

stu stu

3. start (Output)
is set to the offset in the text segment of the first instruction
generated for the source line that contains the specified instruction
or is -1 if the line is not found.

4 e num (Output)
is set to the number of words in the object code generated for the
specified source line.

5. line no (Output)

Notes

is set to the line number, in the main source file, of the statement
that contains the specified instruction or is -1 if the specified
offset does not correspond to a statement in the program.

All line numbers refer to the main source file and not to files accessed by
means of the %include statement.

No distinction is made between several statements that occur on the same
source line. The start argument is the starting location of the code generated
for the first statement on the line and num is the total length of all the
statements on the line.

This entry point, given a pointer to the symbol header of a standard object
segment and a line number in the main source file, returns the starting location
in the text section of the object code generated for the line. This entry point
can be used with object segments that have only a partial runtime symbol table.

declare stu $get runtime location entry (ptr, fixed bin) returns·
(fixed-bin(T8»; -

offset = stu_$get_runtime_location (head_ptr, line_no);

where:

1. head_ptr (Input)
is a pointer to the symbol section header of a standard object segment.

2. line no (Input)
is the line number of a statement in the main source file.

3. offset (Output)
is set to the location in the text segment where the object code
generated for the specified line begins or is -1 if no code is
generated for the given line.

3-111 AZ03-02

stu stu

This entry point, given a pointer to the symbol header of a standard object
segment, returns information about the statement map of the object segment.
This entry point can be used wi th object segments that have only a partial
runtime symbol table.

declare stu_$get_statement_map entry (ptr, ptr, ptr, fixed bin);

call stu_$get_statement_map (head_ptr, first_ptr, last_ptr, map_size);

where:

1. head ptr (Input)
- is a pointer to the symbol section header of a standard object segment.

2. first_ptr (Output)
is set to point to the first entry in the statement map of the
object segment or is null if the object segment does not have a
statement map.

3. last ptr (Output)
- . is set to point to the location following the last entry in the

statement map of the object segment or is null if the object segment
does not have a statement map.

4. map_size (Output)
is set to the number of words in an entry in the statement map.

This entry point attempts to convert an offset variable to a pointer value
using the area, if any, on which the offset was declared.

declare stu $offset to pointer entry (ptr,ptr, ptr, ptr, ptr, ptr) returns
(ptr);- - -

off ptr = stu $offset to pointer (block ptr, symbol_ptr, data_ptr,
- stack_ptr, link_ptr~ text_ptr); -

where:

1. block_ptr (Input)
points to the runtime block node that corresponds to the procedure
or begin block in which the offset variable is declared.

3-112 AZ03-02

stu stu

2. symbol ptr (Input)
-points to the runtime_symbol node that corresponds to the offset

variable.

3. data ptr (Input)

4.

- points to the offset value to be converted to a pointer.

stack ptr (Input)
is a pointer to the active stack frame associated with the block in
which the offset variable is declared. If the specified block node
is quick, stack ptr should point to the stack frame in which the
quick block is placing its automatic storage. If the specified block
is not active and does not have a current stack frame, stack ptr can
be nUll. . -

5. link_ptr (Input)
is a pointer to the I inkage section of the speci fied block. If
link ptr is null, the stu $offset to pointer entry point attempts to
obtaIn the linkage pointer, if it is needed, from the stack frame;
conversion fails if a pointer to the linkage section is needed and
stack_ptr and link_ptr are both nUll.

6. text_ptr (Input)
is a pointer to the base of the object segment that contains the
specified block. If text ptr is null, the stu $offset to pointer
entry point attempts to obtain the text pointer-;- if it -is-needed,
from the active stack frame; conversion fails if a pointer to the
text section is needed and stack_ptr and link_ptr are both nUll.

7. off ptr (Output)
is set to the poihter value .that corresponds to the offset value; it
is null if the conversion fails or if the offset value is itself
nUll.

This entry point attempts to convert a pointer value to an offset variable
using the area, if any, on which the offset was declared.

declare stu $pointer to offset entry (ptr, ptr, ptr, ptr, ptr, ptr) returns
(offset); --

off val = stu $pointer to offset (block ptr, symbol_ptr, data_ptr,
- stack_ptr, link_ptr,-text_ptr); -

where:

1. block_ptr (Input)
is as above.

2. symbol_ptr (Input)
is as above.

3-113 AZ03-02

stu stu

3. data ptr (Input)
points at the pointer value to be converted to an offset. This
pointer value must be an unpacked pointer value.

4. stack ptr (Input)
- is as above.

5. link_ptr (Input)
is as above.

6. text_ptr (Input)
is as above.

7. off val (Output)
is set to the offset value that corresponds to the pointer value; it
is null if the conversion fails or if the pointer value is itself
nUll.

