MANUAL OF ASSEMBLY LANGUAGE

HONEYWELL 400

Transistorized Data Processing System

0
0
]
wed
£
b
b
S

DSI-133
21062

Litho in U.S.A,
NP-1676

(..‘.n.,*..aﬁefsy
A A L
F e wt e LA ety
PR TN :
gt e ety
AL P
PR e

f._ ,
LA
wh'y

- v e e g et
MV L e B WY kT
: e R e LR SR e
A R R
. LRSS

SYS

@*};‘

b A

b 4
PR

S
(%Y
A
«
i
3
v %,
i
%
.
S
)
%,

oAt et TR

TR B £l
PRSI T AL o PP Lt
" S PV AL AL S |)
P LA

LTS

o R Bk
A nﬂw;ﬂﬂm‘w e
o 4...»%&&:»?”»‘
LY
e 3 B e

MANUAL OF ASSEMBLY LANGUAGE

PRICE $4.00

Questions and comments regarding this manual should be addressed to

Honeywell Elecironic Data Processing

Merchandising D

I3
2
@
=

60 Walnut Street

Wellesley Hills 81, Massachusetts

Copyright 1962
Minneapolis-Honeywell Regulator Company

Electronic Data Processing Division
Wellesley Hills 81, Massachusetts

Section I

Section II

Section III

TABLE OF CONTENTS

Page
0B o e ol viii
Introduction. . ..ttt it i e e e e ix
EASY II Language . oo neneaeenceeeneeoeneneanannnns xi
Assembly Program.t iitintinin it xii
LAM P-P S P, .. ittt ittt e et e et xii
1LY, o o xiii
Sort and Collate Programs....... et e xiii
Tape Input/Output, Report Editor, and Card Input Routines .. xiv
B 2 xiv
EASY Liabrary . i e ettt it tit i teaaaanaaneacaaosnoeans xiv
The Honeywell 400.ttt ittt 1
Data Words. ..o .ttt iiiit i iieeaenieaeassanaaaacnsonnes 1
Instruction Words it ittt et et a e 2
Reserved Memory Locationscoiivienn, 3
Input/Output Area Locations.........cviuvereenennennenann 4
Index Registersttt ittt iineenanaenn 4
Sequence Register.ttt 5
Simultaneous Processing with Peripheral Operations........ 6
Program Preparation............cutiiinniniiiiiiinienanen.. 7
Card Number Field.ttt iniiaeeaannns 1
Location Fieldttt iiae e 7
Command Code Field iiinieiiiniiiinneecennnns 9
Address Fieldst iiiiiininiiinneiinieeennneeennnns 9
=T oo = 3 9
Addressingottt e it i et 11
Numeric Addressing. itiieiiennneinerneeeaenaans 11
Absolute Addressingcuiiiiinrnerrnncnnenaens 11
Complement Addressingcoiieiiiinirnnnns 12
Constant Addressingu.itiiinnneneiennenens 12
Symbolic Addressingcoiiiiiiiitiiii it 12
Tag Addressing.ouviiiierennneeceonooscannesons 12
Address Arithmetic....... ..., 13
Stopper Addressingc.iiiiiiiii i 14
Current Instruction Addressing...........c.covon.n.. 14
Storage Pool Addressing.........c.ooituiiinnannee... 14
IS =5 = = 15
Alphanumeric Literals ciiiiimneennnnnnnnan.. 16
Hexadecimal Literalst enennn 16
Octal Literalsttt ininiiiaiinenennenenennns 16
Fixed Binary Literals...........coeiei e, 17
Indexed Addressing.cuiiiiinennencnaenreancncranns 18
Parameters iii it i it 20
Unused Address Fields andIndex Bits..................... 20

iti

Section IV

TABLE OF CONTENTS (cont)

Page

Machine InStructions. « v v v vt vttt ittt e 23
Arithmetic Instructions............. ... 23
Decimal Add i e e e 24
Decimal Subtract e 24
Decimal Multiply o i i i 24
Decimal Divide........ ... it 25
Binary Add e e, 26
Binary Subtract.......... ... i 26
Logical Instructions.u i, 26
Extract. ... e 27
Substitute......... 28

Half Add. e 28
SUPerimpOSe .+ .t 28

Shift InsStructionsttt it 29
Decimal Shift Right, Preserving Sign................ 29
Decimal Shift Left, Preserving Sign................. 29
Binary Shift Left. 29
Decision Instructions.ttt i, 30
Inequality Comparison, Alpahnumeric................ 30
Inequality Comparison, Numeric.................... 30

Less than or Equal Comparison, Alphanumeric....... 30

Less than or Equal Comparison, Numeric............ 30
Extended CompariSonvutetinninniinennn. .. 30
Transfer and Sequence Change Instructions 31
Transfer and Sequence Change 32
Transfern Words i, 32
Sequence Changeiu it utnnnnnnnnan. 32
Sequence Change on Optioncoiviinvinnnnn. .. 32
Select.......... P e 33

No Operation.o ittt ittt it i e e it i 34

£ 34

Stall, SUP ..ttt ittt ettt e et e i 34

Edit Instructions.ottt i e e e 34
Card Edit, AlphanumeriC.uvuurriuuneeeennnennn. 36

Card Edit, Unsigned Decimal..........,. e 37

Card Edit, Signed Decimal 37

Card Edit, Octalottt i, 37
Sample Card Edit Codingvviiiieeannn. ... 38
Punch Edit, Alphanumeric.......... ... viiinn.. 39
Punch Edit, Unsigned Decimal...................... 39
Punch Edit, Signed Decimal 40
Punch Edit, Octalttt e et e e i e 40
Print Edit, Alpahnumeric, 40
Print Edit, Decimal -« ¢t ettt it ittt ittt eie e 40
Print Edit, Octal.. ...ttt ettt teeeinnnn, 41
Prepare Decimal Edit. i, 41

Section IV (cont)

Section V

. Section VI

Section VII

TABLE OF CONTENTS (cont)

Peripheral Instructions i i,
Read Magnetic Tape i,
Write Magnetic Tapeo iiiiienan.
Rewind Tape. . .o v ettt ittt ittt iinenaannnens
BacKksSpPace. . v i vttt e e i e e
Read Card, Without Interlock.......................
Read Card, Interlocked...........,
RejJeCt ittt e e e e
Punch Card, Without Interlock......................
Punch Card, Interlocked............,
Offset Stacko i e
Printand Space v ittt
Type Alphanumeric, Console.......................
Type Octal, Console....... ...t iinennnnnnn.
Type Decimal, Comsole.......... tua.n
General-Purpose Peripheral Instructions

Index and Check Instructions.
Set Index Register.o,
Store Index Register.......... i,
Restore Index Registerot iiiiiiennn.,
Test Index and Increment,
Compute Orthocount oo,
Check Parity .. .vviii ittt it et

Assembly Control Instructions i,
PROGRAM Director . v v.vviiiniiiiiieneneenaennneneens
SEGMENT Directoruteniiiintnniennaeenaanensnsns
Establishing Common Segmentsccittiunnenn
Loading Segments into Memoryo,
Set Location Counter.,

Constants

..

..

..

..

..

..

Alphanumeric Constants.......... ...,
Hexadecimal Constants.ottt in i nenaennnannnn
Octal Constants .« .. vttt it ittt e tee e tectanoeenenenaeeenns
Fixed Binary Comnstants i i,
Mixed Constants.cvuet i et eetieneoneeennenaneennnenns

Library Routines and Generators...........c.itiieennninn.
Using Library Routines 0 tieiitiininannn,

Generators

..

41
42
43
43
44
44
45
45
45
46
46
46
47
47
47
47
48
48
49
49
49
50
50

53
53
55
56
57
57
58
58
59
59
60

61
61
63
64
65
67

69
69
70

TABLE OF CONTENTS (cont)

Page

Section VIII Sample EASY Programttt it et e e, 73

Description of the Sample Program 73

Control Instructions.ttt iiiennneinernnnenn. 73

Setting Up a Counter for Card Numbers. 74

Typing a Console Messagec.vuviernnnneennnnnnnn.. 76

Filling the Print Area With Blanks.............co0vuvun... 76

Reading the First Cardvutitinnnnninenenenennnnnn.. 77

Beginning Simultaneous Operations................0vuuu... 77

Clearing the Card Read Image Area.............couuuu.... 77

Testing Console Breakpoint 2 e 78

Editing New Line Numbers........couuiununrnnnnenunnnn., 78

Testing Breakpoint 1 and Printing 78

Instructions for Reserved Memory Locations 78

Console Fixed Startsuvtieiiennnnnrneneneneenenenn. 79

Error Routines and Constantsovvevnenennnnnn.. 79

Appendix A Reserved Memory Locations, et 81

Special-Purpose Locations.ouuieennnninennnnnnnn. 81

Unprogrammed Subsequence Locations.................... 83

Working Subsequence Locationsovutnnnnennn., 83

Fixed-Start Locations........ e e, 83

Input/Output Areas.cuuiinunenenenennennnnenennnns 84

Appendix B Simultaneous Operationsuviiuitnnni it nennnnnnn. 85
Simultaneous Processing Rules for the High-Speed Card

Reader....................... e e, 85

Acceleration Intervalo, 85

Deceleration Intervalivuiiinnnnnnnnn.. 87

Simultaneous Processing Rules for Card Punches 87

Simultaneous Processing Rules for the Printer,............ 87

Simultaneous Tape Operations.c.oueueenenuennn... 87

Priority Processing.oiiiiinniiiniinennnn... 88

Appendix C Tape, File, and Record Identification et 91

Tape Label Record. iiiu ittt iiiiniennnn. 91

File and Program Identification Records 92

Segment Identification Records...........coiiiivunnnn.... 92

End-of-Information Recordscovurinivnrnnnnnnnn.. 92

Banner Wordsttt it i e e, 93

Appendix D Instruction and Timing Summaries.........cviitinnrnnnennn... 95

Appendix E Honeywell 400 Codes . ..vi.titnr it it intenieneneenernnens. 103

Figure 1.
Figure 2.
Figure 3.
Figure 4.,
Figure 5.
Figure 6.
Figure 7.
Figure E-1.

LIST OF ILLUSTRATIONS

Page
Simplified Representation of EASY II System.0ntn x
Honeywell 400 Word Formats. .« oo v v vv i nnnnnieannnnes 3
The EASY Coding FOTML t v ivinnene s ienetetteeeeeeseeeencesnnas 8
The EASY Input Card. .o ciienttiinerneneetetnnsesecanneennnns 10
Sample Coding for Card Editingcc.viviin i, 38
Block Diagram for Sample Programcc.ovteteiinnencannn 74
Coding for Sample Program.cccotitiunnenennenoeonsnens 75
Honeywell 400 Coding and Punched or Printed Equivalents........ 103

vii

FOREWORD

This manual describes the programming language for EASY II (Efficient Assembly System).
It also contains background information on the entire EASY II system and on the Honeywell 400
Transistorized Data Processing System. It is intended for those familiar with data processing

techniques.

viii

INTRODUCTION

EASY II is a programming and operating system designed to assist the users of larger

Honeywell 400 systems (at least 2,048 words of memory) in all phases of their data processing

efforts. It greatly simplifies programming and speeds other operations required for efficient

operation.

The major elements of EASY II are:

.

An EASY language which identifies instructions with easily remembered
operation codes and identifies memory locations with symbolic tags of
the programmer's choosing;

An Assembly Program which accepts programs written in the EASY
language, translates them into machine language, and prints a listing
of their coding with diagnostic information;

An updating and selection program, LAMP-PSP, which maintains a
master program tape containing previously assembled programs and con-
taining a library of frequently-used routines; it also selects programs
from this tape for production or test runs;

A Monitor program which loads and runs programs;
Sort and Collate programs;

Routines for generating coding which handles card input, tape input and
output, and the preparation of punched and printed reports;

A tape-handling routine, THOR, which enables the operator to position
tapes and perform general tape maintenance; and

A library of routines for handling other common data processing problems.

As shown in Figure 1, the application of these programs produces a complete system for

preparing a program, testing it, and running it. The core of this system is the use of the

Assembly, LAMP-PSP, and Monitor programs.

The EASY II programmer writes his instructions in EASY language and has these instruc-

tions punched in EASY cards. The Assembly program then converts the data on these cards into

the machine language of the Honeywell 400, recording the converted coding on tape and also

punching a card deck, if desired. Assembly also prints a listing of the original and converted

coding, complete with diagnostic information including the identification of certain types of

programming errors.

The next step is to add the newly assembled programs to the master program tape, the

SECTION |

THE HONEYWELL 400

The basic unit of information in the Honeywell 400 System is a fixed-length word which
consists of 48 information bits and two parity bits used by the automatic checking circuitry. Each
high-speed memory location is capable of storing one such word. The check bits of memory
words are not directly available to the programmer nor are their values subject to program con-
trol; therefore subsequent discussion of memory words will refer to the 48 information bits,

unless otherwise noted.

Data Words

A computer program generally manipulates data in one or more different forms: binary,
octal, decimal, alphanumeric, or a combination of these. The Honeywell 400 is capable of
handling all of these types of information. It may interpret the 48 bits of a word in groups of
three for the purpose of octal operation, in groups of four for decimal operation, in groups of
six for alphanumeric operation, or as individual units of information for pure binary operation.

Figure 2 illustrates the structures of these different words.

Octal words in the Honeywell 400 consist of 16 digits. Only the digits 0 through 7 are

legal octal characters. The Honeywell 400 can accept input or code its output in these charac-

ters.

A decimal word contains either 11 decimal digits with a sign, or 12 decimal digits without
a sign. The decimal arithmetic instructions interpret all operands as a sign and 11 decimal
digits. The sign is represented by four bits: a negative sign is represented by four binary
zeros, any other bit configuration in the sign position (high-order four bits) is interpreted as a

positive sign.

An alphanumeric word in the Honeywell 400 consists of eight six-bit groups. Each six-bit
configuration may represent any one of 26 alphabetic characters, 10 decimal digits, or 20 special

symbols (such as punctuation marks).

The 48 binary digits of a word may also represent an unsigned binary number of 48 bits.
The binary arithmetic instructions, binary add and binary subtract, treat their operands as 48-

bit unsigned numbers.

INTRODUCTION

EASY ASSEMBLY ASSEMBLY
Listing

{ Converts EASY
Coding to Machine
Langudge)

E ASY CARDS

Machine
Language
Tape

LAMP-PSP UPDATING Listing of
ections, Dera { Adds coding fo Updated
I?g:uemgéumes - master program Tape
! tape and updates

LAMP-PSP SELECTION ™ PRODUGTION

or
(Selects & sequences Run Tape TEST RUN

programs to be
run) under Monitor

Figure 1. Simplified Representation of EASY II System

tape which stores the EASY library file and the machine-language coding for all programs to be
processed. This step is accomplished by LAMP-PSP (Library Additions and Maintenance Pro-
gram - Program Selection Process). This program can also correct and update the tape as

directed by an input card deck. The output of this program is an updated master program tape

and a printer listing of the programs on that tape.

Then, the LAMP-PSP program may be used again to select programs from the master
program tape and to record them on a run tape. This process creates a tape with programs
arranged in the order in which they will be processed. Thus, it minimizes the time required

to load each program into memory.

Finally, to allow testing and running of programs without interruption, EASY Monitor
provides facilities for loading programs automatically and for printing diagnostic data on an on-
line printer. This data is dumped dynamically without altering the original program and without
manual intervention. Thus, the use of computer time is again minimized by eliminating brief,

repetitive runs.

INTRODUCTION

EASY II Language

The EASY II language consists of symbolic machine instructions, library calls, and de-

scriptors for peripheral functions.

"ADD PAY (to) GROSS (and store in) SUM' - this is an example of an EASY symbolic in-

struction. The programmer writes such an instruction on an EASY coding form as follows:

EASY @

PROBLEM PROGRAMMER DATE PAGE____OF ____
I
CARD NUMBER | | ~\1iON| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS 1 REMARKS
PAGE | Lok | IRSERY |
NN L 15 N LA I] 18, . ad
T ;
Lo ADD PAY GROSS SUM i
s - —— ——— e

Two major advantages of EASY instructions are immediately obvious: their three-address
format allows manipulating two operands and storing the result with a single instruction - the
most natural way of handling data; their use of mnemonic operation codes (e.g., ADD) and of tags
(e.g., PAY, GROSS, SUM) simplifies coding and eliminates the need for the programmer to

recall the actual memory addresses of the operands.

Library call instructions allow the programmer to insert previously checked-out routines
in a program. Such instructions are similar to symbolic instructions and are equally easy to
use. For instance, to call in a conversion routine, the programmer need only write:

EASY on”

PROSLEM PROGRAMMER DATE. PAGE____OF _____

LOCATION| COMMAND CODE A ADDRESS B ADDRESS C ADDRESS REMARKS

1 te e o 15 25 '3 T LA LI . il

I L,CONVRT [AA/AB i

P S

The Assembly program will automatically call in this routine and specialize it according
to the parameters represented by AA and AB. It will then insert the routine at the point in the
program where the call instruction was given. Thus, once coded in a generalized form, any

routine may be kept on the master program tape for easy insertion into a program.

Descriptors are used to generate routines which handle tape input and output operations,
card input operations, and operations which print or punch a report. A descriptor is a line of
coding consisting of parameters which describe a file on tape, the format of card data, or the
format of a report to be prepared. The Assembly program interprets these parameters and
generates a routine to perform all facets of the specified operation. The programmer then uses

this routine by inserting linkage instructions in his program.

The process is similar to that used with library routines but differs from it in one im-
portant respect: rather than generate a number of small routines to handle each input or output
function, Assembly generates one all-encompassing routine and stores it separately from the

Xi

INTRODUCTION

main program. This technique saves memory space by storing coding certain to be used repeti-

tively and then linking the main program to it.
The EASY language has other important advantages, such as permitting the use of constants,
literals, and highly flexible forms of addressing. In addition, special EASY control instructions

facilitate segmenting programs, allocating and reserving memory, and setting up registers.

Assembly Program

The Assembly Program translates programs from the EASY language into the machine
language of the Honeywell 400; it inserts coding and generates routines as specified in library
calls and descriptors. The output from Assembly is threefold:

1. A file of machine-language programs on magnetic tape. This file represents
the machine-language equivalent of the EASY instructions with additional
coding as specified in the library calls and descriptors;

2. A binary card deck representing the assembled coding may also be punched; and

3. A complete printed listing of each assembled program, including the line
number, the symbolic EASY instructions, the machine-language coding (in
octal notation), the memory location assigned to each word (in octal and
decimal), and any errors detected during Assembly, These errors include
illegal operation codes, illegal addressing, duplication of tags, etc.

Assembly uses the principle of ''batch processing''; that is, it assembles several programs
without interruption, detecting and indicating errors in the programs being assembled but con-

tinuing to assemble the programs. This is another time-saving feature of EASY,

EASY programs can be assembled on a Honeywell 400, 800 or 1800. The result of all these
assembly processes is a program in the Honeywell 400 machine language, though this program

can also be run on a Honeywell 800 or 1800 using an automatic simulator routine.

LAMP-PSP
LAMP-PSP is a dual-purpose program which maintains a master program tape and selects

programs from this tape to create a run tape.

The updating and/or selection process is accomplished as directed by a card deck contain-
ing special control instructions together with coding to be added to the tape, corrections, derails,
and test data. Again, this program 'batch processes'’, updating or selecting several programs

or library routines in a single continuous run.

The output of the updating process is a revised master program tape and a listing of this

tape. The new tape includes all library routines and programs on the old tape except those

xii

INTRODUCTION

deleted by control instructions in the input deck. It is arranged in alphabetical order in two
major files, the library file containing all library routines and the program file containing
systems programs (e.g., Assembly, LAMP-PSP, Minotor, etc.) and object programs (i.e.,
operational programs to be processed). The printed listing shows the order of programs on the

tape and records changes made during the updating process.

During a production or test run, locating programs in the alphabetically ordered master
tape can be quite time-consuming. Therefore it is usually desirable (though not necessary) to
select programs from this tape and create an integrated run tape with programs arranged in the
order in which they will be executed. This is easily accomplished by preparing an input card
deck which specifies programs in the desired order and then using this card deck to control the

selection process.

The selection process produces a run tape with programs arranged in the order of execution
and a printer listing of this tape. The listing is simply a table of contents for the run tape, show-

ing program and segment names in the order of their appearance on the tape.

Monitor

EASY Monitor is a system of programs and routines which supervise the loading and oper-
ation of checkout, production and systems runs. Included in the functions automatically perform-
ed by Monitor are: controlling test data distribution and providing memory and tape dumps; con-
trolling the Orthocorrection routine which regenerates lost tape data; loading and starting pro-
grams; and keeping :he operator informed of the progress of the run by means of typeouts.
Monitor makes provision for automatic operation of runs under its own control and for manual
operation under the operator's control. Use of a run tape (rather than the master program tape)

enables Monitor to load and execute each program without manual intervention.

Sort and Collate Programs

The EASY II Sort and Collate programs provide an unusually fast and versatile method of
ordering a file and of combining several pre-ordered files. The programs may be used sepa-

rately or together as the particular situation demands.

The Sort accepts one file of tape data arranged in random fashion and produces a file ar-
ranged in ascending alphanumeric sequence. The input file may be recorded on several reels;
the output file is normally written on one reel with items sequenced on the basis of keys identi-
fied by the programmer. High sorting speeds are achieved with the ""polyphase'' technique

developed by Honeywell,

xiii

INTRODUCTION

The Collate program combines two, three, four or five pre-ordered files and writes a
single ordered file arranged in ascending alphanumeric sequence. Each input file may consist

of several tape reels; the output file may be written on any number of tape reels.

Both programs make provision for '"own coding'. That is, they allow the programmer to

process data being sorted or collated and to modify the Sort or Collate program itself.

Tape Input/Output, Report Editor, and Card Input Routines

The three input/output routines eliminate the chores involved in controlling peripheral oper-

ations and free the programmer to concentrate on solving the main problem at hand. They are:

Tape Input/Output Routines - these routines read and write EASY tape files and

perform all associated control operations; they are also able to handle non-stand-
ard tape files. The routines open and close tape files, get or write items in a

file, and force tape swaps.
Report Editor - this routine performs the editing, output, and control operations
required when printing a report in a specified format, writing a tape to be printed

off-line, or punching a card deck.

Card Input Editor - this routine reads punched cards, edits the card data, and

stores the data in memory.

These routines can be used together in any combination. All are generated on the basis of

descriptor cards and used by linkage calls included in the main program.

THOR

THOR (the Tape Handling Option Routine) is a general tape-handling and correction routine
controlled by parameters which an operator types in from the console.- Under the direction of
these parameters, THOR positions, copies, corrects, and edits tape. It also locates information
on tape, compares the contents of two tapes for discrepancies, and performs general tape mainte-
nance. THOR manipulates tapes using two basic control methods: first, it moves tapes forward
or backward a specified number of records; secondly, it searches forward until it finds a speci-
fied record. This second method is known as the file option; it represents an unusually versatile

technique for locating information on tape.

EASY Library

A number of thoroughly tested routines are supplied by Honeywell for storage on the library

section of the master program tape. Included are several scientific routines such as floating-

xiv

INTRODUCTION

point add and subtract, matrix and multiple regression analysis, etc., and a number of frequently
used business routines. Detailed specifications on each of these routines are available under
separate cover. In addition, by means of LAMP-PSP each installation can add to its own library
to meet specific requirements. Any routine on the master program tape can easily be inserted
into a program with a call instruction. Assembly specializes each routine according to parame-
ters in the call instruction and produces coding which efficiently handles the operation described

by the parameters.

XV

SECTION I. THE HONEYWELL 400

A memory word may also contain suitable combinations of octal or decimal digits, alpha-

numeric characters, and binary digits totalling 48 bits.

Instruction Words

The 48 bits of a Honeywell 400 instruction word are interpreted as four groups of 12 bits
each. Counting from the left, bits 1 through 12 represent the command code group; and bits 13
through 24, 25 through 36, and 37 through 48 are designated as the A address group, B address
group, and C address group, respectively. The address portions of instruction words are nor-
mally used to designate the locations of operands and results, but in certain instructions they may
contain special information, such as the number of words to be moved, the number of decimal or

binary digits to be shifted, or the number of words to be written.

The machine instructions are grouped in eight categories: arithmetic, logical, shift, de-
cision, transfer and sequence change, edit, peripheral, and index and check.. In general,
Honeywell 400 instructions are uniquely identified by the high-order six bits (1-6) of the command
code group; these six bits are called the operation code. (The exceptions to this rule are ex-
plained below.) The remaining six bits (7-12) of the command code group represent the index
registers associated with each address group; bits 7 and 8 are associated with the A address

group, bits 9 and 10 with the B address group, bits 11 and 12 with the C address group.
In certain instructions, bits 9 and 10 (i. e., the index register group associated with the B
address) are used as part of the operation code; the B address cannot be indexed in these in-

structions.

The command codes for individual instructions, together with their mnemonic operation

codes in EASY language are discussed by major instruction type in Section IV.

The general format of a Honeywell 400 machine instruction word is shown below.

1 Command Code | 12113 A Address 2425 B Address 36|37 C Address 48
Operation
Code Ai|Bi|Ci
XXXXXX XX | XX|XX XXXXXXXXXXXX XX XXXXXXKXXXX XXXXXXXXXXXX

The two bits in Ai designate the index register used with the A address group. The value
of Ai may be:
1. 00 - the A address is not indexed;

2. 01 - the A address is indexed by index register 1;

SECTION |. THE HONEYWELL 400

3. 10 =~ the A address is indexed by index register 2; or
4. 11 - the A address is indexed by index register 3.
The two bits which represent Bi and the two bits which represent Ci are interpreted similarly,

save in those instructions where the Bi field is part of the operation code.

. Command Code Address A Address B Address G Groups
Instruction (12 Bits) (12 Bits) (12 Bits) (12 Bits) P
Alphanumeric R 0 B I N S 0 N Characters

1 2 3 4 5 6 4 8
?‘.Seigll"’:glor * 1 2 3 4 5) 7 8 9 (o] 1 Digits
Unsigned) ! 2 3 4 5 6 7 8 9 10 " 12
Octal (o] l 213 4| 5|6 | 7|76]|5]|4] 3]2 1 0 | Digits
i 2 3] 4| s 6 71 8 8| 10f 1 |zJ B K 8] e
Binary \ (48 Binary Digits) a8 Bits

Figure 2. Honeywell 400 Word Formats

Reserved Memory Locations

Memory locations in the Honeywell 400 high-speed memory are directly addressable by
internally stored instructions. While the use of almost all memory locations is under control of
the program, some locations are also reserved for special functions. These special memory
ions may be divided into four categories: special-purpose locations, unprogrammed sub-
sequence locations, working subsequence locations, and input/output area locations. (The ad-

dresses of these locations are given in Appendix A.)

The special-purpose locations are those which are used by the central processor to store
checking and control information, and also information relating to previously executed instruc-
tions. One of these locations, for example, contains the three index registers and the sequence
register, while another - called the low-order product word - contains the low-order signed 11

decimal digits of the result of the multiply instruction.

In the event of certain abnormal conditions arising during a program run, control of the
program is transferred to one of several unprogrammed subsequence locations, the exact one
depending on the particular condition. An unprogrammed subsequence would, for example, be

caused by an overflow during addition.

There are eight working subsequence locations, each of which is associated with a particular

peripheral device. After completion of data transfer on a peripheral device, control transfers

SECTION I. THE HONEYWELL 400

to the location corresponding to the device. These locations are each loaded so that the program-
mer may direct the sequence of instruction execution after completion of data transfer (see

Section IV).

