 & 0 \\
\hline
\end{tabular}
<<<<<<<<<<STNPF>>>>>>>>>
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0037 & 794 & RSPO & 0005 & 61 & HSP1 & 0004 & 21 & HUS & 0007 & 151. & CTRH & 0017 & \(?\) & CTRT, & 0016 & 28 \\
\hline DR & \(002 ?\) & 27 & DL & 0034 & 32 & InA & 0001 & 0 & T00 & 0002 & ) & MPEC & 0003 & 1 & P & 0020 & 0 \\
\hline PR & 0036 & 2.1 & PCLK & 0000 & 0 & PI, & 0011 & 30 & \(\mathrm{P}!\) SH & 0010 & 4 & 0 & 0021 & 27 & OHP & 0013 & 0 \\
\hline RA & 0033 & 65 & RAR & 0027 & 12 & QR & 0037 & 74 & RC. & 0031 & 77 & RD & 0030 & 69 & SRR & 0006 & 5 \\
\hline SM & 0023 & 10 & SPO & 0015 & 49 & sp1 & 0014 & 110 & SP? & 0035 & 104 & SP3 & 0025 & 142 & STA & 0024 & 2 \\
\hline X & 0026 & 34 & 7 & 0012 & 12 & & & & & & & & & & & & \\
\hline
\end{tabular}
\(\langle<\langle<\langle<\langle<\langle S K I P\rangle \ggg \ggg>\rangle\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0037 & 8 R 1 & BIT6 & 0005 & 3 & BTTR & 0005 & 2 & CPRY & 0010 & 29 & CTRM & 0033 & 80 & EVEN & 0002 & 19 \\
\hline F1 & 0014 & 16 & F2 & 0016 & 17 & F3 & 0034 & 19 & IUDR & 0024 & 0 & Jully & 0031 & 0 & NCRY & 0011 & 29 \\
\hline NFEG & 0013 & 19 & NEXT & 0035 & 15 & NF 1 & 0015 & 24 & NF2. & 0017 & 27 & NOFt. & 0007 & 14 & NDRV & 0026 & 7 \\
\hline NSME & 0004 & 3 & N7.R0̇ & 0001 & 54 & 0 O & 0003 & 21 & POS & 0017 & 29 & RSR & 0030 & 52 & SR 4 & \(0 \cap 22\) & 0 \\
\hline SRI, \({ }^{\text {? }}\) & 0025 & 1 & SRLI 3 & 0027 & 0 & SPN4 & 0023 & 0 & SPNZ & 0021 & 0 & SPZ. & 0020 & 1 & TESS & 0032 & 0 \\
\hline UNC & 0036 & 361 & ZFRO & 0000 & 59 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0037 & 1193 & CCA & 0036 & 7 & CCH & 0000 & 0 & CC.F & 0035 & 6 & CCG & 0034 & 8 & CCL & 0033 & 9 \\
\hline \(\operatorname{ccpx}\) & 000.1 & 0 & CCRY & 0025 & 2 & Crz. & 0037 & 3 & CF 1 & 0022 & 13 & CF 2 & 0021 & 21 & CF 3 & 0007 & 9 \\
\hline CITIR & 0015 & 0 & Cr.O & 0031 & 11 & CISR & 0007 & 11 & CTF & 0006 & 35 & DCSR & 0011 & 6 & FHH & 0015 & 9 \\
\hline HRF & 0014 & 16 & INCN & 0012 & 2 & [ NCT & 0013 & 81 & TNSR & 0010 & 11 & LRF & 0017 & 8 & POP & 0027 & 2 \\
\hline POPA & 0026 & 2 & SCRY & 0024 & 7 & Stife & 0005 & 0 & SF 1 & 0023 & 10 & SF 2 & 0020 & 7 & SF3 & 0003 & 10 \\
\hline SIFG & 0004 & 0 & sov & 0030 & 4 & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ARS & 0000 & 15 & CMD & 0007 & 0 & CPL & 0001 & 0 & DATA & 2021 & 6 6 & np & 0020 & 1 & Deor & 0027 & 0 \\
\hline NIR & 0011 & 0 & OPND & 0031 & 13 & PR & 0010 & 0 & RND & 002.4 & i) & RNP & 0014 & 0 & RNS & 0034 & 0 \\
\hline Rina & 0007 & 0 & HOD & 0027 & 67 & ROWD & 0023 & 0 & RINP & 0013 & 0 & RINS & 0033 & 0 & RnP & 0017 & 0 \\
\hline Rȯs & 0037 & 27 & ROSA & 0005 & 0 & Rrisn & 0025 & 0 & S & 0030 & 1 & WPA & 0006 & 0 & WFD & 0026 & 26 \\
\hline WRS & 0036 & 37 & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0007 & 1251 & L.t.z & 0001 & 2.4 & LRZ & 0000 & 13 & RIIZ & 0005 & 11 & RPZ & 0004 & 25 & SI, 1 & 0002 \\
\hline SR1 & 0003 & 97 & SWAB & 0006 & 29 & & & & & & & & & & & \\
\hline
\end{tabular}

\title{
HP 3000 SERIES II COMPUTER SYSTEM
}

\section*{MICROPROGRAMMING LANGUAGE DESCRIPTION}

HP 3000 Series II Computer System
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 8/8/73 & RBUS & SBUS & FCN. & SHIFT & STORE & SPEC. & SKIP & MCU & \\
\hline 00 & PL & CIR & OASL & LRZ & PCLK & CCB & ZERO T & ABS & 00 \\
\hline 01 & SR & SP1 & QASR & LLZ & IOA & CCPX & .NZRO T & CRL & 01 \\
\hline 02 & 2 & PADD & ROHX & SL1 & IOD & CLSR & EVEN & CMD & 02 \\
\hline 03 & MREG & RBR * & ROIN & SR1 & MREG & SF3 & ODD & & 03 \\
\hline 04 & PADD & CPXI & JSB & RRZ & BSP1 * & SIFG & NSME T & & 04 \\
\hline 05 & RBUS & MOD & CAMD & RLZ & BSPD * & SDFG & BIT6 & ROSA & 05 \\
\hline 06 & X & CPX2 & XOR & SWAB & SBR * & CTF & BIT8 & WRA & 06 \\
\hline 07 & XC & SWCH & AND & NOP & BUS & CF3 & NOFL & ROA & 07 \\
\hline 10 & RD & QDIN & DVSB & & PUSH & INSR & CRRY & PB & 10 \\
\hline 11 & RC & 10A & UBNT & & PL & DCSR & NCRY & NIR & 11 \\
\hline 12 & RB & IOD & CADO T & & Z & INCN & POS & & 12 \\
\hline 13 & RA & PCLK & SUBO T & & QUP & INCT & NEG & RONP & 13 \\
\hline 14 & SP1 & CTRL & JHP & & SP] & HBF & F1 & RNP & 14 \\
\hline 15 & SPD & CTRH & BNDT & & SPø & FHB & NFI & & 15 \\
\hline 16 & UBUS & UBUS & CAD & & CTRL & CLIB & F2 & & 16 \\
\hline 17 & NOP & SBUS & SUB & & CTRH & LBF & NF2 & ROP & 17 \\
\hline & & & & & & & & & \\
\hline 20 & & P & PNLR+ & & P & SF2 & SRZ & DB & 20 \\
\hline 21 & & Q & PNLS+ &  & Q & CF2 & SRNZ & DATA & 21 \\
\hline 22 & & DB & ROMI &  & DB & CF1 & SR4 & DPOP & 22 \\
\hline 23 & & SIM & ROM + & & SM & SF1 & SRN4 & ROND & 23 \\
\hline 24 & & STA & REPC + & & STA & SCRY & INDR & RND & 24 \\
\hline 25 & - & SP3 & REPN+ & & SP3 & CCRY & SRL2 & ROSD & 25 \\
\hline 26 &  & OPND & IOR & & X & POPA T & NPRV & WRD & 26 \\
\hline 27 & \(V\) & CC & CTSD + & & RAR & POP & SRL3 & ROD & 27 \\
\hline & & & & & & & & & \\
\hline 30 & & RD & & & RD & SCV & RSB & & 30 \\
\hline 31 & - & RC & INCO+T & & RC & CLO & JLUI & OPND & 31 \\
\hline 32 & \(\checkmark\) & RB & CRS + & & RB & CCZ T & TEST & & 33 \\
\hline 33 & \(\square\) & RA & ADDO+T & & RA & CCL & CTRM & RONS & 33 \\
\hline 34 & \(\square\) & DL & CTSS+ & & DL & CCG & F3 & RNS & 34 \\
\hline 35 & \(\square\) & SP2 & INC + & & SP2 & CCE & NEXT & & 35 \\
\hline 36 & \(\square\) & PB & DCAD + & & PB & CCA T & UNC & WRS & 36 \\
\hline 37 & & NOP & ADD + & & NOP & NOP & NOP & ROS & 37 \\
\hline
\end{tabular}
* These options inhibit execution of the "SPEC" field options and enable the "MCU" field options in their place.
+ These functions cause an "ADD".
\(T\) Test is made on the T-bus.


There are nine fields and a comment space in the microinstruction, which are coded as follows:
coding sheet
\(1--4 \quad 6---9 \quad 11--14 \quad 16--19 \quad 21--24 \quad 26---29 \quad 31---34 \quad 36---39 \quad 46-\cdots--72\)
LABEL R-BUS S-BUS FUNC. SHIFT STORE SPEC SKIP •COMMENTS

The LABEL field may contain any characters in columns 1-4 provided that the first character is not the blank character, an asterisk (*), an ampersand (\&), or a percent sign (\%). These are interpreted by the assembler as follows:
blank - No label.
\& - If followed by a 4 digit octal number (e.g. 0271) in col's. 2-5, the assembler will load this number in its address counter and continue the assembly from there. If not followed by a number, the assembler address counter is set to the beginning of the next 256 word sector, and the assembly continues from there.
* - Indicates a comment card which will appear on the listing, but will not affect the assembly.
\% - May be used to insert a label in the symbol table. This is useful when assembling code segments that refer to labels in other segments not being assembled. The format is \%bxxxxbbyyyy where:
b = blank
xxxx \(=4\) character (max.) label (trailing characters on labels of less than 4 characters are blanks).
yyyy \(=4\) character octal address of the label in the sector referenced. Must contain 4 characters and no blanks (e.g. Ø12ø).