This entry point decodes a remote format specification.

declare stu $remote format entry (fixed bin(35), ptr, ptr, label) returns
(fixed-bin) ; -

code = stu_$remote_format (value, stack_ptr, ref_ptr, format);

where:

1. value (Input)
is the remote format value to be decoded.

2. stack ptr (Input)
- is a pointer to the active stack frame of the block that contains

the format being decoded.

3. ref ptr (Input)
is the pointer value to be used if the format value being decoded
requires pointer qualification.

4. format (Output)
is set to the format value if decoding is successful.

5. code (Output)
is a status code. It is:
o if decoding is successful
1 if decoding is not successful

3-114 AZ03-02

stu stu

Example

The use of some of the entry points documented above is illustrated by the
following sample program, which is called with:

stack ptr
a pointer to the stack frame of a PL/I block

symbol
an ASCII string giving the name of a user symbol in the PL/I program

subs ptr
-a pointer to an array of binary integers that give subscript values

The procedure determines the address and size of the specified symbol. If
any errors occur, the returned address is nUll.

example: proc (stack_ptr, symbol, subs_ptr, size) returns (ptr);

declare stack ptr ptr,
symbol char(*) aligned,
subs ptr ptr,
size- fixed bin(35);

declare (header ptr, block ptr, symbol ptr, ref_ptr, sp, blk_ptr,
stack ptr, add ptr) ptr, -

(i, steps) fixed bin,
code fixed bin(35),
stu $get runtime block entry(pt~, ptr, ptr, fixed bin(18»,
stu-$find runtime symbol entry(ptr,char(*) aligned,ptr,fixed bin)
returns(ptr), -

stu $get runtime address entry(ptr,ptr,ptr,ptr,ptr,ptr,ptr)
returnsTptr), -

stu $decode runtime value entry(fixed bin(35),ptr,ptr,ptr,ptr,ptr,
fixed bin)-returnsTfixed bin(35»;

%include pl1 stack frame;
%include runtime_symbol;

1* determine header and block pointers *1

call stu_$get_runtime_block(stack_ptr,header_ptr,block_ptr,-1);

if block_ptr = null then return(null);

1* search for specified symbol */

symbol_ptr = stu_$find_runtime_symbol(block_ptr,symbol,blk_ptr,steps);

if symbol_ptr = null then return(null);

1* determine stack frame of block owning symbol *1

sp = stack ptr;
do i = 1 to steps;

sp = sp -> pl1 stack frame.display ptr;
end; - - -

3-115 AZ03-02

stu stu

1* determine address of symbol *1

ref ptr = null;
add-ptr = stu $get runtime address(blk ptr,symbol ptr,sp,null,null,
ref_ptr,subs:ptr); - - -

if add_ptr = null then return(null);

1* determine size *1

size = symbol_ptr -> runtime_symbol.size;

if size < 0
then do;

size = stu $decode runtime value(size,blk ptr,sp,null,null,
ref ptr,code); - - -

if code A= 0 then return(null);
end;

return(add ptr);
end example;

3-116 AZ03-02

The sweep disk subroutine walks through the subtree below a specified node
of the directory hIerarchy, calling a user-supplied subroutine once for every
entry in every directory in the subtree.

declare sweep_disk_ entry (char(168) aligned, entry);

call sweep_disk_ (base_path, subroutine);

where:

1. base path (Input)
- is the pathname of the directory that is the base node of the subtree

to be scanned.

2. subroutine (Input)
is an entry point called for each branch or link in the subtree (see
"User-Supplied Subroutines" below).

User-Supplied Subroutines

The subroutine is assumed to have the following declaration and call:

declare subroutine entry (char(168) aligned, char(32) aligned, fixed bin,
char(32) aligned, ptr, ptr);

call subroutine (path, dir_name, level, entryname, b_ptr, n_ptr);

where:

1. path (Input)
is the pathname of the directory immediately superior to the directory
that contains the current entry.

2. dir name (Input)
- is the name of the directory that contains the current entry.

3. level (Input)
is the number of levels deep from the base_path directory of the
subtree.

4. entryname (Input)
is the primary name on the current entry.

5. b_ptr (Input)
is a pointer to the branch structure returned by hcs_$star_Iist for
the current entry.

6. n_ptr (Input)
is a pointer to the names area for the immediately superior directory
of the current entry returned by hcs_$star_Iist.

3-117 AZ03-02

This entry point operates in the same way as sweep disk but is much less
expensive to use and does not return date time contents modified, date time used,
or bi t count. - - - --

declare sweep_disk_$dir_Iist entry (char(168) aligned, entry);

call sweep_disk_$dir_Iist (base_path, subroutine);

The user-supplied subroutine is called in the same way as sweep disk , but
b ptr points instead to the branch structure returned by hcs $staF dir -list.
See the hcs_$star _ subroutine in the MPM Subsystem Wri ters I Guide (Order No. AK92).