The working subsequence locations are also used in conjunction with the console "fixed
start'' instructions. This feature allows the operator to start processing at one of these lo-

cations or at one of the locations specially assigned to the console.

Input/Output Area Locations

When the central processor executes a card read, card punch, or print instruction, the
corresponding area in memory is automatically addressed. These areas are the card read area
(input), the card punch area (output), and the printer area (output). Information from a card is
read into the card read area in a complete card image; information to be punched on a card is
obtained from the card punch area; and information to be printed is obtained from the printer
area. These input/output areas are also implicitly referenced by the corresponding edit in-
structions, so that the card edit instructions normally obtain the data to be edited from the card
read area; the punch edit instructions normally edit into the card punch area; and the print edit

instructions normally edit into the printer area.

These areas may be addressed (like other memory locations) by non-edit instructions, and
data may be transferred into and out of them under control of non-edit instructions; i.e., one or
more of the areas may be used for any program purpose(s) if they are not already being used for

their input/output functions.

Index Registers

The Honeywell 400 contains three index registers, each of which stores 12 binary digits.
The 12 bits are treated as an unsigned binary quantity and can thus represent a value in the range
0 through 4095 (decimal). In instruction words (see page 2), each index register is designated
by a two-bit code:

1. 01 - index register 1;

2. 10 - index register 2;

3. 11 - index register 3;

4. 00 - no indexing (i.e., direct addressing).

When these codes appear in the index register bit positions of an instruction word (bits 7
and 8, 9 and 10, 11 and 12), the referenced address is added temporarily to the contents of the

specified index register to form an effective working address (unless the bit configuration is 00,

SECTION I. THE HONEYWELL 400

in which case there is no indexing of the corresponding address). This addition is in the form

of augmenting; i.e., the contents of the index register and the address remains unchanged upon
completion of the instruction. The three index registers may be used in any combination within
an instruction and in any sequence within a program. Thus, an instruction which allows indexing
of all three address fields may designate any one of 64 possible indexed address combinations
(00 00 00 through 11 11 11; i.e., from no indexing through indexing all three addresses using
index register 3). Addressing and the use of index registers in EASY language are described in

detail in Section III.

Sequence Register

The sequence register is a special register which is used to control the sequence in which
instructions are executed. It stores one high-speed memory location address (i.e., 12 bits) in
the range 0 through 4095. In general, it contains the address of the memory location which holds
the next instruction to be executed. Three types of instruction selection can be distinguished,

two of which are dependent on the setting of the sequence register.

Normal Incrementing

This is the general case in which the setting of the sequence register is
increased by 1, so that the next instruction is selected from the memory lo-

cation following that of the current instruction.

Sequence Register Resetting

Certain instructions cause the sequence register to be completely reset,
so that the next instruction may be selected from anywhere in the program. When
a sequence change instruction is selected, it causes a predetermined address to
be stored in the sequence register. (The resetting is unconditional in the sequence
change and store index register instruction but, in other instructions, is con-
ditional upon specified conditions being met.) The instruction stored in the memo-
ry location specified by this address is selected to be executed next. From this
point, the sequence register is incremented normally until it encounters another

sequence change instruction.

Subsequence Calls

The central processor can, in special circumstances, select the next in-
struction without either referring to or changing the setting of the sequence reg-
jster. The address of the next instruction is either determined by machine logic

(unprogrammed subsequence) or is specified in one of the address fields of the

SECTION |. THE HONEYWELL 400

current instruction (programmed subsequence). In both cases, the sequence reg-
ister is completely ignored; its contents are left unmodified for the execution of
one instruction. This one instruction may, however, cause a sequence change,
in which case the original setting of the sequence register may be stored until

needed by using the store index register instruction (see Section IV).

Simultaneous Processing with Peripheral Operations

The unprogrammed subsequence calls described above serve to interrupt processing of the
main program and to signal the occurrence of certain events. The programmer can take maximum

advantage of this feature by using it to facilitate simultaneous processing.

Simultaneous processing in the Honeywell 400 consists of executing instructions during part
of the time required for a peripheral operation. Subject to the rules described in Appendix C,
simultaneous processing can greatly increase the efficiency of certain applications. For instance,
the programmer may read a card in the "interlocked' mode to prevent simultaneous processing
or he may read a card "without interlock' to permit simultaneous processing. Reading the card
"interlocked' requires 93 milliseconds and prevents the execution of other instructions during all
but 6 milliseconds; reading a card "‘without interlock' also requires 93 milliseconds but allows
simultaneous processing during 39 milliseconds of that interval - enough time for some 300 add

instructions.

Most frequently, simultaneous processing is used to speed the execution of a single program.
However, it may be used to perform two completely independent programs, such as a program

printing data from tape and a program sorting data.

SECTION 11

PROGRAM PREPARATION

Programs to be assembled by EASY are written on preprinted coding sheets, as shown in
Figure 3. The coding on these sheets is then punched on standard 80-column cards according
to the fixed-field format shown in Figure 4. Normally, an instruction occupies an entire line

on the coding sheet and an entire punched card, and is assembled as one machine word.
When an entire program deck, complete with all necessary control instructions, is assem-
bled by EASY, the program is produced in machine language on magnetic tape. In addition,

EASY produces a listing of the program in printed form.

As shown in Figure 4, the EAST input card contains seven fixed fields. The function of

each of these fields is described below.

Card Number Field (columns 1-8)

Card numbers specify the sequence of cards in an input deck when a new program is as~

sembled.

The card number field on an EASY coding sheet is divided into three subfields:
1. Page - corresponding to columns 1 through 3 on the EASY card;
2. Line - corresponding to columns 4 and 5 on the EASY card; and
3. Insert - corresponding to columns 6 through 8 on the EASY card.
The three insert columns are normally zeros; they are used only if inserts are made between

two assigned numbers.
Assembly sorts the cards into order by card number (i.e., page, line and insert numbers)
if requested to do so. Otherwise, any punches in this field are ignored and cards are accepted

in input order.

Location Field (columns 9-14)

The location field specifies the address assigned to the word assembled from this card. It
may be blank, may contain an absolute address (a number 0 through 4095), or may contain a
symbolic address. If this field is blank, Assembly assigns the next higher available location. If
it contains an absolute address, Assembly assigns the address specified. If it contains a sym-

bolic tag, Assembly assigns the next higher available location and assigns the absolute value of

7

PROBLEM
CARD NUMBER
PAGE | LINE | INSERT

1 14 16
1 1 1 X 1 !
: I '
' .
i 1
| I
! 1
| |
, .
: 1
! '
I
1 1
I
i
|
]
| 1
\ |
. |
i
| .
. |
! 1
I
l
' 1
. |
|)
! i
|
|
Py
1 1
|
I
. |
Lo
L.

LOCATION
-
9

[

15

COMMAND CODE
e

[S N S T S E

EASY

A ADDRESS
17

25

L I N T I T

Figure 3.

CODING
FORM

PROGRAMMER

DATE

B ADDRESS C ADDRESS
1! Y
36 ’ 47 58
L L e S W SN SO R S B

The EASY Coding Form

REMARKS

. PAGE_____

OF ____.

80
L Y O S O S N B R Py R S S R

‘If NOILD3S

NOILYiVdIdd WYEOOUd

SECTION Il. PROGRAM PREPARATION

this address to address-field references to the same symbolic tag.
Cards with absolute addresses in the location field have no effect on the assignment of sub-
sequent cards. That is, the next card will be assigned an address one higher than the last previ-

ous card without an absolute address in the location field.

The symbolic tags and their corresponding absolute addresses are printed out as part of the

Assembly listing. The special symbols * and @ may not be used in location field.

Command Code Field (columns 15-24)

The contents of the command code field specify the type of entry defined by the whole card.
The command code field might, for example, contain the mnemonic operation code of a machine
instruction. In the case of an ordinary constant (i.e., unmixed), the command code field con-
tains the code "CON''; in a mixed constant it contains one of the four terms defining the constant,
the contents varying with the type of mixed constant being specified (see Section VI). The com-
mand code field may also be used to specify an EASY control instruction, a pseudo instruction

for a library routine, or a descriptor card.

Address Fields (columns 25-35, columns 36-46, columns 47-57)

The three address fields correspond to the A, B, and C address groups of a Honeywell 400
machine instruction word. In general, the address fields designate the locations of operands or
results. In certain instructions one or more of the address fields may contain literals or in-
struction parameters rather than an address; e.g., the B address in a shift instruction contains
the number of digits or bits to be moved. In some instructiond one or more address fields are
not used, and can, in general, store information not related to the instruction. (These fields are

identified in Section IV.)

In ordinary constants, the boundaries between the address fields are ignored; the constant
starts in column 25 and continues in successive columns until the last character or digit of the
constant is entered. A mixed constant is specified by four terms, one term in the command code

field and one in each of the three address fields.
If an address is indexed, the corresponding address field contains an index register indica-
tion which follows the actual address or parameter and is separated from it by a comma (see

Section I).

Remarks (columns 58-80)

On any card that represents a machine instruction or a constant, this entire field may be

9

SECTION 1il.

PROGRAM PREPARATION

used by the programmer for remarks.
programmer's convenience.

part of the program listing.

ing to a certain program (see page 55).

A card containing only remarks may be included in a program at any point.

Such information is not assembled and is solely for the
The contents of the remarks field are, however, reproduced as

In addition, columns 74-80 may be used to identify cards as belong-

Such a card is

indicated by an "R'" or a "P'" followed by a comma punched in columns 9 and 10, respectively

(location field).

"R' causes the contents of the card to be printed as remarks on the next line,

"P'" causes the contents of the card to be printed at the top of the next page.

CARD NUMBER]

123lasls 18

[RRURIERE]

I
22222222
[
33333333
(I
444441444

HONEYWELL 400

]
6 6 616 616 6 6
Iy
IRRIRER

[
88888888
(|
901999

9 98
12345678

LOCATION

000000
910 15 12 13 W4y
IRRRRE!
222222
333333

444444

[
555551555655555
|

566666
1117111

swmirn

98999

W

COMMAND CODE

000000000¢C
5161718192021 2 3 2
|RRRRRERRE]
2222222222
3333333333
44444442844
5555555558
6666666666
17111111111
5gege8BBLs

99999999

99
1516171819 2021 22 2

A ADDRESS

gooo00C0000I0
25 26 27 28 29 3¢ 31 32 33 34] 35§
IRRERREEE I
|
222222222212
1
333333333ﬂ3
44444444444
1
5555555568515
i
666666666616
1

11111711171 717

1
6383888888818

B ADDRESS

Dﬂﬂﬂﬂ!ﬂﬂﬂmﬂ
55 3/ 38 39 40 41 42 43 44 45146
IIIIIIIIIIP
222222222212
33333333353
444444444;4
55555555555
GBESGEGBB&E
177177777%7

i
8888888888I8
|

!
999299999819

XN ANINR

33 34133]36

39 99999'9
3 4142 43 44 4314

T

999
214

C ADDRESS

9000000040 ¢i0

47 48 49 50 51 52 53 44 v5 56157,

IRRRRRRRR NI
22222222252
333333333#3
44444444454
555555555;5
EGEGGGGBG&G

|
1717171117171 117

|
868888888318

|
98686599919/9(999909999999999499

47 43 49 53 51 52 53 54 55 $3{5/153 5 60 61 6Z 63 64 65 65 57 68

REMARKS

poooodoo000000000000000

5859 60 6162 63 64 65 66 67 5463 7071 12 T3 4 T5 76 11 78 73 80
IR R R R R R R R RN
222222222222222222222122
33333333333333323333333
44484444404444244444444
565355555555555555554585
66666666666666666666666
T117111777117117177111711111717
368608880880888860888888888
9999

BIMWITZNMTISIEITING

EASY SYSTEM

10

Figure 4. The EASY Input Card

SECTION 111

ADDRESSING

Each memory location in the Honeywell 400 has a unique numerical designation (or address).
The lowest memory location in a Honeywell 400 system has a numerical address zero (0); the

highest memory location has the address 1023, or 2047, or 3071, or 4095, * depending on the

memory size of the system.

Addresses written in EASY language are used to designate the high-speed memory locations
involved in the execution of an instruction, and are specified in the appropriate address fields.
{The addresses of memory locations are also specified in the location field when desired - see
below.) Addresses may be direct or indexed (see below) and can be numeric, symbolic, or

literal.

Any parameters involved in an instruction are also specified in the address fields of the
instruction in EASY language. Indexing of parameter addresses is permitted in certain instruc-

tions.

NUMERIC ADDRESSING

There are three types of numeric addressing: absolute addressing, complement addressing,
and constant addressing. All are characterized by the fact that the programmer actually specifies
the numeric value to be placed in the address field of the machine word. All three types may be

indexed.

Absolute Addressing

An absolute address consists of a number of up to four decimal digits in the range 0 through

4095. Integers do not have to be specified with leading zeros.

EASY Assembly translates each absolute address into the equivalent 12-bit configuration
and stores this in the corresponding address portion of the machine instruction word; i.e., the
A, B, and C address fields are assembled into bits 13 through 24, 25 through 36, and 37 through

48, respectively, of the machine instruction word.

This form of addressing can also be used in the location field. A card containing an absolute

address in the location field is assembled and stored in the location specified; subsequent cards

¥All numeric addresses in this manual are decimal, except where otherwise stated.

1

SECTION 1l1. ADDRESSING

are assembled and stored following the last previous card without an absolute address in the lo-
cation field. Using absolute addressing in the location field provides an easy means of assigning

specified instructions to the reserved memory locations in the Honeywell 400.

Complement Addressing

Complement addressing is a method of specifying memory locations relative to the value
4096. If an absolute address (0 to 4095) is preceded by a minus sign, the address is inter-
preted as a value to be subtracted from 4096. For example, the address -1 is the same as the

address 4095 since 4096 -1 equals 4095..

Complement addresses may not appear in the location field.

Constant Addres sin&

Addresses can be written in octal, hexadecimal, or alphabetic form by inserting a constant
in an address field. For example, an address field may contain

0#7777
to specify in octal ("'0'" in the example above) the 12-bit address represented by the characters

7777 (i. e., the address 4095).

Each address-field constant is assembled as a 12-bit address. It must have the following
format:

M#XX...X
where XX...X is the constant and M is mnemonic code which defines the type of constant (see
page 67). Any expression that is legal for a mixed constant may also be written in an address

field; characters are always left justified.

Constant addressing can not be used in a location field. Complement addressing and ad-

dress arithmetic (see below) can not be used with constant addressing.

SYMBOLIC ADDRESSING

The use of symbols, rather than numbers, to identify memory locations is called symbolic
addressing. There are four types: tag addressing, stopper addressing, current instruction ad-

dressing, and storage pool addressing.

Tag Addressing

Tag addressing permits the programmer to refer to a word without knowing its absolute
location in memory. Instead, he may identify the word by a mnemonic tag such as "GROSS" or
"INPUT".

12

SECTION Ill. ADDRESSING

A tag may consist of up to six alphanumeric characters, one of which must be alphabetic.
As used here, the term "alphanumeric" refers to the 26 letters of the alphabet and the 10 decimal
numbers. Special characters are acceptable in tags but are reserved for use in the EASY systems

programs.

Every symbolic tag which appears in the location field of an EASY input card is assigned
an absolute value by Assembly. Each time the tag appears in an address field, this value is

substituted for the tag.

If the symbolic tag is preceded by a minus sign, the tag is assigned an absolute value and
then this value is subtracted from 4096 as in complement addressing. Minus signs may not be

used in the location field.
A tag must not appear in the location field more than once in a segment (see page 55). The
same tag may appear in the location field in two or more different segments, unless the segments

are common (see page 55).

Address Arithmetic

It is not necessary to tag every word in a program which is to be referenced by some other
word in the same program. Address arithmetic allows the programmer to reference an untagged
word directly in relation to a tagged one. It is at the programmer's discretion to decide which

words in his program to tag; all other words can then be referenced relative to a tagged word.

Address arithmetic is a term which denotes a method of modifying addresses by the ad-
dition or subtraction of absolute values to or from symbolic tags. The address modifier consists
of a sign and up to four decimal digits and is appended to a symbolic tag to designate a unique
memory location relative to the location specified by the tag. Thus, the address

ASSETS + 37
refers to the memory location which is 37 locations beyond that represented by the sumbolic tag
ASSETS. Similarly, the address

ASSETS - 12

refers to the memory location which is 12 locations before that represented by the tag ASSETS.

Address arithmetic is permitted in all address fields, but not in the location field. It may

be used with absolute addressing and all forms of symbolic addressing.

Address modifiers are not automatically adjusted if coding is inserted or deleted in sub-

sequent updating runs. Care must therefore be taken when address modification occurs in the

13

SECTION Ill. ADDRESSING

vicinity of such changes to a program.

Stopper Addressing

The highest location in any system is known as the stopper location and its address is known
as the stopper address. This address is 1023, 2047, 3071, or 4095 depending upon the size
of the memory in the system. The stopper may be referenced by all forms of legal addressing

but EASY II makes a special provision for addressing the stopper.

In the EASY language, the symbol * addresses the stopper location. EASY Assembly sub-
stitutes for this symbol the absolute value of the stopper location for the particular system on
which the program will be run. Address arithmetic can be used with this symbol as with a tag,

o

provided the modifiers are negative. For example, the address * - 23 refers to the location

which is 23 locations before the stopper.

The symbol * must not appear in the location field.

Regardless of the technique used to address it, the stopper location generally has the same
characteristics as any other location. However, in the ways listed below, it is unique:

1. The execution of instructions does not continue in the normal sequence once
the stopper is reached. Instead the instruction in the stopper location is
executed endlessly if it does not call for a change of sequence; and

2. If a series of words is transferred to this location (either beginning with it
or arriving at it during the instruction), only the last word in the series is
retained; the previous words are lost. This feature is frequently used to
bypass unwanted information on tape. For example, if a read tape instruc-
tion is given to read a record into * - 3, the first two words are stored in
the two locations preceding the stopper; the remaining words are lost except
for the last word which is stored in the stopper.

Current Instruction Addres sins

The symbol @ permits referencing a word relative to the word containing this symbol.
Assembly interprets @as a reference to the very instruction containing the symbol in an address
field. For example, the address @+ 7 refers to the location which is seven locations beyond the

instruction containing @+ 7.

Both positive and negative address arithmetic may be used with this symbol. The symbol

may appear in any address field but may not appear in a location field.

Storage Pool Addressing

An EASY instruction may address a multi-purpose area called the ''storage pool'' by using

SECTION Iil. ADDRESSING

a percent symbol (either octal character 74 or 35). The size of the pool is determined by the
largest number used as address arithmetic with the % symbol. For example, if a program's
largest reference to the pool is an instruction containing '"% + 10" in an address field, ten lo-

cations will be reserved for the storage pool.

The storage pool will normally be assigned to locations following all other words in the
program but before the literals (see below). If the programmer wishes to store the pool else-
where, he may place a RESV (see page 59) with a % in the location field anywhere in his program.

Assembly will reserve the correct number of locations at that point.

LITERALS
In addition to representing absolute and symbolic addresses, the address fields of EASY
instructions may also specify the actual operands required for the execution of instructions.

Such values are known as literals.

In using literals, the programmer writes alphanumeric, hexadecimal, octal or decimal
characters in an address field. EASY Assembly translates each literal (i.e., the characters in
one address field) into equivalent 48-bit machine coding and stores each 48-bit equivalent in an
unique memory location. Assembly then places the address of this memory location in the ad-
dress field containing the original literal. Thus, at execution time, that address field contains

a true memory address; that address specifies the location containing the literal.

There are four types of literals which may be specified in an EASY instruction: alpha-
numeric (defined by the letter "A'), hexadecimal (defined by the letter "H'), octal (defined by
the letter ""O"), and fixed binary (defined by the letter "F'"). A literal is specified in an address
field by a mnemonic code which defines the type of literal (i.e., A, H, O, or F); by a right
parenthesis symbol ")" which is a separator indicating that the coding is a literal rather than a

true address; and by the actual literal.

Assembly eliminates duplicate literals by storing literals with the same 48-bit value in
the same location; for this reason, the programmer should not change the contents of a literal
location. Assembly stores literals at the end of a segment though the programmer may use the

SETLOC instruction (see page 57) to control the assignment of literals.

An attempt to use a literal in an address field representing a result location or a location

to which control is transferred will be noted by Assembly as an error.

15

SECTION 11l. ADDRESSING

Alphanumeric Literals

These literals are specified in the address field in the form

A)XX...X
where XX...X represent the alphanumeric characters the programmer desires for the literal.
The first eight of these are assembled and stored as eight six-bit characters in machine language.

Characters in excess of eight are dropped.

A space or blank is recognized as a valid character and is not suppressed but is assembled

and stored in the same manner as any other alphanumeric character.

Hexadecimal Literals

These literals are specified in the address field in the form

H)XX...X
where XX...X represent the hexadecimal characters the programmer desires for the literal,
Only the characters 0 through 9 and B through G may appear in a hexadecimal literal. These are
assembled and stored as four-bit characters in machine language. Because of the limitation
imposed by the size of the address field, a maximum of nine characters can be explicitly defined
by the programmer. A hexadecimal literal may be signed, in which case a maximum of eight

characters can be defined by the programmer.

If the first "X'" is a plus sign (+) or minus sign (-), the sign is assembled (as four binary
ones or four binary zeros, respectively) and stored in the high-order position (bits 1-4) of the
assembled literal. The remaining explicitly defined characters are right justified in the literal

word while the non-specified leading character positions are automatically filled with zeros.

If the literal is not signed, the explicitly defined characters are left justified in the literal

word and the non-specified trailing character positions are automatically filled with zeros.

Octal Literals

These literals are specified in the address field in the form

O)XX...X
where XX...X represent the octal characters the programmer desires for the literal. Only the
characters 0-7 may appear in an octal literal., These are assembled and stored as three-bit
characters in machine language. Because of the limitation imposed by the size of the address
field, 2 maximum of nine characters can be explicitly defined by the programmer. An octal
literal may be signed, in which case a maximum of eight characters can be defined by the pro-

grammer.

16

SECTION 11l. ADDRESSING

If the first "X is a plus sign (+) or a minus sign (-), the sign is assembled (as four binary
ones or four binary zeros, respectively) and stored in the high-order position (bits 1-4) of the
assembled literal. The remaining explicitly defined characters are right justified in the as-
sembled literal, while the non-specified leading character positions are automatically filled

with zeros.

If the literal is not signed, the explicitly defined characters are left justified in the literal

word and the non-specified trailing character positions are automatically filled with zeros.

Fixed Binary Literals

These literals are specified in the address field in the form

F)XX...X
where XX...X represent the decimal characters (0-9) which are equivalent to the binary con-
figuration desired by the programmer for the literal. The literal that is assembled consists of
the 48-bit equivalent of the decimal number specified by these characters. Because of the
limitation imposed by the size of the address field, a maximum of nine decimal characters can
be explicitly defined by the programmer. A fixed binary literal may be signed, in which case a
maximum of eight decimal characters can be defined by the programmer. Unsigned fixed binary
literals are assumed to be positive and the plus sign is assembled. Unless ""B'" positioning (see
below) is employed, the fixed binary literal is assembled such that the binary configuration is
always right justified in the word; i.e., the unit bit of this configuration is in the low-order
position of the word and higher power bits are in consecutive positions to the left, irrespective

of whether the literal is signed or not signed.

The programmer has the option to position the binary configuration within the literal word
wherever he desires by the use of ''B'"' positioning. If the decimal characters are followed by the
letter "B" and then a number in the range 5 through 48, then the unit bit of the binary configura-
tion is stored in the position specified by that number within the literal word, and higher power
bits are stored in consecutive positions to its left. The position in the 1if_er;1 word are numbered
so that position 1 is the high-order position and position 48 is the low-order position; i.e., the
positions are numbered left to right from 1 through 48. For example, if the literal representa-
tion:

F)45B24
is specified in an address field, the binary equivalent of decimal 45 is assembled and stored in

the literal word such that the unit bit of the configuration is in position 24.
Although "B" positioning is allowed, decimal points are not.

17

SECTION IIl. ADDRESSING

INDEXED ADDRESSING

Indexing is a simple method of increasing the flexibility of instruction addressing and also
provides a convenient technique for storing and modifying counters. All forms of legal addressing
except literals may be used in conjunction with the three index registers; instruction addresses
containing parameters (see below) may also, in general, be indexed. The restrictions on index-

ing parameter addresses are given with the appropriate instructions in Section IV.

Each of the three index registers in the Honeywell 400 stores 12 binary digits which repre-
sent a value in the range 0 through 4095, This value can be used as a memory address or

as a counter to be incremented or modified upon the occurrence of certain conditions.

When an instruction address is indexed, it is temporarily added to the contents of the speci-
fied index register to form an effective working address (regardless of the particular meaning of
this address); this working address is then used to locate the operand or store the result of the
instruction, or to specify the parameters required for the execution of the instruction. The ad-
dress in the machine instruction word and the contents of the index register remain unchanged

upon completion of the instruction.

If an address is to be indexed, the index register indication is specified in the correspond-
ing address field folléwing the address (or parameter) and separated from it by a comma. The
index registers are specified by the decimal numbers 1, 2, and 3, or by symbolic tags. If the
index register indication is a tag, this tag must somewhere be defined by the EQUALS control
instruction (see Section V) to be equal to the number of the required index register (see example
below). A blank is interpreted as no indexing. Any indication in the index register position
other than zero (interpreted as no indexing) or one of the valid digits (1, 2, or 3), or an assigned

tag is automatically diagnosed by EASY Assembly as an error.

As stated above, indexing is permitted with any form of legal address (i. e., absolute,
symbolic, or relative); it is also, in some cases, permitted with parameter addresses. The
instructions which do not allow indexing of parameter values are those which use the B index
register field to define the operation code and those in which it would be of no value to index the

particular parameters in the instructions (e.g., the B address of the SCO instruction).

It is possible to index in such a way that the highest system address (i.e., the stopper ad-
dress) is exceeded. At instruction time, the generated address is interpreted modulo the memo-
ry size (the actual address stored with the instruction in memory is unchanged by indexing). The
address derived from this process is lower than the indexed one, and so the stopper address has

been bypassed.
18

SECTION Ill. ADDRESSING

This process is possible in all systems, irrespective of memory size. In a system with a
3072 -word memory, however, the indexing must result in an effective address greater than

4095; this address is then modified modulo 4095 to give the working effective address.

Each of the index register indications is assembled as two bits: the index register bits
corresponding to the index register specified in the A address are stored in bit positions 7 and 8
(field Ai) of the machine instruction word; those for the B address indication are stored in bit
positions 9 and 10 (field Bi); and those for the C address indication are stored in bit positions 11
and 12 (field Ci). The configurations corresponding to each index register are given on page 2.
If indexing is attempted in the B address of instructions which use bits 9 and 10 of the machine

instruction word to define the operation code, Assembly automatically diagnoses an error.

An index register is frequently used to store the base address of some processing area,
while the address portions of the instructions designate specific words within that area. It is only
necessary to alter the contents of the index register to move on and process a similar area with-

out having to change the instructions.

EASY o

PROBLEM PROGRAMMER _ DATE PAGE___OF____
: :

CARD NUMBER | |, ATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS | REMARKS

[3 imllm ! "

1 e 8 s s) L a 58 , . 0
T ADD -~ [5,3 1GROSS ,AND 1 |GROSS +25,2
P sus @-5,2 @+15,2 25,2
—

In the A address of the above ADD instruction, index register 3 contains the base address
of a processing area. Similarly, the index registers indicated in the B and C addresses contain
the base addresses of other processing areas. When the instruction is executed, the effective

working addresses are formed as follows.