NOTE: To "NOP" a field, it must be left blank. Note that there is no NOP in the function field; hence this field must always be coded with something.

The R-BUS field in columns 6-9 points to the register to be placed in the R-BUS register.

The S-BUS field in columns 11-.14 points to the register to be placed in the S-BUS register.

The FUNCTION field in columns 16-19 gives the function that the arithmetic logic unit (ALU) is to perform on the two operands contained in the R-BUS and S-BUS registers or a special function.

The SHIFT field in columns 21-24 denotes how the information resulting from the ALU and placed on the T-BUS should be shifted and placed on the U-BUS.

The STORE field in columns 26-29 points to a register in which the contents of the U-BUS are to be stored.

The SPECIAL field in columns 31-34 has many varied uses which are best explained in that section of this document.

The SKIP fieid in column 36-39 denotes conditions of the CPU on which logical decisions in the microprogram can be made.

The COMMENT field may contain any explanatory comments.
JMP, JSB Targets are 4-character alphanumeric labels coded in place of the SHIFT field (col's 2l-24 of the coding sheet). The \(\mu\)-assembler matches this label with a binary address (12-bit) from the symbol table and inserts this address in bits 20-31 of the ROM word containing the JMP or JSB. This voids the SHIFT, SPEC, \& RBUS fields (must be coded with LABEL, NOP NOP, respectively).

ROM functions (ROM, ROMI, ROMX, ROMN) cause a 16-bit constant to be placed in the RBUS register, which is then operated on by the ALU in conjunction with the SBUS register as explained in the section on "function field". The constant is coded as a 4- or 6- (octal) digit in place of the SPEC field (col's. 23-26 or 23-28 of the coding sheet). If a 4 -digit number is detected by the \(\mu\)-assembler, a l2-bit number corresponding to the octal number is placed in the ROM word in positions 20-31. In addition ROM(15) is set to \(\emptyset\). This enables skips \(0 \emptyset-\% 17\) (i.e. ZERO-NF2) of the skip field (note that a skip must be codedNOP is not possible). When the \(\mu\)-instruction is executed in the machine, the constant is placed right-adjusted into the RBUS register, with the hardware extending the sign of the 12 -bit number (bit 4) into bits \(\emptyset-3\) of the register (e.g. \%7774 becomes 177774). The SHIFT, SPEC, \& RBUS fields are voided (must be coded NOP, constant, NOP, respectively). If a 6-digit number is detected by the \(\mu\)-assembier, a 16-bit number corresponding to this octal number is placed in the ROM word in positions 16-31. ROM(15) is also set to a 1 . In this case the SKIP, SHIFT, SPEC \& RBUS fields are voided (must be coded NOP, NOP, constant, NOP respectively - note also that the octal constant spills over into the skip field when coding). In both cases, the \(\mu\)-code listing will show the 6-digit (octal) number.

The stack has a topmost element which is LOGICALLY the quantity A. Similarly, there is a LOGICAL quantity \(B, C\), and \(D\) corresponding to the second, third, and fourth word of the stack, respectively. The LOGICAL quantities \(A, B, C\), and \(D\) may be either in registers or in memory. This is determined by the \(S R\) register. If the \(S R\) register is 0 then none of the logical quantities \(A, B\), \(C\), or \(D\) are in registers but rather they are located in memory locations (SM), (SM-1), (SM-2), and (SM-3), respectively.

At all times however, there are four registers \(R A, R B, R C\), and \(R D\), which are named by a hardware naming device. In the micropnogram the micro-options RA, \(R B, R C\), and RD refer to the hardware named registers and NOT TO THE LOGICAL QUANTITIES \(A, B, C\), and \(D\). There is a correspondence however. For any of the LOGICAL quantities \(A, B, C\), and \(D\), the state of SR indicates where it is located by the following table:
\begin{tabular}{lcccc}
\(\underline{S R}\) & \(\underline{A}\) & \(\underline{B}\) & \(\underline{C}\) & \(\underline{D}\) \\
0 & \((S M)\) & \((S M-1)\) & \((S M-2)\) & \((S M-3)\) \\
1 & \(R A\) & \((S M)\) & \((S M-1)\) & \((S M-2)\) \\
2 & \(R A\) & \(R B\) & \((S M)\) & \((S M-1)\) \\
3 & \(R A\) & \(R B\) & & \(R C\) \\
4 & \(R A\) & \(R B\) & \(R C\) & \((S M)\) \\
4 & \(R B\) &
\end{tabular}

Note then that if \(S R=1, B\) is in (SM) and if the micro-Op RB is used, the contents of the register named RB will be affected, NOT THE LOGICAL quantity \(B\) (i.e. for this case, RB, RC, and RD could be used as scratch pads without affecting \(B, C\), or \(D\) ).

The micro-store field instruction PUSH does three things:
1. Stores the output of the shifter into the register RD.
2. Increments the \(S R\) register.
3. Renames the registers so that
\[
N(R A):=R B, N(R B):=R C, N(R C):=R D, N(R D):=R A \text { where }
\]
\(N(R A)\) is read 'the register named \(R A '\) (i.e., \(N(R A):=R B\) is read 'the register named RA becomes RB').
This "pushes" the contents of the U-BUS onto the top of the stack (TOS).

Similarly the micro-spec field instruction POP does two things:
1. Decrements the \(S R\) register.
2. Renames the registers so that
\[
N(R A):=R D, N(R B):=R A, N(R C):=R B, N(R D):=R C \text {. }
\]

This "pops" the top element from the stack.

The micro-functions QUP, QDWN, MREG read and stores, are fully explained in the field descriptions and should be used very seldomly since the stack will be preadjusted in most cases.

\section*{R-BUS Field}
(blank) Zero is placed in the R-BUS register.

MREG

FADD The pre-adder contents are placed in the R-BUS register.

PL The Program Limit register, PL, is placed in the R-BUS register.

RA The register named RA by the hardware namer is placed in the R-BUS register.

RB The register named \(R B\) by the hardware namer is placed in the R-BUS register.

RBUS The R-BUS register is unchanged.

RC The register named RC by the hardware namer is placed in the R-BUS register.

RD . The register named RD by the hardware namer is placed in the R-BUS register.

SP \(\emptyset \quad\) Scratch Pad \(\emptyset, S P \emptyset\), is placed in the R-BUS register.

SP1 Scratch Pad 1, SP1, is placed in the R-BUS register.
\(S R \quad\) The Stack Register counter, \(S R\), is placed in the R-Bll register (13:15), preceded by 13 leading zeros.

UBUS The output of the shifter (i.e., the \(U\)-BUS), is placed in the R-BUS register.

If the index bit of the current instruction is zero, then 0 is placed in the R-BUS register, otherwise the index register is placed in the R-BUS register. The index bit, for indexable instructions, \(=\operatorname{CIR}(4)\).
\(Z\)
The stack limit register is placed in the R-BUS register.
(blank) Zero is placed in the S-BUS register.
*CC \(\operatorname{SBUS}(8: 9):=\operatorname{STATUS}(6: 7)\)
and if \(\operatorname{STATUS}(6: 7)=00\) then \(\operatorname{SBUS}(7):=1\)
else SBUS(7) \(:=0\)
All other bits of SBUS are zeroed.
Note: SBUS = S-BUS register.

CIR The contents of current instruction register is placed in the S-BUS register.
**CPXI RUN Mode Interrupt-Status register is placed in the \({ }^{-S}\)-BUS register. : Also clears the I/O Timer \(\dot{F F}\) if no SIO transfer is in process.
**CPX2 HALT Mode Interrupt Status register is placed in the S-BUS: : register.
*CTRH \(\quad\) S-BUS REG(4:9) \(:=\operatorname{CNTR}(0: 5)\). This will be used mostly in floating point exponent manipulations.
Note: CNTR is a 6-bit binary counter.
*CTRL \(\quad\) S-BUS REG(10:15) \(:=\operatorname{CNTR}(0: 5)\)

DB The data base register, DB, is placed in the S-BUS register.

DL The data limit register, DL, is placed in the S-BUS register.
*IOA The I/O addres's register is placed in the S-BUS register bits 8:15. (Reads Interrupting Device NO.)

IOD The I/O data register is placed in the S-BUS register. (Reads Direct Data Buffer.)
*Unless otherwise noted, remaining bits are zero.
**See explanation of interrupts.

MOD

OPND
P PADD

PB

RC

A constant is brought to the S-BUS register in the following way: Left byte: contains transmitted MOP (command) and sender's module number as shown:
\(\operatorname{SBUS}(\emptyset, 1,4):=\emptyset\)
\(\operatorname{SBUS}(2,3) \quad:=\mathrm{MOP}\)
\(\operatorname{SBUS}(5: 7) \quad:=\) Interrupting module no.
Valid only after module interrupt is received, and until the MOD INT FF is cleared.

Right byte: contains encoded CPU No. information as follows
SBUS (8:15) := \%øø4 if CPU \#1
SBUS(8:15) \(:=\% \varnothing 1 \varnothing\) if CPU \#2
The operand register is placed in the S-BUS register.
The Program counter, \(P\), is placed in the S-BUS register.
The pre-adder output is placed in the S-BUS register.
The Program Base register, PB , is placed in the S-BUS register.
The Process Clock PCLK, is Placed in the S-BUS register.
The Stack Marker Pointer register, Q, is placed in the S-BUS register.
It takes the lowest valid \(T O S\) register and puts it in the \(S\)-BUS register in the following way: the TOS registers are renamed by NAMER + SR. RD is then dispatched to the S-BUS. The TOS registers are returned to their former names on the following cycle. A TOS register used in the STORE field of the previously executed instruction will assume a temporary name. A DCSR Special Option is needed to complete the oferation.

The register named RA by the hardware namer is placed in the S-BUS register.

The register named RB by the hardware namer is placed in the S-BUS register.