Notes

If the base path argument to the sweep disk subroutine is the root (">"),
the directory >process_dir_dir is omitted from the tree walk.

The sweep disk subroutine attempts to force access to the directories in
the subtree by-adding an ACL term of the form "sma Person.Project.tag" to each
directory ACL, and deleting that ACL term when finished processing the directory.
I f the user does not have sufficient access to add this ACL term for a given
directory, the subroutine will process those parts of the subtree under it where
the user already has sufficient access to list the directories.

3-118 AZ03-02

This entry point is used for debugging subsystems that use the sweep disk
subroutine. It sets an internal static flag in sweep disk that causes sweep-disk­
to call com err and report any errors encountered in- listing directories or
setting ACLs. Since sweep disk $loud takes no arguments, and should only be
used for debugging, it can readily be invoked as a command ("sweep disk $loud If)
to cause sweep disk to exhibi t this debugging behavior for the - rest- of the
process. There-is no corresponding entry point to turn the switch off. Because
this is a static switch, and affects all callers of sweep disk , it should not
be turned on, except to debug, when it is important to -understand the exact
nature of any errors encountered. Normally, sweep disk ignores errors and continues
as best it can. - -

declare sweep_disk_$loud entry ();

call sweep_disk_$loud ();

3-119 AZ03-02

I

I

I
I

teco_get_macro_ teco_get_macro_

The teco_get_macro subroutine is called by teco to search for an external
macro.

By default the following directories are searched:

1. working directory
2. home directory
3. system_Iibrary_tools

declare teco get macro entry (char(*) aligned, ptr, fixed bin,
fixed bIn (35» ;

call teco_get_macro_ (mname, mptr, mIen, code);

where:

1. name (Input)
is the name of the macro to be found.

2. mptr (Output)
is a pointer to the macro.

3. mIen (Output)
is the length of the macro.

4. code (Output)
is a standard Multics status code.

3-120 AZ03-02

translator info translator info . -

Name: translator info

The transl ator info s.ubrouttne con~ains utili t-y routines. needed by. the
various system trarislators~'theyare centralized here tocfV;.Ol'd repe~ttions in
each of the individual translators.

This entry point returns the information about a specified source segment
that is needed for the standard object segment: storage-system location, date-time
last modified, unique ID.

declare translator info $get source info entry (ptr, char(*), char(*),
fixed bin(71)~ bit(36) aligned~ fixed bin(35»;

call translator info $get source info entry (source ptr, dir_name,
entryname,-date=time=mod, unique_id, code); -

where:

1. source_ptr (Input)
is a pointer to the source segment about which information is desired.

2. dir name (Output)
is a pathname of the directory in which the source segment is located.

3. entryname (Output)
fin
is the primary name of the source segment.

4. date time mod (Output)
is the date-time modified of the source segment as obtained from the
storage system.

5. unique id (Output)

6. code

Status Code

-is the unique ID of the source segment as obtained from the storage
system.

(Output)
is a storage system status code.

A status code of zero indicates that all information has been returned
normally.

3-121 AZ03-02

transl ator in fo translator info

A nonzero status code returned by this entry is a storage-system status
code. Because the interface to this procedure is a pointer to the source segment,
the presence of a nonzero status code probably indicates that the storage-system
entry for the source segment has been altered since the segment was initiated,
i.e., the segment has been deleted, or this process no longer has access to the
segment.

Note

The entryname returned by this procedure is the primary name on the source
segment. It is not necessarily the same name as that by which the translator
initiated it.

3-122 AZ03-02

Name: translator_temp_

This subroutine provides an inexpensive temporary storage management facility
for translators in the Tools Library. It uses the get temp segment subroutine I
to obtain temporary segments in the user t s process directory. Each segment
begins wi th a header that defines the amount of free space remaining in the
segment. An entry is provided for allocating space in temporary segments, but
once allocated, the space can never be freed.

This entry point should be called by each program activation to obtain the
first temporary segment to be used during that activation. Before the activation
ends, the program should release the temporary segment for use by other programs.
(See the translator_temp_$release_all_segments entry point below.)

declare translator temp $get segment entry (char(*) aligned, ptr,
fixed bin (35); - -

call translator temp_$get_segment (program_id, Psegment, code);

where:

1. program id (Input)
Is the name of the program that is using the temporary segment.
This name is printed out by the list_temporary_ segments command.

2. Psegment (Output)

3. code

is a pointer to the temporary segment that was created.

(Output)
is a status code.