- The value 5 is added to the contents of index register 3. The effective working address
thus refers to the sixth word in the processing area which begins at the location whose address
is stored in index register 3. Neither the value 5 nor the contents of the index register are dis-

turbed by this process.

The address of the location tagged GROSS is added to the contents of the index register
defined by the tag INDI to form the effective working address of the second operand in the ADD
jnstruction. Neither the address of the location tagged GROSS nor the contents of index register
INDI are disturbed by this process. The ADD instruction adds the contents of the location speci-
fied by the two working addresses and stores the result in the location whose address ‘is formed
by adding 25 to the address assigned to the location tagged GROSS and then adding this to the

contents of index register 2.

19

SECTION Iil. ADDRESSING

Note that the tag INDI must previously have been assigned to be equal to one of the numbers

1, 2, or 3 by an EQUALS instruction (see Section V).

The addresses in the SUB instruction are interpreted in a similar fashion to those of the

ADD instruction.

PARAMETERS

Address fields specified in EASY language may contain information other than memory
addresses. Such information may include, for example, the number of words to be transferred,
the number of positions to shift an operand, the number of characters to be edited, or the num-
ber of words to be written on magnetic tape. These values, known as parameters, are specified
in the B address fields of the appropriate instructions as either absolute or symbolic values.
Address fields specifying parameter values are assembled and stored as 12 bits in the corres-
ponding address fields in the machine instruction words. Individual parameters are represented
by a fixed number of bits out of the 12 and are limited by the values which can be represented by
these bits. If a parameter specifies a number greater than that which can be represented by its
assigned number of bits, the value is reduced modulo the maximum value of that parameter and
an error is noted. For example, if a parameter is represented in the machine by four bits and
is specified by a value of 17, the value which is assembled is 17 converted modulo 16; i.e., 1.
Values of parameters within the limits of the machine fields but greater than the functional maxi-
mum for the instruction are assembled normally and an error is noted. In instructions where
parameters are recognized by the Assembly program, any omission of leading parameters in an
address must be indicated by a leading zero followed by a comma, or simply by a leading comma
(see "Print and Space'’, Section IV). Trailing parameters may be omitted without any special

indication.

In the machine words of certain instructions which contain parameter values in the B ad-
dress, the corresponding index register field (i.e., bits 9 and 10) is used as part of the oper-
ation code (see Section II), and so indexing of that address is illegal. Any attempt to index such
an address is automatically diagnosed by EASY as an error. In some other instructions, index-
ing of parameter value addresses is not permitted even though the corresponding index register
field is not used as part of the operation code. Any restriction on indexing a particular instruc-

tion is noted in the appropriate place in Section IV.

UNUSED ADDRESS FIELDS AND INDEX BITS

All address fields that are interpreted by the central processor must contain valid EASY
addresses or parameters. EASY Assembly converts blank address fields to 12 binary zeros;

no error is indicated.

20

SECTION Ill. ADDRESSING

Some address fields are not used in certain instructions but must be set to zero. If any
address form is written in such a field, it will be assembled as zero and an error indicated.

This type of instruction is identified in Section IV and the summary in Appendix D.

In other instructions, the address fields are not interpreted by the central processor during
execution and may contain any legal address form, Assembly interprets such data normally; if
the field is blank, it will be assembled as all zeros. These instructions are identified in Section

IV and Appendix D.

Similar remarks apply to the index bits. In certain instructions (see Appendix D), these
bits can store data irrelevant to the instruction. This is possible in instructions in which an
address field can not be indexed and the associated bits are not part of the operation code; in this
case, data in the indexing position of an EASY instruction will be assembled with an error no-
tation to warn the programmer that the field will not be indexed at execution time. However, if
an attempt is made to index an address field which can not be indexed because the associated
bits are part of the operation code, the indexing attempt will be ignored and an error will be

noted.

21

SECTION IV
MACHINE INSTRUCTIONS

Honeywell 400 machine instructions are specified in EASY language using mnemonic oper-
ation codes. These codes are written in the command code fields to designate the type of in-

struction to be performed on the information referenced in the address fields.

EASY Assembly translates each machine instruction into a 48-bit machine instruction word.
The four 12-bit groups of a machine instruction word (i.e., command code group, and three
address groups) do not necessarily correspond to the respective four groups as specified in
EASY language. The most notable difference is in indexing; EASY language requires the index
register indication to be specified in the appropriate address field, whereas the index register
bits are stored in the command code group in the machine word. The programmer need not be
aware of this difference in arrangement unless he wants to modify machine instructions at the
time of program execution. Instructions which perform any such modification must refer to the
proper bit positions in the machine word. (A detailed description of the machine language format

of Honeywell 400 instructions is contained in the Honeywell 400 General Information Manual; a

summary chart is in Appendix D of this manual.)

EASY recognizes the following eight classes of machine instructions:
1. Arithmetic;
2. Logical;
3 Shift;
4. Decision;
5. Transfer and Sequence Change;
6 Edit;
7 Peripheral; and
8. Index and Check.
The function and format of each instruction are described in this section under the appropriate

class.

ARITHMETIC INSTRUCTIONS

The Honeywell 400 performs both decimal and binary arithmetic. In decimal arithmetic,
each operand is assumed to consist of 11 decimal digits and a sign (in binary form), and normal
algebraic rules are observed with respect to the sign; i.e., a decimal add instruction causes

operands with like signs to be added, and operands with unlike signs to be subtracted, with the

23

SECTION IV. MACHINE INSTRUCTIONS

result adopting the sign of the larger absolute number. Similarly, a decimal subtract instruction
causes operands with like signs to be subtracted and operands with unlike signs to be added. In
binary arithmetic, the operands are treated as unsigned quantities. Binary arithmetic is used

primarily for instruction modification.

In installations equipped with the Multiply-Divide Option, multiple and divide instructions
are assembled, interpreted, and executed in the same way as any other machine instruction. A
machine not equipped with this option performs multiplication and division by the use of library

routines.

Decimal Add ADD/A/B/C
This instruction adds the signed 11 decimal digit word at A algebraically to the signed 11
decimal digit word at B and stores the sum in the location specified by C. If the addition results

in overflow, an unprogrammed subsequence to the reserved memory location 0017 is executed.

Decimal Subtract SUB/A/B/C

This instruction subtracts the signed 11 decimal digit word at B algebraically from the
signed 11 decimal digit word at A and stores the difference in the location specified by C. If the
subtraction results in overflow, an unprogrammed subsequence to memory location 0017 is

executed.

Decimal Multiply MPY/A/B/C

This instruction multiplies the signed 11 decimal digit word at A by the signed 11 decimal
digit word at B. The high-order signed 11 decimal digits of the result are stored in the location
specified by C. The low-order signed 11 decimal digits of the result are stored in the fixed
memory location 0000, known as the low-order product word (or LOP). Multiplication of operands
with like signs results in a positive product; with unlike signs, in a negative product. The
operands are treated as decimal fractions; i.e., the decimal point is assumed to be immediately
to the left of the high-order digit in each operand. The positions of the significant digits in the

two halves of the result reflect this convention. The examples below illustrate these points.

EASY <o

PROBLEM PROGRAMMER DATE PAGE___OF____
CARD NUMBER | | - ATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
Past il.l-llw
TN D s = N L. A 9 LA . »
Lo mPY MULTA MULTB PRODC
=

If the contents of the memory locations tagged MULTA, and MULTB are as shown, the
contents of the memory location tagged PRODC and LOP after execution of the instruction are

as given:

24

SECTION IV. MACHINE INSTRUCTIONS

1. Multiplicand MULTA +00000000005
Multiplier MULTB +00000000050
High-Order Product PRODC +00000000000
Low-Order Product LOP +00000000250

2. Multiplicand MULTA +50000000000
Multiplier MULTB -05000000000
High-Order Product PRODC -02500000000
Low-Order Product LOP -00000000000

Decimal Divide DIV/A/B/C

This instruction divides the signed 11 decimal digit word at B (dividend) by the signed 11
decimal digit word at A (divisor). The signed 11 decimal digit quotient is stored in the location
specified by C. The signed 11 decimal digit remainder is stored in the reserved memory location
0010, known as the remainder word. Division of operands with like signs results in a positive
quotient; with unlike signs, in a negative quotient. The remainder takes the sign of the dividend.
Since the operands are treated as decimal fractions, the positions of the significant digits in the
two halves of the result reflect this convention. If the A and C addresses are the same, the result

is unspecified; the instruction operates normally if the B and C addresses are the same.

If the absolute value of the dividend is greater than or equal to the absolute value of the

divisor, an unprogrammed subsequence to memory location 0017 is executed.

EAS CODING
PORM
PROBLEM PROGRAMMER DATE PAGE___ OF
: .
CARD NUMBER | |\ 1ioN| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS | REMARKS
L3 ;l_‘lm !
1 :A.;o,'_ 18 £ . X L a) s, A 20
' : DIV PYViIS DWID QUOT
A

If the contents of the memory locations tagged DIVID and DIVIS are as shown, then the con-
tents of the memory location tagged QUOT and the remainder word after the execution of the in-

struction are given below:

1. Dividend DIVID +50000000000
Divisor DIVIS -60000000000
Quotient QUOT -83333333333
Remainder REM +20000000000

2. Dividend DIVID -10000000000
Divisor DIVIS +30000000000
Quotient QUOT -33333333333
Remainder REM -10000000000

3. Dividend DIVID -00000000005
Divisor DIVIS -00000000060
Quotient QUOT +08333333333
Remainder REM -00000000020

4. Dividend DIVID +00004000000
Divisor DIVIS +30000000000
Quotient QUOT +00013333333
Remainder REM +10000000000

25

SECTION IV, MACHINE INSTRUCTIONS

All of these examples illustrate the rule of zeros in the quotient. The rules of zeros states
that the number of leading zeros in the quotient is equal to the difference between the number of
leading zeros in the dividend and the divisor. The term ''leading zeros'' refers to those zeros
appearing between the sign and the first significant digit. This digit is itself a zero in a dividend
in which the first non-zero digit is greater than the first non-zero digit of the divisor (see ex-

ample 4 above).

The examples also illustrate that the remainder is formed exactly as it would be in ordi-
nary arithmetic and that the first non-zero digit of the remainder is in the same digit position

as the first non-zero digit of the divisor.

Binary Add BAD/A/B/C
This instruction adds the unsigned binary quantity at A to the unsigned binary quantity at B

and stores the sum in the location specified by C. Any overflow is disregarded.

Binary Subtract BSU/A/B/C

This instruction subtracts the unsigned binary quantity at B from the unsigned binary quan-
tity at A and stores the difference in the location specified by C. Any overflow is disregarded;
if the B operand is greater than the A operand, the result is the 2's complement of the absolute

value of the difference.

LOGICAL INSTRUCTIONS

The four logical instructions manipulate words on an individual bit basis, combining bits
from two words to form a third. All operands are treated as 48-bit words in which each bit is
unrelated to any other bit. There are no restrictions on indexing any address of a logical in-

struction.

Two of the logical instructions, extract and substitute, use the concept of masking. In
both cases, the B address field specifies either a mask or the location of a mask. A mask is
defined as a particular configuration of binary ones and zeros which, when combined with another
operand (specified by A) according to prescribed rules, passes into the result word only those
bits of that operand which correspond to binary ones in the mask. The remaining portions of
the result word correspond to the binary zeros in the mask. In the extract instruction, these
remaining bit positions are cleared to zero, while in the substitute instruction, they are left

unchanged.

There are two ways of designating masks; both, however, result in 48-bit configurations.
The first method specifies a location in the desired address field; in general, the location thus

26

SECTION IV. MACHINE INSTRUCTIONS

referenced contains a 48-bit data constant (see Section VI), though there is no reason why it
could not contain a machine instruction. The second method of specifying masks permits the
programmer to define the actual mask he requires by writing its EASY language representation
in the required address field (see ''Literals", Section III). This again results ina 48-bit con-
figuration. Both methods are illustrated in the examples given with the definitions of the in-

structions themselves (see below).

The substitute instruction is used, in general, to "pack' information fields of different
types and lengths into a single memory location, while the extract instruction can be used to

"unpack'' these fields whenever required.

Extract EXT/A/B/C
This instruction passes the word in the location specified by A through the mask specified
in the B address and places the result in the location specified by C. The portions of the result

word corresponding to the unmasked portions of the A operand are set to zero.

This is equivalent to combining the corresponding bits of the A and B operands according

to the following rule:

If corresponding bit positions in the word at A and the word at B both contain binary
ones, the result contains a 1 in this position. In all other cases, the result contains
a binary 0.

EASY o

PROBLEM PROGRAMMER DATE PAGE___OF____
CARD NUMBER lOCATIONl COMMAND CODE | A ADDRESS | & ApDRESS | C ADDRESS | REMARKS
PAGE iu‘llm | L
1 148) s N kD L A 7 LT . 80
Lo EXT 3,2 |mAsKA STORE. ,
il [ExT WORDA |0)0000T117 |WORPA+1 |
T w

The first instruction combines the word in the location whose address is three greater
than the address stored in index register 2 with the contents of the location tagged MASK (i.e.,
the mask required), according to the extract rule. The result is stored in the location tagged

STORE.

The second instruction combines the word in the location tagged WORDA with the 48-bit
configuration defined by the literal in the B address (i. e., with the binary equivalent of octal
0000777700000000, since the literal is left justified in its location), according to the extract rule.
The result is stored in the location whose address is one greater than that of the location tagged

WORDA.

27

SECTION IV. MACHINE INSTRUCTIONS

Substitute SST/A/B/C

This instruction passes the word specified by A through the mask specified in the B address
and places the result in the location specified by C. In contrast to the extract instruction, the
portions of the result word corresponding to the unmasked portions of the A operand are left un-

changed by the instruction.

This is equivalent to combining the corresponding bits of the A and B operands according
to the following rule:

Wherever the B operand contains a binary 1, the corresponding bit of the A operand
is stored in the corresponding bit position of the result word. All other positions in
the result word (specified by C) are unaffected.

EASY =

PROBLEM PROGRAMMER DATE. PAGE___OF ____
c':“u:”":‘:: LOCATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
el SR LR T -
il ssT 3,2 MASKA STORE |
P SST WORDA 0)0000 7111 | WORDA 4

These two instructions perform the same functions as described under extract, except that

the operands are combined according to the substitute rule rather than the extract rule.

Half Add HAD/A/B/C
This instruction adds the contents of the locations specified by A and B in binary fashion

without carries and stores the result in the location specified by C.

This is equivalent to combining the corresponding bits of the A and B operands according
to the following rule:

If the corresponding bit positions in the A and B operands have the same value, the
result contains a binary O in this position. In all other cases, the result contains a
binary 1.

Superimpose ~ SMP/A/B/C
This instruction superimposes the 48-bit A and B operands in such a way that the result
word contains a binary 1 in every position in which a 1 existed in either A or B or both, and the

result is stored in the location specified by C.

This is equivalent to combining the corresponding bits of the A and B operands according
to the following rule:

If the corresponding bit positions of the A and B operands both contain binary zeros,
the result contains a binary 0 in this position. In all other cases, the result contains
a binary 1.

28

SECTION IV. MACHINE INSTRUCTIONS

SHIFT INSTRUCTIONS

In shift instructions, the word specified by the A address is shifted to the left or right,
cyclically or non-cyclically depending on the instruction, a number of decimal or binary digits
as specified by the programmer. The decimal shift instructions operate on the 11 digits of the
word at A, shifting these non-cyclically up to 11 places to the left or right; the sign digit is not
affected. The binary shift instruction operates on all 48 bits of the word, shifting them cyclically

up to 48 places (moving left).

The shift instructions thus provide a means of manipulating data fields within a single
word. A shift instruction could, for example, be used in conjunction with a substitute or extract

instruction (see above) to pack or unpack a word in the required manner and format.
The parameter n in the B address of these instructions may be of any legal address format
except literal. If it is symbolic, the symbol should be equated to an integer using an EQUALS

instruction.

Decimal Shift Right, Preserving Sign SRP/A/n/C

This instruction shifts the word at A, excluding the sign, n(0 < n £11) decimal digit posi-
tions to the right. All digits shifted out at the right (or low-order) end of the word are lost, and
a corresponding number of zeros are added at the left of the word, immediately following the
sign. The resulting word is stored in the location specified by C. The sign supplied with the
result will be four zeros if the sign digit of the A operand was all zeros. Otherwise, it will be

four ones.

Decimal Shift Left, Preserving Sign ‘ SLP/A/n/C

This instruction shifts the word at A, excluding the sign, n {0 £ n £ 11) decimal digits to
the left. Digits shifted out of the 11th (i.e., second digit) high-order position are lost and are
replaced by the corresponding number of zeros at the right (or low-order) end of the word. The
resulting word is stored in the location specified by C. The sign delivered with the result is the

same as in the case of the decimal shift right instruction.

Binary Shift Left SLB/A/n/C

This instruction shifts the 48 bits of the word at A left n bit positions in a cyclic fashion.
That is, the bits shifted out at the left (or high-order) end of the word re-enter the word at the
right in the order in which they were shifted out. The resulting word is stored in the location

specified by C. If n is greater than 48, it is reduced modulo 48 at execution time.

29

SECTION 1V. MACHINE INSTRUCTIONS

DECISION INSTRUCTIONS

In decision instructions, the word at A is compared with the word at B to determine whether
a particular relationship exists between them. If the specified relationship between the operands
is met, the sequence register is set to the address specified by C, and the program branches to
an alternate path. If the relationship is not met, the sequence register is incremented by unity,
and the next instruction in sequence is executed. There are no restrictions on indexing any ad-

dress in a decision instruction.

Inequality Comparison, Alphanumeric NAC/A/B/C

This instruction compares the word at A with the word at B, bit-by-bit, for inequality. If
the two words are not identical, the sequence register is changed to select the next instruction
from the location whose address is specified by C. If the operands are equal (i.e., the inequality

relationship is not met), the next instruction in sequence is executed.

Inequality Comparison, Numeric NNC/A/B/C

This instruction compares the signed 11 decimal digit word at A for inequality with the
signed 11 decimal digit word at B. If the two words are not equal, the sequence register is set
to the address specified by C; if the two words are equal, the next instruction in sequence is
executed. The high-order four bits (i. e., the sign bits) are compared as a unit, in contrast to
the manner in which the digits are compared. Since any non-zero con.figuration in the four sign
bits is interpreted as a plus sign, the two operands could be considered equal although having

unequal sign bits. Plus zero and minus zero are considered equal,

Less than or Equal Comparison, Alphanumeric LAC/A/B/C

This instruction compares the 48-bit word at A, bit-by-bit, with the 48-bit word at B. If
the word at A is less than or equal to the word at B, the sequence register is set to the address
specified by C. If this relationship is not satisfied (i.e., if A is greater than B), processing

continues in sequence.

Less than or Equal Comparison, Numeric LNC/A/B/C

This instruction compares the signed 11 decimal digit word at A with the signed 11 decimal
digit word at B. If the word at A is algebraically less than or equal to the word at B, the sequence
register is set to the address specified by C; otherwise, processing continues in sequence. Apart
from plus zero being considered equal to minus zero, any positive number is greater than any

negative number,

Extended Comparison EXC/A/B/C

Starting with the word at A, this instruction compares consecutive words with a corres-

30

SECTION IV. MACHINE INSTRUCTIONS

poﬂding number of consecutive words starting with the word at B. The comparison is performed
on a bit-by-bit basis, since the operands are considered as unsigned 48-bit words. The com-
parison terminates as soon as a difference between corresponding A and B operands is found. If
the "A" word is less than the "B" word, the sequence register is set to the address specified by
C; if the "A" word is greater than the "B" word, processing continues in sequence. The instruc-
tion terminates if and only if a difference between the A and B operands is found. (Note: If this
does not occur before one of the comparisons attempts to use the stopper location, the contents
of this location are used as one of the operands for all successive comparisons.) At the termi-
nation of the instruction, the value of A + n (where n is the number of consecutive comparisons
made and found equal) is stored in memory location 0013, called the termination address word

(see Appendix A).
EASY =

PROBLEM PROGRAMMER DATE PAGE___OF____
:
CARD NUMBER | | - TION| COMMAND CODE | A ADDRESS . B ADDRESS | C AoREss i REMARKS
PACE | LINE | INSERT o | |
R Ee 15 LA . e 1Y . RC I e ol
il EXC . TABLEA |TABLEB 125 i

— S — S————— U S
Let the location tagged TABLEA and TABLEB be the starting locations of two tables in

memory which contain the following values:

Location Contents Location Contents
TABLEA 17 TABLEB 17
TABLEA + 1 18 TABLEB + 1 18
TABLEA + 2 14 TABLEB + 2 14
TABLEA + 3 12 TABLEB + 3 13
TABLEA + 4 16 : TABLEB + 4 16

The instruction in the example above compares the contents of the location tagged TABLEA
with the contents of the location tagged TABLEB. Since these are equal, the instruction then
compares the contents of the location one beyond that tagged TABLEA with the contents of the lo-
cation one beyond that tagged TABLEB. Since these are also equal, the instruction continues.
Since the contents of the location three locations beyond that tagged TABLEA (i.e., TABLEA + 3)
are less than the contents of the location three locations beyond that tagged TABLEB (i.e.,
TABLEB + 3), the sequence register is set to the value 25. The instruction thus terminates
after four pairs of words have been compared, and the value of TABLEA + 3 (i.e., the value
three greater than the address of the location tagged TABLEA) is stored in the termination ad-

dress word.

TRANSFER AND SEQUENCE CHANGE INSTRUCTIONS

There are eight instructions for transferring words in memory and changing the program
path. Five of these instructions cause changes in the sequence of instruction execution; of these,

31

SECTION IV. MACHINE INSTRUCTIONS

one instruction also transfers one word to a different location, another causes a single instruc-
tion to be executed out of sequence without altering the contents of the sequence register, and a
third performs no other operation save incrementing the sequence register normally (i. e., by
unity). A sixth instruction transfers a number of consecutive words in memory to different con-
secutive locations; a seventh instruction has the ability to stop the computer; the eighth instruc-

tion stalls the central processor during an acceleration period.

Transfer and Sequence Change : TSC/A/B/C

This instruction transfers the word at A to the location specified by B, and sets the sequence

register to the address specified by C. The sequence register is changed before the transfer.

Transfer n Words TSN/A/n/C

This instruction transfers the number of words specified in the B address (i.e., n) from
consecutive memory locations starting at the location specified by A to consecutive memory lo-
cations starting at the location specified by C. The parameter n may range in value from 0
through 4095; and may be of legal address format except literal. If it is symbolic, the symbol
should be equated to an integer using the EQUALS instruction. Processing continues in sequence

after this instruction.

Sequence Change SCH/ / /C

This instruction sets the sequence register to the address specified by C. The A and B

addresses are not used but are assembled; therefore they may contain any legal address format.

Sequence Change on Option SCO/A/n/C

This instruction changes the sequence of instruction execution depending on the setting of
the four breakpoint switches on the operator's console. If any of the values which n can take
coincide with the number of a console breakpoint switch set to the "ON' position, then the se-
quence register is set to the address specified by A. If there is no such coincidence, the se-
quence register is set to the address specified by C. The parameter n can consist of any one
or all four of the digits 1; 2, 3, 4, any combination of two or three of these digits, or a symbolic
tag. The value (or values) desired for n are written in any order (e.g., 312) in the B address
field; a tag should be defined by an EQUALS instruction. Indexing is not permitted in the B ad-

dress of this instruction.

EASY &

PROBLEM PROGRAMMER DATE PAGE___OF
I ‘ T ‘
CARD NUMBER | | 0CoTiON. COMMAND CODE ; A ADDRESS | B ADDRESS C ADDRESS REMARKS :
PAGE - LiNE 1 INgenT | ' | |
NN 5 e B " . ‘ . ®
o sco 1006 234 @+1 : i
e L I —
e e

32

SECTION IV. MACHINE INSTRUCTIONS

The instruction in the example above interrogates the breakpoint switches 2, 3, and 4 on
the operator's console. If any of these is set to the ""ON'' position, the sequence register is set
to the value 1006; otherwise, the sequence register is set to the address one beyond the address
of the location containing the current instruction; i.e., the sequence does not change (since this

is the normal setting of the sequence register for the next instruction).

Select SEL/A/B/C

Execution of the select instruction results in a programmed subsequence to a location whose
address is determined as described below; its execution leaves the sequence register unchanged.
If the selected instruction is not another subsequence call instruction or a sequence change in-
struction, control returns to the address specified in the sequence register upon execution of the

selected instruction.

The address of the one instruction to be executed in the subsequence mode is determined
as follows:

1. The C address of the select instruction, as written by the programmer,
contains the base address;

2. If the C address is indexed, the contents of the referenced index register
augment the base address to form the effective C address; and

3. A second augmenter, determined by the A and B addresses of the select
instruction, is formed and added to the effective C address. The four
12-bit groups of the word at A are combined with the four 12-bit groups
of the word at B according to the extract rule. (See appropriate instruc-
tion above.) The four extracted 12-bit groups are superimposed, and the
resulting 12 bits are binary added to the effective C address. In general,
the configuration of the word at B is such that it will block three of the
four 12-bit groups in the word at A and select from 1 to 12 bits of the
remaining group a2s an augmenter to the C address. The definition of the
instruction, however, allows a more sophisticated use; namely, the
selection of a configuration of the word at B which would provide for
superimposing one or more bits from each of the four 12-bit groups to
form the augmenter.

EASY o

PROBLEM PROGRAMMER DATE PAGE___OF __
CARD NUMBER
e L 11 LOCATION| COMMAND CODE A ADDRESS 8 ADDRESS C ADDRESS REMARKS

}
1 s s D 1s) 2 % 4, L e . .

T SEL ALGA MAsKB |t

R T — t

Let the contents of the locations tagged AUGA and MASKB be as follows:

AUGA 000000001111 000011110000 000111110100 000000000001
MASKB 111111111111 000000000000 000000000000 000000000000

When the SEL instruction above is executed, the augment produced by superimposing the

four 12-bit groups obtained by extracting AUGA through MASKB is 000000001111.

33

SECTION IV. MACHINE INSTRUCTIONS

This address is temporarily added to the effective C address, This produces the address

000000010000 which is the address of the location containing the selected instruction.

The C address of this instruction is unchanged at the completion of the instruction.

No Operation NOP/ / /

This instruction causes the system to proceed to the next instruction without performing
any other action. Thus, it normally has the effect of simply incrementing the sequence counter;
however, if executed as the result of a subsequence call (e.g., as the instruction stored in a
reserved memory location), it simply returns control to the sequence counter. The address

fields and the Bi field are ignored (see '""Unused Address Fields and Index Bits', Section III).

Halt HLT/ /n/

This instruction stops the central processor if n is a blank or if any of the other values
which n can take coincide with the number of a console breakpoint switch set to the "ON'' posi-
tion. In addition to a blank, n can consist of any one of the digits 1, 2, 3, 4, any combination
of two, three or all four of these digits, or a symbolic tag. The value (or values) desired for
this parameter are written in any order (e.g., 412) in the B address; a tag should be defined by
an EQUALS instruction. The sequence register is incremented normally (i.e., by unity). In
addition, n may take the value 0; in this case, when the instruction is executed, the sequence
register is incremented normally, the central processor does not halt, and instruction execution
proceeds as usual. Indexing is not permitted in the B address of this instruction. The A address
field must be left blank. The C address field is not used but is assembled normally and may

contain any legal address format.