Read bank register onto \(\operatorname{SBUS}(14: 15) . \operatorname{SBUS}(\emptyset: 13):=\emptyset\). The bank register to be read is specified in the "MCU" field. Execution of the "SPEC" field is inhibited.

The register named RC by the hardware namer is placed in the S-BUS register.

RD The register named RD by the hardware namer is placed in the S-BUS register.

SBUS The S-BUS register is unchanged.
SM The memory Top of Stack pointer register, SM, is placed in the S-BUS register.

SP1 : Scratch Pad register 1, SP1, is placed in the S-BUS register.

SP2 Scratch Pad register 2, SP2, is placed in the S-BUS register.
SP3 Scratch Pad register 3, SP3, is placed in the S-BUS register.
STA The Status register, STA;- is placed in the S-BUS:register.

SWCH The switch register, contents are placed in the S-BUS register.
UBUS The output of the shifter (i.e., the U-BUS) is placêd, in, the: . S-BUS register.

\section*{Function Field}

ADD The contents of the R-BUS and the S-BUS registers are added and the result is placed on the T-BUS.
Note: The T-BUS is the ALU output (or shifter input).

ADDO The contents of the R-BUS and the S-BUS are added and the result is placed on the T-BUS. The overflow and carry bits in the STATUS word are set or cleared depending on the state of the ALU output. CCA is set from the T-BUS.

AND The logical AND of the R-BUS and the S-BUS is placed on the T-BUS.
QASL Causes a 4 register arithmetic shift left of the U-BUS, SP3, SP1 and the R-BUS register containing the most; next most, next least, and least significant word, respectively. SLl is required in the shift field and the direction of the shift is left. The sign bit is preserved.

T-BUS:= SREG;
\(\operatorname{UBUS}(\emptyset):=\operatorname{TBUS}(\varnothing) ;\)
\(\operatorname{UBUS}(1: 14):=\operatorname{TBUS}(2: 15) ;\)
UBUS(15); \(=\) SP3( \(\varnothing\) );
SP3(ด:14):= SP3(1:15);
SP3(15):= SP1 ( \(\varnothing\) );
SPI (Ø:14): = SP1(1:15);
SPI(15): \(=\operatorname{RREG}(\emptyset)\);
\(\operatorname{RREG}(0: 14):=\operatorname{RREG}(1: 15) ;\)
RREG(15):= 0;

QASR Causes a 4 register arithmetic shift right of the \(U-B U S, S P 3, S P 1\), and the S-BUS register containing the most, next most, next least, and least significant words respectively. SRl is required in the shift field and the direction of the shift is right. The sign bit is propagated.

TBUS: = RREG;
\(\operatorname{UBUS}(\emptyset: 1):=\operatorname{TBUS}(\varnothing) ;\)
\(\operatorname{UBUS}(2: 15):=\operatorname{TUBS}(1: 14) ;\)
\(\operatorname{SP3}(\phi):=\operatorname{TBUS}(15) ;\)
SP3(1:15):= SP3(0:14);
\(\operatorname{SP1}(\phi):=\operatorname{SP3}(15)\);
SP1(1:15):= SP1(0:14);
\(\operatorname{SREG}(\emptyset):=\operatorname{SPI}(15) ;\)
\(\operatorname{SREG}(1: 15) ;=\operatorname{SREG}(\emptyset: 14):\)

BNDT The function executes a hardware bounds test of an address.
If the shift field contains LRZ, RRZ, RLZ, or LLZ, then
TBUS := RBUS-SBUS -1 (and the shift is executed)
else
TBUS := RBUS-SBUS.
If the ALU Carry Out \(=1\), the next \(\mu\)-instruction is fetched. If the carry \(=\emptyset\) and the machine is in USER mode, a hardware \(\mu\)-jump is made to ROM addr. 3. BNDT takes precedence over the skip field if the test fails. The above allows bounds tests to be made for (RBUS) \(>\) (SBUS) (1st case) or (RBUS) \(\geq\) (SBUS) (2nd case).

CAD The l's complement of the S-BUS is added to the R-BUS and the result placed on the T-BUS.

CADO Same as CAD with addition that the carry and overflow bits in the STATUS word are set or cleared depending on the state of the ALU output. CCA is set from the T-BUS.

CAND \(\quad\) T-BUS := R-BUS AND \((\overline{S-B U S})\).

The T-BUS is circular shifted right (SRI) or left (SLI) one bit and put on the \(U-B U S\). \(U(0):=T(15)\) if SR1, or \(U(15):=T(0)\) if SL1. Implied \(T\)-BUS \(:=\) R-BUS \(+S\)-BUS .

CTSD This function performs a double register shift of the T-BUS and a scratch pad register. A left shift, indicated by an SLI in the shift field, expects the least significant word in SP1. A right shift (SRI) expects the least significant word in SP3. The type of shift is determined from the contents of the CIR as follows. T-BUS \(:=\) R-BUS + S-BUS implied.

CTSD (Cont.)
\(\operatorname{CIR}(7)=1 \quad\) Circular shift
\(\operatorname{CIR}(7: 8)=0,1 \quad\) Logical shift
\(\operatorname{CIR}(7: 8)=0,0 \quad\) Arithmetic shift
Note: Both SP1 and SP3 get shifted on CTSD. Hence one or the other, depending on the direction of the shift, will contain garbage at the end.

DCAD Adds two 4-digit decimal numbers together and places the result on the U-BUS. For valid results each digit must be in the range \(0 \leq n \leq 9\). A carry digit (F3) is added to the least significant digit during the add, and a decimal carry out is saved (in F3) at the end of the add. This allows multiple-register adds. F3 must be cleared prior to the first add in order to obtain valid results. Specifically. The function DCAD adds the contents of the R-and S-BUS registers and puts the result into a decimal correction adder. the shifter is turned off (inhibiting the ALU output from the U-BUS), and the decimal corr. adder output is placed onto the U-BUS. The decimal carry FF (F3) logic is enabled.

Shift field and spec. field "FHB" are ignored. The T-BUS (ALU output) reflects the result of the uncorrected binary addition.

If an invalid diqit is detected in either the R- or S-BUS registers during the add cycle, the "set overflow" line is asserted to provide a skip test indication (the state of the OVFLO FF is not affected). Normal code sequence is, then, (registers are arbitrary)
\begin{tabular}{llllcll} 
RA & RB & DCAD & - & SP1 & - & NOFL \\
- & - & JMP & TRAP & - & - & UNC
\end{tabular}

This function performs the subtract, shift, and test necessary to implement a divide algorithm. To start, \(F 2=0\), the divisor is in the \(s\)-Reg., and the double word dividend is in the R-Reg. (MSW) and SP1. SLI must be in the shift field. One bit quotient comes in SP1(15).

DVSB ALGOL DEFINITION:
TBUS:= RBUS-SBUS;
\(\operatorname{UBUS}(0: 14):=\operatorname{TBUS}(1: 15) ; \quad\) BY SL1 in shift field
If ALU carry or \(\mathrm{F} 2=1\) then
BEGIN
\(\operatorname{RREG}(\emptyset: 14):=\operatorname{UBUS}(\rho: 14)\);
\(\operatorname{RREG}(15):=\operatorname{SPI}(\emptyset)\);
\(\operatorname{SPI}(\rho: 14):=\operatorname{SPI}(1: 15)\);
SPI (15): \(=1\);
F2 : \(=\operatorname{TBUS}(\rho)\);
END
eise
BEGIN
\(\operatorname{RREG}(\rho: 14):=\operatorname{RREG}(1: 15) ;\)
\(\operatorname{RREG}(15):=\operatorname{SPI}(\rho)\);
SPI( \(0: 14):=\operatorname{SPI}(1: 15) ;\)
\(\operatorname{SPI}(15):=\emptyset ;\)
F2 := RREG( \(\varnothing\) );
end;
INC \(\quad\) T-BUS : \(=\) R-BUS \(+S\)-BUS +1

INCO

IOR

MPAD This function performs the shift, test, and add functions necessary to implement a multiply algorithm. To start, the multiplier is in SP3, the multiplicand is in the R-BUS register, and the S-BUS register \(=0\). An SR1 is required in the shift field. One bit result comas in SP3(0).
\[
\begin{aligned}
& \text { T-BUS }:=\operatorname{R-REG}+\operatorname{S-REG} ; \operatorname{U-BUS}(1: 15):=\mathrm{T}-\operatorname{BUS}(0: 14) \\
& \mathrm{U}-\operatorname{BUS}(0):=\operatorname{ALU} \text { carry; if } \operatorname{SP3}(15)=1, \text { then } \mathrm{S}-\operatorname{Reg}:= \\
& \mathrm{U}-\operatorname{BUS}, \operatorname{SP3}(1: 15):=\operatorname{SP3}(0: 14) ; \operatorname{SP3}(0):=\mathrm{T}(15) ; \text { else } \\
& \operatorname{S-REG}(1: 15):=\operatorname{S-REG}(0: 14), \operatorname{SP3}(1: 15):=\operatorname{SP3}(0: 14), \\
& \operatorname{SP3}(0):=\operatorname{S-REG}(15) .
\end{aligned}
\]

PNLR A maintenance panel function. The appropriate register selected from the maint. panel is brought to the T-BUS through ALU. (R- and S-field are ignored). Appropriate bank reg. is gated to the bank lines.

PNLS A maintenance panel function. The U-BUS is stored in the appropriate register selected from the maintenance panel. If the register selected is \(P B, D B, Z\), or Men. Addr. (SPD), The value in the bank switches is stored into the appropriate bank register.

The following two functions are repeat commands and operate in the following anner. The microinstruction following the repeat command is executed over and over until the skip field condition of the repeated instruction is met. The instruction is then terminated and normal microprocessing proceeds. The skip field of the : REPN: instruction may not be used, except as shown below. The two repeat functions differ only in what they do during their execution, not in the operation of the repeated instruction. A repeated line of \(\mu\)-code will execute at least once, even if its SKIP condition is immediately met.

REPC Normal repeat function that has implied T-BUS := R-BUS + S-BUS.