This entry point may be called by a program activation to obtain additional
temporary segments.

3-123 AZ03-02

declare translator_temp_$get_next_segment entry (ptr, ptr, fixed bin(35»;

call translator_temp_$get_next_segment (Psegment, Pnew_segment, code);

where:

1. Psegment (Input)
is a pointer to one of the temporary segments that the program has
previously obtained during its current activation.

2. Pnew segment (Output)

3. code

is a pointer to the new temporary segment.

(Output)
is a status code.

Entry: translator_temp_$allocate

This entry point can be called to allocate a block of space within a temporary
segment.

declare translator_temp_$allocate entry (ptr, fixed bin) returns (ptr);

Pspace = translator_temp_$allocate (Psegment, Nwords);

where:

1. Psegment (Input/Output)
1S a pointer to the temporary segment in which space is to be allocated.
Psegment must be passed £l reference rather than by value, because
the allocation routine may change its value if there is insufficient
space in the current temporary segment to perform the allocation.

2. Nwords (I nput)
is the number of words to be allocated. It must not be greater than
sys_info_$max_seg_size-32.

3. Pspace (Output)
is a pointer to the space that was allocated. If Nwords >
sys_info$max_seg_size-32, then Pspace will be a null pointer on return.

3-124 AZ03-02

Notes

As an alternative to calling translator temp $allocate, a procedure that
must perform many allocations can include translator temp alloc.incl.p11. This
include segment contains the program defini tion of an "allocate" function that
can be called like the $allocate entry point above. The allocate function is a
quick internal PL1 procedure that adds about 60 words to the external procedure I
and that shares its stack frame. Use of the allocate internal procedure can
significantly reduce the cost of performing many allocations.

This entry point releases all of the temporary segments used by a program
activation for use by other programs. It truncates these segments to conserve
space in the process directory. It should be called by each program activation
that uses temporary segments before the activation is terminated.

declare translator_temp_$release_all_segments entry (ptr, fixed bin(35»;

call translator_temp_$release_all_segments (Psegment, code);

where:

1. Psegment (Input)

2. code

is a pointer to anyone of the temporary segments.

(Output)
is a status code.

This entry point releases one of the temporary segments used by a program
activation. It truncates the temporary segment to conserve space in the process
directory.

3-125 AZ03-02

It

declare translator_temp_$release_segment entry (ptr, fixed bin(35));

call translator_temp_$release_segment (Psegment, code);

where:

1. Psegment (Input)

2. code

is a pointer to the temporary segment to be released.

(Output)
is a status code.

3-126 AZ03-02

SECTION L!

whotab DATA BASE

The >sc1>whotab segment is the public information base for the system. All
logged-in users, except those with the nolist attribute, have an entry in this
table. These entries are listed by the who command. In addition, various system
parameters of interest to all users are recorded in whotab. Many of these
parameters are returned by the system info subroutine (described in the MPM
Subsystem Writers' Guide, Order No. AK92) andt.he system active function (described
in the MPM Commands, Order No. AG92). Only the initializer process can modify
the segment.

7/82

The structure of the whotab data base is given below.

dcl 1 whotab
2 mxusers
2 n users
2 mxunits
2 n units
2 tTmeup
2 obsolete sysid
2 nextsd
2 until
2 1 astsd
2 er fno
2 obsolete why
2 installation id
2 obsolete message
2 abs event
2 abs-procid
2 max-abs users
2 abs-users
2 n daemons
2 request channel
2 request-process id
2 shift - -
2 next shift change time
2 last-shift-change-time
2 fg aDs users -
2 n rate-structures
2 pad1
2 pad (3)
2 version
2 header size
2 entry size
2 laste-adjust
2 laste-
2 freep
2 header extension mbzl
2 nabs 1(4)
2 aDs qres (4)
2 abs=cpu_limit (4)

based aligned
fix ed bin,
fixed bin,
fix ed bin,
fixed bin,
fix ed bin (71),
char un
fix ed bin (7 i) ,
fix ed bin (7 1) ,
fixed bin (71),
char (8),
char (32),
char (32),
char (32),
fix ed bin (71),
bit (36),
fixed bin,
fixed bin,
fixed bin
fix ed bin (7 1) ,
bit (36),
fixed bin,
fixed bin (71),
fixed bin (71),
fixed bin (17) unal,
fixed bin (9) unsigned, unaligned,
bit (9) unaligned,
fixed bin,
fix ed bin,
fix ed bin,
fixed bin,
fix ed bin,
fixed bin,
fixed bin,
fixed bin,
fixed fin,
fixed fin,
fixed bin (35),