Stall, SUP SUP/A/ /

If selected during the acceleration interval of a read card or punch card instruction, this
instruction stalls the central processor until completion of data transfer and then allows process-
ing to continue normally. If selected outside the acceleration interval, it acts as a no operation
instruction. Thus, this instruction is useful in delaying execution of an instruction which might

not be completed during the acceleration interval of the reader or punch.
The A address field must indicate, in any legal address format, the address of the SUP

instruction itself. The B address must be left blank. The C address is not used but is assembled;

therefore it may contain any legal address format.

EDIT INSTRUCTIONS

There are four input edit instructions which handle the information from punched cards,

SECTION 1V. MACHINE INSTRUCTIONS

four output edit instructions which handle information to be punched on cards, and a further
three output edit instructions which handle information to be printed. In addition, a twelfth in-
struction prepares a signed decimal word for editing and subsequent printing or punching. This
last instruction allows convenient modification of information (such as the positioning of special
characters). The edit instructions can edit fields from and to alphanumeric, octal, and signed

and unsigned decimal format.

The eight edit instructions which manipulate card information fields do so in a way which
enables the programmer to work with characters rather than words. The four card edit instruc-
tions convert a specified number of card columns from the card image form in the card read
area (see '"Reserved Memory Locations', Section I) to the appropriate internal forms and store
the converted information starting in the high-speed memory location specified by the program-
mer. Similarly, the four punch edit instructions convert information from internal form to card
image form and store this information in the card punch area in columns specified by the pro-

grammer.

The three print edit instructions convert information from internal form to the form re-

quired for printing and store this information in the print area as specified by the programmer.

All edit instructions specify a high-speed memory location in the A address field; that is,
in input editing, the initial storage location after editing, and in output editing, the source of the
data to be edited. The B address field designates the position of the first (i.e., leftmost) edited
character in the word specified by A and also the number of consecutive characters to be edited.
The C address field specifies the relative position in the card or print storage area where the

first character to be edited is obtained (input editing) or stored (output editing).

Except for signed decimal, all edit instructions operate on the specified number of charac-
ters; word boundaries are ignored. The signed decimal edit operates on a single word only.
None of the 11 edit instructions nor the prepare decimal edit instructions can be indexed in the

B address; all can be indexed in the A and C address fields.

In all of the edit instructions, the parameters in the B address field may be absolute or

symbolic; symbolic parameters should be defined by an EQUALS instruction.

In the following descriptions of the edit instructions, the normal maximum values of the
parameters are given in parentheses. Generally, these maximums are merely the limits im-
posed by the size of the image areas; for example, C in the card edit instructions designates a
column position relative to the base of the image area and therefore does not usually exceed 80

35

SECTION V. MACHINE INSTRUCTIONS

(which designates the last such column in the reserved image area). However, values beyond
these maximums may be specified and assembled normally (though a notation indicating a possible
error will appear in the listing). If such values also exceed the machine fields in which they will
be represented, they are assembled modulo their limiting values: n is assembled modulo 256;

C is assembled modulo 4096; m is assembled modulo 16. Thus, the results of exceeding the
maximums given below are as follows:

1. If n is greater than the normal limit of the image area (80 for card editing,
120 for print editing), editing continues outside the image area to a maximum
of 255 characters.

2. If C is greater than its normal limit (80 for card editing, 120 for printing),
editing starts outside the image area at a card column or print position lo-
cated relative to the base address of the image area. For example, if C
81 in a card edit instruction, editing starts in bits 1-12 of the first location
beyond the image area. The following formulas are helpful in determining
the value that should be specified in C to begin editing at the high-order 12
bits of a certain location:

Card read edit - C = 4(W-54)
Card punch edit - C = 4(W-74)
Print edit - C = 8(W-39)

where W is the address of the location at which editing will start. For ex-
ample, to start editing at location 354, the C field of a card edit instruction
should have effective value of 1200:

C = 4(354 - 54)

The value of 1, 200 may be specified in the C address field or it may be
obtained by indexing.

3. If m is greater than its normal limit (8 for alphabetic editing, 11 or 12 for
decimal editing, and 16 for octal editing), m is interpreted as follows:

M Octal Edit Alphabetic Edit Decimal Edit
1 (0001) 1 1 1
2 (0010) 2 2 2
3 (0011) 3 3 3
4 (0100) 4 4 4
5 (0101) 5 5 5
6 (0110) 6 6 6
7 (0111) 7 7 7
8 (1000) 8 8 8
9 (1001) 9 1 9
10 (1010) 10 2 10
11 (1011) 11 3 11
12 (1100) 12 4 12
13 (1101) 13 5 11
14 (1110) 14 6 12
15 (1111) 15 7 12
16 (0000) 16 8 1
Card Edit, Alphanumeric ECA/A/m,n/C

This instruction edits n consecutive characters of alphanumeric data and stores the edited

36

SECTION IV. MACHINE INSTRUCTIONS

data in memory beginning with the mth (1 £ m < 8) alphanumeric character position of the word
at A. The input data are obtained from consecutive column representations in the card storage
area beginning with the column specified by C (1 £ C £ 80). Detection of an illegal punch con-

figuration results in an unprogrammed subsequence to memory location 0022 (see Appendix A).

Card Edit, Unsigned Decimal ECU/A/m,n/C

This instruction edits n consecutive characters of decimal data and stores the edited data
in memory beginning with the mth (1 £ m <£12) decimal digit position of the word at A. The input
data are obtained from consecutive column representations in the card storage area, starting
with the column specified by C (1 £ C £ 80). Any attempt to edit a configuration other than a
single punch, O through 9, per column, results in an unprogrammed subsequence to memory lo-

cation 0022.

Card Edit, Signed Decimal ECD/A/m,n/C

This instruction edits n consecutive characters of decimal data and stores the edited data
in memory, beginning with the mtP decimal digit position in the word at A. The input data are
obtained from consecutive column representations in the card storage area, starting with the
card column specified by C (1 £ C £80). The sign of a negative word is assumed to be over-
punched (in the "X'" row) in the column specified by C. The absence of an overpunch in this
column indicates that the sign of the word is positive. The edit instruction converts the sign to
four binary zeros (0000) if negative and to four binary ones (1111) if positive and places these
sign bits in the high-order four bits of the word at A. Thus, m (the digit position of the first
edited character) cannot be equal to 1, but lies anywhere in the range 2 through 12. The instruc-
tion edits into only one memory word; digits exceeding word capacity are disregarded. Unspeci-
fied digit positions in the word at A are filled with zeros. Detection of an illegal punch (i.e.,
any configuration other than a single punch, 0 through 9, per column, and the sign punch in the

specified column) results in an unprogrammed subsequence to memory location 0022.

Card Edit, Octal ECO/A/m,n/C

This instruction edits n consecutive characters of octal data and stores the edited data in
memory, beginning with the mth (1 € m < 16) octal digit position of the word at A. The input data
are obtained from consecutive column representations in the card storage area, starting with
the card column specified by C (1 £ C £ 80). Detection of an illegal punch (i.e., any configura-
tion representing a digit other than 0 through 7) results in an unprogrammed subsequence to

memory location 0022.

37

SECTION IV. MACHINE INSTRUCTIONS

A61 144 TRANSFORMER K3 12130 941 135504 107136062260873243
11 | JI
/ COMMODITY SALES cosT DATE mvcnrcecE
cLass untvl e 8 IR N X PRICE | amounT | AMouNT NUMBER/(D
DES CRIPTION CODE MDY EIR
opojooococpgRooos 9nolauauouunnonaon|umn"“olnu 6000 a.oluoﬁlnﬂlnnuolﬂuououoanuonnnoo
123|456 7 8]9 10111213 14f# 16|7Hl|9202|27?‘!242526272929103!J?]]"Au]&i]r"B«‘Jlﬂl 42,43 44}45 45 47 48 4950 51}52 51 54 55 56457 58 59 6061 62|63 64/65 56 67 68 69§70|73{72 73 74 75 75 77 78 79 80
[RE [ERRARIRAT RRIRI ARARRARRRRRRRRE! 1||||1H||1|1||11|1|||11||111111111111111111111111
2222222222222222222|2222222|222222h2lzzzzzzlzzz2222'2222222|2222||22I22I222222222222
3“33“333”333.“33“333333'33”3]3*33”3|3333l33|“33”3?333“33“'33 3(333333333
444444444444“444444444|4444444444|44I444444'444444|4|44444|444444444444I44444444444
|
555555555555555555]55555|5555555:.5=55|555555|55555|||5555555’555555555555555555555555
ssss665565666656566s"esessssss6aslssiassssdssass5slss5sssslslslsshsssssassssasase55
7711777771777777171117717771777771'77|771777‘7177771|71717|1,711777777I71177777777771
888/98888/66858883(86388388888888888888{5[58 Saaulﬂa '3395'8833533]88338333“838383385333535
939)999985/9992 95l9i5F 999930 99859999989 I“J qelesl?‘ﬂqsusss 339 sl :aj lglsg'sssssssanessasa
12314567 813101112131405N617 1819202122 2324 252527 20 29 30 31 32 33134 37M3“l66|41 45 *7 45 49|50 51|52 53 54 55 55’7 GIGHES 6 T GB 6RITIMIT2 B3 14 1576 T T8 19 B0
ABS 508
EAS CODING
FORM
PROBLEM PROGRAMMER DATE PAGE___OF __
CARD NUMBER LOCATION| COMMAND CODE A ADDRESS B ADDRESS C ADDRESS ‘ REMARKS
PAGE L | InsEXT |
RO DN L x RNETR) T)
D ECuU CARDA 10,3 1
i €CO CARDA Y1 1,e 9
L €cA CARDA Y2 1,18 16
Vo £CA CARDAAS 1,5 34
HE EcD CARDAtE 1,6 39
P ECO cARDA+T 6,1 45
P ECD CARDALS 651 52
|| ECU CARDA+D 1,6 59
o ECA CARDA+I0 1,5 65
L ECA CARPA [N 10
D ECA CARDA{Z | 8,1 u
S _’__V&_—w

Figure 5. Sample Coding for Card Editing

Sample Card Edit Coding

Figure 5 illustrates an input card and the instructions which might be used to edit it.

of these instructions produces the following results.

38

1.

The three digits of the Class field (columns 1-3) are edited as an unsigned
decimal field and stored in decimal digit positions 10, 11, and 12 of word
CARDA,

The six digits of the Quantity field (columns 9-14 of the input card) are
edited as a signed decimal number and stored in the low-order digit posi-
tions of word CARDA + 1. Since column 9 of the input card does not con-
tain an 11 overpunch, the sign of the Quantity field is assumed to be posi-
tive. The four sign bits {1111) are stored in the high-order digit position
of CARDA + 1, Digit positions 2 through 6 of the result are cleared to
zeros, since they are unspecified in the signed decimal edit instruction.

Use

SECTION IV. MACHINE INSTRUCTIONS

3. The contents of columns 16 through 33 of the input card are stored in alpha-
numeric form in locations CARDA + 2, CARDA + 3, and CARDA + 4. The
contents of the six low-order character positions in location CARDA + 4
remains unchanged.

4. The five digits of the Code field are stored in alpahnumeric form in the
memory word at CARDA + 5, beginning with the high-order character posi-
tion. The contents of the three low-order character positions remain un-
changed.

5. The digits of the Price, Sales Amount, and Cost Amount fields are each
edited in the same way as the Quantity field (above). Unused digit positions
in each of the three locations CARDA + 6, CARDA + 7, and CARDA + 8 are
cleared to zeros.

6. The six digits of the Date field are edited as an unsigned decimal number
and stored in the low-order six digit positions of the location CARDA + 9.
The contents of the high-order six digit positions remain unchanged.

7. The five-digit Invoice Number and the two one-digit fields Code and Return
are stored in alphanumeric form in locations CARDA + 10, CARDA + 11,
and CARDA + 12, respectively. The contents of the unused character posi-
tions in these three locations remain unchanged.

Punch Edit, Alphanumeric PCA/A/m,n/C

This instruction edits n (< 80) consecutive characters of alphanumeric data into the card
punch area in card image form. The edited characters are stored in consecutive card column
image positions, starting with the position specified by C (1 £ C < 80). The data to be edited
(output data) are obtained from consecutive character positions in memory, beginning with the

mth (1€ m < 8) alphanumeric character of the word at A,

Punch Edit, Unsigned Decimal PCU/A/m,n/C

This instruction edits n (<£80) consecutive characters of decimal data into the card punch
area in card image form. The edited characters are stored in consecutive card column image
positions, starting with the position specified by C (1 £ C £ 80). The data to be edited are ob-
tained from consecutive character positions in memory, beginning with the mth (1€ m £12)

decimal digit of the word at A.

If any one of the following bit configurations is encountered in a decimal digit position it

is edited as follows:

Bit Configuration Punched Digit Bit Configuration Punched Digit
1010 (Blank) Blank 1101 Minus Sign
1011 Asterisk 1110 Dollar Sign
1100 (Skip) Blank 1111 Plus Sign

These non-decimal bit configurations may be placed in a word by the use of the prepare

decimal edit instruction (see page 4l).

39

SECTION IV. MACHINE INSTRUCTIONS

Punch Edit, Signed Decimal PCD/A/m,n/C

This instruction edits n (1 S n £ 11) consecutive characters of decimal data into the card
punch area in card image form. The edited characters are stored in consecutive card column
image positions, starting with the position specified by C (1 £ C < 80). The data to be edited are
obtained from consecutive character positions in memory, beginning with the mth decimal digit
of the word at A. Since the first digit in the word at A is assumed to be the sign digit, m is re-
stricted to the range from 2 through 12. If the sign digit consists of four binary zeros (0000),
the card column specified at C is edited to include an "X'' overpunch to indicate a negative sign.
If the four sign bits are not all zeros, the word is considered positive, and no overpunch is in-
cluded. This instruction operates on a single word. If the parameters m and n are such that

the word at A is exceeded, editing stops.

Punch Edit, Octal PCO/A/m,n/C

This instruction edits n (£80) consecutive characters of octal data into the card punch area
in card image form. The edited characters are stored in consecutive card column image posi-
tions, starting with the position specified by C (1 € C € 80). The data to be edited are obtained
from consecutive character positions in memory, beginning with the mtB (1 € m < 16) octal charac-

ter of the word at A.

Print Edit, Alphanumeric EPA/A/m,n/C

This instruction edits n (£ 120) consecutive characters of alphanumeric data and stores the
edited data in the print area in consecutive print image positions, starting with the one specified
by C (1 = C =120). The data to be edited are obtained from consecutive character positions begin-

ning with the mth (1 £ m < 8) alphanumeric character of the word at A, .

Print Edit, Decimal EPD/A/m,n/C

This instruction edits n (£120) consecutive characters of decimal data and stores the edited
data in the print area in consecutive print image positions starting with the positions specified by
C (1< C £120). The data to be edited are obtained from consecutive character positions, begin-

ning with the mtP (1< m < 12) decimal digit of the word at A.

Wherever a decimal digit to be edited contains four binary ones (1111), the digit is edited
as a plus sign (+); if any four-bit decimal digit contains the configuration 1101, the digit is edited
as a minus sign (-). Similarly, the configuration 1010 is edited as a blank (), 1011 as an
asterisk (*), and 1110 as a dollar sign ($). The configuration 1100 (skip) is edited in both this
instruction and the punch edit, unsigned decimal instruction as a blank. (The skip configuration

is processed in a different manner in the prepare decimal edit instruction.)

40

SECTION 1V. MACHINE INSTRUCTIONS

The print edit, decimal instruction is ordinarily preceded by the prepare decimal edit in-
struction (see below). The latter can edit leading zeros in the field and prepares for proper
editing of the sign. These two instructions together provide a type of editing similar to card
edit, signed decimal and punch edit, signed decimal. Note, however, that the print edit, decimal

instruction operates on n digits rather than a single word.

Print Edit, Octal EPO/A/m,n/C

This instruction edits n (£120) consecutive characters of octal data and stores the edited
data in the print area in consecutive print image positions, starting with the position specified
by C (1 £ C £120). The data to be edited are obtained from consecutive character positions

beginning with the mth (1 £ m £ 16) octal character of the word at A.

Prepare Decimal Edit PDE/A/pl, pZ/C

This instruction prepares the word at A for subsequent output editing and punching or print-
ing. The prepared word is stored at the location specified by C. The preparation of the word
proceeds under control of the two parameters p; and p, which are written in the B address of the
instruction. If pj is a digit from 0 through 9, *, $, or "B" (for blank), this digit or character
replaces the digit in the sign position (i. e., high-order four bits) of the word at A. If p; isa
plus sign (+), a minus sign (-), or an ''S'" (all three indicating sign), the sign is preserved
(though the configuration representing the sign in the prepared word may be different from the

configuration representing the sign in the word at A).

The parameter p, controls the processing of all leading zeros (outside of the sign position)
excluding the three low-order digits, which are always preserved. The value of p, may be any
one of the digits 0 through 9, *, $, +, -, '"B" (for blank), or "F'" (indicating floating). If P, is
any one of these characters (except an "F'"), then that character replaces all leading zeros in the
digit positions 2 through 9. If p, is "F'", then the character in the sign position (which is con-
trolled by parameter pj) is floated to the right through all leading zeros until it reaches either a
non-zero digit or digit position 9; the character replaces the right-most leading zero through
which is has floated, while the leading zeros to the left of the floated character are replaced by
blanks.

PERIPHERAL INSTRUCTIONS

The instructions in this group position magnetic tapes, transfer information from memory
to output devices and from input devices to memory, position input and output devices, and pro-

vide commiunication between the central processor and the console.

41

SECTION IV. MACHINE INSTRUCTIONS

For card readers and card punches, the time between the interpretation of instructions
(calling for card reading or punching) and the beginning of actual transfer of information into or
out of the central processor (acceleration time) is great enough to permit a number of other
central processor operations to be executed. This time may be used by the programmer for
such a purpose if the device is operating in the ''without interlock' mode. The acceleration time
is matched by a similar interval after data transfer has been completed. This deceleration
interval may also be used by the central processor for other operations, regardless of the mode

of operation of the device.

Each peripheral device which has the option of using the acceleration time has two operation
codes; e.g., read card without interlock (RCW) and read card interlocked (RCI). Both of these
cause the transfer of one card's worth of data in memory; the former, however, permits central

processor operations during the acceleration (and, of course, during the deceleration) interval.

The parameters in the B address field of the magnetic tape instructions may be absolute or
symbolic; if they are symbolic, they should be equated to integers using EQUALS instructions
(see Section V). The parameter t should have a value in the range 0-7; this represents the

'"logical address'' of the tape being manipulated (see page 82).

Read Magnetic Tape RDT/A/t, b/

This instruction reads one record from tape t into consecutive memory locations starting
with the location specified by A. Tape is always read in the forward direction. At the conclusion
of data transfer, the address of the location into which the last word from tape was read is auto-
matically stored in the A address portion of reserved location 0013. When a read tape instruc-
tion immediately follows a write tape instruction (see below), the reading and writing are per-
formed simultaneously. When a read tape instruction is executed, an address, one greater than
the address of this instruction, is stored in the A address portion of location 0021. This enables
the read tape instruction to be located by subsequent instructions if desired. The A address por-
tion of the reserved location is unchanged until another read tape instruction is executed, at

which time the new setting of the sequence register increased by 1 is stored there.

For a normal read, the parameter specified in the B address, b, is zero. If b is specified
as one of the values 1 through 9, indicating one of nine channels on tape, the read instruction
contzining this specification is executed ignoring the corresponding tape channel (channel 9 is the
pavity channel); the ignored channel is then automatically regenerated so as to retain correct

Tarity 2cross the eight channels in memory and the channel being regenerated.

I
i

()
il
o«
n‘_1
5
o
e
U
o

erroT acours during a normal read rograrmmed subsequence to the

e

SECTION 1V. MACHINE INSTRUCTIONS

reserved memory location 0018 is initiated at the end of the read. During a read where 1< b <9,
error checking is suspended. Note that indexing the B address prevents simultaneous write/read

operations. The C address field must be left blank.
This instruction can be used to correct all single-channel errors in a record by rereading
that record with the channel containing the errors(b) specified in the B address. The channel

containing the errors may be located using orthowords (see '"Check Parity Instruction', below).

Reading part or all of a record into the stopper location is a useful method of bypassing

unwanted sections of magnetic tape (see "Stopper Address ", Section III).

Write Magnetic Tape WRT/A/t,n/

This instruction writes one record of n (£511) words, starting with the word at A, onto
tape t. Parameter n shouldinclude an allowance for two orthowords (seepage50). Tape is always
written in a forward direction. If a write tape instruction is followed immediately by a read
tape instruction, the reading and writing are performed simultaneously. If a tape error occurs
during writing, an unprogrammed subsequence to reserved memory location 0019 is initiated
at the end of the write. If the end of tape is sensed during writing, an unprogrammed subse-
quence to location 0020 is initiated at the end of the write; one additional record of up to 511
words may now be written on this tape. When a write tape instruction is executed, an address,
one greater than that of this instruction, is stored in the C address portion of the reserved lo-
cation 0021. This enables the tape write instruction to be located by subsequent instructions if
desired. The C address portion of this location is unchanged until another write tape instruction

is executed, at which time the new setting of the sequence register increased by 1 is stored there.

A write instruction should not be issued to a tape unit immediately after a read instruction
to this same unit. Successful writing can be guaranteed only when the previous operation per-

formed on that tape unit was a write, a rewind, or a backspace.
The C address field must be left blank.

Rewind Tape RWT/ /t/

This instruction rewinds tape t to its physical beginning. Central processor operations con-
tinue as soon as the rewind instruction has been interpreted, i.e., the actual rewinding proceeds
in parallel with central processor operations. However, 100 milliseconds must elapse before
the execution of another rewind instruction. If another rewind instruction is received before the
end of this 100 ms interval, the machine stalls until the end of the interval is reached. The

interval may be used for central processor operations other than the rewind instructions. There

43

SECTION IV. MACHINE INSTRUCTIONS

are no other restrictions on the operations which may be executed during a tape rewind save for
the following three:

1. A backspace tape (BST) instruction directed to the tape unit which is being
rewound suspends further operations directed to that tape until a manual
reset is made on it; the tape unit is effectively interlocked. A backspace
tape instruction directed to any other tape unit is executed normally.

2. A read tape (RDT) instruction is executed normally unless it is directed
to the unit being rewound. In the latter case, further machine operations
are suspended until the tape has been rewound.

3. A write tape (WRT) instruction is executed normally unless it is directed
to the unit being rewound. In the latter case, further machine operations
are suspended until the tape has been rewound.

The A and C address fields are not interpreted at execution time but are assembled nor-

mally and may contain any legal address format.

Backspace BST/ /t/

This instruction backspaces tape t by one record. Central processor operations continue
as soon as the instruction has been interpreted, i.e., the actual backspacing proceeds in parallel
with other central processor operations. Save for the following exceptions, there are no restric-
tions on the operations which may be executed during a tape backspace.

1. Any tape instruction directed to the tape unit which is being backspaced
suspends machine operations until the backspace instruction has been
completed.

2. A read tape (RDT) or backspace (BST) instruction issued for any tape unit
suspends machine operations until the backspace instruction has been com-
pleted.

The A and C address fields are not interpreted at execution time but are assembled normally

and may contain any legal address format.

Read Card, Without Interlock RCW/ [/ /

This instruction reads the information from the next card in the card feed into the card
image area in memory. During the acceleration time (i.e., between the initiation of the instruc-
tion and the beginning of data transfer), other central processor operations may be executed.
These are performed under control of the sequence register. When the transfer of data com-
mences, the current reading of the sequence register is frozen, and further central processor
operations are suspended. When data transfer is complete, a subsequence to the reserved lo-
cation 0026 is executed. This location contains an instruction which controls the program path
after completion of data transfer. The programmer sets up this instruction so that control

returns immediately to the point where central processor instructions were suspended or so that

44

SECTION 1V. MACHINE INSTRUCTIONS

control returns to that point after other instructions have been executed out of sequence.
If a read error occurs during card reading, an unprogrammed subsequence to location 0025
is executed upon completion of data transfer. All address fields are ignored at execution time

but are assembled normally.

Read Card, Interlocked RCI/ [/ /

This instruction reads the information from the next card in the card feed into the card
image area in memory. During the acceleration time, no other central processor operations
are possible; at the completion of data transfer, processing continues in sequence and no sub-

sequence is executed.

If a read error occurs during execution of the instruction, an unprogrammed subsequence
to the fixed location 0025 is executed upon completion of data transfer. All address fields are

ignored at execution time but are assembled normally.

Reject REJ/ /n/

This instruction causes the card currently at the reading station of the card reader to be
stacked in one of two particular pockets in the card reader. When issued in the deceleration
interval of a read card instruction, it rejects the card just read. (Three pockets are used on
the card reader; cards not rejected are automatically stacked in the third pocket.) If pocket 1
is desired, the parameter n takes the value 1; if pocket 2, n takes the value 2. This pocket
selection device is an option on the Honeywell 400, If this option is not present in the device,
selection of pocket 2 results in normal stacking (i.e., selection of pocket 3). The A and C ad-

dress fields are ignored at execution time but are assembled normally.

Punch Card, Without Interlock PCW/ [/ /

This instruction punches the information from the card punch image in memory onto the
next card in the card punch. Between the initiation of the instruction and the beginning of data
transfer, other central processor operations are possible. These are performed under control
of the sequence register. When the transfer of data commences, the current reading of the
sequence register is frozen, and further central processor operations are suspended. When
data transfer is complete, a subsequence to the reserved location 0028 is executed. This con-
tains an instruction which controls the program path after completion of data transfer. The
programmer sets up this instruction so that control returns immediately to the point where
central processor operations were suspended, or so that control returns to that point after other

instructions have been executed out of sequence.

45

SECTION IV. MACHINE INSTRUCTIONS

If a card punch error occurs during punching, an unprogrammed subsequence to the re-
served location 0027 is executed upon completion of data transfer on the following card. All ad-

dress fields are ignored at execution time ‘but are assembled normally.

Punch Card, Interlocked PC1/ / /

This instruction punches the information from the card punch image in memory onto the
next card in the card punch. During the acceleration time, no other central processor operations
are possible; at the completion of data transfer, no subsequence occurs and processing continues

in sequence.

If a punch error occurs during execution of the instruction, an unprogrammed subsequence
to the reserved location 0027 is executed upon completion of data transfer on the following card.

All address fields are ignored at execution time but are assembled normally.

Offset Stack OFs/ / /

This instruction causes the card currently at the checking station in the card punch to be
offset in the stacker in the card punch. In this way, an error card can be identified without the
programmer having to examine each of the cards in the stacker. An error for a particular card
is indicated at the time of the next card punch instruction; following the completion of the punching
of this second card, an error subsequence is made to location 0027. To offset the error (i.e., the
first) card, the offset stacking instruction must be issued in the deceleration interval of this sec-

ond card. The A and C address fields are ignored at execution time but are assembled normally.

Print and Space PRS/ /HE, L/

This instruction prints one line on the high-speed printer from data obtained from the print
storage area in memory. Spacing of the form is governed by the print format information speci-
fied by the programmer in the B address. An "H''written in the address specifies skipping to
the head of the page; an '"E'" specifies testing for end of form; and "L' is the number of lines to
be spaced after printing. L is restricted to a maximum of 63. There are three significant
combinations of parameters:

H
E, L
, L

Notice that where parameters are omitted in leading positions (see '"Parameters', Section III),

the omission is indicated by the leading comma.