REPN Send skip field contents to \(\operatorname{CNTR}, \operatorname{CNTR}(0)=1\), and implied T-BUS := R-BUS + S-BUS. (The \(\mu\)-assembler puts -(skip field) into the counter). Note: Skip field tests are inhibited.
See explanation on Page 3A for the following 4 functions.
ROM Bits 20-31 or 16-31 of this instruction are placed in the R-BUS reg. (If the former, bits 0:3 of this reg.- are set to bit 4 (sign extension)). Implied TBUS := RBUS + SBUS.

ROMI Same as ROM except implied T-BUS := inclusive - OR of \(R\) and \(S\) BUS.

ROMN This function is like ROM except implied T-BUS := R-BUS AND S-BUS.

ROMX This function is like ROM except implied T-BUS := R-BUS XOR S-BUS.

SUB
T-BUS := R-BUS -.S-BUS.

SUBO Like SUB, except carry and overflow bits in the STATUS word are set or cleared depending on the state of the ALU output. CCA is set from the T-BUS.

UBNT Unconditional bounds test. Same as BNDT except no test for USER mode is made (i.e. if the test fails, the jump to ROM addr. 3 is made regardless of machine mode).

Note: Left byte = bits \(\emptyset: 7\)
Right byte \(=\) bits 8:15
(blank) No shift, U-BUS := T-BUS.

LLZ "Left to left and zero" places the left byte of the T-BUS in the left byte of the \(U-B U S\) and places zeros in the right byte of the U-BUS.

LRZ "Left to right and zero" places the left byte of the T-BUS in the right byte of the U -BUS and places zeros in the left byte of the U-BUS.

RLZ "Right to left and zero" places the right byte of the T-BUS in the left byte of the \(U\)-BUS and places zeros on the right byte of the U-BUS.

SWAB "Swap Bytes" places the right byte of the T-BUS in the left byte of the U-BUS and the left byte of the T-BUS in the right byte of the U-BUS.
"Right to right and zero" places the right byte of the T-BUS in the right byte of the \(U\)-BUS and places zeros in the left byte of the U-BUS.

SL1 "Shift left one" shifts the T-BUS one bit left onto the U-BUS. When used with TASL, CTSS, CRS, CTSD and DVSB in the function field, refer to those descriptions to determine the action taken. This option may be used alone to perform a single logical shift where a zero is brought into \(U-B U S(15)\) and bit \(\emptyset\) of the \(T\)-BUS is lost.
"Shift right one" shifts the T-BUS one right onto the U-BUS. When used with TASR, CTSS, CRS, CTSD and MPAD in the function field, refer to those descriptions to determine the action taken. This option may be used alone to perform a single logical right shift where a zero is brought into U-BUS ( 0 ) and bit 15 of the T-BUS is lost.

\section*{Store Field}

\section*{(blank) No store.}

BSPD Stores U-BUS into A-COR or D-COR, depending on the MCU field option selected, and into SPQ. It disables the special field and enables the MCU options, one of which must be used.

BSP1 Same as BSPØ except SP1 is used.

BUS Same as BSPD, except none of the scratch-pad registers are used.

CTRH Counter high stores U-BUS(4:9) in the counter.

CTRL Counter low stores U-BUS(10:15) in the counter.

DB

DL

PCLK

Stores the U-BUS in the Data Base Register, DB.

Stores the U-BUS in the Data Limit register, DL.
Sends the command on UBUS(5:7) to the device whose address is on UBUS (8:15) \(\operatorname{UBUS}(\varnothing)=1\) is used to generate the "service out" signal to the device.
UBUS(8) is treated by the hardware as a "don't care" (device addresses are limited to 7 bits, contained in UBIIS ( \(0: 15)\) ).

Stores the UBUS into the I/O Data register.
The contents of Namer is added to two bits (SP1(14:15)) to obtain temporary name. This is used to reference a memory element that happens to lie in the TOS registers. SPI (14:15) contains E-SM. TOS registers used in the \(R\) and \(S\) field in the line following this instruction will assume the temporary name.

Stores the U-BUS into the program counter, P.
Stores the U-BUS into the Program Base register, PB.
Stores the U-BUS into the Process. Clock register, PCLK.

PL Stores the U-BUS into the Program Limit register, PL.

PUSH Stores the U-BUS into the RD register, increments the \(S R\) register by one and at the end of the microinstruction cycle renames the TOS registers such that:
\(N(R A):=R B, N(R B):=R C, N(R C):=R D, N(R D):=R A\).

Q Stores the U-BUS in the Stack Marker Pointer, Q.

RC Stores the U-BUS in the register named RC.

RD Stores the U-BUS in the register named RD.

SBR Stores U-BUS(14:15) into the bank register specified in the "MCU" field. Execution of the "SPEC" field is inhibited.

SM Stores the U-BUS into the memory stack pointer, SM.

SPø \(\emptyset \quad\) Stores the U-BUS into scratch pad register \(\emptyset, S P \emptyset\).

SP1 Stores the U-BUS into scratch pad register 1, SP1.

SP2
Gates \(\operatorname{U-BUS}(\emptyset: 15)\) onto \(\operatorname{VBUS}(\emptyset: 15)\). This takes 3 cycles. (See also Appendix B \#25). Skip field is ignored.

Stores the U-BUS in the register named RB.

Stores the U-BUS into scratch pad register 2, SP2.

Stores the U-BUS into scratch pad register 3, SP3.

STA Stores the U-BUS into the Status Register.
\(X \quad\) Stores the U-BUS into the index register, \(X\).

Z Stores the U-BUS into the stack limit pointer, \(Z\).

\section*{Special Field}

Note: If the S-BUS field contains "RBR", or the STORE field contains "BUS", "BSPQ", "BSPT", or "SBR", then special field is disabled and MCU field is enabled.
(blank) No special option.

CCA Sets the condition code bits in the status word to
CCL if T-BUS \(<\emptyset\).
CCE if \(T\)-BUS \(=\emptyset\).
CCG if T-BUS > \(\varnothing\).

CCE Sets the condition code bits in the status word to CCE. \(\operatorname{STA}(6: 7):=1, \varnothing\)

CCG Sets the condition code bits in the status word to CCG,
STA(6:7) := \(\varnothing, \varnothing\)
CCL Sets condition code bits in status word to CCL.
STA(6:7) := \(\varnothing, 1\)

CCPX CTears the interrupt status register bits as specified by the true bits on the U-BUS. (See explanation of interrupts.)

CCRY Clear the carry bit in the status word.

CCZ Sets condition code bits in status word to CCE if T-BUS \(=\varnothing\) and CCG if T-BUS not equal \(\emptyset\).

CF1 At the end of the cycle, CFI clears Flag 1.

CF2 At the end of the cycle, CF2 clears Flag 2.

CF3 At the end of the cycle, CF3 clears Flag 3.
CLIB At the end of the cycle, CLIB sets a FF which masks the indirect line until a NEXT or JLUI option in the SKIP field is encountered. This FF may also be cleared by a UBUS(8).CCPX operation (NIR \(\rightarrow\) CIR).

INCN Increments the Namer. \(N(R A):=R D, N(R B L ;=R A, N(R C L ;=R B, N(R D) ;=R C\) (Can be read "the register named RA becomes the register named RD, etc.") FHB

HBF FLAG1 := U-BUS(0).

INCT Increments the counter by 1 (modulo 64).

INSR Increment SR by 1.
LBF. Low bit to flag 2. F2:=U-BUS(15).

POP This option decrements the SR by 1 and then renames the TOS registers (increments namer) such that: \(N(R A):=R D, N(R B):=R A, N(R C):=R B, N(R D):=R C\).

POPA Exactly like POP, except CCA is set on the contents of the T-BUS.

Set the carry bit in the status word.

Sets the dispatcher flag CPXI(12) := 1 .
At the end of the cycle, CLO clears the overflow bit in the status word.

Sets the \(S R\) register to zero during the cycle. Note that this is an asynchronous reset. No other SR operation during the cycle is allowed.

Flag 1 to high bit. U-BUS(0):= FLAGI.

SCRY

SDFG

Sets flag 1 at the end of the cycle.

Sets flag 2 at the end of the cycle.

Sets flag 3 at the end of the cycle.

SIFG Sets the interrupt flag CPX1(11):=1.

SOV Sets the overflow bit in the status word at the end of the cycle.

CCB
Sets CCB on contents of \(\operatorname{UBUS}(8 ; 15)\) :
CCL \(=\) Special
CCE \(=\) Alphabetic
CCG \(=\) Numeric

NOTE: \(\quad\) CCL \(=\operatorname{STA}(6: 7)=\emptyset 1\)
CCE \(=\operatorname{STA}(6: 7)=10\)
\(C C G=\operatorname{STA}(6: 7)=\emptyset \emptyset\)

\section*{Skip Field}

The skip field does one of two things:
1. Sets the condition met flag or
2. Initiates a hardware micro-jump. A hardware micro-jump needs no jump target in the micro-instruction.

The condition met flag after a REPN or REPC function option indicates the condition on which to terminate the repeated micro-instruction. Otherwise it indicates that the next micro-instruction is to be skipped. (See also the explanation of ROM constants on Page 3a).
(blank) No skip option
*BIT6 Condition met if bit 6 of the U-BUS is a 1.
*BIT8 Condition met if bit 8 of U-BUS is a 1.
*CRRY Condition met if the carry out of the ALU is a one. (Note: This is not the carry bit in the status word.)

CTRM Condition met if the counter contains all ones. (Note: When INCT CTRM options occur the counter is tested before it is incremented.)
*EVEN \(\quad\) Condition met if \(U-B U S(15)=0\).

F1 Condition met if at the beginning of the cycle, flag 1 is set.

F2 Condition met if at the beginning of the cycle, flag 2 is set.

F3 Condition met if at the beginning of the cycle flag 3 is set.

INDR Condition met if the indirect bit of the current instruction register is set, where \(\operatorname{INDR}=(\operatorname{CIR}(4) \cdot \overline{\text { MEM REF }}+\operatorname{CIR}(5) \cdot\) MEM REF \() \cdot \overline{\mathrm{CLIBFF}}\)

JLUI Conditional hardware microjump to the address that the lookup table is displaying if the indirect line from the CIR is not \(=1\). CLIB must have been previously used to guarantee a jump on all instructions. "JLUI" resets the CLIBFF at the end of the cycle.
*NCRY Condition met if the carryout of the ALU is zero. (Note this is not the carry bit in the status word.)
*NEG Condition met if \(\mathrm{U}-\mathrm{BUS}(0)=1\).