4-1 AZ03-02A

I

I
I

I
I

I

I

I

2 abs control,
3 rnnbz bit (1) unaligned,
3 abs maxu auto bit (1) unaligned,
3 abs-maxq-auto bit (1) unaligned,
3 abs-qres-auto bit (1) unaligned,
3 abs-cpu Timit auto bit (1) unaligned,
3 queue dropped-(-1:4) bit (1) unaligned,
3 abs up bit (1) unaligned,
3 abs-stopped bit (1) unaligned,
3 control pad bit (24) unaligned,

2 installation_request_channel
fix ed bin (7 1) ,

2 installation requestpid
- - bit (36),

2 sysid char (32),
2 header_extension_pad1 (7)

fixed bin,
fixed bin,
char (124),
fixed bin,
char (124),

2 header extension mbz2
2 message
2 header extension mbz3
2 why
2 e (1000),

3 active
3 person
3 project
3 anon
3 padding
3 timeon
3 units
3 stby
3 idcode
3 chain
3 proc_type
3 group
3 fg abs
3 disconnected
3 suspended
3 pad2
3 cant bump until
3 process_authorization

fix ed bin,
char (28),
char (28),
fixed bin,
fixed bin (71)
fix ed b in (71),
fixed bin,
fixed bin,
char (4),
fixed bin,
fixed bin,
char (8),
bit (1) ~naligned,
bit (1) unaligned,
bit (1) unaligned,
bit (33) unaligned,
fi xed bin (71),
bit (72);

Header variables:

mxusers
is the maximum number of users allowed on the system ;;

n users
is the current number of users.

mxunits
is the maximum number of load units allowed.

n units
is the current load ;;

timeup
is the time the system was started.

obsolete sysid
is obsolete; use the field sysid instead.

nextsd
is the time the system will be shutdown, if nonzero.

until
is the projected time of the next system start-up.

7/82 4-2 AZ03-02A

7/82

lastsd
is the time of last crash or shutdown.

erfno
is the error number of the last crash, if known.

obsolete why
is obsolete; use why instead.

installation id
is the name of the installation.

obsolete message
is obsolete; use message instead.

abs event
is the event channel for signalling absentee requests.

abs procid
- is the process identifier of the absentee user manager.

max abs users
1S the current maximum number of absentee users.

abs users
is the current number of absentee users.

n daemons
is the number of daemons logged in via the message coordinator.

request channel
1S the event channel over which requests to the answering service
should be sent.

request processid
1S the identifier of the process to which answering service requests
should be sent.

shift
is the number of the current shift.

next shift change time
- is the time the current shift is scheduled to end.

last shift change time
- is the time the current shift started.

fg abs users
-is the current number of foreground absentee users.

n rate structures
-is the number of rate structures defined at the site.

pad1
is unused.

pad
is unused.

version
is the structure version.

header size
-is the length of the header (in words).

entry size
- is the length of the entry (in words).

4-3 AZ03-02A

I

I

I

7/82

laste adjust
- is used only by answering service programs. It gives the count of

32-word blocks in the header from header extension mbz1.

laste
is the index of the last entry in use.

freep
is the index of the first free entry chained through "chain."

header extension mbz1
-offset 1000.

nabs (4)
gives the number of processes from each background queue.

abs_qres (4)
gives the number of absentee positions reserved for each queue.

abs cpu limit (4)
- gives the current absentee cpu limits.

abs control
see absentee user table.

mnbz
must not be zero.

abs maxu auto
is one if automatic.

abs maxq auto
- is one if automatic.

abs qres auto
- is one if automatic.

abs cpu limit auto
- 1s one-if automatic.

abs cpu limit auto
- 1s one-if automatic.

queue dropped (-1:~)

- is one if queue is dropped. Queue - 1 is the foreground; 0-4 are
respective background queue numbers.

abs_up
is one if the absentee facility is running.

abs stopped
- is one if the absentee facility is stopped.

control_pad

installation request channel
is the IPC channel for the install command.

installation request pid
is the instalTation process identifier.

sysid
is the current system name.

header extension pad1
-is not used at present.

header extension mbz2
-offset 1400.

4-4 AZ03-02A

7/82

message
i~ the message for all users.

header extension mbz3
-offset 20"00.

why
is the reason for the next shutdown.

User entry variables, with whotab.e(i):

active

person

project

anon

padding

timeon

units

stby

idcode

chain

is nonzero if this entry describes a logged-in user.

is the person name (Person id).

is the project identifier (Project_id).

indicates whether the user is an anonymous user:
1 yes
o no

is unused.

is the time of login.

is the number of load units for the user.

indicates whether the user has secondary status:
1 yes
o no

is the terminal identifier.

is a chain for the free list.

proc type
- indicates the process type:

1 interactive
2 absentee
3 daemon

group
is the user's load-control group identifier.

fg_ abs
is "1"b if this entry describes a foreground absentee user.

disconnected
is "1"b if the process is disconnected.