After completion of printing and before the advancing of the paper, processing continues

in sequence. If the system is equipped with the print storage option, however, a subsequence

46

SECTION 1V. MACHINE INSTRUCTIONS

occurs to the reserved location 0024 after completion of printing and before advancing of the
paper. This storage device, however, enables central processor operations to occur in parallel
with the printing operation since it feeds the printer independently of the central processor. If
a print error occurs during execution of the print instruction, an unprogrammed subsequence to

the reserved location 0023 is executed.

The A and C address fields are not interpreted at execution time but are assembled nor-

mally.

Type Alphanumeric, Console TAC/A/M/

This instruction prints the word at A on the console printer in alphanumeric format. If
the letter "M'" (more to follow) is specified in the B address, carriage return is inhibited. If
carriage return is required, the B address is left blank. Indexing is not permitted in the B ad-
dress of this instruction. The C address field is not interpreted at execution time but is as-

sembled normally.

Type Octal, Console TOC/A/M/

This instruction prints the word at A on the console printer in octal format. If the letter
"M'" (more to follow) is specified in the B address, carriage return is inhibited. If carriage
return is required, the B address is left blank. indexing is not permitted in the B address of
this instruction. The C address field is not interpreted at execution time but is assembled nor-

mally.

Type Decimal, Console TDC/A/M/

This instruction prints the word at A on the console printer in decimal format. If the
letter "M" (more to follow) is specified in the B address, carriage return is inhibited. If car-
riage return is required, the B address is left blank. Indexing is not permitted in the B address
of this instruction. The C address field is not interpreted at execution time but is assembled

normally.

General-Purpose Peripheral Instructions

A number of different peripheral devices can be connected to a Honeywell 400 in addition
to card equipment and printers. The instructions associated with each of these devices have
similar formats in EASY language. The address specified in the A address field always denotes
the starting location into which the first unit of information is to be read, or from which the first
unit is to be recorded as output. The number specified in the B address field denotes the number
of units of information to be read from the device into memory, or to be recorded from memory

on the device. Each device has a particular unit of information associated with it.

47

SECTION IV. MACHINE INSTRUCTIONS

After completion of data transfer on each of the peripheral devices a subsequence to a
reserved location associated with the device is executed. Each device is also associated with

a reserved location to which an unprogrammed subsequence is executed in the case of an error.

INDEX AND CHECK INSTRUCTIONS

There are four instructions for manipulating the contents of the three index registers and
the sequence register (see Section I), and two instructions for generating checking and control

information.

The index instructions are used for setting, storing, restoring, and testing and increment-
ing the contents of the index registers, and for storing, and restoring the contents of the sequence

register.
The check instructions are the compute orthocount instruction (which generates the two
orthowords for a designated number of words), and the check parity instruction, which checks

the internal parity of a specified number of words in memory.

Set Index Register SET/A, IRa/B, IRb/C, IR

This instruction adds the value "A'"'to the contents of index register IR and stores the result
in index register 1; similarly, it adds the value ''B''to the contents of index register IR}, and stores
the result in index register 2; and adds the value '"C''to the contents of index register IR and
stores the result in index register 3. The values ""A'", "B', and ""C'""must be specified by legal
forms of addressing. If any index register indication (i.e., IRa, IRb, or IRC) is zero, the cor-
responding base value (i.e., "A'", or'"B", or'"'C'", respectively) is stored in the associated index
register (i.e., 1, 2, or 3, respectively). This is the only instruction in which a specific index reg-
ister is implicitly related to a specific address. All index register address additions are com-
pleted before the index registers are set to their new values. This point is illustrated in the ex=

ample below.

EASY <u”

PROBLEM PROGRAMMER DATE PAGE___OF
_ ,
CARD NUMBER | | -\ 1iON| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS ' REMARKS
-3 ilm:lm’ .
DD B s l el .) .~)
T SET 154, 0,3 0,0
e —— L/\—_f

Let index register 3 originally contain the value 200 (in binary form).

The above SET instruction adds 754 to the contents of index register 3 (i.e., to 200) and
stores the sum of 954 in index register 1; it adds O to the contents of index register 3 (before the
addition of the A address) and stores this sum (= 200) in index register 2; and, since the C ad-

dress index indication is 0, as is C itself, it stores 0 in index register 3.

48

SECTION 1V. MACHINE INSTRUCTIONS

Thus, after the instruction, index register 1 is set to 954; index register 2 to 200; and

index register 3 to 0.

Store Index Register STX/A/ /C

This instruction stores the contents of the three index registers and sequence register in
the word at A. Since the registers all contain 12 bits, the whole of the word at A is filled. After
the instruction has been completed, the sequence register is set to the address specified by C.

The B address field is not interpreted at execution time but is assembled normally.

Restore Index Register RTX/A/ /C

This instruction stores the high-order 36 bits of the word at A, in 12-bit segments, in
index registers 1, 2, and 3, respectively; and stores the low-order 12 bits of the word at C in
the sequence register. The B address field is not interpreted at execution time but is assembled

normally.

Test Index and Increment LUP/A/I, IRi/C

This instruction compares the value "A' (or effective "A'", if the A address is indexed),
with the contents of index register IR.. If the contents of IR; are less than "A", the increment
I is added to the contents of IR; and the sum is stored in that index register. The sequence
register is then set to the address specified by C. If, however, the contents of IR; are greater
than or equal to A", the next instruction in sequence is executed. If the programmer desires

to decrement the index register by d, the value of I must be such that I + d = 4096.

The instructions below illustrate the manner in which the index register instructions are

used to facilitate coding

EASY wu”

PROBLEM PROGRAMMER DATE PAGE___OF____
CARD NUMBER | | e ATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS | REMARKS
1148 DR s .= %] a L, s] L]] 0
E : SET 0,0 0,2 0,3 .
P] ADD ALPHA, Y sSuUm SUM
L LUP 10 14 @-A
S—

The SET instruction sets index register 1 to 0; index register 2 is unchanged (since 0 is
added to its contents and the result stored in index register 2); similarly, index register 3 is

unchanged.

The ADD instruction adds the contents of the location tagged ALPHA to the contents of the
location tagged SUM, and stores the result in the latter location. The LUP instruction then com-

pares the value 10 with the contents of index register 1. Since the contents of this index register

49

SECTION IV. MACHINE INSTRUCTIONS

are less than 10 (in fact, they are 0, since the ADD instruction does not alter them), the incre-
ment of 1 is added to index register 1, and the sequence register is set to the location specified
by the current instruction minus 1; i.e., to the ADD instruction. This instruction is therefore
executed again, but this time it adds the contents of the location one location beyond that tagged
ALPHA (since it is indexed by index register 1 whose contents are now unity) to the contents of
the location tagged SUM, and again stores the result in the latter location. This process con-
tinues until the LUP instruction is executed with the index register 1 having contents of 10, at
which time the next instruction in sequence is executed. At this stage, the ADD instruction has
been executed 11 times, and the 11 consecutive words, beginning with the word in the location

tagged ALPHA, have been summed and stored in the location tagged SUM.

Compute Orthocount COC/A/n/C

This instruction performs an orthocount of n (£511) consecutive words in memory, starting
with the word specified by A, generates two orthowords, and stores these in two consecutive lo-
cations specified by C and C + 1. If the number of words orthocounted (n) is even, then the ortho-
word in the location specified by C represents the orthocount of the odd words (1, 3, 5, etc.,) in
the sequence of n words, and the orthoword in the location specified by C + 1 represents the
orthocount of the even words (2, 4, 6, etc.). If nis odd, orthoword 1 contains the orthocount of
the even words, and orthoword 2 contains the orthocount of the odd words. Each orthoword is
the complement of the binary half add (binary add without carry) of the words associated with it.
The parameter n may be of any legal address format except literal. If it is symbolic, it should

be equated to an integer using EQUALS instruction.

The technique of Orthotronic Control incorporated in the Honeywell 400 assumes that every
record written on tape includes two orthowords (computed as described above for a record of n
words). The compute orthocount instruction is also used in conjunction with the check parity in-
struction (see below) to reconstruct data in which an error has been detected. The erroneous
word is identified by the check parity instruction, and the channel in which the error occurred is
identified by computing two new orthowords for the record in error (including the original ortho-

words for that record). The channel is identified by examination of these new orthowords.

Check Parity CHP/A/n/C

This instruction generates parity for n (£ 4095) consecutive words in memory, starting
with the word specified by A and compares the generated parity with the parity of the word stored
in memory. If a word with incorrect parity is detected, the parity bits of the offending word are
corrected, its address is stored in the A address portion of the check parity word, and a sub-

sequence to the location specified by C is performed.

50

SECTION {V. MACHINE INSTRUCTIONS

The instruction terminates either when a word with incorrect parity is detected (as de-

scribed above) or when the specified number of words have been checked. If no incorrect words
are discovered, the instruction terminates, the contents of the check parity word are unaltered,

and the next instruction in sequence is executed.

The parameter n may be of any legal address format except literal. If it is symbolic, it

should be equated to an integer using the EQUALS instruction.

51

SECTION V
ASSEMBLY CONTROL INSTRUCTIONS

EASY language includes a group of instructions which the programmer uses to control the
assembly of his program. These are punched one per card like machine instructions, but in
general, they are not translated into machine instructions. Instead, they are simply interpreted

to provide control data required by the Assembly program.

PROGRAM Director

The PROGRAM control instruction identifies the beginning of an EASY program. This card,
known as the "PROGRAM Director', must appear in the input to Assembly at the beginning of

each new program.

The card has a dual significance: the location field of the PROGRAM Director specifies
the way in which the updating program (LAMP-PSP) will handle the subsequent program; the
remaining fields specify the way in which Assembly will handle the subsequent program. The A
address field contains the program name; the B address field is not used; the C address field
specifies sorting, identification, and punching options; the '"Remarks' columns rnay be used to
describe the system on which the assembled program will be run. Thus, the general format of
the control instruction is as follows:

EASY &
PROBLEM PROGRAMMER DATE. PAGE___Of ____

I
LOCATION| COMMAND CODE A ADDRESS B ADDRESS C ADDRESS i REMARKS

CARD NUMBER
Millﬂlm
1 14 (6 s 1) % , 4 .58 &

b1 JacTion)iPrROGRAM [(PROGNAME) ! (OPTIONS) (CONFIG. CODE AND 1D DATA)
O A~] I —

Detailed specifications for the use of these columns are given below:

Columns Contents Explanation
1- 8 Card Number See Section II.
9 - 14 NEW, RENEW, or NEW - Directs LAMP-PSP to add all segments up to
blank the next PROGRAM card to the master program

tape unless another program of the same name
already exists on the tape; in that case, LAMPH
PSP will not add this program.

RENEW - Directs LAMP-PSP to add this program to the
master program tape and to eliminate any
existing program with the same name.

Blank - Directs LAMP-PSP to add the following seg-
ments as directed by the SEGMENT control
cards. This field is blank when each segment

53

SECTION V,

ASSEMBLY CONTROL INSTRUCTIONS

Columns

Contents

Explanation

is to be handled differently or when not all
segments are affected.

15 - 24

PROGRAM

125 - 35

Program Name

Up to six alphanumeric characters.

36 - 46

Blank

47

S or blank

Blank -

Assembly will check the sequence of card num-
bers for the input program and sort the cards
if they are out of order; all cards must contain
card numbers.

Assembly will take sorting specifications from
SEGMENT cards for this program.

48

Blank

49

I or blank

Blank -

Assembly will match columns 74-80 of every
card in this program with columns 74-80 of

this card. It will not assemble cards which do
not match but will list these cards with an error
indication. If Assembly finds a SEGMENT card
which does not match, it will not assemble that
card and all cards following it to the next SEG-
MENT or PROGRAM card.

Assembly will take checking specifications
from SEGMENT cards for this program.

50

P or blank

Blank -

Assembly will punch a card deck containing the
binary coding for this program. This will be
in addition to writing a tape - the standard
Assembly output.

Assembly will take punch option from SEGMENT
cards for this program.

51 - 57

Blank

58

1, 2, 3,4 or blank

1,2,3 0r 4 -

Blank -

An indication of the number of 1024 word mod-
ules of the memory in the machine on which the
assembled program will be run. That is, 1 for
a system with 1024-word capacity, 2 for a sys-
tem with 2048-word capacity, etc. This num-
ber is used in determining the stopper address.

Assembly assumes that the program will be
run on the machine on which it is assembled.
It uses an appropriate stopper address as sup-
plied by Monitor.

59

S or blank

Blank -

Multiply and divide instructions are assembled
as legal instructions. 'S'' appears here when
the system on which the program will be run
contains the Multiply/Divide Option.

Multiply and divide instructions will be assem-
bled with error notations.

0-73

Blank

SECTION V. ASSEMBLY CONTROL INSTRUCTIONS

Columns Contents Explanation
74 - 80 Identification When column 49 contains an I, these columns
Characters must contain the characters used to identify
cards in this program.

SEGMENT Director

The SEGMENT control instruction marks the beginning of each segment in a program. A
segment is defined as a section of coding that is read into memory as a unit; normally, programs
are divided into segments so that these units can overlay each other in memory. Every segment

of a program, including the first, must be preceded by a SEGMENT Director.

Like the PROGRAM Director, the SEGMENT Director has significance both to LAMP-PSP
and to the Assembly Program. The location field of the SEGMENT Director specifies the way in
which LAMP-PSP will handle the subsequent segment; the remaining fields specify the way As-
sembly will handle the subsequent segment. The A address field contains the program name;
the B address field contains the segment name; the C address field specifies sorting, identifica-
tion and punching options; the "Remarks' columns may contain identification data. Thus, the

general format of this control instruction is as follows:

EASY ®

PROBLEM PROGRAMMER DATE. PAGE____OF _____
CARD NUMBER | | 0 ATION| COMMAND CODE | A ADDRESS B ADDRESS c aoRess | REMARKS
PAcE [t st |
1 4 8 e s 3) ® 8 .
T 1 (AcTON) SEGMENT [(PROG. NAME) [(SEG. NAME) |(OPTIONS) _ (1D DATA)
Detailed specifications for the use of these columns are given below:
Columns Contents) Explanation
1- 8 Card Number See Section II.
9 - 14 NEW, RENEW, or NEW - Directs LAMP-PSP to add all coding up to the
blank next SEGMENT card to the program identified

in the A address field unless that program
already has a segment of the same name; in
that case, LAMP-PSP will not add this seg-
ment.

RENEW - Directs LAMP-PSP to add this segment to the
specified program on the master program tape
and to eliminate any existing segment within
that program having the same name.

Blank - Normally indicates that action for all segments
has been specified on the PROGRAM Director.
If the action codes on both the PROGRAM and
SEGMENT Directors are blank, all segments
will be assumed to be NEW,

15 - 24 SEGMENT

25 - 35 Program Name Up to six alphanumeric characters.

55

SECTION V. ASSEMBLY CONTROL INSTRUCTIONS

Columns Contents Explanation
36 - 46 Segment Name Up to six alphanumeric characters.
47 S or blank S - Assembly will check the sequence of card num-

bers for this segment; if the input cards are
out of order, Assembly will sort them. All
cards must contain card numbers.

Blank - If column 47 of the PROGRAM Director con-
tained an ''S", continue sorting the entire pro-
gram by card numbers. Otherwise, accept
cards in order of their appearance in the input
deck and generate line numbers for use in the
printed listing.

49 I or blank I - Assembly will match columns 74-80 of every
card in this segment with columns 74-80 of this
card. It will not assemble cards which do not
match but will list these cards with an error
indication.

Blank - If column 49 of the PROGRAM Director con-
tained an "I", Assembly continues checking
cards against the PROGRAM Director. Other-
wise, it does not perform this check.

50 P or blank P - Assembly will punch a card deck representing
the binary coding in this segment; it will also
write the coding on tape - the standard As-
sembly output.

Blank - If column 50 of the PROGRAM Director con-
tained a "P", Assembly will punch a card deck
for this segment, Otherwise, it will not punch
cards for this segment.

74 - 80 Identification Must contain the characters used to identify
Characters this segment's cards when column 49 contains
an '"I'".

Establishing Common Segments

In order to allow communication between segments, the programmer may define one or
more segments as ''common'. Assembly will then assign addresses so that the common segment
will normally remain in memory during the execution of n subsequent segments. Common seg-

ments thereby provide a method for controlling the operation of a program.

In order to define a segment as common, the command code SEGMENT is followed by a
comma and a number, n, from 1 to 99. That segment will then be common to the next n segments.
Since segments of a program are assembled in alphabetical order by segment name, names must

be chosen so that the common segment will precede the correct segments after assembly.

Common segments may be overlapped or 'nested'. For instance, two segments might be

common to a third.

56

SECTION V. ASSEMBLY CONTROL INSTRUCTIONS

Tags defined in a common segment may be referenced in the n segments following. There-

fore, a tag defined in a common segment must be unique in all the following n segments.

Loading Segments into Memory

During a2 LAMP-PSP run, the programmer specifies the segment to be loaded first when
his program is executed. Thereafter, whenever a new segment is needed, the programmer may
load it into memory with a Read Segment instruction. This instruction has the following format:

L, RDSEG/segname
where "segname'' is the name of the segment to be loaded. This instruction loads the specified
segment and sets the index registers and sequence counter according to the BEGIN instruction
(see below). If the programmer wishes to retain the present contents of the index registers, he
may use the instruction:

L, RDSEGX/segname.

Set Location Counter Tag/SETLOC/Address

In general, the Assembly Program automatically assigns addresses and allocates memory
for EASY programs; it does this using a counter called the Current Location Counter. However,
the programmer can modify and control this process using a SETLOC instruction which sets a
specified value into the Current Location Counter. This instruction causes Assembly to assign
subsequent instructions and constants to memory locations starting at the one specified in the

SETLOC itself.

Commonly, a SETLOC instruction will precede the first instruction in a segment or pro-
gram. When so used, it has the effect of allowing the programmer to specify the beginning of
the area to be assigned to his program. Ifa SETLOC is not included at the beginning of the pro-
gram or segment, Assembly will assign addresses beginning at 300 (decimal). Location 300 is

the first location not reserved for use by the hardware or by the Monitor program.

This instruction contains the word SETLOC in the command code field and a2 memory ad-
dress in the A field. In the location field, it can contain a tag which will be assigned the address

in the A field.

The expression in the A address field may be an absolute address, a symbolic address
(a special character or tag except @ which is illegal), or a combination of up to six integers and
symbols. Plus and minus signs may be used to combine integers and symbols. If the resulting
expression has a value greater than 4095, it will be interpreted modulo 4096 and the result will
be used. If the expression is negative, it will be subtracted from 4096 and the result will be
used.

57

SECTION V. ASSEMBLY CONTROL INSTRUCTIONS

Any symbol used in the A field must previously have been assigned to a memory address
or to an integer. That is, it must have previously appeared in a location field as a tag or must

have been defined by an EQUALS instruction.

In addition to controlling the assignment of instructions and constants, a SETLOC may also
control the assignment of literals. Normally, Assembly will assign literals starting at the ad-
dress specified by the Current Location Current upon completion of a segment. Therefore, if a
SETLOC is the last instruction of a segment, literals will be stored starting at the location speci-

fied by that SETLOC.

Repeat REP/n

The REPEAT instruction causes the constant or the instruction immediately following it to
be assembled the number of times specified by n (2 number 1 - 4096 in the A address field).
The words repeated are assigned consecutive memory addresses starting with the address speci-
fied by the Current Location Counter at the time the REPEAT is given. Thus, the instruction
following REPEAT is assembled and later executed n times, or the constant immediately following

REPEAT is assembled and stored n times. The value n must be 2 number; it cannot be symbolic.

Equals ' Tag/EQUALS/value of tag
One method of assigning absolute values to symbolic tags is through the use of the EQUALS

instruction. This instruction defines a tag as equal to the value in its A address field.

One useful application of the EQUALS instruction is in defining parameters. A parameter
may be defined by an EQUALS and referred to symbolically throughout the program. If the

parameter must later be changed, only one line of coding need be revised.

The symbolic tag to be defined appears in the location field; the word EQUALS appears in
the command code field; the value which defines the tag appears in the A address field. This
value may be an integer, a symbolic address (except @ which is illegal), or a combination of up
to six integers and symbols. Plus and minus signs may be used to combine integers and symbols.
If the resulting expression has a value greater than 4095, it will be interpreted modulo 4096
and the result will be used. If the expression is negative, it will be subtracted from 4096 and

the result will be used.

Any symbol used in the A field must previously have been assigned to a memory address or
to an integer. That is, it must have previously appeared in a location field as a tag or must

have been defined by an EQUALS instruction.

58

SECTION V. ASSEMBLY CONTROL INSTRUCTIONS

Reserve Starting Location/RESV/No. of Locations

This instruction reserves a block of consecutive memory locations starting at the address
specified in the location field of the RESERVE instruction itself. The A address field specifies

the number of locations to be reserved.

The location field of a RESERVE instruction contains a tag representing the address of the
first location to be reserved. The command code field contains "RESV'. The A address field
may contain an integer or an expression of up to six integers and symbols; the value of the A
field will be computed by determining the value of the symbols and adding or subtracting as in-
dicated. Any symbols used must have been defined previously. If the total value of the A field
is greater than 4095, it will be interpreted module 4096; if the value in the A field is negative,

it will be subtracted from 4096 and the result will be used.

EASY =a”

PROBLEM . PROGRAMMER DATE PAGE___ OF
CARD NUMBER | | - ATION| COMMAND CODE | A ADDRESS 8 ADDRESS C ADDRESS REMARKS
L ¢ il_lm
1 _:C;S‘sl L | » 47 8 . 0
.1 |woex [RESV 50
| IMATRIX [RESV ED\T

The first example above reserves 50 locations starting at the location tagged WORK. The
second example reserves EDIT locations starting at the location tagged MATRIX (where EDIT

has been previously assigned an integer value by the EQUALS instruction).

Begin Loc/BEGIN/A/B/C
The BEGIN instruction has two functions:
1. To designate the location of the first instruction of a segment to be executed.
2. To preset the three index registers to their required initial values.

The address of the first instruction to be executed appears in the location field; the code BEGIN
appears in the command code field; the value to be set into index register 1 appears in the A
field; the value for 2 appears in the B field; and the value for 3 appears in the C field. If any
field is left blank, the corresponding register will be set to zero. If the segment is loaded by a
L, RDSEGX instruction, the index registers will not be reset but will retain their existing values;

however, the sequence counter will be reset.

The location field and all address fields may contain any type of legal address; indexing is
not permitted. If a symbolic tag appears in the location field, that tag must also appear in the
location field of another instruction. Thus, the BEGIN instruction is an exception to the rule
that tags may appear in only one location field. It is also an exception to the rule that address

arithmetic may appear in a location field: BEGIN tags may have address arithmetic.

59

SECTION V. ASSEMBLY CONTROL INSTRUCTIONS

The BEGIN instruction must appear in the Assembly input card deck following the last pro-
gram word in a segment; alternatively, when cards are to be sorted by line number, the BEGIN

must have a line number such that it will be sorted into this position.

Exit Tag/EXIT

The EXIT instruction notifies Monitor that a program has been completed. Assembly
interprets the EXIT as a sequence change instruction allowing Monitor to load the next program,
If there is a tag in the location field, it will be assigned to the memory location of the sequence

change instruction.

SECTION VI
CONSTANTS

The EASY language permits the programmer to represent constants in five forms. EASY
Assembly converts these forms into the appropriate internal structures in machine language.
The five types of constants are alphanumeric, hexadecimal, octal, fixed binary, and mixed (i.e.,
a single line of coding with separate expressions in each address field and in the command code).
All constants are assembled as 48 bits and stored in single memory locations (with the possible
exception of alphanumeric constants which may specify more than 48 bits, which then are stored

in several consecutive memory locations).

The first four types of constants are specified by the constant code (CON) punched in the
command code field, followed by a mnemonic code (which identifies the type of constant), the
number sign #), which separates the code from the actual value and the actual constant required.
The mnemonic code (consisting of the letters ""A' for alphanumeric, "H" for hexadecimal, "O"
for octal, and "F'" for fixed binary, respectively), the number sign and the actual constant are

punched in consecutive columns beginning with the first column in the A address.

Mixed constants are specified by four expressions, one expression in the command code
and one in each of the three address fields. The leading term in each of these expressions is
again a mnemonic code identifying the type of constant the subsequent expression defines. The

second term in each expression is the constant separater and definer (i.e., the number sign).

The location field of a card containing a constant may specify an absolute address or a
legal symbolic tag (see "Symbolic Addressing'’, Section III). The memory location designated
in this way is where the 48-bit, one-word constant (or the first word of a multi-word constant)

is stored.

Alphanumeric Constants

These constants are specified in the command code field and the address fields of the card,
ignoring field boundaries, in the form
CON / A#XX...X
where XX...X represent the alphanumeric characters the programmer desires for the constant.
The first eight of these are assembled and stored as eight six-bit characters in machine language.
Characters in excess of eight, counting from the number sign, are dropped. A blank or space is
recognized as a valid character and is not suppressed; blanks or spaces are assembled and stored

in the same manner as other alphanumeric characters.

61

SECTION VI. CONSTANTS

Alphanumeric constants of more than one word are specified in the form
CON / At#XX...Xt

where t stands for any symbol the programmer chooses to terminate the constant. All of the
characters specified between the number sign and the terminating symbol are assembled in ma-
chine language. The only restriction on the number of characters which can be specified is im-
posed by the number of columns available to specify the constant. A constant may use all 33
columns (25-57) of the three address fields, ignoring address boundaries. Four of these columns
are used to specify a multi-word constant (i.e., the first three and final one), and so 29 columns
are left to specify the actual alphanumeric characters required. A multi-word alphanumeric
constant can therefore consist of up to 29 characters. The specified characters are assembled
and stored in as many consecutive memory locations as needed to encompass all of the constant.
The final location of this sequence may not contain eight six-bit characters if the number of
specified characters is not an exact multiple of eight. In this case, the six-bit characters which
are in that location are left justified within it, and the remaining positions in that word are auto-

matically set to blanks.

If the terminating symbol is not specified, the constant is interpreted as an ordinary one-

word alphanumeric constant as described above; in this case, characters in excess of eight are

dropped.
EASY <n°
PROBLEM PROGRAMMER DATE PAGE____OF
T T T
CARD NUMBER | | 1 ATION| COMMAND CODE | A ADDRESS | & ApDRESS C ADDRESS REMARKS
PAGE | LINE | IRSERT : i
e s 3 15 LI IES L ., LS ..
L1 |aPHAt [con A#APAGE
P |ALPHAZ | CON A$#APAYROLL IAAREGISTER$
. 1

The first example above defines an alphanumeric constant of one word which is assembled
and stored in the location tagged ALPHAl. The high-order six bits of this word consist of the
six-bit representation of a blank. The following 24 bits consist of the four six-bit representation
of the characters P, A, G, and E, respectively. The last 18 bits consist of three successive

six-bit representations of blanks.

The second example defines an alphanumeric constant of more than one word which is termi-
nated by the dollar sign ($). The first eight characters (i.e., blank, P, A, Y, R, O, L, and L)
are assembled and stored in the given order in the location tagged ALPHAZ. The next eight
characters (i.e., two blanks, R, E, G, 1, S, and T) are assembled and stored in that order in
the location specified by ALPHA2 + 1 (i.e., the location one beyond that tagged ALPHA2). The
next two characters are assembled and stored in that order left justified in the location specified

by ALPHAZ + 2. The rest of this last location consists of trailing blanks.

62

SECTION VI. CONSTANTS

Hexadecimal Constants

These constants are specified in the command code field and the address fields of the card
ignoring field boundaries, in the form
CON / H#XX...X
where XX...X represent the hexadecimal characters the programmer desires for the constant.

Only the characters 0 through 9 and B through G, are legal.