NEXT Terminates current instruction and initiates the sequence necessary to begin execution of the next instruction. If stackop \(A\) has just been executed and stackop \(B\) is not a NOP, then the hardware executes stackop \(B\). Otherwise the action shown in the timing figure below takes place ( \(a, b, c, d, e, f\) are equal length CPU clock cycles):
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & a & \(b\) & c & d & e & \(f\) \\
\hline & \(\left\lvert\, \begin{aligned} & \text { Mem. Sel. } \\ & \text { Datacle } \\ & \text { SIR }\end{aligned}\right.\) & \multirow{6}{*}{NIR + LUT} & \multirow[t]{6}{*}{\(\cdots\)} & NEXT & NOP2 & execute 7st \\
\hline \multirow[t]{5}{*}{} & & & & BUSL, RWP & P+1+P & line of \(\mu\) - \\
\hline & & & & Issue LOREQ & Select cycle. & code of new \\
\hline & & & & LUT + VBUS \(\rightarrow\) ROM \(\rightarrow\) RANK1 & \begin{tabular}{l}
RANK1 RANK2 \\
(if mem. ref
\end{tabular} & instr. \\
\hline & & & & NIR \(\rightarrow\) CIR & force PADD, BASE & \\
\hline & & & & & to R, S-BUS Reg's. & \\
\hline
\end{tabular}

Time periods \(a, b, c\) (if present), and \(d\) occur in the currently executing instruction. "a" and "b" must occur before " d " for maximum execution speed- otherwise a CPU freeze will occur at "d". "a" and "b" result from the "next instruction prefetch" of the current instruction. " \(c\) " may or may not be present depending on the length of the current instruction. " d " is the last line of the current instruction. It initiates a "next instruction prefetch", transfers (NIR) to CIR, and applied the address on the VBUS (normally using the LUT output) to the ROM input. The ROM word at this address is stored in RANKI. In addition, the NOP2 FF is set. "e" is used to increment the P-reg., transfer RANK1 to RANK2, and if the new instruction is a memory-reference type, load the R-and S-BUS reg's. with the Pre-adder output and the. proper base register. This is also the "select" cycle for the "next instr. prefetch" if there is no MCU conflict. During " \(f\) ", the first line of the new instruction is executed.

NEXT (Cont.)
The above is the normal sequence of operation of "NEXT". This sequence is modified in the event an interrupt is pending or the \(\mu\)-code line is "...DATA NEXT". "NEXT" also clears F1, F2, F3, CNTR, Subroutine Flag FF, and the ABS-BANK reg.

NFI Condition met if at the beginning of the cycle, flag 1 is cleared. Condition met if at the beginning of the cycle, flag 2 is cleared.

NPRV Condition met if at the beginning of the cycle the privileged mode bit is not set.
*NSME Condition met if all the bits of the T-BUS are not the same.
*NZRO Condition met if T-BUS is non-zero:ここio.
*ODD Condition met if \(U-B U S(15)=1\).
*NOFL Condition met jf overflow out of the ALU does not occur. (Note this is not the overflow bit in the status word.) See also DCAD in function field.
*POS Condition met if \(U\)-BUS( 0 ) \(=0\).

RSB Hardware micro-jump to the address held in the SAVE register. The SAVE register contents is transferred to the RAR incrementer and the VBUS. If a JSB has not been executed prior to this option, it is treated as a NOP

SR4 Condition met if the SR register is 4.

SRL2 Condition met if the SR register is less than 2.

SRL3 Condition met if the SR register is less than 3.

SRN4 Condition met if the SR register is not 4.

SRNZ Condition met if the SR register is non-zero.

SRZ Condition met if the SR register is zero.

TEST Condition met if any interrupt is pending.

UNC Condition met unconditionally.
*ZERO Condition met if the T-BUS is zero.
*These tests are defined to be the data-dependent tests. All other conditions are known at the beginning of the cycle.

This field is executed in place of the "SPEC" field when the "S-BUS" field contains "RBR", or the "STORE" field contains "BUS", "BSPD", "BSPI", or "SBR".

Specifies ABSOLUTE bank register. May ve read onto SBUS (14:15) with "RBR" or stored into from UBUS(14:15) with "SBR". This bank register is normally used with instructions requiring absolute addresses.

Enables the bus option (BUS, BSPD, BSPl) in the "STORE" field to store the U-BUS into ACOR, and initiates a "low-request" command. When "selected", the ACOR register is output to the MCU bus, and the command and module number ("TO" lines) are obtained from the TO register and MOP register.

Enables the "STORE" field bus options (as above) to load TO register and MOP register fron the U-BUS (CPU freezes until any pending MCU requests are completed). The registers are loaded as follows:
\[
\begin{aligned}
\operatorname{MOP}(\emptyset: 1) & :=\operatorname{UBUS}(10: 11) \\
\operatorname{TO}(2: 4) & :=\operatorname{UBUS}(13: 15)
\end{aligned}
\]

MOP register then contains a "command" (defined by the user) for the module whose address is contained in TO register.

Enables the "STORE" field bus options (as above) to store the U-BUS into DCOR, and initiates a "high-request" command.

Same as "DATA" above, and in addition pops the stack (see "POp" in "SPEC" field).

Same as "ABS": above, except specifies the DB-Bank register. This bank register is used with DB-relative-addressing.

NIR

RUND

Enables the "STORE" field bus options (as above) to store the U-BUS into DCOR, and initiates a "high-request". On the following "select" cycle, DCOR is read onto the MCU bus and is then stored into the CPU "NIR" register (Next Instruction Register).

OPND Same as "NIR" above, except the MCU bus is stored into the CPU "OPND" register (Operand Register).

Same as "ABS" above, except specifies the PB-Bank register. This bank register is used with PB -relative addressing.

ND Enables the "STORE" field bus options (as above) to lỏad ACOR from the U-BUS, and initiates a "low-request" command. The DB-Bank. register is used to generate the module number. This is used to initiate a data fetch from memory. The returned data is loaded into the NIR register.

Same as "RND" above, except the PB-Bank register is used to generate the module number.

Same as "RND" above, except the Stack-Bank register is used to generate the module number.

Same as "RND" above except:
1. The ABS-Bank register is used to generate the module number.
2. The data is returned to the OPND register.

Same as "RND" above except:
1. The DB-Bank register is used to generate the module number.
2. The data is returned to the OPND register.

Same as "RND" above, except the data is returned to both the NIR and OPND registers.

Same as "RND" above except:
1. The PB-Bank register is used to generate the module number.
2. The data is returned to both the NIR and OPND registers.

RONS Same as "RND" above except:
1. The Stack-Bank register is used to generate the module number.
2. The data is returned to both the NIR and OPND registers.

Same as "RND" above except:
1. The PB-Bank register is used to generate the module number.
2. The data is returned to the OPND register.

Same as "RND" above except:
1. The Stack-Bank register is used to generate the module number.
2. The data is returned to the OPND register.

ROSA Same as "RND" above except:
1. The ABS-Bank register is used to generate the module number.
2. The data is returned to the OPND register.
3. The word addressed is set to all l's in memory.

Same as "RND" above except:
1. The data is returned to the OPND register.
2. The word addressed is set to all l's in memory.

Same as "ABS" above except specifies the Stack-Bank register. This bank register is used with DL, \(Q\), or S-relative addressing.

Enables the "STORE" field bus options (as above) to load ACOR from the U-BUS, and initiates a "low-request" command. The ABS-Bank register is used to generate the module number. This is used to initiate a data store into memory. On the "select" cycle, the memory module addressed interprets the data on the MCU bus as an address, and goes "BUSY". It stays busy until it receives the data to be stored (normally sent on the following cycle with a microcode BUS DATA instruction) and completes its "write" cycle, or until its timer runs down.

WRD Same as "WRA" above except the DB-Bank register is used to generate the module number.

WRS Same as "WRA" above except the Stack-Bank register is used to generate the module number.

NOTE: ACOR and DCOR refer to the "Address CPU Output Register" and "Data CPU Output Register" respectively.

\section*{ERROR MESSAGES}
1. INVALID CONTROL OPTION
2. INVALIO ADDR OR ROM K EXPRESSION
3. UNDEFINED LABEL
4. RBUS,SHIFT FIELDS INVALID WITH ROM FNS
-- 5.
6.
7.
8.
9.