4-5 AZ03-02A

suspended
is "1"b if the process is suspended.

pad2
is unused.

cant bump until
- is-the time at which the user will (or did) become subject to preemption.

process authorization
Is the AIM authorization of the user's process.

7/82 It-6 AZ03-02A

MULTICS SYSTEM
PROGRAMMING TOOLS

ADDENDUM A

SUBJECT

Additions and Changes to the Manual

SPECIAL INSTRUCTIONS

This is the first addendum to AZ03, Revision 2, dated January 1982.

Insert the attached pages into the manual according to the collating instruc­
tions on the back of this cover.

Throughout the manual, change bars in the margin indicate technical
additions and changes; deletions are marked by an asterisk in the margin.
Commands that are entirely new do not contain change bars (see Preface for a
list of the new commands). These changes will be incorporated into the next
revision of this manual.

Note:
Insert this cover behind the manual cover to indicate the updating of the
document with Addendum A.

SOFrWARESUPPORTED

Multics Software Release 10.0

ORDER NUMBER

AZ03-02A

34910
7.5C682
Printed in U.S.A.

July 1982

Honeywell

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove

title page, preface

iii through viii

1-1 through 1-4

2-3, 2-4

2-25 through 2-30

2-45, 2-46

2-55 through 2-58

2-61 through 2-64

2-99 through 2-102

2-115, 2-116

2-171, 2-172

Insert

title page, preface

iii through vii

1-1 through 1-4.1, blank

2-3, blank
2-4, 2-4. 1

2-25, 2-25.1
2-25.2, 2-26
2-27, 2-28
2-29, 2-30

2 -4 4. 1, 2 - L~ 4 . 2
2-44.3, blank

2-45, 2-45.1
2-45.2, 2-46

2-55, 2-56
2-57, blank
2-57.1, 2-58

2-61, 2-62
2-63, blank
2-63.1, 2-64

2-86.1, blank

2-99, 2-100
2-101, blank
2-101.1, 2-101.2,
2-101.3, 2-101.4
2-101.5, 2-101.6
2-101.7, blank
2-101.8, 2-102

2-104.1, 2-104.2

2-115, 2-115.1
2-115.2, 2-116

2-171, 2-172

The ipformation and specifications lIt thi& dOC'llllent are Gubject to change withlut notL..e, Thi;J
document contains informatjon about Honeywell products or s~rvices that :nay rot be availabJe
outsidr, the Udted Sta~ es. CO;}sult yOUi' HOTleyv. el1.MarkeLihg Representa.tJv~.

o Honeywell In formation Systel!'!s Inc. ~ 1982

7/82

Fi I e No.: 1 L 1 3 , 1 U 1 3

AZ03-02A

3-87, 3-88 3-87, 3-88
3-91 through 3-94 3-91 through 3-94
3-97, 3-98 3-97, 3-98

4-1 through 4-4 4-1 through 4-6

i-1 through i-6 i-1 through i-5, blank

7/82 AZ03-02A

INDEX

A

abbreviations
abbrev subroutine 3-2

abbrev subroutine 3-2

add_copyright command 2-4

add_pnotice command 2-4.1

ask subroutine 3-5

B

bound segment
get_bound_seg_info subroutine 3-35

branch
display_branch command 2-41

c

change_kst_attributes command 2-5

change_tuning_parameters command 2-7

check mdcs command 2-8

check mst command 2-9

ckm
see check mst command

clear_partition command 2-13

cob
see compare_object command

command line
execution

repeat_line command 2-164

compare configuration deck command
2-14· -

compare_dump_tape command 2-20

compare_dump_tape_status command 2-22

compare_mst command 2-23

i-1

compare_object command 2-24

compiler
reduction~compiler command 2-128

comp_dir_info command 2-17

conversion
locator

stu $offset to pointer
stu=$pointer_to_offset

conversion routines
ask 3-5
datebin 3-17

3-112
3-113

copyright_archive command 2-29

copyright_notice_ subroutine 3-14

copy_dump command 2-25.1

copy_dump_tape command 2-26

copy_mst command 2-28

cpm
see copy_mst command

cref
see cross reference command

cross reference command 2-31

ctp
see change_tuning_parameters command

D

datebin subroutine 3-17

date deleter command 2-37

deactivate_seg command 2-39

debugging
utilities

stu $decode runtime value 3-99
stu-$find brock 3-100
stu-$find-containing block 3-101
stu-$find-header 3-101
stu-$find-runtime symbol 3-102
stu-$get clock 3~103
stu=$get=implicit_Qualifier 3-104