The maximum number of characters which can be defined is 12, and these are stored as
four-bit characters in machine language. When a constant has been prematurely terminated by
an illegal character or has not been wholly defined, the unspecified character positions in the
assembled word are set to zero. The positions of these zeros in the assembled word depend on

the following sign convention.

If the constant begins with a plus (+) or minus (-) sign, the sign is assembled (as four binary
ones or four binary zeros, respectively) and stored in the high-order positions of the assembled
word. A maximum of 11 further characters can be explicitly defined by the programmer. All
explicitly defined characters are right justified in the assembled word and zeros fill the positions

between the sign bits and the assembled characters.

If the constant is unsigned, all explicitly defined characters are left justified in the assem-

bled word, while the remaining positions (if any) of that word are filled with zeros.

EASY o

PROBLEM PROGRAMMER DATE. PAGE___ OF._
CARD NUMBER | | 5CATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS : REMARKS
PAGE ;unxmsm i
1 :':“’._. s> R a7 . L . . X . 8
© 1 [MEX1 icoN n#123456189BCDEFG
L 1 |nex2 [coM H#t+123456789ABCD
HE—

The first example above defines a hexadecimal constant which consists of the 12 four-bit
characters in machine language which represent the hexadecimal characters 1, 2, 3, 4, 5, 6, 7,
8, 9, B, C, and D, respectively. Together these form the 48-bit constant which is stored in the
location tagged HEX1. The three characters (E, F, and G) following the assembled 12 are

dropped, since a hexadecimal constant consists of only one word.

The second example above defines a signed hexadecimal constant which is assembled as
+00123456789, since the blank (an illegal character) causes the premature termination of the con-
stant after a sign and nine other hexadecimal characters have been explicitly defined. Observing
the sign convention, these nine characters are right justified and the leading character positions

are filled with zeros. The constant is stored in the location tagged HEX2.

63

SECTION VI. CONSTANTS

Octal Constants

These constants are specified in the command code field and the address fields of the card,

ignoring field boundaries, in the form
CON / O#XX...X

where XX...X represent the octal characters the programmer desires for the constant. Only the
characters 0-7 are legal. The maximum number of characters which can be defined is 16, and
these are assembled and stored as three-bit characters in machine language. When a constant
has been prematurely terminated by an illegal character or has not been wholly defined, the un-
specified positions in the assembled word are set to zero. The positions of these zeros in the

assembled word depend on the following sign convention.

If the first character is a plus (+) or minus (-) sign, the sign is assembled (as four binary
ones or four binary zeros, respectively) and stored in the high-order positions of the assembled
word. A maximum of a further 15 characters can be explicitly defined by the programmer. (If
the maximum number is specified, the first character must not be greater than 3, since there
are only 44 bits to represent 15 characters; one of these must be represented in only two bits,
and thus takes a maximum value of 3.) If not all 15 are defined, there are no restrictions on the
legal values they can take. All explicitly defined characters are right justified in the assembled
word, and zeros fill the positions between the sign bits and the assembled characters. The zeros

are known as leading zeros.

If the constant is not signed, all explicitly defined characters are left justified in the assem-
bled word, while the remaining positions (if any) are filled with zeros. These zeros are known

as trailing zeros.

EASY o

PROBLEM PROGRAMMER DATE PAGE___OF___
[.

CARD NUMBER | | 1, 41IoN| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS

PASE ;tl‘llllll'

‘..:‘:' D s L % . o I . e 0
. 1 ocTALA|coN O#00123456M23456177
i1 |oCTAL2|coN O#+3456T12345

N — -

The first example above defines an unsigned octal constant which consists of the three-bit
representations of the octal digits 0, 0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, and 7. The 17th
and 18th characters (two 7's) are dropped even though they are valid octal characters. The con-

stant is stored in the location tagged OCTALI,
The second example above defines a signed octal constant which is assembled as

+000003456712345. Since the constant is signed, the characters are right justified. The as-
sembled word is stored in the location tagged OCTAL2.

64

SECTION VI. CONSTANTS

Fixed Binary Constants

These constants are specified in the command code field and address fields of the card,
ignoring field boundaries, in the form
CON / F#XX...X
where XX...X represent the decimal equivalent of the binary configuration the programmer

desires for the constant.

The decimal digits may be signed, in which case the sign is assembled (as four binary ones
for a plus or four binary zeros for a minus) and stored in the high-order position (bits 1-4) of
the constant word. If no sign is specified, the number is assumed to be positive, and four ones
are inserted in bits 1 through 4. The largest decimal number which can be represented by the
remaining 44 bits is 17,592, 186, 044, 415 (=244-1). Thus, a programmer can specify a sign and
up to 14 decimal digits, provided the value of the number does not exceed the stated maximum
for 44 bits. Save for the availability of ""B'" positioning (see below), the binary configuration is
always right justified in the constant word; that is, the unit bit of the configuration is in the low-
order position. A fixed binary constant is terminated by the first occurrence of a blank. The
characters to the left of this blank are assumed to comprise the whole constant and are assembled

as such.

The exception to automatic right justification of the constant is by the use of '"B'' position-
ing. If the decimal digits specifying the constant are followed by the letter "B' and then a num-
ber in the range 5 through 48, the unit bit of the configuration is positioned in the constant ac-
cording to that number, and the remaining bits of the configuration are positioned in consecutive
positions to the left of the unit bit (i.e., the configuration is right justified within a particular
field). The bit positions are numbered from high to low order (left to right), so that position 1
is the high-order position and position 48 is the low-order position. The sign convention de-

scribed above holds for "B'' positioning. The second example below illustrates ''B'' positioning.

EAS CODING
FORM

PROBLEM PROGRAMMER DATE PAGE___OF
C":D;u:‘f‘:":: LOCATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
1 :":‘..9,... 15 . 5 L o a7 58 b
L i |BIN1 jcoN F#124
L | [BINZ |con F#124 B24
! 1 |B8IN3 {coN [FH#4097
1 | .-

The first example above defines a fixed binary constant which consists of the binary con-
figuration of decimal 124 right justified in the constant word. This word is stored in the location
tagged BIN1. The configuration in the low-order 12 bits of this word is

000001111100
which is equal to decimal 124. The rest of the word consists of zeros, except for the high-order

four bits which are all ones (indicating the assumed plus sign).

65

SECTION V. CONSTANTS

The second example above defines exactly the same constant as the first example, except
the binary configuration is not right justified within the word itself. The "B'" positioning indicates
that the unit bit of the configuration is stored in position 24, and so the 12-bit configuration
000001111100 appears in bits 13 through 24 in the constant. The right justification thus occurs
in the field consisting of the bit positions 13 through 24. The constant is stored in the location

tagged BIN2.

The third example above defines a fixed binary constant which consists of the binary con-
figuration of decimal 4097, right justified in the constant word. This word is stored in the lo-
cation tagged BIN3. The configuration in the low-order 24 bits of this word is

000000000001000000000001
which is equal to decimal 4097. The rest of this word consists of zeros, except for the high-

order four bits which are all ones (indicating the assumed plus sign).

As mentioned under "'Arithmetic Instructions", Section IV, binary arithmetic is used
mainly for instruction modification. In this case, fixed binary constants must be available to
be used as operands in instructions performing such modifications. The example below illus-

trates one use of fixed binary constants for instruction modification.

EASY oo~

PROBLEM PROGRAMMER DATE PAGE___OF___
CARD NUMBER | | ,x1iooN| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS | REMARKS
st 'll.-:m !
1 e D s .) % e LR) e 20
Tt [Fixewcon F#-40B36
I ssT FIXBIN 0)-11170000 | sHIFT
L [sweT [s1B ALPHA 10 ALPRA

The fixed binary constant in the first line of coding defines a constant which consists of
the binary configuration of decimal 40. This configuration is stored so that the unit bit is in
position 36 of the constant word and the rest of the configuration in successive positions to its
left. The remaining portions of the constant word consist of binary zeros including four zeros

for the sign. The constant is stored in the location tagged FIXBIN.

The SST instruction substitutes the contents of FIXBIN (i.e., the constant) through the
mask defined by the octal literal in the B address of the instruction. This mask is such that
only bit positions 25 through 36 of the constant are stored in the result location (SHIFT), while
the remaining positions in the result location are unaltered. The result location contains the

machine instruction word of the binary shift left instruction.

The effect of the SST instruction on the machine instruction word of the shift instruction is

to set the bits 25 through 36 (i.e., the B address) to the binary equivalent of decimal 40, while

66

SECTION VI. CONSTANTS

leaving the other 36 bits of the word unaltered. The SLB instruction now specifies a binary
shift left of the word at ALPHA, 40 places rather than a shift of 10 places as it originally speci-
fied.

Mixed Constants

These constants are specified in four expressions, one expression in the command code

and one in each of the three address fields of the card, in the form
M#XX...X M#XX...X M#XX...X M#XX...X

Each of the expressions is assembled and stored as 12 bits of the 48-bit constant in memory.
The letter '""M'" stands for the mnemonic code which specifies the type of constant each expres-
sion represents, and XX...X stand for the characters appropriate to each expression. The
mnemonic code consists of one of the letters "A'" (for an alphanumeric expression), "H" (for a
hexadecimal expression), '"O'" for an octal expression), "F' (for a fixed binary expression), or
"T'"., The mnemonic code T indicates that the expression which it precedes is assembled as a
tag address; that is, the 12 bits assembled for that expression are the address of the tag XX...X

rather than the 12-bit representation of XX, ..X itself.

Since each expression is represented in memory by 12 bits, characters in excess of two
in an alphanumeric expression, three in a hexadecimal expression, four in an octal expression,
are dropped. A decimal equivalent of a fixed binary term must be less than 4096, In a 'tag"
expression (with mnemonic code "T"), the XX...X can be any legal address format except con-
stant or literal, but can not be indexed. In a fixed binary expression within a mixed constant,
the unit bit of the binary configuration is in the low-order bit of the corresponding field of the

word in memory; "B'" positioning is not allowed.

The example below defines a mixed constant which is stored in the location tagged MIXCON.
The first, third, and fourth 12-bit portions of this constant are all zeros; the second 12 bits con-

sist of the address assigned to the location tagged END,

EASY <
FORM
PROBLEM PROGRAMMER DATE PAGE____OF _____
CARD NUMBER | | 5 A1iON| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
PROE ;l‘lm i
1 14 8y 15 5) L L a7 L . L, m
I MIXCON |HH#O T#END W#O W#O :
P LAC TAW MiXCcoN PROCD !

The instruction shown above compares the contents of the location tagged TAW (the termi-
nation address word) with the contents of the location tagged MIXCON, testing for a less than or
equal relationship between them. If the contents of the termination address word are less than

or equal to the constant, the sequence changes to the location specified by the tag PROCD.

67

SECTION VII
LIBRARY ROUTINES AND GENERATORS

The EASY system includes a library of checked out routines which represent frequently-
used coding. These routines are available for easy insertion into new programs wherever
desired. Each routine in the library is requested by means of a pseudo instruction which speci-
fies the desired routine and all information (parameters) required for its execution. These EASY
pseudo instructions are included in a program in exactly the same way as machine instructions.
When a program is assembled, EASY recognizes each pseudo instruction, obtains the corres-
ponding coding from the master program tape, and incorporates it into the program. The library
section of the master program tape is maintained by the LAMP-PSP program which enables new

routines to be added to it and existing routines to be deleted or modified.

The specifications for every routine are documented on a specification sheet prepared by

the programmer who wrote the routine.

Using Library Routines

Routines are stored in the EASY library in the symbolic language in which they are origin-
ally written and in generalized form (i.e., with parameters instead of specific values). When a
program being assembled requests a routine from the library, the routine is specialized (i.e.,
particular values are substituted for the parameters) according to the values designated in the
pseudo instruction to meet the needs of the requesting program. The routine is inserted in the

program at the point where the pseudo instruction was specified.

The programmer must exercise care in using address arithmetic in the vicinity of the

pseudo instruction, since address modifiers are not automatically adjusted if coding is inserted.

The pseudo instruction which is used to call a macro routine is known as a call instruction;

it has the format shown below.

EASY Wu°

PROBLEM PROGRAMMER DATE PAGE___OF
’ !
CARD NUMBER | | .\ 1ioN| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS | REMARKS
PAGE ;u“m’ i
L L 5 N £ LA L e »
E ! TAG LyNAM P1/P2./P3/ """""""j"/Pn-i/Pn/
— I I

The use of a tag in the location field is optional. If the macro instruction is tagged, EASY
Assembly assigns this tag to the first word of the assembled macro routine in the object (i.e.,
machine language) program. Any reference to this tag within the same program is interpreted

as any other tagged location reference (i.e., it refers to the first word of the assembled routine).

69

SECTION VII. LIBRARY ROUTINES AND GENERATORS

The letter "L'" in the command code field is a control character which indicates that the
following code is the name of a library macro routine. The control character is followed by a
comma and a name which specifies the desired routine. This name consists of up to six alpha-

numeric characters, one of which must be alphabetic. The name is represented here by '"NAM".

The codes p1/p2/ /P,_1/P, Tepresent the various parameters used in the macro
routine, and are punched beginning with the left-most position in the A address field. These
parameters specify actual values or the locations of the operands involved in the execution of
the routine. The type and format of these parameters can be obtained from the specification

sheet.

A call instruction can contain as many parameters as will fit in the address fields; a pa-
rameter can consist of up to 16 characters. Individual parameters are separated from each
other by slashes and can cross address field boundaries. The parameters may not, however,

extend beyond column 57 (i.e., beyond the address fields).

If more parameters are desired than can be specified on one card, 'continue' cards may
be used to extend the number of parameters which can be specified by a macro instruction. (If
such cards are to be used in the EASY 800 system the last valid (non-blank) character on the
macro instruction card must be a slash; the last character on a "continue'" card must not be a
slash.) The code "CONT'" is punched in the command code field of a ''continue' card, and then
further parameters are punched as desired beginning in the high-order position of the A address
field. The restrictions on the number and size of parameters in this card(s) are the same as
for the macro instruction card itself. The total number of parameters must not be greater than

25. Individual parameters cannot be split between two cards. The 'continue'' card is illustrated

below.
EASY =a*
FORM
PROBLEM PROGRAMMER DATE PAGE___OF
CARD NUMBER | |, 1ON| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
PAGE 'I.HJ\M
5 :4;6“9HIJ s 2 *) 4) s 0
I 1 ITAG |[LyNAM PafP2 [Py < e onfevrncecsecler < /Pno1/Pn
i : CDNT Png-q/Pn*z/z§ﬂ...4-.-..-c
Generators

In addition to the library routines, EASY provides three ''generator'' routines which are
used to handle tape reading and writing, card reading and punching, and printing a report. These
routines differ from the library routines in the following ways:

1. The programmer requests one of the generator routines by including a

special descriptor card in the input to the Assembly Program. This card
contains parameters describing the format of the input or output data.

70

SECTION VII.

LIBRARY ROUTINES AND GENERATORS

The Assembly program interprets these parameters and generates a single

block of instructions capable of performing all appropriate operations on
the data described. Assembly inserts this all-encompassing routine at
the point where the descriptor card appeared.

3. The programmer then performs input or output operations by including
linkage calls in his program. Each linkage call transfers control to a
certain portion of the generated routine, performs a specified series of
operations, and returns control to the main program. For example, the
following linkage call

PROBLEM

EASY n”

PROGRAMMER

DATE.

PAGE____OF ____

CARD NUMBER

LOCATION

COMMAND CODE

A ADDRESS

B ADDRESS

C ADDRESS

REMARKS

15

s

L,0PT

FILA

rewinds the tape containing file A, reads the tape label record, checks it
against control information, and returns control to the next instruction in
the main program,

Detailed specifications on the use of the generators may be found in another publication. In
general, the programmer will find the generators useful as a means of freeing himself of the need
for concern with controlling peripheral operations and allowing more concentration on the actual

processing of data.

71

SECTION VI

SAMPLE EASY PROGRAM

To clarify concepts discussed previously, this section describes a sample EASY program.
The sample is a relatively short program dealing primarily with peripheral and edit operations.
It is shown not as a typical application but because it illustrates a good percentage of the major
features of the machine and of the assembly language including: simultaneous processing; use
of console breakpoint switches and fixed starts; use of reserved locations and corrective routines;

numeric, symbolic, and indexed addressing; literals; constants; and control instructions.

Description of the Sample Program

The sample is basically a program for reading punched cards, punching duplicates, and
printing a listing of the cards. To allow variations of the basic program, the programmer has
included two "breakpoint options'. That is, he has written the program so that the setting of
the console breakpoint switches determines whether the cards will simply be punched or whether
they will be both punched and printed; in addition, the setting of these switches determines

whether new card numbers will be generated for the input cards.

Figure 6 is a block diagram for the sample program. It shows that the main routine starts
by reading a card into the card image and then transferring it to the punch image. If break-
point 2 is off, the card is punched immediately; otherwise, the data in the card number columns

is replaced and then the card is punched.

After punching the card, the program tests breakpoint 1: if 1 is set, the program edits
the punch image into the print image, prints a line, and then returns to the beginning of the loop
and reads the next card; if 1 is not set, the program returns immediately to the first instruction

in the loop.

The process is repeated until a special END card is recognized. The program then returns

control to Monitor through the EXIT instruction.

Control Instructions

The first lines of coding in Figure 7 are three control instructions. None of these lines

produces any machine coding; instead, they direct the assembly of this sample,

73

SECTION VIII. SAMPLE EASY PROGRAM

Exit to
Monitor

Edit Blanks [Edit Gard Na.
IntoFirst 8 into Positions | Punch —»{ Add | 10
Pos. of Punch 3,4,5. Card Card No.

Imoge.

Edit Punch
Image Into
Print Image

'

Print
Line

Figure 6. Block Diagram for Sample Program

The PROGRAM and SEGMENT instructions assign the program name "SAMPLE" and the
segment name "PUNCH". They also direct Assembly to check the sequence of cards for this
program (the "S" in column 47) and to add this program to the master program tape ("NEW" in

the location field).

The SETLOC instruction causes Assembly to assign absolute addresses beginning with ad-
dress 400. If the SETLOC had not been used, the Assembly Program would have assigned ad-
dresses beginning with 300, the first location not reserved for use by the hardware or by the

Monitor program.

Setting Up a Counter for Card Numbers

The first instruction in the main program is a TSC which sets the value 1 (a literal) into
the location tagged NUM and transfers control to the next instruction. The location NUM will be
used as a counter for card numbers; that is, when punching new card numbers, the value to be

punched will be taken from NUM and NUM will be incremented by one.

74

SECTION VIil. SAMPLE EASY PROGRAM

EAS CODING
PROBLEM ___ SAMPLE PROGR':;\MMER DATE PAGE___OF ____
CARD NUMBER | | o iON| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
eE il."lm‘l‘ .
1”:l‘:s DI s = »® . a7 58 0
g1t [NEW |PROGRAM |SAMPLE s
1ip2i SEGMENT | SAMPLE PUNCH
1193 SETLOC vy
{ig4 [INIT |Tsc H)+\ _|Num @x
1165 TAC BKPT
|6 Lag o B SET A BKPTS
VT TSN =PACE Vo 3> i
118! TSN 39 14 ap
199; PRS LI
e Rel]
tni e, START A |OF A LOOP
Nzl IMAN | Rew | - 1
(HE} ' NAC 58 ENDID @+2
e EXIT ’
HE TSN 54 29 14
Vel | .| sce BLANKS ‘2 e+l
Kl PcW T
1118 ScCH PRINT
1191 [BLANKS | PeA SPACE- 11,8 1 -
li2g] Pcy [NUM 1093 _ |3
et PCW
lizz | ADD B+ ~_ INum Thum
1'23] |PRINT ; sco @+ Vo IwmalN l
N4 ECA 39] wes w3
fizs | PRS ! Esl
CARD NUMBER| | cATION| COMMAND CODE | A ADDRESS B ADDRESS C ADDRESS REMARKS
L 3 ;L‘tm
1 :4:5"9" 15 LA ® e 58 0
o SCH e MAIN
2i¢2! R, FlLL A RESERVED A LOCATIONS
2ig3 |11 | sTX SAVESR OVFLW
214 |pB22 | STX SAVESRH | CDEDIT
zigs. |go23 | sTx SAVESR¥2 PRSERR
2ige. |@pd24 | NOP B
zior ppes | sTY SAVESR+3 _ CARDRD
zp8l [ppre | NoP
299 |pg21 | sTX SAVESRt4 B CcARDPU
21 ¢s28 | NoP o
21 |pg3g | seH JINIT
22 |®, ERROR A ROUTINES A ANDA coNSTANTS
23l |oveww | TAc OVERFL !
24! ToC i SAVESR
2isl HLT {
216! . R ' SAVESR | SAVESR
207! icpedIT, TAC . EDIERR
2118| Toc SAVESR +1
[219 HLT - i o B o
2128, RTX SAVESRY | ___A}__s_gvesz-t v
221 |[PRSERR TAC PRIERR
222! i ToC | SAVESR+2
223, © ALY
224 | RTX | sAvesRt2 | SAVESRY2 -
2i25] [CARDRD RE) |

Figure 7. Coding for Sample Program

75

SECTION VIH. SAMPLE EASY PROGRAM

CODING

rrosiem __ SAMPLE EASPRYocmm DATE PAGE___OF
CARD NUMBER LOCATION| COMMAND CODE A ADDRESS B ADDRESS C ADDRESS REMARKS
st Il.ﬁll.ll’
l“:ll;tlll. 15 2% EW a BER P

3o TAC CARDER

3iga Toc SAVESR 3

3183 RCL

3 :¢41' RTX SAVESRY 3 SAVESRtS

3¢S |CARDPU|OFS

3,06 TAC SAVESRt4

397 ALY

318! RIX SAVESR ¥4 SAVESR Y4

399' |NUM | RESV i ‘

318! [SPACE | CON AF

311 |BKPT | coN A¥ SET A BKPT

3021 |OVERFU con A#OVERFLoW ‘

3137 |eb1err| con AFEDIT DERR] x

314! |PRIERR] coN AFPRSAERR ;

3iIS| ICARDER]| coN AFRCAERR :

31161 |[PuNERR|CON AFPcAERR

307" [ENPID [coN oF @24\ P2¢2.0 12\ @ SPP

3.18] |SAVESR| RESV 3

3=n9JI INIT | BEGIN | po8%

Figure 7 (cont). Coding for Sample Program

Typing a Console Message

The next two instructions (TAC and HLT) type the message ""SET BKPT'" at the console and
halt the system. This halt allows the operator to set the console breakpoint switches. After

setting the brekapoints, the operator can press the console START button to resume processing

at the next instruction.

The TAC instruction types the word tagged "BKPT'" at the console. This word is set up
with an alphanumeric constant - a common practice with console messages. Alternatively, a

literal could be written in the A address field of the TAC.

Filling the Print Area with Blanks

To insure that data currently in the print image is not printed as part of this program's
listing, it is necessary to set the print image to blanks. Here, this is accomplished with two

TSN instructions and an alphanumeric constant.

The first TSN f{ills the first word of the print image with blanks; it does this by transferring
the alphanumeric constant of blanks (SPACE) into location 0039. The second TSN fills the re--

76

SECTION VIII. SAMPLE EASY PROGRAM

maining 14 words of the print image with blanks by transferring 0039 into 0040, 0040 into 0041,
0041 into 0042, etc.

When the print image is filled with blanks, the PRS instruction moves the form in the

printer to the head of the next page (after printing a line blanks).

Reading the First Card

The next instruction, an RCI, reads the first card into the card image area of memory.
Significantly, this read operation is interlocked to prevent simultaneous operations. The reason
for this is quite obvious: since subsequent instructions process data from this card, they must

not be executed until the read operation is completed.

Beginning Simultaneous Operations

The Honeywell 400's capability for simultaneous operations allows the programmer to
process data from the first card while reading the second card. Therefore, the next instruction
is an RCW which initiates the second read and then releases the central processor to execute the
subsequent instructions. These instructions process the first card, clearing the image area

before data transfer begins on the second card.

This sequence of read instructions has another advantage: it facilitates setting up a loop
for reading and processing cards simultaneously. The RCW is the first instruction in this loop.
Each time through the loop, the sample program initiates a new read and processes data from

the previous read.

Clearing the Card Read Image Area

During this type of simultaneous operation, the programmer's most immediate concern
is to transfer the data from one card out of the image area before the data from the next card
arrives in the area. If the card reader is operating at full speed, there is at least 39 milli-
seconds to accomplish this; if the card reader is operating more slowly, a longer time is avail-
able. Inthis sample, a NAC checks for the END card and a2 TSN clears the area, transferring
the data into the punch image. Since these operations require less than one millisecond, this

instruction clears the area without any possibility of interference.

The NAC compares location 58 (the card image for card columns 17-20) to an octal con-
stant representing the card code for "END'", If the two are equal, the program ends and control

returns to Monitor.

SECTION VIIl. SAMPLE EASY PROGRAM

Testing Console Breakpoint 2

The next instruction, the SCO, tests breakpoint 2. If 2 is ON, the sequence counter is re-
set to the address for BLANKS; otherwise, processing continues in sequence. In effect, this
means that if breakpoint 2 is ON, new card numbers will be edited into columns 3, 4, and 5;

otherwise, the card will be punched with its present card numbers.

Editing New Line Numbers

The instruction tagged "BLANKS'" edits blanks into columns 1 through 8 of the card image
area; it does this using a constant of all blanks. The next instruction, a PCU, edits a new card
number into columns 3, 4, and 5; this number is obtained from a counter, "NUM", which was
originally set up with the value ''1'" and then incremented each time through the loop. The next

two instructions punch the card with the new card number (PCW) and increment the counter (ADD).

Testing Breakpoint 1 and Printing

The instruction tagged "PRINT" tests breakpoint 1. If # 1 is OFF, control immediately
returns to MAIN and the loop is repeated. If # 1 is ON, control goes to the next instruction
(@+ 1). This instruction, an ECA, edits the 12-bit code used in the punch image to the 6-bit
printer code and places the 80 card characters in the first 80 print positions. Then, the PRS
prints the card data and spaces a line; finally, the SCH returns control to MAIN and the loop

is repeated.

Normally, ECA instructions are used to edit data from the card read area. However, in
this case, the card data has been transferred to the punch area and must be edited from that
area. To accomplish this, the programmer has indexed the "1" in the C address field by the
value 80 (which was set into index register 3 by the BEGIN instruction at the end of the program).
This technique causes editing to begin 81 columns from the base of the read image area and thus

locates the first character to be edited in the first column of the punch image area.

Instructions for Reserved Memory Locations

To direct the path of the program after an error signal and after completion of a peripheral
operation, the programmer stores STX and NOP instructions in the reserved memory locations.
In the sample, the STX instructions are stored in the locations associated with an error signal
and the NOP instructions are stored in the locations associated with the completion of a peripheral
operation. Though appropriate for this program, these assignments do not reflect a general

rule; in practice, the ''completion' locations frequently contain STX instructions.

The STX instructions serve as the entry to a subroutine; that is, they store the current
setting of the index and sequence register and then reset the sequence register to a new address.

78

SECTION VIil. SAMPLE EASY PROGRAM

This new address is the first instruction in a routine which takes some corrective action and
then restores the registers to their original setting. Thus, the program branches to perform
the corrective action and then resumes processing where it was interrupted. If an STX were
stored in a ""completion'' location, it could be entrance to a routine which cleared the input area

and issued the next peripheral instruction.

The NOP instructions, in effect, ignore the subsequence call. That is, they immediately

return control to the next instruction in the main program; they do not affect any of the registers.