1才. SKIP FIELD.INVALID WITH STORE RAR
11.
12.
13.
15.
16.
17.
18.
19.
28.
21.
22.
23.-INVALID-RBUS OPTION
24. INVALID SZUS OPTION
25. INVALID FUNC OPTION
26.-INVALID SHFT OPTION
27. INVALID STOR OPTION
28. INVALID SKIP OPTION
29. INFINITE REFEAT LOOP
31. INVALID SPEC OPTION
32. INVALID-SPEC/MCU OPTION
33.
34.
35.
36.
37. INVALID REPN CONSTANT
39. DUPLICATE LABEL
49. FORMAT ERROR
41. INVALID MCU OPTION
42. CLSR CONFLICTS WITH NEXT STACK PREAJUST
43.
44.
45.
```

 1.
 2. RBR CONFLICTS WITH PPEFETCH ON INSTR ENTRY
 3. RBUS MAY BE FORCED ON FOLLOWING LINE
 4. SBUS MAY BE FORCÉU ON FOLLOWING LINE
 5. CCA,CCZ SET ON TBUS
 6. PRECEDING TOS STORE NAME AFFECTED BY MREG OR ODWN
 7. TOS LOAD NAME AFFECTED BY PRECEDING MREG OR QUP
 8. TOS LOAD NAME IS OLD NAME BEFORE PRECTEOING PUSH, POP-OR
 INCN
 9.
 10.
 11.
 12. ZERO,NZRO,NSME SKIP TESTS MAOE ON T-BUS
 13:
 14.
 15. CLIB MAY BE TOO CLOSE TO JLUI
 16: BOUNDS TEST WITH RRZ,RLZ,LRZ,LLZ DOES A CAD--
 17. UBUS ON SBUS OR SRI MISSING FROM MPAD
 i8. UBUS ON RBUS OR SLI MISSING FROM DVSB
 19.. SLI OR SRI AS APPROPRIATE MISSING
 2E. FUNCTION AND STORE SP3 MAY CONFLICT
 21. FUNCTION AND STORE SPI MAY CONFLICT
 22.. RBUS ON RBUS INHIBITS CONTENTS CHANGING
 23. SBUS ON SBUS INHIBITS CONTENTS CHANNGING
 24. SKIP CONDITION MISSING FROM JMP,JSB
 25. STORE OR STORE-INCT CTR CONFLICT
 26. STORE/SET/CLR CC,OVFL,CRRY STA BIT\S CONFLICT
 27.
 28. SR CHANGE CONFLICT
 29. NAMER CHANGE OR TNAME CONFLICT
 3%. OLD PB~BNK USED FOR NEXT PREFETCH
    ```

\section*{INTERRUPTS}

The following is a brief explanation of the hardware interrupt information available to the microprocessor, and the hardware dependent sequences that the microprocessor must execute to handle interrupts correctly. Interrupts are detected via the interrupt status registers CPXI and CPX2. CPXI contains all run state interrupts and status information, that is, those that occur while the CPU is executing instructions, and CPX2 contains all control panel interrupts in addition to halt-made status information. The special field option CCPX is used to control the information in the interrupt registers and hardware dependent sequences.

Note that all interrupt bits in both \(\mathrm{CPX1}\) and CPX 2 will cause a hardware jump to ROM address 3 in a NEXT skip field option is executed, and also will cause the TEST skip condition to be true.

Control of the interrupt bits is accomplished by the run-halt state. In run state, all interrupt bits in CPXI are allowed, while all interrupt bits in CPX2 are held off. In halt state, front panel interrupts are allowed, while ell interrupt bits in CPXI except power-fail (CPXI (9)) are held off. Interrupt bits in CPXI (except CPXI ( \(\varnothing\) ), the integer overflow bit) are cleared by executing a CCPX "SPEC" field option with a field decoded from UBUS(4:7).

Note that "clearing" the power fail interrupt inhibits all other interrupt bits in both CPXI and CPX2. A11 interrupt bits in CPX2 are cleared by executing a CCPX with bit 15 of the U-BUS being a 1.* Note that run, execute switches, and single instruction interrupts must be cleared before the execution of a NEXT. A complete description of CPXI, CPX2 and the spec field function CCPX is given on the following pages.
*Interrupt bits include CPX2(0:8).

CPX1, CPX2 Bit Assignments' and SPEC field CCPX Option
\begin{tabular}{|c|c|c|c|c|}
\hline BIT & CPXI & CCPX & FIELD & CPX2 \\
\hline 0 & Integer OVFL & Halt & ( NOP & Run Sw. \\
\hline 1 & Bounds Viol. & Run & Clr. BNDV & Dump Sw. \\
\hline 2 & Illegal Addr. & Sys. Halt & Clr. Ill. Addr. & Load Sw. \\
\hline 3 & CPU timer & & Clr. CPU Timer & Load Reg. \\
\hline 4 & Sys. P.E. & MSB & Clr. Sys. P.E. & Load Addr. \\
\hline 5 & Addr. P.E. & Field Code & Cir. Addr. P.E. & Load Mem. \\
\hline 6 & Data P.E. & Field Code & Clr. Data P.E. & Disp. Mem. \\
\hline 7 & *Module Intrp. & LSB & Clr. Mod Intrp. & Sing Instr. \\
\hline 8 & ** Ext. Intrp. & Diag. NIRTOCIR & Clr. Ext. Intrp. & Exec. Sw. \\
\hline 9 & Power Fail. & & Pwf Turn-off Int. & Incr. Addr. \\
\hline 10 & & Diag. Set \(\operatorname{CPXI}(1: 8)\) & & Decr. Addr. \\
\hline 11 & ICS Flag & Clr. ICS Flag & & \\
\hline 12 & Disp. Flag & Clr. Disp. Flag & & \\
\hline 13 & Emulator & & & Inh. PFARS \\
\hline 14 & I/O Timer & Diag. Freeze & Rev. Sys. Parity & Sys. Halt \\
\hline 15 & Option Present & Clr. Panel FF's. & Rev. MCUD Parity & Run FF. \\
\hline
\end{tabular}

\footnotetext{
*Interrupt is enabled by STA(1)
**Interrutp Poll is enabled by STA(I)
}

CPXI Definitions

Addr. Parity Error. This bit is'set if a memory module detects a parity error on an address transmitted from the CPU.
Bounds Viol. This bit is set whenever an attempt is made to address outside the users assigned environment (i.e. USERMODE•[(E<DL or E>S) or ( \(E<P B\) or \(. E>P L\) )]. See ERS for complete bounds check information.

Illegal Addr. This bit is set when an attempt is made to address non-existent memory (i.e. an address larger than the amount of memory that is physically in the system). The bus transmission for this attempt is inhibited.

CPU Timer. This bit is set if the CPU does not receive a response from a module it had previously addressed within 4.6 ms . It also forces the CPU out of any freeze state it might be in so that it can complete the instruction and service the interrupt. The result of the instruction in this case is normally garbage. (This is also referred to as a "non-responding module" interrupt.)

Sys. Parity Error. This bit is set if a parity error is detected on the 8 -bit system information (TO, FROM, COMMAND) on a CPU to memory or memory to CPU transmission.

Data Parity Error. This bit is set if the CPU detects a parity error on the data transmitted from a memory module. Note that if memory receives data with bad parity (on a write cycle), it will store the information as received. No error information is generated.

10

Module Interrupt. This bit is set if the CPU receives a command, with good system parity, and it is not expecting it. Note that, as well as detecting a possible error, it can also be used as a "semaphore" between the CPU and another module (e.g. a 2nd CPU) for information swapping (i.e. one CPU can send a command to the 2nd CPU saying, in effect "look in your mailbox (a known core location) for the information I am transmitting". This search would be done in the module interrupt routine.)

External Interrupt. This bit is set when a device (not masked off) is. requesting service.

Power Fail. This bit is set when a power failure is detected. ICS Flag. Set=1 when the machine is executing on the "Interrupt Control Stack".

DISP. Flag. Set=1 when the machine is in the dispatcher. Since the dispatcher executes on the ICS, \(\operatorname{CPXI}(11)\) will also be set during this time.

Emulator. Set=1 by a switch on the ROM board when the / 20 emulator u-code is being executed. Useful for "DPAN".

I/O Timer. Set=1 if an I/O device does not respond to a "Service Out" request or "data poll" within \(3 \mu s e c\). This does not generate an interrupt; instead it is tested in the \(\mu\)-code which executes the \(1 / 0\) instructions, and its state is indicated in the STATUS reg "condition code" upon completion of the I/O instruction. This bit must be tested following the issuance of any I/O command (i.e. executing a "STORE" field IOA). It is cleared on the cycle following the reading of CPXI (following "IOA") which allows testing the bit.

Option Present. Used to indicate whether or not a given instruction set option is present (using \% 0204XX as the entry opcode). It is tested by \(\mu\)-code.
\(=\varnothing\) (Unused).

\section*{CPX2 Definitions}

\section*{BIT}

D RUN SW. Set \(=1\) when the "RUN/HALT". switch is depressed. This, in conjunction with the state of \(\operatorname{CPX} 2(15)_{\text {s }}\) is used to put the machine in the "RUN" or "HALT" mode.

DUMP SK. Set \(=1\) when the "SYSTEM DUMP" switch is depressed.
LOAD SW. Set \(=1\) when the "COLD LOAD" switch is depressed.
LD REG. Set \(=1\) when the "LOAD REG." switch is depressed.
LD ADDR. Set \(=1\) when the "LOAD ADDR" switch is depressed.