AZ03-02A

debugging (cont)
utilities

stu $get line 3-105
stu-$get-line no 3-106
stu-$get-location 3-107
stu-$get-map index 3-107
stu-$get-runtime address 3-108
stu-$get-runtime-block 3-109
stu-$get-runtime-line no 3-110
stu-$get-runtime-location 3-111
stu-$get-statement map 3-112
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_Iorm-at 3-114

decode definition subroutine 3-24

delete_old_pdds command 2-40

directory
delete-by-date operation

date deleter command 2-37
entries

display branch command 2-41
information

comp dir info command 2-17
list-dir-info command 2-84
save-dir-info command 2-172

quota
fix quota used command 2-53

reconstruction
rebuild dir command 2-125

display_branch command 2-41

display_file_value_ subroutine 3-30

display_ioi_data command 2-42

display_kst_entry command 2-44

display_label command 2-44.1

display_pnotice command 2-44.3

display_psp command 2-45

display_pvte command 2-45.1

do subtree command 2-46

dump_partition command 2-49

E

editor
teco command 2-179

excerpt_mst command 2-51

expand command 2-52

F

find include file subroutine 3-31

find_partition_ subroutine 3-33

G

generate_mst command 2-54

generate_pnotice command 2-62

get_bound_seg_info_ subroutine 3-35

get_initial_ring_ subroutine 3-36

get_ips_mask command 2-64

get_Iibrary_segment command 2-65

gls
see get_library_segment command

gm
see generate_mst command

H

hash subroutine 3-37

hcs_$get_page_trace entry point 3-42

hphcs_$ips_wakeup entry point 3-44

hphcs $read partition entry point
3-45 -

hphcs $write partition entry point
3-47 -

hp_delete_vtoce command 2-70

hunt command 2-72

hunt dec command 2-74

I

include file
expand command 2-52

ips mask
creation of

create_ips_mask

K

3-16

known segment table (KST)
change kst attributes command 2-5
display_kst_entry command 2-44

L

Ids
see library_descriptor command

i-2 AZ03-02A

lex error subroutine 3-49

lex_string_ subroutine 3-53

If
see library_fetch command

library tools
get library segment command 2-65
library descriptor 2-76
library_fetch 2-19

library_descriptor. command 2-76

library_fetch command 2-79

link_unsnap_ subroutine 3-65

list dir info command 2-84

list dir info subroutine 3-66·

list mst command 2-85

list_partitions command 2-86

list_pnotice_names command 2-86.1

list sub tree command 2-87

1st
see list sub tree command

M

master directory control segment
check mdcs command 2-8

mcs version command 2-88

mdc_$pvname_info entry point 3-68

merge_mst command 2-89

mexp command 2-91

monitor_log command 2-97

monitor_quota command 2-99

MST
see Multics system tapes

Multics storage system hierarchy
dump tape

copy_dump_tape comand 2-26

Multics system tapes
copying

copy mst command 2-28
creating

generate mst command 2-54
merge ms~ command 2-89

extractTng
excerpt mst command 2-51

information
check mst command 2-9
list mst command 2-85

i-3

Multics system tapes (cont)
reading

compare mst 2-23
writing -

write mst command 2-222

N

nothing command 2-101

nt
see nothing command

c

object segment
information

compare object command 2-24
decode aefinition subroutine

3~24
get bound seg info 3-35
hun~ dec command ~-74
prin~ relocation info command

2-11P -
symbol table

stu $decode runtime value 3-99
stu-$find brock 3-100
stu-$find-containing block 3-101
stu-$find-header 3-101
stu-$find-runtime symbol 3-102
stu-$get clock 3~103
stu-$get-implicit qualifier 3-104
stu-$get-llne 3-105
stu-$get-line no 3-106
stu-$get~loca~ion 3-107
stu-$get-map index 3-107
stu-$get-run~ime address 3-10P
stu-$get-runtime-block 3-109
stu-$get-runtime-line no 3-110
stu-$get-runtime-Ioca~ion 3-111
stu-$get-statement map 3-112
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_format 3-114