Use of a decimal address in the location field (as shown in Figure 7) is the simplest method
of assigning instructions to reserved locations. The sample loads only those reserved locations
required by this program; the other locations retain their previous settings (for example, the

magnetic tape error location retains an entry to the Orthocorrection routine supplied by Monitor).

Console Fixed Starts

Location 0030 is loaded with a SCH which transfers control to the first instruction in the
program. This location is associated with console fixed start F 3. Thus, if the operator exe-

cutes the fixed start 3, he restarts the program from the beginning and resets the counter NUM.

Error Routines and Constants

The final section of the sample program is primarily concerned with the routines for
various error conditions and with constants. The BEGIN control instruction appears as the last

line of the program.

If an error is detected during a peripheral, edit or arithmetic operation, it is signalled by
an unprogrammed subsequence to a reserved memory location. The previous part of the sample
program set up these locations to store the index and sequence register and to transfer control
to one of the routines in this section. Generally, each of these routines types an error message
and the contents of the stored registers at the console, and then halts. For instance, the over-
flow routine types

OVERFLOW
XXXX XXXX XXXX XXXX

at the console and halts, where xx...x is the contents of the registers in octal at the time the
error signal interrupted processing. If the operator depresses the START button on the console,

the registers are restored and processing continues in sequence.

The other routines are arranged in a similar fashion with the exception of the routine for

card read errors. This routine rejects the bad card into a special pocket on the reader, types

79

SECTION VIII. SAMPLE EASY PROGRAM

a message at the console, issues an RCI and then returns to continue processing the previous

card.

Most constants are used in typing console messages and have been explained previously.
The only exception is the ENDID constant which represents the card image of the characters E,

N, D, blank.

Two RESERVE instructions are used: one reserves a location for the counter NUM; the
other reserves five consecutive locations for the storage of registers after a subsequence call.

Both are necessary to allow Assembly to assign memory addresses to these locations.
Finally, the BEGIN instruction sets the registers at the time program is loaded. The se-

quence counter is set to 400, the address assigned to the tag "INIT'. Registers 1 and 2 are set

to zeros; register 3 to set to a value of 80.

80

APPENDIX A

RESERVED MEMORY LOCATIONS

The reserved memory locations can be divided into the following categories: special
purpose, unprogrammed and working subsequence, fixed start, and input/output. All reserved
locations are directly addressable, though some contain information which is of use only to the

computer itself and is of no interest to the programmer.

Special-Purpose Locations

The special-purpose locations store checking and control information, and information
relating to previously executed instructions. Except as noted below, the entire 48-bit word is

used to store a single piece of data.

The locations are assigned as follows:

Octal Decimal

0000 0000 Low-Order Product Word
0001-0011 0001-0009 Multiplication Operation Words
0012 0010 Remainder Word

0013 0011 General-Purpose Word

0014 0012 Check Parity and Select Word
0015 0013 Termination Address Word
0016 0014 Special Check Word for Card Reader
0017 0015 Indirect Tape Address Word
0020 0016 Special Register Word

0025 0021 RDT and WRT Address Word

The low-order product word receives the low-order signed 11 decimal digits of the result

of a multiply instruction.
The multiplication operation words contain partial products at the conclusion of the multiply
instruction; they are, in general, of no interest to the programmer. Location 0001 is also a

general-purpose working location used by the compute orthocount and punch card instructions.

The remainder word receives the signed 11-decimal-digit remainder at the conclusion of

a divide instruction.

81

APPENDIX A. RESERVED MEMORY LOCATIONS

The general-purpose word is used by the central processor to implement various instruc-

tions; its contents are immaterial to the programmer.

The A address portion of the check parity and select word contains the address of the first
bad word (i.e., the first word with incorrect parity) detected in a check parity instruction. The
C address portion contains the address of the instruction chosen by the selection instruction.
The command code portion may be used for any purpose by the programmer; the B address por-

tion is not useable.

The A address portion of the termination address word contains the address of the last
word read into memory be a read tape instruction. The C address portion contains the address
of the "A'" operand which terminated the extended compare instruction. The remaining portions

can not be used by the programmer.

The C address portions of the special check word for the card reader functions as part of
the hardware; the contents of that portion and the B address portion are unpredictable and of no
use to the programmer. The command code and the A address portions are available to the

programmer.

The high-order 24 bits of the indirect tape address word specify the correspondence be-
tween physical magnetic tape units and logical tape addresses. The 24 bits are divided into
eight groups of three bits; each group corresponds to one of the logical addresses 0, 7, 6, 5,

4, 3, 2, or 1 respectively, reading from high-order to low-order. The octal number defined
by the three bits in a particular group represents the physical tape unit which is associated

with that group. For example, if the high-order three bits of the word are 110, then physical
tape unit 6 is addressed at logical tape unit 0 (since the first three bits correspond to the logical

address0). The remainder of the word can not be used by the programmer.

The special register word contains the three index registers and sequence register, each
in 12-bit form. Index registers 1, 2, and 3 occupy the first three 12-bit portions of the word,

respectively; the sequence register occupies the low-orderl2 bits of the word.

When a read tape instruction is executed, the address one greater than that of the instruc-
tion is stored in the A address portions of the RDT and WRT address word. Similarly, whenever
a write tape instruction is executed, the address one greater than that of the instruction is stored
in the C address portion of the RDT and WRT address word. The contents of the A address and
C address portions are unchanged until another read tape or write tape instruction is executed,
at which time the new setting of the sequence register increased by 1 is stored in the appropriate

82

APPENDIX A. RESERVED MEMORY LOCATIONS

portion. The command code and B address portions are available to the programmer.

Unprogrammed Subsequence Locations

Each of the unprogrammed subsequence locations should be set up with an instruction to
control the program path after the occurrence of certain events listed below. Normally, these
locations will contain an STX instruction as the entry to a subroutine or an NOP instruction to

return control to the main program.

Octal Decimal

0021 0017 Addition Overflow, Subtraction Overflow, Division Overcapacity
0022 0018 Magnetic Tape Read Error
0023 0019 Magnetic Tape Write Error
0024 0020 End of Magnetic Tape (Writing)
0026 0022 Card Edit Invalid

0027 0023 Print Error

0031 0025 Card Read Error

0033 0027 Card Punch Error

0035 0029 Error on#l input channel

0037 €031 Error on#2 input channel

0041 0033 Error on#3 input channel

0043 0035 Error on#1 output channel
0045 0037 Error on#2 output channel

Working Subsequence Locations

Each working subsequence location stores an instruction to direct the program path after
data transfer has been completed on a peripheral device. These locations are also used in con-

junction with the console fixed start operations explained below.

Octal Decimal

0030 0024 Printer with option (fixed start 0)

0032 0026 Card Reader operating without interlock (fixed start 1)
0034 0028 Card Punch operating without interlock (fixed start 2)
0036 0030 Device on#1 input channel (fixed start 3)

0040 0032 Device on#2 input channel (fixed start 4)

0042 0034 Device on#3 input channel (fixed start 5)

0044 0036 Device on #1 output channel (fixed start 6)

0046 0038 Device on#2 output channel (fixed start 7)

Fixed-Start Locations

When the central processor is stopped, processing may be resumed at certain locations

83

APPENDIX A. RESERVED MEMORY LOCATIONS

using special console instructions. For example, the console typein F 0 will cause the next in-

struction to be selected from decimal location 0024, the location reserved for the printer sub-

sequence call (see above).

There are 10 such fixed-start locations. The fixed starts F 0 through F 7 are identified

above; the console instruction F 8 causes a start at location 0094 (octal 0136); the console in-

struction F 9 causes a start at decimal location 0095 (octal 0137). Fixed starts 8 and 9 are

used by the Monitor program and are not generally available to the programmer.

Input/Output Areas

Octal Decimal

0047-0065 0039-0053
0066-0111 0054-0073
0012-0135 0074-0093

Printer Area: A print instruction automatically addresses these
15 locations as the source of data to be printed. Each character
to be printed is represented in this area by six bits. Thus, the
15 words in the area represent 120 characters, the equivalent of
one line of print. The first six-bit group represents the first
character in the line; the second group represents the second
left-hand character, etc.

Card Read Area: Execution of either of the two card read in-
structions results in the transfer of card data into this area.
Each punch in the card is read as a 1; each no-punch is read as
a zero. The area is divided into 12-bit groups corresponding to
the 12 punch positions in a card column; thus the first 12-bit
group in 0054 corresponds to column 1 of the card being read,
the second group corresponds to column 2, etc. There is a I in
the high-order bit position of the first 12-bit group there is a 9-
punch in the first card column; a 0 is stored in the second bit
position if there is no 8-punch, etc.

This area is also used by the console '"bootstrap'' instruction;
this instruction reads the next record on tape into memory be-
ginning at decimal location 0054 and continuing for as many lo-
cations as required.

Card Punch Area: Execution of either of the two card punch in-
structions causes the central processor to punch the contents of
this area into a card. The punching is accomplished in a manner
similar to reading: each 1 bit causes a punch, each 0 bit causes
no punch. The correspondence between bit positions and card
columns is the same as described for the card read area.

APPENDIX B
SIMULTANEOUS OPERATIONS

In the Honeywell 400, the processing of certain peripheral instructions occupies the central
processor only a portion of the time required to complete these operations. The intervals not
required to execute these peripheral instructions may be used by the central processor for other

operations. This capability is referred to as the simultaniety of the Honeywell 400.

Simultaniety raises the possibility of interference between instructions. This section dis-
cusses the machine logic which prevents interference and points out the programmer's responsi-

bilities if he wishes to process instructions simultaneously.

SIMULTANEOQOUS PROCESSING RULES FOR THE HIGH-SPEED CARD READER

The cycle time (i.e., the time taken to read one card) of the high-speed card reader oper-
ating at a rate of 650 cards per minute is 93 milliseconds. The interval is divided as follows:
Acceleration Interval - 33 milliseconds (minimum);
Data Transfer Interval - 54 milliseconds (fixed);

Deceleration Interval - 6 milliseconds (maximum for full-speed operation).

The acceleration interval lies between the issuance of a read card instruction and the first
row impulse. The deceleration interval lies between the completion of data transfer and the
issuance of the next card read instruction. These two intervals are variable depending upon when
the programmer issues the next read instruction; however, their combined time will equal 39

milliseconds if the card reader is operating at full speed.

Acceleration Interval

This interval is available for simultaneous processing only when the read card instruction
is issued "'without interlock'. The 33-millisecond interval is divided into three smaller intervals.
The machine controls and restricts these subintervals as follows:

1. Part One (first 13 milliseconds) - Any instruction may be initiated in this
subinterval. However, if any one of the instructions below is issued in
this subinterval, the system stalls until data transfer is complete (i.e.,
until the end of the data transfer interval:

Read Card (with or without interlock)
Punch Card (with or without interlock)
Print (without storage option)

Type on Console (Alpha, decimal or octal)
Stall

APPENDIX B. SIMULTANEOUS OPERATIONS

86

Part Two (from 13th to 31st millisecond) - Any instruction may be initiated in

this subinterval. However, initiating one of those instructions listed in part
one or one of those listed below stalls the system until the end of the data
transfer interval:

Decimal Multiply

Decimal Divide

Read Tape

Write Tape

Peripheral Input or Output

Part Three (from 31st to 33rd millisecond) - The system is interlocked such

that a new instruction can not be initiated during this interval. If system oper-
ations are to proceed normally, instructions already in process must terminate
within these two milliseconds (programming rules are given below). If an in-
process instruction extends beyond these two milliseconds, a program check
occurs and the system comes to an immediate stop (i.e., it does not complete
either the read card instruction or the instruction in process). This interval

is long enough to permit the execution of the instruction normally stored in a
memory location reserved for unprogrammed subsequence; thus even if a sub-
sequence call is generated at the end of the acceleration interval it can be re-
corded for later processing.

If an instruction stalls the system for any reason described above, it is not
executed; instead, the sequence register remains set to the address of the un-
executed instruction. After the end of data transfer and any subsequence that
occurs, control returns to the sequence register and processing continues in
sequence.

In the ways described above the machine circuits automatically prevent the
initiation of an instruction which would normally continue beyond the accelera-
tion interval. However, the programmer must restrict instructions which
could exceed this interval if they are used to process more than a certain
number of items. Therefore, the number of words (''n'") in the following
multi-word instructions should not exceed the number shown below:

TSN 40 words
EXC 20 words
WRT and RDT 50 words for 48K transfer rates

100 words for 96K transfer rates
140 words for 133K transfer rates
CcOoC 78 words
CHP 80 words

If these limits are observed, no error will occur regardless of the point in
the acceleration interval at which the instructions are initiated. Some care
should also be taken with edit instructions when the number of characters to
be edited (n) exceeds its normal values (80 for card editing, 120 for print
editing). In this case, the edit instructions should be limited so that their
execution time does not exceed 2 milliseconds.

Another restriction on the use of the acceleration interval is that a read or
write instruction should not be addressed to a rewound tape during the ac-

celeration interval. In addition, the first or second record of a Honeywell
800 tape should not be read during this interval.

The stall instruction may be used to eliminate possible conflicts. For in-
stance, if a stall proceeds a read tape, the read instruction will not be pro-
cessed until the end of data transfer; thus, no control error can occur.

APPENDIX B. SIMULANTEOUS OPERATIONS

Deceleration Interval

This six-millisecond interval is available whether the read card instruction is issued with
or without interlock. The interval begins at the end of data transfer and ends when the next read
card instruction is issued. The characteristics of this interval are:

1. Any instruction may be issued in this interval;

2. The next read card instruction must be issued within this interval to maintain
full reading speed.

SIMULTANEOUS PROCESSING RULES FOR CARD PUNCHES

The cycle time of the standard-speed card punch operating at a speed of 100.cards per min-
ute is 600 milliseconds. Similarly, the cycle time of the high-speed punch operating at a rate of

250 cards per minute is 240 milliseconds. The cycle times are divided as follows:

Standard-Speed Card Punch High-Speed Punch
Acceleration Interval 91 milliseconds (minimum 55 milliseconds {(minimum)
Part 1 first 71 milliseconds first 35 milliseconds
Part I1 next 18 milliseconds next 18 milliseconds
Part II1 last 2 milliseconds last 2 milliseconds
Data Transfer Interval 502 milliseconds (fixed) 178 milliseconds (fixed)
Deceleration Interval 7 milliseconds {(maximum 7 milliseconds (maximum
for full speed) for full speed)

The acceleration interval lies between the issuance of a punch card instruction and the
first row pulse. The deceleration interval lies between the completion of data transfer and the
issuance of the next punch instruction. The characteristics of these intervals are similar to

those of the card reader; the rules governing multi-word instructions also apply.

SIMULTANEOQUS PROCESSING RULES FOR THE PRINTER

The print cycle is divided into two intervals as follows:
Printing 53 milliseconds

Spacing 14 milliseconds for first line plus 8 milliseconds for
each additional line

The extent of simultaneous operations possible with the printer depends upon whether the system
is equipped with the print storage option. If the system is so equipped, central processor oper-
ations of any type are possible during all but 1.29 milliseconds of the printing cycle and during
all of the spacing time. There are no restrictions on these operations. If the system does not
include the print storage option, simultaneous operations are possible only during the spacing

time; again, there are no restrictions.

SIMULTANEOUS TAPE OPERATIONS

Certain tape-handling operations can be performed simultaneously if the instructions are

87

APPENDIX B. SIMULTANEOUS OPERATIONS

issued in the correct sequence. The rules are listed below:

1. Processing continues in parallel with the actual rewinding or backspacing of
tape. There are no restrictions on the instructions which may be performed
in this interval except those on other tape instructions as explained in Section
Iv.

2. If a write instruction is followed immediately by a read instruction, the read
and write operations occur simultaneously.

PRIORITY PROCESSING

During interlocked operations, the central processor executed subsequences as they occur.
However, during simultaneous operations, several subsequence calls may be pending at the end

of data transfer.

The central processor recognizes such multiple demands in ascending order of reserved
memory locations (see Appendix A). That is, when several subsequence calls are pending, the
central processor performs the single instruction stored in each memory location involved begin-
ning at the lowest numbered such locations. After executing only the instruction stored in a
given memory location, the central processor recognizes the next demand and executes the in-

struction stored in the corresponding reserved memory location.

Once all demands have been recognized, the central processor begins executing subse-

quences in descending order of reserved locations.

Commonly, the instruction stored in a reserved memory location will be an STX instruc-
tion. Thus, when several subsequence calls are pending, the STX instruction in the lowest num-
bered location stores the setting of the special register word (i. e., the return to the main pro-
gram) and resets the sequence register to the address of the first instruction in a subroutine.
The machine then senses for the next outstanding subsequence call. If the instruction in its
reserved location is also an STX, the new setting of the sequence register is stored (effectively,
the entry to the previous subroutine is stored) and the sequence register is again reset. This

process continues until all outstanding subsequence calls have been recognized.

When all subsequence calls have been recognized, the machine continues processing at
the location specified in the C address field of the final STX. Thus, the first subroutine process-

ed is the one associated with the subsequence call for the highest-numbered reserved location.

The final instruction of a subroutine is usually an RTX which restores the sequence register
setting stored by the STX for that routine. In this case, each RTX restores the entry to the sub-

routine associated with the subsequence call for the next lower reserved location, and the RTX

for the final subroutine returns control to the main program.

88

APPENDIX B. SIMULTANEOUS OPERATIONS

In summary, when STX and RTX instructions are used as described, priority processing
has the effect of first recording a string of subroutine entries, then processing the subroutines

in descending order of reserved locations, and finally returning control to the main program.

If the instructions STX and RTX are not used as described, the pattern of program exe-
cution will not be as described above but will depend on the instructions stored in the reserved
location. The machine will still recognize and execute instructions in reserved locations, one

after another according to location number.

89

APPENDIX C
TAPE, FILE, AND RECORD INDENTIFICATION

All of the EASY systems programs, as well as all the tape handling and other standard
routines furnished by Honeywell, use certain conventions to identify information recorded on
magnetic tape. Every tape is identified by means of a tape label record. The tape label and
end-of-information records define, respectively, the beginning and end of useful information on
the tape. Each file or program on tape is bounded by beginning and end identification records.
Segments are preceded by begin segment identification records. Finally, each record on tape is
identified by a banner word as an identification record, a record of program coding, or a data
record. The banner word also contains a record count which is used in tape positioning, plus

control information if the record is to be printed or punched.

Tape Label Record

The first record on every tape is a tape label. All programs furnished by Honeywell
assume the existence of such a record and preserve the first three words of this record. If all
programs used at an installation observe this convention, these three words may be used to
establish automatic tape handling accounting procedures based upon the identification of the

physical reel.

The maximum number of words in a tape label record is 511. In the case of a data file or
work tape, care must be exercised in processing this record since its length varies and its

structure differs from that of the other records on the tape.

Word 1 Banner Word - This word of the tape label record has the
octal configuration SSSS xxxx 0020 xxxx, where the S's repre-
sent special octal characters. These four digits represent
control information. The next four digits are irrelevant.

The contents of bits 28 through 32 identify the record as a
tape label. The record count is irrelevant since record
counting begins with the second record on tape. (See page 93
for the binary configuration of a banner word.)

Word 2% Tape Identification.

Word 3% Unspecified (contents preserved by EASY).
Words 4-11 Unspecified (may be used without restriction).
Words 12 to 12 + n-1 Special Systems Routines.

Words 12 + nto 12 + n+tl Orthowords.

#If the information in these words is in standard alphanumeric code, it will appear in recogniz-
able form if the tape is printed.

N

APPENDIX C. TAPE, FILE, AND RECORD IDENTIFICATION

File and Program Identification Records

These records are used to identify the beginning and end of each file on a data tape. On a

program tape, they are used to identify the beginning and end of each program.

Word 1

Word 2
Word 3

Word 4

Words 5to 5 + n-1

Words 5+ nto5 + nt+l

Segment Identification Records

Banner Word - Bits 28 through 32 specify the type of informa-
tion identified by this record (see below).

Name of File or Program (up to six alphanumeric characters).

Reel Number (two low-order decimal digits) of File Identifica-
tion Record - The reel number is used primarily for multi-
reel files and appears in both the beginning and end file identi-
fication records, varying from 01 for the first reel to hex

GG for the end identification record of the last reel. The con-
tents of this word are unspecified for a program identification
record.

Date Obsolete and Date Written (begin file or program records
only) - Each date comprises two decimal digits for year, two
for month and two for day.

File Parameters (sort parameters in file identification rec-
ords).

Orthowords.

These records are used to identify the beginning and end of each segment on a program

tape.

Word 1

Word 2
Word 3
Word 4

Words 5to 5 + n-1

Words 5+ nto5 + n+l

End-of-Information Records

Banner Word - Bits 28 through 32 have the configuration
01001 (see below).

Name of Program (six alphanumeric characters).
Name of Segment (six alphanumeric characters).

Date Obsolete and Date Written (begin segment records only) -
Each date comprises two decimal digits for year, two for
month, and two for day.

Special Parameters.

Orthowords.

The end-of-information record signals the end of useful information on tape. The last end

file identification record should be followed by an end-of-information record and a dummy rec-

ord. If an additional file is to be stored on the same tape, the end-of-information record must

be written over and a new end-of-information record must be written at the end of the new file.

However, a program may use the tape area beyond the end-of-information record for work space

without having to destroy the end-of-information record.

92

APPENDIX C. TAPE, FILE, AND RECORD IDENTIFICATION

Word 1 Banner Word - Bits 28 through 32 have the configuration
10001 (see below).

Words 2-4 Unspecified.

Words 5-6 Orthowords.

Banner Words

The first word of every record is a banner word which should contain a record count in bit
positions 33 through 48. The record count starts with a value of 1 in the record following the
tape label and continues in ascending sequence through all included files to the last record on the
tape. Programs which include restart provisions make use of the record count to position tapes.
Since the banner word must also serve as a control word on tapes which are to be printed or
punched, bit positions 1 through 30 are reserved for control information. The contents of bits

positions 31 and 32 specify the type of record which follows the banner word, as follows:

Bits 31-32 00 = printer or punch record
01 = identification record
10 = program coding record
11 = data record

In the case of an identification record, bit positions 28 through 30 are used to specify the

type of identification record, as follows:

Bit 28 0 = beginning
1=-end
Bits 29-30 00 = information
01 = file or program
10 = segment
11 = other

Note that the record type of most records can be determined by examining the contents of banner
word bits 31 and 32. If these bits contain the configuration 01, then the contents of bits 28 through

30 must also be examined.

93

APPENDIX D

INSTRUCTION AND TIMING SUMMARIES

Honeywell 400 instructions are listed below in alphabetic order by mnemonic codes; brief
descriptions of the instructions and a summary of their execution times are shown. These times
are given in microseconds, except where otherwise stated. If addresses are indexed, 9.25
microseconds must be added to the execution time for each address indexed in that instruction,
whether or not the same index register is used more than once. Full descriptions of each in-
struction can be found in Section IV where they are grouped according to function. The machine

language format of the instructions is shown at the end.
The notation A, B, or C stands for the parameter or memory location address specified in
the A, B, or C address fields, respectively, of the instruction. Similarly, the notation (A), (B),

or (C) stands for the contents of any memory location specified in the A, B, or C address field.

The superscript numbers in the timing summary refer to the notes at the end of the table.

Mnemonic Basic Time
Operation in

Code Instruction Description Microseconds
ADD Decimal Add Adds (A) to (B), stores result in 111+64.75T(1)

C; treats operands as signed 11
decimal digits.

BAD Binary Add Adds (A) to (B), stores result in 101.75
C; treats operands as unsigned
binary numbers.

BST Backspace Tape Backspaces specified magnetic -(2)
tape by one record.

BSU Binary Subtract Subtracts (B) from (A), stores 101.75
result in C; treats operands as
48-bit numbers.

CHP Check Parity Checks parity of n words; cor- 92.5+18.5n
rects parity of first bad word
then subsequences to C.

cocC Compute Computes the orthocount for n 120.25+18.5n
Orthotronic consecutive words, beginning
Count with the word at A. It stores
first orthoword in C; second in
C+1.

95

APPENDIX D.

INSTRUCTION AND TIMING SUMMARIES

Mnemonic
Operation
Code

Instruction

Description

Basic Time
in
Microseconds

DIV

ECA

ECD

ECO

ECU

EPA

EPD

EPO

EXC

EXT

HAD

Decimal Divide

Card Edit,
Alpahnumeric

Card Edit
Signed Decimal

Card Edit, Octal
Card Edit,
Unsigned Decimal

Print Edit,
Alphanumeric

Print Edit,
Decimal

Print Edit, Octal

Extended Compare

Extract

Half Add

Divides (B) by (A), stores result
in C, and stores remainder in
remainder word; treats operands
as assigned 11 decimal digits.

Edits n consecutive characters of
alphanumeric data from card area;
stores edited data in memory,
beginning with specified position
in word at A.

Edits n consecutive characters of
decimal data from card area;
stores edited data in one word,
beginning with specified position
in word at A.

Is the same as ECA, except that
data is edited into octal format.

Is the same as ECA, except that
data is edited into decimal format.

Edits n consecutive alphanumeric
characters, beginning with the
one specified in word at A, into
the print area in consecutive
positions, beginning with one
specified by C.

Is the same as EPA, except data
is edited from decimal format
into print area.

Is the same as EPA, except that
data is edited from octal format
into print area.

Compares (A) with (B), bit by bit,
then (A + 1) with (B + 1), etc.,
until two operands are found un-
equal. If "A'" operand is less
than '""B", sequence changes to C.

Places (A) in word at C wherever
(B) contains a 1 bit; places 0 bits
in all other positions in word at C.

Adds (A) to (B) without carries;
treats operands as unsigned

Avg., 5.374ms; T =

9.25[185+8(Q1+Qz+. ..
. Qn)] Q = Magnitude

of Quotient.

74+11.56n C odd
74+13.87n C even

83.25+10. 8n C odd

83.25+12.34n C even

74+10.4n C odd
74+11.56n C even

74+10.5n C odd
74+12.34n C even

74+11.56n

74+11.56n

74+11.56n

46. 25+74n(3)

96

APPENDIX D. INSTRUCTION AND TIMING SUMMARIES

one specified in word at A, into
the card punch area in consecu-
tive columns, beginning with the
one specified by C.

Mnemonic Basic Time
Operation in
Code Instruction Description Microseconds
binary numbers; stores result
in C.
HLT Halt Stops the central processor, de- 64.75
pending on the setting of the
console breakpoint switches and
on (B).
LAC Less than or Compares (A) to (B) bit by bit; 111
Equal Comparison, sequence changes to (C) if (A) <
Alphanumeric (B). Otherwise, continues in
sequence.
LNC Less than or Compares (A) and (B); treats 111(4)
Equal Comparison, operands as signed 11 decimal
Numeric digit words; sequence changes
to C if (A) < (B).
LUP Test Index and Compares A with contents of Jump:IR;=2: 92. 5(5)
Increment index register associated with IR;=1o0r 3:101.75
B. If contents of this index reg-
ister are less than A, the in- No Jump:IR;=2:64. 75(5)
struction increments them by B, IR;=1o0r 3:74.0
sequence changes to C.
MPY Decimal Multiplies (A) by (B); treats 1258+55.5n
Multiply operands as signed 11 decimal n=no. of non-zero
digits; stores result with sign in digits in multiplier
C, low-order result with sign in
low-order product word.
INAC Inequality Compares (A) with (B) bit by bit. 111
Comparison, If (A) # (B), sequence changes to
Alpahnumeric C.
NNC Inequality Compares (A) with (B); treats __111(6)
Comparison, operands as signed 11 decimal
Numeric digits. If (A) # (B), sequence
changes to C.
NOP No Operation Passes to next instruction, per- 46.25
forming no other action.
OFS Offset Stack Offsets the card in the card punch 92.5 + unit mech.
feed so as to protrude slightly timel”
from the stack.
PCA Punch Edit, Edits n consecutive alphanumeric 74+13.8Tn
Alpahnumeric characters, beginning with the

97

APPENDIX D. INSTRUCTION AND TIMING SUMMARIES

Mnemonic
Operation
Code Instruction Description

Basic Time
in
Microseconds

PCD Punch Edit, Is the same as PCA, except
Signed Decimal that data is edited from decimal
format into punch area, and op-
erates only on one word.