LD MEM. Set \(=1\) when the "LOAD MEM" switch is depressed. DISP. MEM. Set \(=1\) when the "DISPLAY MEMORY" switch is depressed. SINGLE INSTR. Set \(=1\) when the "SINGLE INSTRUCTION" switch is depressed. EXECUTE SW. Set = 1 when the "EXECUTE SWITCH REG." switch is depressed. The software instruction contained in the "SYSTEM SWITCH REGISTER" is executed.

NOTE: The above bits (CPX2(@:8)) are defined to be the "halt mode interrupts", and are enabled only when the machine is in "HALT" mode. They force the machine to jump to the \(\mu\)-code interrupt handler where they are scanned in sequence to determine the action to be taken. When a bit is found \(=1\), a jump to a \(\mu\)-code routine is taken, the interrupt is serviced, and (except for \(\operatorname{CPX2}(\theta)\) ) the Machine returns to the "HALT" mode - the "RUN" FF is not turned on. As soon as the bit causing the interrupt is detected, it is cleared by an "INC CCPX" \(\mu\)-instruction to prevent further interrupts.

The following bits in CPX2 contain miscellaneous panel information used only by the \(\mu\)-code.

9 INC. ADDR. Set \(=1\) if the Control Panel Mèmory Address INCREMENT switch and ENABLE switch are both on. This bit is checked by the p-code to decide whether or not to increment the address following a "load" or "display" memory.

DEC. ADDR. Same as bit 9 above except the switch must be in the "DECREMENT" position, and is used to test whether or not to decrement the memory address.

INH. AUTO-RES. Set \(=1\) if the Control Panel Auto-Restart switch is set to the "INHIBIT" position.

14 SYSTEM HALT. Set \(=1\) by the \(\mu\)-code if a "SYSTEM HALT" condition is detected.

15 RUN FF. Set \(=1\) by the \(\mu\)-code when the machine is put in the "RUN" mode.
\(11,12=\varnothing\)

The following action takes place when the bit referred to exists on the UBUS in conjunction with the \(\mu-O p\) "CCPX" in the SPEC. field.

\section*{BIT}
( HALT. Clears the "RUN" FF (i.e. go to HALT).
RUN. Sets the "RUN" FF.

Unused.

4:7 CLEAR CPXI. This field is decoded into 1 of 16, ANDed with CCPX, and used to clear the appropriate bit in CPXI. These bits currently include 1:9, 11, 12, 14, 15. (Bit \(\emptyset\) is cleared by clearing OVFLO or USER TRAPS bit in the STATUS REG.) Bit 9 is not acutally cleared by this field; instead, a FF is set which inhibits any further interrupts of any type. This FF is cleared by "PON" or "SYSTEM RESET". The field decode/CPXI bit correspondence is shown below:
\[
\begin{array}{rlrl}
\operatorname{UBUS}(4: 7) & =0000 & & \text { NOP } \\
& =0001 & \text { clears CPX1 (1) } \\
& =0010 & & \text { " }
\end{array} \quad \text { (2) }
\]

\section*{BIT}

4:7 A. Sets a FF which complements the system data parity bit. Remains (Cont. L complemented until a second (UBUS \((4: 7)=1110) \cdot\) CCPX is executed. Used for diagnostic purposes only.
8. Same as "A" except uses (UBUS(4:7)=1111).CCPX, and is used to complement the MCU data parity bit. Can be used to test either address or data parity.

8 Diag. NIRTOCIR. Causes the contents of NIR to be loaded into CIR. Used mainly for \(\mu\)-diagnostics. Note that, due to the "pipe" structure of the CPU, you must delay 1 clock before reading CIR to the S-BUS. This also resets the "CLIB" FF.

9 Unassigned.

10 Diag. SET CPXI(1:8). Sets the interrupt FF's in CPXI corresponding to bits \(1: 8\). This is used for \(\mu\)-diagnostics:

CLEAR ICS FLAG. Clears the "INTERRUPT CONTROL STACK" flag FF.

12 CLEAR DISP. FLAG. Clears the "DISPATCHER" flag FF.

13 Unassigned.

14
Diag. FREEZE. Sets the "FREEZE" FF which turns off the clock to the CPU. This forces the CPU to stop execution upon completion of the \(\mu\)-instruction containing UBUS(14)-CCPX. This FF is cleared by the Control Panel "RAR BREAKPOINT HALT/FREEZE-EXIT" switch. This function is used only for \(\mu\)-diagnostics.

15
CLR PANEL FF's. Sends a reset (clear) signal to CPX2( \(\varnothing: 8\) ). This is, in effect, a master clear for these interrupts.

The following is a random collection of notes which attempt to explain some obscure cases in micro-programming.
1. The micro-assembler does not recognize the option "NOP" in any of the fields, and hence will generate an error message. To "NOP" a field, it must be left blank (note that the "FUNCTION" field may not by "NOPed" - use ADD for this case).
2. BNDT, UBNT require one cycle only to execute. If the trap is taken (a fault detected), two overhead cycles are required (Freeze, NOP2) before the execution of the micro-instruction at ROM ADDRESS 2.
3. JLUI and RSB can be executed from RANK1 if the line of microcode in RANK2
a) is cancelled by NOP2
b) contains a ROM function
c) contains a NOP skip test
d) contains a non-data dependent skip test (options 14-27, 32-34) which is not.met
or if a previous JMP/JSB-UNC has just been taken from RANKI.

These all result in a zero-overhead JLUI or RSB.
4. a) \(J M P / J S B-U N C\) can be executed from RANKI if the line of microcode in RANK2
1) is cancelled by NOP2
2) contains a ROM function
3) contains a NOP skip test
4) contains a non-data-dependent skip. test (options 14-27, 32-34) which is not met
or if a previous JMP/JSB-UNC, JLUI, or RSB has just been taken from RANKI.

Otherwise JMP/JSB-UNC is executed from RANK2. If the JMP/JSB is executed from RANK1, there are no overhead clocks required. The micro-instruction jumped to will execute on the clock following the execution of the JilP/JSB micro-instruction. Note that, although the JMP portion of the micro-instruction may execute in RANK1, the remainder of the instruction executes in RANK2. Hence the timing for micro-code of the form

is as follows:
\begin{tabular}{|c|c|c|}
\hline Clock 1 & Clock 2 & Clock 3 \\
\hline In RANK2 & In RANK2 & In RANK2 \\
\hline \(\mathrm{RA}+\mathrm{RB} \rightarrow \mathrm{SP2}\) & RC + SP3 & SP2 + \(1 \rightarrow\) SP1 \\
\hline In RANK1 & In RANK1 & In RANK1 \\
\hline TARG \(+1 \rightarrow\) RAR & \((\) TARG \()=\) SP2 INC SP1 & \((\) TARG +1\()\) \\
\hline \((\) TARG \() \rightarrow\) RANKI Input & & \\
\hline
\end{tabular}
4. b) JMP/JSB-UNCs which are executed from RANK2 because none of the above fast-jump conditions were present, and conditional JMP/JSB's which are always executed from RANK2 behave as follows:
1) NOT TAKEN - next line in sequence executed on next clock
2) NON-DATA-DEP TAKEN - one overhead clock required (NOP2) before target line executed
3) DATA-DEP TAKEN - two overhead clocks required (FREEZE, NOP2) before target line executed
Execution of JMP/JSB (or RSB, JLUI) in RANK2 inhibit any fast jump execution fram RANK1. Hence, if there are two consecutive lines of micro-code containing JMP, and the JMP in the first line is taken from RANK2, the JMP in RANK1 will be ignored.

If NOP2 is set, any inhibits from this rank that might have held off fast jumps from RANKi are removed. This would allow code such as the following to execute with the timing shown:


\section*{timing}
\begin{tabular}{|c|c|c|}
\begin{tabular}{c} 
Clock 1 \\
JMP instr in RANK2
\end{tabular} & NOP2 Clock 2 & Clock 3 \\
anything in RANK1 & JSB instr in RANK1 & JSB instr in RANK2 \\
RB \(\rightarrow\) SP2 \\
RA \(\rightarrow\) SP3 & \(Y+1 \rightarrow\) RAR & (Y) in RANK1 \\
Assume F1 =1 & \((Y) \rightarrow\) RANK1 & etc. \\
\(X+1 \rightarrow\) RAR & & \\
\((X) \rightarrow\) RANK1 & &
\end{tabular}
5. The following describes how the CPU will behave for various cases of JMP/JSB's with possible operand freezes. Note that this is not necessarily an all-inclusive list of cases.

A) \(\mathrm{FI}=\emptyset\). "JMP \(\dot{X}-U N C "\) will execute from RANKI. Hence the third line of micro-code will never be seen. However, when "JMP X - UNC" is in RANK2 to complete its execution, \((X)\) is in RANK1. An OPND freeze (if required) would now occur.
B) \(\mathrm{Fl}=1\). Now the JMP will not be taken. Instead, when "JMP X - UNC" is loaded into RANK2, NOP2 is also set. However, the third line of micro-code (containing "OPND ADD - SPI") is also loaded into RANK1 on this clock, and an OPND freeze due to it could occur.
2)
```