ol_dump command 2-101.1

p

pae
see print_apt_entry command

parse_channel name subroutine 3-69

parse_file_ subroutine 3-70

pause command 2-102

pcd
see print_configuration_deck command

pcref
see peruse_crossref command

AZ03-02A

pel
see print_error_message command

pem
see print_error_message command

peo
see print_error_message command

peol
see print_error_message command

perprocess static sw off command
2-103- -.,-

perprocess_static_sw_on command 2-104

peruse_crossref command 2-104.1

phcs $read disk label entry point
-3-75 - -

prelink command 2-105

prelinking
prelink command 2-105
privileged_prelink command 2-122

pri
see print_relocation info command

print_apt_entry command 2-111

print configuration deck command
2-115 -

print_error_message command 2-116

print_relocation_info command 2-11P

print_sample_refs command 2-119

print_tuning_parameters command 2-121

privileged_prelink command 2-122

process_id command 2-123

psrf
see print_sample_refs command

ptp
see print_tuning_parameters command

R

rdc
see reduction_compiler command

rebuild dir command 2-125

record to sector command 2-126

record to vtocx command 2-127

reduction_compiler command 2-128

rehash subroutine 3-76

repeat_line command 2-164

reset_ips_mask command 2-165

reset_tpd command 2-166

ringO_get_ subroutine 3-77

ring_zero_dump command 2-167

ring_zero_peek_ subroutine 3-83

rpl
see repeat_line command

rzd
see ring_zero_dump command

s

sample_refs command 2-170

save dir info command 2-172

save_history_registers command 2-172

schedul ing
set timax command 2-177

sector to record command 2-173

segment
deactivation

deactivate_seg command 2-39
pathname

vtoc_pathname command 2-220

send_ips command 2-174

send_wakeup command 2-175

set_ips_mask command 2-176

set timax command 2-177

set_tpd command 2-178

sorting
sort items subroutine 3-87
sort-items-indirect subroutine

-3-92 -

sort items subroutine 3-87

sort items indirect subroutine 3-92

i-4

source program
inc 1 ud e f i 1 e s

expand command 2-52
information

copyright notice subroutine
get library segment command
translator Info subroutine

protection
add_pnotice command 2-4.1

srf
see sample_refs command

3-14
2-65
3-121

AZ03-02A

stack
exam1n1ng frame

stu $decode runtime value 3-99
stu-$find runtime symbol 3-102
stu-$get clock 3~103
stu-$get-implicit qualifier 3-104
stu-$get-runtime address 3-108
stu-$get-runtime-block 3-109
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_Iormat 3-114

statement map
stu_$get_statement_map 3-112

status code
print_error_message command 2-116

stm
see set timax command

stu subroutine 3-99

sweep_disk_ subroutine 3-117

symbol table
using

stu $decode runtime value 3-99
stu-$find block 3-100
stu-$find-containing block 3-101
stu-$find-header 3-T01
stu-$find-runtime symbol 3-102
stu-$get block 3~103
stu-$get-implicit qualifier 3-104
stu-$get-line 3-T05
stu-$get-line no 3-106
stu-$get-location 3-107
stu-$get-map ihdex 3-107
stu-$get-runtime address 3-108
stu-$get-runtime-block 3-109
stu-$get-runtime-line no 3-110
stu-$get-runtime-location 3-111
stu-$get-statement map 3-112
stu-$offset to pointer 3-112
stu-$pointer to offset 3-113
stu=$remote_Iormat 3-T14

T

teco command 2-179

teco error command 2-212

teco_get_macro_ subroutine 3-120

teco ssd command 2-213

test archive command 2-214

translators and tools
find include file 3-31
reduction compiler 2-12P
translator info 3-121
translator=temp= 3-123

translator info subroutine 3-121

translator_temp_ subroutine 3-123

i-5

transparent paging device
reset tpd command 2-166
set_tpd command 2-178

tuning parameters
print_tuning_parameters 2-121

v

vfile find bad nodes command 2-215

vtocx to record command 2-221

vtoc_pathname command 2-220

w

write mst command 2-222

AZ03-02A

w
Z
-'
(!)
z
o
-'
~
I­
::>
u

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE MULTICS SYSTEM PROGRAMMING TOOLS
ADDENDUM A

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
and action will be taken as required. Receipt of all forms will be
acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME --~--
TITLE ____________________________ . ______________ ___

COMPANY -------
ADDRESS __ __

ORDER No·1 AZ03-02A

DATED I JULY 1982

DATE

PLEASE FOLD AND TAPE-
NOTE: U. S. Postal Service will not deliver stapled forms

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

(,
I
I

w
Z

-'
C)
z
o
-'
oct
~
:::l
U

I
I
I
I
I
I ~
I ..J

I <.:)

I Z S
<t
a
..J
o
lJ..

w
2.

l:)

2

~S
«
a
..J
o
U.

Honeywell
Honeywell Information Systems

in the U.S.A.: 200 Smith Street, MS 486, Waitham, Massachusetts 02154
In Canada: 155 Gordon Baker Road, Willowdale, Ontario M2H 3N7

In the U.K.: Great West Road, Brentford, Middlesex TW8 9DH
In Australia: 124 Walker Street, North Sydney, N.S.w. 2060

In Mexico: Avenida Nuevo Leon 250, Mexico 11, D. F.

33889, 7.5C282, Printed in U.S.A. AZ03-02