PCI Punch Card, Punches the contents of the card
Interlocked punch area onto one card. Cen-
tral processor interlocked until
completion of data transfer.

PCO Punch Edit, Is the same as PCA, except
Octal that data is edited from octal
format into punch area.

PCU Punch Edit, Is the same as PCA, except
Unsigned Decimal that data is edited from decimal
format into card punch area.

PCW Punch Card, Punches the contents of the card
Without Interlock punch area onto one card. Cen-
tral processor not interlocked
and central processor operations
are possible during acceleration
interval.

PDE Prepare Decimal Inserts special characters, sup-
Edit presses leading zeros, floats
high characters in (A) according
to parameters at B. Stores
result in (C).

PRS Print and Space Prints the contents of the print
area on the high-speed printer,
and spaces the form as specified
by B.

RCI Read Card, Reads the contents of one card
Interlocked into the card read area. Cen-
tral processor is interlocked
until the completion of data
transfer.

RCW Read Card Reads the contents of one card
Without Interlock into the card read area. Cen-
tral processor not interlocked

and so central processor oper-
ations are possible during the

acceleration interval.

RDT Read Tape Reads one record from the speci-
fied magnetic tape and stores in
consecutive locations beginning

74+13.87n forn< 6
83.25+13.87n for n > 6

55.5 + unit mech.
time(7)

74+13.87n

74+13.87n

55.5 + unit mech.
time(7)

83.25+18. 5n(8)

Without Storage Option
55. 5 + unit mech. timel
With Storage Option
1193.25

55.5 + unit mech.
time(7)

55.5 + unit mech.
time(7)

-(2)

98

APPENDIX D. INSTRUCTION AND TIMING SUMMARIES

Mnemonic
Operation
Code

Instruction

Description

Basic Time
in
Microseconds

REJ

RTX

RWT

SCH

SCO

SEL

SET

SLB

SLP

Reject Card

Restore Index

Register

Rewind Tape

Sequence Change

Sequence Change
on Option

Select

Set Index
Register

Binary Shift
Left

Decimal Shift
Left, Preserving
Sign

with A. If tape channel is also
specified, it regenerates that
channel simultaneously.

Rejects the card currently in the
card feed into one of two pockets
as specified in B.

Stores the high-order three 12-
bit groups of (A) in the index reg-
isters 1, 2, 3, respectively;
stores low-order 12 bits of (C)

in the sequence register.

Rewinds the specified magnetic
tape to its physical beginning.

Changes sequence register setting
to the address specified by C.

Changes sequence register setting
to address specified by A if set-
ting of the console breakpoint
switches and (B) coincide. Other-
wise set sequence register to the
address specified by C.

Modifies C using (A) and (B); then
makes a programmed subsequence
to the modified address.

Adds A into index register speci-
fied in Ai and stores result in
index register 1; adds B to index
register in Bi and stores result
in index register 2; adds C to
index register specified in Ci
and stores result in index reg-
ister 3.

Shifts (A) to the left the specified
number of bits; the move is
cyclic, so that the bits shifted off
the left end enter the word at the
right.

Shifts (A) to the left n decimal
digits preserving the sign digits.
Digits shifted off the left end
are lost and replaced by zeros
at the right end.

92.5 + unit mech.
time(7)

83.25

92.5 + unit mech
time(7)

46.25

74

120.25

74

64.75+9. 25n(%)

64.75+9.25n

99

APPENDIX D. INSTRUCTION AND TIMING SUMMARIES

Mnemonic Basic Time

Operation in

Code Instruction Description Microseconds

SMP Superimpose Places a 0 bit in all positions of 111
(C) where both (A) and (B) con-
tain O bits; places 1 bits in all
other positions of (C).

SRP Decimal Shift Same as SLP, except that (A) 64,75+9.25n

Right, Preserving are shifted to the right.
Sign

SST Substitute Places (A) in (C) in all posi- 111
tions where (B) contains a 1 bit;
leaves remaining bit positions
in (C) unchanged.

STX Store Index Stores the contents of the three 83.25

Register index registers and the sequence
register in A. Sets sequence
register to C.
SUB Decimal Subtract Subtracts (B) from (A); treats 111+64. 75T(1)
operands as signed 11 decimal
digits; stores result in C.
SUP Stall During the acceleration interval Stalls till end of data
of the card reader and punch, transfer; 64,75 if
this instruction stalls the central issued outside of ac-
processor; outside this interval, celeration interval.
it has the effect of NOP.
TAC Type Alphanumeric, Prints (A) on the console printer 100-200ms per
Console in alphanumeric form. character

TDC Type Decimal, Prints (A) on the console printer 100-200ms per
Console in decimal form. character

TOC Type Octal, Prints (A) on the console printer 100-200ms per
Console octal form. character

TSC Transfer and Transfers (A) to location B; se- 83.25
Sequence Change quence changes to location C.

TSN Transfer n Words Transfers n words from consecu- 46.25+37n
tive memory locations, beginning
with word at A, to consecutive
memory locations beginning
with C.

WRT Write Tape Writes one record of the specified| -(2)
number of consecutive words from)
memory, beginning with A, onto
tape.

100

APPENDIX D. INSTRUCTION AND TIMING SUMMARIES

NOTES

1. T is derived from the following table:

Signs of operands T
L Ll
+ + 0 0
* - 1 2 Addition
- - 0 0
- + 1 2
+ + 0 1
+ B 1 ! Subtraction
- - 1 1
- + 1 1
2. For Model 404-1, 5.5 ms plus 0.125 n; for Model 404-2, 5.5 ms plus 0.09 n; for

Model 404-3, 11.0 ms plus 0.250 n. (n is the number of words read, written or
backspaced.)

3. n = number of pairs of words compared.

4, If Al = IBl, and the sign of (A) is positive and the sign of (B) is negative, add
64.75 microseconds.

5. IR; is the number (i.e., 1, 2, or 3) of the index register associated with the B
address. Thus, for a Jump, the time is 101.75 microseconds for index registers
1 and 3, and 92.5 microseconds for index register 2. Similarly, for a No jump,
the times are 74 and 64.75 microseconds, respectively,

6. if |Al = IBI, and the signs of (A) and (B) are different, add 64.75 microseconds.

7. Mechanical time varies with peripheral equipments and with time at which peri-
pheral order is issued.

8. n = number of non-significant decimal zeros outside of sign position.

If 6<n <8, add 9.25 microseconds; if n < 6, add 18.25 microseconds. If P; is a
plus or minus sign, add 10 microseconds. If p, is F (for floating), add 9. 25 micro-
seconds.

9. n = number of shifts; n = Number of bits shifted + Remainder + Remainder
4 2 1

101

2ol

SHIFT INSTRUCTIONS

ARITHMETIC INSTRU
RUCTIONS LEGEND SLP SLB SRP
Conventions used below are: a7 46 45
ADD SUB BAD BSU MPY DIV NOT USED" - ?he address field is n.Dt i
interprected at execution time.
32 33 30 3 64 65 00 in index bits - these bits normally contain
00 to prevent indexing a L &7 8/ WU RlE _______ 25 . . B 4
OPERATION | 40 [o LOCATION OF WORD NUMBER OF DIGITS STORAGE LOCATION
- B A L R 248 3e[37 hid "NOT USED" address field CoDE AP j8ifel YO BE SHIFTED TO BE SHIFTED OF SHIFTED WORD
oreration |40 (o [ei LOCATION OF LOCATION OF LOCATION OF C OPERAND
CODE A OPERAND B OPERAND (RESULT LOCATION) blank index bits - the bits are not interpreted
at execution time DECISION INSTRUCTIONS
LOGICAL INSTRUCTIONS
NAC NNC EXC LNC LAC
52 53 54 51 50
EXT SST HAD SMP
3 3 35 [I
3 4 7 — e EDIT INSTRUCTIONS : Op Code : 12 t e]7 8ls ol 2}z 24l =7 .4
olr_ols ol il s selsr ECAQ0 ECD10 ECU {41 ECOO01 OPERSEON fai |ei |ci A OPERAND B OPERAND SEQUENCE CHANGE
B ATION 6F | LoGATION OF LOCATION OF - - -
°’m‘°“ at ot fer w&‘opznmo B OPERAND (Reso SN L
! _horme R alzs 2z safs7 o PERIPHERAL INSTRUCTIONS
m
LaTive
TRANSFER AND SEQUENCE CHANGE INSTRUCTIONS Locaion or FRsT [ARASTE uua™ oF ST GARD CoLuMN
DATA WORD AXTER [FIRST | CHARACTERS O To BE EDITED
EDITING cHasacTen| BE EDITED
IN THE wa) RDT
TSC | AT a
= - T ey Op. Code : 13 Op. Code : 11 66 7
22 6|7 8ls o|u 2z 383 43 EPA 00 EPD 11 EPO 01 PCA 00 PCD 10 PCU 11 PCO 01 ! s sls o3 . B R TITTrE Ot -8
e —— - J LOCATION TO WHICH FIRST
uvscv;rzlon ai 8 |ci u_oca;l'o: :;vznono LD'GSAT'IgN.:O WHICH WORD ?E;T:'z;z?usnc: o 0";’;‘5"0” ai |oo|co WOIDIDF RECOR 1S To. [rapE oR CHANNEL 1-0 BE [000 000000000
! 818 wjnizh3 Se o -..RARS 2820 E L LA . | L. dl_.L_l__Ieseeap = __ |UNIT [REGENER ; Lo
- 00 e Biaci MUSY EE 00 FOR SIMULTANEOUS READ AND wanE
n
OPERATION 0 WORD (N WHICH FARST [CHARACTER| NUMBER OF | FIRST GARD COLUMN OR
TSN CODE ai Ci | cHARACTER 1o 8E POSITION [CHARACTERS [PRINT POSITION mro WHICH WRT
1" EDITED IS LOCATED lor FIRST | TO BE DATA 13 TO BE EDITE e [,
HABCTER| EDITED 61
44 ot ' ¥oRD I sj7 slowlu ejs _atln 2rge . ssls7 . ag)
! * ej7. 8o ofn i2ji3 2 114 k! - o OPERATION i i LOCATION OF FIRST WORD
PERATION LOGATION OF FIRST NUMBER OF WORDS T0 LOCATION 1O WHICH cooE MBI1001 So'6e wriTTEN o | MRG0 oS [00 0000000000
o ai i |t WORD 10 BE BE TRANSFERRED(n) FIRST WORD IS T0 BE i A b weed
Goog TRANSFERRED OSR < 4098 TRANSFERRED PDE
- - R RWT
v 10 o) elsofuiz|n 2423 zl[zv 32 7. a8 oz - -
SCH OPERATION i LOCATION OF WORD T0 BE STORAGE LOCATION OF
[cope 4|8 |el | "prepanen rorepim |0 00 0T 2 PREPARED WORD ! 8 En e z“:,j‘:“ i - b
= OPERATIOR 100 |00| 00 NOT USED Tosr |000000000 NOT U3ED
L 97 elrslanliels 2ales) 4 STX INDEX REGISTER AND CHECK INSTRUCTIONS v]
OPERATION " CHANGE SEQUENCE RS
o0 ci NOT USED NOT USED
CODE REGISTER TO
e FERNCL I N P g 2o m BST AND PERIPHERAL CONTROL
operaTioN |, N OCATION WHERE 1
SODE ai ci “M“EE.B 'ARE TO BE NOT usED SEQUENCE CHANGE TO L 63 glralsnlnl qu.'. _asks R
5CO
56 : OFERATION 100 [ai oo NOT UsED NOT USED
RTX
L 02 ¢lr ale iou igfis o 24l Lol . - o
4]3]2]1
OPERATION | cr | “omee seouence . |0 000000 3] oo e & oS ot L 27 elrejsiolu s 2afn 7 48 TAC10 TDC41 TOCO1
cooE L REGISTER TO . sreaseomt) " REGISTER TO 1.0 LOCATION OF 38 BITS LOCATION OF 12 BITS B S 0 (i y
A e oreration |ai |ei | €t | 0 e storen v NOT USED TO BE STORED N THE o1
CooE WWDEX REGISTERS | seovence recisTER ' el7 als iofu i2)is 2428 3538037 a2l
SEL o :) OPERATION 1o LOCATION OF WORD
CODE Al [Ht|cr T T 00000000000 NOT USED
BE PRINTED
o ‘ =t = -
a el7 alo ofu s 2al23 a7 P
OPERATION 4 OPERAND BASE TO WHICH LY Y Y T Y 2420 37 Py
b ai |8 |ci 8 OPERAND R
cooe {SOURCE OF AUGNENT) AUGNENT is 40DED OPERATION | o1 131 | 1 | BASE VALUE FOR BASE VALUE fOR BASE VALUE FOR PRS .
| cooe ER | _INDEX REQISTER 2 X REGISTER 3 "]
T 76 elralowln iz 28 261 31 7 - 8|
No» LUP OPERATION - Iror-
. J— CoDE ai e [NOT USED 0 000 |yar [LNE CONT NOT USED
{1 04 87 s|e 1ofu 123 2428 7 4 , 06 o 2af28 3037 48]
OPERATION
e BL 0o NOT USED NOT usED woT usep oPERATION vacue ron INCREMENT SEQUENCE CHANGE TO
E . - . . cowar e 74 75 - GENERAL PURPOSE INPUT (74) AND OUTPUT (75)
HLT ez N o N
T TTITT I elr alsrofu gl 2005 2N 6157 -4y
03 A
luPEnAno: e i 243 Slalal2 1 Af 23 elr elsnfn izl 24ps gy Y. OFERATIN 1 ai foi a1 @%&:ﬁ?ﬁnﬁmﬁo D E, ;N%EEZ&AD o ot usED
i 7! < [ai[ci [rocation of rirsTworo | wumBER of womos IF_INCORRECT PARITY
CooE 0010 000000000000000000 R [saracon Nt useo e O L TO BE CHECKED o cHECK FOUND, SUBSEQUENCE TO
A coc RCI 74 RCW 70 PCI 73 PCW 72
sugp) e - o e e N i -
01 PR LY O T Y s 2rpe 7 ' 6|z slsiofn)i ch 37 U
1o elz ale o 1) - e LS = OPERATION FIRST WORD TO BE J LOCATION OF FIRST QPERATION 000 NOT USED —1 NOT USED NOT u3ED
i i 00 (00|00 v
oremaron | ai |on Joo| G GRoen [000001 000000 NoT usED e ol R S R o e e cone v N

‘@ XIAN3ddv

SIRVWWNS DONIWIL ANV NOILDNYLSNI

APPENDIX E
HONEYWELL 400 CODES

High High
Key Card Honeywell Speed Key Card Honeywell Speed
Punch Code 400 Code |[Octal | Printer Punch | Code 400 Code | Octal | Printer
0 0 000000 00 0 - X 100000 40 -
1 1 000001 01 1 J X,1 100004 41 J
2 2 000010 02 2 K X,2 100010 42 K
3 3 000011 03 3 L X,3 100011 43 L
4 4 000100 04 4 M X, 4 1004100 44 M
5 5 000101 05 5 N X,5 100401 45 N
6 6 000110 06 6 O X,6 100110 46 (o]
7 7 000111 07 7 P X,7 100114 47 P
8 8 001000 10 8 Q X,8 104000 50 Q
9 9 0010014 11 9 R X,9 101001 51 R
8,2 001010 12 ! X,8,2 101010 52 #
8,3 00410114 13 = $ X,8,3 1010114 53 $
@ 8,4 001100 14 : * X,8,4 101100 54 *
Space Blank 001101 15 Blank X,8,5 104101 55 "
8,6 001110 16 Blank* X,8,6 101140 56 Blanks*
8,7 0041141 17 & X,0 104111 57 Blanks
& R 040000 20 + 8, 5% 110000 60 Blank*
A R,1 010001 24 A / 0,1 110001 61 /
B R,2 010010 22 B S 0,2 110010 62 S
C R,3 010011 23 C T 0,3 1100414 63 T
D R, 4 010100 24 D U 0,4 110100 64 U
E R,5 010101 25 E v 0,5 110101 65 v
F R,6 010110 26 F W 0,6 110410 66 w
G R,7 010111 27 G X 0,7 110114 67 X
H R,8 011000 30 H Y 0,8 111000 70 Y
I R,9 014001 31 I z 0,9 111001 71 z
R, 8,2 014010 32 ; 0,8,2 111010 72 @
. R,8,3 0110114 33 . s 0,8,3 111014 73 s
O R, 8,4 011100 34) o 0,8,4 111400 74 (
R, 8,5 011101 35 % 0,8,5 111104 75 Cr
R, 8,6 0411140 36] 0,8,6 111110 76 Blank*
R,0 011111 37 Blank* 0,8,7 111114 7 Blank*
Notes: Key Punch: Use MLT PCH key to overpunch omitted characters.
Printer: % indicates symbol which will be printed by otherwise non-standard
printer bit configuration.
Figure E-1. Honeywell 400 Coding and Punched or Printed Equivalents

103

INDEX

References below are to page numbers of the basic discussion of

each item.

Page
Acceleration Interval, Use ofv it iinennn. e 42
Card Punch. . oottt i ittt ie e ettt e e 87
Card REAdET . v vee e teeeaeeeeeaeeaenaaennannnenennnns 85
Address ArithmetiC. . v v v v e e et et ittt nenenetotessnosaossanennns 13
Address Fields, EASY Input Cardscociueecunnnnrcennans 9
Addresses
ADSOLULE « vttt ittt et i i et e e e 11
Complementttt iieeeiene e ieaererttnsannnnns 12
[0 o X = 12
Current InStruction. « v e o v it te e ettt cieen e eaenas 14
Interpretation of e e 11
NOL USEd! v i ittt ettt e e st teean oo seenaseseaneeennen 20
SO PPET - e ettt e e e 14
Storage Pool. vt e e e 14
I - R R I 12
Arithmetic Instructions . .. cii ittt ittt it ittt 23
Binary Add, BAD ... it e e e 26
Binary Subtract, BSU......ccviiiiiniiieiiiieaanan 26
Decimal Add, ADD .. ittt ittt ete ettt 24
Decimal Subtract, SUB ...ttt tiiat ittt nonnnnnns 24
Decimal Multiply, MPY. i 24
Decimal Divide, DIV. ...ttt iiiiitn i itennenenaannn 25
Assembly Program .« coiuvn s veenneeeeeerenaniananaiannnnns xii
Banner Words. .« v vvvt e N e e et 93
Breakpoint Instructions
37230 34
Sequence Changeon Option i, 32
Card Input/Output Generators.c...ueutiieeeeeennnnaeees. xiv, 70
Card Punch
Image ATea. . uvuet et oo iaeneneseneet oo 84
[0)1 30T 46
1 Y 46
PCOW ot ittt ittt i ettt e s et taesasesasaeassassoneonensos 45
Simultaneous Processing.uo.eueei vt 87
Card Reader
ImMage AT@a. « et e vue it enenanaeeseeeoennneeecssenans 84
Pocket SElection - -« vt vt i ittt ittt ieatitatenenaaaaean 45
23 44
ROW e i ittt it ittt te e tiae e ssasaaesineseenaisansenensns 44
1388 45
Simultaneous Processing..... ...ttt 85
Codes, Table Of « ot v vttt ittt et ee et eetseneennannsennsns 103

105

106

INDEX (cont)

Page
Collate Program.ttt ittt ittt et e e e e xiii
Command Code Field, EASY Input Cardsc0uvuu.... 9
Console Instructions
Halt, HLT ...ttt ettt e e e e e et 34
Sequence Change on Option, SCO...........ccouuvu...... 32
Type on Console, TAC, TDC, TOC.ccvvuuunin... 47
Constants
Address Field....... e e et et e, 12
Alphanumeric i i e e 61
Fixed Binary.ttt ittt e e e e 65
Hexadecimal it 63
Mixed . ot e e e e 67
Octal . e e e e 64
Control Instructions
BEGIN e e e e 59
EQU ALS. Lo i e e e 58
0 < 60
PROGRAM. L. e e 53
REPE AT, Lt it e e e e e 58
RESE R VE ...ttt ittt ettt e et 59
SEGMENT .. i e e e e 55
SET LOC . ot e e e e e e 57
Data Word, Format ofttt ittt 1
Decision Instructions.t iiiin e, 30
Extended Comparison, EXCcoutiunrnnnnnonn.. 30
Inequality Comparison, Alphanumeric, NAC.............. 30
Inequality Comparison Numeric, NNC 30
Less than or Equal Comparison, Alphanumeric, LAC 30
Less than or Equal Comparison, Numeric, LNC.......... 30
Descriptors . . vii i i i e e e e e i 70
EASY, General Descriptionttt e enn e v, IX
Edit Instructions. ittt 34
Card Edit Alphanumeric, ECA 36
Card Edit, Octal, ECO. ...ttt i, 37
Card Edit, Signed Decimal, ECD............cuuvuuunnn.. 37
Card Edit, Unsigned Decimal, ECU 37
Prepare Decimal Edit, PDE..............c0iiuiinunen.n. 41
Print Edit, Alphanumeric, EPA. uuuunnn. .. 40
Print Edit, Decimal, EPD...........000uuuuruu... e 40
Print Edit, Octal, EPOciiiiiiiinnannnnn. 41
Punch Edit, Alphanumeric, PCA..........c..uuruunnunn. 39
Punch Edit, Octal, PCO.viiiiineenrnnnnnnnn. 40
Punch Edit, Signed Decimal PCD............c0cvuuvuun... 40
Punch Edit, Unsigned Decimal, PCU 39

INDEX (cont)

Fixed Starts
10CAtioNS fOT . v v ottt it ittt e e essvesnoerossaneanssaeens
Purpose of « ittt e it

G T 0TS + + v v e e v e e o et eeeesasesssssesanesossaassnasssoesas

Identity Check of EASY Input
As Option in PROGRAM Directorc.oviiiii i,
As Option in SEGMENT Director e
Index and Check Instructions ettt e
Check Parity, CHP + ..ttt iiiitiieennnieeenns
Compute Orthocount, COC....... ... iiiierenercnenns
Restore Index Register, RTX,
Set Index Register, SETt ettiiiiiririnnnnnees..
Store Index Register, STXctttiiiinann.
Test Index and Increment, LUP i,
Index Bits
[@'e Y =305 Y
MNot Used! . o i ittt it ittt ettt eerraosaasssssssnanas
Index Registers

Indexing
TImIng v vv v v ion oo e ettt iteensn et teeeeaenan .
With AQAreSS eSS . « e e v e ettt vaeossossssseennsansssosenanans
With Parameters ettt e et ettt e
Input/Output Areas e e e e
Instruction Words
General Format «c v v vttt it ieneneeroeeroons C et
Table Of FOTrmmMatS « « « et e vt oeseeneeenneeennnesnanssaonsn,
Instructions
Summary Descriptions and Timing...........coovonn.

LAMP-PSP. sttt i teetttenenonnnsens et it
Library Routines. .« o oo iiii ittt enans
Lt eTalS . « e e e e et e n e e s ocaceeacaseosaansosssanasesassassoenss
Alphanumeric « e v e ve et ine ettt ittt iiiiiiaaaaaan
Fixed Binaryeeeeeeeenseeeenaennansteeeteaennnnsssnnnnas
Hexadecimal « - o vt v ittt ittt o teeeeesosasosesaonesssasoss

Location Field, EASY Input Cardsc.coeeivnnenn. e
Logical Instructions............. e ae e et
Extract, EXT ...t iiteeinensetenentnseaoeansnonns e
Half Add, HAD .ttt it ittt tetaeiaeenesnsasoannnennanns
Substitute, SST « it i ittt ittt eeroeneassnancaanass
Superimpose, SMP.ttt i

Page

70

54
56
48
50
50
49
48
49
49

107

108

INDEX (cont)

Page

Machine Language Format for Instructions, Summary........... 102
Magnetic Tape Unit

Backspace, BST e it i e 44

Read, RDTttt ittt ittt ittt nnnnnnnn 42

Rewind, RWttt ittt ittt eeienennnn 43

Simultaneous Operations.cueerinineerrnennnnnn. 87

Write, WRT. ittt ettt e 43
Momnitor Programttt ittt e e .. xiii
Multiply /Divide Option. ... v vttt ittt ie e et eenenn, 24
Peripheral Instructions (See Particular Unit)
Print Storage Option. it it i, 87
Printer

Print and Space Instruction, 46

Reserved Areattt i iiieeennnnnn. 84

Simultaneous Operations..........ccvueiriuernennnnnnnns 87
Punching Binary Cards as Assembly Output

As Option in PROGRAM Directorvvuviineennannnn. 54

As Option in SEGMENT Director «...vvveenneennnnnnnnn. 56
Registers

Index .. - .ot i e e e e 4

e T 4 o O 5
Remarks

5« R - B o« 10

In Columns 58-80 of Input Cards. .. vvvuerrennnennnnnnn. 9

Used for Identity Checkingoviiiiiiiennnne.. 54
Report Editor. ..ottt et et i e e e e e, xiv
Reserved Memory Locations

General Description. uou ittt iinnnenennnn. 3

Summary of Assignmentsouuueettiiiiennennnnnnnn 81
Segments. ... e e e e e e 55

CoOmMImMOn . . o e e e e, 56

Loading. - - oo v v it i e e et e et 57
Sequence Register

Incrementingo i i e 5

Resetting e et a e e 5

Subsequence Callstttuinninnnnnnennnennennnnn. 5
Shift Instructions. i e 29

Binary Shift Left, SLBttt nretnrenoeenn. 29

Decimal Shift Left, SLP..... ...ttt iiiannnnnnnn.. 29

Decimal Shift Right, SRP......c.iiiiiiininrtrnnneennnn. 29
Simultaniety e e e 6
Sort Program.t i e e e e xiii
Sorting Assembly Input

Option in PROGRAM Director. ...t vtiirnenrnnneennnnn 54

Option in SEGMENT DireCtOr « v o vt vvrenntrnnennennnnnns. 56

INDEX (cont)

Page

Stopper Location
Addressing. iv ittt i i it e e 14
Indexing Aroundiiiiniiitnnrneenneenannnennans 18
Subsequence Calls........iiuiiiintinenneneinnnnoenaaeanannn 5
Tape Identification Recordsttt 92
Tape Input/Output Generatoriueiiniitennrennneennnenns xiv
Tape Label Recordt iiiiiieniienerennneenneeennnnnnnans 91
B0 2 () xiv
Transfer and Sequence Change Instructions 31
Halt, HLT ...ttt ittt iitatteaenanseaaaaeenns 34
No Operation, NOPttt annnnnn 34
Select, SEL it iierteneeeeeenseseesaanssonssansnns 33
Sequence Change, SCH it iitiittinnerenann. 32
Sequence Change on Option, SCO 32
Stall, SUP ...ttt ittt ittt i i i 34
Unprogrammed Transfers.........c.. i ieiinninaeeannnan 5

109

Honeywell

Elitrowie Dita, Pmmiu%

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	0010
	0011
	0012
	0013
	0014
	0015
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	xBack