-- RA JMP X SP3 -- ZERO
-- OPND ADD -- SP1 -- --
X OPND ADD -- SPØ -- --

```

This "JMP X" will always execute from RANK2 since it is a datadependent conditional jump.
A) (RA) \(\neq \emptyset\). No jump taken. The line of micro-code in RANK1 containing "OPND ADD - SPI" would cause an OPND freeze, if required.
B) \((R A)=\varnothing\). Jump is taken. A one-clock freeze is forced by the data-dependent condition in order to get \(X+1 \rightarrow\) RARR and \((X) \rightarrow\) RANKI ( \(\rightarrow\) may be read "to the input of"). This over-rides any previous RANK1 freeze (e.g. OPND). This is followed by NOP2 to fill the pipe, at which time RANK1 freezes are re-enabled. Note that this can, in effect, stretch out the NOP2 cycle due to a freeze. The timing sequence is shown below:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{no clock . cl} & clock \\
\hline Time Period 1 MMP X - ZERO in RANK2 & Time Period 2 Freeze period & Time Period 3 NOP2 \\
\hline UBUS \(=\emptyset=\) freeze & \(X+1+\) RAR & \((\mathrm{X})\) in RANK1 \\
\hline ock & \((\mathrm{X})+\mathrm{RANK1}\) & (freeze if req'd) \\
\hline & over-ride OPND freeze & \\
\hline & RA \(\rightarrow\) SP3 & \\
\hline
\end{tabular}
3) -- \(R A\) ADD -- -- - ZERO
-- -- JMP \(x\)-- -- UNC
-- OPND ADD -- SP1 -- --

X -- OPND ADD -- SP3 -- --
Again, the "JMP X - UNC" will execute in RANK2 since it is preceded by a data-dependent skip condition. The two cases here are
A) \((R A)=\emptyset\). The "ZERO" test will set NOP2, forcing the "JMP X - UNC" in RANK2 to be NOPed. The "OPND ADD - SP1" micro-instruction in RANKl can force an OPND freeze (if required), in effect extending the NOP2 cycle.
B) (RA) \(\neq \emptyset\). The micro-instruction "JMP \(X-U N C\) " will now execute from RANK2. "OPND ADD - SP1" in RANK1 may try to force an OPND freeze. However the act of executing a JMP will over-ride this freeze for one cycle. When RANK1 is loaded with ( \(X\) ), any freeze condition implicit in this instruction is enabled. The timing for this sequence is shown below:

6. Some confusion may exist concerning the state of the RBUS reg., SBUS reg., and UBUS following different kinds of JMP/JSB's. The following examples may help to clear this up. As a point of interest, it may be noted that JMP/JSB and ROM functions (ROM, ROiNN, etc.) are always decoded in RANK1 in order to determine what to do with the RBUS reg. On the clock edge where the JMP/JSB micro-instruction is transferred from RANK1 to RANK2, the RBUS register is loaded with all \(\emptyset^{\prime} \mathrm{s}\), and for the ROM function it is loaded with the ROM constant. The normal R-field decode is inhibited for these cases. As an additional note of interest, it may be seen that it is possible for the four least signifjcant bits of the JMP/JSB target or ROM constant to appear to be the R-field decode of "RBUS". This would tend to inhibit clocking the RBUS reg. Special hardware has been put into the CPU (the RFINH signal) to prevent this, thus insuring the RBUS register will clock.
1) RANKI Jump Taken. Assume code of the form
\[
\begin{array}{lllllll}
-- & S P \emptyset & A D D & -- & S P 2 & -- & -- \\
-- & S P 1 & J M P & X & -- & -- & U N C \\
\text { RA } & \text { RB } & \text { ADD } & -- & S P 3 & -- & --
\end{array}
\]
then
A) \(X\) RBUS SP3 ADD \(\ldots\); UBUS \(+\emptyset+(S P 3)\)
B) \(X\) UBUS SP3 ADD ... ; UBUS \(+(S P 1)+(S P 3)\)
C) \(x\) - UBUS ADD ... ; UBUS + (SPI)
D) \(X\) - SBUS ADD ... ; UBUS + (SPI)
E) \(X\) RA SBUS ADD ... ; UBUS + (RA) + (SPI)
2) RANK2 Jump Taken. Assume code of the form
\begin{tabular}{lllllll} 
RA & RB & ADD & -- & SPI & -- & -- \\
-- & SP3 & JMP & \(X\) & -- & -- & \(P O S\) \\
RC & RD & ADD & -- & -- & -- & --
\end{tabular}
then
A) \(X\) - UBUS ADD ... ; UBUS + (RC) + (RD)
B) \(X\) RBUS - ADD ... ; UBUS + (RC)
C) \(x\) - SBUS ADD ... ; UBUS + (RD)
D) \(X\) UBUS SP2 ADD \(\ldots\); UBUS + (RC) + (RD) + (SP2)
3) RANK2 Jump Not Taken. Assume code of the form
\[
\begin{array}{llllllll}
\text { RA } & \text { RB } & \text { ADD } & -- & \text { SP1 } & -- & \text { ZERO } & \text { assume UBUS }=\emptyset \\
-- & \text { SP3 } & \text { JMP } & X & -- & -- & \text { UNC } & \text { not taken }
\end{array}
\]
then if the next sequential line is:
A) RBUS - ADD ... ; UBUS \(+\varnothing\)
B) - SBUS ADD ... ; UBUS + (SP3)
C) UBUS UBUS ADD \(\ldots\); UBUS \(+(S P 3)+(S P 3)\)
D) \(R C\) RD \(A D D \ldots\); \(U B U S+(R C)+(R D)\)
7. In order to simplify the micro-code in the memory-reference address calculations, a FF has been put in the CPU to provide automatic bank register selection between the DB bank register and the stack bank register. It works as follows:

The micro-code always specifies the DB bank for DQS address calculations. If, for mem. ref. instructions (and not loop control (TBA, etc.)),
Q- or S-rel. addressing is specified, the FF is set. When the memory reference is made, the bank reg. pointed to by this FF is appended to the leading bits of the calculated address to form the 18 bit address.

The FF is cleared (so that the MCU option "ROD" always points to the DB bank) by the spec. field option "CLIB", or by "NEXT" or "System Reset".
This is a special-purpose FF which can only be set through sub-ops 04-17, and hence is of no use to the general-purpose micro-programmer.
8. Do not attempt to execute a memory operation between issuing a "BUS CRL" and "BUS CMD". The "TO" and "OPERATION" information for the "CRL" : will be lost if this is done. Refer to HP 3000/20 Rev. E micro-code for the CMD instruction ( 02356 - @2362) for an example of code that will be invalid on the HP 3000/30. (Note: a CRL must be issued prior to each CMD to insure correct MCU operation.)
9. When storing data into memory, the data is normally sent on the line of micro-code immediately following the address transmission. Under no circumstances should more than one line of micro-code be inserted between the address transmission and the data transmission (I/O bandwidth could be affected). Also, this line should not contain a BUS-OP. This would cause the "TO" information from the address transmission to be lost.
10. When a line of micro-code is skipped, the function field is changed to "ADD", the shift, store, spec., and skip fields are NOP'ed, and UBUS + (RBUS) \(+(S B U S)\). If the function field of the skipped microinstruction contains ROM, ROMI, ROMN, or ROMX, the RBUS reg. will be loaded with \(\emptyset\) 's instead of the ROM constant.
11. Interrupts are checked on the clock cycle following the execution of "NEXT" in RANK2. Hence, a line of micro-code such as
would (if the user traps bit in the status word were set) cause an interrupt. Replacing "SOV" with "CLO" would prevent an OVFLO interrupt.

The External Interrupts Enable/Disable bit (STA(1)) is handled differently. See the HP 3000/30 ERS for an explanation of its effect.

As a result of the above, ADDO, CADO, INCO, and SUBO are now one cycle operations.
12. The line of micro-code pointed to by an L.U.T. entry may not contain "JLUI" (this is normally the first line of a micro-program). This is due to hardvare limitations of the "NEXT" sequence.
13. Subroutines may be placed in-line in critical spots. "RSB" is treated as a "NOP" unless a "JSB" has been previously executed. Subroutines may be exited by "RSB" or "NEXT".
14. "QASL", "QASR" are normally executed in a "REPEAT" loop where any register-handling anomalies are handled by the pipe. It is possible, however, to do a single quadruple-reg. shift outside a "REPEAT" loop. For example, assume it is desired to do a one-bit "QASL". Let
\[
\begin{aligned}
& \text { RA + hi-bits } \\
& \text { RB \& next most bits } \\
& \text { RC \& next least bits } \\
& \text { RD + lo-bits }
\end{aligned}
\]

The following code would execute the shift:


Upon completion of the code, SPD + hi-bits, SP3 + next-most bits, SPI + nextleast bits, and SP2 + lo-bits. Note that (1) in the third line of code (left blank) is an implied "RBUS".
15. One-line subroutines are not allowed.
16. It is legal to do "STORE" and "NEXT" on the same line of micro-code; however, interrupt information based on the state of the "USER TRAPS BIT" and "OVFLO" (STA(2) and STA(4)) will be from the old state of the STATUS reg. - not the new. It is not legal to do this if \(\operatorname{STA}(1)\) (External Interrupt bit) is changed from 1 to \(\emptyset\). Since IPOLL can take up to 925 ns to detect the interrupting device, it could be possible to have an Ext. Int. occur on the following instruction even though \(\operatorname{STA}(1)\) had been turned off in the current instruction. If STA(1) is to be disabled, it should be done 1 usec ( 6 clocks) before executing "NEXT".
Also, it is not legal if the "Right Stack-op Pending" bit (STA(3)) can be changed. This affects the "NEXT" sequencer. If this bit can be changed by storing status, then the store must be done at least \(\underline{2}\) lines preceding "NEXT".
17. If a line of \(\mu\)-code contains both a ROM function (ROM, ROMI, ROMN, ROMX) and a BUS-OP (BUS, BSPD, BSP1) in the store field, an implied DATA will be issued to the MCU. This is convenient for \(\mu\)-diagnostics for storing programs in memory. For example, if SPD contains an address, then
is sufficient to store the constant \(\% 101000\) at (SPD) in memory.
18. It is legal to execute "Store \(P\) " and "NEXT" on the same line of \(\mu\)-code - e.g.

SPD - INC - \(P\) - NEXT
If this case is detected, the address used for the pre-fetch in NEXT is taken from the U-BUS rather than the P-reg.
19. The Subroutine Flag FF is set by execution of "JSB" in the ROM Function Field and "condition met" in the Skip field, and is cleared by "RSB", "NEXT", PON, system reset, or detection of a bounds violation (using BNDV or UBNT).
20. Execution of the line of \(\mu\)-code
- RBR ADD - BUS DATA -
results in the DB-Bank being loaded into DCOR. This is accomplished by pre-decoding RBR.DATA in RANKI and loading DB-BANK into the RBUS register.
21. The sequences

or
* * * * SBR * NEXT
are not allowed (* = valid \(\mu\)-op. It could foul up the bank register select (PB-Bank) for the NEXT pre-fetch.
22. The first line of a \(\mu\)-program executed following the "NEXT" sequence cannot contain "RGR" or "JLUI". The "NEXT" sequence will not execute properly if this is the case.
23. "CLIB" must be executed at least 2 lines before "JLUI" (since "JLUI" can execute from RANKI). B-9
24. Assume a typical sequence of \(\mu\)-code as shown below:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|l|}{* * \(\operatorname{ADD~*~BUS~ROD~*~*~a~any~valid~} \mu\)-op.} \\
\hline & & - & & & & & \\
\hline * & * & ADD & * & BUS & WRA & * & \\
\hline * & OPND & ADD & * & BUS & DATA & * & \\
\hline
\end{tabular}

Do not insert a line of \(\mu\)-code between the lines containing "WRA" and "DATA". "OPND" is used to freeze (hold-off) the write cormand, if necessary, due to the preceding data fetch.
25. Following are some restrictions on the function field \(\mu\)-op "DCAD";
A. Do not use with store field ops "BiUS, BSPD, BSPI, or SBR".
B. Do not use with skip field ops "POS, NEG, BIT6, BIT8".
C. Do not use with spec field op "CCB".

In general these are timing constraints due to the 2nd level of addition in this function.
26. The timing sequence for the store field op "RAR" is shown below:
\begin{tabular}{|c|c|c|c|}
\hline execute STORE RAR in RANK2 & JMP FRZ & NOP2 & \[
\left\lvert\, \begin{aligned}
& \text { execute } \\
& \mu-i n s t . ~ a t ~ \\
& \text { new addr. }
\end{aligned}\right.
\] \\
\hline Data \(\rightarrow\) UBUS & \[
\begin{gathered}
\text { UBUS } \rightarrow \text { VBUS } \\
\text { ROMM }+ \text { RANKI }
\end{gathered}
\] & RANKi +RANK2 & \\
\hline
\end{tabular}
27. Due to the 12-bit address space in the \(\mu\)-word format, JMP's \& JSB's are limited to a 4 K range. On JSB, however, the entire 16 -bit RAR is saved in the SAVE reg., and restored on RSB. Therefore if you wish to use a subroutine in a 4 K bank (of ROM/RAM) other than the one you are currently executing in, it may be accomplished as shown in the following example (note: this is intended for future applications only): Continued on next page.
27. (Cont.)

ROM space

return
go to subroutine
( \(\mathrm{K}=\% \mathrm{digit}\) )```

